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Abstract

The thesis has two independent parts.

The first part concerns the convergence toward equilibrium of discrete gradient flows or, with
more generality, of some discretizations of autonomous systems which admit a Lyapunov
function. The study is performed assuming sufficient conditions for the solutions of the
continuous problem to converge toward a stationary state as time goes to infinity. It is shown
that under mild hypotheses, the discrete system has the same property. This leads to new
results on the large time asymptotic behavior of some known non-linear schemes.

The second part concerns the numerical simulation of the motion of particles suspended in a
viscous fluid. It is shown that the most widely used methods for computing the hydrodynamic
interactions between particles lose their accuracy in the presence of large non-hydrodynamic
forces and when at least two particles are close from each other. This case arises in the
context of medical engineering for the design of nano-robots that can swim. This loss of
accuracy is due to the singular character of the Stokes flow in areas of almost contact. A
new method is introduced here. Numerical experiments are realized to illustrate its better
accuracy.

Résumé

La theése comporte deux parties.

La premiére traite de la convergence vers ’équilibre de flots de gradients discrets ou plus
généralement de discrétisations d’un systéme autonome admettant une fonction de Lyapunov.
En se placant dans une cadre pour lequel les solutions du probléme continu converge vers
un état stationnaire en temps grand, il est démontré sous des hypotheses générale que le
systéme discret a la méme propriété. Ce résultat conduit & des conclusions nouvelles sur le
comportement en temps grand de schémas numériques anciens.

La seconde partie concerne la simulation numérique de particules en suspension dans un fluide
visqueux. Il est montré que les méthodes utilisées actuellement pour simuler 'interaction
hydrodynamique entre particules perdent de leur précision quand de grandes forces non-
hydrodynamiques sont en jeu et que au moins deux particules sont proches l'une de I'autre. Ce
cas survient, dans le contexte de 'ingénierie biomédicale, lors de la conception de nano-robots
capables de nager. Cette perte de précision est due au caractére singulier de ’écoulement
de Stokes dans les zones de presque contact. Une nouvelle méthode est introduite ici. Des
expérimentations numeériques sont effectuées pour mettre en évidence sa grande précision.
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CHAPTER 1

(General introduction

1.1 Introduction en Francais

Ce manuscrit de thése comporte deux parties indépendantes.

1.1.1 Objet de la premiére partie

Nous traiterons tout d’abord de flots de gradient discrets et plus généralement de
systemes d’EDO autonomes qui admettent une fonction de Lyapunov stricte. Nous nous
intéressons au comportement en temps long de solutions discrétes de certains schémas
associés a de tels systémes. Nous nous plagons dans des conditions ot le probléme continue
admet une solution globale u(t) qui admet une limite ¢ quand le temps ¢ tend vers l'infini.
Nous montrerons que pour certains schémas la solution discréte admet elle aussi une limite
©®t et que dans le cas oil ¢ est un point de minimum local de la fonction de Lyapunov, ¢®*
converge vers ¢ quand le pas de temps At converge vers 0.

Plan de la premiére partie

Le travail présenté est constitué d’une introduction et de la reproduction d’un article [19]
publié conjointement avec Benoit Merlet.

1.1.2 Objet de la seconde partie

La seconde partie traite de ’approximation numérique des intéractions hydrostatiques
entre particules en suspension dans un fluide visqueux. La motivation de ce travail vient
d’une part de ’étude de suspensions denses et d’autre part de la nécessité de produire des
simulations numeériques précises de micro ou nano-nageurs artificiels. Dans le cas de ces
derniers, comme dans le cas de nano-nageurs vivants (spermatozoides, bactéries ou algues
mon-cellulaires) I’énergie mobilisable pour la nage est relativement grande, ce qui permet
a deux parties du nageur qui sont & une distance trés faible 'une de l'autre d’avoir des
vitesses relatives sensiblement différentes bien que les forces hydrostatiques s’y opposent. Ces
situations ou deux objets & une distance d faible I'un de 'autre ont des vitesses différentes
créent des densités de force hydrostatique d'une part élevées et d’autre part singuliéres au
sens ou elles sont localisées dans une région de diamétre de 'ordre de Vd. Le caractére
localisé de ces densités de force fait qu’elles sont mal approchées par les méthodes basées
sur une décomposition spectrale. C’est le cas en particulier de la dynamique Stokesienne qui
est la méthode la plus utilisée pour la simulation du mouvement de particules en suspension



2 Chapter 1. General introduction

dans un fluide visqueux.
Nous proposons une nouvelle méthode, plus cotiteuse, mais qui permet une approximation
précise. Nous comparons les performances de cette méthode avec la Dynamique Stokesienne.

Plan de la seconde partie

Dans la Chapitre 3, nous présentons tous d’abord le systéme de Stokes ainsi que les
espaces fonctionnels et les résultats théoriques standards (caractére bien posé des équations,
régularité des solutions). Nous nous plagons ensuite dans le cas de N particules sphériques
plongées dans un fluide visqueux avec des conditions de non-glissement sur le bord des par-
ticules. Nous présentons la méthode d’approximation spectrale dans ce cadre, en particulier
la décomposition des vitesses et densités de force dans une base d’Harmoniques Sphériques
Vectorielles (Chapitre 4). Nous expliquons ensuite a partir d’'une étude numérique pourquoi
cette décompositon spectrale n’est pas efficace dans le cas ou deux particules proches ont
des vitesses sensiblement différentes (Section 5.2). La méthode de la Dynamique Stokesienne
qui palie en partie & cette faiblesse est présentée dans la Section 5.3. Nous montrons aussi
les limites de cette méthodes dans le cas oil une troisiéme particule se situe dans le voisinage
d’une paire de particules proches. Nous présentons notre méthode et sa discrétisation dans
les Sections 6.1 et 6.2. Les résultats numériques sont exposés dans la Section 6.3. Enfin,
dans une derniére section nous discutons les choix de paramétres de discrétisation.

1.2 Introduction in English

This manuscript is made of two independent parts which have their own introductions.

We first study discrete gradient flows and more generally discrete schemes associated to
quasi-gradient flows, that is autonomous systems of ODEs which admit a strict Lyapunov
function. Under some general hypotheses, the continuous problem admits a global solution
u(t) which converges toward some limit ¢ as the time ¢ goes to infinity. We show that under
some mild hypotheses, the discrete solution associated to some standard schemes also admit
a limit ©®*. We also prove that if moreover ¢ is a local minimizer of the Lyapunov function
then goAt converges to ¢ as the time step At goes to 0.

The second part concerns the numerical simulation of the hydrodynamic interactions
between small particles in a viscous fluid. It is motivated by the study of dense suspension
of particles and also by the study of the motion of living microorganisms (sperm cells,
bacteria, unicellular algae) or of artificial micro or nanorobots. In these cases the energy
which is available for the motion is (relatively) large and the swimmers may move close
parts of their bodies with different velocities even if the hydrodynamic forces strongly
oppose such movement. Such situations where two objects at a small distance d from one
another have different velocities create hydrostatic force densities which on the one hand
have large magnitudes in a small region with a diameter of the order of v/d. Due to their
localized nature, these force densities are poorly approximated by methods based on a
spectral decomposition (or multipole expansion). This is the case of the Stokesian Dynamics
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which is a widely used method to simulate the motion of particles suspended in a viscous fluid.

We propose a new method, which is more expensive, but allows accurate approximations.
We compare the performance of this method with the Stokesian Dynamics.
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1.3 Introduction to the paper [19]
In this part, we consider autonomous systems of ODE such as
u = G(u), t>0, (1.3.1)

with u(t) € R and G : U c R? - R%
We assume that the system admits a strict Lyapunov function F', that is

d
7 [F(u)] (t) < 0 for every solution and every t > 0,
and moreover,
d
at [F(u)](tg) = 0 = wu(t) = u(ty) for t > to.

More precisely, we study some discretizations of the system (1.3.1) and study the asymptotic
behavior as t,, — oo of the discrete solutions.

The most simple situation is the case of a gradient flow
G = -VFE

In this case, if F is of class C'!' and bounded from below, we have

tToo

F(u(t)) — Fx€R.
Moreover, the w-limit set
wlu] = {v e R? : 3(t,) T co such that u(t,) — v}

is a connected subset of the critical points of F.
We restrict our study to situations for which F' satisfies a Lojasiewicz inequality at some
point ¢ € wlul, that is: there exists v € [0,1/2), v > 0 and ¢ > 0 such that

v—yl<o = [|F)=F|'"™" < 4IVF(@). (1.3.2)

This inequality implies that v has a limit at infinity:

ut) 1% o (1.3.3)

/ il < oc.
Ry

The importance of the Lojasiewicz inequality (1.3.2) comes from a famous result by
Lojasiewicz [17] which states that if F': U € R? — R is (real) analytic then such inequality
holds in the neighborhood of any point ¢ € U. (This is non-trivial only when ¢ is a critical
point of F').

and we even have the stronger result



The convergence (1.3.3) is not true in general. As a counterexample, let us build a function
F :R? — R as follows. Given a curve I' parameterized by 7 : R, — R?,

y(s) = <1+1L+8) (cos s, sin s) .

We define the tangent vector on this curve as 7(t) = %/|¥| and the normal unit vector as
n(t) = (=72, 71). Let us fix n > 0 small enough such that the mapping at 0, the mapping

O : (t,s) e Ry x (=1,1) —  ~(t)+

is one to one. We then set
g(t)w(s) if (x,y) = P(t, s) for some (¢,s) € Ry x (—1,1),
F(z,y) =

where g € C*°([0, 4+0o0],[0,1],[0,1]) is supported in [1/2,+00) and g(t) = e'~* for t > 1, and
€ C°(—1,1) admits a local minima at s = 0, with ¥(0) = 1 and ¢'(0) = ¢"(0) =0

We easily check that F' € C°(R?) and that the curve {v(s) : s > 1} is the trajectory of
a solution u of the gradient flow 4 = —VF(u), in particular wu] = S, see Figure 1.1.

Figure 1.1: Counterexample. Graph of an energy function F with a trajectory satisfying
wlu] = St (in red).
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When (1.3.1) is not a gradient flow, we still have the following result.

Proposition 1.3.1. Assume that there exists o > 0 such that

(-VE,G) > o|VF||G| iU, (1.3.4)

and that u : Ry — U solves (1.3.1). If there exists ¢ € wu] such that F' satisfies a Lojasiewicz
inequality in the neighborhood of ¢, then u(t) — ¢ ast ] oo.

The condition (1.3.4) is called the angle condition.

The discrete case

In the paper reproduced after this introduction, we consider the issue whether a solution of
a numerical scheme approximating (1.3.1) also satisfies these convergence properties. The
practical interest of this work is to establish under mild hypotheses that if ¢ = limqy, u(t)
is a local minimizer of F and if (u5?) is a numerical approximation of u(t) obtained by a
standard numerical scheme with time step At > 0, then for At small enough (u,) converges
and

. . At

t [ ] = v

When ¢ is not an isolated local minimizer of F', the conclusion is not trivial and may be
wrong for some numerical schemes. Even for a converging and energy decreasing numerical
scheme, the numerical solution could slip towards another local minimizer ** on the same
energy level F(¢?) = F(y) and with ¢t —/» ¢ as At | 0.

In a preceding work [18], Merlet and Pierre have established that if (u,) C R solves

a2
Upt+1 € Argmin {F(v) + % NS Rd} , for n >0,

(that is (u,) solves the Euler scheme with time step At > 0 associated to the gradient flow
@ = —VF(u)) and if F € C'(RY) satisfies a Lojasiewicz inequality in the neighborhood of
some point ¢, with
o € wlw)] = Tm =R,
=0
then u, — ¢.
These authors also establish similar results for the §-scheme for 1/2 < 6 < 1.

Here we continue this analysis in the case of an autonomous system which admits a strict
Lyapunov function F'. We obtain positive results assuming (a) that F satisfies the Lojasiewicz
inequality, (b) that F satisfies a one-sided Lipschitz condition (i.e. u +— F(u)+\|u|? is convex
for A large enough) and (c) that (1.3.4) is strengthen to an angle and comparability condition:
there exists a > 0 such that

(0% .
(-VF,G) > ) (IVE|* +||G|I?) in R
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Assuming moreover that G is Lipschitz continuous, we also obtain positive results for the
f-scheme.

In all these cases, we provide explicit convergence rates which are similar to the continuous
case.

We also consider the case of an autonomous system on an embedded manifold M C R%,
i.e. we consider autonomous systems such that the condition u(0) € M imply u(t) € M for
t > 0. In general using a standard numerical scheme, the numerical solution does not satisfy
Uy € M for n > 1. For this reason, we consider a family of projected #-schemes defined as
ug € M and for n > 0,

Upal — Up
“T —0G(vns1) — (1= 0)G(un) = 0,

Up41 = H./\/lanrlu

where Il denotes the orthogonal projection on the manifold M.

We establish convergence to equilibrium results for such schemes. As an illustration, we
show that they apply to some space-time discretizations of the harmonic map flow and of the
Landau-Lifshitz equations of micromagnetism. For these flows, the numerical solutions are

subjected to the constraint
un € (5%)N,

where N is the number of degrees of freedom associated to the space discretization.

1.4 Convergence to equilibrium for discretizations of gradient-
like flows on Riemannian manifolds
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Convergence to equilibrium for
discretizations of gradient-like flows
on Riemannian manifolds

Benoit Merlet Thanh Nhan Nguyen

Abstract

In this paper, we consider discretizations of systems of differential equations on manifolds
that admit a strict Lyapunov function. We study the long time behavior of the discrete
solutions. In the continuous case, if a solution admits an accumulation point for which a
Lojasiewicz inequality holds then its trajectory converges. Here we continue the work started
in [18] by showing that discrete solutions have the same behavior under mild hypotheses.
In particular, we consider the f-scheme for systems with solutions in R% and a projected
f-scheme for systems defined on an embedded manifold. As illustrations, we show that our
results apply to existing algorithms: 1) Alouges’ algorithm for computing minimizing discrete
harmonic maps with values in the sphere; 2) a discretization of the Landau-Lifshitz equations
of micromagnetism.

1.4.1 Introduction

In this paper, we consider time discretizations of the non-linear differential system,
u = G(u), t>0, u(t) e M, (1.4.1)

where M C R? is a C?-embedded manifold without boundary and G is a continuous tangent
vector field on M. More precisely, we are interested in the long-time behavior and stability
properties of the global solutions of (1.4.1). If the continuous system (1.4.1) admits a strict
Lyapunov function F' € C*(M,R) and if the set of accumulation points

w(u) == {p € M :3(t,) T oo such that u(t,) — ¢}

is non-empty, then ¢ — F(u(t)) in a non-increasing function converging to F(y) where
€ w(u).

Under additional assumptions, namely if F' satisfies a Lojasiewicz inequality in a neigh-
borhood of ¢ and if G(u) and —V F(u) satisfy an angle condition, then one can prove that
u(t) does indeed converge to ¢ (see the papers by Lageman [16], by Chill et al. [10] and
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the more recent paper by Barta et al. [7]). Under an additional comparability condition
between ||G(u)| and ||V F(u)||, we even have convergence rates depending on the Lojasiewicz
exponent.

Notice that if ¢ is an isolated local minimizer of F', then the above convergence property
is almost obvious and the t.ojasiewicz inequality is not required. On the other hand these
results are not trivial (and wrong in general) when a connected component of the critical
set of F' does not reduce to a single point. A typical example is given by the function
F:R?— R, z+— (||z||* — 1)? for which the set of minimizers is S*.

If we are concerned with numerical simulations, it is of interest to know whether the
above asymptotic properties also hold for numerical solutions. Consider, for some time-step
At > 0, a sequence (u,) C M such that u, approximates the exact solution u at time
t, = nAt. Such a sequence could be built by means of any standard or reasonable numerical
scheme. Mimicking the continuous case, our first goal is to establish the following property:

Result 1. If ¢ is an accumulation point of the sequence (uy,), then u, — ¢.
When ¢ is a local minimizer of F', we expect a more precise stability result:

Result 2. Let ¢* € M be a local minimizer of F'. For every n > 0 there exists 0 < & <7
such that
luv —¢*l<e = |lun—¢*| <n, ¥n > N.

Moreover, in this case, the sequence (u,) converges to some ¢ € M.

It turns out that this last property leads to a uniform convergence result. Indeed, assume
that the exact solution w converges to a local minimizer ¢* of F', then for T" large enough,
we have

lu(t) — ™| <e/2, vt >T.

If the scheme is uniformly convergent on finite intervals (a reasonable query) then for At > 0
small enough, we have,

lun —u(ty)|| < €/2, for 0 <t, <T+1.

In particular, [[uy — ¢*|| < e where T' < NAt < T + 1. Applying Result 2, we conclude that
for At > 0 small enough, we have

|l — ul(ty)|| < n, Vn > N.

We then infer,

lim sup |ju, — u(t = 0.
K s — )]
As a consequence, denoting ¢(At) := lim,_,o u,, we also have p(At) — ¢* as At — 0.

Thus, the numerical scheme provides a method to approximate the limit ¢*. This property
motivates our interest for Result 2.

Once the convergence of the sequence is known, we will try to precise the convergence
rate and establish:

Result 3. Let ¢ be the limit of Result 1. We have the estimate |u, — ¢| < &f(t,).
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The function ¢t — f(t) should decrease to 0 as ¢ goes to +o0o. Typically f is an exponential
or a rational function (see (1.4.12) below).

As in the continuous case, the background assumptions on (1.4.1) to obtain Results of
type 1, 2 and 3 are a Lojasiewicz inequality, the angle condition and (for the convergence
rates) the comparability condition that we will describe in the next section. For the scheme,
on top of usual consistency property, the basic additional required assumption is that F'
should be a strict Lyapunov function for the scheme with an estimate of the form

Hun-i-l - Un||2

F(un+1) + At

< F(up), (1.4.2)

for some p > 0. In the case of a gradient flow G = —VF, and if VI satisfies a one-sided
Lipschitz condition, this stability property is naturally satisfied by the backward Euler scheme
and, under a regularity assumption on G, by the #-scheme for 0 < 6 < 1. In this paper, we
focus on these schemes and we assume that V F' satisfies a one sided Lipschitz condition.

In a previous paper, Merlet and Pierre [18] (see also [8, Theorem 24|) have studied the
long time behavior of some time-discretizations of the gradient system,

= —VF(u), t>0,ue R (1.4.3)

Their results have been generalized to some second order perturbations in [13|. A closely
related question concerns the convergence of the proximal algorithm associated to the mini-
mization of F' in finite or infinite dimension (see [1, 6, 8] and references therein). As in the
present work, the key assumption for convergence results in these papers is the Lojasiewicz
inequality. Here we extend the results of [18] on gradient flows in R¢ by considering gradient-
like systems on a manifold: we establish Results of type 1, 2 and 3 for the #-schemes associated
to such systems.

The sequel is organized as follows. In the next section, we set the notation and the main
hypotheses. We also prove the convergence result in the continuous case. Elements of this
proof are used in Section 1.4.5.

Our results concerning the f-scheme and the projected f-scheme will be obtained as a
consequence of general abstract results of type 1, 2 and 3 that we first establish in Sec-
tion 1.4.3. We will highlight there the essential hypotheses required for these convergence
to equilibrium results. We believe that this general setting enables to quickly check whether
convergence to equilibrium properties in the continuous case transpose to the solutions of a
numerical scheme in specific situations.

In Section 1.4.4.1, we apply the abstract situation to the f-schemes associated to (1.4.1)
in the case M = RY.

In Section 1.4.4.2, we consider the case of an embedded manifold by paying attention to
the constraint u(t) € M. Of course, under usual hypotheses ensuring the unique solvability
of (1.4.1) for u(0) € M (e.g. assuming that G is locally Lipschitz), the trajectory of the
solution will remain on M. This is no longer true for general time discretizations. For this
reason, we introduce and study a linearized #-scheme supplemented by a projection step that
enforces the constraint u,, € M.

We consider the backward Euler scheme in the case M = R? in a separate part (Sec-
tion 1.4.5). The fact that each step of this scheme can be rewritten as a minimization
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problem (even in the case of the gradient-like system (1.4.1)) allows us to weaken the regu-
larity hypotheses on G.

Eventually, we apply our methods to some concrete problems. First, we consider in Sec-
tion 1.4.6 a scheme by Alouges [3]| designed for the approximation of minimizing harmonic
maps with values in the sphere S!~'. We establish that the sequence built by the algorithm
does converge to a discrete harmonic map. The original result was convergence up to ex-
traction. Then, in Section 1.4.7, we apply our results concerning the projected 6-scheme
to a discretization of the Landau-Lifshitz equations of micromagnetism (again proposed by
Alouges [4]). These examples illustrate our general results for in both cases the trajectories
lie on a non-flat manifold ((S"=1)"). Moreover, in the last example, the underlying continu-
ous system is not a gradient flow but merely a system on the form (1.4.1) admiting a strict
Lyapunov function.

1.4.2 The continuous case

From now on, M is a C?-Riemannian manifold without boundary. Without loss of gen-
erality, we assume that M is embedded in R? and that the inner product on every tangent
space T, M is the restriction of the euclidian inner product on R%.

We consider a tangent vector field G € C'(M,TM) and a function F € C'(M,R). We
assume that —V F and G satisfy the angle condition defined below.

Definition 1.4.1. We say that G and VF satisfy the angle condition if there exists a real
number a > 0 such that

(G(u), ~VF(@)) > of|G@)||VFW)|,  Vue M. (1.4.4)

Remark 1.4.1. In this definition and below, when we consider a differentiable function
F: M — R, we write Vi F or simply VF to denote the gradient of F' with respect to the
tangent space of M. In particular, VF(u) € T,M. If the function F is also defined on a
neighborhood Q of M in R, the notation VF is ambiguous. In this case VF(u) denotes the
gradient of F' in RY, that is VF(u) = (9p, F(u), -+ ,0.,F(u)) and Vi F(u) = g, 0, VE ()
where I, s denotes the orthogonal projection on the tangent space T,M C R?.

We assume moreover that F' is a strict Lyapunov function for (1.4.1):

Definition 1.4.2. We say that F' is a Lyapunov function for (1.4.1) if for every u € M, we
have (G(u),—VF(u)) > 0. If moreover, VF(u) = 0 implies G(u) = 0 then we say that F is
a strict Lyapunov function.

As we already noticed, the key tool of the convergence results presented here is a F.o-
jasiewicz inequality.

Definition 1.4.3. Let ¢ € M.
1) We say that the function F satisfies a Lojasiewicz inequality at ¢ if there exists 3,0 > 0
and v € (0,1/2] such that,

|F(u) — F(o)|'™ < B|IVF(u)|, Vu € B(p,0) N M. (1.4.5)
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The coefficient v is called a Y.ojasiewicz exponent.
2) The function F satisfies a Kurdyka-fLojasiewicz inequality at ¢ if there exists o > 0
and a non-decreasing function © € C(R4, R ) such that

©(0) =0, © > 0 on (0,+00), 1/0 € LL.(Ry) (1.4.6)

and,
O (IF(u) = F(o)) < IVF@),  Vue B(p,0) N M. (1.4.7)

Notice that the first definition is a particular case of the second one with ©(f) =
(1/B8)f17. The interest of the first definition relies on the following fundamental result:

Theorem 1 (Lojasiewicz [17], see also [15]). If F : Q € R? — R is real analytic in some
neighborhood of a point ¢, then F' satisfies the Lojasiewicz inequality at .

Remark 1.4.2. The fojasiewicz inequality only provides information at critical points of F.
Indeed, if ¢ is not a critical point of F', then by continuity of VF, the Lojasiewicz inequality
is satisfied in some neighborhood of .

It is well known that the Kurdyka-FLojasiewicz inequality implies the convergence of the
bounded trajectories of the gradient flow (1.4.3) as t goes to infinity. Here we state the
convergence result in the more general case of a gradient-like system:

Theorem 2. Assume that F' is a strict Lyapunov function for (1.4.1) and that G,V F satisfy
the angle condition (1.4.4). Let u be a global solution of (1.4.1) and assume that there
exists p € w(u) such that F satisfies the Kurdyka-Lojasiewicz inequality (1.4.7) at ¢. Then
u(t) — ¢ ast — +o0.

