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Introduction

We study the influence of errors due to the finite representation of
numbers.
We mix information from

automated static analysis of program
statements made in exact semantics

Plan of the talk:
1 Robustness: background and definitions of robustness.
2 Global analysis: provides a new method that mixes standard static

analysis and mathematical statements for some hard cases
3 Differential privacy: how errors perturb the generations of

probabilistic noises.
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Robustness
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Internal representation of real number

Two main finite representations are used:
Fixed point numbers: the exponent is fixed statically.

0100010.10010

I Representable numbers belong to a small interval
I Good control on rounding errors

Floating point numbers: the exponent is set dynamically.

1.00101010× 2−101

I Larger range of representable numbers
I Rounding errors are less predictable:

a + (b + c) and (a + b) + c evaluations can give different results.

We look for a generic description of errors independent from the
representation.
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Static program analysis

Static analysis is an analysis that:
takes a source code as input but does not execute it,
outputs some properties about this code.

Example
Abstract interpretation
x ∈ [0,1]± 0.01, y ∈ [0,2]± 0.001
x = 3 ∗ y − x;
x ∈ [−1,6]± 0.013 , y ∈ [0,2]± 0.001
y = x ∗ y;
x ∈ [−1,6]± 0.013 , y ∈ [−2,12]± 0.0267

There are also Hoare Triple methods where a proof tree is built.

We look for a definition of robustness general enough to be derived
from any static analysis.

Ivan Gazeau (LIX) Safe Programming in Finite Precision October 14, 2013 5 / 48



To measure errors

Static analyzers keep track of detailed information to provide accurate
results.

We just keep essential information from the analysis:
all values of the program are seen as points in a metric space
(Rm,dm),
we just consider the distance corresponding to the maximal error.

We have to distinguish between two kinds of errors:
Errors that appear during the computation due to successive
rounding.
Errors that propagate from previous computations.
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Input/output errors

The slope of the function: Intern approximations:
it acts as an expansion factor small local gaps are allowed

0
x

f (x)

y

f (y)

0

Definition (The property P(k , ε))

Let (Rm,dm) and (Rn,dn) two metric spaces. Let f : Rm → Rn,
k , ε ∈ R+ ∪ {0} , we say that f is P(k , ε) if

∀x , y ∈ Rm,dn(f (x), f (y)) ≤ k · dm(x , y) + ε
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Internal errors

They can only be defined from both the exact and the finite-precision
semantics.

Notations
f : program code
[[f]] : exact semantics of f
[[f]]′ : finite-precision semantics of f

Definition ((k , ε)-Closeness property)

Let (Rm,dm) and (Rn,dn) be metric spaces. Let f and g be two
functions from Rm to Rn and let k , ε ∈ R+. We say that g is (k , ε)-close
to f if the following holds:

∀x , y ∈ Rm,dn(f (x),g(y)) ≤ kdm(x , y) + ε

Ivan Gazeau (LIX) Safe Programming in Finite Precision October 14, 2013 8 / 48



Global analysis
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Presentation of the problem

Problem of non locality: although the whole program is robust, its
components may not be (due to discontinuous conditional branchings).
Due to non-locality, standard compositional methods do not apply.

We propose a method:
based on a global pattern
that uses properties of the program in exact computation
that uses a static analysis of the program that assumes the control
flow is correct.

We bound the distance between the exact function and its
floating-point approximation.
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Example: the CORDIC algorithm for computing cosine

Variables of the program:
α: the angle given in input
β: an angle initialized to 0
(x , y): the coordinates of a point P in a unit circle, initialized to (1,0).
The algorithm principle:

Invariant: the angle of P in polar coordinates is β
Depending on whether α is greater than β, P is rotated left or right
This dichotomy is made a fixed number of iterations
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Problem of finite precision

The control flow can diverge from the expected one.

y

x

β1

β′1
P1

P ′1

Error after 2 steps is unacceptable.
Error after n steps can be small.
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Problem of finite precision

The control flow can diverge from the expected one.

y

x

β2

β′2

P2

P ′2

α

Error after 2 steps is unacceptable.
Error after n steps can be small.
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Problem of finite precision

