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Chapter 1

Introduction.

This chapter introduces the context of my PhD project. In particular, I will present

key concepts of brain anatomy and computational neuroanatony that underly image

registration, segmentation and template estimation, and give an overview of past and

present state-of-the-art solutions to this estimation challenge. I will describe some issues

that these methods have to deal with and show how we handle them in this work.

1
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1.1 The human brain and its shape

1.1.1 Brain anatomy

The human brain is the most complex organ in the body. It is the center of the nervous

system and is protected by the cerebrospinal fluid (CSF). It has a heterogeneous orga-

nization, with various sub-structures associated with different functions. It can first be

divided into three major parts (Fig.1.1): 1) the cerebrum, the largest part of the brain,

that controls movement, sensation, cognition, etc.; 2) the cerebellum, that is involved

in coordination of muscle movement and balance; 3) the brainstem, that is involved in

relaying information from the cerebrum and cerebellum to the rest of the body.

The great longitudinal fissure separates the cerebrum into two hemispheres. The corpus

callosum is the nervous tissue that connects the two hemispheres. The hemispherical

surface is folded with various sulci, while the curved surfaces between the sulci are

called gyri. The sulci are not formed randomly in the growth of the brain: their spatial

organization, shape and time of appearance are reproducible, while their depth and

bending are slightly different from person to person. Some of the most important sulci

(Fig.1.2) are the central sulcus, lateral sulcus and parieto-occipital sulcus. The shape

of sulci and gyri are grossly symmetric across the left and right hemispheres. They

separate the hemispheres into four lobes (Fig.1.2): 1) the frontal lobe is involved in

abstract thought, problem solving, emotion, etc.; 2) the parietal lobe is involved in

sensory combination and comprehension, language, reading and visual functions; 3) The

Figure 1.1: The brain’s macroscopic organization. Image comes from http:

//www.cancer.gov/cancertopics/pdq/treatment/child-brain-stem-glioma/

Patient/page1/AllPages/Print

http://www.cancer.gov/cancertopics/pdq/treatment/child-brain-stem-glioma/Patient/page1/AllPages/Print
http://www.cancer.gov/cancertopics/pdq/treatment/child-brain-stem-glioma/Patient/page1/AllPages/Print
http://www.cancer.gov/cancertopics/pdq/treatment/child-brain-stem-glioma/Patient/page1/AllPages/Print
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Figure 1.2: Large-scale organization of the cerebrum. Image comes
from http://forums.psychcentral.com/psychiatric-medications/

254913-1-amphetamines-modafinil-armodafinil-their-effectiveness-effects-brain.

html

occipital lobe is involved in reading and vision; 4) the temporal lobe is involved in

hearing, memory and behavior.

Based on their cellular and molecular content, brain tissues can be split into different

types; the main distinction lies between gray matter (GM) and white matter (WM). GM

consists of neuronal cell bodies, neuropil, glial cells and capillaries. It is present in the

cerebral cortex (surface of the cerebrum), the cerebellar cortex (surface of cerebellum),

subcortical nuclei (thalamus, putamen, hippocampus, etc.) and brainstem. It is the

part of the central nervous system that performs information processing. WM consists

mostly of glial cells and myelinated axons; it forms the bulk of the deep parts of the

brain and the superficial parts of the spinal cord; it transmits signals from one region of

the GM to another.

One aspect of our work is the segmentation of brain images into these different tissue

types.

Part of the human brain complexity lies in its variability: there do not exist two identical

brains in the population, and differences between two brains can be large. As described

previously, the shape and the location of the main sulci is relatively stable. However,

brains also vary from one subject to another for the others structures. Moreover, some

patterns (e.g. the presence of some folds) can be absent or present depending on the

subject. Such variability presents an ultimate limitation to any geometrical description

of a standard brain.

http://forums.psychcentral.com/psychiatric-medications/254913-1-amphetamines-modafinil-armodafinil-their-effectiveness-effects-brain.html
http://forums.psychcentral.com/psychiatric-medications/254913-1-amphetamines-modafinil-armodafinil-their-effectiveness-effects-brain.html
http://forums.psychcentral.com/psychiatric-medications/254913-1-amphetamines-modafinil-armodafinil-their-effectiveness-effects-brain.html
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1.1.2 Brain imaging techniques

Brain imaging techniques allow researchers to observe the shape, activity or abnormali-

ties in the organization of the human brain, without neurosurgery. There are a number

of imaging techniques in use today in research facilities and hospitals throughout the

world. For example, anatomical brain data can be obtained by the three-dimensional

tomographic imaging technology such as Computed Tomography (CT), Magnetic Res-

onance Imaging (MRI) and Diffusion Magnetic Resonance Imaging (dMRI); data on

human brain function, on the other hand, are obtained by Positron Emission Tomogra-

phy (PET) or functional Magnetic Resonance Imaging (fMRI); they reflect brain activity

through complex metabolic pathways.

CT scanning (http://en.wikipedia.org/wiki/X-ray_computed_tomography) builds

up a picture of the brain based on the differential absorption of X-rays. It uses a series

of X-rays of the head taken from many different directions. Images made using X-rays

depend on the absorption of the beam by the tissue it passes through. Bone and hard

tissue absorb X-rays well, air and water absorb very little and soft tissue is somewhere

in between. Thus, CT scans reveal the gross features of the brain but do not resolve its

structure well.

MRI (http://en.wikipedia.org/wiki/Magnetic_resonance_imaging) generates im-

ages by using the response of brain tissues to radio-frequency excitation in the presence

of an intense steady magnetic field. During an MRI scan, a detector records the signal

emitted by the hydrogen atoms excited in a fixed magnetic field; these signals are local-

ized through a complex encoding scheme driven by the gradients of the scanners and,

after computerized reconstruction, yield 3D brain images. It is particularly effective to

observe and characterize brain tissues. Its main features are: 1) compared with other

imaging modalities, MRI has the highest contrast for soft tissues; 2) MRI can be used

to acquire images with any direction and orientation; 3) MRI enjoys a high resolution

(1mm).

fMRI (http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging)

is an application and further development of MRI: it uses MRI to measure functional

responses of the human brain and nervous system. It works by measuring the changes

in blood oxygenation and flow that reflect the activity of neurons given that the subject

is doing a specified cognitive task. It can be used to produce activation maps showing

which parts of the brain are involved in this task. This can also be completed by the

study of other electrophysiological techniques such as Electroencephalography (EEG) or

Magnetoencephalography (MEG).

http://en.wikipedia.org/wiki/X-ray_computed_tomography
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
http://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
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dMRI (http://en.wikipedia.org/wiki/Diffusion_MRI) is an MRI method that maps

the diffusion process of molecules, mainly water, in the tissues. Molecular diffusion in

tissues reflects interactions with many obstacles, such as fibers. Water molecule diffusion

patterns can therefore reveal microscopic details about tissue architecture, either in

normal or diseased state. It is the only non-invasive imaging method to display the fiber

bundles in WM.

PET (http://en.wikipedia.org/wiki/Brain_positron_emission_tomography) can

detect the positron emission of the glucose solution containing weak concentrations of

a radioactive isotope when the brain absorbs this solution. The brain consumes energy

when it works, PET scanning can display the brain regions that consume more glucose.

The disadvantage of PET is the use of radioactive substances.

In this work, we will concentrate our study on MRIs and fMRIs, although our modeling

can be used for other imaging modalities.

1.1.3 Computational neuroanatomy

The main access to brain structure and function in humans is currently provided by

neuroimaging. In particular and as recalled above, Magnetic Resonance Imaging (MRI)

provides measures that are used to distinguish the nature of different brain tissues,

markers for functional brain subdivisions and markers of the local orientation of brain

fibers through three sub-modalities: anatomical, functional and diffusion MRI. These

measures are currently at the mm scale and such multi-modal datasets are commonly

acquired across the whole brain volume in standard acquisition sessions.

However, these images display different resolutions and contrasts, suffer from distor-

tion, patient motion during acquisition, which leads to a low signal to noise ratio and,

sometimes, patient specific contrasts or artefacts. At the observed resolution, cross-

subject variability of the measurements is striking, and naturally yields the question of

what features are common across subjects and how to compare different human brain

images. Understanding the topographical organization of the most common features

means building a reference image, that will be called template in the sequel, while al-

lowing some flexibility in the comparison of individual data with this template. The

reference image is assumed to characterize the population as it exhibits the common

features and provides also a reference frame where individual data can be compared.

Computational anatomy [66] is emerging for solving these problems. It combines the

knowledge of human anatomy, mathematical methods and computational techniques in

order to design models and develop algorithms to compare images, estimate the template

http://en.wikipedia.org/wiki/Diffusion_MRI
http://en.wikipedia.org/wiki/Brain_positron_emission_tomography
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image and transport the available information from the template to new subjects. The

goal of these efforts is to help clinicians to measure and quantify the morphometry of the

organs, localize and describe what happens during a time period and provide statistical

analysis tools to characterize the differences between a given subject and the template.

Computational neuroanatomy is a branch of Computational Anatomy that considers

the human brain. Because of the complex structure of the brain, computational neu-

roanatomy has to face more challenges, such as tissue and structure segmentation, func-

tional activity detection, etc. Overall, the main challenge, compared to others organs,

is clearly the huge variability that can be observed even in a healthy group.

One side of the research in computational anatomy is the statistical analysis that aims

at characterizing group difference, as well as classifying and discriminating between

populations. It can be split up into three main different direction. The first one is to

determine the shape and contrast or equivalently the image of a standard brain. Not

only should we exhibit the template brain but it is also important to quantify the

characteristic geometrical variability of the shape in a specified population. These two

elements make it possible to better summarize this population. Therefore, in this work,

we will focus on the determination of an atlas that involves both the template image and

a quantification of its standard geometrical variability. This step is detailed in Section

1.3.

The second one is to compare individual images with this atlas. This requires to design

the mathematical methods that make it possible to compare the observations with the

atlas. This has been at the core of intense researches and is known as registration

techniques (see Section 1.2.1). This step enables to warp the observed images in the

same frame. As we will see next, it also plays a crucial role in the atlas estimation.

The third one is to identify the structures in the observed images with those of the

template, up to some deformation. This is know as image segmentation (see Section

1.2.2) and has also been intensively studied. This segmentation step can be used as

prior information for registration in order to improve the related estimation scheme, as

it better fits the structures of interest [119]. Segmentation can also be the purpose of

the registration procedure that carries the segmented structures from one subject onto

another [155]. This clearly highlights the link between these two problems and therefore

suggests that they should be combined with each other to perform well. This is one idea

that we have developed in our work.

Some clear application of the atlas estimation, registration and segmentation issues arose

from the clinical needs.
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Computational neuroanatomy is the basis of image-guided surgery [109] and surgical

simulation [40]. It helps surgeons to localize lesions such as tumors or strokes using

segmentation algorithm on pre-surgical acquisitions. In the near future, brain imaging

together with computational anatomy will provide critical information to define the

course of tumor resection surgery by registering the patient pre-surgical image to the

current state of the organ. This will help to avoid damaging or removing important

brain structures that can be preserved.

Another example lies in research on brain development, that tries to analyze normal

development trajectories and identify the differences in the different brain structures or

regions between controls and patients during growth, aging or disease progression. To

quantitatively characterize the differences in the brain structures between the normal

individuals and the patients in different developmental periods, these structures have to

be extracted from neuroimaging data. This implies the segmentation of brain images.

To track the same patient along time, registration methods have to be used to analyze

the changes in the structures. Most importantly, the comparison between a new patient

to one or several reference images (representing healthy controls and patients with a

specific disease) should be possible to classify them, e.g. to diagnose a disease.

1.1.4 Publicly available brain templates

A template is defined as a gray level image with anatomical labels. It can also be defined

as a probabilistic image that gives the probability that the voxel belongs to each tissue.

An atlas is defined as a (probabilistic) template together with the deformation metric

like in [82]. The construction of digital atlases of the human brain is currently a very

important topic, for which a lot of efforts have been spent. In the following we will

present three brain templates that are widely used by clinicians: the well known three-

dimensional Talairach-Tournoux brain template (referred to as Talairach brain Atlas in

the literature), the Whole Brain Atlas developed by Harvard Medical School and the

Brainweb template developed by McGill University in Canada. Note that the word atlas

is sometimes used for template. In the present work, we highlight the complementary

information that the atlas carries compared to the template: the geometrical variability.

Talairach brain atlas :

The Talairach Brain Atlas [131] relies on a coordinate system that is based on

the anterior-posterior commissural (AC-PC) line. It relies on a grid system to

project the brain images into the three-dimensional space. Talairach Brain Atlas

was constructed upon postmortem sections of a 59-year-old French woman. The

brain specimen was cut every 2-5mm in sagittal direction, then the cross-section
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Figure 1.3: The axial, sagittal, coronal view of Talairach-Tournoux brain at-
las. Image comes from http://psyphz.psych.wisc.edu/web/afni/class_handouts/

afni08_talairach/afni08_talairach.jpg/index.html

of each slice was photographed. Neurologists outlined the contours of the brain

structure according to the photographs, and then color filled these contours, the

same brain structures having the same color or texture expression. The horizontal

and coronal section data were created by the interpolation of sagittal cross-section

data. Talairach brain atlas divides the reference brain into 8 parts in the X-axis

direction (from the left to the right of the brain), 11 parts in the Y-axis direction

(from the front to the back of the brain) and 12 parts in the Z-axis direction (from

the button to the top of the brain), see Fig.1.3. The Talairach space provides a

cube where the brain should fit in a specified orientation. Since this reference is

based on the assumption that the brain is symmetric, it contains only one brain

hemisphere.

The interest of this template is that, when compared to a new individual, the

localization of brain structures is accurate for areas close to AC-PC, for example,

the thalamus. However the template accuracy decreases significantly for cortical

areas, especially those that are highly asymmetric between the two hemispheres

(e.g., the temporal lobe). Nevertheless, the Talairach brain template is widely

accepted by the neuroscientists, because it was historically the first computational

template. The neuroscientific literature still often refers to Talairach coordinates.

There are however several disadvantages. The first one is its low resolution. The

second one is that it makes a strong assumption on the symmetry of the whole brain

which is not satisfied and is a rough approximation which may lead to misanalysis

of patients. The third one is that it is based on a single subject who may not be

representative of the whole population.

Whole Brain Atlas :

Johnson and Becker, Brigham and Women’s Hospital [75] develop several digi-

tal templates of the human brain http://www.med.harvard.edu/aanlib/home.

http://psyphz.psych.wisc.edu/web/afni/class_handouts/afni08_talairach/afni08_talairach.jpg/index.html
http://psyphz.psych.wisc.edu/web/afni/class_handouts/afni08_talairach/afni08_talairach.jpg/index.html
http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
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Figure 1.4: One slice of the whole brain atlas for Alzheimer’s disease. Image comes
from http://www.med.harvard.edu/aanlib/cases/case3/mr1-tc1/020.html. T1
MRI, SPECT (an imaging technique that is similar to PET) and coupled T1-SPECT
images are shown here. On the slice of T1 MRI, the atrophic hippocampus and amyg-
dala can be seen. These structures subserve memory function, and are the sites of
major damage in Alzheimer’s disease. On the SPECT image, the dark blue regions in
the parietal lobes represent areas of decreased blood flow or perfusion. This reduction
in blood flow is due to the functional“disconnection” of this from other brain regions

affected by the disease.

html. The normal template is based on 3D brain data using 1.5T MR images from

a 25-year-old white man right-handed with a resolution of 0.92×0.92×1.5mm lead-

ing to 256×256×128 image size. The template includes gray matter (divided into

several lobes and gyris), cerebellum, brainstem structures, corpus callosum, basal

ganglia, limbic structures and ventricular system. The normal brain is divided

into 100 structures.

The Whole Brain Atlas research program not only includes the normal human

brains, but also diseased or injured brains. Many diseases are represented by

images from one or more modalities, including MR, CT and PET (Fig. 1.4).

Some of them include images obtained at different time, therefore the changes can

be observed longitudinally.

As for the Talairach brain template, they are constructed from the images of one

single person. Although providing a large range of images, all these templates

may not be representative of each population. Note that an atlas-based model

segmentation method using this atlas has been developed [79].

BrainWeb brain atlas :

Evans, Collins et al. [43] from Montreal Neurologic Institute (MNI) created a

probabilistic anatomical template using the MR images of 305 normal subjects.

First, they manually defined some landmarks in 241 MR images, then they matched

the landmarks to their position on the Talairach atlas. Then, they used a linear

http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/cases/case3/mr1-tc1/020.html
http://www.med.harvard.edu/aanlib/home.html
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Figure 1.5: The coronal, sagittal, axial view of BrainWeb brain atlas. Image comes
from http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html

algorithm to match 305 MR images to the average of the 241 brains that had been

matched to the Talairach atlas and took the average of 305 mapped images as

template.

In addition, they scanned a healthy young subject in stereotactic space 27 times.

The images were subsampled and intensity averaged in order to obtain a data

with high contrast and high signal to noise ratio. The volume contains 181×217×
181 voxels. The map contains 10 different brain volumetric data sets that define

the spatial distribution for these structures, including gray matter, white matter,

cerebrospinal fluid, skin, skull, fat, etc.

The digital brain model can be used to simulate the head tomography, or is an ideal

tool to test inter-modality registration. This template is devoted to model-based

segmentation and coregistration. It is the standard template in many softwares,

such as Statistical Parametric Mapping (SPM) [7] 1. In some other software, like

Freesurfer [2] 2 it is used as a coarse alignment step.

The problem of this template is that the linear transform does not match the brains

completely to the Talairach space. This makes the MNI brains slightly larger than

the Talairach brain. The differences are larger as one gets further from the middle

of the brain.

1SPM is an open source created by members and collaborators of the Wellcome Trust Centre for
Neuroimaging. It deals with pre-processing, image registration, image segmentation, fMRI analysis,
EEG/MEG analysis, etc. It typically implements voxel-based methods for brain data analysis. A
parametric statistical model is fit in each voxel (it is thus a mass-univariate approach). It uses the
estimated parameters of the univariate model to do a statistical test and then creates images that
display the statistical information.

2 Freesurfer is an open source software that provides a tool suite for processing and analyzing human
brain MRI images, including skullstripping, image registration, image segmentation, cortical surface
reconstruction, cortical thickness estimation, fMRI analysis, etc. The underlying spatial model is surface-
based: it warps each individual cortical hemisphere, corrected to have a spherical topology, to a reference
sphere. Then, a map of the surface curvature is compared with that of the template brain, sampled on
the sphere. The individual spherical model is warped to match the contrast of the template.

http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
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Talairach template and the Whole Brain atlas were created from the images of one per-

son, hence they cannot capture relevant characteristic elements of the whole population.

On the other hand, the MNI template uses 305 subjects which makes it more represen-

tative. However, the method uses linear deformations, which is not accurate enough.

Moreover, it is based on landmarks that are always difficult to place exactly; since these

landmarks are defined manually, this makes the procedure hardly reproducible. The

neuroimaging community is still lacking a standardized procedure to estimate brain at-

lases. Other questions arise: because of the large variation across subjects, one single

template may not be enough. It is also important to consider that the comparison of

mean images or templates may not be the right statistic to compare two populations:

indeed, two populations may have the same mean image although the differences may

appear in the deformation distribution. Last but not least, it only relies upon anatomi-

cal images, therefore it might not be the optimal setting to detect functional activity or

other contrasts of interest.

1.1.5 Some application of digital brain templates

Teaching of neuroanatomy :

Traditional neural anatomy teaching requires the aid of anatomical charts, books,

images and renderings. Due to the very complex structure of the human brain,

it is difficult to understand its shape, subcortical structures and the relationships

between them. Moreover, brain-structure is, to some extent, subject dependent,

which makes the use of a digital brain templates particularly relevant. Some

publications and web applications [127, 146] make it possible to observe the brain

easily with any translation, rotation or zoom on the region of interest. Moreover,

as they are supposed to capture the most common features, they appear useful in

brain anatomy understanding.

Surgical planning and reference :

As already mentioned above, digital brain templates can provide accurate and re-

liable information for surgical planning. It can be used to assess the risk of surgery

and choose the best surgical approach. A particular example can be mentioned

here with the deep brain stimulation (DBS) [21, 152]. The template is used in

order to predefine the coordinate of one point in a subcortical structure where a

deep electrode is inserted in order to stimulate a precise territory and cure some

disorders. It is important to couple the anatomical and functional images, as this

makes it possible to identify some areas that are critical to some essential functions

and avoid to lesion those during the surgery.
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Atlas-based segmentation :

Due to the large variability of the human brain, tissue segmentation is particularly

difficult. It becomes even more challenging as we have to face the partial volume

effect (PVE) issue. In low resolution images, PVE appears at boundaries between

tissues, where a given voxel contains several tissue types. This blurs the boundaries

between tissues. The atlas information can be used to guide the segmentation using

both the template image to indicate the location and shape of the tissues and

structures but also using the quantification of the normal geometrical variability

to favor particular shapes and spatial organization.

All these applications have led to the need of population based atlas and template esti-

mation. Many template construction methods have been proposed in the past decades.

The most common approach has been to choose as the template one image among several

observed ones. This image is considered as standard or characteristic of the population

under study. The other observations are then mapped to this template - via different

registration algorithms - and can then be compared in this common coordinate frame.

The problem is that the template is subject to an arbitrary choice. If it is far from

the true population mean - which has to be defined- it does probably not reflect the

population correctly and the registration will not show typical variability as it will first

account for correcting the bias [27]. This is not satisfactory and has motivated the de-

sign of methods for the statistical estimation of templates or atlases from a population

of observed images.

Ahead from this, registration techniques and segmentation methods, that are prior steps

to atlas estimation, have raised a lot of attention in the last decades. In the following,

we briefly recall some principles of these two topics before introducing the core of our

subject, statistical atlas estimation.

1.2 Segmentation and registration

1.2.1 Registration

Medical image registration has become an efficient tool to compare images from two

different subjects. The difference between two objects observed in images correspond

to a variability in position, described by rigid transformations, size, described by affine

transformations, and more general transformation that change the details of the ob-

jects. These different classes of transformations are characterized by different degrees

of freedom: six for rigid transformation, twelve for affine transformation, a few tens or
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hundred of degrees of freedom when parametric models are used (polynomials, spline)

and up to thousands or even infinite when considering more generic models that induce

large deformations. Rigid or affine methods are widely used in clinical practice because

of their simplicity and reduced computational cost. However, as the variability of the

brain consists of changes in its size, shape and internal tissue organization, affine de-

formations are not sufficient to represent brain variability. Non-rigid deformations have

therefore been proposed to overcome this limitation. The research on non rigid defor-

mation methods has made considerable progress in the past years. In the following, we

briefly describe some of them.