Remark 1.4.3. In many applications, the Kurdyka-Lojasiewicz hypothesis holds at every
point. Moreover, for finite dimensional systems the fact that w(u) is not empty is often the
consequence of a coercivity condition on I,

F(u) — 00, as |lu|| — oo. (1.4.8)
Proof. The proof stated here follows [10]. First we write

4P "2 ). Py < —alGum)IIVFum)| < o

and the function F(u) is non-increasing. By continuity of F' and since ¢ € w(u), F(u(t))
converges to F(y) as t goes to +00. Changing F' by an additive constant if necessary, we
may assume F'(p) = 0, so that F(u(t)) > 0 for every t > 0.

If F(u(to)) = 0 for some ¢ty > 0 then F(u(t)) = 0 for every t >t and therefore, (since F'
is a strict Lyapunov function), u is constant for ¢ > ¢y. In this case, there remains nothing
to prove.

Hence we may assume F(u(t)) > 0 for every t > 0. Since F satisfies a Kurdyka-
Lojasiewicz inequality at ¢, there exist ¢ > 0 and a function ©® € C(Ry,R;) satisfy-
ing (1.4.6) and (1.4.7). Let us define

f
B(f) :/0 @ts)ds, F>0. (1.4.9)
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Let us take € € (0,0). There exists ty large enough such that
lu(to) = ¢l + o™ @(F(u(to))) < e.

Let us set ¢; := inf{t > to : [Ju(t) — ¢|| > €}. By continuity of v we have t; > ty. Then for
every t € [t1,tp), using the angle condition (1.4.4) and the Kurdyka-FLojasiewicz inequality,
we have

d _ (G(u), =V F(u))

- SO(F() =

oFa@)y) = el = alw@®l- (1.4.10)

Integrating on [to,t) for any ¢ € [to,t1), we get

IN

[u(t) =l < lu(t) —ulto)ll + [luto) — ¢l < /t 1 [/ ()||ds + [lu(to) —

0

< aT (P (u(t)) + llulto) — ¢l <e.

This inequality implies ¢; = +o0. Eventually, the estimate (1.4.10) yields @ € L'(R,) and
we conclude that u(t) converges to ¢ as t goes to infinity. O

In the case of a gradient flow and if the Lojasiewicz inequality is satisfied, we have an
explicit convergence rate that depends on the Lojasiewicz exponent. In order to extend this
result to gradient-like systems, the angle condition is not sufficient:

Definition 1.4.4. We say that G and VF satisfy the angle and comparability condition if
there exists a real number v > 0 such that

(G(w), ~VF(w)) > %(HG(U)H?HWF(U)H?), Vu € M. (1.4.11)

Remark 1.4.4. Notice that this condition implies the angle condition (1.4.4). In fact (1.4.11)
15 equivalent to the fact that there exists o > 0 such that for every w € M,

(G(u), =VE(u)) = af|G)[[VF(u)]|

and
a G| > [[VF ()| > a|G(u)].

Theorem 3. Under the hypotheses of Theorem 2, assume moreover that VF and G satisfy
the angle and comparability condition (1.4.11) and that F satisfies a Lojasiewicz inequality
with exponent 0 < v < 1/2, then there exist ¢, > 0 such that,

—nt fv=1/2
lu(t) — ol < 3°° Tv=1/2 Vit >0. (1.4.12)
ct=V/A=2)  f 0< v <1/2,
Proof. By Theorem 2, we know that wu(t) converges to ¢ as t goes to infinty. As in the
preceding proof, we may assume F'(¢) = 0 and F'(u(t)) > 0 for every t > 0. Let ® be defined
by (1.4.9) with ©(f) := (1/8) 17" and let us set H(t) = ®(F(u(t))). In this case, we have
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the explicit formula ®(f) = (8/v)f". Next let t; > 0 such that ||u(t) — ¢| < o for every
t > t;. By (1.4.10), for every t > t;, we have

+oo +oo
lu(t) — | < /t |/ (s)||ds < /t YL H (s)ds = yTH(t). (1.4.13)

Using the angle and comparability condition (1.4.11) and the f.ojasiewicz inequality (1.4.5),
we compute

/) = BIFO) (~ 5 o)) 2 SR JIVEa)
( S ) 1—v
= DR 5 (PO = RG] ™ = M)

where A = C(v,3,v) > 0. Summing up, we have

1—v

H'(t)+XH@)] ™ <0, Vt > 1.

In the case v = 1/2, we get H'(t) + AH(t) < 0. Writing H(t) = e *g(t) we conclude that g
is non-increasing, so H(t) < ce™ for every t > t;.

In the case 0 < v < 1/2, we set K(t) := [H(t)]" ")/ This function satisfies K'(t) >
Av/(1 — 2v), which implies K(t) > at for some a > 0 and for ¢t large enough. Hence
H(t) < (at)fu/(172u) _ ct*l//(172u)'

Combining this estimate with (1.4.13) completes the proof. O

In the sequel, we use some tools related to Riemannian metrics on R? that we introduce
here.

Definition 1.4.5. Let g be a Riemannian metric on R?. We recall that the gradient VgF (u)
of F' with respect to the metric g at a point u is defined by

(VF(u),X) = (V4F(u),X),, VXeR?

We write (,.), (to be precise, we should write (.,.),.,) for the inner product on the
tangent space at the point u. We also write ||.||, for the induced norm.

In [7], Barta et al. establish the remarkable result that when (1.4.1) admits a strict
Lyapunov function then, up to a change of metric, (1.4.1) is a gradient system. The following
theorem is a direct corollary of Theorem 1 and Theorem 2 in [7].

Theorem 4. Assume that F' is a strict Lyapunov function. Then there exists a Riemannian
metric g on M = {ueR?: G(u) #0} such that G = —V4F.

Moreover, if VF and G satisfy the angle and comparability condition (1.4.11) then g is equiv-
alent to the Euclidean metric. Namely, there exist c1,co > 0 such that

| X[ < Xy < 2l X], VX € R Vu e M. (1.4.14)

For some numerical schemes, we are able to obtain Results 1 and 2 under the following
additional assumption:
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Definition 1.4.6. We say that VF satisfies the one-sided Lipschitz condition if there exists
¢ > 0 such that:

(VF(u) = VF(v),u —v) > —c||u—vl|? Yu,v € M. (1.4.15)

Let us define the set of accumulation points of the sequence (u,) C M:
w((uy)) = {go € M : there exists a subsequence (uy, ) s.t. uy, PR gp} .
—00

To end this section, we recall the main hypotheses introduced above:
o w(uy) is not empty. (HO)

(In applications, this hypothesis is mainly a consequence of (1.4.2) and (1.4.8).)

o The Kurdyka-FLojasiewicz inequality holds at some ¢ € w(uy,). (H1)
o VF and G satisfy the angle and comparability condition (1.4.11). (H2)
o V F satisfies the one-sided Lipschitz condition (1.4.15). (H3)

For convergence rate results, (H1) is replaced by
. The Lojasiewicz inequality holds at some ¢ € w(uy,). (H1)

Other assumptions on the regularity of G and F' will be made in the statement of the results.

1.4.3 Abstract convergence results

In this section we prove Results of type 1, 2 and 3 for abstract sequences (u,) C M
satisfying the two additional conditions introduced below. In the case M = R?, Results of
type 1 and 2 are known (see Absil et al. [1]). The proofs are identical in the case of an
embedded manifold but we provide them for completeness and because we use them in the
proof of Result 3.

Let us introduce our first condition:

AC>0,Yn >0, F(up)— F(upt1) = C||VurF (un)|llun — tngt]]- (H4)
We need moreover a discrete version of the strict Lyapunov hypothesis:
Yn >0, F(ups1)=F(u,) = Upt1 = Up. (H5)
We first state a Result of type 1.

Theorem 5 (|1] Theorem 3.2). Let (u,) C M. Assume that hypotheses (HO), (H1), (H4)
and (H5) hold. Then the sequence (u,) converges to ¢ as n goes to infinity.
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Proof. By (H4) the sequence (F'(uy,)) is non-increasing, so by continuity of F' and hypothesis
(HO), we know that F'(u,) converges to F(y) which can be assumed to be 0. By (H5), we
may assume that F'(u,) is decreasing, since in the other case, the sequence is constant and
thus converge to . Since F' satisfies the Kurdyka-f.ojasiewicz inequality at ¢, there exist
o > 0 and a non-decreasing function © satisfying (1.4.6) and (1.4.7). Let ® be the function
defined by (1.4.9). We have for n > 0,

Flun) g 1
OEn) ~ @F ) = [ G 2 s ()~ Fluns).
Using (H4), we obtain
IV arE (un)|

B(F(un)) = B(F(uysr)) = C (1.4.16)

WH%H — Up|.

By (HO0) and the convergence of (F(uy)) to 0, there exists i such that

1
||Uﬁ—90||+5‘1)(F(Uﬁ)) < 0.

Let us define
N = sup{n>n:|ux—¢l <o, Vn<k<n},

and assume by contradiction that N is finite. For every n < n < N, we have ||u, — ¢| < o,
so we can apply (1.4.7) with v = u,, and deduce from (1.4.16)

ltnis —unll < (/O {B(F(un)) = B(F(uns1))},  Va<n<N+1  (1417)

Summing these inequalities, we get

l 1
D s —unl| < FB(F(un)): (1.4.18)

In particular,

1
luns1 — ¢l < E‘I’(F(Urz)) + |lun — ¢l < o,

which contradicts the definition of N. So N = 400, and the convergence of the sequence
follows from (1.4.18). O

We now establish a result of type 2.

Theorem 6 ([1] Proposition 3.3). Let ¢ be a local minimizer of F' such that F' satisfies a
Kurdyka-Lojasiewicz inequality in a neighborhood of ¢. Consider a sequence (u,) C M and
assume that (H4) holds. Then, for every n > 0 there exists € € (0,n) only depending on F,
n and the constant C' in (H4) such that

lun —ll <& = [lun —¢ll <n, ¥n >n.

Moreover, in this case, the sequence (u,) converges.
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Proof. We assume without loss of generality that F'(¢) = 0. Since ¢ is a local minimizer of
F, there exists p > 0 such that

Vue R Ju—o| <p = F(u)>0. (1.4.19)

Moreover, since F' satisfies the Kurdyka-f.ojasiewicz inequality at ¢, there exist ¢ > 0 and a
function © satisfying (1.4.6) and (1.4.7).
Let n > 0 and let us set
n = min(pv g, 77)?
We fix € € (0,7) such that for every u € M

lu—pll<e = Jlu-g¢l+1/C)2(F(u)) <1

Then we consider a sequence (u,) satisfying (H4) and we assume that there exists n > 0 such
that ||uz — || < e. Then, as in the proof of the previous result, we define

N = sup{n>n:|u,—¢p| <n Vn<k<n},

and assume by contradiction that NV is finite. As in the proof of the preceding result, we
establish and sum the Kurdyka-FLojasiewicz inequalities (1.4.17) for n < n < N to get:

N
Z [tnt1 —unl < é{@(F(uﬁ)) — (F(un))}-

By definition of N and (1.4.19), we have F(uy) > 0 so that ®(F(uy)) > 0 and (1.4.18)
holds. We deduce

1 _
luv+1 = oll < FZ®Fwa)) + lun =l < 7,

which contradicts the definition of N. The convergence of (u,,) then follows from (1.4.18). O

Remark 1.4.5. The result does not hold if we only assume that ¢ is a critical point of F.
In this case even if un is very close to @, the sequence may escape the neighborhood of ¢ by
taking values F(u,) < F(p). In this case the proof is no more valid. Indeed, we still have
the key estimate

N
leunﬂ—un\l < @ (F(un)) — ®(F(un))},

but we can not bound the right hand side by c®(F(uz)).

In order to prove a convergence rate result of type 3, we need to supplement (H4) with
the following hypothesis: there exists C'y > 0 such that for every n > 0,

[tnt1 = unll = Cof[ VE (un)]- (H6)

In the case of numerical discretizations of the gradient flow (1.4.3) (or more generally of
a gradient-like system (1.4.1)), the quantity ||up+1 — uy|| behaves like At ||V F(u,)||, where
At is the time step. For these applications, the constant Cs in the above hypothesis should
scale as At: we expect Cy = C{At. In this context, the factors Con in the convergence
rates (1.4.20) below, have the form Cit,. So, these rates are uniform with respect to the
time step At. In fact we recover the convergence rates of the continuous case (with possibly
different prefactors).
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Theorem 7. Let (u,) C M. Assume that hypotheses (HO), (H1') and (H5) hold and that
there exist C,Cy > 0 such that (H4) and (H6) hold for n > 0. Then there exists n > 0 such
that for all n > n

(1.4.20)

iy — o < A€ if v=1/2,
" o Ao (an)_y/(1_2y) Zf O<rv< 1/2.

where v is the Lojasiewicz exponent of F' at point p and A1, Ao are positive constants depending

on C,0 and v.

Proof. First let us recall some facts from the proof of Theorem 5. We know that (u)
converges to ¢ and that the sequence (F'(u,)) is non-increasing and converges to F'(¢) that
we assume again to be zero. Let 7 > 0 such that ||u, —¢|| < o for n > n, we can apply (1.4.18)
with 7 = n and N = +oo for every n > n. Here, the function ® defined by (1.4.9) has the
explicit form ®(f) = (5/v)f" and estimate (1.4.18) yields

B
Cv
Next, let us define the function K : (0, +00) — (0,+00) by

[F(un)]”, Vn > n. (1.4.21)

[un — ¢l <

—Ilnz it v=1/2

K(z) = 1
— —  if 1/2
A2y if 0<v<l1/

The sequence (K (F'(uy))) is non-decreasing and tends to infinity. Using (H4) and (H6), we
have

K(F(un1)) = K(F(un)) =

/FW dr F(un) — F(tni1)
F(un+1) g2 [2F(Un+1)]272y

(H4)(H6) o
> CCol|VF(un)|?/ [F(unga)]* .

Applying (1.4.7) in the right hand side of the last inequality, we get
K(F(uni1)) — K(F(up)) > CCy/B*,  Vn>n.
Summing from n to n — 1, we get that there exists ¢; € R such that
K(F(uy)) > (CCy/B*n+c1,  VYn>a. (1.4.22)
Now let us consider the case v = 1/2, we have K(F(uy)) = —In(F(uy,)), so we get
F(u,) < )\67(002/52)", Vn > n,

with A = e™“1. Recalling (1.4.21), the Theorem is proved in this case.
Eventually, if 0 < v < 1/2, (1.4.22) reads

19 1/(1-2v)
CCy/3%)n + 61}

Again, (1.4.21) completes the proof. O

, Vn > n.

F(un) < [(
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1.4.4 The f-scheme and a projected f-scheme

In this section, we show that the convergence results of Section 1.4.3 apply to some
numerical schemes associated to system (1.4.1) under the set of hypotheses (HO0), (H1),
(H2), (H3) ((HO), (H1"), (H2), (H3) for the convergence rate). We also need some
regularity assumptions on G and F'.

1.4.4.1 The #-scheme in R?

We first consider the f-scheme in the case M = R?. Recall that for a fixed 6 € [0, 1], the
f-scheme associated to equation (1.4.1) reads:

% = 0G(uni1) + (1 — 0)G(un). (1.4.23)
Lemma 1.4.7. Let 6§ € [0,1] and let (w,) be a sequence that complies to the 6-
scheme (1.4.23). Assume that G is Lipschitz continuous and that hypotheses (H2) and
(H3) hold. Then there exist 1, 2, At’ > 0 such that for At € (0, At'),

_ 2
F(WHHMW < F(up), Yn>0, (1.4.24)
and
w > w|VF(u)|,  ¥n>0. (1.4.25)

Proof. First we establish (1.4.25). We rewrite the #-scheme in the form

% = G(un) +0[G(uns1) — Gun)] -

Denoting K > 0 the Lipschitz constant of G on R? and using the comparability condi-
tion (1.4.11), we deduce

Hun-l—l_
1+ KAt)—————
(14 etz

So (1.4.25) holds with ps = v/4 as soon as At € (0,1/K).
Next we prove (1.4.24). By assumption (H2) we can apply Theorem 4 and there exists a
metric g on M := R\ {v: G(v) = 0} satisfying (1.4.14) and such that

(=VF(u),w) = (G(u),w) Yu e M,w e R% (1.4.26)

g(u)>

Let us set 6, := u, — up41 and write the Taylor expansion,

F(un) = F(ups1) + < /0 1 VE (tns1 + t6,) dt,5n>

1
= F(upt1) + (VF(upt1),0n) + </ VEF(tupy1 + ton) — VF(upi1), (5n> dt.
0
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Applying assumption (H3) with v = uy41 + td, and v = up41, we get

1
Flun) — Flunsr) — (VF(uni1),6) > —c / 18,1 dt,
0
that is,
Fluns1) = Flun) < (VE(tns1)s st — tn) + (¢/2)lumst — a1

If u,41 € M, then we may apply (1.4.26) with u = u,,; and get
Fluns1) = F(un) < (Gluni)stin — i) ggun sy + (@/2) [tnss —ual® (14.27)

If u,1 & M, then by the comparability condition we have G(uny1) = VF(tng1) = 0 and

this estimate still holds if we set (-,-) (, . ) to be the usual scalar product. Adding the term

0 = <%—90(un+1)—(1—9>0(w, un—un+1>

g(un+1)

to the right hand side of (1.4.27), we get

Flunin) = Flun) < (/A0 tnr =l + (021 —
+ (1= 0)(G(un+1) — G(un), un — Un+1>g(un+1) .

Combining this estimate with (1.4.14), we obtain

|tnt1 — UnH2
JAN

F(unt1) — F(up) < — AL )

with pag := c3 — At(c/2+4 (1 —6) K c3) where K is the Lipschitz constant of G. The parameter
pa: being larger than the positive constant py := c3/2 for At small enough (1.4.24) is
proved. ]

Corollary 1.4.1. Let § € [0, 1] and let (uy,) be the sequence defined by the §-scheme (1.4.23).
Assume hypotheses (H2), (H3) hold, that G is Lipschitz and that At € (0, At’). Then:

e If (HO), (H1) hold, the sequence (u,,) converges to .

o If F' satisfies a Kurdyka-t.ojasiewicz inequality in the neighborhood of some local min-
imizer ¢ then for every n > 0 there exists € € (0,7) such that

lun —pll <& = |lun =l <n, ¥n =>n.

e If (HO), (H1') hold, the sequence (u,) converges to ¢ with convergence rates given
by (1.4.20) with Cy = puju3At.

Proof. From (1.4.24) and (1.4.25) of Lemma 1.4.7, we easily obtain (H4), (H5) and (H6)
with C' = pypo and Cy = ,ul,u%At. The result is then a consequence of Theorems 5, 6
and 7. O
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1.4.4.2 A projected 0-scheme

We now consider an embedded C%—manifold M C R¢ without boundary and with a uniformly
bounded curvature. We present a simple scheme for the approximation of (1.4.1). This
scheme has two steps. The first step requires a family of mappings {G, : v+ T, M —
TuM }yenr. The mapping G, should approximate G around u. Natural choices are

Gyu(u+v) := G(u) or Gy(u+v) = Gu)+(VG(u),v) YveT,M.

Starting from u,, € M, the first step of the scheme is just the computation of an approximation
vy, of 4 thanks to the classical f-scheme applied to the system @ = G, (u). We obtain an
intermediate iterate 1 := u, + At v, which does not belong to M in general. The second
step consists in projecting 4,1 on the manifold M. Here, to fix the ideas, we only consider
the orthogonal projection

My(u) € argmin{|jv —ul|? : v € M}.

Other choices are admissible as soon as (1.4.33) holds. If M is the boundary of a convex set
S, then iy, 1 € u, + T, M belongs to R\ S, so Iy (ty 1) = I15(ty41) and the orthogonal
projection is uniquely defined. This is not true for general M. Anyway, here M is of class C?
and we assume that the projection is uniquely defined as soon as d(ty,y+1, M) < ¢ for some
0> 0.

More precisely, the projected #-scheme described above is defined as follows. Let us
choose a fixed parameter 6 € [0,1] and let ug € M. Then for n =0,1,2, ...

step 1. Find v, € T, M such that

Un = 0Gy, (Un + At vy) + (1= 0)Gl, (un). (1.4.28)

step 2. Set up41 := Har(u, + Atvy).

In this manifold context, we need to strengthen the previous regularity hypotheses. We
will assume for simplicity that the family {G,} satisfies

Gyu(u) = G(u) Yu e M. (1.4.29)

We assume that G is bounded and that G, VF and the family of mappings {G,, } are uniformly
Lipschitz continuous, i.e. there exist ), K > 0 such that

6wl < @ Yued (1.4.30)
|Gu(u +v) — (u—H})H < Kllv =72 Yu e M, Yu,v' € T, M, (1.4.31)
IVE(u) = VF(W)|| < Klu—|| Vu,u' € M. (1.4.32)

We also assume that the projection acts only at second order, that is there exists J, R > 0
such that

(T (u+v) — (u+v)| < Rl Yu € M, Vv € T,,M such that ||v|]| <.  (1.4.33)

With these hypotheses, we have the analogue of Lemma 1.4.7:
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Lemma 1.4.8. Let # € [0,1] and let (u,) be the sequence defined by the projected 6-
scheme (1.4.28). Assume that (1.4.29,1.4.30,1.4.31,1.4.32) and that (H2) hold. Then there
exist p1, po, At’ > 0 such that for At € (0, At'),

lung1 — un||2

F(upy1) + 1 7 < F(uy), Vn >0, (1.4.34)
and
w > w|VF(u)|,  ¥n>0. (1.4.35)

Proof. First we establish that the sequence (v,) is bounded. Indeed, by (1.4.29) the first
step of the scheme reads,

vn = Glup) +0 [Gun (un + Atv,) — Gy, (un)] )

and we deduce from (1.4.30) and (1.4.31) the estimate (1 — KAt)[jv,|| < Q. So, for At €
(0,1/(2K)), we have

[on]| < 2Q.

Next, for At small enough, we have At||v,|| < ¢ and the projection step is well defined.
Moreover, by (1.4.33), we have

Unp41 — Un
At

Un = + qn,;

with ||g, || < RAt||v,]|?, so there exists o € (0, 1) such that for At small enough, we have
alle* < ala,b)y <a Yc|? (1.4.36)

for any triplet of vectors a, b, ¢ in the set {vy,, (1/At)(up+1 — up)}. Similarly, we deduce from
the angle and comparability condition (H2), that (1.4.36) holds for any choice a,b,c in the
set

{G(un), =V F(un), vn, (1/A)(uns1 — )}

In particular, (1.4.35) holds.
Eventually, since F is of class C™!, for At small enough, we have

F(un) - F(unJrl)

(1.4.36) — upl|?
(@

for some H > 0. Thus, for At small enough, (1.4.34) holds with py = /2. O

Corollary 1.4.2. Let 6 € [0,1] and let (u,) be the sequence defined by the projected 6-
scheme (1.4.28). Assume that (1.4.29,1.4.30,1.4.31,1.4.32) and hypothesis (H2) hold and
that At € (0, At’). Then:

e If moreover the hypotheses (H0), (H1) hold, the sequence (u,) converges to ¢.
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o If F' satisfies a Kurdyka-t.ojasiewicz inequality in the neighborhood of some local min-
imizer ¢, then for every n > 0 there exists € € (0,7) such that

lun — ¢l <e = |lup—¢| <n, Vn >n.

e If the hypotheses (H0), (H1’) hold, the sequence (uy,) converges to ¢ with convergence
rates given by (1.4.20) with Cy = puju3At.

Proof. The proof is the same as the proof of Corollary 1.4.1, simply replace Lemma 1.4.7
by Lemma 1.4.8. U

1.4.5 The Backward Euler Scheme in R

The results of the previous section are easily extended to general Runge-Kutta schemes.
The counterpart of this generality is that quite strong regularity assumptions are made on F'
, Gy, or G. Here, we show that these assumptions may be relaxed in the case of the backward
Euler scheme in the case M = R?

