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École doctorale Sciences, Ingénierie et Environnement
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Étude de la performance acoustique des écrans antibruit de faible

hauteur pour le tramway : optimisation numérique par méthode

de gradient et approches expérimentales

Résumé

Le bruit est devenu une nuisance importante en zone urbaine au point que selon l’Organisation

Mondiale de la Santé, 40% de la population européenne est exposée à des niveaux de bruit ex-

cessifs, principalement dû aux transports terrestres. Il devient donc nécessaire de trouver de

nouveaux moyens de lutter contre le bruit en zone urbaine.

Dans ce travail, on étudie une solution possible à ce problème : un écran bas antibruit. Il

s’agit d’un écran de hauteur inférieure à un mètre placé près d’une source, conçu pour réduire

le niveau de bruit pour les piétons et les cyclistes à proximité. Ce type de protection est

étudié numériquement et expérimentalement. Nous nous intéressons particulièrement aux écrans

adaptés au bruit du tramway puisque dans ce cas les sources sont proches du sol et peuvent être

atténuées efficacement.

La forme ainsi que le traitement de surface de l’écran sont optimisés par une méthode de

gradient couplée à une méthode 2D d’éléments finis de frontière. Les variables à optimiser sont

les coordonnées de nœuds de contrôle et les paramètres servant à décrire l’impédance de surface.

Les sensibilités sont calculées efficacement par la méthode de l’état adjoint.

Les formes générées par l’algorithme d’optimisation sont assez irrégulières mais induisent

une nette amélioration par rapport à des formes simples, d’au moins 5 dB(A). Il est également

montré que l’utilisation de traitement absorbant du côté source de l’écran peut améliorer la

performance sensiblement. Ce dernier point est confirmé par des mesures effectuées sur modèle

réduit.

De plus, un prototype à l’échelle 1 d’écran bas antibruit a été construit et testé en conditions

réelles, le long d’une voie de tramway à Grenoble. Les mesures montrent que la protection

réduit le niveau de 10 dB(A) pour un récepteur proche situé à hauteur d’oreilles. Ces résultats

semblent donc confirmer l’applicabilité de ces protections pour réduire efficacement le bruit en

zone urbaine.

Mots-clés : Écrans antibruit de faible hauteur, Bruit de tramway, Conception optimale par

méthode de gradient, Éléments finis de frontière, Mesures sur modèles réduits, Mesures sur

prototype en conditions réelles



A study of the acoustic performance of tramway low height noise

barriers: gradient-based numerical optimization and experimental

approaches

Abstract

Noise has become a main nuisance in urban areas to the point that according to the World

Health Organization 40% of the European population is exposed to excessive noise levels, mainly

due to ground transportation. There is therefore a need to find new ways to mitigate noise in

urban areas.

In this work, a possible device to achieve this goal is studied: a low-height noise barrier.

It consists of a barrier typically less than one meter high placed close to a source, designed to

decrease the noise level for nearby pedestrians and cyclists. This type of device is studied both

numerically and experimentally. Tramway noise barriers are especially studied since the noise

sources are in this case very close to the ground and can therefore be attenuated efficiently.

The shape and the surface treatment of the barrier are optimized using a gradient-based

method coupled to a 2D boundary element method (BEM). The optimization variables are

the node coordinates of a control mesh and the parameters describing the surface impedance.

Sensitivities are calculated efficiently using the adjoint state approach.

Numerical results show that the shapes generated by the optimization algorithm tend to be

quite irregular but provide a significant improvement of more than 5 dB(A) compared to simpler

shapes. Utilizing an absorbing treatment on the source side of the barrier is shown to be efficient

as well. This second point has been confirmed by scale model measurements.

In addition, a full scale low height noise barrier prototype has been built and tested in situ

close to a tramway track in Grenoble. Measurements show that the device provides more than

10 dB(A) of attenuation for a close receiver located at the typical height of human ears. These

results therefore seem to confirm the applicability of such protections to efficiently decrease noise

exposure in urban areas.

Keywords: Low-height noise barriers, Tramway noise, Gradient-based optimal design, Boundary

element method, Scale model measurements, In situ measurements of a prototype device



Long résumé en français

En tant qu’outil principal pour le contrôle du bruit en milieu extérieur, les écrans antibruit ont

été largement étudiés dans la seconde moitié du 20ème siècle, d’un point de vue pratique mais

aussi dans une perspective de recherche. Ces écrans ont surtout été utilisés pour réduire le bruit

à proximité des autoroutes et des voies de trains en milieu rural et péri-urbain. Cependant,

il devient de plus en plus important de réduire le bruit non seulement le long des grands axes

routiers et ferroviaires mais également au cœur des zones urbaines, puisque le bruit est une des

nuisances principales pour les habitants des villes. En effet, de nombreuses sources de bruit sont

présentes au sein des villes, notamment à cause de tous les moyens de transport qui y coexistent :

trafic routier, bus, transports guidés comme le métro mais aussi le tramway. Concevoir des écrans

antibruit adaptés à ce type d’environnement, notamment pour qu’ils puissent être implémentés

près d’un moyen de transport urbain bruyant, semble donc prometteur dans un objectif de

réduction du bruit en milieu urbain. Ces protections doivent être bien sûr suffisamment petites

pour pouvoir être intégrées facilement à un environnement confiné comme l’espace urbain, d’où

le nom d’écran de faible hauteur ou encore d’écran bas. L’application de ces protections à

la réduction du bruit du tramway semble particulièrement intéressante d’une part parce que

ce moyen de transport peu polluant a connu un regain d’intérêt cette dernière décennie dans

plusieurs grandes villes en Europe et à travers le monde, et d’autre part parce que les sources

de bruit du tramway sont principalement situées près du sol et donc seraient plus efficacement

atténuées par un écran bas. Ce travail a donc pour principal objectif d’étudier les écrans antibruit

de faible hauteur adaptés au tramway, du point de vue de la conception aidée par simulation

numérique, mais aussi expérimentalement.

A la différence des cas plus classiques d’implémentation d’écrans antibruit, au sein d’un

espace urbain les distances entre source et récepteur peuvent être de l’ordre de quelques mètres

seulement. Ceci suggère que les effets météorologiques lors de la propagation du son peuvent

être négligés dans ce contexte. L’efficacité d’un écran bas en terme de réduction du bruit est

donc principalement contrôlée par la géométrie des objets dans son voisinage proche (comme

la caisse du tramway par exemple, qui peut induire le phénomène de réflexions multiples), les

propriétés acoustiques du sol et les caractéristiques de l’écran lui-même, c’est-à-dire sa géométrie

et les propriétés acoustiques des matériaux à sa surface. A cause de cette dépendance et des

phénomènes complexes de réflexion et de diffraction mis en jeu, optimiser l’écran de manière
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LONG RÉSUMÉ EN FRANÇAIS

numérique pourra certainement apporter un gain significatif à son efficacité.

La méthode des éléments finis de frontières (BEM) est une des rares méthodes numériques

capable de rendre compte avec précision de tels effets, et a donc été choisie pour calculer le

champ acoustique autour de l’écran, et par conséquent son efficacité. Le logiciel MICADO

développé au CSTB a été utilisé dans ce but. De plus, comme les algorithmes d’optimisation

nécessitent de nombreux calculs de champs (et donc de nombreux calculs BEM), des hypothèses

simplificatrices peuvent être faites pour accélérer le temps de calcul, tout en gardant un niveau

de précision acceptable. Le sol est donc considéré comme rigide, et la présence du tramway

est modélisée comme un baffle vertical infini, ce qui revient mathématiquement à introduire

un écran image. La taille du maillage est considérablement réduite avec cette approche, tout

comme le temps de calcul. La plage de fréquences d’étude est de 100 à 2500 Hz, ce qui couvre

une grande partie du spectre d’émission du tramway. De plus, si l’on suppose que l’écran est

suffisamment long et de section constante, on peut se placer dans un cadre bi-dimensionnel

moyennant une modélisation de la source comme ligne source cohérente. Il est cependant connu

que l’approximation 2D est valide pour calculer l’atténuation en bande fine pour un point source

en 3D, ce qui est précisément ce qui est utilisé dans la fonction objectif choisie. Ceci dit, une fois

l’optimisation terminée, ces approximations ne sont plus nécessaires et le calcul de l’efficacité

peut se faire de manière plus précise.

Dans ce travail, à la fois la forme et le traitement de surface de l’écran sont optimisés. Bien

que dans certains cas il soit possible de décrire la forme d’un écran à l’aide d’un petit nombre de

paramètres correspondant à des caractéristiques particulières (succession d’aspérités de hauteur

différentes par exemple), il a été choisi de représenter la forme de l’écran d’une manière très

générale, par un ensemble quelconque de points de contrôle, et les variables à optimiser sont donc

les coordonnées de ces points. Une contrainte doit être cependant rajoutée pour s’assurer que la

courbe décrivant la forme de l’écran ne se replie pas sur elle-même, et doit donc être injective.

En ce qui concerne le traitement de surface, deux types de traitements sont considérés dans ce

travail : une couche de matériau poreux, qui absorbe le son efficacement en hautes fréquences,

et un traitement réactif, efficace dans des bandes de fréquences particulières correspondant aux

résonances du traitement. De plus, on considère deux types de matériaux poreux : un matériau

de type fibreux - par exemple de la laine de verre - et du béton de chanvre, matériau plus durable

fabriqué à partir de fibres végétales. On modélise l’effet de ces traitements par une admittance

de surface, qui est décrite soit par le modèle de Delany et Bazley pour le matériau fibreux,

soit par un modèle hybride de matériau poreux (Johnson-Zwikker-Kosten) pour le béton de

chanvre. Le traitement réactif choisi est un résonateur à panneau micro-perforé, dont on décrit

l’admittance par le modèle de Crandall-Sivian-Fok.

L’optimisation des coordonnées des points de contrôle et des paramètres qui décrivent l’admit-

tance des différents traitements est effectuée par un algorithme de gradient. La dérivée de la fonc-

tion objectif par rapport à tous ces paramètres est calculée efficacement en utilisant la méthode

de l’état adjoint adaptée au problème de la diffraction acoustique. Ce type d’algorithme ne peut

trouver qu’une solution locale du problème d’optimisation, cependant le nombre d’itérations et
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donc d’évaluations de la fonction objectif est bien plus faible avec ce type de méthode qu’avec des

méthodes d’optimisation globale, comme par exemple les algorithmes génétiques. La méthode

d’optimisation choisie sert donc à améliorer la performance à partir d’un écran initial choisi,

plutôt qu’à trouver la solution optimale du problème. De plus, comme les contraintes à appli-

quer aux paramètres de forme sont différentes de celles appliquées aux paramètres d’admittance,

il a été choisi d’utiliser deux types d’algorithme de gradient différents : la méthode SQP (Se-

quential Quadratic Programming) pour les paramètres d’admittance, et une version adaptée de

la méthode de la plus grande pente (steepest descent) pour les paramètres de forme. En effet,

bien que la méthode SQP converge plus rapidement, il est plus aisé d’implémenter la contrainte

d’injectivité de la courbe avec la méthode de la plus grande pente.

Tout d’abord, l’algorithme d’optimisation proposé est appliqué au cas des écrans rigides,

ce qui serait le cas s’il était fabriqué par exemple en béton. En effet, bien que les traitements

acoustiques peuvent être efficaces pour améliorer la performance acoustique de l’écran, ils peu-

vent avoir un coût environnemental important et nécessiter une mise en œuvre particulière, par

opposition aux matériaux rigides dont la mise en œuvre est généralement plus aisée. Plusieurs

formes ont été choisies comme points de départ de l’algorithme d’optimisation de forme, no-

tamment un simple écran droit et un écran en forme de T. Dans tous les cas, l’algorithme a

convergé rapidement, en seulement quelques dizaines d’itérations au maximum. Alors que les

écrans de départ à géométrie simple avaient une efficacité assez faible - atténuation inférieure à

6 dB(A) - les écrans à forme optimisée ont une efficacité significativement plus élevée - de 11

à 14 dB(A). Cette augmentation est due à une amélioration de l’atténuation aux moyennes et

hautes fréquences, au-delà de 500 Hz. Les formes optimisées présentent de fortes irrégularités

sur la partie de l’écran directement exposée à la radiation de la source et aux réflexions sur le

tramway. Des calculs supplémentaires du champ d’intensité semblent montrer que cette aug-

mentation de l’atténuation est due à une redirection de l’énergie acoustique vers le haut, ce

qui diminue la diffraction vers la zone d’ombre de l’écran. Ces irrégularités semblent donc agir

contre le phénomène de réflexions multiples entre l’écran et le tramway.

Dans un second temps, l’algorithme d’optimisation de forme a été appliqué dans le cas

d’écrans recouverts de traitement absorbant poreux de type laine de verre. A nouveau, la con-

vergence est rapide et l’optimisation de forme induit une amélioration de 5 dB(A) d’atténuation,

et l’efficacité totale prédite atteint 20 dB(A). La géométrie est cependant moins altérée du côté

de la source mais plus dans la partie haute de l’écran, par rapport au cas des écrans rigides.

Cette observation semble suggérer que lorsque les réflexions multiples entre l’écran et le tramway

sont fortement atténuées par un matériau absorbant, l’optimisation de forme peut tout de même

permettre d’améliorer l’efficacité en jouant sur les effets de diffraction qui sont prépondérants

dans la zone haute de l’écran. Des résonateurs aux paramètres bien choisis peuvent également

augmenter l’atténuation aux fréquences moyennes. De plus, des performances similaires sont

obtenues lorsque l’optimisation est effectuée en remplaçant le matériau fibreux par du béton de

chanvre.

Puis, une fois les solutions d’écrans optimisés trouvées, on peut effectuer des calculs plus
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LONG RÉSUMÉ EN FRANÇAIS

précis en enlevant les hypothèses simplificatrices qui avaient été faites pour diminuer le temps de

calcul pendant l’optimisation. Le tramway peut donc être remplacé par une caisse de géométrie

plus réaliste, le sol peut être potentiellement absorbant et plusieurs modèles de sources sont

considérés en plus du modèle de ligne source cohérente : un point source en 3D, une série de

point sources incohérents (qui approxime une ligne source incohérente finie) sur une longueur

égale à celle d’un tramway - soit 43 mètres pour le Alstom Citadis 402 implanté à Grenoble - et

enfin une ligne source incohérente infinie. Ces sources sont modélisées par une approche BEM

2.5D, et à cause de la complexification importante du modèle, les calculs sont effectués jusqu’à

1800 Hz seulement. Tout d’abord, au vu de la grande différence dans les prévisions entre la ligne

source incohérente finie et infinie, et puisque considérer une source finie semble bien plus réaliste,

les résultats obtenus par la ligne incohérente infinie ne sont pas retenus puisque apparemment

peu pertinents dans notre cas.

Pour tous les autres modèles de source, les calculs montrent que la perte par insertion est

réduite d’environ 1 dB(A) quand la caisse du tramway est modélisée plus précisément, et de

2 à 4 dB(A) quand le sol est fortement absorbant. Lorsque l’incohérence spatiale de la source

est prise en compte (modèle de ligne source incohérent finie), l’atténuation est sensiblement

diminuée surtout en basses fréquences. Malgré cela, les pertes par insertion globales restent

importantes, surtout lorsque le sol est rigide : de 9 à 12 dB(A) d’atténuation pour les écrans

optimisés rigides, et de 16 à 19 dB(A) pour les écrans de forme et de traitement optimisés.

En complément des simulations numériques, une méthode pour mesurer l’atténuation d’un

écran de faible hauteur près d’un tramway en utilisant des modèles réduits (à l’échelle 1/10) a

été développée et validée dans des cas simples. On utilise une source impulsive, de type source

étincelle, et une méthode de fenêtrage temporel pour rejeter les réflexions parasites. Le spectre

de la source utilisée est exploitable de 200 à 1800 Hz en échelle réelle (soit 2 kHz à 18 kHz à

l’échelle de la maquette). Les matériaux poreux de type fibreux sont reproduits dans la maquette

par des couches de feutrine. A titre d’exemple, cette méthode est appliquée à un écran en forme

de T recouvert de quantités différentes d’absorbant. La correspondance entre calculs BEM et les

mesures est bonne. Notamment les mesures ont confirmé la faible efficacité d’un simple écran

rigide, ainsi que l’intérêt d’utiliser un traitement absorbant sur le côté source. Cependant, il est

à noter que la BEM tend à sous-estimer légèrement l’atténuation en basses et hautes fréquences.

Enfin, un prototype d’écran antibruit de faible hauteur a été construit et installé en conditions

réelles près d’une voie de tramway de l’agglomération Grenobloise. Le prototype, en forme de

Gamma, a été fabriqué grâce à des éléments de bois aggloméré, dont le côté exposé au tramway

est recouvert de laine de verre, pour une longueur totale de 22 mètres. Le prototype a été

installé temporairement dans un quartier résidentiel assez calme de Saint-Martin-d’Hères au

milieu duquel passe le tramway à des vitesses qui peuvent être importantes - jusqu’à 60 km/h -

et donc les mesures ont pu être faites avec un bon rapport signal sur bruit. Une série de mesures

au passage avec et sans l’écran ont été faites à 1.5m du sol et à 3m du rail, soit à une position
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représentant un piéton à proximité du tramway. La vitesse des tramways lors de leur passage a

été également mesurée grâce à un microphone auxiliaire placé très près du rail.

Les mesures montrent qu’il y a une variabilité importante dans les niveaux au passage entre

les différents trams, même lorsque qu’une correction de niveau due à la vitesse est appliquée.

Cependant, l’atténuation de l’écran est en moyenne supérieure à 10 dB(A), durant tout le pas-

sage, et ceci bien que la longueur de l’écran soit seulement la moitié de celle du tram. Une

analyse en fréquence des enregistrements a également été faite, et a montré que la perte par

insertion entre 200 et 2500 Hz est d’environ 13 dB(A). Enfin, une comparaison a été effectuée

entre les mesures et des calculs BEM simplifiés et a montré que les prévisions donnent de bonnes

estimations de la performance réelle, à environ 3 dB(A) près, malgré le fait que l’environnement

soit fortement idéalisé dans les calculs. Des calculs supplémentaires suggèrent cependant que

l’atténuation obtenue en conditions réelles avec un tel écran pourrait être améliorée sensiblement

par une meilleure conception.

Pour conclure, on peut dire que la conception d’écrans antibruit de faible hauteur pour le

milieu urbain, en tant que sujet relativement récent dans la communauté du contrôle du bruit

environnemental, représente un défi important puisque ce type de protections pourrait changer

radicalement la façon d’habiter l’espace urbain. En se basant sur les résultats issus de l’étude

d’optimisation numérique ainsi que sur les mesures collectées au cours de ce travail, on peut

affirmer que les écrans de faible hauteur peuvent être des solutions efficaces pour réduire le

bruit du tramway, même pour des récepteurs proches, typiquement des piétons et des cyclistes,

mais aussi pour les bâtiments environnants. Il est probable que les écrans de faible hauteur

soient aussi efficaces pour atténuer n’importe quelle source de bruit urbaine, pourvu que les

sources soient relativement proches du sol et que l’écran puisse être placé suffisamment près. Il

semblerait aussi qu’il soit particulièrement important de bien concevoir un écran bas, puisque

son efficacité dépend fortement de sa forme et des traitements qui lui sont appliqués, notamment

lorsqu’il est entouré d’autres objets qui peuvent induire un phénomène de réflexions multiples.

Dans cette perspective, les méthodes d’optimisation comme celle proposée dans ce travail sont

donc des outils extrêmement utiles d’aide à la conception de telles protections.
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Introduction

Noise exposure is still an important nuisance in 21st century society, especially in urban areas

where many sources of noise coexist, including traffic, trains, but also tramways which have been

developing recently in several cities. Urban environments are also characterized by the fact that

receivers - pedestrians and cyclists - can be very close to noise sources and therefore exposed

to high levels, even though urban noise sources are by themselves not as loud as other more

traditional environmental noise sources.

Noise barriers are a common strategy to decrease noise levels in a given area, however

typical solutions - commonly built along highways and train tracks - are not applicable in urban

areas. This is why the concept of low-height noise barriers has been developed: due to the

very confined environment one could find in a dense city, noise barriers need to be adapted

to fit to this environment, and therefore should be small - typically less than one meter high

- and well-integrated to the urban landscape. Besides, low height noise barriers seem like a

particularly appropriate way to mitigate tramway noise, since in this case most sources are close

to the ground and have very little spatial variability (as opposed to traffic noise), and safety

requirements are such that a device could be set up very close to a tramway track. The purpose

of this work is therefore to study a low height noise barrier meant to attenuate tramway noise,

from a numerical and experimental standpoint.

One can indeed raise the question of how to design such a device to make it as efficient as

possible in terms of acoustic efficiency. Indeed, because of the tramway itself being so close to the

barrier, one expects multiple reflections to happen, which suggests that the design of the barrier -

its shape and its surface treatment - will have a significant influence on its efficiency. Optimizing

the design is therefore likely to provide good improvement of the barrier noise reduction.

For this purpose, it is necessary to develop an efficient optimization method coupled with a

numerical tool able to predict the efficiency of a given design accurately. The method will also

have to be general enough to explore a vast set of possible designs, and fast enough to provide

solutions in a reasonable computation time. Such a general method can then be applied in

different configurations involving for instance different choices of surface treatments. In addition,

extra calculations can be made to check the performance of the optimized noise barriers in a

more realistic situation.

Moreover, performing such a numerical optimization should allow us to determine what key
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features of a low height barrier are essential to attenuate tramway noise efficiently. It would then

be possible to choose an appropriate design for an actual full scale low height barrier prototype.

Building and setting up such a prototype would provide insight regarding the feasibility and the

actual in situ performance of low height barriers for tramway noise reduction applications.

It should also be pointed out that this work is the continuation of another Ph.D. dissertation

completed by the author at the Pennsylvania State University [1]. This work was also concerned

with tramway low height noise barriers optimization, but focused essentially on surface treat-

ments. The author acknowledges that a portion of the present document is indeed very similar

to what has been presented in [1]. Nevertheless, the reader is encouraged to look at this previous

work as well to be convinced of the originality of the present document.

This dissertation is organized as follows. Chapter 1 reviews parts of the accumulated knowl-

edge of noise barriers in general, and low height noise barriers in particular. More specifically

physical effects that may influence the acoustic performance of a noise reducing device are re-

viewed, and corresponding modeling assumptions for the context of a tramway low height noise

barrier are proposed. Common numerical prediction methods are reviewed as well, and argu-

ments are given towards the choice of using the boundary element method (BEM) to calculate

the device performance.

Chapter 2 presents the foundations of the BEM which is the integral equation method to

solve the forward scattering problem. Important results regarding the weak formulation of the

problem are recalled, as well as some numerical issues regarding geometrical singularities. These

results will be directly applied in chapter 4.

Chapter 3 reviews optimization methods to tackle the optimization problem at stake, which

is the minimization of an objective function depending on the solution of a boundary value

problem. Arguments are given towards the interest of using a sensitivity-based optimization

method coupled with the adjoint state approach, which allows one to use a large number of

variables without significant increase of computation time. A general algorithm to optimize

both the shape and the surface treatment of the barrier is presented.

In chapter 4, the calculation model - including the different physical assumptions - used in

the optimization and the considered objective function are summarized, and the expressions of

the sensitivities of the objective function with respect to all parameters are derived, implemented

numerically and validated.

Chapter 5 presents optimized designs obtained with the algorithm, assuming the barrier is

made of a rigid material such as concrete. Extra numerical calculations are made to further

analyze the generated optimized shapes. The optimization algorithm is then applied in chapter

6 in a more general context, in which both shape and admittance parameters are optimized

at the same time. Optimized solutions coupling shape-optimized absorbing porous layers and

micro-perforated panel resonators are presented, and again extra calculations are performed and

discussed.

Chapter 7 presents an experimental method to measure the insertion loss of a low height

barrier design in the presence of a tramway using scale models. The method is applied to study

2



experimentally the effect of an absorbing treatment on a simple T-shape barrier.

Chapter 8 presents a full scale low height barrier prototype which has been set up next to

a tramway track in Grenoble. Measurements of pass-by levels with and without the device are

presented and analyzed, and arguments are given towards the feasibility of such devices.

Finally, in chapter 9, conclusions are drawn and suggestions for future work are discussed.
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Chapter 1

What is a noise barrier and how does it

work ?

1.1 Introduction

Along with the industrialization of society, the growth of urban areas as well as the development

of transportation infrastructures, noise has become a serious nuisance in 21st century society.

Working in an office building or in a plant, wandering in a city, or even traveling across a

country or across the world oceans, noise always surrounds and possibly annoys us. Noise can

even represent a danger to human health, especially to more fragile populations (elderly and

children), which is all the more problematic since damage induced by noise can be irreversible.

More specifically, it is clear that noise generated by means of transportation is a major issue,

especially in urban areas where many noise sources coexist (namely cars, urban trains, tramways,

buses, aircrafts...). Indeed, according to the World Health Organization [2, 3]:

About 40% of the population in EU countries is exposed to road traffic noise at levels exceeding

55 dB(A), 20% is exposed to levels exceeding 65 dB(A) during the daytime and more than 30% is

exposed to levels exceeding 55 dB(A) at night.

Impairment of early childhood development and education caused by noise may have lifelong

effects on academic achievement and health. Studies and statistics on the effects of chronic exposure

to aircraft noise on children have found consistent evidence that noise exposure harms cognitive

performance.

At least one million healthy life years are lost every year from traffic-related noise in the western

part of Europe.

It also seems clear that a large infrastructure such as a highway or a high speed train track

can induce disorders in the wildlife that inhabits its surrounding environment, since it interferes

with the ecosystem by its presence itself and by the noise it generates, which can be significant

several kilometers away from the infrastructure. Environmental noise is hence considered as a

serious issue, from a social, environmental or public health perspective.

However, environmental noise, which can be defined as any sound field that reaches and can

potentially annoy or harm a human or animal receiver, is extremely difficult to control since the

extent of a noise source is usually small compared to the extent of the area where the generated
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noise can be heard: for instance, in a city, one single car radiates noise that can be heard several

blocks away.

One should also point out that environmental noise usually involves propagation in a complex

and unsteady physical “medium”, such as a city or the atmosphere itself, where many physical

effects come into play in the sound propagation. This makes environmental noise control an

even more difficult task. Nevertheless, there are mainly three means of actions for engineers to

control noise:

• reducing the source radiated power: this implies a better design of pieces of machin-

ery, trains, cars, plants and any sources of sound.

• protecting the receiver from the noise: a common example of this strategy is to build

houses with high performance windows to isolate the inside from the outside.

• preventing the propagation by modifying the propagation path

One way to implement this third strategy is to use a screen between the source and the receiver,

which is commonly called a noise barrier or noise protection. In this work, we are particularly

interested in noise protections adapted to an urban context, since noise is considered one of the

most important nuisances in cities, and since the proportion of city dwellers in the worldwide

population keeps increasing, as it has been for centuries. This trend is certainly going to remain

the same in the near future and therefore it makes sense to imagine new ways to tackle the issue

of noise exposure in urban areas.

1.1.1 First pass on noise barriers

Noise barriers were first built in the middle of the 20th century, in the United States and in

Europe, quickly followed by Japan along with its rapid highway network development. The

main application of such screens initially was road traffic noise mitigation, since screens were

mostly built along highways passing by inhabited areas, dense suburbs or quiet countryside

areas. Barriers were also built to mitigate railway noise in the same context, or noise from

HVAC (heating, ventilation and air conditioning) heavy machinery, usually located on buildings

roofs.

Typical highway or train noise protections can be divided into two main types: noise berms -

also known as earth mounds or natural barriers, made out of natural materials - and noise walls -

also known as noise screens and widely referred to as the general expression noise barriers, which

are manufactured engineering structures. There are however many limitations to the design of

noise barriers: materials used have to be durable, resistant to weather conditions, and even

salt in case of highway treatment against heavy snow. Concrete is therefore most commonly

chosen because of its durability, its easy maintenance and easy implementation on site during the

construction, although metal, masonry, wood or even brick are also commonly used materials.

Further, some more sophisticated materials with good sound absorption properties, such as

porous concrete, have been used as well.
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As we have mentioned earlier, the main application of noise barriers since the beginning of

their development has been mitigation of highway and train track noise. Nevertheless, another

recent development suggests one could use noise reducing devices at the heart of urban areas

in order to mitigate the noise exposure of urban inhabitants [4–15] - one can also refer to the

European project HOSANNA which was also concerned with noise reduction in urban areas [16–

19]. This type of device should be easy to implement in a constrained environment, such as a city

canyon or along a urban train track, which would typically require its height to be limited. This

is why those devices have been referred to as low-height noise barriers, “low height” typically

meaning less than one meter high. They could be used for instance to acoustically isolate

pedestrians walking on pavements from the traffic noise coming from the street, or to reduce

the noise received by cyclists riding really close to a heavy traffic driveway. Low-height barriers

could even decrease noise reaching buildings, for instance in case of elevated railroads inside

cities.

1.1.2 Tramway noise

Many sources of noise coexist in urban environments, including road traffic (from light and

heavy vehicles), urban trains, but also tramways. For many decades, urban noise studies were

mostly concerned with road traffic and trains, which were considered as the main sources of

noise in urban areas, but tramway noise has become a concern as well. Indeed, based on the

fact that a tramway is an environmentally-friendly non-polluting means of transport which helps

reduce the traffic congestion in city centers, there has been a renewed development of this means

of transportation in the past decade, for instance in several European cities (including Paris,

Brussels and London). Tramway has hence become a significant urban noise source.

Back in the seventies and eighties, several studies had already reported significant levels

and annoyance due to tramways [20–22]. Along with the more recent tramway development,

researchers have characterized physical emission levels of tramway-induced noise and vibration

[23–26] and annoyance [24, 27]. Tramway noise is all the more problematic since pedestrians

and cyclists can be close to trams on a regular basis, and because the power levels of tramway

noise sources are significant (above 90 dB(A) for typical urban speeds [26]), the noise level at

nearby receiver locations can be quite high, well above 80 dB(A).

However it has been shown that noise sources for modern tramway are mostly located close to

the ground [26]. This suggests that a properly designed low-height noise barrier can be efficient

against tramway noise, even for receivers close to the tram track. This is why this work will be

mostly concerned with tramway noise mitigation using a low-height noise barrier.

1.1.3 Objectives of this chapter

Although they might look like rather simple manufactured objects, noise barriers - including low

height noise barriers - involve many physical phenomena in the way they attenuate sound and

have been the topic of many research studies. We therefore intend in this introductory chapter

to briefly review the physical and mathematical tools involved in the accurate description of

the effect a noise barrier has on a sound wave, and therefore in the assessment of its efficiency.
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We will also present a broad overview of the accumulated knowledge concerning noise barrier

design, which will eventually help us identify what approach can be followed to explore further

the potential of low height urban noise barriers, more specifically tramway noise barriers.

1.2 Measure of the efficiency of a noise barrier

1.2.1 General comments on the physical description of a sound field

Physically, a sound propagating in a fluid (such as air) can be described as the “small” pertur-

bations of the thermodynamic variables describing the fluid: pressure p, temperature T , particle

velocity v, and density ρ. We will use the subscript 0 to refer to the mean values: p0 (also

referred to as the atmospheric pressure), T0, ρ0 (also referred to as the ambient density) and

v0 (also referred to as the mean flow or simply the wind). Basically the zeroth order quantities

describe the acoustic medium in which the propagation occurs, and the first order quantities are

used to describe the acoustic field itself. Further, the adiabatic sound speed c0, assuming air is

a perfect gas, is given by:

c0 =

√
γ p0
ρ0

=

√
γ RT0

M

where γ is the ratio of specific heats, M is the molecular mass of air, R = 8.314 J/(mol.K) is

the universal gas constant and T0 is expressed in Kelvin. Typically one can take γ = 1.4 and

M = 28.97 10−3 kg/mol. At a temperature of 20◦C, the sound speed is about c0 = 343m/s.

In typical outdoor propagation situations, knowing the acoustic pressure field p only is suf-

ficient (other variables could be derived from it and the relevant properties of the medium), so

it will be the main physical quantity we will look at. The sound field is then a scalar func-

tion of a receiver point x and time t: p(x, t). Since the frequency content of a signal usually

contains easier information to interpret, one usually looks at the acoustic signal as a function

of frequency p(x, f) instead of time, the transformation from one to the other simply being a

Fourier transform.

1.2.2 Definition of the insertion loss in the frequency domain

Noise source
S(f)

Receiver(s)
p  (x,f)in

Noise source
S(f)

Receiver(s)Barrier

p(x,f)

Figure 1.1: Schematic of a noise barrier implementation. Definition of the incident field pin (left) and the total
field p, which is the sum of the incident and the diffracted field p = pin + psc (right).
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One can then imagine a typical situation where there is a source of sound - for instance a

tramway - and some receivers - a pedestrian walking by (see figure 1.1). The source frequency

content is described by a certain function S which depends on frequency f . This information

is typically related to the power spectrum of the source (measured for instance with a power

spectral density), which is a continuous function of frequency, but in practice one will use a

discrete version of this spectrum at a set of frequencies fn, or band-averaged values (most

typically octave or third octave bands). In environmental noise applications, this power source

function is typically A-weighted to take into account the filtering of the human ear, defined for

instance in the International standard IEC 61672:2003 (which implies that the A-weighting filter

is already included in the function S). Besides, noise sources are typically modeled as “point”

sources, whereas in reality sources are always somewhat extended in space, as it would be the

case for a vibrating structure for instance. Real sources also do not usually radiate energy equally

in all directions, and should therefore be described as well by directivity functions. In this work

however, we will consider omni-directional sources only, which is a rather strong approximation

which should be kept in mind.

Then, to evaluate the noise at the receiver locations, we want to know the pressure field at

the considered receiver points which consists of a discrete set of points (Rm). The pressure field

at a given point and at a given frequency fn is the complex number p(Rm, fn).

Now, let us imagine furthermore that in the design phase of a project, one wants to predict

how efficient a barrier will be in terms of noise reduction. The relevant reference situation in that

case is the sound field that would exist at the receiver points without any barrier constructed,

but with the same sources of sound and in the same environment. We will call this the incident

field pin(Rm, fn) (see figure 1.1, left part).

Then, assuming that there is a barrier present (see figure 1.1, right part) and assuming we

can predict how the sound field will be modified by the presence of the barrier, we can compute

the actual sound pressure field, simply called the total field and written as p(Rm, fn). We will

call the difference between those two fields the scattered field psc = p − pin (also called the

diffracted field), which is precisely the field the barrier “adds” to the existing field and therefore

tells us how much the barrier modifies the propagation of the sound.

To have a quantitative measure that tells us how efficient the barrier is in mitigating the

incoming noise, we will define an average attenuation across the receivers at a given frequency:

A(f) =
P (f)

P in(f)
with





P (f) =

√∑

m

|p(Rm, f)|2

P in(f) =

√∑

m

|pin(Rm, f)|2

P and P in are the root-mean-square (RMS) total and incident pressure across the receivers.

One can also convert the attenuation to a dB scale, which one can refer to as the frequency

dependent insertion loss:

IL(f) = −10 log
(
A(f)2

)
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The minus sign is there so that when |P | ≪ |P in|, the logarithm is largely negative and the loss

is actually a high positive number. Also, we took the magnitude squared of the pressure field

so that what we compute is really a ratio of acoustic energy. This number tells how many dBs

are “lost” on average across the receivers due to the barrier at a given frequency.

However, the attenuation is usually a function that strongly varies with frequency, due for

instance to constructive or destructive interference effects. To have one single number to evaluate

the benefit of the noise reduction device, one therefore needs to average across a certain frequency

range, say between fmin and fmax. One possibility would be to evaluate the total acoustic energy

by integration over frequency of the spectral acoustic energy, which is approximately proportional

to the RMS pressure squared, and take the ratio of the incident and total energies (AER):

AER =
(∫ fmax

fmin

P (f)2 df
)/(∫ fmax

fmin

P in(f)2 df
)

The integration is replaced in practice by a discrete summation based on a finite number of

frequencies, as follows:

AER ≈
(∑

n

P (fn)
2∆fn

)/(∑

n

P in(fn)
2∆fn

)

where ∆fn is a frequency bandwidth associated with fn. However, there is a major problem

with using this number: it strongly depends on the modeling of the source. Indeed, assuming

a given frequency content for a 3D point source, if the same frequency content is applied to a

2D line source and the pressure field evaluated with a 2D method, the AER in those two cases

would be significantly different. This is due to the fact that a 3D point source and a 2D line

source have by themselves different “frequency content”. This is problematic since most of the

time the prediction model to assess the efficiency of a noise barrier is based on 2D modeling in

order to keep computation time reasonable.

However, it has been shown [28, 29] that the attenuation at a given frequency A(fn) is similar

whether the source is represented by a point source with an infinitely long barrier or by a 2D

line source. Constructing a broadband efficiency from the attenuations therefore reduces the

error related to the 2D modeling. But, at each frequency the attenuation does not depend on

the source spectral content. Hence to take into account the noise spectrum of the considered

source, we define a broadband attenuation weighted by the S function, as so:

Abb =

∑

n

SnA(fn)
2

∑

n

Sn

(1.1)

Typically the frequencies fn at which the attenuation is evaluated will be be taken equally spaced

in a third-octave band. In this case the coefficient Sn can be taken as Sn = 10Lw with Lw the

source power level in the considered third octave band. The same coefficient is then assigned

to all the frequencies of this band, but one needs to have the same number of frequencies per

band (typically 20 per third-octave band) to preserve the repartition of energy on the spectrum.
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One can finally define from the broadband attenuation a broadband insertion loss in dB(A) as:

ILbb = −10 logAbb. An efficient barrier has a high broadband insertion loss, and therefore this

parameter is the one we will use as the quantitative efficiency of a given noise barrier.

1.2.3 The equivalent sound pressure level LAeq,T

Let us recall that we introduced the insertion loss as a frequency domain quantity and therefore

at each frequency it is implicitly assumed that the generated noise is “steady”, and does not

present radical changes with time. However, most sources of noise, especially tramway noise,

are by definition unsteady since they are related to the passage of a tramway. Therefore, when

a frequency domain steady-state description is not possible, the equivalent sound pressure level

Leq is used. This level is related to the mean squared pressure p2rms,T(x), which is a time-average

squared pressure value over a given period of time T and at a given receiver point x:

p2rms,T(x) =
1

T

∫ T

0
p(x, t)2 dt

where [0, T ] is the time interval of the noise event we are interested in. For instance, this could

be night time (to calculate the Lnight), or the pass-by of a tram. The equivalent sound pressure

level is then defined as:

Leq,T(x) = 10 log
p2rms,T(x)

p2ref

with pref = 20µPa in air. However, in environmental noise assessment, it makes more sense

to consider A-weighted quantities. One way to do this is to apply the A-weighting filter on

the pressure signal p(x, t) to generate pA(x, t), for instance using a time domain filter. From

this signal the A-weighted mean squared pressure p2A,rms,T(x) can be calculated and then the

A-weighted equivalent sound pressure level:

LAeq,T(x) = 10 log
p2A,rms,T(x)

p2ref

This metric is the most commonly used for in situ noise exposure measurements, and will be

used extensively in chapter 8. Let us also point out that it would then be straightforward to

define an insertion loss from the LAeq,T: one can measure or predict Lin
Aeq,T(x) before the barrier

(or any mitigation device for which we want to estimate the efficiency) was built and the same

LAeq,T(x) with the barrier, so that the “equivalent” insertion loss becomes:

ILAeq(x) = Lin
Aeq,T(x)− LAeq,T(x)

This is a possible metric to measure the performance of a noise barrier, typically used in standard

measurement (again this will be used in chapter 8). Although, in the context of numerical

simulations involving noise barriers, since we are mostly going to use frequency domain prediction

methods we will rather use the insertion loss as defined in section 1.2.2.

11



WHAT IS A NOISE BARRIER AND HOW DOES IT WORK ?

1.3 Human response to noise

Interest in the assessment and prediction of environmental noise fundamentally started because

of concerns to its effects on human health, especially sleep quality, or more generally human

well-being, including mood and performance at work. The latter lead to the assessment of

annoyance due to noise exposure, which is one of the main purpose of psychoacoustics. It could

also be mentioned that all animals [30, 31] and not only humans are affected by noise.

The difficulty is to quantify a purely subjective judgment, and to correlate it to predictable

physical parameters, such as the LAeq,T introduced in 1.2.3 or the insertion loss related to

some noise control device. Indeed, most of the time it is questionable to state that such physical

quantities will correlate directly with the change in people’s subjective opinions concerning their

noise exposure. For instance it has been shown that depending on the type of source - railway,

aircraft or road traffic -, for the same LAeq,T, the human subjective annoyance would be different

[32]. Another study [33], focusing on a well-being degradation in noisy areas, showed that the

situation of living in a place where there are windows showing the source of noise can lead to

a more intense depression feeling than the equivalent noise exposure situation, which notably

includes same LAeq,T, without windows.

Besides, noise exposure is known to interfere with all human activities and therefore becomes

more annoying during the evening and the night when people devote themselves to leisure activ-

ities and relaxing, including sleep. This led to the 5 and 10 dB penalty used in the community

level metric Lden which has now become the most widely spread metric to assess noise exposure.

A review of many relevant effects on annoyance and correlation with metrics can be found in

[34].

More than just causing a feeling of annoyance, noise has significant direct effects on human

health, especially on sleep quality [35, 36]. Depending on the nature of the ambient noise during

sleep, sleep depth and therefore performance and mood during the day can be significantly

degraded. Apart from the fact that the louder the noise, the poorer the sleep quality, it has been

established that the nature of the noise, especially its intermittent character, has a significant

influence on sleep quality. For instance, the pass-by of a truck on its own causes increased body

movements, which are known to be correlated to sleep shallowness, and of course could even

lead to awakening and therefore interruption of the sleep cycle.

However, some psycho-social effects seem to be relevant as well, even during sleep since hu-

mans can still discriminate sounds while sleeping, and therefore the subjective attitude towards

certain sources of noise can affect the physiological response, as well as the character of the

source: in a recent study [37], it has been shown that railway noise affects sleep more than

traffic noise.

Even though environmental noise is really concerned about reducing negative health effects

of noise (namely feeling of annoyance and degradation of sleep quality), in the remainder of this

work we will focus on a purely physical description of the noise and the noise reduction by noise

barriers, with the fundamental assumption that purely physical quantities such as the insertion

loss exactly correlates with the feeling of noise exposure reduction by human beings. This is

a quite dramatic simplification, as we have seen, but commonly accepted in the noise barriers
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performance research community, which is understandable since otherwise the problem of noise

reduction would rapidly become impossible to handle.

1.4 Physical effects influencing a noise barrier efficiency

We review here the different physical effects involved in the propagation of sound in outdoor

environments in general, including when a noise barrier is present. This will allow us to iden-

tify what phenomena are the most relevant to low height noise barriers acoustic performance.

Regarding outdoor sound propagation in general, one can refer to comprehensive descriptions

in two books written by Attenborough et al. [38] and Salomons [39], or in the excellent review

paper by Embleton [40].

1.4.1 Meteorological effects

The propagation of sound from a known noise source to a receiver in a typical outdoor environ-

ment, for instance from a highway to a nearby house, with or without the presence of obstacles

such as noise barriers, is a complex problem to solve. One of the difficulties is that the atmo-

spheric conditions, which define the medium where the sound propagates, have an influence on

the sound field and therefore on the performance of a noise barrier, as measured experimentally

in [41].

The first effect is the refraction of sound due to local inhomogeneities of the ambient tem-

perature and mean wind fields, which modifies the local speed of sound. This causes a wave

propagating in the medium to bend, typically upward or downward, depending on the sign of

the vertical sound speed gradient. This effect can be of importance for the assessment of noise

barriers performance, since in a downward refracting case, the sound could go above the barrier

and then back down, hence decreasing the shielding effect of the barrier. In fact, on a sunny

day - in which the temperature typically decrease with height - upwards refraction naturally

happens, whereas downward refraction can happen on an unclouded night. The presence of

wind can either strengthen or weaken this effect, depending on the propagation being downwind

or upwind. Insertion losses of barriers in the presence of wind have been studied numerically

and in wind tunnel experiments [42, 43], and it has been shown that they decrease in downwind

conditions. Besides, in a noise barrier context, the presence of the screen will also affect the

wind field [44, 45], which would typically worsen the downwind propagation effect.

Inhomogeneities of the ambient temperature and wind fields can be caused as well by turbu-

lent fluctuations, which can cause scattering of the acoustic energy, with two main consequences

in a noise barrier context: the wave tends to lose spatial coherence during its propagation -

which decreases the strength of interference effects - and sound can be backscattered to a region

where there is supposedly little energy such as the shadow zone created by a noise barrier, which

typically limits its insertion loss. The main theoretical framework to describe backscattering is

due to Daigle [46] who introduced the concept of scattering volume and cross section. Several

studies which followed this framework showed that turbulent back scattering has a significant

effect at higher frequencies, typically above 4 kHz [47–49].
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Nevertheless, an important point is that meteorological effects - temperature and wind-

induced refraction, as well as turbulence - are considered to possibly have a significant influence at

rather large distances [40], or a high enough frequency (several kHz for turbulent backscattering),

and indeed most of the studies cited in this section considered a distance of about 100 m and

more between source and receiver. Atmospheric absorption effects are also known to be negligible

at low enough frequencies and small enough ranges (extra attenuation typically less than 3 dB

for ranges less than 100 m and frequencies below 3000 Hz [40]). Therefore, when the distance

between source and receiver is small, say below 20 m - which would be the case for an urban

low-height barrier - and assuming a typical environmental noise frequency range (100 to 3000

Hz), the performance of a noise reduction device might therefore be mostly controlled by other

effects, such as the ground properties, the presence of surrounding objects and the features of

the device itself. However, if one was to extrapolate results obtained at short ranges to larger

ranges, those meteorological effects should be considered.

1.4.2 Ground effect

The ground is always present in realistic situations and should be considered. Basically, when

assumed completely flat, it can be modeled as an infinite plane over which the sound can reflect.

This reflection can be easily described by image source theory when it is assumed perfectly

reflecting (rigid), but is more complicated when the ground is absorbing, as most outdoor ground

surfaces are [40, 50]. How absorbing the ground is can be typically quantified with an impedance.

The problem of predicting the sound field due to a point source above an impedance plane has

been tackled theoretically for several decades [51–54]. These studies showed that the pressure

field is this case is given by a free-field contribution emanating from the source (S) plus a free-

field contribution emanating from the image source (S’) plus a extra contribution due to the

finite impedance of the ground, expressed as a Fourier integral, and which also depends on

the source and receiver positions. A popular approximate expression is the so-called Weyl -

Van der Pol solution (from the names of the two scientists who first derived this expression in

electromagnetism [55, 56]), which can be found in many references [38, 40]. Using this solution,

one can show that the main effect of a finite impedance ground is to limit interference effects

between direct and reflected sound, and also to cause a shift in interference dips [40].

One can also ask the question of the influence of the ground impedance on a noise barrier

insertion loss. It has first been pointed out that a ground finite impedance can provide on its own

an attenuation, which the presence of the barrier can decrease, to the point that the insertion

loss becomes negative [57]. It has also been pointed out that simple empirical expressions (see in

section 1.5), which do not take into account the ground effect, can in some cases over-predict the

attenuation [58]. Similar conclusions were drawn by Hutchins et al. in the case of thin reflective

barriers [59] as well as for more complicated shapes [60]. The main conclusion of these studies is

that as a general rule, the insertion loss of a noise reduction device is smaller with an absorbing

ground than a rigid ground, and that the ground impedance on the source side matters more

than on the receiver side. Also, the authors state that the ground impedance has a larger effect

on the barrier efficiency than the barrier impedance. One can however point out these results

14



were found for a typical highway barrier configuration, and may not be applied directly in other

situations, such as a low-height tramway noise barrier context.