The control flow can diverge from the expected one.

y

x

β3

β′3

P3
P ′3

α

Error after 2 steps is unacceptable.
Error after n steps can be small.
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Problem of finite precision

The control flow can diverge from the expected one.

y

x

β4β′4

P4P ′4

α

Error after 2 steps is unacceptable.
Error after n steps can be small.
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Problem of finite precision

The control flow can diverge from the expected one.

y

x

β5

β′5

P5
P ′5

α

Error after 2 steps is unacceptable.
Error after n steps can be small.
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Adapt the proof in exact semantics

The exact proof of confluence is straightforward
But the assumptions are no longer valid in finite precision.

Invariants Termination properties
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Our approach

Control flow errors are hard to analyze with standard static
analyzers due to the discontinuities.
Correctness proofs of algorithms exist but are valid only for the
exact semantics.

To quantify the errors, we make use of:
A static analysis that assumes there is no control flow error.
Some properties about the exact semantics.

Ivan Gazeau (LIX) Safe Programming in Finite Precision October 14, 2013 14 / 48



The model

Abstract rewrite systems provide a good framework for confluence.
We consider the program is rewriting a given term:

Conditional branches correspond to the non-deterministic choices
of the rewrite system.
The program stops once the term is in a final form.

To provide such an understanding of the code, we match it against a
pattern.
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First step: decompose the code

The pattern asks for read and write access to variables.

foo (m) {
( n , i ) = I n i t ( ) ;
while ( ! S(m, n , i ) ) {

( i , n ) = C(m, n , i ) ;
m = R( i ,m) ; }

return m; }

The interpretation as a rewrite system:
C(m,n,i) is the scheduler.

R(i ,m) allows us to define rewrite rules: m i−→ R(i ,m).

Ivan Gazeau (LIX) Safe Programming in Finite Precision October 14, 2013 16 / 48



Constraint the rewrite system

We want this rewrite system to be:
Locally confluent : two different rewritings of a term can be continued

to reach a common term.
Terminating : no infinite chain a −→ b −→ c . . . ...
From Newman’s lemma, these two properties imply all terms have a
unique normal form.

a

b c

e

f

If we can prove that, when the program stops, the term is irreducible,
then any rewrite choice leads to the same result.
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To provide a structure to our rewrite system

We consider a function h : Rm → R.
We define a >−→ b iff a −→ b and h(a) > h(b).
We denote by R̄m the set of normal forms.

Example
f1(x) = x − 3, f2(x) = x/3 and f3(x) = 2x .

9

3

6

18
12

2f2 f1

f3

f1

f3

f2

h(x) = (x − 5)2
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The conditions for robustness

1
>−→ is locally confluent.

2 The rewriting system >−→ is terminating.
3 The following property holds.

∀a,b ∈ Rm,a −→ b =⇒ ∃c ∈ Rma >−→∗c ∗ <←− b

4 The function [[foo]] is P(ke, εe).
5 In the exact semantics, when the stopping condition is reached,

the final value m is such that m >−→∗z implies d(m, z) ≤ εs.
6 We require the closeness property between [[foo]]′ and [[foo]]p, the

exact function that corresponds to the same control flow

∀x , y ∈ Rm, d([[foo]]p(x), [[foo]]′(y)) ≤ kf d(x , y) + εf .

7 In the finite-precision semantics, when the stopping condition is
reached, the final value m′ is such that

∃z ′ ∈ R̄m, d(m′, z ′) ≤ ε′s
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The theorem

Theorem
If all conditions are satisfied, [[foo]] and [[foo]]′ are (ke, ε)-close (with
ε = ke(εf + εs) + εe + 2εs + ε′s).

x
y

a1 b1
c1

d1

a2

b2

c2
d2

a3

b3

c3
d3

[[foo]](x)

x̄

p(x)
z ′
[[foo]]′(x)

[[foo]](z ′)
[[foo]](y)
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Conclusion about global analysis

A method to analyze finite-precision semantics that relies on exact
semantics properties.
The method deals with local discontinuities.
A proof through rewriting techniques.
The pattern can work for very different programs (tested with
CORDIC and Dijkstra’s algorithms).
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Differential privacy
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General motivations

How to control computational errors in a security setting?