We assume M = R? Recall that the backward Euler scheme associated to equa-
tion (1.4.1) reads:

% = Gups1), 120, (1.4.37)

where uy € R? is the initial condition and At > 0 is the time step. We establish convergence
Results of type 1 and 2 and a convergence rate result for these schemes under a Lojasiewicz
inequality (H1) (or (H1')), the angle and comparability condition (H2), and (as unique
regularity assumption) the one sided Lipschitz condition (H3). These results extend Theorem
2.4 and Proposition 2.5 in [18] to gradient-like systems.

As a first step, we use Theorem 4 to show that the solution of the scheme (1.4.37) can
be interpreted as a minimizer.

Lemma 1.4.9. Assume that VF and G satisfy the angle and comparability condition (H2)
and that F satisfies the one sided Lipschitz condition (H3). There exists At* > 0 such that
for At € (0, At*), if (u,) C R? complies with the backward Euler scheme (1.4.37), then for
every n > 0, u,41 is the unique minimizer of the functional
2
1o = unlgqu 1)

2At ’

E"(v) == F(v)+
where ¢ is the Riemannian metric provided by Theorem 4.

Remark 1.4.6. The above functional E™ depends on the point u,41 through the local met-
ric g(unt1) so (for a mon-constant metric) the minimization problem can not be used as a
definition of the scheme.

Proof. Since F' is a strict Lyapunov function, we may apply Theorem 4. Let g be the
Riemannian metric on M = {u € R%: G(u) # 0} provided by this Theorem. For any u € M,
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the map (X,Y) € RYxR? — (X, Y>g(u) is a coercive symmetric bilinear form, so there exists
a d x d symmetric positive definite matrix A(u) such that

(X,Y) = (AW)X,Y), VX, Y eR%L

g(u)

With this notation, the gradient of £™ reads
VE"(v) = VF()+ (1/At)A(upt1)(v — up).
Thus, for every u,v € R, (VE"(u) — VE"(v),u — v)

= (VF(u) = VF(v) + (1/At)A(up+1)(u —v), u —v)
= (VF(u) — VF(), u—2v) + (1/At)||u — v]?

g(unt1)

Using the one-sided Lipschitz condition (1.4.14) and (1.4.15), we get
(VE™(u) — VE™(v),u —v) > (& —cAt)|lu —v|?*/At.

So E™ is strongly convex for all At < At* := ¢2/c. Hence, it admits a unique minimizer v,
characterized by VE™(vp41) = 0, that is:

0= VF(ni1) + (1/A) A(tnt1)(0nt1 — tn)
= A(uns1) [=G(vnt1) + (1/A) (vny1 — un)],

which is equivalent to the fact that v,y; solves (1.4.37). Consequenlty up4+1 = vUpy1 1S
uniquely defined as the unique minimizer of E™ as claimed. O

Notice that Lemma 1.4.9 implies that for At < At*, if G(uy) = 0 for some N > 0, then
Uy = uy for every n > N. In such a case, there is nothing to prove concerning convergence.
In the sequel, we assume G(u,) # 0 (that is u, € M) for every n > 0.

We now state Result 1 for the backward Euler scheme.

Theorem 8. Assume the set of hypotheses (HO), (H1), (H2), (H3), let At € (0,At*),
where At* is as in Lemma 1.4.9, and let (uy),~q be a sequence defined by (1.4.37), then the
sequence (u,) converges to ¢ as n goes to infinity.

Proof. Assume At < At*, by Lemma 1.4.9, we have E™(u, 1) < E™(uy,), that is

2

Unp, — Up m
lns1 = gt + F(unt1) < Flun) (1.4.38)

2At

Thus, the sequence (F'(uy)) is non-increasing. We assume again without loss of generality
that F'(¢) =0, so F(uy) | 0 as n upoo.

Next, since F' satisfies the Kurdyka-f.ojasiewicz inequality at ¢, there exist o > 0 and
a function © satisfying (1.4.6) and (1.4.7). Let us fix n > 0 and consider the continuous

problem
v(0) = up, 0 =—-VF(v)

From the study of the continuous case, we know that if ||u, — ¢| < & < ¢/2, with £ small
enough then v(t) remains in B(p,0/2) for any time ¢ > 0. Moreover, v(t) converges to
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v* € B(p,0) as t tends to infinity. At the limit, we have VF(v*) = 0 and by the Kurdyka-
Lojasiewicz inequality, this leads to F(v*) = 0. Now, since F(u,41) > 0, there exists
T € (0,+00] such that F(v(T)) = F(upt1). Then, from the optimality of w,y1, we have
tnt1=Unllgunir) < 10(T)=tnllgeunsr)- By (1.4.14), thisleads to [|upy1—un| < e2/cr|lv(T)—

On the other hand, using the notation and computations of the proof of Theorem 2
(see (1.4.9), (1.4.10)), we have,

@ (F(un)) = @ (Fluny1)) = @ (F(v(0) — @ (F(v(T)))

T q (1.4.10) r B B
_— /0 L@ () > a /0 lo(s)llds = allo(T) - unl.

Therefore, if ||u, — ¢|| < € < /2, with ¢ small enough then

Jnss — wall < e1/(e20) (@ (Flun)) = @ (Flui1)) (1.4.39)

Finally, using (1.4.39) and summation, we conclude as in the proof of Theorem 5 that the
sequence (u,) converges to . O

As in Section 1.4.3, we also have a result of type 2:

Theorem 9. Assume that hypotheses (H2) and (H3) hold and let ¢ be a local minimizer of
F such that F satisfies a Kurdyka-fojasiewicz inequality in a neighborhood of .

Then, for every n > 0 there exists € € (0,n) such if At € (0, At*), where At* is as in
Lemma 1.4.9, and if (uy) is a solution of the scheme (1.4.37), we have

lun —pll <e = |lun—ol <n, Vn>n.

Proof. Theorem (9) is proved along the lines of Theorem 6. We do not repeat the arguments.
O

Eventually, if the Lojasiewicz inequality holds then we can estimate the convergence rate
in Theorem 8.

Theorem 10. Assume that the set of hypotheses (HO), (H1'), (H2), (H3) holds, let At €
(0, At*) and let (u,) C R? be a solution of (1.4.37). There exist i > 0 and A\, Ao > 0 such
that for all n > n

e r2nAt if v=1/2
lun — ol < 1-2
Ao (nAL) VA=) ir 0 < u < 1/2

where v is the Lojasiewicz exponent of F' at the point .

Proof. The proof is the same as the proof of Proposition 2.5 in [18]. O
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1.4.6 Harmonic maps and harmonic map flow

In this section, we consider a discretization of the following problem: given Q C R? a
bounded domain with a Lipschitz boundary and given g € H'/ 2(09, 871, find a critical
point of the Dirichlet energy

1 2
D(u) = 5/9\Vu|,

under the constraint
u € Hgl(Q7Sl—1) = {v € HI(Q,Rl) cv=gondQ, |v(z)] =1 ae. in Q}

Remark 1.4.7. For d = 3 and | = 2, the energy D appears as a simplified model for the
Oseen-Franck energy of nematic liquid crystals. In this context the mapping u : Q — S?
represents the orientation of the molecules.

It is well known that such maps exist (for example, we may solve the minimization
problem by considering a minimizing sequence and using the relative weak compactness of
bounded subsets of H, gl) Such maps are called harmonic maps with values in S'~!. They are
characterized by the following condition: u € H, gl(Q, S!=1) satisfies the non- linear system:

— Au = |Vul*u in D'(Q). (1.4.40)

During the preceding decades, many authors have considered existence and regularity prob-
lems related to these harmonic maps (see e.g. [9, 11, 14, 20| and a rather complete overview
in [12]).

F. Alouges proposed in [2, 3] an efficient algorithm for finding numerical approximations
of minimizing harmonic maps. In the continuous case, the algorithm reads as follows: Given
an initial guess ug € Hgl(Q, S!=1), compute for n = 0,1,

[ step 1. Find v, minimizing v — D(u,, + v) in K, with

K, = {ve H{(QR), u(z)-v(x) =0 for ae z€Q}. (1.4.41)

step 2. Set up41(z) := Un () + vy ()

- = Tun@) T on@)] C S

By construction, we have D(u,, + v,) < D(u,) so the energy decreases during the first step.
Notice that for every @ € Q, ||un(x) + v, (2)||? = 1+ [Jva(2)]|? > 1, so, the second step is the
projection of u, (x)+wv, () on the closed unit ball of R!. This ball being convex, this projection
is a contraction and we have D(up4+1) < D(uy, + v,). Consequently D(up41) < D(uy) and
the algorithm is energy decreasing. It is also established in [3] that, up to extraction, the
sequence (u,) weakly converges to a harmonic map in H'(Q).

Let us now discretize in space. As in [3], we choose a finite difference approximation.
Let us fix h > 0 and a finite subset Q" of hZ? which stands as the discrete domain. The
corresponding discrete energy is

. 5 ,

Dh(uh) hzd > [u”(x) — u"(y)|I?

z,y€Q, |lz—yll=h
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defined for any mapping u" € H" := (Rd)Qh. The discrete boundary is supposed to be a
non-empty subset I'" of Q" such that every point = € Q" is connected to I'* by a finite path
in Q" ie.

there exist z = !, 2%, - - ,:CZ € Q" with ||z — 2" ||| = h and xg e’ (1.4.42)

The discrete boundary condition is a given function g : I'* — §¢—1,
Our discrete problem is then: find minimizers or critical points of D" in the manifold

M= {uh € H" :u(z) = g"(2),Yo € T"; |u"(2)]| =1, Vz € Qh} .

Let us characterized these critical points. For this, we compute the differential of D" at some
point u” : Q" — R Let u/,v" : Q" — R, we have D" (u/ +vP) =

1
RV S D N CLC R U RE By R
g;eﬂh a:,yGQh,Ha:—yH:h
so if we introduce the scalar product
<vh, wh>Hh = e Z <vh($), wh(a:)>, oL O - R
xeQh
we have by definition,
1

[thDh(uh)} (@) =75 Y W@-u) veeoh (1.4.43)
yeQ™, a—yl|=h

Let us consider a point v € M ;h. The tangent space T,,n M ;h at this point is
th = " e HY 0" (2) - WM(z) = 0, Vo € Q" \ TP},

where we have set
H} = {vh € H" : vh(z) =0, Vo € Fh}.

Taking into account the constraint u”(x) € S'=! for every x € Q" we see that u" € M;h is a
critical point of D" in M;h if and only if there exists A" : Q" \ I'" — R such that

[thDh(uh)] (@) + Ne(x)ul(z) = 0, VaeQh\Ih (1.4.44)

Definition 1.4.10. If " € M;h satisfies (1.4.44), we say that it is a discrete harmonic map.

The scalar product (, ) is consistent with the L2-scalar product in the space L2(2, R!).
Another interesting bilinear form on H", associated to the energy, is

d ol () — ol wh(z) — wh
<vh’wh>Dh::% T < ()h W) ()h (y)>‘

z,y€Q, z—yll=h
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With this definition, we have HuhHQDh = 2D"(u") for any v € H". Under the connectivity as-
sumption (1.4.42), this bilinear form defines a scalar product on the subspace H{. Eventually,
notice that a discrete integration by parts yields

<VHhDh(vh), wh>Hh = <vh, wh>Dh, Vo, wh € HY. (1.4.45)

The discretized version of (1.4.41) reads: Given an ininitial guess ul € M ;Lh, compute for
n=01,---
step 1. Find v} minimizing v" — D"(uf! +v}!) in K",.

n

1.4.46)
h h (
up(z) + vp(x)
step 2. Set u, () := —2 7 Vo € QM.
i [ufy (z) + v} (@)
Let us state some relevant properties of this algorithm.
Theorem 11 ([2, 3]).
1) The algorithm (1.4.46) is well defined. We have for n >0,
0 < Dhul,,) < DMl +l) < D),  vn>o. (1.4.47)

In particular the sequence (DM(ul)) is non-increasing and convergent.

Moreover, if equality occurs in one of the above inequalities, then v;} =0 for every p > 0
and uy s o discrete harmonic map. Conversely, if (uﬁ) 18 o discrete harmonic map, then
vl =0 and the sequence (ul) is stationary.
2) There ezists )‘2 :QP\T" — R, such that the increment vﬁ satisfies the Euler-Lagrange

equation,

[vyh(uz v v,f;)} () = AN(x)ul(z),  VaeQP\Th (1.4.48)
In particular, we have
Dh(wh)y = DMul) — DMl +oh), (1.4.49)
so that
Y DMwr) < DMug) — lim DM(ul) < DM(ug), (1.4.50)
n—oo

n>0

and consequently vl — 0 as n goes to infinity.

3) Up to extraction, the sequence (uﬁ) converges to a discrete harmonic map.

Proof. The proof of all these results can be found in [3]. However, for completeness, we
establish (1.4.47,1.4.48,1.4.49,1.4.50), that turn out to be useful to our purpose.

The second inequality of (1.4.47) is obvious by definition of v". Now, notice, that if
ul(z) € 71 and vl (x) - ul(z) = 0, then |[ul(2) + v} (2)||? = 1 + ||of(z)||> > 1. So, the
second step of the algorithm is the projection of u(x) 4+ v!(x) on the closed unit ball of R.
By convexity of this ball, this projection is a contraction for the Euclidian distance in R¢, so

for every x,y € Q" we have

[unt1(2) = unp1 ) < |[(un +v0) (@) = (un +0n) (W),

and the first inequality of (1.4.47) follows from the very definition of the energy D".
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Next, for every n > 0, v" minimizes the quadratic functional v +— D"(ul* + v") in the
space th, so it satisfies the Euler equation (1.4.48) for some \! : Q" \ T" — R. We easily
compute

(1.4.48)
D(uy) - Dlwy +vh) = = (VD () +oh), b)) +D'(eh) "= DA,

Summing on n =0, -- -, and using (1.4.47), we obtain (1.4.50). The convergence of (v/) to 0
then follows from the fact that v/D is a norm on M} (recall that T'" satisfies (1.4.42)). O

We can now use the result of Section 1.4.3 to improve the convergence result Theorem 11
3/ by showing that the whole sequence converges.

Theorem 12. The sequence (ul') built by the algorithm (1.4.46) converges to some discrete
harmonic map @". Moreover there exists v € (0,1/2] and constants A1, Ay > 0, such that for
every n > 1,

Ape=2n if v=1/2,

Uy — <
ln = @l gn {Aln"/OQ”) if 0<v<1/2.

Proof. We want to apply Theorems 5 and 7 to the sequence (u,) := (u?), the manifold

M =M ;h C H" and the function F := Df}w. First, recall that we use the scalar product

(-,-)n in the Euclidian space H". Since the manifold M is analytic and F is a polynomial
function, we deduce (using analytical local charts of M) from Theorem 1 that F' satisfies the
Lojasiewicz inequality in the neighborhood of any point of M. The sequence (u!?) is bounded
in the Euclidian space H" so it admits an accumulation point " € M. In order to conclude,
we only have to check that (H4) and (H6) hold.
By (1.4.47) and (1.4.48), we have
F(up) = Flupy) > (1/2)]lvg][7n- (1.4.51)

n

Next, using the linearity of VF', we compute for every wﬁ e K Zh,

<VF(uZ), wZ>Hh = <thDh(UZ + 1), w,’}L>Hh - <thDh(’UZ), w,’}L>Hh .

The first term vanishes by (1.4.48) and using (1.4.45), we get
(VP wh) = (b wlh)

In particular, choosing w! = VF(ul) and using the equivalence of the norms in finite dimen-
sion, there exists o > 0 such that

h h
IVE(uy)llpr < a [loglipn,

So (1.4.51) implies

1
F(up) = Fupy) 2 %HVF(UZ)HD’I o llpn- (1.4.52)

Eventually, we know from (1.4.50) that v/ tends to 0. Since

Upy1(z) = up(z) +vp(2) + O(|lvn(@)]%),
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we have for n large enough
20vnllgn = llunts = unllgn-

The conditions (H4) and (H6) then follow from (1.4.52), (1.4.51) and the equivalence of the
norms. O

Remark 1.4.8. The preceding method also applies to the discretization of the harmonic map-
flow for functions u € L?((0,+00), My) :

ou— Au— |Vul®>u = 0 t>0,  u(0,t) =up € H'(Q,571h).

The corresponding algorithm reads: Given an initial data ug € M;h and a time step At,

compute forn=0,1,---

At
step 1. Find v minimizing v" ?vaﬁih + DMul + Atol) in KZZ'

(1.4.53)

h h
h __Un(z) + Atvy,(2) h
step 2. Set u, () := Tuh () + Aol (2] Vo € Q"

Remark 1.4.9. We do not know wether Theorem 12 still holds in the continuous case. In
fact, in order to reproduce the proof above in the continuous case, we should establish the
following Lojasiewicz inequality

D(u) = D)™ < BllAu+ [ Vul*ul 120,

in the H'-neighborhood of any harmonic map . This is an open issue.

1.4.7 Application to the Landau-Lifshitz equations

In this section, we show that our results concerning the abstract projected 6-scheme of
Section 1.4.4 apply to some discretization of the Landau-Lifshitz equations. These equations
describe the evolution of the magnetization m :  x (0,4+o00) — S? inside a ferromagnetic
body occupying an open region 2 C R?. This system of equations reads

adym —m x oym = (1 + a*)(Am — |Vm|*m), in Q, (1.4.54)

where o > 0 is a damping parameter and 'x’ denotes the three dimensional cross product.
It is supplemented with initial and boundary conditions

a_m =0 on 0f2
on
m(x,0) = mo(x) € S%.

Notice that, at least formally, this evolution system preserves the constraint |m(z,t)| =
1,Vz € Q.
We will consider a discretization of the following variational formulation of (1.4.54),

a/Q&,m-Q/)—/me8tm-1/):—(1+oz2)/QVm-Vw, (1.4.55)
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for every ¢ € H'(Q, R3) which furthermore satisfies ¢ (z).m(z) = 0 a.e. in Q. It is known
that for every initial data mg € H'((2, S?), this variational formulation admits a solution for
all time (see [5]).

Before coming to discretization, let us show that, formally, the Dirichlet energy D(m) =
(1/2) [ |Vm|? is a Lyapunov function for (1.4.55). Indeed, considering a smooth solution

m(x,t), we compute,
d

—D(m(-,t)) = /Vm'v&gm(x,t)da:.
di o

Since, for every = € Q, t — ||m(xz,t)||? is constant, we have dym(x,t) - m(x,t) = 0. So, we
can choose ¢ = dym(-,t) in (1.4.55) and deduce,

d

- 2
- <
GPme0) =~ [ ol de < o

as claimed.

1.4.7.1 Space discretization

We discretize the problem in space using P1-Finite Elements. Let us introduce some
notation. Let (73,), be a regular family of conformal triangulations of the domain ) param-

eterized by the space step h. Let (zf'); be the vertices of 7, and (¢! )1<i<N, the set of

associated basis functions of the so—called P1(73,) discretization. That is to say the functions
(¢1); are globally continuous and linear on each triangle (or tetrahedron in 3D) and satisfy
(b?(x?) = 9;j. We define

Np,
V.= {m = Zm@? Vi, m; € R3} . M= {m eV Vi,m, € 52}
i=1
N
Notice that M" is a manifold isomorphic to (S?)V». For any m = > m;¢l € M", we
i=1

introduce the tangent space

N
T M" = {v = Zv?qb? : Vi,m?-’u? = 0}.
i=1

The space discretization of the variational formulation (1.4.55) reads,

m"(0) =mf € M, and YY" € T,ny M", Yt >0,

h
1.4.56
YR > ot o) of [ot=-ara) [vmiwpr 40
Q Q
Remark 1.4.10. We have replaced the term [, (m™ x p™) - P in the original scheme of [4]

by
Nh

> tm ) -l [ o

i=1
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This modification is equivalent to using the quadrature formula:

/Qfdx ~ ?h;f(w?)/gqb?,

for the computation of this integral. The convergence to equilibrium results below are still
true with an ezact quadrature formula, but the proof is slightly more complicated, see Re-
mark 1.4.11.

We now interpret this variational formulation as a gradient-like differential system of the
form (1.4.1). For this we introduce the Lyapunov functional F' : M" c H'(Q,R?) — R
defined by

1
F(mh) = §/Q|th|2.

As usual, the gradient of this functional is ¢" = VF(m") = A"m", where A" is the rigidity
matrix associated to the P'-FE discretization:

<qh,wh>L2 = /Qth-vwh = %:m?z/);?/w?-v(p? . <Ahmh,wh>L2. (1.4.57)

We also introduce the section G : M" — TM" defined by G(m") := p" where p" €

T,.» M" solves: Yy € T, n M",
Nh
o [owh =Sl xply il [ o= a) [ It vt (1.4.58)
Q P Q Q

The function G is well defined. Indeed, it is sufficient to check that the bilinear form b,,»
defined on T},» M" x T, » M" by

Nh

Bty — o [ ot wh - ooy [
b (B, )—a/ﬂp =3 (mh x ph) m/ng (1.4.59)

=1

has a positive symmetric part. Using p x p! = 0, we see that b, (p", p) = athH%Q(QP
and b,,» is coercive on T,,» M" x T, » M". So, by definition, m" € C'(R., M") solves the
variational formulation (1.4.56) if and only if

mh

d
amh = G(m") vt >0, m"(0) = mp.
We now check that the hypotheses of Theorem 3 hold.

Lemma 1.4.11. The functions G and VF' defined above satisfy the angle and comparabil-
ity condition (1.4.11). Moreover, the Lyapunov function F' satisfies a fLojasiewicz inequal-
ity (1.4.5) in the neighborhood of any point m” of the manifold M = M".
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Proof. For the first point, let us fix m" € M" and write p* = G(m") and ¢" = VEF(m").
Choosing ¢ = ¢" in (1.4.58) and using (1.4.57), we obtain

Nh
h _h h h h h 2 h|2
oo ), = =Yl al [ o = (o)
i=1
Then the Cauchy-Schwarz inequality, the identities |m?|| = 1 and the equivalence of norms

in finite dimension yield
lg"ll> < Cllp" >

On the other hand, choosing " = p” in (1.4.58), we get

ol = ~(1+0?) [ Tt vt = —(ad) (¢

So, we have
h h 2 h|12 hy2
(=a". "), = L (It + a2
F,G

with v = a/(C(1 + a?)): i.e. the pair (=V
comparability condition (1.4.11).

For the second point, F(m") is a polynomial function of (m?)1<;<n, € (S%)Vr, hence
it is analytic. The manifold M" = (S%)™ being analytic, we can use an analytic chart
(for example a product of stereographic projections) defined in a neighborhood of m”. We
apply Theorem 1 to the analytic function F o ¢~! and deduce that it satisfies a Lojasiewicz
inequality in the neighborhood of p(m™"). O

) satisfies the tangential angle condition and

We deduce from the lemma:

Corollary 1.4.3. Assume m/(t) is a solution of (1.4.56). Since M = M" is compact w(m")
is not empty. Consequently there exists ¢ € M" such that u = m” satisfies all the conclusions
of Theorems 2, 3.

1.4.7.2 Time-space discretization of the Landau-Lifshitz equations

We now consider the #-scheme proposed by F.Alouges in [4]:

m® € M"
Forn=20,1,...
" Find p" € T},,» M" such that Yy" € Tmth,
Nh
a/ﬂpnwh =Y (mi x p?)‘l/}?/ﬂeﬁ? (1.4.60)

i=1

=—(1+ a2)/ V(m" 4 0Atp™) - V.
Q

NoomP + Atpl

i+, and iterate.
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Let us rewrite this scheme as a projected 6-scheme of the form (1.4.28). For this we introduce
the family of mappings {G,» : m" + T,n — T,,n M"} defined by G, (u") = p* where ph €

T, M" solves the variational formulation V1) € T, » M",
Nh
o [t =Skl l [ o = —(+0?) [ vitoven
i=1

Notice that G,,» only depends on m” through the space of test functions 7,,,» M". As above,
we see that p” is well defined and uniquely defined by this variational formulation through
the coercivity of the bilinear form b,,» (see (1.4.59)).