1.2.1.1 Non-rigid registration methods

Non-rigid registration based on affine transformation and polynomials :

Farneback [55] proposed a non-rigid registration method based on polynomial

transformation. It was further developed by Wang et al. [143]. The disadvan-

tage of this method is that it requires polynomial functions of high degree to

produce a well behaved transformation.

Non-rigid registration based on physical models :

Non-rigid registration techniques based on physical models are also common. These

approaches assume that the registration object is a homogeneous isotropic elastic

body. They first create a physical model of the object and then deform this model

under external forces to achieve the registration with the reference image. This

registration method can ensure the smoothness of the deformation and the preser-

vation of the object topology. Most contributions on these methods have focused

on the definition of external forces, while some of them improve the method by

adjusting the elastic properties of the physical model. For example, Christensen

[38] proposed to replace the elastic model by viscous fluids model, however this

method increases the computational complexity, Bro-Nielsen [31] improved the

viscous fluids model by using fast convolution methods.

Non-rigid registration based on a smooth function :

Alternative methods based on smoothing functions, such as thin-plate spline, mul-

tivariate quadratic equations or transforms of a Gaussian function have also been

used in his context. These models involve smooth functions, which are regularized

so that they represent a prior on relevant deformations. Meyer et al. [93] use a

thin-plate spline interpolation to adjust the position of homologous control points

and calculate the similarity of image to the reference image after transformation.



Chapter 1. Introduction 14

Like the thin-plate spline, B-spline is also widely used in non-rigid transforma-

tion. For this transformation, the deformation field is calculated by using B-spline

interpolation to adjust the position of the control points. This transformation is

usually performed using mutual information similarity measure (see [116, 128], and

definition in Appendix A).

Linearized deformations :

Linearized deformation methods [10, 15] define a deformation ϕ of a domain D as

the displacement of each point x in D by a vector v(x), which is written as:

ϕ(x) = x+ v(x).

In this case, the image under deformation is modeled as an elastic body. The model

is simple because it only depends on a vector field v. An important drawback is that

when the source and target images are interchanged, the obtained transformation

is not the inverse of the previous solution, as the invertibility is not ensured.

Large Deformation Diffeomorphic Metric Mapping (LDDMM) :

LDDMM [134] has been proposed to model large deformations and overcome the

non invertibility issue. In this case, the deformation is modeled through the com-

position of a velocity field that evolves over time according to the Lagrange trans-

port equation. This method provides the definition of a mathematical metric on

the space of images. This distance is the length of the geodesic that connects

them according to this metric and can be used to study the anatomical variability

[23, 137]. However, it is computationally costly because the velocity field has to be

integrated over time. Recent methods [52, 53] approximate this diffeomorphism

by a finite-dimensional vector enabling fast and accurate registration.

Demons and Diffeomorphic demons :

Thirion [133] proposed to perform image registration as a diffusion process inspired

by Maxwell’s Demons. The diffusion is driven by the force called “Demons force”.

The Demons algorithm is an efficient algorithm that provides dense correspon-

dences but lacks a sound theoretical justification. Vercauteren et al. [139] propose

a non parametric diffeomorphic image registration algorithm based on the initial

Thirion’s demons algorithm. They provide theoretical properties of the different

variants of this algorithm. These algorithms converge quickly, however, they are

not based on a sound mathematical model that would provide a clearly defined

metric on the image space. Tools can be download in Insight Segmentation and

Registration Toolkit (ITK) [6].
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A more detailed description of multiple image registration techniques are presented in

[126]. Fourteen of them are compared in [80].

1.2.1.2 Application of brain image registration

According to the modality and the patient, non-rigid registration can be used in different

frameworks:

Registration of the same modality of one patient (longitudinal study) :

This approach is used to study the evolution of a subject over time. If these images

contain some non-rigidly evolving structures such as tumors or stroke lesions, the

brain is consequently deformed between one time point and the following ones.

The registration map highlights (and depending on the method, quantifies) the

differences, which may be used in disease diagnosis or observation of treatment

results.

Registration of images from the same modality in different patients (intersubject)

:

This is the most common use of registration mappings. Indeed, it makes it possible

to compare two subjects by highlighting shape differences. This is now used for

statistical analysis of populations that were either compared pairwise (for example

[94]) or mapped to a given template. In particular, the statistical analysis can be

performed in the space of deformation, which appears to be a linearizing space to

analyze shape differences (among many others, we can cite [37, 44, 90, 137]).

This is one aspect that we will consider for our purpose in this work.

Registration of images from different modalities in the same patient :

In this case, the images to be registered come from different modalities of the same

patient. This is currently the most frequent use of registration in clinical settings

(mostly with rigid-body deformations). It is used to fuse the information from the

different modalities into the same image so that the information can be combined

in order to increase the accuracy of the analysis.

This is also an aspect that we will use in the following. In particular, considering

together anatomical and functional MRIs can be used to highlight some particu-

lar regions in the gray matter that are activated during specific cognitive tasks.

Constraining this activation to appear only in the gray matter potentially pro-

vides more accurate localization and thickness of the gray matter and a better

localization of the subcortical structures. On the other hand, as the gray matter is
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observed in the anatomical image, this knowledge also increases the accuracy of the

support of the brain activity. This coupling will be at the core of our multimodal

atlas estimation in Chapter 4.

1.2.1.3 Non-rigid registration algorithms

There are currently many reports about non-rigid registration algorithms in the litera-

ture. Most of the non-rigid registration problem can be seen as an optimization problem

where the energy to minimize takes into account the difference between one reference

image and the deformed image and a regularity term that penalizes “too large” defor-

mations – which has to be defined according to the deformation framework. This can

be expressed as

ϕ̂ = argmax
ϕ∈S

E(ϕ ·B,A, ϕ) = J(ϕ ·B,A) + L(ϕ) , (1.1)

where A and B are the first and the second images, J is the similarity measure, ϕ is

the transformation between the two images, S the space of admissible deformations and

L the regularity term. The different approaches differ from each other by considering

different S, J and L.

Different frameworks to construct and constrain ϕ have been given above as well as the

regularity term that includes the expected constraints on ϕ. For example, in LDDMM

and Diffeomorphic demons, ϕ is a diffeomorpism. ϕ · B = B ◦ ϕ−1 and L is the kinetic

energy of the path generated by ϕ. The similarity measure J quantifies the similarity be-

tween two images and the most used are the correlation [107], gradient cross-correlation

[33], mean square error [135], mutual information or normalized mutual information

[130] that are described in Appendix A.

Although quite different, all these approaches can be solved the same way as the opti-

mization of the matching energy E. Currently, gradient descent optimization method

-and its accelerated versions- appears to be the easiest algorithm. However, other meth-

ods such as Newton-Raphson, quasi-Newton, the simplex method, simulated annealing

or even genetic algorithms, may be used depending on the energy E.

1.2.2 Segmentation

Medical image segmentation is the key to performing computer image analysis. It has

important significance in biomedical research, clinical diagnosis and pathological anal-

ysis. The main factors affecting the brain MR image segmentation are: 1) intensity
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inhomogeneity: due to the radio frequency magnetic field inhomogeneity, MR equip-

ment itself, the differences between tissues in the brain, etc. 2) Partial Volume Effect

(PVE): due to the movement of the patient –given that the acquisition lasts several

minutes– and the complex shape of the structures, the boundaries of the target struc-

tures are not continuous and the boundaries between the soft tissue can be blurred. 3)

Image noise. These issues altogether make segmentation a challenging task.

1.2.2.1 Methods of segmentation

In this section, we recall few examples of image segmentation that we have grouped into

four classes based on the way they are performed.

Gray level based approaches :

This class of methods includes the threshold-based method [122], region growing

[54], clustering algorithms [62], etc. These methods are based on the gray level

image directly. The threshold-based method assumes that the distribution of the

target and the background is separable in the image histogram, so one can use a

threshold to distinguish between the target and the background. The method is

simple, easy to implement and fast. However in brain MR images, due to the in-

tensity inhomogeneity, the distribution of the tissues often overlap. It is impossible

to obtain the correct segmentation result by the threshold method. The main idea

of the region growing method is to set the initial seed, classify the voxel that are

similar to the seeds of a given class. The disadvantage of this method is that the

result of the algorithm often depend on the selected seeds. Clustering algorithms

include K-means algorithm [87], fuzzy C-means algorithm (FCM) [51], Gaussian

mixture model (GMM) [48]. Wells et al. [145] propose a segmentation method

using Expectation-Maximization (EM) algorithm, that can automatically segment

the tissues, however this method requires the specification of Gaussian distribution

for each class. Ahmed et al [8], Pham et al. [102] have proposed methods based

on Fuzzy C-Means algorithm that segment and remove the bias field at the same

time. However the initial values are sensitive for these clustering algorithm. In

addition, most of the proposed models are based on the voxel information and do

not consider the smoothness of the tissue. Ashburner and Friston [20] propose

a probabilistic framework for joint nonlinear registration, intensity normalization

and segmentation of a single image providing tissue probability maps.

Active contour method :

Active contour segmentation models have become an important research topic in

the last decades: specifically, parametric active contour model (Snake model) and
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geometric active contour model (level set model) are two commonly used active

contour models. Here is a brief introduction of these two models, that come from

computer vision and thus may fail due to the characteristics of brain images.

(i) Parametric active contour model

The parametric active contour model (Snake) was proposed by Kass et al. [78],

further developed by [30] and successfully applied to the image segmentation [41,

92]. The idea is to find a methodology for the minimization of a criterion composed

of the internal energy and external energy over the entire shape. Although this

model has achieved great success in medical image segmentation, there are still

some disadvantages: 1) the results are often dependent on the initialization; 2)

the capture range of edge energy is small; 3) the sensitivity to noise is large, the

model fails in images with weak boundaries. As the topology of brain MR images

are complex, Snake models cannot be used to segment several structures in the

brain MR images at the same time. However, they are often used on a single tissue

segmentation [147], for example, segment the hippocampus, ventricles or tumor.

(ii) Geometric active contour model

Geometric active contour models can be considered as an improvement of Snake

model, proposed by Caselles et al. [144] and Malladi et al. [89]. This model can

be solved by the level set method. The level set method can be applied to image

denoising and enhancement, image segmentation, image restoration. The level

set model [18, 46, 101] improves upon the Snake model, as it allows topological

changes (the contour can break up, merge, or disappear during the course of time

evolution). However the resulting segmentation is sensitive to the initialization and

it is difficult to obtain global optimal solution. Chan-Vese model [36] is a classical

model, that assumes the image is divided into two parts with different means and

segment the target from the background. Since it uses the gray level information of

both the internal and external of the contour, it still works well for the images with

large noise or weak boundaries. However the model assumes that the intensity is

homogeneous in each class, therefore it often yields a wrong segmentation on brain

MR images. Many segmentation models [142, 156] based on local information have

been proposed in order to overcome the intensity inhomogeneity in the brain MR

images. However the result is often dependent on the initialization.

Graph-based segmentation :

Graph-based segmentation was introduced for image analysis in 1971 [154]. This

method converts the image to a weighted graph where the voxels are handled as

nodes, then it uses a minimum cut criterion, e.g. minimal spanning tree, to get the

best image segmentation. It essentially transforms image segmentation problem

into a discrete optimization problem with convex relaxation. This class of methods
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include the graph cuts [28], random walker [64], isoperimetric partitioning [65]

and so on. Currently, the research of the graph-based segmentation focuses on

the following aspects: 1) optimal cut-off criteria [28, 69]; 2) spectral methods for

segmentation [45, 113]; 3) fast algorithms [29, 56].

Atlas-based segmentation :

Atlas-based segmentation can been considered as a registration problem, namely

that of deforming a brain atlas into a new subject’s brain. It relies on a reference

image in which some structures have been segmented. Then, a non-rigid registra-

tion is applied from the reference to the new subject. The structures of the new

subject are segmented by transporting the labels from the reference. Atlas-based

segmentation is of particular interest when the information from the gray level

intensities is not sufficient. For example, the gray level intensities of subcortical

structures may be closer to the white matter (WM) than gray matter (GM) inten-

sity mean. This makes it difficult to segment these structures as GM without any

prior. However, atlas-based segmentation manages to segment these structures

correctly with the help of a priori information given by the atlas [119].

There are two problems with atlas-based segmentation of brain images. The first

one is the choice of the template, as it should be representative of a population

and carry an accurate segmentation. The second one is the choice of the registra-

tion framework that constrains the deformation and therefore captures different

similarity while leaving residuals which may be of interest. This assumes that the

template is close to the subject’s anatomy. Otherwise, large registration errors

may cause important segmentation errors if large anatomical differences exist.

Aljabar et al. [9] proposed two methods for templates selection. The first one uses

meta-information. They select the template that is closest in age to the image

to be segmented. The second one uses similarity metrics to compare the images.

Obviously, the quality of the results depends on the metric used.

Another solution is to use multi-atlas based segmentation. It has been proposed

to better deal with the registration errors obtained when using a single template.

It also better captures the anatomical variability. Klein et al. [81] and Wu et al.

[148] show that using multi-atlas segmentation improves segmentation accuracy.

One problem is that it is unclear how many templates should one use for the

multi-atals based segmentation. Aljabar et al. [9] shows that it is not necessary

to use all the observations in the data set as templates. First, if the number

of “templates” is large, registering all “templates” to the image to be segmented

increases the computation time. Second, the anatomical structure may vary across

the population. For example, if a structure can be represented by two distinct
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shapes, using a large number of templates may give a shape that does not represent

either of them. In their study, they find that 15-25 templates are sufficient to get

a good performance. However, the choice of the 15-25 templates still depends the

metric they used.

When doing atlas-based segmentation, the templates selection depend on the metric used

to compare images. The choice of the registration framework assumes that the template

is close to the subject’s anatomy. A statistical estimation of the atlas that contains the

template and the metric is a better choice, because it avoids to fix the template or the

metric which are closely linked. Now we will focus on atlas construction.

1.3 Template estimation

Two approaches have been used to construct templates from medical images: to take

the image closest to the population mean or to estimate the true population mean.

Marsland et al. [91] propose a method to construct the template as the observed image

that is the closest to the geometrical mean. They choose the target image that minimizes

the sum of distances from this image to the rest of the images and maximizes the sum

of mutual information (MI) between them. Park et al. [99] propose a method that deals

with the same problem as Marsland et al.’s. Their selected image is chosen based on MI

only, which is most robust to the noise inherent in anatomical images. These approaches

gives the template with the smallest possible bias but nevertheless this template is still

biased, as it is one of the image in the dataset. It is not the real mean geometry image.

Studholme [129] proposes a method to jointly register all images simultaneously to a

common space that is very close to the mean geometry to reduce the bias inherent to the

choice of one particular sample. A cost function is optimized with the aim of maximizing

the similarity between images, while penalizing displacement from the average shape.

However, this requires explicitly choosing a weighting parameter to specify the influence

of the penalty term and thus how well the constraint is satisfied.

Bhatia et al. [26] propose a method where an arbitrary image is used just as an inten-

sity reference, after which the similarity between images is maximized using non-rigid

registration. To ensure that the image calculated in this fashion is actually the mean,

they enforce the constraint that the sum of all transformations, represented by a suit-

able parametrization, is equal to zero. The algorithm does not require specifying any

geometric reference, however an intensity reference has to be chosen to evaluate the

similarity during the registration step.
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Guimond et al. [67] propose an automatic method to build average anatomical brain

atlases. First, they choose an image as the reference and register all images to it using

an affine registration to correct the position and global shape differences. Then, they

register the images after the affine registration to the reference using an elastic registra-

tion and calculate the average of the images and deformations after registration. At last,

they apply the average deformation to the average images in order to compute the aver-

age atlas. The advantage of this method is that it depends less on the reference image

used for its construction. A similar idea has been proposed in [86] where the template

is the mean deformation of an hyper template. However it requires a pre-segmentation

of the data.

Rueckert et al. [115] propose a statistical deformation models that can be used to

construct an average atlas of the anatomy and their variability. They use a non-rigid

registration algorithm. The transformation consists of a global transformation and a

local transformation. This algorithm leads to good correspondences, in particular, in

the subcortical structures.

Joshi et al. [76] propose a method to estimate a template given a collection of observed

images. The problem is that the deformation is applied to the observations whereas it

should act on the template (ideal image). This makes this estimation different from the

computational anatomy model proposed by Grenander and Miller [66]. Moreover, the

iterative numerical scheme is very sensitive to noise.

Niethammer et al. [96] propose robust estimation methods for parametric models based

on Diffusion Weighted Imaging (DWI). By applying the estimation method to registered

DWIs, a DW-atlas is constructed. This allows for the representation of average diffusion

information with more flexible diffusion models than the diffusion tensor.

All the methods so far produce deterministic templates, that is to say a deterministic

gray level image. On the other hand, probabilistic templates providing tissue probability

maps are especially attractive, as they make it possible to take into account the uncer-

tainty on the underlying tissue type, which is related to partial volume effect (PVE) or to

perfectible registration. Moreover, most of the time, the template is estimated without

the geometric variability which may be analyzed a posterior by PCA or ICA. However,

the template estimation requires to choose a deformation framework which somehow

freeze the geometric variability a priori. Therefore, the posterior analysis highly de-

pends on the prior choice. This suggests that the template should be learned jointly

with the geometric variability of the shapes represented in the population. These two

quantities will in the sequel form the atlas of the corresponding population. This is the

leading idea of our models.



Chapter 1. Introduction 22

In [25], a method was proposed to do the segmentation and registration jointly, while

creating an average brain template. This approach combines groupwise registration us-

ing the Kullback-Leibler divergence and the EM algorithm for segmentation, and thus

demonstrates the benefit of their integration. However it does not learn the geomet-

ric variability within the estimation procedure, which may reduce the accuracy of the

template to match the observations with prior deformations.

Ribbens et al. [110] propose a probabilistic model to segment a heterogeneous data set

of brain MR images simultaneously while constructing templates for each mode in the

heterogeneous population using an EM algorithm. However, it performs clustering as

an additional step, and does not learn the geometric variability of the population.

Sabuncu et al. [153] propose a spherical demons algorithm with geometric variability

for registering images and for creating an atlas. The registration was more accurate and

this registration could be used to transfer segmentation labels onto a new image. With

such an approach, the segmentation is not performed during the estimation.

Glasbey and Mardia [61] made the first step towards the statistical estimation of a

complete atlas based on a statistical model. This was improved by Allassonnière et al.

[10] who proposed a model to create an atlas containing the geometric variability. As the

inputs are scalar images, the template is also estimated as a scalar (gray level) image.

As a consequence, the segmentation of the population is not part of the estimation

process. Using both kinds of information increases the population classification accuracy,

as the model better fits the observations, as for the population classification in [13], the

segmentation (tissue classification of voxels) takes advantage of the registration to the

template. Although they learn the geometric variability, their template is deterministic.

In this work, we will develop these models in order to create a probabilistic atlas.

1.4 Algorithms used in this work

1.4.1 Gradient descent

Optimization is a branch of applied mathematics, the main research question is to find

the minimum of a function f(x). The gradient descent method is the oldest optimization

method proposed by Cauchy in 1847 [34]. The algorithm starts with an initial value x(0)

and calculate the gradient vector ∇f(x(0)). The next value x(1) obtained by moving

some distance from x(0) in the direction of the descent. In general,

x(k+1) = x(k) − α(k)∇f(x(k)),
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where α(k) is the step-size which can be changed at each iteration.

The advantages of this method are that it has often low computation and storage. As

an oldest method, the rate of convergence is slower than many other methods. Another

limitation of this method is that sometimes it is difficult to calculate the gradient and to

choose α(k). However, this method can be optimized using Newton-Raphson algorithm

or FISTA [22].

1.4.2 Stochastic algorithms

Stochastic Approximation Expectation-Maximization (SAEM) :

Dempster et al. [48] proposed the Expectation Maximization (EM) algorithm in

order to find the maximum likelihood estimator in the context of incomplete data

settings also known as mixed effect models. Given a statistical model consisting of

an observation X, missing data Z and the parameters θ, the marginal likelihood

of the observed data L(θ;X) is often intractable as it writes as an integral over

the distribution of Z. The EM algorithm seeks to find the maximum likelihood

estimate (MLE) of the observed likelihood by iteratively applying the following

two steps:

1. Expectation step: Calculate the expected value of the log likelihood function

given X at the current parameter θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)]

2. Maximization step: Find the parameter that maximizes this quantity:

θ(t+1) = argmax
θ

Q(θ|θ(t))

Although widely known, it suffers from the need to evaluate the expectation with

respect to the posterior distribution of the missing data given the observations.

The Stochastic Approximation Expectation-Maximization (SAEM) [47] is an im-

provement of the EM algorithm with good theoretical properties [47] that deals

with this issue. This is an iterative procedure that consists of three steps:

1. Simulation step: Simulate the missing data Z from the conditional distribu-

tion q(Z|X, θ(t)).

2. Stochastic approximation step: A stochastic approximation is done on the

sufficient statistics of the model using the simulated value of the missing

data.
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3. Maximization step: Maximize the log-likelihood with respect to the model

parameters given this stochastic approximation.

SAEM is a random method which makes it less depend on the initial condition.

Its numerical efficiency has also been demonstrated. However, sometimes, we can

not simulate the missing data directly and thus resort to some indirect simulation

methods, e.g. Markov Chain Monte Carlo methods.

Markov Chain Monte Carlo (MCMC) Method :

MCMC methods are a class of algorithms for sampling from probability distri-

butions. The Metropolis-Hasting algorithm and the Gibbs sampler [60] are two

popular and efficient MCMC algorithms for obtaining a sequence of observations

when direct sampling is difficult. In particular the Gibbs sampler is well adapted

for high dimensional simulation situations. In the simulation step of the SAEM,

we use MCMC methods to simulate the missing data.

Metropolis-Hastings algorithm:

In order to reach the stationary distribution π(Z) for a random variable Z. The

Metropolis-Hastings algorithm starts with a value Z(0). From Z(t), it generates

Zc using the law proposal q(Zc|Z(t−1)) and accept or reject this value Zc using a

procedure of acceptance-rejection. The new value is denoted Z(t+1).

When the number of dimensions is high, it is difficult to find the distribution q to

sample efficiently and stride the whole support of π. Gibbs samplers work better

in such situations because they simulate the sample for each dimension one by one.

Gibbs sampler:

Suppose that the random variable Z = (Z1, ..., Zd) belongs to R
d with large d. The

Gibbs sampler starts with a value Z(0) = (Z
(0)
1 , ..., Z

(0)
d ). From Z(t), for i ∈ J1, dK,

it simulates the candidate Z
(t)
i from the conditional distribution

fi(Z
(t)
i |Z

(t)
1 , ..., Z

(t)
i−1, Z

(t−1)
i+1 , ..., Z

(t−1)
d ).

It is necessary to know the conditional distributions fi to use the Gibbs sampler.

