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Abstract and Résumeé

'wo challenges in algebraic coding theory are addressed within this dissertation. The first one is the

efficient hard- and soft-decision decoding of Generalized Reed-Solomon codes over finite fields in
Hamming metric. The motivation for this more than 50 years old problem was renewed by the discovery
of a polynomial-time interpolation-based decoding principle up to the Johnson radius by Guruswami
and Sudan at the end of the 20th century. First syndrome-based error/erasure decoding approaches by
Berlekamp-Massey and Sugiyama-Kasahara-Hirasawa-Namekawa for Generalized Reed-Solomon
codes were described by a Key Equation, i.e., a polynomial description of the decoding problem. The
reformulation of the interpolation-based approach in terms of Key Equations is a central topic of this
thesis. This contribution covers several aspects of Key Equations for Generalized Reed—Solomon codes
for both, the hard-decision variant by Guruswami-Sudan, as well as for the soft-decision approach
by Koétter—Vardy. The obtained systems of linear homogeneous equations are structured and efficient
decoding algorithms are developed.

The second topic of this dissertation is the formulation and the decoding up to lower bounds on
the minimum Hamming distance of linear cyclic block codes over finite fields. The main idea is the
embedding of a given cyclic code into a cyclic (generalized) product code. Therefore, we give an extensive
description of cyclic product codes and code concatenation. We introduce cyclic generalized product
codes and indicate how they can be used to bound the minimum distance. Necessary and sufficient
conditions for lowest-rate non-primitive binary cyclic codes of minimum distance two and a sufficient
condition for binary cyclic codes of minimum distance three are worked out and their relevance for the
embedding-technique is outlined. Furthermore, we give quadratic-time syndrome-based error/erasure
decoding algorithms up to some of our proposed bounds.

EUX défis de la théorie du codage algébrique sont traités dans cette these. Le premier est le décodage
Defﬁcace (dur et souple) de codes de Reed—Solomon généralisés sur les corps finis en métrique de
Hamming. La motivation pour résoudre ce probléeme vieux de plus de 50 ans a été renouvelée par la
découverte par Guruswami et Sudan a la fin du 20eéme siécle d’un algorithme polynomial de décodage
jusqu’au rayon Johnson basé sur 'interpolation. Les premiéres méthodes de décodage algébrique des
codes de Reed-Solomon généralisés faisaient appel a une équation clé, c’est a dire, une description
polynomiale du probléeme de décodage. La reformulation de I’approche a base d’interpolation en
termes d’équations clés est un théme central de cette thése. Cette contribution couvre plusieurs aspects
des équations clés pour le décodage dur ainsi que pour la variante décodage souple de I’algorithme de
Guruswami-Sudan pour les codes de Reed-Solomon généralisés. Pour toutes ces variantes un algorithme
de décodage efficace est proposé.

Le deuxiéme sujet de cette thése est la formulation et le décodage jusqu’a certaines bornes inférieures
sur leur distance minimale de codes en blocs linéaires cycliques. La caractéristique principale est
Iintégration d’un code cyclique donné dans un code cyclique produit (généralisé). Nous donnons
donc une description détaillée du code produit cyclique et des codes cycliques produits généralisés.
Nous prouvons plusieurs bornes inférieures sur la distance minimale de codes cycliques linéaires qui
permettent d’ameéliorer ou de généraliser des bornes connues. De plus, nous donnons des algorithmes
de décodage d’erreurs/d’effacements [jusqu’a ces bornes] en temps quadratique.
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“Computer science is no more about computers than astronomy is about
telescopes.”

EDSGER W. DIJKSTRA (1930-2002)

Introduction

he advent for the theory of “reliable communication in the presence of noise” and “error correcting

codes”. Shannon developed information entropy as a measure for uncertainty and defined the
capacity C of a noisy channel. He showed that for any fixed rate R < C, there exist codes of rate R
with small decoding error probability. Furthermore, he showed that longer codewords are more likely to
be recovered. His theory is based on statistics and leads to information theory.

The theory of error correcting codes can be considered as an area of combinatorial mathematics.
Hamming defined a notion of distance between codewords over finite fields—which we call now Hamming
distance—and he observed that this is a metric—the Hamming metric. Furthermore, he constructed an
explicit family of codes.

This dissertation deals with linear block codes over finite fields in Hamming metric. We recommend
the tutorials of Berlekamp [A-Ber72], Sudan [O-Sud00; I-Sud01] and Costello-Forney [A-CF07], which
inspired the following paragraphs.

In 1960, Irving S. Reed and Gustave Solomon [A-RS60] defined a class of algebraic codes that are
probably the most extensively-used codes in practice, and as a consequence very well studied. This is
due to several good attributes of Reed-Solomon (RS) codes and the fact that they lie in the intersection
of numerous code families.

THE publications of Claude E. Shannon [A-Sha48] and Richard W. Hamming [A-Ham50] marked
t

RS codes are standardized for magnetic and optical storage systems like hard drives, Compact-
Discs (CDs), Digital-Versatile-Discs (DVDs), Blu-Ray-Discs (BDs) [B-Wic99], in Redundant Arrays of
Inexpensive Disks (RAID) systems (see [A-Pla97; A-BHH13] for RAID-6), in communication systems
like Digital Subscriber Line (DSL), in wireless communications standards like WiMax and broadcasting
systems like Digital Video Broadcasting (DVB), in bar-codes like the nowadays popular 2D Quick-
Response (QR) codes and in code-based crypto-systems like the McEliece public-key approach [O-
MCcE78]. They are part of several code constructions e.g., rate-less Raptor codes [A-Sho06], interleaved
and folded RS codes [A-Kra97; A-GR08] and concatenated schemes.

RS codes are Maximum-Distance-Separable (MDS) codes, i.e., they attain the Singleton bound with
equality. They belong to the class of linear codes and if they are cyclic, RS codes are the super-codes
of Bose-Ray-Chaudhuri-Hocquenghem codes [A-BRC60; A-Hoc59]. Algebraic-Geometry codes [A-
BHHW98], Reed-Muller codes [A-Ree54; A-Mul54] and ideal-based/number-field codes as the Chinese-
Remainder-Theorem codes [A-Man76] can be seen as generalizations of RS codes. Counterparts are
defined over other algebraic structures as e.g., Galois rings [A-Arm10; O-Qui12] and in other metrics
as e.g., Gabidulin codes [A-Del78; A-Gab85; A-Rot91] in rank-metric, which attract nowadays a lot of
interest due to network-coding theory [A-KK08; A-SKKO08].

Peterson [A-Pet60] developed the first decoding algorithm for RS codes which had cubic time complex-
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1 Introduction

ity in code length. The decoding method of Berlekamp [B-Ber68] and Massey [A-Mas69] scales quadratic
in time. The Berlekamp-Massey algorithm as well as the modification of the Extended Euclidean Al-
gorithm by Sugiyama-Kasahara-Hirasawa-Namekawa [A-SKHN75] became standard approaches of
decoding RS codes for decades. The discrete Fourier transform and its inverse operation can be used
to describe elementary properties and the classic decoding of RS codes (see [B-Bla83, Chapter 8] and
[B-Bos13, Chapter 3]). Delsarte [A-Del75] extended the definition of RS codes to so-called Generalized
Reed-Solomon (GRS) codes, which we consider throughout this thesis.

The discovery of a polynomial-time interpolation-based decoding principle up to the Johnson radius [A-
Joh62; A-Bas65] of Guruswami and Sudan [A-Sud97; A-GS99] for GRS and Algebraic-Geometry codes
at the end of the 20th century revived the interest in algebraic coding theory. The simplicity of their
approach inspired many researchers to re-think about list decoding of aforementioned related code
families like Reed—Muller codes [A-FT08; A-DKT07], Hadamard codes [A-GRS00b], Chinese-Remainder-
Theorem codes [A-GRS00a; I-GSS00; I-LS12] and Gabidulin codes [A-Wac13]. The impact of a feasible
list decoding algorithm on applications, where GRS or Algebraic-Geometry codes are used, is in the
focus of several investigations (see e.g., [O-Bar11] for the McEliece crypto-system).

Guruswami and Sudan proposed a new soft-decision decoding variant for GRS codes (and related code
families) by assigning different multiplicities for the interpolation step. Their approach was elaborated by
Kaotter and Vardy [A-KV03a] for RS codes. The Kotter-Vardy decoding approach is believed to provide the
best performance in terms of coding gain among all polynomial-time soft-decision decoding approaches
for GRS codes and due to complexity-reducing techniques, as the re-encoding transformation [A-KMV11],
its wide-spread deployment in practical systems is probable.

Cyclic codes were first introduced by Prange [O-Pra57] and the first difference to RS codes is that their
distance is not obvious from their length and dimension. The second is that they are defined over the base
field and therefore have some advantages. Cyclic codes are often referred to as Bose-Ray-Chaudhuri-
Hocquenghem (BCH) codes, which is somehow misleading. The BCH bound was the first lower bound
on the minimum distance of cyclic codes. The Berlekamp-Massey as well as the Sugiyama-Kasahara-
Hirasawa-Namekawa [A-SKHN75] algorithm can be used to decode up to the BCH bound. A challenge
is to find good lower bounds on the minimum distance of cyclic codes and to develop efficient, i.e., at
most quadratic-time, hard- and soft-decision decoding algorithms. Feng and Tzeng [A-FT89; A-FT91b]
generalized the approach of Berlekamp-Massey and Sugiyama—-Kasahara-Hirasawa-Namekawa to
decode up to the Hartmann-Tzeng bound [A-HT72], which was the first generalization of the BCH
bound. Several lower bounds and decoding algorithms exist and we refer to them when appropriate.

This dissertation is structured as follows.

In Chapter 2, we give necessary preliminaries for linear (cyclic) block codes in Hamming metric
and bivariate polynomials over finite fields. The Hartmann-Tzeng bound [A-HT?72] for cyclic codes
is proven. Combining methods for linear (cyclic) codes that lead to Slepian’s product codes [A-Sle60],
Forney’s concatenated codes [O-For66a] and Blokh and Zyablov’s generalized concatenation [A-BZ74]
are discussed in Chapter 2. Furthermore, we define GRS codes and Interleaved GRS codes (the description
of GRS codes is close to Roth’s [B-Rot06, Chapter 5]).

Chapter 3 describes hard- and soft-decision decoding approaches for linear codes in general and GRS
codes in particular. We derive the Key Equation for syndrome-based error/erasure Bounded Minimum
Distance (BMD) decoding of GRS codes from the simplest interpolation-based approach [O-WB86]. The
modification of the Extended Euclidean Algorithm is outlined, while the Fundamental Iterative Algorithm
(FIA) is discussed extensively. Furthermore, we outline the collaborative decoding of Interleaved GRS
codes, the interpolation-based principle of Guruswami-Sudan [A-Sud97; A-GS99] and the soft-decision
variant of Kétter and Vardy [A-KMV11] for GRS codes.

Chapters 4, 5 and 6 cover new results, in parts already published, and therefore appropriately refer-
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enced.

Two variants of Key Equations for decoding GRS codes beyond half the minimum distance are given
in Chapter 4. The derivation of both is done in detail and the adaption of the FIA is described. The
correctness of the FIA is proven and its complexity is analyzed. Furthermore, some future research
directions are given.

The univariate reformulation of the bivariate Kotter—Vardy soft-decision interpolation problem for
GRS codes is derived in Chapter 5 and the obtained set of Key Equations is given. We investigate the
re-encoding transformation [A-KMV11] and give a modified set of Key Equations in Chapter 5. The
adaption of the FIA for this case is roughly outlined.

In Chapter 6, we propose four new bounds on the minimum distance of linear cyclic codes, denoted by
bound I-a, I-b, I and III. Bound I-a is very close to bound I-b. While bound I-a is based on the association
of a rational function, the embedding of a given cyclic code into a cyclic product code is the basis of
bound I-b. The idea of embedding a code into a product code is extended by bound II and III. We prove
the main theorems for the bounds and give syndrome-based error/erasure decoding algorithms up to
bounds I-a, I-b and II. Good candidates for the embedding-technique are discussed and, as a first result,
conditions for non-primitive lowest-code-rate binary codes of minimum Hamming distance two and
three are given. The work is based on the contributions of Charpin, Tietavédinen and Zinoviev [A-CTZ97;
A-CTZ99]. Furthermore, we outline how embedding a given cyclic code into a cyclic product code can
be extended to the embedding into a cyclic variant of generalized product codes, which has not been
defined before.

We summarize and conclude this contribution in Chapter 7.
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“Science is facts; just as houses are made of stones, so is science made of facts; but
a pile of stones is not a house and a collection of facts is not necessarily science.”

HENRI POINCARE (1854-1912)

Linear Block Codes over Finite Fields

ECESSARY properties of linear block codes over finite fields in Hamming metric are covered in this

N chapter. In the next section, we recall the Lagrange interpolation theorem and define relevant
properties of bivariate polynomials over finite fields.

In Section 2.2, we define basic properties of linear and cyclic block codes. We prove the Hartmann-

Tzeng [A- Har72; A-HTC72; A-HT72; A- HT74] bound, which was the first generalization of the Bose—

Ray-Chaudhuri-Hocquenghem (BCH), [A-BRC60; A-Hoc59] lower bound on the minimum Hamming

distance of a cyclic code.

The product of linear codes is introduced in Section 2.3. Cyclic product codes and generalized
concatenated codes are special cases of product codes. We give the conditions for the product code to
be cyclic and illustrate the defining set with an example. In Section 2.4, we define Generalized Reed-
Solomon (GRS) codes as introduced by [A-Del75] based on the work of Reed and Solomon [A-RS60].
The notation of normalized, cyclic and primitive RS codes is given. In addition, we define Interleaved
Generalized Reed-Solomon (IGRS) codes and connect them to product codes.

2.1 Basic Notations

2.1.1 Hamming Metric and Polynomials over Finite Fields

Let N denote the set of natural numbers, Z the set of integers and Iy the finite field of order q. Let
Fq[X] be the polynomial ring over Fy with indeterminate X . The polynomial ring with indeterminates
X and Y over Fy is denoted by Fy[X, Y. For two given integers a and b, we denote by [a, b) the set
{a,a+1,...,b— 1} and by [b) the set [0, ).

A vector of length n is denoted by a bold letter as a= (ag a1 ... an—1) € Fy. Anm X n matrix
is denoted by a bold letter as A = (A; ; )fg[:;)) ]men A set of n elements ag, ag,...,0n—1 is
denoted by a capital letter as D = {a, 1, ..., Qn—1}-

A linear [n, k|4 code of length n and dimension k over 4 is denoted by a calligraphic letter like C.
We also use [n, k, d]4 to include the minimum Hamming distance d (see Definition 2.11). The code-rate
is denoted by R = k/n. -

We denote a univariate polynomial in F4[X] by A(X) = 3, A; X" € F4[X]. A bivariate poly-
nomial in Fg[X, Y] is B(X,Y) = >, Bi( (X)Y?, where B; (X) € Fq[X]. We denote B(X,Y) =
22 BigX iy,

The greatest common divisor of two elements a, b in a Euclidean Domain is denoted by gcd(a, b)
and their least common multiple by lcm(a, b).

19
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2 Linear Block Codes over Finite Fields

The support of v € Iy is the set supp(v) = {7 : v; # 0}. The Hamming weight of a vector v is the

cardinality of its support and denoted by wt(v) = |supp(v)].

Definition 2.1 (Hamming Distance)
Given two vectors a, b € Iy, the Hamming distance d(a, b) is defined as:

d(a,b) = wt(a—b) = Hi:ai #b;,, Yie [n)}‘

The Hamming distance is a metric, the so-called Hamming metric, because it fulfills for any three

vectors a, b, ¢ € Fy:
1. d(a,b) >0,
2. d(a,b) = d(b, a),
3. d(a,b)=0< a=Db,
4. d(a,c) < d(a,b) +d(b,c).
The scalar (or inner) product of two vectors a, b € Fg' is:

n—1
(a,b)=ab” = " ab;.
=0

2.1.2 The Univariate Lagrange Interpolation Problem

Given n distinct elements ag, a1, . . ., apn—1 in Fg. Define:
dof n—1
€
LX) = [[(X —a),
i=0
and let

n—1
Li(X) def ;(_X(i = H(X — o).
i j=0

J#i

(2.9)

(2.2)

The following formula was given by Lagrange in 1795 and we restrict ourselves here to points in Fq and

a univariate polynomial in Fq [ X].

Theorem 2.2 (Univariate Lagrange Interpolation)

degree smaller than n with:
R(ai) =1y, Vi€ |[n)

is given by:
LX)
R(X) = .
M= 2 e

(3

20

Let n < g distinct elements ag, a1,...,0n—1 in Fg and n (not necessarily distinct) elements
70,71, ..,Tn—1 € Fq be given. The unique Lagrange interpolation polynomial R(X) € Fq[X] of

(23)



2.1 Basic Notations

2.1.3 Bivariate Polynomials over Finite Fields
We first define the weighted degree of a bivariate polynomial with coefficients in [Fy.
Definition 2.3 (Weighted Degree)

Let two integers a and b be given. The (a, b)-weighted degree of a monomial X'Y7J € Fq[X, Y] is
defined as:

wdeg, b X'V % a7 4 by,

and the weighted degree of a bivariate polynomial Q(X,Y) € Fq[X,Y] with Q(X,Y)
222 Qi X Y7 is defined as:
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wdeg, 1, Q(X,Y) % masc (ai + bj).
,7)

Q4,570

We define the Hasse derivative in the following. It is sometimes referred to as hyper-derivative.

Definition 2.4 (Mixed Hasse Derivative [A-Has36, Equation (2)]) o
Let two integers a and b be given. The (a, b)-th Hasse derivative of Q(X,Y) = 3=, >, Q; ; X*Y
in Fg[X, Y] is defined as:

Q) £ S5 (1) (3) @uixt ey
i>aj>b

and we introduce the following short-hand notation. Let

QP (x,v) € Qlod(x,y)

denote the b-th Hasse derivative of Q(X, Y’) with respect to the variable Y.

Definition 2.5 (Multiplicity of a Bivariate Polynomial)
A bivariate polynomial Q(X,Y") € Fy[X, Y] has multiplicity m at (o, 8) € ]FZ if

Q[a’b] (a,8) =0, Va,bwitha+b<m.
Let us introduce Taylor’s expansion for a bivariate polynomial in Fy[X, Y.

Theorem 2.6 (Taylor’s Formula)
Let Q(X,Y) =32, >, Qi i XY € Fg[X,Y]. Forany (o, 8) € ]Fg, we have:

QX +a,Y +8)=> > Q" (a,p)xY".
a b
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2 Linear Block Codes over Finite Fields

Proor We have:

QX +a,Y+8) = ZZQZ,J(XM)(H,B)

1

-Exa (3 (1)) (S (@)

a=0 b=0
=S xey (50(0) (5) @etes
a b i g
= > Q" a, g x Y. .
a b

The following corollary is a direct consequence of Theorem 2.6.

Corollary 2.7 (Multiplicity of Bivariate Polynomials)
A bivariate polynomial Q(X,Y") = 3=, 3=, Qi,; X*Y7 € Fq[X, Y] has multiplicity m at (o, 8) €
Fi if and only if the shifted polynomial

QX +a,Y +8) = ZZQ”X Yy

[

has no term of total degree less than m, i.e., Q; = 0,if ¢ + j < m. Equivalently, we can say that
Q(X + o, Y + ) has multiplicity of order m at (0, 0).

The following lemma is essential for the re-encoding transformation technique for decoding General-
ized Reed-Solomon codes (see Section 5.2).

Lemma 2.8 (Multiplicity with One Zero-Coordinate)
A bivariate polynomial Q(X,Y) = 37, Q;(X)Y7 € Fy[X,Y] has multiplicity m at the point
(e, 0) if and only if the univariate polynomials Q ; (X) are divisible by (X — o)™~ 7 forall j € [m).

ProoF The translated bivariate polynomial is

QX+, Y +0) =Y Q;(X+a)Y/
J

and the first m — j — 1 coefficients of Q; (X + ) are zero according to Definition 2.5. In other words,
the univariate polynomial Q; (X + o) has multiplicity m — j at 0. This implies that X™m=3|Q; i (X +a)
and therefore (X — a)™7|Q;(X). n

For m € Z, define [m] ™ dof max(m, 0).
Corollary 2.9 (Multiplicity with One Zero-Coordinate)
A bivariate polynomial Q(X,Y) = Zj Q;(X)Y7 € Fq[X,Y] has multiplicities mg, m1, ...,

my,—1 at the points (ag,0), (a1, 0), ..., (ag—1,0) if and only if the univariate polynomials Q; (X)
are divisible by Hf;ol (X — ai)[mi*j]f
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2.2 Basics of Linear Block Codes and Cyclic Codes

We define the inner product of two polynomials A(X) = >°, A;X* and B(X) = 3, B; X" in
Fq[X] as:

(AX), B(X)) € " A;B;. (2.4)

For two bivariate polynomials A(X,Y) = 32, 3, A; ; X'Y7 and B(X,Y) = 32, 30, B; ; XY/
inFy[X, Y] the inner product is

(A(X,Y),B(X,Y)) ' >" 4, ;B; ;. (25)
7

2.2 Basics of Linear Block Codes and Cyclic Codes
2.2.1 Basics of Linear Block Codes

Definition 2.10 (Linear Code)
A code C over Fy is called linear if C is a linear subspace of F?, i.e., for any two codewords ¢, ¢’ € C
and two elements «, 8 € Fy we have

ac+ Bc’ €C.

Let C denote such a linear [n, k|4 code. The mapping
enc: IFI; - Ty
m +— enc(m)=mG
defines the encoding of a linear code C. The generator matrix G = (Gi,j)zg[[;?)) of C is a k X n matrix

with G; ; € Fg, whose rows form a basis of the code. The generator matrix G is not unique and its
rank k equals the dimension of the code C. A parity-check matrix H has rank n — k and is (in most
cases) a (n — k) X n matrix over Iy such that for every:

ceC «— HT =0

holds.

Definition 2.11 (Minimum Hamming Distance of a Linear Code)
Let C be an [n, k|4 linear code. The minimum Hamming distance d of C is:

d ™ min (d(c,c’)) = min (Wt(c - c'))7
c,c’ecC c,c’ecC
c#c/ c#c,
and due to linearity ¢’ = 0 € C and thus
d= min wt(c).
cec\{o}

We denote a linear [n, k|4 code C with minimum Hamming distance d as an [n, k, d]4 code.

23
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2 Linear Block Codes over Finite Fields

Let us define the dual of a code.

Definition 2.12 (Dual Code)
Let C be an [n, k, d]4 linear code with an (n — k) X n parity-check matrix H. The dual code of C
contains all vectors a € ]Ff;, such that:

a-cI' =0, VeeCc. (2.6)

Then, the linear [n, n — k, d*]4 code with generator matrix H is the dual of the code C and is denoted
by C+

Note that C = (C1)+
The following definition is relevant for the description of (generalized) concatenated codes in Subsec-

tion 2.3.3.

Definition 2.13 (Direct Sum of Linear Codes)
Let s linear [n, k;, d;]q codes C;, Vi € [s) over the same alphabet F; and of equal length n be given.

Furthermore, let Zf:_ol ki < n andlet

s—1
(¢ = {o}. (2.7)
=0

Then, the direct sum code is defined as:

—1

s s—1
@Ciz{Zci i ¢ €Cy, Vie[s)}. (2.8)
i=0 i=0

The following theorem gives the essential properties of a direct sum code.

Theorem 2.14 (Linearity and Minimum Distance of a Direct Sum Code)
LetC = P; 01 C; be a direct sum of s linear [n, k;, d;]q codes C; as in Definition 2.13. Then C is a

linear [n, > 777 1 ks, d] 4 code with minimum distance:

d < min (d;). (2.9)
i€[s)

PROOF Lmearlty follows from the definition. The dimension is guaranteed by Condition (2.7), because
then the > 7~ k: rows of the generator matrix of C are linearly independent. The distance follows
from the fact that every C; is a subset of C. n

The following corollary plays an important role for the construction of generalized concatenated codes
(see Subsection 2.3.3).

Corollary 2.15 (Direct Sum Code)
Let s linear [n, k;, d;]q codes C;, Vi € [s) with:

CoDCi D -DCs-1
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2.2 Basics of Linear Block Codes and Cyclic Codes

be given. Then, we have

Co = (Co\C1) & (C1\C2) ® - - B Cs_1.

2.2.2 Cyclic Codes

Cyclic [n, k, d] 4 codes are extensively discussed in the literature and they are well studied. We refer to
[B-PWBJ12, Chapter 7], [B-MS88a, Chapter 7 and 8], [O-Cha98], [B-LC04, Chapter 5], [B-PW72, Chapter
8] and [B-Bos13, Chapter 4].

For a given [n, k, d|q cyclic code C, we denote a codeword by ¢ = (coc1 ... ¢pn—1) € C and
equivalently in polynomial form by ¢(X) = Z?;ol ¢; X" in Fg[X]. Let us first define a cyclic code
over Fg.

Definition 2.16 (Cyclic Code)
A linear [n, k, d|q code C is called cyclic over F if every cyclic shift of a codeword in C is also a
codeword, i.e.:

c(X)eC = X-c¢(X) mod (X" —-1)eC. (2.10)

A linear [n, k, d]4 cyclic code C is then an ideal in the ring Fq[X]/(X™ — 1) generated by g(X).

The generator polynomial g(X) has roots in the splitting field F ; of X™ — 1, where n | (¢* —1).

Definition 2.17 (Cyclotomic Coset and Minimal Polynomial)
Let three integers r, n, ¢ with gcd(n, ¢) = 1 and » < n be given. A cyclotomic coset M,Sz> is defined
as:

M L Lrgd mod n|j € )}, (2.11)
where n,. is the smallest integer such that

rq"" =r mod n.

Let o be an n-th root of unity of IF ;. The minimal polynomial mﬁf} (X) of the element " is given
by:
mi ()€ ] (X -ad), (212)
ie M

and it is well-known that mfafg (X) € Fg[X].

Let o be an n-th root of unity. The defining set D of an [n, k, d]4 cyclic code C is defined as:
DE{0<i<n—1]g(a’) =0}. (2.13)
Therefore, we denote C(D) for a linear cyclic code C with defining set D. Clearly, we have

9(X) =[x -a")

i€eD
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2 Linear Block Codes over Finite Fields

and deg g(X) = |D| = n — k. Furthermore, we introduce the following short-hand notations for a
given set D and a non-zero integer z:

(D- z)n {1 z) modn\zeD} (2.14)
(D+z)n {z+z modn|zED} (2.15)
(D +2) % {z+z \zeD} (2.16)

Let us prove the Hartmann-Tzeng [A-Har72; A-HT72] lower bound on the minimum distance d of an
[n, k, d]4 cyclic code. We present it in polynomial form, which we use later on.

Theorem 2.18 (Hartmann-Tzeng Bound [A-Har72; A-HT72])

Let an [n, k, d]4 cyclic code C(D) with defining set D be given. Let o denote an n-th root of unity.
Let four integers f, m, § and v with m # 0 and gcd(n,m) = 1,0 > 2 and v > 0 be given, such
that:

({0,m.2m,.... (5 — 2)m}
U{1,14+m,1+42m,...,14+ (6 —2)m}

U{u,y+m,y+2m,...,u+(6—2)m})nQ(D—i—f)n. (2.17)

Then, d > dii; %' 6+ v.

Proor Equivalently, we can state that for the four parameters f, m, § and v with m # 0, the following:

oo
Zc f+zm+J — c(af+j) + c(af+m+j)X + c(af+2m+j)X2 4.
1=0

0 mod X1 Vje[v+1) (2.18)

holds for all ¢(X) € C.

Let ¢(X) € Candlet Y = {ig,%1,...,%y—1} denote the support of ¢(X), where y > d holds for
all codewords except the all-zero codeword. We linearly combine these v 4 1 sequences (or equations)
as in (2.18). The scalar factors for each power series as in (2.18) is A; € F; for i € [v + 1). We obtain

from (2.18):

oo v . . .
Z Z Ne(@f TmMHTY Xt =0 mod x9-1
i=0j=0

oo

ZXV: Z Aj (cuau<f+“"+j))Xi =0 mod X% 1.

i=0 j=0 ueY
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2.2 Basics of Linear Block Codes and Cyclic Codes

We re-order it according to the codeword coefficients:

f: > 2”: A (cuaUHm+)) xi — i (cuatr+im) 2”: i) X'
j=0

i=0 u€Y j=0 i=0 u€Y
=0 mod X% (2.19)
We want to annihilate the first v terms of ¢;, ¢y, . . -, Ci,_,- From (2.19), the following linear system
of equations with v 4+ 1 unknowns is obtained:
1 afo g2 ... qglov Ao 0
1 ot ohZ ... qhtv A1 .
1o =11 (2.20)
: : : : 0
1 o a2 ... oW¥ Ay 1

and it is guaranteed to find a unique non-zero solution, because the (v 4+ 1) x (v + 1) matrix in (2.20)
is a Vandermonde matrix and therefore has full rank.

LetY &y \ {%0,%1,...,%,—1}. Then, we can rewrite (2.19):

oo v
Z Z cua"(f+im>2a"j)\j X*=0 mod X% 1.
=0 \uev 7=0

This leads to:

cua® FTU g o)

=0 mod X‘S_l,
1—amuX

u€eyY

and we can bring it to the least common denominator:

2 (cwa™ Tgamin;  I1 (1= amhx))
ueY heY\{u}

1 (1—amX)

uey

=0 mod X 5_1,
where the degree of the numerator is smaller than or equal to y — 1 — v and has to be at least § — 1.

Therefore for y > d, we have:

d—1—-v>46-1,
d>d+v. n

Note that for = 0, the Hartmann-Tzeng bound dy;; becomes the Bose-Ray-Chaudhuri-Hocquenghem
(BCH) bound [A-Hoc59; A-BRC60] and is denoted by dj ;.
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2 Linear Block Codes over Finite Fields

2.3 Product Codes

2.3.1 Basic Principle

Elias introduced so-called i-iterated codes in [A-Eli54] that coincide for ¢ = 2 with the established
construction of product codes. The term “product code” was first used by Slepian in 1960 [A-Sle60].
Slepian used the Kronecker product to define the generator matrix of a linear product code. They are
discussed in [B-MS88a, Chapter 18] and an overview of iterative decoding approaches for product
codes can be found in the survey paper of Kschischang [O-Ksc03]. We use cyclic product codes (see
Subsection 2.3.2) to bound the minimum distance of cyclic codes. In the following, we shortly introduce
basic properties of product codes.

In this subsection, let A denote an [ng, kq, dalq code and B denote an [ny, kp, dp]q code over
the same field Fy. For simplicity, we assume that the first k, and k;, symbols of a codeword are the
information symbols of A and B, respectively.

Definition 2.19 (Product Code)
Let A be an [ng, ka, da]q code with a k, X n, generator matrix G(®) and let 13 be an [ny, ky, dpq

code with a kj, X n;, generator matrix G(?). The code with the (ko kp) X (nony) generator matrix

c® g gl = (ng]}Gm)]’E[nb)

i€lky)
b a b a b a
G§5§G< ) G§5§G< Y Gégilrld )
Gy Gla) G Gla) G G(a@)
_ 1,0. 1,1. l,nb—.l (2.21)
b ’ a b ’ a ’ b ' a
G”<fz>>—1,0G’< ’ Gl(cb>—1,lG< Yo Glig—l,nb—lG( )

is called direct product code and is denoted by A ® B.

Therefore, the mapping:
enc-pc: Fsa'kb — Fg“'nb

m +— encpc(m)=m (G<b> ® G<a>)

defines the encoding of a product code A ® B.

Notice that the Kronecker product of two matrices is non-commutative, i.e., in general G @G(a) #*
G{2) ® G but both matrices generate the same code. If the generator matrix of the product codes
is G() @ G{2) then the following encoding procedure is applied: first the k; rows of the kp X kq
information block are encoded k;, times by the code A. Afterwards the n, columns are encoded ng
times by B3 (see Figure 2.1). The second encoding procedure works as follows: first, the ko columns are
encoded kg times by B, then the obtained n;, rows are encoded ny, times by A. The generator matrix
for the second encoding procedure is G(*) @ G(®).

Theorem 2.20 (Distance of a Product Code)

Let two [na, ka, da]q and [np, kp, dp]q codes A and B be given. The product code A ® B over Fy as
in Definition 2.19 has minimum distance d,dp.
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2.3 Product Codes

Information

Checks on rows

Checks on columns

® O OO0

Checks on checks

Figure 2.1: lllustration of an [ngny, kqakp, dadp]q product code A ® B. First the kj rows are encoded by an
[Pa, ka,da]q code A and afterwards the n, columns by an [ny, ky, dp]q code B.

ProoF Let us w.l.o.g. assume that the first kj, rows were encoded with A and afterwards the n, columns
are encoded with 5. Then, each of the first k; non-zero rows of the corresponding n, X mp matrix has
weight at least d,. After encoding with I3, each non-zero column has weight at least d;, and therefore
the minimum Hamming distance of the product code is greater than or equal to d,dp. To prove the
equality, we have to show that a codeword with (exactly) weight dadp exists. Letcq, € Aandc, € B
be two codewords with weight d, and d;, respectively. Then cX'c;, € Fy?® *Ma is a codeword of the
product code A ® B and has weight dady,. ™

The simplest two-step decoding procedure decodes first the rows (or columns) separately and afterwards
the columns (or rows). Clearly, the second step fails, if a decoding failure (see Chapter 3 for definition)
occurred in the first one. There exist error patterns with weight less than | (dadp — 1)/2] that cannot be

corrected by this two-step approach (see one of the first works for decoding product codes [A-Abr68]).

Product codes are suited to be decoded by iterative methods and a variety of literature exists on it (see
e.g., [0-Ksc03]).

2.3.2 Cyclic Product Codes

Burton and Weldon [A-BW65] considered cyclic product codes first. Their work was extended by and
Lin and Weldon [A-LW70]. We recall some basic properties of [A-BW65; A-LW70] in the following and
give an example.

Theorem 2.21 (Cyclic Product Code [A-BW65, Theorem IJ)
Let A be an [ng, ka, daq cyclic code and let B be an [ny,, ky, dp]q cyclic code. The product code
C = AQ® Bis an [nanp, kaks, dadp]q cyclic code provided that the two lengths n, and n;, are

Jj€[na)
i€[ny)

Then, the polynomial ¢(X) = Z:’“gb_l ci X € Fg[X] with

relatively prime. Let the ny, X nq matrix M = (M ;)

Ci = Mz mod nyp,i mod ng s Vi e [nanb)

is a codeword of the cyclic product code C, which is an ideal in the ring F[X]/(X™a™ — 1).
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2 Linear Block Codes over Finite Fields

Let us outline how the defining set D¢ of C = A ® B can be obtained from defining set D 4 and
Dp of its component codes A and B.

Theorem 2.22 (Defining Set of a Cyclic Product Code, [A-LW70, Theorem 4])

Let A and B be an [nq, kq, da]q respectively an [ny,, ky, dp]q cyclic code with defining sets D 4 and
Djp and generator polynomials g (X) and g5 (X ). For some integers u and v, let ung + vn, = 1.
Then, the generator polynomial g(X) of the cyclic product code A ® B is:

g(X) = ged (X" — 1,94 (X"™) - gy (X"7) ). (222)

Let By def (D4 -v)n, andlet Ag def (Dp - u)n, as defined in (2.14). The defining set of the cyclic

product code C is:

ny—1 ng—1
De =14 |J (Ba+ina) U{ U (A5+inb)}.

1=0 1=0

Let us consider an example of a binary cyclic product code.

Example 2.23 (Cyclic Product Code)
Let A be the binary [17, 9, 5]2 cyclic code with defining set
Da=M3,={-83-4.3,-2-3,-1-3,1-3,2-3,4-3,8-3}
={1,2,4,8,9,13,15, 16}.

Let BB be the binary [3, 2, 2] single-parity check code with defining set Dg = M. éfg = {0} and let

117+ 6 3=1
N ~

u v

be a given Bézout’s relation. The binary product code A(Mﬁg) ® B(Mé,og) is illustrated
in the following figure. The numbers in the symbols are the indexes of the coefficients
¢; of the univariate polynomial ¢(X) of the [51,18,10]2 cyclic product code as stated in
Theorem 2.21. As previously discussed, we encode first the two rows by the [17,9,5]2
code A and afterwards the columns by the binary [3,2,2]2 single-parity check code B.

11 29 47 14 32

[372]2 [3»2]2
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2.3 Product Codes

According to Theorem 2.22, we obtain the following defining sets:

Bg=(Dy-6)17={-8,—-4,-2,-1,1,2,4,8} ={1,2,4,8,9,13,15,16},
Ap = (Dp - —1)3 = {0}.

A subset of the unions of the sets B 4 and Ag is shown in the following table.

(Ba+2-17)UB4y 0 O 1320 15 16:.0 1 2.0 4 O
Uicisaea,2)(As+3) | .10 O Oio O O;o O O!o O O
Dass 145 O 47048 49 5000 1 213 4 O

The corresponding subset of the defining set of the [51, 18, 10]2 cyclic product code D 455 is
shown in the third row. The dashed line indicates the start of a defining set of the [3, 2, 2] single-parity
check code B. The sequence 47,48, .. ., 4 in the defining set D 43 of the cyclic product has length
nine and is the longest consecutive one.