Lemma 1.4.12. Let m"™, p" be defined in the scheme (1.4.60). Then,
p" = 0Gm(m" + Atp™) + (1 — 0)Gppn (m™). (1.4.61)

Proof. Let us set ¢" = Gyn (m™+Atp"), v = Gpn(m™). By definition of G,,,» and linearity,
we see that the function p" = 0¢" + (1 — 0)r" satisfies

Nh

a/gph.wh_Z(m x plt) q/)z/@ HAtZ x 7l wh/qs?

=1

_ —(1+a2)/ V(mh +0AtpY) - Vb, Wh € T M".
Q

We see that in the third term of the left hand side, the triple product (p? x r*) -y vanishes.
Indeed, the three vectors p',r; ,1/1? belong to the two dimensional tangent space {vl € R?:
h

vl - ml = 0}. So, it turns out that p" and p" solve the same (well-posed) variational

formulation. We conclude that p" = p™ as claimed. O

Remark 1.4.11. If we had used the original variational formulation, with obvious changes
in the definition of G,,n, then the term 0At fQ (p™ x ) - " would not vanish in general and
the identity (1.4.61) would be wrong. In this case, we can not link the scheme of [4] to our
projected 0-scheme. However, this term is of small magnitude and using the present ideas, it
s not difficult to establish that Theorems 5, 6 and 7 apply to this scheme and conclude to
the convergence to equilibrium of the sequence (m').

This difficulty does not appear if we consider a Finite Difference discretization as in

Section 1.4.6.

Lemma 1.4.13. The functions F, G and {Gmh} satisfy hypotheses (1.4.29,1.4.30,1.4.31,
1.4.32). Moreover, the projection I, (2") : E | h‘qb satisfies (1.4.33).

Proof. First, the identity (1.4.29) is obvious. Next, for m” € M" and p" = G(m"), using
Y = p' in (1.4.58), we obtain

allp"lI7: < (1+a®)[Vm® |2 VD" |12,
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and we conclude from the equivalence of the norms in finite dimensional spaces, that G
is bounded on the compact manifold M" (that is (1.4.29) holds). The Lipschitz esti-
mate (1.4.31) is also a consequence of this fact and of the uniform coercivity of the bilinear
forms b,,». The Lipschitz estimate (1.4.32) on VF is also obvious since F is smooth on the
compact manifold M".

Eventually, we easily see that (1.4.33) holds. Indeed, if v" € T}, M", then |mf + v|? =
|m2|? + |vl|? > 1, so Hym(mP + o) is just the L2- projection of (mf + o) on the product
of balls (B(0,1))Nr ¢ (R3)N". O

The previous Lemmas 1.4.12 and 1.4.13 show that the sequence (u,, = m") satisfies all
the hypotheses for Corollary 1.4.2. Hence, we have:

Corollary 1.4.4. There exists At’ > 0 such that if At € (0,At') and (m") C M" is a
sequence that complies to the scheme (1.4.60), then there exists ¢ € M”" such that (m™")
converges to ¢. Moreover, there exist C3 > 0 and v € (0,1/2] depending on ¢ such that the
convergence rate given by (1.4.20) holds with Cy = C3At.
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Part 11

An accurate method for the motion of
suspended particles in a Stokes fluid






CHAPTER 2

Introduction - Motivation

According to the fundamental relation of dynamics, the motion of a solid particle is given by

2
%v = F, Iiw =17,

m di

where m is the mass of the particle, I is its matrix of inertia, v is the velocity of the center of
mass of the particle and w is its angular velocity. The sources of the changes of the motion
are total force F' and total torque 7 exerted on the solid.

When we study the motion of very small (say nano-scaled) objects in suspension in a
viscous fluid, it is usual to neglect the inertia effects which are small compared to the hydro-
dynamic forces. The fundamental relation of dynamics then reads

F=0  T=0.

The forces exerted on the solid decompose in the hydrodynamic forces which are surface forces
exerted by the fluid and other forces, such as gravity (and buoyancy) forces, electrostatic
forces, magnetic forces, ... We write

F = thdro+Foth = 07 T = %ydro"‘%th = 0.

The hydrodynamic components depend on the position p and orientation €2 of the solid but
also of its instantaneous velocity and angular velocity of the solid. So these equations amounts
to solve the system

thd'ro(vaw;p79) = - Oth(p7Q)7 %ydro(vyw§p79) = - oth(p7Q)'

Solving this 6 x 6 system, this allows us to determine v and w in the case of a single solid.
If we consider N suspended objects occupying the domains B;, i = 1,--- , N, the different
solids interacts through the fluid and we have to solve a 6[NV x 6N system:

{ thdro(vlv""UN’wl""7wN;p17""pN7917"'7QN) = _Foth(pi)Qi)v (201)

%ydro(vla"' yUN, W1, - yWN 5 P11, 7pN7917"' 7QN) = - Oth(piagi)~

The next task is to determine the coefficients of such systems, that is compute the hydrody-
namic forces and torques given the positions and the velocities of the solids. Since we consider
small scales and small velocities, we assume that the fluid solves the Stokes equations in the
fluid domain €2,

—Au+Vp = 0 in Q,
V-u =20 in Q.
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where u and p are the velocity and pressure in 2. For simplicity we assume that the fluid fills
the whole space: Q = R3\ S with S = UY | B;. The conditions at infinity are u(r), p(r) — 0
as r T oo and we consider no-slip boundary conditions on the surface of the solid:

ur) = vi+w; x(r—r;), forredB;, i=1,---,N.

where r; is an arbitrary point, v; is the velocity of the frame attached to B; at point r; and
w; is the angular velocity of this frame. Denoting by n; the exterior unit normal to €2 on 0B;,
the surface density of hydrodynamic forces is then given (up to a multiplicative coefficient
characterizing the viscosity of the fluid) by

f(r) = pni—(Vu—l—VuT)ni, forredB;, i=1,---,N,

and the total hydrodynamic force and torques exerted on B; are:
thdro(vla"'7/UN7w17"'7WN;p17”'7pN7Qh”'7QN) - / f7
0B;
%ydro(vlv"'7’UN7w17""wN;p1""7pN’Ql""7QN) = / (I‘—I‘Z')Xf.
0B;

From the linearity of the Stokes equations and of the force density with respect to (u,p),
we obtain a 6N x 6N friction matrix F = F(p1, -+ ,pnN, 1, ,Qxn) which relates the
hydrodynamic interactions to the velocities and angular velocities of the particles:

(thdroa,]'hydro) = f(v,w).

We see that (2.0.1) is a linear system. In the physical community which study the inter-
actions of a large number of suspended (spherical) particles, the favorite numerical method
for computing F is the so called Stokesian Dynamics introduced by Brady and Bossis in
1988 [5, 6]. This method is based on the expansion of the force density and of the velocity
on 05?2 in vectorial spherical harmonics (also called moments or multipoles in the physical
literature). In practice, the series of vectorial spherical harmonics are truncated at rank L to
obtain an approximate friction matrix F¥. The Stokesian Dynamics method only involves six
(F-T method) or eleven (F-T-S method) harmonics. Later, arbitrary values of the truncation
order L has been proposed in the so called multipole methods [15, 7.

One of the main challenges in the simulation of large numbers of particles in Stokes flow
is the treatment of close particles with different velocities. If we consider two isolated balls
separated by a small gap d which are moving toward one another, the main part of the
hydrodynamic forces is localized in a region of radius O(\/E) For such localized densities, a
large truncation number is required in order to capture the relevant phenomenon: we need
L > \/1/—d, which lead to consider Ngof > 1/d degrees of freedom. To avoid using large
truncation orders, the idea of Brady and Bossis [6] is to correct the friction matrix by using
exact values of the hydrodynamic interactions between each pair of close balls.

L _ rL L
Fsp = F +'7:pairs_’7:pairs

The matrix Fpaipg is the sum of the interactions between (Bi, B;) where (B;, B;) ranges

over the set of pairs of close balls (defined by the condition d(B;, Bj) < d¢yge). The last
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term _’Féairs is the substraction of the poor rank L approximations of these interactions

which were already present in FL.

With the above correction, the Stokesian Dynamics and multipole methods are very
efficient and accurate in many cases of interest. However, we notice that the corrections
only concern pairs of close particles: a third particle in the neighborhood of two close balls is
not affected by the corrections of the hydrodynamic interactions between the two first particle
and we may think that it should be affected. It turns out that the friction matrices should
be affected with coefficients of the order of

c=0(1).

We see that there are different situations depending on the order of the magnitude of the
non-hydrodynamical forces. Let us say that the entries of the right hand side of the linear
system (2.0.1) are of order of O(K). When we consider two close particles By, By with
d(B1,Bs) = d then it is known that the hydrodynamic forces associated to the motion of
these particles toward one another with velocity v are of the order of

thd'ro = O(U/d)

In view of (2.0.1), this leads to
v = O(dK).

Let us assume that the truncating order L is small (L < 1/1/d) so that the approximate
friction matrix F¥ is oblivious of the fine hydrodynamic phenomenons with space scale v/d
between the balls By, Bs. In this case the error induced by this lack of accuracy on a third
ball Bs close to By U By is of the order of

err = O(cw) = O(cdK) = O(dK).

Hence, if the external forces are not too large, so that we can assume dK < 1, the Stokesian
dynamic method is relevant and provides accurate results. This situation occurs for instance
when we consider the sedimentation of small particles in water (or larger particles in a
more viscous fluid). On the other hand, this method may be not adapted when large
non-hydrodynamical forces are considered. Such (relatively) large forces occur when we
consider nano-scale swimmers, such as sperm cells, swimming bacteria or unicellular algae.
This is also true for artificial nanoscale swimmers designed to deliver medication from
nanosized medical devices (see e.g. [9] as an example of the biomedical engineering activity
in this area). In these cases, there is a need for a new numerical method which is accurate
even in the presence of large forces. The object of the present work is to present a first
attempt in this direction in the context of N identical spherical shaped particles. In fact,
this work is motivated by the numerical simulation of theoretical artificial swimmers made
of a finite number of balls introduced and studied in [4, 3].

The new method that we present is designed for obtaining accurate results even in
the presence of large non-hydrodynamical forces. Roughly speaking it is based on a
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decomposition of the velocities and angular velocities between a singular part which is
responsible of the small scale interactions and a regular part which ideally creates smooth
force densities. The main difference with the Stokesian Dynamics is that this new method
takes into account the influence of the singular force densities between two closed particles
on the neighboring particles. For this reason, it allows us to obtain a degree of accuracy not
possible with previous methods. For this reason also, the computational cost is larger.

This work is a joint work with Aline Lefebvre-Lepot and Benoit Merlet.

In the sequel, we first recall well known facts about the Stokes equations (Chapter 3).
Then we present the spectral approximation of the hydrodynamic interactions using Vecto-
rial Spherical Harmonics in Chapter 4. We propose numerical evidences of the difficulties
and singularities arising in the case of close particles (Chapter 5, Section 5.1). This moti-
vates a description, via asymptotic analysis of the interactions of two isolated close particles
in Section 5.2. The Stokesian dynamics is presented in Section 5.3 together with its draw-
backs as discussed above. Eventually, in the last Chapter, we describe successively our new
method and its discretization in Sections 6.1 and 6.2. The numerical results are presented in
Section 6.3. In Section 6.4, we discuss the choice of the discretization parameters.
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The Stokes problem in an exterior
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In this section, we present the Stokes equations posed either a bounded subset of R3 or
in the complement of compact subset of R3. We recall the basic well posedness and reg-
ularity results in these situations. Our reference for this part is mainly the book of Galdi [12].

3.1 Origin of the equations

We consider a viscous, incompressible and Newtonian fluid moving in a domain © of R3.
The motion of the fluid is given by the momentum equation,

p(Opu+u-Vu) = pAu—-Vr+F in Q x (0,7), (3.1.1)
and the continuity equation for an incompressible fluid,

V-u=0  inQx(0,7), (3.1.2)
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Here p > 0 denotes the density of the fluid, ¢ > 0 is the viscosity constant and
F = F(t,x) € R? is a given density of non-hydrodynamic forces exerted on the fluid.

The unknowns of the problem are the velocity field u(t,2) € R?® and the pressure field
m(t,x) € R.

The pressure field represents a Lagrangian multiplier associated to the constraint (3.1.2).

The system (3.1.1), (3.1.2) is the so called Navier-Stokes system. In this form, it is
indefinite and must be complemented with an initial condition u(0, z) = ug(z) and boundary
conditions.

Let us introduce a typical length L and a typical velocity V of the flow. Performing the
change of variables, x = L&, t = L/V{, u = Vi we obtain the non-dimensional form of the
equations,

. 1 - . .
O+ Vi = —Aid-Vp+F, (3.1.3)
where p = 7/pV2 F = FL/pV? and the Reynolds number is
Re = pLV/p.

We are interested in the limit of small Reynolds numbers Re | 0 where we can neglect the
inertia effects. This limit may describe the motion of a fluid around small suspended particles
or even the motion of bacteria and other micro-organisms. The limit system is given by

—Au+Vp =F  inQx(0,7),
Veu =0 in Q% (0,7).

We see that the time derivative has disappeared in these equations of motion. The fields
(u,p)(t) only depend on the force density and boundary conditions at time ¢. In particular,
we do not need any initial condition and we can fix the time ¢ in the study.

The unkowns u = u(z), p = p(x) now solve the Stokes equations,

—Au+Vp =F inQ, (3.1.4)
V-u =0 in Q,

supplemented by boundary conditions and, if necessary, by conditions at infinity.

The set 2 will be an open and connected subset of R3 (a domain). We consider two
cases: either ) is a smooth bounded domain, either € is the complement in R? of a smooth
compact set K. That is K = Q¢ C B(0, R) for some large radius R > 0. In this latter case,
we assume that the fluid is at rest at infinity,

u(z) — 0, p(x) — 0 as|z|— oo. (3.1.6)
On 09, the velocity of the fluid is prescribed,

u=g on 012, (3.1.7)
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where g : 9Q — R3 is given. The boundary data g accounts for the displacement and shape
variations of the particles occupying K.

Of particular interest are the forces exerted by the fluid on the particles. Denoting by n
the exterior normal on 9€), the density of the forces exerted by the fluid on 0f) is given by

f=0'n on 0f),

where o is the stress tensor. Since we consider a Newtonian fluid, this stress tensor is related
to the velocity and pressure fields by

o = Vu+ Vul —pId,

where Id denotes the 3 x 3 identity matrix. Hence, the force density on the surface of the
body K is given by

f = (Vu+Vul —pld)-n = n-Vu+Vu-n—pn. (3.1.8)

Remark 3.1.1. Let us notice here that, since u is assumed to be divergence free, the mo-
mentum equation (3.1.4) rewrites as

V.o = V- (Vu+vVul —pld) = 0  inQ.

3.2 Function spaces

The Sobolev spaces which are relevant for the Stokes problem described above have two
particular features. First, when the domain is an exterior domain (i.e. R3\  is compact)
we have to pay attention to the behavior at infinity of the functions. Second, the velocity
fields are solenoidal vector fields: V-u = 0.

3.2.1 Spaces associated to a bounded domain.

Since we consider linear problems, we only introduce L2-based Sobolev spaces. Let Q C R?
be a smooth bounded domain (in particular, € is connected). We define

D'2(Q) = {ve W QR : V.v=0in Q}.

Let us discuss the boundary condition
u=g on Of). (3.2.1)

Since (2 is a bounded and connected domain, the divergence free condition implies

Oz/V-u:/g-n::Q
Q a0
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In this case, the condition of vanishing total flux ® = 0 is a necessary condition for the
existence of a solution of the Stokes problem in {2 with boundary condition (3.2.1). In fact,
if g is smooth enough, it is also a sufficient condition.

Let us introduce the fractional Sobolev space:
W1/22(5Q, R?) = {g € L*(9Q) : g is the trace on 9 of some v € W*(Qn B(0,R),R*)},

endowed with the inner product

(g h) /22 = (g, )2 +/ (g(x) —g(y)) - (h(z) —h(y)) do(x) do(y),

X |z — y|3

W1/22(90, R?) is a Hilbert space.
Under the condition ® = 0, we can find a lifting of g € W1/22(9Q, R?) in DL2(Q).

Proposition 3.2.1. Let Q C R? be a smooth bounded domain (we can in fact only assume
that Q has Lipschitz reqularity). For any g € W'/22(9Q, R3) such that ®(g) = 0, there exists
u € DY2(Q) such that (3.2.1) holds. Moreover, there exists a constant C = C(Q) such that

[ullwi2 < Cllgllw/.z.

The pressure field associated to the Stokes problem in a bounded domain is not unique.
If the pair (u,p) solves the Stokes equation then (u,p+ ¢) is also a solution for any constant
c € R. To fix this constant, we will impose fﬂp = 0. For this, we introduce the space

13(0) = {qeL2<n>: /quo}.

3.2.2 Pressure fields. Homogeneous Sobolev spaces in an exterior domain

Let us now consider that € is a smooth exterior domain of R3. In particular, Q is connected
and there exists R > 0 such that Q¢ C B(0, R). We set

DY? = DM(Q) = {q€ L},.(Q) : Vge L*(Q)}.
The functions of D'? admit a limit at infinity. More precisely, for every ¢ € D2, there
exists a real number gy such that for every r > R,

1
/52 lg(ro) — qo|*) do < —/ Vgl* — 0 asr 1 oo (3.2.2)
x|>r

r

We consider the subspace D2 of D2 formed by functions ¢ € D'? such that gy = 0. The
space D12(Q) equipped with the inner product (¢,¢')pr2 := Jo Vq-V{¢ is a Hilbert space.
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By definition, the elements of D2 satisfy (3.2.2) with go = 0. We also have, for every
g€ D'?,

2
Ly (R3\B(0,R)) with / <i> < 4/ Vg2, (3.2.3)
|z] R3\B(0,R) |z] R3\B(0,R)

Moreover, by Gagliardo-Nirenberg estimate, for every ¢ € DLQ,
g€ L8Q) with [l < CO)llallpre. (3.2.4)

Notice that the space D'? is strictly larger that W12(Q). For example, if Q = R*\ B(0,1),
then = — |z|7® € DY2(Q) \ L*(Q) for every a > 1/2. The conditions (3.2.3) or (3.2.4)
characterize D2(Q):

D) = {q€ L(Q), Vae IA(Q), ¢/v/ 1+ 2P € I2(Q)}
= {q € Llloc(Q)7 Vq e L2(Q), qc L6(Q)} .

3.2.3 Homogeneous Sobolev spaces of velocity fields in exterior domains

We now consider solenoidal vector fields v :  — R3. The velocity fields solving the above
Stokes equations will lie in the following space:

DL2(Q) = {v eD¥(Q)P . V.v=0in Q} .

Let us introduce the inner product
(V,W)p12 = / Vv :Vw.
Q

The space (DV2(), (-, -)p1.2) is a Hilbert space.
As in the scalar case, we have the following equivalent definitions,
DI2(Q) = {v eLL(QARY : V.v=0, Vve L2(Q), v/\/1+ 2] € L?(Q)}
= {velL, (LR’ : V.-v=0, Vve L*Q), ve LYQ)}.

For further use we also introduce the space Dé’Q(Q) defined as the closure of compactly
supported smooth vector fields in D12(Q).

Let us now consider the boundary condition (3.2.1). In the case of an exterior domain
the total flux fag g -n = ® may be arbitrary. For instance, if {2 is the complement of the
closed unit ball, the velocity field defined, in spherical coordinates, by

v(r) = r%e,,

solves the Stokes equations (3.1.4)(3.1.5)(3.2.1) with p = 0, F = 0 and boundary condition
g = e,. Moreover, we have v(r) — 0 as r — 0 and

v € DY(Q).
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We easily see that the total flux on the boundary of 2 does not vanish. We have ® = —4n
(and by conservation of the flux, for every r > 1, faB(o V- er= 4rr).

Let us return to the case of a general smooth exterior domain 2. The more general
boundary conditions that we will consider are given by the traces of the element of DV2().

{g € L?(9Q) : g is the trace on 9 of some v € D*(Q)}

The linear constraint V - v = 0 does not play any role here. We have:

Proposition 3.2.2. Let Q C R? be a smooth esterior domain (we can in fact only assume
that Q has Lipschitz reqularity). For any g € W/%2(9Q, R3) there exists u € D“2(Q) such
that (3.2.1) holds. Moreover, there exists a constant C' = C(Q2) such that

[ullprz < Cllglly/ze-

Proof. To establish this proposition, we first invoke the fact that there exists u; € W12(Q)
compactly supported in B(0, R) N Q such that u; = g on 9Q and

lurllwiz < C'(Q)llgllwr/za-

By Theorem II1.3.4 in [12], there exists w € Dé’Q(Q) satisfying V-w = —V - up in  with
the estimate
[wilprz < C(QV - uy ]|z

The vector field u = u; + w then satisfies the requirements of the proposition with C' =
C'+ o, O

3.3 Well-posedness and regularity results

We consider the Stokes problem (3.1.4)(3.1.5) in a smooth domain Q C R? with com-
pact boundary 012, i.e. € is either a bounded domain or an exterior domain. In the last
case, we impose the condition at infinity (3.1.6). In both cases, we consider the boundary
condition (3.1.7). We assume that g € W1/22(Q, R3) with ® = 0 if Q is bounded and that
F e D712(Q,R?) = [D"*(Q, R3)]/. We look for a solution of the variational formulation:

Find v e {weD"(Q) : w=gon 00} (3.3.1)

such that
/vV:vW —/F-W =0 VweDy(Q). (3.3.2)
Q Q

or equivalently, using the divergence free condition,

1
§/QWV+VV)T:(VW+VWT> —/QF-W — 0 VweDQ).

Using the lifting u of g provided by Proposition 3.2.1 or by Proposition 3.2.2, the existence
of a unique solution v of the variational formulation follows from the Lax-Milgram Theorem.
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The existence of a pressure field then follows from an instance of De Rham Theorem. The
pressure field is unique up to a constant. In order to fix this constant, we impose

c L?(2), when Q is an exterior domain,
b L3(Q):={qe L*Q) : [,q=0}, when Q isa bounded domain.

Theorem 13. Given Q, F and g as above, there exists a unique solution to the variational
formulation (3.3.1)(3.3.2). Moreover there ewists a unique pressure p in the space L?(12)
(or L3(Q) if Q is bounded) such that the momentum equation (3.1.4) holds in the sense of
distributions in Q. Eventually, there exists C = C(S2) such that

[vllpr2 + llplle < C(lglwzz + [[Fllp-12).

3.3.1 The fundamental solution and the Stokes equations in R?

In the case Q = R?, we have an explicit formula for the solution v € DY2(R3) of the
variational formulation and the associated pressure field:

v(r) = G(r — ¢ )F(r') dr/, p(r) = / O(r — ') - F(r')dr', (3.3.3)
R? R?

where

1
G(r) = Sor (Id+ e, ®e,)

is the fundamental solution of the Stokes problem, and

1

——e,.
A2

II(r) =

From these formulas, we deduce as in the case of the Laplace equation, the following regularity
result:

Theorem 14. Let F € W™2(R3?), then the associated solution of the Stokes problem given
by (3.3.3) satisfy v € VVZ?CHQ(RB), p € WY:CH’Q(R:S). Moreover, for 0 <1 < m, D"*lv ¢

DL2(R3), Dlp € DV2(R3), with the estimates

ID™2v] g2 + I1D"pll 2 < CIID'F| 2.

3.3.2 Local regularity

Using truncation arguments, and Theorem 14, we can derive interior estimates for solu-
tions of the Stokes problem in Q C R3. For regularity results up to the boundary, we can
rely on the Nirenberg translation method (see Temam [18]) or apply the general regularity
theory for elliptic problems of Agmon, Douglis and Nirenberg [1, 2]. In [12], the boundary
regularity is obtained by first studying the Stokes problem in R? x R..
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Theorem 15 (Sobolev regularity). IfQ is of class C™*2, if F € W,™*(Q), g € W2 ()

loc

and (v,p) is a weak solution of the Stokes equations (3.1.4),(3.1.5) and (3.2.1) in Q, then

v e W22(Q) and p € W T(Q). Moreover, for ' > r > 0 there exists C = C(r,7’,)

loc loc

such that, noting Qs = QN B(0, s), we have

D™ vl 20,y + 1D Dl 120,
< C(ID"Flizz,) + 10" glwr2ansm) + 1D™ Vi, + 1D"liz,,) ) -

In particular, if F € C2°(Q) and g € C°°(91), the variational solution (v, p) of the Stokes
equations is smooth in §.