Since only the conditional distributions fi are used in the simulations, all simula-

tions are univariate even for a high dimensional problem. In the Gibbs sampler,

the rate of acceptation is always equal to 1.

When fi is not tractable, one may combine the Metropolis-Hastings and Gibbs

sampler. This is known as Metropolis-Hastings within Gibbs sampler.
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1.5 Contributions of this work

1.5.1 Generative Statistical Model

In Chapter 2, we propose a model to create a probabilistic atlas, which we define as a

probabilistic template together with a quantification of the population geometric vari-

ability. Given a set (yi)16i6n of images observed on a grid of voxels Λ embedded in a

continuous domain D ⊂ R
3, we denote xj ∈ D the location of voxel j. We consider that

each image is composed of voxels belonging to one class among K, corresponding to K

tissues types. We assume that the signal in the K tissue classes is normally distributed

with class dependent means (µk)16k6K and variances (σ2k)16k6K as proposed in [20].

In order to take into account the geometric variability in shape of the brain along a

population, we consider that the unknown class of each voxel is supposed to be the

discretization on Λ of a random deformation of probability maps (Pk)16k6K . These

probability maps correspond to the probability of each voxel to belong to each class in

the template domain.

We use small deformations in our model, i.e. a deformation ϕ of the domain D is

represented by the displacement of each point x in D by a vector v(x), and is thus

written as:

ϕ(x) = x+ v(x).

The template probability maps Pk and the deformation are defined on the whole domain.

In order to reduce the dimension to a finite dimension problem, we define both quantities

as a finite linear combinations of given kernels centered at some fixed equi-distributed

control points in the domain D.

The previous hypothesis provides a generative statistical model for a sample of gray

level images. The parameter of our model contains three parts: a photometric part

corresponding to the template parametrization, a geometrical part corresponding to the

covariance matrix of the deformation parametrization vector and a part for the class

corresponding to the class dependent means and variances.

Medical images are usually high-dimensional, but come in small samples, therefore we

propose to work in a Bayesian framework.

We consider the maximum a posteriori (MAP) estimator that maximizes the posterior

distribution of the parameters θ̂ given the observation. We prove the existence and the

consistency of the MAP.
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Theorem 1.1 (Existence of the MAP estimation in section 2.3.1). For any sample

y1, ..., yn, there exists θ̂n ∈ Θ such that

qB(θ̂n|y1, ..., yn) = sup
θ∈Θ

qB(θ|y1, ..., yn).

Theorem 1.2 (Consistency in section 2.3.2). Under weak assumptions, for any compact

set K ⊂ ΘB,

lim
n→+∞

π(δ(θ̂n,Θ∗) > ǫ ∧ θ̂n ∈ K) = 0,

where δ is the metric inherited from the Euclidean metric on R
nt where nt is the dimen-

sion of Θ and Θ∗ is the set of optimal parameters.

In Chapter 4, we generalize the model to multivariate observations. We use multimodal

images as the input and we estimate the probability maps for each modality as the

result.

1.5.2 Statistical Learning Procedure

In our model, it is impossible to compute the gradient of classical matching energies

with respect to the deformation and thus precludes any algorithm based on alternative

gradient descents. This led us to use stochastic algorithm. Thanks to the choice of

our statistical model, it belongs to the curved exponential family. Therefore we can

calculate the sufficient statistics easily. As we are in an incomplete-data setting, we

choose the SAEM coupled with a MCMCmethod to maximize the likelihood. During the

simulation step, we simulate the missing data, i.e. the deformation parameters (β) and

the vector of voxel classes using a Metropolis-Hastings algorithm within Gibbs sampler.

This particular MCMC method is well adapted for high dimensional simulations and

also in our particular case where the spatial distribution of the classes across the brain

volume depends on the deformation.

We also prove the almost sure convergence of the previous estimation algorithm towards

the MAP estimator given an n-sample of observations.

Theorem 1.3 (Convergence of our estimation algorithm in section 2.4.3). Under usual

assumptions on the model and algorithm, there exists two compact sets K and K0 such

that for all ((c)0, (β)0) ∈ K and s0 ∈ K0, we have lim
m→∞

d(sm,L) = 0 P̄(c)0,(β)0,s0-a.s,

where L is the set of critical points of the observed likelihood and P̄(c)0,(β)0,s0 is the prob-

ability measure associated with the chain ((c)m, (β)m, sm)m>0 starting at ((c)0, (β)0, s0).

The MCMC method can also be used to decide which model fits the data best. In

Chapter 5, we propose a statistical framework based on a hierarchical modeling to include
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the information brought by the peptides shared by different proteins. We use the Gibbs

sampler for analyzing large datasets, and compare with a model based on the analysis of

one protein at a time, to prove that our method is more reliable for estimating protein

abundances and testing abundance changes.

1.5.3 Segmentation of new individuals

As we present in section 1.1.5, one application of the brain atlas is atlas-based seg-

mentation. In Chapter 3, we propose a segmentation method using the atlas that we

estimated.

We first define the gray level template Î using the estimated means and the estimated

probability maps. We also use the estimated covariance as a metric for the space of

deformations to constrain the registration map according to the learned distribution.

Given a target image y, the template Î is deformed non-rigidly and registered to the

target image by minimizing the classical energy E(ϕ · y, Î, ϕ). It is done by a gradient

descent on the deformation variable denoted by β,

β∗ = argmin
β∈R3kg

E(ϕβ · y, Î, ϕ).

Then, the tissue for each voxel denoted by c∗j is chosen to be the class that maximizes

the posterior probability of that voxel to belong to each class, given this deformation

field β∗,

c∗j = argmax
cj∈J1,KK

[

log
(

q(yj |cj , θ̂)q(cj |β∗, θ̂)
)]

.

This shows very interesting results, both quantitatively and qualitatively on synthetic

and real data.





Chapter 2

Probabilistic Atlas and Geometric

Variability Estimation.

Computerized anatomical atlases play an important role in medical image analysis.

While an atlas usually refers to a standard or mean image also called template, that

presumably represents well a given population, it is not enough to characterize the

observed population in detail. A template image should be learned jointly with the ge-

ometric variability of the shapes represented in the observations. These two quantities

will in the sequel form the atlas of the corresponding population. The geometric vari-

ability is modeled as deformations of the template image so that it fits the observations.

In this paper, we provide a detailed analysis of a new generative statistical model based

on dense deformable templates that represent several tissue types observed in medical

images. Our atlas contains both an estimation of probability maps of each tissue (called

class) and a statistical summary of the deformations. We use a stochastic algorithm

for the estimation of the probabilistic atlas given a dataset. Experiments are shown on

brain T1 MRI datasets.

29



Chapter 2. Atlas Estimation 30

2.1 Introduction

In neuroimaging, brain atlases are useful for both segmentation and registration tasks as

they enable to transport known information to a new patient image to perform qualita-

tive and quantitative comparisons. What is often referred to as an atlas actually corre-

sponds to a mean image or template. The problem of estimating such an image given a

population has become a central issue in medical imaging during the past decade. Many

different methods have been proposed for template estimation (see [121, 124] among

others); they work either on gray level images, segmented data or shapes summarized

by a set of landmarks. Probabilistic templates, that represent the probability of ob-

serving different tissues at each location, are especially attractive [63, 84], as they make

it possible to take into account the uncertainty on the underlying tissue type, which is

related to partial volume effect (PVE) or to perfectible registration. In many template

construction methods, pre-segmentation or pre-registration are required. In this paper,

we aim at creating a probabilistic atlas, which we define as a probabilistic template

together with a quantification of the population geometric variability. However this

estimation requires only a coarse pre-registration and no pre-segmentation.

Atlas learning encompasses the two most fundamental problems in image analysis,

namely segmentation and registration, as these are the basis of template estimation

and population analysis. Concerning the segmentation issue, it is important to use

automated segmentation for the sake of efficiency and reproducibility. Many differ-

ent methods have already been proposed for segmentation, such as level set methods

[50], model-based segmentation [72], template-based approaches [123, 155] among many

others. In many cases, segmentation is coupled with registration. Indeed, perform-

ing registration and segmentation jointly is generally more effective than performing

them sequentially [68, 106, 149]. An accurate segmentation increases the precision of

subsequent registration steps. On the other hand, transporting a segmentation from a

template to a subject requires an accurate registration procedure. The accuracy of the

registration depends on the class of deformations that are considered. Indeed, one may

prefer smooth deformations that capture only the global shape changes rather than local

details. On the opposite side, when local shape features are meaningful, one has to adapt

the class of deformations so that they deal with variable geometric and regularity fea-

ture. Part of this choice has to be made by the user and depends on the data. However,

the complexity of the deformation set has also to be constrained by the observations

themselves. Some deformation models provide a metric on the space of shapes through

a metric on the deformation set [134] which describes geometrically the data. Another

viewpoint is to propose a probabilistic approach where the probability distribution of

the deformation highlights the characteristic deformations in a population of interest.
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Both approaches can actually be related, in particular when considering that, assuming

a proper parametrization, the deformations are multivariate normally distributed, as the

covariance matrix yields a natural metric to compute distances between deformations

[10]. More generally, this amount to using a Mahalanobis distance on deformations,

which is an acceptable choice even without a Gaussian hypothesis.

As pointed in [15], estimating this probability distribution together with the template

(gray level in [15]) increases the population classification accuracy, as the model better

fits the observations. As for the population classification in [15], the segmentation (tis-

sue classification of voxels) takes advantage of the registration to the template. In the

sequel, the probabilistic template together with the geometric variability will be called

atlas.

Several solutions have been proposed previously to deal with one or the other part of

atlas or template estimation; we now discuss the closest works to ours. First, a problem

with average templates construction is that they do not include the nonlinear deforma-

tion to align the corresponding structures. In [83], to solve this problem, a generative

model was proposed to create a template using mesh-based representations endowed with

a deformation model. This method computes estimates of the deformation field and the

most compact mesh representation using an Expectation-Maximization (EM) algorithm.

However they require the pre-segmentation of the training image. In [25], a method was

proposed to do the segmentation and registration jointly, while creating an average brain

template. This approach combines groupwise registration using the Kullback-Leibler di-

vergence and the EM algorithm for segmentation, and thus demonstrates the benefit of

their integration. However it does not learn the geometric variability within the estima-

tion procedure, which may reduce the accuracy of the template to match the observations

with prior deformations. In [110], a probabilistic model was proposed to segment a het-

erogeneous data set of brain MR images simultaneously while constructing templates

for each mode in the heterogeneous population using an EM algorithm. However, it

performs clustering as an additional step, and does not learn the geometric variability of

the population. In [15], a model was proposed to create an atlas containing the geomet-

ric variability. As the inputs are scalar images, the template is also estimated as a scalar

(gray level) image. As a consequence, the segmentation of the population is not part

of the estimation process. In [153], a spherical demons algorithm with geometric vari-

ability was proposed for registering images and for creating an atlas. The registration

was more accurate and this registration could be used to transfer segmentation labels

onto a new image. However, the segmentation was not performed during the estimation.
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In this paper, we propose to include all the aspects of the atlas estimation procedures de-

scribed previously, which can improve both the estimated template image, the estimated

geometric variability and the segmentation of individual data. Moreover, we propose to

perform this estimation using a joint segmentation-registration. For this purpose, we

propose to model the observations (gray level images) by a generative statistical model,

the parameters of this model being our atlas, i.e. a probabilistic template and the ge-

ometric variability. We generalize the model proposed in [20] and use the algorithm in

[15] for the estimation part. We also learn the geometry as the metric on the space of

deformations, which reduces the possible deformations to those that are common in the

population.

This takes the form of a multivariate zero mean normal distribution on the deforma-

tions, where the main parameter is the covariance matrix, which is not constrained to

have a particular structure (e.g. diagonal or sparse). This captures the long distance

correlations of the deformations.

To estimate the model parameters, we use a stochastic algorithm that has demonstrated

good performances on real data in [14, 111] and has theoretical convergence properties

[15]. We get as final output an estimation of both the probabilistic template and the

geometric variability. Although the individual deformation and segmentation are not

parameters of the model, the algorithm can be used to return individual deformations

and segmentations of the individual images. Additional parameters are also learned by

this procedure, such as the means and variances of each tissue of gray level distribution.

As a quantitative evaluation of our method, we test our algorithm on synthetic data for

which we know the ground truth. We obtain high Jaccard indices on training and test

data. We perform two tests to evaluate our method on real data. At first, we tested

our algorithm on 8 patients on an anatomical brain MRI dataset for which a manual

segmentation is available as a quantitative segmentation evaluation.

The rest of this paper is organized as follows. In Sections 2.2, 2.3 and 2.4, we present the

model, the estimation and the algorithm in detail. Section 2.5 yields the experimental

results on simulated and real data. In appendix, we prove the existence of the solution

and the convergence of the estimation algorithm.

2.2 The Observation Model

In this section, we present our statistical model, the selected set of deformations and the

parametric template that we consider for the sake of computational tractability. Then,
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we introduce the parameters of interest and the Bayesian framework, i.e. we introduce

priors to address the known issue that medical images datasets most often comprises

very few samples.

2.2.1 Statistical Model

We consider here n individual MR images from n patients. This set (yi)16i6n of images

are observed on a grid of voxels Λ embedded in a continuous domain D ⊂ R
3. We denote

xj ∈ D the location of voxel j ∈ Λ. We consider that each image is composed of voxels

belonging to one class among K, corresponding to K tissues types. We assume that

the signal in the K tissue classes is normally distributed with class dependent means

(µk)16k6K and variances (σ2k)16k6K as proposed in [20]. Therefore the probability of

observing a data with intensity yji for the ith image in the jth voxel given that it belongs

to the kth class (cji = k) is defined as follows:

P(yji |c
j
i = k, µk, σ

2
k) ∼ N (yji ;µk, σ

2
k), (2.1)

where N (.;µ, σ2) is the normal density with mean µ and variance σ2. This expression

results from the assumption that given the class, the voxels are assumed to have inde-

pendent gray level. This assumption is not satisfied in real life experiment as the noise

of the observation depends on the tissue type. However, this common assumption is a

first approximation that is useful for the sake of estimation.

In order to take into account the geometric variability in shape of the brain along

a population, we consider that there exists a random deformation from the template

to the subject that acts as follows: the unobserved classes of the voxels of the data

y are assumed to follow the probability distribution given by the discretization on Λ

of the warped probabilistic template. This template is defined by the probability maps

(Pk)16k6K that yield the probability of each voxel to belong to each class in the template

domain. In other words, the probability maps are deformed to match the observation y

(in a sense that will be detailed below) ; then they are discretized on Λ to provide, at

each voxel, a voxel-dependent discrete probability measure for this point that gives the

probability of each voxel to belong to each class.

As the deformation is not observed (and is actually a mathematical tool for population

analysis), we assume that these deformations from the template maps to each subject

are also unobserved and random. We define them through a random field z : R3 → R
3

such that for j ∈ Λ the prior probability of a voxel j from subject i to be in the kth class
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is given by:

P(cji = k) = Pk(xj − z(xj)) . (2.2)

We consider here the linearized deformation model which defines a deformation ϕ of the

domain D as the displacement of each point x in D by a vector v(x), and is thus written

as:

ϕ(x) = x+ v(x).

As we consider linearized deformations, we approximate ϕ−1 by ϕ−1(x) = x − v(x) at

the first order. This makes it possible to apply the deformation to an image, here Pk, as

P(cji = k) = ϕi · Pk(xj) = Pk(xj − zi(xj)).

As defined above, the deformation is an infinite dimensional object. While such a dense

representation is theoretically sound, for sake of computation, we consider a subspace of

deformations that will be parameterized. We assume that the deformation is controlled

by the displacement of some given control points belonging to D. This reduces the prob-

lem to finite dimension. We define the deformation field as a finite linear combinations

of a given kernel Kg centered at some fixed equi-distributed control points in the domain

D: (xg)16g6kg with parameter β ∈ (R3)kg

∀x ∈ D, zβ(x) = (Kgβ)(x) =

kg
∑

k=1

Kg(x, xg)β(k) , (2.3)

where Kg is chosen as a radial Gaussian Kernel in our experiments.

As for the deformation model, the templates Pk : R3 → [0, 1], ∀k ∈ J1,KK, which are the

tissue probability maps, should be defined on the whole domain D. However, in order

to reduce their dimensions to allow for numerical computation, we pick a fixed set of

control points (pl)16l6kp that may be different from the geometric ones and parametrize

the templates by the coefficients αk ∈ [0, 1]kp , which satisfy ∀l ∈ J1, kpK,
K
∑

k=1

αl
k = 1.

Then, we write

∀x ∈ D,Pk(x) = Kpαk(x) =

kp
∑

l=1

Kp(x, pl)α
l
k, (2.4)

where Kp(x, pl) = 1 if pl is the nearest neighbor of x among the set of points (pj)j and

0 otherwise.

Remark 1. The unobserved parameter β appears in the indicator function of the kernel.

This makes it impossible to compute the gradient of classical matching energies with

respect to β and thus precludes any algorithm based on alternative gradient descents
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(as e.g. in [77, 153]). However, this indicator functions make it possible to deal with the

constraint on α which would appear much harder with other smoother kernels and can

be handled easily with our estimation algorithm.

The previous hypothesis provides a generative statistical model for a sample of gray

level images. The random variables are the deformation vector β, the class of each

voxel c and the parameters that characterize the gray levels of the tissues (µk, σ
2
k)k. The

probability distributions of the former two elements are given by Equation (2.1) and

(4.1). We assume that the deformation vector follows a normal distribution with mean

zero and full covariance matrix. The hierarchical model is given by: ∀i ∈ J1, nK, ∀j ∈ Λ



















βi ∼ N (0,Γg)|Γg;

cji ∼
K
∑

k=1

δkPk(xj − zβi
(xj))|βi;

yji ∼ N (µk, σ
2
k)|c

j
i = k, µk, σ

2
k,

(2.5)

where δk is a Dirac measure on k. The covariance matrix Γg is not assumed to have

any particular pattern of zeros. This makes it possible to model local and global corre-

lations between control point moves, in particular, very correlated displacements can be

captured such as translation of a large area of the images. The zero mean is a relevant

assumption as the population is assumed to be distributed in an ellipsoid around this

mean image.

2.2.2 Parameters and likelihood

Given this statistical model, the parameters to estimate are the covariance matrix Γg of

the deformation coefficient (Equation (2.3)), (αk)16k6K the coefficients that define the

templates (Equation (2.4)), (µk)16k6K and (σ2k)16k6K the class dependent means and

variances. Let θg = Γg, θp = ((αk)16k6K) and θc = ((µk)16k6K , (σ
2
k)16k6K). We assume

that θ = (θg, θp, θc) belongs to the parameter space Θ defined as the open set

Θ = {θ = ((αk)16k6K , (µk)16k6K , (σ
2
k)16k6K ,Γg)|αk ∈]0, 1[kp , σ2k > 0, µk ∈ R,Γg ∈ Σ+

3kg ,∗
(R)}

(2.6)

Here Σ+
3kg ,∗

(R) is the set of strictly positive symmetric matrices of dimension 3kg × 3kg.

We can notice that due to the unobserved variables β and c, the observed likelihood is

an integral over these random variables. This writes

q(y|θ) =
∫ ∫

q(y|c, θc)q(c|β, θp)q(β|θg)dcdβ (2.7)
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where the conditional distributions are given by our model

q(β|θg) = exp(−1

2
βTΓ−1

g β)(2π)−
3
2
kg|Γg|−

1
2 (2.8)

q(c|β, θp) =
K
∑

k=1

δkPk(xj − zβi
(xj)) (2.9)

q(y|c, θc) =
|Λ|
∏

j=1

(2πσ2cj )
−1/2exp

(

−(yj − µcj )2
2σ2cj

)

(2.10)

where |Λ| is the number of voxels.

For sake of simplicity, all the likelihood functions will be denoted by q and the variables

specified as arguments of this function q.

2.2.3 Bayesian Model

Medical images are typically high-dimensional, but usually come in small samples. To

deal with the data scarcity issue, we choose to regularize the statistical model and

we propose to work in a Bayesian framework. As presented in [10], we use standard

conjugate priors for each parameter, i.e. an inverse-Wishart νg in dimension 3kg × 3kg

on Γg, a Gaussian νm on µk and inverse-Wishart νp in dimension 1 on σ2k with fixed

hyper-parameters. All priors are assumed independent. These priors makes it possible to

regularize when needed the estimated parameters but, when the number of observations

increases, the relative prior weight decreases.

More formally we have

(Γg, µk, σ
2
k) ∼ νg ⊗ νm ⊗ νp;

where


























vg(Γg) ∝

(

exp(−1
2〈Γ−1

g ,Γ0
g〉) 1√

|Γg |

)ag

dΓg, ag > 6kg + 1,

vm(µk) ∝ exp
(

− (µk−mu)2

2σ2
µ

)

dµk

vp(σ
2
k) ∝

(

exp
(

− σ2
0

2σ2
k

)

1√
σ2
k

)ap

dσ2k, ap > 3.

Note that for two matrices A,B we have 〈A,B〉 = tr(ATB) the Frobenius inner product

on matrices.

Our Bayesian model can be represented by Fig. 2.1 where the dependencies are high-

lighted.
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Figure 2.1: Generative model that relates the atlas to the observed images.

2.3 Estimation

2.3.1 Existence of the MAP estimation

Given the complete statistical model, we can learn the parameters that best fit the

observations. Although real data never follow any parametric model, we try to approx-

imate their generation so that we better understand the common and specific features

of a given population. For this purpose, we consider the maximum a posteriori (MAP)

estimator: θ̂n = argmax
θ∈Θ

qB(θ|y1, ..., yn) where qB denotes the posterior distribution of

the parameters given the n observations y1, ..., yn.

The following theorem proves here that given a n sample of observations, the maximum

a posteriori estimator exists at finite distance in the parameter space.

Theorem 2.1 (Existence of the MAP estimation). For any sample y1, ..., yn, there exists

θ̂n ∈ Θ such that

qB(θ̂n|y1, ..., yn) = sup
θ∈Θ

qB(θ|y1, ..., yn).

The proof is postponed to appendix.

Remark 2. Note that one could rely on the prior distribution to prove this property for

the means (µk)16k6K . However, as we are dealing with a Bayesian model, we introduce

priors on all parameter to keep the coherence of the model. Nonetheless, it would be

possible to remove the prior on these parameters thanks to the proof in the appendix.

Concerning the priors, for the covariance matrix, the prior is informative as we choose

the usual kernel matrix used for registration issues. The prior on the means are non-

informative as the gray level of the observations change drastically when the acquisition

protocols change.
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2.3.2 Consistency of the estimator on our model

We are interested now in the consistency property of the MAP estimator without making

strong assumptions on the distribution of the observations y1, ..., yn. This means that we

do not assume that the observations are generated by the model described above. We de-

note the distribution governing the observations by π and seek to prove the convergence

of the MAP estimator to the set Θ∗ of model distributions closest to π:

Θ∗ = {θ∗ ∈ Θ|Eπ(logq(y|θ∗)) = sup
θ∈Θ

Eπ(logq(y|θ))}

However, this consistency only holds for bounded variances ∀ c ∈ J1,KK, σ2c > σ2min.

