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Main problem

Modelling questions:

How can quenching of metals be characterised?

What can diffuse interface models tell on polymer mixtures?

How can the insurgent patterns be described?

Do nonlocal interactions play a significant role?

Mathematical issues:

Navier-Stokes equations →
well-posedness problems in 3D

physically significant singular
potential

separation property

regularity theory
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Modelling phase separation

Free energy:

Φ = ǫ
2

∫

|∇ψ|2 + 1
ǫ

∫

f (ψ)

surface tension double well

A gradient flow approach gives

α∂tψ = ∆(−ǫ∆ψ + 1
ǫ f (ψ))

α : relaxation parameter
√
ǫ : interaction lenght
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Modelling phase separation

Free energy:

Φ = ǫ
2

∫

|∇ψ|2 + 1
ǫ

∫

f (ψ)

surface tension double well

A gradient flow approach gives

α∂tψ = ∆(−ǫ∆ψ + 1
ǫ f (ψ))

α : relaxation parameter
√
ǫ : interaction lenght

ψ

f (ψ)

fluctuations → phase separation

NOT a phase transition!
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The Cahn-Hilliard equation I

{

∂tψ + (v(t) · ∇)ψ = ∆(f ′(ψ) − ∆ψ)

∂νψ = ∂νµ = 0

No mass flux; phase interfaces “orthogonal” to boundary

Mass conservation
∫

Ω
ψ(t) = C
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The Cahn-Hilliard equation II

Thermodynamically significant singular potential:

f (ψ) = (1 + ψ) log(1 + ψ) + (1 − ψ) log(1 − ψ)

+ (1 − ψ)(1 + ψ) + C

This potential is often
regularised by taking

f (ψ) = |ψ|2l − ψ2

l ∈ N, l > 2
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On nonlocal interactions

Nonlocal interacts between particles of the mixture

Kac potentials: γnK (γ|x − y|), γ > 0

A hydrodynamic limit leads to the total energy

EP(ψ) ∝
∫∫

Ω×Ω
K (|x − y|)|ψ(x) − ψ(y)|2 + O.T.

Regular kernel K ∈ W 1,1

second-order
integro-differential
equation

studied by Frigeri, Grasselli
et al.

Singular kernel K (y) ∝ |y|−n−α

formal structure of CH
equation preserved

incomplete regularity
theory
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The Cahn-Hilliard-Navier-Stokes system

Ω ∈ R
n, n = 2, 3



























∂tu + (u · ∇)u = −∇p + ∇ · (τ (∇u)) − ∇ · (∇ψ ⊗ ∇ψ) + g(t)

∇ · u = 0

∂tψ + (u · ∇)ψ = ∆µ

µ = 1
ǫ f

′(ψ) − ǫ∆ψ

Main assumptions

stress-deformation rate relation

chemical potential

f ′(ψ) =

{

ψ3 − Cθψ

−Cθψ + log 1+ψ
1−ψ

diffusion operator
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Some background

The model H has been widely studied

2D, ∃! (Starovoitov ’97, Boyer ’01) long-time behaviour (Wu
et al. ’09, Gal and Grasselli ’10)

Singular potential: ∃!, global attractor, convergence to
stationary states (Abels ’09)

nonlocal (smooth kernel) with regular and singular potential:
∃!, large-time behaviour (Frigeri, Grasselli et al. ’12)

The nonlocal CH model was rigourously derived by Giacomin and
Lebowitz (1996)
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Infinite dimensional dynamical systems—attractors

Main tools:

global attractor

trajectory attractor

exponential attractor

pullback attractor

Basic issues:

compactness

finite-dimensionality

invariance

rate of attraction

This point of view is complementary to the study of convergence
to stationary states



Asymptotic behaviour of fluid mixtures Strain in semiconductors

Infinite dimensional dynamical systems—attractors

Main tools:

global attractor

trajectory attractor

exponential attractor

pullback attractor

Basic issues:

compactness

finite-dimensionality

invariance

rate of attraction

This point of view is complementary to the study of convergence
to stationary states



Asymptotic behaviour of fluid mixtures Strain in semiconductors

Infinite dimensional dynamical systems—attractors

Main tools:

global attractor

trajectory attractor

exponential attractor

pullback attractor

Basic issues:

compactness

finite-dimensionality

invariance

rate of attraction

This point of view is complementary to the study of convergence
to stationary states