1.4.3 Multiple reflections and diffuse field

Figure 1.2: Examples of configurations where multiple reflections can influence a noise barrier efficiency. Left:
heavy truck traveling close to a highway noise barrier - center: barrier implemented close to a building - right:
low-height barrier close to a tramway.

In some situations, for instance in most urban environments, extra objects are present around

the site where a noise barrier is implemented, and those objects can induce many more reflec-

tions compared to the case where the barrier only is present. This is the case for instance for

heavy trucks traveling close to a highway barrier, for a barrier close to a building facade, and

for a barrier close to a tramway (see figure 1.2). This could even happen in a street canyon or

between parallel noise barriers. Those reflections tend to decrease the efficiency of noise pro-

tections and should therefore be taken into account in numerical prediction schemes modeling

barriers in such situations, for instance considering a set of image sources or a radiosity-based

scattering scheme [61, 62]. Implementation of barriers in urban canyons have also been investi-

gated numerically and with scale models, either for hard barriers [63, 64] or absorbent barriers

[8, 65]. Both calculations and measurements show that in those situations, rigid barriers do not

have a significant noise reduction effect, but with an absorbing treatment the efficiency of the

barriers is a lot higher.

1.4.4 Shape and material distribution over the barrier

Finally, the design of the barrier itself - namely its shape and the materials covering it - may

have an effect on its efficiency. Actually, from simple theoretical considerations, one can state

that this effect exists. However, one should raise the question of the relative importance of the

influence of the barrier design compared to all the other effects mentioned in this section.

It has already been pointed out in section 1.4.2 that in a typical highway noise barrier config-

uration, the impedance coverage of the barrier has a smaller effect than the ground impedance

[60]. Also in a highway context, May and Osman [66] measured as well that there was not a

significant difference in performance between a thin reflective and absorptive screen. However,

when a T-profile is considered, they measured that an absorptive treatment on the top yielded

an improvement of a few dB(A). Similar results were found by Watts et al. [67].

Moreover, in a railway barrier context, Morgan et al. [68] found - based on scale measure-

ments - that different shapes had significantly different insertion losses, and that the barrier

impedance had a great effect as well: for a rigid ground, insertion losses were between 14 and
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23 dB(A), whereas for an absorbing ground, they ranged between 10 and 20 dB(A). It was also

found that going from rigid to absorbing ground does seem to decrease the insertion loss (as

stated in section 1.4.2), but however in this context the shape and material distribution can still

make the insertion loss vary by 10 dB(A), which means that the design of the barrier itself has

a significant effect.

In a low-height tramway noise barrier context, the presence of the tramway is similar to the

presence of the train in [68] - it causes multi reflections - and therefore it is likely that the barrier

shape and admittance will be significant as well, even in the presence of an absorbing ground.

This also suggests that seeking to optimize the design of the barrier will be worth it, in the sense

that significant improvement can be obtained in the barrier efficiency by careful design.

1.5 Review of prediction methods

From reviewing the different effects that could come into play in the efficiency of a low-height

noise barrier close to a tramway, one can now decide which prediction method can be used to

evaluate the efficiency of a low height barrier. It has been found that meteorological effects -

related to inhomogeneities in the ambient properties describing the propagation medium, namely

the speed of sound - are probably negligible since short range propagation only will be considered.

On the other hand, reflections and scattering effects due to the barrier itself, the ground or the

surrounding geometrical features - such as the tramway - will have an important effect and

therefore the chosen prediction method should be able to render diffraction effects by arbitrarily

complicated geometries accurately. It should also be able to take into account the acoustic

properties (the admittance) of the surface of the different obstacles. We will now briefly review

some of the common methods in outdoor sound propagation prediction which will allow us to

decide which one seems the most appropriate in our context.

Diffraction effects from an infinite screen have first been described using analytical formula

derived from Sommerfeld’s geometrical theory of diffraction [69], which was then extended by

McDonald [70], Keller [71] and Pierce [72, 73]. Considerations of reflections on the ground [57,

74–76] and finite barrier effects [77, 78] have also been studied with these analytical expressions.

Apart from this approach, several empirical formulae predicting the efficiency of a noise barrier

based on the so-called Fresnel number have been derived, the most famous being Maekawa’s

curve [79], which was then extended by Kurze and Anderson [80] and Menounou [81]. All those

expressions, although useful and used in many engineering methods, are valid in highly idealized

contexts, especially for a flat screen and a straight diffraction edge. They are not general enough

to model a barrier for our application.

In terms of numerical methods, mainly two main families of methods have been developed in

the second half of the 20th century: long-range and short-range methods. Indeed, as mentioned

in section 1.4, propagation at large distances (more than 100m) is significantly influenced by

meteorological effects, whereas the sound field at short ranges is mostly influences by geometrical

features close to the source (obstacles, ground), but little by meteorological conditions. It

therefore makes sense that different types of numerical methods were developed for those two

applications. Nevertheless, those two types of methods can be coupled, as for instance in the
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Harmonoise reference model [82].

Long-range propagation mostly uses ray tracing [83, 84] and the Parabolic Equation (PE)

method [39, 85, 86], which is based on an approximation of the Helmholtz equation with non-

uniform speed of sound. It is possible to some extent to take into account terrain and obstacles

- such as a noise barrier - in the PE by approximate methods [87, 88], but again these would

not be valid for an arbitrary geometry.

Concerning short range propagation, most commonly used methods for taking into account

complex geometry are finite element methods (FEM), finite-difference time-domain methods

(FDTD) and boundary element methods (BEM). The FEM and the FDTD can include quite

naturally physical effects as well as complex geometries, with appropriate meshing of the domain,

but have a rather high computational cost since a volume mesh is required. The FEM is hence

not widely used in outdoor sound propagation simulations, although the FDTD has been applied

successfully [29, 89, 90]. On the other hand, the BEM is able to represent complex geometries

accurately, since only the boundaries of the obstacles are meshed, and to model the ground

effect via an appropriate choice of the Green’s function. It usually assumes a uniform speed

of sound, although there have been attempts to consider a linear sound speed profile [91, 92].

The computation cost of the BEM is limited since only the boundary is meshed, although it

is still rather high due to the non-sparsity of the matrices. It can however be greatly reduced

using the so-called Fast Multipole method, which will not be detailed here (one can refer to the

introductory paper by Coifman et al. [93]).

From this brief review, the BEM clearly seems like the most appropriate method for our

application. It will be explained in more details in chapter 2.

1.6 A few examples of surface treatment models

As mentioned earlier, the acoustic properties of a surface treatment can have a significant influ-

ence on the efficiency of a noise barrier, and therefore one should be able to model the effect of

a surface on the sound field. A more comprehensive review can be found in [1], and we simply

recall here a few models that will be used in this work.

The classical approach to model the effect of a surface is to force the local impedance to

match that of the given surface, which mathematically corresponds to apply a so-called Robin

boundary condition at the surface location. However, instead of the classical specific acoustic

impedance Z (ratio of pressure to particle velocity), it is usually more convenient to consider the

normalized admittance β, which is simply the inverse of the normalized impedance Z/Z0, with

Z0 = ρ0c0 is the specific acoustic impedance of air - one therefore has β = Z0/Z, which would

for instance go to zero for a rigid material. As we will see in chapter 2, in a BEM formalism the

admittance of any surface β is readily taken into account, and therefore being able to model β

is the only requirement to predict the effect of the surface treatment on the sound field.

Most construction materials can be assumed acoustically rigid (for instance concrete, steel,

heavy wood...), but acoustic surface treatments can be used as well to increase the efficiency of

a noise barrier (as mentioned in section 1.4). Those treatments can be generally divided in two

categories: porous materials - which rely on energy dissipation through viscothermal dissipation
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effects - and reactive treatments - which rely on destructive interference effects, usually using

one or several resonators. Examples of porous materials include fibrous materials, foams, porous

concrete, or natural materials like vegetation or hemp concrete. Reactive treatments on the

other hand include reverberation chambers (exhaust mufflers), quarter-wavelength resonators or

micro-perforated panel resonators (MPPR).

We give here three examples of possible treatments which will be used in this work, more

specifically in chapter 6.

1.6.1 Delany and Bazley layer model

In a noise barriers application, the most common type of treatment is porous since it can provide

absorption over a broad range of frequencies. Many models exist to express the admittance of

such a treatment (see for instance [1] for a review of some of these models), however the most

common one is the Delany and Bazley model [94], which has the main advantage to depend on

one parameter σ/f , with σ the airflow resistivity of the medium - usually expressed in kPa.s/m2

- which corresponds to the pressure drop across a porous sample normalized by its thickness and

the airflow velocity through it. Due to its simplicity, this model has been extensively used to

model many materials, including soils [50], although it should be recalled it was initially derived

for fibrous materials and for a given range of validity (σ/f ∈ [1, 100]). The expression for the

normalized impedance zDB and wavenumber kDB are (within the e−iωt convention):


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zDB =1 + 0.0511
(σ
f

)0.75
+ i 0.0768

(σ
f

)0.73

kDB

k0
=1 + 0.0858

(σ
f

)0.7
+ i 0.175

(σ
f

)0.59 (1.2)

where σ is here in Pa.s/m2 and k0 = ω/c0 is the wavenumber in air . The normalized admittance

βDBL of a rigid-backed layer of material of thickness d is then:

βDBL =
1

zDB
tanh(−ikDBd) (1.3)

1.6.2 Hemp concrete layer

Porous materials can be made out of many different basic components such as polymeric foams,

plastic fibers, glass fibers, wool fibers, tire wastes, plastic grains, and so on. Some of these

components, other than being hazardous and therefore requiring appropriate packaging, are

not sustainable. However, porous materials with good acoustic properties can also be made

from wood fibers binded together [95], which is the case of hemp concrete. Specifically Glé et

al. [96, 97] studied different ways to manufacture hemp concrete for acoustic applications and

proposed a porous material model which matches well to experimental data. They expressed

the impedance in terms of the dynamic density ρe, calculated with the Johnson model [98],

and dynamic bulk density Ke, calculated with the Zwikker and Kosten model [99]. Within this
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model, the normalized admittance βHC of a hemp concrete layer is given by:

βHC =
1

zHC
tanh(−ikHCd) (1.4)

with:

kHC = ω

√
ρe
Ke

and zHC =
1
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and
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where J0 and J1 are the Bessel functions of zeroth and first order, and the parameter λ is defined

by:

λ =

√
8α∞ρ0ω

σφ

This model therefore requires four parameters to describe the porous material (porosity φ, flow

resistivity σ, tortuosity α∞ and viscous characteristic length Λ) and the thickness of the layer

d, as well as physical characteristics of air (dynamic viscosity µ, air density ρ0, sound speed c0,

specific heats ratio γ and Prandtl number Pr). For a typical ratio of water, hemp and binder,

the authors give the following values for the porous parameters: φ = 0.73, σ = 19.3 kPa.s/m2,

α∞ = 3.0, Λ = 23µm and d = 10 cm. The physical properties of air can be taken assuming for

instance a temperature of 20◦C: density ρ0 = 1.21 kg/m3, sound speed c0 = 343m/s, dynamic

viscosity µ = 1.81 10−5 Pa.s, ratio of specific heats γ = 1.4 and Prandtl number Pr = 0.7.

1.6.3 Micro-perforated panel resonator (MPPR) model

Some reactive treatments have been considered in noise barrier applications [100–107] but their

use is still limited. One possible treatment, which has the main advantage to cover a wide

range of behaviors thanks to its four design parameters, is the micro-perforated panel resonator

(MPPR). This treatment simply consists of thin sheet of heavy material perforated by a grid

of holes and coupled to a cavity, and has been studied by many authors [100, 108–112]. One

possible model for its impedance, taking into account viscous and thermal effects in the holes,

radiation mass and interaction effects, is the model one can refer to as the Crandall-Sivian-

Fok model - following the work of Crandall [113], Sivian [114] and Fok [115, 116] - which has

been used by Melling [110] and Asdrubali et al. [100]. According to this model, given a panel

of porosity s, of hole radius a0, of panel thickness l0 and of cavity depth D, the normalized

impedance is:

zMPPR = −i
k0l0
s

(
1

Θ(x′)
+

16
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Ψ(ξ)
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)
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with
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with the coefficients um given by u0 = 1, u1 = −1.4092, u2 = 0, u3 = 0.33818, u4 = 0, u5 =

0.06793, u6 = −0.02287, u7 = 0.03015 and u8 = −0.01641 (values for air physical parameters are

given in section 1.6.2). µ′ is an equivalent viscosity representing both viscous and thermal effects,

and the intermediate variables x and x′ are the so-called perforate constants and correspond to

ratios between the radius of the hole and either the viscous or thermo-viscous penetration depth.

Finally, the Fok’s function [115, 116] Ψ(ξ) is a correction to take into account interaction effects

between the different holes, directly related to the porosity. The normalized admittance is then

simply βMPPR = 1/zMPPR.

1.7 Review of noise barriers designs and performance assess-

ment

1.7.1 Common designs (highway and train noise barriers)

As stated earlier, engineers have been developing noise barriers for many decades now, and

therefore there are quite a variety of common designs, mostly implemented along highways, but

also along train tracks. We here review some of the main designs and state a few results about

their relative performance. The assessment of a noise barrier efficiency has been typically done

using three approaches: numerical calculations (most of the time using 2D BEM), scale model

measurements or in situ measurements.

Numerical studies are useful since they allow one to compare many different designs easily.

Namely, for implementation as a highway noise barrier, the most commonly assessed noise wall

shapes are: straight thin wall, T-shape, Y-shape, arrow-shape, wedge barriers and straight wall

with added cylindrical top [117–119]. From those studies it seems like the T-shape is the most

efficient. Further, the presence of absorptive treatment on top seems to provide a few extra dB

of attenuation, although this benefit is largely diminished when sources sufficiently far away are

considered.

Railway noise barriers have been studied extensively as well [120, 121]. Since they are

typically implemented close to the sources of noise and therefore to the train body, multiple

reflections can occur and consequently an absorptive treatment on the source side of the barrier

as well its shape may have a significant effect.

Scale model measurements can be performed as well to assess the efficiency of a design, since

it is still relatively cheap to build a model say at a 1/20 scale of a highway or railway noise

barrier. Many different shapes have been tested indeed, for highway barriers [122] and train

barriers [123]. Those different studies show that insertion losses measured from scale models

usually agree rather well with BEM calculations.

Fewer full scale tests have been performed. Thin straight screen and T-shape profiles imple-
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mented along highways have been assessed in [66], and again the T-shape seems indeed more

efficient (by a couple of dB). Watts et al. [67, 124, 125] also pointed out the advantage of

the T-shape for highway noise barriers and good agreement with BEM calculations (although

their measurements were made under somewhat controlled environments, not actual field sites).

Adding multiple-edges is also shown to add some attenuation, although the effect seems less

important than for the T-shape.

1.7.2 Complex noise barriers

Although noise barrier research has been going on for several decades, the research community

is still active in this area. We will not give here a comprehensive review but rather emphasize

a few interesting results. For more details, we refer the reader to the excellent review paper by

Ekici [126] (although since this paper was published ten years ago, it is probably not completely

up to date). In addition, as for the more common designs, one can point out that performance

assessment of new designs has been essentially based on numerical simulations.

A first idea that was investigated to increase the efficiency of an already implemented screen

is to add extra diffracting edges on the side of the noise barrier, which is referred to as a multiple-

edge device. Several measurements - both on scale models and at full scale - of added parallel

panels were performed by Watts et al. [67, 127]. Their results show that extra diffracting edges

do provide a consistent improvement in efficiency above a certain limiting frequency (typically

related to the dimensions of the multiple edge device). Oblique panels covered with absorptive

materials have also been studied and optimized numerically by Baulac et al. [128] in a highway

context, which can yield a good improvement of 5 dB(A) compared to a straight screen.

Another possible improvement of a typical highway straight screen is to add geometrical

complexity (or even “randomize”) the top diffracting edge, by using so-called thnadners. A

type of thnadners had been studied by May and Osman [122], although their considered designs

did not show a significant improvement. On the other hand, other experimental and numerical

studies showed that random profile of the top diffracting edge induced consistent improvement

of the noise barrier, especially at high frequencies [129–131]. The effect at play here is believed

to be the loss of coherence of the secondary sources located at the edge of the barrier, which in

turns decreases the level of the diffracted signal.

Another possible approach to increase the efficiency of a straight screen is to add a designed

object at the top edge, among which cylinders have received significant attention. Numerical

investigations indeed suggested that using an acoustically soft impedance on the cylinder was

particularly efficient in increasing the barrier insertion loss [119, 132–134]. Besides, although it

is difficult to achieve a perfectly soft boundary condition over a wide frequency range, attempts

have been made to design a device made of several resonators which would approximate a soft

surface, such as the so-called “waterwheel” design [132, 133]. Improvement is noticed although

such a device may also have a negative insertion loss outside of the design band.

Interference-type devices to be placed on top of a screen have also been considered, both with

BEM simulations and full scale measurements [124, 135]. The idea of this device is to force part

of the incident wave to follow longer paths by a set of tubes, and then interfere destructively
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with the rest of the wave. The measured improvement was reported however not to be as good

as traditional top devices (such as the T-shape or cylinder caps), and it is argued that the

performance could be largely dependent on the source and receiver positions.

Using destructive interference to attenuate the wave on a top device is also the idea of reactive

admittance barriers, which is somewhat similar to the idea of approximating a soft impedance

with several tuned resonators. Several approaches have been followed to this end: build a top

device with a designed network of Helmholtz-like quarter-wavelength resonators [102], cover the

top of T-shape barrier with wells of possibly different depths [103, 104], construct the top of

a T-shape barrier as a QRD diffuser [105, 106] and possibly add perforated sheets in the wells

to further improve the design at low frequencies [106, 107]. Those different studies reported

improvement which can be of the order 2-3 dB(A) for a typical traffic noise spectrum.

1.7.3 Low-height noise barriers

Finally we describe some results previously obtained in the relatively recent field of low height

noise barriers. As stated in section 1.1.1, this type of noise reduction device - which is typically

limited to be less than one meter high - is really meant to be implemented in an urban context,

close to the noise sources (cars, urban trains, tramways, ...), in order to reduce the noise level

reaching close receivers such as pedestrians or cyclists during a pass by.

A simple type of low-height barrier (pedestrian restraints) has been considered by Horoshenkov

et al. to mitigate noise in an urban canyon [8]. They showed with scale modeling that this type

of device can provide more than 8 dB(A) of attenuation for the pedestrians if it is covered with

absorptive treatment, considering light and heavy vehicles traffic noise.

Thorsson [9, 10] also considered low height barriers of simple shape (straight wall, half cylin-

der and T-shape) and optimized the admittance distribution - either by an equivalent source

method [9] or a direct optimization method [10] - to increase the insertion loss at selected fre-

quencies at different heights. His results suggest a large improvement is achievable (more than

10 dB), and that even when the ground is treated the benefit of optimizing the barrier admit-

tance was still significant (10 dB of extra attenuation due to the barrier optimized admittance).

However one should point out that the obtained admittances are not realistic and that only a

few low frequencies were considered.

Ding et al. [14] modeled a porous low-height barrier meant to attenuate traffic noise with

an advanced time-domain method, and showed that significant insertion loss is obtained (which

can reach 10 dB(A), depending on the type of vehicle and receiver locations).

We finally mention Baulac’s and Koussa’s Ph.D. theses [4, 11] completed at the Centre

Scientifique et Technique du Bâtiment (CSTB), since a significant part of their work concerned

low height noise barriers. Baulac considered a typical urban traffic noise situation and optimized

the shape and the treatment (mostly absorbing) of a low-height barrier using BEM simulations

and genetic algorithms [6]. She showed that an insertion loss of 10 dB(A) is achievable. Simpler

shapes have also been studied with scale modeling and showed that numerical simulations were

in good agreement with the BEM [5].

Koussa, whose work was concerned with the use of natural materials for noise control, also
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studied numerically and experimentally a type of low height noise barrier made of many rocks

of different sizes (gabions) [13]. The insertion loss he obtained, depending on the gabions

arrangement, ranged from 5 to 10 dB(A), which confirmed the applicability of such a barrier.

He also studied numerically a so-called sonic crystal low height noise barrier for tramway noise

mitigation made of parallel cylinders of different diameters. Those barriers can provide up to

6 dB(A) of attenuation by themselves, although when a rigid screen is added behind the sonic

crystal the efficiency reaches 10 dB(A), and more than 15 dB(A) when both the cylinders and

the screen are absorbent [11]. Koussa et al. [12] also considered parallel arrangements of hollow

cylinders and found similar insertion losses.

1.8 Conclusion

Noise barriers have been studied extensively in the past few decades, along with their industrial

development and the rapid expansion of highways and railway track networks in many indus-

trialized countries. Several physical effects which can influence the efficiency of those type of

noise control devices have been identified, including diffraction, atmospheric refraction, turbu-

lent scattering and acoustic properties of the ground. For typical highway noise barriers, it has

been found that meteorological effects have a significant impact when long ranges (more than

100 m) are considered, but they can probably be neglected at short ranges (less than 10 m),

which would be typically the case in an urban environment. The ground characteristics however

still remain important in this context.

Moreover, the presence of other reflectors of sound in the vicinity of the device, such as

buildings or a train body, induces a multiple reflection phenomenon which can negatively impact

the performance of a barrier, and therefore should be taken into account. However an absorbing

treatment on the barrier and well-designed barrier shapes can be efficient in limiting this effect.

On the other hand, in a typical highway configuration in which sources and potential reflectors

are sufficiently far away from the device, the acoustic treatment of the barrier has a smaller

effect. Nevertheless, adding a designed cap - either absorbing or using destructive interference

effects - on a thin vertical screen can improve the performance significantly, even in the highway

case.

In the context of urban low-height barriers, especially close to a tramway which would be

the source of multiple reflections, it would therefore makes sense that a well-designed acoustic

treatment and barrier shape may yield a significant improvement in the efficiency of the device.

Besides, since the reflection and diffraction effects might be complex in this case, it is also

natural to seek improvement in the design by an optimization algorithm, coupled to a numerical

prediction method, as opposed to a trial-and-error approach. Due to the complex geometries

and treatments the method will have to handle, the boundary element method seems like the

most natural solution, although any other method that aims to solve as accurately as possible

the complete diffraction problem would be appropriate as well.
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Chapter 2

Review of the forward scattering

problem and the integral equation

method

In this chapter, we give the mathematical foundations of the integral equation method to

the acoustic scattering exterior problem, which naturally yields the boundary element method

(BEM). This chapter is essentially a review (which is by no means comprehensive) of known

results about the acoustic scattering problem formalism and its resolution using the integral

equation method. Some of these results will be used explicitly in the rest of this work (es-

pecially in chapter 4), but the author’s intention is essentially to give a somewhat detailed

introduction to this method, emphasizing a few points that are not perhaps very well-known.

Although the integral equation framework can be tackled in 3D, we will present the formalism

in 2D since this is the type of calculations that we will be mostly using to predict the performance

noise barriers in this work. The general framework of the integral equation method given here is

essentially taken from the comprehensive treatment by Terrasse and Abboud [136]. Besides, we

will also focus more specifically on the integral equation approach proposed by Jean [120], which

has been been implemented in the software MICADO, since we are going to use this software

extensively in the rest of this work.

2.1 Initial scattering problem

The atmosphere is assumed homogeneous with a uniform speed of sound c0. The problem at

stake is the resolution of the pressure field in two dimensions in the presence of a point source

located at point (S), of one of several obstacles which will induce scattering of the incident field

and of a rigid ground represented as an infinite horizontal baffle (see figure 2.1). Generally

speaking, the baffle representing the ground could also have a finite impedance, but this case

will not be considered in this work. The problem is solved in the frequency domain so that the

frequency f is fixed and k = 2πf/c0 is the wavenumber. The time convention is e−iωt.

Let Γ be the planar curve (or the set of curves) defining the boundary of the obstacles (it
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Figure 2.1: Typical geometrical configuration of the scattering problem. Cartesian coordinates are defined such
that x1 is the horizontal coordinate, x2 the vertical coordinate (and x3 the direction normal to the vertical plane).
The ground is assumed to lie at x2 = 0. One or several scattering bodies delimit the domain into a bounded
interior domain Ωi and an unbounded exterior domain Ωe. The curve (or set of curves) delimiting Ωi are referred
to as the boundary Γ. (S) is the point where the source is located.

can be the noise barrier alone or the barrier and the tramway body for instance), and Γg the

remaining part of the rigid ground (parts of the ground which are not rigid are taken into account

as part of Γ). Γ separates the half-infinite domain in two open sets, the interior domain Ωi and

the exterior domain Ωe. Let n be the normal vector exterior to the boundary (pointing towards

Ωe), defined on Γ and Γg. The source is assumed to lie in the exterior domain and therefore

we consider an exterior problem. Besides, we will assume that the acoustic behavior at each

point of the boundary Γ can be described by a normalized admittance β (which is typically a

piecewise continuous function defined on Γ).

Under those hypotheses, the total pressure field p in the exterior domain satisfies the following

scattering problem: 



− (∇2 + k2) p = δ(S, .) in Ωe

∂p

∂n
+ ik β p = 0 on Γ

∂p

∂n
= 0 on Γg

+ radiation condition

(2.1)

δ(S, .) is the Dirac delta function located at point (S) and ∂p/∂n = n·∇p is the normal derivative

on the boundary. The Sommerfeld’s radiation condition, which ensures the fact that all waves

radiate outwardly at infinity, is given in 2D by:

∂p

∂r
− ik p = o

( 1√
r

)

Associated with this problem, one can define the associated half-space problem (obtained

by removing the boundary Γ but keeping the influence of the ground Γg), of which the solution

is the half-space Green’s function G(x,y), that is the field at point y due to the radiation of a

point source at point x, x = (x1, x2) and y = (y1, y2) being two arbitrary points. In the presence

of a rigid ground in 2D, the expression for the Green’s function is:

G(x,y) =
i

4

(
H

(1)
0

[
k
√
(y1 − x1)2 + (y2 − x2)2

]
+H

(1)
0

[
k
√
(y1 − x1)2 + (y2 + x2)2

])

with H
(1)
0 is the Hankel function of order zero of the first kind. If the ground had been assumed
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impedant, a correction term should be added to this expression (as mentioned in section 1.4.2).

One can naturally define four partial derivatives with respect to each coordinate of the two

considered points: ∂G/∂x1 , ∂G/∂x2 and so on. Similarly, we write the gradient with respect

to the coordinates of x and y as ∇x and ∇y.

The total field p solution of (2.1) can be broken down as p = pin + psc where pin = G(S, .),

referred to as the incident field, is the field emitted by the source without influence of the

scattering objects Γ. psc, referred to as the scattered field, then satisfies the following problem:





− (∇2 + k2) psc = 0 in Ωe

∂psc

∂n
+ ik β psc = hin on Γ with hin = −∂pin

∂n

∣∣∣∣
Γ

−ikβ pin|Γ

∂psc

∂n
= 0 on Γg

+ radiation condition

(2.2)

where hin corresponds to the influence of the incident field on the scattering surface Γ and the

notation |Γ refers to the evaluation of a function on the surface Γ.

2.1.1 Properties of the Green’s function

The Green’s function satisfies by definition the following equation:

−
(
∇2

y + k2
)
G(x,y) = δ(y − x) + δ(y − x′)

with x′ = (x1,−x2). G also satisfies the fundamental reciprocity property G(x,y) = G(y,x).

From this property follows similar relationships on the gradients of G:

∇yG(x,y) = ∇yG(y,x) ∇xG(x,y) = ∇xG(y,x) (2.3)

This means that regardless of the position of a point as an argument in G (first or sec-

ond argument), the gradient with respect to a point coordinate will be the same. This can

be extended to the Laplacian with respect to each argument: ∇2
yG(x,y) = ∇2

yG(y,x) and

∇2
xG(x,y) = ∇2

xG(y,x).

2.2 Weak formulation of the scattering problem

The theoretical study of problem (2.1), especially considerations about the existence and unique-

ness of a solution to the problem, is more convenient using a weak formulation. It will be helpful

as well for calculations of the shape derivative, as we will see in chapter 4. This type of formula-

tions is typically obtained by multiplying the equation by a test function and making appropriate

transformations of the integrals to find how the boundary conditions intervene. However, al-

though this kind of approach usually does not cause any trouble in bounded domains, it cannot

be applied directly to the problem (2.1) because of convergence issues at infinity. One there-

fore needs to consider a problem on a bounded domain, the solution of which will be the same

27



REVIEW OF THE FORWARD SCATTERING PROBLEM AND THE
INTEGRAL EQUATION METHOD

as the initial problem (2.1). This is achieved using a so-called “transparent” boundary condi-

tion, which mathematically uses the Dirichlet-Neumann operator. We here briefly introduce the

methodology to build a well-posed weak formulation for the scattering problem.

2.2.1 Dirichlet-Neumann operator

S

i

e

i

n n

n

R
R

eR

Ω
Ω

Ω

Γ

Γ
Γg

Figure 2.2: Schematic representing the half sphere SR containing the boundary Γ and definition of the truncated
exterior domain Ωe

R = Ωe ∩ BR. The normal vector n defined on Γ ∪ Γg points towards Ωe
R whereas the normal

vector eR defined on SR points outwards Ωe
R.

Let SR be the half-sphere of radius R located above the ground Γg and assumed sufficiently

large that all the scattering surface Γ lies inside SR (see in figure 2.2). One could point out that

in 2D SR is actually a half-circle but for simplicity we will keep using the term “half-sphere”.

Let u be a solution of the Helmholtz equation outside SR which satisfies the radiation condition

and is smooth up to SR. Using separation of variables between the two naturally defined polar

coordinates r and θ, u can be written as a series of outgoing cylindrical waves, as follows:

u(r, θ) =

∞∑

n=0

αn
H

(1)
n (kr)

H
(1)
n (kR)

cos(nθ) with αn =
2

π ǫn

∫ π

0
u(R, θ) cos(nθ) dθ

with H
(1)
n is the Hankel function of the first kind of order n and ǫn = (2, 1, 1, 1, ...). Hankel

functions of the second kind are ignored because they do not satisfy the radiation condition,

and only cosine angular functions are used since here the problem is defined on the half space

only with a rigid ground. The normal derivative of u is then given by:

∂u

∂r
=

∞∑

n=0

kαn
H

(1)
n

′
(kr)

H
(1)
n (kR)

cos(nθ)

where ′ is the derivative with respect to the argument. One can therefore conclude that u and

its normal derivative are related on SR as follows:

∂u

∂r

∣∣∣
SR

= T
(
u|SR

)
with T :

∞∑

n=0

αn cos(nθ) 7→
∞∑

n=0

k
H

(1)
n

′
(kR)

H
(1)
n (kR)

αn cos(nθ)

T is the so-called Dirichlet-Neumann operator.
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2.2.2 Equivalent scattering problem in a bounded domain

Let BR be the half-ball of radius R (its boundary is the half-sphere SR) and Ωe
R = Ωe ∩ BR

be the truncated exterior domain (see again in figure 2.2). Now, let us consider the following

scattering problem: 



− (∇2 + k2) pR = δ(S, .) in Ωe
R

∂pR
∂n

+ ik β pR = 0 on Γ

∂pR
∂n

= 0 on Γg

∂pR
∂r

= T (pR) on SR

(2.4)

One can show that the problems (2.1) and (2.4) are equivalent in the bounded domain BR,

which means that p|BR
= pR and that pR can be extended to be equal to p [136, p. 97].

This is basically related to the fact that p and pR both satisfy the Helmholtz equation and the

same boundary conditions on Γ and Γg, and they have the same traces and the same normal

derivatives on SR. The boundary condition involving the Dirichlet-Neumann operator therefore

acts as a “transparent” boundary condition.

The main difference however between problems (2.1) and (2.4) is that (2.4) is posed on a

bounded domain, and therefore there are no issues of convergence at infinity. It is now possible

to write down a weak formulation of the problem, basically by multiplying each equation of

(2.4) by a sufficiently smooth test function q and integrating over the corresponding domains.

Following this process and replacing pR by p (which is legitimate since they are equal), one can

write:

(∀q)
∫

Ωe
R

(∇2 + k2) p q + q(S) +

∫

Γ

(∂p
∂n

+ ikβ p
)
q +

∫

Γg

∂p

∂n
q −

∫

SR

(∂p
∂r

− T (p)
)
q = 0 (2.5)

Integration by parts of the Laplacian term yields:

∫

Ωe
R

∇2p q = −
∫

Ωe
R

∇p · ∇q −
∫

Γ∪Γg

∂p

∂n
q +

∫

SR

∂p

∂r
q

The sign is different in front of the integral on Γ ∪ Γg and SR because the normal vectors are

defined differently (see in figure 2.2). Equation (2.5) can therefore be rewritten as:

(∀q) −
∫

Ωe
R

∇p · ∇q + k2
∫

Ωe
R

p q + q(S) +

∫

Γ
ikβ p q +

∫

SR

T (p) q = 0 (2.6)

Under this form, one can notice that an appropriate space for both the solution p and the test

function q is V = H1(Ωe
R). Let us define the bilinear form A on V × V and the linear form b on

V defined as:





A(p, q) =

∫

Ωe
R

∇p · ∇q − k2
∫

Ωe
R

p q −
∫

Γ
ikβ p q −

∫

SR

T (p) q

b(q) = q(S)
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One can then rewrite the weak formulation (2.6) as follows:

{
Find p ∈ V such that:

(∀q ∈ V ) A(p, q) = b(q)

Under this form, one can show that there exists a unique solution p ∈ V to the problem (2.6)

[136]. This formalism could also be used to numerically solve the scattering problem using finite

elements, however the boundary element method uses a different approach to numerically solve

for the pressure field.

2.3 Integral equations derived from the scattering problem

The idea of the integral equation formalism is to represent the scattered field psc as a “potential”,

that is an integral expression of source distributions existing on Γ. Such a representation is

ensured by the so-called integral representation theorem [136, p. 189], which is reproduced here.

2.3.1 Single and double layer potentials

2.3.1.1 Definition

Let us first introduce the integral operators that will be used in the rest of this chapter. Given

a function p defined on Γ and a point x in the interior of Ωe ∪ Ωi, we define the single layer S

and double layer D potentials as follows:

Sp : x 7→
∫

Γ
G(x,y) p(y) dΓ(y)

Dp : x 7→
∫

Γ

∂G

∂ny
(x,y) p(y) dΓ(y)

with ∂/∂ny = n(y) · ∇y is the normal derivative with respect to y. One can point out that p is

in general scalar valued but using the same definition it could be as well vector-valued. Besides,

the argument of the operators S and D should typically be piecewise continuous for the integrals

to be well-defined [137].

Although the Green’s function is unbounded when y = x, the integrals are well defined even

for x ∈ Γ. Indeed, for a given point x ∈ Γ, defining ρ = ||y − x||, one has for y approaching x:

G(x,y) =
i

4
J0(kρ)−

1

4
N0(kρ) +O(1) = − 1

2π
log ρ+O(1)

where the asymptotic behavior of N0 the Neumann function of order 0 has been used and since

J0 is bounded at 0. The second term due to the ground has been neglected as well since it

is always bounded (except at points belonging to the ground Γg and to Γ, at which the two

terms in the Green’s function are equal and have therefore the same behavior). Therefore, for

x ∈ Γ, G(x,y) behaves as log ρ and is therefore integrable on Γ when multiplied by p since p is

piecewise continuous.
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Similarly, the kernel involved in the double layer potential is integrable even for x ∈ Γ.

Indeed, the gradient of G with respect to y is given by:





∇yG(x,y) = − ik

4
H

(1)
1 (kρ) eρ +O(1) =

k

4
N

(1)
1 (kρ) eρ +O(1) = − 1

2πρ
eρ +O(1)

with eρ =
y − x

ρ

eρ is the unit vector pointing towards y from x. The asymptotic behavior of N1 (Neumann

function of order 1) has been used as well. Now, assuming the curve Γ is smooth, the normal

is continuous along Γ and therefore one has n(y) = n(x) +O(ρ) . Besides, the vector eρ tends

to the tangent vector t(x) as y goes to x and therefore eρ = t(x) + O(ρ). Since the vectors

n(x) and t(x) are orthogonal by definition, this implies n(y) · eρ = n(x) · t(x) + O(ρ) = O(ρ).

Therefore one has:

∂G

∂ny
(x,y) = ∇Gy(x,y) · n(y) = − 1

2πρ
n(y) · eρ + O(1) = O(1)

The kernel ∂G/∂ny is therefore bounded, which of course implies it is integrable when multiplied

by p (again since p is assumed piecewise continuous).

One can point out that the single and double layer potentials are well-defined as well in

3D since the kernels are integrable. Indeed in 3D both the Green’s function and its normal

derivative behaves as 1/ρ when y approaches x, which is integrable on a surface in 3D.

The single and double layer potentials are therefore defined as well on Γ. We are now recalling

important properties about their behaviors close to Γ.

2.3.1.2 Behavior close to the boundary Γ

The single layer potential Sp is continuous across Γ, but its normal derivative is discontinuous.

Indeed, assuming the curve Γ is smooth, one can show that:





∂(Sp)

∂n

∣∣∣
e
= −1

2
p+D∗p

∂(Sp)

∂n

∣∣∣
i
= +

1

2
p+D∗p

with D∗p =

∫

Γ

∂G

∂nx
(x,y) p(y) dΓ(y)

with |e and |i referring to the exterior and interior traces of a function. The operator D∗ is the

pseudo-adjoint1 of the operator D, in the sense that given two functions p and q defined on Γ,

one has:

∫

Γ
Dpq =

∫

Γ

∫

Γ
∇yG(x,y) · n(y) p(y) q(x) dΓ(y) dΓ(x)

=

∫

Γ

∫

Γ
∇xG(y,x)︸ ︷︷ ︸
=∇xG(x,y)

·n(x) p(x) q(y) dΓ(y) dΓ(x) =
∫

Γ
D∗q p

1D∗ is not strictly speaking the adjoint operator of D, since this would require to use an actual scalar product
- that is a sesquilinear form involving a conjugation -, which is not what is done here.
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where we simply exchanged the two variables x and y to go from the first to the second line and

where we used equation (2.3). Furthermore, because of the symmetry of the Green’s function,

one can show that the operator S is symmetrical (it is equal to its pseudo-adjoint), in the

following sense: ∫

Γ
Sp q =

∫

Γ
Sq p

Also, the operator D∗ typically requires a continuous argument in order to be well-defined

[137, 138].

On the other hand, Dp is discontinuous across Γ but its normal derivative is continuous if p

is C1,α (Hölder differentiable) [138]:





Dp|e = 1

2
p+Dp

Dp|i = −1

2
p+Dp

∂(Dp)

∂n

∣∣∣
e
=

∂(Dp)

∂n

∣∣∣
i
= Np

N can therefore formally be written as:

Np(x) =

∫

Γ

∂2G

∂nx ∂ny
(x,y) p(y) dΓ(y)

However, under this form, the integral is not defined since the kernel is ∂2G/∂nx∂ny (referred

to as the hypersingular kernel) is not integrable on Γ. A more accurate definition for N is the

following [136]:

Np = −rotΓ S(rotΓp) + k2 S(pn) · n (2.7)

where rotΓ and rotΓ are tangential differential operators, that is differential operators acting

along the boundary Γ. A short introduction to those operators is given in appendix A. This

expression is derived by consideration of the velocity field associated with the pressure field given

by the double layer potential, and as it is expressed in terms of single layer potentials raises no

issues of integrability due to the assumed smoothness of the argument.

In a variational context and in 2D, the expression for the operator N can take an even

more practical form. Given a function q defined on Γ, and applying an integration by parts as

described in appendix A, one has:

∫

Γ
Np q =−

∫

Γ
q rotΓ S(rotΓp) +

∫

Γ
k2 S(pn) · qn

=−
∫

Γ
S(rotΓp) · rotΓq +

∫

Γ
k2 S(pn) · qn

=−
∫

Γ
S
(∂p
∂t

) ∂q

∂t
+

∫

Γ
k2 S(pn) · qn

where ∂/∂t = t · ∇ is the tangential derivative along the curve Γ (t is the unit tangent vector

along Γ). Under this form, one can notice that N is also a symmetrical operator since S is

symmetrical.
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2.3.2 Integral representation theorem

Now consider a function p̂ satisfying the homogeneous Helmholtz equation both in Ωe and Ωi

as well as the radiation condition:





− (∇2 + k2)p̂ = 0 in Ωe

− (∇2 + k2)p̂ = 0 in Ωi

+ radiation condition

It is also assumed that p̂ is smooth up to the delimiting boundary Γ, but with possible jumps

of its value of its normal derivative across Γ. We define the jumps at the boundary as:

µ = p̂|i − p̂|e λ =
∂p̂

∂n

∣∣∣
i
− ∂p̂

∂n

∣∣∣
e

The integral representation theorem states that under those hypotheses, the function p̂ is the

sum of a single layer and double layer potential. More specifically, one has:

{
p̂ = Sλ−Dµ

∇p̂ = ∇Sλ+ rotS(rotΓµ)− k2 S(µn)
in Ωi ∪ Ωe (2.8)

Further one has the following relationships between the interior and exterior traces at the bound-

ary Γ: 



1

2
(p̂|i + p̂|e) = Sλ−Dµ

1

2

(∂p̂
∂n

∣∣∣
i
+

∂p̂

∂n

∣∣∣
e)

= D∗λ−Nµ

in Γ (2.9)

Those last two equations are also known as the trace relationships.

This means that a solution of the homogeneous Helmholtz equation can be written as an

integral potential. However, the distributions λ and µ are not known a priori. In order to solve

for them, one needs to ensure that the boundary condition of a scattering problem is verified,

which will impose that the distributions satisfy one or several integral equations. The resolution

of these equations can then be used to calculate the field at any point in space using the integral

representation formula given in equation (2.8).

One can use this approach to solve the scattering problem (2.1) but the theorem can be

applied to the scattered field psc only since the total field does not satisfy the homogeneous

Helmholtz equation. Besides, before applying the theorem one needs to define the represented

field both on Ωe and Ωi, which means that the scattered field solution of the problem (2.2) must

first be extended to Ωi. This extension is not unique and therefore several different integral

equations can be obtained.

Finally, one can point out that these equations are valid even for k = 0, which can be helpful

in some regularization techniques of the integral equations (see in appendix C for more details).
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2.3.3 Kirchhoff-Helmholtz integral theorem and Jean’s equation

We first apply the integral representation theorem to show that one can derive the well-known

Kirchhoff-Helmholtz integral relationships. To do so, we define p̂ to be equal to psc - the solution

of the problem (2.2) - in Ωe and −pin in Ωi. p̂ satisfies the hypotheses of the theorem (the source

is assumed to lie in Ωe and therefore the incident field satisfies the homogeneous Helmholtz

equation in Ωi). The distributions λ and µ are here simply given by:

λ = −∂psc

∂n

∣∣∣
Γ
− ∂pin

∂n

∣∣∣
Γ
= −∂p

∂n

∣∣∣
Γ
= ikβ pΓ

µ = −psc|Γ − pin|Γ = −pΓ

where pΓ is the total field on the boundary Γ and the boundary condition of the problem (2.1)

has been used. Therefore, at any receiver point x ∈ Ωe, one has:

psc(x) = DpΓ(x) + S(ikβpΓ)(x) =

∫

Γ

( ∂G

∂ny
(x,y) + ikβ(y)G(x,y)

)
pΓ(y) dΓ(y)

There is essentially one unknown here, the pressure field on the boundary pΓ. Now one can

write the integral equations satisfied by pΓ by applying equation (2.9):





1

2
(psc|Γ − pin|Γ) = DpΓ + S(ikβpΓ)

1

2

(∂psc
∂n

∣∣∣
Γ
− ∂pin

∂n

∣∣∣
Γ

)
= D∗(ikβpΓ) +NpΓ

Recalling that psc = p− pin and using once again the boundary condition, those two equations

can be rewritten as:

1

2
pΓ −DpΓ − S(ikβpΓ) = pin|Γ (2.10)

−1

2
ikβpΓ −D∗(ikβpΓ)−NpΓ =

∂pin

∂n

∣∣∣
Γ

(2.11)

Those two integral equations are most commonly used to solve the scattering problem (2.1)

since the unknown distribution has a clear physical meaning (it is the value of the total pressure

field on the boundary Γ). Many other integral equations could be derived but the physical

interpretation of the distributions would be different (which is the case in the so-called indirect

boundary element method).

It is well-known however that equation (2.10) on its own does not admit a unique solution

at the so-called singular frequencies, which are the eigenfrequencies of a corresponding interior

problem. A popular approach to circumvent this issue is the Burton and Miller’s approach [139],

which consists in considering a linear combination of equation (2.10) and (2.11). Given α a real

number, one can consider the equation (2.11)+ikα (2.10):

1

2
ik(α− β)pΓ −D∗(ikβpΓ)−NpΓ − ikαDpΓ − ikαS(ikβpΓ) =

∂pin

∂n

∣∣∣
Γ
+ ikα pin|Γ
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α is usually taken to be 1, but any non zero real number ensures uniqueness of the solution of

the new equation [139].

Instead of considering a constant coefficient α, yet another approach followed by Hamdi [140]

and Jean [120], is to replace α by the normalized admittance β. The equation one obtains is:

NpΓ +D∗(ikβpΓ) + ikβ DpΓ + ikβ S(ikβpΓ) = hin (2.12)

with hin defined as in problem (2.2). This equation has the main advantage to be strongly

symmetrical. Indeed, if one considers a variational form of this equation by multiplying this

equation by an arbitrary function qΓ and integrating over Γ, one obtains:

(∀qΓ)
∫

Γ
NpΓ qΓ +

∫

Γ
D∗(ikβpΓ) qΓ +

∫

Γ
ikβqΓDpΓ +

∫

Γ
S(ikβpΓ) ikβqΓ =

∫

Γ
hin qΓ (2.13)

Because of the symmetry and pseudo-adjoint properties of the different operators recalled in

section (2.3.1.2), equation (2.13) is symmetrical in pΓ and qΓ, which is a significant advantage

regarding numerical implementation.

If one assumes that the real part of β is nonzero everywhere, following the same approach

as done by Burton and Miller [139], one can show that equation (2.12) has a unique solution

for all wavenumbers (see in appendix B). Besides, Jean pointed out that even in the case of an

entirely rigid barrier (β = 0 everywhere on Γ), the results do not seem to undergo the problem

of singular frequencies, as long as the mesh is sufficiently fine [120], and therefore the results are

accurate even in the case of a rigid barrier.

Classical finite element discretization techniques can be applied to equation (2.13), which is

what has been implemented in the software MICADO developed at the CSTB. By representing

the fields in terms of their nodal values and shape functions (which are assumed linear in

MICADO), equation (2.13) can be rewritten as:

qT
Γ [A]pΓ = qT

Γ hin

where pΓ, qΓ and hin respectively correspond to the nodal values of the total pressure field p,

arbitrary weighting function q and source term hin on the boundary, [A] is a symmetric matrix

which is the discretized equivalent of the different operators involved in equation (2.13) and T

refers to the transpose of a vector. This equation should be true for arbitrary values of qΓ, and

therefore this yields:

[A]pΓ = hin (2.14)

Equation (2.14) is the one implemented and solved in the BEM software MICADO by classical

matrix inversion techniques (either by direct inversion or using an iterative solver). Once pΓ is

known one can therefore calculate the pressure field everywhere using the integral representation

given in equation (2.8) and the total field is obtained by adding the incident field.
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Figure 2.3: Schematic of a non regular point x0 in the boundary Γ (a “corner”). One can define a local polar
coordinate system r and φ at the corner, with φ ranging between 0 and θe.

