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Abstract

Human have to ponder on the reliability of each tool they have created, and cope with the conse-

quences of the failure caused by these tools. Electronic devices are not exceptions. Downscaling of

technology brings with the invention of devices into deep submicrion (DSM) CMOS and even non-

CMOS nanometer dimensions. While there are a lot of advantages (smaller size, higher speed, lower

power consumption as well as better performance in function diversity), downscaling of geometries

also has some drawbacks affecting the system reliability.

Under the circumstances of miniaturization, Single-Event Transient (SET) is much easier to pro-

duce unexpected values called soft errors. Historically, soft errors were often masked before reaching

an output or a storage element. However, aforementioned technological trends such as faster clock

rates, smaller device sizes, lower supply voltages, and shallower logic depths are drastically reducing

SET masking, and thus are reducing reliability of digital IPs dramatically. International Technology

Roadmap for Semiconductors (ITRS) depicts that reliability is emerging as a main threat to the fu-

ture electronic systems and it should be considered as a very important parameter in the phase of

predesign.

Under the foreseeable fact that probability of failure is getting higher, reliable digital IPs will be

made of unreliable components. As a matter of fact, a 100% reliability of digital IPs is not only very

consuming in performances but also might be impractical. Consequently, what we are pursuing is

to maintain a high reliability of digital IPs while keeping extra expense accepted. This aim fosters

several issues related to fault-tolerant designs in this thesis.

The most common approach for fault tolerance consists of incorporating redundancy, either static

or dynamic or hybrid of the both. Aiming at economical design, a lot of work have been studied in

recent years to find a good trade-off between high reliability and better performance. In this context,

we try to find feasible methods that could build fault-tolerant digital IPs based on smaller redundancy

factors.

Inspired by Pareto principle, identifying and classifying critical constituent blocks of digital IPs

should be very meaningful. This thesis presents two new classification criteria regarding the signifi-

cance of a block with respect to the reliability of a circuit. Sensitivity gives the criticality of each block

for the circuit reliability and Eligibility indicates which priority should be given to each block in a pro-

cess of adding redundancy. How to acquire the ranking depends on the property of the combinational
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circuit (structure, individual reliability, etc.). The proposed two concepts provide key information for

the designer who looks for efficient fault-tolerant designs.

The aforementioned block grading based on Sensitivity and Eligibility brings in a straightforward

efficient method to select the best subset: Progressive Module Redundancy (PMR). This method

proposes to build a fault-tolerant system step by step, that is in a progressive way.

It is obvious that we could have different redundant configurations under the same or similar

redundant factor. This progressive module redundancy presents a shortcut by avoiding analyses of

all the possible redundant architectures exhaustively. It points out a new direction of economical

redundant fault-tolerant designs and it is applicable at all the hierarchical design levels (logic gate,

arithmetic and processor).

In this thesis, we mainly take into account the representative technique Triple Module Redun-

dancy (TMR) as the reliability improvement technique. A voter is an necessary element in this kind

of fault-tolerant architectures. The importance of reliability in majority voter is due to its application

in both conventional fault-tolerant design and novel nanoelectronic systems. The property of a voter is

therefore a bottleneck since it directly determines the whole performance of a redundant fault-tolerant

digital IP (such as a TMR configuration).

Obviously, the efficacy of TMR is to increase the reliability of digital IP. However, TMR some-

times could result in worse reliability than a simplex function module could. A better understanding

of functional and signal reliability characteristics of a 3-input majority voter (majority voting in TMR)

is studied. We analyze them by utilizing signal probability and boolean difference. It is well known

that the acquisition of output signal probabilities is much easier compared with the obtention of output

reliability. The results derived in this thesis proclaim the signal probability requirements for inputs of

majority voter, and thereby reveal the conditions that TMR technique requires. This study shows the

critical importance of error characteristics of majority voter, as used in fault-tolerant designs.

As the flawlessness of majority voter in TMR is not true, we also proposed a fault-tolerant and

simple 2-level majority voter structure for TMR. This alternative architecture for majority voter is

useful in TMR schemes. The proposed solution is robust to single fault and exceeds those previous

ones in terms of reliability. Furthermore, it saves area, power dissipation and propagation delays.

With novel techniques emerging in the future, new algorithms and architectures for reliable digital

IPs could be envisaged. More reliable nanoelectronic systems or quantum computers need researches

from multidisciplines, such as physics, mathematical modeling, electronic engineering as well as

computer architecture, and maybe even more.
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French Summary

Introduction

La réduction des dimensions des dispositifs semi-conducteurs selon la Loi de Moore [6] a apporté

beaucoup de bénéfices : les systèmes électroniques sont plus petits, plus rapides, moins consomma-

teurs et plus performants. Néanmoins, des phénomènes associés à cette miniaturisation conduisent à

une réduction de la fiabilité des circuits. En particulier, le nombre de Single-Event Transient (SET)

augmente, augmentant en même temps la probabilité que les circuits produisent des valeurs erronées

appelées soft errors. Les derniers rapports annuels de l’International Technology Roadmap for Se-

miconductors (ITRS) montrent bien que la fiabilité est devenue un paramètre très important pour la

conception des systèmes électroniques dans les technologies avancées.

Dans cette thèse, nous nous intéressons à la recherche d’architectures fiables pour les circuits

logiques. Par ”fiable”, nous entendons des architectures permettant le masquage des fautes et les

rendant de ce fait ”tolérantes" à ces fautes.

Les solutions pour la tolérance aux fautes sont basées sur la redondance, d’où le surcoût qui y

est associé. La redondance peut être mise en oeuvre de différentes manières : statique ou dynamique,

spatiale ou temporelle. Nous menons cette recherche en essayant de minimiser tant que possible le

surcoût matériel engendré par le mécanisme de tolérance aux fautes.

Le travail porte principalement sur les solutions de redondance modulaire, mais certaines études

développées sont beaucoup plus générales (cf. chapitre 3).

Organisation

Ce document est structuré de la manière suivante :

– Le chapitre 1 donne le cadre général de cette thèse. Nous y trouvons notamment la motivation

pour ce travail et le rappel de ses objectifs, à savoir, développer de nouvelles méthodes et de

nouvelles architectures pour circuits logiques tolérants aux fautes.

– Le chapitre 2 présente une introduction générale au problème de l’amélioration de la fiabilité

des circuits logiques. Nous y trouverons notamment les définitions et métriques de la fiabilité,

la motivation pour améliorer la fiabilité ainsi que des méthodes d’estimation de la fiabilité.
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– Le chapitre 3 est dédié à l’étude de l’importance qu’un sous-bloc du circuit peut avoir vis-à-

vis de la fiabilité du circuit global. Cette étude nous conduit à proposer deux métriques : la

sensibilité et l’éligibilité. Ces métriques d’importance de chaque sous-bloc permet de mettre en

oeuvre un classement des sous-blocs. Ce classement est la clé de l’efficacité d’une stratégie de

durcissement sélectif.

– Le chapitre 4 décrit l’approche d’amélioration de fiabilité proposée dans cette thèse. Afin de

maximiser le gain en fiabilité tout en minimisant les surcoûts liés au durcissement, nous propo-

sons un ajout de redondance progressif. L’algorithme d’insertion de redondance ainsi que des

études de cas sont décrits en détails dans ce chapitre.

– Le chapitre 5 porte sur la fiabilité de l’arbitre dans un schéma TMR. Nous utilisons les diffé-

rences booléennes pour analyser le comportement d’un arbitre sujet aux fautes et l’impact que

ces fautes peuvent avoir sur l’efficacité de la solution TMR. Les études permettent d’établir

les conditions nécessaires à imposer sur la fiabilité de l’arbitre pour que la solution TMR soit

source d’amélioration de la fiabilité. Nous présentons également une architecture nouvelle et

tolérance aux fautes pour la mise en oeuvre d’une stratégie de vote par majorité.

Analyse de la fiabilité

Introduction

La définition classique de la fiabilité, notée R(t) est la probabilité (en fonction du temps t) que le

système fonctionne conformément à ses spécifications pendant une période spécifiée [t0, t]. Elle est

déterminée par un paramétre important appelé taux de défaillance d’un composant (transistor, porte,

bloc, module, etc.), généralement noté λ.

La relation entre la fiabilité R(t), taux de défaillance λ et temps t peut être exprimée par :

R(t) = e−λt. (1)

Plusieurs métriques peuvent être utilisées pour qualifier la fiabilité des circuits combinatoires.

– Métrique 1 : Probabilité de fonctionnement

On définit la fiabilité d’un composant (transistor, bloc, module, système, etc) comme étant la

probabilité que le composant réalise la fonction souhaitée. La probabilité de fonctionnement

est également connue comme fiabilité fonctionnelle [7, 8].

Probcomp = Prob(working) = 1− Prob(failing) (2)

– Métrique 2 : Probabilité de sortie exacte

On définit la fiabilité d’un circuit par la probabilité que la sortie du circuit soit un bit-vecteur

contenant seulement des 0’s et 1’s corrects. Cette métrique est également connue sous le nom
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de fiabilité du signal [7, 12].

Dans cette thèse, nous considérons la métrique ”fiabilité du signal” et nous nous appuyons sur les

méthodes d’analyses décrites en [12].

Supposons qu’un signal binaire x peut véhiculer des informations éventuellement incorrectes.

Cela est équivalent à supposer que ce signal peut prendre quatre valeurs logiques différentes : zéro

correct(0c), un correct(1c), zéro incorrect(0i), et un incorrect(1i). Les probabilités d’occurrence de

chacune de ces quatre valeurs peuvent être représentées dans une matrice probabilité du signal [?] :

"

P (x = 0c) P (x = 1i)

P (x = 0i) P (x = 1c)

#

=

"

x0 x1

x2 x3

#

(3)

La fiabilité du signal pour x, noté Rx, vient directement de l’expression (4), où P (.) est la fonction

de probabilité :

Rx = P (x = 0c) + P (x = 1c) = x0 + x3 (4)

Considérons maintenant un bloc numérique effectuant un traitement sur un signal d’entrée x afin

de produire un signal de sortie y (cf. Figure 2.5).

block b
yx

FIGURE 1 – Génération des signaux de sortie y du signal d’entrée x traitée par l’opérateur block b.

Supposons que p est la probabilité de défaillance de cet opérateur et que q = (1 − p) est la pro-

babilité qu’il fonctionne correctement. La fiabilité du signal de sortie y peut être facilement obtenue

comme suit :

Ry = (x0 + x3).q + (x1 + x2).p (5)

L’équation (2.12) montre que lorsque le signal d’entrée est fiable (x1 + x2 = 0), la fiabilité du

signal de sortie est donnée par q, ce qui représente la probabilité de succès du bloc numérique. Ceci

signifie que, dans le cas d’entrées exemptes de fautes, la fiabilité du signal de sortie est donnée par la

fiabilité intrinsèque de l’opérateur de calcul qui produit ce signal.

L’évaluation de la fiabilité des circuits logiques

Pour les circuits numériques, l’évaluation de la fiabilité est le processus de l’analyse de l’effet et

de la propagation des erreurs sur les blocs de base du circuit.
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Il existe différentes méthodes d’analyse de la fiabilité reportées dans la littérature [10–17]. Le

Tableau 1 présente une synthèse comparative des propriétés de ces techniques en termes de vitesse,

précision, besoins en mémoire et l’adaptabilité à des circuits de grande taille (scalability).

TABLE 1 – La comparaison des méthodes représentatives d’évaluation de fiabilité.

Méthodes Vitesse Précision Mémoire Scalability

PTM − précise trés haute non
BN moyenne précise haute non
PGM moyenne haute basse non
SPRMP basse précise basse non
PBR basse précise basse non
SCM moyenen adaptative basse oui
BDEC moyenne haute basse oui

Amélioration de la fiabilité

La tolérance aux fautes basée sur la redondance

Il existe plusieurs formes de redondance en vue de la tolérance aux fautes [18–20]. La figure 2

montre une synthèse des principales formes de redondance et leur applicabilité aux différents niveaux

d’abstraction et granularité de la représentation du système.

Dans ce travail, nous nous intéressons particulièrement à la redondance matérielle mise en oeuvre

par réplication de N modules. Cette redondance est connue sous le nom de ”redondance modulaire”

ou NMR (N Modular Redundancy).

Dans un schéma NMR, il existe N + 1 éléments : N répliques du module et un arbitre ( le

VOTER) qui détermine la valeur de la sortie en fonction de chacune des N sorties produites par les

différents modules.

La figure 3 présente un schéma général NMR. Le vote par majorité est l’une des stratégies les

plus courantes pour le VOTER. Avec l’algorithme de la vote par majorité, N est un nombre impair

et la sortie choisie est celle produite par plus de la moitié des répliques, c’est-à-dire, au moins N+1
2

modules.

Sous l’hypothèse d’un arbitre idéal (c’est-à-dire, exempt de fautes), la fiabilité d’un système NMR

peut être donnée par l’expression (6), où qM est la fiabilité de chaque module et
(

N
i

)

= N !
i!(N−i)! .

RNMR−IV =

N
X

i=dN/2e

(

N
i

)

qiM (1− qM )N−i (6)
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Hardware redundancy
- e.g. NMR

- General, easy
- High area overhead

Information redundancy
- e.g. ECC

- Easy for data transfer/storage
- Hard for general computations

Time redundancy
- e.g. Recompute 

- Low area overhead
- Long delay, not suitable for 

permanent faults

Hybrid way
- e.g. Hardware + Time

- Flexibility
- Complicated control

Low level - logic gate
- Simple unit

- Cheap hardware
- Simple strategy

- Low control overhead

Medium level - arithmetic
- Date transfer
- Computation

High level - processor
- Complex unit

- Expensive hardware
- Powerful strategy
- Complex control

FIGURE 2 – Techniques de tolérance aux fautes [1, 2]).
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FIGURE 3 – Schéma général pour la NMR.

Dans le cas particulier de la redondance modulaire triple (TMR), la fiabilité est donnée par l’ex-

pression (7).

RTMR−IV =
(

3q2M − 2q3M
)

(7)

La figure 4 montre le comportement de la fiabilité d’un système sans redondance et avec TMR

conformément à l’expression (7).
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Reliability of unique module

 

 

without TMR

TMR

FIGURE 4 – Fiabilité pour deux stratégies de mise en oeuvre : module unique (ligne continue) et TMR
(ligne pointillée).
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Durcissement sélectif

Dans un circuit numériques constitué de différents sous-blocs numériques, la fiabilité est fonction

des fiabilités intrinsèques de chacun des blocs individuels ainsi que de la manière selon laquelle ces

sous-blocs sont interconnectés. Il est important de savoir quel rôle chacun des sous-blocs joue dans le

circuit vis-à-vis de la fiabilité. Cette information est essentielle pour la mise en oeuvre d’une stratégie

de durcissement sélectif. Dans ce sens, nous définissons les concepts de ”’sensibilité” et ’éligibilité”.

Sensibilité et éligibilité

Considérons un circuit C avec fiabilité R et constitué de K blocs indépendants bi. Soit B =

{b1, b2, · · · , bK} l’ensemble de tous les blocs K dans C et Q = {q1, q2, · · · , qK} l’ensemble de leurs

fiabilités respectives (qi est la fiabilité de bi).

Nous définissons la sensibilité de la fiabilité du circuit C par rapport au bloc bi dans l’expression

(8). Cela correspond à la dérivée partielle de la fonction R par rapport à la variable qi.

s(bi) =

∣

∣

∣

∣

@R

@qi

∣

∣

∣

∣

(8)

Notons Θ = {✓1, ✓2, · · · , ✓K} l’ensemble des blocs classés en fonction des valeurs de sensibilité

de telle sorte que ✓1 (resp. ✓K) est le bloc dont la sensibilité est maximale (resp. minimale).

Nous définissons l’éligibilité d’un bloc bi, notée e(bi), comme l’indicateur de l’impact positif

qu’a l’amélioration de la fiabilité de ce bloc sur la fiabilité globale du circuit. Notons ∆i = |R⇤
i −R|

le changement de la fiabilité du circuit qui résulte de l’amélioration de la fiabilité qi.

Les valeurs d’éligibilité de deux blocs bi, bj sont alors définies de telle sorte qu’elles respectent

R⇤
i > R⇤

j ) e(bi) > e(bj). Les valeurs e(bi) sont des entiers [1,K], où 1 et K représentent,

respectivement, les blocs les moins et les plus éligibles.

Structures en cascade

Nous considérons d’abord les blocs bi 2 B tels que définis précédemment. Supposons que ces

blocs sont assemblés en une structure en cascade de telle sorte que l’entrée du bloc bi est donnée par

la sortie du bloc bi−1 (cf. Figure 5).

Nous pouvons voir que la contribution de la fiabilité individuelle qi à la fiabilité globale R dépend

de la position du bloc bi dans la structure. La sensibilité s(bi) dépend aussi de la position du bloc i

comme suit :
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 b1  b2  bk-1 bk

y1 y2
 yk-1  yk

y1 y2
yk-1x

FIGURE 5 – Exemple de structure en cascade.

∣

∣

∣

∣

@R

@qi

∣

∣

∣

∣

= (K − i+ 1)qK−i
i

K
Y

i=1

i
Y

j=1,j 6=i

qj

=
K − i+ 1

qi
R (9)

s(bi) > s(bj) ,
K − i+ 1

K − j + 1
>

qi
qj

(10)

Structures génériques

Dans le cas de structures génériques, l’expression de la fiabilité du circuit n’est pas évidente.

Ainsi, nous avons déterminé la sensibilité et l’éligibilité à partir de simulations.

Une plate-forme de simulation est utilisée pour injecter des fautes [13, 80]. La figure 6 illustre le

processus d’injection de fautes et d’analyse. Les résultats produits par le circuit de référence (exempt

de fautes) et le circuit dans lequel les fautes ont été injectées sont comparés. Si ces résultats sont

différents, il est conclu que les effets de la faute ont été propagés vers les sorties. Sinon, il est conclu

que la faute a été masquée.

Original Circuit

Fault 
Generation

Faulty Circuit

 Number 
of errors

XOR

•

FIGURE 6 – Schéma général pour l’injection de fautes et l’analyse des masquage.
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Chaque bloc bi contribue à un certain nombre de masquages de fautes, noté mi. Le nombre total

de masquages m est la somme des mi, m =
PK

i=1mi. Chaque mi est obtenu en calculant le nombre

de masquages après l’injection d’une faute simple sur le bloc correspondant bi. En d’autres termes,

en considérant que tous les autres blocs bj (1  j  K, j 6= i) fonctionnent correctement. De cette

façon, chaque mi est directement lié à la sensibilité du bloc bi. Le classement des blocs en fonction

de leurs sensibilités est défini à partir de la relation :

s(bi) > s(bj) , mi < mj (11)

La figure 7 présente un exemple de circuit benchmark (le circuit C17, de la collection ISCAS-

85 [77]). Chaque porte NAND est considérée comme un bloc. Il y a 32 combinaisons logiques pos-

sibles pour les entrées et deux configurations considérées pour chaque bloc (sans faute et avec faute).

Parmi les 192 configurations qui en découlent, les résultats de mi sont donnés dans le Tableau 2.

Notez que m5 = m6 = 0, ce qui signifie que ces deux blocs ne peuvent pas masquer les défauts. En

effet, leurs sorties sont également sorties primaires du circuit et nous considérons que seule faute.

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

•

•

•

x0

x2

x1

x3

x4

y0

y1

FIGURE 7 – Circuit C17.

TABLE 2 – Classement des sous-blocs du circuit C17 en fonction de la sensibilité.

b(i) mi

NAND1 12

NAND2 8

NAND3 2

NAND4 12

NAND5 0

NAND6 0

Considérons le même circuit de C17 pour illustrer le classement de blocs en fonction de leurs éli-
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gibilités. Sans perte de généralité, supposons que chaque porte NAND est censée avoir qi = q = 0.99

(99%). De même, considérons que l’amélioration de la fiabilité est mise en oeuvre par la technique

TMR (Triple Modular Redundancy). Le résultat de l’application de TMR sur chaque porte NAND est

présenté dans le Tableau 3.