According to the BCH bound, the minimum distance of the cyclic product codes is then at least ten,

which is the true minimum distance of the product code. Notice that the BCH bound is not tight for
)

the minimum distance of A(M ﬁ ) and gives four.

2.3.3 Generalized Concatenated Codes

In 1966, Forney introduced concatenated block codes in [O-For66a, Section 1.2]. A so-called outer code
is concatenated with an inner code. Furthermore, the model of the super channel, i.e., the concatenation
of the inner encoder, the channel and the inner decoder (see Figure 2.2), was proposed. Basically, a

me Fxlx kq
q

—_—

c, € ]FAZX ng
q

Outer Encoder Inner Encoder

[naykayda]ql A N]Fkbxna [nbakbadb]qlg
= Iyq
cp € Fyb*me
S
Chl;fl:el Channel
ry, € ng Rw
~ ]FA XMNq
Outer Decoder qt Inner Decoder
e F;\lxka for A r, € F’;bxna for B

Figure 2.2: The super channel in a classic concatenated code scheme with an [ng, kq, da) 4l outer code A and an
[nb, kb, dp]q inner code B where ky, = X - L.

concatenated code is a product code \A ® B, but it is assumed that the [nq, ka, da]qz code A—the
row-code —is a code over an extension field ]Fql and the [ny, ky, dp]q code B—the column-code—is over
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2 Linear Block Codes over Finite Fields

Fg4. Furthermore, we require that

ky=X-1,
where A > 0 is an integer (see Figure 2.2). In terms of the product code as in Figure 2.1, first the A rows
of length k, over qu are encoded by A and the obtained A codewords cq,0,Cq,1, -+, Cq,x—1 are in
IE'ZZ‘I. Each element ¢, ; in Fq"l“ can be represented uniquely as | x n, matrix over Fy. The obtained
A X ng code matrix

cl) = (Ca,o Ca,1 - -- Ca,A—l)

in Fglx "a is equivalent to kp, vectors in Fg®. These vectors are then encoded column-wisely by B, the

inner code (or column code). The obtained ny, vectors €p 0, Cp,1;- -, Chny—1 € Fg® are transmitted
over the channel, then decoded separately by an inner decoder for B, represented as A received vectors
rq,0,Taq,1,- - Tar—1 € FZ{L and decoded by an outer decoder for A.

Definition 2.24 (Concatenated Code)
Let an [ng, ka, da]ql code A over F,: witha ka X nq generator matrix G({%) and an [ny, ks, dplq

code B over IFy with a kj, X ny generator matrix G pe given. Let ky, = Al. The kol X ng matrix

G is the kq X nq matrix G$@) represented over F,. The code with generator matrix

G=G®gag® (2.23)

is an [ngny, kaAl,d > dadp]q concatenated code and denoted by A ® B.

The mapping

enc-cc: Flg‘l)‘l —  Fge™

m +— enc-cc(m) =m <G<b> ®6<“>)

defines the encoding of a concatenated code.
Equivalently, we can represent the row-code B3 over the extension field F ; and first encode column-
wisely and then row-wisely by A.

Theorem 2.25 (Minimum Distance of a Concatenated Code)
Let A denote the [nq, ka, da]ql row code and 3 denote the [np, kp, dp] g column code of a concatenated

code A ® B as in Definition 2.24. The minimum distance of A ® B is:

d > dady.

Proor The proof is similar to the first part of the proof of Theorem 2.20. Two different codewords of A
differ in at least d, positions leading to at least d}, different symbols of the column code 5. n

The counterpart concept of the super channel considers a concatenation of the outer and inner encoder
as one element—the super encoder—and the concatenation of the inner and outer decoder as super
decoder respectively.

Forney’s code concatenation [O-For66a] was generalized by Blokh and Zyablov [A-BZ74; A-ZSB99]
and a non-linear construction was proposed by Zinoviev [A-Zin76]. Generalized code concatenation
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2.3 Product Codes

is also referred to as multilevel code concatenation. Dumer gives an introduction in his chapter in
the Handbook of Coding Theory [O-Dum98]. In addition, Lin and Costello [B-LC04, Chapter 15] and
Bossert [B-Bos13, Chapter 9] deal with generalized code concatenation.

We give the definition of a generalized concatenated code, because we use it in Chapter 6 to bound
the minimum distance of cyclic codes.

Definition 2.26 (Generalized Concatenated Code [A-Zin76])
Let s outer (or row) [na, ka,i, da,i]qli codes Ag, A1,...,As_1 over Fqli with kq ; X ng gener-

ator matrices G{%) for all i € [s) be given. Let By, Bi,...,Bs—1 denote s inner (or column)
[y, kb,i, dp,s]q codes over Fy for all ¢ € [s). Furthermore let

BoODB1D---DBs_q

as in Corollary 215 hold. Let G(?i\bi+1) denote the (kb,i — kp,i4+1) X n generator matrix of the
code B;\B;41 code for all i € [s — 1). Let the dimensions kp, ; — kp ;41 = Asl; foralli € [s — 1)
and kb,s—l = Asfllsfl-

i)

The kq,;l; X ng matrices 6”” are the corresponding representations of G{%i) in the base field
Fg. Then, the code with generator matrix:

G (bo\b1) ®§<a0>
G(1\b2) o Glo)
G = (2.24)
G (bs—2\bs—1) ®§(a572>
G (bs—1) ®§<a5—1>

is an [nanb,Zf;& kaq,iXili]lq generalized concatenated code of order s denoted by

(D523 (A @ (B\Bi+1)) ) © (As-1 @ Booa).

The mapping with G as in (2.24):

1
>i20 kayiNili

MNagN
enc-gee:  Fy artb

q
m — enc-gec(m) = mG,

— F

defines the encoding of a generalized concatenated code. Similar to the code concatenation, every
i-th sub-code can be equivalently formed by representing the generator matrix G(bi\bit+1) over the
corresponding extension field Fql% and building the product code first column-wisely and then row-
wisely.

Theorem 2.27 (Minimum Distance of a Generalized Concatenated Code)

Let Ag, A1, ..., As_1 be s [na, kq i, da,i]qli inner (or row) codes and let By, B1,...,Bs—1 be s
[, kb i, dp,i]q outer (or column) with

BoD>Bi DD Bs—1.
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2 Linear Block Codes over Finite Fields

Let the generalized concatenated code

s—2
C= <® (ji ® (Bi\Bi+1))> ® (As—1 ® Bs—1)

i=0
as in Definition 2.26. The minimum distance of C is:

d> llélgl) (da,i - db,;)

Proor A codeword a; of A; with minimal Hamming weight d ; affects a sub-code BB;1 of 3; having
at least weight d, ;.

We refer to [A-ZSB99; O-BGMZ99] and [O-Gri02, Chapter 2] for further information on generalized
concatenated codes and their decoding.

2.4 Generalized Reed-Solomon Codes

2.4.1 Definition and Notation

Delsarte [A-Del75] introduced Generalized Reed-Solomon codes 15 years after their initial definition by
Reed and Solomon in [A-RS60]. They are extensively described in [B-MS88a, Chapter 10.8], [B-Bos98;

B-B0s99, Chapter 3.1] and [B-Rot06, Chapter 5] as well as in [O-PHB98a, Section 8] and [O-Huf98,
Section 2].

Let ag, a1, . .., ap—1 denote n < q non-zero! distinct elements of the finite field Fy and let
a=(apai ... an_1).
Let
U= (Vo1 ... Un-1)

contain n non-zero (not necessarily distinct) elements of F,. For some univariate polynomial f(X) €
Fq[X], let

eval: Fqg[X] — Fy

B (2.25)
F(X) = eval(£(X), B,0) = (Tof(a0) Trf(er) ... Too1f(an-1))
denote the evaluation of f(X) at all n points «; scaled by v;.
Definition 2.28 (Generalized RS (GRS) Code)
Let « = (apa1 ... ap—1) consist of n distinct non-zero elements in Fy with n < ¢ and let
U= (UpU1 ... Upn—1) consist of n non-zero elements in Fy. An [n, k], GRS code is given by:
GRS(T, o, k) {eval(f(X),B, @) : f(X) € Fy[X] and deg f(X) < k} (2.26)

IWe restrict ourselves to this case, but in general the set of code locators can contain the zero-element.

34



2.4 Generalized Reed—Solomon Codes

We denote GRS(U, a, k) in the sense of a function prototype. The vectors U and a give indirectly
the length n of the code and the field size g. Therefore, the parameter n and q are not explicitly given.

The elements ag, a1, . . ., ap—1 are also called code locators or support of an GRS code. GRS codes
are Maximum Distance Separable (MDS) codes, i.e., their minimum Hamming distanceis d = n — k + 1.
Therefore, we give only the length n and dimension k as tuple [n, k] in the context of GRS codes
(instead of [n, k, d]q).

The generator matrix G € FI;X" of an [n, k] GRS code GRS (T, a, k) is:

1 1 1 _
vo
@Q a1 Qn—1 O
2 2 2 T1
G ag a7 An—1 O , (2.27)
k—1 k—1 k—1 TUn—1
Qg aj Qp_1 "

1 1 1 vo
(o7} Qaj Qn—1 0
2 2 2
H ag ay ar 4 U1

) (2.28)
0

ag,fkfl a?7k71 O‘Z:’f71 Un—1
The elements vg, v1,...,vn—1 of the parity-check matrix in (2.28) are the so-called column mul-
tipliers of the GRS code GRS (U, a, k). Since GHT = 0, we can relate the column multipliers
V0, V1, ..., Un—1 and the column multipliers T, T1,...,Un—1 of the dual [n,n — k]g GRS code

GRS(v, a,n — k)L in the following lemma.

Lemma 2.29 (Column Multipliers of the Dual GRS Code)
Let GRS(U, o, k) be an [n, k]q GRS code. The dual (see Definition 2.12) of GRS(T, o, k) is an
[n,n — k]q GRS code —
GRS(v,a,n — k) = GRS(T, o, k)
with
vl =T;L;i(ag), Vi€ n), (2.29)

k3

where L;(X) is as given in (2.2).

ProoF The proof follows an idea of Huffman’s Chapter 17 in the Handbook of Coding Theory [O-Huf98]
and in the lecture notes of Hall [O-Hal12, Chapter 5].

Let ¢ = eval(f(X), D, a) be a codeword of the given [n, k]q GRS code GRS(T, a, k) code and
let € = eval(f(X), v, @) be a codeword of the dual [n,n — k]4 GRS code GRS (v, o, n — k) as in
Definition 2.12. The polynomial f(X) has degree less than k and f(X) has degree less than n — k.
Therefore, the product f(X) f(X) has degree at most n — 2. The Lagrange interpolation formula (2.3)
for f(X)f(X) gives:

n—1 .
S faF(a) o = 0T, @30

i=0 i

~
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2 Linear Block Codes over Finite Fields

We consider the (highest) coefficient of X™~1 and for the LHS of (2.30) we have:

n—1

1 1
Z flew)f 0‘2) Li(cu) - Z Zf(az) (O‘Z)m

=0
n—1

=Y Tif(ai)flow)vs
=0

=cCc-C

The RHS of (2.30) gives zero and therefore ¢ - € is zero, too. The condition of duality is fulfilled (see (2.6)
in the Definition 2.12 of a dual code). n

We consider some special classes of GRS codes in the following example.

Example 2.30 (Dual of a Primitive GRS Code)
LetT = (Uo U1 ... Un—1)andleta = (g @1 ... an—1) be the code locators of an [n = ¢—1, k4
primitive GRS code GRS(U, v, k) over Fy. Let « be a primitive element in Fg and let

a; =at, Vi€ |n).
We need to calculate explicitly L;(c;) = L; () as given in (2.29). We obtain from (2.1) and (2.2):

Li(X) = L(X) X1
’ _Xfai_Xfai'

Applying L’Hopital’s rule leads to:

) i(n—1)
Li(a*) =na~"
1
And forn = q — 1 we get: ) ) )
Li(a') =na™*'=—-a™".
Then, the column multipliers of GRS(T, e, k) are v; = —at /U;. It is common to set v; = o' /v,

without the factor —1.

We define normalized GRS codes in the following.

Definition 2.31 (Normalized GRS Code)
Let the support set o« = (g @1 ... ap—1) consist of n distinct non-zero elements in Fgq withn < ¢
and let 1 € Fy denote the all-one vector. An [n, k] normalized GRS code is denoted by RS (e, k)

and defined by RS(a, k) %' GRS(1, e, k). More explicitly:

RS (e, k) {eval(f(X),l,a) . f(X) € Fy[X] and deg f(X) < k} (2.31)

Let us consider the dual of a normalized GRS code.
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2.4 Generalized Reed—Solomon Codes

Example 2.32 (Dual of a Primitive Normalized RS Code)
Let RS(a, k) be an [n = g — 1, k|4 primitive RS code over F with support set . Furthermore, we
have o; = o, Vi = [n). The column multipliers of the dual code of RS(a, k) are:

v; = —at, Vi€ n).

This follows directly from Example 2.30. Notice that the dual of a primitive normalized RS code is not
necessarily a normalized RS code.

We consider cyclic RS codes inter alia in Chapter 6 and therefore define them in the following.

Definition 2.33 (Conventional/Cyclic RS Code)
Let n be a positive integer with n|(g — 1) and let 8 denote the primitive element of F,. Then, the
element:

—1
a=8%

is an n-th root of unity of Fy. Let b be a positive integer. Then, an [n, k] GRS code with support
a=(apay ... ap_1), where ‘
a; =a*, Vi€ n),

and with column multipliers © = (Tg U1 ... Un—1), where
v =070 i [n)
is called cyclic RS code and therefore denoted by CRS(q, n, b, k). More explicitly, we have:

CRS(g,mn,b,k) def {eval(f(X),a,ﬁ) $ f(X) € Fg[X],deg f(X) < k}

We denote CRS(g, n, b, k) again in the sense of a function prototype. In contrast to GRS codes,
the field size g, the length n is not given by the set of locators. The characteristic parameter b is given
explicitly.

Let us investigate the cyclic property of a CRS code. According to (2.29), we obtain the following
column multipliers:

1 1 o 1 4
vy = = — — = —a'’.
4 U;lLi(O‘i) n at(1-b) n

and therefore we have the following (n — k) X n parity-check matrix for an [n, k]q CRS code
CRS(q,n,b, k) :

1 ab . Oé('nfl)b
1 ab+l a(n=1)(+1)
H=n""'.|. . ] . ) (2.32)
i ab+n.—k—1 a(n—l)(bll—n—k—l)
We know that for all ¢ € CRS(g,n, b, k):
HcT =o0. (2.33)
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2 Linear Block Codes over Finite Fields

Let us associate for every codeword ¢ = (coc1 ... cn—1) € CRS(g,b,n, k) a univariate polyno-
mial ¢(X) € Fq[X] with ¢(X) = Z?z_ol ¢; X". Due to the special form of H as in (2.32), we can

rewrite (2.33) in polynomial form and obtain:
c €CRS(g,n,bk) = c(a?)=0, Vjebb+n—k).

and therefore, the element a®, a®+1 ... a®*”~F~1 are the roots of the generator polynomial g(X)
of CRS(q,n,b, k). Our presentation of normalized and cyclic RS codes is very close to the one of
Roth [B-Rot06, Chapter 5].

2.4.2 Interleaved Generalized Reed-Solomon Codes

Interleaved block codes over [y of interleaving order s are a special case of product codes, where the
column-code B is the trivial (s, s, 1]4 code. We focus on Interleaved RS (IRS) codes. The existing literature
of Krachkovsky [A-Kra97; I-Kra98; A-Kra03], Bleichenbacher [O-BKY03; A-BKY07] and Schmidt et
al. [A-SSB0Y] considers interleaved normalized RS codes (as in Definition 2.31). Analog to them, we
introduce Interleaved GRS (IGRS) codes. We focus on IGRS codes, where each sub-code has the same
support.

Definition 2.34 (Interleaved GRS (IGRS) Code)

Letk = (ko k1 ... ks—1) consist of s integers, where all k; < n. Let U = (Up U1 ... Us—1),
where each U; contains n < g non-zero (and not necessarily distinct) elements of Fq and let ag =
(ap a1 ... ap—1) of n distinct non-zero elements in Fy with n < ¢ be given. Let o denote
a=(agap ... ap).
s times

Then, an [sn, Zf;& kilq IGRS code ZGRS(U, a, k) of interleaving order s is given by:

IGRS(D, g, k) = IGRSD(T, a, k).

Again in the sense of a function prototype, the length n and the interleaving order s of the IGRS code
are indirectly given by the parameters v € Fg™ and k € N°.

IGRS code are called heterogeneous in general and if k; = k, Vi € [s), they can be called homoge-
neous.

Furthermore, we note that it is possible to extend the Deﬁnitionﬂ to IGRS codes with different
support sets.
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“Basic research is like shooting an arrow into the air and, where it lands,
painting a target.”

HoMER BURTON ADKINS (1892 - 1949)

Algebraic Decoding Principles for Linear Block
Codes

i.e., an exhaustive search, has exponential time complexity. The definition of the decoding problem

is not unified in the literature and many various formulations exists. In this chapter, we describe
elementary decoding principles of linear block codes in Hamming metric. The refinement for algebraic
block codes and in particular for GRS codes is outlined.

In a first step, we give relevant definitions for hard-decision decoding problems in Section 3.1. For
each problem, we identify when a decoder fails. In the second step, the hard-decision decoding problem
is generalized to the case where the channel, in addition to the received vector, outputs information on
the reliability of the received symbol, the so-called soft-information.

Syndrome-based hard- and soft-decision decoding approaches for GRS codes are considered in
Section 3.2. We show in Section 3.3, how the Extended Euclidean Algorithm (EEA), as originally
modified by Sugiyama, Kasahara, Hirasawa and Namekawa [A-SKHN75; A-SKHN76] for Goppa codes,
can be used for error/erasure decoding of GRS codes. The Fundamental Iterative Algorithm (FIA) of
Feng and Tzeng [A-FT85; A-FT91a] finds the minimal number of linearly dependent columns (and the
corresponding vanishing linear combination) of a given arbitrary matrix. The FIA can be suited to
a structured matrix like a Hankel matrix. The homogeneous linear equations that originates from a
so-called Key Equation, i.e., a polynomial equation that connects algebraically the input and the output
of the unique decoding problem of GRS codes, is of Hankel structure. Therefore, we show the adjustment
of the FIA and prove the complexity reducing initialization rule, which is generalized in Chapter 4
and 5. We illustrate the native and the adjusted FIA, when used for Bounded Minimum Distance (BMD)
decoding of a GRS code.

In Section 34, collaborative decoding of IGRS codes, as defined in Subsection 2.4.2, is considered.
We define the model of burst-errors and give the set of Key Equations for the collaborative decoding
scheme. The definition of decoding failure is given and the corresponding homogeneous set of equations
is outlined.

THE decoding of linear block codes is a difficult task in general, since a native decoding algorithm,
i

We prove the main theorem of the interpolation-based hard-decision list decoding of GRS codes by
Guruswami and Sudan [A-Sud97; A-GS99] in Section 3.5. We show that the Johnson radius is achieved
asymptotically. Furthermore, the extension of Kotter-Vardy [A-KV03a] to a soft-decision scenario is
discussed. The comparison of existing realizations for the interpolation step concludes this chapter.
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3 Algebraic Decoding of Linear Block Codes

3.1 Decoding Principles and Complexity Issues

3.1.1 Hard-Decision Decoding of Linear Block Codes and Generalized
Reed-Solomon Codes
Throughout this subsection, let C C Fy be a linear [n, k, d]q block code and let ¢ € C. Let e € Fy

denote the error with e = wt(e). Let r = ¢ + e denote the received word.

Definition 3.1 (Bounded Distance Decoder)
A bounded distance decoder for a given linear block code C is a function that returns one codeword or
a decoding failure for a given decoding radius 7 and a given received vector r, i.e.:

BDD: (Fg,N) — C U {DEcopiNG FAILURE}
(r,7) — BDD(r, 7).

The bounded distance decoder returns one codeword c from a given received vector if
|B-(r)nC| =1, (3.1)

where B (r) is the Hamming ball of radius 7 around the vector r, and otherwise it declares a decoding
failure.

With Definition 3.1, we can easily define a Bounded Minimum Distance (BMD) decoder.

Definition 3.2 (Bounded Minimum Distance (BMD) Decoder)
A Bounded Minimum Distance (BMD) decoder for an [n, k, d]4 block code is a bounded distance
decoder as in Definition 3.1 with decoding radius 7 = | (d — 1)/2].

If the number of errors € is at most | (d — 1) /2|, a BMD decoder does not fail. For a bounded distance
decoder with decoding radius 7 > |(d — 1)/2] a decoding failure can occur if e > |(d — 1)/2] and
therefore includes cases where the number of errors is smaller than the decoding radius.

For algebraic block codes, BMD decoding was first realized by syndrome-based decoding algorithms.
The first polynomial-time approaches were proposed by Peterson [A-Pet60], Gorenstein-Zierler [A-
GZ61] and Chien [A-Chi64]. Many efficient BMD decoding algorithms for GRS codes exist. The different
steps for syndrome-based decoding have quadratic or even sub-quadratic time and space complexity.

We derive the Key Equation for syndrome-based BMD decoding of GRS codes as in Definition 3.2
from the simplest interpolation-based approach in Section 3.2. It is a special case of the derivation of
the Key Equation for the Sudan principle by Roth and Ruckenstein [I-RR98; A-RR00] and resembles the
ones of Welch-Berlekamp [O-WB86] and Gao [O-Gao03]. We consider the derivation for the case of
erasures, which was not considered in [A-RR00].

A decoder capable to decode GRS codes beyond half the minimum distance is given in Section 4.1 and
was first developed by Schmidt, Sidorenko and Bossert [I-SSB06; O-Sch07; A-SSB10]. It is not clear if it
is a bounded distance decoder as in Definition 3.1 or if it declares in some cases a failure even if (3.1) is
fulfilled. The Schmidt-Sidorenko-Bossert decoding approach is based on a virtual extension of a GRS
code to an IGRS code. Therefore, we investigate first the collaborative decoding principle of IGRS codes
in Section 3.4.
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Definition 3.3 (List Decoder)
A list decoder for a linear block code C is a function that returns a list of up to ¢ codewords or a
decoding failure for a given received vector r, i.e.:

LD: (Fy,N) — {CU 03¢\ {0}* U {DECcODING FAILURE}
(r,€) — LD(r,¥).
The decoding radius 7 is such that
[Br(r)NnC| < ¢,

where B (r) is the Hamming ball of radius 7 around the vector r. The list decoder returns at most £
codewords cp, €1, ...,¢c¢—1 € C from a given received vector r. If there is no codeword c, such that
d(r,c) < 7 holds, i.e., the list is empty, a decoding failure is declared.

Similar to a bounded distance decoder, a list decoder with decoding radius 7 > |(d — 1)/2] can
return a decoding failure if ¢ > |(d — 1)/2]. The decoding spheres for BMD decoder and a decoder
with higher decoding radius are shown in Figure 3.1.

(a) BMD decoding spheres for 7o < [(d — 1)/2] (b) Decoding spheres for 7 > |(d — 1)/2]

Figure 3.1: Comparison of the decoding spheres of BMD (Subfigure 3.1a) and a decoder with radius larger than
| (d — 1)/2] (Subfigure 3.1b). In the case of list decoding the illustrated received vector r can be mapped to the
codewords cg and c.

The principle of list decoding was first considered in the work of Elias [O-Eli57] and Wozencraft [O-
Wo258]. The first polynomial-time list decoder for GRS and Algebraic-Geometry codes was developed
by Sudan [A-Sud97], Shokrollahi-Wasserman [A-SW99] and extended by Guruswami-Sudan [A-GS99].
We give an introduction to their interpolation-based principle in Section 3.5.

A nearest-codeword decoder returns the closest codeword, i.e., a codeword with smallest Hamming
distance to the received word (and therefore generalizes the bounded distance decoder of Definition 3.1).
The definition of a maximum likelihood decoder coincides with the one of a nearest-codeword decoder
in Hamming metric for channels, where an error word with higher Hamming weight is less probable
than one of lower Hamming weight.

Maximum likelihood decoding of linear codes, in general, and RS codes, in particular, is NP-hard [A—
BMVT78; A-GVO05]. It remains an open problem to find polynomial-time decoding algorithms with near
maximum likelihood performance for GRS as well as for linear block codes.
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3 Algebraic Decoding of Linear Block Codes

3.1.2 Soft-Decision Decoding of Generalized Reed-Solomon Codes

Soft-decision decoding algorithms process side information to recover the transmitted codeword c. The
source of this additional information can be, e.g., the demodulator in a communication system or the
inner decoder in concatenated coding schemes (see Subsection 2.3.3).

The first soft-decision algorithms for GRS codes used the available side information to map some
received symbols in [F4 to so-called erasures (see Figure 3.2 for a g-ary symmetric error-erasure channel).
The position of an erasure is known but the value not. BMD decoders are able to correct ¢ errors and ¢

{0)

"G
’
,

.

, \

122/(g—1) o
N

Figure 3.2: The g-ary symmetric error/erasure channel: The symbols of the g-ary alphabet are mapped toa (¢ + 1)-ary
alphabet with erasure probability p1 and with error probability ps.

erasures as long as
2e + (¢ < d.

The proof is quite simple: the { erased positions are neglected and the decoding of a punctured GRS
code with minimum distance d — ( is performed. Forney [A-For66b] first introduced a Generalized
Minimum Distance (GMD) decoder that successively erases the least reliable symbols and performs for
each step error/erasure decoding. The principle was among others refined by Chase [A-Cha72]. An
overview of adaptive single- and multi-trial GMD decoding algorithms can be found in the work of
Senger [O-Sen11]. We outline the syndrome-based algebraic error/erasure decoding of GRS codes in
Section 3.2.

Another soft-decision principle for GRS codes uses the representation of r € F"*, over the base field

[}, and applies iterative algorithms (as, e.g., the belief propagation algorithm that is used originally for
the decoding of Low-Density-Parity-Check codes). The initial work is from Jiang and Narayanan [A-JN04;
A-JN06]. See also the work of Bellorado et al. [A-BKMP10; A-BK10] on this topic.

The interpolation-based decoding algorithm of Guruswami and Sudan [A-GS99] allows a new soft-
decision variant of decoding GRS codes, the so-called Kotter-Vardy algorithm. We discuss the Kétter—
Vardy principle in Section 3.5. Some simulation results can be found in [A-GKKGO06] and [I-KV03b].
Furthermore, a variety of publications on an optimal weight calculation [I-K606; A-EKM06] and many
suboptimal Kétter—Vardy-based algorithms exist (see e.g. [B-Che09; A-SLX12; I-NZ13]).
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3.2 Syndrome-Based Decoding of GRS Codes

3.2 Syndrome-Based Decoding of Generalized Reed-Solomon
Codes

3.2.1 Welch-Berlekamp Approach as List-One Decoder and Explicit
Syndromes

In this subsection, we derive the classical Key Equation for syndrome-based error-only decoding of
GRS codes up to half the minimum distance. The starting point of the derivation is the simplest
interpolation-based approach, known as the Welch-Berlekamp algorithm (see [O-WB86], [A-GS92,
Problem 9], [A-YB94, Section 2], [A-DB95, Section II]) or Gao algorithm [O-Gao03]. We consider the
scenario where an [n, k]q GRS code as in Definition 2.28 is affected by errors (and not by erasures). The

algorithm is based on the following lemma (see also [B-JH04, Chapter 5.2]).

Lemma 3.4 (Welch-Berlekamp Approach as a List-One Decoder)
Let ¢ = eval(f(X), D, a) be a codeword of a given [n, k]; GRS code GRS(U, o, k). Letr =
(ror1 ... Tn—1) = ¢ + e be the received word with e € F. Let d(r,c) < [(n — k)/2]. Let

be a non-zero polynomial in Fy[X, Y] such that:
C1) Qau,ri/Vs) =0, Vi€ [n),

C2) degQo(X) <n-—r,
degQ1(X) <n—71—(k—1).

Then f(X) = —Qo(X)/Q1(X).

ProoF We first proof the existence of a non-zero solution. From C2 we haven —7+n—7—k+1
unknown coefficients of Q(X, Y') and from C1 n linear constraints on Q(X, Y"). The system of equation
has a non-zero solution if the number of unknowns is greater than the number of linear equations, i.e.:

2n—71)—(k—1)>n
n—k+1
—

T <

Any interpolation polynomial Q(X,Y") satisfies Q(a, ¢;/U;) = O for at least n — 7 positions (due to
C1). But Q(X, f(X)) has degree at most n — 7 — 1 (due to C2), so Q(X, f(X)) = 0 and therefore
Qo(X) + Q1(X)f(X) = 0. To prove the uniqueness of f(X), let us consider a second interpolation
polynomial Q' (X,Y) = Q{(X) + Q7 (X)Y that satisfies C1 and C2. We have:

Qo(a;) + Ql(ai)% =0, (3:2)
Q) + Q) () - =0, (33)

for all ¢ € [n). From (3.3), we have that r; /T; = —Q( (i) /Q (a;) and substitute this in (3.2) leads
to:

Qo(a)Q1 (ow) = Q1 () Q0 (),
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3 Algebraic Decoding of Linear Block Codes

foralli € [n). The degree of Qo (X)Q) (X)isatmostn—7—14+n—7—k =2n—27—k—1=n—1
and due to the Lagrange interpolation theorem (see Theorem 2.2) the polynomial is unique, hence

F(X) = =Qo(X)/Q1(X) = —Q((X)/Q1 (X). (]

Lemma 3.5 (Univariate Reformulation of Welch-Berlekamp)

Let R(X) € Fq[X] with deg R(X) < n be the Lagrange interpolation polynomial, such that
R(«) = r;/T;, Vi € [n) holds (as in Theorem 2.2). Let L(X) = H?;ol (X — ;) asin (2.1). Then,
the interpolation polynomial Q(X,Y’) satisfies the conditions C1 and C2 of Lemma 3.4 if and only if
there exists a polynomial B(X) € Fq[X] such that:

Q(X, R(X)) = B(X) - L(X), (34)

where deg B(X) < n — k — 7 holds.

Proor From C1 of Lemma 3.4 the univariate polynomial Q(X, R(X)) € Fq[X] vanishes at all n points

o and thus L(X)|Q(X, R(X)). The degree of Q(X, R(X)) is at most deg Q1(X) + deg R(X) —
degL(X)<n—7—-k+1+n—-1—-n=n—k—r. n

We introduce the following polynomials:

R(X) € x " IR(X ),

I(x) € xL(x ),

ox) €

(3.5)
ankf‘rle(Xfl)’

def

Ap(X) = xRS0 (X ), t=0,1.

Note that, these polynomials are not necessarily the reciprocal polynomials, because, e.g., for the received
polynomial the degree can be smaller than n — 1. Inverting the order of the coefficients of (3.4) leads to:

XTHRRL (Qo(X 1) 4 Qu(XTHR(XTY) = XP TRl XTL(X ).
Inserting the polynomials of (3.5), we obtain:
X" RAG(X) 4+ A1(X) - R(X) = Q(X) - L(X).
We can consider the previous equation modulo X™~* and obtain:
A(X)-R(X)=QX)-L(X) mod X" 7% (3.6)
The formal power series S°° (X)) is defined as follows:

of . R(X
5 (x) f ZO S, Xt = % (3.7)

In the following lemma, we give an explicit expression for the syndromes S; € Fy.
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3.2 Syndrome-Based Decoding of GRS Codes

Lemma 3.6 (Explicit Syndromes for GRS Codes)

Let GRS(T, a, k) be an [n, k]q GRS code and let v = (vg v1 ... vp—1) denote its column multi-
pliers as in Lemma (2.29). Let the power series S™°(X) = 37°, S; X* be defined as in (3.7). Let
r=(ror1 ... rn—1) = ¢ + e be the received word in F?, where ¢ € GRS (U, a, k). Then, the
coefficients of S°°(X) are given by:

n—1

Si = Z ’r’j’U]'Oc;. (3.8)

Jj=0

Proor The reciprocal polynomial of R(X) is explicitly:

n—1 n—1
— _ _ _ T5 _ _
R(X)=X"""-R(X"H=x"""%" #Lj(aj) I —an)
j=0 J i=0

i#j

|
-

n ra n—1
=> ZrLilap) [ —aiX). (3.9)
- Uy .
Jj=0 J i=0

i#j

With v}l = U; Lj(a;) from (2.29) for the column multipliers, we get:

o n—1 r n—1 n—1 n—1
R(X) = LLi(ey) [ = X)) =D rju; [ (1= i X). (3.10)
j=0 Y3 i=0 =0 i=0
i#j i#]
The reciprocal of L(X) is:
N n—1
LX)=X"-L(XH =[]0 -aX). (3.11)
i=0

Thus, with (3.10) and with (3.11), we can write (3.7) more explicitly and obtain:

n—1 n—1
> vy I (1 —aiX)
7=0 i=0

R(X - i3] et
Z(X) = — 7 = a _Jaf_X) . (3.12)
(%) IT(1—a;X) J=0 ’
i=0
And with the geometric progression, we obtain from (3.12)
E(X) (o] ) co n—1 )
T S STX) =3 sXT =30 % v X))’
( ) i=0 =0 j=0
and therefore S; = Z;L;ol TU; 043-» foralli € N. ™
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3 Algebraic Decoding of Linear Block Codes

Thus, dividing (3.6) by L(X) and with S(X) def S%°(X) mod X", we get
A1(X)-S(X)=Q(X) mod X" ¥, (3.13)

which corresponds exactly to the classical Key Equation. Therefore, we denote A1(X) as A(X). Given
e € Iy, the so-called error-locator polynomial A(X) is the univariate polynomial in Fq[X] of minimal

degree, such that for all i € supp(e) <> A(a?) = 0. For wt(e) = 7, the degree of A(X) is 7, and the
degree of (X)) is smaller than 7.

Let us at this point shortly summarize the classical derivation of the Key Equation based on the
syndrome definition similar to the description of [B-Rot06, Chapter 6]. From the (n— k) X n parity-check
matrix H of an [n, k]q GRS code GRS (U, o, k) as defined (2.28), we know that

HcT =0

for c € GRS (U, a, k). More explicitly, we have:
n—1 ]
ZC]'UJ'O(; =0, Vie [n—k:)
j=0

Therefore, the syndrome expression of (3.8) simplifies to:
Si = Z rjvja = Z ejvjoc = Z ejvja],
JEE

where E = supp(e). Define the error-locator polynomial A(X') and the error-evaluator polynomial
Q(X) in Fg[X] as follows:

AX) € ] - aX), (3.14)
JjEE
X) déf Z €;jV; H (1 — O{iX), (3.15)
JEE  ieB\{j}

and from (3.12) we get the following relation:

= i: _ 1Y% mod X"k

(11— X
= Z &Y mod X"~k
% (1—-ayX)
= M mod X" k.
A(X)

We consider only the terms of the polynomials with highest degree, when we represent (3.13) in matrix
form. From (3.13) we get the 7 homogeneous linear equations of the following form:

n—1—k

> Ai-Sji=0, jelr—-k—7n—k). (3.16)
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3.2 Syndrome-Based Decoding of GRS Codes

Let us assume that 7 = |E| = | (n — k)/2]. Reverting the coefficients of (3.16) leads to:

n—1—k
Z A-,-77; . S’Hr] = 07 ] € [T)»
So S ... S Ar
S1 So ... Srq Ar_q
— . . . . : . =0. (3.17)
Sr—1 S ... Sor1 Ao
The 7 X (7 + 1) syndrome matrix S = ( 1+])]€ ["+1) in (3.17) is a Hankel matrix, i.e., Si; = Sitj

holds for all¢ € [7 + 1), € [7).

3.2.2 Error/Erasure Decoding of Generalized Reed-Solomon Codes

We shortly outline the syndrome-based error/erasure decoding procedure for GRS codes as it was first
investigated by Forney [A-For65] and the modification of the EEA, which was introduced by Sugiyama,
Kasahara, Hirasawa and Namekawa [A-SKHN76].

Let ? mark an erasure. For the transmission over an error/erasure channel as in Figure 3.2, the
received vector is denoted by T, where each 77 is in the alphabet Fy U {?}. Let

n—

Z T]XJ

be the received polynomial for the error/erasure case.

Let the set E = {40, %1, ..., %—1} of cardinality |E| = ¢ be the set of erroneous positions and let
the set Z = {jo,j1,.-.,Jc—1 of cardinality | Z| = ¢ be the set of erased positions.

In the first step of the decoding process, the erasures in 7(X) are substituted by an arbitrary element
from Fg. For simplicity, it is common to choose the zero-element. Thus, the corresponding erasure
polynomial in F¢[X] is denoted by z(X) = Y, , 2:.X %, where ¢;+2; = 0, Vi € Z. Let the modified
received polynomial r(X) € Fq[X] be

n—1
x) &f STrX' = o(X) + e(X) + 2(X), (3.18)

where c(X) is a codeword of the GRS code GRS (, e, k) with column multipliersv = (vo v1 ... vn—1)
and e(X) = >, p e; X" in Fg[X] is the error polynomial.
The syndrome polynomial S(X) = 771 §; X7 € Fy[X] with
(SoS1 ... Sp_p_1)T =HrT

is then:

—k— —
Z Z rjvjeh Xt (3.19)

i=0 =0
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3 Algebraic Decoding of Linear Block Codes

To obtain a Key Equation for error/erasure decoding, we write the syndrome polynomial as power series
expansion:

n—1

TV
S(X) = S R B d xn—k
(X) g(l—aj)() mo

as in the error-only case. In the case of errors and erasures, we obtain with (3.18) for the received
vector/polynomial:

e; + z5)v; _
Sx)= > % mod X"~*. (3.20)
JjEEULZ J

Since we know the positions of the erasures, we can compute an erasure-locator polynomial.