3.3.3 Asymptotics as |z| — oo

In the sequel, we are mainly interested by the case of an exterior domain with F = 0 or
F compactly supported. In this case the behavior at infinity of v and p follows the behavior
of the fundamental solution of the Stokes problem in R? and global regularity results follow
from local regularity and the following decay estimates.

Theorem 16. Let Q C R3 be a smooth exterior domain, let g € WY/2™(9Q) and F €
D=%2(Q) be compactly supported in Q. Let (v,p) € DY2(Q) x L3(Q) be the variational
solution of (3.1.4),(3.1.5),(3.2.1), then

v(z) = G(z)Fo+ vi(z), p(z) = I(x)Fy+ pi(x),
with
FO:/F—/ (Vv + Vvl —pId)-n € R3.
Q o0
and for every a € N3,

IDvi(x)] < Colz|CHD [Dopy(2)] < Cfa|” D,

3.4 Dirichlet-to-Neumann and Neumann-to-Dirichlet opera-
tors

Let us consider a variational solution (u,p) of the homogeneous Stokes equations in a
smooth domain  with non-homogeneous boundary condition u = g on 9Q. If (u,p) is
sufficiently smooth, the surface density of forces applied by the boundary of 2 on the fluid is
defined as

f = (Vu+4 Vu! —pld) -n. (3.4.1)

The purpose of this section is to extend this definition to the case of general variational
solutions and to describe some properties of the Dirichlet to Neumann operators g — f. In
the next two parts, we consider successively the case of a bounded domain and the case of an
exterior domain. In the third part, we consider the case of the whole space R? with exterior
forces applied on a closed surface of I' C R3.
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3.4.1 The Dirichlet to Neumann operator in a bounded domain

Let Q C R3 be a smooth and bounded domain (recall that € is connected) and let
g € W/22(9Q, R?) such that / g-n = 0. Let (u,p) be the associated solution of the

homogeneous Stokes problem pr(?\?ided by Theorem 13. If (u,p) are sufficiently smooth, say
(u,p) € W22(Q,R3) x WH2(Q), the traces of Vu and p on 9 are well defined and we can
use formula (3.4.1) to define the density of surface forces.

In order to extend the notion of surface force density to weaker solutions, we proceed by
duality. Let us introduce h € W1/22(9Q, R?) and let us choose an arbitrary lifting ¢ €
W12(Q,R3) of h subjected to the constraint that V - ¢ is constant in Q. Such lifting does
exist. Indeed, let ® := [, h-n and let us set hy(z) := h(z) — (®/3|Q|)x. We have

1 1
hyn = &(1—- — r-n|] = & 1——/V-x>:0.
/89 ’ < 319/ Jaq > ( 3192 Jo

Hence, by Proposition 3.2.1, there exists pg € D2(Q) such that ¢y = hg on 9Q. We conclude
by setting ¢(z) = @o(z) + (P/3|2])z. We have ¢ = h on 9 and V - ¢ = ®/|Q] is constant
in . Notice also that with this construction, we have

Vel < C)[hllya/zz.

Let us now return to the definition of the force density. Taking the dot product of £ with h
and integrating on 02 we set

afint(ga h) = / f-h
[2}9]
Integrating by parts, we compute

Gint(g,h) = /m(vquvuT—pId):(n@h) = /QV-[(VU—I—VuT—pId)go].

Expending this expression, and using the fact that u solves the Stokes equations, we obtain,

Gint(g,h) = /Q(VujLVuT):vgo—(/gzp)v.@.

Since fQ p = 0, the last term vanishes. Symmetrizing the expression, we end with

aint(g,h) = % /Q (Vu+vVu”) : (Ve +VeT). (3.4.2)

Consequently,
ant(8,h) < 2[Vul 2 [Velrz) < CE)lgllwr22p0) Rllwir2z60)-
Hence ¢;,,; extends as a continuous bilinear form on

{g e WY22(00,R?) : / g-n= o} x WH22(00, R?).
Q

From the definition gn(g,h) = |, oo I - h, we deduce the following result.
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Proposition 3.4.1. Let Q C R? be a smooth and bounded domain. There exists a linear and
continuous mapping,

DNiny {ger/Q’z(aﬁ,R?’) : /g-nzO} — WY22(00,R?),
Q
g — f.

which extends the classical definition of surface force demsity. Namely, if g is smooth and if
f is defined by (3.4.1), we have

(DNint g3 D)yr—1/22 122 = / f-h for every h € WY/22(90, R?).
o0

The mapping DN, is not one to one. Indeed, from the identity
<DMnt g; V\BQ>w—1/2,2 wi/22 — /(Vu + VUT) Vv, for every v € DLZ(Q)a
’ Q

we see that DNj,; g = 0 if and only if Vu + Vul vanishes on , that is, by Korn inequality,
if and only if u is the velocity field of a rigid motion. We conclude that

ker (DNi) = {g:0Q - R® :g(z) = e +w x x for some e,w € R*}.

Let us now compute the range of DNj,;. First, we notice that for every

ge{heW1/2’2(6Q,R3) : /h-n:O},
Q

we have
<D~/\[int g; V|6Q>W—1/2,2,W1/2,2 =0,

for every velocity field v corresponding to the combination of a rigid displacement and an
expansion v(r) = A\x + e + w x x. Indeed, we have in this case Vv + Vv! = 2)\Id and we
deduce from the above computation,

1
<D/\/’mtg; ’U|<99>W-1/2,2,W1/272 = i/ﬂ(Vu—l-VuT)-(Vv—i-VvT) = )\/Qv-u = 0.

Consequently,

Range (DNin) C R = {f €W 220, R?) ¢ (F5 V) yp1jaz pajez = 0
for test functions of the form: v(z) =z, v(z)=ec R3> and v(z) =w x z, w € RP’}.

Conversely, let f € R and let us consider the homogeneous Stokes equations with non-
homogeneous “Neumann" boundary conditions:

—Au+Vp = 0 inQ,
Vou = 0 inQ, (3.4.3)
(Vu+Vul —pld)-n = f on 0.
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The solution of this problem, if it exists, is not unique. Indeed, we can add to the velocity any
velocity field corresponding to a rigid displacement. To enforce uniqueness of the velocity,

/Q u(z) = /Q zxu(z) = 0. (3.4.4)

From (3.4.2), we see that a natural variational formulation for this problem is : find u €
DY2(Q) satisfying (3.4.4) such that

we impose the conditions,

1
3 /Q(Vu—i— vu'): (Vv +vvl) = (f; vm>w_l/2,2,wl/272 Vv eDY(Q).  (3.4.5)

Thanks to the Korn inequality, this variational formulation admits a unique solution u in

£ = {VGDLQ(Q):/QV(:L') = /Q:L‘xv(x) = 0}.

The identity (3.4.5) holds for every v € £ and since u € £ and f € R, this identity also holds
for every v € DY2(Q). In particular,

/ Vu:Vv = 0 for every v € DM?(Q) N CX(Q).
Q

By de Rham’s Theorem, there exists a unique pressure p € LZ(2) such that
—Au+Vp = 0 in the sense of distributions in €.
This solution defines the Neumann to Dirichlet operator
NDif = g € WY22(Q,R?).

By construction, we see that the composition DNj,; o N'D;,; is the identity operator on R.
We have established:

Proposition 3.4.2. The operator DNy defines a continuous isomorphism from

S = {g€W1/2’2(8Q,R3):/ g-n:O,/ g :/ mxg:0}
1) o0 o0

onto R C W~1/22(9Q,R?).

3.4.2 The Dirichlet to Neumann operator in an exterior domain

We consider the corresponding operators in the case of an exterior domain Q C R3.
Let g € W/22(9Q, R3) and let (u,p) € DV2(Q) x L?(Q) be the variational solution of the
Stokes problem. For every h € W'/22(Q, R?), there exists a lifting ¢ of h in D'2(Q) (see
Proposition 3.2.2). The bilinear form

teat(g,h) = / (Vu+ Vul) : Vo
Q
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is well defined. Indeed, for every v € D§2(€2), we have [,(Vu+Vu®): Vv =0, so the above
quantity does not depend on the particular lifting . We have

tezt(8,0) < 2[Vul2 [Vell2 < Cligllyr/ez [z

Hence there exists a continuous linear operator DNy : WH22(9Q, R?) — W—1/22(90Q, R3)
such that

<DNext g; h>W*1/2»2,W1/212 = aext(g, h) Vg, h e W1/2’2(8Q, Rg).
When g € W3/22(99, R3), D?u and Vp belong to L*(Q) and the surface force density
f = (Vu+vVul —pld)-n (3.4.6)

is well defined on 02, with f € W1/2’2(8Q,R3). In this case, we have, as in the case of a

bounded domain,
/ f.-h = /(vu+vuT):w - /pV-(p.
a0 0 Q

Since ¢ € D12(Q, R3), the last term vanishes and we see that

/ f-h = <DNe$tg; h>W*1/2’2,W1/212'
o0

We have established:

Proposition 3.4.3. For any smooth exterior domain Q C R3, there ewists a continuous
Dirichlet to Neumann operator DNegy = g € W/22(0Q, R3?) — £ € W—1/22(0Q, R?) which
extends the definition of surface force density (3.4.6).

For every g € W1/22(0Q, R3), we have
(DNeat; 8)w-1/22 w1722 = %/Q |Vu + Vu’ |
By Korn’s inequality, the right hand side is bounded from below by (1/C(Q))||Vul|7.. Hence,
(DNeg1g ; g>w—1/2,2,W1/2,2 > (1/0(9))”%”%{/1/2,%

We deduce from the Lax Milgram Theorem that the operator DN, is one to one and onto.

Proposition 3.4.4. For any smooth exterior domain Q C R3, the Dirichlet to Neumann op-
erator DNyt is a linear continuous isomorphism from W1/22(9Q, R?) onto W—1/22(00Q, R?)
and we denote by N'D., its inverse.

It is easy to check that the inverse operator satisfies N'D.pif = ujgq where u € DL2(Q)
is the unique solution of the variational formulation

/Q(Vu+VuT) Vv —(f; V|39>W*1/2»2,W1/2’2 =0 VveD'Q).
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3.4.3 Jump of forces through an interface. A new Neumann to Dirichlet
operator

Let us now consider an open set Q C R? which is the union of a finite number of smooth
bounded domains 1, - -- , Q. We assume moreover that the closures £); are pairwise disjoint.
We note I'; the boundary of Q; and I' = 99 = U,I;, We denote by n : I' — S? the unit
exterior normal to 2 and n; its restriction on I';. We consider Dirichlet boundary data in the
space,

H = {g € W1/2’2(I‘,R3) : such that g; = g, satisfies / gi-n, =0fori=1,--- ,N} .
r;

Eventually, we define )y as the exterior domain,

Qo == R*\ QL

Let g € H, for i = 0,--- ,N, we denote by u; € D"2(€);) the unique solution of the
variational problem: w; =g;on [';ifi>1loru=gon ['if i =0 and

/QA(VuZ-—FVuiT) (Vv = 0 VveDyi().

We denote by pg € L?(€) and p; € LE(€;), i = 1,--- , N the corresponding pressure fields.
We define the following operator as

[DNF g]m = DMnt g + [DNEH g]|pi, for 71 = 1, v ,N.

This defines a continuous linear operator from H in W~1/22(I", R?).

Alternatively, we can define this operator without explicit reference to the operators DNj,;
and DN, y¢. For every g € H, we can define u € DY?(R3) as the the unique solution of the
variational problem u =g on I' and

/ Vu:Vv =0 for every v € D?(R?) such that vir =0.
Q

Obvioulsy, we have ujg, = u; for i = 0,--- , N. Then, for h € H, we choose a lifting ¢ of h
in DV2(R?) and we set:
ar(g,h) := Vu: V.
R3

The bilinear form ar is continuous on H x H and since we can choose ¢ as the variational
solution of the Stokes equations in R? \ T with boundary condition ¢ = h on I, we see that
ar is symmetric and nonnegative. Let us consider an element L € H' and let us extend it on
W1/22(', R?) by setting

N

L <h+ Zcilmni) = L(h) for every h € H, c1,--- ,eny € R.
i=1

There exists a unique £ € W~1/22(I', R?) such that

Lh) = (fih)y 122 10 for every h e WY/ R?).
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Choosing h = 1|, n;, we see that (f; ni>W—1/2a2,W1/2,2 =0fori=1,---,N and it turns out
that we can make the identification

H = {f €W V2L, RY) ¢ (Fim)yporon iy = o} .
Applying this to the linear form L(h) = ar(g, h), there exists a unique f € H’ such that
<f ; h>W—1/272,W1/2,2 = ap(g, h) for every h e W1/2’2(F, Rg)

We set
DNrg = f. (3.4.7)

Eventually, for every g in H, we have with obvious notation,

ar(g,g) = <DNFgSg>W71/2»2,W1/2,2 = /R3 |Vu‘2.

We see that ar is coercive on H. Hence, the linear operator DN : H — H' is a continuous
linear isomorphism.

Proposition 3.4.5. Let Q) = Ui]ilQi be a finite union of smooth open subsets of R such
that the Q; are pairwise disjoint. Let T' = 0Q. The operator DN defined by (3.4.7) is a
continuous linear isomorphism from

H = {g € W1/2,2(F,R3) : / g-n;, = 0, foreveryi=1,--- ,N}
onto H' where we identify H' with the closure of H in W_1/2’2(F,R3)_

Now, let us consider the inverse problem. Let f € H’, and let us consider the solution
u € DV23(R3) of the variational problem

Vu:Vv = (f;vp) Vv € DM?(R3).

W—1/2.2 1/1/2.2
R3 ’

Notice that the linear form v € DM2(R3) <f; V‘F>W71/2’27W1/2’2 is continuous. Hence,
the existence of a unique solution to the variational formulation relies on Theorem 13. We
also know that this solution is obtained by convolution with the fundamental solution of the
Stokes equations in R3:

u(l‘) = <f7 G( - $)>W_1/2’2(F),W1/2’2(F) s for z € Rg.

Identifying f with the distribution ¢ € C2°(R? R?) — (f; g0|p>
mula rewrites as

W-1/2.2(1),W1/2.2(T)’ this for-

u = G«f,
where we recall the definition of the Stokeslet,

1
G(I‘) = %(Id—i-er@er).
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Now we define
NDrf = [G*f]‘r.

This operator maps H' in H and we easily see that N'DroDNT = Idy. We see that u solves
the variational formulation u = NDr f on I" and

Vu:Vv =0 for every v € DV?(R3) such that vir =0.
R3
By definition, we have DN p[NDr f] = f. Hence NDr is the inverse of DA/T.

Proposition 3.4.6. Let Q) = Ui]\ilQi be a finite union of smooth open subsets of R such
that the Q; are pairwise disjoint. Let T = 0Q. The “Neumann to Dirichlet” operator defined
as

NDrf = [G*f]p for every £ € H'

is the inverse of the “Dirichlet to Neumann" operator DNt.
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4.1 The hydrodynamic interactions

4.1.1 Setting of the problem

We consider N non intersecting particles immersed in a viscous fluid. For simplicity,
the particles are identical balls By, Bs,...,By with radius 1 and centers zi,zo, ...,zy € R?,
respectively. We assume that the closed balls B; do not intersect and that the fluid fills the
rest of the space. The fluid occupies the domain

Q:=R3\ (G Bi> .

i=1

We assume moreover that the fluid inertia effects are negligible compared to the viscosity
(i.e. the Reynolds number is very small Re < 1) so that the velocity u and the pressure p
solve the stationary Stokes equations in the fluid domain,

(4.1.1)

V-o= 0 1inQ,
V-u =0 inQ,

where 0 = Vu + Vu’ — pld is the stress tensor in the fluid and Id is the identity matrix.
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Figure 4.1: Example with three particles.

On the surfaces of the particles, we consider a no-slip condition,
u=mu ondB;, i=12,., N.

where the velocity u; corresponds to a rigid displacement. It is characterized by the velocity
U; at the center z; of the ball B; and by the angular velocity w; (U;,w; € R3),

w(r) == Uj+w x(r—z), forreR? i=12,.. N. (4.1.2)
We are interested in solutions u which decay at infinity, i.e., which fulfills
u(r) — 0, as|r| — occ.

As recalled in the preceding section, the existence and uniqueness of a solution to (4.1.1) is
classical in the Hilbert space

DI2(Q) = {ueD’(Q,R3): Vu € L*(Q), € L*(Q),V-u=0in Q}

u
V1412

endowed with the scalar product

(u,v)p = /Vu:Vv.
Q
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The surface density of force exerted on the fluid at some point r of the surface 0B; is given
by

fi(r) = (Vu+ Vu’ —pld) .n;, (4.1.3)
where n; denotes the exterior normal on the surface of the i-est particle B;.

The total force and total torque exerted by the particle B; on the fluid are given by the
following formulas,

Fi = /aBi fl(r)dS(r),

T = /BBZ-(I. —2z;) X £;(r)dS(r).

The main goal of our work is to propose a numerical method for computing accurate
approximations of the friction operator,

F: RHN — RHY (Uj,wi)i<icn — (Fi, T)1<i<n,

which describes the hydrodynamic interactions between the particles.

4.1.2 The boundary integral method

Let us first make a crucial remark: any velocity field associated to a rigid displacement
w(r) = U + w X r solves the Stokes equations with a constant pressure field p = po € R.
Indeed, direct computations show that V- w(r) = 0 and that the stress tensor o reduces to
the uniform tensor —ps.Id. Hence, it is reasonable to extend the velocity and pressure fields
inside the particles by setting,

1

u(r) := u;(r) and p(r) = p; = e 6Bip(r’)dS(r/), forre B;, i1=1,2,...,N.
The extended fields solve
V.o =0 inR*\UJB;;, V-u=0 inR3 (4.1.4)
with the jump condition,
o] -m; = f; ondB;, i=12,..N, (4.1.5)

where f; is a surface density of forces on 9B;. These force densities do not identify with the
surface density f; introduced in (4.1.3). In fact, we have for r on the surface of 9B;,

f'l(r) = [o(r;Q) —o(r; B;)] - ni(r) = £ —o(r; B;) - n;(r),

with o(r; B;) = Vu; + Vu! — p;Id. However, since this stress tensor corresponds to a rigid
motion, it does not contribute to the total force and torque exerted by the surface of B;, that
is

[ oteimy mwase) = [ ne) xlote;3) mi(elas) = 0
0B; 0B;
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Hence, the total forces and torques can be rewritten as follows

F, = /BBZ- fi(r)dS(r), T = /BBi n; x f;(r)dS(r). (4.1.6)

The unique solution u € DV2(R3) of (4.1.4), (4.1.5) is given by convolution of the surface
density forces f; with the Green tensor associated to the Stokes equations in R?,

N
u(r) = Y . G(r—1')-f(r')dS(r'), reR? (4.1.7)

where the tensor G is the Stokeslet

1 /Id r®r
G(I‘) = 8_7T<7+ T‘3 >

The explicit formula (4.1.7) gives the velocity field everywhere as soon as the force densities
f; are known. However, the data of the problem are the velocity fields u;, not these force den-
sities. We are then led to consider the following “Neumann to Dirichlet” operator introduced
in Section 3.4:
ND : Hy'?0By) x ... x Hy'*(0By) — HY?(0By) x ... x HY*(0By)
(Fry .o ) — (

u\aBl’“"u\aBN)’

where for every ¢ =1, .., IV, the spaces Hé/Z(E?BZ-) and Hgl/Z(aBi) are defined by

Hé/2(83i) = {g€H1/2(8BZ-): /BB.g.nZ.:O}’
Ht;l/Q(aBi) = {f € HV20B):  (f,1ppn;) = 0}'

This operator is positive and symmetric, its inverse is the corresponding “Dirichlet to Neu-
mann” operator,

DN :=ND ' . HY*0By) x ... x H/*(0By) — Hy "*(0By) x ... x Hy /*(0By)
(u\aBl""’u\aBN) — (fl,...,fN).

In the initial problem, we only need to compute approximations of this operator when
(ui| aB~)1§i§ ~ is a finite sequence of rigid motions. Moreover we do not need a complete

description of (f;)1<i<n but only the projections of these force densities given by (4.1.6).
In short, we only need a projection of the operator DA on a finite dimensional space of
dimensions 6N, that is a 6/N x 6N matrix. This operator,

F o RN RN (U, wi)i<icn — (Fi, T)i<i<n

is called the friction operator and its representation in a basis of translations and rotations
of individual particles is called the friction or resistance matrix. The inverse of this matrix
is called the mobility matrix

M R R (F;, T)i<icn — (U, wy)1<i<n.
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Unfortunately, we do not have a nice explicit expression for DN such as (4.1.7). To compute
accurate approximations of F starting from (4.1.7), the naive method consists in 1/ approx-
imating A'D by a finite dimensional discrete operator, 2/ inverse this approximate operator,
3/ project this inverse on the space of rigid motions. In the next section we describe this idea
in the case of a spectral discretization.

4.1.3 Spectral approximation

To approximate the operator N'D, we use a Galerkin method. For this, let us rewrite this
operator in variational form. For simplicity, let us define

Hy?(09) = Hy” (9B1,R?) x ... x Hy'* (0By,R?),
Hy'?(09) = Hy'? (0B1,R?) x ... x Hy '* (9B, R?).

Given w; :=u,, € Hé/Q (8BZ-,R3), for i = 1,2,..., N, we define for f,g € H(;l/Z(@Q) the
bilinear form

N N
— T r) - r—]j'/ s T I‘/ I'/ r
a(f,g) = ;1 ;1/6& /(9ng2 (r) - G(r —r) - f;(r)dS(r)dS(x),

and the linear form,
N
Ly =Y /6 ol ) u)ds(e).
=1 i

In particular, a(-,-) is a bounded and coercive bilinear form (see Section 3.4) and L is a
bounded linear functional on Hgl/Q(aQ).

The surface density forces f = (f'l, ey f'N> in H, 1/2 (09) solves the problem:

Find f € Hy "/%(0Q) such that:  a(f,g) = L(g), Vg € Hy "/*(09). (4.1.8)

Therefore we can approximate the solution of equation (4.1.8) by a Galerkin method.
For ¢ = 1,..., N, choose subspaces VZK - Hé/Q (8Bi, R3) of dimension K and then solve the
projected problem on VZK :

Find % € V¥ x..xV{ such that:  a (f*,¢") =L (g"), V" € VFEx..xV{F. (4.1.9)

Let {¢ia},_; j be a basis of V;X, for i = 1,..,N. The unknown f& = (ff, .., f¥)
can be decomposed as fX = 25:1 leggbza The discrete problem (4.1.9) can be rewritten

in the matrix form
ARFE — K

where
K = T . N (v /
Aiajp = /6 5 /6 N ¢5,5(r) - G(r — 1) - ¢,0(r")dS(x")dS(x), (4.1.10)

LE, = uiq, with 4,7 € {1,..., N}, and o, § € {1,..., K}. (4.1.11)
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The first difficulty is that the integral in (4.1.10) is singular if « = 5. In order to overcome
this problem, it is convenient to use a spectral decomposition method. More precisely, for
every ¢ = 1,..., N, we choose the finite dimensional subspace Vih to be the space generated
by the first eigenvectors of the following operator,

Gi : H'YX0BiR®) — H'?0B;,R’)
¢ — G(.—1') - ¢(x)dS(r).
0B;
In other words, for t =1,..., N and o = 1, ..., K, ¢; , satisfies
1
Gr—r') ¢ia(r)dSkx') = —oia(r), for all r € 0B,;. (4.1.12)
(9Bi )\OZ
Using this spectral decomposition, self interactions are diagonal and the other terms do not

include singular integrals. Indeed, by (4.1.12), when ¢ = j the formula (4.1.10) becomes

h 5aﬁ

Ai7a7i7ﬁ - )\Oé :
Moreover, when i # j the integrals in (4.1.10) do not include singular integrals, since
‘I‘ — I‘/‘ > d(BZ',Bj) >0, VreoB,, vr' e 83]'.