TABLE 3 – Classement des sous-blocs du circuit C17 en fonction de l’éligibilité.

b(i) R+
i e(i)

NAND1 95.765% 2

NAND2 95.882% 3

NAND3 96.056% 4

NAND4 95.763% 1

NAND5 96.117% 6

NAND6 96.114% 5

Approche progressive pour la redondance modulaire

Principe général

Nous avons proposé une méthode de durcissement progressif basée sur le classement des blocs

dans le circuit. Cette méthode, nommée Progressive Modular Redundancy(PMR), a pour objectif de

trouver un compromis entre l’amélioration de la fiabilité ∆R et le surcoût matériel ∆C engendré

par cette amélioration de la fiabilité. Selon les contraintes de la conception, l’analyse du problème se

traduit par :

– déterminer l’architecture de moindre coût qui peut satisfaire une contrainte de fiabilité. Cela

signifie réduire ∆C, tout en respectant R ≥ Rmin.

– déterminer l’architecture de meilleure fiabilité ne dépassant pas un surcoût matériel donné. Cela

signifie maximiser ∆R, tout en respectant ∆C  ∆Cmax.

Quel que soit le cas considéré ci-dessus, nous proposons d’agir progressivement sur les blocs, en

commençant par l’amélioration de la fiabilité d’un seul bloc, puis deux blocs, et ainsi de suite jusqu’à

couvrir tous les blocs ou atteindre le coût maximal autorisé. La méthode proposée est décrite dans la

Figure 8.

Le Tableau 4 montre comment de nouvelles architectures sont produites selon cette méthode pro-

gressive. Le circuit est censé avoir K blocs. La redondance est effectuée en ajoutant une redondance

modulaire triple (TMR ou 3MR), ce que nous nommons Progressive TMR (PTMR).

Dans ce tableau, les blocs sont classés en fonction de leur poids (wi) et m désigne les étapes

d’exécution de la méthode. Les valeurs dans les cellules représentent les degrés de redondance (1 =

pas de redondance, 3 = triple redondance modulaire). L’architecture du circuit correspondant à l’étape
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m est obtenue en utilisant TMR sur les blocs de m pour lesquels wi 2 [K −m+ 1,K].

TABLE 4 – Exécution de l’algorithme PTMR.

wi

m K K − 1 K − 2 · · · K −m · · · 2 1

0 1 1 1 1 1 1 1 1
1 3 1 1 1 1 1 1 1
2 3 3 1 1 1 1 1 1
3 3 3 3 1 1 1 1 1
4 3 3 3 3 1 1 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
K 3 3 3 3 3 3 3 3

L’application de l’approche PTMR au circuit de la Figure 7 produit le Tableau 3. Chaque porte

NAND est censée avoir fiabilité qi = q = 0.99 (99%) et coût SNAND. Les contraintes de conception

considérées sont : fiabilité minimale requise Rreq = 0.97 (97%) et surcoût en surface maximal ac-

cepté 4⇥ SNAND. Bien que le nombre total d’architectures générant la même surface soit C2
6 = 15,

cette méthode permet d’identifier le meilleure d’entre elles sans avoir à toutes les tester.

TABLE 5 – Résultats de l’application de l’approche PTMR sur le circuit C17.

Steps (m) Architecture Reliability Area Cost

0 1-1-1-1-1-1 95.20% 6SNAND

1 3-1-1-1-1-1 96.12% 8SNAND + SV

2 3-3-1-1-1-1 97.05% 10SNAND + 2SV

Fiabilité de l’arbitre dans un schéma TMR

Dans les schémas TMR, l’arbitre est souvent supposé parfait, c’est-à-dire, exempt de fautes. Or,

la prise en compte de la fiabilité réelle de ce composant est essentielle pour déterminer l’efficacité de

cette approche. Dans le cas de vote par majorité, si nous considérons que l’arbitre a une fiabilité Rv,

l’équation (7) est modifiée pour donner :

RNMR−FV = Rv ·
N
X

i=dN/2e

(

N
i

)

qiM (1− qM )N−i (12)

Avec un arbitre imparfait, la condition pour que le système TMR apporte un gain en fiabilité se

traduit par :
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RNMR−FV > qM or
RNMR−FV

qM
> 1 (13)

Ainsi, la fiabilité minimale pour l’arbitre est :

RVmin
=

1
PN

i=dN/2e
(

N
i

)

qi−1
M (1− qM )N−i

(14)

La figure 9 montre l’exigence de fiabilité minimum pour un arbitre dans un schéma de redondance

modulaire d’ordre 3 (TMR) et 5 (5MR).

Arbitre tolérant aux fautes

Toutes les combinaisons possibles d’entrées dans un arbitre basé sur le vote majoritaire sont pré-

sentées dans le Tableau 6. L’expression booléenne correspondante est donnée dans (15). La forme

simplifiée de cette équation, donnée dans l’équation 16, permet d’obtenir différentes structures de

mise en oeuvre, comme nous pouvons voir dans les Figures 10(a) et 10(b).

TABLE 6 – Table de vérité pour un arbitre basé sur le vote majoritaire.
A B C V
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

V = ABC +ABC +ABC +ABC (15)

= AB +BC +AC (16)

Considérons la structure d’arbitre AND-OR dans la Figure 10(a). Nous pouvons constater qu’une

faute dans une porte AND ou OR peut générer une valeur erronée dans la sortie de cet arbitre. Par

exemple, si A = B = C = 0 et une faute simple a lieu dans S1, la sortie sera V = 1, alors que la

valeur attendue est V = 0. Par conséquent, cette structure n’est pas tolérante aux fautes.

Dans [92], Kshirsagar a proposé une structure d’arbitre tolérante aux fautes (NTFVC) (cf. Figure

11).

Nous proposons une structure nouvelle pour arbitre dans schéma TMR avec stratégie de vote par

majorité capable de tolérer des fautes (cf. Figure 12) et plus compacte que celle de Kshirsagar. Les
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résultats d’analyse de fiabilité obtenus avec l’algorithme SPR [12, 46] sont présentés dans la Figure

14. L’arbitre proposé a été utilisé dans plusieurs circuits (cf. exemple de half-adder dans la Figure

13). Les résultats des comparaisons par rapport à des paramétres différents en fonction de différents

électeurs de la technique TMR sont présentés dans le Tableau 7.

TABLE 7 – Résultats synthétisés dans ASIC (RTL Compiler).

Comparison Classic NFTVC Proposed

Instances 25 31 25
Area 31 40 32
Power µw 2.35 3.75 2.85
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FIGURE 8 – Workflow pour la méthode proposée.
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(a) L’électeur construit par AND/OR .
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(b) L’électeur construit par NAND.
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(c) L’électeur construit par NOR.

FIGURE 10 – Schémas classiques pour arbitre dans schéma TMR avec stratégie de vote par majorité.
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FIGURE 11 – Structure d’arbitre tolérant aux fautes (NFTVC) [92].

FIGURE 12 – Schéma proposé pour l’arbitre tolérant aux fautes.

FIGURE 13 – Exemple d’utilisation de l’arbitre tolérant aux fautes dans un demi-additionneur.
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Chapter 1

Introduction

1.1 Motivations

Intellectual property (IPs) in semiconductors refers to pre-designed function modules which are

used in Application- Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or

Programmable Logic Device (PLD), etc. In accordance with Moore’s Law, the number of transistors

per chip should double every 18 to 24 months. The smaller dimensions enabled the development of

faster, more compact, and more powerful electronic devices [21]. However, the complexity to design

and to produce such devices has also grown over the years, emerging as a drawback to maintain their

current evolution rate. The operation frequency is expected to increase up to 12 GHz, and a single

chip will contain over 12 billion transistors in 2020 according to ITRS [22]. Therefore, transistors are

now implemented into the nanoscale and known as nano electronic devices.

As a result of scaling, the amount of defects as well as the number of transient errors in electronic

circuits are expected to increase, and it becomes a major concern in Deep-SubMicron technologies

(DSM). Some of these are manufacturing imprecision, improved susceptibility to environmental fac-

tors and physical parameters variability [23]. This caused two significant challenges. The first is

related to the yield that can be achieved during the manufacturing process of digital IPs, known as

design-for-yield which is an entire research field. The second challenge is that although digital IPs

have been proved to work correctly, they must continue to operate reliably even they are increas-

ingly sensitive to various kinds of perturbations, which are known as SEUs (Single-event Upsets).

Reduction in the reliability of digital IPs is one of the main threats in semiconductors industry [24],

which leads to paradigm shift toward design-for-reliability [25]. Since reliability is a crucial feature

of designs, new techniques of reliability improvement need to be developed to overcome the expected

unreliability of IPs implemented on such new DSM technologies.

SEUs in digital IPs have been ignored for a long time because SETs (Single-event transient, also

known as soft errors [21,26]) had only minor influence in earlier 0.35µm and larger technologies [27].

On the other hand, there are three intrinsic properties of logic circuit itself: First, logical masking.
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A glitch might not propagate to a memory cell because of a gate on the path not being sensitized

to facilitate glitch propagation. Second, electrical masking. A generated glitch may get attenuated

because of the delays of the gates on the path to the output [28]. Third, latching-window masking.

A glitch that reaches the primary output might not still cause an error because of the latch not being

open.

However, in Deep SubMicron (DSM) technologies, due to the decreasing number of gates in a

pipeline stage, logical masking as well as electrical masking have been decreasing for new technology

generations. Electrical masking has also been decreasing due to the reduction in node capacitances

and supply voltages every generation. Furthermore, increasing clock frequencies have reduced the

time window in which latches are not accepting data, thereby also reduced latch-widow masking.

As above statement, the soft error rate (SER) in digital IPs raised 9 orders of magnitude from 1992

to 2011, when it is equal to the SER of unprotected memory elements [29]. Needless to say, under

the DSM technologies, soft errors in digital IPs are not optimistic and are becoming dominant in the

overall soft error rate.

There are various fault-tolerant techniques to increase the robustness of the circuits, which are

mostly based on the concept of redundancy [9, 30–32]. These techniques have been applied at dif-

ferent levels of granularity, such as gate level, logic block level, logic function level, unit level, etc.

Moreover, these techniques were historically targeted to mission critical systems, for example, in

medical, spatial and military applications. With the expected reduction in the reliability of electronic

devices, they have been considered in many general applications, such as consumer electronics.

The usage of aforementioned fault-tolerant techniques can help to enhance reliability of circuits,

but they normally result in great area, time or power overheads. Moreover, too much redundancy

may reduce the yield since a larger-area circuit is expected to have a larger number of defects. Pareto

principle [33] states that, for many events, roughly 80% of the effects come from 20% of the causes.

Consequently, successful designs must have the optimal amount of redundancy to be added. In order

to develop this optimal redundancy configuration, we try to implement a partial redundancy where

the most eligible parts of the circuits are protected, meanwhile the best improvement in reliability can

be achieved.

1.2 Objectives

The objective of this thesis is to develop new methods and architectures for logic function IPs

bringing with optimized trade-offs which can improve reliability and give consideration to classi-

cal performance parameters (power consumption, area and time) simultaneously. Consequently, the

question we try to answer in this thesis is how to make a judicious redundancy configuration that

could result in optimal reliability improvements. It includes research on finding most suitable extent

and location of implementing the hardware redundancy under a given design criteria.
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This dissertation mainly addresses the following issues.

– As it is possible to build systems with unreliable components, how to fabricate more reliable

systems with the probabilistic nature of the component’s individual reliability?

– Propose and verify new fault-tolerant architectures that enable improvement in reliability, with

respect to those existing ones.

– As a realistic fault model is relevant to further evaluation of reliability, fault models and relia-

bility evaluation methods need to be analyzed and compared.

– Since the common approach for constructing fault-tolerant architectures consists of incorpo-

rating redundancy, the feasibility of designing reliable architectures by using economical/small

redundancy factors is worthy to be discussed.

– The importance of reliability in majority voter is due to its application in fault-tolerant design.

Error characteristics of majority voter are discussed to reveal the conditions that Triple Module

Redundancy (TMR) technique requires.

1.3 Organization of the thesis

The dissertation is organized as follows:

– Chapter 2 introduces the basic concepts related to reliability improvement in logic circuits:

definition and metrics of reliability, motivations for enhancing reliability, ways and methods

of evaluating reliability, etc. A brief review of fault-tolerant techniques is presented, including

types of redundancy and general methods of fault-tolerant system design. Reliability improve-

ment of digital IPs by hardware redundancy is mainly discussed, concerning module redun-

dancy (especially TMR), trade-offs between reliability requirements and performance degra-

dation etc. As TMR becomes a favorable solution because of its straightforward implemen-

tation and also reliability gains, state of the art in alleviating the performance degradation of

TMR designs are addressed, including Selective TMR, Partitioning TMR, Non-uniform TMR,

Automatic-insertion of TMR, Selective fault tolerance, etc.

– Chapter 3 is about two proposed concepts that describe the significance of the constituent

blocks of digital IPs: sensitivity and eligibility. This inherent significance can identify the

most critical/eligible blocks of digital IPs according to different design criteria. Afterwards,

reliability analysis and improvement based on these two concepts are discussed. The concepts

are firstly implemented on the cascade structure mathematically and then on generalized circuit

structures by simulations. Applications based on these concepts are also presented.

– Chapter 4 presents reliability improvement by redundancy management. In order to maximize

the reliability while minimizing redundancy adding, the progressive manner of redundancy

addition (Progressive Modular Redundancy, PMR) is proposed. The algorithm, workflow and

methodology are presented in details. Furthermore, considering that not all bits of information
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have the same degree of importance, a more aggressive way of fault-tolerance is proposed in

some practical applications with related to the bit significance. Finally, results obtained from

the proposed method are compared with the state-of-the-art techniques.

– Chapter 5 analyzes the error characteristics of majority voter. The importance of reliability

in majority voter is due to its application in both conventional fault-tolerant design and novel

nanoelectronic systems. A better understanding of signal probability, functional/signal relia-

bility and error bound of majority voter is discussed here. These parameters are analyzed by

boolean difference. The equations derived here present the characteristics of error propagations

in majority voter, and reveal the conditions that TMR technique requires. The results show the

critical importance of error characteristics of majority voter, as used in fault-tolerant designs.

Finally, a simple fault-tolerant voter structure is also proposed which avoids voter introducing

new locations wherein faults may occur.

– Chapter 6 presents concluding remarks, reviews of this dissertation and further perspectives are

also discussed.
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Chapter 2

Reliability Improvement Techniques

2.1 Introduction

Reliability is actually as important as other factors such as power consumption, area overhead and

speed in nanometer electronic designs. The ITRS explicitly calls for a fresh look on nano-architecture

with emphasis on fault and defect tolerance [34]. With technology scaling and complexity of the de-

signs increasing, digital IPs become more fault-prone and there is a serious menace to the continuous

development of the integrated circuits industry. These problems have motivated a lot of researches on

reliability improvement. However, cost penalty concomitant with the reliability improvement makes

the task not an easy work.

This chapter presents general concepts related to reliability and its enhancement in digital IPs and

the scope of the work is also defined. Preliminaries and prevalent models for reliability evaluation

are introduced. Most recent progresses about reliability evaluation methods are reviewed. Compar-

ison and comments about them are also presented. An overview of redundancy-based fault-tolerant

schemes regarding to nano-electronic technologies is presented as well as a detailed discussion and

comparison concerning the methodologies for reliability improvement designs.

2.2 Preliminaries of reliability

2.2.1 Defect, fault, error and failure

An electronic system can be in one of the five states as shown in Figure 2.1: Ideal, Defective,

Faulty, Erroneous, or Failed [35]. These states are explained as below:

– Defect: A defect is any imperfection on the wafer.

– Fault: A fault is an erroneous state of the system, either hardware of software.

– Error: An error is the manifestation of a fault.

– Failure: A failure causes the system performance deviate from its specified performance.
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Some distinctions between these definitions are as follows:

– Defects and Faults: A defect is any imperfection on the wafer, but only those defects that

actually affect the circuit operation are called faults.

– Faults and Errors: If a fault is actually exercised, it may contaminate the data flowing within

the system, causing errors, but not necessarily.

– Errors and Failures: Errors may or may not cause the affected circuits to failures. It doesn’t

necessarily have a catastrophe: when an error is encountered during the operation of a system,

it will cause a failure.

IDEAL

DEFECTIVE

FAULTY

ERRONEOUS

FAILED

Figure 2.1: System States and state transitions in the multi-level model of reliability.

The circuit systems move from one state to another as a result of deviations and remedies. Devi-

ations are the events that take the system to a less desirable state, while remedies are measures that

enable a system to make the transition to a higher state. In addition, faults are usually characterized

based on its duration. That is, a fault is said to be permanent if it continues to exist until it can be

repaired. An intermittent fault is one that happens and ends at a frequency that can be characterized.

A transient fault, which is mainly focused on in this thesis, is the fault that occurs and disappears

at an unknown frequency. It is caused by alpha or neutron particles, electrostatic discharge, thermal

noise, crosstalk, quantum mechanical effects, etc.
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2.2.1.1 SEUs and SETs under DSM technologies

The transient faults we are interested in this thesis are single event upsets (SEUs), in which ra-

diated particles cause the state of a storage element changed. They can occur in storage elements of

digital IPs like latches, flip-flops as well as memory cells (SRAM, DRAM). SEUs may happen in

three ways, as shown in Figure 2.2.

– Case 1: A particle attacks an internal node of a latch or flip-flop directly. In this case, it may

produce an inversion of the element state.

– Case 2: A particle hits the combinational parts of a digital circuit, for example a logic gate.

In this case, the particle strike causes a glitch (glitches) in the output voltage of a logic gate,

which is called single event transients (SETs). SETs may propagate through the combinational

part to a latch or a flip-flop, thus turn into a SEU.

– Case 3: A particle attacks the control signal such as clock signal. This will result in early or

late edge in the clock signal and data will not be latched correctly.

XOR

XNOR

AND

NOR FF

•

CLK

case1

case2

case3

Figure 2.2: Mechanism of SEUs in digital IPs.

As technology size shrinks, digital IPs are becoming more susceptible to SEUs and SETs. SEUs

and SETs therefore become the major reliability concerns in deep submicron technologies. Since

SETs depend on the propagation time and also combinational logic, the probability to latch a SET

can only be evaluated very late in the design process. However, it is necessary to know the potential

impact of SEUs and SETs at earlier stage in design flow. Consequently, it requires a model to make

it possible to analyze the faults.

2.2.1.2 Modeling of faults

To deal with faults, a model is needed to simulate their effects. A fault model is a logical ab-

straction that describes the functional effect of the physical defect. Fault modeling can be made at
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different levels, from the lowest physical geometrical level and then gate level and to the highest

which is the functional level. The lower the fault models are, the more accuracy could be obtained

while the computation is more complex. For example, Figure 2.3 shows the double exponential model

for current pulses in analog domain which is proposed in [36]. Although this fault model remains at

low level, it can be used to implement fault injections on target nodes in the high-level description of

analog blocks. In order to simplify the simulations and reduce the fault injection experiment duration,

a more practical model is then proposed in [37] with more parameters that derived from the classical

double exponential model.

0 0.2 0.4 0.6 0.8 1

x 10
−9

0

0.005

0.01

0.015

t

Figure 2.3: Double exponential fault model.

Fault injection techniques can be classified into three main categories [38].

– physical fault injection: it introduces faults directly to the hardware of the target system by

distributing the working environment of hardware. Like electromagnetic interferences, heavy

ion radiation, etc. It is most close to the real fault environment but the device for injection is

expensive. And it also needs long design cycles.

– software fault injection: it refers to changing the memory and registers to emulate the conse-

quences of hardware faults. The flaw is that injection locations are limited and time resolution

is poor.

– simulated fault injection: It imitates the faults of the system based on the use of hardware

description languages. It is favorable because it can provide check results at an early time in

the design process and simulations could be implemented on RTL as well as gate level.

Simulation-based fault injection is widely adopted for its flexibility, visibility and nonintrusive-
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ness. In digital domains, the consequences of SEUs and SETs could be modeled by one of more

bit-flip(s) at the functional level. As stated above, it is realized by modifying the initial description

of circuits, i.e., HDL codes. To make these modifications, there are two approaches named saboteurs

and mutants respectively. The first is to add blocks (the saboteurs) between the existing blocks. Such

modifications are easy both in concept and implementation and are adopted by a lot of applications.

In this thesis, we will use this fault model for injecting faults to digital IPs and then analyze the circuit

reliability.

If we need to inject higher-level errors that are behavioral errors, we need to modify signals

within the initial blocks, for example, values of memorized signals or variables. In such cases, the

modified description of the block is called mutant. The injections of faults in the high-level is more

difficult but more powerful. Examples of sabotaged and mutated VHDL codes could be found in [39]

and [40]. A complete framework for Verilog-based fault injection and evaluation is presented in [38].