2.4 Issues for geometries with corners

2.4.1 Angle correction in the Kirchhoff Helmholtz integral equation

All the results derived in section 2.3 assumed that the curve Γ was sufficiently smooth, typically

C1. This is not true in general since a scatterer such as a noise barrier may have corners (in 2D)

or edges (in 3D), at which the normal vector may be discontinuous and the Kirchhoff-Helmholtz

integral relationships modified. Indeed, at a corner, equation (2.10) should be replaced by:

θe
2π

pΓ −DpΓ − S(ikβpΓ) = pin|Γ

with θe the exterior angle formed by the curve Γ at the current point (see in figure 2.3). θe is

therefore equal to 1/2 where the curve is smooth. The normal vector at a corner is undefined

and therefore the second relationship (2.11) holds only in a distribution sense. Nevertheless, in

several circumstances, the coefficient θe will have no influence on the result. For instance, when

the equation is regularized by an interior function p0 as done in appendix C.2, the obtained

integral equation holding for p0 should be modified as follows:

θi
2π

p0Γ +D0p0Γ − S0∂p
0

∂n

∣∣∣
Γ
= 0

with θi is the interior angle, which satisfies θe + θi = 2π. Therefore when the two equations

are summed together, the angle terms cancel out (as long as p0Γ(x) = pΓ(x)). Furthermore,

as pointed out by Jean [120], if a variational approach is used and if the points at which the

curve Γ is not regular - where neither θe nor θi are equal to 1/2 - represent a zero-measure set

(which would be true in most practical applications since the geometry would contain only a

finite number of corners), the functions θe and θi will be equal to 1/2 almost everywhere and

therefore there will be no influence of the points where the angle is not equal to 1/2 on the

second integration.
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2.4.2 Singular behavior of the pressure field close to a corner

The presence of a corner also induces a singularity of the pressure gradient around in its vicinity.

This phenomenon is actually relevant in any elliptic boundary value problem. A comprehensive

treatment of this phenomenon is given in [141], we here expose some simple results relevant to

our case.

Close to a corner point x0, one can locally describe the pressure field using a local polar

coordinate scheme r and φ (see in figure 2.3). We would like to describe the behavior of the

pressure field as r approaches 0. It is known that the pressure field is continuous in the exterior

domain as well as along the boundary Γ, and therefore remains bounded even close to a corner.

As a bounded solution of the Helmholtz equation, in 2D, the local pressure field can be described

as a series of cylindrical waves:

p(r, φ)− p(x0) =
∑

n

Jn(kr)
[
α̃n cos(nφ) + β̃n sin(nφ)

]

where Jn is the Bessel function of order n (Neumann functions have been discarded since they

are unbounded as r approaches 0). The indexes n are positive but unknown for now and not

necessarily integers. The Bessel functions can be approximated as r goes to zero, for any nonzero

positive value of n, as [142]:

Jn(kr) ∼
1

Γ(n+ 1)

(kr)n

2n
∝ rn

So that the pressure field can be rewritten as:

p(r, φ)− p(x0) ∼
∑

n

rn
[
αn cos(nφ) + βn sin(nφ)

]
(2.15)

Now, assuming for simplicity that the boundary Γ is rigid, the boundary condition on Γ implies

that:
∂p

∂φ
(r, φ = 0) = 0 and

∂p

∂φ
(r, φ = θe) = 0

The first condition implies βn = 0 and the second defines the values of n:

sin(nθe) = 0 ⇔ (∃m ∈ N− {0}) n = m
π

θe
(2.16)

One can now define the so-called singularity exponent λ = π/θe. Since θe < 2π, λ is always

greater than 1/2. Given equation (2.15) and the values of n given in equation (2.16), one finally

has the following asymptotic behavior for the pressure and its gradient:

p(r, φ)− p(x0) ∝ rλ +O(r2λ) ∇p(r, φ) ∝ rλ−1 +O(r2λ−1)

This states that the pressure field essentially behaves as rλ as r approaches 0. From this

statement, one can already conclude that when λ > 1 (that is when θe < π), the pressure field is

therefore at least C1 (continuously differentiable), which implies that the pressure field and its
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gradient (which is related to the velocity field) are regular even when approaching the corner.
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Figure 2.4: Test geometry for the numerical study of corner singularities (dimensions are in meters). The red
star is the source location, in blue the scatterer Γ (assumed rigid) and in black the rigid ground. The curvilinear
abscissa s is defined to be 0 at the bottom-left corner and increasing following the blue line in the clockwise
direction. The corner point which we will focus on is located at s = 1m.
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Figure 2.5: Boundary pressure values pΓ (in arbitrary pressure unit [PU]) and tangential derivatives ∂p/∂t
(in PU/m) as a function of curvilinear abscissa s (in meters) calculated with the BEM (MICADO) for the
configuration given in figure 2.4, at 500 Hz, and for different values of the criterion c (number of elements per
wavelength). Left plot: pressure values. Right plot: tangential derivatives.

On the other hand, in the case of an exterior angle larger than π, the singularity exponent λ

is smaller than 1, which implies that the pressure field is only C0,λ in this case. This means that

the pressure field is still continuous and bounded (rλ goes to zero) but the pressure gradient is

unbounded although integrable (and even square-integrable) in the neighborhood of the corner

as well as along the boundary Γ. When evaluated on the boundary Γ, the normal derivative has

a similar behavior as the pressure itself due to the boundary condition, which implies that the

tangential derivative only is unbounded.

From a theoretical standpoint, even if the pressure field is continuous but its gradient un-

bounded and integrable, there are no issues to evaluate the three operators S, D and D∗ at the

corner since their arguments, as taken in the integral equations given in section 2.3.3, are at
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least C0,λ. On the other hand, there is an issue regarding the operator N which requires the

argument to be C1,α, a condition which is not met at the corner point. Nevertheless, it is likely

that a regularization of the integral equation as described in section C.2 and/or a variational

approach as proposed by Jean [120] may circumvent this issue to some extent.

The fact that the solution is less regular close to a corner compared to points where the

curve Γ is smooth can induce inaccuracy in some numerical calculations involving the boundary

field, since the numerical approximation of the solution is usually piecewise continuous in the

case of constant elements, or continuous and piecewise C1 in the case of linear and quadratic

elements, and therefore cannot resolve properly the exact behavior of the solution close to a

corner. This will be especially true when evaluating the tangential derivative which is known

to be unbounded close to the corner. However, when evaluating the scattered field at a receiver

point far from the boundary, it is likely that local inaccuracies close to corners will not have a

strong influence on the result.

As an example of this phenomenon, the boundary pressure nodal values are calculated using

the software MICADO developed by Jean [120] (which uses linear elements) for a simple test

geometry with corners (see in figure 2.4), at 500 Hz. The top left corner corresponds to a

curvilinear abscissa of s = 1m, which is the point we will focus on. The refinement of the mesh

is varied by changing the minimum number of elements per wavelength c (which is one of the

input parameters of MICADO). The nodal values of the boundary pressure close to the corner

are presented in figure 2.5, left part. Although the value exactly at the corner is essentially the

same regardless of the mesh fineness, the convergence of pressure values in the vicinity of the

corner is much slower, to the point that there is still a difference of about 3% in the field 1 cm

(less than 2% of the wavelength) away from the corner in the solutions calculated with c = 48

and c = 96. Furthermore, one can notice that with c = 12, which is usually assumed to be a

relatively fine meshing, the behavior of the solution is not well resolved.

This phenomenon is even more obvious when looking at the tangential derivative, calculated

as the difference of successive nodal values divided by the length of the element (see in figure 2.5,

right part). As the mesh size decreases, the tangential derivative values right before and after

the corner keep increasing, as they should since they theoretically are unbounded. Again, when

c = 12, the tangential derivative is not well resolved, which means that numerical calculations

involving the tangential derivative cannot be accurate close to a corner, unless the mesh is

extremely fine. For instance, let us assume one wishes to evaluate the following integral:

I =

∫ 1m

s=0.5m

∣∣∣
∂p

∂t

∣∣∣
2

ds

The result will be strongly dependent on the mesh and therefore cannot be accurate (see in table

2.1). One can notice that with c = 12 the error on the integral I is at least 8% (it is probably

larger since the value at c = 96 is probably not converged).

Despite this local inaccuracy, one should however point out that when evaluating the pressure

field far from the boundary - which is the most common application of the BEM -, convergence

is achieved a lot faster. For instance, again using MICADO, for a receiver point located at

(x1 = 3m , x2 = 1m) (following the same coordinate system as given in figure 2.4), the error is
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less than 2% with c = 6 and drops to less than 1% with c = 12. The singular behavior of the

pressure field will cause an issue only when one is interested in the fine description of the field

close to a corner (this will be the case when evaluating corner node sensitivities, as we will see

in chapter 4).

Table 2.1: Numerical evaluation of the integral I as a function of the mesh criterion c and element size h (in
cm). The estimated relative error (with respect to the estimated value at c = 96) is also shown.

c h [cm] I Error [%]

12 5.7 1.8512 8.4
24 2.8 1.9865 1.7
48 1.4 1.9915 1.5
96 0.7 2.0212 -

2.5 Extension to the 3D sound field with infinite geometry in

one dimension

x
x

x

1

2

3

R

S

O

Figure 2.6: Considered geometry for three dimensional calculation of the sound field assuming an infinitely
extending geometry in one dimension (2.5 D modeling). The point (R) has coordinates (x1, x2, 0) and (S) has
coordinates (0, 0, x3) in the (x1, x2, x3) coordinate system, referenced to the origin (O).

In the previous sections, the diffraction problem in the presence of a noise barrier has been

presented in two dimensions, which implicitly assumes on one hand that the geometry is infinitely

extended in the dimension perpendicular to the vertical plane containing the source and receiver,

and on the other hand that the source is an infinite coherent line source. However, it is possible

to calculate the three dimensional field - still assuming an infinite geometry extension - for

instance due to a point source which can be offset compared to the vertical plane containing

the receiver (see figure 2.6), thanks to a method proposed by Duhamel [28, 143] (this type of

approach is referred to as 2.5 D modeling). The result was first derived assuming rigid boundary

conditions in [28], but we give here the generalized result in the case of a finite admittance

boundary condition [143] described by a generic function of frequency β. Let p2D(x1, x2, k, γ)

be the pressure field in two dimensions (assuming an infinite coherent line source) at a given

wavenumber k (which corresponds to frequency f = kc0/2π) and with an admittance distribution

γ, and p3D(x1, x2, x3,K, β) the pressure field in three dimensions at the wavenumber K (which

corresponds to frequency F = Kc0/2π ) and with the corresponding admittance distribution
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β(K). It turns out that p3D can be expressed as the following Fourier integral [143]:

p3D
(
x1, x2, x3,K, β(K)

)
=

1

2π

∫ ∞

−∞
p2D

(
x1, x2,

√
K2 − α2,

β(K)√
1− α2/K2

)
e-iαx3 dα (2.17)

Using simple symmetry properties of the integrand, one can show that this expression can also

be written as:

p3D
(
x1, x2, x3,K, β(K)

)
=

1

π

∫ ∞

0
p2D

(
x1, x2,

√
K2 − α2,

β(K)√
1− α2/K2

)
cos(αx3) dα (2.18)

Equation (2.18) expresses the fact that the 3D sound field can be calculated from a set of 2D

sound fields, calculated at different frequencies and at different admittances. As α varies from

0 to K, the frequency at which the 2D calculations are made varies from F to 0. When α > K,

the wavenumber at which the 2D calculation is made becomes imaginary, which requires specific

attention in how to solve the 2D problem. Duhamel nevertheless pointed out that the range of

imaginary wavenumbers necessary to achieve good convergence of the integral is small [28, 143].

Jean even states that at a high enough frequency, the imaginary wavenumbers can be simply

ignored if great accuracy is not required, such as in the estimation of a broadband A-weighted

quantity [144]. In this case the integration is only performed from 0 to K in equation (2.18).

This formalism also allows to calculate the sound field in the case of an infinitely extended

but incoherent line source (meaning that the cross-correlation of the source distribution along

the line is given by a Dirac delta function, as explained in [28]). The mean-square value of the

sound field is independent of x3 in this case and is given by:

p23D, inc. line, rms

(
x1, x2,K, β(K)

)
=

1

π

∫ ∞

0

∣∣∣∣∣p2D
(
x1, x2,

√
K2 − α2,

β(K)√
1− α2/K2

)∣∣∣∣∣

2

dα

From the knowledge of a fine 2D spectrum, this approach therefore allows one to consider

one or several point sources as well as an infinite incoherent line source, as long as the different

sources are all on the same line along the x3 direction (sources on another line would require

another 2D spectrum). Several point sources may be summed incoherently and therefore one

can also approximately model a finite length incoherent line source, which might be a more

realistic model for a rail track for instance.

This method has been implemented in MICADO as well. Using those different source models,

it has been found that depending on which model is used, the predicted attenuation can vary

significantly [144]: insertion losses are typically a lot smaller when the spatial incoherence of

the sources is considered, which also means that the performance based solely on 2D results is

usually overestimated.

2.6 Conclusion

In this chapter, we have briefly introduced the theoretical framework of the integral equation

method to solve the exterior acoustic scattering problem. The formalism has been mostly
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presented in two dimensions, although most results can be extended to the three dimensions

case. We have also presented the equivalent weak formulation of the scattering problem which

will be helpful in the derivation of the shape sensitivity expressions (see in chapter 4). The

integral equation derived by Jean and implemented in the BEM software MICADO has been

presented as well, since this will be the main tool of calculation in the rest of this work, along

with some regularization techniques.

The issue of decreased regularity of the solution close to a geometrical singularity (a corner)

has been raised as well. Although this does not cause significant inaccuracy in most applications

(typically for the calculation of the pressure field in the exterior domain), in a shape optimization

context this will induce some extra error in the evaluation of the sensitivity, as we will see in

chapter 4.

Finally, the 2.5D approach, which has been briefly presented here and is implemented in

MICADO as well, will be used to make some more realistic predictions of noise barrier perfor-

mances, as we will see in chapter 5 and chapter 6.
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Chapter 3

Review of optimization methods and

their application to scatterer shape

design and inverse scattering

3.1 Introduction

As it has been shown in chapter 1, in a noise barrier application (such as a low height noise

barrier close to a tramway), the acoustic treatments and the geometrical features of the different

surfaces surrounding the propagation medium - what we referred to as the boundary in chapter

2 - will influence the acoustic field and therefore the efficiency of a noise barrier (the amount

of noise reduction the device can achieve in a given receiver zone). Because of this dependence,

it is possible to change the efficiency by varying the parameters describing the admittance and

the shape of the boundary, which includes the noise barrier, which means one can even optimize

the design of a barrier to improve its performance.

Optimization relies on a prediction method (which calculates the efficiency given a set of

parameters), which intrinsically requires some simplification of the situation under consideration

in order to be mathematically modeled. This can make the results of such a process questionable

when applying it to real life situations. However, an important feature of optimization methods

is that they can help identify what parameters influence the efficiency the most, which is valuable

information before designing and building a possibly expensive device such as a noise barrier.

Besides, instead of improving the efficiency of a device by changing its shape, one could

also wish to identify the shape of a boundary - or scattering surface - based on some known

typically measured quantity such as the far field diffraction pattern: this is referred to as inverse

scattering. The same approach can be followed, except that this time the function to minimize

will not be an efficiency, but a difference between measured data and predicted data. A similar

approach can be followed to identify the admittance of a surface, which has been referred to as

admittance eduction.

First, we will review some general optimization strategies and associated mathematical re-

sults. We will then point out a few examples of how these strategies have been applied in the
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context of scattering surface optimization, which in turn will allow us to choose an appropriate

approach with application to tramway low-height noise barriers.

3.2 General considerations

3.2.1 Form of the considered optimization problem

First, one needs to define a real-valued criterion which characterizes the performance of the

device under consideration, which is referred to as the objective function e. By convention,

this criterion is chosen to be better when it decreases, and therefore we wish to minimize it (if

one wants to maximize a criterion, one can simply consider minus this criterion to make it a

function to minimize). Typically, in our context we choose a weighted attenuation provided by

the barrier, which is a positive quantity typically ranging between 0 and 1, and can be expressed

as a function of the acoustic pressure field values p(R) at the different receiver locations.

One criterion only is used, and therefore we are considering a mono-objective optimization. In

many cases however, several independent criteria are indeed relevant to describe the performance

of a device, for instance noise reduction and cost, as done by Baulac [4] and Leissing et al. [145].

Indeed cost is always an issue when building a noise reduction device but unfortunately it can

be difficult to model. Specific methods exist to deal with a multi-objective optimization, but

they will not be detailed here. One can for instance consider a weighted sum of the different

criteria, so that the problem reduces to a classical mono-objective optimization problem.

Moreover, we consider a set of generic, typically real-valued parameters x1, ..., xN - gathered

in the vector x = (x1, ..., xN ) - which influence the objective function. For our application, those

parameters can be categorized in two types:

• admittance parameters: geometrical and physical inputs of the admittance models

describing the admittance (a few examples have been given in section 1.6)

• shape parameters: variables describing the shape of the scattering surface

Shape parameters can be of various types, for instance it could directly be the coordinates of

a set of nodes which control the shape - referred to as control nodes - or any type of variable

describing a geometrical feature, such as well depths or tilting angles (as done by Baulac et al.

to describe multiple-edge barriers [128]).

The parameters only influence the objective function indirectly (or implicitly), since the

weighted attenuation simply depends on the pressure field p, which we will call the state, fol-

lowing Allaire [146]. The state, as the solution of a boundary value problem - in which the

admittance and boundary shape intervene in the boundary condition - depends on the parame-

ters, but again in an implicit fashion. One can write the boundary value problem in the general

form L[p] = b with L an operator (linear in our context) and b a generic right hand side related

to the source term (this equation would be for instance equation (2.12) introduced in chapter

2). In a sound diffraction problem, both the operator and the right hand side can depend on

the boundary condition and therefore on the parameters x. The boundary value problem can
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be hence written as:

L(x)[p] = b(x) (3.1)

Equation (3.1) is referred to as the state equation. As the solution of equation (3.1), the state

p is a function of the parameters x, since indeed one can formally write p(x) = L(x)−1 b(x).

The inverse of the operator is usually not known explicitly, and therefore the function p(x) is

an implicit function. The objective function, which can depend on the parameters x explicitly

as well as the state, can hence be written as e
(
x, p(x)

)
.

3.2.1.1 Constraints

The goal is hence to minimize the function e by modifying the values of the parameters x. How-

ever, parameters usually cannot take arbitrary values but instead satisfy a set of constraints, for

instance due to the geometrical feasibility of the shape of the scatterer or so that the parameters

stay within a range of physically achievable values. For instance, in a low-height noise barrier

application, the height of the barrier will be limited typically to 1m, which means that all the

vertical coordinate above the ground of all nodes should be less than 1m. In general, constraints

can take complicated forms, but first one can assume so-called bound constraints. Given two

vectors l and u respectively of lower and upper bounds for the parameters, the bound constraints

can be written as:

l 6 x 6 u (3.2)

with the inequalities applying element-wise.

In a shape optimization application, other geometrical constraints can arise, related to the

mathematical feasibility of the surface - or the curve in 2D - describing the boundary. Let us

assume for simplicity the 2D case (which will be the main focus of this work). The curve - or

the set of curves when dealing with several scatterers - describing the boundary should also be

injective, meaning in particular that the boundary should not present any loops or should not

fold over itself, or that the disjoint parts of the boundary should not intersect. The easiest way

to deal with this constraint is to ensure that the representation of the shape (that is the choice

of parameters describing the shape) will always meet such a requirement. This can be done with

bound constraints in some cases, for instance when part of the geometry is described as a set of

wells, as done in [128].

However, if one wishes to describe the shape with control nodes (assuming for instance linear

interpolation between the nodes to generate the whole curve), preventing the presence of loops

is not as straightforward. A method to deal with this issue is presented in appendix D.1.

Finally, the optimization problem under consideration can be summarized as follows:

min
x

e
(
x, p(x)

)
s.t.

{
l 6 x 6 u

Γ(x) is injective
(3.3)

where Γ(x) is the boundary shape corresponding to the shape parameters of x. This problem

falls into the general category of constrained nonlinear optimization problems.
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3.2.2 Continuous vs. discrete representation of the search space

Under the form given in (3.3), the optimization problem is not complete yet: one still needs to

define the search space, that is the set which the parameters x belong to. This basically raises

the question of how to represent the parameters. This question is extremely important since it

strongly determines which type of optimization method can be used.

One can first assume that the parameters can vary continuously, and therefore the search

space can be here identified to R
N . Under the assumption of sufficient smoothness of the state

with respect to x and of the objective function with respect to the state, one can naturally

introduce the notion of sensitivity (or derivative, or gradient) which quantifies how much the

state and the objective function are changed when a parameter is varied, which is valuable infor-

mation in an optimization context. Sensitivity-based optimization methods, as detailed in [147],

are particularly well-suited in this case, although one could also use derivative-free optimization

methods such as the Nelder-Mead method [148]. The main drawback of this kind of approach

is that it can only find a local solution of the problem (3.3), since only a neighborhood of the

initial guess is searched. Considering several randomly chosen starting points can nevertheless

help in exploring the domain in a more “global” way.

However, one could follow a different approach and allow each parameter to take only a set of

discrete values, for instance corresponding to a set of existing commercially available materials

or products, or by approximating a continuous search space with a discretization. In this case,

one cannot define the derivative, and therefore the optimization will have to do without this

information. Evolutionary optimization methods, such as genetic algorithms, are particularly

well-suited for this purpose, although they do not necessarily require a discrete search space.

These methods intrinsically allow a more global search of the set of possible values, but because

one cannot use the sensitivity information any more, the number of evaluations required to solve

the problem (3.3) would be much larger than in the previous case, particularly if there is a large

number of parameters [146].

For our application, it has been chosen to use a continuous search space for the purpose of

being as general as possible. Indeed, admittance parameters - which usually are geometrical

characteristics of a device or physical properties properties of a material - as well as shape

parameters - would they be control node coordinates or geometrical features - are more naturally

described with continuous parameters. Besides, as we will see, the sensitivity information can be

obtained efficiently in this context, and therefore it makes sense to take advantage of the speed

of gradient-based optimization methods, which intrinsically require a continuous representation

of the parameters.

3.2.3 Optimality conditions for gradient-based optimization

Assuming a continuous search space - which means x ∈ R
N - and a sufficiently smooth objective

function and state equation, one can characterize a solution x∗ of the problem (3.3) (again

meaning here a local solution) by some conditions that should be satisfied at this point. First,

if there was no constraint, the objective function should be stationary at a local solution, which

means any variation of the parameters away from the solution should not modify the value of e
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to the first order. This implies:

(∀i ∈ [1 : N ])
de

dxi

(
x∗, p(x∗)

)
= 0

with d/dxi is here the total derivative - as opposed to ∂/∂xi which is the partial derivative,

meaning the derivative taken while assuming other arguments are kept constant.

However, in general, in the presence of constraints, the stationary condition should be modi-

fied to the so-called Karush-Kuhn-Tucker (KKT) conditions [147] which require the introduction

of a set of Lagrange multipliers. The KKT conditions are however not sufficient to guarantee a

local minimum: since they are only based on first order derivatives, those conditions would be

valid both at a local maximum and a local minimum. Introduction of second order conditions,

mostly related to the positiveness of the Hessian, can help characterize a local minimum as

opposed to a maximum [147].

3.2.4 A few comments regarding practical applications

However, one should point out that those necessary optimality conditions are usually not directly

solved in practice. Instead, iterative approaches are followed, starting from an initial guess of

the solution x0 and recursively proceeding as follows: from the current estimate xk, build a new

estimation xk+1 based on the available information at xk, typically the gradient or the Hessian, as

we will see in the next section. One can also point out that evolutionary optimization methods

do follow an iterative process as well, but at every step a whole “population” of points are

considered, instead of just one. From this general statement it makes sense that evolutionary

methods fundamentally need many more function evaluations than gradient-based methods.

Therefore, when a function evaluation is expensive - as in the case here, since one has to solve

several diffraction problems in order to calculate the attenuation provided by the barrier -

evolutionary methods will require a much larger computation time. On the other hand, these

methods will be well-suited in cases where function evaluations are fast but gradient calculations

are time consuming.

3.3 Overview of some common optimization algorithms

We briefly review here some common optimization algorithms that can be used to tackle opti-

mization problems such as the one under consideration.

3.3.1 Derivative free optimization methods

A popular continuous search space method is the so-called Nelder-Mead local search [148].

Although this algorithm is a continuous search space method, it does not require the knowledge

of the gradient. Instead, at each iteration, one considers a set of points - which makes this

method somewhat similar to an evolutionary optimization method - which forms a “simplex”,

and from the knowledge of the objective function value at each point, the algorithm replaces
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the “worst” point with a new one by deforming the simplex (using a contraction, expansion or

reflection of the worst point with respect to the center of the other points).

Due to its simplicity this algorithm has been widely used, for instance by Baulac et al. [128]

in the context of multiple edge highway noise barriers, in which the authors coupled a genetic

algorithm to a Nelder-Mead local search in order to improve its efficiency.

3.3.2 Sensitivity-based (gradient-based) methods

As stated in section 3.2, the sensitivity of the objective function with respect to changes of each

parameter at a given point is a valuable piece of information in an optimization algorithm. This

information can then be exploited in specific methods to reach a local solution in an efficient

manner. However, for the derivative to make sense, one needs the objective function to be smooth

enough, although in most physics-based calculations and for simple enough objective functions,

this assumption is usually satisfied. Again one can point out that, although sensitivity-based

methods are limited to local minimum finding, on can add some randomness in the search by

considering several random starting points in order to make the search more global.

In this section we are assuming the general framework of an iterative method as briefly

explained in section 3.2.4. Basically, given an estimate xk of the solution, we assumed the state

p(xk) is known as well as the objective function value e
(
xk, p(xk)

)
, and we wish to build a new

estimate xk+1, based on the gradient at xk. We first explain how to calculate this gradient in

a general manner. For simplicity, the current estimate, associated state and objective function

value will be simply written here as x, p and e
(
x, p
)
.

3.3.2.1 Gradient calculation

Given the form of the objective function e(x, p), for any value i ∈ [1 : N ], the sensitivity of e

with respect to xi has two terms, one related to the explicit dependence on the parameters xi,

and one related to the implicit dependence of the state p on xi, which can be formally written

as:
de

dxi
=

∂e

∂xi
+

∂e

∂p
· dp

dxi
(3.4)

where ∂e/∂p should be understood as a differential form acting on pressure fields and dp/dxi is

another field characterizing how much the pressure field depends on the parameter xi.

The differential ∂e/∂p depends on the form of the objective function but will be rather

simple for our application (see in section 4.1.2). In this section we will simply assume that this

derivative is explicitly known. Now consider the remaining term dp/dxi. As it has been pointed

out in section 3.2.1, the function p(x) is implicit since p is the solution of the state equation

(3.1) in which the parameters x intervene. The derivative is therefore not as straightforward

to express. We now present two possible approaches to calculate the derivative de/dxi, namely

implicit differentiation and the adjoint state approach.

Implicit differentiation As the state is defined as the solution of an equation such as equation

(2.12), one could attempt to define as well the field dp/dxi to be the solution of another equation.
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This can be achieved by considering the derivative with respect to xi of the state equation, which

formally yields:
dL

dxi
(x) [p(x)] + L(x)

[ dp
dxi

(x)
]
=

db

dxi
(x)

This can be rearranged as follows:

L(x)
[ dp
dxi

(x)
]
= b̃(x) with b̃(x) =

db

dxi
(x)− dL

dxi
(x) [p(x)] (3.5)

Assuming one can express the derivatives of the operator L and right-hand side b, since p is

already known, the right-hand side of equation (3.5) is explicitly known as well, and therefore

equation (3.5) has the same form as the state equation, with a different right-hand side b̃ and

the unknown being the field dp/dxi. This equation can be solved using the same method as the

state equation, and therefore one can obtain the derivative field dp/dxi, and recalling equation

(3.4) the sensitivity of the objective function de/dxi. This method is referred to as implicit

differentiation.

The main drawback of this approach is that for each parameter xi, i ∈ [1 : N ], in order

to obtain the term dp/dxi, one needs to solve equation (3.5), which in our context means to

solve a scattering problem, and can therefore be rather expensive regarding computation time.

The whole gradient calculation therefore requires one to solve a diffraction problem N times

(actually N +1 times since one problem had to be solved first to calculate the state p). If there

are a large number of parameters, this approach would yield an excessive computation time.

Adjoint state approach Another approach consists of considering the state p as a different

variable and treating the state equation as a constraint relating x and p. We here follow the

development of Allaire [146], although the approach given here is essentially formal, without any

mathematical details regarding the existence and the appropriate spaces of the different terms.

A slightly more rigorous development specific to our application will be given in chapter 4.

Following a classical approach in constrained optimization, one can then introduce an asso-

ciated Lagrangian, defined for arbitrary fields p̂ and q̂, which can be taken as:

L(x, p̂, q̂) = e(x, p̂) + c(x, p̂, q̂) with c(x, p̂, q̂) = 〈L(x)[p̂]− b(x), q̂〉

where 〈., .〉 is a product defined between two pressure fields (it could be for instance a scalar

product, but in the following derivation this is a not a requirement). The function c has been

chosen to vanish when evaluated at the solution of the state equation p(x), and this for any field

q̂:

(∀q̂) c
(
x, p(x), q̂

)
= 0

This allows one to rewrite the objective function as:

(∀q̂) e
(
x, p(x)

)
= L

(
x, p(x), q̂

)
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Now recalling equation (3.4), replacing the objective function with the Lagrangian yields:

(∀q̂) de

dxi

(
x, p(x)

)
=

∂L

∂xi

(
x, p(x), q̂

)
+

∂L

∂p

(
x, p(x), q̂)

)
· dp

dxi
(x) (3.6)

Now, since this equation (3.6) holds for any field q̂, one can choose a constraint to be satisfied

by this field to simplify the expression. Let us define the adjoint state q(x) as the solution of

the following equation:
∂L

∂p

(
x, p(x), q(x)

)
= 0 (3.7)

Substituting q̂ = q(x) in equation (3.6) hence yields:

de

dxi

(
x, p(x)

)
=

∂L

∂xi

(
x, p(x), q(x)

)

We therefore got rid of the implicit dependence term dp/dxi and expressed the total derivative

as a partial derivative. Recalling the form of e and c, one can then write:

de

dxi

(
x, p(x)

)
=

∂e

∂xi

(
x, p(x)

)
+

∂c

∂xi

(
x, p(x), q(x)

)

=
∂e

∂xi

(
x, p(x)

)
+
〈 dL
dxi

(x)
[
p(x)

]
− db

dxi
(x) , q(x)

〉

=
∂e

∂xi

(
x, p(x)

)
− 〈b̃(x) , q(x)〉 (3.8)

with b̃ defined as in the previous paragraph. Again, all the terms appearing in this last equation

are explicitly known, once the state and adjoint state are calculated.

Finally, the adjoint state equation (3.7) can be further written out. First one can define

L(x)† the pseudo-adjoint operator of L(x), which by definition satisfies the property:

(∀p̂, q̂) 〈L(x)[p̂], q̂〉 = 〈L(x)†[q̂], p̂〉

This allows one to calculate explicitly the term ∂c/∂p:

∂c

∂p

(
x, p̂, q̂

)
=

∂

∂p
〈L(x)[p̂], q̂〉 = ∂

∂p
〈L(x)†[q̂], p̂〉 = L(x)†[q̂]

The adjoint state equation hence becomes:

L(x)†[q(x)] = −∂e

∂p

(
x, p(x)

)
(3.9)

Basically the adjoint state satisfies an equation involving the pseudo-adjoint of the operator

involved in the state equation and a different right-hand side, related to the form of the objective

function. In case of acoustic scattering, it turns out that the operator L is symmetrical, which

means L† = L, and therefore the adjoint state equation is another acoustic scattering problem

to solve [149, 150].

Basically, to calculate the sensitivity of e with respect to each parameter xi, one needs to
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solve the state equation (3.1) and the adjoint state equation (3.9) to calculate the state and

adjoint state p(x) and q(x), and then apply equation (3.8). The main advantage of the adjoint

state approach, as opposed to the implicit differentiation method, is that once the state and

the adjoint state are known, calculation of the sensitivity with respect to each parameter xi

is explicit, and usually represents a negligible computation time. This method is therefore

well-suited to gradient-based optimization algorithms with a large number of variables.

3.3.2.2 Line search methods

We have described in section 3.3.2.1 two approaches to calculate the gradient of e for a given

set of parameters x. Recalling the iterative framework of gradient-based methods exposed in

section 3.2.4, we are now able to specify how a new iterate xk+1 can be generated from the current

estimate xk, based on the gradient. Following Nocedal [147], we define ek = e
(
xk, p(xk)

)
as the

current objective function value and gk = ∇e
(
xk, p(xk)

)
the current gradient vector.

One first approach is to search the new iterate along a given direction - or line - from the

current iterate, hence the name line search method. The general expression for the new iterate

is in this case:

xk+1 = xk + αk uk

where uk is the search direction, which is a vector in R
N , and αk a positive step-size.

In the steepest descent method, the search direction is chosen to be the opposite of the

gradient vector uk = −gk. Indeed, in this case one can theoretically ensure that for a small

enough step-size, the value of e at the new iterate ek+1 will be smaller than ek. The value of the

step-size can be fixed a priori, or it can be found iteratively to ensure a sufficient decrease of the

objective function (as specified for instance by the Armijo conditions [147]). A simple way to

find an appropriate value of the step-size is the so-called backtracking line search approach [147],

which consists of choosing a rather large step-size and decrease it iteratively until the condition

is met.

In Newton’s method, the search direction is given by uk = −[Hk]
−1

gk, with Hk the Hessian

matrix at the current estimate. This direction is referred to as the Newton direction. It comes

from locally approximating the function by a quadratic model and minimizing it, and technically

requires the Hessian to be positive definite to be properly defined. The convergence rate of

Newton’s method is much faster than that of the steepest descent method. However calculating

the Hessian in this context can be rather cumbersome, even with an adjoint state approach.

Besides, a unit step-size αk = 1 is usually assumed in Newton’s method.

In quasi-Newton methods, one uses an approximation of the Hessian Bk instead of the true

one, which is updated after each iteration based on the current and previous values of the

gradients and iterates. The search direction is then uk = −[Bk]
−1

gk. The update is chosen to

be computationally effective, for instance by adding a low-rank matrix. A popular update is

the so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula, which guarantees symmetry

and positiveness of the approximate Hessian under some conditions [147]. One should point out

that this method still requires a good approximation of the initial matrix B0, which might not

be easy to achieve. A possibility is to use finite differences, although this can be rather time
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consuming (N evaluations of the gradient) and inaccurate.

Bounds constraints and projection The different approaches explained in this section are

technically meant to be used in an unconstrained optimization context. However, they can be

adapted rather easily in the case of bounds constraints, which is one type of constraints we have

considered in problem (3.3). Indeed, even if the current iterate xk satisfies the constraints, there

is no guarantee the new iterate will. A possibility is to project the new iterate in the feasible

domain, as done by Allaire [146]. Such a projection operator P is difficult to characterize in

general, but has a simple expression in the case of bounds constraints:

P(x) = min
(
max(x, l) , u

)

where the min and max values are taken element per element. The new iterate that satisfies the

bounds constraints can then be written as:

xk+1 = P
(
xk + αk uk

)

3.3.2.3 Examples of general methods: the Sequential Quadratic Programming

(SQP) and the interior-point algorithm

The methods described in the previous sections have been mostly developed to solve uncon-

strained problems. They are hence not appropriate when dealing with complicated constrained

problems, although they can be used as building blocks for more advanced methods. Two impor-

tant methods which are able to handle most nonlinear constrained optimization problems are the

Sequential Quadratic Programming (SQP) method and the interior point algorithm [147]. The

SQP basically consists of locally approximating the objective function with a quadratic model

and linearly approximating the constraints. This generates the so-called SQP subproblem, which

can be solved for instance using a line search approach.

In the presence of inequality constraints only, the interior-point algorithm consists in a se-

quence of unconstrained minimizations of a perturbed function equal to the objective function

plus a logarithmic barrier term related to the constraints and depending on a decreasing param-

eter. Although the first minimizer usually does not satisfy the constraints, the sequence usually

converges to a solution that strictly satisfies them (it hence lies in the interior of the feasible

domain).

Being among the most general gradient-based algorithms to solve nonlinear optimization

problems, those methods have been widely used, although their implementation does rely on

the different algorithms previously introduced in this section. They are for instance available as

part of the Optimization Toolbox of the Matlab software [151].

3.3.3 Global search methods

We now briefly introduce the basic idea of a few global search methods, which are fundamentally

different than sensitivity-based methods. First, evolutionary methods are presented. One can

recall that those methods typically use a discrete search space, as stated in section 3.2.2, which
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in the case of scattering surface admittance and shape optimization would require one to define

a finite set of feasible values for each parameter. They however intrinsically allow a global search

of the feasible set, as opposed to the local search provided by gradient-based methods.

Those methods are iterative, as the sensitivity-based methods are, but at each iteration a

whole set - the population - of points - the individuals - in the search space are considered.

Each iteration step is referred to as a generation. The process basically follows the principles of

evolution introduced by Darwin at the end of the 19th century: natural selection of individuals

well-adapted to their environment and renewal of genetic information by probabilistic processes.

We now introduce the framework typically followed by an evolutionary method, as explained

in [146]. The population is initialized, typically by uniform random selection in the feasible set.

Each individual is then evaluated, which means the objective function is calculated for each

individual. Based on their performance, a part of the population (the most “well-adapted”)

is selected. Mutation and crossover probabilistic operators are then applied to the selected

individuals to generate new individuals - the children - which are evaluated as well. From the

children and the parents, a new population is selected (this selection can be deterministic or

probabilistic), both from the parents and the children. The algorithm is then repeated until

convergence.

Different evolutionary methods exist - for instance genetic algorithms or evolutionary strate-

gies -, which mostly differ in the way the mutation, crossover and selection operators are defined.

We refer to the abundant literature on the topic, for instance the book by Eiben and Smith [152].

One can also mention the simulated annealing method, which is technically not evolutionary,

but is however based on a random approach to efficiently explore the search space (controlled

by a so-called temperature history), inspired from the physical process occurring during the

cooling of a metal. At each iteration, a set of points is randomly generated in the neighborhood

of the current iterate. Then the new iterate is chosen using a probabilistic selection, based

on performance and a Boltzmann-type probability factor controlled by the temperature, which

allows one to retain a point with worse performance as the new iterate. The idea of such a

process is to prevent the algorithm from being “stuck” close to a local minimum, and therefore

the chance to find a global solution is much higher.

3.3.4 General comments on the utility of global minimum finding

It is really the randomness introduced in both methods - either in the mutation/crossover/selection

operators for evolutionary methods, and probabilistic acceptance of the new iterate in the sim-

ulated annealing - that allows them to globally search the feasible set. However, the possibility

of reaching the actual global optimum may depend significantly on the problem under consid-

eration as well as the choice of the parameters involved in the algorithm (number of selected

individuals, population size, probability of mutation, convergence criterion, temperature history,

etc...), and there is therefore no guarantee the global minimum will be found. Besides, one could

add that, since the objective function - in our case for instance a weighted attenuation due to the

low height noise barrier - is calculated under many simplifying assumptions due to the modeling

of the physical problem, one could question the interest of finding “the” global solution of the
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problem, which would truly be optimal in one specific context (for a noise barrier this could

refer to source position, spectrum, receiver positions, surrounding geometrical features, etc...).

One instead could seek an optimized solution - a solution with a better performance than the

one we started with - as opposed to an optimal solution, which is precisely what local search

methods achieve. Indeed it is likely that an optimized solution would stay optimized in a slightly

different context (meaning with a better performance than obvious or simple solutions), whereas

an optimal solution may not stay optimal (it might not be the best solution any more). This

is another reason why using local gradient-based optimization methods seem quite appropriate

for our application.

3.4 A review of shape and admittance optimization applications

in acoustic scattering

The methodology introduced in this chapter has been extensively used in the past few decades

for many different applications, mostly divided in two categories: design optimization of a

given device (such as a cantilever beam, an airfoil, a noise barrier, an acoustic liner, etc) and

identification of scatterers and acoustic properties of surface treatments based on measured

data, which has been mostly referred to inverse scattering in the case of shape identification

or admittance eduction in the case of admittance identification. However, due to its obvious

industrial applications, one should recall that the field of optimal design has been developed

and applied in many areas other than acoustic scattering. A few examples of those applications

include reduction of heat conduction [153], sensitivity analysis [154] and optimized design and

feature positioning of elastic solids [146, 155–158], wing drag optimization [159] or optimization

of truss structures [160]. There is an extremely abundant literature on the topic, which is why

we will mostly focus on applications related to acoustic scattering.

3.4.1 Admittance eduction

Admittance eduction refers to any application in which one wishes to identify in situ the acoustic

characteristics - the admittance - of a treatment already implemented in a given context, from

the knowledge of another quantity, such as the pressure value at a set of receivers. Such an

identification can be achieved by minimizing the difference between predicted data - based on a

trial set of parameter values - and measured data, and therefore the different methods introduced

in the previous section can be used in this context.

Admittance eduction has been applied for instance to identify the impedance of the surface

treatments in a room using the BEM and a SQP approach [161], mostly in the low frequency

range (due to the computational load of the BEM). Besides, there has been several studies on

duct liner admittance eduction, mostly in the presence of flow, with obvious application to air-

craft engine noise control. Several researchers at NASA Langley [162–164] tackled this problem

using a finite element method for prediction of the sound field in the duct, with or without flow.

Of course, the frequency range in which one can educt the admittance is strongly dependent on

the numerical method used to predict the sound field and the associated computational cost.
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3.4.2 Optimized design of admittance

The other natural application of admittance optimization is the improved design of noise control

devices. For instance, Chang et al. used both a genetic algorithm [165] and a simulated annealing

approach [166] to design an optimized sound absorber (micro-perforated plate, porous layer and

back cavity) at a given frequency. Simulated annealing was also applied by Ruiz et al. [167] to

design multilayer micro-perforated panels with good absorption properties on a wide frequency

band (1-6 kHz).

The acoustic liner community also used admittance optimization methods to design new ef-

ficient liners. Approaches mostly differ in the used numerical model and the assumed geometry,

for instance semi-analytical modal representation in annular nozzles [168] or finite element cal-

culation applied to aircraft engine nacelles [169]. One can also refer to the work of Reimann [170]

who compared several optimization methods (both gradient-based and evolutionary) to design

liners in aircraft engine nacelles, mostly using the Equivalent Source Method (ESM) to predict

the sound field. Such optimized liners can induce a significant attenuation of the radiated noise.

Finally, a few studies also considered noise barriers. Other than the already mentioned

studies by Baulac et al. [4, 6, 128], one can mention Thorsson’s work [9, 10], who specifically

studied the effect of the admittance for low-height barriers, either using an ESM method [9]

or the BEM coupled with a SQP algorithm [10]. Particularly, the author showed that a soft

admittance can strongly enhance the insertion loss of the barrier, although the results were

derived only at two selected frequencies only (200 and 400 Hz). Similar conclusions were drawn

from other studies [132–134].

3.4.3 Scatterer shape optimization and reconstruction

Several studies following optimization approaches in order to design or reconstruct the shape of

acoustic scatterers - including but not limited to noise barriers - have been published. The two

main types of optimization outlined in this chapter, namely evolutionary and sensitivity-based

methods, have both been used in this context.

Evolutionary methods, especially genetic algorithms, have been used extensively to design

highway noise barriers [101, 128, 171–173] and specific sonic crystals used as low-height noise

barriers [11, 174]. One should also point out that the simulated annealing algorithm has been

applied as well in a more engineering-type configuration [175]. Depending on the context, the

improvement of the optimized shape barriers can be an additional 5 dB of attenuation compared

to a simpler shape. One should point out however that in the given references, evolutionary

optimization methods were applied for barriers represented in a very specific way - succession of

wells in [101], binary (filled/empty rectangles) representation in [171], multiple-edge geometry

in [128] or parallel arrangement of cylinders in the sonic crystal case [11].

Sensitivity-based methods have been used as well, for instance using the boundary element

method [176–178] applied to 2D and 3D shape sensitivity analysis, or the finite element method

to design a muffler along a duct [179]. It has been applied as well for noise barrier design using

an engineering calculation method, a pre-calculated table of values and a linear interpolation

[180].
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Those methods have also been applied in the context of inverse (or shape reconstruction)

problems, for instance to identify the locations and shape of unknown scatterers based on a

measured diffraction pattern using shape sensitivity [149, 181]. This has been extended to the

identification of both the shape and the admittance of a scatterer using a level-set method [150].

3.4.3.1 Topological approaches

We briefly mention another approach, radically different from what has been presented above,

which is the so-called topology optimization. The idea is to represent the scattering object not

as a boundary but as a distributed function quantifying the presence or not of the scatterer,

coupled to a level set method. This allows the topology of the scatterer - that is the number of

disconnected obstacles - to vary as well, for instance by adding extra scattering bodies, based

on the so-called topological derivative (or sensitivity). Those methods have been applied in

the context of noise barriers [182–184], although these studies mostly focused on low frequencies

(below 200 Hz). Topological sensitivity has been applied successfully as well in inverse scattering

applications [185, 186].

3.4.4 Conclusion of the review

Comparing the results obtained by these different approaches to optimally design acoustic scat-

terers such as noise barriers, one can notice that the obtained designs have very different charac-

ters if an evolutionary method is used as opposed to a sensitivity-based method. This suggests

that both approaches, with their pros and cons, can be successfully used but in somewhat dif-

ferent applications: a shape optimization problem assuming a discrete representation of the

shape may be more conveniently tackled using an evolutionary method, whereas if one is more

interested in continuous representations, sensitivity-based methods (including topological meth-

ods) may be more appropriate. The question of computational load is also important since

it greatly influences the choice of the calculation method: complicated environments typically

require simple calculation methods whereas more accurate methods such as the BEM have been

limited mostly to low frequency applications. Simplifying the considered model with appropri-

ate assumptions seems therefore paramount to apply optimization methods to low-height noise

barriers over a wide frequency range, which is the purpose of this work.

3.5 Details of the chosen optimization algorithm

We finally present more details about the chosen optimization method that has been applied to

our application: full design optimization of a low-height noise barrier (including surface treat-

ments and shape) in the most general fashion possible. As stated previously, the choice of a

continuous search space to describe the parameters seemed like a more appropriate choice, and

since the sensitivity information can be obtained conveniently following for instance the adjoint

state approach (this will be detailed in chapter 4), it has been decided to use a line-search

sensitivity-based method. Using the adjoint state method also allows to use a large number of

variables, and therefore it has been decided to describe the shape in a general manner, using
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an arbitrary set of control nodes (which is the way a shape is defined in the BEM software MI-

CADO introduced in chapter 2). Admittance parameters optimization, which has been studied

extensively in [1], can be achieved as well with this approach.