Definition 3.7 (Erasure-Locator Polynomial)
Let GRS(T, o, k) be an [n, k|4 GRS code with column-multipliers v as in Definition 2.28. Let the set
Z with | Z| = ¢ denote the erasure set. The erasure-locator polynomial ¥ (X) in Fq[XT is defined as:

(X)) €T aX). (3.21)

Jj€Z

Now, we relate the syndrome definition to the erasure-locator polynomial ¥(X'). From (3.20) we
obtain:

S(X) = Z (ej +25)v; mod X"~k

jEEUZ (1 —a;X)
_ ejvj 2jVj n—k
= + mod X
jEZE (I-05X) jezz(l—an)
def M 2(X) mod X"k, (3.22)

AX) WX

where Q(X) is the error-evaluator polynomial as defined in (3.15) and ®(X) is the erasure-evaluator

polynomial:
X) déf Z ZjUj H (1 - aiX) (3.23)
j€zZ i€Z\{j}

v

of degree at most ¢ — 1. To obtain a “combined” Key Equation, a further modification is necessary. Let
us modify the syndrome polynomial.

Lemma 3.8 (Modified Syndrome Polynomial)

Let S(X) be the syndrome polynomial (3.19) and ®(X) the erasure-locator polynomial (3.23). Let us
define a modified syndrome polynomial as:

5) € w(x) - S(X) mod X"k, (3.24)

Then the highest n — k — ( coefficients of §(X) depend only on the error polynomial e(X).
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3.2 Syndrome-Based Decoding of GRS Codes

Proor The statement follows directly from (3.19) and from the degree of ¥(X). ™

Inserting (3.22) into (3.24) yields:

S(X)=¥(X)-S(X) mod X"k

S(X) = ¥(X) (% + %) mod X" ¥,
~ o U(XUX) + B(X)AX)
A(X)

mod X" ¥,

and with the combined error/erasure evaluator polynomial

def

Q(X) = QX)¥(X) + S(X)A(X),

we obtain the Key Equation for error/erasure decoding of GRS codes:

S(X) = % mod X"k, (3.25)

>

where deg A(X) = ¢ and deg Q(X) < € + ¢ — 1. In the erasure-free case, (X) becomes the
error-evaluator polynomial (X ), with deg Q(X) <e — 1.

3.2.3 Welch-Berlekamp-like Approach for Error/Erasure Decoding

For the interpolation-based decoding approach, the ¢ positions are neglected and the reduced inter-
polation problem of n — ¢ points is solved. The evaluation polynomial f(X) of the sent codeword
c = eval(f(X),T, a) of an [n, k]q GRS code GRS (T, v, k) is directly obtained and therefore an
error/erasure-evaluation is not necessary.

To obtain the Key Equation (3.25) for error/erasure decoding from the interpolation-based starting
point, we have to modify the derivation as in Lemma 3.4.

Let the reciprocal of the erasure-locator polynomial as in Definition 3.7 be

def

T(X) = XWX =[[(X —a). (3.26)

i€Z
Let R(X) be the Lagrange polynomial, such that R(a;) = r;/T; for all i € [n). Clearly R(X) has
multiplicity one at all erasure positions and therefore a unique polynomial R_ (X) with degree less
than n — ¢ — 1 exists, such that:
R(X)=¥(X) R_(X).

Furthermore, let L_ (X) € F4[X] of degree n — ¢ be such that L(X) = ¥(X)L_(X). Then the
univariate reformulation of Lemma 3.5 becomes:

Q(X, R(X)) = B(X) - L(X),
Qo(X) + Q1(X)¥(X)R_(X) = B(X) - ¥(X)L_(X),
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3 Algebraic Decoding of Linear Block Codes

with deg B(X) < n — k — € and by reverting the coefficients as previously and with R_ (X)) dof

X" ¢—1R_(X~VYand T_(X) % Xx"—¢L_(X~1), we obtain:

Ao(X)X"F 4 A1 (X)U(X)R-(X) = B(X) - U(X)L_(X)

and with S(X) = R—(X)/L_(X) mod X"~ (that coincides with the syndrome definition of (3.19))
we obtain the Key Equation as in (3.25):

A1(X)S(X) =B(X)-¥(X) mod X" F, (3.27)

where the degree of B(X) - U(X) islessthann — k —& — 1 4+ ¢ = € — 1 + ¢ and it corresponds to

ﬁ(X ) of (3.25). We use the Key Equation (3.27) in Algorithm 3.2 in the next section for error/erasure
decoding of GRS codes with the EEA.

3.3 Decoding Algorithms Based on the Key Equation

3.3.1 Overview

The Key Equation for syndrome-based decoding of GRS codes can be solved by the well-known
Berlekamp—-Massey algorithm [B-Ber68; A-Mas69] or the Sugiyama-Kasahara-Hirasawa—Namekawa
algorithm [A-SKHN75] based on the Extended Euclidean Algorithm (EEA). Several publications discuss
the parallels of these two algorithms (see [A-Dor87; A-JH00; O-A009], [O-Hey01, Chapter 2]).

We present the Fundamental Iterative Algorithm (FIA) of Feng and Tzeng [A-FT85; A-FT91a], that
can solve a system of homogeneous linear equations. The FIA generalizes well to a structured system of
linear equations derived from the interpolation-based algorithms of Sudan and Guruswami-Sudan (see

Chapter 4 and 5).

3.3.2 Extended Euclidean Algorithm and Error/Erasure Decoding of
Generalized Reed-Solomon Codes

The EEA is discussed e.g., in [B-Lip81, Chapter VII], [B-GG03, Chapter 3] and [B-MS88a, Chapter 12 §8].
We present the EEA for the sake of completeness, but do not prove all necessary properties. Algorithm 3.1
is the EEA here for two elements a and b in a Euclidean domain ID and the function d denotes the degree
function of ID. We initialize the remainders u_1 and ug with the elements a and b and the coefficients
si,t; fori = —1,0.

Algorithm 3.1: (u;—1, 8;—1,t;—1) = EEA(a, b, crit)

Input: Elements a, b with d(a) > d(b) in a Euclidean Domain, stopping criteria crit
Output: u;_1,5;—1,ti—1

ce1s.  fu—1) _ fa s—1 t-1)\ _ 1 0 .
Initialize: (UO ) = (b) and ( 50 to ) = (0 1) ,1=20
1 while crit do
2 i=1+1

3 qi = [ui—2/ui—1]

4 (uz S; ti):(l —‘Ii)'<ui_2 Si-2 ti_Q)

Ui—1  Si—1 ti—1
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3.3 Decoding Algorithms Based on the Key Equation

If the stopping criteria is crit = {u; # 0}, then the EEA terminates in the (¢ + 1)-th step and returns
the greatest common divisor u;4+1 of @ and b, i.e.:

Uit1 = Sj410 + ti1b.
For the proof of correctness of Algorithm 3.1 and the complexity analysis, the interested reader is

referred to the literature (e.g. [B-Lip81, Chaﬁr vi)).

Algorithm 3.2 summarizes the different steps for error/erasure BMD decoding of GRS codes based on
the EEA.

Algorithm 3.2: ¢(X) = EE-DECODER(7(X), v, a, k)

Input: Received word 7(X) € Fq[X] U {?}, parameters v, at, k of GRS(T, o, k)
Output: Estimated codeword ¢(X') or DECODING FAILURE

-

Substitute erasures from 7(X') by zero to obtain r(X)

2 Save positions of erasures in Z = {ig,%1,...,4¢c—1}
3 Calculate erasure-polynomial ¥(X) as in (3.21)
4 Calculate S(X) as in (3.24 // Syndrome calculation

a

Setcrit = {degu; < (n — k+¢)/2 — 1}

6 - A(X),Q(X) = EEA(X" ¥, S(X), crit)

7 Find all ¢, where A(v;) = 0= E = {i0,%1,...,%c—1} // Chien-like search
8 if € < deg A(X) then

9 \ Declare DECODING FAILURE

10 else

11 Determine error/erasure values €igs€ipye-nyCip_q and Zigs Ziys - - -
12 e(X) + Y epeiXtand 2(X) + >, z X"

13 (X)) +r(X) —e(X) — 2(X)

7zi<,1

In the following, we shortly outline how to solve (3.25) by the EEA as described in [A-SKHN75; é—
SKHN76] to decode classical Goppa codes. In Line 6 of Algorithm 3.2, the EEA is called and the sign ..
indicates that the returned polynomial is not needed for further calculations.

Theorem 3.9 (Error/Erasure Decoding, [B-MS88a, Chapter 12, Theorem 16])
Assume ( < n — k erasures occurred. Let S(X) with deg S(X) < n — k as in (3.24) be given. If

e=|E| < {LHJ’
2

then there exists a unique solution of (3.25) and Algorithm 3.2 with the input polynomials u_1 (X) =
X"k and ug(X) = S(X) determines the error-locator polynomial A(X) and the error/erasure-

evaluation polynomial Q(X) as in (3.14). The following stopping criteria crit for Algorithm 3.2
guarantees the correct solution:

—k —k
deguij_1 > %—FC and degu; < %ﬂ -1 (3.28)

The determination of the error and erasure values as in Line 11 of Algorithm 3.2 can be done by
Forney’s formula [A-For65]. See Chapter 6 for the Forney formula in the case of error-evaluation for
decoding cyclic codes.
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3 Algebraic Decoding of Linear Block Codes

3.3.3 The Fundamental Iterative Algorithm

In this subsection, we explain the basic idea of the Fundamental Iterative Algorithm (FIA) of Feng and
Tzeng [A-FT85; A-FT91a]. The outline follows the description of [0-K696b, Chapter 4].

Given an arbitrary m X n matrix M = (M; ; )Zg[[:l)) with n > m over F,, the FIA outputs
the minimal number of the y + 1 first linearly dependent columns together with the polynomial
T(X) =Yt T;X"inFq[X], with T}, # 0, such that

i
ZTjMi,j = 0, Z € [m)
7=0

The FIA scans the p-th column of the matrix M row-wise in the order My ,, M1 ,,... and uses
previously stored polynomials to update the current polynomial T'(X). Let u be the index of the current
column of matrix M under inspection. Let T'(X) = Z?:o ;X J be the current candidate polynomial
and let x be the greatest row-index such that:

o
S TyM;; =0, Vi€ k). (3.29)
3=0

We denote, where it is appropriate, x(u) for the greatest « in column p, such that (3.29) holds. In other
words, the coefficients of the polynomial 7'(X) give us the vanishing linear combination of the matrix
consisting of the first k rows and the first ;& 4+ 1 columns of the matrix IML. The discrepancy

H
A=>"T;M,, (3.30)
j=0

for the next row k + 1 is non-zero. In the case A # 0 and there is no discrepancy A, stored, the
current discrepancy A is stored as A,. The corresponding auxiliary polynomial is stored as T (X).
Then, the FIA examines a new column g + 1. Let us define the case, when the FIA examines a new
column.

Definition 3.10 (Core Discrepancy of FIA)

Let the row k < (m — 1) and the column p < n of a m X n matrix M over Fy with n > m be
examined by the FIA. Let the calculated discrepancy as in (3.30) be non-zero and no other non-zero
discrepancy be stored for the row . Then, the FIA stores the current discrepancy A as A, the current
polynomial T'(X) as Ti (X) and examines a new column g + 1. We call this case a core discrepancy.

If there exists a previously stored polynomial T} (X') and a non-zero discrepancy A, € Fgy, which
corresponds to row k, then the current polynomial 7'(X) is updated in the following way:

T(X) + T(X) — AATH(X). (331)

The following lemma proves the proposed update rule (3.31).
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3.3 Decoding Algorithms Based on the Key Equation

Lemma 3.11 (Update Rule of the FIA)

Let the FIA examine a m X m matrix M over F; and n > m. Let 1 < n be the current column of M
under inspection and let « be maximal such that (3.29) holds. Let T, (X) = 3, T\ ; X* € Fq[X] and
Ay € Fy be a previously stored connection polynomial and discrepancy for row «. Let the current

discrepancy A as in (3.30) be non-zero. Then for T(X) = def T(X)— AATK (X):

m

> TjMi;=0, Vi€lkt1)

holds.

Proor The proof of the above update rule is straightforward see [A-FT91b, Lemma 1]. We have:

b u EoA
S TiM; ;=Y TiM;; 2{:‘3 ke, M.
=0 j

j=0 j=0 """
A
0——-0, Vi e
% i€l ]
- A
A—— Ay, fori=k
Ag

Lemma 3.12 (Rank and Core Discrepancy of the FIA)

Let am X n matrix M = (Mg MlT L. Mz:fl), where each M; € Fg, be examined by the FIA.
Let u be an integer and < n. The rank of the sub-matrix (Mg LY C Mz;) is equal to the
number of encountered non-zero core discrepancies (as in Definition 3.10), which the FIA has found
when examining columns O to p of matrix M.

ProoF See for instance [A-FT91a, Lemma 2]. Let A 0)s Ax(1)s- - - Ap(u) be the stored core dis-
crepancies and let T,y (X), Tr(1)(X), - - ., Ty (X) be the corresponding p + 1 stored auxiliary

polynomials, for the rows x(0), 5(1), .. n(u) after the FIA examined the first ;4 + 1 columns of a
m X n matrix M. Let the 1 4 1 vectors of length 1o + 1 be defined as:

T, = (Ti,O Tiq ... Ti,n(i) 0... O), Vi € [u+ 1).

Let the pv 4 1 vectors of length m be defined as:

D, &f (MTMT ME)Ti:(O 0l x0T e n ),
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3 Algebraic Decoding of Linear Block Codes

where x € Fy. Then the (. + 1) X (u + 1) discrepancy matrix is defined as:

0 0 0
: Ar(w)
0 *
ot Aoy 0
D= (DyD; ... D,) = . . . 3.32
(Do Dy w) N Ay : (3.32)
*
* * *

Since all core discrepancies occurred at different rows, the columns of the discrepancy matrix D as
in (3.32) can be re-ordered into lower-triangular form and thus D has rank p + 1. Equivalently, the
rank of the (1t + 1) x (p + 1) matrix (To Ty ... T,) is 4 + 1. From (3.32), we have:

D= (MOTMlT ME) (To Ty ... T,),

and with

rank(D) < min (rank (Mg Y, ME) ,rank (To Ty ... Tu)) ,

we C(include that the (1 + 1) X (1 + 1) sub-matrix (M3 M7T ... MZ) of M is also of full rank
p 1 =

Theorem 3.13 (Correctness and Complexity)

Let the FIA examine a m X m matrix M with n > m and entries in ;. If the last row m — 1 of
M is examined, the polynomial T}, (X) corresponds to a valid linear combination of the first 41 + 1
columns of M. The time complexity of the FIA is O(m?).

ProoFr The correctness follows from Lemma 3.12. For the complexity analysis: Each discrepancy
calculation has complexity at most O(m) and is performed at most m times in each of m columns. g

It is more difficult to prove that the FIA returns the shortest linear combination (see [A-FT91a, Theorem
1]) and that it can be used to prove the correctness of multi-sequence shift-register synthesis, especially
of different length (see [O-Sch07, Chapter 4] and [A-SS11, Section 3.3]). We do not use this property and
therefore do not investigate it here.
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Algorithm 3.3: T(X) = FIA-ONEHANKEL(S(X))
Input: Syndrome polynomial S(X) € Fq[X] with deg S(X) < 27;
Output: Univariate polynomial T'(X) € Fq[X];

Data structures:

Column pointer p € [T + 1), Row pointer k € [7);

Array D of T entries in Fy, Array A of T entries in Fg [ X];

Variable A € Fg, variable compute € {true, false};
Initialize:

for every i € [7): Dl[i] + 0;

p<+— 0,k <+ 0

T(X) « 1; compute < false;

1 while k < 7 do

2 if compute then

3 | A« (X" T(X),5(X)) // Discrepancy calculation
4 else

5 if « <1 then

6 | T(X) 4 XH;A Sk« 0

7 else

8 LT(X)%X-T(X);nenfl

9 | compute < true

10 if A =0orD[x] # 0 then

11 if A # 0 then

12 L T(X) + T(X) — ﬁ - A[R)(X) // Update
13 | ke r+1

14 else // Core discrepancy A # 0 and D[] = 0
15 ARI(X) «+ T(X); D[R] < Asp < p+ 1

16 | compute < false

In the following, we adjust the FIA to a Hankel matrix denoted by S instead of M. Furthermore, we
refine also the dimension of the matrix S to draw easily the connection to a univariate polynomial in
Fy[X]. First, we state the problem in terms of the inner product.

Problem 3.14 (Hankel Matrix System)

Let S = (S’i,j)zg[[:;q) be a 7 x (7 + 1) Hankel matrix with entries S; ; € Fq. Let S(X) =

Z?;o_l S; X be the associated univariate polynomial in Fg[X], such that:
Sij = Siyj, Vi€([r),j€lr+1).

We search a non-zero polynomial T'(X) € Fq[X] that fulfills:
(X"T(X),8(X)) =0, Vrelr),

where deg T(X) < 7.

Algorithm 3.3 is the FIA adjusted to a Hankel matrix and it returns a polynomial T'(X) solving
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3 Algebraic Decoding of Linear Block Codes

Problem 3.14. Similar to the formulation in Problem 3.14, the discrepancy calculation as in (3.30) for the
FIA can be given in terms of the inner product for the case of a Hankel matrix (see Line 3 of Algorithm 3.3).
The column pointer p indexes the column and the row pointer « indexes the row of the Hankel matrix
S under inspection. The variable A is used to calculate the current discrepancy according to (3.30) (see
Line 3). These values in [y are stored in array D and the corresponding intermediate polynomials are
stored in the array A in the case of a core discrepancy as in Definition 3.10.

The Boolean variable compute € {true, false} in Line 2 splits the FIA into two cases. It becomes
true, when a discrepancy calculation has to be executed. The polynomial 7'(X) is updated according
to (3.31) in Line 12. The value of compute is false, when a new column (see Lines 5-8) is entered and no
computation of the discrepancy has to be executed.

The initialization in Line 8 of Algorithm 3.3 is (besides the way of calculating the discrepancy) the
main difference of the FIA, ad]usted to one Hankel matrix S, to the FIA for an arbitrary matrix. In the
more general case of an arbitrary matrix, the row pointer x would be set to zero when entering a new
column. Due to the Hankel structure of the matrix S, Algorithm 3.3 can start examining the new column
at the (k — 1)-th row. The following lemma proves this modification.

Lemma 3.15 (Initialization Rule)
Suppose Algorithm 3.3 examines column p — 1 of a 7 x (7 + 1) Hankel matrix S = (S; ;)

over Fg or equivalega polynomial S(X) = 222;51 S; X% € Fy[X] with

jE[T+1)
i€[T)
Si’j=S¢+j, ViE[T),jE[T+1).

A core discrepancy was obtained in row k. Let A[x](X) be the previously stored polynomial for that
oW K, 1.e.:

{ X*A[K] >—ZA 845 =0, Vi€ l[r).

We can start examining the next column p of S with the initial value T'(X) < X - A[x](X) and set
the row pointer to k < k — 1.

Proor We have the following relation:

(X'T(X), (X)) = (X ARI(X), S(X) )

pn—1

=> Aj-Siyjn
=0

=0, Viek-1). ™

The FIA, adjusted to one Hankel matrix, enters the next column by examining the row x — 1 instead of
row 0. We summarize the properties of Algorithm 3.3 in the following theorem.

Theorem 3.16 (FIA for One Hankel Matrix)
Given a 7 X (7 + 1) Hankel matrix S = (5; ;)

S(X) =327 1 SiX? € Fg[X], such that

jelr+1)

ielr) | over g, or equivalently, the polynomial

Si’j = S¢+j, Vi € [T):j S [T+ 1).
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3.3 Decoding Algorithms Based on the Key Equation

Algorithm 3.3 outputs the polynomial T'(X) = Y-t | T; X* € F¢[X] such that:
(X"T(X),5(X)) =0, relr),

with time complexity O(72) in Fy.

ProoF The correctness of Algorithm 3.3 follows from the correctness of the basic (unadjusted) FIA as in
Theorem 3.13 and from the initialization rule as stated in Lemma 3.15. The proof of the complexity is as
follows. Let the triple (i, &, §) consist of the column pointer y, row pointer s and a counter for the
number of core discrepancies 6. We distinguish two events, when Algorithm 3.3 examines a Hankel
matrix S:

1. No core discrepancy: Algorithm 3.3 remains in the same column p, increases the row pointer ~
and the number of calculated core discrepancies ¢ remains unchanged. The triple is updated as
follows:

(@, k,0) + (p, &+ 1,0).

2. Core discrepancy: Algorithm 3.3 enters next column p + 1, decreases the row pointer and the
number of calculated core discrepancies is increased. Therefore, the triple becomes:

(p,8,0)  (p+1,k—1,0 +1).

For both cases the sum over the triple ;1 + x + J increases only by one (in contrast to the unadjusted
FIA). The initial value of the triple is (0, 0, 0) and the final value is bounded by (7 — 1,7 — 1,7 — 1),
fora 7 X (7 4 1) input Hankel matrix. Therefore, the maximal number of iterations of Algorithm 3.3 is
of order O(7) + O(7) + O(7) = O(7). Bach discrepancy calculation costs at most O(7) operations
and therefore the overall time complexity is O(72). ™

Let us illustrate the discrepancy calculation of Algorithm 3.3, when it is used for BMD decoding of
GRS codes up to [(n — k)/2] errors. The BMD error correcting radius of a [16,4]17 GRS code is

0— 0—
1— Jt 1—
2— P
3— 3—
a— 4—
5— 5—
(O S S S N (T S S T
(a) FIA without adaption (b) FIA with adaption

Figure 3.3: Illustration of the row pointer « of the classic FIA (Subfigure 3.3a) and of the adjusted Algorithm 3.3
(Subfigure 3.3b), when both algorithms are applied to a 6 x 7 Hankel syndrome matrix of a [16, 4]17 GRS code. The
dots indicate the calculation of a non-zero discrepancy and where an update of the interim polynomial is not possible
(core discrepancy, see Definition m) Then, both algorithms enter a new column with different initialization of their
row pointers.

[(n — k)/2| = 6. The syndrome matrix S as in (3.17) for six errors is a 6 X 7 Hankel matrix. To
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3 Algebraic Decoding of Linear Block Codes

illustrate the complexity reduction of the FIA adjusted to a Hankel matrix (compared to the original,
unadjusted FIA), we trace the examined rows for each column in Figure 3.3. Sub-figure 3.3a shows
the values of the row pointer « of the FIA without any adaption. The row pomter k of the a adapted
FIA is traced in Sub-figure 3.3b. The points in both figures indicate the case of a core discrepancy (see
Definition 3.10).

3.4 Collaborative Decoding of Interleaved Generalized
Reed-Solomon Codes

3.4.1 Error Model

Let s codewords
et & eval(fi(X), 0, @), VE € [5)

be s sub-codewords in 'y of an IGRS code ZGRS(, e, k) as in Definition 2.34. They are corrupted
by s error words eg, e1, ..., es—1 € Fy of weight wt(et) = g4, Vt € [s). We denote each received
word by

def
re = cp+e = (reore1 .- Ten—1), VEE[s).

We associate to each received vector r; a polynomial in Fg[X] and it is denoted by

n—1
= Z re; X', Vi€ ls),
=0

respectively.

We assume (as usual for interleaved codes) that the channel adds so-called burst errors (see Figure 3.4).
Let

def
E; = supp(et).

We assume that ¢ burst errors occurred, i.e., the union of the s sets of error positions

s—1
g &f U B (3.33)
=0

has cardinality |E| = e.

Clearly, the error-correction capability of each GRS (¢, at, kt) code is | (n — k) /2] and successful
unambiguous decoding for an ZGRS(T, a, k) code is possible by sub-code-wise decoding if | E| <
[(n —k¢)/2] forallt € [s).

3.4.2 Syndromes and Collaborative Decoding Algorithms

Joint or collaborative decoding of IGRS codes makes use of the special structure of the burst error. In
the first step, s syndrome polynomials So(X), S1(X),...,Ss—1(X) € Fq[X] of degree smaller than
n — ko,n — ki1,...,n — ks—1 are calculated. The coefficients of S;(X) = Z?;J“fl St,iXi are
given in Lemma 3.6, ie.:

n—1

Spi= Y rijvi el Vi€ n—k)tels),
3=0
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3.4 Collaborative Decoding of Interleaved GRS Codes

Burst Burst
Error e; Error e;
2 S N N
co0 || Coa || --- |cost|| Coq ||coia| - |Con1| € GRS(Do, e, ko)
A\ < A\ < < <z
> < < <
co || ei1 || --- |ciit]| g |crga| -o- || € GRS(T1, o k)
L J J )
- N - N N N
cs-1,0 || es 1,1 coe Jesaial|| es1 fles 1| e fesina| € GRS (Ts.1, 00, ks.1)
A ), J J

Figure 3.4: lllustration of an IGRS code ZGRS (T, ax, k), where each sub-code is a GRS code GRS (T, a, k+),
forallt € [s). Two burst errors €1, €; € ]FZ occurred at position 1 and 4. The second burst error e; has one zero
component €; 1.

where v, v1, ..., Us_1 are the column multipliers of the GRS codes GRS (v, o, ko), GRS (v1, o, k1),
..., GRS(TVs—1, @, ks—1). These syndromes provide s Key Equations with one common error-locator
polynomial A(X):

A(X) - 8:(X) = Qi(X) mod X" Ft viels),

where deg Q¢(X) < e forall t € [s). Similar to (3.16), let us consider only the terms with degree at
least &:

€
ZAi “Stj—i =0, Vj€le,n—ki)t€ls). (3.34)
i=0

The combined system of linear equations, where the coefficients of A(X) = Ag + A1 X +--- + Ac X©
are the unknowns, and the s Hankel matrices:

S E Sy, Viel-—ki—e—1),j€le+1)tels),

or more explicitly:

Sm() St,l e St,s
St,1 St,2 Ste41
st = . : , Vtels), (3.35)
St,n—kt—s—l St,n—kt—s 2o St/n,—kf,—l
can be written as follows:
s(0) Ae
s(1) .
, | =o. (3.36)
. A1
S<5*1> Ao
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3 Algebraic Decoding of Linear Block Codes

A unique solution of (3.36) up to a scalar factor of the system of linear homogeneous equations as in (3.36)

is given if the nullity of the syndrome matrix (S<O> s . S<S’1>)T is one, i.e., the difference
between the number of columns and the rank of (S<0> s . S(S’D)T.
The decoding fails if for a given ¢, the syndrome matrix (S<O> ,S . sl ) T has not full rank.

Furthermore, we assume that all syndrome sequences are long enough to form the required rows of
length € + 1 of the matrices S0 st . , S{s=1) a5 in (3.35). We obtain for the maximal decoding
radius:

€+ 1—rank(S)=1
s—1

Z(n —ki—e)=¢
t=0
s—1
sn — Zkt
t=0

(s+1)e (3.37)

We refer to [A-Kra03, Theorem 2] for further informations.
An efficient solution of the system of equations (3.36) can be obtained by multi-sequence shift-register
synthesis as proposed by Schmidt and Sidorenko [I-SS06] or by a generalized EEA [A-FT89; A-ZW11].

3.5 Interpolation-Based Decoding of Generalized Reed-Solomon
Codes

3.5.1 Overview

We describe the Guruswami-Sudan principle for GRS codes, as originally proposed in [A-GS99] for
GRS and Algebraic-Geometry codes as an generalization of Sudan’s original work [A-Sud97]. The
recently published books of Roth [B-Rot06, Chapter 9], Moon [B-Moo05, Chapter 7.6], Justesen and
Hgholdt [B-JH04, Chapter 12] and Kabatiansky et al. [B-KKS05, Chapter 4.5] cover the Guruswami-Sudan
procedure extensively. Furthermore, the survey papers of McEliece [I-McE03] and Augot [A-Aug04]
give a substantial introduction to the Guruswami-Sudan principle for decoding GRS codes.

We give the main theorem of the interpolation step of Guruswami-Sudan in the case where all the
points have same multiplicity m. Furthermore, we prove that the decoding radius of Guruswami-Sudan
reaches the Johnson bound asymptotically.

A modification of the Guruswami-Sudan principle allows a new soft-decision variant for decoding GRS
codes which is known as Kotter-Vardy algorithm [A-KV03a]. We give the basic idea in Subsection 3.5.3.
Recently, Kotter and Vardy presented a generalization of the complexity-reduction technique called
re-encoding [A-KMV11]. We describe the re-encoding technique in Chapter 5.

In Sub-section 3.5.4 we summarize some existing realizations for Guruswami-Sudan and Kétter-Vardy
and compare them.
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3.5 Interpolation-Based Decoding of GRS Codes

3.5.2 The Guruswami-Sudan Principle

We introduce the notations of the Guruswami-Sudan algorithm that are extensively used in Chapter 4
and Chapter 5.
Let us state the main theorem for the interpolation step of Guruswami-Sudan for GRS codes.

Theorem 3.17 (Guruswami-Sudan for GRS Codes [A-GS99, Theorem 8])
Let ¢ = eval(f(X), D, a) be a codeword of a given [n, k| GRS code GRS (U, a, k) over Fy. Let the
positive integers 7, m and ¢ be given. Let r be the received word. Let

QX,Y) = Qo(X) + Qu(X)Y + -+ Qe(X)Y",
be a polynomial in Fy [X, Y] such that:
C1) Q@Y (ay,r;/T;) =0, Vi€ [n)and Va,bwitha+b<m,
C2) wdeg) 1.1 Q(X,Y) <m(n — 7).
Then (Y — f(X))|Q(X,Y).

Proor The interpolation polynomial Q(X,Y) satisfies Q(*:%] (a;, ¢; /T;) = 0 for a + b < m and for
at least n — 7 positions (due to C1). According to Corollary 2.7 the polynomial (X — a;)™ divides
Q(X + @i, Y + f(a;)) for these n — 7 error-free positions. However, Q(X, f(X)) has degree at
most m(n — 7) — 1, s0 Q(X, f(X)) = 0 and therefore (Y — f(X))|Q(X,Y). n

There exists a non-zero interpolation polynomial Q(X,Y") if the number of unknowns, i.e., the number
of monomials of Q(X,Y), is larger than the number of constraints, i.e., (m;’ l)n linear homogeneous
equation by Condition C1 of Theorem 3.17. From C2, we know that the number of monomials of each
univariate polynomial Q¢ (X) € Fq[X| forall ¢ € [¢ + 1) is at most:

Ne ¥ mn — 1) —t(k — 1), Vte[e+1). (338)

The list size is the integer £ such that Ny > 0 and Ny4 1 < 0. Therefore, we can state the following
bound on the list size:
m(n — )

</l+1. 3.39
w1 Sttt (3:39)

L <

Let us calculate an upper bound on the decoding radius 7 of Theorem 3.17 (that coincides asymptotically

with the Johnson radius [A-Joh62; A-Bas65]).

Lemma 3.18 (The Guruswami-Sudan Decoding Radius)
Let GRS (U, a, k) be an [n, k]q GRS code. For a given non-zero multiplicity 1, there exists a non-zero
interpolation polynomial Q(X,Y’) as in Theorem 3.17, if the normalized decoding radius is:

a1 (kgl) (1+%).

n
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3 Algebraic Decoding of Linear Block Codes

Proor The number of unknowns, i.e., the number of coefficients of an interpolation polynomial Q(X,Y")
according to Theorem 3.17 is:

With (3.39), we obtain:

‘
m(n—7) e = Yy
;Nt > — (m(n ) 2m(n ))

k
m(n — 7))?
> H (3.40)

The number of unknowns as bounded in (3.40) should be greater than the constraints on Q(X,Y") given
by Theorem 3.17:

(m(n—7))* > %m(m £ 1)n

2(k—1)
< (m(n—1))2>m(m+ Dn(k —1)
sh-1)?2>nk-1) <1+%). (3.41)

Dividing (3.41) by n? leads to:
2 k—1 1
(1-%) > )(1+—),
n n m

Tc1- (k=1) (1+l). (3.42)
n n m -

Figure 3.5 shows the normalized decoding radius 7 /7 for the asymptotic case (n — 00) as a function of
the code-rate R = k/n. For m = 1 we obtain for 7/n with (3.42) for the normalized decoding radius
1 —v2R and form — co we get 1 — VR.

3.5.3 Soft-Decision Decoding Based on Guruswami-Sudan

The interpolation-based decoding approach of Guruswami-Sudan can be modified for the case where
soft-information is available. Guruswami and Sudan mentioned this as “weighted curve fitting” (see [A-
GS99, Subsection III-D] and [B-Gur04, Subsection 6.2.10]). Kétter and Vardy provided a framework to
translate the soft-information given by the channel into algebraic interpolation constraints. Therefore,
the soft-decision variant based on the Guruswami-Sudan approach is referenced to as Kotter—Vardy
algorithm and was first mentioned in the preprint [O-KV00] and published in [A-KV03a].

We focus on the resulting algebraic decoding problem and state it as a generalization of Theorem 3.17.
Let a = (ag o1 ... a—1) be the support of a given GRS code and let 3o, 1, . . ., Bq—1 denote the ¢
distinct elements of IFy.
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1 I
4 —— BMD:1—R
‘\ === Sudan: 1 — V2R
0.8 J\“'~‘ """" GS: 1 — \/ﬁ ]
\\ .
\ .
06F N .
A Y K
T/n \
\\
0.4 -
02| i
0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

k/n

Figure 3.5: [llustration of the normalized decoding radius 7/n for BMD, Sudan (m = 1) and Guruswami-Sudan
(m — oo) decoding as a function of the code-rate k/n for the asymptotic case (n — c0).

j€ln)

i€la)’
where P; ; is a real number between 0 and 1, is given, e.g., by the Euclidean distance of the received
symbol to other points of the modulation scheme or by the inner code in a concatenated code, instead of
“simply” a received vector with error/erasures. The entry P; ; gives the probability of the j-th symbol
to be equal 3; € Fy.

In the scenario of soft-information for Kétter-Vardy a g x n reliability matrix P = (P; ;)

J€n)
i€la)
q X n reliability matrix given by the channel model. A native algorithm to obtain the multiplicity matrix

from the channel probabilities is e.g., [A-KV03a, Algorithm A].
The number of constraints on the bivariate interpolation polynomial is based on the multiplicity
matrix and we define the cost of such a matrix.

We assume that a ¢ X n multiplicity matrix m = (m;_;) with m; ; € N approximates the

Definition 3.19 (Cost of a Mult1p11c1 ?/ Matrix)
Given a ¢ X n matrix m = (ml,]) with entries m; ; € N, the cost of m is defined as:

qg—1n-—1

1
Cost(m def Z Z mg j(mg; + 1). (3.43)

7,0]0

To measure the “distance” of a received word to a codeword we introduce the score of a vector, when
a multiplicity matrix is given.
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3 Algebraic Decoding of Linear Block Codes

Definition 3.20 (Score of a Vector)
Let Bo, 81, . ., Bg—1 be the distinct elements of Fy andlet v = (v v1 ... vp—1) € IF. The score
n) .

with respect to a given ¢ X n multiplicity matrix m = (m; ; )ZEE[[ ) is defined as:

Scorem (v) &ef Z mg . (3.44)
)3

v =P

Definition 3.20 is equivalent to the inner product ( m, |v| ), where |v| is the ¢ X n matrix (v; ; )gg[[;)),
where v; ; = 1if v; = 3;, and v; ; = 0 otherwise (see [A-KV03a, Definition 4]).

Theorem 3.21 (Kotter-Vardy for GRS Codes [A-KV03a, Theorem 3])
Let c = eval(f(X),?, ) bea codeword of a given [n, k] GRS code GRS(U, o, k) and leta g x n

multiplicity matrix m = (m;_; )Z cle) ) with m; ; € Nbe given. Let

QX,Y) = Qo(X) + QuX)Y + - + Qu(X)Y*,
be a polynomial in F4[X, Y] such that:
c1) Qla:t] (o5, Bi/U5) =0, Vi€ |[q),Vj € [n)and Va,bwith a+b < m; j,
CZ) wdeglyk_l Q(X, Y) <9 + 1.
If Scorem (c) > 4, then (Y — f(X))|Q(X,Y).

Proor Let j(i) be such that ¢; = B;(;)/V; for all i € [n). The interpolation polynomial Q(X,Y")
satisfies Q%% (g, ¢; /T;) = Ofora +b < m; j(i),s for all i € [n) (due to C1) and according to

Corollary 2.7 the polynomial (X — cy;)™4(9) divides Q(X + a;, Y + f(cv)). But Q(X, f(X)) has
degree at most ¢ (due to C2), so Q(X, f(X)) = 0 and therefore (Y — f(X))|Q(X,Y). n

Such a non-zero interpolation polynomial exists if the number of coefficients of Q(X,Y), i.e., Et 00+
1 —t(k — 1), is greater than Cost(m) and similar by Lemma 3.18 a maximal radius in case of given
multiplicities 72; ; can be derived (see [B-Gur04, Corollary 3.7, ‘Section 3. 4]).