A novel simulation fault injection method for the dependability analysis of complex SoCs using 32-

nm technology is proposed in [41] (named SyFI, which augmented the SystemC simulator kernel so

that fault injection experiments can be performed conveniently). It is applied at the system description

level, as opposed to the lower, flattened RT level, in order to reduce simulation time and storage space.

2.2.2 Measures and metrics related to reliability

A reliability measure is a mathematical representation of the circuit reliability characteristics. The

conventional definition of reliability, denoted by R(t), is the probability (as a function of the time t)

that the system will execute its specified function continuously in a given time interval [t0, t]. It is

determined by an important parameter called the failure rate of a component (transistor, gate, block,

module, etc.). Failure rate (usually denoted by λ), is the rate at which an individual component suffers

faults. This parameter depends on the current age of the component, any physical shocks it suffers

and the technology. As we stated in the first chapter, combinational circuits have logical, electrical

and temporal masking properties. Therefore, failure rate in combinational circuits is also dependent

on its capacity to mask these faults. This ability reduces the probability of propagation and further

storage of the faults in the sequential elements of the circuit, characterizing a failure.

The relationship between reliability R(t) and time t that has been widely accepted is the expo-

nential function, i.e.,

R(t) = e−λt. (2.1)

Now we consider reliability of a digital IPs in most canonical structures, series and parallel, as

shown in Figure 2.4.

A system consists of N series components, wherein the failure of a component will cause the

system failure, reliability is given by
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(a) Series system.

(b) Parallel system.

Figure 2.4: Series and parallel systems

Rs(t) = R1(t) ·R2(t) ·R3(t) · · ·RN (t) (2.2)

where R(t) is the system reliability and Ri(t), i = 1, 2, ...N , are the component reliabilities. If

we consider the components have the exponential failure densities, then

Rs(t) = exp

 

−
N
X

i=1

λit

!

(2.3)

A system consists of N parallel components, wherein a system failure requires the fails of all the

constituent modules, reliability is given by

Rp(t) = 1−
N
Y

i=1

(1−Ri(t)) (2.4)

Since R(t) depends on the time of system or component operation and thus is variable, it is not

suitable in practical use. A metric very closely related to reliability is known as Mean time to failure (MTTF).

It is defined as the expected time that a system is functional until the first failure occurs. As certain

types of components suffer no aging and have a failure rate that is constant over time, in most calcu-

lations of reliability, we also use a constant failure rate because of the simplified derivations. With

λ(t) = λ, MTTF can be derived as follow.

MTTF =

Z 1

0
e−λtdt =

1

λ
. (2.5)

Mean Time Between Failure, MTBF is the average time between two consecutive failures. It has

the same value as MTTF if the Mean time to Repair, (MTTR) is the same. Here MTTR denotes the

average time needed to repair the first failure. If we use µ to express the repair rate, then MTTR is
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defined as below.

MTTR =

Z 1

0
e−µtdt =

1

µ
. (2.6)

Therefore, we have

MTBF = MTTF +MTTR (2.7)

Furthermore, Availability is the probability of a system operates correctly at the instant t. It means

a system can be either available or unavailable (i.e., in repair) and it is expressed as

A(t) =
MTTF

MTBF
(2.8)

Several metrics can be used to measure the reliability of combinational circuits. Which metric is

chosen for reliability evaluation is closely related with the specific applications.

– Metric 1: Probability of working

We define the reliability of a component (transistor, gate, block, module, system etc.) as the

probability that the component realizes the desired function, i.e., it has a correct output for

normal inputs. It is also known as functional reliability [7, 8].

Probcomp = Prob(working) = 1− Prob(failing) (2.9)

– Metric 2: Probability of the output being correct

We define the reliability of a given circuit as the probability of the circuit’s output is correct

even in presence of errors. That is, the output is a bit-vector containing only correct 0’s and

correct 1’s. It is also known as signal reliability which means the probability that a given signal

carries a correct value [7, 12]. Notice that for a particular circuits, signal reliability is always

greater or equal to the functional reliability.

Assume that a binary signal x can carry incorrect information is equivalent to assume that it can

take four different values: correct zero (0c), correct one (1c), incorrect zero (0i), and incorrect

one (1i). Then, the probabilities for occurrence of each one of these four values are represented

in matrices as shown bellow:

"

P (x = 0c) P (x = 1i)

P (x = 0i) P (x = 1c)

#

=

"

x0 x1

x2 x3

#

(2.10)

The signal reliability for x, noted Rx, comes directly from expression (2.11), where P (.) stands

for the probability function:

Rx = P (x = 0c) + P (x = 1c) = x0 + x3 (2.11)
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Now let us consider a digital block performing a function on a signal x in order to produce a

signal y. Assume that p is the probability that this operator fails, and that q = (1 − p) is the

probability it works correctly. We can easily obtain the reliability of y as:

Ry = (x0 + x3).q + (x1 + x2).p (2.12)

Equation (2.12) shows that when the input signal is reliable, the output signal reliability is given

by q which represents the probability of success in the digital block. It is due to x1 + x2 = 0.

This implies that for fault-free inputs, the reliability of the output signal is given by the inherent

reliability of the block that produces this signal.

block b
yx

Figure 2.5: Generation of the output signal y from the input signal x processed by the digital block b.

– Metric 3: Relative Error

In definition 1 and 2, nothing is considered related to weights, i.e. an erroneous value in any

bit (from LSB to MSB) of the output is equally weighted. However, some faults may result in

larger errors in a most significant bit. It is therefore common to use another metric for reliability

measures by using relative error (RE). Relative error is widely used in reliability evaluation of

Analog-Digital-Converters (ADCs) [42].

RE =
expected output − actual output

expected output
(2.13)

– Metric 4: Effective reliability

Based on the concept of relative error, a more practical metric is proposed in [43, 44]. which

analyzes the circuit reliability not only circuit structure but also the target application.

Let yi = bM−1bM−2 · · · b1b0 be defined as a vector of M bits that represents the output of a

circuit. In this case, bit b0 stands for the LSB (Least Significant Bit). Also, let us define the

reliability of bit bi as qi. For a such circuit, the nominal reliability Rnom can be evaluated by :

Rnom =
M−1
Y

i=0

qi (2.14)

For a large number of applications, consequences of some errors can be more critical than

others, but this phenomenon is not included in (2.14).

Unlike nominal reliability, the concept of effective reliability given in (2.15) allows to classify
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errors into two categories: critical and noncritical errors.

Reff = Rnom +Rack (2.15)

Noncritical errors are defined as errors that do not compromise the circuit performance, i.e.,

errors that can be acceptable by the system. The first term in (2.15) stands for the nominal

reliability concept and the second one, Rack, stands for the probability of the faulty output be

considered noncritical. The value of Rack could be evaluated according to different quality

metrics as stated in [43, 44].

2.3 Reliability evaluation of logic circuits

As stated before, the effects of noise at the electrical level can usually be modeled by a probability

distribution about the nominal voltage, instead of a single number. A Gaussian distribution have been

widely adopted to approximate the noise distribution. However, reliability analysis of combinational

circuits is a problem in the digital domain, while the noise distribution modeled by Gaussian distribu-

tion is in the continuous domain and is therefore not suitable. Without loss of generality, the average

probability that the low and high voltages exceeds the noise margin is used to estimate the gate failure

probability, expressed by ✏.

For digital IPs, reliability evaluation refers to the process of analyzing the effect and propagation

of errors on the basic blocks of the circuit. The classical model for errors due to noise in digital

IPs was first introduced by von Neumann in 1956 [9]. Noise at a logic gate is modeled as a binary

symmetric channel (BSC), with a crossover probability ✏, i.e., the gate output to toggle is symmetrical

from 0 to 1 or 1 to 0 with the same probability ✏. Here ✏ 2 [0, 0.5] because it is unrealistic for a gate

have ✏ > 0.5, it would mean that the output of the gate is more likely to be faulty than correct. In

such a case, adding a NOT gate at the output would make the combination of the two gates more

reliable. Note that gates are assumed to fail independently to each other. Although it might be an

ideal assumption, since effects of noise are potentially and randomly localized and correlated, this

assumption helps to simplify reliability analysis while still provides meaningful insights on circuit

reliability analysis.

The increased importance of reliability strongly suggests that reliability needs to be included as

the fourth optimization pillar of forthcoming electronic design automation (EDA) tools, along with

the well-known triplet parameters area, power and speed. However, reliability analysis is a NP-hard

problem since the combinations of input signals increase exponentially.

The methods to evaluate reliability of digital IPs can generally be divided into three groups:

– analytical based.

– simulation based.
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– hybrid of simulation and analytical ways.

2.3.1 Analytical-based way

A number of recent works proposed analytical approaches for evaluating circuit reliability. In

[10], Probabilistic transfer matrices (PTM) is proposed to model the soft errors in the form of ma-

trixes, and then combine the PTMs of gates to form an overall PTM of the circuit. Output probabilities

could be extracted by the circuit PTM. But it doesn’t solve the problem of runtime complexity and

memory storage in the case of a large circuit PTM. For a circuit with m inputs and n outputs, it suf-

fers from the computation complexity of O(2m+n). Even the author has compressed circuit-matrices

using ADDs (algebraic decision diagrams) [45] in [11], it is intractable to store the circuit PTM for

large circuits. To be more efficient in runtime or memory storage, several methodologies are proposed

but generally they give the approximated results of reliability.

In [46], signal probability reliability (SPR) considers that each internal node has four values

(correct 0, correct 1, incorrect 0 and incorrect 1), and each node in the circuit is characterized by its

probability of having a correct value. The reliability calculation is based on the cumulative effect of

errors in the signals of the circuit. The advantage of SPR over PTM is the linear complexity while it

suffers from its disadvantage as accuracy decrease in case of nodes recovergents.

How to deal with re-convergence sources is always a bottleneck in reliability evaluation of com-

binational circuits. For example, in the SPR method, each signal has four states. If there are M

re-convergence sources in a given circuit, the computational complexity will be increased to a fac-

tor of 4M . SPR in multi-pass (SPRMP ) presents a solution but is time-consuming. A method is

therefore proposed in [47] to de-correlate the correlated signals by using conditional probabilities. It

obtains a tradeoff between accuracy and time complexity.

In [16], algorithms called observability-based reliability analysis are proposed. They are based

on the concept of observability which means that a failure at a gate close to the primary output has a

greater probability of propagating to primary output than a gate several levels far away. A closed-form

expression for reliability of the outputs is derived and it is fast and simple for reliability evaluation,

while the problem is that it lacks high accuracy.

Authors in [48] proposed probabilistic treatment of signals in combinational digital IPs. By tak-

ing into account this methodology, in [49], the the probabilistic gate model (PGM) is proposed for

unreliable logic gates and then PGMs are used as models to analyze the circuit reliability. At first,

PGM-based method also suffers from runtime problems. The authors therefore improved their model

in [15] where PGMs are used in a hierarchy way. Large circuits are decomposed into their smaller

components and then reliability estimation could be obtained by recursively use of PGM model. This

improvement presents a tradeoff between accuracy and complexity.

Boolean Difference was firstly used in error detection of digital IPs in [50]. In [14], a model

was proposed by using Boolean Difference calculus, which is applied to probabilistic analysis of
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logic circuits. This error/reliability calculator Boolean Difference-based Error Calculator (BDEC),

takes signal and error probabilities of primary inputs, gate error probabilities and then computes the

reliability of the circuit. It benefits from a linear-time complexity with the number of gates in the

circuit with very high accuracy.

In complex systems in which constant failure rates are assumed but combinatorial arguments

are insufficient for analyzing the reliability of the system, we can use Markov models for deriving

expressions for the system reliability. In addition, Markov models provide a structured approach for

the derivation of reliabilities of systems that may configured with hardware redundancy and a repair

process. In Section 2.4.3.2 we will present an example of calculation of MTTF values in majority

voting redundant systems with Markov Models.

A probabilistic design methodology based on Markov Random Fields (MRF) is presented in [51]

that uses the Gibbs distribution to characterize reliability in terms of entropy and noise in terms of

thermal energy. Evaluating reliability using this technique becomes computationally intensive for

arbitrary multilevel logic circuits because it involves minimization of a complex Gibbs distribution

function with a large number of variables. This technique is more suitable for evaluating reliability

of regular redundancy architectures like triple modular redundancy. And in [17], an approximate

inference scheme is proposed for the handling of large circuits using a probabilistic model based

on Bayesian networks (BNs). Without exception, these two approaches suffer from the problem of

scalability.

An exact analysis method at logic-level was proposed in [52] which takes advantage of circuit

transformations to calculate the signal probabilities of all internal nodes of logic circuits. At the same

time, the authors proposed a hybrid measure to estimate reliability of digital IPs that provides a trade-

off between scalability and accuracy. However, rewiring the signals connecting to less reliable nodes

brings with some over-cost.

2.3.2 Simulation-based way

Standard techniques for reliability analysis consist of faults into internal nodes of the circuits

and then simulate the circuit for different input vectors in a Monte Carlo (MC) framework. The

main drawback of simulation is that numerous pseudo-random numbers need to be generated thus a

large number of simulation runs must be executed to reach a stable output, so making this way very

time-consuming for large circuits or circuits with large number of inputs. However, simulation has

still been considered as an alternative in industry field when analytical approach becomes intractable

[51, 53–55].
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2.3.3 Hybrid way

Recently, some approaches making use of both analytical and simulation-based methods have

been proposed.

A probabilistic binomial model for reliability calculation (PBR) was presented in [13]. It takes

into account the logical masking properties of the circuit structure, and gives accurate results. This

approach can easily be integrated in the design flow of the target systems. Determination of reliability

depends on an exhaustive fault simulation of the target circuit.

Based on the PGM model, in [56], a computational approach using the stochastic computational

models (SCMs) accurately determines the reliability of a circuits with its precision only limited by

random fluctuations inherent in the representation of random binary bit streams. The SCM approach

has a linear computational complexity and thus it is scalable for large circuits. However, since it is

modeled under a stochastic circumstance, shortcomings like random permutation and random fluctu-

ation are inevitable. It is thus another aspect of trade-off between accuracy and scalability.

As in SCM , gate failure is assumed as a constant probability which is not desirable in physical

basis (because faults actually affect devices such as transistors). A more practical approach is pro-

posed in [57]. It utilizes a transistor-level stochastic analysis for digital fault modeling. i.e., a simple

equation is used to relate the reliability of the transistors to that of a gate, ✏gate = (1 − ✏transistor)
n,

where n is the number of transistors in the gate.

2.3.4 Comparison of existing techniques

Analytical approaches can handle reliability assessment of small and simple circuits without loss

of accuracy, buy the efficiency and accuracy becomes difficult for VLSI circuits. Therefore, a trade-

off is usually made for accuracy versus the complexity, speed and memory. These trade-offs must

consider signal correlation. It refers to the number of recovergent fanouts in combinational circuits,

and the number of feedbacks in sequential circuits.

In this case, to allow the analysis of larger size circuits, each approach has its way to make

the compromise. For example, SPRMP and PGMAccurate could consider less reconvergent fanouts,

PBR could make reductions of fault emulations and SCM could reduce the length of input stochastic

signals.

Table 2.1 presents some quantitative comparison with related to speed, accuracy, memory and

scalability of the representative methods. This comparison derives from statements references in

[10–17] etc. Since the limitation on the size of matrices that is necessary for PTM, its usage is very

restricted. The speed of PTM could not be found in literature.
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Table 2.1: Comparison of representative reliability evaluation methods.

Methods Speed Accuracy Memory Scalability

PTM − exact very high no
BN medium exact high no
PGM medium low low no
SPRMP slow exact low no
PBR slow exact low no
SCM medium adaptive low yes
BDEC medium high low yes

2.3.5 Comments on PGM approach

The PGM approach produces the gate’s PGM according to (2.16), where ✏ is the gate failure

probability, P is the probability of the output of the gate being stimulated, and pi is the probability

that a fault-free gate will produce logic-1 at its output. This is reasonable. However, given an output’s

signal probability P (1) and P (0) = 1 − P (1), the author defined that reliability of the circuit is

calculated according to (2.17), where Pe(1) and Pe(0) are the probabilities that the output is expected

to be "1" and "0" respectively, under the condition that the gates are fault-free [15, 49, 58]. And

they declared that reliability evaluation could be transformed into the problem of evaluation of signal

probability of the output, which is easy to solve.

P =
h

pi 1− pi

i

·
"

1− ✏

✏

#

(2.16)

R = P (1)Pe(1) + P (0)Pe(0) (2.17)

Although the author presented the reliability accuracy is high, the reliability evaluation formula is

worthy to be discussed here. For example, we consider a NAND gate with gate failure rate ✏ = 0.1. As

shown in Figure 2.6, signal probabilities of primary inputs of a NAND gate are P (A) = P (B) = 0.5.

According to (2.16), output signal probability is calculated as in (2.18) and reliability is calculated as

in (2.19). The result 0.6 obtained by PGM is contradictory with PTM, SPR, etc., which is 0.9.

P(Z) =
h

1− P (A)P (B) P (A)P (B)
i

·
"

1− ✏

✏

#

= 0.7 (2.18)

R = P (1)Pe(1) + P (0)Pe(0) = 0.75 · 0.7 + 0.25 · 0.1 = 0.6 (2.19)

Another example is addressed here. We compare the reliability results of PGM and SPR. Consider

a simple OR gate with failure rate ✏ = 0.05 as shown in Fig. 2.7. Input signal probabilities are shown
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NAND

A

B

Z

Figure 2.6: A NAND Gate.

in (2.20) and (2.21), so we have P (A) = 0.3 and P (B) = 0.5.

A

B

ZOR

Figure 2.7: An OR Gate.

"

P (A = 0c) P (A = 1i)

P (A = 0i) P (A = 1c)

#

=

"

0.675 0.075

0.025 0.225

#

(2.20)

"

P (B = 0c) P (B = 1i)

P (B = 0i) P (B = 1c)

#

=

"

0.49 0.01

0.01 0.49

#

(2.21)

According to (2.16), signal probability is derived as in (2.22) which is 0.6350. Then reliability

evaluation is done according to (2.17), that is shown in (2.23). The result obtained here have a huge

error compared to 0.89285 which is obtained by SPR.

P(Z) =
h

P (A) + P (B)− P (A)P (B) 1− P (A)− P (B) + P (A)P (B)
i

(2.22)

·
"

1− ✏

✏

#

= 0.6350

R = P (1)Pe(1) + P (0)Pe(0) = 0.635 · 0.65 + 0.3650 · 0.35 = 0.5450 (2.23)

Apparently, there is no link between the single probability and signal reliability of output. There-

fore it is very hard to find the accuracy of the model PGM based on the reliability evaluation formula

in (2.19). Furthermore, the authors reported different reliability results of the same benchmark cir-

cuits by using the same method. For example, for ISCAS85 benchmark circuit C17, the reliability

value was 0.7840 in [49] compared to 0.7582 in [15] respectively, by using the same method PTM
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which is the representative reliability evaluation method. For the proposed PGM, the reliability value

was 0.7620 in [49] compared to 0.7582in [15].

2.4 Reliability Improvement based on redundancy

In order to guarantee the circuit reliability against SEUs and SETs, several mitigation techniques

have been proposed in literature during the last few years. Mitigation techniques against soft errors

in logic circuit include system-level schemes, such as back up a same system and run them simulta-

neously. This method is mostly used in real time or critical space applications, and the hardware cost

is too expensive to apply it on daily application. Representative logic-level methods includes Triple

Module Redundancy (TMR), Error detection and correction coding (EDC), and this kind of methods

are now proved to be the most effective and feasible.

On the other hand, these mitigation techniques could be classified into fabrication-based, design-

based and recovery-based. Fabrication-based techniques are mainly concerned in reduction of ra-

diation effects. Recovery-based methods try to recover the initial programmed information after an

upset. This dissertation deals with design-based techniques at logic-level and it mainly concentrates

on module redundancy techniques.

2.4.1 Types of redundancy

Redundancy resources are needed in fault-tolerant designs. There are four forms of redundancy:

hardware, software, information and time. Redundancy techniques can include any or a composite of

these four forms [18–20].

– Hardware redundancy is realized by adding extra hardware into the design to either detect or

mask the errors of a failed component. For example, we could use two or three units performing

the same function instead of utilizing a single unit. In this way, errors could be detected by the

two function units; and for three unit, the majority output can override the wrong output of

the single function unit. Hardware redundancy is normally reserved for critical systems where

area overheads could be ignored compared with reliability requirements because of its high

overheads. However, since its high reliability and straightforward structure, it is still preferred

in many designs. Thus methodologies for alleviating the performance degradation by hardware

redundancy have been proposed in recent years to make hardware redundancy more feasible in

most applications.