One could first try to use the same minimization method to find optimized values of admit-

tance parameters and shape parameters. However, it has been chosen in this work to differentiate

the optimization method between the two types of variables. The reason is essentially related

to the fact that the two types of variables are subject to different constraints. Indeed, if one

refers to the vector of admittance parameters xβ and the vector of shape parameters xΓ, the

optimization problem (3.3) can be written as:

min
xβ ,xΓ

e
(
xβ ,xΓ, p(xβ ,xΓ)

)
s.t.





lβ 6 xβ 6 uβ

lΓ 6 xΓ 6 uΓ

Γ(xΓ) is injective

with lβ ,uβ , lΓ,uΓ referring to lower and upper bounds corresponding either to the parameters

xβ or xΓ. Under this form, it is clear that the admittance parameters are minimized under

bound constrains only, whereas the shape parameters are minimized under bound constraints

and the much more restrictive shape injectivity constraint.

Now it would make sense to take advantage of the convergence speed provided by quasi-

Newton methods to perform the minimization, using for instance the SQP minimization routine

available in the software Matlab. However, as pointed out in section 3.3.2.2, quasi-Newton

methods naturally use a unit step size, which means there is little control on how much the shape

is modified from one step to the next. In particular, it would be more difficult to ensure that

the shape injectivity constraint is satisfied, which is a rather cumbersome test (see the details

of this test in appendix D.1). On the other hand, the feasible set of admittance parameters is

essentially a hypercube - which is the type of set corresponding to bound constraints only - and

therefore using an SQP routine raises no issues.

A simple steepest descent method, however, leaves more freedom in the choice of the step

size (through the backtracking algorithm), which makes it possible to ensure the injectivity

constraint in a more convenient way. This method has the main disadvantage to be slower than

quasi-Newton methods.

To ensure the shape injectivity constraint but to keep convergence speed as fast as possi-

ble, it has therefore been decided to differentiate the minimization with respect to admittance

parameters, which will be done using a SQP method (implemented in Matlab), and the mini-

mization with respect to shape parameters, which will be done with an adapted steepest descent

method. Both types of variables will therefore be optimized alternatively, until convergence.

The main framework of the admittance and shape optimization algorithm is outlined in figure

3.1. Typically the convergence tolerance can be taken as ǫ0 = 10−4. Details of the adapted

steepest descent method as well as the loop detection test are given in appendix D.

57



REVIEW OF OPTIMIZATION METHODS AND THEIR APPLICATION TO
SCATTERER SHAPE DESIGN AND INVERSE SCATTERING

Given ǫ0 (convergence tolerance)

Given x
0
β (initial admittance parameters), x0

Γ (initial shape parameters)

Evaluate initial objective function value and gradient: e0 = e
(

x
0
β ,x

0
Γ

)

, g
0 = ∇e

(

x
0
β ,x

0
Γ

)

i = 0 , x
i
β = x

0
β , x

i
Γ = x

0
Γ , eiΓ = eiβ = e0 , g

i = g
0

while
(

|eiβ − eiΓ| > ǫ0 or i = 0
)

Perform the admittance optimization (SQP): find x
i+1
β

Update objective function value and gradient: ei+1
β = e

(

x
i+1
β ,xi

Γ

)

, g
i+1
β = ∇e

(

x
i+1
β ,xi

Γ

)

Perform the shape optimization (steepest descent): find x
i+1
Γ

Update objective function value and gradient: ei+1
Γ = e

(

x
i+1
β ,xi+1

Γ

)

, g
i+1
Γ = ∇e

(

x
i+1
β ,xi+1

Γ

)

i← i+ 1

end

Figure 3.1: Main outline of the shape and admittance optimization algorithm.

3.6 Conclusion

Optimization methods have been widely studied and applied to many different applications,

which explains why numerous numerical methods are available to tackle optimization problems.

We here reviewed some of the most common methods, among which one can define two main

categories: sensitivity-based methods and evolutionary methods. Evolutionary methods do

not require the knowledge of the gradient and allow a rather global search, typically on a

discrete space, at the cost of a large number of objective function evaluations. On the other

hand, sensitivity-based methods require a continuous feasible set, a sufficiently smooth objective

function and the knowledge of the gradient, and therefore are fundamentally less general than

evolutionary methods, although they have been applied to a large range of problems including

acoustic scatterer optimization. They are however faster than evolutionary methods but are

only able to find local solutions to the optimization problem.

Sensitivities (the gradient) may be computed either by implicit differentiation, which requires

one to solve one extra diffraction problem for each parameter, or by the adjoint state approach,

which only requires one to solve one extra diffraction problem regardless of the number of

parameters, which makes this adjoint state method much more efficient computationally.

For the different reasons pointed out across this chapter (more natural continuous represen-

tation of the admittance and shape parameters, speed of sensitivity-based methods, possibility

to calculate the gradient without too much increase of the computation time), we therefore chose

to use a sensitivity-based method to optimize the surface treatment and the cross-sectional shape

of the considered noise barrier. Besides, the adjoint state approach makes it possible to describe

the shape of the barrier in a general manner by a potentially large set of control nodes.

An algorithm coupling two different methods to perform the optimization with respect to

admittance parameters and shape parameters is hence proposed. This algorithm uses a classical

SQP approach and an adapted steepest descent, which provides a good compromise between

achieving good convergence speed and satisfying constraints at every iteration.
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Chapter 4

Shape and admittance sensitivity

expressions

In this chapter we derive the expressions of the sensitivity with respect to the parameters

describing the admittance and the shape of the noise barrier, which can then be used in a

sensitivity-based optimization algorithm as exposed in chapter 3. Numerical implementation of

these theoretical expressions is discussed and validated against finite difference calculations.

4.1 Barrier implementation and modeling assumptions

4.1.1 Physical assumptions and geometry
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Figure 4.1: Comparison of third octave spectra of
the different sources identified by Pallas et al. [26]
and their incoherent summation.
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Figure 4.2: Geometrical configuration for the implemen-
tation of the low-height tramway noise barrier. Dotted line:
idealization of the tramway side as a vertical baffle.

First we review the modeling assumptions of the problem under consideration: the optimiza-

tion of the performance of a tramway low height noise barrier. Using simplifying assumptions is

indeed convenient in an optimization application since the objective function will be evaluated

many times, and therefore decreasing the computation time of each evaluation is worth it, even

if this induces a slight decrease of accuracy.

The atmosphere is assumed homogeneous with a speed of sound of c0 = 343m/s. The source

is idealized as an infinite line source located on the ground with a spectral content given by the

incoherent sum of the rail track and bogie contributions in [26] (see in figure 4.1). One can infer

59
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that most of the A-weighted acoustic energy is contained in the frequency range 100-2500 Hz,

which will be the frequency range of study. It is also assumed that the geometry is invariant

along the axis of the track, which makes the problem purely two dimensional. This assumption

has been shown [28] to be correct when predicting excess attenuation at single frequencies due

to point sources, which is what we will use in the calculation of the broadband attenuation.

The presence of the tramway will cause the sound to bounce on its surface and diffract at

the roof edge and at the gap between the carriage and the ground. Those geometrical details

could be modeled with the BEM, but one can also idealize the tramway side as an infinite rigid

vertical baffle (see in figure 4.2). This is mathematically equivalent to introducing an image

barrier, symmetrical to the original one with respect to the tramway side surface, which greatly

reduces the mesh surface and therefore the computation time. The barrier and its image with

respect to the vertical baffle are represented by the boundary Γ, which separates the 2D plane

as an interior domain Ωi and an exterior domain Ωe. Finally, the ground is modeled as rigid,

which represents correctly many urban-like surfaces.

The barrier cross section is assumed to lie in a one meter wide square, half a meter away

from the tramway (see in figure 4.2). The surface of the barrier is assumed locally reacting and

its acoustical behavior described in terms of a normalized acoustic admittance β.

The receiver locations (Rm) have been chosen to represent a range of possible locations of

pedestrian ears: horizontal distance from the bottom-right corner of the barrier between 2m

and 5m, and height between 1m and 1.8m (see again in figure 4.2).

4.1.2 Objective function

The purpose of this work is to maximize the insertion loss calculated at the receivers by changing

the shape of the barrier. The 2D BEM, implemented in the software MICADO developed at the

CSTB by Jean [120], has been used for this purpose. The BEM provides a way to calculate the

complex pressure amplitude p(R, f) at each frequency and at each receiver point for an arbitrary

geometry. One can then define an average attenuation across all receivers at the frequency fn:

An =
P (fn)

P in(fn)
with





P (fn) =

[∑

m

|p(Rm, fn)|2
] 1

2

P in(fn) =

[∑

m

|pin(Rm, fn)|2
] 1

2

(4.1)

where p = pin + psc is the total pressure field, pin is the incident field (field without the barrier)

and psc the scattered field. P is an average pressure across the receivers and P in the incident

pressure which is a normalizing constant independent of the barrier geometry. Then, a broad-

band attenuation based on the sound power levels Lw shown in figure 4.1 and the attenuations

at each frequency is considered. In order to have a somewhat faster evaluation of the objective

function (which will be called many times in the optimization) but a good evaluation of the

third octave insertion losses, we consider a few frequencies per third-octave between 100 and

2500 Hz (typically 4 or 10, depending on the context). For each third-octave band, we define an
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amplitude-like quantity S = 10Lw/10, which is assigned to all the frequencies in this third-octave

band. Recalling equation (1.1), the broadband attenuation is then given by:

e =

∑
n SnA

2
n∑

n Sn
(4.2)

which is similar to the objective function considered by other authors [4, 11]. We would like to

minimize the function e, which only depends on the properties of the barrier, that is its geometry

and its admittance. One can also calculate from the objective function a broadband insertion

loss for the considered source spectrum in dB(A) defined by IL = −10 log e.

The purpose of this chapter is to derive explicit expressions of the sensitivity of the objective

function with respect to the different parameters describing the low-height barrier, namely its

shape and the parameters describing the surface admittance. This will allow us to use this

information in a sensitivity-based optimization method, as described in chapter 3.

4.2 Formal definitions of the gradient with respect to the ad-

mittance and the shape

First we quickly introduce the mathematical concepts used in the calculation of the derivative of

the objective function with respect to changes in the admittance and/or the shape of the barrier.

This section is not meant to be completely rigorous from a mathematical standpoint, especially

concerning the spaces which the different variables belong to and concerning the behavior at

infinity which requires specific attention as mentioned in chapter 2, but simply to give the

reader an idea of the concepts needed. For a more rigorous analysis, one can refer to other

works [146, 150].

4.2.1 Field derivative

First, we need to define the gradient with respect to the pressure field, and therefore we now

introduce the concept of field derivative. Let D be the set of piecewise sufficiently smooth

complex functions defined on Ωe (D can be for instance H1(Ωe)). The dot notation u · v refers

to the integral of the product of two functions in D (which is similar to a duality product):

u · v =

∫

Ωe

uv dΩ

This product is technically not a scalar product (since u · u is not a positive real number), but

this definition is sufficient for the purpose of this work.

Let F be a complex functional defined on D. F is said to be differentiable in f ∈ D if there

exists a linear form Lf such that:

(∀g ∈ D) F (f + g) = F (f) + Lf (g) + o
(
||g||

)
(4.3)

where ||.|| is an appropriate norm for the space D (it could be for instance the H1-norm). In
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this context, one can then identify the linear form Lf to a complex function dF/df (called the

“gradient” or the “field derivative” of F ) such that:

(∀g ∈ D) Lf (g) =
dF

df
· g (4.4)

Actually the function dF/df could be a generalized function, and in this case the definition is

to be taken in a distribution sense. Also, if a complex functional F is linear and has the form

F (f) = f0 · f then the derivative is simply given by dF/df = f0. When the functional has

several arguments, one can naturally use the notion of partial functional derivatives, written as

∂F/∂f .

In the particular case when F takes real values, the gradient term Lf (g) has to be real as

well, and therefore it could be replaced by its real part in the definition (4.3). So, if F takes real

values, it is equivalent to state that F is differentiable in f if there exists a complex function

dF/df such that:

(∀g ∈ D) F (f + g) = F (f) + Re
(dF
df

· g
)
+ o
(
||g||

)
(4.5)

Several properties of usual derivatives can be extended to the case of field derivatives. For

instance, for F a complex differentiable functional on D, one can also show that:

d|F |2
df

· g = F ∗
(dF
df

· g
)
+ F

(dF
df

· g
)∗

= Re
(
2F ∗ dF

df
· g
)

(4.6)

with ∗ denoting complex conjugation. From this follows:

d|F |2
df

= 2F ∗ dF

df
and

d|F |
df

=
F ∗

|F |
dF

df
(4.7)

4.2.2 Boundary field derivative

Similarly, one can define the derivative of a functional defined on DΓ, the set of piecewise

sufficiently smooth complex functions defined on Γ. The pressure field evaluated on the scatterer

boundary Γ as well as the admittance β are typical functions belonging to DΓ. For simplicity,

we keep the dot notation to refer to the duality product, even though for the functions uΓ and

vΓ in DΓ, the product is defined as:

uΓ · vΓ =

∫

Γ
uΓvΓ dΓ

Let FΓ be a complex functional defined on DΓ. FΓ is said to be differentiable in fΓ ∈ DΓ if there

exists a linear form Lf such that:

(∀gΓ ∈ D) F (fΓ + gΓ) = F (fΓ) + Lf (gΓ) + o
(
||gΓ||

)
(4.8)
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where again ||.|| is a suitable norm. Again one can then identify the linear form Lf to a complex

function dF/dfΓ such that:

(∀gΓ ∈ DΓ) Lf (gΓ) =
dF

dfΓ
· gΓ (4.9)

The properties recalled in equation (4.7) valid for field derivatives also hold for boundary field

derivatives.

4.2.3 Shape derivative

Similarly, the concept of shape derivative can be understood as a linear form acting on the set

of displacements fields, which we will refer to as velocity fields. A velocity field θ is simply a

mapping x 7→ θ(x) in the 2D plane. Let Dθ be the set of sufficiently smooth (typically bounded

and with compact support) velocity fields in the 2D plane. Such a velocity field can therefore

transform the initial boundary Γ to a new boundary Γ(θ) defined as Γ(θ) = Γ + θ, which can

also be written as Γ(θ) = { x+θ(x) : x ∈ Γ }. Now, consider a complex functional J depending

on the boundary Γ. J is said to be differentiable with respect to the shape Γ if there exists a

linear form that we will write dJ/dΓ acting on Dθ such that:

(∀θ ∈ Dθ) J
(
Γ(θ)

)
= J

(
Γ
)
+

dJ

dΓ
· θ + o

(
||θ||

)
(4.10)

where again we keep the dot notation to refer to the duality product between Dθ and its dual

for consistency, and ||.|| refers to an appropriate norm. For instance, let us consider a functional

F defined as:

F (Γ) =

∫

Ωe

f dΩ

with f a piecewise smooth function (or generalized function) defined on Ωe. F depends indeed

on Γ since there is a unique correspondence between Γ and its exterior domain Ωe. One can

show that the shape derivative in this case is given by [149, 150, 187]:

dF

dΓ
· θ =

∫

Ωe

∇ · (fθ) dΩ

Applying the divergence theorem and defining θn = θ · n the normal component of the velocity

field on Γ, one has:
dF

dΓ
· θ = −

∫

Γ
fθn dΓ (4.11)

One should point out that the minus sign is due to the fact that the normal n has been defined

as exterior to Γ and therefore interior to Ωe, and that there is no contribution from infinity since

θ is typically assumed to have a compact support. Now consider a functional G of the form:

G(Γ) =

∫

Γ
f dΓ

The formula for the shape derivative of this functional, one can most easily find in the literature,

holds for a closed smooth surface [149, 150]. However, in a numerical discretized context with
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linear shape functions, the shape will be represented by a set of segments with possible abrupt

changes of directions from one segment to another, which cannot be modeled well as a smooth

curve. This is why here we consider that the boundary Γ and the function f are only piecewise

smooth. Let Γi = [x(i−1),x(i)], i ∈ [1 : N ] the smooth portions of the curve Γ. x(0) and x(N) are

the start and end points of Γ, and x(i) are the points where the curve is not smooth. The parts

Γi are such that they do not overlap, except at both their ends, but their union recovers the

entire curve Γ. Also, the function f is assumed to be smooth on each Γi separately, but are not

necessarily smooth at the edges of each part so that f or its gradient may have jumps at the edges

of each part. Also, the velocity field on Γ is broken down in tangential and normal components:

θ = θn n+ θt t. One can show (see appendix E) that in this case the shape derivative is:

∂G

∂Γ
· θ =

∫

Γ

(∂f
∂n

+Hf
)
θn dΓ−

N−1∑

i=1

[[fθt]]
(i) + (fθt)(x

(N))− (fθt)(x
(0)) (4.12)

where [[.]](i) is the jump of a function at the point x(i), defined as the limiting value after the

jump minus the limiting value before the jump, and H the mean curvature. Equation (4.12) is a

particular case of the general expressions derived by Petryk and Mroz [187]. Besides, when the

boundary Γ is piecewise linear (as it will be the case in the considered BEM discretized context),

the curvature is locally zero, and therefore has no contribution to the integral. In a way, one

could say that the curvature contribution to the shape derivative is best described here by the

jump terms at the end of each segment. In this case the expression simplifies to:

∂G

∂Γ
· θ =

∫

Γ

∂f

∂n
θn dΓ−

N−1∑

i=1

[[fθt]]
(i) + (fθt)(x

(N))− (fθt)(x
(0)) (4.13)

4.3 Derivation of the sensitivity expressions

To carry on the optimization of the objective function, an iterative method based on the gradient

has been chosen. Accurate calculation of the sensitivities (derivatives or gradients) with respect

to the admittance and shape are therefore necessary. We derive here simple expressions based

on the adjoint state approach.

4.3.1 General expressions

First, we derive the expression of the shape and admittance sensitivity of the RMS pressure P at

a given frequency, as recalled in section 4.1. Let us recall that the total pressure field p satisfies

the scattering problem (2.1). Let us now consider the weak formulation of this problem, as done

by Bonnet [149], which will allow an easier derivation of the sensitivity expressions. Again, the

mathematical treatment given here is not extremely rigorous, since special care should be given

to express the weak formulation in a bounded domain and to bring down the radiation condition

at a finite distance (as exposed in section 2.2). However, the results given here would not be

changed if these precautions were taken, which is why a simpler approach is followed. Again,

we refer to the work by He et al. [150] and Terrasse [136] for a more rigorous treatment, as well
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as to section 2.2.

We consider the 2D scattering problem exposed in section 2.1, in which Γ refers to the noise

barrier and its image with respect to the vertical baffle which approximates the effect of the

tramway side, and Ωe is the exterior domain. Given any sufficiently smooth and locally integrable

function q̂ in Ωe (typically belonging to H1(Ωe)) which satisfies the radiation condition, recalling

equation (2.6) - but ignoring the term on the surrounding half-sphere SR - the problem (2.1) is

equivalent to:

∀q̂ Q(Γ, β, p, q̂) = 0

with Q defined for arbitrary regular functions p̂ and q̂ as:

Q(Γ, β, p̂, q̂) = Re

[
−
∫

Ωe

∇p̂ ·∇q̂ dΩe + k2
∫

Ωe

p̂ q̂ dΩe + ik

∫

Γ
β p̂ q̂ dΓ + q̂(S)

]
(4.14)

We now define the Lagrangian:

L(Γ, β, p̂, q̂) = P (Γ, β, p̂) +Q(Γ, β, p̂, q̂)

By definition, we have Q(Γ, β, p, q̂) = 0 for all functions q̂, therefore:

(∀q̂) P (Γ, β, p) = L(Γ, β, p, q̂) (4.15)

Since p implicitly depends on Γ and β as the solution of the scattering problem (2.1), taking

the derivative of equation (4.15) with respect to Γ and β, in the sense explained in section 4.2,

yields:

(∀q̂)





dP

dΓ
(Γ, β, p) =

∂L

∂Γ
(Γ, β, p, q̂) +

∂L

∂p
(Γ, β, p, q̂) · dp

dΓ

dP

dβ
(Γ, β, p) =

∂L

∂β
(Γ, β, p, q̂) +

∂L

∂p
(Γ, β, p, q̂) · dp

dβ

(4.16)

Now, let us define the adjoint state q as the solution of the following variational problem:

(∀ŵ) ∂L

∂p
(Γ, β, p, q) · ŵ = 0 (4.17)

Since equation (4.16) is valid for any function q̂, especially for q̂ = q, and using equation (4.17),

we have: 



dP

dΓ
(Γ, β, p) =

∂L

∂Γ
(Γ, β, p, q)

dP

dβ
(Γ, β, p) =

∂L

∂β
(Γ, β, p, q)

(4.18)

which are explicit functions of the shape Γ, the admittance β, the state p and the adjoint state

q.

4.3.1.1 Adjoint state equation

In this section we derive the explicit form of the problem the adjoint state q must satisfy.

Recalling equation (4.14), one can see Q is a linear function of p plus a source term which is
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independent of p, and therefore:

∂Q

∂p
(Γ, β, p̂, q̂) · ŵ = Re

[
−
∫

Ωe

∇q̂ ·∇ŵ dΩe + k2
∫

Ωe

q̂ ŵ dΩe + ik

∫

Γ
β q̂ ŵ dΓ

]

Recalling equation (4.7) and the definition of P given in equation (4.1), the partial derivative of

P with respect to p is given by:

∂P

∂p
(Γ, β, p̂) · ŵ = Re

[∑

m

p̂(Rm)∗

P
ŵ(Rm)

]

Therefore the adjoint state equation (4.17) becomes:

(∀ŵ) Re

[
−
∫

Ωe

∇q ·∇ŵ dΩ + k2
∫

Ωe

q ŵ dΩ + ik

∫

Γ
β q ŵ dΓ +

∑

m

p(Rm)∗

P
ŵ(Rm)

]
= 0

The similarity with the weak formulation of the initial scattering problem (2.1) allows us to

recognize that this equation is the weak formulation of the following scattering problem :





− (∇2 + k2) q =
∑

m

p(Rm)∗

P
δ(Rm, .) in Ωe

∂q

∂n
+ ik β q = 0 on Γ

∂q

∂n
= 0 on Γg

+ radiation condition

(4.19)

where δ(Rm, .) is the Dirac delta function located at the point (Rm). The solution q of this

problem is therefore the field due to the radiation of weighted point sources located at the

receivers (see figure 4.3), which had already been pointed out by Bonnet [149]. The problem

(4.19) will be referred to as the dual or adjoint scattering problem, whereas the initial problem

(2.1) will be referred to as the primal or direct scattering problem.

One can point out that if the term involving the Dirichlet-Neumann operator on a surround-

ing half-sphere (see in section 2.2) had been kept, the scattering problem satisfied by the adjoint

state would have been the same, due to the fact that the operator T is itself symmetrical.

One could state that considering the weak formulation of the problem in the unbounded do-

main but implicitly assuming the radiation condition is essentially equivalent to considering the

weak formulation in the bounded domain with the extra term involving the Dirichlet-Neumann

operator.

In order to solve the adjoint problem, one can use once again the BEM, which would yield

the boundary field qΓ. To do so, one only needs to solve the equivalent of the integral equation

(2.12) for the adjoint problem, which is given by:

NqΓ +D∗(ikβqΓ) + ikβ DqΓ + ikβ S(ikβqΓ) = hin2 (β, p) (4.20)

66



with hin2 (β, p) = −∂qin

∂n

∣∣∣∣
Γ

−ikβ qin|Γ and qin(x) =
∑

m

p(Rm)∗

P
G(Rm,x) . Equation (4.20) will be

referred to as the adjoint state equation, as opposed to equation (2.12) which is referred to as

the state equation.

Source

ReceiverspΓ

Receiver

SourcesqΓ

Figure 4.3: Source-receiver configuration for calculation of the state pΓ (left) and that of the adjoint state qΓ
(right). The source has a unit amplitude in the primal problem, but in the dual problem each source is weighted
by the coefficient p(Rm)∗/P (P being the average pressure amplitude across the receivers, as defined in equation
(4.1)).

4.3.1.2 Shape derivative expression

In this section, we give the explicit expression of the shape derivative expression given in the

first line of equation (4.18). We therefore consider a velocity field θ acting in a neighborhood

of the shape Γ, and therefore of zero value at the source location (S) and receivers locations

(Rm). This assumption is essentially related to the fact that the source and receivers locations

are fixed in our problem, even when the shape Γ is modified. Let θn = θ · n and θt = θ · t be

the normal and tangent trace of the velocity field on Γ.

Assuming that the boundary Γ is piecewise smooth and keeping the same notations as in

section (4.22), we can now apply equations (4.11) and (4.12) to the expression of Q recalled in

equation (4.14), which yields:

∂Q

∂Γ
(Γ, β, p, q) · θ =Re

[∫

Γ
∇p ·∇q θn dΓ− k2

∫

Γ
pq θn dΓ + ik

∫

Γ
β
(∂(pq)

∂n
+H pq

)
θn dΓ

−ik
∑

i

[[βpqθt]]
(i) + ik

[
(βpqθt)(x

(N))− (βpqθt)(x
(0))
]

=Re

[∫

Γ
θn

(
∇p ·∇q + ikβ

∂(pq)

∂n
+ (−k2 + ikβH) pq

)
dΓ

− ik
∑

i

[[βpqθt]]
(i) + ik

[
(βpqθt)(x

(N))− (βpqθt)(x
(0))
]]

with H is the curvature of the curve Γ and [[.]](i) is the jump at the point x(i). Now, recalling

the boundary condition satisfied by p and q and the fact that the gradient can be broken up in

tangential and normal components, we have:

∇p ·∇q + ikβ
∂(pq)

∂n
=

∂p

∂t

∂q

∂t
+

∂p

∂n

∂q

∂n
+ ikβp︸︷︷︸

=−∂p/∂n

∂q

∂n
+ ikβq

∂p

∂n︸︷︷︸
=−ikβq

=
∂p

∂t

∂q

∂t
+ k2β2 pq
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Therefore one has:

∂Q

∂Γ
(Γ, β, p, q) · θ =Re

[∫

Γ
θn

(∂p
∂t

∂q

∂t
+
(
k2(β2 − 1) + ikβH

)
pq
)
dΓ

− ik
∑

i

[[βpqθt]]
(i) + ik

[
(βpqθt)(x

(N))− (βpqθt)(x
(0))
]] (4.21)

Now, recalling that the function P explicitly depends only on the field p at the receiver points

(Rm) which are not moved by the velocity field θ, we can conclude that the function P does not

explicitly depend on the shape Γ when it is transported by θ, and therefore (∂P/∂Γ) · θ = 0.

Since L = P +Q, we have:

dP

dΓ
(Γ, β, p) · θ =

∂Q

∂Γ
(Γ, β, p, q) · θ

=Re

[∫

Γ
θn

(∂p
∂t

∂q

∂t
+
(
k2(β2 − 1) + ikβH

)
pq
)
dΓ

− ik
∑

i

[[βpqθt]]
(i) + ik

[
(βpqθt)(x

(N))− (βpqθt)(x
(0))
]]

(4.22)

Equation (4.22) is similar to the expression derived by He et al. [150] , which generalizes the one

found by Bonnet [149] in case of a finite admittance boundary condition. Besides, if the curve

is piecewise linear (which will be the case in the numerical implementation), the curvature H is

zero except maybe on a zero-measure set (the points x(i)), and therefore has no contribution to

the integral term. In this case the shape derivative is:

dP

dΓ
(Γ, β, p) · θ =Re

[∫

Γ
θn

(∂p
∂t

∂q

∂t
+ k2 (β2 − 1) pq

)
dΓ

− ik
∑

i

[[βpqθt]]
(i) + ik

[
(βpqθt)(x

(N))− (βpqθt)(x
(0))
]] (4.23)

4.3.1.3 Admittance derivative expression

Similarly, one can explicitly give the expression for the derivative with respect to the admittance

given in the second line of equation (4.18). Again, there is no explicit dependence of P on β since

the admittance function exists only at the boundary Γ, which is far from the receiver points, and

therefore ∂P/∂β = 0. Finally, recalling equation (4.14), one can see that Q is a linear function

of β plus a term independent of β, and therefore the derivative with respect to β applied to a

perturbation γ is simply given by:

dP

dβ
(Γ, β, p) · γ = Re

[
ik

∫

Γ
γ pq dΓ

]
(4.24)

Again, equation (4.24) is similar to the one obtained by He et al. [150] and by the author in [1]

(although in this case the derivation was based on integral equations only). We can also directly
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write the boundary field derivative function:

dP

dβ
(Γ, β, p) = ik pq (4.25)

4.3.2 Derivatives with respect to shape and admittance parameters

From the general results derived in section (4.3.1), one can easily write the derivative of P with

respect to particular parameters used to describe the admittance distribution as well as the

shape. The idea is to find a perturbation (either on the admittance or the shape) that induces

a change in one parameter only, and apply the general expression. We here give a few examples

of this process.

4.3.2.1 Derivative with respect to an admittance parameter

pΓ

0 1u

0β 1β

0

Figure 4.4: Schematic for calculation of the objective function sensitivity with respect to admittance parameters.
Left: case of a segment Γp covered with an uniform admittance βp. Right: case of a parameter u0 defining the
location of an admittance discontinuity.

Let us assume that the admittance β is described by a small number of parameters bj , for

instance if the barrier is covered with a finite number of segments of uniform admittance, and if

each admittance value is described by a few parameters (which is the case for most admittance

models), then the derivative of the RMS pressure at the receivers with respect to the parameter

bj is given by:
dP

dbj
= Re

(dP
dβ

· dβ
dbj

)
= Re

(
ik pq · dβ

dbj

)

Here the dot notation refers to the duality product on the boundary (integral on Γ of the product

of two functions). For instance, if a panel covering the part Γp of the barrier (see figure 4.4,

left part) is made of a Delany and Bazley porous layer with an admittance βp depending on the

parameters σ and d, the gradient of P for instance with respect to σ is:

dP

dσ
= Re

[
ik

dβp
dσ

∫

Γp

pq

]
(4.26)

This requires the knowledge of the expression of the derivative of the admittance model with

respect to each parameter (the term dβp/dσ), which can be done easily for most models (see

appendix F for the values of those derivatives for the two admittance models we will be using

in this work).
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It is also possible to calculate the gradient with respect to a change in width of a certain

panel. For instance, let us assume that the curve Γ is parametrized by u ∈ [0, 1], and that a

panel covers the part of the curve corresponding to [0, u0] with u0 6 1 (see figure 4.4, right part).

We assume that the panel has an admittance β0 and the rest of the barrier is covered with an

admittance β1. The admittance function as a function of the parameter u can be written as:

β(u) = β0H(u0 − u) + β1H(u− u0)

The derivative of this function considered as a distribution with respect to u0 can be directly

written as:
dβ

du0
(u) = β0 δ(u− u0)− β1 δ(u− u0) = (β0 − β1) δ(u− u0)

So that the derivative of P with respect to u0 is:

dP

du0
=Re

[
ik

∫ 1

0
p(u) q(u) JΓ(u) (β0 − β1) δ(u− u0) du

]

=Re

[
ik (β0 − β1) p(u0) q(u0) JΓ(u0)

] (4.27)

with JΓ is the Jacobian of the transformation from the parameter space to the geometrical space.

For instance, on a straight segment of physical length L parametrized by u ∈ [0, 1], the Jacobian

is constant of value L.

It is interesting to notice that one can find the expression given in equation (4.27) with the

given general expression for the shape derivative given in equation (4.22). Indeed, in order to

make the parameter u0 vary, one can also apply a local tangential velocity field θu0 defined

as: θu0 = JΓ(u0) t(u0) in a neighborhood of x(u0) and zero everywhere else. Then, applying

equation (4.22), since the point x(u0) is precisely a point where there is an admittance jump

and since the velocity field is purely tangential, the derivative with respect to u0 can be written

as:
dP

du0
= Re

[
−ik[[β pq JΓ(u0)]]

(
x(u0)

)]
= Re

[
ik (β0 − β1) p(u0) q(u0) JΓ(u0)

]

since here the admittance jump (defined as the value after minus the value before the disconti-

nuity) at x(u0) is: [[β]] = (β1 − β0) = −(β0 − β1). One can point out that this expression could

not have been found with the classical shape derivative expression of a smooth line integral.

4.3.2.2 Derivative with respect to a node coordinate

We can also use the general shape derivative expression given in equation (4.22) in order to

calculate the derivative of the P with respect to parameters describing the shape of the barrier.

In order to be as general as possible, we will here consider the derivative with respect to a node

coordinate of a “control mesh”. Here we assume the BEM discretized context implemented in

the software MICADO, which is that the boundary Γ is represented by a set of straight segments.

Following the notations introduced in section 4.3.1.2, let x(i) (i ∈ [0 : N ]) be the set of control

nodes and Γi = [x(i−1),x(i)] (i ∈ [1 : N ]) be each straight segment defining the curve Γ (see

figure 4.5). One can point out that here the barrier is oriented clockwise. The coordinates of
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x(i)

x(0) x(N)

i
x(i-1)

Γ

Figure 4.5: Representation of a generic barrier in the software MICADO, based on the control nodes x(i) and
assuming linear interpolation.

the control nodes are the parameters needed to define the geometry in the software MICADO.

From this set of control nodes, MICADO generates the calculation mesh based on two criteria: a

minimum number of elements per segment, and a minimum number of elements per wavelength.

The calculation mesh is therefore usually much finer than the mesh defined by the control nodes.

This differentiation between the control mesh and the calculation mesh is necessary since the

calculation mesh should be frequency dependent, whereas the control mesh should not, since its

variation is controlled by a broadband objective function.

x(i)

x(i-1)

x(i+1)

(i)
1

x(i)

x(i-1)

x(i+1)

(i)
2

θ
θ

Figure 4.6: Definition of the node specific velocity field θ
(i)
j , which moves the control node x(i) along the jth

component.

Now, the derivative of P with respect to a change of coordinate of the control node x(i) =

(x
(i)
1 , x

(i)
2 ) can be defined by applying a specific velocity field which moves only this control node

along one direction j = 1, 2. We therefore define the velocity field θ
(i)
j on the control nodes by:

(∀k ∈ [0 : N ]) θ
(i)
j (x(k)) = δik ej

with δik being the Kronecker delta function and ej the unit vector in the jth coordinate. Then,

on the two segments Γi and Γi+1 adjacent to x(i), the velocity field is linearly interpolated (see

figure 4.6). This allows one to define the derivative of P with respect to x
(i)
j as:

dP

dx
(i)
j

=
dP

dΓ
· θ(i)

j (4.28)

One should point out that a symmetrical velocity field is applied on the corresponding part of

the image barrier, which means that when a node on the actual barrier is moved, its image is
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moved as well in a symmetrical fashion.

4.3.3 Derivatives of the broadband objective function

Finally, one can write the expression of the derivative of the broadband objective function defined

in section 4.1.2 with respect to a generic admittance or shape parameter x. Recalling equation

(4.2) the derivative of e with respect to a parameter x is simply given by:

de

dx
=

1∑
n Sn

∑

n

Sn
2P (fn)

P in(fn)2
dP (fn)

dx
(4.29)

with dP (fn)/dx calculated as explained in section 4.3.2.

We are now able to calculate the gradient of the objective function with respect to the

parameters describing the admittance and the shape. For each frequency, one only needs to

know the state and the adjoint state, which is achieved by solving two classical BEM integral

equations per frequency. This increases the computation time compared to the evaluation of

the evaluation of the objective function only, but only by a small amount. Indeed, since the

difference between the state and adjoint state equations only comes from source locations, the

equations to solve both boundary fields use the same matrix but different right-hand sides, which

does not severely increase the computation time.

Furthermore, the main advantage of using the adjoint state approach is, once the state and

the adjoint state are known, the calculation of the gradient with respect to a parameter is fast

(it is an explicit integral), and therefore a great number of parameters can be used without

significant increase of computation time. Also, the expression of the gradient is simply a post-

treatment of the BEM calculations, and therefore its calculation does not require coding a new

integral equation solver, and can therefore be achieved using the results of any commercial

BEM solver. For instance, in this work, the calculation of the states and adjoint states have

been achieved using the software MICADO, whereas the calculation of the gradient have been

performed in Matlab.

4.4 Numerical implementation

4.4.1 Numerical evaluation of the sensitivity expressions from BEM solutions

In order to evaluate numerically the sensitivity expressions derived in section 4.3.1, one only

needs to know the values of the state pΓ and adjoint state qΓ at the boundary Γ and the value of

the RMS pressure P which can be calculated from the boundary values of p thanks to the integral

representation explained in chapter 2. The values of pΓ and qΓ are found by solving the two

integral equations (2.12) and (4.20). In practice, one can set point sources at the actual source

location (S) and at each receiver point (Rm), solve for the boundary fields pΓ - corresponding

to (S) - and qΓ,Rm - corresponding to (Rm). From pΓ one can calculate p(Rm) and P , and since
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the adjoint state equation is linear, finally calculate the adjoint state boundary values by:

qΓ =
∑

m

p(Rm)∗

P
qΓ,Rm

In a BEM discretized context, the solutions of the integral equations are typically a set of

nodal values {pΓ} and {qΓ}, corresponding to the values of the state and adjoint state at the BEM

calculation mesh, which is finer than the control mesh. Typically, calculations were performed

with a requirement of 10 elements per wavelength and at least 3 elements per straight segment

(joining two following control nodes). MICADO assumes linear shape function and therefore

for consistency we will assume linear shape functions as well to represent the two fields on the

boundary. Therefore, defining {N(a)}t = {1 − a, a} and {f}ti = {f(x(i−1)), f(x(i))} the two

nodal values of a field f on the element Γi, we therefore have:

f|Γi
(a) = {N(a)}t {f}i with a ∈ [0, 1]

Also, the tangential derivative of f is constant and is simply given by:

∂f

∂t

∣∣∣∣
Γi

=
f(x(i))− f(x(i−1))

li
=

1

li
{DN}t {f}i

where the vector DN is given by DN = {−1, 1}t and li = ||x(i) − x(i−1)|| is the length of the

element, which is also the value of the Jacobian of the transformation from the reference to the

geometrical element.

4.4.1.1 Sensitivity with respect to a node coordinate

Now, consider the calculation of the derivative of P with respect to a x
(i)
j , with 0 < i < N .

Recalling equation (4.28), since the velocity field θ
(i)
j is non zero only on the two segments Γi

and Γi+1, one can write:

dP

dx
(i)
j

=
dP

dΓ
· θ(i)

j = Re

[∫

Γi∪Γi+1

θ
(i)
j nj

(∂p
∂t

∂q

∂t
+ k2 (β2 − 1) pq

)
dΓ− ik[[βpqθ

(i)
j tj ]]

(i)
]]

=Re

[
Bi− ni

j +Bi+ ni+1
j + k2 (β2

i − 1)Ci− ni
j + k2 (β2

i+1 − 1)Ci+ ni+1
j

− ik p(x(i))q(x(i))(βi+1t
i+1
j − βit

i
j)

]
(4.30)

where βi is the assumed constant value of the admittance on the segment Γi, n
i = (ni

1, n
i
2) and

ti = (ti1, t
i
2) are respectively the normal and tangent vectors on the segment Γi, and the integrals

Bi−, Bi+, Ci− and Ci+ are defined as follows:

Bi− =

∫

Γi

∂p

∂t

∂q

∂t
θ
(i)
j dΓ Bi+ =

∫

Γi+1

∂p

∂t

∂q

∂t
θ
(i)
j dΓ

Ci− =

∫

Γi

pq θ
(i)
j dΓ Ci+ =

∫

Γi+1

pq θ
(i)
j dΓ
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Due to the definition of the node-specific velocity field θ
(i)
j given in section 4.3.2.2, one has:

{θ(i)j }i = {0, 1} and {θ(i)j }i+1 = {1, 0}. Using the linear shape function representation for the

other fields yields:

Bi− =
1

li
{q}ti{DN} {DN}t{p}i

∫ 1

0
a da =

1

2 li
{q}ti

[
1 −1

−1 1

]
{p}i

Bi+ =
1

li+1
{q}ti+1{DN} {DN}t{p}i+1

∫ 1

0
(1− a) da =

1

2 li+1
{q}ti+1

[
1 −1

−1 1

]
{p}i+1

Ci− =li

∫ 1

0
{p}ti{N(a)} {N(a)}t{q}i a da = li {q}ti

[
1/4 1/12

1/12 1/12

]
{p}i

Ci+ =li+1

∫ 1

0
{p}ti+1{N(a)} {N(a)}t{q}i+1 (1− a) da = li+1 {q}ti+1

[
1/12 1/12

1/12 1/4

]
{p}i+1

One can finally point out that these expressions correspond to integration over the actual barrier

only, and therefore one should add the contribution due to the image barrier, which is calculated

in a similar fashion.

Sensitivity with respect to nodes on the ground The sensitivities with respect to the

nodes x(0) and x(N) are calculated in a similar way, except that the corresponding velocity fields

are non zero on one element only. Besides, these nodes cannot be moved along the x2 direction

in order to keep the curve Γ connected to the ground. Therefore, one has:

dP

dx
(0)
1

=Re

[
B1+ n1

1 + k2 (β2
1 − 1)C1+ n1

1 − ik p(x(0))q(x(0))β1t
1
1

]

dP

dx
(N)
1

=Re

[
BN− nN

1 + k2 (β2
N − 1)CN− nN

1 + ik p(x(N))q(x(N))βN tN1

]

dP

dx
(0)
2

=0 ,
dP

dx
(N)
2

= 0

4.4.1.2 Sensitivity with respect to an admittance parameter

Similarly, one can evaluate the derivative with respect to an admittance parameter from the

nodal values of the state and the adjoint state. Say the segment Γi is covered by an admittance

βi function of several parameters (b1, b2, ...). Recalling equation (4.26), one has:

dP

dbq
= Re

[
ik

dβi
dbq

∫

Γi

pq dΓi

]
= Re

[
ik

dβi
dbq

li {q}ti

[
1/3 1/6

1/6 1/3

]
{p}i

]

4.4.2 Mesh refinement close to corners

As we have seen in section 2.4, the presence of a corner with an exterior angle greater than π in-

duces a local singularity in the pressure gradient, which becomes unbounded although integrable

in the vicinity of the corner. It has also been pointed out this phenomenon causes inaccuracy

in numerical calculations involving the tangential derivative. Since the shape derivative expres-
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sion given in equation (4.22) does require integration of the product of the state and adjoint

state tangential derivative, it is expected that the evaluation of the sensitivity with respect to a

control node coordinate will not be accurate close to corners.

One approach to somewhat limit this effect is to force a finer mesh in the vicinity of corners.

In the BEM software MICADO, two meshing criteria have to be provided by the user on each

segment defining the geometry: c1 the minimum number of elements per wavelength, and c2

the minimum number of elements per segment. From the knowledge of the geometry, one can

evaluate the exterior angle at the beginning and at the end of the segment Γi. We will call

the maximum of those two angles φi. In the rest of this work, given two generic values of the

criteria c1 and c2 (typically those two values will be taken as c1 = 10 and c2 = 3 when the

shape derivative will be evaluated, and c1 = 6 and c2 = 1 otherwise), the following values for

the meshing criteria on each segment are proposed:





ci1 =c1

[
1 + max

(φi

π
− 1, 0

)]

ci2 =c2

[
1 + 4 max

(φi

π
− 1, 0

)]

These expressions are heuristic and were found to be a good compromise in limiting both the

inaccuracy in the shape derivative numerical evaluation and the computation time. Nevertheless,

as it has been shown in section 2.4, some inaccuracy will remain even with an extremely fine

mesh since usual shape functions cannot resolve the singular behavior of the pressure gradient.

The purpose of this refined meshing strategy is essentially to make sure that the error in the

evaluation of the shape derivative is not excessively large.

4.4.3 Validation

S

1m

0.2m0.5m0.5m

x(0)
x(1)
x(2)
x(3)
x(4)

x(5)

x(11)
x(10)
x(9)
x(8)
x(7)

x(6)

Figure 4.7: Schematic of the barrier (solid line) and its image (dashed line) used for the validation of the shape
sensitivity calculations. The control nodes are numbered from 0 to 11 as shown.

To validate the calculation of the sensitivity with respect to control nodes coordinates and

admittance parameters, we consider a simple wall barrier geometry (1m high, 0.2m wide).

Control nodes are placed every 20 cm, so there are N = 12 nodes on the true barrier (see

figure 4.7), and therefore 22 shape independent variables (corresponding to the two coordinates

of each node except the nodes on the ground which only have one shape variable, their first

coordinate). The node coordinates of the image barrier are not considered as variables since
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their displacement is not independent of that of their corresponding nodes on the actual barrier.

In addition, the barrier is covered by a fictitious admittance distribution which we set to be:

βi =
1 + i

2

(
1− i− 1

N − 1

)
i ∈ [1 : N − 1]

There are therefore 11 complex admittance parameters, hence 22 real admittance parameters

(each corresponding to either the real and imaginary part of the segment admittance). We

calculate the derivative of the broadband objective functions (with four frequencies per third-

octave between 100 and 2500 Hz) with respect to every node coordinate and every admittance

variable using equation (4.29) and the approach exposed in section 4.4.1. The state and the

adjoint state are solved with the two MICADO meshing criteria set as: c1 = 10 and c2 = 3.

The sensitivity can also be estimated by a finite difference approach. Considering for instance

the variation of a generic parameter x, one can consider e as a function of this parameter, and

given a small parameter ǫ, one can estimate the sensitivity as:

de

dx
≈ e(x+ ǫ)− e(x)

ǫ

However, it is not easy to choose the parameter ǫ a priori, since by setting it too small we would

run into numerical errors, and by setting too large the variation of e might be no longer well

described by a linear curve. If one assumes that the numerical evaluation of the sensitivity based

on the adjoint state yields at least the correct order of magnitude, one can choose the parameter

ǫ to ensure that the function approximately varies by a relative amount δ. Calling de/dx|AS the

evaluation of the gradient using the adjoint state approach, one could then write:

e(x+ ǫ) ≈ e(x) + ǫ
de

dx

∣∣∣
AS

Now say that we would like the function to vary by about 0.1%, we set δ = 10−3 and we can

write: e(x+ ǫ) = (1 + δ) e(x). This yields;

δ e(x) ≈ ǫ
de

dx

∣∣∣
AS

⇔ ǫ ≈ ǫ̃(x) with ǫ̃(x) = δ
∣∣∣

e(x)

de/dx|AS

∣∣∣

One can then set a range of possible values for ǫ in the vicinity of ǫ̃(x) - for instance in the

range [0.1 ǫ̃(x), 10 ǫ̃(x)] - and then do a polynomial fit. The sensitivity is then the coefficient of

the linear term of this polynomial.

Even though this process is relatively tedious, it is clear that errors may remain in the

evaluation of the sensitivity using finite differences. This is one of the reasons why sensitivities

are usually not calculated with this approach. Here this calculation is done for the purpose of

validating the expressions derived in section 4.3.1.

4.4.3.1 Shape parameters

Results for the sensitivities with respect to shape parameters are presented table 4.1. Writing

∇e|AS the gradient vector obtained by the adjoint state calculation of the sensitivities and ∇e|FD
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that obtained using finite differences, one can define the error based on the infinity-norm of the

gradient vector, defined as:

E∞ =
||∇e|FD −∇e|AS||∞

||∇e|FD||∞
which gives an estimate on how accurate the whole gradient vector is, since this is really what

is used in the optimization algorithm.

Relative errors for each node and each component between the sensitivity value derived from

finite differences (FD) and that derived from the adjoint state approach (AS) are shown, as well

as the error E∞ based on the infinity norm for all nodes and each component. First of all, one

can notice that the displacements of nodes located close to the source (nodes 0 to 5) induce a

much bigger change in the objective function than nodes on the opposite side (nodes 6 to 11).