With

Ny 541tk —1),

we get similar to Theorem 3.17 that £ is the largest integer, such that Ny > 0 and Ny ; < 0. Therefore,
we have:

0+1

Ne>0 & f=|—o|.
’ Ls - 1J

Algorithm 3.4 is the interpolation-based soft-decision decoding variant for decoding an [, k] GRS

code GRS(U, a, k) with given multiplicity matrix m. We initialize the two sets L and L, which store

the list of possible outputs, to zero. The first calculations (Line 1-3) are as derived in Theorem 3.21. After

the interpolation step, we determine all roots of the polynomial Q(X,Y’) of the form Y — f(X X). where

deg f(X) < k in Line 4 of Algorithm 3.4 and store them in L. Tt is guaranteed that | L| < ¢.
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3.5 Interpolation-Based Decoding of GRS Codes

Algorithm 3.4: L = KOETTERVARDY(m, T, o, k)

Input: Parameters of GRS (T, a, k), Multiplicity matrix m = (m; ; )zee[[:; € Naxn
Output: List L = { fo(X), f1(X), ...} or DECODING FAILURE
Initialize: L < (), L < ()
1 Calculate Cost(m) according to (3.43)
2 Calculate minimal J, such that zﬁfﬁ)/(’“l” N; > Cost(m)
3 Determine Q(X,Y") with wdegj 1.1 < § + 1 and
QY (a;,8:/7;) =0, Vj€[n),Vi€ [g)and Va,bwitha +b < m; ;
4 Find all roots (Y — f;(X))|Q(X,Y) with deg f;(X) < k and store them in L
s for f(X) € L do
6 if Scorem (eval(f(X), D, a)) > § then
L | L+ Lu{f(x)}

s if L = () then
9 L Declare DECODING FAILURE

The true number of valid codewords is | L| and we need to check the Score in Line 5 and Line 7 of
Algorithm 3.4. This corresponds to the verification if

d(eval(f(X),i, a),r) <rT

in the hard-decision scenario.

3.5.4 Some Realizations of Guruswami-Sudan for Generalized
Reed-Solomon Codes

Table 3.1 shows some existing realization of the interpolation step for list decoding GRS codes.

The properties of the interpolation step are compared with the original work of Sudan [A-Sud97]
and Guruswami-Sudan [A-GS99]. The second column indicates if the interpolation multiplicity can be
greater than one. When an adaption to different multiplicities was considered, it is marked in column
three of Table 3.1. In the last column of Table 3.1, it is listed if the proposed algorithm takes advantage
of a speed-up based on the Divide-and-Conquer principle.

Alekhnovich [I-Ale02; A-Ale05] uses a module minimization technique and applied it to the case of
different multiplicities for each interpolation point.

Trifonov [A-Tri07; A-Tril0] proposed in his original work a fast iterative interpolation algorithm
for Guruswami-Sudan GRS decoding, where all points have the same multiplicity. Trifonov give the
complexity of his approach, but not how it is decreased by considering the re-encoding transformation.

Wu [A-Wu08] uses the output of the Berlekamp-Massey algorithm and formulates a trivariate
interpolation problem. For high-rate GRS codes a reduction of the necessary interpolation multiplicity,
compared to the original interpolation problem, is achieved.

Beelen et al. [A-BHNW13; O-Nie13] modified Wu’s approach and used the Extended Euclidean
Algorithm as preliminary step for the rational interpolation. Lee-O’Sullivan [I-LO06; A-LO09] formulated
the interpolation problem in terms of Grobner bases.

Beelen and Brander [O-BH08b; A-BB10b] combined the idea of using a Key Equation (based on [O-
BHO08a; I-AZ08]) and Alekhnovich’s algorithm.
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3 Algebraic Decoding of Linear Block Codes

Reference Multiplicity  Soft Re-Encoding  Divide &
m>1 Conquer
?Xiisa;ldw] No e e e
mmi—Sudan Yes (Yes) No No
mvi};leos] ves e e h
st | e %W N
K?WuOS] Yes No No e
?5?§§;fﬁaf§§amb] ves No e h
(A1) e e e N
menstem No No No No

Table 3.1: Some realizations of the interpolation step of Guruswami-Sudan for decoding GRS codes and their properties.

Kétter and Vardy developed in [A-KMV11] (and in forgoing conference publications [I-KV03b; I-
KMVA03]) the re-encoding transformation for the scenario of different multiplicities as in Theorem 3.21.
In [A-KMV11] Koétter and Vardy adapted the so-called Kotter algorithm [O-K696b; A-K696a], which
solves the original bivariate interpolation, for the reduced problem after re-encoding (see Chapter 5).

Kuijper et al. [A-KP04; A-AK11] investigated the Guruswami-Sudan principle for GRS codes from a
system-theoretic point of view and gave a Grobner basis description.

Roth and Ruckenstein proposed in [A-RR00; O-Ruc01], besides a fast root-finding procedure, an
Extended Key Equation for the interpolation step of multiplicity m = 1.

In Chapter 4, we generalize the idea of a Key Equation of Roth and Ruckenstein [A-RR00] to the
case of higher multiplicity. We outline the univariate reformulation in Chapter 5 for the soft-decision
scenario as in Theorem 3.21 and after the re-encoding transformation technique of [A-KMV11].
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“Mathematicians are a sort of Frenchmen; if you talk to them, they translate it
into their own language, and then it is immediately something quite different.”

JOHANN WOLFGANG V. GOETHE (1749-1832)

Key Equations for Decoding of Generalized
Reed-Solomon Codes Beyond Half the Minimum
Distance

distance in this chapter. In Section 4.1, a decoding principle for GRS codes, based on a virtual
extension to an IGRS codes, is introduced. Schmidt, Sidorenko and Bossert [I-SSB06; O-Sch07;
A-SSB10] proposed this approach in 2006 reaching a similar (but not equal) decoding radius for RS codes
as Sudan’s interpolation-based list decoding approach [A-Sud97] (multiplicity m > 1). Our contribution
covers the generalization of the algorithm to GRS codes and a small modification of the bound on the
failure probability (see [I-ZWB12a]).

Further, we modify the derivation of Roth and Ruckenstein [I-RR98; A-RR00; O-Ruc01] for Sudan’s
approach in Section 4.2. Roth-Ruckenstein denoted their result “Extended Key Equation”. This modified
reformulation gives us a proper basis for a comparison to our reformulation of the Guruswami-Sudan
approach. We present the derivation of the Key Equation for m = 1 and outline the adaption of the FIA
for the corresponding non-reduced (n instead of 7) set of homogeneous equations.

Section 4.3 covers the univariate reformulation of the interpolation-based Guruswami-Sudan approach
and the adjustment of the FIA to the obtained structured system of homogeneous linear equations. The
univariate reformulation was first published in [I-AZ08] and the adjustment of the FIA in [[-ZGB09],
summarized in the journal version [A-ZGA11]. In addition, we give further directions in Section 4.4 in
order to find an explicit syndrome expression of the Guruswami-Sudan interpolation problem.

Beelen and Heholdt in [O-BH08a; I-HB08] used a reformulation of the Guruswami-Sudan interpolation
problem in terms of matrices. A fast algorithm, which uses Alekhnovich’s [I-Ale02; A-Ale05] module
interpretation, was given by Beelen and Brander [A-BB10b; A-BB10a; O-Bra10].

We give open research problems in Section 4.5 and conclude this chapter.

WE consider two different approaches capable to decode GRS codes beyond half the minimum

4.1 A Unique Decoding Approach for Generalized Reed-Solomon
Codes Beyond Half the Minimum Distance

4.1.1 Basic ldea

In 2006, Schmidt, Sidorenko and Bossert [I-SSB06; O-Sch07; A-SSB10] proposed an decoding approach
for RS codes with a similar decoding radius as Sudan’s interpolation-based list decoding approach. We
recall this idea in Subsection 4.1.2 and describe it for the slightly more general case of GRS codes. Clearly,
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

the presentation for GRS codes does not give new insights, but we use it as basis to draw the connection
to the univariate reformulation of Sudan’s principle by Roth and Ruckenstein in Section 4.2, which leads
to the same explicit expression for the syndromes. Furthermore, we provide a slight generalization of
the bound of the failure probability of [I-SSB06; A-SSB10].

4.1.2 Virtual Extension of a Generalized Reed-Solomon Code to an
Interleaved Generalized Reed-Solomon Code

We generalize the scheme of [I-SSB06; A-SSB10] to the case of IGRS codes (see Definition 2.34) and
give the corresponding parameters. Let GRS (T, a, k) be an [n, k] GRS code with code-rate R < 1/3.
We show that GRS(U, v, k) can be virtually extended to an IGRS code of interleaving order s > 1.
This specific IGRS code is denoted by VGRS (U, a, k, s), where U and « are the original parameters
of the given GRS code GRS(U, a, k) and the parameter s denotes the order of (virtual) interleaving.
Letavectorc = (coc1 ... cp—1) € Fy and an integer t > 1 be given. Let the following mapping be
defined as:

pow: (Fy,N) — Ty
((coer ... en=1),t) = pow((coer ... cno1),t) = (chct ... ch_1).

The virtual IGRS code is obtained as follows.

Definition 4.1 (Virtual Extension to an IGRS code)
Letc = eval(f(X), Do, o) be a codeword of an [n, k]q GRS code GRS (U, v, k) as in Definition 2.28.
Let s € N with s > 1 be a given (virtual) interleaving order. Then, the VGRS code is:

C
pow (c, 2)
VGRS (o, a, k, s) & , . ¢ € gRS(Wo, o k)
pow (c, s)

We derive the parameters of the specific IGRS code. Let U = (Vg U1 ... Us—1) € Fg™ with

U def pow (U,t+ 1), Vtel[l,s).
Letk = (ko k1 ... ks—1) with

def
(

ke € t+1)(k—1)+1, Vtes).

The virtually extended GRS code VGRS (Do, a, k, s) of extension order s can be seen as a sub-code
of an IGRS code, i.e.:

VGRS (To, o, k, s) C IGRS (Do, o, k),
or more explicitly:
eval(f(X), 0o, )
eval(f(X)Q,E ) F(X) € Fq[X]
VGRS (vo, o, k, ) = o deg f(X)t < ke

vt € [s)
eval(f(X)s,Usfh )
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4.1 A Unique Decoding Approach for GRS Codes

The following theorem shows the relation between the scalar factors vg, U1,...,Us—1 € Fg and
the column multipliers vg, v1,...,Vs—1 € FZ]L of the s GRS sub-codes of the virtually created IGRS
code.

Theorem 4.2 (Column Multipliers)
Let GRS(T, o, k) be an [n, k|4 GRS code as in Definition 2.28 and let v = (vg v1 ... vy—1) be the
column multipliers as in Lemma 2.29. -

Furthermore, let VGRS (U, a, k, s) be the IGRS code as in Definition 4.1. Then, the column
multipliers of the ¢-th [, t(k — 1) + 1]4 sub-code GRS(Ty, i, t(k — 1) + 1) are given by

Ut,i = (;}:)w Vi € [n),t € [1,s). (4.1)

Proor We have for the ¢-th sub-code GRS (U, a, k¢ ) of the virtually created IGRS code VGRS (U, a, k, )
that Uy ; = (T;)'11, Vi € [n),t € [1,s). With Lemma 2.29 we get:

4.1.3 Decoding and Failure Probability

1
Ty = <Ut,¢Li(ai)> b=b
—(t+1) =

(Ui)t+1 = (Usz(az)> -§
PN [

a

(vg)" 1 Li(ay)tt? ¢ ¢ v; %)
T " E

k3 1 1 O

1S

S

7]

Ll

N4

We consider the error-only unique decoding beyond half the minimum distance in the following. Let
r = ¢ + e, where ¢ = eval(f(X), D, ) is a codeword of an [n, k] GRS code GRS (U, e, k) and
e € Fy. Let an integer s with s > 1 be given and we assume that (¢t + 1)(k — 1) + 1 < n for all
t € [s). Let

re © pow (r,t +1), Vtes), (4.2)

def . . .
and eg = e. With (4.2), we obtain a virtually created

1. burst error in Fg and

2. a VIRS code as defined in Definition 4.1 of interleaving order s.
More explicitly, we have withr;_1 = (Tt_170 T—1,1 -. Tt—1,n—1 ), where each component can be
decomposed as follows:

Te—1,i =T}
= (ci+e)'
=ctt+e—1,, Vi€[n),Vte[l,s+1),
where:

t
e S G) el, Vien),Vte[l,s+1). (4.3)
=1
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

The virtual created error e;_1 ; is zero if e; is zero for allt € [2,s + 1) and for all ¢ € [n) . The
virtual burst error is (eg,; €1, - - - es_lyi)T € Fy. Note that eg,; # 0 does not imply that e; ; # 0
for t € [1,s). The virtual burst error can be used to increase the error-correcting capability of a
given low-rate GRS codes (see [I-SSB06; A-SSB10]). The decoding radius of a virtual created IGRS code
VGRS (U, a, k, s) is the same as in [A-SSB10, Equation (10)] for RS codes. Let e = wt(e) = |E| and
let:

—det 132 1332 k—1)(s+1
kd§f7§:kt:7§:((t+1)(k—1)+1):7( et D) 4y,
s s 2
t=0 t=0
We obtain from (3.37) a maximal decoding radius:
def S -
TVGRS — L‘Jr 1 (n* k)J ) (4.4)

where we choose s such that 7ygrs is maximized (for detailed analysis see [A-SSB10]).
We obtain s Key Equations as in (3.13) with a common error-locator polynomial:

A(X) - Si(X) = Q(X) mod X" Ft Viels), (4.5)
where deg Q¢(X) < € holds for all ¢ € [s). The syndromes are:

n—1
Sei= S 1t ol Vie[s),i € [n— k). (46)

(@t

=0
Let the s (n — k¢ — &) X & Hankel matrices be:

s = (Sgt?)zee[[i)fkﬁa) = (St,i+j)gg[[i)7ktfe)f vt € [s)- 4.7)
Let
g def (SO gy gls—InT

be the s(n — k — €) X & syndrome matrix, where each sub-matrix S{% is an (n — k; — €) x € Hankel
matrix as defined in (4.7).

We search a unique solution for the error-locator polynomial A(X) of the virtually extended GRS
code. Therefore, a decoding failure is declared if the system of equations (3.36) has more than one
solution. In the following, we derive an upper bound on the failure probability for s = 2, which is the
same as for the virtual extension of the RS codes used in [A-SSB10] and therefore independent of the
column multipliers of the GRS code. We consider the corresponding heterogeneous system of equation
with € unknowns for the analysis of the failure probability.

We bound the probability that the s(n — k — ¢) X € syndrome matrix S does not have full rank &
and denote the failure probability, if € errors occurred, by:

Pr(e) < P{(rank(S) <e)|(E|= 5)}

Let us recall [A-SSB10, Theorem 3] as an upper bound on the failure probability for virtual interleaving
order s = 2.
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4.1 A Unique Decoding Approach for GRS Codes

Theorem 4.3 (Upper Bound on the Failure Probability [A-SSB10, Theorem 3])
Let GRS(T, v, k) be virtually extended to an IGRS code VGRS (T, v, k, s) of extension order s = 2
as in Definition 4.1.

Let a codeword of a given [n, k] GRS code GRS(T, a, k) code be corrupted by an error of weight
€ < TyGRrs, Where TygRs is as in (4.4) for s = 2.

For decoding we solve the system of equations from (3.36). The probability for a decoding failure is

upper bounded by: o :
1\°¢ —3(7vGRs —¢
Pi(e) < (L + 7) SR
q—1 ¢ qg—1

PROOF As in the proof of [A-SSB10, Theorem 3], this is equivalent to the case that there exists a non-zero
vector u € IFZ, such that
Ju#£0: 8. u" =0, Vtels). (4.8)
Each syndrome matrix can be decomposed into five matrices (in [A-SSB10], the decomposition consists
only of four matrices):
s =H® .5, .F . D.V, vtels),
where D and V are the same full-rank £ X & matrices as in [A-SSB10, Proof of Theorem 3] and

1 1 1
Ajo Qg QXje_1
() of o a;j
HY = 0 1 e—1 , Vte|s),
n—ki—e—1 n—kt—e—1 n—ky—e—1
Yo J1 Yoy
Ty = diag (Ur,jo, Veji» > Vtjey), VEE[s),
t _ .
F = diag (er,jos €t,1s ---» €tjo_y1)s VEE[5),

where e, is as in (4.3). Since U and F() are both diagonal matrices, 7, F() = F(")%,. The matrices

Uy, D, V are nonsingular and there is a one-to-one mapping from u to v, where v? =75;-D-V-ul.

Hence, (4.8) is equivalent to

Jvi£0: H®O.F® .vT =0, wviels). (4.9)
| |

This is similar to [A-SSB10, Proof of Theorem 3, Equation (22)] and using Lemma 4.4 for arbitrary g,
which is an extension of [A-SSB10, Lemma 4] to arbitrary fields, the rest of the proof is analog.

Lemma 4.4 (Independence for g-ary fields)
Let v, e, ¢ be three non-zero elements in F,. Then, the set

V:{(v’e):v,eGF;},
V- ey

with es = 2¢ - e + €2, forms the set of all full weight vectors of length two, i.e.:

V= {VGF?I :wt(v):?}: (]FZ)Q.
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Proor It is sufficient to show that all (¢ — 1)? possible vectors v € V are pairwise different. For any
fixedc € ]FZ, consider two vectors v,V € V, and assume that v = ¥, then

v-e="7-E€, (4.10)
vV-eg =V- €. (4.11)
Dividing (4.11) by (4.10) yields:
e €2
P
2¢- e+ e? 2¢c-e+e?
e - e ’
Therefore, 2¢c + e = 2c¢ + € and hence, e = €. Inserting this into (4.10), we obtain v = ©. Thus, for any
¢, two different pairs (v, €) # (7, €) always result in two different vectors v, V. n

Thus, the upper bound on the failure probability is independent of the column multipliers and in
particular independent of using GRS codes or the normalized RS codes from [A-SSB10].

4.2 Key Equation for the Sudan Principle

4.2.1 Modified Univariate Reformulation

In this section, we recall parts of the work of Roth and Ruckenstein [I-RR98; A-RR00; O-Ruc01] for
the interpolation step of the Sudan [A-Sud97] principle, i.e., a special case of Theorem 3.17 where
the interpolation multiplicity m = 1. We present here a slightly modified version of [A-RR00], to
see the generalization of our reformulation of the Guruswami-Sudan case, where the interpolation
multiplicity is m > 1. As in Theorem 3.17, let ¢ = eval(f(X), U, ) be a codeword of an [n, k], GRS
code GRS(U, o, k) and letr = ¢ + € be the received vector. The aimed decoding radius is denoted by
7 and the corresponding list size is £.
Similar to Lemma 3.4 for BMD decoding, Roth and Ruckenstein [A-RR00] proved the following.

Lemma 4.5 (Univariate Reformulation of Sudan [A-RR00, Lemma 3.1])
Let R(X) € Fq[X] be the Lagrange interpolation polynomial, such that R(c;) = 7; /U;, Vi € [n)
(as in Theorem 2.2) with deg R(X) < n.Let L(X) = ?:_01 (X — ;) asin (2.1).

For given parameters n, k, ¢, T, the bivariate interpolation polynomial

e
QX,Y) = QuX)Y*
t=0

satisfies Conditions C1 and C2 of Theorem 3.17 for a multiplicity m = 1 if and only if there exists a
univariate polynomial B(X) € Fq[X] of degree smaller than £(n — k) — 7, such that

Q(X, R(X)) = B(X) - L(X). (12)

For the proof see [A-RR00, Lemma 3.1] or the proof of Theorem 4.10 for m = 1. We modify the
reformulation in the following. Let as in (3.38) for m = 1:

Ne ¥ 7 —t(k—1), Vte[l+1). (4.13)
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4.2 Key Equation for Sudan

Define the polynomials as:

def

R(X) = X" TR(XT),

n—1
X"L(XTH =[]0 - aX),
1=0

Xé(nfk)frle(Xfl)’

I(x)«

B(x) ¥

def

Ae(X) = XNeTIQuX Y, Vie[e+1).

Note that, these polynomials are not necessarily the reciprocal polynomials, because, e.g., for the received
polynomial the degree can be smaller than n — 1.
Reverting the coefficients of both sides of (4.12) leads to:

44
Xn—7'+€(n—k)—l ZQt(X_l)R(X_I)t _ X7L—T+£(n,—k)—1B(X—1)L(X—l) (4.14)
t=0
and inserting R(X), Ao(X), A1(X),...,Ar(X),L(X) and B(X) into (4.14) gives us (as in [A-
RR00]):

4
> AX)XENTRR(X)! = B(X) - L(X). (4.15)
t=0
Let the polynomials Uz (X') and W (X)) in Fy[X] be such that:
R(X)' = Ug(X)L(X) + Wi(X), Vie[L,L+1), (4.16)

where W (X) is the remainder of the division of R(X)? by L(X) and has degree smaller than n.
Reverting (4.16) leads to:

Xt(n—l)R(X—l)t — (Xn—lR(X—l))t

= R(X)! = Uy(X)L(X) + xE=D0=Dyy, (X)), (4.17)

where:
Uy(X) = x*=D=ngy(Xx—1, vte[l,0+1), (4.18)
WiX)= X"y (X 1Y), vtel[l,£+1). (4.19)

Now let the £ + 1 formal power series S§°(X), ST°(X), . .., Sg°(X) be defined as:

00 dﬁf (X)
SPP(X) = ) vt e [1,£+1), (4.20)
o def Xn—l
SgR(X) = I (4.21)

Clearly S§°(X) does not depend on the received word.

The definition of S{°(X), S5°(X), ..., S7°(X) is equivalent to the one of [A-RR00]. In the follow-
ing, we state the definition of the Sudan syndromes (compared to [A-RR00, Proposition 4.1.]), which we
need to solve the full system of n homogeneous linear equations.
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Lemma 4.6 (Modified Syndromes for Sudan Reformulation)
Let GRS(T, o, k) be an [n, k|4 GRS code and let v = (v v1 ... vp—1) denote its column multipli-
ers as in Definition 2.28. Let the ¢ power series

SP(X) =) SiaX', Vte[l,e+1)
1=0

be defined as in (4.20). Letr = (ro7r1 ... Th—1) = ¢ + e be the received word in F’;, where
c € GRS(T, a, k). Then, the syndrome coefficients are given by:

n—1
Sii=3 rhi—Pral, Vie[n+ N tel[LL+1). (4.22)
j=0 Yj

Proor From (4.16) we have
R(a;)t =71t = Wi(ey), Vjen),Vtel,f+1).
and for the reciprocal of Wy (X), we obtain similar to (3.9) by standard univariate Lagrange interpolation

as in (2.1) the following explicit expression:

e n—1 r t n—1
Wi(X)=>_ (jﬂ) Li(ay) ™ [T = e X).
=0

‘ U
=0 2 i#j
Thus, the explicit form of the formal power series defined in (4.20) is

< _ Wi(X)

SP(X) = SiXt = ——

T (X) ; t,i L(X)

n—1 ro\t 4 —
> (£) Lila) IS (1 - aiX)
J=0 i#£]

oo n—1 r t
=33 (2) pyataix,
i=0 j=0 \YJ
and with (2.29), that is

n—1

Vi .
Spi=Yy_ri=tial, Vte[1,0+41). -
j=0 J

The syndromes are exactly the same as the ones for the virtually created IGRS code as in (4.6).

Inserting (4.16), (4.20) and (4.21) into (4.15) leads to:
Ao(X)xtn=k)=(n=1) geo (X )T(X)

4
+D 0 A(X)x D 0=R) (Ut(X)f(X) + x =D (n-1) goo (X)Z(X))
t=1

=B(X)-L(X) mod X" THin=k)
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4.2 Key Equation for Sudan

Simplifying, we obtain:

At(X)X(l*ﬂ(n*k))((t*1>(n*1)530(X)

M~

AO(X)XZ(nfk)f(nfl)Sgo (X)+
1

o~
Il

Q(X) mod X" THn—k) (4.23)

where

£
Q(X) = B(X) = > M(X) XD =RT(x) (4.24)
t=1

has degree smaller than Ny + (¢ — t)(n — k) + t(n — 1) — n = €(n — k) — 7. Instead of dividing by
X (=1)(n=k) (35 in [A-RR00]) we divide (4.23) by X n—=k)=(n=1) and with:

-ty (n—k)+(t—1)(n—1)=Lln—k)—(n—1)+t(k—1),

we obtain:

4
Ao(X)So(X) + > An(X) X F1 8, (X) = (X) mod X771, (4.25)
t=1

where deg Q(X) <n—7—1.

We omit the infinity indexes for the syndrome polynomials, since we bound their degrees to N +n by
Definition 4.6. Let us draw the connection to the Extended Key Equation of Roth-Ruckenstein [A-RR00,
Equation (24)] at this point. Let us omit the n — 7 highest terms of (4.25) and thus consider the equation
modulo X"~ 1. Then Ao (X)So(X) disappears, because from (4.21) we know that Ag(X)So(X) isa
multiple of X"~ 1.

Both sides of (4.25) are divisible by X k=1 and we obtain [A-RR00, Equation (24)]:

4
ST AX)XEDETD S (X) = Q/(X) mod X" 7F, (4.26)

withdegQY'(X)<n—-7—-1—(k—1)=n—k—r.
Let us go back to the full system (4.25). We consider the terms of degree higher than n — 7 of (4.25)
and we obtain the following n homogeneous linear equations.

Ng—1 £ N¢—1
Z Aoy So—ii+ D D AviSi_s(k-1)—it; =0, Vj€[n—7-1,2n—7-1) (4.27)
t=1 =0

Reverting back to the originals univariate polynomials Q¢ (X ), we obtain the following system:

No—1 £ Ng—1
Z Qo,i + So Jitg +Z Z Qi+ St, i+; =0, Vj € [n) (4.28)
t=1 =0

With Qt = (Qt 0,Q¢,1,---, Qt,Nt—l)T fort € [¢ 4+ 1) and with £ + 1 Hankel matrices:

@ty def (G()\IENe) o je[vy)
S - (51’7)16[71) - (Siﬂ"rj)ig[n)f ) vt € [€+ 1)7
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

we can write (4.28) in the following matrix form:

Qo

Q1
(s<0> s ... S<e>) . X —o. (4.29)

Qe
In the next subsection, we describe how the FIA can be adapted to a horizontal band of ¢ 4+ 1 Hankel
matrices as the homogeneous system of equations (4.29).

4.2.2 Adjustment of the Fundamental Iterative Algorithm

The FIA can directly be applied to the n x Zf:o N¢ matrix (S<0> s ... S<é>) of (4.29), but if we
want to take advantage of the Hankel structure we have to scan the columns of (S<0> s ... S<e>)
in a manner given by the weighted degree requirement of the interpolation problem. Let k be a positive
integer and let < denote the ordering for the pairs {(v, ) | ¥ € [¢ + 1) and p € N} given by:

v+pulk-1)<v+nlk-1)
(v, ) <f1 (7, 7) = { or (4.30)
v4+uk—-1)=0+puk—1)and p < fi.

The pair that immediately follows (v, 1) with respect to the order defined by <kH is denoted by
suce(<H, (v, p)). The n x Zf:o N syndrome matrix of (4.29) is more explicitly:

(S<o> s ... S<L’>) -

(ST ST SO s

No—1 =0 Ny—1 Ny—1

1),T S§1>’T ... 8T ~-.S(<)Z>’T S§Z>,T o S<Z>*T) ’
where S§t> isin g forallt € [+ 1) and i € [N¢). The columns Sl@‘T are reordered according to
)

<£171. The pair (v, 1) indexes the pi-th column of v-th sub-matrix S,(f T More explicitly, we obtain

the following reordered matrix:
def ((0),T &(0),T (0),T g(1),T ¢(0),T (1),T g(0),T (=1),T (&), T
s < (8T SO s (DT (T (DT ST (T s (0T ) s
The corresponding homogeneous system of equations can now be written in terms of the inner product
for bivariate polynomials (see (2.5) for the definition of the inner product).

Problem 4.7 (Reformulated Sudan Interpolation Problem)
Let the £ 4+ 1 syndrome polynomials So(X), S1(X),...,S¢(X) € Fq[X] be given as in (4.20)

and (4.21). Let

14
S(XY) € ST s 0y
t=0
be the corresponding bivariate syndrome polynomial in F¢[X, Y]. We search a non-zero bivariate
polynomial T(X,Y) € Fy[X, Y] such that:

(X" T(X,Y),S(X,Y)) =0, V&€ ][n).
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4.2 Key Equation for Sudan

Hence, the bivariate polynomial 7(X,Y") is a valid interpolation polynomial according to Theo-
rem 3.17 for an interpolation multiplicity m = 1. Each polynomial S¢(X), as in (4.15), has degree

smaller than Nt + n — 1. To index the columns of the rearranged n x Zf:o Ny matrix S/, let

{wol @i <Ly e}l (@32)

def

Cou =

be the first columns of S’ up to the column of S}(Z/%T.

Algorithm 4.1 is the modified FIA for solving Problem 4.7. In contrast to the original Roth-Ruckenstein [A-
RR00] adaption we consider all n homogeneous linear equations (instead of 7), because we need to
consider also the full system of equations for the Guruswami-Sudan case.

Algorithm 4.1: T(X,Y) = HORTZONTAL-HANKEL(S(X, Y))

Input: Bivariate polynomial S(X,Y) = Zf:o S¢(X)Y'?, with
deg S¢(X) < N¢+n—1
Output: Bivariate polynomial 7'(X,Y")

Data structures:

Bivariate polynomial 7'(X,Y) = Zf:o Ty(X)Y? € Fg[X,Y] U=.D
£ + 1 column pointers (v, p), where v € [{ + 1) and pu € [N,) =]
Row pointer k € [n), Array R of £ + 1 entries in [n) =]
Array D of n entries in Fq, Array A of n entries in Fg[X, Y] 3
Variable A € Fy, variable compute € {true, false} a

Initialize: a
for every i € [n): D[i] 0, foreveryi € [{ + 1): R[i] < 0 (&)
(v, 1) < (0,0), k < 0, compute + false 5

1 while x < n do =

. »

2 if compute then wl

3 | A+ (X® -T(X,Y),S(X,Y)) // Discrepancy calculation 4

4 else

5 if R[v] < 1 then

6 | T(X,Y)+ YV XA Sy sk 0

7 else

8 | T(X,Y) « X - ARV(X,Y); A« DIR[V]]; &  R[V] — 1

9 compute <— true

10 if A =0 or D[k] # 0 then

1 if A # 0 then

12 L T(X,Y) « T(X,Y) — ﬁ - AlR|(X,Y) // Update

13 K+ Kk+1

1 else // Core discrepancy A # 0 and D[] = 0

15 AlRl(X,Y) « T(X,Y); D[r] < A; R[] + K
6 | (v p) < suce(<H, (v, 1)
17 compute <— false

Let the matrix (S<0> s ... S<é>) be the n x Zf:o N¢ Sudan syndrome matrix, where each entry

Sft; equals the coefficient Sy ;4 ; of the polynomial S¢(X). The column pointer is given by (v, 11) and
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

SSA’T in <kH_1—ordering. This is equivalent to scanning the rearranged matrix

S’ as in (4.31) column after column (see Line 16 of Algorithm 4.1). The core discrepancy value for row
K is stored in array D as D[k], and the corresponding intermediate bivariate polynomial is stored in
array A as A[x]. The discrepancy calculation and the update rule (see (3.30) and (3.31) for the basic FIA)
are adapted to the bivariate case (see Line 12 of Algorithm 4.1). For each sub-matrix S (V) the previous
value of the row pointer & is stored in an array R as R[v]. We prove the initialization rule for the FIA
solving Problem 4.7 when entering a new column of in the following lemma.

indexes the column

Lemma 4.8 (Initialization Rule)
Assume Algorithm 4.1 examined column (v, — 1) of the n x Zﬁ:o N; input matrix S =

(S<O> s ... S<Z>Ti.e., the (u — 1)-th column of the sub-matrix S¢*?, as defined in (4.29) or

equivalently the bivariate polynomial S(X,Y") = Zf:o S¢(X)Y't. Assume that a core discrepancy
was obtained in row «, and the row index was stored in the array R[v] (see Line 15). The vanishing
linear combination was stored in the array A[k,](X,Y) < T(X,Y), ie:

v p—1
(XPARI(XY), S(X,Y) ) =D > Ay Seir; =0, Vi€ [k),
t=0 j=0

Let Algorithm 4.1 re-enter the same sub-matrix S,
Then Algorithm 4.1 can examine column (v, i1) at row ,, — 1 with the initial value

T(X,Y) + X - A[R[V]|(X,Y)

instead of starting in row zero.

PRrOOF In terms of the inner product, we have:

(X'T(X,Y),S(X,Y) ) = ({ XM ARW](X,Y),S(X,Y) )

v p—1
=D Aij - Stitit
t=0 j=0
=0, Vi€lk, —1). -

Similar to the FIA for one Hankel matrix, we can start examining column y of the same sub-matrix S{*
inrow Kk, — 1.
The following theorem summarizes the properties of Algorithm 4.1.

Theorem 4.9 (Correctness and Complexity of Algorithm 4.1)

LetS = (S<0> s ... S<£>) be the n X Zf:o Ny matrix as defined in (4.29) and S(X,Y") the asso-
ciated bivariate syndrome polynomial for the reformulated Sudan interpolation problem. Algorithm 4.1
returns a bivariate polynomial 7'(X, Y") such that:

(X"T(X,Y),S(X,Y)) =0, Vkc€[n).

The time complexity of Algorithm 4.1 is O(¢n?) operations in F.
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4.2 Key Equation for Sudan

ProoF The correctness of Algorithm 4.1 follows from the correctness of the basic FIA (see Theorem 3.16)
and from the correctness of the initialization rule (see Lemma 4.8), because Algorithm 4.1 deals with
the column-permuted version S’ of the original matrix S = @m s ... S<£>). Thaaroof of the
complexity of Algorithm 4.1 is similar to the complexity analysis of the FIA adjusted for a Hankel matrix
(see proof of Theorem 3.16). We trace the triple:

((v, 1), (ko K1 - Kg),6),

where (v, p) is the current column pointer of Algorithm 4.1 examining the p-th column of the v-th
sub-matrix S¥). The variable x = (ko K1 ... Kg) contains the index of the last row Ky reached in the
sub-matrices S{*). These values are stored in the array R in Algorithm 4.1. The value ¢ is the number of
already encountered core discrepancies of Algorithm 4.1. Assume (v, ) is the current column pointer
of Algorithm 4.1. The two following events in Algoritm 4.1 similar to Algorithm 3.3 can happen:
1. No core discrepancy: Algorithm 4.1 stays in the same column y of sub-matrix S() and the row
pointer x,, is increased by one. The triple becomes:

((V,,u),n,é) “— ((V,M),(mo,m,...,m, + 1,...,&@),6).

2. Core discrepancy: Algorithm 4.1 examines column (¥, 71) = succ(<#, (v, 1)) and the triple
becomes: -

(v, 1), &,8) + (@, 1), (Ko, k1, Kz — 1,...,Ke), 6 + 1).
From (4.32), we have for (v, i) = succ(<H, (v, n)) that
Cop=Cupt+l

and therefore the sum
yi
lter ", + <Z m) 46,
t=0

increases by one in each iteration of Algorithm 4.1. The last value can be bounded by:
Iter < O(n) + O(4n) + O(n) < O(¢n).

Each discrepancy computation costs O(n) and Algorithm 4.1 does not have to examine more than
the first (n + 1) columns of the n X Zf:o N¢ matrix (S(0 S(1) ... 8(0)). Thus, the total cost of
Algorithm 4.1 is O(¢n?). ™

In the following, we illustrate the values of the row pointer x of Algorithm 4.1, when applied to a
syndrome matrix S = (S<0> s S<2>) that consists of three Hankel matrices.

4.2.3 Example: Sudan Decoding of a Generalized Reed-Solomon Code
with Adapted FIA

We consider the decoding of an [16, 4]17 GRS code as in Subsection 3.3.3. For an interpolation multiplicity
m = 1, list size { = 2, we obtain a decoding radius 7 = 7 = [(n — k)/2] + 1. The degrees
of the three univariate polynomials Qo (X), @1(X) and Q2(X) in F17 of the Sudan interpolation
polynomial Zf:o Q¢ (X)Y'? are less than (No, N1, N2) = (9,6, 3) and we have more unknowns
than interpolation constraints No + N1 + Na > n.
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

0—1 LA :
| Y
1
2— (v=1,u=2) - --e'--
! (v=1,p=3) -------
1
4=
1
6|
1
1
8— ! (v=0,u=1)
1
| (v=0,u=2)
10— 1 _e”
1 R
1 _ -
12— | r
1 ! ‘lz/
1 [P
14—, &
7
& | |
| | | | | | | | |
0 2 4 6 8 10 12 14 16

(0,0) (0,2) (1,0) (1,1) (1,2) (1,3) (0,7) (2,1) (1,5)

Figure 4.1: Illustration of the row pointers Ko, k1 and k2 of Algorithm 4.1 applied to a horizontal band of three
Hankel matrices S(*, S(? and $(2). The columns of the 16 X 18 matrix (S<O) s¢b S<2>) are arranged under
44{2 ,-ordering. The three lines trace the row pointers ko, r1 and k2 for each sub-matrix S<O>, S and S The

second axis of abscissae shows the column pointer (v, 1) indicating the ji-th column of the sub-matrix S (.