– Information redundancy refers to the addition of extra information to data in order to allow

fault detection, masking or tolerance. It is known as its application like error detection and

correction coding. They are widely used to protect data transmitting in noisy channels. By the

way, these error codes also require hardware to process the redundant data.
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– Time redundancy provides repetition of a given program on the same hardware in a number of

times. Then the comparison of results will determine if a discrepancy exists. It has much lower

hardware overhead but causes a high performance penalty like latency.

– Software redundancy is used to deal with software failures. Similar to hardware redundancy,

multiple versions of the program can be executed concurrently. In fact, it will cause hardware

and time redundancy as well.

Not all fault-tolerant techniques are applicable at all design levels. Therefore the applicability

level is an important property of fault-tolerant techniques. Figure 2.8 shows the applicability of

different fault-tolerant techniques.

Hardware redundancy
- e.g. NMR

- General, easy
- High area overhead

Information redundancy
- e.g. ECC

- Easy for data transfer/storage
- Hard for general computations

Time redundancy
- e.g. Recompute 

- Low area overhead
- Long delay, not suitable for 

permanent faults

Hybrid way
- e.g. Hardware + Time

- Flexibility
- Complicated control

Low level - logic gate
- Simple unit

- Cheap hardware
- Simple strategy

- Low control overhead

Medium level - arithmetic
- Date transfer
- Computation

High level - processor
- Complex unit

- Expensive hardware
- Powerful strategy
- Complex control

Figure 2.8: Fault-tolerant technique and its applicability (adapted from [1, 2]).

2.4.2 Hardware fault tolerance

Hardware fault tolerance is the most popular and mature area in the field of fault tolerant comput-

ing and architecture. Many hardware fault-tolerant techniques have been developed and implemented

in practice both in critical applications ranging from space missions to medical instruments and in

consumed electronics like display techniques [18, 21, 59–61]. Concurrent computations are imple-

mented on the extra hardware redundancy. The outputs are fed to a voter so that errors could masked,

and the reliability of the circuit is therefore enhanced. Or the duplicate (spare) hardware can be

switched automatically to replace failed components.
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Hardware redundancy can be characterized by passive (static), active (dynamic) and hybrid [2,

18, 19]. The first is related with fault masking, in the applications of reliability improvement. The

second is mainly concerned with fault detection and replacement of faulty modules thus it is suitable

in the situation of monitoring, for example. Hybrid redundancy requires both fault masking and

replacement.

2.4.3 Reliability of M-of-N systems

An M-of-N system is a system which consists of N modules and requires at least M of them for

correct operation. In other words, the system fails when less than M modules are functional. It is a

representative technique of passive (static) hardware redundancy.

The well-known example is triplex, which consists of three identical modules whose outputs are

voted after. This is the situation when N = 3 and M = 2. As long as a majority (2 or 3) modular

functional, the system will have an expected output.

We now consider the reliability of an M-of-N system which could be expressed as follows,

RM−of−N =

N
X

i=M

(

N
i

)

Ri (1−R)N−i (2.24)

The corresponding diagram of Markov model is shown in Figure 2.9. This state diagram is not

hard to develop for reliability computation.

S0 •••S1
S2 SM

Nλ (N-1)λ Mλ

Figure 2.9: Markov diagram for M-of-N configuration.

2.4.3.1 N-tuple Module Redundancy

An M-of-N system becomes an N-tuple Module Redundancy (NMR) structure when N = odd

and M = dN/2e. Figure 2.10 presents a general scheme for NMR based on majority voter. There

are N + 1 components: N replicas of the module M and a voter MAJ. With the majority voter

algorithm, the output chosen to be the correct result is that which was produced by more than half of

the replicated modules.

The reliability of a NMR system based on ideal majority voter can be given by the expression

(2.25), where qM is the reliability of each module and
(

N
i

)

= N !
i!(N−i)! is the number of i-element

subsets of an N -element set.
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Figure 2.10: General scheme for NMR based on majority voter.

RNMR−IV =
N
X

i=dN/2e

(

N
i

)

qiM (1− qM )N−i (2.25)

Notice that qM gives the probability that a module generates correct outputs and
(

N
i

)

represents

the amount of possible combinations with i correct modules and N − i faulty modules. Therefore,

(2.25) gives the probability of a majority module working correctly. In the special case of triple

modular redundancy, this derives the value given in (2.26).

RTMR−IV =
(

3q2M − 2q3M
)

(2.26)

Figure 3.6 compares the reliability of a system implementation based on a single module with

one based on the modules replication according to equation (2.26). As the reliability of a simplex

(a single module) decreases, the advantages of redundancy become less marked; until for qM < 0.5,

redundancy actually becomes a disadvantage, with the simplex being more reliable than either of the

redundant arrangements. We observe that:

– if qM < 0.5, then RTMR < qM , that is to say TMR strategy is invalid in improving the

reliability compared with the original module without replica.

– if qM > 0.5, then RTMR > qM , so demonstrating the TMR strategy carries to an enhancement

of the reliability.

In fact, this is also reflected in the value of MTTFTMR, which (for Rvoter(t) = 1 and R(t) = eλt)

can be calculated as below.

MTTFTMR =

Z 1

0
3R(t)2 − 2R(t)3dt =

5

6λ
<

1

λ
= MTTFSimplex (2.27)

In most applications, however, R(t) > 0.5 is realistic and the system is repaired or replaced long

before R(t) < 0.5, so a triplex arrangement does offer significant reliability gains.
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Figure 2.11: Reliability curves for two implementations strategies: unique module (continuous line)
and TMR (dashed line).

2.4.3.2 TMR reliability with repair

As stated before, as long as the operating circuit processes redundancy, sometimes we need some

additions of repair or replacement to raise the circuit reliability. We have analyzed the reliability of a

TMR system without repair in the last section. Here we consider the reliability of a TMR system by

using Markov model. If we consider the voter will not fail, the markov system states are in Table 2.2

and the diagram of system states is shown in Figure 2.12.

Table 2.2: System states of a markov model for a TMR.

State Description

S0 Three components functional, zero failure
S1 Two component functional, one failure
S2 System failure, two or three failures

S0 S1
S2

3λ
2λ

μ

Figure 2.12: A Markov model for a TMR system with repair [3].

In the TMR model of Figure 2.12, we illustrate the use of Markov reliability model as follows:
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dPs0(t)

dt
= −3λPs0(t) + µPs1(t) (2.28)

dPs1(t)

dt
= 3λPs0(t)− (2λ+ µ)Ps1(t) (2.29)

dPs2(t)

dt
= 2λPs1(t) (2.30)

where µ is repair rate, as defined in (2.6).

Assuming that both systems are initially good, the initial conditions are

Ps0(0) = 1, Ps1(0) = Ps2(0) = 0 (2.31)

Then we transform the the set of equations into the Laplace domain, yielding:

Ps0(s) =
s+ 2λ+ µ

s2 + (5λ+ µ)s+ 6λ2
(2.32)

Ps1(s) =
3λ

s2 + (5λ+ µ) s+ 6λ2
(2.33)

Ps0(s) =
6λ

s [s2 + (5λ+ µ) s+ 6λ2]
(2.34)

Therefore, the reliability of a TMR system with repair in S domain could be yielded as the sum

of Ps0 and Ps1, i.e.,

RTMR(s) = Ps0(s) + Ps1(s)

=
s+ 5λ+ µ

s2 + (5λ+ µ) s+ 6λ2

=
3λ+µ
λ

s+ 2λ
−

2λ+µ
λ

s+ 3λ
(2.35)

We can also obtain the time function by Inverse Laplace transform, so yielding the reliability of a

TMR system with repair in time domain:

RTMR(t) =
⇣

3 +
µ

λ

⌘

e−2λt −
⇣

2 +
µ

λ

⌘

e−3λt (2.36)

Here we find if µ = 0, i.e., without repair, which yields

RTMR(t) = 3e−2λt − 2e−3λt (2.37)
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and if we define the reliability of single module as qM = e−λt, this becomes equation (2.26) as

presented in Section 2.4.3.1, and thus it is coincident with the results previously computed.

RTMR =
(

3q2M − 2q3M
)

(2.38)

2.5 Trade-offs between reliability improvement and performance degra-

dation

As any fault tolerant approach, soft error mitigation may impact significantly area, power and

performance. It is therefore necessary to find an effective logic fault architecture which has a bet-

ter trade-off among these key parameters [62]. Although N-modular redundancy, especially TMR,

has been the most prevalent and representative technique in reliability improvement, a full NMR is

extremely expensive in terms of performance.

To alleviate the degradation of the performance, the straightforward method is to protect only the

critical parts of digital IPs. Selective TMR is therefore proposed to harden a design against SEUs

by selectively inserting TMR in those sensitive gates determined by the input environment [63–67].

In [63, 64], the sensitivity of a gate is determined by the signal probabilities at the primary inputs

of a circuit. A gate is identified as a sensitive one if an SEU on any one of the inputs is likely

to propagate to the final output. The authors in [63, 64] defined that a gate is sensitive when the

probability that only one of the inputs to the gate has a dominant logic value or all of the inputs to the

gate have non-dominant logic values is greater than the threshold probability specified by the user. If

the threshold is set as 0, Selective TMR becomes a full TMR. According to this definition, the gate

XOR, XNOR and NOT are obviously always sensitive. However, this method has its shortcomings.

Firstly, the threshold which decides the sensitivity of the gates is a subjective parameter and there is

a lack of such most appropriate threshold. Secondly, reliability of the circuits not only depends on

the logic masking ability of each independent logic gates but also highly relates with the inherent

combinational logic.

A logic-level soft error mitigation methodology for digital circuits is proposed in [4] which adds

functionally redundant wires selectively to combinational logic of a circuit. It can prevent distorted

signal from propagating to an output or a storage element. Another good advantage lies in its slight

overhead in hardware, power or delay. This method is based on logic implications in digital IPs. For

the circuit example shown in Figure 2.13, one such implication would be e = 1 ) G8 = 0. Because

if e = 1, then G3 = 1, and G8 = 0. Therefore, given e = 1, we expect that G8 = 0. If a SET

changes the value on the path (including G3 and G8), the output of G8 will become an erroneous

value of 1. The proposed method thus added a redundant function wire (dotted in Figure 2.13) from

e to G10 to mask the SET before reaching G10. This method could bring a significant SER reduction

while commensurate with the incurred hardware, power and delay overhead. However, to identify the
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candidate redundant wires by analyzing logic implication is not an easy work. On the other hand, the

algorithm to choose the most suitable redundant wires among the candidate subset is complicated.



G2

G6

G3

G4

G5



G8

G9

G10NOT

•

•

•

•

a

b

c

d

e

f

h

Figure 2.13: Example circuit of adding redundant wires [4].

The difficulty in [4] is to find all the implications in a circuit which is a daunting job. A cost

effective approach for online error detection was proposed in [5] to solve this problem. It describes

the combinational circuits in graphical way (see Fig: 2.14), and identifies these implications auto-

matically without requiring any knowledge about the high-level circuit behavior. It also avoids the

re-synthesis of the logic being protected.

Based on the concept that systems can allow a fixed error rate in a lot of practical applications,

a methodology for automatic insertion of TMR is proposed in [68]. It considers TMR insertion as a

graph partitioning problem which is included in the category of NP-complete problem. It partitions

all registers of the initial circuit into two sub-graphs. One stores the registers that have been chosen

to protect with TMR, and the other stores the remaining registers without TMR. In this methodology,

the initial partition is important because it will change the convergence iterations (explored partial

solutions) a lot. In order to have a better initial partition, the following criterions are proposed and

validated in [68].

– A flip-flop with a higher fan-in should not be tripled.

– A flip-flop with a larger fan-out is susceptible to be tripled.

– A flip-flop which is far from the primary output is not convenient to be tripled.

– A flip-flop with feedback loops is more convenient to be tripled.

On the other hand, in [69], a selective fault tolerance (SFT) is described as a modification of TMR

by protecting special input signals. It is more useful in practical applications because the designer

could choose the subset of inputs according to real needs. This method doesn’t choose parts of the

circuit to be protected but provides fault tolerance for selected input signals. Reduced area overhead
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Figure 2.14: Combinational circuit and its graphical representation [5].
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as well as power consumption is demonstrated by validation examples. A subset X1 of all possible

inputs X is chosen by the designer in accordance with the real needs of fault tolerance in the concrete

circumstance. Then fault tolerance is guaranteed to the chosen subset whereas for the remaining

inputs no fault tolerance is demanded. Suppose we have the original combinational system S1 with

m binary inputs x = (x1, x2, · · · , xm) and a single output y implementing an m-ary Boolean function

y = S1(x1, x2, · · · , xm) = S1(x). Different from traditional TMR, the additional systems S2(x) and

S3(x) implementing the m-ary Boolean functions S2(x) and S3(x) are constructed as follows.

The Boolean functions of S2(x) and S3(x) are defined as:

S2(x) =

(

S1(x) for x 2 X1

− don’t care otherwise

S3(x) =

8

>

>

<

>

>

:

S1(x) for x 2 X1

S1(x) for S1(x) 6= S2(x)

− don’t care otherwise

S1

S3

S2

V
O
T
E
R

•

•

x

y1

y2

y3

y

Figure 2.15: Scheme of selective fault tolerance.

A framework for NMR-based fault tolerance is investigated in [70] to perform dynamic tradeoffs

between power consumption and reliability. This fluid approach is based on the concept of applica-

tion’s error tolerance. The voting strategies and number of modules to be used for voting dynamically

switch based on an application’s error tolerance. A famous face detection algorithm [71] was used as

an example application to demonstrate the proposed fluid NMR framework can produce significant

power and performance benefits over traditional NMR. As a large class of emerging applications have

algorithmic and cognitive error tolerance, this dynamic concept is useful in the future work.

In [72], a partitioned TMR design based on FPGA is proposed by partitioning the digital IPs

into three levels: maximum, medium and minimum logic partitioning. By using maximum logic

partition, each combinational logic component was triplicated and majority voters were inserted in

their outputs. On the contrary, the minimum partition only triplicate the whole circuit and only a

majority voter is placed in the outermost output. The medium could choose a repeated logic function



49

block as a unit to be triplicated and voters were placed in the output of each logic partition. Of course,

the maximum logic partitioning TMR implementation is the best solution in reliability improvement.

However, this work is based on a full TMR solution. In other words, all components are triplicated

among either of the three configurations, and differences only lie in the number of majority voters.

While in the nano-electronical era, novel devices like quantum-dot cellular automata (QCA), single

electron tunneling (SET) make the implementation of majority voters in a single gate [73], so the

overheads based on voters are not very significant as before.

In addition, redundancy based fault tolerance can be implemented at different levels of granular-

ity, such as gate level, logic block level, logic function level, etc. A tool for evaluating granularity

and reliability trade-offs in nano-architectures was proposed in [74]. Another software-supported

methodology to alleviate the performance degradation of TMR solutions was presented in [75]. It

removes redundancy from nonsensitive sub-circuits by extracting the temperature profile across the

FPGA since the failure probability for a device region increases with temperature. Another method

improves the circuit reliability by using non-uniform redundancy. It is a dynamic programming algo-

rithm that leverages that circuits have non-uniform vulnerability and non-uniform observability when

sub-circuits to implement redundancy. Besides, the triple interwoven redundancy (TIR) and its ex-

tended higher orders (N-tuple interwoven redundancy, NIR) are proposed to achieve higher system

reliability [76]. This structure is based on TMR and NMR but implemented with random interconnec-

tions. This TIR/NIR implementation is in particular suitable for molecular nano-computers, which

are fabricated by a manufacturing process of stochastically chemical assembly.

In conclusion, all of the techniques and methodologies focused on soft error mitigation and relia-

bility improvement are trying to find a better trade-off between reliability and cost penalty. It is also

a motivation of our investigation on this purpose.
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Chapter 3

Reliability Enhancement based on

Significance

3.1 Introduction

The objective of this dissertation is to develop new methods and architectures for logic func-

tion IPs bringing with optimized trade-offs which can improve reliability and give consideration to

classical performance parameters.

As digital IPs consist of a series of sub digital blocks, the reliability depends on the reliabilities

of these individual blocks, as well as the combinational logic. As noted in [77], many large circuits

contain a limited number of simple logic components that are used repeatedly throughout a design.

Meanwhile, motivated by the Pareto principle, it is very interesting to find the best candidates whose

reliabilities play important roles in the overall reliability. This chapter presents several works concern-

ing significance of constituent blocks of digital IPs related to reliability. We proposed two concepts

sensitivity and eligibility that succeed to identify most significant blocks according to different de-

sign criteria. To validate the feasibility and efficiency of the proposed concepts, implementations are

presented to illustrate how they help to accomplish block grading.

3.2 Identification of critical blocks

The reliability of a circuit consisting of several blocks depends on the reliabilities of these indi-

vidual blocks. This is shown in equation (3.1) for a circuit consisting of K blocks, where R is the

circuit’s reliability and qi, qj stand for the reliabilities of the blocks bi, bj respectively (1  i, j  K).

R = f(q1, q2, ...qi, ...qj , ...qK) (3.1)
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Assume the blocks are independent in the sense that changing the reliability of a given block bi

has no impact on the reliability of another block bj with i 6= j.

3.2.1 A simple example

Let us start from a simple example. Suppose a circuit has the structure in Figure ?? and each

block bi has the same reliability q. Suppose we use QMR(5MR) once and TMR once respectively

in this circuit. In this case, let R5,3 stands for the reliability of the structure that put QMR in b1 and

TMR in b2. And R3,5 represents the opposite one. We could calculate reliability of the circuit by

R =
QK

i=1

Qi
j=1 qj , so yields (3.2) and (3.3)

 b1  b2  bk-1 bk

y1 y2
 yk-1  yk

y1 y2
yk-1x

Figure 3.1: Cascade structure.

R5,3 =

K
Y

i=1

ri = qk5 · qk−1
3 · q(1+2+···+k−2) (3.2)

R3,5 =

K
Y

i=1

ri = qk3 · qk−1
5 · q(1+2+···+k−2) (3.3)

In (3.2) and (3.3), q5 stands for block has the improved reliability with configuration QMR. And

q3 is improved reliability by TMR. q5 and q3 are given according to equation (3.4) , when N = 5 and

N = 3 respectively.

RNMR =

N
X

i=dN/2e

(

N
i

)

qi (1− q)N−i (3.4)

Obviously, the relation of R5,3 and R3,5 is verified as follows.

R5,3

R3,5
=

q5
q3

> 1 (3.5)

Thus it reveals the first way of redundancy configuration produces the higher reliability. This

example is very simple but it implies that we could add redundancy more efficiently according to

the concept of block significance. Although it is straightforward, this example demonstrates that in

cascade circuits, the importance of block is monotone decreasing from inputs to outputs.
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In a more general way, we will consider that a reliability change of a single block bi brings in its

new reliability q⇤i , the circuit’s reliability becomes R⇤
i . Since different blocks bi and bj make different

contributions to the circuit’s reliability, changes of different blocks may produce different values R⇤
i

and R⇤
j .

We propose to design a fault tolerant system in the following progressive steps.

1. Grading constituent sub-blocks of a combinational circuit based on a criterion. (For instance,

sensitivity to faults is a kind of criterion)

2. Implementing the fault tolerant techniques progressively on these ranked blocks. (For instance,

modular redundancy is a kind of fault tolerant techinque)

The next section presents sensitivity and eligibility concepts, they help to identify what are the

more important blocks in different digital IPs.

3.2.2 Sensitivity and eligibility concept

The concept of sensitivity has been studied in mixed signal applications from a layout point of

view [78,79]. For example, drain and source of a MOS transistor are considered as sensitive parts of a

circuit node [78]. Previous works have also demonstrated fault sensitivity estimation in fault-tolerant

design has a great effect to power consumption [79]. However, very little has been done to analyze

the importance of the constituent blocks of digital IPs at logic level. Therefore, we try to explore

concepts and methods to classify constituent blocks with respect to reliability.