The relative error is also significantly larger for the opposite nodes, but because the sensitivity

is much smaller on this side, this should not influence the optimization process too much. Also,

one should realize that without the added jump terms in the shape derivative formula given

in equation (4.22), one would have obtained zero for the calculation of the second component

of most nodes sensitivities (except the nodes 5 and 6), since their variations correspond to

tangential velocity fields.

Even though the error is rather small for most nodes with a significant sensitivity, it is large

for nodes 5 and 6, that is at the nodes making the corners of the wall. Indeed, there is a large

difference in the error based on the infinity norm when the two corner nodes are taken into

account or not: 35% and 43% with, 1.3 and 2.8% without. Such a large error when evaluating

the sensitivity with respect to corner node coordinates was expected, as mentioned in section

4.4.2, due to the singularity in the pressure gradient which cannot be resolved numerically. It

is however noticed that sensitivities at the corner have at least the correct sign, which means

that an actual decrease (respectively increase) in the objective function by increasing a node

coordinate is predicted by the adjoint state sensitivity calculation to be a decrease (respectively

an increase) as well, even though the predicted change might be significantly over- or under-

estimated. Because of this fact, it is likely that this source of error will not cause too big an

issue in the optimization process.

Shape sensitivity values

Node #
First component Second component

FD AS Err.[%] FD AS Err.[%]
0 -8.59e-2 -8.57e-2 0.1 - - -
1 2.39e-2 2.39e-2 <0.1 -1.92e-3 -1.92e-3 0.3
2 8.69e-2 8.75e-2 0.8 -4.85e-3 -4.97e-3 2.6
3 -5.70e-2 -5.59e-2 1.9 -1.42e-3 -1.41e-3 <0.1
4 -3.35e-2 -3.37e-2 0.6 -4.28e-4 -4.41e-4 3.1
5 -3.93e-2 -8.84e-3 77.5 3.10e-2 5.14e-3 83.4
6 -4.09e-2 -4.47e-2 9.2 -5.88e-2 -5.61e-2 4.5
7 1.29e-2 1.30e-2 0.3 -5.68e-4 -4.30e-4 24.2
8 -1.53e-3 -1.78e-3 16.2 -2.48e-4 -2.03e-4 18.1
9 3.02e-3 3.06e-3 1.2 -2.07e-5 -5.25e-5 154.1
10 3.41e-3 3.45-3 0.9 -2.39e-4 -1.97e-4 17.8
11 -5.83e-3 -5.84e-3 0.2 - - -

Error E∞ - - 35 - - 43

Table 4.1: Comparison of the broadband objective function sensitivity with respect to control nodes coordinates
for the geometry given in figure 4.7, calculated with finite differences (FD) and the adjoint state approach (AS)
(with four frequencies per third-octave between 100 and 2500 Hz).
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4.4.3.2 Admittance parameters

A similar comparison can be made for admittance parameter sensitivities. Here it has been

assumed that the fictitious admittance distribution is constant over frequency and that the pa-

rameters describing the admittance are the admittance values themselves. Results are presented

in table 4.2. The error is small for most segments, although slightly larger close to corners

(segments 5, 6 and 7). The error is however smaller than in the node coordinate case, since the

admittance sensitivity depends on the state and adjoint state values only, which are solved with

a much better accuracy than for the tangential derivatives.

Shape sensitivity values

Segment #
Real part Imaginary part

FD AS Err.[%] FD AS Err.[%]
1 -8.55e-2 -8.56e-2 0.1 1.24e-2 1.24e-2 <0.1
2 -1.73e-2 -1.73e-2 <0.1 2.25e-3 2.26e-3 0.4
3 -2.17e-2 -2.17e-2 <0.1 7.64e-3 7.65e-3 0.2
4 -1.14e-2 -1.14e-2 0.1 1.13e-2 1.13e-2 0.1
5 -1.02e-2 -1.03e-2 0.4 -4.23e-3 -4.27e-3 1.0
6 -4.95e-3 -4.98e-3 0.6 -2.02e-2 -2.02e-2 0.2
7 -4.18e-3 -4.21e-3 0.6 -2.87e-4 -2.71e-4 5.5
8 5.26e-4 5.27e-4 0.2 9.93e-4 9.89e-4 0.4
9 -8.22e-3 -8.88e-3 8.0 -2.08e-4 -2.08e-4 <0.1
10 1.82e-4 1.74e-3 4.3 9.47e-4 9.48e-4 0.1
11 2.74e-5 3.52e-5 28.2 -1.00e-3 -9.99e-4 0.1

Error E∞ - - 0.2 - - 0.2

Table 4.2: Comparison of the broadband objective function sensitivity with respect to admittance parameters
for the geometry given in figure 4.7, calculated with finite differences (FD) and the adjoint state approach (AS)
(with four frequencies per third-octave between 100 and 2500 Hz).

4.5 Conclusion

The goal of this chapter was essentially to show that it is possible to calculate efficiently and

accurately the sensitivity of the chosen objective function (the weighted broadband attenuation

of the low-height noise barrier) with respect to parameters describing the shape and the ad-

mittance distribution of the barrier. Convenient derivation of the sensitivity expressions can be

made by expressing the scattering problem under a weak formulation and by consideration of

the adjoint state, which is found to be the pressure field solution of another scattering problem.

Although this approach has been followed by many authors including Allaire [146] and Bonnet

[149], we have focused more specifically on the context of the MICADO software (BEM reso-

lution with linear shape functions) and in the assumed modeling context (2D modeling, image

barrier approximation, rigid ground). The given expressions however include extra terms to take

into account discontinuities of the different fields.

It is also found that shape sensitivity calculation is not accurate close to geometrical singu-

larities, namely corners, as soon as the exterior angle exceeds π. This is due to a singularity in

the pressure gradient close to corners, which cannot be resolved properly by classical finite ele-

ment discretization techniques. A refinement strategy specifically close to corners is proposed to

limit the error, which nevertheless stays important. Is is however believed that this inaccuracy

will not cause severe issues in the optimization process.
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Chapter 5

Application to the shape optimization

of rigid barriers

5.1 Introduction

The optimization algorithm is first applied to the case of entirely rigid barriers. Acoustical treat-

ments which can typically provide absorption can indeed help in increasing the performance of

the low-height noise barrier, however such treatments can be costly and require proper pack-

aging to avoid any health hazard issues. Sustainability of an absorbing treatment acoustical

performance is also an issue especially in outdoor environments. Therefore in this chapter we

focus on purely rigid barriers, which could be made out of concrete for instance, but we allow

the shape of the barrier cross-section to be optimized. This implies that the admittance β is set

to zero over the whole boundary Γ.

Several “starting” geometries are considered, which we will referred to as: small wall, medium

wall, quarter cylinder, T-shape and Gamma-shape (see figure 5.1). The medium wall seems like

the most natural choice for a low-height barrier. The small wall geometry (which is essentially a

simple wall but only 0.5m high) has been chosen to see if the shape optimization process would

tend to increase the height or not. The quarter-cylinder was chosen because a round geometry

diffracts sound in a radically different way compared to more usual straight geometries. The

T-shape geometry also seemed like a natural choice as it is considered in general as one of the

best geometry for a noise barrier (especially in the highway case). Finally, the Gamma-shape

geometry is essentially a more compact version of the T-shape, and therefore it seemed interesting

to study how much the far end of the “T” would influence the result of the optimization.

The control mesh of each initial geometry is first generated with a maximum distance between

two adjacent nodes of 2 cm. Depending on the geometry, this yields 62 to 183 control nodes,

therefore 112 to 364 optimization variables (details are given in the caption of figure 5.1). The

optimization algorithm is the steepest descent method with backtracking and box projection (as

explained in section 3.5 and appendix D).
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Figure 5.1: Definition of the five initial geometries for the rigid low-height barrier shape optimization. Dimen-
sions are given in meters. The dotted line represents the one meter wide constraint box. The number of nodes
representing each geometry is indicated as well in parenthesis. Top left: medium wall (112 nodes) ; top middle:
small wall (62 nodes) ; top right: quarter cylinder (131 nodes) ; bottom left: T-shape (183 nodes) ; bottom right:
Gamma-shape (143 nodes).

5.2 Results

First, geometries at the initial and final step of the optimization algorithm for the considered

cases are shown in figure 5.2. Corresponding broadband insertion losses in the considered fre-

quency range are shown in table 5.1, as well as third-octave insertion losses in figure 5.3. First

of all, one can notice that the shape optimization increased the efficiency significantly in all

cases (of about 6 dB(A) in general and of 11 dB(A) for the medium wall geometry) except for

the quarter cylinder case (+ 3 dB(A)). However, the initial performance of the quarter cylinder

barrier was much higher than those of the other cases, and therefore one could have expected a

smaller improvement due to the optimization.

Table 5.1: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the considered
starting geometries and corresponding optimized geometries.

Medium wall Small wall Quarter cylinder T-shape Gamma-shape

Initial 4.2 1.8 10.3 5.3 5.9

Optimized 15.2 8.2 13.3 11.3 11.1

For all geometries, the part of the barrier opposite to the source (the “back” side) does

not undergo strong alterations. Indeed, since the displacement of the geometry is based on

the sensitivity, which is small for nodes located on this part of this barrier as shown in section

4.4.3, the algorithm had no reasons to alter the back side significantly. Furthermore, this also

implies that any type of treatment could be applied on the back side of the barrier, due to its

limited influence on the acoustic performance. For instance, one could think of covering it with

vegetation or any material that could meet aesthetic or environmental requirements.
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Figure 5.2: Initial and optimized geometries for the considered starting geometries and assuming rigid admit-
tance coverage. Top left: medium wall - top center: small wall - top right: quarter cylinder - bottom left: T-shape
- bottom right: Gamma-shape. Solid line: optimized geometry - dotted line: initial geometry. The one meter
wide constraint box is shown as well.
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Figure 5.3: Comparison of third-octave insertion losses in dB between initial and optimized geometry, and
for the five considered starting geometries. Solid line: optimized geometry - dotted line: initial geometry. Top
left: medium wall - top right: small wall - middle left: quarter cylinder - middle right: T-shape - bottom:
Gamma-shape.
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However, there seems to be a general trend in the way the shape optimization altered the

different geometries: the part of the barrier most exposed to the radiation of the source - the

“source” side - tends to become more irregular. Especially in the small wall case, instead of

significantly increasing the height, the optimization rather made the barrier cross section more

irregular, and indeed the broadband efficiency of the optimized small wall is higher than that

of the initial straight medium wall. From the third-octave insertion losses (see in figure 5.3),

one can see that all optimized geometries attenuate higher frequencies (typically above 600 Hz)

more efficiently. We believe that the insertion losses of the optimized geometries are higher

because multiple reflections phenomena between the barrier and the baffle (tramway side) are

somewhat prevented due to the irregularities. However, since the barriers have been assumed

rigid, there is no absorption of acoustic energy, which implies the increase of attenuation at

higher frequencies is related to the redirection of the acoustic energy, away from the shadow

zone. To have a closer look at this effect, one can compare the intensity map between the initial

and optimized geometry, calculated at a frequency where the attenuation is increased. The

time-averaged intensity vector I is calculated at one frequency as:

I =
1

2
Re(p∗v) =

1

2
Re
( p∗∇p

ik ρ0c0

)

with v the particle velocity which has rewritten in terms of the pressure gradient using Euler’s

equation. The pressure gradient is calculated via its integral representation, as explained in

chapter 2. Examples of intensity maps calculated at 1000 Hz in the medium wall case and the

small wall cases are shown in figure 5.5. One can indeed notice that for the optimized geometry,

the energy tends to propagate mostly in the x2 direction, parallel to the vertical baffle, whereas

in the initial geometry a significant part of the energy is directed towards the shadow zone. One

can also notice the presence of recirculating regions of sound energy with the optimized irregular

shapes, which would also cause less energy to reach the shadow zone. Those two effects could

explain why there is an increase of attenuation behind the barrier with the optimized shapes

compared to the case of simple straight barriers.

Finally, the evolution of the objective function for all geometries is shown in figure 5.4. One

can notice the convergence was rather fast (at most a few dozens iterations). This is consistent

with the fact that, as pointed out in chapter 3, sensitivity-based methods are inherently faster

than evolutionary methods (convergence is achieved in a small number of iterations).
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Figure 5.4: Evolution of the objective function during the optimization for the five geometries given in figure
5.1, with either 4 or 10 frequencies per third octave. Thin solid line: medium wall - thick solid line: small wall -
dotted line: quarter cylinder - thin dashed line: T-shape - thick dashed line: Gamma-shape.
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Figure 5.5: Comparison of intensity maps at 1000 Hz between the initial and optimized geometries calculated
on a grid of step h = 4 cm. The intensity vector is calculated as I = Re (p∗ v)/2 with v the particle velocity. Each
vector is scaled so that its norm is the norm of the intensity vector I in dB (length h: reference value (maximum
intensity) - length zero: reference minus 25 dB). Top left: initial medium wall - top right: optimized medium wall
- bottom left: initial small wall - bottom right: optimized small wall.

83



APPLICATION TO THE SHAPE OPTIMIZATION OF RIGID BARRIERS

5.3 Efficiency of smoothed and randomly perturbed shapes

In order to make sure that the irregularities generated by the shape optimization physically

explain the increase of efficiency and are not simply due to numerical artifacts, one can consider

smoothed versions of the optimized generated shapes and compare the efficiency of this smoothed

shape compared to the original one. The smoothing is simply based on a low-pass filtering of

the nodes coordinates, as explained in appendix G, with a characteristic length l = 0.2m. The

smoothing process essentially removes the sharp angles in the geometry but keeps the general

features of the shape the same. Third-octave insertion losses for the optimized medium wall

and small wall geometries and their smoothed versions are given in figure 5.6. One can indeed

notice that the efficiency is significantly lowered above a few hundred hertz when the shape

is smoothed, and that is precisely the range where the attenuation was increased between the

initial straight geometry and the optimized irregular geometry. This seems to suggest that the

presence of the irregularities, especially the sharp features, physically alter the sound field in

such a way that the attenuation in the shadow zone is increased, by an energy redirection or

scattering effect, as explained in the previous section.

Nevertheless, one could also wish to know the influence on the performance of a small pertur-

bation of the optimized shape, for instance due to some inaccuracy in the barrier manufacture

process. For this purpose, several calculations were done by randomly perturbing each node

coordinate of the optimized medium wall, following normal distributions of a given standard

deviation, taken here as 5mm. It has been found that the variability on the insertion losses is

more important at higher frequencies (see in figure 5.7), which however causes a decrease smaller

than 1.5 dB(A) on the broadband efficiency (with 90% confidence). This suggests once again

that the features of the optimized geometry are important for the noise barrier good perfor-

mance, although small perturbations will not completely annihilate the benefit of the optimized

geometry.
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Figure 5.6: Comparison of optimized geometries and smoothed optimized geometries and comparison of third-
octave insertion losses in dB. The low-pass characteristic length is here l = 0.2m. Left: geometry comparison -
right: third-octave insertion losses in dB. In both plots, the thin dotted line corresponds to the original optimized
geometry and the thick solid line to the smoothed geometry. Top: medium wall - bottom: small wall.
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Figure 5.7: Third octave insertion loss variability for the medium wall optimized geometry (in dB). The shaded
area corresponds to the 90% confidence interval of each third-octave insertion loss value under normally distributed
random perturbations of the optimized geometry node coordinates (with a standard deviation of 5mm). Third-
octave insertion losses of the unperturbed optimized geometry are shown as well (thick red line).

5.4 Influence of the modeling approximations

The shape of the barrier has been optimized under several important assumptions in order to

keep the computation time sufficiently small to allow a convenient optimization process: 2D

modeling, rigid ground and modeling of the tramway as a vertical infinite baffle. However, after

the optimization has been performed and some optimized designs have been found, the issue of

reducing computation time is not as critical since numerical simulations will be performed for

a few designs only. We therefore end this chapter by considering more complex (meaning also

a lot more computationally expensive) modeling situations in order to predict the performance

of the shape-optimized barriers for some of the considered starting geometries.

5.4.1 Effect of the tramway cross-section and of the ground impedance in 2D

A finer description of the tramway geometry might indeed influence the performance of the

noise barrier for several reasons. For instance, at low frequencies, we expect that the tramway

will not act as an infinite reflector because of its finite height. Also, at high frequencies, fine

details of the tramway cross section such as the curvature of the side and the presence of the

gap underneath the tramway might also have a significant effect on the sound field.

Furthermore, the assumption of rigid ground is clearly not valid in all circumstances since

the measurements of Pallas et al. were also done in grassy-like environments, and showed that

a soft ground close to the source can significantly reduce the noise emission of the tramway

[26], although this is also influenced by the stiffness of the rail pads. Indeed, the question

of the relative importance of the barrier design (shape and surface treatment) to the ground

effect in assessing the performance of noise barriers is crucial and has been discussed by several

authors. Hothersall et al. [118] claimed that most the time going from hard to soft (grass-

covered) ground has a similar effect regardless of the configuration of the barrier, which is to

increase the broadband insertion loss by 5 dB(A). However, Hutchins et al. [59] showed that a

change in barrier shape in a highway context has a greater effect when the ground is rigid, and

therefore the predicted benefit of a barrier would be decreased when the finite impedance of the

ground is considered. Furthermore, Thorsson [10] showed that optimizing the impedance of the

ground close to the source can yield a significant improvement on the insertion loss at selected
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frequencies of about 15 dB, but also showed that optimizing the impedance on a low-height

barrier, even with an optimized ground, can yield another gain of 10 to 15 dB. This means that

even in the presence of a soft ground, at least in the context of urban low height barriers, the

barrier design can have a significant effect on the attenuation. The author makes the suggestion

that a soft ground surface close to the source basically acts as a reduction of the source power

level, which is consistent with the results observed by Hothersall et al. [118].

p pref

p pref

p pref

p pref

Case a) Case b)

Case d)Case c)

Optimized
barrier

Optimized
barrier + abs.

treatment

Optimized
barrier

Optimized
barrier

Figure 5.8: Description of the four cases to assess the effect of an absorbing ground (Delany & Bazley layer
with σ = 50 kPam s−2 and d = 5 cm) and of a more realistic tramway geometry. In each case, p is the field at
the receiver with the barrier present and pref is the field without the barrier. The attenuation is given by the
ratio |pref/p| in dB. a) Rigid ground, infinite baffle and optimized barrier treatment - b) rigid ground, realistic
tram and optimized barrier treatment - c) absorbing ground, realistic tram and optimized barrier treatment - d)
absorbing ground, realistic tram and uniform absorbing barrier treatment

Hence, we have to assess how much the rigid ground and vertical baffle approximations

influence the predicted benefit of the optimized barrier shapes. In this context, the description

of the reference field used in the calculation of the attenuation is critical, and should be chosen

to evaluate the benefit of the barrier only. To do so, we will compare BEM calculations of

insertion losses using four different cases detailed in figure 5.8. In every case, the attenuation is

given by the ratio |p/pref| in dB. Third-octave insertion losses results are shown in figure 5.9 and

broadband efficiencies based on the tramway spectrum in the 100-2500 Hz range are shown in

table 5.2. The absorbent treatment on the ground and on the barrier in case d) is modeled with

a Delany & Bazley layer with σ = 50 kPa.s/m2 and d = 5 cm, which corresponds to a strongly

absorptive porous material and therefore should be considered as a limiting case.

Comparing the results obtained for cases a) and b) in figure 5.9, one can conclude that

the infinite baffle approximation for the tram is relatively accurate to predict the insertion

loss of the optimized barriers, although some of the interference dips and peaks are shifted in

frequency and not as marked when the more realistic geometry is considered. The differences are

typically more important in the low-frequency range (below 300 Hz) although some difference

can be observed as well at higher frequencies. Those differences yield an over-prediction in the
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Figure 5.9: Comparison of third-octave insertion losses for four considered optimized geometries and for the
four cases detailed in figure 5.8. Top left: small wall - top right: medium wall - bottom left: T-shape - bottom
right: Gamma-shape.

Table 5.2: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the four cases
described in figure 5.8 and for the considered initial geometries.

Cases
Barrier initial geometry

Small wall Medium wall T-shape Gamma-shape

a) 8.2 15.2 11.3 11.1

b) 9.9 14.2 10.1 10.5

c) 6.0 11.9 6.9 8.1

d) 7.7 13.4 14.1 12.7

broadband efficiency of about 1 dB(A) for all geometries except the small wall geometry, for

which idealizing the tramway as an infinite baffle actually under-predicts the performance of the

optimized barrier by almost 2 dB(A).

Comparison between the results of cases b) and c) shows that, in agreement with Hutchins

et al. [59], the benefit due to the barrier only (measured by the insertion loss) is reduced

when the ground is treated. This effect mostly happens above 400 Hz, inducing a decrease

of the broadband insertion loss of 3-4 dB(A). This decrease can be explained by the fact that

the pressure level with the barrier, with and without absorbing ground, is not changed much,

whereas the level without the barrier (incident level) is significantly decreased when the ground

is absorbing. Further, one should recall that the ground treatment chosen in case c) corresponds

to a strongly absorbing material, and therefore it is believed that more usual ground treatments,

such as grass, would induce a smaller decrease of performance compared to the case of a rigid

ground. Furthermore, treating the ground might not be a feasible solution as opposed to building

an optimized barrier. In this case, the benefit of the barrier might be much closer to what has

been predicted in case b). It also seems clear that in the case of an already existing rigid ground,
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treating the ground with absorbing material will act concurrently with the barrier in decreasing

the noise levels in the shadow zone, as pointed out by Thorsson [10]. The point of considering

case c) was to make sure that the benefit in noise reduction due to the optimized barrier was not

too severely diminished in case of an already existing absorbing ground as opposed to a rigid

ground.

Finally, the results obtained in case d) shows how much increase can be gained by treating

the optimized barriers with an absorbing material instead of considering them rigid, keeping

the ground absorbing as well. The benefit is not that important - about 1.5 dB(A) - for the

small wall and medium wall optimized geometries, but is more important for the T-shape and

for Gamma-shape geometries - with gains of 7 and 4.5 dB(A) respectively. This enhanced

benefit of covering the barrier with absorbing material can be explained from the fact that with

the Gamma and T geometries, the environment between the tramway and the barrier is more

confined, which would enhance the multiple reflections phenomenon. When the barrier is rigid,

those reflections could at most be scattered by the irregularities of the optimized geometry but

not absorbed. Replacing the rigid coverage by an absorbing treatment would have a great impact

on the multiple reflections and therefore would increase the insertion loss significantly, which is

what is observed here.

Nevertheless, the optimized shape does induce an increase of performance by a few dB(A),

even in the case of an absorbing treatment. For instance, for the T-shape geometry, going from

the straight absorbing barrier to the optimized absorbing barrier increases the performance by

2.2 dB(A) (see in table 5.3). This gain reaches 3.2 dB(A) for the wall geometry. Besides, one can

point out that here the shape has been optimized assuming a rigid coverage, and therefore one

can expect a more significant effect of the shape optimization if the barrier had been assumed

absorbing at first (which is what will be done in the next chapter).

Table 5.3: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the initial and
optimized T-shape and medium wall geometries, with and without absorbing treatment (Delany and Bazley layer
of parameter σ = 50 kPa.s/m2 and d = 5 cm), assuming the case c) configuration of figure 5.8 (absorbing ground
and more realistic tramway geometry).

Geometry Straight rigid Straight abs. Optimized rigid Optimized abs.

T-shape 4.2 11.9 6.9 14.1
Medium wall 3.2 10.2 11.9 13.4

5.4.2 Effect of the source modeling

In the previous section, we looked at the effects of a more accurate modeling of the tramway

cross section and the effect of an absorbing ground, but all the predictions were still assuming

2D propagation, that is an infinitely long tramway and barrier as well as an infinite coherent

line source. Finally, in this section, we assess the importance of the modeling of the source, since

it has been shown that the predicted benefit of a noise barrier can depend largely on it [144].

The 2D approximation indeed implicitly assumes that the source is an infinite coherent line,

but as it has been pointed out earlier, it has been shown that this assumption can be used to

approximately calculate excess attenuations in narrow frequency bands due to a 3D point source

in many situations [28]. However, using the approach described by Duhamel [28], it is possible
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to post-treat a set of 2D calculations to calculate the attenuation in the case of an incoherent

line source or a set of incoherent point sources placed along the line of sources (perpendicular

to the plane of the 2D calculations), which is referred to as 2.5D modeling. This post-treatment

has been implemented in the MICADO software and tested by Jean et al. [144]. The direction

perpendicular to the plane of 2D calculations will be referred to as the x3-direction (see in figure

5.10), with x3 = 0 corresponding to the 2D plane where the receiver is. Notice that, due to

the increased complexity of the modeling, calculations will be made only up to the third-octave

band centered at 1600 Hz.

We consider again the four cases described in figure 5.8. When non rigid surfaces are present,

the extension of the 2.5D modeling in the presence of absorbing surfaces [143] is used. Besides,

in order to compute third-octave insertion losses which requires calculation of the attenuation

at several frequencies per third-octave, the approximation that the admittance is constant over

each third-octave band is made, so that one set of 2D results per third-octave can be used

in the 2D to 3D transformation. This approximation is not necessarily accurate for reactive

treatments close to resonance for instance, but Jean [144] has shown that this approximation

is usually sufficient to predict third octave or broadband insertion losses, which is what we are

mostly interested in. Also, the so-called “imaginary” frequencies are not taken into account in

our calculation since this increases the computation time significantly, but again this has been

shown to have a negligible influence in the considered frequency range [28, 144].
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Figure 5.10: Source configurations assumed in the 2.5D modeling. Left: infinite line source (coherent or
incoherent) - middle: one 3D point source in the same vertical plane as the receivers - right: several incoherent
3D point sources (placed every 0.5m and covering a length of 42m, which is a typical tramway length).

Four types of modeling for the tramway noise source are considered: infinite coherent line

source (2D), one 3D point source located at x3 = 0, several incoherent point source located along

the tramway line from x3 = −21m to x3 = +21m every 0.5m, and finally an infinite incoherent

line source (see in figure 5.10). The finite extension of the several incoherent point sources has

been chosen according to a typical length of a modern tramway, such as the one presented in

[26] (about 40m).

We first present the broadband insertion losses in dB(A) in the frequency band 100-1800 Hz,

for the four cases presented in figure 5.8, for the four types of source models and for the four

geometries (see table 5.4). Then, comparisons of third-octave insertion losses corresponding to

the four source models in each ground/tramway configuration are presented in figures 5.12 to

5.15.

First of all, one can notice that the insertion losses in the case of a coherent line source

are actually slightly under-predicted, by about 0.5 to 2 dB(A), compared to the case of one
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Table 5.4: Comparison of the broadband insertion losses in dB(A) in the 100-1800 Hz band assuming the
different cases of figure 5.8 and the four types of source models, for the four considered optimized geometries.

Barrier type Cases
Source model

Coherent line One point source Incoherent point sources Incoherent line

Small wall

a) 8.2 10.2 7.9 4.5
b) 9.9 10.5 9.4 3.2
c) 5.9 6.4 4.7 4.2
d) 7.6 8.0 7.0 6.4

Medium wall

a) 15.2 17.6 11.3 4.8
b) 14.2 16.3 11.5 2.7
c) 11.9 13.3 8.2 7.2
d) 13.3 13.9 12.3 10.8

T-shape

a) 11.3 14.1 9.9 5.8
b) 10.1 11.7 9.2 3.1
c) 6.8 8.2 5.4 5.1
d) 13.9 14.7 12.3 11.6

Gamma-shape

a) 11.2 13.3 10.1 5.7
b) 10.6 12.4 9.9 3.2
c) 8.0 9.1 6.6 6.3
d) 12.5 13.1 11.2 10.5

point source, and this regardless of the tramway/ground configuration. However, overall third-

octave insertion losses assuming a coherent line source or a 3D point source follow similar trends.

Extrapolating the insertion losses calculations in 2D to the case of one 3D point source therefore

seems relatively accurate.

Furthermore, when the source is modeled as several incoherent point sources, which seems

like a more realistic model, the following trends can be observed: 1) going from an idealized to a

more realistic tramway cross section slightly decreases the efficiency by less than 1 dB(A), except

for the small wall geometry for which the efficiency is actually increased by 1.5 dB(A), without

changing dramatically the shape of the third-octave insertion loss curve; 2) adding absorption

to the ground further decreases the efficiency of the noise barrier itself (by 3-4 dB(A)). However,

comparing the third octave insertion losses in the case of one or several point sources (see in

figures 5.12 to 5.14, top right and bottom left graphs), one can see that, for all geometries,

the presence of several incoherent sources greatly decreases the low frequency performance and

smooths the dips and peaks of the third-octave insertion loss curves. Those dips and peaks are

probably related to interference effects happening between the tramway and the barrier, which

are typically more marked in the case of a coherent source (such as a 2D line source or a 3D

point source), and therefore it makes sense that they would be somewhat diminished when the

source is spatially incoherent.

Still considering the case of incoherent point sources, adding absorbing treatment on the

barrier increases the performance, but again the gain is smaller for the wall-like geometries (2-4

dB(A)) than for the T and Gamma shape geometries (4.5-7 dB(A)). It is interesting to notice

however that the optimized medium wall has a similar or better performance than the optimized

T-shape (regardless of the barrier being rigid or absorptive).

But, the biggest difference in the results due to the source model corresponds to the case of

an infinite incoherent line source with a rigid ground - cases a) and b). Indeed, the broadband

efficiency dramatically drops compared to the case of incoherent point sources for all geometries.
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One can also notice that the decrease in attenuation is significant across the whole frequency

range (see in figures 5.12 to 5.15, bottom left and bottom right graphs, thick solid and thick

dashed lines). However when the ground is absorbing - cases c) and d) - the decrease is a lot

smaller (see in the same figures, same graphs, thin solid and thin dashed lines).

However, it has been shown that the difference in predicted levels between the infinite in-

coherent line source model and a finite set of incoherent point sources model is mostly due to

the finite extent of the point sources along the x3-axis [144]. This difference is not visible when

the ground is absorbing because contributions from distant sources are highly attenuated while

propagating above the ground. In the case of a tramway, it is clearly more realistic to consider

a finite extent of sources, and therefore we believe that the predicted results assuming a set of

incoherent point sources are more likely to be realistic than those obtained assuming an infinite

incoherent line source.

Finally, in order to evaluate the benefit of the optimization even in a more advanced model-

ing situation, one can compare the performance in terms of third-octave insertion losses of the

two best obtained rigid solutions (optimized medium wall and optimized T-shape) with that of

their corresponding “starting” geometry, for what we consider the most realistic model: realistic

tramway cross-section, several incoherent point sources, rigid or absorbing ground (see figure

5.11). Even in a more complicated modeling situation, one can notice that the gain in perfor-

mance due to the optimization is significant (+ 6 dB(A) for the medium wall, + 2-3 dB(A) for

the T-shape), and that optimized geometries perform significantly better than straight geome-

tries at mid and high frequencies (above 400 Hz for the medium wall, and above 600 Hz for the

T-shape), as noticed in the 2D calculations.
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Figure 5.11: Comparison of third octave insertion losses in dB between rigid straight (initial) and rigid optimized
geometries, assuming incoherent point sources, more realistic tramway geometry and either rigid or absorbing
ground, for two starting geometries. Broadband insertion losses in dB(A) calculated in the range 100-1800 Hz are
shown as well. Left: medium wall - right: T-shape. Thin solid line: Rigid ground and Straight geometry (RS) -
thick solid line: Rigid ground and Optimized geometry (RO) - thin dashed line: Absorbing ground and Straight
geometry (AS) - thick dashed line: Absorbing ground and Optimized geometry (AO).

5.5 Conclusion

In this chapter, the sensitivity-based shape optimization algorithm developed in the previous

parts of this work has been applied to the cases of rigid tramway low-height barriers. Several

starting geometries were chosen (small and medium wall, quarter cylinder, T and Gamma shape)
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and convergence to a solution was achieved in each case rather rapidly (within a few dozens

iterations). Several dB(A) of improvement were observed, from 3 dB(A) for the quarter cylinder

to 11 dB(A) in the medium wall case, although since the barrier is assumed rigid no energy

absorption happens in the considered model.

The generated optimized shapes tend to present sharp irregularities on the side of the barrier

directly exposed to the source radiation and to the reflections on the tramway side. On the

other hand the opposite side (facing the receivers) is almost not changed for most geometries.

Intensity calculations suggest that the presence of the irregularities of the optimized shapes cause

the multiple reflections happening between the tramway and the barrier to scatter, therefore

redirecting part of the acoustic energy upwards and away from the shadow zone, and cause

recirculating regions of sound energy to appear. Those two effects seem to explain the increase

of performance happening even without any absorption phenomena.

Extra calculations show that smoothing the irregularities provokes a decrease in performance,

which suggests that the sharp irregularities are not numerical artifacts but do physically alter

the sound field in order to increase the noise reduction in the shadow zone, by the energy

redirection effect. However, small perturbation of the optimized shape - which might be due

to manufacturing inaccuracies for instance - does not completely annihilate the benefit of the

shape optimized barrier.

More advanced numerical calculations were performed on the optimized designs in order to

assess how much the assumed approximations in the optimization model influence the perfor-

mance. To achieve this, a more realistic tramway geometry is considered, as well as an absorbing

ground and different source models using 2.5D calculations. The following trends are observed:

• the vertical baffle approximation is rather accurate for most optimized geometries, within

about 1 dB(A).

• the insertion loss of the barrier is decreased when the ground is strongly absorbing, by 3-4

dB(A).

• the 2D source model (coherent line source) represents quite accurately the case of a single

3D point source in the considered cases.

• considering a finite set of incoherent sources instead of one point source smooths out

interference peaks and dips and decreases third-octave insertion losses (mostly at low

frequencies), although the performance of the optimized barriers remains significant (above

9 dB(A) in case of a rigid ground).

• covering the barrier with absorbing material provides several dB(A) of extra attenuation,

this effect being more important for the T and Gamma-shape barriers since the space

between the barrier and the tramway is more confined with this kind of geometry.

Furthermore, extra effects that have not been taken into account in the modeling are sus-

ceptible of having an influence on the performance of the barrier, such as the directivity of

the source and the finite length of the barrier. One can however state that considering omni-

directional point sources - therefore sources that radiate equally in all directions, especially in
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the horizontal plane - is likely to yield a conservative estimate of the performance of the noise

barrier, since with more realistic directivity patterns distant sources would contribute less to

the pressure level that has been calculated here and therefore the performance would be closer

to what has been predicted in the one point source case.

On the other hand, considering the barrier infinite obviously over-predicts the performance

compared to a barrier of similar shape but of finite length. Quantifying this difference would

require however full 3D calculations which are beyond the scope of this study.
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Figure 5.12: Comparison of the third octave insertion losses in dB assuming the different cases of figure 5.8 and
the four types of source models, for the optimized small wall barrier. Top left: coherent line source - top right:
one point source - bottom left: incoherent point sources - bottom right: incoherent line source.
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Figure 5.13: Comparison of the third octave insertion losses in dB assuming the different cases of figure 5.8 and
the four types of source models, for the optimized medium wall barrier. Top left: coherent line source - top right:
one point source - bottom left: incoherent point sources - bottom right: incoherent line source.
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Figure 5.14: Comparison of the third octave insertion losses in dB assuming the different cases of figure 5.8 and
the four types of source models, for the optimized T-shape barrier. Top left: coherent line source - top right: one
point source - bottom left: incoherent point sources - bottom right: incoherent line source.
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Figure 5.15: Comparison of the third octave insertion losses in dB assuming the different cases of figure 5.8
and the four types of source models, for the optimized Gamma-shape barrier. Top left: coherent line source - top
right: one point source - bottom left: incoherent point sources - bottom right: incoherent line source.
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Chapter 6

Application to coupled admittance and

shape optimization of barriers with

acoustic treatments

In the previous chapter, the shape optimization algorithm has been applied to the case of rigid

low height barriers since we were interested in finding how much improvement can be obtained

due to an optimized shape design only, assuming it would be built with an acoustically rigid

material such as concrete. However, using acoustic surface treatments is also a natural choice if

one seeks to improve the performance of a low height noise barrier, especially since this would

help in attenuating the multiple reflections phenomenon happening between the barrier and the

tramway. We present in this chapter some optimized designs found either by optimizing the

shape in the case of an assumed surface admittance, or by optimizing both the shape and a part

of the surface admittance.

6.1 Considered acoustic treatments

As pointed out in section 1.6 there are mostly two main types of acoustic treatments: porous

treatments and reactive treatments. We will assume two kinds of porous treatments, a layer

of fibrous material such as fiberglass, modeled with the Delany and Bazley empirical model

(see in figure 1.6.1), and a hemp concrete layer, modeled with the hybrid model explained

in section 1.6.2. The considered reactive treatment is the micro-perforated panel resonator

(MPPR) resonator, modeled by the Crandall-Sivian-Fok model, as explained in section 1.6.3.

We will therefore consider several configurations, in which some part of the barrier can be shape-

optimized, and some part of it can be admittance-optimized. Generally speaking those parts

can overlap, however feasibility constraints should be taken into account if the optimized barrier

was to be built. For instance, we will not allow the shape of a MPPR to be optimized (it will

remain flat).

To completely define the optimization problem, we need to choose a range of possible values

for the admittance parameters, which depends on the type of parameter:
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• MPPR. Porosity: s ∈ [0.01, 0.4]; hole radius: a0 ∈ [0.5, 5]mm; panel thickness: l0 ∈
[0.2, 1] cm; cavity depth D ∈ [1, 10] cm

• Porous fibrous layer. Flow resistivity: σ ∈ [50, 200] kPa sm−2; layer depth: d ∈
[1, 10] cm

The parameters describing the hemp concrete will however not be optimized. The choice of

those ranges is based on physically feasible values. Regarding shape optimization, the 1m wide

box constraint considered in chapter 5 is kept here as well.

6.2 Shape optimization of a barrier covered entirely with a fi-

brous absorbing treatment

First, a shape optimization is conducted on simple geometries, assuming a fibrous fiberglass-

like porous treatment covering the whole surface of the barrier. Indeed, it has been noticed in

chapter 5 that an absorbing treatment can act concurrently with the scattering effect provided

by an irregular shape-optimized barrier, however it is not clear how much improvement a shape

optimization can provide in terms of extra attenuation in the shadow zone when the barrier is

already assumed absorbing.

For this purpose, the medium wall and Gamma-shape initial geometries are considered (see

in figure 6.1, top plots), with a fixed - meaning not allowed to be optimized - surface treatment

modeled as a Delany and Bazley porous layer (flow resistivity σ = 50 kPa.s/m2 and thickness

d = 5 cm). The initial control mesh is generated with a maximum distance between two following

nodes of 2 cm, yielding 112 and 143 nodes respectively for the medium wall and Gamma-shape

geometries. The obtained optimized shapes are presented as well in figure 6.1, bottom plots.

The broadband insertion losses are given in table 6.1 and third-octave insertion losses in figure

6.2. Finally, convergence was obtained respectively in 12 and 14 iterations.

Table 6.1: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the two starting
geometries and corresponding optimized geometries, in the case of a barrier fully covered with a fibrous layer as
shown in figure 6.1.

Medium wall Gamma-shape

Initial 15.1 15.4

Optimized 20.7 23.6

First of all, one can notice that a noticeable improvement of the barrier performance has been

obtained in both cases: +5 dB(A) for the medium wall and almost +10 dB(A) for the Gamma-

shape wall. As in the rigid barrier case (see in chapter 5), some irregularities are generated by

the shape optimization, and the back side of the barrier is almost not modified.

However, it is interesting to notice that the way the shape has been deformed is somewhat

different from what was observed in the case of rigid barrier shape optimization (see in figure

6.3 for a comparison of shape-optimized barriers assuming either rigid or absorbing surface

treatment). Indeed, when the barrier was assumed rigid, it has been noticed that the source side

underwent rather important deformation and became quite irregular (see in chapter 5), which
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Figure 6.1: Initial and optimized barrier designs considered in the shape-optimized fully absorbing barrier
configuration (fibrous layer modeled with the Delany and Bazley’s model with parameters σ = 50 kPa.s/m2 and
d = 5 cm). Left: medium wall - right: Gamma-shape. Top: initial geometry - bottom: optimized geometry. The
one meter wide constraint box is shown as well (thin dotted line).
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Figure 6.2: Comparison of third-octave insertion losses in dB between initial and optimized geometry in the
case of shape optimization of a fully absorbing barrier (fibrous Delany and Bazley layer), as shown in figure 6.1.
Solid line: optimized geometry - dashed line: initial geometry. Left: medium wall - right: Gamma-shape.

would induce some energy scattering of the multiple reflections. However, when the barrier

was assumed absorbing, it seems like the deformation on the source side was not as important,

but on the other hand was more important in the top region of the barrier. This could be

explained from the fact that, when the barrier is rigid, the performance is mostly influenced

by the multiple reflection phenomenon happening between the source side of the barrier and

the tramway, and therefore the shape optimization tends to act against this effect by mostly

modifying the source side geometry, which is where the multiple reflections happen. However,

when the barrier is absorbing, the multiple reflections are greatly attenuated, and therefore this

time the performance of the barrier may be influenced as well by diffraction effects, which happen

essentially in the top region, and it would consequently make sense that the shape optimization

tends to modify the geometry to enhance those effects. This is suggested by the comparison of

the generated optimized geometries in both cases (see in figure 6.3), especially for the Gamma-

shape starting geometry. Indeed it seems like the top of the medium wall geometry has not been

modified too significantly since the nodes of this area were already rather close to the constraint

box, which somewhat limited the deformation.
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Figure 6.3: Comparison of shape-optimized barrier geometries in the case of either rigid or absorbing surface
treatment, with the same initial starting geometry. Left: medium wall - right: Gamma-shape. Thin black line:
rigid barrier - thick red line: absorbing barrier.

6.3 Shape optimization of absorbing source side and reactive

treatment optimization on top

In this section a design coupling the benefit of a shape optimized source side and a reactive

treatment on top of the device is studied. As in the previous section, an absorbing treatment

(the same fibrous layer than in the previous case) is added on the source side to act against

the multiple reflections happening between the barrier and the tramway, but the shape is also

allowed to be optimized for further enhancement. Besides, it seemed interesting to study if a

reactive treatment on top of the barrier may enhance the performance in a suitable frequency

band. As pointed out before, the attenuation is not influenced significantly by the part of the

barrier facing the receivers (the back side), and therefore it is assumed rigid and fixed in the

optimization for simplicity (although as pointed out in chapter 5, one could use any type of

treatment on this side, for instance for purely aesthetic reasons).
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Figure 6.4: Initial and optimized barrier designs considered in the shape-optimized porous source side and
MPPR top side configuration. Left: medium wall - right: T-shape. Top: initial geometry - bottom: optimized
geometry. The one meter wide constraint box is shown as well (thin dotted line). Surface treatment color coding:
rigid (thin black solid line); fibrous layer (thick red solid line); MPPR (thick black dotted line).
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Table 6.2: Type of treatment, optimized parameter values and broadband insertion losses in the 100-2500 Hz
range in dB(A) for the optimized designs given in figure 6.4.

Initial geometry
Type of treatment and parameters Broadband IL

Source side Top side Back side [dB(A)]

Medium wall
Fibrous layer MPPR

Rigid 23.0σ = 50 kPa.s/m2 s = 0.186 a0 = 0.5mm

d = 4.3 cm l0 = 5.4mm D = 8 cm

T-shape
Fibrous layer MPPR

Rigid 23.3σ = 50 kPa.s/m2 s = 0.122 a0 = 2.8mm

d = 5 cm l0 = 6.6mm D = 10 cm

Two starting geometries are considered: the medium wall and the T-shape (see figure 6.4,

top plots). Again the control nodes on the source side are initially separated by 2 cm. The

initial admittance parameters are chosen randomly in the feasible range given above. Generated

optimized designs are shown in the figure 6.4 bottom plots, whereas optimized admittance

parameter values as well as broadband insertion losses are given in table 6.2. Again convergence

was achieved rapidly, within 20 iterations.

The same trend that has been observed in chapter 5 is observed here as well, which is that

the shape optimization alters the source side mostly by making it more irregular. One can

notice however that the irregularities are more pronounced in the medium wall case compared

to the T-shape case. This might be due to the fact that most of the nodes of the initial T-shape

geometry were located on the constraint box, and therefore could not be displaced much. This

suggests that using a geometry not in contact with the constraint box might be a better choice

for the starting point of the shape optimization algorithm.

The relative benefit of optimizing the shape as opposed to optimizing the admittance can

furthermore be studied a posteriori by comparing the insertion losses in the case of a fully

optimized design (shape and admittance, referred to afterwards as the OS-OT case), as opposed

to the case of an optimized shape covered with absorbing treatment only (referred to as the

OS-AT case) and the case of the initial straight geometry covered with the found optimized

admittance (referred to as the IS-OT case). Third-octave and broadband insertion losses in

these three different cases for the medium wall and T-shape geometries are presented in figure

6.5.

Comparing cases OS-OT and OS-AT, one can notice that the benefit of the optimized ad-

mittance - which is essentially related to the presence of the optimized MPPR on top - mostly

improves the performance in the mid-frequency range, between 600 and 1500 Hz for the medium

wall geometry and between 400 and 1000 Hz for the T-shape geometry, inducing an increase of

performance respectively of 2 and 4 dB(A). Those frequency ranges roughly correspond to the

first resonance of the MPPRs, as can be seen in their admittance functions given in figure 6.6.

On the other hand, comparing cases OS-OT and IS-OT suggests that for the T-shape geometry

optimizing the shape of the source side has a little influence (increase of 1.7 dB(A) in the perfor-

mance), but is much more significant in the medium wall case (increase of more than 6 dB(A)).

This is in agreement with the fact that the geometry has been modified more significantly in the

medium wall case, and it would therefore make sense that the shape optimization would provide

more improvement of the broadband performance.
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In summary, in the two considered cases, both optimizing the shape on the source side and

optimizing the surface treatment on the top (here assumed to be a reactive treatment) seem to

have an influence, although the influence of the MPPR seems more important for the T-shape

geometry, whereas the influence of the shape seems more important for the medium wall.
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Figure 6.5: Comparison of third-octave insertion losses in dB for different configurations of barrier shape and
surface treatment related to the optimization case considered in figure 6.4. Broadband insertion losses in dB(A)
are given in the legend as well. Thick solid line (OS-OT): Optimized Shape (see in figure 6.4 bottom plot) and
Optimized surface Treatment (parameters given in table 6.2) ; thick dashed line (OS-AT): Optimized Shape (see
in figure 6.4 bottom plot) and Absorbing surface Treatment (Delany-Bazley porous layer with σ = 50 kPa.s/m2

and d = 5 cm) covering the whole barrier ; thin solid line (IS-OT): Initial straight Shape (see in figure 6.4 top
plot) and Optimized surface Treatment (parameters given in table 6.2). Left: medium wall - right: T-shape.
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Figure 6.6: Normalized admittance β of the MPPR on top of the barrier for the two optimized designs given in
figure 6.4. Parameters of the MPPRs are given in table 6.2. Real part: solid line ; imaginary part: dashed line.