Figure 4.1 illustrates the row pointer of Algorithm 4.1 when the 16 x 18 syndrome matrix
(S(0> s S<2>)

is examined. The columns of the syndrome matrix are virtually rearranged according to the <f_1—
ordering and Algorithm 4.1 scans the re-arranged matrix S’ column by column.

The three zig-zag lines in Figure 4.1 trace the value of the row pointer ko, k1 and k2 for the three
Hankel sub-matrices S¢0), S{1? and S¢2). The dots indicate the case, where a core discrepancy occurs.
After the 4th column, the columns of the sub-matrices S0 and S{1) are interleaved.

After column 10 of the rearranged matrix S’, the columns of S(0) S{1) and S{2) are interleaved.
Let us investigate the three marked cases, where a core discrepancy in Algorithm 4.1 occurs.

The first case is from column one to column two of S, i.e., the column pointer (0, 1) to (0, 2).
Entering column (0, 2) allows to set the initial value to 13, because the last core discrepancy occurred
in row 14.

The second case is from column eight to ten of S’, i.e., the column pointer (1, 2) to (1, 3). The core
discrepancy in column (1, 2) was calculated in row two and we can start examining row one in column
(1,3).

The columns Co,7 = 12 and Cp,g = 15 of the re-arranged S’ in Figure 4.1 are the third case. In
between column 12 and 15 one column of the sub-matrices S{1) and S(2) is examined by Algorithm 4.1
In column (0, 8), Algorithm 4.1 starts investigating the row eight, because the core discrepancy in
column (0, 7) occurred in row nine.
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4.3 Key Equations for Guruswami-Sudan

4.3 Key Equations for the Guruswami-Sudan Principle

4.3.1 Univariate Reformulation

The Guruswami-Sudan interpolation problem for GRS codes, where the multiplicity m > 1 for the n
interpolation points is reformulated. We obtain not one, but a system of m Key Equations. The resulting
homogeneous linear system is structured and we show how to adjust the FIA for this case.

We recall that Q[?) (X, Y") denotes the b-th Hasse derivative of a bivariate polynomial Q(X,Y) €
Fq[X, Y] with respect to the indeterminate Y (see Definition 2.3).

Theorem 4.10 (Univariate Reformulation)
Let GRS(U, o, k) be an [n, k]q GRS code and let the received vector r = (ro71 ... Th—1) =
c + e, where c € GRS(U, @, k) and e € Fy, be given. Let R(X) be the Lagrange interpolation
polynomial with deg R(X) < m, such that R(a;) = 7;/U; for all i € [n) as in (2.3) and let
L(X) = H?:_ol (X — ;) asin (2.1).

An interpolation polynomial Q(X,Y") € Fq[X, Y] satisfies Conditions C1 and C2 of Theorem 3.17
for an interpolation multiplicity m, decoding radius 7, and list size ¢, if and only if there exist
polynomials By, (X) € Fy[X], for b € [m), such that

QPI(X, R(X)) = By(X) - L(X)™ ", (4.33)

and deg Byp(X) < (n — k) —m7 + b.

The following lemma is needed to prove Theorem 4.10.

Lemma 4.11 (Univariate Reformulation of Guruswami-Sudan)
Let aj,7; € Fy be given, and let R(X) € Fq[X] be any polynomial such that R(a;) = r;. A
polynomial Q(X,Y") € Fy[X, Y] has multiplicity at least m at (cv;, ;) if and only if

(X — )" b1QPI (X, R(X)), Wb € [m).

ProOOF After translation to the origin, we have (c;, r;) = (0, 0), and therefore R(0) = 0,ie., X|R(X).
Let Q(X,Y) = >, Qu(X,Y), where Qy (X, Y) is homogeneous of degree b. We first suppose that
Q(X,Y) has at least a multiplicity m at (0, 0), i.e, Qp(X,Y) = 0, for b € [m). Hence, we have

QP (X, RX) = 3 QP (x, R(X)).

i>m—b

For b < m, the polynomials ng] (X,Y) have no terms of degree less than m — b, and with X|R(X),
we have

X" (X, R(X)).
It follows, that X™~° divides Q! (X, R(X)) for all b € [m) as in Corollary 27.

For the converse assume that X™~°|QII(X, R(X)), Vb € [m). That is, QI)(X, R(X)) =
Xm=b 7, (X), for some polynomials Zo(X), Z1(X), ..., Zm—1(X). Using Taylor’s formula with

81

8o
£
S
o
[
]
a
©
-4
&
1
&
7]
W
4




4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

the Hasse derivatives, we have:

QX Y) =3 QUI(X,R(X)) - (Y = R(X))"
b

=3 QUX,R(X)) - (¥ — R+ 3 QP(X,R(X)) - (v — R(X))"

b<m b>m
= 3T X2, y(X) - (Y — ROOY + 3 QU(X, R(X)) - (Y — R(X))".
b<m b>m

Now, (Y — R(X))? has only terms of degree at least b, since X |R(X). Thus, we have no terms of
degree less than m in Q(X,Y). n

ProOF (oF THEOREM 4.10) From the previous lemma, we know that (X —ay; )™~ divides Q[Y) (X, R(X))
forallb € [m) and ¢ € [n). Since all polynomials (X — «;) are distinct, the Chinese Remainder
Theorem for univariate polynomials implies that L(X)™~?|Q[t] (X, R(X)). The degree condition is:
deg By(X) < deg Q")(X, R(X)) — deg L(X)™~*
=m(n—7)+4(n—k)—bn—1)— (m—>b)n
={4(n—k)—mr+0. n
We rewrite the m equations of (4.33) more explicitly:

4

> (Z) Q:(X)R(X)*% = By(X) - L(X)™™°, Vbe [m). (4.34)

t=b

Recall from (3.38) that
N mn—1)—t(k—1), Vte[t+1). (4.35)

Define the polynomials as:

R(X)=Xx""'.R(X),
n—1

LX) =x"-L(Xx ") =[] -a:X),
1=0

By(X) = Xtn=k=mr=b=l gy (X1, Wb € [m),
A(X) = XNt Qux—1), viet+1).

Note that, these polynomials are not necessarily the reciprocal polynomials, because, e.g., for the received
polynomial the degree can be smaller than n — 1.
Reverting both sides of (4.33) and inserting the previously defined reciprocal polynomials leads to:

L
> (Z) A(X)XED=RR(X) =0 = By(X) - T(X)™ ™", Vbe [m). (4.36)
t=b

Similar to the Sudan case in (4.16), let:

RX) = U (X)L(X)* b + W(X), Vbe[m),teb+1,041),  (437)

82



4.3 Key Equations for Guruswami-Sudan

where Wt<b> (X) is the remainder of the division of R(X)*~? by L(X )™~ and has degree smaller
than (m — b)n. Reverting (4.37) leads to:

R(X)b = TP (X)T(x)™ b 4 XD (=)= (m=b)nt1gy®) (x) (438)

where:
TP (x) = XE-0@-D=(m=bnpy®) (X1 Vhe[m),teb+1,0+41), (439
W (X) = X=0m=lwy ) (X =) Vb€ [m),t€ b+1,0+1). (4:40)

Now let the ;)n:_ol (€ + 1 — b) formal power series S§b>’°° (X) be defined as:

aet Wi (X)

ISOR10' ———~> Vbe[l,m),te[b+1,£+1), 441
t ( ) L(X)m_b [ m) [ ) ( )
(m—=b)n—1

(b),00 def X
5 X)= ———, Vbe[m). 4.42
by () L) [m) (4.42)

Clearl (0,00 (1>» glm=1),00 .

y the m power series 5, ( ), S (X) S (X) as in (4.42) do not depend

on the received word. Insertmg the syndrome polynomlals of (4.41) and (4.42) into (4.36) leads to:

Ab(X)X(Zfb)(nfk) ((m—b)n— 1)5 (X)L( ) —b

I Z () X)X (=) (n=k)

t=b+1
. <U§b> (X)Z(X)mfb +X(tfb)(nfl)f(mfb)n+1séb>«00(X)Z(X)mfb)
=By(X) -L(X)™°, Vbe[m). (4.43)
This can be simplified to:

Ab(X)X(Zfb)(nfk:)7((m7b)n71)sl§b> (X)

n Z () X)X =D (=) x (t=b) (n=1)=(m—b)n+1 (b (x
t=b+1

=0(X) mod XM= Hn=k)=b(n=1) " yp < ), (4.44)

where
L

(X)) =Bp(X) = > ()MX)X“ DO=RT P (x),

t=b+1

with deg Qp(X) < Nt 4+ (£ —t)(n — k) + (¢t — b)(n — 1) — (m — b)n = £(n — k) — mr + b. The
modulo corresponds to the degree of deg QI (X, R(X)), since we limit the degree of the power series
of the syndromes and therefore denote them without the infinity sign.

Furthermore with:

-ty (n—k)+({t—-b)(n—1)—(m—-bn+1=~L(n—k)—mn+Dbk+1(t—Db)(k—1),
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

and
m(n—T1)+4ln—k)—bn—1)=~4(n—k)—mn+bk+1+m2n—7)—bd—1,

we can divide both sides of (4.44) by X £(n—k)—mn+bk 54 we obtain:

A (X)SP (X)+ Z () X)X =061 g0 (x)

t=b+1
= (X)) mod XMEn=T)=bd=1 1 yp ¢ [m), (4.45)

where deg Qp(X) < l(n—k) —m7+b—({(n—k)—mn+bk+1)=m(n—7)—-bk—1)—1

Let us outline a possible reduction of (4.45) similar to the one for the Sudan case from (4.25) to (4.26).
We can consider (4.45) modulo X (=71 and due to (4.42), the term Ay, (X)Séb> (X)) disappears.
Furthermore, we can divide (4.45) by X k=1 and obtain:

4
S (Z) Ap(X)X b= DE=D) g (x) = o (X) mod XM=k vp e [m), (446)
t=b+1

where deg Q) (X) <m(n—71)—bk—1)—1—-(k—=1)=m(n—7) -k —b(k—1).
However, the number of homogeneous linear equations, i.e., the difference between the highest
considered term (m — b)n — k and the degree of Q} (X) is:

(m=bn—k—(mn—7)—k—>bk—1)) =mr —b(n —k+1) =mr — bd.

The value m7 — bd can be negative and therefore we do not apply this reduction here (see Subsection 4.3.4
for further details). -

Let us go back to the unreduced form as in (4.45). We obtain (m — b)n homogeneous linear equations
from (4.45), when considering the coefficients of the terms of degree higher than m(n — 7) — b(k — 1).
More explicitly, we have:

Np—1 Ny—1
D Auie S+ Z D A Sl ety it
i=0 t=b+1 i=0
=0, Vje[mn—71)—blk—1)—1,m(2n—7)—bd —1),Vb € [m). (4.47)
Reverting back to the original univariate polynomials Qo (X), Q1(X), ..., Q¢(X) we obtain the
following system of homogeneous linear equations:
N¢—1
Z Qui Sy, + Z > Qui-S", =0, Yjelm—bn)bem).  (448)
t=b4+1 i=0

With Q¢ def (Qt,0,Q¢t,15- -, Qt,ny—1)T fort € [£+1) and with Z?:Bl (£+1—b) Hankel matrices:

bty def (o (v,)\IEND ey \IEIN)
s (s )%Km%)n) (St’i+j)i€[(mfb)n)7 Vb € [m),t € [b,£+ 1),
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4.3 Key Equations for Guruswami-Sudan

we can write (4.48) in the following matrix form:

§(0,0) g(0,1) . §(0,0) Qo
0 g1y . s(1.6) Q:
. . . =0. (4.49)
6 0 S(7n71,7n71> S<"”;1~,e> QK

All matrices depend on the received vector r except the ones on the diagonal: S(®:%) b € [m) which
depend only on the support c of the GRS code GRS (T, v, k), the interpolation multiplicity m and the
parameter b.

The (m;' 1)n X Zf:o Nt syndrome matrix in (4.49) consists of m bands of b horizontally arranged
zero matrices and £ 4+ 1 — b Hankel syndrome matrices for b € [m). This matrix is a called Block-Hankel
matrix. The adjustment of the FIA for this Block-Hankel matrix is shown in Subsection 4.3.2.

The explicit expression for the syndromes Sf? is difficult to obtain. We compute Sf? directly by the
power series expansion of '

—(b
S<b>’oo(X) — Wé >(X)
¢ L(x)m—b’

as in (4.41) and (4.42). For further discussion on the explicit syndromes see Section 4.4.

4.3.2 The Fundamental Iterative Algorithm for a Block-Hankel Matrix

The extension of the FIA for the case of a Block-Hankel was hinted in Ruckenstein’s thesis [O-Ruc01,
Section 5.2]. First of all, let us express the m Key Equations of (4.45) in terms of the inner product of
bivariate polynomials.

Problem 4.12 (Reformulated Guruswami-Sudan Problem)
Let the m bivariate polynomials S{° (X,Y), S0 (X,Y),...,S(m=1)(X,Y) € Fy[X,Y] be
defined as:

¢ Ni+(m—b)n—1

SO, Y) €S 3 sPIXYt, b e [m), (4.50)
t=b =0

where the coefficients St<,bi> are given by the power series of (4.41) and (4.42). We search a non-zero
bivariate polynomial T'(X,Y") € Fy[X, Y] that fulfills:

< XST(X,Y), 8 (X,Y) > =0, V€ [m), k€ [(m—13)n).

We adjust the FIA as an algorithm on a row- and column-interleaved version of the (m;' 1)n X
Zf:o N¢ Block-Hankel matrix S of (4.49).
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Algorithm 4.2: T(X,Y) = BLOCK-HANKEL(S(?) (X,Y),...,S{m=1(X,Y))

Input: Bivariate polynomials S¢®) (X, Y) = Zf:b S§b> (X)YE, be[m)
Output: Bivariate polynomial 7'(X,Y")
Data structures:
Bivariate polynomial T'(X,Y") = Zf:o Ty (X)Y'?, where Ty (X) € Fq[X]
£ + 1 column pointers (0, o), (1, 1), - - ., (¢, pg) where pg € [N¢)
Row pointer (¢, k), where ¥ € [m) and k € [(m — 9)n)
Array A[(i,7)] of (mg'l)n entries in Fy[ X, Y] indexed by the row pointer (9, k)
Array D[(¢,7)] of (mil)n entries in Fg indexed by the row pointer (¢, )
Array R of £ + 1 entries to store the row pointer (9, k)
Variable A € Fy, variable compute € {true, false}
Initialize:
Initialize arrays A, D and C to zero
(v, ) = (0,0) and (9, ) « (0,0)
compute <— false

1 while (9, k) < (m,0) do

2 if compute then

3 ‘ A~ (X" .T(X,Y), S (X,Y)) // Discrepancy calculation
4 else

5 if R[v] < 1then

6 | T(X,Y) Y- XA« S (9, 5) < (0,0)

7 else

8 T(X,Y) «+ X - A[RV]|(X,Y); A < D[R[V]]; (¥, k) < R[V]

9 if kK = 0 then

10 (W, k) « (¥ —1,n)

11 A+0

12 K+—Kk—1

13 | compute < true

14 if A =0o0rD[(9, k)] #0 then

15 if A # 0 then

16 L T(X,Y) + T(X,Y) — m CA[(W, K)](X,Y) // Update
17 | (9,k) succ(<Y, (9, k))

18 else // Core discrepancy A # 0 and D[k] = 0
1w | A, R)(X,Y) « T(X,Y); D[(9, 1)) A Ry] (9, %)
o | () ¢ suee(=E, (v, )
21 | compute < false

Let us first define an ordering to describe the vertical rearrangement of the rows of the syndrome matrix
S as in (4.49). Let n be a positive integer and let <Y denote the ordering indexed by pairs (9, k), such
that:

B K+9n <F+Jn,
W9, k) <Y (9,R) = or (4.51)
Kk+9n=RK+9Inand ¥ < J.
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4.3 Key Equations for Guruswami-Sudan

Let succ(=<y , (9, k)) denote the pair that immediately follows (19, ) with respect to order defined by
<y and let pred(<}, (9, k)) denote the pair that immediately precedes (9, ) with respect to order

defined by —<,‘{ . Furthermore, let:

def
Rﬁ,r@ =

{wolw <Y w0}, (452)

which we use to index the rows of the virtually rearranged matrix (similar to C', ,, as in (4.32) for the
horizontal case) and we have

Rpred(-<¥, (W, Kr) — Ro,p— 1.
In the following, S’ denotes the rearranged version of the matrix S of w where the columns are
ordered under —<££1— and the rows under <Y -ordering. Algorithm 4.2 is the FIA tailored to a Block-
Hankel matrix as in (4.49). Similar to the reformulated Sudan interpolation problem, the columns of the
Block-Hankel matrix S are indexed by a pair (v, u), where v € [¢ 4+ 1) and p € [N,). Furthermore,
the rows are indexed by a couple (9, k), where 9 € [m) and k € [(m — 9) - n).

Now, the arrays storing the discrepancies and the intermediate polynomials are still indexed by
rows, but the indexes of the rows are two-dimensional, leading to two-dimensional arrays. The two-
dimensional array A stores the intermediate bivariate polynomials and the two-dimensional array
D, stores the discrepancy values. Both arrays A and D are indexed by the row pointer (¢, k). The
discrepancy calculation (see Line 16 of Algorithm 4.2) is adjusted to a Block-Hankel matrix where each
sub-horizontal band of Hankel matrices is represented by a bivariate polynomial.

The intermediate bivariate connection polynomial 77+ (X, Y) of Algorithm 4.2 examining the x-th
row and the pi-th column of the (v, 9)-th sub-matrix S*:??, gives us the vanishing linear combination of
the sub-matrix consisting of the first Ry , rows and the first C, ;, columns of the rearranged syndrome
matrix S’.

The row pointer of the sub-block (S<”’0> s ... S<”’m_1>)T is stored in the array R[v]. We
need to store £ + 1 row pointers of the form (¥, k).

The adjusted initialization rule of Algorithm 4.2 examining the Block-Hankel syndrome matrix as
defined in (4.49) is stated in the following lemma (see Lines 12, 17 and 20 of Algorithm 4.2).

Lemma 4.13 (Initialization Rule)

Assume Algorithm 4.2 examined column (v,u — 1) of the (m;ﬂ)n X Zf:o N; Block-
Hankel syndrome mairix S as defined in (4.49) or equivalently the m bivariate polynomials
SO(X,Y),SMV(X,Y),..., 8" (X,Y) of Problem 4.12.

Assume that a core discrepancy was obtained in the (¥,k) row of the sub-block
(S<”’0> Sw1) ... S<”’m_1>)T, i.e., the k-th row of the sub-matrix S{¥:9) The row index (¢, k)w
was stored in the array R[v] < (9, k),. The corresponding vanishing linear combination in form
of the bivariate polynomial T'(X,Y"), was stored in the array A[(¥, k), ](X,Y) < T(X,Y) (see
Line 2), ie.

v p—1 )
{ XA, )06 7), 852 (X, ¥) ) = 5757 Ay o802
t=0 j—1
=0,  V(iz,i1) <y (9,K)w.
Let Algorithm 4.2 re-enter the same sub-matrix S¥9),
We can start examining column (v, 1) of S at row (¥, k — 1),, with the initial value T'(X,Y") +
X - Al(9,k))(X,Y).
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

PrOOF In terms of the inner product, we have:

< XUT(X,Y),S02) (X,Y) > - < X+ AR)(X,Y), 842 (X, Y) >

v p—1 )
= Z Z Atj - St<,li21>+j+1

=0 j=1
=0,  V(i2,i1) <y (9,5—1). ]

Theorem 4.14 (Correctness and Complexity of Algorithm 4.2)
Let S be the (m;' 1)n X Zf:o N syndrome Block-Hankel matrix of the reformulated Guruswami-

Sudan interpolation problem as in (4.49) and let S¢) (X, Y"), Vb € [m) be the corresponding bivariate
syndrome polynomials as defined in Problem 4.12. Then Algorithm 4.2 outputs a bivariate polynomial
T(X,Y) such that:

< XST(X,Y), 8 (X,Y) > =0, V€ [m), k€ [(m—13)n).

The time complexity of Algorithm 4.2 is O(fm*n?) inF,.

ProoF The correctness follows from the fact that we deal with the row- and column-permuted version
S’ of the Block-Hankel matrix S and that the initialization rule is correct.

In the following, we analyze the complexity of Algorithm 4.2. As in proof of Theorem 4.9, we describe
the state of Algorithm 4.2 with the following triple:

((Vv H)v ([7—97 K]O’ [197 K]l: SRR [797 N]Z)v 6)7 (4-53)

where (v, 1) is the current column pointer of Algorithm 4.2, when examining the p-th column of
the horizontal band of m vertically arranged Hankel matrices (S(”’0> Stmt) ... S<”’m_1>)T. The
index [9, k], is the last considered row in the horizontal band of m sub-matrices (S<“’O> S ...

S(vm=1) ) ' These values are stored in the array R of Algorithm 4.2. As for Algorithm 4.1, § denotes
the number of already encountered core discrepancies. Assume (v, 1) is the current column pointer of
Algorithm 4.2. The same two cases as for Algorithm 4.1 can happen:
1. No core discrepancy: Algorithm 4.2 remains in the same column (v, ) of the sub-matrices
(S<”*0> sl ... S<”*m_1>)T and the triple becomes:

(@), (19, Ko, 19, 510), 8) <
(@), ([0, Ko, - mext]<Y, (19, K1), - [9,K]e), 6),

2. Core discrepancy: The triple becomes:

(W), (19, Ko, - [0, 10), 6) +

(suce(=E, (v, 1), (19, Ko - prev[<Y, ([0, K], - [0, 1]2),6 4 1).
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4.3 Key Equations for Guruswami-Sudan

In both cases, the sum Iter of the triple is:

lter = Cu,,u =+ Z R[ﬂy,{]t + 5,
te[f+1)

when Algorithm 4.2 examines the (v, u)-th column of the Block-Hankel matrix S of (4.49) and it
increases by one in each iteration. The initial value of Iter is zero, and the final value can be bounded by

4
m+1 m+1 m+1
IterS( 9 )n+§ ( 9 >n+( 9 )n
t=0
< O(m?n).

The number of iterations of Algorithm 4.2 is bounded by O(¢fm?n).
This gives a total of O(¢fm*n?), since the discrepancy calculation requires O(m?n). n

4.3.3 Example: Guruswami-Sudan Decoding of a Generalized
Reed-Solomon Code with Adapted FIA

As in Subsection 4.2.3, we consider the decoding of an [16, 4]17 GRS code. For interpolation multiplicity
m = 2, list size £ = 4, the decoding radius is now 7 = 8. The degrees of the univariate polynomi-
als Qo(X),Q1(X),...,Qa(X) are (No, N1, N2, N3, Na) = (16, 13,10, 7,4). The Block-Hankel
syndrome matrix:

g _ (0,00 g(0,1) g(0,2) g(0,3) G(0,4)
0 s(1,1)  g(1,2) g(1,3) g(1,4)

isa (3n = 48) x (Z?:O N¢ = 50) matrix. It consists of nine non-zero Hankel matrices and one
all-zero matrix S{1-9) arranged in two horizontal bands of five Hankel matrices.
The values of the row pointer (¥, k) of Algorithm 4.2 for the Block-Hankel matrix are traced in

Figure 4.2. The five zig-zag lines in Figure 4.2 trace the row pointer (¢, ), when Algorithm 4.2 examines
the five sub-blocks

(S<O,O) S(l,O))T’ (S<1,0> S(l,l))T7 e (S<4,O) S<4’1>)T.

Additionally to the horizontal ordering _<]I€{71 of the columns (as in the Sudan case), now the rows

are ordered according to <Y . Let us consider three cases, where a core discrepancy in Algorithm 4.2
occurred. The first case are the most left two points in Figure 4.2. The value of the column pointer (v, 1)
is (0,2) and (0, 3). Algorithm 4.2 examines the first band of the two Hankel matrices (S(0:0) §¢1,07) T
For the first pair no columns were virtually interchanged and the horizontal distance is one.

The second two points with the values of the column pointer (0,5) and (0, 6) indicate a core
discrepancy of Algorithm 4.2, when the second band of the two Hankel matrices (S<0’1> s(L.1) ) Tis
examined. The values are traced by the dotted line in Figure 4.2. For the second pair ((0, 5),(0, 6)), the
columns of the first and second vertical band of Hankel matrices are mixed and therefore the horizontal
distance is two. The third considered case, where a core discrepancy occurs, are the most right two
points in Figure 4.2 indicated by values (1,9) and (1, 10) of the row pointer (¢, ). Algorithm 4.2
examined column 42 and a core discrepancy occurred at row (1, 9). In column 43 at row (1, 10) another
core discrepancy was examined, and we investigate column 48 (that corresponds to the same sub-matrix
as column 43) and run Algorithm 4.2 until the last row.
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

(0,0) o—

(0,5) 5—

(0,10) 10—

(0,15) 15—

(0, 18) 20—

(1,4)25—

(0,23) 30—

(1,9) 35—

(0, 28) 40—

(1,14) 45—
(1,15) 47—

| | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 49

(0,0) (0, 4) (1,8)  (0,8) (2,3) (3,1)  (0,12) (0,13) (0,14) (0,15) (4,3)

Figure 4.2: [llustration of the row pointer (9, &) of Algorithm 4.2 applied to a 48 x 50 Block-Hankel matrix S. The
matrix consists of two vertically arranged bands of five horizontally arranged Hankel matrices. The first band consists
of 32 rows and the second one of 16. The plotted matrix S’ consists of the rearranged columns and rows of the matrix
S under <,I:_1- respective <x -ordering. The mixture of rows of the two vertical lines starts in line 16 (marked by
the dotted horizontal line). The five zig—zag lines trace the row pointer for the five sub-blocks (S<0’O> s{1.0) )T,
(S<1’0> s(L.1) ) T, ., (S<4'0> s(41) ) T of two vertically arranged Hankel matrices. The second axis of abscissae

shows the column pointer (v, p) indicating the p-th column of the sub-block (S<0’"> st ) T
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4.3 Key Equations for Guruswami-Sudan

4.3.4 Reduced Set of Equations

Let us consider the univariate reformulation as in (4.46). The degree of the polynomial ©; (X') can be
greater than (m — b)n — k and it is not clear how to properly truncate this identity, as in [A-RR00;
O-Ruc01] for the list decoder with multiplicity m = 1 or as in the case of the classical Key Equation
(see Section 3.2) for BMD decoding.

Lemma 4.15 (Reduced Set of Equations for Guruswami-Sudan)

Let d = n — k + 1 be the minimum distance of the considered [n, k|4 GRS code. Let b be such that
m7T —bd > 0. If Apy1(X), Ap2(X),..., Ap(X) is a solution of (4.46), then there exists Ay (X)
such that Ay (X), Ap1(X), ..., Ag(X) is a solution to (4.44).

ProOF Let us consider (4.34). We isolate Qp(X) and get

£
@0+ Y (3) Q) R = By() - )™ (450

t=b+1

and thus Qp (X)) is the remainder of the Euclidean division of

> (,’;) Qu(X)R(X)*

t=b-+1
by L(X)™~?, as long as deg Q3 (X) < deg L(X)™?, which gives

m(n—71)—blk—1) < (m—b)n
mT — bd > 0. [ ]

We denote bg = [(m7)/d]. Actually, we can consider (4.36) and substitute the A, (X), for all b €
[bo + 1), successively. This is possible for the case of the first order system (m = 1). In the Guruswami-
Sudan case (m > 1), we can obtain a reduced system with Ay, 11 (X), Apy42(X),..., Ag(X), butit
seems that this reduced system lost its Block-Hankel structure.

A future direction is to find a proper reduced polynomial description, i.e., a Key Equation, that leads

to a structured set of
bo m—1
Zm‘rfder Z (m—b)n
b=0 b=bo+1

homogeneous equations and Zf:bo +1 N¢ unknowns.

Example 4.16 (Reduced Set of Guruswami-Sudan)
Let us calculate the dimension of the reduced set for the previously investigated [16, 4]17 GRS code
with minimum Hamming distance d = 13. For an interpolation multiplicity m = 2, list size £ = 4
a decoding radius 7 = 8 is obtained. The full matrix system has (2;1) 16 = 48 equations and
Zﬁ:o N; = 50 unknowns.

We obtain by = 1 and the reduced system consists of Z;ZO(S’T — bd) = 19 homogeneous

equations and with 23:2 N; = 21 unknowns. The polynomials Qo (X) and Q1(X) of degree
smaller than 16 and 13 can be obtained via (4.54).
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

4.4 Explicit Guruswami-Sudan Syndromes and Hermite
Interpolation
4.4.1 Univariate Hermite Interpolation

The basis for the univariate reformulation of the interpolation problem of Guruswami and Sudan
considered in the previous sections was the univariate Lagrange interpolation polynomial R(X). The
univariate Hermite [A-Her78] interpolation of 1878 generalizes the Lagrange interpolation. An explicit
expression of the univariate Hermite interpolation was first given by Spitzbart [A-Spi60]. Let us consider
the simplest case, where we take the first derivative into consideration.

Let two vectors r,r2 € Fy be given. Then, we have a unique polynomial R(X) € Fg[X] with
deg R(X) smaller than 2n, such that

R(oj) =7; and R[l](aj) =ryj, Vj€E]ln),
with:

n—1 n—1
R(X) = mA;j(X)+ Y re;B;(X), (4.55)
=0 =0
where:

Aj(X) = (1 —2(X - oq)@”(%‘)) “Lj(X)?, Vi€ ), (4.56)

Bj(X) = (X —a;)L;(X)?, Vj € [n),

where L;(X) is as in (2.2).
The polynomials A;(X) and B, (X) are such that:

Aj(aj)=1 and Agll(cx]-) =0,
Bj(a;) =0 and B}ll(aj) =1, Vje€|[n).

The approach can be generalized to an integer m > 1 and we explicitly assign values n to each of the
first m — 1 derivatives of the Hermite interpolation polynomial. This polynomial has degree smaller
than mn (see [A-Spi60]).

4.4.2 Modified Reformulation for Guruswami-Sudan

Let Ry, (X) € Fy[X] be the Hermite interpolation polynomial for the n points of degree smaller than
or equal to mn — 1 such that:

Rm(aj) =rj,  Vji€[n) (4.57)
R,[f;] (0j) =1y 4, Vj € [n),b € [1,m). (4.58)

In the following we are interested in the degree constraints, if we modify the univariate reformulation
of Theorem 4.10 as follows.
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Lemma 4.17 (Univariate Reformulation with Hermite)

Let R (X), Rm—1(X),..., Ri1(X) be the m univariate Hermite interpolation polynomials as
defined in (4.57) and (4.58). Then a Guruswami-Sudan interpolation polynomial Q(X,Y") (similar to
Theorem 4.10) with the parameters n, k, m, £, T exists if and only if there exist a By(X) € Fq[X]
such that:

deg Q(X, Ry (X)) = By(X) - L(X)™ ", Vb€ [m), (459)
where:
deg By(X) < deg Q1 (X, Ry (X)) = (m — b)n
<mn—7)+{—=0b)((m—>bn—1) +£(1—k)— (m—b)n
<(=b)((m—bn—1)+£L1-k)+bn—mr.
Proor The proof is analog to the proof of Theorem 4.10 and is independent of the values RL?L] () of
R (X) forall b € [1,m). The degree conditions follows immediately. ™

Reverting the coefficients of (4.59) is as follows:
Xm(n—r)+(1’.—b) ((m—b)n—l) +4(1—k)—1

4

S (5) @G DX =B T,

t=b
Substituting the reciprocal polynomials leads to:
Ab(X)X(Z—b)((m—b)n—k)
4
+ > (f,) Ad(X)XUDm=bn=RR_ (X)P= = By(X) - T(X)™ 0. (4:60)
t=b+1
With:
R (X)) = U (X)) LX) P + W (X), Wbem),teb+1,0+1),  (461)

where Wt(b> (X) is the remainder of the division of R, _3(X)*~? by L(X)™~? and has degree smaller
than (m — b)n. Reverting (4.61) leads to:

Ry (X)' 0 =T (XOL(X)™ 0 4 X0 Dm=tn=Dp® (x) - v e [m),
where

TP (x) = XD (m=tn=D=(m=bn ) (x=1) b € [m),t € [b+1,£+ 1),

W (x) = xm=bn=1y® (x =1y v [m),t € [b+ 1,0+ 1).
Now, we define the syndrome polynomials as in (4.41) and (4.42):
SO LX)t =W (X),  Vbe[l,m)teb+1,6+1), (4.62)
S (X)D(X)™ b = X(Mmtn=1 v e ). (4.63)
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4 Key Equations for Decoding of GRS Codes Beyond Half the Minimum Distance

Inserting the syndrome definitions of (4.62) and (4.63) into (4.60) and with:

=—-t)((m=-bn—Fk)+t—b—1)((m—bn—1)
—((e—b)((m—b)n—k)—(m—b)n—l)

b=t ((m—bn—k)+t—0b)((m—bn—1)
=(t—b)(k—1).

Dividing the b-th Key Equation by X (%) ((m=b)n—k) ~(m—b)n+1 of (4.60) leads to:

£

ZXQMMWWW“%PM>

t=b
=Q®)(X) mod XMCn=T)=bd=1 " wp e [m), (4.64)

where:

deg Qp(X) < deg By(X) — ((z —b)((m—b)n— k) — ((m — b)n — 1)
<m(n-—71)—bk—1)—1.

4.4.3 Explicit Syndromes

Let us repeat (4.61):
Rpp(X)170 = U (X) LX) + W (X), Vb e [m), (4.65)

where deg Wt<b> (X) is smaller than (m — b)n. The explicit form of Wéb> (X)) respectively it reciprocal
counterpart are essential for an explicit expression of the syndromes of the modified Guruswami-Sudan

reformulation. As for the Sudan case, we can easily get n constraints on Wfb> (X) from (4.65). We have
that:

R(oi)' ™0 = ri™" = W (o),

and by considering the b — 1 first Hasse derivatives of (4.65), we obtain the other missing (m —b—1)n
constraints to determine V[/t<b> (X).

It seems to be fruitful to obtain a closed-form expression of explicit syndromes with a reformulation
based on polynomials as in (4.57) and (4.58). It is natural to consider a univariate Hermite interpolation
polynomial if the multiplicity is greater than one. It is not clear, if a polynomial description of the
reduced set as outlined in Subsection 4.4 can be directly obtained with the Hermite-based reformulation.
The question remains if the so obtained reduced set is structured. From the complexity point of view it
is favorable to adapt an algorithm (as the FIA in Algorithm 4.2) for a larger structured set of equations
than to a smaller unstructured one.

We proved the correctness of Algorithm 4.2 and analyzed its complexity based on univariate Key
Equations (4.45) for the Guruswami-Sudan interpolation problem for GRS codes.
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4.5 Conclusion and Future Work

In Section 4.1 and 4.2, we gave two Key Equations for decoding GRS codes beyond half the minimum
distance. The first one is based on the previous work of Schmidt, Sidorenko and Bossert (Section 4.1) and
our new contribution is small compared to the original work. We described it for GRS codes and could
slightly generalize the bound on the failure probability in Theorem 4.3. We recapitulated the work of Roth
and Ruckenstein in Section 4.2 in a slightly different manner to bridge it to the univariate reformulation
of the general interpolation problem, where the multiplicity is larger than one (see Lemma 4.5 and
Theorem 4.9). In addition, the adaption of the FIA for the obtained Block-Hankel matrix system was
described, its correctness proven in Theorem 4.2 and the complexity was analyzed. Furthermore, we
showed that a reduction of equations is possible in Lemma 4.15, but it is unclear if this reduced form can
be represented in polynomial form, i.e., in terms of a reduced set of Key Equations. In our opinion, the
most promising direction is the adaption of the univariate reformulation as outlined in Section 4.4.

Several open research problems exist. A profound comparison between the two approaches of
Section 4.1 and Section 4.2 can give new insight and probably some bounds are then transferable. Other
algorlthmlc modifications as e. g., an EEA-like algorithm for the reformulated Sudan and Guruswami-
Sudan Key Equation(s), are another future direction. Due to the binomial coefficients, every second
Hankel sub-matrix of w is zero, if we consider GRS codes over the binary extension field. For fields
with characteristic two a further reduction of complexity seems possible.

The main challenge is an explicit expression of the Guruswami-Sudan syndromes. This probably
allows the formulation of a unique decoding algorithm beyond the radius of the one presented in
Section 4.1. The univariate reformulation can also be applied to other related code constructions as
folded Reed—Solomon codes [B-Gur07], derivative Reed-Solomon codes [A-GW12] and related code
families like Hermitian codes [A-O’S02].
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“Do not worry about your difficulties in Mathematics. I can assure you mine are
still greater.”