Consider a circuit C with reliability R and being constituted of K independent blocks bi. Let

B = {b1, b2, · · · , bK} be the set of all K blocks in C and Q = {q1, q2, · · · , qK} is the set of their

respective reliabilities (i.e, qi is the reliability of bi). We define the sensitivity of C’s reliability with

respect to bi’s reliability as a metric giving the impact on R by changing qi. This is expressed as (3.6)

that stands for partial derivative of function R with respect to variable qi.

s(bi) =

∣

∣

∣

∣

@R

@qi

∣

∣

∣

∣

(3.6)

We denote Θ = {✓1, ✓2, · · · , ✓K} as the set of blocks ordered according to sensitivity values in

such a way that ✓1 (resp. ✓K) stands for the block whose sensitivity is maximal (resp. minimal).

We define the eligibility of a block bi, noted e(bi), as the metric expressing how reliability im-

provement of this block is meaningful. Let us denote ∆i = |R⇤
i − R| as the reliability change

resulting from qi improvement. The eligibilities of two blocks bi, bj are then defined such that they

satisfy R⇤
i > R⇤

j ) e(bi) > e(bj). We denote Λ = {λ1, λ2, · · · , λK} the set of blocks ordered

according to eligibility values, where λ1 (resp. λK) represents the block has the highest (resp. the

least) priority for reliability improvement. For a circuit such as C, e(bi) are integers in [1,K], where

1 and K represent the less and the most eligible blocks, respectively.
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Note that eligibility values depend on the techniques adopted to improve the reliability of the

blocks. Consequently, the ordering of blocks according to their eligibilities is not necessarily the one

given by the set Θ.

Consequently, the sensitivity and eligibility concepts propose an implication which reflects rela-

tions between reliability improvement and block grading based on their weights, and reveals oppor-

tunities for adding redundancy more efficiently.

Sensitivity and eligibility are two concepts closely related, but addressing different analysis objec-

tives. Sensitivity is useful to determine which blocks are critical in C, that is blocks whose reliability

degradation would lead to significant degradation of C’s reliability. Eligibility determines the order in

which blocks should have their reliability improved to obtain the best gain in C’s reliability.

3.2.3 Block grading according to design requirement

Let a circuit be constituted of a certain number K of blocks b1, b2, ..., bK . Denote the reliability

of each block bi by qi. The reliability R of such a circuit has a close relation with the reliabilities of

its constituent blocks. We can rank these blocks according to the design objective.

For example, if we focus on reliability improvement, we can improve the reliability of a single

block bi as in (3.7), the circuit’s reliability will be improved as in (3.8).

q+i = qi +∆qi (3.7)

R+
i = R+∆Ri (3.8)

The value ∆qi stands for the individual reliability improvement of block bi. Similarly, the value

∆Ri expresses the global reliability increase due to reliability improvement of block bi. Indeed, ∆qi

depends on the technique (noted ti) used for reliability improvement of bi while ∆Ri scales with the

weight (noted wi) of ∆qi in the new global reliability calculation.

∆qi = f1(qi, ti) (3.9)

∆Ri = f2(qi, wi, ti) (3.10)

The object of reliability improvement is to obtain a best gain of the overall reliability by harden

its constituent blocks. This global reliability increase is given by (3.11), where K is the number of

blocks in the circuit.

∆R = R+ −R = f3(∆Ri,i=1,··· ,K) (3.11)
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This implication reflects relations between reliability improvement and block grading based on

their weights, and reveals opportunities for adding redundancy more efficiently. The greater wi is, the

greater the ∆Ri will be. In the proposed method, the wi values are integers in the range [1,K], and

they can be obtained from the set Θ decided by eligibility concept.

By the way, improving reliability of a block may result from actions at different levels of ab-

straction such as technological or architectural. If the variation of reliability is due to a change in

technology, the independence among the blocks is not necessarily.

However, if reliability change of a given block is obtained by changing the logic configuration

structure of this block, this will not bring in any changes in the reliabilities of the other blocks. In

other words, we can assume that the reliabilities of the blocks are independent of each other.

In this thesis, we consider only logic changes for reliability improvement. Therefore, improving

the reliability of the blocks in the circuit could be expresses as below.

R+ = R+
K
X

i=1

∆Ri (3.12)

∆R =

K
X

i=1

∆Ri (3.13)

As stated in the last chapter, reliability improvement at logic level is carried out by adding re-

dundancy and therefore the cost penalty is inevitable. Depending on different techniques taken into

account, overhead can be expressed in terms of area (A), power consumption (P ) or time delay (T ):

∆C = f4(A,P, T ) (3.14)

According to the target application and the design constraints, the expression (3.14) must be de-

fined in an appropriate manner to each target application. This means giving more or less importance

to A, P or T , according to the constraints of the project.

3.3 Block Grading

In the following sections, we consider a circuit C with reliability R and being constituted of

K independent blocks bi. Let B = {b1, b2, · · · , bK} be the set of all K blocks in C and Q =

{q1, q2, · · · , qK} is the set of their respective reliabilities (i.e, qi is the reliability of bi).

3.3.1 Block grading in cascade structures

Since cascade structures are widely used in digital systems, we first consider blocks bi 2 B as

defined before. Assume that these blocks are assembled in a cascade structure such that the input of
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block bi is given by the output of block bi−1 (see Figure 3.2).

 b1  b2 bk-1 bk

y1
y2

yk-1 ykx yk-2

Figure 3.2: A kind of cascade structure.

In order to determine sensitivity and eligibility values, let us define

– Θi = {✓1, ✓2, · · · , ✓i}, the set of the first i elements in Θ set.

– Qi = {q(✓1), q(✓2), · · · , q(✓i)} the set of the reliabilities of blocks in Θi set.

– Case 1: y = yK and R =
QK

j=1 qj

It can be derived from the sensitivity definition that s(bi) > s(bj) , qi < qj , where we can see

the smaller qi is, the higher C’s sensitivity with respect to bi will be. The ordered set Θ is obtained

according to (3.15), where Θ0 = Q0 = {∅} and B − Θi−1 (resp. Q − Qi−1) stands for the set of

elements in B (resp. Q) not belonging to Θi−1 (resp. Qi−1). Observe that the sensitivity is inversely

proportional to the reliability of the block. Furthermore, when all blocks have the same reliability,

sensitivity doesn’t allow ordering with respect to sensitivity. Ordering of eligibilities is as (3.16).

✓i = bj 2 B −Θi−1|qj
= min{Q−Qi−1} (3.15)

R⇤
i > R⇤

j , s(bi)q
⇤
i > s(bj)q

⇤
j

, q⇤i
qi

>
q⇤j
qj

(3.16)

– Case 2: y = yKyK−1 · · · y2y1 and R =
QK

i=1

Qi
j=1 qj

We can see that the contribution of the individual reliability qi to the global reliability R depends

on the position of the block bi in the structure. The sensitivity s(bi) also depends on the block’s

position i as follows:

∣

∣

∣

∣

@R

@qi

∣

∣

∣

∣

= (K − i+ 1)qK−i
i

K
Y

i=1

i
Y

j=1,j 6=i

qj

=
K − i+ 1

qi
R (3.17)
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s(bi) > s(bj) ,
K − i+ 1

K − j + 1
>

qi
qj

(3.18)

The ordered set Θ can be obtained from (3.18). Unlike Case 1, the positions of the elements

in Θ are no longer arbitrary when they have the same reliability value. In fact, they must satisfy

✓i = bK−i+1. Ordering of eligibilities is as (3.19).

R⇤
i > R⇤

j , (q⇤i )
K−i+1

(qi)K−i+1
>

(q⇤j )
K−j+1

(qj)K−j+1
(3.19)

In order to illustrate the presented concepts, consider the circuit of Figure 3.2 where K = 8. We

assume the technique used for reliability improvement is TMR with majority voting mechanism. The

most eligible blocks are then tripled and voters are placed at the outputs to identify the correct value

(Figure 3.3).

block

block  
replica

V
O
T
E
R

block  
replica

input output

Figure 3.3: TMR Principle.

Implementing TMR with majority voter technique on a block with reliability qi makes the relia-

bility become q⇤i given by (3.20), where q⇤i > qi if qi > 0.5.

q⇤i = 3q2i − 2q3i (3.20)

As explained before, for C with y = y8 and qi = q, 8i, sensitivity and eligibility don’t allow to

define the sets Θ and Λ for cascade structures. In other words, all blocks could be treated equally.

For C with y = y8 and different values of qi, the ordered set Θ is directly obtained from the first

case and eligibility for each block comes from:

R⇤
i > R⇤

j , 3q2i − 2q3i
qi

>
3q2j − 2q3j

qj

, 3qi − 2q2i > 3qj − 2q2j (3.21)

This is equivalent to analyze the monotonicity of the function f(q) = 3q − 2q2. This function

f(q) has two monotone parts: it increases when q < 0.75 and decreases when q > 0.75. Then, the
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ordered set Λ is easily obtained according to it. Table 3.1 gives the results for two sets of reliabilities

Q.

Table 3.1: Results for C with y = y8 and different values of qi.
i 1 2 3 4 5 6 7 8

qi 2 Q 0.8 0.99 0.94 0.85 0.83 0.87 0.96 0.98

✓i 2 Θ b1 b5 b4 b6 b3 b7 b8 b2
λi 2 Λ b1 b5 b4 b6 b3 b7 b8 b2

(a)

i 1 2 3 4 5 6 7 8

qi 2 Q 0.68 0.7 0.74 0.85 0.83 0.87 0.96 0.98

✓i 2 Θ b1 b2 b3 b4 b5 b6 b7 b8
λi 2 Λ b3 b2 b1 b4 b5 b6 b7 b8

(b)

In this case of C with y = y8y7 · · · y2y1 and qi = q, 8i, expression (3.19) becomes expression

(3.22). Given monotonicity properties of the function f(q) = 3q − 2q2, there are two solutions for

Λ set, depending on whether the value q is greater or less than 0.75, as shown in Table 3.2. When

q = 0.75, all blocks are equally eligible.

R⇤
i > R⇤

j , (3q − 2q2)i > (3q − 2q2)j (3.22)

Table 3.2: Results for C with y = y8y7 · · · y2y1 and qi = q, 8i.
i 1 2 3 4 5 6 7 8

qi 2 Q q q q q q q q q

✓i 2 Θ b1 b2 b3 b4 b5 b6 b7 b8
λi 2 Λ b1 b2 b3 b4 b5 b6 b7 b8

(a)q < 0.75

i 1 2 3 4 5 6 7 8

qi 2 Q q q q q q q q q

✓i 2 Θ b1 b2 b3 b4 b5 b6 b7 b8
λi 2 Λ b8 b7 b6 b5 b4 b3 b2 b1

(b)q > 0.75

For C with y = y8y7 · · · y2y1 and different values of qi, ordering of the blocks according to

sensitivities and eligibilities comes from expressions (3.18) and (3.19). In this case, both position

i and individual reliability qi must be taken into account. Table 3.3 summarizes the results for two
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examples of Q sets.

Table 3.3: Results for C with y = y8y7 · · · y2y1 and different values of qi.
i 1 2 3 4 5 6 7 8

qi 2 Q 0.8 0.99 0.94 0.85 0.83 0.87 0.96 0.98

✓i 2 Θ b1 b2 b3 b4 b5 b6 b7 b8
λi 2 Λ b1 b4 b5 b6 b3 b7 b2 b8

(a)

i 1 2 3 4 5 6 7 8

qi 2 Q 0.68 0.7 0.74 0.85 0.83 0.87 0.96 0.98

✓i 2 Θ b1 b2 b3 b4 b5 b6 b7 b8
λi 2 Λ b3 b2 b1 b4 b5 b6 b7 b8

(b)

3.3.2 Block grading in general cases

In more general cases, the reliability of the circuit can not be expressed by closed-form equations

as in the previous section. Therefore, sensitivity and eligibility analysis are realized by simulations.

3.3.2.1 Experimental metric for sensitivity classification

In order to get the set Θ which characterizes the sensitivity of the blocks, a fault simulation

platform is used to inject faults due to Single Event Upsets (SEUs) [13, 80]. Figure 3.4 shows the

process of fault injection and analyzing. The circuit is faulted by inserting a single fault to different

internal nodes. The results produced by the original and the faulty circuits are compared. If these

results are different, it is concluded that the effects of the fault injected have been propagated to the

outputs. On the contrary, it is concluded that the fault has been masked (there is a "mask").

Original Circuit

Fault 
Generation

Faulty Circuit

 Number 
of errors

XOR

•

Figure 3.4: Fault injection and masks analysis.

Table 3.4 lists types of faults could be injected. In this table, V (t) is the original value and F (t)



60 3. RELIABILITY ENHANCEMENT BASED ON SIGNIFICANCE

stands for the value of injected value. t1 and t2 are the beginning and end time of fault injection

respectively. When the fault is permanent, we can realize it by setting t2 as the end of simulation. In

this thesis, the fault type we inject is bit-flip, which is also known as von Neumann error [9, 15, 56].

Table 3.4: Fault Models
Fault type Fault value (t1 < t < t2)

Stuck − at− 0 F (t) = 0

Stuck − at− 1 F (t) = 1

Bit− flip F (t) = (V (t1))

Toggling − bit− flip F (t) = (V (t))

Indetermination F (t) = random(t)

We still consider a circuit C being constituted of K independent blocks bi. Each bi contributes to

a number of masks, noted as mi, and the total number of masks m is the sum of mi, m =
PK

i=1mi.

Each mi is obtained by calculating the number of masks after fault injection based on the hy-

pothesis that only the corresponding block bi is faulty. In other words, all the other blocks bj

(1  j  K, j 6= i) are fault-free. In this way, each mi is directly related to the sensitivity of

block bi. The block corresponding to the minimum number of masks is defined as the most sensitive

block, i.e,

s(bi) > s(bj) , mi < mj (3.23)

An illustrated example is the implementation of the ISCAS 85’ benchmark C17 [77] as shown

in Figure 3.5. In this case, each NAND gate is considered as a block. There are 32 possible input

logic combinations and two considered configurations for each block (fault-free and fault-prone).

Among the consequent 192 faulty configurations, the results of mi are given in Table 3.5. Notice that

m5 = m6 = 0, which means that these two blocks can not mask any faults. Indeed, their outputs are

also primary outputs of the circuit and we consider only single fault.

NAND1

NAND2

NAND3

NAND4

NAND5

NAND6

•

•

•

x0

x2

x1

x3

x4

y0

y1

Figure 3.5: An illustrated example: Circuit C17.
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Table 3.5: Results of sensitivity rank of C17.

b(i) mi

NAND1 12
NAND2 8
NAND3 2
NAND4 12
NAND5 0
NAND6 0

3.3.2.2 Experimental metric for eligibility classification

In another aspect, the values λi which illustrate the eligibility of the constituent blocks can be

obtained by comparing the results of ∆i = |R⇤
i −R| for each block bi considering the same technique,

as illustrated before. The highest ∆i value indicates that the block bi has the highest eligibility, that

is, ei = K.

We still use circuit C17 from ISCAS85’ benchmark for illustration. Each NAND gate is sup-

posed to have qi = q = 0.99 (99%). After TMR implementation on each NAND gate, reliability

improvement results are those shown in Table 3.6, thus e(i) is also decided here.

Table 3.6: Results of eligibility rank of C17.

b(i) R+

i e(i)

NAND1 95.765% 2
NAND2 95.882% 3
NAND3 96.056% 4
NAND4 95.763% 1
NAND5 96.117% 6
NAND6 96.114% 5

Notice here that eligibility gives the similar order of the blocks as sensitivity since all blocks have

the same reliability qi. However, if each block bi has a different reliability value qi, eligibility analysis

could produce a different rank of blocks. This is due to the fact that reliability growth of each block

is not a linear process by utilizing reliability improvement techniques such as TMR. Indeed, in this

case, it is related with the original reliability of each block, as shown in Figure 3.6.

3.3.2.3 Implementation on 74283 fast adder

To further explain the proposed concepts, we consider a more complicated circuit 74283 fast

adder. It is constituted of 40 independent gates gi (i 2 [0, 39]) as labeled in the gate-level schematic

(see Figure 3.7). Similar to the example in Section 3.3.2.1, there are 29 possible input logic values and
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Figure 3.6: Nonlinear Reliability Growth based on TMR Techinque.

two considered configurations for each block (fault-free and faulty). Among the consequent 29 ⇥ 40

faulty configurations, the results of mi are given in Table 3.7.

Table 3.7: Results for sensitivity factor of 74283 benchmark circuit.
qi 0 1 2 3 4 5 6 7

mi 128 0 128 0 128 0 128 0

qi 8 9 10 11 12 13 14 15

mi 0 192 224 240 248 240 0 128

qi 16 17 18 19 20 21 22 23

mi 192 224 240 224 0 128 192 224

qi 24 25 26 27 28 29 30 31

mi 192 0 128 192 128 0 128 0

qi 32 33 34 35 36 37 38 39

mi 0 0 0 0 0 0 0 0

According to the number of masks in Table 3.7, blocks are ordered by their sensitivity factors. If

number of masks equals, blocks that are nearer the primary outputs are considered as more sensitive

ones. If the numbers of masks and the distance to the primary outputs are both identical, the block

which has more re-convergent fan-outs is considered more sensitive. If these three parameters are the

same, they will be considered to have the same sensitive factor.

On the other hand, to classify the blocks according to the eligibility is obvious. It is based on

TMR implementation on each gate. Afterwards, ei is decided by each reliability improvement value

∆i = |R⇤
i −R|.

Under the digital application circumstances, sometimes we have to take into consideration the

real usage of the results of an output of a digital circuit. Output bits that are considered crucial to a
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Figure 3.7: 74283 gate-level schematic.
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system have higher priorities to be protected, reducing the occurrence of critical errors. This implies

a weighted way for grading constituent blocks. The next chapter will present how to grade blocks and

configure redundancy (like TMR) by considering the bit significance in order to avoid critical errors

in digital IPs.

3.4 Practical Applications of Block Significance

3.4.1 Using Sensitivity for Monitoring

Monitoring mechanisms allow to detect the imminence of a possible failure and then to take

appropriate measures to prevent the occurrence of failure. The ability of preventing failures is an

essential requirement in circuits used for critical applications as avionics, nuclear, etc. Monitoring

the reliability of the blocks in a circuit provides useful information for monitoring the reliability of

the circuit and, in consequence, to prevent failures.

Monitoring mechanisms include many aspects such as instrumentation, data collection, data eval-

uation, data management, and a response plan.

From a design standpoint, the implementation of these mechanisms usually results in increased

cost (additional resources for the observability) or decreased performance (implementation of obser-

vation itself). Hence, even if it would be interesting to monitor the reliability of all blocks composing

a given circuit, it is often necessary to limit the amount of monitored blocks in the circuit.

The proposed concept of sensitivity can be used to guide the designer in the choice of blocks to

be monitored, as shown in the workflow of Figure 3.8.

For example, according to Table 3.1.b, the order in which the blocks should be monitored is given

by the set:

Θ = {b1, b5, b4, b6, b3, b7, b8, b2}

If only one block should be monitored, the mechanisms of monitoring should be applied to the

most sensitive block. Indeed, this is the block whose reliability is the most significant in the sense

that a small modification of its reliability will cause a significant change in the reliability of C. Based

on Θ set and target application constraints, the designer is able to define trade-offs.

3.4.2 Using Eligibility for Reliability Improvement

In general, the problem of improving reliability is reflected in search of a minimum level of

reliability required by the target application.

Reliability improvement can be achieved by acting at different abstraction levels and granulari-

ties. Addition of spatial or temporal redundancy inherent in the process of increasing reliability at
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logic level generates extra costs of which minimization is important. In other words, the designer’s

challenge is how to achieve the reliability goal while adding as less overhead as possible.

The proposed concept of eligibility helps the designer to explore the space of solutions for re-

liability improvement. Indeed, this space is potentially very broad and in some cases it would be

unrealistic to explore it exhaustively. The workflow of Figure 3.8 shows how reliability significance

analysis can be used to reliability improvement.

The Λ set provides the classification of blocks according to eligibility. More eligible blocks should

then be considered to have priorities to implement reliability enhancement techniques such as adding

redundancy (TMR).

As in the previous section, assume the results in Table 3.1.b which produces Λ set below.

Λ = {b1, b4, b5, b6, b3, b7, b2, b8}

We can see that reliability improvement should begin by reliability improvement of block b1. If

the resulting reliability (R⇤
1) is inferior to those required (Rreq), the reliability improvement procedure

should be iterated by involving more and more blocks (firstly, b4, then b5, and so on). The last block

to be taken into account should be b8.