6.4 Results with hemp concrete as the absorbing treatment

The porous absorbing treatment assumed in the previous sections has been modeled by a Delany

and Bazley layer of low flow resistivity (σ = 50 kPa.s/m2), which would typically correspond

to a layer of sound insulating fibrous material such as fiberglass. Such a strongly absorbing

material would require proper packaging in order to be used in an outdoor environment and also

has a rather strong environmental footprint. One may wish to use instead a more sustainable

material, but with good acoustic absorption properties. An example of such material is hemp

concrete, which has been introduced in section 1.6.2. This material has slightly different acoustic

properties compared to a Delany and Bazley fiberglass-type material, as one can see from their

normalized admittance functions and absorption coefficients, given in figure 6.7. Hemp concrete

is not as absorptive at high frequencies, but does provide more absorption at low frequencies.
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Figure 6.7: Comparison of normalized admittance β (left plot) and absorption coefficient α (right plot) of a
fibrous material, modeled as a Delany and Bazley layer of parameters σ = 50 kPa.s/m2 and d = 5 cm, and of a
hemp concrete layer (the used model and the parameters are given in section 1.6.2). Thick red line (DB): Delany
and Bazley layer; thin purple line (HC): Hemp Concrete layer. (Left plot - real part: solid line; imaginary part:
dashed line.)

We now briefly present some optimized designs when hemp concrete is used as the absorbing

treatment instead of a layer of fibrous porous material.

6.4.1 Uniform porous treatment

We first assume, as in section 6.2, that the barrier is uniformly covered with absorbing treat-

ment (again here, it is assumed to be hemp concrete), and the shape is optimized. The two

same starting geometries are considered: medium wall and Gamma-shape (see figure 6.8, top

plots). The optimized barrier shapes are shown in figure 6.8, bottom plots. The comparisons of

broadband and third-octave insertion losses between the initial shapes and optimized shapes are

shown in table 6.3 and figure 6.9. The improvement due to the shape optimization is similar to

what has been obtained for the fibrous absorbing material (+7 dB(A) for the medium wall, +9.5

dB(A) for the Gamma-shape) and the shape has been modified in a similar fashion. Broadband

attenuations however are slightly smaller than what had been found in section 6.2 for the barrier

covered with fibrous material (by about 1.5 dB(A)), due to smaller insertion loss values at high

frequencies. This difference was expected since, as pointed out above, hemp concrete is not as

absorptive at high frequencies. Nevertheless, the obtained performances are similar for the two

absorbing treatments, and therefore using hemp concrete as opposed to a more typical sound

absorbing fibrous material seems like a suitable option regarding acoustic performance.

Besides, the performance of the optimized absorbing barrier is somewhat stable, in the sense

that small perturbations of the shape do not induce too much of a decrease of the broadband

insertion loss. Doing a similar calculation as in section 5.3, it has been found indeed that

randomly perturbing the absorbing medium wall optimized geometry - again with normally

distributed perturbations of standard deviation 5mm - induced on average a decrease smaller

than 0.1 dB(A).

Table 6.3: Comparison of broadband insertion losses in dB(A) in the 100-2500 Hz range for the two starting
geometries and corresponding optimized geometries, in the case of a barrier fully covered with hemp concrete.

Medium wall Gamma-shape

Initial 12.3 13.1

Optimized 19.2 22.6
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Figure 6.8: Initial and optimized barrier designs considered in the shape-optimized fully absorbing barrier
configuration (hemp concrete layer). Left: medium wall - right: Gamma-shape. Top: initial geometry - bottom:
optimized geometry. The one meter wide constraint box is shown as well.
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Figure 6.9: Comparison of third-octave insertion losses in dB between initial and optimized geometry in the case
of the shape optimization of a barrier fully covered by hemp concrete. Solid line: optimized geometry - dashed
line: initial geometry. Left: medium wall - right: Gamma-shape.

6.4.2 Porous and reactive treatment

Similar to what has been looked at in section 6.3, we now consider barrier designs with the

source side covered with hemp concrete, a MPPR on the top side and a rigid back. The two

considered starting geometries are the medium wall geometry and the T-shape geometry (see

the figure 6.10 top plots). Optimization is applied to the shape of the source side, again with

initial control nodes distant of 2 cm, and to the parameters describing the MPPR. Resulting

designs are shown in the figure 6.10 bottom plots. Optimized MPP parameters and broadband

insertion losses are given in table 6.4.

The resulting optimized shapes are slightly different than what had been found in section

6.3. First, one should point out that the starting geometries were not exactly the same in the

two cases (see in the figures 6.4 and 6.10 top plots): when hemp concrete was used, the initial

medium wall was slightly offset closer to the source and the top of the T further away from the

source. This was done to loosen the shape bound constraints, which would hopefully allow more

improvement thanks to the shape optimization.

For the medium wall case (comparing figure 6.4 and figure 6.10, bottom left plots), irreg-
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Figure 6.10: Initial and optimized barrier designs considered in the shape-optimized hemp concrete source side
and MPPR top side configuration. Left: medium wall - right: T-shape. Top: initial geometry - bottom: optimized
geometry. The one meter wide constraint box is shown as well. Surface treatment color coding: rigid (thin black
solid line); hemp concrete layer (thick purple solid line); MPPR (thick black dotted line).

Table 6.4: Type of treatment, optimized parameters values and broadband insertion losses in the 100-2500 Hz
range in dB(A) for the optimized designs given in figure 6.10.

Initial geometry
Type of treatment and parameters Broadband IL

Source side Top side Back side [dB(A)]

Medium wall Hemp concrete
MPPR

Rigid 22.4s = 0.162 a0 = 3.6mm

l0 = 9.5mm D = 9.8 cm

T-shape Hemp concrete
MPPR

Rigid 24.4s = 0.173 a0 = 0.5mm

l0 = 5.8mm D = 8.6 cm
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Figure 6.11: Comparison of third-octave insertion losses in dB in the case of an absorbing shape-optimized source
side and optimized MPPR on top side (parameters are given in table 6.2 and 6.4). The absorbing treatment is
either a layer of fibrous material (modeled with the Delany and Bazley model with parameters σ = 50 kPa.s/m2

and d = 5 cm) or a layer of hemp concrete (see in section 1.6.2 for the corresponding model and parameters
values). Broadband insertion losses in dB(A) are given in the legend as well. Thick solid line (DB): Delany and
Bazley layer; thick dashed line (HC): Hemp Concrete layer. Left: medium wall - right: T-shape.

ularities were more strongly marked and more concentrated close to the top with the fibrous

treatment. Regarding the T-shape geometry, as expected the top region of the source side has

undergone more deformation during the optimization, which in turn yielded a slightly better

broadband performance (24.4 dB(A) with hemp concrete and 23.3 dB(A) with fibrous absorbing
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material).

Finally, comparison of third-octave insertion losses for both starting geometries and for

both porous treatments, given in figure 6.11, show that a similar performance can be obtained

using both types of porous treatments, even though hemp concrete is not as absorptive at high

frequencies.

6.5 Performance of some optimized designs using more advanced

modeling
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Figure 6.12: Schematics representing the so-called simplified model (used during the optimization process) and
advanced model. Left: simplified model (tramway body modeled by a vertical baffle, coherent line source, rigid
ground) - right: advanced model (more realistic tramway body geometry, set of incoherent point sources covering
a length of 42m and placed every 0.5m, rigid ground).

As stated in section 5.4, once some optimized noise barrier designs are found, it is not

as critical to keep the computation time as small as possible because the evaluation of the

attenuation is performed only once per found design. We therefore end this chapter by presenting

predicted insertion losses using a more advanced model: instead of modeling the tramway body

as a rigid baffle, we consider a more accurate geometry (including a gap under the body), and

the noise source is modeled as a set of incoherent point sources located on the ground. This

will be referred to as the advanced model, whereas the model assumed during the optimization

process will be referred to as the simplified model (see in figure 6.12). Although it has been

found in section 5.4 that the absorption of the ground influences the intrinsic performance of

the noise barrier (it typically decreases the insertion loss by a few dB(A)), we will assume a rigid

ground in both models for simplicity.

The four optimized designs for which we will perform the calculation of the attenuation

using the advanced model are presented in figure 6.13. These solutions all use hemp concrete

as the absorptive treatment, since it has been shown that similar noise reduction performance

can be obtained with this material compared to using a more classical fibrous sound insulating

material, but at the same time hemp concrete is a more sustainable material.

Predicted broadband and third-octave insertion losses for the four designs and the two models

are presented in table 6.5 and in figure 6.14. Again due to the increased complexity of the
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Figure 6.13: Considered optimized designs for the comparison of predicted performance using the simplified
and advanced models (see in figure 6.12). Hemp concrete is used as the absorbing treatment in this case. Design
a): shape optimized fully absorbing barrier, medium wall starting geometry. Design b): shape optimized fully
absorbing barrier, Gamma-shape starting geometry. Design c): shape optimized absorbing source side, optimized
MPPR on top and rigid back, medium wall starting geometry. Design d): shape optimized absorbing source side,
optimized MPPR on top and rigid back, T-shape starting geometry. Optimized admittance parameters are given
in table 6.4.

advanced model, the calculations are made up to 1800 Hz only. One can essentially notice

a similar behavior compared to the entirely rigid barrier case (see in section 5.4), which is

that insertion losses are lowered when the more advanced model is used, especially in the low

frequency range, and that interference dips are smoothed out. Broadband noise reductions

remain however important, reaching 19 dB(A), whereas the performance of the shape optimized

rigid barriers found in chapter 5 predicted using the same model were closer to 10 dB(A). This

suggests that using acoustic surface treatment - especially absorbing treatment - provides a

significant advantage in terms of acoustic performance even when the shape of the barrier is

optimized.

Table 6.5: Comparison of broadband insertion losses in dB(A) in the 100-1800 Hz range for the four optimized
designs given in figure 6.13 predicted either using the simplified model (coherent line source, infinite vertical
baffle, rigid ground) or the advanced model (set of incoherent point sources, more realistic tramway geometry,
rigid ground).

Design a) b) c) d)

Simplified model 19.1 22.5 22.5 25.2

Advanced model 16.1 19.1 18.6 18.6
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Figure 6.14: Comparison of third-octave insertion losses in dB in the 100-1800 Hz range for the four optimized
designs given in figure 6.13 predicted either with the simplified model (coherent line source, infinite vertical baffle,
rigid ground) or the more advanced model (set of incoherent point sources, more realistic tramway geometry, rigid
ground). Thin solid red line: design a) - thin dashed blue line: design b) - thick solid red line: design c) - thick
dashed blue line: design d). Left: simplified model - right: advanced model.

107



APPLICATION TO COUPLED ADMITTANCE AND SHAPE OPTIMIZATION
OF BARRIERS WITH ACOUSTIC TREATMENTS

6.6 Conclusion

In this chapter, the general method presented in chapter 3 for coupling a shape optimization

and an admittance optimization strategy is used to design optimized low height tramway noise

barriers. Two types of treatments are considered, layers of porous materials (either fibrous or

made out of hemp concrete) and a micro-perforated panel resonator. The optimization method

has been run in different configurations of surface treatments, with different starting geometries.

The results show that even in the presence of an absorbing treatment, shape optimization

tends to generate irregularities, which help redirect the acoustic energy and therefore can increase

the noise reduction in the shadow zone of the barrier, similarly to what has been found when

the barrier was assumed entirely rigid (see in chapter 5). However, it seems that the presence of

acoustic absorbing treatment, irregularities on the top region of the barrier can also increase the

attenuation, and that depending on the initial shape, the source side does not need to be very

irregular. Besides, reactive treatments with tuned resonances also seem to potentially increase

the performance of the barrier. It is also found that similar performances can be obtained with

highly absorptive fibrous material or with hemp concrete as the porous absorbing treatment.

The predicted acoustic performance of fully optimized barriers can reach more than 24 dB(A)

of tramway noise reduction, under several simplifying assumptions that were made to decrease

computation time. Besides, extra calculations performed with what seems to be a more accurate

model (more accurate tramway geometry and finite set of incoherent point sources) show that

the found optimized designs can provide up to 19 dB(A) of attenuation. However, one should

point out that those more advanced calculations were made still assuming that the barrier

was infinitely extended in one dimension, that all surface treatments were locally reacting and

neglecting any directivity effects.

In addition, feasibility issues should be considered if one would want to build such an op-

timized noise barrier. Indeed, the generated optimized shapes can be rather complicated and

therefore one should check that such irregular shapes could be built, especially when covered

with acoustic treatment. Nevertheless, let us recall that, based on BEM calculations, a sig-

nificant improvement in tramway noise reduction can be obtained with such optimized designs

compared to more simple ones (more than 6 dB(A) in most cases), and therefore it is probably

worth it to explore ways to actually build those devices.
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Chapter 7

Scale model measurements of tramway

low-height noise barriers performances

7.1 Introduction

Numerical modeling is useful to predict the efficiency of a noise abatement device such as a noise

barrier. However, as it has already been pointed out, calculations are made under many physical

assumptions which might not be completely true in an actual implementation situation. It is of

course desirable to test a new noise barrier design in situ (an example will be shown in chapter 8),

but due to the complexity of such an implementation, one or few designs are usually tested (one

can also refer to other studies [41, 67, 102, 124, 127]). A useful alternative that has been used

for many decades in order to consider somewhat more realistic situations than typical numerical

mathematically idealized situations, is to test a design in a controlled laboratory environment

with a scale model. This typically allows more exhaustive studies since it is much cheaper to

build many different designs at the model scale. This has been applied to test different shapes

for highway noise barriers [122], quarter-resonator reactive noise barriers [103], inclined noise

barriers [188], railway noise barriers [123], jagged-edge noise barriers [81, 129] as well as physical

effects that can affect a noise barrier’s efficiency, such as atmospheric refraction [42, 43]. Scale

model measurements have also been extensively used by Baulac et al. to study traffic low-

height noise barriers [4–6] and by Koussa to study gabions noise barriers [11, 13]. Those studies

showed that numerical predictions usually agree well with the measurements (depending on the

complexity of the considered situation).

In the context of low-height noise barriers, which are typically less than one meter high and

one meter wide, a scale reduction factor of 10 is usually chosen since this makes the models suffi-

ciently small to be built easily and sufficiently large to be able to render some small geometrical

details (say of the order of 1 cm at full scale). As we will see, the frequency range needed in the

scale model measurements to represent a typical transportation noise emission spectrum is also

relatively easy to achieve at a 1/10th scale.

Even though scale measurements have been used extensively to study noise barriers effi-

ciency, to the best of the author’s knowledge, they have not been applied yet to study tramway
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noise barriers other than in [1]. Especially, scale measurements would be helpful to assess the

importance of the multi-reflections phenomenon, which has been mentioned several times in this

work to explain the rather poor performance of simple rigid barriers, as well as the feasibility of

the designs.

Although it seems possible to study some of the shape optimized designs that have been

presented in chapter 5 and 6, using for instance laser cutting technology, this chapter is essentially

concerned with the development of a methodology to perform scale model measurements of a

low height barrier close to a tramway. Some applications will be considered as well, mostly

considering the effect of the absorbing treatment on simple shapes such as the T-shape. Finally,

it should be pointed out that most of the results of this chapter can also be found in [1].

7.2 Theoretical issues related to scale change

7.2.1 Physical quantities similarities

In order to represent the same diffraction phenomena - and therefore the same effect of the

barrier - happening at the actual scale with a reduced scale geometry, one has to satisfy some

similarity conditions. In the following, we will be referring to quantities at the reduced scale (as

opposed to the full scale) with a superscript s.

First of all, it is well known that when geometrical dimensions are reduced by a factor N

(N = 10 in our case), the wavelength has to be reduced by the same factor: λs = λ/N . Since

the propagation will occur in the same medium at both scales (air), the speed of sound remains

the same. Using the relationship λ = c/f yields that frequencies at the reduced scale satisfy:

f s = Nf

This also corresponds to keeping the value of the kr number constant, with r a generic distance

between two relevant points in the problem (source, scatterer or receiver), which is the most

important parameter in diffraction problems. In the case of a tramway low-height noise barrier,

the frequency range of interest is roughly from 100 Hz to 2000 Hz at full scale, and therefore

from 1 kHz to 20 kHz at reduced scale.

Also, in order to keep the similarity of the boundary condition, one has to require that

the normalized specific acoustic admittance at the boundary, evaluated at the corresponding

frequencies, should remain constant. In other terms, one should impose:

βs(f s) = β(f) (7.1)

This imposes relationships on the admittance parameters between the two scales. For instance,

this condition can be applied to the Delany and Bazley model which is going to be used to

characterize the properties of absorbing materials.

From the expression of the normalized impedance and wavenumber of this model (see in

section 1.6.1), one can see that only one characteristic number matters for this model: σ/f .

Therefore, admittance similarity as given by equation (7.1) is ensured if the flow resistivity at
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the reduced scale σs satisfies:

σs

f s
=

σ

f
⇔ σs =

f s

f
σ = Nσ

For instance, with a reduction factor of 10, to represent a material which would have a flow

resistivity of σ = 50 kPa.s/m2 at full scale, one needs a material with a flow resistivity of

σs = 500 kPa.s/m2. Typically layers of felt have been used to represent typical absorbing

porous materials [5], which is what we will use in our measurements (see in section 7.5).

7.2.2 Air absorption

As it has just been mentioned, reduced scale model measurements require rather high frequency

studies (typically in our case from 1 kHz to about 20 kHz). However, at these high frequencies,

atmospheric air absorption might not be negligible any more, which could bias the measurements.

This attenuation, which is related to visco-thermal dissipation effects in air itself as well as

molecular relaxation effects, can be calculated using standard procedures [189, 190], and depends

on ambient temperature, relative humidity and ambient pressure. For a typical ambient pressure

of one atmosphere and a typical range of values for the two other parameters (temperature from

10 to 30◦C and relative humidity from 20 to 70%), in the considered frequency range (1 kHz to

25 kHz), air absorption is always smaller than 1 dB/m (see figure 7.1). Propagation distances

we will consider typically are of the order of one meter at the reduced scale, and therefore air

absorption will never cause more than 1 dB of difference in level, which can be neglected in our

context.
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Figure 7.1: Range of values for the attenuation due to air absorption in dB/m, as a function of frequency.
Calculation is based on the ANSI standard S1.26 [190]. Ambient temperature varies from 10 to 30◦C and relative
humidity from 20 to 70% (ambient pressure is assumed to be 1 atmosphere).

7.3 Description of the experimental protocol

The quantity used to assess the efficiency of the barrier we have been considering in this work is

essentially the insertion loss, which is namely a ratio of pressure levels in the frequency domain,

with and without the device, given a source and receiver positions and a given geometrical

configuration. Assuming the desired configuration can be built, one still needs to choose the

type of receiver to perform the measurement and the type of source to generate the signal.
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7.3.1 Choice of the source: electrostatic spark source

Figure 7.2: Spark source Grozier GTS 51. The generator charges a capacitance, which can then be discharged
across close electrodes. The electrodes are located at the end of a wand attached to the generator. Left: spark
generator itself. Right: zoom on the electrodes, located at the end of the wand. Spacing between the electrodes
is of the order of 3 mm.

In our numerical calculations, the source has been assumed omni-directional (point source),

and therefore one needs to meet this condition as much as possible in practice in order to compare

calculations and measurements. Besides, the source should be able to produce a significant

output in the considered frequency range at the reduced scale (1 kHz - 20 kHz in our case).

Typical sources that have been used for scale model measurements are audio tweeters [11], audio

speakers coupled with circular pipes [188] and mostly electrostatic spark sources [5, 81, 129].

Pressurized air jets [123] have been used as well for higher reduction ratios and hence higher

frequency ranges (up to 80 kHz).

The main advantage of using speakers or tweeters is that the signal that is fed to the source

is well-defined (typically digitally generated), and therefore the measurement is repeatable and

can be refined using classical digital signal processing techniques. However, those sources are

inherently directive due to their dimensions in the considered frequency range (above 10 kHz),

which can induce a significant error when comparing measurements with numerical simulations.

On the other hand, for spark sources the volume where the spark is generated is small, typically

of the order of 1 mm (see figure 7.2), which theoretically ensures the spark to be omni-directional

at least up to 20 kHz (ka ≈ 0.4 with a = 1mm at 20 kHz).

Nevertheless, the spark is not strictly repeatable, which is a problem when measuring a noise

barrier insertion loss since two separate measurements must be performed with and without the

device, although the use of a reference microphone to correct the difference between spark signals

can help tackle this issue [5]. Some authors also measured that the difference between sparks was

sufficiently small to be neglected [81, 191]. This has been measured as well for the spark source

we used for which we found, when the microphone is in front of the wand, that the different

spark generated time waveforms have similar shape and that standard deviation of the spectrum

is usually less than 1 dB up to 20 kHz (see figure 7.3). We also found that this variability is

slightly higher in the plane perpendicular to the wand, but remains below 2 dB in this frequency
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range. Nevertheless, as was done by Baulac et al. [5], we will use a reference microphone to

correct for spark variability.

Concerning the frequency content itself of the generated signal, one can see that the signal

has a significant energy between 2 kHz and 20 kHz, but quite a bit less below 2 kHz. We

therefore expect measurements not to be as accurate below 200 Hz at the full scale.
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Figure 7.3: Mean and dispersion (plus and minus a standard deviation) of the signal generated by the spark,
based on 10 recorded sparks in free field conditions approximately 1 m in front of the wand (sampling frequency
of 192 kHz). Left - time domain signal in Pa ; right - linear spectrum magnitude in dB (the reference corresponds
to the maximum value of the mean spectrum). Black thick line - mean quantity ; thin blue lines - mean plus and
minus one standard deviation.

7.3.2 Measurement room and signal selection by time windowing

Figure 7.4: Overview of the experimental set up in the “scale model room” at the CSTB Grenoble. The walls
of the room are covered with absorptive glass wool, which makes the room rather dry. Besides, the noise floor is
low thanks to good insulation.

The room in which the measurements have been performed is the so-called “scale model

room” at the CSTB in Grenoble, France. It is a large dry room with walls, floor and ceiling

covered with absorptive glass wool. The main support structure is a simple metal grille, and
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large pressed woods boards are used to represent a rigid ground (see figure 7.4).

This room is not anechoic and does have a few surrounding objects that could provide

unwanted reflections to the measurement. However, since the room is rather large and the

objects placed sufficiently far apart, those unwanted reflections will arrive long enough after the

significant part of the signal and can therefore be windowed out. An example of this process

is given in figure 7.5. Here one can extract the direct arrival or the direct and reflected pulses,

and remove unwanted later arrivals.

0 0.5 1 1.5 2 2.5 3

−40

−20

0

20

40

60

Time [ms]

S
ig

na
l [

P
a]

Raw signal
Window − direct only
Window − direct + reflected

Unwanted reflections

Figure 7.5: Recorded pressure signal in the case of a reflection above a rigid ground. Source and receiver are
z = 14.5 cm above the ground and distant of r = 49.5 cm horizontally. One can clearly distinguish the direct
arrival and the reflected pulse, as well as some extra unwanted reflections. The relevant part of the signal can
then be extracted by multiplication of a specifically adjusted window function.

The considered window has been chosen as follows: the first rising half of a Hanning window,

followed by a flat portion, and finally the second fading half of a Hanning window (this window

is close to the so-called Adrienne window [11]). The time reference of the window is the instant

of direct arrival tdir, which is here defined as the instant at which the signal reaches 10% of

the peak magnitude |x|max. Four time parameters are then needed to describe the window:

the duration of the rising part ∆trise, the duration of the flat portion before the direct arrival

∆tflat,1, the duration of the flat portion after the direct arrival ∆tflat,2, and finally the duration

of the fading part ∆tend (see figure 7.6). Those parameters are manually chosen to extract the

relevant part of the signal. For instance, it has been found that the following parameters can

be used when one would like to extract a single direct arrival without any reflections (free-field

conditions):

∆trise = 0.05ms ∆tflat,1 = 0ms ∆tflat,2 = 0.12ms ∆tend = 0.05ms

Moreover, in order to smooth out the spectrum curve, the windowed signals are zero-padded

so that each extracted signal has the same total number of points. Typically 2048 points were

used, which at a sampling frequency of 192 kHz yields a frequency spacing of about 100 Hz,

that is 10 Hz at full scale.

7.3.3 Receiver locations and microphones

The microphones used in this measurement must meet the requirement to have a flat frequency

response in the considered frequency range and to be sufficiently small not to disturb the acoustic
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Figure 7.6: Definition of the parameters defining the time window used to extract the signal from the raw
recording. tdir is the instant of direct arrival, ∆trise the duration of the rising part, ∆tflat,1 and ∆tflat,2 the
durations of the flat parts respectively before and after the direct arrival, and ∆tend the duration of the fading
part.

Figure 7.7: Spark source and microphone positions in the scale model measurement. Using reciprocity, source
and receiver positions have been exchanged, so that the B&K 1/4” microphone lies at the ground level and
represents the actual source, whereas the spark is generated at the actual receiver position, behind the barrier.

field. Brüel & Kjær quarter-inch type 4136 capsules mounted on type 2633 pre-amplifiers were

chosen since they meet both requirements. Those capsules are pressure microphones, and since

there is no correction for the diffraction induced by their presence, one should pay attention

to their location. In our context, reciprocity states that source and receiver can be exchanged

without changing the measured signal. Therefore, it has been chosen to put one microphone

through the “ground” in place of the source located on the ground, which implies that the source

(electrodes at the end of the wand) will be put in place of the receiver (see figure 7.7). This

choice was mostly based on the fact that, if the source signal was actually generated on the

ground, it would have been difficult to extract a direct arrival only at the reference microphone

due to the confinement between the source, the tramway side and the barrier. Besides, the

microphone inserted in the ground has little influence on the sound field and therefore the use

of a pressure microphone makes sense in this context.

Moreover, the reference microphone, as a pressure microphone used in a free-field context,

should be oriented perpendicular to the sound propagation direction. Also, at the reference,

only the direct arrival signal should be recorded, which can be achieved by properly windowing

115



SCALE MODEL MEASUREMENTS OF TRAMWAY LOW-HEIGHT NOISE
BARRIERS PERFORMANCES

the recording signal (as explained in section 7.3.2). Finally, the reference microphone cannot be

placed too close to the spark to avoid saturation (either at the pre-amplifier or at the digital

conversion level).

7.3.4 Scale model representation of the tramway

Figure 7.8: Wooden structure used to approximate the effect of the tramway. Left: “infinite” baffle configuration,
1 m high wooden board (10 meters in full scale). Right: tram configuration, 30 cm high board (3 m at full scale).
The structure can be lifted up to reproduce the gap between the bottom of the tramway body and the ground
(typically 1.6 cm was used in the model, 16 cm at full scale).

As stated in previous chapters, the presence of the tramway has an important effect on the

efficiency of the barrier due to the multi-reflections happening between the tramway side and

the barrier. To approximate this effect, a simple assembly of two pressed wood boards has been

made (see figure 7.8). Both boards are 2 m long, one is 30 cm wide (3 m at full scale, which

is a typical height for a tramway) and the other about 1 m wide (10 m at full scale). This

second board can be used to approximate an “infinite” baffle, and therefore the effect of this

idealization can be measured as well to some extent. The boards can be held raised up in order

to reproduce the gap between the bottom of the tramway body and the ground. In our model,

the boards were held 1.6 cm above the ground, which corresponds to 16 cm at full scale.

7.3.5 Data acquisition system and sampling frequency

Figure 7.9: Fireface UFX soundboard used to acquire the signals from the receiver microphone and the reference
microphone. Maximum sampling frequency is fs = 192 kHz.

The two microphones and their pre-amplifiers are powered by a Brüel & Kjær power supply

type 5935. No gain is applied since the peak value of the spark signal is rather high. The two
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signals are then digitalized by a Fireface UFX soundboard (line entry) and then recorded thanks

to the Reaper software. The soundboard has several sampling frequencies available, up to 192

kHz. The spark signal, which is impulsive (see figure 7.3), has a rather large bandwidth typically

related to the inverse of the shortest rise time, which is about 15µs. Therefore, one can expect

a bandwidth of about 60 kHz, which requires a sampling frequency at least twice this value, 120

kHz. Simply from the signal shape, it seems like a 192 kHz sampling rate would be necessary.

Indeed, one can compare the spectrum of the spark signal obtained when sampling at 96 kHz

and 192 kHz (see figure 7.10). One can notice that even at 20 kHz, aliasing causes the two

spectra to differ by more than 2 dB in magnitude. All recordings will therefore be made at a

sampling rate of 192 kHz.
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Figure 7.10: Comparison of the linear spectrum magnitude (in dB ref 1 WU.s) of the spark signal sampled at
96 kHz and 192 kHz, recorded in free-field conditions at a distance of about 1 m.

7.3.6 Measurement set-up overview and insertion loss calculation
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Figure 7.11: Schematic representing the whole measurement set up and the data acquisition chain.

The measurement set up as well as the data acquisition system is summarized schematically

in figure 7.11. In addition, the typical geometrical configuration of the measurement is shown in
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Figure 7.12: Chosen geometrical configuration for a given noise barrier insertion loss calculation. Dimensions
are here in centimeters at the reduced scale.

figure 7.12. The receiver location (where the spark is generated) has been chosen as the highest

and closest point to the barrier of the receiver zone considered in the BEM calculations, which

is where the barrier is expected to have the smallest effect.

7.3.6.1 Insertion loss calculation

First, the chosen noise barrier scale model is set up, as well as the tramway scale model (we will

only present results in the “tramway” case, as explained in section 7.3.4, since this is what we are

mostly interested in). The recording at 192 kHz is started by the operator in the Reaper software,

who then fires the spark (with a remote switch), and then stops the recordings. Typically five

sparks were recorded for each configuration to allow some averaging process. Each recorded

WAV file contains two signals, one from the so-called receiver microphone and the other from

the reference microphone. WAV files are then imported in Matlab for windowing and treatment.

The ambient temperature is also recorded so to know the speed of sound at the measurement

instant (which is needed in the numerical calculation). The speed of sound as a function of the

ambient temperature T in degrees kelvin is simply given by:

c =

√
γRT

M

with γ = 1.4 is the ratio of specific heats for air, R = 8.314 J.mol−1.K−1 is the universal gas

constant and M = 28.97 10−3 kg.mol−1 is the molecular mass of air.

To measure the insertion loss of a given barrier, a recording is made with the barrier, which

yields two signals: x measured at the receiver microphone, and xref at the reference microphone.

The barrier is then removed, and a recording is made again. The recorded signals are referred

to in this case as xin and xin,ref. Proper windowing is applied to each signal which are all zero-

padded in order to have the same total number of points (typically 2048). The linear spectrum

is calculated for each of the windowed signals, which yields the four quantities: Xw, Xw
ref, X

w
in

and Xw
in,ref. The measured insertion loss is then defined as follows:

IL = −20 log

∣∣∣∣
Xw

Xw
in

Xw
in,ref

Xw
ref

∣∣∣∣
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7.4 Simple validation tests

From now on, unless specified, dimensions and frequencies will be given at full scale. For in-

stance, if a barrier height is actually 10 cm in the scale model, it will be written as its equivalent

in full scale, which is 1 m. The frequency range of interest will also mostly be from now 100

Hz to 2000 Hz (as opposed to the frequency range actually used in the measurements, which is

1 kHz to 20 kHz).

7.4.1 Reflection on a rigid ground
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Figure 7.13: Geometrical configuration of the first test case. The source and receiver are located at height
z = zs = 1.45m and are separated by a horizontal distance r = 4.95m (full scale).
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Figure 7.14: Comparison between measured and calculated relative SPL in dB as a function of frequency for
the case described in figure 7.13.

The experimental protocol explained in section 7.3 is here tested in simple cases in order to

assess its validity. First, a simple reflection on a rigid ground configuration is considered (see

figure 7.13). The recorded signal at the microphone is shown in figure 7.5. In this case one

can easily window the direct contribution pin only, and separately the total field p, direct plus

reflected contribution. From this one can calculate a measured relative sound pressure level

∆Lmeas given by:

∆Lmeas = 20 log
P

Pin
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with P and Pin the spectra of p and pin. In this simple case, assuming a perfectly rigid ground,

the relative SPL is also given analytically by the following expression:

∆Lcalc = 20 log
∣∣∣1 +

R1

R2
eik(R2−R1)

∣∣∣

with R1 =
√

r2 + (z − zs)2 is the direct path length and R2 =
√

r2 + (z + zs)2 is the reflected

path length. Comparison between measurement and calculation is shown in figure 7.14. Agree-

ment is excellent, which a posteriori justifies the fact that the pressed wood board used as the

ground is indeed close to being perfectly rigid.

7.4.2 Diffraction by a straight wall

S
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0,18

0
,9
4
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Figure 7.15: Geometrical configuration of the second test case, which is a simple diffraction by a straight wall
with source on the ground. Dimensions are in meters (full scale).

10
2

10
3

0

5

10

15

20

Frequency [Hz]

In
s
e
rt

io
n
 l
o
s
s
 [
d
B

]

 

 

BEM

Measurement

10
2

10
3

0

5

10

15

20

Frequency [Hz]

T
h
ir
d
 o

c
ta

v
e
 I
L
 [
d
B

]

 

 

BEM

Measurement

Figure 7.16: Comparison between measured and calculation insertion loss in the case of a simple straight wall
(geometry given in figure 7.15). Left: insertion loss curve on a fine frequency spectrum - right: third-octave
insertion losses. Solid line: measurements - dashed line: BEM calculations.

The second test case is the diffraction by a simple straight wall without the tramway. The

geometrical configuration is shown in figure 7.15. The measured insertion loss is calculated using

the process explained in section 7.3.6.1 and also with the boundary element method (BEM).

Comparison is shown in figure 7.16 left part. One can notice overall a good agreement, especially

in the insertion loss dips, even though there is a significant discrepancy at lower frequencies

120



(below 200 Hz) and at insertion loss peaks. The low frequency discrepancy could be due to a

lack of energy in this low frequency range, as stated in section 7.3.1. Moreover, the discrepancy at

insertion loss peaks is not surprising since those correspond to maximum destructive interference

effects, which are usually not reproduced exactly in reality. This does not matter too much in

our case since the A-weighted noise spectrum of the tramway source has little energy in the

low frequency range, and also since the insertion loss peaks do not weight a lot when averaging

over wide frequency bands. Indeed, comparing third octave band insertion losses (see figure 7.16

right part), the agreement is very good above 200 Hz up to 2000 Hz (within 1 dB).

7.5 Porous absorbing materials at the reduced scale: felt layers

S

r

z
zs

R

d

Layers of felt

Figure 7.17: Geometrical configuration used for identification of the Delany-Bazley parameters of felt layers.
Source and receiver heights are zs = 1.40m and z = 1.58m and are separated by a horizontal distance r = 5.45m
(full scale).

As previously stated in section 7.2.1, to represent a Delany-Bazley porous material of flow

resistivity σ at the full scale, one needs a material of flow resistivity σs = N σ at the reduced

scale, which is typically a less absorbing material. Simple layers of felt can therefore be used

to represent rather absorbing materials at full scale [5]. We proceed to the identification of

the equivalent Delany-Bazley parameters by considering the simplest configuration in which the

admittance of a surface matters: a reflection on a uniform impedant ground (see figure 7.17).

In this case, the relative SPL can be easily measured and also calculated using the Weyl - Van

der Pol solution [38]. In the case of a locally reacting plane of uniform normalized admittance

β, the relative SPL can be approximately written as:

∆Lcalc = 20 log
∣∣∣1 +Q

R1

R2
eik(R2−R1)

∣∣∣ with





Q = Rp + (1−Rp)F (d)

Rp =
sin θ − β

sin θ + β

F (d) = 1 + i
√
π d e−d2

(
1− erf(d)

)

d =

√
ikR2

2
(β + sin θ)

(7.2)

with R1 =
√
(r − rs)2 + (z − zs)2 and R2 =

√
(r − rs)2 + (z + zs)2 are the direct and reflected

propagation distances, θ is the incidence angle defined by sin θ = (z + zs)/R2 , d the so-called

“numerical distance”, erf the error function, F the boundary loss factor and Rp and Q the plane

wave and spherical reflection coefficients. The normalized admittance β is calculated following

the rigid-backed Delany-Bazley model (see in section 1.6.1), which depends on two parameters:
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flow resistivity σ and thickness d (expressed here at full scale). For a given geometrical config-

uration, the calculated value of relative SPL ∆Lcalc only depends on frequency and those two

parameters, which can therefore be numerically fitted to match measured values of relative SPL

as closely as possible. This process has been done for one to four layers of felt. Results of the

identification is summarized in table 7.1. Measured and curve-fitted calculated relative SPL are

also shown in figure 7.18.

Table 7.1: Fitted rigid-backed Delany-Bazley layer model parameters for one to four layers of felt (full scale).

Number Delany-Bazley layer parameters
of Flow resistivity Thickness

layers [kPa.s/m2] [m]

1 300 ∞

2 150 ∞

3 84 ∞

4 66 0.04
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Figure 7.18: Comparison of measured and calculated relative SPL in dB in the case of a reflection on a uniform
plane covered with one to four layers of felt. The calculation is based on the Weyl - Van der Pol solution given
in equation (7.2), assuming the geometry given in figure 7.17. The admittance of the layer is calculated using
the rigid-backed Delany-Bazley layer model. The parameter values used in the calculation are given in table 7.1.
Continuous thick line: measurement - dashed thin line: calculation.

First one can notice than the more layers one uses, the more absorbent the equivalent porous

material becomes since the effective flow resistivity decreases with the number of layers. This

can also be seen in comparing the relative SPL curves (see figure 7.18), since the level at the

constructive interference peaks decreases as the number of layers increases. The change of

impedance also induces a phase change, which induces a frequency shift in the interference

dips. Both effects are quite well reproduced by the Delany-Bazley model, although in the higher

frequency range this model overestimates the absorption effect in the case of one to three layers.

The match is however significantly better in the case of four layers. Further, the finite thickness

of the layer does not seem to allow a much better match, except in the four layers case. For one

to three layers of felt, one can therefore consider the equivalent porous layer infinitely thick.

We will therefore use four layers to represent an absorbing porous treatment on the scale
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model barrier. Indeed, the value of 66 kPa.s/m2 for the flow resistivity found in this section to

characterize four layers of felt is rather close to the assumed value in chapter 6 - 50 kPa.s/m2 - ,

which corresponds to a rather absorptive fiberglass type material. One can for instance calculate

the absorption coefficient in both cases (see figure 7.19) and notice that they are indeed similar

in the considered frequency range.
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Figure 7.19: Comparison of the calculated absorption coefficient of two Delany-Bazley layers. Thin line: equiv-
alent layer corresponding to four layers of felt (parameters σ = 66 kPa.s/m2 and d = 4 cm) - thick line: fibrous
absorbing material assumed in chapter 6 (parameters σ = 50 kPa.s/m2 and d = 5 cm).

7.6 Measured performance of a T-shape barrier with absorbing

treatment

In this section a few applications of the measurement protocol that has been explained in section

7.3 are presented. We chose to focus on the T-shape geometry, which is relatively easy to build,

and to study the effect of different amount of absorbing treatment on the performance of the

low-height barrier. In the following, the absorbing material in the scale model is made of four

layers of felt (as explained in section 7.5).

Figure 7.20: Photograph of the T-shape barrier
scale model, made of two pressed wood boards.

d

d

t

Figure 7.21: Geometrical configuration for the T-shape
barrier measurement. Dimensions are in meters (full scale).

The scale model of the T-shape barrier is made of two pressed wood boards (see figure 7.20).

The boards are 19 mm thick, and assuming a density of 600 kg/m3 for the pressed wood, the

transmission loss across the board based on the mass law is about 40 dB at 1000 Hz (100 Hz at

full scale). This suggests the boards can be considered as acoustically rigid in our measurements.

Several absorbing treatments are considered, detailed in figure 7.22. The different locations

of porous treatments have been chosen in order to emphasize the effect of such treatment on
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attenuating multiple reflections. Those multiple reflections can be clearly seen in the signal

recorded at the microphone in the case of a rigid barrier, shown in figure 7.23. One can notice

the many reflections happening after the direct arrival due to the presence of the tramway, which

in the end diminishes the efficiency of the barrier, as pointed out for instance in chapter 5.

Rigid Abs. 1 Abs. 2 Abs. 3

Figure 7.22: Considered configurations of absorbing treatment placed on the T-shape barrier and their denom-
inations: rigid, Abs. 1, Abs. 2 and Abs. 3 (the tram is located on the right).
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Figure 7.23: Windowed signal at the receiver microphone in the case of a rigid T-shape barrier.

7.6.1 Comparisons between measurements and BEM calculations

For a given configuration, the measured insertion loss is calculated and compared to a 2D BEM

calculation, performed with the geometry given in figure 7.21. However, preliminary calculations

showed that better agreement in the interference dips was obtained when the distance between

the barrier and the tramway side dt and the distance between barrier and source ds (as shown

on figure 7.21) were slightly modified to dt = 0.47m and ds = 0.44m instead of dt = ds = 0.5m.

This correction could be understood from the fact that the microphone has a finite extent and

that there is some uncertainty in the distances in the experimental set-up. Whereas in most

cases this uncertainty does not have a significant effect, it seems like in this case, due to the

confinement of the sound field between the barrier and the tramway, the effect is significant.

This correction will however remain the same for all BEM calculations.

Third-octave insertion losses for the considered treatments are presented in figure 7.24, and

broadband insertion losses in table 7.2. The agreement between calculated and measurement

third-octave insertion losses is good, although a consistent discrepancy can be observed at low

frequencies, which could be due to a lack of energy of the spark signal, as stated earlier. Some

discrepancy also exists at higher frequencies in the presence of absorbing treatment, where the

BEM actually underestimates the efficiency of the barrier. However, this discrepancy does not

affect the broadband insertion loss in presence of absorbing treatment, which is in very good

agreement with the measurements in the Abs.2 and Abs.3 case. In the rigid case however,

the discrepancy is such that the broadband insertion loss is underestimated by 2 dB(A). This

might be due to the fact that the insertion losses are rather low in this case because of the
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multiple reflections which induce complicated interference effects at the receiver. Those effects

are sensitive to the spatial coherence of the source and the fine details of the geometry, and

it would make sense that results would be different between the idealized BEM model (point

source and point receiver) as opposed to the scale model set-up (finite extend of the of the source

and receiver).

Table 7.2: Comparison of calculated and measured broadband insertion losses in the frequency range 100-1800
Hz in dB(A) for the T-shape barrier and the considered treatments.

Broadband IL [dB(A)]
BEM Measurement

Rigid 3.8 5.8

Abs. 1 7 8.4

Abs. 2 10.3 10.4

Abs. 3 14.0 14.0

7.7 Conclusion

An experimental protocol to measure the insertion loss of a low-height noise barrier close to

a tramway at a reduced scale (here 1/10th) using an impulsive spark source is proposed and

tested. The impulsive nature of the signal generated by the spark source allows accurate signal

selection thanks to time domain windowing. Besides, the spectral content of this type of signal

allows measurement in the range 100 - 1800 Hz at full scale, which is appropriate for tramway

noise abatement applications.

Based on theoretical considerations on the admittance similarity during the scale change, one

can identify equivalent properties of porous materials at the reduced scale (using for instance

felt layers), which allows one to study for instance the effect of different amounts of absorbing

materials.

After validation of the measurement protocol in simple configurations, it is applied to study

the effect of absorbing treatments on a T-shape barrier. First, in the case of a rigid barrier, the

multi-reflection phenomenon between the tramway side and the barrier can be clearly observed

in the measured time domain signal. Corresponding insertion loss curves show that in this

case the attenuation of the barrier is rather low - about 6 dB(A). However, placing absorbing

treatment on the barrier side directly exposed to the source adds 4 dB(A) to the performance,

whereas adding treatment on top yields another increase of 4 dB(A). 2D BEM calculations

reproduce this observation very well. Overall the agreement is good between BEM calculations

and measurements, even though the BEM tends to slightly underestimate the insertion loss at

low and high frequencies.
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Figure 7.24: Comparison of calculated and measured third-octave insertion losses for the T-shape barrier and
the three considered treatments. Continuous line: measurement - dashed line: BEM calculation. From top to
bottom: rigid, abs.1, abs.2 and abs.3 configurations (as defined in figure 7.22).
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Chapter 8

In situ measurements of a full scale low

height barrier prototype

The assessment of a noise barrier performance based on numerical calculations or even scale

model measurements is intrinsically biased. This is firstly due to the barrier design itself which

in reality will never exactly match what has been assessed numerically, but it is also due to

the idealization of the physical and geometrical features of a potential implementation site. For

instance, in the scale model measurement set-up as well as numerical calculations, only one

source on the ground was considered, whereas the actual noise sources of a tramway are a lot

more complex due to their spatial distribution and directivity [26]. Moreover, apart from the

fact that the geometrical model of the tram itself is extremely simple, modeling it as a rigid body

is an approximation simply from the consideration that there is acoustic transmission inside the

tramway.

It is unclear how much those approximations matter for the actual performance of the barrier,

especially in the case of low-height noise barriers. It seemed therefore necessary to actually build

and set-up a full scale prototype in a real situation in order to assess what actual noise reduction

performance can be obtained by such a barrier, and also to evaluate if numerical predictions

and scale model measurements yield a reasonable approximation of the in situ performance.

8.1 Preliminary considerations

8.1.1 Choice of the implementation site

The city of Grenoble and its nearby towns have developed in the past few years several tramway

lines, and therefore it seemed natural to set up a low-height barrier prototype close to one of

them.

Then, the choice of the implementation site for the prototype was based essentially on a

background noise consideration. Let us recall that our goal is to evaluate the performance of

a low-height barrier in a realistic environment, which we will characterize by an insertion loss,

that is a difference of level at a given receiver point with and without the barrier. However, this

difference in level will be related to the effect of the barrier only if other surrounding sources
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of noise - which would not be attenuated by the barrier, such as cars, birds or pedestrians - do

not influence the measured level too much. For this reason the background noise level of the

implementation site should be sufficiently smaller than the measured level during the pass-by

of a tramway, with and without the barrier. It is equivalent to state that the signal to noise

ratio (SNR) should be sufficiently high, the signal referring here to the part of a recording due

to the pass-by of a tramway, with and without the barrier, and the noise referring to the part

of a recording due to other surrounding sources in the environment.

A corollary of this consideration is that we should choose a site where the level due to the

pass-by of a tramway is as high as possible, since this would enhance the SNR. This in turn

means that the speed of the tramway at the site should also be as high as possible, since there is a

strong correlation between tramway noise power levels and speed [26], as for most transportation

noise sources.

Finally, for practical reasons, assembling and disassembling of the prototype and measure-

ments had to happen within one day only. Since the prototype itself has been built at the CSTB

Grenoble site, the implementation site had to be not too far away to shorten transportation

time.

Figure 8.1: View of the implementation site, in Saint-Martin-d’Hères (France). The tramway tracks are those
of the B line, between the stops Les Taillées - Universités and Grand Sablon. In the background the tracks run
over a bridge across the Isère river. The street opposite the bike trail is Antoine Polotti street.

Based on these considerations, we chose to set up the prototype on an asphalt bicycle trail

running along the B line of the Grenoble tramway system, between the stops Les Taillées -

Universités and Grand Sablon, opposite Antoine Polotti street in the town of Saint-Martin-

d’Hères. A view of the site is shown in figure 8.1. The environment is relatively quiet since this

site is next to a residential area, with few cars passing on Antoine Polotti street. However tram

pass-bys are quite loud, as we will see later. This loudness is due to the fact that trams roll at

relativity high speeds in this area, and probably also to the type of track, as it has been shown

that this has a major influence on tram noise power levels [26].

One can also notice the presence of a safety fence running along the tracks. This fence is
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an advantage for setting up the prototype since it will be easy to secure the installation of the

noise barrier onto the fence in order to eliminate any risk of the prototype falling on the tracks.

It is also believed that this safety fence has a negligible influence on the sound field.