ALBERT EINSTEIN (1879-1955) AND SHOWN ON A SIGN ABOVE THE ELEVATOR OF
THE INSTITUTE OF INFORMATION TRANSMISSION PROBLEMS (IITP)

Key Equations for Interpolation-Based
Soft-Decision Decoding of Generalized
Reed-Solomon Codes

Vardy [0-KV00; A-KV03a], as outlined in Subsection 3.5.3, is the reduction of the complexity

of the interpolation step. Kotter et al. proposed first in 1 [I-KV03b; I-KMVAO03] the re- encoding
transformation technique for this purpose. The main idea is to re-encode the k coordinates with highest
multiplicity. The obtained codeword is subtracted from the received word. The modified interpolation
problem after re-encoding has k zero-coordinates and leads—loosely formulated—to the substitution
of the factor n by n — k (which is small for high-rate codes) for the complexity analysis. Kotter et
al. [I-KV03b; I-KMVAO03] obtained a (1, —1)-weighted degree rational interpolation problem after the
re-encoding transformation. The adaption of the original Kétter algorithm for this rational problem is
extensively explained in [A-KMV11] as well as the reduction on the root-finding step.

From a first glance it does not seem very fruitful to reformulate the interpolation-based soft-decision
approach of Kétter and Vardy [O-KV00; A-KV03a] in terms of Key Equations as in Section 4.3, but we
show that the univariate reformulation after the re-encoding technique of [A-KMV11] leads to a simpler
reduced problem than the rational one obtained in [A-KMV11]. Our re-encoding transformation using
Key Equations leads to the same reduction of linear equations as in [A-KMV11], but we do not pass to a
rational interpolation problem due to the univariate reformulation.

In Section 5.1, we derived the non-re-encoded univariate reformulation of the Kétter—Vardy approach
as in Theorem 3.21. In addition, the possible adaption of the FIA is outlined. In Section 5.2, we cover the

O NE main challenge for interpolation-based soft-decision decoding of GRS codes a la Kotter—

reformulation of the re-encoded problem in terms of Key Equations. Both approachgof Section 5.1

and 5.2 were not published yet. A short conclusion and future work is given in Section 5.3.
Recall from Theorem 3.21 that for a given [n, k] GRS code GRS (T, e, k) and ¢ X n multiplicity

matrix m, we search a bivariate interpolation polynomial Q(X,Y") € Fy[X,Y] with (1,k — 1)-

weighted degree smaller than § + 1 and Y'-degree ¢, such that:

Q[“’b](aj,,ﬁi/ﬂj) =0, Va,bwitha+b<m;;,i€lq),je€ [n),

where o, 81, . . ., Bq—1 denotes all distinct elements of Fg.
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5 Key Equations for Interpolation-Based Soft-Decision Decoding of GRS Codes

5.1 Key Equations for the Kotter-Vardy Algorithm

5.1.1 From the Multiplicity Matrix to Univariate Polynomials

Let ¢ be a codeword of an [n, k]q GRS code GRS(T, v, k) and let, as mentioned in Subsection 3.5.3,
)

the multiplicity matrix m = (m; ; )Zg[[;) with nonnegative entries m; ; be given. The support of

GRS (T, a, k) consists of n distinct elements &« = (g @1 ... ap—1) and the g elements of Fy are
denoted by S0, 81, - . ., Bq—1, where g = 0.

Let the received vector be r = c+ e, where e € 7. The multiplicity m; ; is related to the probability
that the j-th symbol r; is 8; € Fq.

In practical scenarios, the ¢ X n multiplicity matrix m is sparse and not all gn points (o, 3;) €
{ao,a1,...,an—1} X Fq need to be considered for the interpolation. We can describe our univariate
reformulation for all gn points and set where appropriate the multiplicity to zero.

Let the ¢ maps be given:
pi: {0717,77,—1} - {07177q_1}
i o= p(d), Vi € [q),

with p;, () # piy (§) forall j € [n) and i1, 42 € [q) with iy # i2. Let the g sets Py, P1,..., Pg—1
of n points be defined as follows:

def .
P = {(aoyﬁpi(O))v(alyﬁpiu))w~-7(an—1,5m(n—1))}7 Vi € [g), (5.1)
where (o, By, (;)) € {@o,1,...,an—1} X Fq and the set P of gn points is defined as:
PEPUPIU--UP, . (5-2)
Due to the definition the maps po, p1, . ..,Pq—1, the sets Po, P1,...,Py_1 are disjoint. Now, we

reformulate the interpolation problem of Theorem 3.21 in a univariate way, as we did it for the classical
Guruswami-Sudan problem in Section 4.3.
Recall that [a]* denotes max{a, 0}. Let the maximal multiplicity out of the n points in PP; of a given
multiplicity matrix m be:
def .
m; = max my. ()., Vi€ [q). 5.3
i Jetm pi(5).4° [9) (53)

Define univariate polynomials in Fy[X] as:

n—1
. o . bt )
LD (X) € [T (X = antmeea =7 b e [my),i € [g), (5.4)
j=0
with degree:
dof ) n—1
dip = deg LY (X) = > " [my, 5y, —bF, Vb€ [ma),i € [q). (5.5)
j=0

The g unique polynomials Ro(X), R1(X), ..., Rq—1(X) € Fq[X] denote the Lagrange interpolation

polynomials of the n points in Py, P1, . .., Pg—1 such that:

Bpi i)
Uj ’

Ri(ay) = Vj € [n),i € [q), (5.6)
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5.1 Key Equations for the Kotter—Vardy Algorithm

as given in (2.3).
We illustrate the univariate interpolation polynomials of (5.6) and the multiplicity matrix m in
Figure 5.1.

Ro(X) wflos g0 Y e, TROZ <70 MOn—1
- T, N
Ri(X) - - sm,00 = 1™ mina. ;. Min-1
ma ma.1 -
Rg—1(X)-\--- Mgt Mg—1,1 Mg—2,2 --° Mmgln—1

Figure 5.1: The ¢ X n multiplicity matrix m = (m;_; )Z g[[;) of the Kétter-Vardy [A-KV03a] algorithm and the ¢

univariate polynomials Ro (X ), R1(X),..., Rq—1(X) € Fq[X].

Lemma 5.1 (Univariate Reformulation of Kotter-Vardy)

Let the parameters of an [n, k] GRS code, the multiplicity matrix m, the point sets Po, P1, . .., Pg—1
as in (5.1) and the maximal multiplicities 1m0, m1, ..., mg—1 as in (5.3) be given. Let the ¢ Lagrange

interpolation polynomials Ro(X), R1(X), ..., Rg—1(X) € F¢[X] as in (5.6) be given.
The bivariate polynomial Q(X,Y’) is a solution to Theorem 3.21 for given parameters n, k, list

size £, multiplicity matrix m and of wdeg; k.1 Q(X,Y") < 6 + 1 if and only if there exist 23:_01 m;
polynomials B£i> (X) € Fq[X] such that:

QU(X, Ri(X)) = B (X) - LN (X), b € [ma).i € [a), (57)
where L% (X) with d; ;, = deg L{»®) (X)) is defined as in (5.4) and with

deg B{"(X) < 5+ £(n—k) —b(n—1) —dsp, Vb€ [my),i € [g). (5.8)

Proor From Lemma 4.11, we know that both directions hold for one point («;, ;) with multiplicity m.
We conclude that

(X — )= | QPI(X, Ri(X)), Vi € [n).be [my).i € [q).
Then, the Chinese Remainder Theorem implies that
LEO(X) | QPI(X, Ri(X)), Vb€ [my),i€ [q).
The degree condition of (5.8) follows directly. n

From Lemma 5.1, we obtain ¢ Guruswami-Sudan-like Key Equations as in Section 4.3, which provide:

g—1m;—1 1 q—1n—1
Z Z dip = 5 Z Z myj(mg; + 1)

i=0 b=0 i=0 j=0

homogeneous linear equations.

99

c
2
.2

[®]

)
o
E

)
7




5 Key Equations for Interpolation-Based Soft-Decision Decoding of GRS Codes

5.1.2 Block-Hankel Structure and Fundamental Iterative Algorithm

With Lemma 5.1 we obtain 1/2 >°7- a-1 Z? 01 m;, j(m;,j + 1) homogeneous linear equations on the
interpolation polynomial Q(X, Y) and we can use a generalization of the FIA to solve it efficiently as
in Section 4.3. Let Q(X,Y) = Zt 0 Z 1 Q: XY be a solution as in Theorem 3.21. Then, we
obtain ¢ Guruswami-Sudan-like Key Equatlons and consider only the terms of highest degree, i.e.:

£ N¢—

Sy ()Qu S{M =0, Wb e [mi),u € [diy),i € ), (59)

t=b j=0

where Séi’b> (X) € Fy[X] are the syndrome polynomials as in (4.41) and (4.42), which depend on the
polynomials
Ro(X),R1(X),...,Rq—1(X) asin(3.2)and
LY (x), L0 (X)), ..., L9~ b ™ma=1) (X)  asin (5.4).
Let Qt = (Qt,0,Q¢,15---» Qt,Nt—l)T be the vector that contains the coefficients of the polynomial

Q+(X) € Fy[X]forallt € [€+1). The homogeneous linear equations of (5.9) can be written in matrix
form as follows:

S Qo
s Q1
. | .| =0, (5.10)
S<q.—1) Qé
where each sub-matrix
§(i,0,0)  g(i,0,1) §(3,0,¢)
0 s(i,1,1) g(i,1,6)
sl —
o 0 lmimlmi-l) | glimi—1,0

isal/2 Z 0 mg j(mgj + 1) X Zf:o N Block-Hankel matrix for all ¢ € [g). The coefficients of

the Hankel sub-matrix S{*:%:*) are given by:
i,b,t i,b . .
S0 =550 b€ [mi)t € [0),i € [9),5 € [dip), u € [Ne).

Let us shortly describe how the FIA, as explained in Subsection 4.3.2 for one Block-Hankel matrix, can be
adapted to a matrix, which consists of g vertically arranged Block-Hankel matrices. We need g column
and row pointers as in Algorithm 4.2 to index the columns and rows of the different g sub-Block-Hankel
matrices. Equivalently the arrays that store the discrepancies and the intermediate polynomials need to
be suited for ¢ Block-Hankel matrices. Probably, if the rows of the matrix

(s@sth .. .s<q*1>)T

are interleaved in a similar manner as the rows of each sub-matrix S¢?, a complexity-reducing initial-
ization of the FIA is possible. The time complexity is probably increased by a factor of ¢ compared to a
single Block-Hankel matrix. If the FIA is not adapted than the increase of the time complexity is by factor
q? instead of q. The space complexity is clearly increased by factor q. The main advantage of the FIA is
its applicability for the reduced set of homogeneous equations after the re-encoding transformation as
explained in next section.
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5.2 Re-Encoding Transformation with Key Equations

5.2 Re-Encoding Transformation with Key Equations

5.2.1 Ordering of Multiplicities

We show that the univariate reformulation after the re-encoding transformation leads to a reduced
system of homogeneous linear equations. The matrix consists of ¢ vertically aligned Block-Hankel
matrices as in (5.10), where the reduction through re-encoding concerns only one out of the g Block-
Hankel matrices. Algorithm 4.2 can be applied and does not need to be changed fundamentally as, e.g.,
the Kétter interpolation algorithm [O-K596b; A-K896a] has to be adapted for the (1, —1)-weighted
degree interpolation problem, which was obtained through the re-encoding transformation as shown
in [A-KMV11, Section IV.C].

Let @ = (ap @1 ... an—1) be the support of a given [n, k]q GRS code GRS(T, o, k) and let
Fq ={Bo,B1,...,Bq—1}, where By = 0.

Definition 5.2 (Column Leader)
Letmo,my,...,my_1 € IFZ denote the n columns of a given ¢ X n multiplicity matrix

m = <mgm{ mz;,1>.

Let the point (a5, 8;) with maximal multiplicity max;¢4) 72,5 in one column mf be the column
leader.

We assume that the first & columns mOT, m?, e m£71 are the columns that contain the k column
leaders with the greatest multiplicity among the n column leaders of m.
Furthermore, let the map po be such that the first k£ points

(@05 Bpo0))s (@15 Bpo (1))s - - +» (@k—1, Bpg (k—1))
are the first k column leaders, i.e.:

m, (). = maxm; i, Vj€E [k).
P0(3),3 el B j € [k)

Let, as in Section 5.1, the ¢ Lagrange interpolation polynomials Ro(X), R1(X), ..., Rq—1(X) be
such that R;(aj) = By, (5)/7;. forall j € [n),i € [g).

The first k column leaders as in Definition 5.2 are the basis for the re-encoding transformation.

Let h(X) € Fq[X] be the unique Lagrange polynomial of degree smaller than k such that the first k
column leaders are interpolated, i.e.:

h(a;) = @7 Vi € [k). (5.11)

Clearly, eval(h(X), D, &) is a codeword of the given GRS code GRS (T, v, k).
Then, the g sets 730, ﬁl, RPN 73q,1 after the re-encoding transformation, where each set contains n
distinct interpolation points, are:

Po = {(20,0), - (@r=1,0), (k. By (i) = hlan)), -+ (@1 Bpg(n1) = hlan-1) },

'ﬁj def {(CVOMBpj(O) - h(ao))7 ) (anfl’ﬂpj(n—l) - h(anfl))}7 Vi € [1,q).
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5 Key Equations for Interpolation-Based Soft-Decision Decoding of GRS Codes

The q Lagrange interpolation polynomials are now Ro(X), R1(X), ..., ﬁq_1 (X) € Fg[X] for the n
points in ﬁo, 731, R ﬁq—l are:
Rj(X) = R;j(X) — h(X). (5.12)

Clearly, there exists a polynomial Ko(X) € Fq[X] with degree smaller than n — k, such that:

k—1
= [T (X = o) - Ko(X). (5.13)
=0

Let the ¢ maps

pi: {0’177,”71} - {0,1,,(]71}

i b)), Vi € [q),
be defined such that:
Bpi() = Bpi(i) — M), Vi€ [n),i € [q).

Then, the re-encoded multiplicity matrix is:

& — (7 )IEM) J€[n)
m = (m’bd)ie[q) = (mﬁi(j)vj)ie[q) : (5.14)
Equivalently to (5.3), define
. def .
m; — max m , Vi€ |[q). 5.15
ET ey P [9) (5.15)
The first k column leaders have mult1p11c1ty mp0(0> 05 Mpg(1),15 -« - » Mgy (k—1),k—1 OF equivalently
after the re-encoding transformation 79,0, 0,1, - - . , Mo, k—1. For ease of notation let as [A-KMV11]:

v; def T/V\lo,,', Vi € [k})

Let us recall [A-KMV11, Theorem 3]. For the proof see [A-KMV11, Theorem 3].

Theorem 5.3 (Re-Encoding Transformation [A-KMV11, Theorem 3])
A polynomial Q(X,Y) is a solution to Theorem 3.21 for a given ¢ X n multiplicity matrix m if and
only if the polynomial -

P(X,Y) =Q(X,Y + h(X))

is a solution according to Theorem 3.21 with multiplicity matrix m as in (5.14).

Clearly, the Y-degree £ and the weighted degree are identical for both polynomials Q(X,Y") and
P(X,Y).

From Corollary 2.9, we know that P(X,Y) = Zf:o P.(X)Y? that interpolates the k re-encoded
points of Py with multiplicity vo, v1, . . . , v,_1 holds if and only if P;(X) are divisible by ]_[ (X

ai)[”i_tﬁ. Let the £ 4 1 polynomials Po(X), P1(X),..., P¢(X) such that

k—1 "
=[] (X — a1 Py(x).
=0
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5.2 Re-Encoding Transformation with Key Equations

We have:
k—1
deg Py(X) < deg Q¢(X) — > [ —t] T
1=0
k—1
<O+1—tk—1) = [ te[e+1),
=0

and Q(X,Y) = Zf:o Q+(X)Y' is a solution of the original interpolation problem with multiplicity
matrix m.

5.2.2 Reduced Set of Univariate Equations

Let
n—1 N 4
OO (X) € TT(X )P0 787 b € o), (5.16)
j=k
n—1 R 4
LOD(X) € T (X — a2~ b e [mg),i € [1,9), (5.17)
j=0
with degree:
doy = deg OV (X Z[mmm,] bt, Vb e [mo), (5.18)
dip X deg LU0 (X Z[mpl(” =0T, wbe[my),i€ll,q). (5.19)

Lemma 5.4 (Univariate Reformulation after Re-Encoding)
Let the ¢ X n multiplicity matrix m, the multiplicities Mg, M1, . .., Mg—1 asin (5.15), the g Lagrange
interpolation polynomials

Ro(X) = [T (X — as) Ko (%),
Ri(X),..., qul(X) as in (5.12) and the polynomials
£00) (x), 2O (X), .., Bla- a1 (x)

as in (5.16) and (5.17) be given after the re-encoding transformation. Then, the interpolation polynomial
inFy[X,Y]

¢ —
P(X,Y)—Z< H — ) "t]+> y? (5.20)

t=0
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5 Key Equations for Interpolation-Based Soft-Decision Decoding of GRS Codes

is a solution to Theorem 3.21 for the multiplicity matrix m and parameters £ and § if and only if there
exist Z(f:—(} m; polynomials '5551) (X) € Fg[X] such that:

i«)“ 1:[ — o)t )KO(XV b

t=b

= B (X)L (X), ¥ € [mo) (5.21)

= B (X)LOY(X), Wb € [My), ] € [1,q), (5.22)

with
deg B (X) <6+Ln—k)—bn—1)—diy, Vje€[g),be [My).

Proor Through the re-encoding transformation, we have k points with multiplicities vg, v1, ..., Vg—1
and with a zero Y -coordinate. From Corollary 2.9, we know that this holds if and only if the univariate
polynomials P;(X) are divisible by H (X — ;)i . Therefore, the statement for the ¢ — 1
Guruswami-Sudan-like reformulations @ directly follows from Corollary 2.9 and Lemma 5.1.

Let us investigated the reduced reformulation (5.21). From Lemma 5.1, we e know that P(X Y)is
a solution if and only if there exist ¢ polynomials Béo>( X), B<O>( X),. B(0> (X) € Fq[X]
such that:

—1

PII(X, Ro(X)) = B (X) - LY (X), Vb€ [mo).
We substitute (5.13) into (5.20) and obtain:

e k—1
PO, o) = 3 () (Pt(X) TLex- az-)[”i—t}*) Ro(x)
i=0

t=b

_ : t\ (& e [uift]‘*'kil t—b t—b
= b(b) Pt(X)g)(X—ai) [Tx—ai) Ko(X)tb.

=0

With [v; —#]T +t —b=1v; — b+ [t — v;]T (note that t > b), we obtain:

X R(X) = <H(X—az) Vit >
i —
: (Z (Z) <Pt(X) [[x- ai)lt-"@'l*) KO(X)t—b> : (5.23)

t=b

forall b € [my). n

We find the univariate polynomials Po(X), P1(X), ..., P¢(X) with reduced degree deg P+(X) <
S+1—t(k—1)— fz_ol [v; — t]T after the re-encoding transformation by solving (5.21) and (5.22).
The solution of the reduced interpolation problem is obtained by summing up:

k—1
XTI - at v
=0
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5.2 Re-Encoding Transformation with Key Equations

forallt € [£+1).

5.2.3 Reduced Set of Homogeneous Equations in Block-Hankel Form

In this subsection, we outline the basic step to get from (5.21) and (5.22) to a reduced set of homogeneous
linear equations. Define:

k—1
Ne=Ne=> [vi—t]", vtelo). (5.24)
=0

From (5.21) and (5.22), we obtain the following linear homogeneous set of equations:
V4 t—1
Z Z (Z) ﬁt,j . §1§,0j’<bk>u =0, Vbe [7/7\7,0),’11, S [dO,b):
J
i _ .
Z (b) Pt,j : St,j+u =0, Vbe [ml)au € [di,b)»l € [1,(]),

where S, t(F)j,b) are the coefficients of the power series of

KO(X)t—b H?:_ol (X _ ai)[t_”i]Jr
L(0:b) (X)

and S ffjw are the coefficients of the fraction
Ri(X)tb
L) (X)

foralli € [1,q).
Let Py = (ﬁt,m ﬁt’h . ’ﬁt Moot )T be the vector that contains the coefficients of the polynomial

Py(X) € Fg[X] forallt € [¢+ 1).

) B,
) P,
: o =0. (5.25)
§la-1) P,

Each matrix () isa 1/2 Z;:Ol Mg (Mg ; + 1) x Zf:o Ny forall i € [1, g) Block-Hankel matrix.
The Block-Hankel matrix S(®) isa 1/2 27;]3 mo,;(Mo,; + 1) X Zf:o N matrix.

The difference of the number of columns of the (§<O> S .. 81 )T compared to the matrix
(S0 8 .. 8(a=1N)T of (5.25) is

£ k-1

Z Z[Vl _t}+7

t=0 i=0

and equals the reduction of homogeneous linear equations.
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5 Key Equations for Interpolation-Based Soft-Decision Decoding of GRS Codes

5.3 Conclusion and Future Work

We proposed the univariate reformulation of the bivariate interpolation problem of Kétter—Vardy for soft-
decision decoding GRS codes in Lemma 5.1. The obtain polynomial expression are ¢ Guruswami-Sudan
like Key Equations in Section 5.1. The univariate reformulation after the re-encoding transformation
was stated in Lemma 5.4 and described in Section 5.2.

We gave the complete algebraic description for both univariate reformulations and proved the main
theorems. We shortly outlined the adaption of the FIA for the obtained set of homogeneous equations
and roughly estimates its space and time complexity. The adaption of the FIA (or similar algorithm)
for the vertically arranged Block-Hankel matrices is an open issue. Furthermore, the re-encoding
transformation in general can be applied to related code families as Chinese-Remainder-Theorem or
Algebraic-Geometry codes.
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“We must not forget that when radium was discovered no one knew that it would
prove useful in hospitals. The work was one of pure science. And this is a proof
that scientific work must not be considered from the point of view of the direct
usefulness of it. It must be done for itself, for the beauty of science, and then
there is always the chance that a scientific discovery may become like the
radium a benefit for humanity.”

MARIE CURIE (1867-1934)

Bounding the Minimum Distance of Cyclic Codes

a central role in (distributed) storage and communication systems. However, determining their
minimum distance from a given defining set is an open research problem. Vardy [A-Var97]
showed that determining the minimum distance of binary linear codes is NP hard (and probably this holds
for linear codes over any alphabet size). Dumer et al. [A-DMS03] showed the hardness of approximating
the minimum distance of linear codes. Therefore, several lower bounds on the minimum distance of
linear (cyclic) codes and efficient decoding algorithms up to these bounds exist. This chapter deals with
lower bounds on the minimum distance of linear cyclic codes over F.

In the 1970s, Hartmann and Tzeng [A-Har72; A-HT72; A-HTC72; A-HT74] generalized the well-
known bound by Bose, Ray-Chaudhuri [A-BRC60] and Hocquenghem [A-Hoc59], abbreviated BCH.
Feng and Tzeng [A-FT89; A-FT91a] extended the BCH decoding algorithms of Berlekamp-Massey [B-
Ber68; A-Mas69] and Sugiyama et al. [A-SKHN75; A-SKHN76] to decode in quadratic-time up to the
Hartmann-Tzeng bound. Further extensions of the BCH bound were inter alia developed by Roos [A-
Ro082; A-Roo83], van Lint and Wilson [A-LW86] (denoted as AB or shifting method), Schaub and
Massey [O-MS88b; O-Sch88], Duursma and Kotter [A-DK94; O-K596b; O-Duu93], Shen [A-SWTS96],
Augot and Levy-dit-Vehel [A-AL96], Boston [A-Bos01], Duursma and Pellikaan [A-DP06] as well as
Betti and Sala [A-BS06].

An extensive discussion can be found in van Lint’s book [B-Lin99, Chapter 6], in the preliminary
version of Pellikaan et. al. [B-PWBJ12, Chapter 7], Charpin’s chapter [0-Cha98] in the Handbook
of Coding Theory, Blahut’s book [B-PHB98b, Chapter 19], Peterson and Weldon [B-PW?72, Chapter
8] and in the book of MacWilliams and Sloane [B-MS88a, Chapter 7]. The survey paper of Augot et
al. [0-ACS91] also gives an overview on the existing bounds.

Although these improved bounds show that for many codes the actual distance is higher than the
BCH bound, there is no general decoding algorithm up the actual distance of cyclic codes.

Hartmann and Tzeng [A-Har72; A-HT74] proposed two variants of an iterative decoding algorithm
up to their bound. However, these algorithms require the calculation of missing syndromes and the
solution of non-linear equations. An approach for decoding all binary cyclic codes up to their actual
minimum distance of length less than 63 was given by Feng and Tzeng [A-TF94]. They use a generalized
syndrome matrix and fit the known syndrome coefficients manually for each code into the structure of
the matrix. Various other decoding variants exist.

This chapter covers parts of the published work [I-ZWB11; I-ZB12c; A-ZWB12b; A-ZB12a; I-ZB12b;
I-ZWZGB13] and unpublished one (especially Section 6.4).

We provide a homepage [O-Z]J12] with numeric results for cyclic code over Fa, F3, F5 and F7.

In Section 6.1, we use rational functions to bound the minimum distance of cyclic codes. For this

ﬁ LTHOUGH cyclic codes were developed at the end of the 1950s by Prange [O-Pra57], they still play
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6 Bounding the Minimum Distance of Cyclic Codes

approach, we give an error-only syndrome-based decoding algorithm and derive a generalized Forney
formula for the error-evaluation. The bound is denoted by dl*-a and is also considered in [I-ZWB11;
A-ZWB12b]. It is very close to the one proposed in Section 6.2, which is therefore denoted by d;', . It
is based on the embedding of a given cyclic code into a cyclic product code (see Subsection 2.3.2) and
is discussed in [I-ZB12c; A-ZB12a; I-ZB12b]. Furthermore, the idea is extended to two other bounds,
which are denoted by djj and dj};. While the bound dJ; is straight forward and in the sense of embedding
a cyclic code into a cyclic product code, the theorem on the bound djj; shows a new direction (see
also [I-ZWZGB13]).

Good candidates, which can be associated to a given linear cyclic code to bound its minimum distance,
are identified in Section 6.3. We give necessary and sufficient conditions for lowest-rate non-primitive
binary cyclic codes of minimum distance two. Furthermore, a sufficient condition for non-primitive
binary cyclic codes of minimum distance three is derived.

In Section 6.4, we define a cyclic generalized product code and give the basic properties. The possible
embedding of a given code into a cyclic generalized product code is outlined.

We conclude and give further research directions in Section 6.5.

6.1 Bounding the Minimum Distance by Rational Functions

6.1.1 Overview

This approach originates from decoding Goppa codes [A-Gop70; A-Gop71] and their generalizations [I-
BS97; A-SM81]. We match the roots of an [n, k, d]q cyclic code to non-zeros of the power series
expansion of a rational function. This allows to formulate a new lower bound on the minimum distance
of cyclic codes. We identify some classes of cyclic codes and refine the bound on their distance. Our
approach covers the class of reversible codes [A-Mas64]. The proposed new lower bound is better than
the BCH bound and for most codes also better than the Hartmann-Tzeng bound (see Theorem 2.18).
Moreover, we generalized some Boston [A-Bos01] bounds.

In addition, we give an efficient decoding algorithm up to our new bound. This decoding algorithm is
based on a generalized Key Equation, a modified Chien search and a generalized Forney’s formula [A-
For65] for the error evaluation. The time complexity of the whole decoding procedure is quadratic with
the length of the cyclic code.

6.1.2 More Preliminaries on Cyclic Codes

Lemma 6.1 (Cardinality of Coset)
Let s be the smallest integer such that the length n divides (¢° — 1), then the cardinality of the

cyclotomic coset Mﬁfé) as in Definition 2.17 is |MT<Z> | =sifged(n,r) =1.

(n)

Proor The cyclotomic coset MTZ
such that

has cardinality |MT<Z> | = j if and only if j is the smallest integer

r-¢o =r modn

= r (¢’ —1)=0 mod n.

Since gcd(n, ) = 1, this is equivalent to n | (¢7 — 1). Since s is the smallest integer such that the
length n divides (¢° — 1), j equals s and hence, |MT<Z>\ =s. n
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6.1 Bounding the Minimum Distance by Rational Functions

Let us state some preliminaries on rational functions.

Definition 6.2 (Period of a Power Series)
Let a formal power series a(X) = Z;io a; X7 with a; € Fy be given. The period p(a(X)) of the
infinite sequence a(X) is the smallest p, such that

Yr2p a; X7
a(X) = 7_])@ i

Throughout this section, we use the power series expansion of the fraction of two polynomials (X))
and f(X) in Fg[X] with
v deg n(X) < u ' deg £(X). 6.1)
Let o be an n-th root of unity in some extension field F ;. We require that:
C1) degged(h(X), f(X)) =0, and

C2) degged(f(Xat), f(Xad)) =0, Vi,j€ [n)withi # 7,
to prove our main theorem on the minimum distance.
The following lemma establishes a connection between the length n of the code and the period of the
power series of h(X)/f(X), such that C2) is fulfilled.

Lemma 6.3 (Code Length, Period of a Power Series)
Let a be an n-th root of unity of F i, where n|(gt — 1). Let h(X), f(X) € Fy[X] with
deggcd(h(X), f(X)) = 0 and degree as in (6.1) be given. The formal power series over Fy is
defined as:
o0
; h(X
Z a; X7 def Q, (6.2)
2 I3
with period p = p(h(X)/f(X)) as in Definition 6.2.
If ged(n, p) = 1, then

degged (f(Xa'), f(Xad)) =0, Vi,j € [n) withi # j.

ProoF From Definition 6.2, we have
R(X)(=XP 4+ 1) = f(X)(ao + a1 X + ...+ ap_1 XP~1),

and from deg ged(f(X), (X)) = 0, it follows that —X? + 1 = 0 mod f(X). Hence, for two
different polynomials f(Xa*) and f(Xa?), for any ¢, j € [n) with ¢ # j:

XPa® —1=0 mod f(Xa') and (6.3)
XPalP —1=0 mod f(Xal). (6.4)

Assume there is some element 3 € F;us, such that

f(Ba') = f(Ba?) =0,
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6 Bounding the Minimum Distance of Cyclic Codes

ie, ged (f(oni),f(onj)) =0 mod (X — B).
Equation (6.3) and (6.4) give the following:
BPa? —1=0 and BPal?P —1=0.

Therefore, BP P = PaIP, and o'P = aIP, hence, a(i=9P = 1. For any ¢ # j,4,j € [n), this can
be true only if gcd(p, n) > 1. n

6.1.3 Bound I-a: Rational Functions

We directly state the bound on the minimum distance of an [n, k, d]4 cyclic code.

Theorem 6.4 (Bound I-a)
Let C be an [n, k, d]4 cyclic code and let o denote an n-th root of unity in some extension of IF. Let
two co-prime polynomials h(X) and f(X) in Fy[X] with degrees v and u and with

ged (n,p(%)) =1 and g%ajxj :%

be given. Let a non-zero integer m with gcd(m, n) = 1 be given and let the power series be defined

as: o
alih(a?X)

a(f,a'™X) def if Z aj(aimX)j = FlaimX)

J7=0

Let the integers f, § with § > 2 be given, such that for all ¢(X) € C:

aje(afTI™YXI =0 mod X1, (6.5)

T

0

J

Then, the minimum distance d of C satisfies the following inequality:

o [6—1—
d>d*df[u+1w. (6.6)
u

Proor With ¢(X) = >,y ¢; X", we can rewrite (6.5):

oo o0
Zajc(ajm+f)Xj = Z Z ajciai(jm+f)Xj.

7=0 j=01i€Y

Interchanging the summation gives us:

Z Z a;c; Qtm+1) xi — Z Cz<§: i(jm+f)Xj>

Jj=01i€Y i€Y =0
[eS)

= ch<2a ia'f (o imX)j>.
i€Y 7=0
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6.1 Bounding the Minimum Distance by Rational Functions

We write the power-series as fraction and obtain:

0 . th 7,mx)
S S wet @) - et AT
ey <j0 & fl@mx)
=0 mod X°1. (6.7)

From Lemma 6.3 and with gcd(m, n) = 1, we know that deg gcd (f(oaimX), f(aij)) =0, Vi #
j. We obtain from (6.7):

3 (o0t - h(@™X) - [Tey f(ei™ X))
iEY A

Hiey f(aimX)

Let |Y| = d. The degree of the denominator in (6.8) is ud and the degree of the numerator in (6.8) is at
most (d — 1)u + v and has to be greater than or equal to § — 1, i.e.,

(d-—1lu+v>d6-1

51—
dz[ierl-‘. .
u

=0 mod X1 (6.8)

Let us describe Theorem 6.4. According to (6.5), we search the longest “sequence”
-2
aoc(al), arc(afT™), . .. as_qc(af TE=2my,

that is a zero-sequence, i.e., the product of the coefficient a; and the evaluated codeword c(aftim)
gives zero for all j € [0 — 1). We require a root a/™ of the code C, if the coefficient a;_ s of the power
series a(f, a?™ X)) is non-zero.

Example 6.5 (Binary Cyclic Code)
Consider the [17, 9]2 cyclic code C with defining set

D =M{"]) ={1,2,4,8,16,15,13,9}
={1,2,4,8,—1,-2,—4,-8} mod 17

Let f = —4,m = 1, h(X) = X +1and f(X) = X2 + X + 1 € F3[X] be given. Then,
a(—4, a* X) has period three according to Definition 6.2. We have (ag a1 a2) = (10 1) for the first
three coefficients, which are repeated periodically. -

The following table illustrates how we match the roots of the generator polynomial of C to the
zeros of the power series expansion a(—4, a’ X). In the first row, the defining set D is shown. The (]
marks elements that are not necessarily roots of the code. In the second row of the table, the power
series expansion a = (ag a1 a2 ag a1 ... ) is shown for the considered interval:

b 4 0 -2 -1 0O 1 2 0O 4
a 1 0 1 1 0 1 1 0 1

We have a; - c(a? =) = 0, Vj € [9), and for all ¢(X) € C. The zero-sequence is of length § — 1 = 9
and therefore with Theorem 6.4 that d > d}', = 5. This is the actual distance d of C.

In the next section, we see that C of Example 6.5 belongs to the class of reversible codes and we can
associate this rational function to the whole class of these codes.
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6 Bounding the Minimum Distance of Cyclic Codes

6.1.4 Some Classes of Cyclic Codes

We classify [n, k, d]4 cyclic codes by subsets of their defining set D and their length n. We specify
our new lower bound (Theorem 6_4) on the minimum distance for some classes of codes. Additionally,
we compare it to the BCH [A-Hoc59; A-BRC60] and the Hartmann-Tzeng [A-HT72] bound as in
Theorem 2.18, which we denote by dj.,, and dj;;, respectively. We use the following power series
expansions 1/ f(X) over Fq with period p, where a = (ag a1 ... ap_1) denotes the coefficients:

« 1/(X?2+ X + 1) over Fg witha = (1-10) and p = 3,

¢ 1/(X3+ X2+ X + 1) overFg witha = (1-100) andp = 4,

¢ 1/(X3+ X +1)overFa witha=(1110100)andp =7,

< 1/(X*+ X +1)overFo witha=(111101011001000) andp = 15.

We match a power series expansion a( f, @?™ X) to the roots of the generator polynomial, such that
the bound of Theorem 6.4 is maximized. Throughout this section, we assume due to Lemma 6.3 that
ged(n, p) = 1 and we use Theorem 6.4 to state the lower bound djf, on the distance of the codes.

Table 6.1 shows several power series ¢ expansions and their denommator h(X) and numerator f(X).
First, we apply our approach to the wide class of reversible codes. Afterwards, we show how our

(aoar ... ap1) F(X) h(X)
(1-10) 1+ X+ X2 1
(-101) 1+ X+ X2 -1-X
(01-1) 1+ X+ X2 X
(1-100) 1+ X+ X2+ X3 1
(01-10) 1+ X +X2+Xx3 X
(001-1) 1+ X+ X2+ X3 X2
(-1001) 1+ X+X24+X3 | -1-X-X?

Table 6.1: Power series (ag a1 ... ap—_1) for some rational functions h(X)/ f(X) over Fa.

principle can equivalently be used for non-reversible codes.

6.1.5 Reversible Codes

In this subsection, we show how our approach can be applied for a large class of cyclic codes, the class
of reversible codes [A-Mas64; B-MS88a]. An [n, k, d] code C with defining set D is reversible if for
any codeword

(coc1 ...cn-1)€C = (en—1¢p—2 ...co)EC

holds. A cyclic code is reversible if and only if the reciprocal of every zero of the generator polynomial
g(X) is also a zero of g(X), i.e.,

D = {i1,i2,...,4g, =11, —l2,...,—%g}. (6.9)

A special class of reversible codes, which we call symmetric reversible codes is given based on the
following lemma.
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6.1 Bounding the Minimum Distance by Rational Functions

Lemma 6.6 (Symmetric Reversible Codes)
Let n and g with ged(n, ¢) = 1 be given. Any union of cyclotomic cosets M i<f;> is a defining set of a
reversible code if and only if n | (¢ + 1), for some m € N.

PrROOF Any union of cyclotomic cosets defines a reversible code if and only if any coset is reversible,
i.e., if for all  and some integer m:

M7§q1?1> :{T’,T"q7...,T'(IM71,—T,—T'q,...,—T“qmil}.

Therefore for all r, the following has to hold:

r-¢"=—-r modn

<~ r-(¢"+1)=0 modn.

Since 7 = 1 always defines a cyclotomic coset, (¢" + 1) = 0 mod n has to hold. This is fulfilled if
and only if n | (¢ 4 1) and in this case also 7 - (¢"* + 1) = 0 mod n holds for any r. n

Moreover, the following lemma provides the cardinality of all cyclotomic cosets if n | (¢"* + 1).