Asymptotic behaviour of fluid mixtures Strain in semiconductors

Semigroups

Definition

A family {S(t)}t>0, S(t) : X → X is a semigroup on X if

S(0) = I

S(t)S(s) = S(t + s) for any s, t > 0

Definition

A set B ⊂ X is absorbing for {S(t)}t>0 if for any bdd set B ⊂ X
there exists a time tB > 0 s.t. S(t)B ⊂ B for all t > tB
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Global attractors

Definition

A set A ⊂ X is the global attractor for {S(t)}t>0 if it is

compact

invariant

minimal

attracting

Theorem

If {S(t)}t>0 possesses a compact absorbing set then it has a global
attractor

If it exists, the global attractor is unique
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Exponential attractors

Definition

A compact and finite-dimensional set, which attracts all bdd sets
of initial data exponentially fast, is called exponential attractor

Exponential attractors may not be unique

Definition

Let X1 ⋐ X , then {S(t)}t>0 has the smoothing property if there
exist t > 0, C and a bdd absorbing set B ⊂ X s.t.

∀x , y ∈ B, ‖S(t)x − S(t)y‖X1 6 C‖x − y‖X

Theorem

If {S(t)}t>0 has a bdd absorbing set on which the smoothing
property holds at time t0, then the discrete semigroup
{S(kt0)}k∈N has a discrete-time exponential attractor
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Our results

4 different settings

non-newtonian fluids (shear thickening, Ladyzhenskaya type)
3D, singular potential
→ existence, trajectory attractor

chemically reacting fluids, 2D regular potential
→ well-posedness, robust family of exponential attractors

original system, potential with arbitrary polynomial growth
→ pullback exponential attractor

nonlocal diffusion
→ existence, regularity
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Non-newtonian fluids
Bosia - J. Math. Anal. Appl. 397, 307–321 (2012)

Shear-thickening fluid

τ (∇u) : ∇u > CN |∇u|2 + CL |∇u|p

This gives the energy identity also in the 3D case
Uniqueness is open (singular potential) in contrast to the
uncoupled equations

Assumptions

singular potential

order-parameter-dependent
viscosity

non autonomous forcing
term

Results

existence

global long-time
behaviour (trajectory
attractor in weak and
strong topologies)



Asymptotic behaviour of fluid mixtures Strain in semiconductors

Non-newtonian fluids
Bosia - J. Math. Anal. Appl. 397, 307–321 (2012)

Shear-thickening fluid

τ (∇u) : ∇u > CN |∇u|2 + CL |∇u|p

This gives the energy identity also in the 3D case
Uniqueness is open (singular potential) in contrast to the
uncoupled equations

Assumptions

singular potential

order-parameter-dependent
viscosity

non autonomous forcing
term

Results

existence

global long-time
behaviour (trajectory
attractor in weak and
strong topologies)



Asymptotic behaviour of fluid mixtures Strain in semiconductors

Polymer models - Chemically reacting fluids
Bosia, Grasselli, Miranville - Math. Methods Appl. Sci. (2013)

We consider chemical reaction between the two phases (e.g.
transition between two polymer configurations)
→ changes to pattern formation

∂tψ + (u · ∇)ψ + δ(ψ − c0) = ∆µ

Results (2D, regular potential)

existence and uniqueness

global long-time behaviour (robust
exponential attractor)

Open problems and ongoing work

convergence to stationary states?

pullback (exponential) attractor
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Exponential pullback attractors
Bosia, Gatti - submitted

The pullback attracting property can be written as

lim
t→−∞

d(U(s, t)z ,A(s)) = 0

The attractor is the set of possible current configurations for a
system that has been evolving for a (infinitely) long time

Assumptions (2D)

regular potential
(arbitrary fast
polynomial growth)

non-autonomous
forcing term

Results

existence

regularity estimates depending
on the growth of the potential
only through constants

existence of an exponential
pullback attractor
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Nonlocal interactions
Abels, Bosia, Grasselli - submitted

The chemical potential is given by

(µ,ϕ) = E(ψ,ϕ) + (f ′(ψ), ϕ) ∀ϕ ∈ H
α/2

E is the “regional fractional laplacian”

E(u, v) =
∫∫

Ω×Ω
K (x − y)(u(x) − u(y))(v(x) − v(y))

Results (CH , 3D, singular potential)

well-posedness (variational)

regularity results (continuity)

characterisation of boundary
conditions for regular solutions

global attractor

Open problems

regularity up to
the boundary

notion of solution

convergence to
stationary states
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Nonlocal interactions II
Existence and uniqueness

Theorem

Let ψ0 ∈ Hα/2, Φ(ψ0) < ∞ then there exists a unique weak
solution s.t.