Sensitivity / Eligibility 

Analysis

Circuit 

Description

C Q

Reliability 

Parameters

Design

Constraints

New C

and associated monitoring plan

or with increased reliability 

Selected Blocks

Monitoring  /

Redundancy Adding

Θ

Θ
sel

Λ

Λ
sel

or

or

Figure 3.8: Workflow of reliability significance concept applied to monitoring and reliability im-
provement

In the next chapter, we are going to propose the Progressive Modular Redundancy (PMR) method

which makes use of the block grading concept.
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Chapter 4

Progressive Approach for Modular

Redundancy

4.1 Introduction

Full hardware redundancy implies huge area overheads. Take the TMR technique for example, it

results in 3X overhead in area. Motivated by the need of economical designs, designers are constantly

looking for ways and methods to alleviate the area overhead while keep the reliability improvement

at an accepted level. What we are pursuing is to maximize the reliability by introducing as less

modular redundancy as possible. Prior works like [65, 81] proposed methods to establish possible

candidate redundant structures by TMR under a given design parameter (like reliability requirement

and cost constraint). It has to traverse all possible TMR architectures under a given cost constraint

and then choose the architectures that meet the reliability requirements. And the aforementioned

Selective TMR in [63, 64] defines the sensitive logic gates under given criteria and equip them with

TMR to realize partition protection. It is realized by utilizing characteristics of logic gates but it

missed the combinational logic masking ability. Automatic TMR [68] considers this problem as a

graph partitioning problem. It divides the original circuit into two parts, one with TMR and the

other without. And then the partition adjusts according to some criteria until it converges. However,

the convergence is time-consuming and unforeseeable. The Selective Fault Tolerance in [69] which

protects special input signals is efficient but it needs to select the inputs to be protected. Furthermore,

Functional redundant wires proposed in [4] solves the problem very economically by digging out

logic implications in digital IPs. However, it needs to analyze all logic implications which is a tough

journey and it highly depends on how frequently the logic implications happen.

Based on the block grading concept addressed in the last chapter, the Progressive Module Re-

dundancy (PMR) method is proposed and evaluated in this chapter. Fault-tolerant architectures and

design workflow based on proposed methodology are then addressed in details. Considering the reli-
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ability improvement techniques, this method is not constrained on TMR but extends to QMR (5MR).

Experiment results based on a series of circuits demonstrate its advantages in efficiency, reliability

and cost. The proposed method points out a new direction of economical redundant fault-tolerant

designs. Comparison with the state of the art, advantages and limitations are discussed in the end.

4.2 Progressive modular redundancy approach

The proposed method tries to find a balance between the reliability improvement ∆R and the

overhead ∆C generated by this reliability improvement. The analysis of this problem depends on the

improvement objective:

– determine the architecture that can satisfy a constraint of reliability, while minimizing the over-

head. It means minimizing of ∆C, while respecting R ≥ Rmin.

– determine the best gain in reliability due to a maximum-tolerant additional cost. It means

maximizing of ∆R, while respecting ∆C  ∆Cmax.

Whatever the considered cases above, we propose to solve this problem step by step, that is in a

progressive way. The basic idea is to act progressively on the blocks:

– starting with improving the reliability of a single block, then two blocks, and so on until cover

all the blocks.

– starting with improving the reliability of the blocks with inexpensive technique, then gradually

move to techniques increasingly expensive (and so increasingly efficient).

The order of which improvement techniques will be adopted comes from equation (3.14). This

could be relatively easy to determine, especially if only one parameter (A:area) is considered due to

independence property of area cost. On the other hand, determine the order for executing in blocks is

possible with their weights.

For easy illustration of the proposed method, we still consider a circuit C with K blocks (b1, b2, ...

, bK). Assume the design criteria is to reach a required reliability Rreq, while respecting the overhead

should be ∆C  ∆Cmax. The workflow corresponding to the proposed method is described in

Figure 4.1.

Description defines how the blocks bi are connected together to form the circuit. This can be a

structural HDL description of C. Library provides useful parameters of each block bi 2 C like area

Ai, power consumption Pi, delay Ti and reliability qi. Main procedures are explained below.

– RA(C) refers to reliability analysis of the original circuit C. It is done to check whether C
already meets the constraints. If R(C) ≥ Rreq, the original C is selected.

– BG grades the blocks according to their different weights. All the constituent blocks are

then donated with the parameter (weight) wi 2 [1,K] to decide their priorities when adding

redundancy.

– PI stands for reliability improvement with progressive modular redundancy. Improvements
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Figure 4.1: Workflow for the proposed method.

are implemented in an iterative way as shown in Table 4.1 and Table 4.2.

– NA are new versions of C related to use of progressive TMR (CPTMR) or progressive MMR

(CPMMR).

– RA(C+) refers to reliability analysis of the new architectures that have passed cost constraint

checking.

– EH functions when both of the new architectures CPTMR and CPMMR exceed the area cost

limit. It either relaxes ∆Cmax or selects the architecture of the last iteration.

4.2.1 Progressive triple module redundancy: PTMR

Now we present the method for the procedure PI in Figure 4.1. We first consider representative

technique TMR in a progressive manner. The idea is to add redundancy first on the blocks that have

higher weights (because they conduce to higher reliability improvements) and then (if necessary) on

the blocks with lower weights.
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The values wi which are required for the proposed method can be obtained by comparing the

results of equation (3.8) for each block bi under the same technique. Notice that sometimes wi come

directly from circuit’s topology, as illustrated in Section 3.2.1.

According to the proposed method, only the block with the highest wi benefits from redundancy

adding in the first step. If the obtained reliability improvement is considered insufficient compared

with the requirements, a second block is considered for redundancy adding (this is the block with

the second highest wi value). The procedure is carried on until the reliability requirement is satisfied

or maximum redundancy is used. Table 4.1 shows how new architectures are produced under this

progressive method. The circuit is supposed to have K blocks. Redundancy adding is performed with

triple modular redundancy (TMR or 3MR), so it brings in the progressive TMR (PTMR) approach. In

this table, the blocks are ordered according to their weights (wi) and m denotes the execution steps

of the method. The values in the cells represent degrees of redundancy (1= no redundancy, 3 = triple

modular redundancy). The circuit architecture corresponding to step m is obtained by using TMR

on the m blocks for which wi 2 [K −m+ 1,K].

Table 4.1: Algorithm execution for PTMR.

wi

m K K − 1 K − 2 · · · K −m · · · 2 1

0 1 1 1 1 1 1 1 1
1 3 1 1 1 1 1 1 1
2 3 3 1 1 1 1 1 1
3 3 3 3 1 1 1 1 1
4 3 3 3 3 1 1 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
K 3 3 3 3 3 3 3 3

4.2.2 Progressive mixed module redundancy: PMMR

We have also explored the use of combined triple and quintuple modular redundancy with progres-

sive redundancy adding. This involves the progressive mixed modular redundancy (PMMR) which

is an extension of PTMR. Execution of PMMR method is illustrated in Table 4.2 for K = 8 where

two new architectures are generated iteratively for comparison. This time, there are three redundancy

degrees taken into account (1= no redundancy, 3 = triple modular redundancy, 5 = quintuple modular

redundancy).

Considering the ordered set of blocks, the first one has weight K and the last one has weight 1.

In addition to architecture based on PTMR, PMMR approach produces a new architecture as follows.

When m is odd, this comes from QMR on the first p blocks (p = bm2 c) and TMR on the next r

blocks (r = m− p). When m is even, it results in only QMR on the first p blocks.



71



 InputsOutputs

bk-1

bk

b3

b4

b1

b2

•








•

(a) Without redundancy.

bk

bk

bk

V
O
T
E
R





InputsOutputs

bk-1
b3

b1

b2

•



•

•

•

b4

•

(b) A single TMR.

bk

bk

bk

V
O
T
E
R




Inputs

Outputs

bk-1
b3

b1

b2

•



•

•

•

b4

b4

b4

V
O
T
E
R

•

•

•

(c) Two TMR.





InputsOutputs

bk-1
b3

b1

b3

•



bk

bk

bk

V
O
T
E
R bk

bk

•

•

•

•

b4

•

(d) Single QMR.

Figure 4.2: Different redundancy architectures of generalized circuits
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Table 4.2: Algorithm execution for PMMR where K = 8.

wi

m 8 7 6 5 4 3 2 1

0 1 1 1 1 1 1 1 1
1 3 1 1 1 1 1 1 1
2 3 3 1 1 1 1 1 1

5 1 1 1 1 1 1 1
3 3 3 3 1 1 1 1 1

5 3 1 1 1 1 1 1
4 3 3 3 3 1 1 1 1

5 5 1 1 1 1 1 1
5 3 3 3 3 3 1 1 1

5 5 3 1 1 1 1 1
6 3 3 3 3 3 3 1 1

5 5 5 1 1 1 1 1
7 3 3 3 3 3 3 3 1

5 5 5 3 1 1 1 1
8 3 3 3 3 3 3 3 3

5 5 5 5 1 1 1 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
16 5 5 5 5 5 5 5 5

Figure 4.2 shows some of the candidate redundancy structures based on the proposed method. In

this figure, we suppose bm is the block with the highest weight and b4 is the second one. Figure 4.2(a),

Figure 4.2(b), Figure 4.2(c) and Figure 4.2(d) correspond to the strategies Non Redundancy, Single

TMR, Two TMR and Single QMR, respectively.

4.3 Validation of progressive redundancy adding: PTMR and PMMR

According to specified design requirements, we can rank the constituent blocks based on the

proposed sensibility or eligibility concepts. With these ranked blocks, we could go further into the

progressive approach in reliability improvement.

Here we present two implementations of the proposed progressive redundancy adding method.

They have been chosen for their simplicity but the method can be applied to any circuit. Also, for

easier illustration and due to the independence property, we consider only one parameter for cost

analysis, the area A. Recall the workflow (see Figure 4.1), reliability analysis RA(C) or RA(C+)

are implemented with the SPRMP algorithm described in [46].
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4.3.1 PTMR implementation

The PTMR approach has been applied on circuit C17 (Figure 3.5) from ISCAS’85 benchmark [77].

Each NAND gate is supposed to have reliability value qi = q = 0.99 (99%) and the area cost SNAND.

Requirements of the project are as follows: minimum required reliability is Rreq = 0.97 (97%) and

maximum redundancy area overhead is set as 4⇥ SNAND.

After TMR implementation on each NAND gate, block grading results are those shown in Table

3.6. As one can see in Table 4.3 for m = 0, RA(C) = 95.2%  Rreq. In the same way, implemen-

tation of TMR only on the block NAND5 (w5 = 6) is still insufficient. Finally, for m = 2 and TMR

on NAND5 and NAND6, RA(C+) = 97.047% which satisfies the design requirements.

Although the total number of candidate architectures under the same area cost is C2
6 = 15, we

find a shortcut to reach the best one.

Table 4.3: Results of PTMR approach on C17.

Steps (m) Architecture Reliability Area Cost

0 1-1-1-1-1-1 95.20% 6SNAND

1 3-1-1-1-1-1 96.12% 8SNAND + SV

2 3-3-1-1-1-1 97.05% 10SNAND + 2SV

4.3.2 PMMR implementation

We implemented the PMMR approach on the 8-bit ripple carry adder (RCA-8) shown in Figure

4.3. The basic blocks (FA) are supposed to have reliability value qi = q = 0.999 (99.9%) and the area

cost SFA. Requirements of the project are as follows: minimum required reliability is Rreq = 0.955

(95.5%) and maximum area overhead is set as 4⇥ SFA. The results are presented in Table 4.4.

FA1
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s0

c1

FA2

a1 b1

s1

c2

FA3

a2 b2

s2

c3

......FA8

a7 b7

s7

cout c7

Figure 4.3: A 8-bits carry ripple adder.

Before executing the algorithm of PMMR, we discuss about the reliability evaluation in a ripple

carry adder as shown in Figure 4.3. Equation 4.1 shows the probabilistic transfer matrix (PTM) of a

full adder model (see Figure 4.4), where p is the failure rate and p = 1 − q. Equation 4.2 shows the



74 4. PROGRESSIVE APPROACH FOR MODULAR REDUNDANCY

input probabilities of a given FA with inputs a, b and c in each stage, as shown in Figure 4.4.

FA

b

sum

a

carry c

Figure 4.4: A full adder block model.
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⌦
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⌦
"

c0 c1

c2 c3

#

(4.2)

In each stage, output probabilities of sum and carry could be computed as follows. By using the

block matrix multiplication, Input probabilities must be multiplied by the PTM of full adder, and then

we have the matrix as shown in Figure 4.5.

2

6

6

6

6

6

6

6

6

6

6

4

a0b0c0(1− p) + a0b0c1p/3 a0b0c0p/3 + a0b0c1(1− p) a0b0c0p/3 + a0b0c1p/3 a0b0c0p/3 + a0b0c1p/3
a0b0c2(1− p) + a0b0c3p/3 a0b0c2(1− p) + a0b0c3p/3 a0b0c2p/3) + a0b0c3p/3 a0b0c2p/3 + a0b0c3p/3
a0b3c0p/3 + a0b3c1(1− p) a0b3c0(1− p) + a0b3c1p/3 a0b3c0p/3 + a0b3c1(1− p) a0b3c0p/3 + a0b3c1p/3
a0b3c2p/3 + a0b3c3p/3 a0b3c2(1− p) + a0b3c3p/3 a0b3c2(1− p) + a0b3c3p/3 a0b3c2p/3 + a0b3c2p/3
a3b0c0p/3 + a3b0c1p/3 a3b0c0(1− p) + a3b0c1p/3 a3b0c0p/3 + a3b0c1(1− p) a3b0c0p/3 + a3b0c1p/3
a3b0c2p/3 + a3b0c3p/3 a3b0c2(1− p) + a3b0c3p/3 a3b0c2(1− p) + a3b0c3p/3 a3b0c2p/3 + a3b0c3p/3
a3b3c0p/3 + a3b3c1p/3 a3b3c0p/3 + a3b3c1p/3 a3b3c0(1− p) + a3b3c1p/3 a3b3c0p/3 + a3b3c1(1− p)
a3b3c2p/3 + a3b3c3p/3 a3b3c2p/3 + a3b3c3p/3 a3b3c2(1− p) + a3b3c3p/3 a3b3c2p/3 + a3b3c3(1− p)

3

7

7

7

7

7

7

7

7

7

7

5

Figure 4.5: Inputs multiply by PTM of a full adder.

According to Figure (4.5), in each stage, we can yield the probabilities of sum and carry as below:
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p(sum) = p(carry) = [(c0 + c3)(a0b0 + a3b3) + (c0 + c2)(a0b3 + a3b0)](1− p) (4.3)

+[(c1 + c2)(a0b0 + a3b3) + (c1 + c3)(a0b3 + a3b0)]p/3

The purpose of presenting the reliability evaluation of the adder is to remind that, it is a cascade

structure but it is not exactly the same as the examples we discussed in Chapter 3. It should be

noted that here, not all outputs of the previous stage are considered as inputs of the following stage.

This results in the reliability evaluation a bit more complicated. By the way, based on the PTM

method stated above, a probabilistic analysis of a multi-bit ripple carry adder which is implemented on

quantum-dot cellular automata nanotechnology is presented in [82] where a second degree polynomial

approximation of the RCA reliability is extracted based on PTM.

Now let us see how the workflow works on this ripple carry adder. In the first stage (i.e. FA1),

a, b and c are all fault-free. Afterwards, starts from the second stage, one of the input c becomes

fault-prone but we assume inputs a and b are always fault-free. If we implement NMR in some of

the full adder models (FAi where i 2 [1, 8]), the p changes according to the block reliability qi. For

example, in iteration 2 of algorithm PMMR as shown in Figure 4.6, there will be two architectures

generated there. If we put TMR in FA1 and FA2, then q3 = 3q2 − 2q3 and thus p = 1− q3 in PTMs

of FA1 and FA2 when we calculate the probability of the corresponding signals. If we put 5MR in

FA1, then q5 = 6q5 − 15q4 + 10q3, so brings p = 1− q5 in the PTM of FA1.

Because RCA-8 is a cascade structure and all blocks have the same reliability, there is no need to

analyze equation (3.8). In fact, block weights are given as w(FAi) = 8− i + 1 since it is a cascade

circuit structure.

For m = 0, RA(C) = 94.06%  Rreq. Redundancy adding is performed according to Table 4.2.

The first iteration generates one architecture with triple modular redundancy at FA1. The reliability

of this new architecture is R = 94.85%  Rreq. The second iteration generates one architecture

with triple modular redundancy at two blocks (FA1, FA2), and another architecture with quintuple

modular redundancy at block FA1. Both architectures satisfy reliability requirements, so we select

the architecture which results in less area cost (S = 12 ⇤ SFA + SV ). Notice that mixed modular

redundancy is a better solution than triple modular redundancy in this case. MMR brings into higher

reliability and less area cost. Therefore, if Rreq is set higher, for example, 96%, we don’t need further

iterations, either. By the way, further steps or procedure EH may be required if Rreq is set higher or

∆Cmax is set smaller.

4.3.3 Remarks

A decision element is needed in NMR circuits. A design of a fault-tolerant majority voter has been

proposed in [83]. Although it is favorable for applications based on transistors, it should be noted that
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Figure 4.6: Iterations of PMMR implemented on RCA8.

Table 4.4: Results of PMMR approach on RCA-8.

Steps (m) Architecture(s) Reliability Area Cost

0 1-1-1-1-1-1-1-1 94.06% 8SFA

1 3-1-1-1-1-1-1-1 94.85% 10SFA + SV

2 3-3-1-1-1-1-1-1 95.64% 12SFA + 2SV

5-1-1-1-1-1-1-1 97.14% 12SFA + SV
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the performance gain by the NMR is possible to be degraded by the complexity of the majority voter

circuit, especially at the high degree of redundancy factor [84]. To avoid this degradation, a simple

structure of a single majority gate has been proposed for possible implementations in nanoelectronic

regime [73, 84]. With the use of single majority voters in our work, an improved circuit reliability is

obtained, and furthermore, complexity of the voter is kept similar for TMR and 5MR, i.e., area cost

for voters in TMR or 5MR are the same: SV (TMR) = SV (5MR) = SV .

Here is a remark about the simplification of PMMR in the circuits with a cascade structure in all

the blocks are identical, such as the n-bit ripple carry adder aforementioned. In this case, we only need

to generate one new architecture in each step, except step 2. This is because comparison of CPTMR

with CPMMR in step 2 could be used as a criterion in the following steps. Notice that CPTMR and

CPMMR have the same area cost in each step (the voter adopted is a single gate described in [73] and

therefore is not taken into account), so we make the choice according to reliability which is the unique

parameter. In step 2, CPTMR = C2TMR while CPMMR = C5MR. After comparing the reliabilities of

them, we can generate only one new version in the following steps (either CPTMR or CPMMR). Since

we can find that in step m where m is even and m ≥ 2, the comparison of PTMR and PMMR is equal

to compare m
2 pairs of C2TMR and C5MR. Similarly, in m-th step where m is odd and m ≥ 3, the

comparison of PTMR and PMMR equals to compare bm2 c pairs of C2TMR and C5MR. Consequently,

circuits in this kind of structure imply an efficient path.

4.3.4 More examples and comparisons

In order to limit the area overhead due to fault tolerance improvement with TMR, a selective TMR

(STMR) technique has been proposed in [64]. This method is based on the logic masking analysis of

each gate. Then, selective insertion of TMR is made in the gates that are more vulnerable to faults.

As a matter of fact, the reliability of the circuit not only depends on the logic masking of the gates

but also relates with the combinational logic. The sensitivity and eligibility analysis in this work take

combinational masking into account and show that it is more efficient in fault-tolerant designs.

For example, in the circuit C17, Selective TMR only considered gate properties [64] and decided

to implement TMR on gates NAND3, NAND4, NAND5 and NAND6. However, under the same area

cost, the proposed method [66] gave us another solution. It chooses gates NAND5, NAND6, NAND3

and NAND2 to implement TMR. This alternative increases the overall reliability compared to the

STMR solution. The reliability calculation used here is based on the method SPRMP [46].

We compare the proposed method with anther similar technique in [68]. The ISCAS circuit 74283

fast adder is taken as an example. If the redundant factor is 5 (5 blocks could be configured with

TMR), gates g32, g1, g3, g0 and g9 are selected by the proposed method PTMR as the five candidates

to be hardened. The method presented in [68], under the same area overhead constraint, applies TMR

in gates g32, g36, g37, g38 and g39. The proposed method presented a better reliability gain.

Comparison results related to the above statements are shown in Table 4.5, where TC, IC OR, R
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stand for Total Cells, Improved Cells, Original Reliability and Reliability, respectively.