Lemma 6.7 (Cardinality of Symmetric Reversible Codes)
Let m be the smallest integer such that n divides (¢"™ + 1), then the cardinality of the cyclotomic

coset MA’C? is
M | = 2m
if ged(n,r) = 1.

Proor Since n | (g™ + 1), it follows also that n | (¢" + 1)(¢™ — 1) = (¢®™ — 1). Since m is the
smallest integer such that n divides (¢ + 1), also s = 2m is the smallest integer such that n | (¢ —1).

With Lemma 6.1, we obtain |MT<Z>| = sif ged(n, r) = 1. Therefore, |MT<Z>\ =s=2m. n

In order to illustrate our bound, we first restrict ourselves to binary codes. To give a new bound on the
minimum distance, we first use the rational function a(X) = h(X)/f(X) with f(X) = X2+ X +1,
where p(a(X)) = 3. For a binary symmetric reversible code C, we know from (6.9) that each cyclotomic
coset is symmetric. Therefore, if {1} C D, we know that {—4,—2,—1,1,2,4} is a subset of the
defining set D. Let us use the (cyclically shifted) power series expansiona = (—101 ...). According
to Table 6.1, we have h(X) = —1 — X. We match the roots of C for f = —4andm = 1,to a
zero—seqlEce of length § — 1 = 9. Therefore our bound provides d > d;’, = 5.

Let the defining set D of the binary symmetric reversible code C additionally include 5. Then we
obtain for f = —6 and m = 1 a sequence of length § — 1 = 13, which results in d;, = 7.

In the same way, if {1,5,7} C D, we obtain § — 1 = 21 with f = —10 and m = 1 and thus,
df, = 11. These parameters are shown in Table 6.2 and compared with the BCH and Hartmann-Tzeng
bound.

As mentioned before, reversible codes are defined such that the reciprocal of each root of the generator
polynomial is also a root. Therefore, a defining set where » C D, and also —r C D defines a reversible
code if gcd(r,n) = 1 and ged(—r,n) = 1. The conditions are necessary to guarantee that both
cyclotomic cosets have the same cardinality (compare Lemma 6.1) and hence each reciprocal root is also
in the defining set. The second row of Table 6.2 shows the required subsets of the defining set in order to
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6 Bounding the Minimum Distance of Cyclic Codes

Binary {1} C D {1,5} C D {1,5,7} C D
Symmetric
Reversible k>n—14¢ k>n—2¢ k>n—3¢
Binary {_1} 1} g D {_57'1’ 17 5} g D {_7" 7_17
Reversible 1,5,7} C D
k>n—2¢ k>n—4¢ k>n—6¢
General {-4,-2,-1,1, {-5,-4,-2,-1, 1, {-10,-7,-5,-4,-2,-1,
q-ary 2,4y C D 2,4,5} C D 1,2,4,5,7,10} C D
];CH dgcp = 4 BcH =5 dgcn =8
clahn),. .., fi=-4 fi=-5 fi=-10
C(Oéf1+(672>m1) mi; =3 m; =3 mp =3
diyr =5 dfyr = 6 =19
Hartmann fL=—4 f=-5 fr =—10
-Tzeng my = my = my =
C(O‘fl)v--- m2=2 m2:1 m2:2
c(afit(@=2)mitrma) 5=4 5=5 5=38
v = v = v=1
. dia =5 dia =T di, =11
Fractions fi=-4 1 = —6 fi=-10
aoc(af),... m=1 m=1 m=1
as_gc(af Tm=2)) 5=10 5=14 §=22
a=(-101) a=(00-1) a=(-101)

Table 6.2: Comparison of the BCH and the Hartmann-Tzeng bounds on the minimum distance of g-ary cyclic codes
of length n with gcd(n, 3) = 1. The denominator of the rational fraction is f(X) = X2 4+ X + 1.

obtain the same parameters as for binary symmetric reversible codes. Note that [ is the smallest integer

such that the length n divides ¢* — 1.
The third row of Table 6.2 gives these results in general. In Table 6.2, gcd(n, p = 3) = 1 has due to

Lemma 6.3.

Example 6.8 (Binary Symmetric Reversible Code)
The binary [17,9, 5]2 cyclic code C from Example 6.5 is a symmetric reversible code since Lemma 6.6

is fulfilled. If {1} C D, then

D ={1,2,4,8,16,15,13,9}
= {172’4}87_17_2’ _47_8} mod 17

and we obtain d;, = 5.

For this class of binary cyclic codes, the bound d > 5 on the minimum distance can be also obtained
by another way. With f = —4 and m = 3 we know from the BCH bound that the minimum
distance is at least four. A binary cyclic code of even weight codewords has the zero in the defining
set and we would obtain five consecutive zeros (resulting in a minimum distance of at least six). This
implies that a codeword of weight four can not exists and therefore a binary cyclic code C(D), where
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6.1 Bounding the Minimum Distance by Rational Functions

{—4,-2,-1,1,2,4} C D, has at least minimum distance five.
In Table 6.3, we list some classes of cyclic codes where the denominator f(X ) of the rational function
a*fh(a™X)/f(a™X) has degree three and the period is p(1/(X3 + X2 + X + 1)) = 4. The

Binary {3,5} C D {3,5,11} C D {3,5,11,13} C D
Symmetric
Reversible k>n—2¢ k>n—3¢ k>n—44
Binary {-5,-3,3,5} C D {-11,-5,-3, 3, {-13,-11,-5,-3,
Reversible 5,11} C D 3,5,11,13} C D
k>n—4¢ k>n—6/( k>n—8¢
General {-6,-5,-3, {-11,-6,-5,-3, {-13,-11,-6,-5,-3,
g-ary 3,5,6} C D 3,5,6,11} C D 3,5,6,11,13} C D
BCH dicp =3 dicp =3 dicp = 4
c(afr),. .., fi=-6 fi=-6 fi=-13
c(af1+(6=2)m1) mp =1 mp =1 mi =1
Hartmann HT = Hr =5 dir =6
fi=-6 fi=-11 fi=-13
-Tzeng my =1 mp =8 my =8
ca’fl)v--- m2=0 m2=6 m2:2
C(af1+(5—2)’7ﬂ+”m2) §=3 6=4 6=5
v=1 v=1
) di, =4 di, =5 di, =17
Fractions fi=-9 fi=-11 fr=—17
aoc(af),“. m =2 m =2 m =2
as_asc(afTm=2)) s=11 5=13 5=19
a=(001-1) a=(001-1) a=(001-1)

Table 6.3: Comparison of the BCH and the Hartmann-Tzeng bounds on the minimum distance of g-ary cyclic codes
of length n with gcd(n, 4) = 1. The denominator of the rational fraction is f(X) = X° 4+ X2 + X + 1.

power series expansionis 1/(X3 4+ X2 + X +1) = (1 — X)/(=X* +1). Let us consider the second
class, where in the case of a binary symmetric reversible code the set {3, 5, 11} must be in the defining
set of the code. The Hartmann-Tzeng bound gives the same lower bound on the minimum distance as

our approach djj; = 5.

Example 6.9 (Binary Cyclic Code)
The binary [45, 31, 4]2 cyclic code C(D) with {—5, —3,3,5} C D has the following defining set

D ={3,5,6,10,12, 20, 21, 24, 25, 33, 35, 39, 40, 42}.

The code C(D) belong to the class of codes in the first column of Table 6.3. We obtain d;, = 4, which
is the actual distance of the code. Note that 3 divides 45 and therefore we cannot use Table 6.2.
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6 Bounding the Minimum Distance of Cyclic Codes

6.1.6 Non-Reversible Codes

In this subsection, we use our principle equivalently for non-reversible codes. Some classes of binary
cyclic codes are given. The power series expansion of the polynomial f(X) = X3 4+ X + 1 over
F2[X] has period p = 7. To obtain a bound on the minimum distance, we consider the case of
binary cyclic codes, where the defining set D contains the 0. Assume that {—3,0,1,7} C D. The
sequence of zeros of the binary code can be matched to the rational function for f = —4 and m = 1.
The corresponding distance is then d';, = 5. This and some other combinations of subsets of D
are shown in Table 6.4. Another class of binary cyclic codes can be identified using the polynomial

Binary {-3,0,1,7} {-3,0,1,7,9} {-3,0,1,7,9,11}
Codes cD CcD cD
k>n—4 k>n-—>5¢ k>n—6/0
IJ?CH dgcy =4 dgey =4 dpcp =4
clah),. . - A i
c(af1+(5*2)m1) mi=5 mi1 =5 mi=5
Hartmann Hr =4 Hr =4 Hr =4
fi=-3 h=-3 hi=-3
-Tzeng m1 =5 mi =25 m1 =5
C(Oéfl),... mo = mo = mo =0
c(af1t(0=2)mi+rma) 5= 5= §=4
Fracti diy =5 di, =6 di, =7
ractions fi=-4 fi=-4 fi=-4
age(ad),. .. m=1 m=1 m=1
as_pc(af TmE=2)) §=14 5§=16 5=19
a = (100110) a = (100110) a = (100110)

Table 6.4: Comparison of the BCH and the Hartmann-Tzeng bounds on the minimum distance of g-ary cyclic codes
of length n with ged(n, 7) = 1. The denominator of the rational fraction is f(X) = X2 + X + 1.

F(X) = X*+ X + 1 with p(1/f(X)) = 15. We use the shifted power series expansion such that
a=(100100011110101).

As required by Lemma 6.3, we only consider lengths n, such that gcd(n,p = 15) = 1. We can
match a concatenation of a to the roots of the generator polynomial for f = —6 and m = 1 if
{1,3,9,—3} C D. Our bound on the distance yields d;, = 6, since deg f(X) = 4, whereas the BCH
and the Hartmann-Tzeng bound give dj,, = djj; = 5.

6.1.7 Generalizing Boston’s Bounds

Boston gave ten bounds, denoted by djj,, on the minimum distance of an [n, k, d]4 cyclic code in [A-

Bos01]. He uses algebraic geometry for the proof. These bounds are each for a specific subset of the
defining set and do not consider whole classes of codes. In this section, we show how our approach
generalizes some of these bounds.

Six of Boston’s ten bounds are given as follows.
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6.1 Bounding the Minimum Distance by Rational Functions

Theorem 6.10 (Boston Bounds, [A-Bos01])
The following bounds on the minimum distance of an [n, k, d]4 cyclic code C with defining set D

hold:
B1) If3{mnand{0,1,3,4} C D, thendjy = 4,
B2) 1f{0,1,3,5} C D, then dgo =4,
B5) If 3{mnand {0,1,3,4,6} C D, thendf, =5,
B6) If4{mnand{0,1,2,4,5,6,8} C D, then dj, = 6,
B7) If 3{nand {0,1,3,4,6,7} C D, thendj, = 6,
B10) If 31 nand {0,1,3,4,6,7,9} C D, then df, = 7.

We use again two power series expansions 1/ f(X). The first power series expansion is 1/(X?2 +
X + 1) of period p = 3 with (ag a1 a2) = (1 -1 0). The second considered power series expansion
1/(X?2 +1) has period p = 4 with (ag a1 a2 a3) = (1 0-10). Note that the latter is actually a special
case of the BCH bound. Table 6.5 shows the six Boston bounds. Boston’s bounds B1 B2, B5, B6 and B7
are special cases of our bound. However, for Boston’s bound B10, our approach gives a worse result.
Moreover, Boston raised the following question [A-Bos01]:

No | ZT= | f(X) | a | df, | Conditions
1 [[1,5] | X2+ X +1 (01-1...) 4 ged(n,3) =1
2 [0,6] X241 (010-1...) | 4 | ged(n,2) =

5 | [1,6] | X2+X+1| (01-1...) 5 | ged(n,3)=1
6 | [1,8] X% +1 (010-1...) | 6 | ged(n,2)=1
7 | 1,8 | X2+X+1 | (01-1...) 6 | ged(n,3)=1
10 | [[1,9 | X2+X+1 (01-1...) 6 ged(n,3) =1

Table 6.5: Some of Boston’s bounds [A-Bos01] on the minimum distance compared to our approach.

Question 6.11 (Boston’s Question, [A-Bos01])
Let 3 f nand the set T = {0,1,3,4,6,7,9,10,...,r} C D. Is the minimum distance d then

d> diy = |TI?

Counter-examples show that Boston’s conjecture is not true (see Example 6.12), since the actual
distance of such codes is not always dz, = r + 1. However, using the power series expansion of
1/(X2+ X +1) witha= (01-1...) we obtain § — 1 =  + 2. The minimum distance of such codes
can be bounded by df, = [(r +1)/2 + 1] withu = deg f(X) =2andv = h(X) = 1.

Example 6.12 (Ternary Cyclic Code of Length 20)
Let
D =1{0,1,2,3,4,6,7,8,9,10,12, 14, 16, 18}

be the defining set of a [20,6]3 cyclic code. For Boston’s scheme, we can use T =
{0,1,3,4,6,7,9,10,12} with |[T| = 9. The actual distance is d = 8 and therefore, Boston’s
conjecture is not true. The BCH bound yields dj.,; = 6. Our new bound is tight and with r = 12, we
obtaindf, = [(r+1)/2+ 1] =8.
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6 Bounding the Minimum Distance of Cyclic Codes

6.1.8 Generalized Key Equation and Decoding Algorithm

An efficient error-only decoding algorithm up to the bound dj’, of Theorem 6.4 based on a generalized
Key Equation is considered in this subsection.

Let ¢(X) be a codeword of a given [n, k, d]q code C. Let 7(X) = ¢(X) + e(X) be the received
polynomial, where e(X) = Y, €; X" € Fy[X] is the error word and E = {jo,j1,...,je—1} C
{0,1,...,n — 1} is the set of error positions of cardinality |E| = &. Let the integers f, m with
ged(m,n) = 1,6 > 2 and the two polynomials h(X), f(X) € Fq[X] with deg f(X) = u <
deg h(X) = v be given as in Theorem 6.4 for d},. We define the syndrome polynomial S(X):

n=l o ifh(ai™
S(X)Eznih( X)

— fl@mX)
_ voﬁ'fh(ozimX) s—1
= ; elW mod X°%~1. (6.10)

Thus, with 3772  a; X J = h(X)/f(X) the explicit form of the syndrome polynomial can be written
as:

5—2 6—2
S(X) = Zajr(af+jm)Xj = Zaje(af+jm)Xj. (6.11)
=0 7=0
We introduce a generalized error-locator polynomial A(X) and error-evaluator polynomial Q(X) and

relate it to the syndrome definition of (6.10). Let E denote the set of error positions and let € = |E|.
We define A(X) as:

AX) €T f@imX). (612)
i€k
Let
Q) <3 (ei ot h@mx) -] f(aij)>, (6.13)

and we obtain with (6.11) a generalized Key Equation:

A(X) - S(X)=Q(X) mod X%~ with

(6.14)
deg Q(X) < (e — 1)u+v < deg A(z) = eu,

since v < u.
The main step of our decoding algorithm is to determine A(X) and Q(X) if S(X) is given. The
following lemma shows that there is a unique solution for A(X) if the number of errors is not too big.

Lemma 6.13 (Solving the Key Equation)
Let S(X) with deg S(X) = § — 2 be given as in (6.11). If

ar,—1
e=|Bl < | P2, (6.15)

there is a unique solution (up to a scalar factor) of the Key Equation (6.14) with deg Q(X) < (e —
u+ v < deg A(X) = cu. We can find this solution by the EEA, i.e., Algorithm 3.1 with input
polynomials X9~ and S(X) and stopping criteria crit = {u; < §/2 — 1}.
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6.1 Bounding the Minimum Distance by Rational Functions

Proor For the explicit proof we refer to [B-MS88a, Theorem 16, p. 367], where it is shown that there is
a unique solution of the generalized Key Equation (6.14) and that the EEA finds it if

—1
deg A(X) =eu < \‘%J ,

. < VQTJ _ {(d,’ia _Qi)UHJ _ {(d,*,az— 1)J ’ 616

since v/2u < 1/2. n
Then, we obtain the unique (except for a scalar factor) solution for A(X) and Q(X) of (6.14), if (6.15)
holds.

The Key Equation (6.14) can be written as a linear system of equations, with eu + 1 coefficients of
A(X). If we consider only the equations which do not depend on Q(X), we obtain:

and therefore

S() 51 e Ssu Asu

Sl S2 e Ssu+l Asu—l

i i . . - _ =0. (6.17)
Ss—cu—2  Ss—eu—1 s Ss_2 Ao

There is a unique solution up to a scalar factor if and only if the rank of the syndrome matrix is eu. One
coefficient of A(X) can be chosen arbitrarily (here Ag = 1), since a scalar factor does not change the
roots. From this we obtain the same condition on the decoding radius as in Lemma 6.13.

If we have found A(X), we can determine its factors f(a™X), where i € E. These factors are
disjoint since ) )

deg(ged(f(a"™X), f(&/™X))) =0, Vi#j
and therefore these factors provide the error positions. We calculate only one root 3; of each f(a®™ X)
in a preprocessing step. To find the error positions if A(X) is given, we perform a Chien search with
BosB1;- -+, Br—1. This is shown in Algorithm 6.1 and Theorem 6.15 proves that each 8; uniquely
determines f(a'™X).

For the non-binary case, we have to calculate the error values at the error positions. This can be done
by a generalized Forney’s formula [A-For65]. In order to obtain this error evaluation formula, we use
the explicit expression for (X)) from (6.13). As mentioned before, the preprocessing step calculates n
values o, 81, - - - , Bn—1 such that

f(aiB;) =0, Vie[n) and
f(e?Bi) #0, Vj#i.
The evaluation of Q(X) at 8¢, £ € E, yields:

Q) = Y (el - h(a™80) - T £l@?™B0)).

i€E jEE
i
With f(a’B¢) = 0, the product [[;c i f(a?Be) is zero if £ € E\{i} and non-zero only if £ = i.
J#i
Hence, we obtain )
QBe) = e - ol - h(@™Be) - [ f(@?™Be). (6.18)
JjEE
J#L
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6 Bounding the Minimum Distance of Cyclic Codes

This derivation provides the following lemma.

Lemma 6.14 (Generalized Error Evaluation)

Let o be an n-th root of unity. Let the integers m, f and the polynomials h(a?X), f(a?X),
[Ticg f(@™X) and Q(X) from (6.13), for all i € [n) with deg(ged(f (o’ X), f(ad X))
given. Then, the error values ey for all £ € £ are given by

(B)
atf - h(af™Be) [Tjer f(a?™By)
J#L
Q(Be) - [/ ("™ By)

T o h(afmB) - N (Be) ©19)

AX) =
) = 0be

€p =

where f/(a?X) and A’(X) denote the first derivatives of f(a’X) and A(X) respectively.

Proor The lemma follows from (6.18) and the fact that

N = e x) [T femX)
1€l JJi?

and therefore

N(Be) = f/(@™Be) [ £ Bem). [
i<k
J

The classical Forney formula [A-For65], is obtained from (6.19) for

a(f,a'™X) = L
1—amX

The decoding approach is summarized in Algorithm 6.1 and its correctness is proved in Theorem 6.15.
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6.1 Bounding the Minimum Distance by Rational Functions

Algorithm 6.1: ¢(X) = DECODEFRACTION(r(X), f(X), h(X), f,m, )

Input: Received word (X)), f(X), h(X), Parameters f, m and ¢
Output: Estimated codeword ¢(X') or DECODING FAILURE

Preprocessing;: ,
for all i € [n): calculate one root 3; of f(a*X)
1 Calculate S(X) by (6.11) // Syndrome Calculation

X

Set crit = {degu; < 6/2 —1}
3 o, A(X), Q(X) = EEA(X?L, S(X), crit) // Modified Euclidean Algorithm
4 Find all ¢, where A(8;) = 0= E = {ig,%1,...,%—1} // Chien-like search

5 if eu < deg A(X) then

6 | Declare DECODING FAILURE

7 else

8 Determine error values e;,, €, , ..., €. _; by (6.19)

9 e(X)%ZZEEegXZ
10 c(X) +r(X) —e(X)

The sign . in Line 3 of Algorithm 6.1 indicates that the returned polynomial is not needed for further
calculations.

Theorem 6.15 (Correctness and Complexity of Algorithm 6.1)
Let (X)) be the received word and let

d(r(X), e(X)) < [(diy —1)/2]

for some codeword ¢(X) € C, then Algorithm 6.1 returns ¢(X ) with complexity O((deg f(X) - n)?)
operations in F ;.

ProOF Let the syndrome polynomial S(X) be defined by (6.11). As shown in Lemma 6.13, we can
then solve the Key Equation uniquely for A(X) ife < [(d;, — 1)/2]. Therefore, we obtain A(X) =
[Lick f(*X) with deg A(X) = eu as in Line 3 of Algorithm 6.1 and also the error-evaluator
polynomial Q(X) from Algorithm 3.2 with stopping criteria crit = {u; < §/2 — 1}.

To explain the preprocessing and the Chien search, we recall that for each polynomial a(X') of degree
u defined over F; there exists a splitting field, i.e., an extension field Fgus of Fgs, in which a(X)
has u roots. Therefore, each f(a?X) can be decomposed into u = deg f(a?X) linear factors over
a field Fqus. These factors are disjoint since deg(ged(f(a?X), f(a/ X))) = 0 and hence, one root
of f(a*X) uniquely defines f(a!X) and 4. Hence, A(3;) = 0 if and only if j € F and in Line 4 of
Algorithm 6.1 the error positions are correctly identified.

Lemma 6.14 proves the generalized error evaluation and therefore, if

d(r(X),e(X)) < [(dfy — 1)/2]

for some codeword ¢(X) € C, Algorithm 6.1 returns c¢(X ), otherwise a decoding failure.
To prove the complexity, we note that the input polynomials S(X) and X%~ of the EEA have
degrees at most  — 2 and § — 1, respectively. Therefore, the complexity of the EEA is quadratic in §,
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6 Bounding the Minimum Distance of Cyclic Codes

ie, O(62) & O((u - d;,)?). The Chien search and the generalized error evaluation require the same
complexity as for the classical case, which is O(n?). Therefore, we can upper bound the complexity of
Algorithm 6.1 by

O((u-n)?) = O((deg f(X) - n)?). L]

We consider the [17, 9, 5]2 code from Example 6.5 to illustrate Algorithm 6.1 in the following.

Example 6.16 (Decoding Binary Cyclic Code of Length 17)
We consider again the [17,9,5]2 cyclic code as in Example 6.5. The associated power series
a(—4,a*X) up to the § — 2 coefficient is:

a3 h(alX)
Ti)()
aldi 4 qldix
S Traix 1 arix?
= o131 1B X2 | 1663 | iy (2ix6 | diy8 (6.20)

a(—4,a'X)

For the syndrome polynomial, we obtain with § — 1 = 9 and (6.10), (6.11) and (6.20):
n—1 ) ) )
S(X) — Z €; - (01131 +a151X2 + _._+a4zX8)
=0
_ Z(ami FaliX? 4o g atix®)
i€E
=r(a®) +r(@P®) X2+ £ rat) X8
= SO =+ 52X2 —+ S3X3 + S5X5 —+ SGXG =+ SgXS.
As in Algorithm 6.1, we call the EEA with the above syndrome polynomial as follows:
EEA(X?, 5(X), {u; < 4}).

Assume, two errors occurred, then we obtain A(X) withdeg A(X) =eu=2-2=4.
Using the EEA is equivalent to solving the following system of equations for A(X)

So 0 So  S3 0 Ag
0 S» S35 0 Ss As
S S3 0 Ss  Sg ' :
S3 0 S5 S¢ O Ao

=0,

and with both approaches, A(X) has the roots f(a?X) = 1+a? X +(a?X)?,Vi € E. We know that
each f(a?X) = 14+ a*X + (a®X)? has two roots in F5s which are unique. We have a look-up-table
with one root 3; of each f(c; X)) and we perform a Chien search for A(X) with 5o, 81, ..., Bn—1.
Since this is a binary code, we do not need an error evaluation and can reconstruct the error.
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code
Into a Cyclic Product Codes

6.2.1 Bound I-b: Basic Idea

We embed a given cyclic code into a cyclic product code, as defined in Section 2.3.2, to bound its minimum
distance. The results are similar to those obtained in Section 6.1, but we think it is more elegant and
gives new insights. The bound derived in this section coincides in ‘in several cases with dy,. Therefore, it is
denoted by d', .

To see the connection, let us prove the following lemma.

Lemma 6.17 (Rational Function and Evaluated Codeword Sequence)
Let c(X) = > ;cy ¢iX" beacodeword of a given [n, k, d]4 cyclic code C. Let o denote an n-th root
of unity in some extension field of F4 and let f and m be two integers with gcd(m,n) = 1. Then,
the power series
) . .
Z c(afTim)x? (6.21)
i=0
equals the one of Theorem 6.4 with
) Ifh(ad™mX
a(f,a?™X) = w (6.22)
fla7mX)
where:
’LmX) chafj H _ le
jey ey
e#£]
f@™x) =[]0 -amXx).
JEY
v
£
PROOF Let us write (6.21) more explicitly: S
2]
oo oo oo -5
Z clal timyxi = Z Z cja(eriM)in - Z Z cja(eriM)in o0
i=0 i=0 jEY jEY i=0 £
> S e
= 3 S epaliamixi = 3 S e @mx) :
JEY i=0 JEY i=0 Q
s}
Using the geometric series, we obtain:
° afi
afi(@mix) = G
D> el @mX)t =3 '
jEY i=0 v amiX
_ Yjey cjali [T;(1 = a™X)
= » . [

Hjey(l —ami X)
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6 Bounding the Minimum Distance of Cyclic Codes

Let us restate [A-ZB12a, Theorem 2] on the minimum distance of cyclic codes using cyclic product codes.

Theorem 6.18 (BCH Bound Generalization — Bound I-b)
Let an [nq, ka, da]q cyclic code A and a second [ny, ky,, dp |4 cyclic code B with ged(nq, np) = 1
be given. Let o be an element of order ng in F 1, and j of order n; in Fqlb respectively. Let five

integers f1, f2, m1, ma, d withmy # 0, m1 # 0, gecd(nge, m1) = ged(np, me) = 1and § > 2 be
given, such that:

oo
> a(af1tim) . p(gf2tim2) Xt =0 mod X°! (6.23)
1=0

holds for all codewords a(X) € A and b(X) € B . Then, we have:
. 5
oz diy =[]

The polynomial of (6.23) has coefficients in I ; [X], where [ = lem(la, lp).

Proor From Theorem 2.21 we know that (6.23) corresponds to § — 1 consecutive zeros in the defining
set D of C = A ® B and therefore its distance d = dqdp, is greater than or equal to ¢ according to the
BCH bound. ™

Moreover, this yields the following explicit relation.
Lemma 6.19 (Explicit Relation for Bound I-b )
Let the integers f1, f2, m1, ma, § withmq # 0, ma # 0, gcd(ng, m1) = ged(np, m2) = 1,8 > 2

and the two cyclic codes .A and B be given as in Theorem 6.18. Furthermore, let two integers u and v
be given, such that un, + vn;, = 1. Then, the two lntegers

f:f1-v2-nb+f2-u2-na, and
m:m1~v2~nb+m2-u2-na,

denote the parameters such that:

oo
D ey ™)X =0 mod X071 (6.24)
i=0

holds for all ¢(X) € A ® B, where v is an element of order n,ny in IFql .

PROOF Let gq (X) be the generator polynomial of A and g, (X) that of B. From Theorem 2.21 we know
that if o is a root of g4 (X ), then v*® isaroot of g(X) as in (2.22) and v** is a root of g(X ) if 3% is a root
of gp (X). Therefore we want f + im = v(f1 + im1) mod ng and f + im = u(f2 + im2) mod ny
and the Chinese Remainder Theorem gives the result. ™

Example 6.20 (BCH Bound of the Cyclic Product Code)
Let A be the binary reversible [17,9, 5|2 code as in Example 6.5 with defining set:

Dy =1{1,2,4,8,-8,-4,-2,-1},
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and let BB denote the binary [3, 2, 2]2 single parity check code with Dg = {0}. Let o € Fys and
B € Fya denote elements of order 17 and 3, respectively. Then, we know that for fi = —4, fo = —1
and m1 = mz = 1 Theorem 6.18 holds for § = 10 and therefore d, > 5, which is the true minimum
distance of A.

Since —1-17 + 6 - 3 = 1, according to Theorem 2.22 the defining set of the cyclic product code
AR® Bis:

Dags = {{3,5,6, 7,10,11,12,14} U {20, 22, 23, 24, 27, 28, 29, 31}U
{37,39,40,41, 44,45,46,48} U {0} U {3} U --- U {48}}
- {o, 3,5,6,7,9,10,11,12, 14,15, 18, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33,
36,37, 39,40, 41, 42, 44, 45, 46, 48},

and Lemma 6.19 gives f = 10 and m = 23.

6.2.2 Syndrome-Based Error/Erasure Decoding Approach up to Bound I-b

Let the set £ = {40,41,...,%—1} with cardinality | E| = ¢ be the set of erroneous positions. The
corresponding error polynomial is denoted by e(X) = >,z €; X . Let 7 mark an erasure and let the
set Z = {jo,j1,--.,Jc—1} with cardinality | Z| = ¢ be the set of erased positions. Let the received

polynomial
n—1 ]
(X)) = Z X"
=0

with 7; € Fq U {?} be given.

In the first step of the decoding process, the erasures in 7(X ) are substituted by an arbitrary element
from Fy. For simplicity, it is common to choose the zero-element. Thus, the corresponding erasure
polynomial in F4[X] is denoted by

i€Z

where 7; + z; = a; + z; = 0, Vi € Z. Let the modified received polynomial r(X) € Fq[X] be
n—1 ]
r(X) = rX'=a(X)+e(X) + 2(X), (6.25)
i=0

where a(X) € A.

Definition 6.21 (Syndromes for Bound I-b)

Let an [nq, ka, da]q cyclic code A and a second [np, kp, dp]q code B with gcd(ng,ny) = 1 be
given. Furthermore, let the five integers f1, f2, m1, ma, d and the second code 3 be given, such that
Theorem 6.18 holds. Let the modified received polynomial r(X') € Fy[X] as in (3.18) be given. Let
b(X) € B denote a codeword of weight dp.
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6 Bounding the Minimum Distance of Cyclic Codes

Then, we define a syndrome polynomial S(X) € F ; [X] as follows:

oo

def

S(X) = D r(afrtimy ppfatim2) Xt mod X071 (6.26)
1=0
— (G(O[fl+lm1) + Z(af1+lm1)> . b(lgfz-‘rlmz)Xl. (6.27)
1=0

Since we know the positions of the erasures, we can compute an erasure-locator polynomial similar
to the error/erasure decoding of GRS codes as discussed in Subsection 3.2.2.

Definition 6.22 (Erasure-Locator Polynomial)

Let the set Z with |Z| = ( and a codeword b(X) = Y,y b X' € B with weight d, be given
Then we define an erasure-locator polynomial ¥(X) € F 1 [X] as follows:

v(X) T | T (- xais) (6.28)
1€EZ \JEW

Note that W(X) has degree ¢ - dp. As for the GRS approach in Lemma 3.8, we define a modified
syndrome polynomial S(X') and point out (in the following lemma), which coefficients of S(X) depend
only on the error €;, €4, .

BT

Lemma 6.23 (Modified Syndrome Polynomial)

Let the erasure-locator polynomial ¥ (X') of Definition 6.22 and the syndrome polynomial S(X) of
Definition 6.21 be given. Then the highest § — 1 — ( - d}, coefficients of

5 ¥ w(x) - 8¢

depend only on the error polynomial e(

X) mod X°°1 (6.29)
X).

Proor From (6.26), we have:

Zr(afl +imy ) b(6f2+im2)Xi
1=0

o

S
I
o

(e(afl-‘riml)JrZ(afl-‘riml)) b(ﬁfz-‘rimz)Xi mod X961

Il
.Mg

s
Il
<}

Z ejaj(f1+im1) + Z Z].aj(f1+im1) b(B2T™2) X% mod X071,
jEE jeZ
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and with (6.22) for b(X) = >,y bi X", we can write:

. b
S(X) = Zeiah“ml Z — 4
i€E jew 1— Xt
, b
Z f1t+imy Z J dX671
ziQw ———— mo
iz jewl—Xoﬂ,BJ
5> (b T1 (- Xaish)
i
= o f1Fima
:Zela _ +
‘ 1— Xatpd
ielE jle_[Z( )
5> (b IT (1= Xais"))
A f1Tima 5—1
Zzza — mod X ,
= j];[z (1-Xaip)
and finally, we obtain:
Eax)
Z (eiaf1+im1 Z <bj H (1 —Xaiﬁé)) H H (1 _Xa"LﬂS))
i€E JEW ZZEW meE seW
S(X) = 7~ ‘ _m?éz 4
I (I (1-Xaig)))
i€eE N jeWw
défA(X)
Z (ziafl"'iml Z (b]' H (1 7Xo/ﬂ[)) H H (1 fXam,BS)>
1€EZ JEW ZZGW meZ seW
7 - 'm# mod X°~1
I1 (I (1-Xaip))
i€Z NJEW
where A(X) has degree atmostdy, - (( —1)+dp, —1=4dp - ¢ — 1. =

Similar to the erasure-locator polynomial, we define an error-locator polynomial as follows:

AX)E T ( IT (1 - xais?) ) (6.30)

i€eE jeW

Let Q(X) def Q(X) - U(X) + A(X) - A(X) and with (6.29) and (6.30), we obtain the following Key
Equation:

)= 2 od x01, with  9e8ALX) =e-dy

A(X) degQ(X) < (e4¢)-dy—1. (6.31)

Note that in the erasure-free case (X)) is the error-evaluator polynomial with deg Q(X) < e-d — 1.

The following lemma is similar to Theorem 3.9 and is stated without proof.
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6 Bounding the Minimum Distance of Cyclic Codes

Lemma 6.24 (Solving the Key Equation for Error/Erasure Decoding)
Assume ¢ < dy, — 1 erasures occurred. Let S(X) with deg S(X) < § — 2 as in (6.29) be given. If

& —1—
g:|E\§LI-bf<J,

then there exists a unique solution of (6.31). Recall that Algorithm 3.1, that calculates w;t1, s;+1 and
tit1, such that:

Uit1 = 8i+10 +ti41b

holds in every step for the input a and b. We use Algorithm 3.1 with the input polynomials X o-1

and S| (X) to determine the error-locator polynomial of (6.31). Furthermore, we have the following
stopping rule crit of Algorithm 3.1. We stop, if the remainder polynomial u;(X) in the i-th step of
the EEA, i.e., Algorithm 3.1 fulfills:

_1 . 1 .
OZ1HC D g degug(x) < STLEC My g3

d i—1(X) >
eg u; 1( )_ 3 = 2

Then, Algorithm 3.1 returns the error-locator polynomial A(X) as in (6.30) and the error/erasure-
evaluation polynomial Q(X) = Q(X) - U(X) + A(X) - A(X) as in (6.31).

Furthermore, we know from the EEA that for e < [ (d}", — 1 — ¢)/2] a unique solution A(X) exists.

We can use the error-evaluation of Lemma 6.14. Therefore, let the two polynomials f(X), h(X) €
FF ;1 [X] be defined as follows:

FOE ] (- xp7), (6.33)
jew
h(X) € ST (b T (- x8Y). (6.34)

JEW  LeW
L#£]

Due to gcd(ng,np) = 1, we have ged(f(Xa?), f(Xa?)) = 1, Vi # j and therefore each of the ng
polynomials f(Xa®), f(Xal), ..., f(Xa™s~1) can be identified by one root similar to the rational
approach presented in Section 6.1. Let k € W. Then, we have f(8~") = 0. Furthermore, let nq
distinct roots Yo, Y1, - - -, Yn, —1 be defined as:

v e i€ [na). (6.35)

Then, each +; is a root of f(Xa?). Note that each polynomial f(Xa?) has |[W| = dj, roots, but we
need only one of them.

6.2.3 Bound II: Generalized Hartmann-Tzeng Bound Using Cyclic
Product Code

In this section, we consider the first generalization of Theorem 6.18, where the bound dl*_b was proven.
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Theorem 6.25 (Bound II: Generalized Hartmann-Tzeng Bound)
Let A be an [nq, ka, da]q cyclic code and B an [ny, kp, dp]q with ged(na,np) = 1. Let a be an
element of order ny in ]Fqla , B of order ny, in ]Fqlb , respectively. Let six integers f1, fo, m1, mo, d, v

with mq # 0, ma # 0, gcd(na, m1) = ged(np, m2) = 1,0 > 2 and v > 1 be given, such that:

o0
> a(afitimiti) p(glatimeti)Xi =0 mod X°7!, Vjep+1) (6.36)
1=0

holds for all codewords a(X) € A and b(X) € B. Then, the minimum distance d, of A is lower
bounded by:

(6.37)

1)
dazdﬁd:ef’V +u".

dp

Proor From the generator polynomial of the cyclic product code A ® B (see Theorem 2.22) we know
that whenever a(X) € A or b(X) € B have a zero, then a codeword of the cyclic product code A ® B
is also zero at the evaluated point (as stated in Lemma 6.19). Therefore, § + v is the Hartmann-Tzeng
bound (see Theorem 2.18) of A ® BB and therefore dqdp > 6 + v. ™
6.2.4 Bound IlI: Using a Second Cyclic Code

In this section, we consider the second generalization of Theorem 6.18, where the bound dl*-b was
proposed. The proof of the statement is more involved.