ψ ∈ C(H
α/2
(0)) ∂tψ ∈ L2(H−1

0 ) µ ∈ L2(H1)

Moreover there hold

Φ(ψ(t)) +

∫ t

0
|∇µ| = Φ(ψ0) ∀t > 0

if n 6 3 ψ ∈ L∞(Cβ) for some β > 0

and the associated semigroup has a (connected) global attractor

WARNING! The expected L2(Hα) regularity is unknown
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A sketch of proof

Let E(ψ,ϕ) = (Lψ,ϕ), ∀ψ,ϕ ∈ Hα/2

well posedness of the problem (compactness and monotonicity
arguments)

(µ,ϕ) = θ(∇ψ,∇ϕ) + E(ψ,ϕ) + (f ′(ψ), ϕ)

limit θ → 0

attractor: a compact absorbing set is given by

µ− f ′(ψ) ∈ L2 ⊂⊂ H−α/2 uniformly w.r.t. t

and L−1 : H−α/2 → H
α/2 continuous + energy identity
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Nonlocal interactions III
On the boundary conditions

What about the BC for ψ?

Theorem

If ψ ∈ C1,β, β > 0, x0 ∈ ∂Ω and

∃n(x0) = lim
δ→0

δ−1−n+α
∫∫

(x − y)(ϕδ(x) − ϕδ(y))K (x − y)

with
ϕδ(x) =

(

1 − δ−1|x − x0|
)

χ|x−x0|<δ

Then ∇ψ · n(x0) = 0

Proof: Local analysis
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Main problem

How strain affects electronic properties of semiconductors?
How this is reflected in the efficiency of solar cells?
Can we tackle the problem from a macroscopic point of view?

The problem is particularly important for
thin films electronics

We consider crystalline Si for simplicity.
More precise models should consider

polycrystalline or amorphous Si

p
n+

substrate
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Modelling electronic properties

What happens when two differently
doped SCs are brought together?

Charges diffuse through the
contact

An electric field is build up
across the junction
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Modelling electronic properties

What happens when two differently
doped SCs are brought together?

Charges diffuse through the
contact

An electric field is build up
across the junction and drifts
the carriers.

Jn = −qµn n∇ψ + qDn∇n

Jp = −qµp p ∇ψ − qDp∇p

n: density of electrons
p: density of holes
E : energy of bands
ψ: electric potential
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Strain dependencies

Adding Gauss law and conservation of charges, at equilibrium















ǫs∆ψ = q ((n − ND) − (p − NA))

0 = Dn∆n − µn∇n · ∇ψ − µnn∆ψ + Gn − Rn

0 = Dp∆p + µp∇p · ∇ψ + µpp∆ψ + Gp − Rp

Strain effects

energy band levels
→ changes in the equilibrium distributions of the charges

mobilities and diffusivities
→ changes in the conductivity of the material
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Strain dependencies

shift in band levels → energy gap

change in shape (multi-valley model + Luttinger Hamiltonian)

→ changes mobilities and effective density of states

E

ESi ESi

antibonding

bonding

ESi ESi

antibonding

bonding
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Strain dependencies

shift in band levels → energy gap

change in shape (multi-valley model + Luttinger Hamiltonian)

→ changes mobilities and effective density of states

Valence
band

Conduction
band

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]
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Strain dependencies
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The characteristic curve for strained p-n junctions

A p-n junction is the juxtaposition of a n- and a p-doped region
The I-V curve can be obtained by physical arguments or rigourous
asymptotic expansions

exponential profile in the depletion zone

injected minority carriers n0
p, p

0
n

holes and electron currents

J ∝
(

n0
p

√

Dn

τn

+ p0
n

√

Dp

τp

)

(eφe/UT )

-0.5% -0.25% 0.% 0.25% 0.5%
¶

1.

2.

3.