This assumption on the admissible set is not restrictive as we have proven that the MAP

estimator exists out of the boundaries. Let

ΘB = {θ = ((αk)16k6K , (µk)16k6K , (σ
2
k)16k6K ,Γg)|αk ∈]0, 1[kp , σ2k > σ2min, µk ∈ R,Γg ∈ Σ+

3kg ,∗
(R)}

(2.11)

ΘB
∗ = {θ∗ ∈ ΘB|Eπ(logq(y|θ∗)) = sup

θ∈ΘB

Eπ(logq(y|θ))}

Theorem 2.2 (Consistency). Assume that ΘB
∗ is non empty. Then for any compact set

K ⊂ ΘB,

lim
n→+∞

π(δ(θ̂n,Θ
B
∗ ) > ǫ ∧ θ̂n ∈ K) = 0,

where δ is the metric inherited from the Euclidean metric on R
nt where nt is the dimen-

sion of Θ.

Proof. The theorem is an application of Wald’s consistency Theorem in [136]. We only

need to verify that y → logq(y|θ) is π a.s. upper semi-continuous and that for any

θ ∈ Θ, there exists an open set U ∋ θ such that Eπ( sup
θ′∈U

log+(q(y|θ′))) <∞ (where log+

is the positive part of log). In our setting, for any θ = (αk, µk, σ
2
k,Γg) ∈ ΘB, we denote

U = {]0, 1[kp ,R, ]σ2min,+∞[,Σ+
3kg ,∗

(R)}, so that

sup
θ′∈U

log(q(y|θ′)) 6 sup
θ′∈U

log(

K
∑

k=1

q(y|c, θ′))

6 sup
θ′∈U

log







K
∑

k=1





1
√

2πσ2k





n|Λ|






6log






K





1
√

2πσ2min





n|Λ|





<∞ ,
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where σ2min is the lower bound of σ2k.

Remark 3. Note that we only proved a limited consistency result as we have no guaranty

that ΘB
∗ is not empty. However, looking at our model, generalized from the Bayesian

Mixed Effect Templates introduced in [10], we expect the same result. Future work

will generalize the proof of consistency in [10] to the present model. We focus here on

the convergence property of the estimation algorithm that we present in the following

section.

2.4 Estimation Algorithm using Stochastic Approximation

Expectation-Maximization

We now present the estimation algorithm that we use to reach the MAP estimate of

the parameters. We assume now that we observe a fixed number n of gray level images

taken from a homogeneous population.

2.4.1 Model factorization

Despite the complex dependencies of the random variables in our statistical model, it

belongs to the curved exponential family. That is to say, the complete likelihood q writes

as:

q(y, c,β, θ) = exp[−ψ(θ) + 〈S(c,β), φ(θ)〉] = exp(L(θ, S)) (2.12)

where ψ, φ are two Borel functions depending on the parameters, S(c,β) is a vector

of sufficient statistics and the scalar product is the usual Euclidean one. For sake of

simplicity, we have omitted the dependency with respect to the observations that are

handled as a fixed input to the estimation process. The function L is called the complete

log-likelihood.

Thanks to Equation (2.12), we can show that the following matrix-valued functions are

the sufficient statistics of the model: ∀k ∈ J1,KK, ∀l ∈ J1, kpK,

S0,k(c,β) =

n
∑

i=1

|Λ|
∑

j=1

1
cji=k

, S1,k(c,β) =

n
∑

i=1

|Λ|
∑

j=1

1
cji=k

yji ,

S2,k(c,β) =
n
∑

i=1

|Λ|
∑

j=1

1
cji=k

(yji )
2, S3(c,β) =

n
∑

i=1

βiβ
T
i ,

S4,k,l(c,β) =

n
∑

i=1

|Λ|
∑

j=1

1
cji=k

1‖xj−xl−Kgβi(xj)‖1<
1
2
.

(2.13)
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We denote S(c,β) = (S0,k(c,β), S1,k(c,β), S2,k(c,β), S3(c,β), S4,k,l(c,β))∀k∈J1,KK, ∀l∈J1,kpK

the vector of sufficient statistics and define the sufficient statistic space as

S = {(S0,k, S1,k, S2,k, S3, S4,k,l) | ∀k ∈ J1,KK, ∀l ∈ J1, kpK,

S0,k ∈ R
+
∗ , S1,k ∈ R

+
∗ , S2,k ∈ R

+
∗ , S3 + agΓ

0
g ∈ Sym+

3kg, S4,k,l ∈ R+
∗ )}. (2.14)

The set S can be viewed as an open set of Rs with s = K +K +K + 3kg(3kg+1)
2 +Kkp.

Remark 4. Note that the sufficient statistics S0,k, S1,k, S2,k and S4,k cannot vanish.

Indeed, if for one class k0, S0,k0 = 0, this particular class would be empty which means

that there are no voxel belonging to this tissue class. We assume that we actually know

the number of expected tissues in the gray level images so that this never happens.

The second property of our model is that there exists θ̂ such as max
θ∈Θ

L(θ, S) = θ̂(S).

Indeed µk, σ
2
k, α

k
l and Γg are explicitly expressed with the above sufficient statistics as

follows: ∀k ∈ J1,KK, ∀l ∈ J1, kpK,

µ̂k(S) =
S1,k(c,β)

S0,k(c,β)
, σ̂2k(S) =

1

n+ ap

(

n

(

S2,k(c,β)

S0,k(c,β)
− S1,k(c,β)

2

S0,k(c,β)2

)

+ apσ
2
0

)

,

Γ̂g(S) =
S3(c,β) + agΓ

0
g

n ∗ |Λ|+ ag
, α̂l

k(S) =
S4,k,l(c,β)

K
∑

k′=1

S4,k′,l(c,β)

.

(2.15)

These equations are well defined thanks to Remark 4. This also justifies the fact that

the coefficients αl
k belongs to ]0, 1[ for all 1 6 k 6 K and for all 1 6 l 6 kp.

2.4.2 Estimation Algorithm

As we are in an incomplete-data setting, a natural way to maximize a likelihood is to

use the EM algorithm or an algorithm derived from EM. We choose the Stochastic Ap-

proximation EM (SAEM) coupled with a Markov Chain Monte Carlo (MCMC) method

thanks to its good theoretical [15] and numerical [14] performances in such settings.

We detail here the m + 1th iteration of the SAEM-MCMC algorithm which consists of

three steps:

Step 1: Simulation step. The missing data, i.e. the deformation parameters

(β) = (β1, · · · ,βn) and the vector of classes (c) = (c1, · · · , cn), are drawn using the
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transition probability of a ergodic Markov chain Πθ having the posterior distribution

qpost(·|y, θ) as its stationary distribution:

((β)m+1, (c)m+1) ∼ Πθm(((β)m, (c)m), ·)

where we choose Πθ to be a Metropolis-Hastings within Gibbs sampler. This particular

MCMCmethod is well adapted for high dimensional simulation and also in our particular

case where the distribution of the class depends on the deformation. The Gibbs sampler

works coordinate by coordinate. Since we cannot sample from the posterior distribution

of one coordinate of the vector ((β), (c)) given the others, we use a Metropolis-Hastings

step inside these loops. Therefore, we simulate the coordinates one by one. We choose as

the proposal of the Metropolis-Hastings method to use the probability distribution of this

coordinate given the others coming from the model distributions 2.5. This way, one can

estimate deformations that improve the segmentation and segmentations that improve

the registration. With this choice, it is easy to calculate the acceptance rates (see in

Algorithm 1). Note that it would be possible to choose others priors, however paying

attention to the computational cost of the acceptance rates. Since we have a couple of

missing data, we first simulate each coordinate of (β) knowing others coordinates of (β)

and (c), then simulate each coordinate of (c) knowing others coordinates of (c) and the

new (β). The detailed steps of the whole algorithm is given in Algorithm 1 in particular,

the hybrid Gibbs sampler steps are precise.

Step 2: Stochastic approximation step. A stochastic approximation is done on

the sufficient statistics using the simulated value of the missing data:

sm+1 = sm +∆m[S((c)m+1, (β)m+1)− sm]

where ∆ = (∆m)m is a decreasing sequence of positive step-sizes.

Step 3: Maximization step. The parameters are updated using the previous

formula (2.15) where the sufficient statistics are replaced by their stochastic approxima-

tions.

θm+1 = argmin
θ∈Θ

θ̂(sm+1).

The initial values (β)0, (c)0, s0 and θ0 are arbitrarily chosen (see Algorithm 1).
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Algorithm 1 SAEM-MCMC Algorithm (with no reprojection)

Require: c = (c)0, β = (β)0, θ0, s0, ∆
Stochastic Approximation Expectation-Maximization

for m = 0 to iters do
Simulation step using Gibbs sampler:

for i = 1 to n do
for p = 1 to 3kg do
Metropolis-Hastings procedure

b ∼ N
( ∑

q 6=p

Rp,qβ
q
i

Rp,p
, 1
Rp,p

)

Compute rp(β
p
i , b;β

−p
i , c, θm) =

[

q(c|βi,b→p)
q(c|βi)

∧ 1
]

With probability rp(β
p
i , b;β

−p
i , c, θm), update β

p
i : βp

i ← b
end for
Update βi,m+1 ← βi

for j = 1 to |Λ| do
C ∼

K
∑

k=1

δkPk(xj − zβi,k+1
(xj))

Compute rj(c
j
i , C; c

−j
i , θm) =

[

q(y|ci,C→j ,θm)
q(y|ci,θm) ∧ 1

]

With probability rj(c
j
i , C; c

−j
i , θm), update cji : c

j
i ← C

end for
Update ci,m+1 ← ci

end for
Stochastic approximation step:

sm+1 = sm +∆m[S((c)m+1, (β)m+1)− sm]
Maximization step:

θm+1 = argminθ∈Θ θ̂(sm+1).
end for

2.4.3 Convergence analysis

We prove the almost sure convergence of the previous estimation algorithm towards

the MAP estimator given a n-sample of observations. This proof requires to add an

intermediate step in the estimation algorithm. This consists in projecting the sufficient

statistics on increasing compact subsets when the stochastic approximation reaches a

too large value. We refer to [17] for more details about this usual additional step. Note

that in practice, no projection has been required in our experiments.

Let us first define some quantities that are required in the following Theorem.

Definition 1. Let S be the open subset of R
s defined by Equation (2.14). We de-

fine the mean field h : S → R
s as h(s) =

∫ ∫

R3kg Hs(c,β)qpost(c,β|y, θ̂(s))dcdβ where

Hs(c,β) = S(c,β) − s. Let also w : S → [0,∞[, w(s) = −l(θ̂(s)) be the corre-

sponding Lyapunov function where l is the incomplete data log-likelihood: l(θ) =

log
∫ ∫

R3kg q(y, c,β, θ)dcdβ. Let L , {s ∈ S, 〈∇w(s), h(s)〉 = 0} be the set of critical

points of the observed likelihood.
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Theorem 2.3 (Convergence of our estimation algorithm for model 2.5). Assume that

there exists an M0 > 0 such that L ⊂ {s ∈ S, w(s) < M0}. Assume also that the

sequences ∆ = (∆m)m>0 and ε = (εm)m>0 are non-increasing, positive and satisfy:
∞
∑

m=0
∆m = ∞, lim

m→∞
εm = 0 and

∞
∑

m=1
{∆2

m + ∆mε
a
m + (∆mε

−1
m )p} < ∞, where a ∈]0, 1[

and p > 1. Then there exists a compact set K ⊂ Z where Z = J1,KK|Λ| × R
3kg and

there exists another compact subset K0 ⊂ WM0 , {s ∈ S, w(s) 6 M0} such that

for all ((c)0, (β)0) ∈ K and s0 ∈ K0, we have lim
m→∞

d(sm,L) = 0 P̄(c)0,(β)0,s0-a.s, where

P̄(c)0,(β)0,s0 is the probability measure associated with the chain ((c)m, (β)m, sm)m>0 start-

ing at ((c)0, (β)0, s0).

We prove that the stochastic approximation sequence generated by our model and al-

gorithm satisfies Assumptions (A1’), (A2) and (A3’) defined in [15]. The proof is

postponed to appendix.

2.5 Experiments and Results

We first test our algorithm on simulated data to check that it reaches our objectives,

that is to say (1) recover the template image as probability maps, (2) estimate a relevant

covariance matrix of deformations, (3) achieve a good estimate of the mean and variance

of each class and (4) segment the observations. Then we test on real data and compare

with the segmentations provided by SPM8 [7] , FAST [158] in FSL [1] and DARTEL [19]

algorithms. The segmentation method in SPM8 can be used for bias correction, spatially

normalizing or segmenting the data, it uses the same model as in [20]. FAST segments a

3D image of the brain into different tissue types. The underlying method is based on a

hidden Markov Random Field model and an associated EM algorithm. DARTEL is an

algorithm for diffeomorphic image registration that registers images by computing a flow

field, which can be exponentiated to generate both forward and backward deformations.

As the SAEM algorithm is an iterative procedure, we run until 250 iterations which

reaches numerical convergence. We control the convergence visually on the template

and numerically looking at the convergence curve of the variances. For the initialization

of our algorithm, we choose (β)0 = 0 and the initial random classification (c)0.

2.5.1 Simulated data

In the simulated data experiment, a 24 × 24 × 3 image of 4 classes is used as the

reference image where the values of each class are {1, 2, 3, 4}. We generate 20 images
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Figure 2.2: Experiments on simulated data. The first two columns correspond to one
slice of four data images and their final segmentations. The last column correspond to
the first slice of the probabilistic template, each row corresponds to a class. The white

color corresponds to high probability and the black color to low one.

with translations and zooms and add an independent Gaussian noise with zero mean

and standard deviation 0.2 to the deformed image.

We take 64 fixed control points for the deformation model given in Equation (2.3), i.e.

one control point in each 3 × 3 × 3 cube and all the points in the image as the control

points for the template model given in Equation (2.4) to obtain a complete probabilistic

atlas. We choose (0.3 × 12)2 as the parameter of Kg, where 0.3 is the value that gives

the best visual result as in [10] and 12 is a half of the largest dimension size. For the

hyper-parameters, we use ag = 0.5, Γ0
g = Id, ap = 0.1 and σ20 = 1. The values of ag and

ap are especially small in practice despite the constraints of theoretical definition of the

priors. Note that in Equation (2.15), they weight the priors against the data-derived

terms weighted by the number of observations. Small values down-weight the priors and

increase the importance of data in the estimates. Although the prior laws on Γ0
g and

σ20 are improper, the posterior laws are well defined. The main purpose of the regular-

ization is to make Γg symmetric positive definite. Although it would be possible to use

an informative prior on Γ0
g as the one used in [10], the results are similar as long as the

deformations are well captured.

The results are shown in Fig. 2.2. In the first column, each row corresponds to one slice

of three exemplars of the dataset. The final estimated segmentation for each individual is

shown in the second column. The most important aspect is that we get the probabilistic

template in the third column, each row corresponds to one class. Each voxel belongs to

one class with high probability (white) and low probability (black).
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Class 1 Class 2 Class 3 Class 4
Training data 99.8% 98.6% 99.2% 99.4%

Table 2.1: Experiments on synthetic data. The Jaccard Index for the training data
average across 20 subjects.

Our probabilistic maps are sharp. Most voxels in each class have a probability larger

than 0.9. Only few voxels on the boundary of two classes have a non zero probabil-

ity to belong to two classes. This particularly sharp template demonstrates that the

deformations and segmentations have both been well captured through the simulation

process. The other parameters are also well estimated upholding the theoretical conver-

gence of our algorithm. The fourth exemplar has a large deformation compared to the

others. Thanks to the coupled classification-registration, we can see that our algorithm

manages to capture this large deformation and yields the corresponding classification.

We calculate the Jaccard index for each class (Table 2.1) which demonstrates that the

segmentation done during the atlas estimation is accurate.

In our model, we have a high dimensional parameter Γg that is associated with the

atlas estimation and imposes to increase the number of observations to get an accurate

estimate. To see whether its estimation improves the results, we also run our algorithm

without estimating Γg. To compare different situations, we fixed different values of Γg,

Γg = 0.5Id, Id, 2Id and 4Id. We show the estimated probabilistic templates for differ-

ent values of Γg in Fig. 2.3. Each column corresponds to Γg = 0.5Id, Id, 2Id and 4Id,

each row corresponds to one class. The voxel belongs to one class with high probability

(white) and low probability (black). We can see that the shape of the template do not

fit the data as well for Γg = Id and 4Id. It seems that we get a better template for

Γg = 0.5Id. Compared to our estimated probabilistic template in Fig. 2.2, our maps are

sharper than that obtained with any fixed Γg and the shape of the template fits better

the data.

The segmentation results with these fixed Γg are shown in Fig. 2.4. In the first

column, each row corresponds to one slice of one exemplar of the dataset. The sec-

ond to the fifth columns show the final estimated segmentation for each individual for

Γg = 0.5Id, Id, 2Id and 4Id. The main problems appear on the fourth exemplar that

has a large deformation. None of these values of Γg manages to segment this observa-

tion well. Despite it simplicity, this example shows the importance of constraining the

deformations to relevant ones with respect to the population. This result confirms the

classification performances presented in [15] in similar context.
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Figure 2.3: The estimated probabilistic templates for the model with fixed Γg. Each
column corresponds to Γg = 0.5Id, Id, 2Id and 4Id, each row corresponds to one
class. The voxel belongs to one class with high probability (white) and low probability

(black).

Figure 2.4: The segementation results for the model with fixed Γg. In the first
column, each row corresponds to one slice of one exemplar of the dataset. The second
to the fifth columns show the final estimated segmentation for each individual for Γg =

0.5Id, Id, 2Id and 4Id.

As a quantitative evaluation, we calculate the Jaccard index for each class for different

values of Γg (Table 2.2). We can see that we get a better value of Jaccard index for class

1 and class 2 when the value of Γg increase. However, for class 3 and class 4, the value of

Jaccard index increases first and then decreases when the value of Γg becomes too large.

By considering both the template and the Jaccard index, we get a better template for

Γg = 0.5Id, however we get a poor Jaccard index. From the first row of Table 2.1 and

Table 2.2, we can see that our model always gets a better Jaccard index than the model

with fixed values of Γg.

In summary, our model always gets a better result than the model with fixed values of



Chapter 2. Atlas Estimation 47

Γg Class 1 Class 2 Class 3 Class 4
0.5Id 99.4% 96.3% 98.0% 96.6%
Id 99.6% 97.2% 98.3% 97.2%
2Id 99.6% 97.7% 98.9% 98.8%
4Id 99.7% 98.1% 98.8% 97.2%

Table 2.2: Experiments on synthetic data. The Jaccard Index for the training data
using the model with fixed Γg. Compared with the first row of Table 2.1, our model

with estimated Γg gets the best result.

Γg. However, it would be difficult to choose the optimal value of Γg if we want to fix

it. Furthermore, we do not know the dependence between the motion of control points,

which may be very complex. Therefore, this justifies to estimate the high dimensional

parameter Γg in our model. Another argument is that the atlas estimation has to be

performed only once in each population. Therefore, it could be interesting to spend some

time to get an accurate estimation so that the following tasks based on these parameters

reach a better performance.

2.5.2 Real data

The proposed method was also tested on real MRI data, derived from manual annota-

tions that are publicly available at the Internet Brain Segmentation Repository (IBSR)

[3]. Eight images are available. Each image has a size of 160 × 160 × 128 with resolution

0.9735 × 0.9735 × 1.5 mm3. The images were considered to have 3 tissue classes: gray

matter (GM), white matter (WM) and CSF+background. Each tissue class follows a

Gaussian distribution. The variances are class dependent rather than homogeneous.

We take 800 fixed control points for the deformation model given in Equation (2.3),

corresponding to one control points in each 16 × 16 × 16 cube and 80× 80× 64 points

in the image as the control points for the template model given in Equation (2.4), cor-

responding to one control point in each 2 × 2 × 2 cube. We choose (0.3 × 80)2 as the

parameter of Kg as for synthetic images. For the hyper parameters, we choose ag = 0.5,

Γ0
g = Id, ap = 0.1 and σ20 = 1 for the same reasons as above. For comparison purpose,

we always present the same image slice z=10 for all methods in these experiments.

In the first experiment, we run our algorithm with 8 patient images as training data.

These images are provided with their segmentation, allowing for the validation of our

online segmentation of the training images.

At first, we compare our estimated template with DARTEL template that uses SPM’s

segmentation as input and the average template without deformation. The first three
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Figure 2.5: The template obtained by DARTEL (first column), our method with 8
subjects (second column), the average template without deformation (third column) and
20 subjects (fourth column). GM for the first row and WM for the second. DARTEL
template shows a wide line of CSF in zone 1 and a large pattern of the V1 in zone
2 which are thin in the data images. Our probabilistic maps capture the presence of
WM in zone 3, however DARTEL only detects a small region. The shape of the V1 in
zone 2 for our template fits better the data than the one for the average template. The
presence of WM in zone 3 for the average template is fuzzy. Our estimated template
with 8 subjects is good. With 20 subjects, we get more details on the boundary of two

types.

columns in Fig. 2.5 show one slice of DARTEL template (first column), our probabilistic

template with 8 subjects (second column) and the average template without deformation

(third column), the first and second rows correspond to GM and WM respectively.

Because of the smoothing step that creates regular contours, the DARTEL template is

smoother than our SAEM template. Moreover, the anatomical prior template used in

DARTEL makes the output very contrasted (almost binary). For DARTEL template,

zone 1 shows wide CSF digitations and zone 2 shows large primary visual cortex (V1)

pattern, which are much thinner in the data. Also notice that DARTEL requires a

pre-segmentation of the data and does not provide the geometric distribution of the

population. Our model only takes into account the training data and is thus free from

these biases. The weakly contrasted template may also be an advantage as it explains

the uncertainty on voxels coming from both the PVE and the registration level of details.

Another bias is shown in zone 3 where our probabilistic maps capture the presence of the

cerebral white matter. Thanks to the deformation estimated along the atlas estimation,

the presence of the cerebral white matter in zone 3 is sharper in our template than the

one in the average template and the shape of the V1 area in zone 2 better fits the data

(first column in Fig. 2.6). The demonstrates that incorporating the deformation metric

improves the atlas estimation.
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Figure 2.6: Experiments on real data. Each column corresponds to the one slice of 3
data images, the manual segmentation and the segmentation obtained by our method,
SPM8 and FAST. Our methods shows each fold of the V1 (zone 1). Our method does
not manage to segment the subcortical structures (zone 5a), others segment successfully

with the strong prior (however not entirely, see zone 5b).