Example
h : high (confidential) variable when h ∈ [v1, v2].
l : low (public) variable.
If f (h) > 0 then l = 0 else l = 1.

If, in the exact semantics f ([v1, v2]) ⊆ R+: no leakage.
But if f ′([v1, v2]) ∩ R− 6= ∅: possible leakage.
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What is differential privacy?

Purpose:
Release global properties of the databases (like correlations,
averages).
Protect personal information at an individual level.

The analyst is free to ask any query to the database.

Requirements
Differential privacy requires that the information obtained from a
database are almost identical,

whether or not an individual participates to a database,
whatever is the query.
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Differential privacy

We write D1 ∼ D2 if D1 and D2 differ in exactly one row.

Definition (ε-differential privacy)

A randomized mechanism A : D → Rm is ε-differentially private if for all
databases D1 and D2 in D with D1 ∼ D2, and all S ∈ S (the Lebesgue
σ-algebra), we have :

P[A(D1) ∈ S] ≤ eεP[A(D2) ∈ S]

An equivalent formulation:

e−εP[A(D2) ∈ S] ≤ P[A(D1) ∈ S] ≤ eεP[A(D2) ∈ S]

The analyst owns a privacy budget εt .
He can ask εi -private queries while

∑
i εi ≤ εt .
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Standard technique

Oblivious mechanism: the returned answer depends only on the true
result.
In case of real valued results, it consists in adding a random variable:

Mechanism (standard)

A0(D) = f (D) + X

The suitable scale for X depends on the sensitivity:

Definition (sensitivity)
The sensitivity ∆f of a function f : D → Rm is

∆f = sup
D1,D2∈D,D1∼D2

d(f (D1), f (D2))
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Example
Name Age Incomes
Alice 16 14,500
Bob 18 36,000
Charly 27 22,000
. . . . . . . . .

Analyst’s queries:
a. “ Number of people under the age of n? ”
b. “ Total incomes of people under the age of n? ”
n Query True answer Sensitivity Typical returned answer
65 a 1500 1 1504.82
65 b 45,700,453 100,000 47,834,345
16 a 1 1 -0.23
16 b 14,500 100,000 158,345

For general queries, results are accurate.
For queries about few individuals, results do not leak information.
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Why this mechanism is correct in exact semantics

Often, the added noise is a Laplace noise with scale parameter ∆f
ε .

x

P(x)

0x0 f (D1) f (D2)

Figure: The ratio between the two distributions is bounded by 4/3

This distribution is optimal since the ratio is exactly 4/3 for x < f (D1)
and x > f (D2).
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Standard technique to generate random variable

1 Draw one or several values u1, . . . ,uq uniformly distributed in
[0,1].

2 Compute n(u1, . . . ,uq).

Example (Generation of a Laplace noise in R)

n(u) =
∆f

ε
sgn(u − 1/2) ln (1− 2|u − 1/2|)
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Problems of the pseudo-distribution in finite precision

Finite set of inputs: any distribution is a step function.

Rounding process and errors may “avoid” to return some values.
Very low probabilities for large value are badly generated.

x

P(x)

0x0

Ivan Gazeau (LIX) Safe Programming in Finite Precision October 14, 2013 30 / 48



Our contribution

Implemented algorithms use finite representation of numbers.

Problem
A direct implementation breaks privacy: need to provide
safeguards.
Once protections are added, how to measure the leakage due to
the implementation?

Our assumptions on the exact mechanism are weak:
the domain of the answer belongs to any Rm space
the distribution of the added noise is not fixed

About the architecture:
any finite representation of numbers
any algorithm to implement the noise generation
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Initial error from the uniform random value

Standard technique: take an integer between 0 and N − 1 and divide
by N.
The distribution is discrete while it should be continuous.