JsH¶L�JsH0L

awaiting for experimental confirmation
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Experimental campaign
personal communication, D.Lange LMS–PICM

Experimental setting n-doped Si

Evidence → Linear(?) behaviour, but combined effect of

mobility

change in carrier concentrations
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Energetic formulation and coupling
Bosia, Constantinescu, Jabbour, Triantafyllidis - in preparation

Is a variational formulation of the DD system possible?
Nontrivial (the existence proofs require fixed point arguments)

Results

energetic formulation for DD

the two transport mechanisms recovered introducing a special
internal energy

coupled model for linear elasticity

formal and rigourous asymptotic expansions (ongoing work)

Backward coupling can be neglected at first approximation
(Maxwell stresses)
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A variational formulation of the DD equations

Internal variables and internal energy

n p φ Ψ(n, p, ψ)

We assume the following dissipation inequality

d

dt

∫

Ω
Ψ(n, p, ψ) 6

∫

Ω
J · e −

∫

∂Ω
ϕnjn · ν −

∫

∂Ω
ϕpjp · ν

A direct computation gives

ϕn =
∂Ψ

∂n
ϕp =

∂Ψ

∂p

−jn · (−qe − ∇ϕn) − jp · (qe − ∇ϕp) 6 0
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Constitutive equations

Currents

jn =
µnn

q
(−qe − ∇ϕn) jp =

µpp

q
(qe − ∇ϕp)

µn > 0 µp > 0

Internal energy

Ψ = n(ϕn0 − kBθ) + kBθn ln n + p-terms

For the coupled case:

additional internal variable u

µ = µ(∇u) and equilibrium equation
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Towards asymptotics (1D)

Inspired by P.Markowich ’84

reduced (bulk) equation

0 = (n − ND) − (p − NA) u′ = const

no boundary layer at the (Ohmic) contacts

computations for the inner layer in progress...
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Further developments

Binary fluids

convergence to stationary states for NSCHO model

full regularity theory for the nonlocal CH equation

well-posedness for the nonlocal model H (singular kernel)

Strained electronics

experimental validation

asymptotics at the strained p-n junction

light absorption

optimisation of strained devices
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High cycle fatigue and dynamical systems

Main problem
We look for a (simple) local rule:

Φ(ǫ, ǫp,σ, . . . ;σY , . . .) = Nf (x) (orTf (x))

Mathematical
point

Physical
microstructure

Reaching the fatigue limit in one point corresponds to crack
initiation from that point

The time to crack initiation will be the lowest time to failure of the
structure

Nf = inf
x∈Ω

Nf (x)
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A macro-meso approach

b
σ, ǫ

Σ,E

Elastic
Plastic

Elastic laws
σ = lǫ Σ = LE

Lin-Taylor scheme
l = L ǫ = E

One active slip system on the most
sollicitate grain
Macro- and mesoscopic resolved
shear stresses

T = (m ⊗ n : Σ)m
τ = (m ⊗ n : σ)m
τ = T − µγpm

The active slip system is such that
τmax = maxn,m τ |(m,n)|

Dang Van criterion:
Elastic shakedown at both macro-
and mesoscales for infinite lifetime

τmax + Apmax 6 B
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The active slip system is such that
τmax = maxn,m τ |(m,n)|

Dang Van criterion:
Elastic shakedown at both macro-
and mesoscales for infinite lifetime

τmax + Apmax 6 B
Pmax

τmax crack initiation zone
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Morel’s model & dynamical systems
Isotropic and kinematic hardening in the inclusion

Morel - Fat. & Fract. of Eng. Mat. & Struct. 21, 241–256 (1998)

Von Mises relation:
f (τ ,b, τy ) = (τ − b) · (τ − b) − τ2

y

Cumulated plastic mesostrain drives hardening

Γ̇
.
=
√

γ̇p · γ̇p

Constitutive relations

ḃ = cγ̇p

τ̇y = f (Γ)Γ̇

Γ

τy

τ
(0)
y

b

τlim

b = failure

I II III
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Bosia, Constantinescu - Int. J. Fatigue 45, 39–47 (2012)
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ḃ = cγ̇p

τ̇y = f (Γ)Γ̇

Γ̇ = 4
µ+c+g(Γ)

(

∆T
2 − G(Γ)

)

G(Γ) = ∆T0
2 − |Γ−Γ0|α

β

Γ

τy

τ
(0)
y

b

τlim

b = failure

I II III b
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Some results
Aluminium 6082 T6

Bosia, Constantinescu - Int. J. Fatigue 45, 39–47 (2012)

t−1 = 92 MPa s−1 = 132 MPa
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