Table 4.5: Results and comparisons of Progressive Modular Redundancy.

Circuit TC IC OR R by [64] R by [4] R by PMR

C17 6 4 95.2% 98.6% − 98.8%
74283 40 5 68.9% − 72.2% 72.6%

4.4 Critical errors mitigation in digital IPs

In a lot of digital applications, not every bit carries the information of the same degree of im-

portance. A more aggressive fault-tolerance improvement is proposed in practical applications with

related to the bit significance. A novel TMR configuration is proposed to prevent the critical errors

degrading the performance of the digital circuits. With this configuration and a more practical met-

ric in reliability evaluation, we have proved this proposed method provides better solutions than the

recent similar proposals.

4.4.1 Cost function and TMR configuration

In previous works, errors at the outputs are considered equally in reliability evaluation, such as

in [10, 12, 13, 49, 56]. In other words, number and position of errors have the same extend of cost. It

equals to consider such a cost function in mathematical optimization.

Suppose the output of a M -bit digital IP is y = y0y1 · · · yM−1 which is the value under the

fault-free condition, a deterministic value. If faults and errors exist, the experimental value is Y =

Y0Y1 · · ·YM−1.

If we don’t consider any bit significance in digital applications, the cost function could be defined

as in (4.4).

Cnominal(Y, y) = 1−
M−1
Y

i=0

δ(Yi − yi) =

(

0 for all Yi = yi

1 any Yi 6= yi
(4.4)

This cost function (4.4) assigns equal cost to all the output bits and it is not desirable. Ideally, a

desirable cost function should assign progressively larger cost to MSB(s). In this case, we define the

weighted cost function as in (4.5).

Cweighted =

M−1
X

n=0

2n · Cn(Y, y) Cn(Y, y) = 1−
M−1
Y

i=0

δ(Yi − yi) (4.5)
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In some situations, we have some dispensable bits, so we could also define a truncated cost func-

tion as in (4.6).

Ctruncated =
M−1
X

n=k

·Cn(Y, y) (4.6)

where k is the coarse scale.

Truncated cost function could also be combined with the weighted one in some applications that

include both binary bits as well as nonsignificant bits. That is expressed in (4.7).

Chybrid =
M−1
X

n=k

2n · Cn(Y, y) (4.7)

4.4.2 Practical metric for reliability evaluation

According to the aforementioned discussion about cost functions, Practical reliability is proposed

as in (4.8) based on cost function (4.5). It is a metric that can take into account the importance of

each output bit when analyzing the reliability of a circuit.

Rpractical =
M−1
Y

i=0

Rki
i (4.8)

ki =
1

2(M−1)−i
(4.9)

The weight factor ki allows the designer to control the importance of a specific output bit bi to

the output of the circuit. Notice that if ki = 1 for all 0  i  M − 1, the practical reliability

expression (4.8) becomes the nominal reliability expression (4.10) which corresponds to cost function

(4.4). In this thesis, a standard binary representation is considered so that ki is calculated as shown

in (4.9). Note that (4.8) can also be related to the probability that an error will cause a significant

disparity on the output of a circuit (a critical error).

Rnominal =

M−1
Y

i=0

Ri (4.10)

Here is an example for better understanding the practical reliability. Let us suppose that a designer

obtained three different architectures for a 4-bit adder in which the output is coded using a binary

scheme. Besides, he has to select one among them taking into account the reliability of the output.

The reliabilities for the output bits of such architectures are presented in Table 4.6.

Analyzing the nominal reliability values for the obtained architectures, Architecture 1 and Archi-

tecture 2 are selected as the best solutions. Indeed, no distinction can be made between these two

architectures regarding the nominal reliability value. However, as the output of this circuit is coded
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Table 4.6: Reliability for the output bits of three structures for a 4-bit adder

Architecture b3 b2 b1 b0 Rnominal Rpractical

1 99% 99% 99% 95% 92.18% 97.63%

2 95% 99% 99% 99% 92.18% 94.17%

3 98% 99% 99% 95% 91.25% 96.64%

using a binary scheme, the first architecture will provide better results (smaller disparities) than the

second. Ideally, a more desirable analysis should take into account the amount of information each bit

of an output carries (or its importance) in order to assign progressively great costs to them. In order

to tackle this problem, a new metric to analyze the reliability of a circuit with a multiple-bit output is

presented in next section.

4.4.3 Selectively applying TMR based on bit significance

The previous sections addressed the Block grading concept and Progressive Modular Redundancy

approach where the constituent blocks are ranked by their different weights. Here the critical gate is

proposed which takes into account not only the probability that an error will be introduced by a gate,

but also how critical this error will be for the target application.

We illustrate the problem by a familiar example, 74283 fast adder circuit. The fault injection

emulation is performed in order to detect the critical factors. The idea is to inject a single fault in

a gate gi and analyze the output for all the possible input vectors. Then, for each output bit bz , the

number of errors Sz related to a single fault in gi is evaluated (see Table 4.7). The columns Szw

correspond to weighted versions of Sz . In our case study, as a standard binary representation is

considered, Szw is obtained as shown in (4.11). Notice that there are 29 possible input logic values

for each faulty gate. All the simulation results are shown in Table 4.7.

Swz = 2z · Sz (4.11)

The critical gates are detected according to the results presented in Table 4.7. The more critical

the gates are, the higher priorities they receive to be protected (in this case using TMR). Configuration

of TMR based on this principle is more efficient in practical applications as will be shown after.

In fact, critical factors are assigned to the gates according to the number of weighted errors in

Table 4.7. If the number of weighted errors equals, gates that are nearer the primary outputs receive

higher priorities. If the numbers of weighted errors and the distance to the primary outputs are both

identical, gates presenting more reconvergent fanouts are considered more critical. Gates for which

these three parameters are equal receive the same critical factor. Notice that the rightmost column in

Table 4.7 gives the critical factor for a gate gi. The higher the factor number is, the more critical the
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Table 4.7: Error analysis for the gates of 74283 fast adder
gi S0 S0w S1 S1w S2 S2w S3 S3w C4 C4w

P
errorsweighted CriticalFactor

0 0 0 0 0 0 0 384 3072 192 3072 6144 36

1 0 0 0 0 0 0 384 3072 320 5120 8192 38

2 0 0 0 0 384 1536 192 1536 96 1536 4608 33

3 0 0 0 0 384 1536 320 2560 160 2560 6656 37

4 0 0 384 768 192 768 96 768 48 768 3072 25

5 0 0 384 768 320 1280 160 1280 80 1280 4608 32

6 384 384 192 384 96 384 48 384 24 384 1920 14

7 384 384 320 640 160 640 80 640 40 640 2944 23

8 512 512 256 512 128 512 64 512 32 512 2560 22

9 0 0 0 0 0 0 0 0 320 5120 5120 35

10 0 0 0 0 0 0 0 0 288 4608 4608 34

11 0 0 0 0 0 0 0 0 272 4352 4352 31

12 0 0 0 0 0 0 0 0 264 4224 4224 29

13 0 0 0 0 0 0 0 0 272 4352 4352 31

14 0 0 0 0 0 0 512 4096 0 0 4096 27

15 0 0 0 0 0 0 384 3072 0 0 3072 24

16 0 0 0 0 0 0 320 2560 0 0 2560 21

17 0 0 0 0 0 0 288 2304 0 0 2304 20

18 0 0 0 0 0 0 272 2176 0 0 2176 18

19 0 0 0 0 0 0 288 2304 0 0 2304 20

20 0 0 0 0 512 2048 0 0 0 0 2048 17

21 0 0 0 0 384 1536 0 0 0 0 1536 13

22 0 0 0 0 320 1280 0 0 0 0 1280 12

23 0 0 0 0 288 1152 0 0 0 0 1152 10

24 0 0 0 0 320 1280 0 0 0 0 1280 12

25 0 0 512 1024 0 0 0 0 0 0 1024 7

26 0 0 384 768 0 0 0 0 0 0 768 6

27 0 0 320 640 0 0 0 0 0 0 640 4

28 0 0 384 768 0 0 0 0 0 0 768 6

29 512 512 0 0 0 0 0 0 0 0 512 2

30 384 384 0 0 0 0 0 0 0 0 384 0

31 512 512 0 0 0 0 0 0 0 0 512 1

32 0 0 0 0 0 0 0 0 512 8192 8192 39

33 0 0 0 0 0 0 512 4096 0 0 4096 27

34 0 0 0 0 512 2048 0 0 0 0 2048 15

35 0 0 512 1024 0 0 0 0 0 0 1024 8

36 0 0 0 0 0 0 512 4096 0 0 4096 28

37 0 0 0 0 512 2048 0 0 0 0 2048 16

38 0 0 512 1024 0 0 0 0 0 0 1024 9

39 512 512 0 0 0 0 0 0 0 0 512 3

gate will be. In this work critical factors are assigned as integers 2 [0, 39].

4.4.4 Comparison

In this section, implementation of block grading takes into account not only the probability of

error occurrence, but also the impact of such error on the system. Compared with the automatic

insertion of TMR [68] as shown in Table 4.8, the reliability enhancement is more meaningful and the

weighted approach is of great use for practical applications.

It can be also noted that, under the same area overhead, the nominal reliability increases by almost

the same amount with both methods (see Figure 4.7). In fact, nominal reliability assigns equal relia-

bility costs to the output bits of the ISCAS 74283. This means that the output bits are considered as

having the same importance to the system, so that the nominal reliability value does not distinguish in
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Table 4.8: Reliability comparison of 74283 fast adder.

Reliability No hardening Method in [68] Proposed

S0 94.07% 94.97% 94.07%
S1 92.39% 93.26% 92.39%
S2 91.80% 92.65% 92.43%
S3 91.33% 92.17% 93.07%
S4 94.60% 95.51% 97.15%
Rnominal 68.93% 72.24% 72.63%
Rpractical 87.29% 88.89% 90.65%
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Figure 4.7: Simulation results for the ISCAS 74283

which bit the reliability was actually increased. In spite of that, practical reliability results can handle

this problem, and can indeed provide a sharper distinction between this two hardened architectures as

shown in Figure 4.7.
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Chapter 5

Error Characteristics of Majority Voter

5.1 Introduction

Voters are frequently used in fault-tolerant designs. This chapter presents an overview of vot-

ers. It starts by introduction of voting mechanisms and voter structures. As majority voter plays an

important role in both conventional fault-tolerant design and novel nanoelectronic systems, a better

understanding of signal probability, functional/signal reliability and error bound of majority voter is

discussed in this chapter. We analyze these parameters by boolean difference [14]. The result derived

shows the characteristics of error propagations in majority voter. More importantly, it reveals the con-

ditions that TMR technique requires. The results show the critical importance of error characteristics

of majority voter, as used in fault-tolerant designs.

5.2 Voters

5.2.1 Introduction of voters

A voter receives inputs from an M-of-N system and generates a representative output. It works in

a lot of applications where fault tolerance is required. In digital applications, the simplest voter is the

one that does a bit-by-bit comparison of the outputs. The bit-by-bit comparison has some restrictions.

It only works when every functional module generates an output that matches the output of every other

functional module, also bit by bit. It requires all the replicated modules have mutually synchronized

clocks.

If the modules are the same in function but different in hardware of software, we can use the con-

cept called practically identical for voting [18]. In other words, what we compare is word-by-word.

For example, if we define two outputs y1 and y2 are practically identical if they satisfy |y1 − y2| < δ,

where δ is a specified threshold. Note that practically identical is not transitive.
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Figure 5.1: Designs of 2-level majority voter.

5.2.2 Voting mechanisms for digital circuits

The most common voting strategies are majority, median, mean (average), and plurality. We

explain these voting strategies here.

– Majority voting: It chooses the output as the one produced by more than half of the process.

– Median voting: It chooses the output as this one corresponding to the median value from a

collection of results.

– Mean voting: It computes the average of the values produced by the process and then chooses

the output as the value closest to this. In digital applications, we could adopt this mechanism

only when we do a word-by-word comparison.

– Plurality voting: It chooses the output as the value occurs most frequently. A k − plurality

voter looks for a set at least k practically identical outputs and picks any of them as the repre-

sentative.

More details of voting algorithms, voter characters and comparison of voting strategies can be

found in [85–87] where how to choose the appropriate voting mechanism under different circum-

stances are explicated mathematically.

5.2.3 Majority voting configurations

Figure 5.1 shows designs of a 2-level majority voter consisting of four NAND gates or other basic

logic gates. This kind of voter structure is favorable for applications based on transistors.

As an example, consider using this voter in a NMR system for example, we can calculate the

number of NAND gates in NMR voter for N = 3, 5, 7, 9 are 4, 11, 36 and 127, respectively. It

means that voter size grows faster than the redundancy factor. This implies that the performance gain

by a higher degree of redundancy may be degraded by an increased complexity of an NMR voter.

Therefore, if the redundancy factor N > 7, it is not recommended to use this kind of majority voter

design [84]. Since if this kind of voter is adopted by a NMR system at a higher redundancy factor

situation, we will find that the higher the redundancy factor is, the lower the reliability will be [84].

A recent work proposed a concept of communication grid with the majority property for intercon-
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nects to implement a robust NMR system design [88]. This grid adapts CDMA, traditionally used in

wireless communication, to a nanoscale VLSI chip environment. Using the CDMA mechanism and

grid structure, an NMR system without an explicit voter unit is realized. This communication grid is

scalable and thus is an option for voter solution in NMR at high redundancy factor.

5.2.4 Single-gate voter structure in Nanoelectronics

In quantum and nanoelectronic circumstances, the implementation of majority logic could be

greatly simplified. A simple structure of a single majority gate, as schemed in Figure 5.2. It is a single

electron tunneling device as shown in Figure 5.3, and has been adopted for possible implementations

in nanoelectronic circuits [73].

M

X1

X2

X3

output

Figure 5.2: Scheme of a single gate majority voter.

•

•

A

B

C

Input Capacitors

Output Capacitor

V

Cl

Ci

Cj

Vd

node 1

node 2

Figure 5.3: Architecture of a single gate majority voter.

With the usage of this single majority voter, if the voter is reliable, the reliability will increase

with the redundancy factor.
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5.3 Analysis of voter reliability

5.3.1 Motivation

Besides the inherent mechanism of TMR, the efficacy of TMR highly depends on the voter relia-

bility. An imperfect voter could harm system reliability in fault tolerant designs. It is worthy to find

the conditions for TMR implementations by considering the error propagation in voters.

Error propagation of combinational circuits is widely analyzed these years, several methods have

been proposed such as Probabilistic Transfer Matrix (PTM) [11], Signal Probability (SPR) [12], In-

formation theoretic way [89]. However, PTM and PTM-like methods (for example, SPR) are unable

to evaluate the reliability of majority voter in a straightforward way. For example, if we use PTM of

the majority logic function to evaluate its signal reliability, the maximum value of signal reliability of

the output will be the same as that of the input (under the condition that the majority voter is fault-free,

i.e. PTM is an ITM).

We prove the above conclusion in the following.

Equation (5.1) shows the probabilistic transfer matrix (PTM) of a majority voter, where p is the

failure rate and p = 1− q. Equation (5.2) shows the probabilities of the 3 inputs a, b and c.

(a, b, c) 0 1

000

001

010

011

100

101

110

111

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1− p p

1− p p

1− p p

p 1− p

1− p p

p 1− p

p 1− p

p 1− p

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(5.1)
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⌦
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⌦
"

c0 c1

c2 c3

#

(5.2)

Reliability of the output is calculated according to Figure (5.4).

It is obvious that reliability will not greater than the signal reliability of input, the maximum value

is when p = 0, output reliability equals the input reliability.

5.3.2 Preliminaries

Before our derivation of voter reliability, some preliminaries that will be used later are presented

firstly.
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Figure 5.4: Inputs multiply by PTM of a majority voter.

5.3.2.1 Signal probability

The signal probability of an output is defined as the probability that the output attains a specified

value, and similarly, an input probability is the probability that a given input has the specified value.

The circuit function effectively provides a transform from input to output probabilities. Indeed, it will

be seen that when all input probabilities are set to be either extreme (1 or 0), the probability function

of the circuit produces identically the same result as the Boolean function of the circuit. Without loss

of generality, signal probability of an input and output of a logic gate is defined as the probability that

the signal is logical 1.

Kenneth et al. proposed algorithms for general combinational logic circuits which allow the

formulation of an output probability by the given input probabilities [48]. Given independent inputs,

Boolean functions could be mapped into algebraic expressions of signal probabilities according to

three definitions.

– Definition 1: Boolean "NOT", i.e., B = Ā, corresponds to b = 1− a.

– Definiiton 2: Boolean "AND", i.e., C = AB, corresponds to c = a · b.
– Definition 3: Boolean "OR", i.e., C = A+B, corresponds to c = a+ b− a · b.
By using these above definitions, all types of Boolean logic can be mapped to arithmetic equa-

tions of signal probabilities. These are very useful to the practical problems like fault detection and

reliability evaluation of logic circuits [49].

5.3.2.2 Errors in the gate and in the signal

Soft errors in a logic gate are classically modeled as a binary symmetric channel (BSC), with a

crossover probability "g. In other words, following the computation at the gate, the BSC can cause

the gate output to toggle symmetrically (from 0 ! 1 or 1 ! 0 ) with the same probability of error

"g. Each gate has an "g 2 [0, 0.5].

Fig. 5.5 shows an arbitrary gate realizing Boolean function f. To avoid ambiguity, we use "g

to express the gate error probability (corresponding to functional reliability). And we denote the



88 5. ERROR CHARACTERISTICS OF MAJORITY VOTER

     f,  
•

•
•



,




,




, 












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Figure 5.6: Faulty gate model equivalent to Fig. 5.5.

error probability on signal line xi as "i. As stated before, signal probability is defined as pi =

Pr {xi = 1}. Therefore, in Fig. 5.5, signal probabilities of the inputs are, p1, p2, · · · pi while the

input error probabilities are "1, "2, · · · "i, the output error probability is "z . It should be noticed that,

in each input xi, pi 6= 1− "i.

Each faulty gate in Fig. 5.5 could be modeled as an ideal gate ("g = 0) with the same functionality

and another ideal XOR gate as shown in Fig. 5.6. Based on this model, error appears at the output

when the input is erroneous while the gate is not, or when the gate is erroneous but the input is not.

Therefore, the output error probability is expressed as

"z = "in(1− "g) + "g(1− "in) = "g + (1− 2"g)"in (5.3)

5.3.3 Minimum functional reliability required for majority voter

In the analysis presented so far, we have assumed that the voter itself cannot fail while it is

sometimes untrue. In fact, the voter’s unreliability will wipe out the gains of the redundancy scheme.

If we add the reliability of the voter, Rv, the system reliability is modified to yield:

RNMR−FV = Rv ·
N
X

i=dN/2e

(

N
i

)

qiM (1− qM )N−i (5.4)

To achieve an overall gain, the voting scheme with the imperfect voter must be better than a single

element, that is:
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Figure 5.7: Voter reliability required in NMR system.

RNMR−FV > qM or
RNMR−FV

qM
> 1 (5.5)

This yields the minimum voter reliability required as follow,

RVmin
=

1
PN

i=dN/2e
(

N
i

)

qi−1
M (1− qM )N−i

(5.6)

Figure 5.7 shows the minimum reliability requirement for a voter in TMR and 5MR. We can also

find that a very high voter reliability, close to 1, is needed for small and large module reliability qM .

Examining Figure 5.7, we could check the minimum value of Rv. Take TMR as an example, Rv

will be obtained when the expression 3qM − 2q2M reaches its maximum value. Differentiating with

respect to qM and equating to zero yields qM = 3/4, which agrees with Figure 5.7. Substituting this

value of qM into Rv · qM (3− 2qM ) = 1 yields Rv = 8/9 = 0.889. This result has been generalized

for N-voter redundancy, and the results are shown in Table 5.1. This table provides lower bounds on

voter reliability that are useful during design. It demonstrates that a high reliability of voters needs to

be guaranteed by using reliable components or a fault-tolerant design.

Table 5.1: Minimum Voter Reliability.

Redundant factor 3 5 7 9 11 1
Minimum voter reliability 0.889 0.837 0.807 0.789 0.777 0.75
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5.3.4 Signal probability limitation and upper error bound

Combinational circuits have logical, electrical and temporal masking properties, which reduce the

probability of propagation and further storage of errors. Functional reliability required by majority

voter is therefore a lower bound. Von Neumman has shown that the error bound for a three-input

majority logic is 1
6 , i.e. an improvement of reliability could not be achieved through the majority

gates when "g ≥ 1
6 [9]. The derivation was based on (5.7). However, it was under his “special case":

the probabilities of the inputs ("i) are independent and all inputs are considered to be in the state of

either logical 1 or logical 0 (pi = 0 or pi = 1).