A model for this error
We can consider this process as drawing a perfect uniform random
variable u then adding a perturbation mechanism like

u′ = n0(u) = round(u)
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Modeling the initial error

We denote by δ0 the maximal error such that:

∀u ∈ [0,1]q,d(n0(u)− u) ≤ δ0 (1)
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Rendering a specific noise

Compute a function n that takes a uniform random value as an
argument.

u

n(u)

0
1

yx

Figure: Generation of a Laplace distribution

This computation multiplies the initial error (and may induce additional
error).
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Large values are unsafe

For extremal values of u, the slope of n is too high:
the multiplication factor is too big to provide safety property.
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Truncating the result

Mc
r

Mechanism (truncated)

A(D) =

{
f (D) + X if f (D) + X ∈Mr

∞ otherwise
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Computational assumptions

Condition

We require n and n′ to be (k , δn)-close on a set Ur such that
Mr ⊆ n(Ur )

Total deviation
The deviation cannot exceed δt = kδ0 + δn

This error has to be translated in term of probability.
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How to bound probability from deviation error?

P(X ∈ S−δt ) ≤ P(X ′ ∈ S) ≤ P(X ∈ S+δt )

S−δt

S
S+δt
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Constraining the set of eligible distributions

Some specific distributions have weaker robustness to rounding errors.

x

P(x)

0x0

0x0
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Strengthening the differential privacy property

Because of deviations, we need to grant properties on a larger domain
than the theoretical one.
Original differential privacy:

∀S ∈ S,P[A(f (D1) + X ) ∈ S] ≤ eεP[f (D2) + X ∈ S]

Strengthen formula:

∀S ∈ S, r1, r2 ∈ Rm,P[r1 + X ∈ S] ≤ e
ε

d(r1,r2)

∆f ′ P[r2 + X ∈ S]

In case of Laplace distribution, this condition does not require a larger
scale factor.
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Rounding the answer

When the set S is too small, the previous bounds are not accurate
enough.

Mechanism (rounded)

The mechanism rounds the result by returning the value closest to
f (D) + n′ in some discrete subset S′.
K(D) = round(A(D)) where round is the rounding function.
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A concrete example

x

P(x)

0

Here, in the implementation of n, the last operation multiplies a value
by 4 and returns it.
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Compute the ε′ parameter in the implemented system

Theorem

Our strengthen mechanism is ε′-differentially private, with:

ε′ = ε+ ln
(

1 + Re
ε

L+δt
∆f ′

)

δt = kδ0 + δn

L = maxS∈S′0 �S

R = maxS∈S′0
λ(Sδt \S−δt )

λ(S−δt )
≈ 4m δt

L

Since δt � L� ∆f and ε� 1, we have a first order approximation:

ε′ ≈ ε+ 4m
δt

L
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Concrete limitations

Actual smallest value for uniform random generator is 2−53.
To compute a Laplace noise, this formula is often used.

n(u) =
∆f

ε
sgn(u − 1/2) ln(1− 2|u − 1/2|)

However, ln(2−53) ≈ −36.7 : the range of n is too small for big
databases.
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Improvement for the standard case (Laplacian in one
dimension)

In this study, we have considered standard noise generation :
draw uniformly a value u
then compute n(u).

From the logarithm property: ln(m2e) = ln(m) + e ln(2), we can mix
these two previous steps:

generate m uniformly in [1,2]

generate e with an exponential law (flip a coin until fair is gotten
and return the number of flips)

The domain for ln is now smooth.
There remain some issues but they are less critical.
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Related work

Ilya Mironov, in a CCS 2012 paper, studied independently the same
problem.
He focus mainly on how to implement an attack against the
unprotected mechanism.
He provides the same safeguards (rounding and truncation) as well as
a bound on the leakage but hypothesis were less general:

only floating-point representation (not fixed point)
only the Laplacian noise
only one dimension (our result is valid for geolocation protocols
that need R2)
only for a given full-precision implementation
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Conclusion and future work

Conclusion:
Computational errors can be seen as a side channel that leaks
information.
We provide a framework to measure leakage from computational
errors.
We improve the mechanism in one dimension to avoid truncation.

Future work:
Improve the noise generator in the general case.
Consider other definitions similar to differential privacy like
(ε, δ)-differential privacy.
Use our method to analyze other privacy protocols that use real
numbers.
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Thank you all for your attention!
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