It also turned out that inhabitants of this area have complained about noise emissions from

the trams, and it therefore seems that this site would also be a good choice for installation of a

long-term barrier, although this was not a requirement for the purpose of this work, which again

is the evaluation of the performance of a low-height barrier prototype in a realistic environment.

8.1.2 Choice of the design

550

950

22

Pressed wood
(CTBH)

Fiberglass

Foam sleeve

Batten

80

1850

Foam joint

Clamp Foam sleeve

Batten

Figure 8.2: Schematic of the low-height barrier prototype. The barrier is made of treated pressed wood and
fiberglass. Left: Gamma-shape cross section. Right: back view of one element and joint system between elements
(dimensions are given in mm).

Due to time and feasibility constraints, the design of the noise barrier had to be much simpler

than the optimized designs found in the previous chapters. Nevertheless, from the results of the

previous chapters, it seems essential to cover the face of the barrier directly exposed to the

noise sources radiation with absorptive materials in order to attenuate the multiple reflections

happening between the tramway body and the barrier.

Based on the T-shape design, a simpler Gamma-shape covered on its interior part by fiber-

glass is hence proposed (see in figure 8.2). Indeed, preliminary calculations showed that the

difference between the two shapes has a limited influence on the acoustic performance, however

the Gamma-shape barrier is significantly easier to handle and to transport. Besides, one can

point out that if a long-term barrier was set-up, it would be necessary to consider a sustainable

absorptive material or to properly package the fiberglass in order to avoid any health hazard

related to its presence. However in our case, since the prototype was meant to stay in place for

a few hours only, it was found unnecessary to take such precautions.

The length of the barrier also had to be limited namely for ease of transport and installation.

The barrier therefore consists of 12 elements, each 1.85m long, for a total length of a little more

than 22m. Trams running on the B line are Alstom Citadis 402 trams which are 43m long, and

therefore the barrier covers at most half of the tramway length, as shown in figure 8.3.

Each element is made of a simple assembly of two pressed wood boards - one 60 cm wide,

the other 95 cm wide - bound together to form a right angle thanks to shelf brackets and a

batten. The boards are 22mm thick, which was chosen to ensure the board to be considered
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Figure 8.3: View of the noise barrier prototype with a Alstom Citadis 402 tramway of the Grenoble B line
passing-by. The length of the barrier is about 22m, whereas the tram is about 43m long.

acoustically rigid. Indeed, the bulk density of the pressed wood is about ρ = 700 kg/m3, and

based on a simple mass law criterion, the transmission loss across the board at 100 Hz (lowest

frequency of interest) is:

TL = 20 log
( ρeω

2ρ0c0

)
= 21 dB

with e = 22mm is the layer thickness, ω = 2πf the angular frequency, ρ0 = 1.21 kg/m3 is the

density of air and c0 = 343m/s is the speed of sound. This loss is sufficiently large to neglect

any transmission through the board in the frequency range of interest.

Each element is bound to the next via a simple joint system: a rectangular piece of dense

foam is glued on the side of the pressed wood boards, and several tied plastic clamps ensure

compression of the joint, thus preventing strong acoustic leaks. Similarly, an insulating foam

sleeve is put at the bottom of the structure to prevent leaks at the ground level. The compression

in this case naturally happens thanks to the weight of the structure. Pictures of the barrier cross

section and joint system are shown in figure 8.4.

Figure 8.4: Views of the low-height barrier prototype. Left: cross section. Right: joint system between elements.
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8.2 Performed measurements
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Figure 8.5: Cross sectional schematic showing relative positions of the tram, low-height noise barrier prototype
and receivers.

In this work, we are interested in assessing the benefit of the presence of a low-height barrier

for a close receiver, typically a pedestrian or a cyclist, while a tramway is passing by. We

therefore mostly need to measure the level at a receiver point typically corresponding to the

ears position of a passer-by. Two heights have been considered: 1.5m, corresponding to an

average ears position for a person standing, and 1.2m, corresponding to the ear position of a

person sitting on a bench for instance. The horizontal distance from the safety barrier is 3m,

which corresponds to a distance of about 3.5m to the tramway side (see in figure 8.5). Finally

the receivers are located in the vertical plane cutting the barrier in the middle of its length,

which is where the noise barrier has the most important effect.

Pressure signals and levels were recorded by a B&K model 2250 sound level meter (SLM) at

the receiver locations. The SLM was set up to record the pressure signal in a WAV file (sampled

at 48 kHz) and the equivalent A-weighted levels LAeq,T over successive time periods of duration

T = 100ms, which have been defined in section 1.2.3. Binaural measurements were also made,

although this type of measurement was not exploited in this work. Besides, we used an auxiliary

microphone (embedded in a cellphone) which was placed very close to the tracks, away from the

shadow zone of the barrier, and meant to record the pass-by of the train without any influence of

the barrier, which would allow us to determine the speed of the tram during the pass-by (more

details will be given in section 8.2.1). The different devices are shown in figure 8.6.

Figure 8.6: Devices used in the measurements. Left: B&K type 2250 sound level meter and binaural head.
Right - cellphone LG P970 used as an auxiliary microphone for speed measurement.
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Finally, SLM measurements are performed over a constant time interval of 15 s, each mea-

surement being started manually by an operator whenever a tram is approaching. Besides,

measurements are done for close trams - running the closest to the barrier, going from Grand

Sablon to Les Taillées - and far trams - running the opposite way farthest from the barrier,

towards the bridge over the Isère river (see in figure 8.7).

We therefore have 8 different configurations of measurements for which the analysis will be

performed, depending on:

• Receiver height: 1.5m or 1.2m.

• Presence of the noise barrier (we will refer to each case as with or without barrier).

• Proximity of the tram: close or far.

Figure 8.7: Views of two tram pass-bys. Left: close tram, rolling towards the foreground of the picture. Right:
far tram, rolling towards the background of the picture (towards the bridge over the Isère river).

8.2.1 Speed measurement from auxiliary microphone signal

Speed is an important parameter in pass-by levels measurements since it is highly correlated

with the noise sources’ power levels, as already pointed out. To avoid any bias in the evaluation

of the noise reduction due to the barrier, as well as to study this correlation, it therefore seemed

necessary to evaluate the speed of the tram during each measured pass-by. One approach is

to determine the pass-by duration and to use the known length of the tram to calculate the

speed. Durations can be measured with infrared cells, as done in [26], but one can also use

the time history of the pass-by given by the LAeq,T. Indeed, the passage of a bogie close to

the microphone generates a bump in level which can be detected. From the knowledge of the

corresponding instants, one can measure time intervals between the passage of the different

bogies, and finally the speed assuming the distances between the bogies are known. However

when the barrier is present, this bump is strongly attenuated, and therefore the measurement

of the speed is more difficult. This is why we needed an extra microphone, located close to the

tracks and away from the shadow zone of the barrier. Besides, the quality of the recording is
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Figure 8.8: Examples of A-weighted levels LAeq,T time histories in dB(A) (referenced to the maximum value)
during tram pass-bys, with T = 100ms, recorded with the auxiliary microphone. For each signal, the passage
of the four bogies in front of the microphone is identified, which yields a time interval ∆t corresponding to the
passage of the first and last bogie. From the known distance between the two extreme bogies (d1 = 33.5m for
Citadis 402 trams, see in figure 8.9), one can estimate the speed as v = d1/∆t, indicated in blue on each plot.
Top: close trams. Bottom: far trams.

not extremely important for this application, which is why using a simple cellphone microphone

was sufficient.

A few examples of this process are shown in figure 8.8. From the recorded WAV file, the

signal is extracted and the LAeq,T calculated by applying the A filter and averaging over intervals

of 100ms. All time histories present several bumps, corresponding to the pass-by of the bogie

areas, since these sources emit more noise than the rail itself. This allows one to identify the

instant at which each bogie passed in front of the microphone, which yielded the time interval

∆t between the pass-by of the first and last bogie. For the Citadis 402 tram, the bogies are

separated by a distance of 11.15m, and therefore the distance between the first and last is

d1 = 33.45m (see in figure 8.9). Assuming the speed is constant during this interval, it can be

calculated simply by v = d1/∆t.

There is of course uncertainty in this measurement since the bumps might not be easily

identifiable (see for instance in the figure 8.8 bottom plots) and since the time interval ∆t is

known with a precision of 0.1 s only. Measured time intervals typically vary between 2.0 and

4.0 s, hence the error varies between 2.5 and 5%. This yields a precision of 1 to 3 km/h in

the speed, which for the purpose of this work is sufficient. Besides, it was found that taking a

shorter averaging period made in general the identification of the bogie pass-bys more difficult.
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Figure 8.9: Longitudinal schematic of the Alstom Citadis 402 tram. Dimensions are given in mm. The distance
between the first and last bogie centers is about 3 × 11.15 = 33.45m, and the total length of the tram is about
43.65m.

8.3 Measurement analysis and barrier effect

In this section different analyses of the measured data are proposed in order to evaluate the

effect of the low-height noise barrier prototype in terms of noise reduction: first based on the

equivalent pass-by level, then on the time histories of the LAeq,T during the pass-bys, and finally

on the spectrum of the recorded signals.

8.3.1 Pass-by equivalent level and speed dependence
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Figure 8.10: Examples of time histories of LAeq,T in dB(A) during tram pass-bys, with T = 100ms, recorded
with the SLM. The dotted line corresponds to the center time, and the two dashed lines correspond to the initial
and final instants of the tram pass-by. The pass-by level LAeq,pass is the mean level during the pass-by period
and is indicated in red. Top left: close tram, without barrier. Top right: close tram, with barrier. Bottom left:
far tram, without barrier. Bottom right: far tram, with barrier.

First the correlation between noise level and speed is studied, in each measurement config-

uration. The equivalent A-weighted sound pressure level is chosen to quantify the level during

the pass-by, but one has to determine the time period of integration. Since the speed v of the

tram is known for each pass-by, we set the period over which the equivalent level is calculated

as the duration of the whole tram pass-by in front of the SLM, given by τ = d2/v and d2 = 43m

is approximately the total length of the tram (see in figure 8.9). The result is referred to as the
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Figure 8.11: Tram pass-by A-weighted equivalent levels as a function of speed for all measurement configurations.
The dotted line corresponds to the function LAeq,pass,ref + α log(v/vref) with LAeq,pass,ref = 79.3 dB(A), α = 35
and vref = 40 km/h, which is a regression on the levels for close trams without the barrier. Left - close trams;
right - far trams. Color coding: blue - without noise barrier; red - with noise barrier. Symbols: squares - SLM
height of 1.2m; circles - SLM height of 1.5m.

Table 8.1: Coefficients LAeq,pass,ref and α and their uncertainty based on the regression of A-weighted pass-by
levels with speed, assuming a dependence of the form LAeq,pass = LAeq,pass,ref+α log(v/vref) with vref = 40 km/h,
in all configurations. Broadband insertion losses in dB(A) (differences of reference pass-by levels at vref) are also
shown.

Configuration
LAeq,pass,ref Speed-dependence Barrier insertion loss
[dB(A)] coefficient α estimate at 40 km/h [dB(A)]

Close - 1.2m
without barrier 80.3± 0.6 19± 10

12.8± 1
with barrier 67.5± 0.4 12± 6

Close - 1.5m
without barrier 78.4± 0.7 48± 10

10.6± 0.8
with barrier 67.7± 0.3 29± 6

Far - 1.2m
without barrier 76.1± 1.2 18± 11

7.5± 1.5
with barrier 68.7± 1.0 26± 9

Far - 1.5m
without barrier 75.9± 1.1 25± 9

7.5± 1.5
with barrier 68.4± 1.0 40± 7

pass-by A-weighted equivalent level, written as LAeq,pass, and calculated by logarithmic summa-

tion of the LAeq,T in the corresponding time interval (see examples of this calculation in figure

8.10).

The pass-by levels can then be plotted as a function of speed, for all configurations (see in

figure 8.11). The range of tram speeds does vary depending on the configuration, with far trams

typically rolling faster (from 40 to 65 km/h) than close trams (from 35 to 55 km/h). There also

seems to be a little bias when the barrier was set up, since close trams rolled on average at

46.7 km/h without the noise barrier, but at 42.9 km/h with the barrier. Proper evaluation of

the barrier performance therefore requires a correction of this effect.

Although there seems to be significant variability between the trams pass-bys, there is a

positive correlation between levels and speeds in all cases. One can for instance assume a simple

power-law dependence of the received power on speed, which in terms of the pass-by level in dB

can be written as:

LAeq,pass = LAeq,pass,ref + α log(v/vref)

with vref = 40 km/h is the reference speed and LAeq,pass,ref the reference level. The regression

coefficients LAeq,pass,ref and α and their uncertainties have been calculated as explained in ap-

pendix H and are tabulated in table 8.1 for all configurations. One can notice the coefficients

α vary a lot and have a large uncertainty, which suggests pass-by levels do not depend only on
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speed. Indeed defects in the tram can cause a great variability in levels between the different

bogies, as seen for instance in the figure 8.8 bottom plots. In addition, propagation effects (due

to the ground and the barrier) may affect the coefficients as well.

However, we will assume that tramway noise source power levels depend only on speed, as

done in [26]. However, in order to evaluate the dependence of the power levels, one needs to avoid

as much of the influence of the propagation effects as possible. Specifically, the configuration in

which propagation will have the smallest effect is for the close tram without the noise barrier.

We will therefore assume that the dependence of the source power levels can be approximated

by the dependence of the pass-by levels for close trams (for both receiver positions). This yields

a coefficient of α = 35±8, which is in good agreement with the value of 32.7 measured by Pallas

et al. for a modern tram in the case of soft pads and pavings [26], although the uncertainty

is still important in our case. From now on, we will define the speed-corrected value of any

A-weighted level LA at vref = 40 km/h as:

L′
A = LA − 35 log

v

vref

Finally, one can evaluate the speed-independent effect of the barrier in each configuration by

comparing the LAeq,pass,ref with and without the barrier (see the last column of table 8.1), which

is a reduction on average of more than 10 dB(A) for close trams, and 7.5 dB(A) for far trams.

One can already state that the effect of the barrier prototype, although its length is only half

of that of the tram, is significant.

8.3.2 Analysis of the LAeq,T time histories

Another way of measuring the effect of the barrier is to analyze the measured LAeq,T time

histories (again here T = 100ms). This will allow one to have a closer look at the noise reduction

effect considering a time dependence. However, since the measurements were not synchronized,

one first has to process the histories in order for them to have a similar center time (instant

at which the center of the tram is the closest to the SLM). Besides, one needs to correct for

the effect of speed, both on time and level. This will then allow one to make an elementary

statistical analysis of the time histories, by considering the mean and the dispersion of the levels

as a function of time.

The center time tc of each time history is evaluated as the center time of the tram pass-by

as defined in section 8.3.1. The centered time τ is then defined for each pass-by as τ = t − tc.

The LAeq,T levels and centered time τ are then corrected due to the speed dependence as:

L′
Aeq,T = LAeq,T − 35 log

( v

vref

)
τ ′ =

v

vref
τ

Since the corrected histories are no longer defined on the same instants, a linear interpolation

in time is made. An example of this process is shown in figure 8.12.

Mean and dispersion calculations are then made at each instant on the corrected history,

based on the different pass-bys for all measurement configurations. Results are shown in figure

8.13. One can also notice that there is a strong variability of the levels, even after the speed
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Figure 8.12: Example of a LAeq,T time history (close tram - 1.20m - without barrier) and application of the
speed correction on time and level. Left: measured time history and center time tc. Right: measured time history
of the LAeq,T as a function of centered time τ = t − tc (solid line) and corrected time history of the L′

Aeq,T as a
function of corrected centered time τ ′ (dashed line).
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Figure 8.13: Mean and dispersion interval (plus and minus one standard deviation from the mean) of corrected
levels L′

Aeq,T time histories in dB(A) during tram pass-bys as a function of corrected centered time τ ′, with (solid
line) and without (dashed line) the noise barrier. Top left: close tram, height of 1.20m. Top right: close tram,
height of 1.50m. Bottom left: far tram, height of 1.20m. Bottom right: far tram, height of 1.50m.

correction is applied, which is certainly related to the different trams having different defects as

pointed out earlier. Nevertheless, the main result from this approach is that, at the considered

receiver locations, the noise reduction effect of the barrier is effective during the whole pass-by

(attenuation of 4-7 dB(A) for far trams, and of 9-15 dB(A) for close trams), despite the small

length of the barrier compared to that of the tram. Indeed, when τ is large in absolute value, a

smaller portion of the tram - which as a first approximation can be approximated as the region

where most of the noise is generated - is “hidden” by the noise barrier (see in figure 8.14), and

therefore one might have observed a negligible noise reduction effect. This aspect also strongly

depends on the directivity of the sources in the horizontal plane, which is difficult to evaluate
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directly with simple SLM measurements. However, based on the fact that the barrier does have

an effect even at large values of τ , it seems like the main noise sources of this type of tram -

namely wheel radiation and rolling noise - do present a significant horizontal directivity. One

can also point out that the issue of noise reduction limitation due to the finite size of a noise

barrier will be more important if the receiver was further away from the track, but in this case

even without any noise barrier the received level would be smaller and therefore the pass-by of

a tram might not cause as much of a nuisance.

43 m

22 m

3.6 m

11.5 m

4.0 m

Tram Citadis 402

Noise barrier
prototype

SLM

Rail track

Figure 8.14: Schematic top view of the noise barrier prototype in case of the pass-by of a close tram. The thick
red lines delimit the approximate part of the noise source region which the barrier can attenuate, based on purely
geometrical considerations. The top plot corresponds to a value of τ = 0 s, for which most of the source region is
geometrically hidden by the barrier. The bottom plot corresponds to value of τ = −2 s (the tram is assumed to
roll at 40 km/h), in which only a small portion of the region is geometrically hidden.

8.3.3 Spectral analysis and third-octave insertion losses

The attenuation provided by the low-height noise barrier is of course strongly dependent on

frequency, as it has been shown in previous chapters. One therefore needs to evaluate the

insertion loss of the noise barrier as a function of frequency, which would also allow us to

compare the measurement with BEM calculations.

However, as stated above, the presence of background noise in the surrounding environment

can bias the evaluation of the low-height barrier insertion loss, typically averaged on different

third-octave bands. Although the site was relatively quiet, which means that broadband levels

such as the LAeq,T were sufficiently above the background levels, this might not be true any more

depending on which third-octave band is considered. We will therefore first analyze the data to

find the frequency range in which the SNR was sufficiently good to evaluate the insertion loss

accurately.

8.3.3.1 Effect of noise on insertion loss evaluation and considered frequency range

First of all, one can theoretically evaluate what is the influence of background noise on the

evaluation of the insertion loss. Let Pw and Pwo be typical pressure spectrum values at a given
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receiver location and in a given frequency band - they can be for instance the square root of

the integrated value of the power spectral density (PSD) over a third-octave band -, with and

without the noise barrier, in an ideal environment without any background noise. The ideal

attenuation provided by the barrier is then A = P 2
w/P

2
wo and the insertion loss IL = −10 logA.

However, in reality, what is measured is an approximate attenuation given by:

Ã =
P 2
w +N2

w

P 2
wo +N2

wo

with Nw and Nwo typical spectra of uncorrelated background noises, which may be different

between the measurement made with the barrier compared to that made without. Now define

the dimensionless numbers sw = P 2
w/N

2
w and swo = P 2

wo/N
2
wo. These quantities are related to

the signal-to-noise ratios SNRw and SNRwo by SNRw = 10 log sw and SNRwo = 10 log swo .

Then the ratio of the measured attenuation to the ideal attenuation is:

Ã

A
=

1 + 1/sw
1 + 1/swo

(8.1)

Due to the sound attenuation provided by the noise barrier, one typically has Pw < Pwo. Besides

if one assumes the background noise levels to be similar, that is Nw ≈ Nwo, one has sw < swo

(which also means SNRw < SNRwo) and therefore from equation (8.1):

Ã

A
> 1 ⇔ ĨL < IL

where ĨL is the estimated insertion loss in the presence of noise. This means that in most

situations, the insertion loss measured in the presence of the noise will be under-evaluated.

Now, suppose that we can ensure the two SNRs are above a certain value SNRmin. It is

equivalent to state that sw,wo > smin with smin = 10(SNRmin/10). Using this relationship on

equation (8.1), we have:

Ã

A
< 1 +

1

ssmin

Defining the error on the measured insertion loss as ∆IL = IL − ĨL > 0, this last equation can

be rewritten as:

∆IL < ∆ILmax with ∆ILmax = 10 log
(
1 +

1

smin

)
= 10 log

(
1 +

1

10(SNRmin/10)

)

∆ILmax is an indicator of the error on the insertion loss measured value, which is related to the

minimum SNR. This relationship can therefore be used to find an appropriate value of SNRmin

in order to have a limited error on the insertion loss. Suppose we would like the error on the

insertion loss to be less than ∆ILmax = 0.5 dB, then the corresponding minimum SNR will be:

SNRmin = −10 log
(
10(∆ILmax/10) − 1

)
= 9dB

We can therefore use this criterion to select the frequency bands in which the barrier insertion
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loss will be evaluated correctly (within 0.5 dB), without too much influence of the background

noise. We evaluated the SNR over each third-octave by considering the signal portion of each

recording as the tram pass-by (as defined in section 8.3.1) and the noise portion as the initial or

last two seconds of the recording (depending on the pass-by center time). The third-octave levels

of the signal are calculated by integration of the PSD of the signal portion over the corresponding

band. Similar calculations are performed to evaluate the third-octave levels of the background

noise. An example is shown in figure 8.15. Applying this process for all the recordings, it has

been found that for 90% of them the SNR was above 9 dB in the frequency range [200 Hz - 2500

Hz], which will be the range of study in the rest of this section. Indeed, it has been noticed

that tramway noise emissions at low frequencies are usually comparable to typical background

noise. Besides, at higher frequencies, the measurement is limited by birds singing, which mostly

contribute to the background noise at 3 and 4 kHz.
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Figure 8.15: Examples of signal and background noise third-octave levels in dB ref. 20µPa (far tram - SLM
height of 1.20m - with barrier). The red lines delimit the frequency range in which the SNR is sufficiently high
(above 9 dB). The bump in the background noise spectrum at 3 and 4 kHz corresponds to birds singing. Thick
solid line: signal - dashed thin line: background noise.

8.3.3.2 Measured third-octave insertion losses

Now that the trusted frequency band has been determined, one can calculate for a given con-

figuration the insertion loss of the low-height barrier from the third octave levels without the

barrier, averaged over all measurements, minus the averaged third octave levels with the bar-

rier. Apart from the uncertainty due to the background noise, there is some variability in this

evaluation which can be quantified by classical uncertainty calculations. Results are presented

in figure 8.16. First of all, it is clear that the low-height barrier provides attenuation over the

whole considered frequency range, both for close and far trams, although the attenuation is a lot

higher for close trams. One can also notice that at the receiver height of 1.20m, the performance

of the noise barrier for far trams is increased at high frequencies compared to that measured at

1.50m. This is correlated to the fact that at a height of 1.50m, for far trams, the receiver is

barely in the geometrical shadow zone of the barrier, whereas at 1.20m the receiver is deeper in

the shadow zone (see in figure 8.17). This difference between the two receiver heights is however

smaller for close trams, since both receivers are well into the shadow zone in this case.

One can then consider a broadband insertion loss in dB(A) in the considered frequency range.

Levels are first converted to dB(A) by applying the A-weighting correction to the third octave
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Figure 8.16: Mean values and uncertainty interval of measured third-octave insertion losses in dB in the different
configurations in the frequency range 200-2500 Hz. Left: SLM height of 1.20m - right: SLM height of 1.50m.
Solid line: far tram - dashed line: close tram.

Table 8.2: Mean value and uncertainty of broadband insertion losses in the 200-2500 Hz range based on A-
weighted third-octave levels with and without the barrier, for all configurations.

Configuration
Broadband IL [dB(A)]
(200-2500 Hz range)

Close tram - 1.2m 13.3± 0.6
Close tram - 1.5m 13.8± 1.2
Far tram - 1.2m 5.5± 1.2
Far tram - 1.5m 4.3± 1.1

Average (all config.) 8.6± 0.8

3.53m

1.5m

3m

1.2m
Geometrical
shadow
zone

Figure 8.17: Schematic representing the geometrical shadow zone provided by the barrier for far trams. At a
height of 1.20m, the receiver is significantly deeper in the shadow zone than at a height of 1.50m, which in turns
increases the insertion loss mostly at high frequencies.

levels. The broadband insertion loss is then evaluated as:

IL = 10 log
(∑

j

10(L
wo
A,j/10)

)
− 10 log

(∑

j

10(L
w
A,j/10)

)

in which Lwo
A,j (resp. L

w
A,j) are the A-weighted third-octave levels in the band of index j without

the barrier (resp. with the barrier). The corresponding uncertainties are evaluated as well.

Results for each configuration and on average for all configurations are shown in table 8.2. As

already mentioned, the difference between the two receiver heights is significant for far trams,

but not for close trams. It is however surprising that, in the close tram case, the mean insertion

loss is smaller at 1.2m than at 1.5m. Let us recall that there is significant uncertainty in

the evaluation of the measured broadband performance and therefore these results should be

considered accordingly.

Notice that these results are a little different than the first estimate of the broadband insertion

loss shown in section 8.3.1, which might be due to the fact that no speed correction was applied
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on the third-octave levels, and also since the evaluation based directly on the measured pass-by

levels was evaluated over a larger frequency band, but was also more subject to error due to

the background noise implicitly present in the levels estimation. The choice not to apply a

speed correction on the third-octave levels was based on the fact that such a correction should

be dependent on the considered third-octave band (as done by Pallas et al. [26]), but in our

case it has been found that the uncertainty on the regression coefficients was very high for most

frequency bands, and therefore the coefficients not meaningful.

8.4 Comparison with BEM calculations

The third-octave insertion losses calculated in the previous section can now be compared to

BEM calculations. It is expected that the results of the BEM predictions will be different from

the measurements since the situation modeled in the simulations is a lot simpler than the real

environment: infinitely extended geometry, omnidirectional coherent line source, position of

the sources, approximate geometry, approximate acoustic properties of the surrounding surfaces

(ground, tram and low-height barrier). It seems however interesting to estimate this difference.

Due to the lack of more accurate data, the ground, the tram and the pressed wood boards

in which the barrier is made will be assumed perfectly rigid. The fiberglass is assumed to

be a fibrous layer of admittance modeled by a Delany and Bazley layer of flow resistivity

σ = 30 kPa.s/m2. Two sources located at each rail are considered, and their contributions

are summed incoherently. Two receivers located at heights of 1.20m and 1.50m are considered,

similarly to what has been done in the measurements. The geometries used in the simulations

are presented in figure 8.18. The spectral content of the sources is not important to estimate the

third-octave insertion losses, but will be added when evaluating the broadband insertion loss.

Calculations are performed once again with the software MICADO, presented in chapter 2.
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Figure 8.18: Considered geometries for 2D BEM calculations. The geometry is assumed infinitely extended in
the direction orthogonal to the vertical plane. The blue dots are the receiver locations, and the red stars are the
sources. Boundary color coding: black line - rigid; dashed red line - fibrous layer (Delany and Bazley model with
parameters σ = 30 kPa.s/m2 and d = 8 cm). Left: close tram; right: far tram.

Comparisons between the BEM and measured third octave insertion losses are presented in

figure 8.19. Although significant differences exist, one can notice the general trends are relatively

well-represented in the BEM calculation. Nevertheless, in the close tram case, the performance

is largely overestimated at low and high frequencies. There is also a uniform overestimation

of the BEM in the far tram case, which may be due to a ground effect happening in reality

which is not taken into account in the calculation (since the ground has not been characterized
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Figure 8.19: Comparison of mean measured values and BEM calculated values of third octave insertion losses.
BEM calculations are done using the geometry given in figure 8.18. Thick solid line: measurement; thin dashed
line: BEM calculation. Top left: close tram - SLM at 1.2m; top right: close tram - SLM at 1.5m; bottom left:
far tram - SLM at 1.2m; bottom right: far tram - SLM at 1.5m.

Table 8.3: Measured and calculated broadband insertion losses in the 200-2500 Hz range, for all configurations.
The calculation is done using equation (8.2).

Configuration
IL200-2500 [dB(A)]

Measurement BEM calculation

Close tram - 1.2m 13.6 14.8
Close tram - 1.5m 13.7 11.3
Far tram - 1.2m 6.1 9.7
Far tram - 1.5m 4.5 6.8

properly on site), or to the finite extent of the barrier. Besides, some peaks and dips in the

insertion loss curve, probably related to interference effects, are typically more marked in the

BEM calculation compared to reality, which is probably related to the simple modeling of the

noise sources (coherent line source).

Furthermore, one can evaluate a broadband insertion based on the BEM predicted insertion

losses, using a measured spectrum. Let Lin
A,j be the mean A-weighted levels measured without

the barrier for a given configuration, taken as an estimate of the power spectrum of the source.

One can then evaluate the broadband insertion loss in the 200-2500 Hz range based on this

spectrum and third-octave insertion losses ILj as:

IL200-2500 = 10 log
[∑

j

10(L
in
A,j/10)

]
− 10 log

[∑

j

10(L
in
A,j/10) 10(−ILj/10)

]
(8.2)

The values ILj can be taken as measured values or calculated values. For the BEM predictions,

calculations are made with 20 frequencies per third-octave using the geometry shown in figure

8.18, with and without the low-height barrier. Besides, in each case the two source contributions

are summed incoherently. Results are summarized in table 8.3. Measured values are slightly

different from those given in table 8.2 since in this section the evaluation is based on an average
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source spectrum and average attenuations, whereas the evaluation in section 8.3.3.2 was based

on the difference between broadband average levels. This distinction was necessary since BEM

calculations cannot predict broadband levels directly (due to the 2D approximation). In order to

compare measured and predicted performances, one therefore has to use third-octave insertion

losses and one source spectrum, as done in equation (8.2).

One can notice in the far tram case a difference of about 3-4 dB(A) between the measured

and calculated broadband insertion losses for both receiver heights. This difference is smaller in

the close tram case (1-2 dB(A)). Furthermore, although the BEM predicts a significant difference

in the close tram case between the two receiver positions, which is consistent with the fact that

one of them is deeper in the shadow zone, this is not observed in the measurement as pointed

out in the previous section.

The main result of this comparison between attenuations obtained from simple BEM calcu-

lations and from in situ measurements is that, even though many features of the problem are

not reproduced in the model, calculations yield results which are at least consistent with the

in situ measurements - that is within a few dB(A) -, especially for the close tram case which is

the one we are mostly interested in. This suggests that BEM numerical predictions are likely

to represent the in situ performance - that is the broadband insertion loss - of such low height

noise barriers, with an accuracy of a few dB(A). Therefore, one can hope that the predicted

performance of the optimized low height barriers presented in the previous chapters of this work

are accurate as well, within a few dB(A).

8.4.1 Numerical comparison of the barrier prototype with other designs

We end this section by comparing numerically, using the simplified BEM model given in the

previous section, the performance of the chosen prototype barrier with other designs: a sim-

ple rigid straight wall, a straight wall with absorbing treatment on the source side and a fully

optimized design. This will allow us to evaluate - at least numerically - how much more im-

provement could be obtained in the performance of such a tramway low-height noise barrier by

optimizing further the design, and also how much better the chosen prototype performs than a

simple solution. The fully optimized design is taken from the results of section 6.4.2, and is a

wall of shape-optimized absorbing source side and optimized MPP resonator on top. The four

designs are shown in figure 8.20.
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Figure 8.20: Considered low-height barrier designs used to evaluate the relative performance of the tested
prototype. From left to right: straight rigid wall; straight wall with absorbing source side; tested prototype
(Gamma-shape barrier with absorbing material on the source side); fully optimized design (wall with shape-
optimized absorbing source side and optimized MPP resonator on top). Surface treatment color coding: rigid
(thin black solid line); fibrous layer modeled with the Delany-Bazley model with parameters σ = 30 kPa.s/m2

and d = 10 cm (thick red solid line); MPP resonator of parameters s = 0.162, a0 = 3.6mm, l0 = 9.5mm and
D = 9.8 cm (thick black dotted line).
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Predicted third-octave insertion losses for the four considered designs are given in figure 8.21

and broadband insertion losses using equation (8.2) and based on the measured average tramway

spectrum (as done in the previous section) are given in table 8.4. First, numerical predictions

suggest that the chosen design for the full scale prototype performs much better than a simple

rigid wall, essentially over the whole frequency range of interest (see in figure 8.21), yielding a

broadband improvement of more than 6 dB(A) for the close tram case, and more than 3 dB(A)

for the far tram case. But, the performance of the prototype is similar to that obtained with a

straight wall with the source side covered with fiberglass. It could be pointed out however that

the Gamma-shape was easier to set up than a straight wall in our case, since no fixation on the

ground was necessary (the Gamma-shape was supported against the safety fence), and that the

top of the Gamma-shape could protect the source side treatment from weather damage more

efficiently.

However, BEM calculations also suggest that the prototype design is far from optimal, since

another shape-optimized barrier has a higher performance, especially in the mid frequency range

and for the close tram case. Even though BEM calculations typically over-estimate the perfor-

mance, as shown in the previous section, it is likely that some difference of in situ performance

between the prototype and a fully optimized design would remain, at least in the close tram case.

For the far tram case however, the design of the barrier might not be as important, as suggested

by the BEM predictions (difference smaller than 2 dB(A) between the prototype design and

the fully optimized design). It should be recalled however that this type of low-height tramway

noise barrier is mostly made to attenuate the noise emitted by a close tram.

Those results suggest that optimizing further the design of a tramway low-height barrier is

probably worth it, in the sense that at least several dB(A) of improvement of the actual in situ

performance could be achieved compared to the prototype that has been studied in this chapter.

Table 8.4: Calculated broadband insertion losses in the 200-2500 Hz range, for the four designs given in figure
8.20. The calculation is done using equation (8.2).

Configuration
IL200-2500 [dB(A)]

Straight rigid wall Straight absorbing wall Prototype Fully optimized wall

Close tram - 1.2m 6.0 14.1 14.8 18.2
Close tram - 1.5m 5.2 14.2 11.3 16.9
Far tram - 1.2m 6.3 9.8 9.7 11.8
Far tram - 1.5m 3.6 7.4 6.8 8.8

8.5 Conclusion

A full scale prototype of a tram low height noise barrier has been built and implemented in a

real environment, along the B line of the Grenoble tramway system. A simple Gamma-shape

design made of pressed wood and fiberglass, for a length of 22m, is proposed. The design of

the noise barrier as well as its length were chosen essentially to cope with feasibility and time

constraints. A series of pass-by measurements were performed at a close location from the tram

track, at two different heights, with and without the noise barrier. The tram speed has also

been measured using an auxiliary microphone located very close to the track.
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Figure 8.21: Predicted third-octave insertion losses between 200 and 2500 Hz, for the three designs given in
figure 8.20, and in the four different configurations of tram and receiver positions. Top left: close tram, SLM at
1.20m ; top right: close tram, SLM at 1.50m ; bottom left: far tram, SLM at 1.20m ; bottom right: far tram,
SLM at 1.50m. Line coding: straight rigid wall (thin dashed black line) ; straight wall with absorbing source side
(thick dashed green line) ; prototype barrier (thick solid blue line) ; fully optimized design (thin solid red line).

First, a positive correlation has been found between pass-by equivalent level and speed, in

agreement with previous studies. This was used to approximately correct for the speed in pass-

by equivalent levels and time histories. Although a significant variability is found between the

different trams, it is shown that the barrier provides on average an attenuation of more than 10

dB(A) for close trams, and of more than 5 dB(A) for far trams, during the whole pass-by, and

not only when the barrier covers most of the tram length.

The effect of the noise barrier in the frequency domain has been studied as well. It is found

that the barrier provides attenuation in the whole frequency range 200-2500 Hz (which is the

range in which the effect of the barrier could be evaluated accurately), which yields a broadband

insertion loss in this range of 13 dB(A) for close trams, 5 dB(A) for far trams and 8.5 dB(A) on

average. BEM calculations are made as well, and it is found that although the environment is

highly idealized in the calculations, the predictions yield rather good estimates of the actual in

situ performance, within a few dB(A), especially for the close tram case. It is hence suggested

that numerical predictions made in the rest of this work may be reasonably close to what would

be actually measured in a real environment.

Finally, extra numerical calculations suggest that, although relatively efficient, the proposed

design for the prototype could be further improved to gain several dB(A) of performance by

treating the top of the barrier and by shape-optimizing the source side. Of course, actual

implementation of more complicated designs such as the ones that have been numerically studied

in the previous chapters of this work would raise feasibility and cost issues which should be

studied extensively. Decision makers should in the end state if the benefit in terms of noise

reduction performance is worth the extra cost of such optimized low-height noise barriers.
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Chapter 9
Conclusions

9.1 Summary of findings

As a main tool in environmental noise control, noise barriers have been extensively studied in

the second half of the 20th century, both from a practical implementation viewpoint and from

a research perspective. Nevertheless, they have mostly been looked at as a means to mitigate

highway and railway noise. There is however an increasing concern to reduce noise exposure in

urban areas as well, since noise is considered as a main nuisance by urban dwellers, and since

many means of transport coexist in urban areas. Adapting a noise barrier design so that it

can be implemented close to a noisy transportation system seems therefore promising towards

urban noise reduction for pedestrians and cyclists, and as a side effect for surrounding buildings.

Typically the height of these devices will have to be limited say to one meter, hence the name of

low-height barriers. Application to tramway noise mitigation seems particularly interesting since

this means of transportation has been rapidly developing in many cities, and since most of the

emitted noise comes from the tracks and wheels, which are close to the ground, and which can

therefore be efficiently mitigated. Moreover, published tramway noise power spectra suggests

most of the A-weighted energy is contained between 100 and 2500 Hz, which has been chosen

as the frequency range of study.

In an urban area, distances between noise sources and receivers are of the order of a few

meters, which is different than for the more typical highway case, in which distances are much

larger. Arguments are given that meteorological effects can probably be neglected in this case,

and therefore the atmosphere can be considered homogeneous. The efficiency of the device -

measured by a weighted attenuation taking into account the spectral content of tramway noise

sources - is consequently mostly controlled by geometrical features, related to the presence of

objects in the vicinity of the barrier such as the tramway body (which can induce the multiple

reflections phenomenon), the ground properties and the design of the screen itself. Because of

this dependence and because complex reflection and diffraction effects are involved, automatic

optimization of the barrier design is likely to provide a significant increase of its efficiency.

Calculation of the sound field has been achieved with the boundary element method (BEM),

which is one of the only prediction methods that can take precisely into account complex geo-
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metrical effects as well as arbitrary distributions of admittance. Several assumptions have been

made to make BEM calculations faster, which was necessary to limit computation time as the

optimization algorithm has to evaluate the sound field multiple times. Hence a rigid ground

has been assumed, and the effect of the reflection on the tramway body is idealized by consid-

ering a vertical baffle, which in turn is equivalent to introducing an image barrier. The mesh is

considerably reduced with this method, as is the computational effort. Besides the diffraction

problem has been only considered two-dimensional, which implicitly assumes that the geometry

is infinitely extended in one direction and that the source is a coherent line source. However,

this assumption is known to be accurate when predicting attenuation when the source is an

actual 3D point source, which is what is used in the objective function.

In this work, both the shape and the surface treatment of the barrier are optimized. Although

it is sometimes possible to describe the shape of a noise barrier with a small number of parameters

corresponding to specific features of the design, it has been chosen here to consider a general

representation of the geometry using an arbitrary set of control nodes. The variables describing

the shape are therefore the coordinates of the control nodes. One should however ensure that

the generated geometry is feasible, in the sense that the surface (or the curve in 2D) describing

the boundary of the barrier does not fold over itself (the curve must be injective). Regarding

the surface treatment, two types of materials have been considered in this work: a porous layer,

which typically absorbs high frequencies well, and a reactive treatment, which can be tuned to

be efficient in a given frequency band. Furthermore, two types of porous materials have been

considered: a sound insulating fibrous material (such as fiberglass) and a hemp concrete layer,

which is a more sustainable material. The fibrous material has been modeled with the Delany-

Bazley model, whereas hemp concrete has been modeled with a Johnson-Zwikker-Kosten hybrid

model, according to the literature. The chosen reactive treatment is the micro-perforated panel

resonator (MPPR), and its admittance is modeled with the so-called Crandall-Sivian-Fok model.

A line-search sensitivity-based optimization method has been chosen to carry out the op-

timization of the control node coordinates and of the parameters describing the admittance

of the chosen acoustic treatments. The sensitivity information is efficiently calculated, using

an adapted version of the adjoint state approach to the acoustic scattering problem. Using a

sensitivity-based method implies that one is only able to find a local solution of the optimiza-

tion problem, however the number of function evaluations is dramatically smaller than with a

global search method such as the genetic algorithm. Rather than finding optimal designs, the

proposed algorithm therefore aims at finding optimized designs, meaning solutions with better

performance than simple designs. Besides, due to the different types of constraints applied to

the admittance parameters compared to the shape parameters (bounds constraints vs. shape

injectivity constraint), it has been chosen to use different methods to optimize each type of

parameters: a Sequential Quadratic Programming (SQP) method for admittance parameters,

and an adapted steepest descent method for shape parameters. Indeed, whereas the SQP has a

faster convergence rate, the steepest descent allows more control on the current estimate, which

makes it easier to ensure the shape feasibility constraint.

First the optimization algorithm is applied to barriers assumed acoustically rigid, which

would be the case if they were made out of concrete. Indeed, although acoustic surface treat-
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ments can be efficient in increasing the performance of the barrier, they usually have a stronger

environmental footprint than rigid materials. Several starting geometries are used in the shape

optimization algorithm, including a medium wall, a Gamma-shape wall and a T-shape wall.

In all cases, convergence was achieved rapidly, within a few dozens iterations. Whereas initial

designs with straight geometries had low insertion loss, typically below 6 dB(A), the efficiency

of optimized barriers are all above 11 dB(A) and can reach 14 dB(A), mostly due to an increase

of attenuation at higher frequencies (above 500 Hz). It is also found that optimized geometries

present irregularities on the side of the barrier directly exposed to the source radiation and the

reflections on the tramway body. Intensity calculations suggest that this increase of attenuation

is due to a redirection of the acoustic energy in the upwards direction, away from the shadow

zone. Irregularities seem therefore to act against the multiple reflections happening between the

tramway and the barrier.

Then, barriers covered with an absorbing fibrous material are shape-optimized. Again, con-

vergence is achieved rapidly, and shape optimization is found to provide 5 dB(A) of extra

efficiency (the predicted efficiency of shape-optimized absorbing designs reaches more than 20

dB(A)). However in this case, the geometry is less modified on the source side and more on

the top side. This suggests that when multiple reflections are greatly attenuated thanks to an

absorbing material, shape-optimization can still enhance the efficiency by acting on diffraction

effects, which essentially happen in the top region of the barrier. Tuned MPPRs can also enhance

the attenuation in the mid frequency range. Furthermore, it is found that similar attenuations of

shape-optimized barriers can be obtained using hemp concrete instead of the initially considered

highly absorptive fibrous material.

Further, extra calculations have been made for the found optimized designs to assess the

validity of the different approximations assumed in the optimization. To do so, the tramway has

been replaced by a more realistic cross-section, the ground has been considered as potentially

absorbing, and the source has been modeled as a 3D point source, several incoherent point

sources (approximating a finite incoherent line source of length equal to that of a tramway, that

is 43 meters) or an infinite incoherent line source, using 2.5D modeling. Due to the increased

complexity of the model, the attenuation has been calculated up to 1800 Hz only. First it is found

that the efficiency calculated assuming an incoherent line source of all the considered designs is

much lower than with the finite incoherent line source, and since considering the source finite is

clearly more realistic, the results from the incoherent line source model are disregarded in our

case.

For all other source models, predictions of the broadband efficiencies and insertion losses

showed that the predicted benefit of the optimized barrier is lowered by about 1 dB(A) due to

a more realistic cross section for the tram, and lowered by another 2-4 dB(A) due to a strongly

absorbing ground. Consideration of the source spatial incoherence also decreases the efficiency

of the barriers, especially in the low frequency range, although in all cases the efficiency of the

optimized designs remain significant, especially in the case of a rigid ground: 9-12 dB(A) for

shape-optimized rigid barriers, 16-19 dB(A) for shape-optimized barriers with optimized surface

treatments. Furthermore, the benefit of using an absorbing treatment is evaluated to be of the

order of 5 dB(A), even when the shape is optimized, whereas the presence of tuned MPPRs can
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yield an improvement of 1 to 3 dB(A).

As a complement to the numerical simulations, a method to measure the insertion loss of a

low-height barrier close to a tramway using scale models (at the 1/10th scale) has been developed

and validated in simple cases. An impulsive method has been used, using a spark source and

appropriate time windowing for signal selection. The spectral content of this source has been

found to be significant and repeatable in the range 200-1800 Hz at full scale. Felt layers have been

used to represent fibrous absorbing treatment in the model. The method has been applied to the

T-shape design with different amount of absorbing materials covering the source side. Overall

the agreement is good between BEM calculations and measurements, since for instance the poor

performance of the rigid barrier due to the multiple reflections effect, as well as the benefit of

using an absorbing treatment on the source side, are clearly confirmed by the measurements.

Nevertheless, one should point out that the BEM tends to slightly underestimate the insertion

loss at the low and high frequencies.

Finally, a full scale low height barrier prototype has been built and set up temporarily close

to one line of the Grenoble tramway system. The prototype was made of a Gamma-shape

assembly of pressed wood boards covered on the source side with fibrous absorbing material,

and covers a length of 22 meters. The prototype has been set up in a residential area in which

the tram rolls at relatively high speed - up to 60 km/h - and therefore measurements could be

performed with good signal-to-noise ratio. A series of pass-by measurements were made at a

location corresponding to the typical height of human ears, close to the track (1.5 m above the

ground and 3 m away from the track), with and without the device. The tram speed has been

measured as well using an auxiliary microphone located very close to the track.

A significant variability in pass-by levels has been found between the different trams, even

when applying an approximate correction for speed. However it is shown that the barrier pro-

vides on average an attenuation of more than 10 dB(A), during the whole pass-by, and this even

though the length of the barrier prototype was only half of that of the tramway. Spectral anal-

ysis of the recorded signals has been performed as well, and showed that the measured insertion

loss of the prototype was about 13 dB(A) in the range 200-2500 Hz. Furthermore, comparisons

between measurements and BEM calculations have shown that, although the environment is

highly idealized in the calculations, predictions can yield rather good estimates of the actual

in situ performance, especially for the close tram case. Extra numerical calculations however

suggest that the performance of such a low height barrier could be improved further.

Finally, one can conclude that the design of low-height urban noise protections, as a relatively

new topic of interest in the outdoor noise control community, is at the same time challenging and

important since it could radically change the way of living in a dense urban area. Based on the

numerical optimization results and the experimental data collected during this work, one can

state that low height noise barriers can be efficient solutions to attenuate tramway noise for close

receivers, namely pedestrians and cyclists. It is also likely that this type of noise protection could

be efficient as well against any urban noise source located close to the ground, as long as it can be

placed close to the source. Careful design of the device is particularly important for low height

barriers, especially if the source of noise is surrounded by objects which might induce multiple

reflections, since it may influence the efficiency significantly. Optimization methods such as the
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one presented in this work are hence helpful design tools for low height noise barriers since they

can help identify what are the features impacting the efficiency of the device the most.