Figure 2.7: Five simulated images using the estimated template with 8 subjects. The
deformations of the ventricles are realistic as well as the cortex foldings which look like

some training ones. Moreover, the cortex thickness changes.

In order to evaluate the estimated geometric variability, we use our generative model to

resample some images that should be representative of the population (Fig. 2.7). Our

model manages to capture the global and local deformations. The second brain has a

more round shape, the forth one a more elliptical shape and the last one is larger than

the others. This global shape changes are therefore well captured. The deformations of

the ventricles are realistic as well as the cortex foldings which look like some training

ones. Moreover, the cortex thickness changes (highlighted in red). This shows that

even with a small sample, we manage to capture the population geometric variability

accurately.

The segmentation results are shown in Fig. 2.6. Each row of the first column corresponds

to the same slice (128 × 160 voxels) of three training images. The manual segmentation
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for each individual is shown in the second column. Our algorithm gives the final classifi-

cation for each exemplar in the third column. We also get the segmentation from SPM8

and FAST algorithm in the last two columns. SPM8 and FAST outputs are probabilis-

tic, hence we define the deterministic tissue class of each voxel as the tissue that has

the maximum probability in this voxel. However, the SPM8 tissue probability maps are

sharp. Therefore, there are almost no difference between the probability maps and the

binary result (deterministic) that we used in our comparisons. These methods assume

that there exists three classes, the class of CSF is considered as CSF+background in

our case. Our segmentation looks accurate as it shows the calcarine sulcus folding in

zone 4. Moreover, thanks to the class dependent variance, which is estimated along

the algorithm iterations, there is no misclassification of voxels that creates holes with

both SPM8 and FAST. This can be seen both in zone 4 on both sides of the cortex

folds. Furthermore, the segmented cortical thickness by both SPM8 and FAST is much

smaller than that given by the manual segmentation. This may come from two different

aspects of these algorithms. First, they rely on a template that is not estimated with

the observations and therefore may create a bias on the cortical thickness. Moreover,

the registration is not done simultaneously with the segmentation. This may also create

this bias as the deformation is crucial as already noticed for the synthetic examples. The

FAST tissue probability maps are fuzzy, either registration or segmentation is not well

done, therefore the resulting uncertainty is very large.

Our method fails to segment the subcortical structures. The voxels belonging to these

structures have values between those of the GM and WM means in the training set.

Therefore, they are either classified by GM or by WM. For example, the putamen’s

gray level is closer to WM than GM mean in zone 5a, therefore it is misclassified by

our method. On the other hand, in zone 5b, as the gray level of the thalamus proper

reaches a value closer to GM, our algorithm performs better. We can notice that both

SPM8 and FAST capture these structures (however not entirely, see zone 5b). This is

made possible thanks to their prior templates used for segmentation which contain these

structures and thus guide the segmentation around these positions. In our model, there

is no informative anatomical prior set on the template nor on the segmentations. Hence,

the algorithm fails to fully classify these parts as GM.

To quantify the visual performance, we calculate the Jaccard index for each class for dif-

ferent methods (Table 2.3). We perform much better for the gray matter, as we succeed

in segmenting the cortex with the right thickness whereas SPM8 and FAST shrink it.

However the Jaccard index for the white matter is a little worse due to the misclassified

subcortical structures. To compensate for the misclassified subcortical structures, we try

to use DARTEL template as the informative prior on the probability maps (αk)16k6K .

However the gray level plays a greater role than the prior in the process, we lose the
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FAST SPM SAEM
GM 58.6% 65.2% 79.9%
WM 76.6% 76.0% 68.9%

Table 2.3: Experiments on real data. The Jaccard Index for different methods average
across 8 subjects. Our method gives a much higher value of Jaccard index for GM.
However a little worse for WM, it is because our method does not manage to segment
the subcortical structures as GM which is even difficult to segment manually. FAST and
SPM8 use an anatomical prior, therefore they segment successfully these structures.

prior gradually and still fail to classify these structures.

As a last experiment, we create the probabilistic atlas with 20 images from Open Access

Series of Imaging Studies (OASIS) [5]. There are 416 subjects aged from 18 to 96 with

resolution 1 × 1 × 1 mm3 in the OASIS dataset. The 20 images aged from 28 to

64 are chosen randomly. For the pre-processing, we use BET [73] to remove the non-

brain tissue from the images of the OASIS database. The fourth column in Fig. 2.5

shows one slice of our probabilistic maps with 20 subjects. The template obtained with

20 subjects captures more details on the boundary of two types than the one with 8

subjects. This appears in particular on both right and left cerebral cortex areas, where

the 8 subjects template classifies voxels only belonging to GM whereas the 20 subjects

template captures the presence of WM voxels. Although our model has high dimensional

parameters, we obtain a reasonable estimate with 20 images. The computation time is

about 10 days for 8 images and almost a month for 20 images. Since our algorithm can

be parallelized for the simulation step, we are working on a parallel C++ version of our

code to make it possible to increase the training set and decrease the computation time.

With the parallel version, it should cost about 1 day for 8 images and 3 days for 20

images.

2.6 Conclusion and discussion

In this study, we proposed a statistical model and used a stochastic algorithm to perform

a probabilistic atlas estimation. This model opens the way to performing registration and

segmentation simultaneously along the probabilistic atlas estimation. We also provide

a proof of the convergence of the estimation procedure toward a critical point of the

observed likelihood. Our algorithm has several advantages. First, the probabilistic atlas

contains both the templates and the geometric variability of the population. Second,

we do not need any pre-registration to perform the segmentation which is automatically

obtained as an output. The experiments show that the proposed approach compares

well with state-of-the art tools.
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Our experiments also show that our model does not manage to segment the subcortical

structures. This is easily explained by the fact that the image gray level provides am-

biguous information in these regions, and that the segmentation is an ill-posed problem

in the absence of prior information. One possible solution is thus to use the anatomi-

cal prior as SPM8 and FAST. Another solution is to use multimodal registration and

segmentation. Multimodal images make it possible to take advantage of the different in-

formation given by different imaging modalities. In a recent generalisation of this model

[150] (see Chapter 4), we manage to segment these structures using T1- and functional

MRI. Another improvement would be to consider diffeomorphic deformations as in [134]

or [140]. This control on the deformations would help to enforce anatomical constraints.

However, one should keep a parametric description in order to be able to sample these

deformations easily.

2.7 Proof of Theorem 2.1

From Equation (2.7), we have q(y|θ) =
K
∑

k=1

q(y|c = k, θc)
∫

q(c|β, θg)q(β|θp)dβ.
Since the right hand side term of Equation (2.9) is bounded by 1 (as it is a probability

distribution),

q(y|θ) 6
K
∑

k=1

q(y|c = k, θc)

∫

q(β|θp)dβ

6

K
∑

k=1

q(y|c = k, θc)

=
K
∑

k=1

1
√

2πσ2k

n|Λ|
exp













−

n
∑

i=1

|Λ|
∑

j=1
(yji − µk)2

2σ2k













where n is the number of images and |Λ| is the number of voxels on the grid Λ.

We denote

f(σ2c ) =
1

√

2πσ2c
n|Λ|

exp

(

− S2
c

2σ2c

)

where Sc =
n
∑

i=1

|Λ|
∑

j=1
(yji − µc)2. We want to bound f on R

+
∗ , let f

′ be its derivative:

f ′(σ2c ) =
1

√
2π

n|Λ|
(σ2c )

−
n|Λ|
2

−1exp

(

− S2
c

2σ2c

)(

S2
c

2σ2c
− n|Λ|

2

)

.
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For σ̃2c = S2
c

n|Λ| , f
′(σ̃2c ) = 0 and f ′′(σ̃2c ) < 0, so that for all σ2c > 0,

f(σ2c ) 6 f(σ̃2c ) =
1

√
2π

n|Λ|

(

S2
c

n|Λ|

)−
n|Λ|
2

exp

(

−n|Λ|
2

)

.

Therefore

log(qB(θ|y1, ...yn)) 6log
K
∑

k=1

(

∑

i

∑

j(y
j
i − µk)2

n|Λ|

)−
n|Λ|
2

+
ag
2
log|Rg|

− ag
2
〈Rg,Γ

0
g〉 −

K
∑

k=1

(
apσ

2
0

2σ2k
+
ap
2
logσ2k)−

(µk −mu)
2

2σ2u
+ C

where Rg = Γ−1
g , and C is a constant which does not depend on the parameters. If we

denote η0g the smallest eigenvalue of Γ0
g and ‖Rg‖ the operator norm of Rg (which is also

its largest eigenvalue), we get

〈Rg,Γ
0
g〉 > η0g‖Rg‖and log(|Rg|) 6 (3kg − 1)log‖Rg‖ − log‖Γg‖

so that

lim
‖Rg‖+‖Γg‖→∞

−ag
2
〈Rg,Γ

0
g〉+

ag
2
log|Rg| = −∞.

Similarly, we can show that

∀k ∈ J1,KK, lim
σ2
k
+σ−2

k
→∞

apσ
2
0

2σ2k
+
ap
2
logσ2k = −∞.

Moreover, for all k ∈ J1,KK, there exists at least one voxel jk in one image ik such that

yjkik 6= µk, otherwise all µk would be equal and all the images would be constant. Thus

log
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
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Furthermore,

∀k ∈ J1,KK, lim
|µk|→∞

(

(yjkik − µk)
2

n|Λ|

)−
n|Λ|
2

= 0.
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which implies that

lim
|µk|→∞

log
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So that

∀k ∈ J1,KK, lim
|µk|→∞

log
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−
n|Λ|
2

− (µk −mu)
2

2σ2u
= −∞.

Now considering the Alexandrov one-point compactification Θ ∪ {∞} of Θ, we have

lim
θ→∞

log(qB(θ|y1, ..., yn))→ −∞.

Since θ → log(qB(θ|y1, ...yn)) is smooth on Θ, we get the result.

2.8 Proof of Theorem 2.3

In this Section, we prove Theorem 2.3. To this purpose, we will follow the path of proof

in [15], i.e. prove that the stochastic approximation sequence satisfies assumptions

(A1’)(ii), (iii), (iv), (A2) and (A3’). The fact that the critical points remain in a level

set of the Lyapunov function remains an assumption because of the complexity of our

model. We detail only the crucial steps and arguments of the proof which differ from

the previously mentioned one and refer to [15] when it is identical.

The sufficient statistic vector S, the set S as well as the explicit expression of θ̂(s) have

been given in Subsection 3.2. As noted, θ̂ is a smooth function of S.

2.8.1 Proof of assumption (A1’).

We recall that the functions H, h and w are defined in Subsection 2.4.3. Thanks to

these particular forms, we satisfy (A1’(iii)) and (A1’(iv)) as proved in [47].

Moreover, since the interpolation kernel Kp is bounded, there exist A > 0, B > 0, C > 0,

D > 0 such that for any (c,β) ∈ Z, we have

0 < S0,k(c,β) 6 A, ‖S1,k(c,β)‖ 6 B, 0 6 S2,k(c,β) 6 C, 0 6 S3(c,β) and 0 6 S4,k,l(c,β) 6 D.
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We define the set Sa by

Sa , {S ∈ S|0 6 S0,k 6 A, ‖S1,k‖ 6 B, 0 6 S2,k 6 C, 0 6 S3 and 0 6 S4,k,l 6 D}.

Since the constraints are obviously convex and closed, we get that Sa is a closed convex

subset of Rs such that

Sa ⊂ S ⊂ R
s

and satisfying

s+ ρHs(c,β) ∈ Sa for any ρ ∈ [0, 1] any s ∈ Sa any (c,β) ∈ Z.

We now focus on the first two points. As l and θ̂ are continuous functions, we only need

to prove that WM ∩ Sa is a bounded set for a constant M ∈ R
+
∗ with:

WM = s ∈ S, w(s) 6M,

where w(s) is defined in Definition 1.

On Sa, s0, s1, s2 and s4 are bounded; writing θ̂(s) = (αk(s))16k6K , (µk(s))16k6K , (σ
2
k(s))16k6K ,Γg(s)),

we deduce from Equation (2.15) that (αk(s))16k6K , (µk(s))16k6K , (σ
2
k(s))16k6K are bounded

on Sa. Considering the sufficient statistic s3, thus

w(s) > −log
(∫ ∫

q(y, c,β, θ̂(s))dcdβ

)

> −log(qB(θ̂(s))) + C > −log(qB|Γ(Γ(s))) + C,

where C is a constant independent of s ∈ Sa. Since

−log(qB|Γ(Γ(s))) =
ag
2
(〈Γ−1

g ,Γ0
g〉F + log|Γg|) >

ag
2
log|Γg|

and

lim
‖s‖→+∞,s∈Sa

log(|Γg(s)|) = lim
‖s‖→+∞,s∈Sa

log(|(s3 + agΓ
0
g)/(n ∗ |Λ|+ ag)|) = +∞,

we deduce that

lim
‖s‖→+∞,s∈Sa

w(s) = +∞.

Since w is continuous and Sa is closed, this proves (A1’(ii)).
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2.8.2 Proof of assumption (A2)

We prove the same condition (DRI1) defined in [15] which will imply (A2) under the

condition that H and V are related. We, in fact, have the following property : ∃ C > 0

such that :

sup
s∈K
|Hs(c,β)| 6 C V (c,β) ,

where we set V : J1,KK|Λ| × R
3kg → [1,+∞[ as the following function

V (c,β) = 1 + ‖β‖2. (2.16)

We now prove the following lemma which gives the existence of the small set C required

by condition (DRI1):

Lemma 2.4. Any compact set of Z = J1,KK|Λ| × R
3kg is a small set for (Πθ̂(s))s∈K

Proof. Let A be a Borel set of Z and x ∈ C a compact subset of Z, then we have

Πθ̂(s),t(x, A) >

∫

At

(

1 ∧
πθ̂(s),t(z

t)

q(zt, θ̂(s))

q(xt, θ̂(s))

πθ̂(s),t(x
t)

)

q(zt, θ̂(s))dzt

>

∫

At

(

q(zt, θ̂(s))

πθ̂(s),t(z
t)
∧ q(x

t, θ̂(s))

πθ̂(s),t(x
t)

)

πθ̂(s),t(z
t)dzt ,

>

∫

At

(

q(zt, θ̂(s))

πθ̂(s),t(z
t)
∧ q(x

t, θ̂(s))

πθ̂(s),t(x
t)

)

πθ̂(s),t(z
t)1C(z)dz

t .

If we can prove that for any compact set K ∈ S, there exists a constant CK,C such that

πθ̂(s),t(z
t)

q(zt, θ̂(s))
6 CK,C , (2.17)

then:

Πθ̂(s),t(x, A) >

∫

At

1

CK,C
πθ̂(s),t(z

t)1C(z)dz
t (2.18)

>

∫

At

1

CK,C
πK,t(z

t)1C(z)dz
t , (2.19)

where ∀z ∈ C, πK,t(z
t) = min

s∈K
πθ̂(s),t(z

t) is a positive measure thanks to the smoothness

of the probability measure q(zt|z−t,y, θ̂(s)) in its parameter s for all z ∈ C.

Let us now prove (2.17).
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πθ̂(s),t(z) = q(zt|z−t,y, θ̂(s))

=
q(y|z, θ̂(s))q(zt, θ̂(s))

q(y|z−t, θ̂(s))

πθ̂(s),t(z)

q(zt, θ̂(s))
6

1

∫

|Λ|
∏

j=1
exp

(

− 1
2σ̂2

cj
(s)

(yj − µcj )2
)

q(zt, θ̂(s))1C(z)dzt

Since there exists a > 0 such that ∀j, (yj −µcj )2 6 a and since σ2c > σ2min, then we have

exp

(

− 1

2σ2cj
(yj − µcj )2

)

> exp

(

− a

2σ2min

)

So that

πθ̂(s),t(z)

q(zt, θ̂(s))
6

1

exp
(

− a
2σ2

min

)|Λ|
∫

q(zt, θ̂(s))1C(z)dzt

6 exp

(

a

2σ2min

)|Λ|

car

∫

q(zt, θ̂(s))1C(z)dz
t = 1.

It is bounded by CK,C = exp
(

a
2σ2

min

)|Λ|
on K for any z ∈ C. The complete transition

kernel is a composition of the previous kernel for t from 1 to 3kg + |Λ|. Since the

coordinate of z are independent we get:

Πθ̂(s)(x, A) >

∫

A

(

1

CK,C

)3kg+|Λ|




3kg+|Λ|
∏

t=1

πK,t(z
t)



1C(z)dz

This yields the existence of the small set and the third condition of (DRI1) with

δν(A) =

∫

A

(

1

CK,C

)3kg+|Λ|




3kg+|Λ|
∏

t=1

πK,t(z
t)



1C(z)dz

and ends the proof.

For proving the first conditions of (DRI1), we need to ensure that our acceptance rates

are always strictly positive. We notice that r̃p(β
p, b;β−p, c, θ) =

q(c|βb→p)
q(c|β) > q(c|βb→p) >

0, because for ∀ (c,β) ∈ Z, q(c|β) ∈]0, 1[ which is justified in Remark 4. Therefore, for

any compact set K ⊂ S, ∃ aK > 0 : ∀ rp(βp, b;β−p, c, θ) > aK. The other proof of the

first and second conditions of (DRI1) is similar with the proof in [15] with the function

V defined in Equation (2.16).
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2.8.3 Proof of assumption (A3’)

For proving the Hölder condition (A3’(ii)). We will use the lemma 6.4 and lemma 6.5 in

[15] which state Lipschitz conditions on the transition kernel and its iterates. If we can

prove that the derivative of the acceptance rates in our model are Lipschitz functions,

we get the result of lemma 6.4.

Proof. Concerning the derivative of rp(β
p, b;β−p, c, θ), since

log(r̃p(β
p, b;β−p, c, θ)) =

|Λ|
∑

j=1

logαk(cj = k|βb→p)−
|Λ|
∑

j=1

logαk(cj 6= k|β),

we have | ddǫ r̃p(βp, b;β−p, c, θ))| 6 CK‖s′ − s‖.

Concerning the derivative of rj(c
j , k; c−j , θ),
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Thus, we have
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The next proof for (A3’(ii)) and the proofs for (A3’)(i)(iii) are the same as the proofs

in [15].



Chapter 3

Bayesian Estimation of

Probabilistic Atlas for Tissue

Segmentation

Automatic anatomical brain image segmentation is still a challenge. In particular algo-

rithms have to address the partial volume effect (PVE) as well as the variability of the

gray level of internal brain structures which may appear closer to gray matter (GM) than

white matter (WM). Atlas based segmentation is one solution as it brings prior informa-

tion. For such tasks, probabilistic atlases are very useful as they take into account PVE.

In this chapter, we provide a detailed analysis of a generative statistical model based

on dense deformable templates that represents several tissue types observed in medical

images. The inputs are gray level data whereas our atlas is composed of both an estima-

tion of the deformation metric and probability maps of each tissue (called class). This

atlas is used to guide the tissue segmentation of new images. Experiments are shown

on brain T1 MRI datasets. This method only requires approximate pre-registration, as

the latter is done jointly with the segmentation. Note however that an approximate

registration is a reasonable pre-requisite given the application.
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3.1 Introduction

Medical image analysis often requires the accurate delineation of different tissue types,

based on the contrasts observed in different image modalities and a spatial model of the

tissues. The use of automated segmentation is important both for the sake of efficiency

and for reproducibility. Many different methods have already been proposed for seg-

mentation, such as level set methods [141], model-based segmentation [72], atlas-based

approaches [155] among a huge literature. Here we consider atlas-based segmentation,

the success of which depends crucially on the choice of the atlas. Probabilistic atlases

are attractive because they make it possible to take into account the uncertainty on the

underlying tissue type, which is related to partial volume effect or to perfectible regis-

tration. Joint registration-segmentation [106] is generally more effective than sequential

registration and segmentation [70, 71]: an accurate segmentation is needed to finesse the

registration, and is made easier in turn by an accurate registration to a tissue template.

In this chapter, we address atlas estimation, i.e. the joint estimation of a probabilistic

template together with the geometric variability of a population, and, once the atlas

has been learned, we use it to segment new observations, while taking into account the

estimated anatomical variability.

Several solutions have been proposed previously to deal with one or the other part of

this problem. In [112], Riklin-Raviv et al. proposed an automated method for brain

segmentation via latent templates; however it requires a pre-registration. In [83], the

registration is used for the templates estimation; however it requires pre-segmentation.

In [117], a probabilistic model was proposed for segmentation, however it does not do

the registration jointly with the segmentation. In [20], Ashburner et al. proposed to

segment a single image providing tissue probability maps. However it deals with a single

image, and thus cannot be used to understand the geometric variability among individ-

uals. In [15, 153], a method was proposed to create an atlas containing the template

and the geometric variability. However it does not perform segmentation jointly with

atlas estimation and the learned atlases are deterministic. In [25], a method was pro-

posed to do the segmentation and registration jointly, while creating an average brain

atlas, however it does not learn the geometric variability. Therefore the deformations

follow a fixed distribution which is not representative of the population. The posterior

segmentation is coarse as it is not conditioned to relevant deformations.

In this paper, we propose a generative approach for the estimation of a probabilistic atlas

including geometric variability. During this process, registration and segmentation are

coupled with atlas estimation. We use the same observation model as in [20], generalize



Chapter 3. Segmentation of new individual 61

it and use the algorithm in [15] for the estimation. We also learn the geometry as the

metric on the space of deformation, which reduces the possible deformations to those

that are common in the population. To estimate model parameters, we use a stochastic

algorithm that has demonstrated good performance on real data in [14]. The output

of the algorithm is the probabilistic atlas, the individual tissue segmentation and the

means and variances of each tissue type. We use this atlas as an anatomical prior for

segmentation of new individuals. Two tests were performed on the different databases.

3.2 Material

Objective: From the T1 MR images, our objective is to provide an atlas construction

which includes both the probabilistic template and the geometric variability. During the

process, the registration and segmentation are done jointly. Then we use the estimated

atlas to segment new MR images by constraining the template to subject deformation

with the estimated metric.

Dataset:

a- Internet Brain Segmentation Repository (IBSR) [3]: 18 T1 MRI with their manual

segmentations. Eight with resolution 0.9735 × 0.9735 × 1.5mm3, six with resolution

1 × 1 × 1.5mm3, and four with resolution 0.837 × 0.837 × 1.5mm3. These data are

provided by the Center for Morphometric Analysis at Massachusetts General Hospital.

b- Open Access Series of Imaging Studies (OASIS) [5]: 416 subjects aged 18 to 96 with

resolution 1× 1× 1mm3.

c- MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling [4]: 15 (10

females) T1 MRI from OASIS project with their manual segmentation provided by

Neuromorphometrics Inc., aged from 19 to 34 with resolution 1× 1× 1mm3.