It turns out that the basis {¢; o}, , is a basis of vectorial spherical harmonics associated
to the sphere. We describe this basis and the decomposition of the Dirichlet to Neumann
operator DN in the next section.

4.2 Decomposition in vectorial spherical harmonics

In this section we describe the basis of vectorial spherical harmonics. We follow the
notation of Nédélec in [17] where these objects are introduced in the context of elec-
tromagnetism. Then we present the decomposition of the solution of the Stokes problem
and of the corresponding Dirichlet to Neumann operator DA in vectorial spherical harmonics.

4.2.1 The basis of vectorial spherical harmonics
4.2.1.1 Spherical harmonics

Let us recall the definition and some properties of vectorial spherical harmonics. We
consider the unit sphere S? in R3. The case of a sphere of arbitrary radius follows by a
change of scale. In this geometry, it is natural to define a point of R3 by its spherical
coordinates (r,0, ), where r is the radius and 6, ¢ the two Euler angles. These coordinates
are related to the euclidean coordinates (z1,x2,x3) by

r1 = 7rsinf cos g,
xo = rsinfsing, (4.2.1)

3 = rcosb.
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xs3

Lo

Z2

Figure 4.2: Coordinate systems.
The corresponding moving frame is {€,, €, €,}, where the unitary vectors &, € and €,
can be determined as

€, = (sinfcos p,sinfsinp,cosh),

ép = (cosfcosp,cosbsinp, —sinf),

€, = (—sing,cosp,0).

In these coordinates, the surface gradient of the function u, denoted Vg2u, is defined as

1 Ou, ou

= —— —€p. 4.2.2
Vsu sinf Op Co 90 “° ( )

Let H'(S?) denotes the Hilbert space
H'(S?) = {u € L2(S2,C): Vgue (LQ(SQ))?’},
with its hermitian product

1
(u,V)H1(52) = Z/ uvdo + Vgeu- Vgevdo.
S2 S2

More generally, for n > 0, we denote by

H™(S?) = {u € LX(S%,C) : VE,u e LA(S?) for 0 < k < n} .
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The Laplace operator has the expression

A — ig 28_11 _|_i ! a2u_|_ 1 2( ga_u)
YT 2er\ o r2 \sin? 0 0p?  sinf 90 S0 )

We will denote by Ag: the Laplace-Beltrami operator on the unit sphere S?, defined as
1 9*u 1 0 ou
A = — [sinf— |.
U = 5026057 sn6 o8 (Sm )
The area element on the sphere is: do = sin#dfdp. The operator Age is self-adjoint for the
hermitian product in L?(S?) given by

27 pm
/uvda :/ /u(@,g@)v(@,g@)sinﬁd@dg@.
52 o Jo

This can be seen using an integration by parts
27 pm 1 ouodv Sudv
Acuvde = — oudv . duov
52 szuvdo /0 /0 <sin08<p e +Sm989 80) dfdy
2m  pm 1 Ou 1 v Ouodv) .
- _/o /o <sin0%sin9%+@%> sin 0dOdy

= / UA52 vdo.
5’2

The following Green’s formula holds

VeuVgevde = — [ Aguvde for uc C?(S?), ve CY(S?).
S2 S2
By density this formula also holds for u € H?(S?) and v € H'(S?).

The Laplace-Betrami operator is self-adjoint in the space L?(S?) and it is coercive on the
space H'(S?) N L3(S?). It admits a family of eigenfunctions which constitutes an orthogonal
Hilbert basis of the space L?(S?). This basis is also orthogonal for the scalar product in
H'(S?). These eigenfunctions are called spherical harmonics. They are described in Theo-
rem 4.2.1.

Let H; be the space of homogeneous polynomials of degree [ in three variables that are
moreover harmonic in R3, i.e., that satisfy

AP = 0.
Let ), be the space of the restrictions to the unit sphere S? of polynomials in H;.

Theorem 4.2.1 ([17]). Let Y™, —1 < m < [, denote an orthonormal basis of ) for the
hermitian product of L?(S?). The functions Y™, for I > 0 and —1 < m < I, form an
orthogonal basis in L*(S?), which is also orthogonal in H'(S?). Moreover, ), coincides with
the subspace spanned by the eigenfunctions of the Laplace-Beltrami operator associated with
the eigenvalue —I(1 + 1), i.e.,

A" +1(1+1)Y;" = 0.

The eigenvalue —I(1 + 1) has multiplicity 21 + 1.
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For s > 0, we have

HYS?) = YV =) am¥V™: [Yiegey = D {0+ 1)} laml” < oo
Im I,m

By Theorem 4.2.1 and the above Green’s formula, we have

IVseY{™2. = 10+1).

4.2.1.2 Legendre polynomials

We consider the segment [—1,1] and the space L?([—1,1]). The Legendre polynomials
P; are the orthogonal polynomials defined on this segment for the usual scalar product in
L?([-1,1]) and constructed with the Gram-Schmidt orthonormalization process, when start-
ing form the usual basis 1, x, 22, .... The usual normalization consists in fixing P;(1) = 1. The
Rodrigues formula then gives the expression of the Legendre polynomial P;:

(1) d
21! dat

(1— 2%

The associated Legendre functions P}, for 0 < m <[, are given by

Py(z) =

PP = (—1)(1 - 222 L py(a),

dz™

The spherical harmonics of order [ are the 2[4+ 1 functions which are given by: for [ > 0, -] <
m <

Y0, ) = V20 P™(cos 0) cos(me), if m > 0,
Y™M6,0) = V207 P (cos ) sin(|m] ), if m < 0,
Y7"(0,9) = CPPP(cost), if m =0,

where

m_ [2U+1) (1 —[m|)!
¢ _\/ i ()

4.2.1.3 Vectorial spherical harmonics
To describe the spaces L2(S?, R3) or H'(S?,R?) we could simply use the basis given by
Yiter + Y Pea + Y Pes, 1,2, 13 >0, my| <.

However in the context of the Maxwell equations and of the Stokes equation (see [13]), it
is more convenient to use different combinations of the scalar spherical harmonics called
vectorial spherical harmonics.
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Let [ > 0 and H € H;, we define

Hu(z) := VH(z) Az,
Hp(z) = VH(x),
Ho(z) = —|z|*VH(x)+ (20 + 1)H (z)x.

We show that Hy € H;(R3 R3) for I > 0, Hg € H;1(R3R3) for | > 1 and H¢ €
H;1(R3,R3) for I > 0. First, we check immediately that H,4 is a homogeneous polynomial
of degree [ and we compute

3 3
AHp(z) = VAH@)Az+2> VO, H(x)ANOp,x+ VH@)ANAz = 2>V, H(z) Ay,
n=1

n=1

Then, for 1 < k < 3 and using the three-dimensional antisymmetric Levi-Civita symbol ;5
to express the cross product, we compute

[AHA (2) = 2| ) €iju0n, 0, H(2)0y, 1,

1<4,5,n<3 k
€ijk="Ejik
= 2 E €ijka$ia$jH(l‘) = 0.

1<4,j,n<3 k

Clearly, Hp is a homogeneous polynomial of degree [ — 1 and AHp = 0. Finally, H¢ is a
homogeneous polynomial of degree [ + 1 and we have

AHe(z) = —6VH(z) —4(x - V)VH + 2(20 + 1)V H.

But since VH is a homogeneous polynomial of degree [ — 1, we have (z-V)VH = (I—-1)VH
and we obtain AHqo = 0.
For x € S?, we respectively define Ti.ms Iims Nim as the traces on S? of the harmonic poly-

nomials {Hl,m}Aa {Hl—l—l,m}B and {Hl—l,m}C3

Tl,m(m) = {Hl,m}A(x)a —I<m<I 1 >1,
Il,m(x) = {HlJrl,m}B(x)a —l-1<m<Ii+1,1>0,
Nipm(z) = {Hi—1m}c(x), —l+1<m<i-1,1>1.

Notice that by construction the components of 1} ,,,, I; 1, Ny belong to ), that is
AgY +1(l+1)Y =0, forY =T, 11 m, Nim.

Using the tangential gradient defined by (4.2.2) and the Euler relation for the normal deriva-
tives, we obtain

Tim(r) = VeVin(z) Az = VeYin(r) € TS? (4.2.3)
Il,m(x) = VSQYEJer(JL‘) + (l + 1)Y2+17m($)1‘, (424)
Nim(z) = =Vg2Yi_1p(x) + Y1 p(2)z. (4.2.5)
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Theorem 4.2.2 ([17]). For each | > 0, the family {(Tl,m)|m|§l; (L,m) jmi<i41; (Nl,m)\m\glfl}
forms an orthogonal basis of (HI(S2))3 and of (L?(S?))%. Further, they satisfy

/52 Ty (@) 2o = 10 +1),

/52 L (2)2do = (1+1)(20 +3),
/ |Nym (2)|*do = 1(20 — 1),

SQ

In summary, let u € L?(S%,R?), then u decomposes as

! I+1 -1
= i Tim@) > Y GmDim(@) + D> D kym Nym(@)
1>1 m=—1 1>0 m=—I—1 I>1 m=—I+1
and for s > 0 we have
141
[l =) Z DL+ D> +> > 1 *(20 + 3) (1 + 1)]gjim”
>1 m=—I >0 m=—1-1

+) Z [+ )12 — 1)y .

1>1 m=—I+1

4.2.2 The Stokes problem in a ball or in the complement of a ball

We now show that the vectorial spherical harmonic basis diagonalizes the operator N'D
defined on a single particle. For this, we consider the Stokes problem in the domain Qg U
B(0,1) where Qg := R?\ B(0,1). Given a velocity field g defined on S? := dB(0, 1), we seek
the velocity and pressure fields (u, p) satisfying

—Au+Vp =0 in QpU B(0,1),
Vou =0 in Qo U B(0,1), (4.2.6)

u=g on S2.

4.2.2.1 Decomposition of velocity and pressure field

Proposition 4.2.1. Let g € HS/Q(SQ,R?’) and let (u, p) be the variational solution of (4.2.6)
(u € D(Q U B(0,1)), p € L*(Q9 U B(0,1)) and fB(o P = 0). If the decomposition of g in
the basis of vectorial spherical harmonics reads

I+1

! -1
=3 N L@+ Y dlin@ Y Y o Ni(z),  (42.7)

[>1 m=—1 >0 m=—1-1 1>1 m=—1+41
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then we obtain the decompositions of the velocity field u and of the pressure field p in vectorial
spherical harmonics for r > 1, as follows,

l +1
=2 D G T+ D gl Vi
1>1 m=—1 >0 m=—1-1
(1 —1
S = 1 g N, 428)
>1 m=—-I1+1
L2 - 1)
= 3 E e Y e/ 4 N/ e (429)
1>1 m=—1

Proof. Since Ap = 0, we put

1
p@) = 33 a0V (w)r).

>0 m=—1
We decompose u in the form
! I+1
= ZZQ, ( (JrlTlm )+Z Z ]lm( l+1Il,m($)>
121 m=—I >0 m=—I-1
PSS (N @)
1>1 m=—I+1

This form is chosen because r~ 0T, (x), r~ DT, (2) and =YD Ny, () are harmonics.
Using (4.2.3), (4.2.4), (4.2.5) and the formula

div(ae,) = Ora+ (2/7)a,

we obtain

I+1

divu(z Z Z (I +1)r+2) (74 m — L+ 1)jim) Yie1,m
1>0 m=—1—1

+Z Z lJrlkle'l Lm-

1>1 m=—I+1

Since divu = 0, we deduce

o =0, (4.2.10)
L+ 1) (r%h] = 2L+ D) + (4 2)kj 0, = 0, 1> |m|>0. (4.2.11)
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We now decompose the first relation of equations (4.2.6). We have by (4.2.5),

l
Vp(a) = Y Y apmr U (VeeYim(a/r) — (14 DY m(z/r)e,)

>0 m=—1
1+1
= Z Z —Qg— 1m —(+ )Nl,m(x/r)v
[>1 m=—1+1

and

l

(1+2) -1/ ./
=303 i, 0, ) T

1>1 m=—1
I+1
EY Y (i~ 2)
>0 m=—1—1
+) Z ~) (pkf!— 21k] ) Ny
1>1 m=—I+1

Identifying these expansions in vectorial spherical harmonics, we obtain

iy = 2iy = 0, 1>1, [m| <1, (4.2.12)
Pilm = 2 = 0, 1>0, jm[<I+1, (4.2.13)
PRy = 21Ky = =1y, 121, jm| <1-1 (4.2.14)

We deduce from (4.2.12), (4.2.13), the boundary condition u = g on 9y and the condition
of decay at infinity that

Z.Lm(rf') = gljjm7 l Z 17 ‘m| S l,

The relations (4.2.10), (4.2.11) lead to

k1o = g1 @00 = 0,
20-3)(1 -1
kim = (2—);)9{_27"1(7”2 -1) +gl]>[m, [1>2,0<|m|<l—-1.
From (4.2.14) we get
20+ 1)(20 — 1)1
AL = (21 + 1)( ) 9{—1,m7 [>1,0<|m| <L

[+1

Eventually, with the convention g’ 10 = 0 and all of the above equalities, we obtain the
decompositions of p and u in vectorial spherical harmonics as in (4.2.9) and (4.2.8).
O
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4.2.2.2 Decomposition of Neumann to Dirichlet operator

Proposition 4.2.2. Let g € H'Y2(S2 R?) and let (u,p) be a solution of (4.2.6). Then
the vectorial spherical harmonic basis diagonalizes the Neumann to Dirichlet operator N'D
defined on 0B(0,1).

In particular, if the decomposition of g in the basis of vectorial spherical harmonics is
given by (4.2.7), then we have

I+1

[+2
NDg = > Z 2l+1glm T+ Y. 4l2+8l+39{’mh’m

121 m=-1 150 m=——1—1
e
> > 12 gz,le,m. (4.2.15)
1>1 m=—1+1

Proof. Let us first decompose the following operator
DN jumpg = [—er . (Vu + Vut) —I—per] 52

We have
DN jump& = DNewig + DNing, (4.2.16)

where DN o;; and DN,,; correspond to the exterior and interior solutions.
Let us first decompose DN .. We have

DNe;Bt = [_er : (Vu + vut) +per] 152,

For x € S?, we compute

+1
_(vu'er ZZ l+1glmTlm erer‘i'z Z l+ glmIlm er)r
1>1 m=—1 >0 m=—1—-1
(4.2.17)

+ Z Z J1—2,m +( + )gl,m ( lym * er)er

>1 m=—I1+1

+1

_Z Z glm{vS2Tl M} €r — Z Z g, m{vSQIlm} Cr

1>1 m=—1 >0 m=—1—1

-1

=2 > Gim{VeNim} e

1>1 m=—I+1

To reduce the three first terms, we use (4.2.3), (4.2.4) and (4.2.5) and obtain
T’l,m e =0, Il,m CCp = (l + 1) I+1,m>» Nl,m CEp = lelfl,m-

For the three remaining terms, we remark that for a regular vector field V of T'S? and a
spherical harmonic Y of S? in R3, we have

{VSQV} cCp = —V, {VSQ(YGT)} cep = VS2Y



4.2. Decomposition in vectorial spherical harmonics 77

Combining to (4.2.3), (4.2.4) and (4.2.5), it leads

{VSQTZ,m} cCp = _Tl,m7
{VSQIl,m} cep = le2Y2+17m,
{VSQNl,m} ey = (l + 1)VS2Y271,m-

The equality (4.2.17) then becomes

I+1
~(Vure)@) =3 D -+ D20 Yimer =) Z (20 = 3)(1 = )9 Yi-1mer
>0 m=—1-1 [>2 m=—Il+1
-1 l
A3 A Y+ D ol Tim
1>1 m=—I1+1 1>1 m=—1
I+1
+Z Z glmvSQYZ—i—lm""Z Z - _1glmvSQYZ 1,m-
>0 m=—1-1 [>1 m=—I1+1

After simlifying and using again (4.2.3), (4.2.4) and (4.2.5), we obtain,

+1

—(Vu-e)(z ZZglmsz S dglpDim+ Z (1 + 1)g}y Nim-

1>1 m=—1 >0 m=—I1-1 [>1 m=—1+1

With the same kind of computation, we obtain (see L. Halpern in [13])

I+1 -1
S 5D MERIT IS Sl Sl — A i+ Y Y W+l N
1>1 m=—I 1>0 m=—I—1 1>1 m=—I+1

where Ag(z) := ( e, - Vu! +p€r)|5 Eventually, we get

ert

I+1

22 + 41 +3
DN exig(z ZZ l+291mTlm+Z Z 112 G lim
1>1 m=—I >0 m=—I1-1

+2 Z 2(1 + 1)g)0, N, (4.2.18)

I>1 m=—I+1

To decompose DN ,:, we solve the interior problem (4.2.6) in the unit ball B(0,1) with
g="Tm, g =1, and then g = N ,,.

For g = T}, since x + 7T} ,,(z/r) is harmonic and divergence free, we have a solution
of the form u = 7T} ,,(z/r) and p = 0. Using the above formulas, it is easy to check that

—~(Vu+vul) e, = (I— V)T

For g = I, we still have a solution of the form u = 71}, (z/r) and p = 0. Similarly, we
calculate

— (Vu+vul) e, = 21,
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For g = N, the mapping « — r! N, ,,(z/r) is not divergence free. Proceeding as in the case
of the exterior domain, we look for a solution of the form,

u = "N+ a0 =)0, p = BT Y.

The condition V - u = 0 yields

O l(20+1)
2(0—-1)°
Using the first equation of (4.2.6), we get
(412 — 1)
B = —202-1a = ———~2
-1
Then we compute
212+ 1
—(Vu+vul)-e = ; _+1 Nim.

We remark that the coefficient of Ni g is zero.
Eventually, DN;,; writes as:

I+1 -1 9
2l +1
DNimig(w) = 3 Z D9l Tim+d . D 2Agmlim+d > T 9w Nim-
1>1 m=—1 1>0 m=—I—1 1>1 m=—I+1

(4.2.19)

Finally, the decomposition of the Dirichlet to Neumann operator is obtained by (4.2.16),
(4.2.18) and (4.2.19),

l I+1

42 +81+3
RN b SICESIV A S Sl SRE s LN
[>1 m=—1 >0 m=—1-1
— 4l2 ~1
+> ) g{Vle m. (4.2.20)
1>1 m=—I1+1
This is de desired decomposition. O

4.2.3 Practical implementation of the boundary integral method in the
basis of vectorial spherical harmonnics

4.2.3.1 Truncation order L,

Firstly, we rewrite the problems (4.1.1) as the boundary integral problems (4.1.4), (4.1.5),
whose unknowns are the surface force densities f; on the boundary of the particles. Let us
define the basis of vectorial spherical harmonics V .S H; associated to the sphere 0B; as follows:

VSH - { Tlm \m\<la (Il m)\m\<l+17 (Nl m)|m|<l 1}l>0 i=1.2 N

1Ly
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Noting that by Theorem 4.2.2 the solution satisfy (f}-,T&O) = 0, so we ignore the Té,o from
the basis. Then, the six first terms of this basis are

1 : 1 )
T Ioo(zi +2) = W Iy (zi+2) = ———=e,, (4221

) 3 ) 3 . 3
Ti _(zi +) = \Vgrl X% Tio(zi +x) = \ g6 X % Ti1(zi +2) = — 3 X T

Ié,—l(zi +x) =

(4.2.22)
where e, ey, e, denote three unit normal vectors of coordinates system.
We decompose the unknown f; in V.SH; as,
l I+1 -1
- Toirmi i i Noinri
B= D D fnlim 42 2 fundim+ > D fiwNim: (4.2.23)
1>1 m=—I >0 m=—I1-1 >1 m=—-I1+1

The discretization step consists in truncating the series (4.2.23) up to order | = Lyyaq
which we call the truncation order in this thesis. The elements I&m, for m = —1,0,1,
in (4.2.21) correspond to the components of the total forces and Tf’m, for m = —1,0,1,
in (4.2.22) correspond to the components of the total torques. Hence the total force and
torque exerted by the particle B; on the fluid are obtained by projection of the force density
f; on the space generated by {I&W Tfﬂm :m| < 1}. The discretization proposed by Durlofsky
and Brady [10, 11] was a truncation of the series (4.2.23) up to order | = 1, including 11
terms: total forces, torques and the stresslets I {’m, |m| < 2. To improve the accuracy of the
method, other authors [15], |7] have considered truncations up to arbitrary order.

4.2.3.2 Computation of discrete Neumann to Diriclet matrix N'Dlmaz

It is convenient to rewrite the basis V.SH; with the notation V.SH; = (¢ia)a>0,i=1,...N-
The components of the operator N'D in the Hilbert basis V.SH; are given by

NDijs — /6 ., /8 . (@) G~ ) 050)dS )5 ).

In fact, the velocity field w;g(x) = [55 G(z —y) - ¢;,3(y) generated by a force distribution
J
¢;,5 1s explicitly known so the above formula simplifies to

NDinss = [ dla(o) wisfa)ds(a). (42.24)

The nice feature of the vectorial spherical harmonics basis is that it diagonalizes self interac-
tions: we have, for i =1,2,..., N,

NDj i = Gapra- (4.2.25)

The sequence of positive real numbers (A, )a>0 is the list of the eigenvalues of the Neumann
to Dirichlet operator corresponding to an isolated spherical particle in R?.
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Recall that the discretization consists in truncating the series up to some truncation order
l = Lpyqz- Correspondingly, we denote by M4, the number of vectorial spherical harmonics
in the discrete basis. In fact, up to the truncation order L,,,;, the number of vectorial
spherical harmonics are determined exactly,

My = 3 (Lmaa: + 1)2 -1

The discrete matrix of the Neumann to Dirichlet operator N Dy computed in the basis
(Di,a)1<a<Mpas,1<i<N can be written as N x N blocks as follows,

NDbper ADVger oo ADlge

L NDLmaz NDLmaa: . NDLmaa:
NDjmes = ,

NDLmaz NDLmaa: e NDLmaa:

The N diagonal blocks N’ DL’"‘“” for i = 1,2,..., N, are explicitly known diagonal matrices
given by (4.2.25),

N O e 0

0 Ny --- 0
e

0 0 - Ap..

For the extra-diagonal blocks N’ Dﬁ;”‘“” (1 # j), we use formula (4.2.24). We have tested two
methods to approximate the integrals on the spheres in the right hand side of (4.2.24): first
is using the quadrature formula of Hannay and Nye in [14], second is using the quadrature
formula of Lebedev in [16].

4.2.3.3 The discrete friction and mobility matrices

The 6 N x 6N discretized friction matrix Fy;,. is obtained by inversing the matrix N Dgi’;_”
and then extracting the entries with indices (i,c;7,3) for 1 <, <6,1 <1i,57 < N:

1
(Fais )i, = <[ND§;;M] > :
,057,83

As the definition of the mobility matrix in Section 4.1.2, the discrete mobility matrix
M ;s is defined as the inverse of the discrete friction matrix Fy;s.,

. —1
Mais. = Fyy -

Throughout this thesis, the method for approximating the total forces and torques using
this discrete approximation of the mobility matrix is called the direct method. In the next
section, we perform some numerical tests to illustrate the performance of this method.
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5.1 First numerical tests. Difficulties for close particles

For a fixed position of the particles, the spectral decomposition method has a very good
behavior as we send the truncating order to infinity. Indeed, the force distribution f; are
smooth and the spectral expansion has an exponential rate of convergence.

On the contrary, if we consider a sequence of configurations with at least two particles

B;, B; getting closer and closer (d( — 0) and with different prescribed velocities u; # uy;,

i,5)
the distributions of forces f;,f; concentrate near the contact points. In this case the
convergence of the spectral expansion degenerates. The goal of this section is to illustrate

this phenomenon.

Let us consider a simple case with two identical spheres 0B7,dBs of unit radius. We
denote by d the distance between these particles. We assume that the two centers lie on the
vertical axis with coordinates z; = (0,0, —1 —d/2) and z2 = (0,0,1+d/2). The velocity and
pressure u, p in the surrounding fluid solve the Stokes equations

—Au+Vp = 0 in Q:=R3\ (B UBy),
V-u=0 in R3\ (B; U By),

" in R\ (BLU By) (5.1.1)
u = y on 0B;, i =1,2,

u,p — 0 at oo.
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xs3

z1

Figure 5.1: The prescribed velocities of two close particles.