9.2 Future work

Several improvements could be made to the approach described in this work. From a numerical

modeling standpoint, one could for instance study the effect of removing some of the many

assumptions used in the calculations. For instance, vertical source directivity effects could

possibly change the generated optimized designs, although we believe the general trends that

have been found in this work - benefit of irregular geometries and of an absorbing treatment

- would probably remain. In three-dimensional modeling, it would be however interesting to

study those directivity effects in the horizontal plane as well, since this would have a significant

impact on the predictions when extended incoherent sources are considered. Rather accurate

modeling of the actual sources of a tramway could certainly be achieved, even within a 2.5D BEM

framework. Another possibility would be to use full 3D BEM calculations for the predictions,

which would greatly extend the realism of the simulations, although one would certainly need a

more advanced approach such as the fast multipole method to achieve this kind of simulation.

Nevertheless, shape and admittance sensitivity calculations could probably be generalized to the

3D case rather easily since they essentially require the knowledge of the pressure field values

on the boundary. Furthermore, when modeling surface treatments, a major assumption that

should probably be looked at in details is the local reaction approximation, which is implicit

when modeling the treatment with a surface admittance. Modeling the longitudinal sound

propagation inside the materials would certainly be more accurate and could be achieved with

proper BEM calculations as well.

Besides, the optimization strategy itself could also be further explored. Although arguments

have been made towards the utilization of gradient-based optimization methods for our appli-

cation, it would be interesting to compare our results to solutions obtained with global search

methods (genetic algorithms for instance), in terms of efficiency and in terms of computational

effort. One could even imagine coupling the two approaches, for instance by starting with a

“coarse” optimization using a global search method and then running a local search with a

sensitivity-based method. The question of variables representation would however require a lot

of attention in this context.

Regarding shape optimized barriers as presented in this work, it also seems essential to

evaluate in detail the feasibility of such somewhat complicated geometries. Extruded concrete

might be a manufacturing option to build shape optimized rigid barriers, but this of course

would require detailed investigation. Shaping absorbing treatments in irregular geometries also

seems rather challenging.

Last but not least, following a holistic approach taking into account all aspects of sustain-

ability (economical cost, environmental footprint, social benefit, health effects and so on) and

not only the acoustic performance, seems absolutely necessary to evaluate properly the benefit

of low height noise barriers. Nevertheless, even though from a holistic point of view the present
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study is a small step, we are convinced that this type of noise protection is a promising tool

towards a better quality of life in urban areas, and we can only hope this concept will be further

developed in the near future.
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Appendix

A Tangential differential operators

We give in this section a few definitions and properties regarding tangential differential operators.

More comprehensive analyses of these operators can be found in [136, 149, 192]. Although those

operators are defined in general in 3D, we also give more specific properties for the 2D case.

Let Γ is a smooth curve in 2D (or a smooth surface in 3D) and n the normal vector on

Γ. Given a differentiable scalar function p defined in a neighborhood of Γ, one can define the

surface gradient ∇Γ at a point on Γ as:

∇Γp = ∇p− ∂p

∂n
n

Then the surface rotational is defined as: rotΓ p = ∇Γp ∧ n.

Similarly, if u is a vector field defined in a neighborhood of Γ, the surface divergence divΓ of

u can be defined as:

divΓ u = divu− n · ∇u · n

The surface rotational of a vector field is then defined as: rotΓ u = divΓ (u ∧ n).

Several properties - similar to those involving usual differential operators - can be derived.

In particular:

divΓ rotΓp = 0 rotΓ∇Γp = 0

Besides, one has the following integration by parts properties (given p and q smooth scalar

valued functions and u a smooth vector valued function):

∫

Γ
∇Γp · u dΓ = −

∫

Γ
p divΓu dΓ

∫

Γ
rotΓp · u dΓ =

∫

Γ
p rotΓu dΓ

∫

Γ
p rotΓq dΓ = −

∫

Γ
q rotΓp dΓ

Furthermore, in the 2D case, there is essentially one tangential operator which is the tan-

gential derivative. At any smooth point on Γ, the gradient of a scalar function p can be broken
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down on the local normal and tangent vector n and t:

∇p = (∇p · n)n+ (∇p · t) t = ∂p

∂n
n+

∂p

∂t
t

Therefore one has:

∇Γp =
∂p

∂t
t

which yields:

rotΓ p =
∂p

∂t
t ∧ n =

∂p

∂t
e3

where e3 is the unit vector along the x3 direction (normal to the vertical plane, as defined in

figure 2.1). In particular, this implies:

rotΓ p · rotΓ q =
∂p

∂t

∂q

∂t

B Uniqueness of Jean’s integral equation solution

In this section we derive the fact that equation (2.12) has a unique solution for all wavenumbers

if the admittance β has a nonzero real part everywhere. The derivation follows closely the

approach used in [139].

Let us consider the corresponding homogeneous equation:

NpΓ +D∗(ikβpΓ) + ikβ DpΓ + ikβ S(ikβpΓ) = 0 (B.1)

Since equation (2.12) is linear, the only thing to prove is that the homogeneous equation (B.1)

only admits the solution pΓ = 0.

Let pΓ be a solution of equation (B.1). Define v = DpΓ + S(ikβpΓ). By properties of the

integral operators [136], v satisfies the homogeneous Helmholtz equation in Ωi and Ωe:

−(∇2 + k2) v = 0 in Ωi ∪ Ωe

as well as the radiation condition at infinity. Also, we have the following expressions for the

interior and exterior traces vi and ve of v on Γ, and those of the interior and exterior normal

derivatives ∂v/∂n|i and ∂v/∂n|e :

vi = −1

2
pΓ +DpΓ + S(ikβpΓ)

∂v

∂n

∣∣∣
i
=

1

2
ikβpΓ +NpΓ +D∗(ikβpΓ)

ve =
1

2
pΓ +DpΓ + S(ikβpΓ)
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∂v

∂n

∣∣∣
e
= −1

2
ikβpΓ +NpΓ +D∗(ikβpΓ)

Finally, the jump relations at the boundary Γ are given by:

pΓ = ve − vi ikβpΓ =
∂v

∂n

∣∣∣
i
− ∂v

∂n

∣∣∣
e

(B.2)

One can therefore rewrite equation (B.1) as:

0 =
∂v

∂n

∣∣∣
i
− 1

2
ikβpΓ + ikβ

(
vi +

1

2
pΓ

)
=

∂v

∂n

∣∣∣
i
+ ikβvi (B.3)

Similarly, one can show that the same boundary condition holds for the exterior traces:

∂v

∂n

∣∣∣
e
+ ikβve = 0 (B.4)

Now, applying Green’s second identity [136, 139] to v and its complex conjugate v∗ in the interior

domain Ωi, one has :

∫

Γ

(
vi

∂v∗

∂n

∣∣∣
i
− v∗i

∂v

∂n

∣∣∣
i

)
dΓ =

∫

Ωi

(v∇2v∗ − v∗∇2v) dΩ (B.5)

Applying equation (B.3), the left hand side of equation (B.5) becomes:

∫

Γ

(
vi

∂v∗

∂n

∣∣∣
i
− v∗i

∂v

∂n

∣∣∣
i

)
dΓ =

∫

Γ

(
vi (−ikβvi)

∗ − v∗i (−ikβvi)
)
dΓ = 2ik

∫

Γ

(
Re(β) |vi|2

)
dΓ

Besides, since v satisfies the homogeneous Helmholtz equation in Ωi, the right hand side of

equation (B.5) becomes:

∫

Ωi

(v∇2v∗ − v∗∇2v) dΩ =

∫

Ωi

(−k2 |v|2 + k2 |v|2) dΩ = 0

Therefore, equation (B.5) becomes:

∫

Γ

(
Re(β) |vi|2

)
dΓ = 0

Provided that Re(β) 6= 0 everywhere on Γ, this yields vi = 0, and recalling equation (B.3), yields

∂v/∂n|i = 0 as well.

We can also write Green’s second identity in Ωe. The surface integral term at infinity

vanishes due to the radiation condition, and therefore, recalling the boundary condition (B.4)
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and following the same process, one can show:

∫

Γ

(
Re(β) |ve|2

)
dΓ = 0

Again, this implies ve = 0 due to the constraint on β. Finally, recalling the first trace relationship

given in equation (B.2), this yields pΓ = 0, which concludes the proof.

C Static kernels properties and regularization of the Kirchhoff-

Hemholtz integral equation

In this section an approach which allows to regularize the classical Kirchhoff-Helmholtz equation

(2.10) and its derivative (2.11) is presented, using properties of the static integral operators

introduced in section 2.3.1. This approach is essentially inspired by Duhamel [137] and Liu and

Rizzo [193]. The main advantage of such a technique is that integration of regular functions

only are required to build the system satisfied by the boundary pressure field.

C.1 Integral properties of static kernels

As stated in section 2.3.2, the integral representation theorem is also valid in the “static” case,

that is when k = 0. This will allow to derive important properties about the static operators,

which we will write with a superscript 0 (such as S0, D0, and so on). The results obtained in

this section are similar to those derived by Liu and Rudolphi [194].

Consider the field p̂ of constant value 1 in Ωi and of value 0 in Ωe. This function, as a piecewise

constant function, satisfies the Laplace equation in Ωi ∪ Ωe and the radiation condition. The

jumps across Γ are in this case: µ = 1 and λ = 0. Application of equations (2.8) and (2.9)

yields:

D01 =





0 in Ωe

−1

2
in Γ

−1 in Ωi

and N01 = 0 in Ωe ∪ Γ ∪ Ωi

The fact that N01 = 0 everywhere is not surprising considering the expression of the operator

N given in equation (2.7) since rotΓ1 = 0.

Another simple function that satisfies the Laplace equation and the radiation condition is

the linear function yi equal to one coordinate xi, with i = 1, 2, in Ωi and 0 in Ωe. The notation

yi is used since y has been and will be the main variable of integration in this section. In this

case µ = yi and λ = ni, ni being the ith component of the normal vector n. Application of the
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integral representation theorem yields the following relationships:

S0ni −D0yi =





0 in Ωe

1

2
yi in Γ

yi in Ωi





= −yiD
01

Rewriting this under vector form, one has at any point in space:

S0(n) = D0(y)− xD0(1) = D0(y − x) (C.6)

This can also be written out as:

(∀x ∈ Ωi ∪ Γ ∪ Ωe)

∫

Γ
G0(x,y)n(y) dΓ(y) =

∫

Γ

∂G0

∂ny
(x,y) (y − x) dΓ(y)

Application of the integral representation of the gradient yields (transforming in vector form

directly):

D0∗n−N0y =





0 in Ωe

1

2
n in Γ

1 in Ωi

with 1 = (1, 1). Since N01 = 0, this can be rewritten as:

D0∗n−N0(y − x) =





0 in Ωe

1

2
n in Γ

1 in Ωi

C.2 Regularization using static kernels

We are now considering the two equations (2.10) and (2.11) which are combined together to

form either Burton and Miller’s integral equation or Jean’s integral equation, which is then

solved numerically. Although integrability of the different expressions is theoretically ensured,

one may wish to form more regular integrals which can be evaluated more easily in a numerical

implementation. For instance, although the kernel involved in the single layer potential is

integrable, it is unbounded when the integration point approaches the current point, which

makes the numerical integration more difficult. We give here an approach to circumvent this

issue, essentially inspired by Duhamel [137] and Liu and Rizzo [193].

The basic idea is to consider an auxiliary function, solution of another scattering problem,

and to use the integral equations satisfied by this auxiliary function to regularize the initial

integral equations, typically equations (2.10) and (2.11). Let p0 a function solution of the

Laplace equation in Ωi and of zero value in Ωe. In this case the two distributions λ and µ are
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respectively the interior traces of ∂p0/∂n and p0 on Γ, and therefore the trace relationships given

in equation (2.9) yield: 



1

2
p0Γ +D0p0Γ − S0∂p

0

∂n

∣∣∣
Γ
= 0

1

2

∂p0

∂n

∣∣∣
Γ
+N0p0Γ −D0∗∂p

0

∂n

∣∣∣
Γ
= 0

Let us now recall the two equations (2.10) and (2.11) satisfied by pΓ and its normal derivative:





1

2
pΓ −DpΓ + S

∂p

∂n

∣∣∣
Γ
= pin|Γ

1

2

∂p

∂n

∣∣∣
Γ
−NpΓ +D∗ ∂p

∂n

∣∣∣
Γ
=

∂pin

∂n

∣∣∣
Γ

Adding those two sets of equations together, one obtains:





1

2
(pΓ + p0Γ)− (DpΓ −D0p0Γ) +

(
S
∂p

∂n

∣∣∣
Γ
− S0∂p

0

∂n

∣∣∣
Γ

)
= pin|Γ

1

2

(∂p
∂n

∣∣∣
Γ
+

∂p0

∂n

∣∣∣
Γ

)
− (NpΓ −N0p0Γ) +

(
D∗ ∂p

∂n

∣∣∣
Γ
−D0∗∂p

0

∂n

∣∣∣
Γ

)
=

∂pin

∂n

∣∣∣
Γ

which can be further rewritten as:





1

2
(pΓ + p0Γ)−

(
(D −D0)pΓ +D0(pΓ − p0Γ)

)

+
(
(S − S0)

∂p

∂n

∣∣∣
Γ
+ S0∂(p− p0)

∂n

∣∣∣
Γ

)
= pin|Γ

(C.7)





1

2

(∂p
∂n

∣∣∣
Γ
+

∂p0

∂n

∣∣∣
Γ

)
−
(
(N −N0)pΓ +N0(pΓ − p0Γ)

)

+
(
(D∗ −D0∗)

∂p

∂n

∣∣∣
Γ
+D0∗∂(p− p0)

∂n

∣∣∣
Γ

)
=

∂pin

∂n

∣∣∣
Γ

(C.8)

Such a rewriting is convenient since the operators minus their static equivalent S−S0, D−D0 and

D∗−D0∗ involve more regular kernels and are therefore more convenient to evaluate numerically.

The term N −N0 requires a little more rewriting:

(N −N0)pΓ = −rotΓ S(rotΓpΓ) + k2 S(pΓn) · n+ rotΓ S
0(rotΓpΓ)

= −rotΓ
[
(S − S0)rotΓpΓ

]
+ k2

(
S − S0

)
(pΓn) · n

+ k2 S0
(
(pΓ − p1Γ)n

)
· n+ k2 S0(p1Γn) · n (C.9)

where p1Γ can be an arbitrary function defined on Γ.

Now there mostly remain terms involving the static operators acting on pΓ−p0Γ or its normal

derivative. The static kernels have essentially the same behavior as the dynamic kernels, which

means that there are still unbounded as the integration point approaches the current point.

However if p0Γ is chosen in order to mimic the behavior of pΓ close to the current point on Γ
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- which we will call from now on x -, pΓ − p0Γ can compensate for the singularity of the static

kernels.

One can choose for instance a linear approximation of p close to the point x. The function

p0 is therefore defined as:

p0(y) =

{
pΓ(x) +∇p(x)|Γ · (y − x) in Ωi

0 in Ωe

This choice for the function p0 requires the solution to be sufficiently regular at x in order to

ensure that the gradient is well defined at this point. This is usually true, but as it has been

seen in section 2.4, this requirement will fail at a geometrical singularity (a corner for instance).

p0 satisfies the radiation condition and, as a piecewise linear function, is indeed a solution

of the Laplace equation. The interior trace on the boundary Γ of p0 can then be written as:

(∀y ∈ Γ) p0Γ(y) = pΓ(x) +
∂p

∂n
(x)n(x) · (y − x) +∇Γp(x) · (y − x)

= pΓ(x)− ikβ(x)pΓ(x)n(x) · (y − x) +∇Γp(x) · (y − x)

where the normal derivative of p has been replaced using the boundary condition. The interior

trace of the normal derivative of p0 is given by:

(∀y ∈ Γ)
∂p0

∂n

∣∣∣
Γ
(y) = −ikβ(x)pΓ(x)n(x) · n(y) +∇Γp(x) · n(y)

Finally, since the gradient of p0 is constant of value ∇p0 = ∇p(x) in Ωi, the interior traces of

the surface gradient and rotational of p0 are constant as well of value:

∇Γp
0 = ∇Γp(x) and rotΓp

0 = rotΓp(x)

Another function p1Γ has been introduced in the rewriting of N − N0. Recalling equation

(C.9), it should be chosen so that pΓ−p1Γ vanishes at x but can be here chosen constant. Defining

p1Γ = pΓ(x), equation (C.9) becomes:

(N −N0)pΓ =− rotΓ
[
(S − S0)rotΓpΓ

]
+ k2

(
S − S0

)
(pΓn) · n

+ k2 S0
[(
pΓ(y)− pΓ(x)

)
n
]
· n+ k2 pΓ(x)S

0(n) · n

Again here x is the point which the equation is evaluated at, and y is a dummy integration

variable used in the evaluation of the integral operators (this type of somewhat abusive notation

will be used extensively in the rest of this section). Recalling equation (C.6), this finally yields:

(N −N0)pΓ = −rotΓ
[
(S − S0)rotΓpΓ

]
+ k2

(
S − S0

)
(pΓn) · n
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+ k2 S0
[(
pΓ(y)− pΓ(x)

)
n
]
· n+ k2 pΓ(x)D

0(y − x) · n

Under this form, it is clear that all the involved integrands are regular since pΓ(y)− pΓ(x) and

y−x vanish when y goes to x. Therefore, with this choice of auxiliary functions, equation (C.9)

involves regular integrands only.

Substituting the expressions for p0 and p1 in equations (C.7) and (C.8) and using the bound-

ary condition, one obtains, for any point x ∈ Γ:





pΓ − (D −D0)pΓ −D0
(
pΓ(y)− pΓ(x)

)
− ikβpΓ n ·D0(y − x)

−
(
S − S0

)
(ikβpΓ)− S0

(
ikβ(y)pΓ(y)− ikβ(x)pΓ(x)n(x) · n(y)

)

+∇Γp(x) ·
(
D0(y − x)− S0(n)

)
= pin|Γ

− ikβpΓ − (N −N0)pΓ + rotΓ S
0
(
rotΓpΓ(y)− rotΓpΓ(x)

)

− (D∗ −D0∗)(ikβpΓ)−D0∗
(
ikβ(y)pΓ(y)− ikβ(x)pΓ(x)n(y) · n(x)

)

−∇Γp ·D0∗n =
∂pin

∂n

∣∣∣
Γ

Besides, the term ∇Γp(x) ·D0∗n can be regularized as follows:

∇Γp(x) ·D0∗n = ∇Γp(x) ·D0∗
(
n(y)−n(x)

)
+∇Γp(x) · n(x)︸ ︷︷ ︸

=0

D0∗1 = ∇Γp(x) ·D0∗
(
n(y)−n(x)

)

(C.10)

Recalling equation (C.6) and (C.10), one can rewrite equations (C.7) and (C.8) as:

{
pΓ − (D −D0)pΓ −D0

(
pΓ(y)− pΓ(x)

)
− ikβpΓ n ·D0(y − x)

−
(
S − S0

)
(ikβpΓ)− S0

(
ikβ(y)pΓ(y)− ikβ(x)pΓ(x)n(x) · n(y)

)
= pin|Γ

(C.11)





− ikβpΓ − (N −N0)pΓ + rotΓ S
0
(
rotΓpΓ(y)− rotΓpΓ(x)

)

− (D∗ −D0∗)(ikβpΓ)−D0∗
(
ikβ(y)pΓ(y)− ikβ(x)pΓ(x)n(y) · n(x)

)

−∇Γp ·D0∗
(
n(y)− n(x)

)
=

∂pin

∂n

∣∣∣
Γ

(C.12)

All the terms of equations (C.11) and (C.12) involve regular integrands only. One can now

consider a complex combination of equation (C.11) and (C.12) to obtain a Burton and Miller -

like equation or a regularized version of Jean’s equation, as done in section 2.3.3. For instance,

one can consider the combination (C.12)+ikβ(C.11), multiply by an arbitrary weighting function

qΓ defined on Γ and integrate over Γ. Using the variational expression for N and N0 in 2D given

in section 2.3.1.2 and regrouping terms yields the following equation under its variational form:

∫

Γ

∫

Γ
dΓ(y)dΓ(x)

(
(
G−G0

)
(x,y)

[
−∂pΓ

∂t
(y)

∂qΓ
∂t

(x) + k2
(
n(y) · n(x)− β(y)β(x)

)
pΓ(y) qΓ(x)

]
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+G0(x,y)

[
−
(∂pΓ
∂t

(y)− ∂pΓ
∂t

(x)
) ∂qΓ

∂t
(x) + k2

(
pΓ(y)− pΓ(x)

)
qΓ(x)n(y) · n(x)

−k2
(
β(y)pΓ(y)− β(x)pΓ(x)n(x) · n(y)

)
β(x) qΓ(x)

]

+
( ∂G

∂ny
(x,y)− ∂G0

∂ny
(x,y)

)
ik β(x) pΓ(y) qΓ(x)

+
∂G0

∂ny
(x,y)

[(
pΓ(y)− pΓ(x)

)
ik β(x) + k2 (y − x) · n(x)

(
1− β(x)2

)
pΓ(x)

]
qΓ(x)

+
( ∂G

∂nx
(x,y)− ∂G0

∂nx
(x,y)

)
ik β(y) pΓ(y) qΓ(x)

+
∂G0

∂nx
(x,y)

[
∂pΓ
∂t

(x) t(x) ·
(
n(y)− n(x)

)
+ ik

(
β(y) pΓ(y)− β(x) pΓ(x)n(y) · n(x)

)]
qΓ(x)

)

=

∫

Γ
hin(x) qΓ(x) dΓ(x)

with hin defined as in equation (2.2). Unfortunately this equation does not seem to be sym-

metrical with respect to p and q because of the term ∇Γp qΓ, but nonetheless could probably

be implemented and readily solved. This has not been achieved in this work and is presented

here again as an example of how to theoretically use the properties of static kernels to regularize

integral equations.

D Shape optimization algorithm details

In this section the steepest descent method used for the shape optimization is outlined. This

method is called by the main algorithm presented in section 3.5 at a given iteration i.

This method is essentially a line search strategy (the search direction being the opposite

of the gradient at the current estimate), however the step-size is chosen automatically thanks

to a simple backtracking algorithm. This simply consists in starting with a large step-size (for

instance α0 = 0.5), and decreasing it exponentially by multiplying it by a contraction constant

ρ < 1 until some conditions are met. This can be used to ensure at the same time a sufficient

decrease of the objective function (which is quantified here by the Armijo condition [147]) and

that the shape is injective at each iteration. Indeed, thanks to the backtracking algorithm, given

that the shape the algorithm started with was indeed feasible, even if the current shape is not for

a certain step-size, one can ensure that by decreasing it enough the new shape will be injective

again (this is ensured theoretically by the fact that the set of continuous injective functions form

an open set). An outline of the shape optimization algorithm is:

Given ǫΓ (shape optimization convergence tolerance)

Given ρ , c , α0 (backtracking algorithm constants)

Given P (bound constraints projection operator)

Given x
i
Γ , x

i+1
β (current variable estimates)

Given ei+1
β , g

i+1
β (current objective function and gradient values)
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k = 0 , x
k
Γ = xi

Γ , xβ = x
i+1
β , ek = ei+1

β , g
k = g

i+1
β

while
(

not
(

|ek+1 − ek| < ǫΓ
)

or k = 0
)

Step-size selection (backtracking algorithm)

α = α0 , xb = P(xk
Γ − αg

k) , eb = e(xβ ,xb)

while
(

not
(

eb < ek − c ||gk||2 (sufficient decrease condition)
)

or not
(

Γ(xb) is injective
)

)

α← ρα

xb ← P(xk
Γ − αg

k) , eb = e(xβ ,xb)

end

αk = α

Current shape parameters update

x
k+1
Γ = P(xk

Γ − αk gk)

ek+1 = e
(

xβ ,x
k+1
Γ

)

, g
k+1 = ∇e

(

xβ ,x
k+1
Γ

)

k ← k + 1

end

Typically one can choose the following values for the constants: ǫΓ = 10−4, ρ = 0.5 and

c = 10−4. The projection operator is given in section 3.3.2.2.

D.1 Loop detection algorithm

Finally, we give a straightforward method used to ensure that the curve defining the shape is

injective. Mostly this method aims at detecting loops.

From the current vector of shape parameters xΓ, one can extract the current set of control

nodes (x(0), ...,x(N)). Then one can state the whole curve Γ obtained after linear interpolation

is injective if every pair of distinct elements do not cross. More specifically, given two indexes i

and j with |j− i| > 1 (which means the elements do not follow each other), we consider the two

segments [x(i),x(i+1)] and [x(j),x(j+1)]. One can calculate the determinant of the two vectors

as:

dij = ∆x
(i)
2 ∆x

(j)
1 −∆x

(i)
1 ∆x

(j)
2 with ∆x(m)

n = x(m+1)
n − x(m)

n

Assuming dij is non zero, which means the two elements are non parallel, one can determine

the intersection between the two lines emanating from each segment. Those two lines, referred

to as li and lj , can be parametrized as:

li = {x(i) + t (x(i+1) − x(i)) : t ∈ R} ; lj = {x(j) + u (x(j+1) − x(j)) : u ∈ R}

The parameters corresponding to the intersection point are given by:

tij =
1

dij

(
−∆

(j)
2 (x

(j)
1 − x

(i)
1 ) + ∆

(j)
1 (x

(j)
2 − x

(j)
2 )
)

uij =
1

dij

(
−∆

(i)
2 (x

(j)
1 − x

(j)
1 ) + ∆

(i)
1 (x

(j)
2 − x

(i)
2 )
)

Finally, one can state that the two elements do not cross each other if tij and uij are not in
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the segment [0, 1]. Otherwise, if both parameters were in that segment, it would mean the

intersection would belong to both elements, which would precisely correspond to a loop. If such

a loop is detected, the injectivity test called in the backtracking algorithm returns a false value.

The case of following elements - meaning j = i+1 - can be treated as well, by ensuring ti,i+1

does not belong to [0, 1) and ui,i+1 does not belong to (0, 1].

Finally, the case of parallel elements can be treated as well quite easily, by either ensuring a

finite distance between li and lj , or by making sure two elements do not overlap.

E Shape derivative of a boundary integral defined on a piecewise

smooth curve

In this section we derive the formula given in equation (4.12). Following the notations introduced

above, the functional G can then be written as:

G =
N∑

i=1

∫

Γi

f dΓ =
N∑

i=1

∫ 1

0
f(xi(t)) Ji(t) dt

where xi is a smooth map of each part Γi parametrized by t ∈ [0, 1] and Ji =
√
x′2i1 + x′2i2 is the

Jacobian. The derivative applied to the velocity field θ(t) =
(
θ1(t), θ2(t)

)
on each part Γi is

given by:
∂

∂Γ

[∫ 1

0
f(xi) Ji dt

]
· θ =

∫ 1

0
∇f · θ Ji dt+

∫ 1

0
f
x′
i · θ′

Ji
dt

Since θ and xi are smooth on Γi, one can use an integration by parts on the second integral to

remove the derivative on θ:

∂

∂Γ

[∫ 1

0
f(xi) Ji dt

]
·θ =

[
f
x′
i · θ
Ji

]1
0
+

∫ 1

0

(
∇f ·θ Ji−∇f ·x′

i

x′
i · θ
Ji

−f
x′′
i · θ
Ji

+f
(x′

i · θ)(x′′
i · x′

i)

J3
i

)
dt

Now, on each part Γi one can define the tangent vector ti = x′
i/Ji and the normal vector ni as

the orthogonal vector to ti pointing inside Ω so that θ can be written on Γi as θ = θn ni + θt ti.

By definition of ni and ti, we have x′
i · θ = θt Ji. Besides, the curvature H can be written in

terms of the map xi as :

H = −x′′
i · ni

J2
i

=
det[x′

i,x
′′
i ]

J3
i

Making this substitution in the expression of the sensitivity and simplifying yields:

∂

∂Γ

[∫ 1

0
f(xi) Ji dt

]
· θ =

∫ 1

0

(∂f
∂n

+Hf
)
θn Ji dt+ [fθt]

1
0 =

∫

Γi

(∂f
∂n

+Hf
)
θn dΓ + [fθt]Γi

where [.]Γi
is the difference between the end and start values of a function on Γi. Now, by

summing over all smooth parts, one can see that we recover the expression for a smooth curve
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Γ, plus an extra term related to the jumps at the ends of each smooth part. This yields:

∂G

∂Γ
· θ =

∫

Γ

(∂f
∂n

+Hf
)
θn dΓ−

N−1∑

i=1

[[fθt]]
(i) + (fθt)

(N) − (fθt)
(0)

where [[.]](i) is the jump of a function at the point x(i), defined as the limiting value after the

jump minus the limiting value before the jump.

F Derivatives of considered admittance models with respect to

the parameters

In order to compute the sensitivity of the pressure field with respect to changes in the admittance

parameters, we also need to compute the derivatives of the admittance function with respect to

each parameter. Recalling equation (1.5), for the MPPR model, this yields:

∂βMPPR

∂s
=− iβ2

MPPR

[
kl0
s2

(
1

Θ(x′)
+

16

3π

a0
l0

Ψ(ξ)

Θ(x)

)
− ka0

s

16

3π

Ψ′(ξ)

2ξΘ(x)

]

∂βMPPR

∂a0
=iβ2

MPPR

kl0
s

[
− x′

a0

Θ′(x′)

Θ(x′)2
+

16

3π

Ψ(ξ)

l0

(
1

Θ(x′)
− Θ′(x)x

Θ(x)2

)]

∂βMPPR

∂l0
=i

k

s
β2
MPPR

1

Θ(x′)

∂βMPPR

∂d
=

ik

sin2(kd)
βMPPR(f)

2

where the derivatives of the two functions Θ and Ψ given by:

Ψ′(ξ) =

8∑

m=1

mum ξm−1

Θ′(w) =
2

w

(
J2(w

√
i)

J0(w
√
i)
− J1(w

√
i)2

J0(w
√
i)2

)

For the rigid-backed Delany & Bazley model, recalling equations (1.3) and (1.2), we have:

∂βDBL

∂σ
=− β2

DBL

[
coth(−ikDBd)

(
0.75× 0.0511

1

f

(
σ

f

)0.75−1

+ i 0.73× 0.0768
1

f

(
σ

f

)0.73−1
)

+ zDB
ik0d

sinh2(−ikDBd)

1

f

(
1 + 0.7× 0.0858

(
σ

f

)0.7−1

+ i 0.59× 0.175

(
σ

f

)0.59−1
)]

∂βDBL

∂d
=− β2

DBL

izDB kDB

sinh2(−ikDBd)
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G Shape smoothing algorithm

We here give the details of the shape smoothing algorithm used in chapter 5 to test the effect

of irregularities on the performance of a shape.

We consider a set of N + 1 nodes x(i) = (x
(i)
1 , x

(i)
2 ), i ∈ [0 : N ], and it is assumed that the

initial and last nodes lie on the ground (with means x
(0)
2 = 0 and x

(N)
2 = 0). One can first of all

define the symmetrical shape with respect to the ground, and therefore consider two vectors of

coordinates X1 and X2 as follows:





X1 = (x
(0)
1 , x

(1)
1 , ..., x

(N−1)
1 , x

(N)
1 , x

(N−1)
1 , ..., x

(1)
1 )

X2 = (x
(0)
2 = 0, x

(1)
2 , ..., x

(N−1)
2 , x

(N)
2 = 0,−x

(N−1)
2 , ...,−x

(1)
2 )

The original shape and its image have hence 2N nodes. Those two vectors represent periodic

functions and are therefore well-suited for Fourier analysis. The smoothing will indeed simply

consist in low-pass filtering the two vectors of coordinates in the spatial frequency domain.

However, the definition of the Fourier transform of a discrete signal usually assumes that the

spacing between the different samples is constant. If one describes the coordinates as a function

of the curvilinear coordinate, this is not true (the spacing between following points corresponding

to the length of each element, which is in general not constant). One can however approximate

the actual vector of curvilinear coordinate by a uniformly spaced vector. To do so, first let us

define the curvilinear coordinate of each node si (calculated on the original shape only for now)

recursively as follows:

{
s0 = 0

(∀i ∈ [1 : N ]) si = si−1 + li with li = ||x(i) − x(i−1)||)

The approximate curvilinear coordinate defined on the shape and its image is then simply taken

as:

(∀i ∈ [0 : 2N − 1]) s̃i = i∆s with ∆s =
sN
N

∆s is the approximate spacing of the coordinates vectors. One can then define a sampling

spatial frequency as ks = 1/∆s and a set of spatial frequencies:

(∀m ∈ [0 : 2N − 1]) km = m
ks
2N

The approximate spatial spectrum Y1 and Y2 of each coordinate vector is calculated by:

(∀m ∈ [0 : 2N − 1])





Y1,m =
2N−1∑

n=0

x
(n)
1 e−2iπmn/(2N)∆s

Y2,m =
2N−1∑

n=0

x
(n)
2 e−2iπmn/(2N)∆s
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Those expressions can be evaluated by classical FFT algorithms.

Smoothing the original shape can be achieved by applying a filter on the spectrum coordi-

nates. Let us assume that one would want to smooth the geometrical details of size typically

smaller than a characteristic length l. This can be done by low-pass filtering the coordinate

spectra up to kl = 1/l - the spatial frequency corresponding to the maximum detail size - by

multiplying Y1 and Y2 by a window function of value 1 up to for instance 0.9 kl, a taper function

decreasing from 1 to 0 between 0.9 kl and kl and 0 above. The taper is used to avoid non physical

oscillations that could happen with an abrupt change. The window should also be symmetrical

about ks/2 in order to keep the symmetry of the spectrum. An example is given in figure A.1.

0
0

1

ksks/20.9 kl

kl

Figure A.1: Example of window function used in the shape smoothing low-pass filter, expressed as a function
of spatial frequency k and for a signal sampled at ks. The cut-off frequency is kl = 1/l with l is the characteristic
filtering size.

Multiplying the two spectra by the window functions yields two new spectra Y1f and Y2f ,

and by taking the inverse Fourier transform one obtains two new sets of coordinates X1f and

X2f . The generated shape is still symmetrical with respect to the ground and therefore one

should keep only the first N generated points.

An example of this process with different values of the low-pass characteristic length l is

shown in figure A.2.
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Figure A.2: Example of smoothed versions of a randomly generated shape for different low-pass characteristic
lengths. The think black line is the original shape and the thick red line is the smoothed shape. Left: l = 0.1m -
middle: l = 0.2m - right: l = 0.5m.
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H Uncertainty evaluation of linear regression parameters

We briefly review here some results of linear regression analysis that were used in chapter 8 to

estimate linear dependence coefficients as well as their uncertainties. All the results given in

this section are rather standard and can be found for instance in a set of lecture notes [195].

We consider a set of n points of coordinates (xi, yi) and we assume the variable y can be

described approximately as a linear function of x of the form: y = ax+ b. We wish to find the

most appropriate values of a and b as well as the corresponding uncertainties.

Let x̄ and ȳ the mean value of x and y, and σx and σy their standard deviation:

x̄ =
1

n

∑

i

xi , ȳ =
1

n

∑

i

yi

σ2
x =

1

n

∑

i

(xi − x̄)2 , σ2
y =

1

n

∑

i

(yi − ȳ)2

It is well-known that the value of a and b which minimize the squared error between y and ax+b

are given by: 



a =
1

nσ2
x

∑

i

(xi − x̄)(yi − ȳ)

b = ȳ − ax̄

The regression coefficient is given by:

r2 = a
σx
σy

Now define the standard error of the residuals S as:

S2 =
1

n− 2

∑

i

(yi − axi − b)2

The standard error ea and eb on the regression coefficient a and b can be then calculated as

follows:

ea =
a√
n− 2

√
1

r2
− 1 eb = S

√
1

n
+

x̄2

nσ2
x

Confidence intervals for a and b can then be taken as [a − αea, a + αea] and [b − αeb, b + αeb],

with α a coefficient related to the level of confidence of the interval and the number of points

n. αea and αeb are therefore the uncertainties of the regression coefficients a and b. Typically,

when assuming normally distributed independent residuals and for a sufficient large value of n

(typically greater than 10), taking α = 1 yields a level of confidence of about 65%, and α = 2

a level above 90%. In this work, for simplicity the uncertainty is evaluated to be the standard

error (which means α is taken to be equal to 1), hence the considered confidence level is about

65%.
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section optimized by genetic algorithms,” Appl. Acoust., 73, pp. 1129–1137.
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Résumé

Le bruit est devenu une nuisance importante en zone urbaine au point que selon l’Organisation Mondiale
de la Santé, 40% de la population européenne est exposée à des niveaux de bruit excessifs, principalement
dû aux transports terrestres. Il devient donc nécessaire de trouver de nouveaux moyens de lutter contre
le bruit en zone urbaine.
Dans ce travail, on étudie une solution possible à ce problème : un écran bas antibruit. Il s’agit d’un écran
de hauteur inférieure à un mètre placé près d’une source, conçu pour réduire le niveau de bruit pour les
piétons et les cyclistes à proximité. Ce type de protection est étudié numériquement et expérimentalement.
Nous nous intéressons particulièrement aux écrans adaptés au bruit du tramway puisque dans ce cas les
sources sont proches du sol et peuvent être atténuées efficacement.
La forme ainsi que le traitement de surface de l’écran sont optimisés par une méthode de gradient couplée
à une méthode 2D d’éléments finis de frontière. Les variables à optimiser sont les coordonnées de nœuds
de contrôle et les paramètres servant à décrire l’impédance de surface. Les sensibilités sont calculées
efficacement par la méthode de l’état adjoint.
Les formes générées par l’algorithme d’optimisation sont assez irrégulières mais induisent une nette
amélioration par rapport à des formes simples, d’au moins 5 dB(A). Il est également montré que l’utilisation
de traitement absorbant du côté source de l’écran peut améliorer la performance sensiblement. Ce dernier
point est confirmé par des mesures effectuées sur modèle réduit.
De plus, un prototype à l’échelle 1 d’écran bas antibruit a été construit et testé en conditions réelles,
le long d’une voie de tramway à Grenoble. Les mesures montrent que la protection réduit le niveau de
10 dB(A) pour un récepteur proche situé à hauteur d’oreilles. Ces résultats semblent donc confirmer
l’applicabilité de ces protections pour réduire efficacement le bruit en zone urbaine.

Mots-clés : Écrans antibruit de faible hauteur, Bruit de tramway, Conception optimale par méthode de

gradient, Éléments finis de frontière, Mesures sur modèles réduits, Mesures sur prototype en conditions

réelles

Abstract

Noise has become a main nuisance in urban areas to the point that according to the World Health
Organization 40% of the European population is exposed to excessive noise levels, mainly due to ground
transportation. There is therefore a need to find new ways to mitigate noise in urban areas.
In this work, a possible device to achieve this goal is studied: a low-height noise barrier. It consists of a
barrier typically less than one meter high placed close to a source, designed to decrease the noise level
for nearby pedestrians and cyclists. This type of device is studied both numerically and experimentally.
Tramway noise barriers are especially studied since the noise sources are in this case very close to the
ground and can therefore be attenuated efficiently.
The shape and the surface treatment of the barrier are optimized using a gradient-based method coupled
to a 2D boundary element method (BEM). The optimization variables are the node coordinates of a
control mesh and the parameters describing the surface impedance. Sensitivities are calculated efficiently
using the adjoint state approach.
Numerical results show that the shapes generated by the optimization algorithm tend to be quite irregular
but provide a significant improvement of more than 5 dB(A) compared to simpler shapes. Utilizing an
absorbing treatment on the source side of the barrier is shown to be efficient as well. This second point
has been confirmed by scale model measurements.
In addition, a full scale low height noise barrier prototype has been built and tested in situ close to
a tramway track in Grenoble. Measurements show that the device provides more than 10 dB(A) of
attenuation for a close receiver located at the typical height of human ears. These results therefore seem
to confirm the applicability of such protections to efficiently decrease noise exposure in urban areas.

Keywords: Low-height noise barriers, Tramway noise, Gradient-based optimal design, Boundary element

method, Scale model measurements, In situ measurements of a prototype device


	Contents
	List of Figures
	Introduction
	1 What is a noise barrier and how does it work ?
	1.1 Introduction
	1.1.1 First pass on noise barriers
	1.1.2 Tramway noise
	1.1.3 Objectives of this chapter

	1.2 Measure of the efficiency of a noise barrier
	1.2.1 General comments on the physical description of a sound field
	1.2.2 Definition of the insertion loss in the frequency domain
	1.2.3 The equivalent sound pressure level LAeq,T

	1.3 Human response to noise
	1.4 Physical effects influencing a noise barrier efficiency
	1.4.1 Meteorological effects
	1.4.2 Ground effect
	1.4.3 Multiple reflections and diffuse field
	1.4.4 Shape and material distribution over the barrier

	1.5 Review of prediction methods
	1.6 A few examples of surface treatment models
	1.6.1 Delany and Bazley layer model
	1.6.2 Hemp concrete layer
	1.6.3 Micro-perforated panel resonator (MPPR) model

	1.7 Review of noise barriers designs and performance assessment
	1.7.1 Common designs (highway and train noise barriers)
	1.7.2 Complex noise barriers
	1.7.3 Low-height noise barriers

	1.8 Conclusion

	2 Review of the forward scattering problem and the integral equation method
	2.1 Initial scattering problem
	2.1.1 Properties of the Green's function

	2.2 Weak formulation of the scattering problem
	2.2.1 Dirichlet-Neumann operator
	2.2.2 Equivalent scattering problem in a bounded domain

	2.3 Integral equations derived from the scattering problem
	2.3.1 Single and double layer potentials
	2.3.1.1 Definition
	2.3.1.2 Behavior close to the boundary 

	2.3.2 Integral representation theorem
	2.3.3 Kirchhoff-Helmholtz integral theorem and Jean's equation

	2.4 Issues for geometries with corners
	2.4.1 Angle correction in the Kirchhoff Helmholtz integral equation
	2.4.2 Singular behavior of the pressure field close to a corner

	2.5 Extension to the 3D sound field with infinite geometry in one dimension
	2.6 Conclusion

	3 Review of optimization methods and their application to scatterer shape design and inverse scattering
	3.1 Introduction
	3.2 General considerations
	3.2.1 Form of the considered optimization problem
	3.2.1.1 Constraints

	3.2.2 Continuous vs. discrete representation of the search space
	3.2.3 Optimality conditions for gradient-based optimization
	3.2.4 A few comments regarding practical applications

	3.3 Overview of some common optimization algorithms
	3.3.1 Derivative free optimization methods
	3.3.2 Sensitivity-based (gradient-based) methods
	3.3.2.1 Gradient calculation
	3.3.2.2 Line search methods
	3.3.2.3 Examples of general methods: the Sequential Quadratic Programming (SQP) and the interior-point algorithm

	3.3.3 Global search methods
	3.3.4 General comments on the utility of global minimum finding

	3.4 A review of shape and admittance optimization applications in acoustic scattering
	3.4.1 Admittance eduction
	3.4.2 Optimized design of admittance
	3.4.3 Scatterer shape optimization and reconstruction
	3.4.3.1 Topological approaches

	3.4.4 Conclusion of the review

	3.5 Details of the chosen optimization algorithm
	3.6 Conclusion

	4 Shape and admittance sensitivity expressions
	4.1 Barrier implementation and modeling assumptions
	4.1.1 Physical assumptions and geometry
	4.1.2 Objective function

	4.2 Formal definitions of the gradient with respect to the admittance and the shape
	4.2.1 Field derivative
	4.2.2 Boundary field derivative
	4.2.3 Shape derivative

	4.3 Derivation of the sensitivity expressions
	4.3.1 General expressions
	4.3.1.1 Adjoint state equation
	4.3.1.2 Shape derivative expression
	4.3.1.3 Admittance derivative expression

	4.3.2 Derivatives with respect to shape and admittance parameters
	4.3.2.1 Derivative with respect to an admittance parameter
	4.3.2.2 Derivative with respect to a node coordinate

	4.3.3 Derivatives of the broadband objective function

	4.4 Numerical implementation
	4.4.1 Numerical evaluation of the sensitivity expressions from BEM solutions
	4.4.1.1 Sensitivity with respect to a node coordinate
	4.4.1.2 Sensitivity with respect to an admittance parameter

	4.4.2 Mesh refinement close to corners
	4.4.3 Validation
	4.4.3.1 Shape parameters
	4.4.3.2 Admittance parameters


	4.5 Conclusion

	5 Application to the shape optimization of rigid barriers
	5.1 Introduction
	5.2 Results
	5.3 Efficiency of smoothed and randomly perturbed shapes
	5.4 Influence of the modeling approximations
	5.4.1 Effect of the tramway cross-section and of the ground impedance in 2D
	5.4.2 Effect of the source modeling

	5.5 Conclusion

	6 Application to coupled admittance and shape optimization of barriers with acoustic treatments
	6.1 Considered acoustic treatments
	6.2 Shape optimization of a barrier covered entirely with a fibrous absorbing treatment
	6.3 Shape optimization of absorbing source side and reactive treatment optimization on top
	6.4 Results with hemp concrete as the absorbing treatment
	6.4.1 Uniform porous treatment
	6.4.2 Porous and reactive treatment

	6.5 Performance of some optimized designs using more advanced modeling
	6.6 Conclusion

	7 Scale model measurements of tramway low-height noise barriers performances
	7.1 Introduction
	7.2 Theoretical issues related to scale change
	7.2.1 Physical quantities similarities
	7.2.2 Air absorption

	7.3 Description of the experimental protocol
	7.3.1 Choice of the source: electrostatic spark source
	7.3.2 Measurement room and signal selection by time windowing
	7.3.3 Receiver locations and microphones
	7.3.4 Scale model representation of the tramway
	7.3.5 Data acquisition system and sampling frequency
	7.3.6 Measurement set-up overview and insertion loss calculation
	7.3.6.1 Insertion loss calculation


	7.4 Simple validation tests
	7.4.1 Reflection on a rigid ground
	7.4.2 Diffraction by a straight wall

	7.5 Porous absorbing materials at the reduced scale: felt layers
	7.6 Measured performance of a T-shape barrier with absorbing treatment
	7.6.1 Comparisons between measurements and BEM calculations

	7.7 Conclusion

	8 In situ measurements of a full scale low height barrier prototype
	8.1 Preliminary considerations
	8.1.1 Choice of the implementation site
	8.1.2 Choice of the design

	8.2 Performed measurements
	8.2.1 Speed measurement from auxiliary microphone signal

	8.3 Measurement analysis and barrier effect
	8.3.1 Pass-by equivalent level and speed dependence
	8.3.2 Analysis of the LAeq,T time histories
	8.3.3 Spectral analysis and third-octave insertion losses
	8.3.3.1 Effect of noise on insertion loss evaluation and considered frequency range
	8.3.3.2 Measured third-octave insertion losses


	8.4 Comparison with BEM calculations
	8.4.1 Numerical comparison of the barrier prototype with other designs

	8.5 Conclusion

	9 Conclusions
	9.1 Summary of findings
	9.2 Future work

	Appendix
	A Tangential differential operators
	B Uniqueness of Jean's integral equation solution
	C Static kernels properties and regularization of the Kirchhoff-Hemholtz integral equation
	C.1 Integral properties of static kernels
	C.2 Regularization using static kernels

	D Shape optimization algorithm details
	D.1 Loop detection algorithm

	E Shape derivative of a boundary integral defined on a piecewise smooth curve
	F Derivatives of considered admittance models with respect to the parameters
	G Shape smoothing algorithm
	H Uncertainty evaluation of linear regression parameters

	References
	Publication list