Theorem 6.26 (Bound III)

Let « be an element of order n, in ]Fqlu, , B of order ny in Iqub respectively. Let six integers f1, fo,
mi, ma, d, v withmq # 0, ma # 0, gcd(ng, m1) = ged(np, m2) = 1,0 > 2 and v > 1 be given,
such that:

oo
> a(afrtimiti) . p(gl2tim2) Xt =0 mod X°7', Vj€[v+1) (6.38)
1=0

holds for for all codewords a(X) € A and b(X) € B.
Then, the minimum distance dg, of A is lower bounded by:

1
do > dfy & [d—b + 1/-‘ . (6.39)

Proor Let

a(X):ZaiXi with Y = {ig,41,...,9y—1} and
€Y

b(X) = b;X" with Z={jo,j1,...,5=-1}
1€Z
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6 Bounding the Minimum Distance of Cyclic Codes

We combine the v + 1 equations of (6.38), i.e., multiplying each of it by \; € ]Fqla, . This is similar to
the explicit proof of the Hartmann-Tzeng bound of Theorem 2.18. We obtain:

o0
Z <)\0 Z beﬁ£(f2+im2)(ailail(f1+im1) S aiyaiy(f1+im1))+
=0 ez

A1 Z beﬁl(f2+im2)(ailail(fﬂrimﬁrl) N aiyaiy(fl timitl)y 4oy
ez

A, Z beﬁz(fzw%mz)(ailai1(f1+im1+u) +otag, aiy(f1+im1+u))> Xt
tez

=0 mod X% L
Simplified, this results in:

oo
Zb(ﬂfz+im2) < Z agal(f1+im1)()\0 +a4)\1 4., JrO/V)\y))Xi

1=0 LeY
=0 mod X% (6.40)

We want to annihilate the first v terms and guarantee that the linear combination is nonzero. The
corresponding heterogeneous system of v + 1 equations is:

1 af g2 ... qlov Ao 0
1 ot a2 ... ghV A1 .
=11, (6.41)
: : : : : 0
1 av aw? ... oWV Av 1

and has a unique nonzero solution due to the full rank of the square Vandermonde matrix of order v + 1
generated by the distinct elements a*0, a'1, ..., a'.

LetY def Y \ {é0,%1,...,%,—1} and (6.40) leads to:

oo
3 b(5f2+im2)( 3 @i (g 4 al Ay o+ o/",\y))xi =0 mod X1,
i=0 ey

This leads to (for the ease of notation, we let m; = mg = 1):

5 (waifr 3 (8052 égz_u—xwf)) I II(1-Xa"s))

ieY Jj€Z hey PEZ
il h7i =0 mod X0~1
[T ( I1 (1= Xais?)) B ’
icy J€Z

where the numerator is a nonzero linear combination of the polynomials [ | (h)£(,5) (1 - Xalph).
It is easily shown that all of those polynomials are distinct and linearly independent if and only if
ged(na,np) = ged(na, m1) = ged(np, m2) = 1. Hence, the numerator is a nonzero polynomial
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

and its degree is smaller than or equalto z — 1+ z(y —v) — 1= —-1+4 2y —vz=z(y —v) — land
with dg > y and dp, > z, we obtain:

dy(do —v)—1>6—1

dq >

>3+, .

6.2.5 Decoding up to Bound Il

Let r(X) = a(X) + e(X) be the received polynomial, where e(X) = >, pe; X € F 1o [X] s the
error word and E = {jo, j1,...,je—1} C {0,...,nq — 1} is the set of error positions of cardinality
|E| = € and a(X) is a codeword of a given [nq, ka, da]q code A.
We describe how to decode up to the generalized bound from Theorem 6.25. Therefore, we want to
decode € < 7 errors, where
di—1 6+v—1
T2,

Let b(X) € B be of weight dp and a € Foa.B € Fqlb and the integers f1, f2,m1 # 0, ma2 # 0 be
given such that Theorem 6.25 for § and v holds. Denote I = lem(lq, lp). We define v 4- 1 syndrome
polynomials:

< (6.42)

oo
5;(X) def Zr(ah""iml"'j) - b(pfatim2ti)xi pod X901
=0
6—2
- e(af1+im1 +j) . b(5f2+im2+j)Xi7 Viev+1). (6.43)
=0

This generalizes our previous approach of Section 6.2 to v + 1 syndrome sequences of length § — 1.
Hence, we obtain v + 1 Key Equations with a common error-locator polynomial A(X) € F i [X] of
degree dpe (compare also [A-ZWB12b, Equation (20)]):

A(X) - S;(X)=Q;(X) mod X°71, jev+1),

where the degree of all Q0 (X)), Q1 (X), ..., Q. (X) is less than dpe. This is similar to the collaborative
decoding of Interleaved GRS codes as discussed in Section 3.4.

The syndrome calculation results in v + 1 syndrome sequences of the same length § — 1 to determine
one common A(X) € Foi [X]. Solving these v + 1 Key Equations jointly is a multi-sequence shift-
register synthesis problem for sequences of equal length; for efficient algorithms see e.g., [A-FT89;
A-FT91a; A-SS11; A-ZW11].

The basic task is to solve the following heterogeneous linear system of equations for A(X) =
Ag+MX+---+ AdbEdeE, which we normalize such that Ag = 1:

s(0) Adye T(0)
s(1) . (1)
: = ) (6.44)
N A2 .
s Ay T(¥)
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6 Bounding the Minimum Distance of Cyclic Codes

where each sub-matrix S{/) isa (§ — 1 — dye) x (dpe) matrix and T/ is a column vector of length
6 — 1 — dpt as follows:

R
_ Sy Sy’ .8y
g — 1 2 doe (6.45)
G G @
Séj—Q—dbs Séj—l—dbs SBJ—S
and T) = (S;i)s S(<ii>a+1 . S§j7>2)T. In the following, denote

s L (g0 T g T g) T

We consider again the heterogeneous system. In order to guarantee unique decoding, we have to prove
that the syndrome matrix S from (6.44) has full rank if (6.42) is fulfilled. For simplicity, we consider only
dp, = 2, where B is a single parity check code. In the following, we analyze the rank of this syndrome
matrix if the condition on the decoding radius (6.42) is fulfilled.

Theorem 6.27 (Decoding up to Bound II for d, = 2)

Let B be an [ny,n, — 1,2]q single parity check code with dj, = 2 and let gcd(ng,ny) =
ged(na, m1) = ged(ny, m2) = 1 hold. Moreover, let (6.42) be fulfilled and let v 4 1 syndrome
sequences of length § — 1 be defined as in (6.43). Then, the syndrome matrix S with the sub-matrices
from (6.45) has rank(S) = 2e.

ProoF Let us wlo.g. assume that b(X) = 14 X and fi = fo = 0. Then, the v + 1 syndrome
polynomials in F; [X] are

5—2
Si(X) =" e(a™ ) (14 pm2T)X V)€ [v+1).
i=0

Similar to [A-FT91a, Section VI], we can decompose the syndrome matrix into three matrices as follows.

s(0) X (0)

S . X (1 o
S = . =X-Y -X= . Y - X,

S(.u> Xil/)

where X isa (v +1)(6 — 1 — 2¢) x 2 matrix over F ; and Y and X are 2¢ x 2¢ matrices over Fy
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6.2 Bounding Minimum Distance by Embedding a Cyclic Code Into a Cyclic Product Codes

and F ;, respectively. The decomposition provides the following matrices with kK = § — 2 — 2e:

X =
ado(d) ad1(d) ade—1(9)
ado(G+m1) adr(G+mi) ade—1(G+m1)
ado(G+mik) ai1(@+mirk) ade—1(+mik)
B9 ado(d) B3 aird) . B aie—1() ’
Bi+m2 qio(i+mi) Bitmz g1 (i+m1) Bitm2qie—1(itmi)
/3j+m2msajo(j+m1 ) Bj+m2'€€aj1(j+mlf€) L ﬁj+m2'€8ajs_1(j+m1*”v)
and Y = diag(ejq,€jq,.--5€j._11€591€51,-+-5€5._,) and
1 adomi ajomi(2e—1)
1 adimi aiimi(2e—1)
_ 1 ade—1m1 ade—1m1(2e—1)
X = ) )
1 Bm2gdomi (Bm2qdom1)(2e—1)
1 B2 gd1mi (5m2aj1m1)(25*1)
1 Bm2qgie—1m1 . (Bm2gde—1m1)(26—1)

Since Y is a diagonal matrix, it is non-singular. From

ged(na, np) = ged(na, m1) = ged(ng, ma) =1 8
we know that X is a Vandermonde matrix and has full rank. Hence, Y - X is a non-singular 2e X 2¢ E
matrix and therefore rank(S) = rank(X). In order to analyze the rank of X, we proceed similar as in 2]
[A-FT91a, Section VI] and use the following corollary, which follows directly from [A-LW86, Theorem a
4]. o0
£
. =
Corollary 6.28 (LW-Matrix Product and Rank) c
Let the following matrix operation be defined as in [A-LW86]: g
[a]
ap,0bo @, 1b1 ... ap2e—1b2e—1
ai,obo ai2br ... a12.-1b2-—1
X=AxB= . . . . )
ay0bo  ay2bi ... ay2e-1bac_1

where A isa (v + 1) X 2¢ matrix, Bisa (§ — 1 — 2¢) X 2e matrix and b; denotes the ith column of
B, and X has 2¢ columns. If rank(A) + rank(B) > 2e, then rank(X) = 2e.
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6 Bounding the Minimum Distance of Cyclic Codes

We use the matrix operation from Corollary 6.28 to rewrite X = A * B, where

1 1 . 1 1 1 e 1
aJdo ad1 . ade—1 Bodo Bod1 . Bode—0
A— ado2  qi12 . Qle—12 (Bajo)2 (,Bajl)2 (Baj571)2
a];O’/ a]“l” ajs;ll' (ﬁa.jo)v (ﬂa..il)l’ (Bajs.fl)u

and B = X (0,
Since ged(na, np) = ged(ng, m1) = ged(ny, ma) = 1, both matrices A and B are Vandermonde
matrices of ranks:

rank(A) = min{v + 1, 2t}, rank(B) = min{é — 1 — 2¢, 2t}.

Note that w.l.o.g. we can always define m1,m2,d and v such that v + 1 < § — 1. Therefore, from
(6.42) we obtain:

t<

dr—1 - —1) - -
”2 _S+v—1 _20-1D)-1 -1 (646)

2dy, - 2dy, dp
Hence, investigating all possible four cases of rank(A) 4 rank(B) gives:

ot + 2t = 4t > 2,
2 +v+1> 2,

S—1—2t+2t=06—1>2t,
§—1—2+v+1>2dyt—2t+1=2t+1>2t,

where the last two above inequalities used (6.46) and d;, = 2. Thus, rank(A) + rank(B) > 2¢. With
Corollary 6.28, we proved the statement. n

Therefore, the Key Equation (6.44) has a unique solution, which can be found by any multi-sequence
shift-register synthesis algorithm with O(sn?) operations over I o [A-FT89; A-FT91a; A-ZW11]. The
extension of the proof for decoding up to € < 7 errors as in (6.42) to other associated codes B with
dp > 2 is straight-forward. The decomposition of the syndrome matrices can be done similarly and we
can prove that the syndrome matrix S has rank djpe.

6.3 Lowest-Code-Rate Binary Cyclic Codes with Minimum
Distance Two and Three

6.3.1 Motivation and Previous Work

To obtain a huge family of cyclic codes for the bounds I-b (Theorem 6.18), II (Theorem 6.25), IIT (The-
orem 6.26), the cardinality of the required subset of their defining set should be small. This implies a
high cardinality of the defining set Dy of the associated second code 3. On the one hand, we need
a low-rate k;, /np, which implies a high |Dg|. On the other hand, the minimum distance d} should
be small to obtain a good bound for all three cases I-b, II and III. This motivates the investigation of
small-minimum-distance cyclic codes with lowest code-rate.

Primitive binary cyclic codes with minimum distance three were investigated by Charpin, Tietavéinen
and Zinoviev in [A-CTZ97; A-CTZ99]. We generalize the results of [A-CTZ97] to binary cyclic codes of
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arbitrary length and show afterwards the implications, when we want to use them to bound the minimum
distance of a given cyclic code as in Theorem 6.18. We derive necessary and sufficient conditions for
binary non-primitive cyclic codes with minimum distance two and a sufficient condition for minimum
distance three. For the case of minimum distance two, we show the defining set of codes of lowest
code-rate. Parts of these result were published in [A-ZB12a, Section 5].

Lemma 6.29 (Primitive Binary Cyclic Codes with d = 2 [A-CTZ97, Lemma 1])
Let4,j with 0 <4 < j < n — 1 be two arbitrary integers that do not belong to the same cyclotomic
coset modulo n. Then the binary [n, k|2 cyclic code C with generator polynomial

9(X) = M3 (X) - M3 (X)

has minimum distance two if and only if ged(n, i, 5) > 1.

PROOF Let a be an n-th root of unity. A binary cyclic code C with generator polynomial

2 (X)

s

9(X) = M5 (X) - M}
of length n has minimum distance two if there exist a binomial ¢(X) = X* 4 X that fulfills
c(at) = ¢(a?) = 0.

This holds if and only if
ki 0i

o =a’ and of =¥

or, equivalently,
(k—0i=(k—¥¢)j=0 modn.

Both congruences are valid if and only if n/ ged(n, 4, §) divides k — £. Therefore, such k and ¢ exist if
and only if ged(n,,7) > 1. n

Theorem 6.30 (Primitive Binary Cyclic Codes with d = 2 [A-CTZ97])
Letiq,42,...,4s with0 < 41 < --- < is < n — 1 be s arbitrary integers that do not belong to the
same cyclotomic coset modulo n. Then the binary [n, k]2 cyclic code C with generator polynomial

S

g(x) = TT M7 )

j=1

has minimum distance two if and only if gcd(n, i1, 42, ...,4s) > 1.

We skip the proof of Theorem 6.30, because it is straightforward to the proof of Lemma 6.29.
The following lemma is a generalization of [A-CTZ97, Theorem 1] to binary cyclic codes of arbitrary
length with minimum distance three.

Lemma 6.31 (Binary Cyclic Codes with d = 3)
Let,j with 0 < ¢ < j < n — 1 be arbitrary integers that do not belong to the same cyclotomic coset
modulo n. Let g be such that 29 — 1 divides n. If there exists an integer r with 0 < r < 29 — 1,
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6 Bounding the Minimum Distance of Cyclic Codes

where ged(r,29 — 1) = 1, such that both ¢ and j are in MOS?QQ 1 then the binary [n, k]2 cyclic
code C with generator polynomial

9(X) = M3 (X) - M3 (X)
has minimum distance d < 3. If, moreover, gcd(n,4,j) = 1, thend = 3.

PrOOF Let 7y be a primitive element of Fas, let z = (25 — 1) /n and let « = v%. Letu = n/(29 — 1),
then 8 = a% = 7(25 —1)/(29 _1), is a primitive element of Fag. Let b be an integer in the interval
[1,29 — 2] such that:

1+ 84+ 6% =0.

Define
c(X)=1+ xu/r) 4 Xu(b/r)7

where the quotients 1/r and b/r are calculated in the ring Z2g 1 of integers modulo 29 — 1. For

9 _
ieMm Y

, two non-negative integers k and ¢ exist such that
i=£(29 — 1) + 2Fr.
Thus,
c(ai) -1 +aui(1/r) +aui(b/r)
=1 +13i(1/7") + ﬁ1<b/r)
— 14 82 r(/r) 4 g2t r(e/r)
14 52’“ + 51;2’“
k
=(1+8+p?
=0.

Therefore, the code C has minimum distance d < 3. If gcd(n, 4, j) = 1 as in Lemma 6.29, then the
minimum distance is unequal two and therefore three. n

Note that in [A-CTZ97] the length of the cyclic code wasn = 25 — landu = (2% — 1)/(29 — 1).
Lemma 6.29 and Theorem 6.32 can be generalized to cyclic codes, where the generator polynomial g(X)
is a product of several minimal polynomials.

Theorem 6.32 (Binary Cyclic Codes with d = 3)

Letiq,42,...,%s with0 <47 < --- < i5s < n — 1 be s arbitrary integers that do not belong to the

same cyclotomic coset modulo n. Let g be such that 29 — 1 divides n. If there exists an integer  with
g_

0 <r <29 — 1, where gcd(r,29 — 1) = 1, such that all s integers i1, i2,...,1s are in MT<22 1>,

then the binary [n, k]2 cyclic code C with generator polynomial

9(x0) = [T m{ 00

Jj=1

has minimum distance d < 3. If, moreover, gcd(n, i1, ...,%s) = 1, thend = 3.
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We skip the proof of Theorem 6.32, because it is straightforward to the proof of Lemma 6.31. Let us
consider an example of a non-primitive binary cyclic code with minimum distance three.

Example 6.33 (Non-primitive Binary Cyclic Code with d = 3)
Letn = 119 = (23 — 1) - 17. In this case g = 3 (see Theorem 6.32). Then {1, 11,51} belong to

M1<72> and we have ged(1,11,51) = 1. Therefore, the binary cyclic code of length n = 119 with

generator polynomial
119 119 119
a(X) = M{5 " (X) - My (00 MR (X),

has dimension k£ = 68 and minimum distance d = 3.

6.3.2 Implications for Bounding the Minimum Distance

We consider lowest-code-rate binary cyclic codes of minimum distance two and three. They are good
candidates for bounding the minimum distance as discussed in the previous section.

We first consider lowest-code-rate binary cyclic codes of minimum distance two. As previously, the
sign [J marks a non-zero in the defining set.

Proposition 6.34 (Lowest-Code-Rate Binary Cyclic Codes with d = 2)
Leta > 1, g > 1 and n be three integers, such that n = ag. Let g be in the defining set D. Then the
binary [n, k|2 cyclic code C with defining set:

D={0,0,...,0,¢,0,...,0,2¢,0,...,0,(a— 1)g,0,...,00

is the binary cyclic code of smallest dimension k = a(g — 1), lowest code-rate R = (g — 1) /g and
minimum distance two.

ProOF We want to maximize |D| while keeping the minimum distance d of C at two. Therefore, we

select for a given g every cyclotomic coset Mi<,g> with ged(é,g) > 1foralli € [n) to be in D with
aimed minimum distance two. One the one hand, this guarantees the maximization of | D| and therefore
the minimization of the code-rate. On the other hand, due to the condition ged (4, g) > 1 (Theorem 6.30)
the minimum distance of C remains two. n

The defining set of Proposition 6.34 is equal to the defining set of a cyclic product code .A ® B as in
Theorem 2.21, where Ais a [g, g — 1, 2]2 cyclic single-parity check code with defining set {0} and B is
a trivial [a, a, 1]2 code.

A direct consequence of Proposition 6.34 is that we do not need to investigate these binary cyclic
codes of minimum distance two any more. We obtain the same result when we selecta [g, g — 1, 2]2
single-parity check code as associated code B.

Conjecture 6.35 (Lowest-Code-Rate Binary Cyclic Codes with d = 3)

Leta > 1, g > 1 and n be three integers, such that n = a(29 — 1). Let r be an integer with
0 < r <29 — 1, where gcd(r, 29 — 1) = 1. Let 7 be in the defining set D. Then the binary cyclic
code C with distance three of length n with defining set:

D={r-i modn|i=5j29—-1)+1,j(29 -1)+2,j(29 —1)+4,...,
§(20 = 1) +297" V)€ [a)}
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6 Bounding the Minimum Distance of Cyclic Codes

is the binary cyclic code with the smallest dimension k = a(29 — 1 — g), lowest code-rate R =
(29 —1—g)/(29 — 1) and minimum distance three.

Similar to the proof of Proposition 6.34, we can reasoning Conjecture 6.35. We want to maximize
| D| while keeping d of C at three. For a given r and for (29 — 1)|n, we select every cyclotomic coset

<n> forall ¢ € [n) to be in the D of C with aimed minimum distance three, such that i € M<2 -,
One the one hand, this guarantees the maximization of | D| and therefore the minimization of the code-

9__

rate. On the other hand, due to the condition that M, <n) should be selected such that ¢ € MT<22 2
(Theorem 6.32) the minimum distance of C remains three

Lemma 6.31 gives only a sufficient and not as Theorem 6.30 for distance two a necessary and sufficient
condition. Tt is an open problem to prove Conjecture 6.35. 35,

Note 6.36 (Connection to Binary Hamming Code)
Let 7 = 1 in Proposition 6.35. Then

MY ={1,2,4,...,2971)

is the cyclotomic coset of a binary Hamming code of length 29 — 1. The defining set of the corresponding
lowest-code-rate binary cyclic code is a “repetition” of the defining set of the Hamming code of length
29 — 1.

Example 6.37 (Non-primitive Binary Cyclic Code with d = 3 and Lowest Code-Rate)
Let us again consider Example 6.33 with n = 119 = (22 — 1) - 17 and k = 68. The binary cyclic
code of length n = 119 with generator polynomial

g(x) = MV (x) - MG (0 - MY (x)

and with minimum distance three has lowest code rate R = (23 — 1 — 3)/(2% — 1) = 68/119. Its
defining set D is:

D =1{0,1,2,0,4,0,0,0,8,9,0,11,0,0,0, 15,16,0, 18,0,0,0, 22, . . ., 116, 0,0}

The defining set of Proposition 6.35 is equal to the defining set of a cyclic product code A ® B as in
Theorem 2.21, where A is forr = 1 a [29 — 1,29 — 1 — g, 3]2 cyclic Hamming code with defining set
{1,2,...,29"} and B is a trivial [a, a, 1]2 code

6.4 Cyclic Generalized Product Codes

6.4.1 Related Work and Basic Idea

A linear generalized concatenated code as in Definition 2.26, where the s outer (or row) codes Ao, A1,

., As_1 and the inner (or column) codes Bo, Bi, ..., Bs—1 are defined over the same alphabet,
is called generalized product code. This class of linear block codes was—independently of Blokh and
Zyablov’s work [A-BZ74]—considered before by Marchukov [A-Mar68] and Gore [A-Gor70]. We consider
the cyclic variant of generalized product codes and give explicitly the defining set, respectively the
generator polynomial, which was not done so far.
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6.4 Cyclic Generalized Product Codes

In contrast to this, many publications cover the cyclic variant of generalized concatenated codes (see
Berlekamp and Jensen [A-BJ74], Jensen [A-Jen85] and de Rooij-van Lint [A-RL91]). It is possible to
construct cyclic generalized concatenated codes by a quasi-cyclic outer code and a inner cyclic code
(see Jensen [A-Jen92]). After the basic properties of generalized product codes, we outline how cyclic
generalized product codes can be used—similar to cyclic product codes—to bound the minimum distance
of a cyclic code.

6.4.2 Definition and Defining Set

Let us first determine the generator polynomial of a cyclic code that is the direct sum as in Definition 2.13
of several cyclic codes.

Theorem 6.38 (Generator Polynomial of a Cyclic Direct Sum Code)
Let s [n, k;]q cyclic codes C; for all ¢ € [s) with Zf;ol k; < n and with generator polynomials
9i(X) € Fq[X],Vi € [s) be given. Then, the polynomial:

9(X) = ged (90(X), 91(X); ., gs-1(X)) (647)

is the generator polynomial of the cyclic direct sum code f;ol C;.

Proor Forevery ¢(X) € @:Z, Ci, the greatest common divisor ged (go(X), g1(X), ..., gs—1(X))
divides ¢(X). For the converse, we know that the EEA returns a relation, such that:

50(X)g0(X) +51(X)g1(X) + -+ + 55-1(X)gs—1(X) = ged (90(X), g1(X), - ., gs—1(X))
and therefore gcd (gO(X), g1(X),...,95—1 (X)) S @f;& C; and thus is the generator polynomial

of the cyclic direct sum code @f:_g Ci. ]

Corollary 6.39 (Defining Set of a Cyclic Direct Sum Code)
Let s [n, k;]q cyclic codes C; for all ¢ € [s) with Zf;é k; < n and with defining sets D;, Vi € [s)
be given. The defining set of C = @f;& C; is:

The following lemma is essential for the construction of cyclic generalized product codes and is the
cyclic pendant to Corollary 2.15.

Lemma 6.40 (Generator Polynomials for a Partition Chain)
Let s [n, k;]q cyclic codes C; for all ¢ € [s) with Zf;ol k; < m and with generator polynomial
9i(X) € Fq[X], Vi € [s) be given. Then,

CoDCLD---DCs1 (6.48)

holds if and only if
9i(X) | gi+1(X), Vie[s—1).
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6 Bounding the Minimum Distance of Cyclic Codes

ProoF Then, all codewords of C;4 1, which are a multiple of g;11(X), are then a multiple of g;(X)
and therefore codewords of C;. For the converse, the subset of the codewords of C; which are multiples
of gi4+1(X) are codewords of Cj1. n

A generalized product code is a generalized concatenated code as in Definition 2.26, where the outer (or
row) code is over the same alphabet as the inner (or column) code. Let us prove the equality for the
minimum distance in the following.

Lemma 6.41 (Distance of Generalized Product Code)
Let s outer (or inner) [ng, kq,i, da,i]q codes A; for all i € [s) with Zf;(} k; < n be given. Let BB;
denote [ny,, kp 5, dp ;]q codes for all ¢ € [s). Furthermore, let

BoDBi1 DD Bs_q

as in Corollary 2.15 hold. Let

s—2

k= Z (ka,i(kp,i — kpit1)) + ka,s—1kp s—1-
=0

Then, the [nqnyp, k, d]q generalized product code <®f:_g (A ® Bi\Bi+1)) @ (As—1 ® Bs—1)

has minimum distance

ProoF Similar to the proof of Theorem 2.27. A codeword a; of .A; with minimal Hamming weight d, ;
affects a sub-code BB; 1 of 3; having at least weight dj, ;. For each sub-product code such a codeword
exist and therefore the equality holds. ™

In contrast to generalized concatenated codes as in Definition 2.26, the minimum distance of generalized
product codes equals the minimum of the product of all minimum distance of the sub-codes. This is
similar to the fact, that the distance of a product code equals the product of the minimum distances of
its sub-codes, whereas the minimum distance of a generalized concatenated code as in Deﬁnition%
can be greater than the product of the minimum distances of the sub-codes.

Let us refine the conditions such that the generalized product code is cyclic.

Definition 6.42 (Cyclic Generalized Product Code)
Let s outer (or row) [na, ka i, da,i]q cyclic codes A; for all i € [s) with defining sets D 4, be given.
Let B; denote [ny, ky,;, dp,;]q cyclic codes with defining set Dy, for all i € [s). Let

BoD>Bi DD Bs—1.

Furthermore, let un, + vny = 1 for some integers u and v.
Define the sets:

B.Ai déf (D.AL : v)”a? Vi € [3)7
def .
Assn  ((D5\Ds, ) ) Vil —1)
def

A,y = DB,y - Wy,
where the operations on the set are as defined in (2.14), (2.15) and (2.16).
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6.4 Cyclic Generalized Product Codes

The defining set of the i-th cyclic product sub-code A; @ (B;\B;+1) is:

p—1 ng—1
DB \Biy1) = { U (Ba, +jna,)} Ul U Asps,,, +ims) ¢, Vie[s—1).
j=0 j=0

The defining set of the s-th cyclic product sub-code As_1 ® Bs—1 is:

ny—1 ng—1
D-A571®Bs—1 = { U (B-As—l +jna)} u U (A5371 +jnb)
j=0 j=0

The set

s—2
De = <ﬂ D-Ai®(5i\5i+1)> NDa, 108, 1
i=0

is the defining set of a cyclic generalized product code C = <@f;g (A ® Bi\3i+1)> B (As—1®

Bs—1) of order s. The generator polynomial is:
g(X) = ng <Xn,,,nb -1, 9dAp (anb )930\51 (Xana )7 gA, (anb )981\32 (Xana )7

g, (XT)gs, (X)),

6.4.3 Example of a Cyclic Generalized Product Code

Let ng = 5 and n, = 7. We consider a cyclic generalized product code of order s = 2 and length
nenp = 35. Let u = 3 and v = —2 be the coefficients of a Bézout relation.

The two outer (row) codes are the [5, 1, 5]2 cyclic repetition code A and the [5, 4, 2]2 cyclic single-
parity check code A; with defining sets:

Da, ={1,2,3,4} and D4, = {0}.

Let B be the single codeword [7,0, co]2 with defining set D, = {0,1,2,3,4,5,6}. Let B1 be the
[7,4, 3]2 cyclic Hamming code B1 with defining set D, = {3, 5, 6}. Then, the first inner code Bo\B1
is the [7, 3, 4]2 cyclic code with defining set

Dpy\s, = 10,1,2,4}.
According to Definition 6.42, we obtain the following shifted defining set:
Bay = (Da, - —2)5s ={1,2,3,4},
Ba, = (Da, - =2)s = {0},
Ao\B, = (DBo\5; - 3)7 = {0,3,5,6},
Ap, = (DB, -3)7 ={1,2,4}.

The shifted sets (according to Definition 6.42) are shown in row one, two, six and seven in the Table 6.6.

The two rows with the symbol ® in the first column are the defining sets of the corresponding cychc
product sub-codes Ao ® (Bo\B1) and A1 ® Bi. The row in the middle, that has a @ in the first column,
is the defining set of the cyclic generalized product code (Ag ® (Bo\B1)) ¢ (A1 ® By).
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6 Bounding the Minimum Distance of Cyclic Codes

Ba, 0123401 2340123401 2340123401 23401 234
App\sy (000305 60003056 0003056 0003056 0003055
® 0123 45 6 7 8 910111213140 1617 18 19 20 21 22 23 24 [J 26 27 28 29 [J 31 32 33 34
) 0120450089 10n100001018020022000002003200
® 012045008 910n000151601802 0222302000230 03200
Ba, coOO0OO0OD0OooOO0OOO0OoOOO0OOocODOOOooOOOOcOOOOo0DOOOO
Ap, 012040001 2040001 2040001 204000120400

Table 6.6: Illustration of the defining set of a cyclic generalized product code (Ao @ (Bo\B1)) & (A1 @ B1) of
order two. The first three rows give the summation of the first cyclic product sub-code Ao ® (Bo\B1). The last three
rows give the summation of the second cyclic product sub-code A1 ® 31. In row four the defining set of the cyclic
generalized product code is formed by the direct sum of row three and five.

The cyclic generalized product code is an [35, 19, d]2 code with distance (according to Theorem 2.27):
d = min (da,0 - dy,o, da,1 - dy1) = min (5-00,2 - 3) = 6.

The defining set of the cyclic generalized product code (Ag ® (Bo\B1)) & (A1 ® B1) is the union of
35 35 35
Mé,2> U M1<,2> U M5<,2 g

6.4.4 Using Cyclic Generalized Product Codes for Bounding the
Minimum Distance

Similar to the approach in Section 6.2, we think it is possible to embed a given [n, k, d]4 cyclic code C
into a cyclic generalized product code to give a lower bound on its minimum distance d. In contrast to
(cyclic) generalized concatenated codes, the minimum distance of (cyclic) generalized product codes is
given by equality (see Lemma 6.41) and therefore a similar approach as in Section 6.2 seems possible.
Let us assume the first product sub-code is used as the approach in Section 6.2. Then the other s — 1
product sub-codes of the cyclic generalized product code of order s would add “non-zeros” and therefore
the obtained bound on the distance of the cyclic generalized product would hold for a wider class of
cyclic codes than the one that uses only the product code as in Theorem 6.18.

6.5 Conclusion and Future Work

In this chapter, we presented two new approaches for bounding the minimum distance of linear cyclic
codes. The first bound I-a is based on the association of a rational function to the sequence of zeros
of a given cyclic code and is proven in Theorem 6.4. We gave the proof and a syndrome-based error
decoding algorithm based on the Extended Euclidean Algorithm in Theorem 6.15. An error-evaluation
strategy based on a generalization of Forney’s formula was developed in Section 6.1.

The other three bounds I-b (Theorem 6.18), I (Theorem 6.25) and III (Theorem 6.26) are based on the
association of another cyclic code. We propose a syndrome-based error/erasure decoding algorithm and
an error-evaluation for bound I-b. The correctness of the error-only decoding approach for bound II was
also proven in Section 6.2. A decoding method for bound III is an open task.

The defining sets of non-primitive binary lowest-code-rate cyclic codes of minimum distance two and
of low-rate cyclic codes with minimum distance three are given in Proposition 6.34 and 6.35. We conclude
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6.5 Conclusion and Future Work

that it corresponds to the defining sets of cyclic product codes in Section 6.3. The relevance of these
codes for our approach of embedding a cyclic code into another cyclic product code was demonstrated.

In Section 6.4, we defined linear cyclic generalized product codes and proved their main properties.
We outline hoTthey can be used in a similar way as linear cyclic product codes to bound the minimum
distance of a given linear cyclic code.

Besides this, several future research directions are possible. One issue for the approach of Section 6.2
is the complexity of the decoding algorithm when associating a second code. The order of the common
extension field influences the decoding complexity directly, since all operations are done in this extension
field.

The concept of Section 6.2 can be extended to several associated codes, that form then a linear cyclic
product code of order s > 2. A deeper comparison to existing bounds should be carried out. Furthermore,
conditions for non-binary lowest-rate cyclic code with distance two and three can be worked out. Similar
results as the one for the binary cyclic codes of Section 6.3 are expected.

The approach as for the three bounds I-b, Il and III can be extended to cyclic generalized product codes
(see Section 6.4). Probably, also cyclic generalized concatenated codes can be used in a similar manner.
Is it not excluded that these approaches can be used for linear (non-cyclic) codes, too. In principal every
existing lower bound on the minimum distance of cyclic codes can be generalized as the BCH bound in
Theorem 6.18 and the Hartmann-Tzeng bound in Theorem 6.25.

We provide a homepage [O-Z]J12] with numeric results for cyclic code over Fa, F3, F5 and F7.
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“Thanks for showing interest in the preliminary version of my book. It was
halted for a year, since I had to do research and publish papers. A book counts
for only one item!”

RuUUD PELLIKAAN (BORN 1953) VIA EMAIL

Concluding Remarks

Generalized Reed-Solomon and linear cyclic codes, both defined over finite fields and in

W ITHIN this dissertation, new algebraic soft- and hard-decision decoding approaches for
Hamming metric, were developed.

We reformulated the bivariate interpolation problem of Guruswami-Sudan and Kotter—Vardy (see
Chapter 4 and Chapter 5 respectively) and obtained a generalization of the classical Key Equation,
which is the basis for the established syndrome-based unique Bounded Minimum Distance decoding
approaches as the Berlekamp-Massey and the Sugiyama-Kasahara-Hirasawa-Namekawa algorithm.
Based on the previous work of Roth and Ruckenstein for the Sudan algorithm (multiplicity one for all
n points), a set of Key Equations for both cases, the Guruswami-Sudan approach, where all n points
are interpolated with the same multiplicity (hard-decision) and the Kotter-Vardy extension, where the
interpolation is based on a ¢ X n multiplicity matrix (soft-decision), was derived. We obtained two
systems of homogeneous linear equations, where the matrices are structured, i.e., a Block-Hankel matrix
and a vertical band of Block-Hankel matrices respectively.

Both systems can be solved efficiently. We adapted the Fundamental Iterative Algorithm, that goes back
to the work of Feng and Tzeng, for both cases. For the case of the hard-decision variant of Guruswami-
Sudan (same multiplicity for all n points), we proposed the complexity-reducing initialization rule and
proved the correctness of the Fundamental Iterative Algorithm. In addition, we analyzed its complexity.
The reduction of equations and an explicit syndrome expression remain an open task. We showed that
in the case of different multiplicities (K6tter-Vardy) and after re-encoding transformation, the univariate
reformulation leads to a set of Key Equations over the polynomial ring. In addition, the reduced set
of linear homogeneous equations consists still of vertically arranged Block-Hankel matrices, but with
reduced dimensions.

In Chapter 6, we proposed two new techniques for bounding the minimum Hamming distance of a
linear cyclic code. The first one used rational functions to fill missing zeros in the defining set of a given
cyclic code. We identified several classes of codes and showed the connection to some existing bounds.
Based on a new syndrome definition, a Key Equation with a generalized error-locator polynomial was
derived. We adapted the Extended Euclidean Algorithm—similar to the approach of Sugiyama-Kasahara-
Hirasawa-Namekawa—and proved a generalization of the Forney formula. The second technique embeds
a given linear cyclic code into a linear cyclic product code. We prove the main theorems on the minimum
distance that generalizes the Bose-Ray-Chaudhuri-Hocquenghem and the Hartmann-Tzeng bound.
Probably, several other bounds on the minimum distance of linear cyclic codes can be extended in the
same way. Similar to the rational function approach, a Key Equation for syndrome-based error/erasure
decoding up the generalization of the Bose-Ray-Chaudhuri-Hocquenghem bound was given. Further,
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7 Conclusion

we proved the error-only syndrome-based decoding up to the generalized Hartmann-Tzeng bound.
Necessary and sufficient conditions for lowest-code-rate non-primitive binary cyclic codes of minimum
distance two and a sufficient condition for binary cyclic codes of minimum distance three were given.
We shown their relevance for the embedding technique. A further extension of the embedding-technique
to cyclic generalized product codes was discussed and their basic properties were outlined.
Several open research directions were identified at the end of each chapter.
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