We consider the case of opposite translational motions along the vertical axis, i.e, the
prescribed velocities of the two balls are respectively uy = —e,,us = e, (see Figure 5.1). In
cylindrical coordinates (7,0, z), the velocity has the form

u = upre, + ugey + uze,.
For p > 0 small, we consider the domain (see Figure 5.2)
Q, = {(r,0,2): |z]| <1+d/2, r <p}NQ.
The boundary of this domain can be decomposed in three parts as follows
09, = T'uCy Uy, (5.1.2)
where

{(r,0,2): |2| <1+4d/2, r=p},
@ = {(T’e’z)‘ z=—d/2—1+V1-12, r<P}7
{09 2= dp21-VI=7, <))

Cy =
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x3
A
r
I
x2
Cy
Figure 5.2: The domain €,,.
Let us define the mean value of u, on I' by u,(p),
_ 1 /
U = — [ u,
0=
where |I'| denotes the area of the surface I'. We want to show that
Gp(p) ~ #, for p < Vd < 1. (5.1.3)
First, the area |I'| can be estimated as
d
T = 27mp.2 <§ +1—+1- p2> ~ 2mp(d + p?).
Next, from the conservation of matter, we have
/ u-n:/ V-u = 0. (5.1.4)
a0, Q,
We thus have
/u-n+/ u'n+/ u-n = 0. (5.1.5)
r Ch Ca
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Since the velocities on Co and C] are respectively +e,, by symmetry we obtain that

/u-n
Co

Coefficients of f, with distance d = 0.008

/u-n
Cy

= —|C

—mp?.

Coefficients of f, with distance d = 0.004
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Figure 5.3: Behavior of spectral expansion of force density: the blue line presents the spectral
coefficients of fi, the red line presents 1/v/d.

Therefore, the mean value u, satisfies

Hence, 4, =~

- (p)

P

d+ p?’

2mp?.1
2mp (d +p?)

as claimed. This formula implies that if p o v/d then @,

1
——. In

view of this asymptotic behavior and taking into account the boundary condition u = 0 on
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C4 and Cy, we expect
3, 1 q 0? 1
5.l & B and —o—up o<
Using the Stokes momentum equations, we deduce
0 1

ar? & @

Hence, a natural ansatz is to assume that the leading part of the flow in the region r < V/d,
|z| < d is given by:

1 rooz rooz 1 roz
o= U (=3) w o= U (=25 p= 5P (=2
Vd <¢a d) <\/E d) PTe <\/E d)

Under this ansatz, the surface density of force scales as

f o d2¢ <%> (5.1.6)

According to this formula, when we consider a finite element approximation f of f, this
approximation could be accurate only if the step size of the mesh is substantially smaller
than v/d. This leads to expensive computations in the case of a small gap d.

In order to check the validity of the formula (5.1.6), we have performed numerical simu-
lations and compute accurate spectral expansions of f for various gaps d. The results given
in Figure 5.3 and Figure 5.4 confirm that the force density concentrates on a region of radius
of order v/d near the contact points. Since the density f is defined on a surface, this means
that for an approximation based on the finite element or a spectral decomposition, at least

1 1
O(1/d) = O | —= x —= ] degrees of freedom are required.
(1/d) <\/8 \/E> & b

Magnitude of force near the contact point Magnitude of force near the contact point
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Figure 5.4: Magnitude of force near the contact point on dB; in natural units (left) and in
rescaled units (right).
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The singular behavior of the force density can not be neglected. Indeed, the leading part
of the total hydrodynamic forces comes from the small region r < v/d and the resulting total

force is large:
/ A
f-e, o« —.
0B d

This singular behavior only depends on the relative positions and relative motions. It causes
slow convergence of the multipole approximation of the matrix F. Of course, this problem
persists for N-particles. The singular behavior of the lubrication forces and torques in the
limit of small gaps between particles causes a slow convergence of the spectral decomposition.
We establish asymptotic formulas for the total forces and torques for close particles in the
next section.

5.2 Asymptotics for two close particles

In this section, we give asymptotic formulas for the forces and torques of two close particles
as the gap d tends to 0. These results are taken from [§].
Let us consider the problem (5.1.1), with prescribed velocities corresponding to rigid

displacements:
uz(x) = U, +w; x (3: — Zi), fori=1,2, (521)

where U;,w; are respectively the velocities and angular velocities of B;.

5.2.1 Decomposition of the motion

We decompose these displacements as follows:

U, +U U, -U -
w(z) = 1+ 2, 11 2—|-w1+m><(a:—z1)+wx(m—z1),
2 2 2 2
U, +U U,-U —
uplz) = — o2 2T L VR 2T ),
2 2 2 2
To lighten motion, let us introduce the mean values:
_ U; + Uy _ w1 + wsg _ Z1 + Zg
U = —_— = 3 z = .
2 2 2
The two rigid velocities u; and us can be decomposed as sums of singular and regular part
as follows '
wi(z) = w9 (z) 4 i), fori = 1,2, (5.2.2)
where
wi(y) = Ut o x (v —2),
. U, - U _ _
uimgular(x) _ 1 2 Lo x Zy — 7] 4 w1 — w2 x (z — 1),
2 2 2
, U, -U _ _
u;mgular(x) _ 2 ! _ox Z2 — 7 + wWpT W (x — 22).

2 2 2
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U, -U Zo — Z wy —
It is convenient to set V = % +ox 2 5 Landw = %, then the singular parts

of the velocities rewrite as

i l
usinau ar(

1 ) = V4+wx(z—12),

usingular (.1‘)

5 = -V —wx (z —z).

By linearity, the corresponding force densities are given by
- frigid + fsingular
i = i .
We note that in the decomposition (5.2.2), since the first term u"%9*¢

displacement of the object formed by the two balls, we do not expect it to lead to a singular
force density. We have £%9%¢ = O(1). For simplicity, we assume u" = 0, that is:

corresponds to a rigid

u;(zr) = £V i+wx (z —z;). (5.2.3)

Let us consider the total force F and torque 7 exerted by the fluid on the first particle. The
total force and torque on the other particle are obtained by symmetry. Recall that F and 7
are given by

F = / fldS, T = / IleldS. (524)
831 aBl

where n is the unit normal to the surface and dS' is the element of area of the surface.
The main goal of this section is to establish the following asymptotic formulas for the
total force and torque given by (5.2.4),

FOV™E — 97V Ind 4 O(d0),
EVE = 9rVaInd 4 O(d0),
FgvmPt — _3nVad ™! + O(Ind),

,Z,]iasympt — <—27TV2 + 6%&)1> lnd + O(d0)7

Jpsvmt <27rv1 + %ﬂwg) Ind + O(d?),
,Zéasympt — O(do)

To do this, we first expand the velocity u and pressure p in the power series of the distance
d. Next, we form the equations of the leading terms based on a decomposition into inner and
outer region of expansion. By linearity of the equations, we decompose the total force (torque)
as a sum of several forces (torques) which correspond to simple motions. The detailed process
is described in the two next sections.

5.2.2 Inner and outer region of expansion

It is known that the expansions of velocity u and pressure p are singular in terms of the
distance d. So we consider two regions of expansion. An outer region of expansion is defined
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using the outer variables (x1,x2,x3) in euclidean coordinates. In these coordinate systems,
the velocity u and the pressure p have the forms

u = (u1(x), u2(z),us(z)) and p = p(x),

with © = (x1,x9,x3). The system of equations (4.1.1) is valid in this region. For some very
small distances d | 0, the particles are almost in contact and the point of contact will be a
singular point for the flow. So it is necessary to build a new coordinates system for inner
region of expansion.

As the discussion in Section 5.1, the variations in the inner region of expansion are de-
scribed using the inner variables (Z1, &2, Z3):

.i‘/ = d_1/2$,, 5‘3 = d_ll‘g,

where o’ = (z1,22), & = (Z1,Z2). In this coordinate system, the velocity and pressure fields
are given by
(@) = dP (), @) = 47 Fus(e),

u3(z) = dMug(z),  p@) = &> Fp(a),

where x = (x1,x9,23), T = (¥1,%2,%3) and k is a real constant which is defined later. We

have
d*=3/2v iy ‘20 0
Veu = [ d*32v.a, |- | 0 dY% 0
dF1V 115 0 0 1

From the scaling relations between inner and outer variables we have:

T
Vop = (72055, 4055, d0055)

0%
Doup = d AV 4+ d PR
T3
0%a
k—3/2v72 ~ k—5/2 2
Agug = d*3*V% 0y 4+ "5/ T
2~
Agus = dk—lvg/aﬁdk—?a—f’.
03

We then expand formally @1 and p on the forms
i = @’ +da' +d*a + ...
p = P’ +dpt +d%p*+ ...
Plugging these expansions in (4.1.1) and identifying the terms of the power series in d,
i=k—5/2,k—2k—3/2,..., we obtain that the flow field (@’, p°) satisfies
i op o of _op _ om om o
073 0xy T 0x3 0y T 073 " 071 0iy 013

= 0. (5.2.5)
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The flow field (!, p') satisfies

0*ul B ai 24 R B ai w24 8_131 _ 0%a) 8111 8u2 n 8_&:1.) _0
073 0iy P, 073 0o P 0¥s  0i3’ 0iy 0%y Oz
(5.2.6)

There is no difficulty in principle which prevents us from now proceeding to calculate further
terms in the expansion, but for the purpose of the analysis, we only need to consider the
leading order given by (5.2.5).

Now, it is convenient to change variables

- - L 1, .5
Y1 = T, Y2 = T2, y3=$3+—+§(1‘1+x2)'

2
The surfaces of the particles near the contact point respectively satisfy
oBinmer . ys = O(d), (5.2.7)
OBy : ys = 14yi+ys+0(d) =: h(y1,y2) + O(d). (5.2.8)

For = (&1, &9, %3) and y = (y1, Y2, y3), let us set

v(y) = uo(), qy) = po(@).
With these new variables and v(y) = (v1(y), v2(v), v3(y)), the equation (5.2.5) reads as follows

0? 0 0? 0 0

o2, T %, %1, (5.2.9)

dys I 03 Oya dy3

Ovy  Ovy  Ous @’Ul 0vg

— t+t =+ +y + = 0. 5.2.10

o1 Oya  Oys  'oys T Poys ( )
Let us consider the force F' and torque 7 exerted by the fluid on the first particle. The force
and torque on the other particle can be obtained by symmetry. In inner variables, the unit

normal n to the surface and the element of area of the surface dS are given by
n = <d1/2y1 +O(d), d?y, + O(d), 1 + O(d)) :
ds = d.dyldyg(l —I—O(d))

We note that the singular terms of force and torque are contained in the leading term of the
inner expansion. Moreover the asymptotic formulas of force F®¥"Pt and torque 7Y™t at
small gaps are only generated on the area of surface around the contact points Hence we
may compute F*¥"Pt and T¥™P! on the small surface {z € By : 27 + 2} < 2}, where ¢
is a small real number. In inner variables, this surface becomes

= {y € B : yi +y3 <d 'e*}.

Then we obtain

. B 0
Flasy Pt _ dF 1/2 / <_y1q + 8—U1> dyrdyo + O(dk)a
Se Y3

- B 0
Fesvmet — gk 1/2/ (—yzq—I—a—Z;) dyrdys + O(d),

Fézsympt _ dk—l/s (—q)dyldyg—l-O(dk), (5.2.11)
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Tlasympt _ dk—1/2/ <_%> dyldyz-l-O(dk)y

0ys3
,]r2asympt — dkl/Z/ (%) dyldy2+0(dk)7
- \0Y3
T = dk/ (ylg—Zi-w?—Z;) dyrdys + O(d"11?). (5.212)

The boundary conditions for v in inner variables read
v = Vldl/ka o w3y2dlfk + O(d3/27k)’
vy = V2d1/27k + w3y1dlfk + O(d3/27k)’

vy = Vad™* + (wiyp — woyr) dY?7F, on OB, (5.2.13)
and

v = —Vid"* Rt wayed'F + O(dP*7H),

vy = _V2d1/2—k o w3y1d1—k + O(d3/2—l€)7

vy = —Vad ¥ — (wW1y2 — way1) dlﬂ_k7 on 835”””, (5.2.14)

where V and w in (5.2.3) have components V = (V1, V5, V3) and w = (w1, ws, w3).

5.2.3 Asymptotic formulas of the total force and torque

Since (v, q) linearly depends on V and w, we may decompose the velocity field (v,q) in
three parts

vV = va+vVp+vg, q = qAa+qB +qc,

where the first part (va,qa4) is the flow resulting from the translational motion of surfaces
along the vertical axis, the second part (vp, ¢g) is the flow resulting from the tangential and
rolling motion of surfaces and the last part (v, o) is the flow resulting from the rotational
motion of surfaces about normal. More precisely, three flow fields (va,q4), (vB,qp) and
(ve, qo) satisty (5.2.9), (5.2.10) with the following boundary conditions

(va)1 = (va)2 =0, (va)3==£Vsd* ondB""", (5.2.15)
(vp)h = £Vid'>7F + O(d**7F),  (vp)y = £V5d/*7F + O(d**7F),
(vB)s = % (wiyz — wayr) d/*7 % on OB™, (5.2.16)

(vo) = :Fw:gygdl_k, (vo)2 = w3y, (ve)3 =0 on 835”””, (5.2.17)

From the boundary condition (5.2.15), (5.2.16) and (5.2.17) we deduce that in order to
calculate (va,q4) one must take k =0, k = 1/2 for (vp,qp) and k = 1 for (vc,qc). Next
we build the asymptotic formulas of force and torque which are correspondingly decomposed
as

Fasympt — FA+FB+F07 Tasympt — TA+TB+TC-
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5.2.3.1 Translation motion of spheres
Since (va,qa) satisfies (5.2.9), (5.2.10), we obtain

1 0qa

= ) ) = = A C7 - B ‘D7
qA qa(y1,92),  (vah 2 0 + Ays + (v4)2 2 v + Bys +

where A, B,C and D are arbitrary functions of y; and ys. These terms may be determined
from the above boundary conditions of v 4 as

1 9qa 19qa

A= ———=h B = ———h C=D=0. 5.2.18
2y, (y1,2), 2 ys (y1,2), ( )
Hence, (v4)1 and (v4)2 become
L,y 0q4 L,y 0qa
= - —ysh) — = = —ysh) ——. 2.1
(va = 5 (v5—ysh) Bur” (va)2 = 5 (v5 —ysh) 90, (5.2.19)

Substituting the expressions of (v4)1, (v4)2 given by (5.2.19) into (5.2.10) and then integrat-
ing with respect to y3 we get

1/0%qa  0%°qa\ 5 1 (0A OB dqa 0qa
(va)s = 5

—s |3t Fus - +tven— |y (An+B +E,
oy " o3 )2 \ow T M ow T oy >y3 o y22§32 20)

where F is an function of y; and ys. Since (v4)3 = —V3 on the surface y3 = 0 in the limit of
d | 0, it follows that F = —Vj5. Similarly, since (v4)s = 1 on the surface y3 = h, we get
1 (82(],4 82qA) B3 1 <8A 0B dqa dqa

oV = —= GE LT LA L YA B2 Ay, + Buo)h
’ 6\ dyi  Oy3 3y1*_8y2_ky18y1_+y28y2) (Ayr + By)h,

2

After substituting the values of A and B from (5.2.18) into the above equality and then
simplifying we obtain
V. (h*Vqa) = —24V5. (5.2.21)

In order to solve this equation, we use the polar coordinates
y1 = fcosé, Yo = Tsinb,
so that the equation (5.2.21) takes the form

?qa  0%qa 673 dga —24V372
2 A

_ . 5.2.22
w2+zm2+<r+1+ﬁ>z% (1 +72)3 (5.2.22)

If we assume that g4 is of order 7" as # — oo, then (va)1, (va)2 are O(#" 1) and (v4)3 is of
the form —1 + O(7") as # — oo. By expressing these qualities in outer variables and noting
that the pressure and velocity in the outer region of expansion can not contain any terms
which tend to infinity as d tends to 0, this shows that n < —4. Hence

qga = O(F™1)  as# — oo,

The solution of (5.2.22) which satisfies the above condition could be

5 5 +0(d). (5.2.23)

W= e
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The error term of order d in the expression of g4 arises from the fact that the expressions
given in the boundary conditions have an error of order d.

From (5.2.11) and (5.2.12), the asymptotic formulas F4 and 74 generated from the flow
field (v, qa) are given by

0
(Fa)1 = d1/2/ <—y1QA+ g};h)dyldszrO(do),

0
(Fa)2 = d1/2/ <_ZUQQA+ (;);)2>dyld92+0(do)u

(Fa)s = dl/s (—qa) dyrdys + O(d"),

and

(Ta)y = d—L@h/E (——Qﬁ9é2%> dyndys + O(d),

8y3
0
(Ta)2 = dw/ ( ((;JAh)dyldszrO(do)a
- Y3
I(va)a 8(UA)1> 1/2
7. = — dy1dys + O(d .
(Ta)s / s <y1 15 Y2 15 y1dy (d*/%)

We can see that if y1, yo are replaced by —y;, —ya respectively, the value of g4 given by (5.2.23)
is unchanged whereas (v4)1,(v4)2 given by (5.2.19) become —(va)1, —(va)2 respectively.
Hence the force F 4 and 74 can be estimated by

(Fa)r = O(d), (Fa)2 = O(d), (Fa)s = d—l/s (—=qa) dy1dys + O(Ind), (5.2.24)

and

<nn=m%,@mzowm<nh:/<ﬁmm—mﬁﬁﬂ@mﬁmwﬂ

0ys3
(5.2.25)

Substituting the formula of g4 given by (5.2.22), we have

d—1/2¢ 2
(Fp)3 = —d ! / / fgadrdf + O(Ind)
7=0 0=0

d=1/2¢
= 6rd? / #(1 +72)"2d# + O(In d).
#=0
Moreover, we have
/d_ma A1+ 72) "2 dp L( ! ! d tends to 0
7 7 P = —-(1—-—) —>—=, asdten .
=0 2 1+ d71€ 2

It implies
(Fa)s =3md™' +0O(Ind).
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Substituting (v4)1 and (v4)2 given by (5.2.19) into the expression of 74 in (5.2.25), we get
dq4 9q4
7, = h — — dyrd O(d°
(74)3 /S <y28y1 1gy, ) Wndve + (d”).

Using polar coordinates y; = 7 cos#, yo = 7sin #, we obtain

—1/2e

/ /9 O(d)didf + O(d°) = f(e) + O(d°),

where f () tends to 0 as ¢ tends to 0. Therefore we get (T4)3 = O(d°).

5.2.3.2 Tangential and rolling motion of spheres

Since (vg, qp) satisfies (5.2.9) and (5.2.10), we can do similar to the previous section, the
value of the flow field (vp,gp) is given by

10 10
g8 = qB(Y1,¥2), (v = 3 ;B §+Ays+ V1, (vB)2 = 3 ;B y3 + Bys + Va,
(5.2.26)
1 [0? 0? 1 /0A OB 0 8
oo = L (P Ty g (04 08 oo
6\ dy;  Oy; oy 02 oy T oy
— (Ay1 + Bya2)ys + wiy2 — way1, (5.2.27)
where A, B are the functions of y1,y2 and are given by
—2 1 —2 1
A= Lo, p 22 10w,
h 2 8y1 h 2 ayQ
Substituting the value of (vp)s into the last boundary condition we obtain
V- (h*Vqp) = 24(way1 — wiya), (5.2.28)
We use the polar coordinates again, the above equation has the form
?qp  0%qp 673 dqp 73
~2 ~ o .
T + 902 + <?“ + T +f2> % = 24 (wacosh — wysing) s (5.2.29)

Here we just need the asymptotic expansion of ¢p for large 7, so we only requires the form
of ¢p by using the limiting form of (5.2.29), we have

2 2
& aagf + 6835 + 77 85];9 = 24 (wycosh — wysing) 73, (5.2.30)

Similar to the case of ¢4, we requires ¢p to satisfy

g = O(F %) as’ — oo. (5.2.31)



94 Chapter 5. The Stokesian dynamic method for close particles

The solution of (5.2.30) satisfying (5.2.31) is

12
qB = —gr =3 (wacosh — wysinb) . (5.2.32)

Due to the approximation in (5.2.30) that 7 was very large, (5.2.32) for ¢p gives really the
first term in the asymptotic expansion of ¢p for large 7. Also since the expressions in the
boundary condition have an error of order d, so ¢p is given by

12
qB = —Er =3 (wacosh — wysind) + O(7~2) + O(d). (5.2.33)

If we replace y1,y2 by —y1, —ys respectively or equivalently 6 by 7+ 6, the value g becomes
—qp, whilst (vg)1 and (vp )2 are unchanged. Using these symmetric properties of the flow, the
force Fp and torque G on 0B; generated by the flow (vp,gp) are calculated from (5.2.11)
and (5.2.12) as

0
(Fph =/ <—y1q3+ gj;h)dyldngrO(dl/Q),

0
(FB)2 = / <—y2qB + M) dyrdys + O(dY?),
S dy3

(Fp)s = O(d°),

(Tp)) = /5 5

(TB)2 = 905
Ss
(T)s = O(d). (5.2.34)

and

< ) dyidys + O(d"?),
<8

) dyydys + O(d'/?),

A\

Substituting the values of (vg); and (vgp)2 from (5.2.26) into these expressions, we obtain

—2V; 1.0
(Fp) = / <—91QB+ . - - §h$> dyidys + O(d*/?),
2V, 1.0
(Fp)2 = / <—yzq3+ Z 2 f%) dyrdys + O(d"/?). (5.2.35)

These integrals can be evaluated by changing from (y1,y2) to polar coordinates (7, 6) and by
substituting the value of ¢p from (5.2.33), the above expression for (Fp); becomes

d—1/2¢ ~
T 24wy 4 7 24wy 1 4 7 0
F = — — 8V] d o(d 5.2.36
o = 3 [ (B - 5r)+<> (5.2.36)

So we get the asymptotic form of (Fg); as
(Fp)1 = 2aVilnd + O(d°).
By performing the similar computations for (Fg)sa,(7p)1, and (7p)2, we also obtain

(Fp)y = 2nValnd + O(d°),
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and

(I = <—27TV2 + 6%%) Ind + O(d"),

(TB)Q = (27TV1 + 6%&)2) Ind + O(do)

5.2.3.3 Rotational motion of spheres

As in two previous sections, since (v, gc) satisfies (5.2.9), and (5.2.10) we obtain

(ol = 3243

=9 ) Y3 (ve)2

= Z 2yt + Bys — ,
28y2y3 Y3 — w3y

(5.2.37)

qc = qc(y1,92), + Ayz — w3y,

1 (0% 0%q 1/0A 0B 0q 0q
( - —C> 3 5( < C>y§—(Ay1+By2)y3,

(ve)s = AT + B2 Yz — 3—y1+3—y2+y18—y1+y28—y2
(5.2.38)
where A and B are functions of y1,ys and are given by
Using the last boundary condition on (ve)s we obtain an equation for go as follows
V- (h*Vqe) = 0. (5.2.39)

This implies that ¢o = O(d). Hence, we can see that the force Fo and torque 7¢ are no
longer singular being of order d°, it means

Fc=0(d), Tc=0(d).

Combining with the results in Section 5.2.3.1 and Section 5.2.3.2, we obtain the asymptotic
formulas of the force F and torque 7 on dB; as claimed.

5.3 Stokesian Dynamic method

In this section, we first summarize the Stokesian dynamic method which is developed by
Durlofsky and Brady in [10, 11]. This is a general method to calculate the friction matrix for
the lubrication effects. Then we perform some numerical tests to illustrate the efficiency and
to show a limitations of this method.
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5.3.1 Main idea

The method assumes that, in the case of two spherical particles the friction matrix is
known exactly. This is not true, we do not have any explicit analytic formula for the friction
matrix. In practice, we can compute accurate approximations of the friction matrix for two
balls at different values of the distance d € {dy, Ado, \2dy, ...} for some small dy and some
A > 1. For this we use a number of vectorial spherical harmonics in order to reach a given
accuracy. We also know the asymptotic bebavior of the friction matrix as d | 0. Tabulating
these data and using an interpolation method, we can indeed assume that the friction matrix
for two particles is known within a given accuracy.