Each image in these three datasets is the size of 256 × 256 × 128. We reduce the

background in our experiment, therefore the image size is 160× 160× 128.

3.3 Methods

3.3.1 Statistical Model.

We consider n gray level MR images from n patients. This set, (yi)16i6n, of images are

observed on a grid of voxels Λ embedded in a continuous domain D ⊂ R
3. We denote
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xj ∈ D the location of voxel j ∈ Λ. We consider that each image is composed of voxels

belonging to one class among K with an associated probability Pk. We assume that

the signal in the K tissue classes is normally distributed with class dependent means

(µk)16k6K and variances (σ2k)16k6K .

As mentioned previously, the gray level images have not been pre-segmented. Therefore,

the unobserved class of each voxel is assumed to follow a distribution which is the

discretization on Λ of a random deformation of tissue probability maps (Pk)16k6K . These

probability maps correspond to the probability of each voxel to belong to each class in

the template domain. They form the probabilistic template of the population. The

random deformations from these template maps to each subject are also unobserved.

We define them through a random field z : R3 → R
3 such that for j ∈ Λ the prior

probability of a voxel j from subject i to be in the kth class (cji = k) is given by:

P(cji = k) = Pk(xj − z(xj)) (3.1)

In order to reduce the problem to finite dimension, we define the deformation field as a

finite linear combinations of a given kernel Kg centered at some fixed equi-distributed

control points in the domain D : (xg)16g6kg with parameter β ∈ (R3)kg

∀x ∈ D, zβ(x) = (Kgβ)(x) =

kg
∑

k=1

Kg(x, xg)β(k) (3.2)

whereKg is chosen as a radial Gaussian Kernel. Note that we can also choose the control

points non uniformly, we can fix more control points in regions of interest to get a more

accurate result in areas of high variability.

As for the deformation model, the templates Pk : R3 → [0, 1], ∀k ∈ J1,KK which are

the tissue probability maps are parameterized by the coefficients αk ∈ [0, 1]kp , which

satisfy ∀l ∈ J1, kpK,
K
∑

k=1

αl
k = 1. We pick a fixed set of landmarks (pl)16l6kp which may

be different from the geometric ones:

∀x ∈ D,Pk(x) = Kpαk(x) =

kp
∑

l=1

Kp(x, pl)α
l
k, (3.3)

where Kp(x, pl) = 1 if pl is the nearest neighbor of x among the set of points (pj)j and

0 otherwise.

The previous hypothesis provides a generative statistical model for a sample of gray level

images (Fig. 3.1). The random variables are the deformation vector β, the class of each

voxel c and the observed gray levels of the images y. We assume that the deformation

vector follows a normal distribution with mean zero and non-diagonal covariance matrix

Γg. The covariance matrix Γg is not assumed to have any particular pattern of zeros.
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Figure 3.1: The generative statistical model.

This makes it possible to model local and global correlations between control point

moves, in particular, very correlated displacements can be captured such as translation

of a large area of the images.

The parameters to estimate are the covariance matrix Γg of the deformation vector β

(Equation (3.2)), the coefficients that define the templates (αk)16k6K (Equation (3.3)),

the class dependent means (µk)16k6K and variances (σ2k)16k6K .

Medical images are typically high-dimensional, but usually come in small samples.

Therefore to regularize the statistical model, we propose to work in a Bayesian frame-

work. We use standard conjugate priors for the covariance matrix, the class dependent

means and variances with fixed hyper-parameters.

3.3.2 Estimation Algorithm.

We use the maximum a posterior (MAP) estimator: θ̂n = argmax
θ∈Θ

qB(θ|y1, ..., yn) where

qB denotes the posterior distribution of the parameters given the n observations y1, ..., yn.

As we are in an incomplete-data setting, we choose to use the Stochastic Approximation

Expectation-Maximization (SAEM) [15, 47] to maximize the likelihood. This algorithm

coupled with a Markov Chain Monte Carlo method has demonstrated good theoretical

[15] and numerical [14] performances in such settings. The SAEM algorithm is an

iterative procedure that consists of three steps. First, we simulate the missing data

using a Metropolis-Hastings within Gibbs sampler. In our model, the missing data are

the deformation vector and the tissue classes. Thanks to our choice of sampler, we get

an online registration and segmentation. Then, a stochastic approximation is done on
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the sufficient statistics using the simulated value of the missing data. Last, we maximize

the log-likelihood with respect to the model parameters. See [151] for more details.

3.3.3 Segmentation of new individuals.

Once the atlas has been estimated, one would like to perform some posterior segmen-

tation of new observations. This can easily be done using atlas-based segmentation

methods as in [123, 155]. Our model can be used directly but this typically requires

heavy computations. This complexity is not a problem when creating an atlas since this

step has to be only performed once. However, the atlas based segmentation procedure

has to be numerically efficient. To that purpose, we propose to use a different tool

keeping all the specific aspects of the model, i.e. the parameters µk, σ
2
k, αk and Γg.

More precisely, thanks to our estimated probabilistic template (P̂k)16k6K given by Equa-

tion (3.3) with the estimated weights (µ̂k)16k6K , we define the estimated gray level

template image as

Î =

K
∑

k=1

µ̂kP̂k.

This template is defined on the whole space D. Note that this formulation of the

template accounts for PVE in voxels.

Our atlas also provides the geometric variability of the population through the covariance

matrix Γ̂g. We use this matrix as a metric for the space of deformations to constrain

the registrations according to the learned distribution.

Given a target image y, the template Î is deformed non-rigidly and registered to the

target image by minimizing the classical energy:

E(ϕ) =
1

2
‖ϕ‖2

Γ̂g
+

∫

1

2σ̂2c
ϕ−1(x)

(y(x)− Î ◦ ϕ−1(x))dx

The first term on the right hand side yields the cost of the deformation using the metric

given by Γ̂g whereas the second term quantifies the similarity between the observed

image and the deformed template. The trade off between these two terms is given by

the noise variances which have also been estimated to best fit the noise in the training

dataset. Note that this noise also accounts for the fact that the images are not drawn

by this simple approximating model.

Remark 5. We notice that in the numerical experiment, the variances of the tissue gray

levels are very close to each other so that we assume in this posterior segmentation that

they are all equal to σ2.
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Our model assumes that the deformations are linearized deformations given by control

point movements. We keep this assumption and therefore the energy only depends on

the vector of control point displacement β. Using also Remark 5, we can approximate

the integral by

E(ϕβ) ≃
1

2
βT Γ̂−1

g β +
1

2σ2

∑

x∈Λ

(

y(x)− Î(x− zβ(x))
)2
. (3.4)

We use a gradient descent algorithm to minimize the criterion in Equation (3.4), which

yields

β∗ = argmin
β∈R3kg

1

2
βT Γ̂−1

g β +
1

2σ2

∑

x∈Λ

(

y(x)− Î(x− zβ(x))
)2
.

Then the tissue c∗j for each voxel j of the new observation is chosen to be the class

that maximizes the posterior probability of that voxel to belong to each class, given this

deformation field β∗,

c∗j = argmax
cj∈J1,KK

[

log
(

q(yj |cj , θ̂)q(cj |β∗, θ̂)
)]

.

The segmentation is therefore constrained by both the estimated template and the

learned geometric variability.

3.4 Experiments and Results

We tested our algorithm on the previously described data and compared with SPM8 [7],

package FAST [158] in the software FSL [1] and DARTEL algorithms [19].

As a first experiment, the proposed method is tested on data derived from manual

annotations that are publicly available at the IBSR. The images were considered to

have 2 tissue classes: GM and WM. We take 800 control points to drive the deformation

model given in (Equation (3.2)) and 4066 points to drive the template model given in

(Equation (3.3)).

At first, we run a five fold cross validation of our algorithm with 10 patient images. We

visualize one group of our online segmentation of these training images and compare

it to their manual segmentation (Fig. 3.2). Each column corresponds to one slice

(160 × 128 voxels) of three training data, the manual segmentation, the segmentation

obtained by first our method, SPM8 and lastly FAST. SPM8 and FAST outputs are

probabilistic, the deterministic tissue class of each voxel is defined by the tissue that has

the maximum probability in this voxel (as for our method cf. subsection 3.3.3). These

two methods assume that there exists three classes and therefore CSF is considered as
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Figure 3.2: Each column corresponds to the one slice of 3 data images, the manual
segmentation and the segmentation obtained by our method, SPM8 and FAST. Our
method shows each fold of the GM (zone 1). Our method does not manage to segment
the subcortical structures (zone 2a), others segment successfully with the strong prior

(however not entirely, see zone 2b).

the background. The segmentation given by our algorithm looks accurate, for instance

it shows the correct folds of the cortex in zone 1. Moreover, as it takes into account

that the gray level of the tissues have a variance, which is estimated along the algorithm

iterations, there are few misclassification of voxels contrary to SPM8 and FAST that

overestimate the CSF, thus creating hole patterns in the cortex. This can be seen in the

same brain areas in all patients as well as on all sides of the cortex folds. Furthermore,

the thickness of the cortex segmented by both SPM8 and FAST is much smaller than

the one given by the manual segmentation. This may come from two different aspects

of these algorithms. First they rely on an atlas that may create a bias on the thickness

of the cortex whereas our segmentation are performed at the same time as the atlas

segmentation, therefore learned on the population. Moreover, they do not compute the

registration simultaneously with the segmentation. This may also create this bias as

the deformation is crucial as already noticed in [47]. The SPM8 tissue probability maps

are sharp, leading to non accurate segmentation in particular due to PVE. The FAST

tissue probability maps are fuzzy, as neither registration nor segmentation is sufficiently

accurate; the uncertainty associated with this poor model results in a fuzzy template.

As we can see in box 2a-b, our method fails to segment the subcortical structures. The

voxels belonging to these structures have gray level values between the GM and WM

means in the training set. Therefore, they are either classified by GM or by WM. A

solution of this problem is to use an anatomical prior as in [119]. Zone 2a highlights the

putamen that is misclassified by our method. As we can see its gray level is closer to WM
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FAST SPM SAEM
GM 59.3% 64.9% 78.9%
WM 76.4% 75.5% 69.9%

Table 3.1: The mean Jaccard Index for different methods in the five fold cross valida-
tion. Our method gives a much higher value of Jaccard index for GM. However a little
worse for WM, it is because our method does not manage to segment the subcortical
structures as GM which is even difficult to segment manually. FAST and SPM8 use an

anatomical prior, therefore they segment successfully these structures.

than GM mean. On the other hand, in zone 2b, as the gray level of the thalamus reaches

a value closer to GM, our algorithm manages to perform better. We can notice that

both SPM8 and FAST capture these structures (however not entirely, see zone 2b). This

is made possible thanks to their prior templates used for segmentation which contain

these structures and thus force the segmentation around these positions. In our model,

there is no informative anatomical prior set on the template and on the segmentations.

Hence, our algorithm fails to fully classify these parts as GM, however it is not forced

to construct a template with specific patterns.

As a quantitative test, we calculate the mean Jaccard index for each class for different

methods (Table 3.1). Our method gets a better jaccard index for the gray matter than

SPM8 and FAST with a significant improvement (p 6 0.05 on the paired t-test comparing

5 pairs of jaccard index), which results from the fact that our method segments the cortex

with the right thickness whereas SPM8 and FAST shrink it. As expected, we perform a

little worse for the white matter, this phenomenon is a consequence of the misclassified

subcortical structures.

Now we compare our estimated template with DARTEL template that uses the SPM’s

segmentation as input. The first two columns in Fig. 3.3 show one slice of DARTEL

template (first column) and our probabilistic maps with 8 subjects (second column),

the first and second rows correspond to GM and WM respectively. DARTEL atlas is

smoother than our SAEM template. This comes from a smoothing step in the algorithm

that creates these regular contours. Moreover, it also relies on an anatomical prior

template so that the output looks very contrasted (almost binary). Although our atlas

is less smooth, it only takes into account the training data and thus avoids creating a

bias such as the large line of CSF in zone 3 that appears much thinner in the data and

by consequence in our estimated template. The non smooth template may also be an

advantage as it explains the uncertainty on voxels coming from both the PVE and the

registration level of details. Another bias is shown in zone 4 where our probabilistic

maps capture the presence of WM.

As a last experiment, we create our probabilistic atlas with 20 images from OASIS [5],

and then segment 15 new images from MICCAI Challenge [4] using the estimated atlas.
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Figure 3.3: The atlas obtained by DARTEL with 8 subjects(first column), our method
with 8 subjects (second column) and 20 subjects (third column). GM for the first row
and WM for the second. DARTEL atlas shows a wide line of CSF in zone 3 which is
thin in the data images. Our probabilistic maps capture the presence of WM in zone
4, however DARTEL only detects a small region. Our estimated atlas with 8 subjects

is good. With 20 subjects, we get more details on the boundary of two types.

FAST SPM SAEM
GM 66.4% 66.2% 73.2%
WM 72.8% 76.3% 72.8%

Table 3.2: The Jaccard Index for different methods (our segmentation method for
new individual, FAST and SPM8) average across 15 subjects.

For the pre-processing, we use BET [73] to remove the non-brain tissue from the images of

the database OASIS. The posterior segmentation for the 15 new images (Fig. 3.4) looks

quite accurate (however, with the same misclassification of the subcortical structures).

We calculate the Jaccard index for each class (Table 3.2). We get a Jaccard index

around 73% for each tissue type. These rates outperform SPM8 and FAST for GM as

we already noticed for the previous experiment. Concerning the WM, our classification

rate is similar to those of other algorithms, which highlights the classification power of

our model. In MICCAI Challenge, two classes (cortical and non-cortical) are considered

for evaluating the result. The subcortical structures are considered as non-cortical:

this confirms that these structures are difficult to segment with the gray level images.

This particular detail will lead to low jaccard indexes for algorithms based on wrong

priors (as SPM8 and FAST). The third column in Fig. 3.3 shows one slice of our

probabilistic maps with 20 subjects. Compared with our template obtained with 8

subjects, the template obtained with 20 subjects captures more details on the boundary

of two classes. This appears in particular on both right and left cerebral cortex areas
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Figure 3.4: Each row corresponds to the one slice of 4 data images, the manual
segmentation and the segmentation obtained by our method.

where the 8 subjects template classifies voxels only belonging to GM whereas the 20

subjects template captures the presence of WM voxels. Not unexpectedly, the procedure

readily benefits from larger learning sets; at which level it asymptotes is an interesting

question for the future. Since we only use the gray level images to create our atlas

without any other information, the segmentation does not work well if the new brain

is not similar to the population used to estimate the atlas. The constraint to use our

method is that the new brain should belong to the same population in the sense that

estimating an atlas from healthy brains will fail to segment a test brain with a tumor.

Concerning the computational cost of our method, the atlas construction takes about 10

days for 8 images and almost a month for 20 images, whereas it takes about 5 minutes

to segment the new image. The high dimensional covariance matrix makes the template

construction long, however, it is interesting to spend some time to learn the geometric

variability since the template construction should be done only once. Moreover, our

algorithm can be parallelized for the simulation step by distributing one image per

processor, which makes it possible to use more training data for the atlas construction

within fixed computational time.

3.5 Conclusion and Discussion

In this study, we proposed a statistical model and used a stochastic algorithm to do

registration and segmentation simultaneously in order to create a probabilistic atlas. Our

algorithm has several advantages. First, we do not need a precise pre-registration which
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is done jointly with the segmentation during the atlas estimation. Second, the atlas

contains both the probabilistic templates and the geometric variability of the population.

Third, we can use this anatomical prior for segmenting new individuals. Our experiments

also show that our method fails to segment the subcortical structures as GM. This is

easily explained by the fact that the voxels belonging to these structures are between

the GM and WM means in the datasets. This gives a problem for segmentation without

the prior information. One possible solution is to use the anatomical prior as SPM8

and FAST. Another solution is to use multimodal images that take advantage of the

different information given by different imaging modalities. In particular, current work

extends this model to anatomo-functional data which manage to segment the subcortical

structures as GM thanks to some activations that only appear in GM in these structures

[150].



Chapter 4

Bayesian Estimation of

Probabilistic Atlas for

Anatomically-Informed

Functional MRI Group Analyses.

Traditional analyses of Functional Magnetic Resonance Imaging (fMRI) use little anatom-

ical information. The registration of the images to a template is based on the individual

anatomy and ignores functional information; subsequently detected activations are not

confined to gray matter (GM). In this chapter, we propose a statistical model to estimate

a probabilistic atlas from functional and T1 MRIs that summarizes both anatomical and

functional information and the geometric variability of the population. Registration and

Segmentation are performed jointly along the atlas estimation and the functional activity

is constrained to the GM, increasing the accuracy of the atlas.
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4.1 Introduction

Brain atlases are a useful tool in medical image analysis for both segmentation and

registration tasks. Probabilistic atlases yield a useful summary of a given dataset [63, 84],

as they take into account the uncertainty on the underlying tissue type, which is related

to partial volume effect (PVE) or to perfectible registration. In [20], a probabilistic

framework was proposed for joint nonlinear registration, intensity normalization and

segmentation of a single image, from which it infers tissue probability maps. In [110],

a probabilistic model was proposed to segment a heterogeneous data set of brain MRIs

simultaneously while constructing the probabilistic atlases. In spite of its convincing

results, this model is not consistent, as the deformations are considered as parameters

(whereas segmentation is an unobserved random variable). In [151], the model proposed

in [20] was generalized in order to provide estimates of individual segmentations as well

as the probabilistic atlas from a set of anatomical images. This approach handles both

the segmentation and registration as hidden variables, leading to a coherent convergent

statistical estimator. However, this model is limited to scalar images. Here, we generalize

it to create a probabilistic atlas that provides the probabilistic templates of each tissue

as well as the degree of activation on GM voxels and the geometric variability.

Functional Magnetic Resonance Imaging of the brain is used to localize functional areas

in the cortex and deep nuclei by measuring MRI signal changes associated with neural

activity. It is a tool of choice for cognitive studies that aim at identifying specific regions

of the brain that are activated in perceptual, cognitive or motor tasks. The most pop-

ular type of analysis is Statistical Parametric Mapping (SPM) [59], an approach that

estimates the probability that some activation can be due to chance alone and provides

p-value maps. Group analysis is then used to detect regions that show a positive mean

activation across subjects [58, 132]. Accurate realignment of individual scans is most of-

ten obtained by normalizing individual anatomical images to a T1 MRI template. These

processing steps are done without considering the complementarity of the anatomical

and functional information available in each subject. Therefore, detected activations are

not confined to gray matter. Few fMRI segmentation methods have been proposed to

take into account multi-modal data, such as T1 and functional MRI. An implementa-

tion of cortical-based analysis of fMRI data was proposed in [16]. The fMRI data are

mapped to the cortical surface, then activations are detected on the surface. It has been

shown to achieve anatomically accurate activation detection. In [98], Markov Random

Fields (MRF) were used as a spatial regularization in fMRI detection and anatomi-

cal information was incorporated into the MRF-based detection framework. In [118],

both anatomical and functional data are used to improve the group-wise registrations.

Anatomical information appears helpful in fMRI detection; however, the approaches
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so far do not incorporate a group model into the analysis. In this paper, we process

multi-modal data jointly to ensure that the detected active areas are conditioned to

gray matter while registration is informed by functional information. More specifically,

group analysis first performs the alignment of individual images to a T1 MRI template

and then segments active regions by thresholding. However, performing registration

and segmentation jointly is generally more effective than performing them sequentially

[151, 153]. In this paper, we take advantage of such coupling.

To deal with all the issues described above, we propose an atlas estimation procedure

that can improve the template image estimation and the detection of the active areas.

We generalize the model proposed in [151]. The input is now multivariate, as it encodes

multi-modal patient observations (gray level T1 and functional MRIs). The estimated

active areas are conditioned to GM segmentation. We perform the estimation by cou-

pling the segmentation and registration steps. We estimate a probabilistic atlas that

accounts for the variability of active areas in the population. We also learn the geome-

try as the metric on the space of deformations that drive the coupled segmentation. We

use a stochastic algorithm with known guarantees on the convergence of the estimation

procedure. The output of the algorithm is the probabilistic atlas, the individual active

areas and the means and variances of each tissue type in each modality.

The rest of this paper is organized as follows. In Section 2, we present the model, the

estimation procedure, the algorithm. Section 3 yields experimental results on simulated

and real data.

4.2 Methods

4.2.1 Statistical Model.

Let us consider n groups of T1- and f- MRIs (y1,i, y2,i, ..., ym,i)16i6n from n patients. Each

image is observed on a grid of voxels Λ embedded in a continuous domain D ⊂ R
3. We

denote xj ∈ D the location of voxel j. We consider that each T1 MRI is composed of vox-

els belonging to one of the four classes, corresponding to four tissue types: gray matter,

white matter (WM), CSF and background (BG). Each fMRI is composed of voxels be-

longing to one class among 3+K, corresponding to WM, CSF and BG, where no activa-

tion is expected to occur, and K different levels of activation in gray matter. We assume

that the signal in the (3 +K)(m−1) classes is normally distributed with class dependent

means (µ1,f(k2), µ2,k2 , ..., µm,km)ks∈{WM,CSF,BG,GM1,...GMK} and variances
(

σ21,f(k2), σ
2
2,k2

,

..., σ2m,km

)

ks∈{WM,CSF,BG,GM1,...,GMK}
, where 2 6 s 6 m and f(k) = k if k ∈ {WM,CSF,
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BG}, GM otherwise. We assume that ∀(s, s′) ∈ [2,m]2, f(ks) = f(ks′). The whole set

of parameters is denoted by Θ.

As mentioned previously, we are working with gray level images which have not been

pre-segmented. The unknown class of each voxel is supposed to be the discretization

on Λ of a random deformation of probability maps (Ps,k)16k6K+3,26s6m. These prob-

ability maps correspond to the probability of each voxel to belong to each class in the

template domain. They form the probabilistic template of the population. The random

deformations from this template to each subject are also unobserved as the images are

not pre-registered. We define them through a random field z : R3 → R
3 such that for

j ∈ Λ the prior probability of a voxel j from subject i in the sth image to be in the kths

class is given by:

P(cjs,i = ks) = Ps,k(xj − z(xj)) . (4.1)

We define the deformation field as a finite linear combination of a given kernel Kg

centered at some fixed equi-distributed control points in the domain D, (xg)16g6kg ,

with parameter β ∈ (R3)kg

∀x ∈ D, zβ(x) =
kg
∑

g=1

Kg(x, xg)β(g) , (4.2)

where Kg is chosen as a radial Gaussian Kernel. Note that we expect the tissue-specific

information to be found in all the brain volume, hence the whole volume has to be

covered with control points. As for the deformation model, the probability template

maps Ps,k : R3 →]0, 1[, ∀ks ∈ J1,K+3K are parametrized by the coefficients αs,k ∈]0, 1[kp

that satisfy ∀l ∈ J1, kpK,
K+3
∑

k=1

αl
s,k = 1. Let (pl)16l6kp be some control points :

∀x ∈ D,Ps,k(x) =

kp
∑

l=1

Kp(x, pl)α
l
s,k, (4.3)

where Kp(x, pl) = 1 if pl is the nearest neighbor of x among (pj)j , 0 otherwise.