"z = "g + (1− 2"g)(3"
2 − 2"3) (5.7)

Indeed, input signal probabilities of the majority voter can not be always expected as being “1" or

“0". We then consider the general case by using boolean difference which was first used to analyze

errors in logic circuits by Frederick et al. [50].

We assume that there is a combinational logic circuit with functionality f. It has n inputs x1, x2, · · · , xn
and the output could be expressed as f(x1, x2, · · · , xn). Boolean difference is defined as

df

dxi
= f(x1, · · ·xi, · · · , xn)⊕ f(x1, · · · x̄i, · · · , xn) (5.8)

Then, a necessary and sufficient condition for a function f to be independent of input xi is that
df
dxi

= 0, i.e. an error in xi does not cause an error in the output. For the TMR voting system, we have

f = x1x2 + x2x3 + x1x3 (5.9)
df

dx1
= x2x̄3 + x3x̄2. (5.10)

and df
dx1

= 0 unless x2 6= x3, which is impossible if only x1 is in error. In other words, all single

errors could be masked.

As boolean difference is very useful for analyzing the input sensitivity, a tool based on C lan-

guage is developed to realize this function. Details about this tool will be presented in the section of

Appendix.

For multiple errors, total boolean difference is defined in [14]. Now we use total boolean differ-

ence as well as the faulty gate model shown in Fig. 5.6 to calculate the output error probabilities of

the majority voter.

According to (5.3), "z = "g + (1− 2"g)"in,
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"in = "1(1− "2 − "3 + "2"3)Pr

⇢

df

dx1

}

+ "2(1− "1 − "3 + "1"3)Pr

⇢

df

dx2

}

+ "3(1− "1 − "2 + "1"2)Pr

⇢

df

dx3

}

+ "1"2(1− "3)Pr

⇢

df

d(x1x2)

}

+ "2"3(1− "1)Pr

⇢

df

d(x2x3)

}

+ "1"3(1− "2)Pr

⇢

df

d(x1x3)

}

+ "1"2"3Pr

⇢

df

d(x1x2x3)

}

(5.11)

where Pr {·} stands for the signal probability function and returns the probability of its boolean

argument to be 1.

For majority voter, f = x1x2 + x2x3 + x1x3,

df

dxi
= xj x̄k + xkx̄j , i 6= j 6= k 2 {1, 2, 3}

df

d(xixj)
= xixj + x̄ix̄j , i 6= j 2 {1, 2, 3}

df

d(x1x2x3)
= 1, (5.12)

As Han et al. have proved, when the nominal inputs to majority gate are expected to be different,

its output is less reliable than its inputs for any "g 2 (0, 0.5) [90]. Therefore we consider the case that

three inputs have the same pi = p and ei = e, so yields,

"in = "3 + 3"2"[p2 + (1− p)2] + 6p(1− p)"(1− ")2

= 2(6p− 6p2 − 1)"3 + 3(6p2 − 6p+ 1)"2 + (6p− 6p2)"
(5.13)

Substituting "in into (5.3), we have

"z = "g + (1− 2"g) · "in = "g + (1− 2"g)

·[2(6p− 6p2 − 1)"3 + 3(6p2 − 6p+ 1)"2 + (6p− 6p2)"]
(5.14)

Notice that (5.14) obtained here is equivalent to (5.7) by von Neumman in [9] under the condition



92 5. ERROR CHARACTERISTICS OF MAJORITY VOTER

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

p

ε
in

Figure 5.8: "in varies with " and p.

p = 0 or p = 1, which is exactly the assumption that von Neumman stated in [9].

The efficacy of TMR is to decrease the error probability, so output error probability "z should

satisfy "z < ". It yields (5.15), which derives (5.16) and then we have (5.17). By solving (5.17) we

find the limitation of signal probabilities of majority voter in TMR as in (5.18).

"g + (1− 2"g)"in < " (5.15)

(1− 2"in)"g < "− "in (5.16)

"in < " <
1

2
and "g <

"− "in
1− 2"in

(5.17)

1 > p >
3 +

p
3

6
or 0 < p <

3−
p
3

6
(5.18)

Fig. 5.8 shows how "in varies with parameters " and p, and Fig. 5.9 describes how "in varies with

" under some given values of p. We find that "in > " which makes the TMR invalid if p exceeds the

bound in (5.18).

Furthermore, under the condition that p satisfies (5.17), we derive that the maximum value of "g

that is 1
6 , the same as in [90, 91].

5.3.5 Application

As majority voter is widely used in both the conventional and the emerging nanoelectronic fault-

tolerant systems, it is very important to carefully verify the efficacy of TMR for certain applications,

since sometimes TMR could bring in worse reliability than a simplex function module could.

The acquisition of output signal probabilities is much more easier compared with the obtention
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of output reliability. For example, we consider the function module in Fig. 5.10 which is a candidate

module for implementing TMR. Let the input test vectors P (A) = P (B) = · · · = P (E) = q, which

is the case when tests are implemented from a large set of random numbers. If we consider the three

gates are fault-free, the output probability is z = q2 + q3 − q5. When q = 0.5, z = 0.34375. As
3−

p
3

6 < 0.34375 < 3+
p
3

6 , TMR is not suitable for this function module. If the gates are with error

probability "g which is a more general case, we could use probabilistic gate model (PGM) [49] to

obtain the output signal probability easily. When q = 0.5, "g = 0.9, we have z = 0.452.

AND

AND

OR

A

B

C

D

E

Z

Figure 5.10: An illustrative function module.
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5.4 A simple fault-tolerant voter structure in TMR

5.4.1 TMR based on imperfect majority voter

If we consider that voter may fail, which is a more realistic hypothesis, the probability of correct-

ness at the output of the system will decrease according to the reliability RMAJ = qMAJ of the voter,

as shown in (5.19).

RTMR−FV = RMAJ ⇥RTMR−IV (5.19)

Figure 5.11 shows the impact of the reliability of the voter on the global reliability of the system.

It considers qMAJ = qM .
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Figure 5.11: Reliability curves for TMR with ideal (continuous line) and faulty (dashed line) voter.

All possible combinations of inputs in a majority voter are shown in Table 5.2. The corresponding

canonic boolean expression is given in (5.20). A direct approach of designing a majority voter is to

include the terms in equation 5.23. Such a circuit is easy to realize with basic logic gates as shown in

Figure 5.12(a), where three AND gates plus one OR gate is used, and in Figure 5.12(b), where four

NAND gates are used. The voter in Figure 5.12(a) can be seen as equivalent to that in Figure 5.12(b)

if one examines the output and applies DeMorgan’s theorem.

V = ABC +ABC +ABC +ABC (5.20)

= AB +BC +AC (5.21)
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V = AB ·BC ·AC (5.22)

= AB +BC +AC (5.23)

TMR architectures are designed under the hypothesis of single-fault models. It means that only

one fault can occur at a time. This hypothesis is considered in this section. Among the 4 modules

(including the voter), only one can be faulty, the others are fault-free.

Recent researches on TMR still utilize this structure in the majority voter, such as [68]. However,

this structure masks the single-fault only if it occurs on the module M. Take the AND-OR voter

structure in Figure 5.12(a) as an example, if AND or OR gates in the voter fail, the output maybe a

faulty value. For example, if A = B = C = 0 and there is an unique fault in S1, the output will be

V = 1 which is an incorrect value.

Table 5.2: True table for majority voter.
A B C V
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

5.4.2 Alternative majority schemes

As we have discussed, imperfect voter can influence the circuit reliability a lot and a high relia-

bility of voter should be guaranteed by using reliable components or a fault-tolerant design. In [92],

Kshirsagar proposed the fault-tolerant voter (NTFVC) as shown in Figure 5.13. The circuit contains

a priority encoder designed to output a selecting signal for the multiplexer.

– if I1 = 0, then sel = 0 and A (equals to B) is going to be selected as the output;

– if I2 = 0, then sel = 1 and C (equals to B) is the selected output.

Simulations of a full adder with TMR structure based on this voter proved that this structure

brought the robustness to the classical TMR system and has a better performance in the parameters

of delay, power, area, etc.

He also illustrated the voter is fault-tolerant. For example, with A = B = C = 0, if any of the

nodes in the voter, i.e. either S1 or S2 is stuck to 1, the circuit will still produce a fault-free output as

0. One can show that if the inputs are correct then the outputs will always be correct, irrespective of
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Figure 5.12: Conventional schemes for majority voter in TMR.

faults in the voter circuit.

5.4.3 A novel simple majority voter

In this work we propose the new scheme for majority voting presented in Figure 5.14. This

circuit is based on few logic blocks (just an exclusive-or gate and a multiplexer). We can see that this

structure is fault-tolerant following the analysis below:

A fault occurs on the voter It means that the unique internal node S is stuck to a fault. Due to the

single-fault model, the output is correct, independent of the value S (A = B = C)

A fault occurs on one of the modules M
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Figure 5.13: Kshirasgar’s scheme for the majority voter (NFTVC).

– Case 1 (C is faulty): the logic signals A and B are the same and S = A ⊕ B = 0. So, the

multiplexer’s output will be signal B which represents the majority value.

– Case 2 (A or B is faulty): the logic signals A and B are different and the majority must be the

logic value given by AC+BC, which corresponds to logic value C. According to the scheme,

this relation is respected because S = A⊕B = 1.

Figure 5.14: Proposed scheme for the majority voter.

5.4.4 Analysis and Results

The proposed voter structure shows a better performance than the previous schemes. Compared

to the classical or the Kshirsagar’s voter (NFTVC), it saves area together with power dissipation and

also there is less delay. These features and improvements come directly from the simplicity of the

architecture. Concerning single fault events, we have also proved in Section 5.4.3 that our scheme is

as robust as that of Kshirsagar’s NFTVC (and therefore better than the conventional solution).

The results obtained with SPR algorithm [12, 46] are shown in Figure 5.16. We consider that

probabilities of error for components in the voter are independent and they vary from 0 to 0.5 ( so the

reliabilities of the nodes in the voter vary from 0.5 to 1). We notice that the proposed voter produces

the best reliability among the three solutions.

The proposed voter is then put into a real context such as a half adder in Figure 5.15. Comparison

results with respect to different parameters based on different voters in TMR technique are shown in

Table 5.3.
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Figure 5.15: Half adder in TMR using proposed voter.

Table 5.3: Results synthesized in ASIC (RTL Compiler).

Comparison Classic NFTVC Proposed

Instances 25 31 25
Area 31 40 32
Power µw 2.35 3.75 2.85
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Figure 5.16: Reliability curves for conventional (continuous line), NFTVC (dashed line) and the
proposed voter (dotted line).
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Conclusion

Concluding remarks

Digital IPs in nanometric technologies are increasingly sensitive to various kinds of perturbations,

leading to paradigm shift toward design-for-reliability. Facing the problems within, the present disser-

tation specified solutions about trade-offs between the new design criterion reliability and hardware

redundancy.

As reliability improvement is generally achieved by adding redundancy, identify and classify crit-

ical blocks of a circuit is a major concern. Motivated by the need of economical designs, we presented

two new classification methods regarding the significance of a block with respect to the reliability of

a circuit. One gives the criticality of each block for the circuit reliability and the other indicates which

priority should be given to each block. Thus, the proposed concepts provide key information for the

designer who is looking for efficient solutions of reliability monitoring or reliability improvement.

Based on these concepts, we then presented an efficient method to select the best subset among

possible modular redundant architectures. It builds upon the progressive module redundancy (PMR)

technique we proposed. Efficiency is achieved by taking into account the grades of the blocks with

respect to reliability, by adding redundancy progressively and by considering mixed modular redun-

dancy. The proposed method presents a shortcut by avoiding analyses of all the possible redundant

architectures exhaustively. The PMR method points out a new direction of economical redundant

fault-tolerant designs for nanoelectronics.

Experimental results and comparison with the state-of-the-art similar technique have shown the

feasibility and efficiency of the proposed method. Furthermore, compared with previous works such

as selective module redundant techniques described in [64], the approach described in this thesis does

not need to analyze the logic implications of each logic gates, and it could be combined with other

soft error mitigation techniques at logic and circuit level.

Voter mechanism is always accompanying with hardware redundancy. Majority voter is very im-

portant for its applications in fault-tolerant designs. Individual reliability of a majority voter plays a

critical role in the overall reliability of predesigned fault-tolerant systems. Under this background,

error propagation characteristics of majority voter is worthy to be discussed. We presented the func-

tional reliability bounds of majority vote, derived the signal probability requirements for its inputs,
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and also demonstrated its upper error bound. The results obtained are immediately applicable to the

practical problems of fault-tolerant designs.

Many researches before were based on the assumption that the voter is perfect while this is not

true. We therefore proposed a fault-tolerant and simple majority voter architecture for TMR schemes.

The novel voter presents some meaningful features. Given its succinct architecture, it saves area,

power dissipation and propagation delays. This solution is robust to single fault and exceeds over

those previous ones in terms of reliability.

Scientific products

The studies developed along the dissertations originated several publications, that are cited below:

– “Progressive module redundancy for fault-tolerant designs in nanoelectronics", published at

Microelectronics Reliability - Elsevier, October 2011, vol. 51, no. 9-11, pp. 1489-1492. [66]

– “A Simple Fault-tolerant Digital Voter Circuit in TMR Nanoarchitectures", presented at IEEE

International New Circuits and Systems Conference (NEWCAS), Montreal, Canada, June 2010,

pp. 269-272. [83]

– “Optimized Robust Digital Voter in TMR Designs", presented at Colloque National GdR SoC-

SiP, Lyon, France, June 2011. [93]

– “Reliability analysis based on significance", presented at IEEE Conference on Micro-nanoelectronics,

Technology and Applications (CMTA), Buenos Aires, Argentina, August 2011, pp. 1-7. [67]

– “Progressive module redundancy for fault-tolerant designs in nanoelectronics", presented at

European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ES-

REF), Bordeaux, France, October 2011. [94]

– “A Progressive Approach for Fault Tolerance Improvement in Digital IPs", presented at South

Symposium on Microelectronics (SIM), RS, Brazil, April 2012. [95]

– “Majority Voter: Signal Probability, Reliability and Error Bound Characteristics", presented at

IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, United

States, August 2012. [96]

– “Reliability Analysis of a Reed-Solomon Decoder", presented at IEEE International Midwest

Symposium on Circuits and Systems (MWSCAS), Boise, United States, August 2012. [97]

And beyond this thesis, the contents and ideas that form these scientific papers have followed up

by several new studies on fault tolerant design based on redundancy such as selective hardening by

considering trade-offs between power and reliability [98], selective hardening under multiple faults

[99] and selective hardening by proposing more practical trade-off parameters [100].
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Limitations and future work

The examples used for implementation have some limitations. For the benchmark circuit like

C17, it is composed by the same logic gate (NAND). It is reasonable and practical to consider each

gate has the same reliability. For the 8-bit ripple carry adder, each block (FA) consists of the same

elements, it is therefore also appropriate to consider they are with the same failure rate. However, for

other circuits under implementation, we also consider in this way for simplification. It is not desirable

and lack of physical basis that we assume a constant reliability of different gate since usually faults

and defects attack individual devices such as transistors [101, 102]. Besides individual reliability,

each logic gate has different area [57] as they are composed of different numbers of transistors. This

point we didn’t take into account in the simulation neither.

In this case, a more desirable and accurate metric for evaluating the trade-offs between reliability

and area cost should take into account the physical basis as stated before. Here we define Ci (first

letter of comprise) as the trade-offs evaluation parameter.

Ci =
∆Ri

∆Ai
(5.24)

where

∆Ri =
|R⇤

i −R|
R

(5.25)

∆Ai =
|A⇤

i −A|
A

(5.26)

they stand for variation percentage of reliability and area cost, respectively. In this way, the units of

measure keep the same in both numerator and denominator.

We will have a rank of each constituent block of digital IPs, block grading based on Ci in (5.24)

should be more meaningful as it is acquired under physical basis for its applicability. This idea could

be realized and we may find better reliability improvements after comparisons with previous ways.

Furthermore, fault injection method presented in this thesis are demonstrated with single error. As

the defect density is expected to increase, simulations capable of several failures should be taken into

account by using FIFA platform [80]. At the same time, more benchmark circuits should be tested

after we conquered the speed of FIFA platform.

Perspectives

The concluding remarks concludes this report, while it could be considered as “early days" for

reliability issues of nano electronic systems.
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The technology is still scaling down. New circuit structures are emerging, such as typical nano-

electronics devices such as single-electron transistors (SETs), resonant tunneling devices (RTDs),

quantum cellular automata (QCA), one-dimensional (1D) devices. CMOS-modecular electronics

(CMOL) and other nanoelectronic devices.

Researches on future nanoelectronic systems face challenges, envisioned now as a lack of accurate

fault modeling (at different levels) to make more successful reliability evaluation. Reliability under

these new emerging technologies should be guaranteed at a relative high level while the redundancy

(no matter what kind or a hybrid way) factor should be kept at a very low level.

Under the pressure that failure rates as well as sensitivities to voice and variations of nanodevices

are expected higher and higher, reliability will be considered as one of the most threats in the future

digital IPs. Fault-tolerant designs should be taken into account at very important phases.
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Appendix A

Appendix

A.1 Tools for Inputs Sensitivity Analysis by Boolean Difference

A.1.1 Introduction

In chapter 5, we analyze the boolean difference based on a majority voter. As boolean differ-

ence is very useful for analyzing the input sensitivity, it could be very interesting to have a tool for

implementing this function. A tool based on C language is developed to realize this function.

For example, we have a circuit as shown in Figure A.1. It has its boolean logic function y =

x1 ^ x3 _ x1x2x3.

Input sensitivity could be calculated by boolean difference as follows.

dy

dxi
= 1 (A.1)

df

dx1
= x1x3 (A.2)

df

dx3
= 1 (A.3)

It reveals that input x1 and x3 are more sensitive since error in these input signals will be definitely

propagated to the outputs.

OR

XOR

AND

•
•

x1

x2

x3

y

Figure A.1: An illustrative function module.
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A.1.2 General usage of the tool

The tool includes help function, help information will be obtained by commands like help or h

or ?.

**********************help**********************

The min element number is 2

The max element number is 20

The format of input equation is like this:

Two elements: y = x0x1 + (x0)x1

Three elements: y = x0x1x2 + (x0)(x1)x2 + x0x1(x2)

Four elements: y = x0x1x2(x3) + (x0)(x1)x2x3 + x0x1(x2)(x3) + (x0)(x1)(x2)(x3)

and so on.

************************************************

The tool first verifies input string to exclude the invalid input string. Input should be as follows.

y = x0x1x2(x3) + (x0)(x1)x2x3 + x0x1(x2)(x3) + (x0)(x1)(x2)(x3),

where we define:

– element: x0 and x1are elements, an element represents a inpunt.

– nominal: x0x1(x2)(x3), a nominal consists of several elements.

– logic not: parentheses represents logic not. (x2) = x̄2.

A.1.3 Variables

Global variables are listed as follows.

– g_CurrentElementIndex[MAXELEMENTNUM ]: subscripts of elements.

– g_CurrentElementNum : numberofelements.

– g_CurrentItemNum : numberofnominals.

Local variables are listed as follows:

– element0: Transition array for describing the boolean logic function when xi = 0

– element1: Transition array for describing the boolean logic function when xi = 1

Rows of the transition array represents nominals of boolean logic functions.

A.1.4 Algorithms

For any valid input polynomials, we first derive the transition arrays. Then we compare combi-

nations of all elements to transition arrays exhaustively. The corresponded nominals is abandoned

if results derived from the two transition arrays are identical. Otherwise, this nominal is one of the

nominals of the output boolean function.
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A.1.5 Function descriptions and flow charts

N

Y

Y

N

Main

“help”’h’’?’

Usage StringPretreatment

ArrayOrder

BoolOperation

Figure A.2: Flow chat of main function.
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N

BoolOperation

AnalyzeInputString

Y

Figure A.3: Flow chat of BoolOperation function.
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PrintDebugString
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Figure A.4: Flow chat of AnalyzeInputString function.
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Figure A.5: Flow chat of OutputResult function.
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Figure A.6: Flow chat of PrintDebugString function.
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