For a larger number N of particles, we need to make some approximations. Starting
from the fundametal solution of the Stokes equations, the friction matrix Fp,, ,, is built by
expanding the force density on the surface of each particle in a series of vectorial spherical
harmonics truncated at level Ly,q;. The Stokesian dynamics consists in modifying the friction
matrix by adding the “exact” lubrication forces .7:"p between each pair of close particles. The
friction matrix already contained a poor approximation of these short range interactions. In
order to avoid counting these interactions twice, we substract a poor approximation F,

Lma:t Y

FOD = Fp Y (]}p — 7 7Lmaw) :
p

This two-sphere friction matrix 7, is computed with the truncation order L4, as Fr,,...-

Lmaa:

In Stokesian dynamics, the short range interactions are exact for two spheres. However,
by construction, the correction fp — Fp,Lmae Only modifies the interaction between the balls
of the pair p = (B, Bz). If the third ball Bjs is close to one of the balls By, By then the
fact that By and By are close also affects the hydrodynamic interactions B; «— Bs and
By «+— Bs. The Stokesian dynamic corrections are oblivious of these secondary lubrication
effect. In the next section, we expose numerical evidences of this fact.

5.3.2 Limitation of the Stokesian Dynamics

Let us consider three particles By, Bo and Bs. We assume that their centers lie on the
vertical axis with the coordinates z; = (0,0,0), zo = (0,0,2+d) and z3 = (0,0,4+2d), where
d is the distance between two consecutive particles. We assume moreover that these particles
translate along the vertical axis with velocities u; = —e,, uy = usz = e, (see Figure 5.5).
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Figure 5.5: Example with three particles.

We compute approximations of the total forces exerted by the surface of the particles on
the fluid. We use and compare two methods: the direct method (spectral discretization of
the Neumann to Dirichlet operator) and the Stokesian dynamic method as described above.

As expected (see Figure 5.6) the Stokesian dynamic method provide a good approximation
of the force exerted by Bj: the main part of this force coming from the singular part due to
the difference between the velocities u; and us.

On the other hand, By and Bs have the same velocity and the force densities in area
between By and Bs are smooth. In this case we see that the Stokesian dynamic correction
does not lead to any improvement (see Figure 5.7). In fact, the behavior of the approximated
force using both methods is exactly the same. Here the Stokesian Dynamics only modifies
the interactions between By and Bs.
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Figure 5.6: The total forces on B; computed by the Stokesian Dynamics (blue line) and

direct method (red line) with d = 0.05.
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The total forces on Bs computed by the Stokesian Dynamics (blue line) and
direct method (red line) with d = 0.05.

Eventually, the force exerted by the ball B combine the situations of the ball By and Bjs.

The leading part of this force is due to the lubrication forces between By and Bs (different
velocities). This leading part is well approximated by the Stokesian dynamic method. On
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the other hand, the method is oblivious to the influence of the closeness of Bs. We observe
the same order of magnitude for the error on the force exerted by Bs as for the force exerted
by Bs (see Figure 5.8).
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Figure 5.8: The total forces on By computed by the Stokesian Dynamics (blue line) and
direct method (red line) with d = 0.05.

In order to overcome this problem, we propose a new method which we call the correction
method. This new method is based on the singular-regular splitting of the hydrodynamic
interactions of particles. We present this method in the next chapter.
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6.1 Singular-regular splitting of the hydrodynamic interactions

We consider N particles as described in Section 4.1.1. Let us start with some notation.
Firstly, let us introduce a cut-off distance § > 0. Denoting by d; ;) the distance between two
particles B; and Bj, d(; ;) = |z; — zj| — 2, the set of pairs of close particles is defined as

P o= {(i,j) € {l,.. N i#j: du; <d}.

Our method consists in taking advantage of the linearity of the Stokes equations for
rewriting the fields (u,p) as a superposition

u = uo-l-zuc, p = po"i‘zpca

ceP ceP

where each couple (u’,p") solves the Stokes equations in Q and (u®, p¢) solves the Stokes
equations in the fictitious fluid domain:

Q¢ = R*\ {B;UB;}, for ¢ = (i,5) € P.

The couple (u® p°) handle the large variations of (u,p) localized in the small gap between
B; and Bj which are due to the difference between the prescribed velocities on 0B; and 0B;.
Precisely, for ¢ = (i,7) € P, we introduce the velocity field

1

wi(a) = gluye) - w(o))
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which vanishes if and only if the solid B; U B; follows a rigid motion. The “singular” field
(u, p) are defined as the unique solution of the problem

([ AW+ VP = 0 in QF

V-u® =0 in Q°
=-—w°® on 0B, (611)

=w° on 0Bj,

uC

uC

[ u’(@) =0, p°(z) >0 as |z] - +oo.

By linearity, the remaining part (u’,p°) solves the Stokes problem in 2. The boundary
conditions u® for this problem are set so that the total velocity field satisfies the boundary
conditions u; specified in the original problem

—Au’+Vp? = 0 inQ,
V-u =0 inQ,

6.1.2
uw = w' ondB;, i=1,2,...,N, ( )
u’(z) — 0, p’(z) =0 as|z| — +oo,
with,
wl(z) = w(z) — Zuc(x) forz € 0B;, i1 =1,2,...,N. (6.1.3)

ceP
At the end we aggregate the different contributions. With obvious notation,

Fr=F+> F, Th=T0+> T¢, k=12..,N
ceP ceP
Notice that the singular solution (u¢, p®) associated to a pair of close particles ¢ = (i,j) € P
do not contribute to the forces and torques exerted by the surface of a third particle By,
k ¢ {i,j} : we have Ff = 7¢ = 0. Indeed, in this case, By C €°, so that by the Stokes
formula,

FY = / o(z) -ng(z)dS = V. of(x)dx = 0.
8Bk Bk

Similarly, using the Levi-Civita antisymmetric symbol €,4, and Einstein summation conven-
tion on greek indices, we compute,

Te — /8 . 2] X (07 mi @)l

0
= g, ngol.n/dS = &g, / — |(x — z;)305,| dx
o /8 5, A7 8 [y B (7~ 2)575d]

By, —— By N——"

k
=0 =0

As a consequence, the total force and torque exerted by the particle By on the fluid are given
by
Fe = F+ Y, F, To=T"+ Y 1 (6.1.4)

c=(i,j)EP, c=(4,j)EP,
ke{ig} ke{ig}
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The advantage of decomposing the solution resides in the possibility of using different
methods for solving problems (6.1.1) and (6.1.2). The singular parts are solution of the
Stokes equations (6.1.1) around only two solid particles. We will approximate these singular
parts by interpolating in pre-computed tables. The remaining parts solves the Stokes equa-
tions (6.1.2) in the original domain but with modified boundary conditions which do not
necessarily correspond to rigid motions of the particles. The remaining regular part may be
approximated by using any standard numerical method.

Let us first consider problem (6.1.1). For ¢ = (i, j) € P, by changing coordinates, we may
assume that z; = —(1 +d./2)e, and z; = (1 + d./2)e.. In the new coordinates, the velocity
w¢ uniquely decomposes as

wi(z) = Ufe. +Ugjer +wie, X @ +wg e X 7,

where e; and ey are two unit vectors orthogonal to e,. Hence, the solution of (6.1.1) can be
decomposed as

(% p%) = Ui(ua,pa) + Uz, (up,pB) + wg,(up,ppr) + wi(uc, po), (6.1.5)
where, for Z = A, B, B’, or C, the couple (uz, pz) solves the Stokes equations in the domain
Qde = R3\ [Bic uBia] , (6.1.6)

where B denotes the solid sphere with unit radius and center +(1+d,/2)e.. The difference
between these problems comes from the specific boundary conditions,

uy = wy on 8Bi¢ U dB%,
where w are defined as follows, for xz € aBiC,
wa(z) == +e,, wp(z) = xe1, wp(r) := *eaxz, we(z) := *e, xz. (6.1.7)

When solving independently the second or the third problem, we may rotate the frame so
that e or ey coincide with e,. We end with four family of problems only depending on the
distance d.. More precisely, in view of (6.1.4), we need approximations of

Fz(d.) = /63dc oz(x) -n(x)dS(z), (6.1.8)
To(de) = /8 0@ % [72(2) - n(a)dS (o). (6.1.9)

Using the symmetries of the problems, the corresponding total forces and torques on
dB% are deduced from the former. For the computation of the boundary conditions (6.1.3)
satisfied by the remaining “regular part” (u’, p°), we also need approximations of

vz(z,d.) = uz(x), for z € Q% and Z = A, B, B', C.

In the next section, we describe a procedure for computing these quantities. The method
is based on known asymptotic as d. — 0, direct computations and interpolation in the
parameter d..
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Let us now consider problem (6.1.2). It is of the same nature as the original problem:
solve the Stokes equations in the fluid domain surrounding the particles. The new problem
looks even more complex since we have substituted the function w" for the simple rigid
motions u; that can be described with 6N parameters. However, by construction, (u’,p?) is
a very regular vector field, even in the limit of touching particles. As a consequence, applying
standard numerical methods to problem (6.1.2), we can compute approximations of (u’,p?)
with an accuracy that does not depend on the distance d. between close particles.

6.2 Discretization

As in the previous section, we split the solution into a regular and a singular field. In this
section, we describe a procedure for computing the approximations of the singular part and
the boundary condition for the regular part. The main idea is to interpolate the needed quan-
tities into a grid of known values which has been computed once for all during a preprocessing
step.

6.2.1 The interpolation method for computing the singular fields

As explained in the discussions at the end of Section 6.1, for each ¢ = (i,5) € P, the
singular part (u, p¢) can be decomposed as a combination of four parts (uz,pz) which are
solutions of four family of problems only depending on the distance d.,

“Auz+Vpz =0, Veouy =0  inQk,
{ wz VP2 vz o (6.2.1)

uy = wy on ON%,

where Q% and w are given by (6.1.6) and (6.1.7) respectively. Recall that the fluid domain
Q% only depends on the distance d.. We need to compute approximations of F; and 7z
given by (6.1.8), (6.1.9). Our method is based on asymptotic formulas for the total force and
torque at small distance, direct computations and interpolation in the parameter d..

In a preprocessing step, we decompose (fz)k and (wyz), for k = B, Bﬁlrc, in the basis of
vectorial spherical harmonics as follows,

2k = > Habra

a>0

(WZ)k‘ = Zwlia(bk,a'

a>0

By truncating the above series up to order M,,q,, With My, large, the discrete Neumann
to Dirichlet matrix N'Dy 45, is computed as described in Section 4.2.3.2. Then we compute
accurate approximations of the surface force density f&* by solving the linear problem,

NDyg gis £35 = Wy,

e By this direct method, we may compute fgis' as a

’ )k:iyjﬂ:ly--meaz. .
function of d. for a finite number of distances, say d. € D% := {dy, Ady, A\’dy, ...} for some

where W, = (w-Z
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small dy and some A > 1. Combining the explicit asymptotic formula of the force density
with this discrete set of accurately computed values, we obtain approximations of fgis'(dc)
by interpolation for every 0 < d. < é.

For instance, let us consider the first problem Z = A. We are interested in the total
force and torque exerted by the first particles B In this case, from the symmetries and the
asymptotic formulas given in Section 5.2, we have,

FA(d,) = <3d—”+0(1ndc)> e, and Ty(d,) = 0,
C

We guess that F4(d.) expands as

3

FA(dc) = [d_ﬂ + CiInd, + Cy + C3(dcInd.) + Cade + Ra(de) | €.
C

The constants C1,Co, Cs and Cy are then determined by using a least square approximation

based on highly accurate numerical simulations performed for a small number of small values

of d.. The Figure 6.1 shows the behavior of the rest term R 4(d.).

107
12X

10+

-2

1 . 1 . 1 . 1 . 1
0 0.05 01 015 02 025 03 035 04 045 05

Figure 6.1: The term R 4(d.) in a function of d..

Table 6.1: The absolute errors of interpolation.

de 0.475 0.355 0.275 0.135 0.0135
Linaz 50 50 50 70 150
absolute error (total force) | 4.4e-13 | 2.2e-12 | 3.5e-12 | 7.4e-12 | 3.1e-10

In a second step we build a table of values of R (d.) for d. ranging in a finite subset of
(0,0). These values are obtained by the direct method with a very large Lyq;-
In practice, we have preformed accurate simulations with the following distances:

d. = 0.001, 0.002, ..., 0.009, 0.01, 0.02, ..., 0.5.
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This ends the preprocessing step.

Eventually, when needed, we use the cubic spline interpolation method to estimate R 4(d.) for
any non-tabulated distance d. € (0,0) from the tabulated values. In Table 6.1, we show the
result of some numerical tests realized in order to estimate the error due to the interpolation
method.

6.2.2 Computation of correction velocities

In this section, we present the interpolation method to compute the coefficients of the
correction velocities.

We consider again the problem (6.2.1). Let Bg be the ball of radius R = 3 centered at
the origin of the coordinate system. This ball contains the two balls B% and Bic. We want
to determine the velocity Uy(r,d.) for r € R3\ Bg.

We first compute the force densities on the boundary of Bic and BY% using the direct
method with a large truncating order. Then, we can deduce the velocity field Uz everywhere
using the explicit formula (4.1.7). On the other hand, we know that the velocity field in
R? \ Bg reads

l +1
Uz(r,d.) = Z Z gg,l,m(dC)Ti(Hl)Tl,m'i‘Z Z gé,l,m(dC)Ti(Hl)Il,m
[>1 m=-—I >0 m=—[-1
-1
20— 3)(1 1) }
#5004 )| N, (622)
1>1 m=—1+1
701
. 601

721
501
a0F

6.8
301

6.6
201

6.4
101

6'27.'-. ........

0 O.bS 0‘.1 0.‘15 0‘.2 0.‘25 0‘.3 0.‘35 0‘.4 0.‘45 0‘.5 00-” '(‘).‘.0;. : 0‘.1 0.‘15 0‘.2 0.‘25 0‘.3 0.‘35 0‘.4 0.‘45 0‘.5

Figure 6.2: The coefficients 92070(%) (left) and gg,s,o(dC) (right) in functions of d. in the
case Z = A.

We then only have to tabulate the coefficients gghm,gé’l’m,gg’l’m. These coefficients are
obtained by projecting Uz(-,d.) on the basis of rescaled vectorial spherical harmonics on
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OBpR. In a last step, we use (6.2.2) to obtain the corresponding coefficients in the vectorial

spherical harmonic basis on 0B(0,1).

In practice, the series (6.2.2) is truncated at some order f/max. We call f/max the correction
truncation order. Notice that this truncation order may be different than L,,q, defined in
Section 4.2.3.1. The choice of Lyae will be discussed in Section 6.4.
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Figure 6.3: The absolute errors of interpolation correspond to the coefficients 92070 (de) (left)
and g]Z\{570(dc) (right) in function of d. in the case Z = A.

Finally, using a polynomial interpolation of these computed coefficients, we can estimate
the coefficients of the correction velocities on the unit sphere for any d. € D%,

These coefficients are computed as functions of the distance d. in the four cases corre-
sponding to Z = A, B, B',C. As an example, we show the behavior of 92070(dc) and 9?,5,0(6&)
in the case Z = A in Figure 6.2. The absolute errors of the polynomial interpolation corre-
sponding to these coefficients are also shown (Figure 6.3).

6.3 Numerical results

In this section, we perform some numerical tests to compare the three methods: the direct
method, the Stokesian Dynamics and the correction method. Recall that in the case of two
particles, the correction method and the Stokesian Dynamics are exactly the same. Hence
we just consider the cases with more than two particles.

6.3.1 Three particles

Let us again consider three spheres with different velocities as decribed in Section 5.3.
The Stokesian Dynamics and the correction method are really better than the direct method
as shown by the representation of the approximation of the forces F1, Fo, F3 applied by the
balls Bj, Ba, Bs on the fluid using the three different methods (see Figure 6.4).
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Figure 6.4: Comparison of the three methods with 3 particles: B (first), Bs (second) and
Bs (third) with d = 0.05.

Zooming on the results of the Stokesian Dynamics and the correction method (see Fig-
ure 6.5), we see that the latter has a better behavior. With L,,,, = 8, the relative error
for the correction is 6.1076.

So we conclude that even in the presence of several particles

the correction method also improves the approximation of the interactions with neighboring

particles.
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particles: Bj (first), Bs (second) and Bs (third) with d = 0.05.

Let us state again the main difference between these methods. The Stokesian Dynamics
modifies the interaction of each pair of close particles independently. The correction method
also modifies the interactions with neighboring particles. Hence at the same level of truncation
order, the computational time of the correction method is larger. But the correction method
converges very fast and requires a small level of truncation order to get an accurate result.

6.3.2 Four particles

We perform some numerical test in a more complicated configuration. We consider four

particles such that their centers are not on a straight line. These centers are respectively

(2 + d)eg,

Z3 = Zo + (2 + d)eb,

Zy

Z3 + (2 + d)ec,
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where d = 0.05 is the distance of particles and e,, €5, €. are unit vectors as follows

( 1 1 1 ) 1 1 11 ( 11 1 )

€a = - R €y = T T e an | €c = Ty o s ]
BERNVERVE RVEY A SV RRVE R 1) A VO RVE

The rigid displacements u; are given by (4.1.2), where the corresponding velocities U; and
angular velocities w; are given by

Ul - (17_273)7 U2 - (_27370)7 U3 - (3707_]—)7 U4 - (_17_171)7

wi = (2,0,-3), w2 = (-1,-2,0), w3 = (2,1,-2), wy = (—1,—-1,1).

As in the previous section, we show the numerical results in two steps: first we compare the
three methods in Figure 6.6 and then we compare the two best methods in Figure 6.7.
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Figure 6.6: Forces on the four particles in z direction computed with the three methods: B;
(first), By (second), Bs (third) and By (fourth). d = 0.05.
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Figure 6.7: Forces on the four particles in z direction computed with the Stokesian Dynamics
and the correction method: Bj (first), By (second), Bs (third) and By (fourth). d = 0.05.

The results are similar to the three sphere case. The correction method provides an
accurate result for Ly, = 8.

6.4 Numerical determination of the truncation orders

In the correction method, when we approximate the correction w® determined by (6.1.3)
and the Neumann to Dirichlet matrix DN, we have to choose two truncating parameters:
Lyay for approximating the Neumann to Dirichlet matrix and Emax for approximating the
velocity corrections. These quantities prescribe the number of vectorial spherical harmonics
used for the discretization. The natural question is how can we choose these parameters such
that the solution has a given accuracy? How do they depend on the distances between the
particles? In this section, we present a numerical estimation of these parameters.
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6.4.1 Correction truncation order

Let us consider the problem (4.1.1) with three unit balls. We assume that their centers
lie on the vertical axis with corresponding coordinates z; = (0,0,0), zo = (0,0,2 + d), and
z3 = (0,0,4+d+ D). We assume moreover that the two first balls translate along the vertical

axis with opposite velocities and that the third particle moves with the same velocity of the
second one, i.e., the given velocities of three balls are respectively uy = —e, and us = us = e,.

T3

x1

Z2

Figure 6.8: Example with three particles.

Firstly, we write the surface densities as functions of the distances between the particles
and of the truncating parameters

fhis — g (4,D,L,L),

where L and L are respectively the truncation orders used for approximating the Neumann
to Dirichlet matrix and for the velocity corrections.

Since the correction method converges very fast, we may fix a large enough value of the
truncation order L = Ly for estimating f/max. In numerical tests we choose Ly = 20. Then
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for every L € [1, f/oo), we define the error for the surface density as follows

Err (d,D,E) - (fd“- (d,D,LO,Ji) _ gdis. (d,D,LO,EOO) (
where Lo is very large.

Given a real small number ¢ > 0, the truncation order L, is chosen as follows
min{f) € [1,f)oo) :

Emaw (d7 D)

= Err (d, D, f)) < 5} .

In our numerical experiments, we set ¢ = 107%. Moreover, we only consider d < §, where
0 = 2 is the cut-off distance defined in Section 6.1. Then we numerically calculate Ly,q.(d, D)
as a function of d and D (see Figure 6.9).
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Figure 6.9: f)mw(d, D).

Figure 6.9 shows that the truncation order f)mam for computing the velocity correction
mainly depends on D. This truncation order can be used to estimate the other truncation
order L. In the next section.

Here we perform the tests with D varify from 0.1 to 5. We can choose

10 for D > 3,

12 for2< D <3,

14 for 1.5 <D <2,
Limaz(D) =416 for 0.7< D < 1.5,

18 for 0.6 < D < 0.7,

22  for 0.3 < D < 0.6,

24  for 0.1 <D <0.3.
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6.4.2 Truncation order for solving the problem

We now consider the same three-sphere configuration as in the previous section. For
computational time problem, we could not calculate 4 (d, D, L, f)max) for very large values
of L. The error on the surface force density is estimated by the difference between two
consecutive values of L with Ly, determined in the previous section. For every L > 1, we
define

Err(d,D,L) = ‘fd“" (d,D,L,Emw(D)) _ gdis. (d,D,L - 1,1ima$(D)>( . (6.4.1)
The truncation order Ly, is chosen as follows, for a given small real number € > 0,
Liaz(d,D) = min{L € [1,00): FErr(d,D,L) <e¢}.

In fact, the truncation order L,,., can be also estimated with another definition of the
density error,

Err(d,D,L) = (fd“- (4.0, 2, Loc) — €75 (d, D, — 1,EOO)( ,

where L is very large. The two errors are very close in the numerical computation. Hence,
it is more convenient to use the first definition (6.4.1).

We also choose € = 107% and the cut-off distance 6§ = 2. We consider two cases: D > §
and D < 4.

e The first case: D = Dg > 0,
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= \R K
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<
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2 L L

L L L L L 1
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d

Figure 6.10: Ly (d, D) for D > 6 = 2.
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In this case, the truncation order mainly depends on the distance d. We conclude
that for isolated pairs of particles D > ¢, we see that the critical truncation level is a
monotonic increasing function of d.
We can choose
(10 for d > 0.5,

11 for 0.2 < d < 0.5,

12 for 0.18 < d < 0.2,

13 for 0.15 < d < 0.18,

14 for 0.1 < d < 0.15,

15 for 0.01 <d < 0.1.

Lz (d) =

We made these tests with d varying from 0.01 to 0.5. Even for d = 0.01, the truncation
order Ly,qe = 15 lead to an error smaller than e = 107¢ (see Figure 6.10).

e The second case: D = Dy < 0,

22
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16 L&}
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3 S o
o 25, N

Figure 6.11: Ly (d, D) for D <6 = 2.

In this case, the optimal truncation order depends on both d and D. This truncation
order tends to infinity as both d and D go to 0.

In practice, we see on the graphic that we can choose L, as an affine function of
logioD and logiod in the region of [Lyaz opt > 40] (see Figure 6.11).
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6.5 Conclusions and perpectives

In conclusion, we have proposed an accurate method for the computations of hydrody-
namic forces between spherical particles suspended in a Stokes fuild. The main improvement
of this new method compared with the Stokesian Dynamics is that the influence of the singu-
lar force densities between two closed particles on the neighboring particles is also computed.
For this reason, the computational cost for this method is larger. The main part of the
computational time is due to the computation of the correction velocities and their projec-
tion on the vectorial spherical harmonics basis. On the other hand, these computations are
independent from one sphere to another and could be easily parallelized. This should solve
the main drawback of the method.

In this thesis, we only consider spherical particles. The main advantage of this shape is
that the computation can be based on the vectorial spherical harmonics basis. The methods
generalize to arbitrary smooth particles. In this case, we should use a boundary finite element
method instead of the decomposition in vectorial spherical harmonics.

Our method is just built for some very special domains for which the minimal fictitious
sphere enclosing two neighboring particles does not intersect any other particle. We have not
yet a definite method for treating the general case.
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