The previous hypothesis provides a generative statistical model for a sample of pairs of

gray level images. The random variables are the deformation vector β, the class of each

voxel c and the observed gray levels of the images. We assume that the deformation

vector follows a normal distribution with mean zero and non-diagonal covariance matrix
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Γg. The hierarchical model is given by:
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(4.4)

where N (·;µ, σ2) is the normal density with mean µ and variance σ2 and δk is a Dirac

function. The covariance matrix Γg is not assumed to have any particular pattern of

zeros. This makes it possible to model local and global correlations between control point

moves, in particular, very correlated displacements can be captured such as translation

of a large area of the images.

The parameters to estimate are the covariance matrix Γg of the deformation distribution

(Eq. (4.2)), (αs,k)16s6m,16k6K+3 the coefficients that define the template maps (Eq.

(4.3)), the class dependent means and variances. As medical images are high-dimensional

but usually come in small samples, we work in a Bayesian framework. We use the

standard conjugate priors for the covariance matrix, the class dependent means and

variances with fixed hyper-parameters. All priors are assumed independent.

4.2.2 Estimation Algorithm.

A maximum a posteriori (MAP) approach yields estimates of the model parameters:

θ̂n = argmax
θ∈Θ

qB(θ|(y1,1, y2,1), · · · , (y1,n, y2,n)),

where qB denotes the posterior distribution of the parameters given the n observations

(y1,1, y2,1, ..., ym,1), ..., (y1,n, y2,n, ..., ym, n). As we are in an incomplete-data setting,

we choose the Stochastic Approximation Expectation-Maximization (SAEM) algorithm

coupled with a Markov Chain Monte Carlo method to take advantage of its theoretical

and numerical properties [15, 151]. The SAEM algorithm is an iterative procedure

that consists of three steps. First, we simulate the missing data using a Metropolis-

Hastings algorithm within Gibbs sampler. Then a stochastic approximation is done on

the sufficient statistics using the simulated value of the missing data. Last, we maximize

the expected log-likelihood with respect to the model parameters. The whole algorithm

is detailed in Algorithm 2, in particular the steps of the hybrid Gibbs sampler.
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Algorithm 2 SAEM-MCMC Algorithm (with no reprojection)

Require: c = (c2, ..., cm)0, β = (β)0, θ0, s0, ∆
Stochastic Approximation Expectation-Maximization

for t = 0 to iters do
Simulation step using Gibbs sampler:

for i = 1 to n do
for p = 1 to 3kg do
Metropolis-Hastings procedure

b ∼ N
( ∑

q 6=p

Rp,qβ
q
i

Rp,p
, 1
Rp,p

)

Compute rp(β
p
i , b;β

−p
i , c2, ..., cm, θt) =

[

m
∏

s=2

q(cs|βi,b→p)
q(cs|βi)

∧ 1

]

With probability rp(β
p
i , b;β

−p
i , c2, ..., cm, θt), update β

p
i : βp

i ← b
end for
Update βi,m+1 ← βi

for j = 1 to |Λ| do
for s = 2 to m do

Cs ∼

K
∑

k=1

δkPs,k(xj − zβi,k+1
(xj))

end for

Compute rj(c
j
i , Cs; c

−j
s,i , θt) =

[

q(y1,i|f(c2,i),f(C2)→j,θt)
q(y1,i|f(c2,i),θt)

m
∏

s=2

q(ys,i|cs,i,Cs→j,θt)
q(ys,i|cs,i,θt)

∧ 1

]

With probability rj(c
j
i , C; c

−j
i , θt), update cji : c

j
i ← C

end for
Update ci,t+1 ← ci

end for
Stochastic approximation step:

st+1 = st +∆t[S((c)t+1, (β)t+1)− st]
Maximization step:

θt+1 = argminθ∈Θ θ̂(st+1).
end for

4.3 Experiments and Results

We test our algorithm on both simulated data and real data. As the SAEM algorithm

is an iterative procedure, we run 250 iterations which was checked to reach convergence.

We initialize β0 = 0 and a random classification c0.

4.3.1 Simulated data.

We use a pair of 64 × 64 × 8 images as the reference images (s = 2). We consider here

K = 3, i.e. three different levels of activation in GM and 6 classes in total. We define

the means and the standard deviations as follows (taking values that are observed in
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Figure 4.1: Experiments on simulated data. The first column displays the first slice
of the probabilistic template, each row corresponding to a class and white/black colors
to high/low probability. The second and third columns show one slice of six pairs of
data images. The fourth to seventh columns correspond to the ground truth and the

estimated segmentation for different models.

real fMRI for the standard deviations):

(

µ1,1:6

µ2,1:6

)

=

(

1 2 4 3 3 3

0 0 0 2.5 0 −2.5

)

,

(

σ1,1:6

σ2,1:6

)

=

(

0.25 0.25 0.25 0.25 0.25 0.25

0.24 1.22 0.91 0.78 0.71 0.83

)

The training data is composed of 20 pairs of images with random deformations of our

template following Eq. (4.4) with previous parameters. We take 64 fixed control points

for the deformation model given in Eq. (4.2), i.e. one control point in each 4 × 4 × 4

cube. We take all the points in the image as landmarks for the template model given in

Eq. (4.3).

The most important output of our estimation procedure is the probabilistic template.

The estimated probabilistic maps are shown in the first column in Fig. 4.1, each row

corresponding to one class. The white/dark colors represent high/low probability of

the tissues. Our probabilistic maps are sharp, as most voxels in each class have a

probability larger than 0.9. Only voxels at the boundary between two classes are fuzzy,

which account for both the accuracy of deformation and the level of noise.
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BG CSF WM GM1 GM2 GM3

Our model 98.5% 92.3% 88.4% 88.0% 73.1% 90.4%
fMRI only 89.0% 75.0% 69.7% 78.3% 48.2% 81.4%
Pre-Aligned 96.6% 91.1% 87.0% 86.6% 67.8% 86.6%

Table 4.1: Experiments on synthetic data. Jaccard Index for the different methods
averaged across all data.

As mentioned previously, our model uses both the T1- and f- MRIs because we want the

active areas to be conditioned to GM. We compare our model with the segmentation

model in [151] using fMRI only. The result is shown in Fig. 4.1. The second and third

columns correspond to one slice of six pairs of data images. The ground truth and the

final estimated segmentation of different methods (our model, the model using fMRI

only) are shown from the fourth to sixth columns. From the fourth and fifth columns,

we can see that the segmentation obtained with our atlas estimation is accurate. From

the fifth and sixth columns, we see the improvement using the information provided from

the T1 MRI. We calculate the Jaccard index for each class as a quantitative validation

(Table 4.1) for each method. Our model yields an accurate segmentation, as only few

voxels are misclassified. For the model using fMRI only, we are only interested in GM1

and GM3 which correspond to the active areas. As the other classes are non-active, the

means of these classes are close to zero, therefore they are difficult to segment without

the MRI tissue type information, leading to lower values for these classes. Moreover, the

Jaccard indexes for the active area are lower than those obtained with our procedure,

which shows that the coupling of information from both images increases the accuracy

of detection.

In our model, the registration and segmentation are done jointly, which avoids any pre-

registration. In the preprocessing, each fMRI is pre-aligned to its corresponding MR

image. However, the inter-subject non-rigid registration is not done, as it would re-

quire a template and would not take into account the fMRI observation to drive this

preprocessing step. We compare our model with the pre-aligned model which does the

registration and the segmentation sequentially. Fisrt, we use the segmentation model in

[151] using the T1 MRIs, we get the deformation vector and individual tissue segmen-

tation as our output. Then we apply the same deformation to the fMRI and detect the

activation only in GM. The estimated segmentation of the pre-aligned model is shown in

the seventh columns in Fig. 4.1. Comparing the fifth and seventh columns, the segmen-

tations look similar which makes it difficult to say which method gives the better result.

However our model gives less isolated points. Moreover, looking at the Jaccard indexes

(Table 4.1), we see that our model outperforms the pre-aligned model. This shows the

improvement of doing registration and segmentation jointly.
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Figure 4.2: Estimated functional templates on real data for the experiments that use only one fMRI (the first and third rows) and the experiment
that uses two fMRIs (the second and fourth rows). The yellow/red colors correspond to high/low probability of the activation for the computation

task (the first two rows) and the left motor task (the third and fourth rows).
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Figure 4.3: The estimated anatomy template for the experiments use only one fMRI
(the first two columns) and the experiment uses two fMRIs (the third column).

4.3.2 In-vivo data.

The proposed method was also tested on a real MRI and fMRI dataset described in

[103]. Both anatomical and functional data were subject to standard preprocessing

using SPM8, including spatial normalization and General Linear Model analysis. Images

are sampled at 3mm resolution, yielding volumes of shape 46 × 53 × 63. We select a

contrast from the fMRI that yields differential effect of a computation task versus a

simple instruction reading/listening. We have K = 3 levels of activation in the GM.

We take 792 fixed control points for the deformation model given in Eq. (4.2), corre-

sponding to one control points in each 6 × 6 × 6 cube and 23 × 27 × 32 points in the

image as the landmarks for the template model given in Eq. (4.3), corresponding to one

landmark in each 2 × 2 × 2 cube.

At first, we use s = 2 that means we use the T1 image and one fMRI. The estimated

functional probabilistic maps, thresholded at the p > .95 level, are shown in the first

two rows of Fig. 4.2. The yellow/red colors correspond to high/low probability for the

computation task activation (the first row) and the motor left task activation (the third

row). Our probabilistic maps are sharp. The detected areas are well conditioned to

GM and fits the known active areas for the computation task. For example, in the slice

x = 25mm in the first row, one can clearly see the Putamen. The anatomical template is
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Figure 4.4: Experiments on real data showing the detected active areas p > .95 for
the computation task. The first row for our method using both T1- and f- MRI and
the second row for the standard method using fMRI only. Each column corresponds to

one slice of the same patient.

shown in the first two columns of Fig. 4.3. The templates for the two tasks are similar.

In Chapter 2, we have noticed that our model fails to segment the subcoritcal structures.

However, we mange to segment these structures as GM with the information given by

fMRI.

We compared our model with the standard method that thresholds the group-level mean

activation. We represent the active areas in the computation task overlaid on T1 images.

The results of one patient are shown in Fig. 4.4. The first row for our method uses both

T1- and f- MRI and the second row for the method uses fMRI only. Each column

corresponds to one slice of the same patient. In zone 1, we see that the areas detected

as active by our method are limited to the GM. However, a part of the detected active

areas by the non-anatomically aware method are outside of the brain. In zone 2, the

standard method detects some active areas in WM, while our method does not. These

show that we reach our goal, i.e. the detected active areas are well conditioned to GM.

The detected active areas by our method are similar to those by the standard method

in GM, this shows that our segmentation is accurate.

As the second experiment, we use s = 3 that means we use the T1 image and two fMRIs.

The estimated functional probabilistic maps are shown in the second and fourth rows

of Fig. 4.2. The results are smoother than the one use only one fMRI. The anatomical

templates are shown in the third column of Fig. 4.3. The templates are similar to

these obtained with one fMRI, however a little smoother, especially for the GM near the

ventricles.
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4.4 Conclusion

In this study, we proposed a statistical model to detect the active areas in the brain using

both T1 and functional MRI. We used a stochastic algorithm to perform registration,

segmentation and to create a probabilistic atlas simultaneously. Our model has several

advantages. First, the probabilistic atlas contains both the templates and the geometric

variability of the population. Second, we do not need any pre-registration to perform

the segmentation which is automatically obtained as an output. Third, the detected

active areas are confined to GM with the information provided from the MRI data.

Our experiments show that we get better results with our algorithm than the standard

method. The detected active areas are well conditioned to GM and the atlas is sharp.



Chapter 5

Including Shared Peptides for

Estimating Protein Abundances:

A Significant Improvement for

Quantitative Proteomics.

Inferring protein abundances from peptide intensities is the key step in quantitative

proteomics. The inference is necessarily more accurate when many peptides are taken

into account for a given protein. Yet, the information brought by the peptides shared

by different proteins is commonly discarded. We propose a statistical framework based

on a hierarchical modeling to include that information. Our methodology, based on a

simultaneous analysis of all the quantified peptides, handles the biological and technical

errors as well as the peptide effect. In addition, we propose a practical implementation

suitable for analyzing large datasets. Compared to a method based on the analysis of

one protein at a time (that does not include shared peptides), our methodology proved to

be far more reliable for estimating protein abundances and testing abundance changes.

The source codes are available at http://pappso.inra.fr/bioinfo/all P/.

83
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5.1 Introduction

One of the main application of proteomics is the quantification of large and complex

sets of proteins extracted from biological samples [49]. Among the available quantita-

tive methods [120], the MS based technologies have become increasingly popular. In

these approaches, proteins are digested and the resulting mixture of peptides is sepa-

rated and analyzed by LC-MS/MS. Data are recorded either as a number of tandem

mass spectra per protein or as peptide intensities derived from peak areas [120]. Gen-

erally, these data are processed to estimate protein abundances and identify proteins

responsive to treatments of interest. The estimation of protein abundances and the

detection of abundance changes are necessarily more reliable when many peptides are

considered for a given protein. Shared peptides constitute a relevant source of infor-

mation, especially when proteins are represented by few proteotypic peptides (see Fig.

5.1). Shared peptides are common, particularly when genes are duplicated. In some

databases, they represent over 50% of the peptides [105]. In most proteomic studies,

these peptides are discarded because of the difficulty to deconvolve the information they

carry. Several approaches were developed to address this issue in the case of spectral

counting [57, 157] or peptide intensity data [32, 74, 85]. Among the latter, Bukhman et

al. [32] proposed a statistical model to infer protein abundances from both shared and

proteotypic peptide intensities. However, their model suffers from two drawbacks. First,

the peptide intensities are supposed to be normally distributed whereas they are widely

assumed to be log-normally distributed [105]. Second, it does not take into account

experimental variability.

In this paper, we propose an improved statistical framework to estimate protein abun-

dances from peptide intensities that (i) includes shared peptide information and (ii)

takes into account experimental variability, allowing normalization of signal intensities

across multiple samples. In addition, we propose a practical implementation suitable

for handling large datasets. Our methodology considers data derived from label-free

experiments but it can be applied to other LC-MS approaches. The source codes are

available at http://pappso.inra.fr/bioinfo/all P/. They can be easily reproduced and

adapted to other experimental designs.

5.2 Method

Our statistical model, referred to as the all-proteins (all-P) model, is based on the

following assumptions.
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Figure 5.1: Relevance of shared peptides for quantitative proteomics illustrated by
two proteins P1 and P2, quantified in two treatments, T1 and T2. (A) Intensities
measured for shared and proteotypic peptides derived from P1 and P2. (B) Estimated
(black dots) and real (dashed lines) protein abundances. Including shared peptides in
protein quantification increased the power of detecting P1 abundance change between

the treatments and allowed to better estimate P2 abundance.

(i) The abundance of a peptide is the sum of the abundances of the different proteins

this peptide belongs to [32]:

ai =
∑

k

δikPk (5.1)

where ai is the abundance of peptide i, Pk is the abundance of protein k, δik = 1

if peptide i belongs to protein k and δik = 0 otherwise.

(ii) The measured intensity of a peptide is proportional to its abundance in a sample,

with a coefficient of proportionality depending on the peptide [32]. The measured

intensity of a peptide is proportional to its abundance in a sample, with a coefficient

of proportionality depending on the peptide [32].

Ii = αiai (5.2)

where Ii = intensity of peptide i and αi is the coefficient of proportionality for

peptide i.

(iii) The intensity measures are assumed to be approximately log-normally distributed

[105].

log(Iip) = log(Ii) + Eip (5.3)
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where Iip is the pth intensity measured for peptide i (for instance different treat-

ments and/or replicates), Eip ∼ N (0, σ2) is the error. Combining Eqs.(5.1), (5.2)

and (5.3), we get

log(Iip) = log

(

∑

k

δikPk

)

+Di + Eip (5.4)

where the peptide effect Di = log(αi) reflects the LC-MS response of peptide i.

(iv) Experimental variability can be properly estimated by considering experimental

parameters globally, for all the proteins [97]. To account for biological variability,

a classical proteomic experiment containing the different treatments of interest

is repeated several times independently. We thus decomposed the error term of

Eq.(5.4) in an error Br due to the biological variation of replicate r, an error Ctr

due to the technical variation in treatment t and replicate r and a residual error

ǫitr

Eip = Eitr = Br + Ctr + ǫitr (5.5)

where

Br ∼ N (0, σ2B), Ctr ∼ N (0, σ2C), ǫitr ∼ N (0, σ2ǫ )

(v) The goal of our model was to accurately estimate the protein abundance Pkt that,

for this reason, was considered as a fixed effect. Conversely, the peptide effect Di,

of less interest, was regarded as random:

log(Iip) = log

(

∑

k

δikPkt

)

+Di +Br + Ctr + ǫitr (5.6)

where Di ∼ N (0, σ2D).

To recover a classical log-linear model for proteotypic peptides, we set θkt = log(Pkt),

leading to the all-P model

log(Iitr) = log

(

∑

k

δikexp(θkt)

)

+Di +Br + Ctr + ǫitr (5.7)

Because of shared peptides, the all-P model is nonlinear. So the estimation of its param-

eters is not straightforward. To solve the problem of estimating the parameters θkt, σ
2
B,

σ2C , σ
2
D, σ

2
ǫ , we used a Bayesian hierarchical framework that presented the advantage to

be easier to implement than the other existing methods. It consists in characterizing the

posterior distributions of the parameters given experimental data and non-informative

prior information. The model is described in Fig. 5.2. Since the parameters θkt reflected

biological values, we chose as prior distribution a centered Gaussian distribution with

a variance large enough to be non-informative. The variances σ2B, σ
2
C , σ

2
D, σ

2
ǫ being
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Figure 5.2: Directed Acyclic Graph for the Bayesian hierarchical model used in the all-
P model. The indices k, i, t and r refer to proteins, peptides, treatments and replicates,
respectively. Non-informative prior distributions (shown in bold) were assigned to the
parameters θkt, σ

2
B , σ

2
C , σ

2
D and σ2

ǫ . An ergodic sample of the posterior distribution
was generated by a Monte Carlo Markov Chain algorithm called Gibbs sampler.

positive values, we chose gamma laws as priors. To avoid unnecessary Central Unit

Processing (CPU) time waste, the expectations of these gamma laws were chosen as the

variances of Di, Br, Ctr and ǫitr estimated in the one-protein-at-a-time (one-P) model

previously described [39]. Each parameter θkt was estimated by the empirical mean of

the sample of the posterior distribution generated by JAGS [104]. From the classical

asymptotic Bayesian theory, it is known that the distribution of this estimator is close

to the distribution of the maximum likelihood.

The performances of the all-P model were compared to the performances of the one-P

model. For each protein k, we have

log(Iiktr) = θkt +∆i +Br + Ctr + ǫitr (5.8)

where Iiktr denotes the intensity of peptide i, proteotypic to protein k, observed in treat-

ment t and replicate r and ∆i is the peptide effect.

The parameters of this model were estimated for each protein k, only on the basis of

proteotypic peptide intensities. Therefore, for some proteins, the number of observa-

tions might be too small to infer accurately the variances of the random effects. To

overcome this drawback, the peptide effect ∆i was considered as fixed. This model was
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implemented in R [108] by using the lme function from the nlme package.

The procedure used to detect the proteins with differential abundance across the treat-

ments was similar in the all-P and one-P models. Let T be the number of treatments.

For each protein k, we tested the null hypothesis Hk : θkt = θkt′ for every 1 6 t 6 t′ 6 T

against the alternative hypothesis Ak: there exists (t, t′), t 6= t′, such that θkt 6= θkt′ .

The Wald test based on a χ2 distribution with (T -1) degrees of freedom is classically

used to perform this test. However, the computation of the Wald statistic in the all-P

model is rather complicated and may be instable when T is large. For these reasons,

for testing Hk against Ak, we used a multiple testing procedure based on the following

statistic:

sk = max
t,t′
{sk(t,t′)} (5.9)

where

sk(t,t′) = (θ̂kt − θ̂kt′)2/ν̂k(t,t′),

ν̂k(t,t′) is an estimator for the variance of (θ̂kt − θ̂kt′) calculated from the sample of the

posterior distributions in the all-P model and given in the lme outputs in the one-P

model. Under Hk, the distribution of sk(t,t′) is approximated by a χ2
1 distribution. The

probability πk to wrongly decide that the abundance of protein k changed between

treatments t and t’ is estimated by

πk = P

[

χ2
1 > max

t,t′
{sk(t,t′)}

]

. (5.10)

Since a large number of proteins had to be tested simultaneously, we applied the Ben-

jaminiHochberg procedure [24] to decide which hypothesesHk we rejected. To have a fair

control of the false discovery rate (FDR), we had to adjust each πk to π̃k = T (T−1)πk/2
so that π̃k satisfied P (π̃k 6 x) 6 x.

5.3 Material

Original yeast proteome dataset

Four monosporic derivates obtained from two S. cerevisiae strains (VL1 supplied by

LAFFORT Œnologie, Bordeaux, France and NRRL-Y-7327 supplied by ARS/NRRL

culture collection, Peoria, Illinois, USA) and two S. uvarum strains (BR20.1 supplied

by ADRIA NORMANDIE, Villers-Bocage, France and LC3 supplied by ISVV, Faculté

d’Œnologie, Villenave d’Ornon, France) were inoculated in the Sauvignon must at 106
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cells per mL and grown in anaerobic culture at 18◦C. This experiment was repeated

three times independently. Five mL of fermentative media were harvested when 30% of

the fermetation was completed. Proteins were extracted in TCA-β-mercaptoethanol

in acetone, denatured in urea, reduced, alkylated and digested with trypsin. LC-

MS/MS analyses were performed using an Ultimate 3000 LC system (Dionex) con-

nected to an LTQ Orbitrap mass spectrometer (Thermo Electron). Ionization was per-

formed with a 1.3-kV spray voltage applied to an uncoated capillary probe. Peptide

ions were analyzed using Xcalibur 2.0.7 (Thermo Electron). Dynamic exclusion was

set to 90s. A custom FASTA format database of 5885 sequences of S. cerivisiae and

4966 sequences of S. uvarum downloaded from the Saccharomyces Genome Database

website (http://downloads.yeastgenome.org) was searched by using X!Tandem (version

2010.01.01.4) (http://www.thegpm.org/TANDEM). The decoy database comprised he

reverse protein sequences of the custom database. False discovery rate was less than

1% for both peptide and protein identification. Peptide intensities were quantified by

integration of their peak area by using MassChroQ software as described by Valot et al.

Protein abundances were estimated by the all-P model described in this paper.

Synthetic yeast proteome dataset

The parameters estimated from the original data using the all-P model were used to-

gether with Eq.(5.7), the design matrix and the peptide-protein relationships to generate

synthetic datasets. To reduce the CPU time, we arbitrarily chose 100 proteins among

those quantified in the original dataset. For 50 of them that exhibited significant abun-

dance change between yeast strains, estimated abundances θ̂kt were kept unchanged. For

the 50 remaining proteins, θ̂kt was replaced by θ̃kt = 1/T (
∑t=T

t=1 θ̂kt). Hence, we expected

to find 50 proteins exhibiting significant abundance changes between the treatments. In

the 100 proteins, 58 of them were only represented by proteotypic peptides (type P

proteins) and 42 by shared and proteotypic peptides (type S proteins).

Human yeast proteome dataset

The human yeast proteome dataset was obtained from the Clinical Proteomic Tech-

nology Assessment for Cancer (CPTAC) study 6. Forty eight human proteins (Sigma

UPS1) were spiked in five different amounts (0.25, 0.74, 2.2, 6.7 and 20 fmol/µl) in a

yeast reference proteome (60ng/µl). Samples were all prepared at the National Institute

for Standards and Technology (NIST) and then distributed in five laboratories for MS

analyses on seven different mass spectrometers. Each sample was analyzed in tripli-

cates on each instrument. Material and methods are detailed in. In the present study,
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we used the datasets obtained on one LTQ-XL-Orbitrap (Thermo), one LTQ-Orbitrap

(Thermo) and one LTQ-Orbitrap(Jamie Hill Intruments) in two different laboratories

(site 65 and 86) for two different amounts of human proteins (6.7 and 20 fmol/µl). Raw

datafiles were transformed to mzXML open source format using ReadW software (v

4.3.1, http://tools.proteomecenter.org/wiki/index.php?title=Software:ReAdW). During

transformation profile MS data were centroided. The FASTA file containing the human,

yeast and contaminant protein sequences available on the CPTAC website was searched

with X!Tandem (version 2010.01.01.4; http://www.thegpm.org/TANDEM/) with the

following settings. Enzymatic cleavage was declared as a trypsin digestion with one

possible misscleavage. Carboxyamidomethylation of cysteine residuals and oxidation of

methionine residuals were set to static and possible modifications, respectively. Precur-

sor mass precision was set to 20 ppm. Fragment mass tolerance was 0.5 Th. A refinement

search was added with the same settings, except that semi-trypsic peptides and protein

N-ter acetylations were also searched. Only peptides with an E-value smaller than 0.1

were reported.

Identified proteins were filtered and sorted by using the X!Tandem pipeline (http://

pappso.inra.fr/bioinfo/xtandempipeline/). Criteria used for protein identification were:

i. at least two different peptides identified with an E-value smaller than 0.05. ii. a

protein E-value (product of proteotypic peptide E-values) smaller than 104. To take

into account that the same peptide sequence can be found in several proteins, proteins

sharing at least one peptide were gathered in groups generally corresponding to pro-

teins of similar functions. Within each group, proteins with at least one proteotypic

peptide were reported as sub-groups. Peptides were quantified based on extracted ion

chromatograms using MassChroQ software.

5.4 Results

We compared the performances of the estimation procedures used in the all-P and one-P

models with simulation experiments. A total of 122 synthetic data sets were generated

from the same original data. For 22 of them, the algorithm used in the one-P model did

not converge for some proteins, probably owing to the small number of observations and

to the model complexity (with fixed and random effects). This is in itself a limitation

for the use of the one-P model. The all-P model did not present this drawback since it

relies on all proteins to estimate the parameters. However, it was more time consuming,

taking three days to complete one simulation on a computer with an Intel Core Xeon

W3520 processor running at 2.60 GHz with 4 GB of RAM.
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All proteins Proteins of type S Proteins of type P
(×1000) (×1000) (×1000)

One-P 2.6 (0.5) 2.5 (0.8) 2.7 (0.6)
All-P 2.1 (0.3) 1.4 (0.3) 2.6(0.5)

Table 5.1: Means and standard-errors (in parentheses) of mean squared error (MSE)
calculated over 100 simulations, for all proteins, for proteins quantified from both shared
and proteotypic peptides (type S), and for proteins quantified from proteotypic peptides
only (type P). The means and standard-errors are averaged over all pairs (protein k,

treatment t)

The performances of the one-P and all-P models for estimating protein abundances in the

100 remaining synthetic data sets were assessed by the mean squared error (MSE). MSE

was defined, for each estimator θ̂kt, as the expectation of [(θ̂kt − θkt)/θkt]2 (Table 5.1).

The all-P model outperformed the one-P model, since the mean of the MSE calculated

over 100 simulations was 19.2% lower in the all-P model. This result illustrates the

instability of the one-P model. The estimation of the variance of the random effects Br

and Ctr for each protein in the data set, with sometimes few observations per protein

contributed to its poor performance (see Fig.5.3). The difference between the two models

was more important for the type S proteins (Table 5.1), showing that including the

shared peptides in the model improved by 44% the accuracy of the estimators. Because

the testing procedure relied on the assumption that the statistics (θ̂kt − θ̂kt′)/
√

ν̂k(tt′)

were distributed as centered standardized Gaussian variables, we checked the normality

of these quantities (see Fig. 5.3). In the one-P model, their distribution was dramatically

more dispersed than standardized Gaussian variables, while in the all-P model, their

distribution satisfied the assumption.

The performances of the one-P and all-P models for detecting the proteins of variable

abundance are shown in Fig. 5.4 A as curves of power (proportion of proteins actually

variable that were declared significantly variable) versus FDR (proportion of proteins

that were wrongly declared significantly variable). These quantities were estimated by

averaging on the 100 simulated experiments. Again, the all-P model clearly outper-

formed the one-P model. For example, for a FDR below 5%, the all-P model allowed

to increase the power by more than 10% compared with the one-P model. When con-

sidering the proteins of type S and type P, the gain in power obtained using the all-P

model was superior by 14% and 6%, respectively. For α (level of threshold of the ad-

justed p-values) fixed at 0.05, the all-P model resulted in a gain of power (92.5% against

89.6%) and FDR (1.8% against 10.2%) for proteins of type S. Conversely, the one-P

model showed a higher power for proteins of type P (82.6% against 77%) but this was

compensated by a higher FDR (6.8% against 2.3%). The high FDR values obtained us-

ing the one-P model are easily explained by the discrepancy between the distribution of

the test statistics and the Gaussian distribution previously shown (see Fig. 5.2). Indeed,
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Figure 5.3: Synthetic dataset. Normal QQ plots of the statistics (θ̂kt− θ̂kt′)/
√

ν̂k(t,t′)

for the one-P (A) and all-P models (B). (C) same as (A), but the difference (θ̂kt− θ̂kt′)
resulting from the one-P model was normalized by the standard deviation

√

ν̂k(t,t′)
estimated by the all-P model for the proteins showing no differential abundance. This
graph indicates that the bad fit observed in (A) is due to a bad estimation of the

variance of the random effects by the one-P model.

the quantiles of the distribution of the statistics were larger than those of a Gaussian

distribution, leading to πk values smaller than expected. Finally, these results show, as

expected, that the advantage of the all-P model over the one-P model was greater for

proteins of type S.

To validate the performances of the all-P model, we analyzed a publicly available real

data set [100], in which 48 human proteins were spiked in a yeast reference proteome in

two amounts (i.e. treatments) differing by a one-to-three ratio (Supporting Information

Material and Methods). Each humanyeast proteome mix was analyzed on three different

mass spectrometers (i.e. replicates). A total of 763 proteins, of which 41 human, were

reproducibly quantified by using the MassChroQ software [138]. Among them, 9.8%

of the human proteins and 12.9% of the yeast proteins were of type S (Table 5.2).

To validate our choice to consider peptide intensities as log-normal, we analyzed the

residuals obtained in all-P model. The results confirmed the absence of any particular

structure, except a very slight increase of absolute residuals versus fitted values (see Fig.

5.5). The performances of the one-P and all-P models for detecting the human proteins

are shown in Fig. 5.4 B. For α=0.05, compared to the one-P model, the all-P model
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Figure 5.4: Power versus FDR estimated for all proteins, for proteins with both shared
and proteotypic peptides (type S) and for proteins with proteotypic peptides only (type
P) with the synthetic dataset (A) and the human-yeast dataset (B). The curves were
generated by varying α. Circles indicate the power and FDR values obtained for α=0.05.

showed a much lower FDR (0% against 87% for proteins of type S; 20% against 70%

for proteins of type P), a better power for proteins of type S (100% against 75%) and

a lower power for proteins of type P (75.7% against 89.2%). These results thus confirm

those obtained with the synthetic data sets.

5.5 Conclusion

In conclusion, the all-P model presented in this paper proved to be far more reliable

and more powerful than the one-P model. We particularly highlighted the very poor

performances of the one-P model regarding the FDR. Our results also point out that the

information carried by shared peptides is highly valuable and has to be considered in the

data analyses. The all-P model is time consuming, but a computer automatically does it,

and in any case, this time is negligible compared to the time required to design a project

and perform the experiments. Moreover, with the development of high throughput

technologies that generate spectacular amounts of data, this type of statistical analysis

is expected to become increasingly useful in biology.
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Number of Number of Number of Number of
proteins proteins with shared proteotypic

shared peptides peptides peptides
Synthetic dataset
Whole dataset 100 42 122 712
Set of variable proteins 50 19 72 545
Set of invariable proteins 50 23 91 167
Human-yeast dataset
Synthetic dataset
Whole dataset 763 97 321 3571
Set of variable proteins 41 4 7 113
Set of invariable proteins 722 3 321 3460

Table 5.2: Composition of the synthetic and human-yeast datasets. Note that a
peptide can be shared between variable and invariable proteins.

Figure 5.5: Human-yeast data set. Graphic of standardized residuals ǫ̃itr corrected
from the peptide random effect versus fitted values µ̂it: µ̂it = log(

∑

k δitexp(θ̂kt)),

ǫ̂itr = log(Iitr − µ̂it − D̂i and ǫ̃itr = [log(Iitr − µ̂it − D̂i]/sd(ǫ̂itr). The red dotted line
represents a local polynomial smoother of the scatter plot. This graphic shows that the
distribution of the residuals is heavy tailed, but does not show any particular structure,

except a very slight increase of absolute residuals versus fitted values.



Chapter 6

Conclusion and Discussion.

We summarize here our contributions and propose some open questions for future work.

95
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6.1 Summary

In this work, we have first proposed a generative statistical model for estimating a

probabilistic atlas that includes both the photometric and geometric characterization

of the observed population. The photometric information is given by a probabilistic

template that contains each tissue probability map. This model makes it possible to

take into account the uncertainty on the underlying tissue type, which is known as

the partial volume effect (PVE). The geometrical characterization of the population

is given by the covariance matrix of the template-to-subject deformation distribution.

This highlights both what would be the normal variability in this population and the

correlations underlying the deformations across different parts of the image.

The atlas estimation is based on non-registered and non-segmented data. In our esti-

mation process, the registration and segmentation are performed jointly along the atlas

estimation. Compared to the method that performs them sequentially, it increases the

relevance between these two important and correlated steps and also increase the accu-

racy of our atlas.

The estimation algorithm is based on a Stochastic Approximation Expectation Maxi-

mization (SAEM) algorithm which is coupled with a Metropolis within Gibbs sampler

to provide an efficient sampling procedure.

This has been developed in Chapter 2.

The estimated atlas does not only provide a characterization of the observed population:

it can also be used to perform an atlas-based segmentation. The new subject image is a

gray level observation drawn from the same population (for example healthy controls)

as our training sample. This image has neither been pre-segmented nor pre-registered

to any template image. We first construct a gray level template thanks to our estimated

tissue probability maps and mean gray levels of each tissue. This provides us with a

gray level template image. Thanks to the estimated geometric variability, we can con-

strain the gray level template-to-new-subject deformations to those that are common

in the population. To this purpose, we introduce the estimated covariance matrix as a

penalty term for the deformation and add this term to the usual data attachment term.

This results in a classic matching energy to minimize. The registration is therefore ob-

tained by minimizing this energy. The segmentation is then obtained by transporting

the template segmentation to the observation frame by the estimated deformation. Our

posterior segmentation method of new observations is fast and gives an accurate result

(see Chapter 3).
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We have then generated our single modality model to a multi-modal one (Chapter 4).

The inputs are now multivariate, as they encode multi-modal patient observations (gray

level T1 and functional MRIs). In this case, we have managed to impose meaningful

biological constraints, such as the fact that the activation appears only in the gray mat-

ter. We got both the activation probability maps and the tissue probability maps as

our probabilistic template. Thanks to this model, we were able to improve the accuracy

of the estimated template as well as estimated geometrical variability; in particular, we

better localized the activation patterns. We have tested our model on simulated data,

which has shown the good performance with a quantitative test. We also managed to

do experiments on real data. The results appear to better approach to the ground truth

by coupling registration-segmentation and anatomo-functional images.

Concerning the theoretical study of these estimators on the proposed models and the

estimation algorithms, we have proved the existence and the consistency of the estimator

on our first model. We have also proved that our algorithm converges to this estimator.

These two asymptotic properties enabled us to increase the confidence we have on our

estimates which are also validated by the experiments.

In Chapter 5, we have proposed a model to analysis all the protein at same time (include

shared peptides). We have proposed to use Gibbs samplers for handling large datasets.

Compared to a method based on the analysis of one protein at a time (that does not

include shared peptides), our methodology proved to be far more reliable for estimating

protein abundances and testing abundance changes.

6.2 Large deformations for deformable template estima-

tion

In this work, we use the small deformations that is to say, deformations that are driven

by the displacement of each point. This writes: for all x in the domain of interest D:

ϕ(x) = x+ ν(x) , (6.1)

where ν is a velocity vector field with fixed regularity.

As mentioned in the Introduction, these deformations, although very meaningful at

first sight, are not optimal, as they are not constrained to be diffeomorphic. In the
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medical applications that we target, this may be critical as it may delete some tissue

parts by creating some overlaps. An improvement would be to consider diffeomorphic

deformations as in [134] or [140]. This control on the deformations would help to respect

anatomical constraints.

In particular, our model would become the following in the Large Diffeomorphic Defor-

mation Metric Mapping (LDDMM) setting introduced in [134]. We will only consider

here the generalization of the single modality model in Chapter 2, the multi-modal model

is straightforward.

The probability of observing a data with intensity yji for the ith image in the jth voxel

given that it belongs to the kth class (cji = k) remains defined as follows:

P(yji |c
j
i = k, µk, σ

2
k) ∼ N (yji ;µk, σ

2
k), (6.2)

For j ∈ Λ the prior probability of a voxel j from subject i to be in the kth class would

now be given by:

P(cji = k) = ϕi · Pk(xj) = Pk((ϕ
v
1)

−1(xj)) . (6.3)

where ϕv
1 is the solution of the diffeomorphic flow equation for a velocity vector field

(νt)t∈[0,1]:


















∂ϕt

∂t
= νt ◦ ϕt;

ϕ0 = Id.

(6.4)

The velocity vector field vt should belong for all time t ∈ [0, 1] to a smooth deformation

vector space V in order to ensure that there exists a unique solution to the flow equation

and that the solution at t = 1 is a diffeomorphism. The space V is defined as a RKHS

for which stating the kernel enables to easily deal with the smoothness of its elements.

This LDDMM formulation has the drawback that it requires to parametrize the defor-

mation with the dense time dependent vector field (vt)t∈[0,1]. It has been shown in [52]

that an approximation of the deformation can be done by considering that the initial

velocity vector field is driven by the displacement of some control points. Thanks to this

formulation and due to the theoretical properties of the generated deformation along

the geodesic path [95], this parametrization with a finite number of control points is

preserved along time.

Let us consider some given control points (xk0)16k6kg and initial momentum vectors

β0(k), then the initial velocity vector field writes:
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∀x ∈ D, v0(x) = (Kg(x0)β0)(x) =

kg
∑

k=1

Kg(x, x
k
0)β0(k) , (6.5)

where Kg is the RKHS kernel. Along the geodesic we get:

∀x ∈ D, vt(x) = (Kg(xt)βt)(x) =

kg
∑

k=1

Kg(x, x
k
t )βt(k) , (6.6)

where the couple of vectors (xt,βt) satisfies the Hamiltonian system:































dxt(k)

dt
=

kg
∑

l=1

Kg(xt(k), xt(l))βt(l)

dβt(k)

dt
= −





kg
∑

l=1

dxt(k)(Kg(xt(k), xt(l))βt(l))





t

βt(k)

(6.7)

Using this formulation, the diffeomorphic deformation can be parametrized as in the

small deformation setting by a finite vector which contains initial momenta. This for-

mulation makes it possible to also take into account in our estimation process the initial

positions of the control points x0. This has been recently studied in [11] for the gray level

template estimation and could be applied in our models. The statistical model would

look therefore very similar to the one presented in a previous chapter. Let γ0 = (x0,β0))

then:






























































(Γg, µk, σ
2
k) ∼ νg ⊗ νm ⊗ νp;

(γ0)i ∼ N (0,Γg)|Γg;

cji ∼
K
∑

k=1

δkϕ
(γ0)i
i · Pk(xj)|(γ0)i;

yji ∼ N (µk, σ
2
k)|c

j
i = k, µk, σ

2
k,

(6.8)

where δk is a Dirac measure on k and φ is .

After calculating the log-likelihood, we get the same sufficient statistics S0, S1, S2, S3

and S4 (with an additional one if we optimize the position of initial control point as

well) given in the section 2.4.1. The same SAEM-MCMC algorithm may be used with

an optimization of the MCMC sampler as the dimension increases (see [12] for one

example).
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6.3 Multicomponent generalization of the models

Each of our models is designed for an homogeneous population. However, many of

the acquired data bases may contain several clusters that are still labeled control for

example, yet carry different but normal patterns. This may be easily treated in our

context by considering mixtures of our models. The observed images of the data base

are not pre-clustered so that their component label inside the population is not known.

This same framework has been introduced in [13] for the gray level template estimation

problem in the small deformation setting. This adds a new unobserved variable for each

image which is the component label.

Although quite natural and easy to write and study theoretically, this mixture model

requires to change the MCMC method. As this sample step is the bottleneck of our

estimation algorithm, considering this generalization would require to optimize (in a

way different from the diffeomorphic case) the MCMC sampler.

6.4 Other remarks

6.4.1 Extension of the multi-modal atlas

In our multi-modal generative model, we have introduced the functional MR images in

order to get an anatomo-functional atlas that satisfies some biological constraints. In

the same way, one can include complementary information given by the fiber directions

of the Diffusion Weighted Images (DWIs). These images provides the local directions

of the fibers in the brain which form the white matter. The white matter appears with

the same gray level in the MRIs therefore the registration mappings are not constrained

at all in these regions. This is the same issue when considering the gray matter without

the functional information.

To overcome this issue, following the same lines of our anatomo-functional brain atlas, we

can add a third input image - as the Fractional anisotropy obtained from a set of DWIs

- in our input vector. The registration will be constrained now by all the input together

forcing some particular deformations in all regions of the brain depending on the gray

or white matter tissue. This extension can be inspired by the ideas in [35, 88, 114, 125]

among others.

This generalization will have to be carefully done because of the large memory this may

require to deal with so many images per subjects.
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6.4.2 Kernel choice

One remark is the choice of the interpolation kernels. For the template model in section

2.5, the templates are probability maps, which yields the following constraint

∀x ∈ D,
K
∑

k=1

Pk(x) = 1 . (6.9)

Using a step function (described by the nearest neighbor interpolation) as the interpola-

tion kernel enables to rewrite this as ∀l ∈ J1, kpK,
K
∑

k=1

αl
k = 1. This reduces the constraints

to a single finite dimensional constraint on our parameters (αl
k)16k6K, 16l6|Λ|. However,

we may prefer to use others in order for the template probability maps to be smoother

and to reduce the dimension of the parameter vector.

Other choices can be done using for example regular kernels as Gaussian kernels. How-

ever, the dense constraint 6.9 has to be carefully taken into account so that this does not

increase the computational time or the theoretical properties of the model and estimator.

We have made several attempts to keep an easy formulation. For example, we have

tried to use all the neighbors (first in a deterministic way). Since we consider all the

neighbors and calculate the mean, we get a smoother result and there are less isolated

points than the model with the nearest neighbor. Although this enables to remove the

isolated missegmented voxels, the structures with small volume are misclassified. This

would require to better estimate the smoothness that we expect on the template maps.

Moreover, this kernel needs more computation time.

Another attempt was to consider the spatial dependencies between class labels in the

prior law P(cji = k). One solution is defining a Markov random field on class labels. We

have defined the grid with a neighborhood system and an Ising model on class label.

Unfortunately, this drastically increased the computation time, whereas not improving

the results very much. This may be due to the bad choice of the system and model, and

we could investigate other Markov random field that would better fit our expectations.

6.4.3 Algorithm implementation optimization

A common problem for our two previous algorithms is the computation time. Our

model has high dimensional parameters and high dimensional observed and unobserved
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random variables. This makes the computation time long because of the need of memory

and the need to sample from the posterior distribution. However our algorithm can be

parallelized for this particular simulation step. We are currently working on a parallel

C++ version of our code to make it possible to increase the training set size as well as

the size of the training image data and decrease the computation time.

6.4.4 Bias field correction

In all this work, we have been considering MR images as our observations. Although

never pre-registered nor pre-segmented, the images may sometimes not be used directly

as they come out the scanner. Indeed, they suffer from what is know as the bias field.

This effect is related to the high magnitude of the magnetic field that is applied to the

patient for the imaging process. Its effect on the images is to make the contrast smoothly

evolve from one corner to the opposite one. This affects significantly the gray levels of

each tissues which, if not corrected, may lead to mis-segmentation. One direction of

interest would be to include this bias field in the generative model in order to account

for this effect in our atlas estimation.



Appendix A

Definition of the most used

similarity measures.

We defined the most used similarity measures that quantify the similarity between two

images A and B here.

The correlation coefficient :

Press [107] proposes the correlation coefficient of two images as the similarity

measure. This metric calculates the correlation between intensity values divided

by the square root autocorrelation of two images:

rcc =

N−1
∑

i=0
(Ai − Ā)(Bi − B̄)

√

N−1
∑

i=0
(Ai − Ā)2

√

N−1
∑

i=0
(Bi − B̄)2

, (A.1)

where Ai, Bi are the values of the voxel i in the two images, Ā, B̄ are the mean

values of the voxel in the two images, N is the number of the voxels.

If the registration is well done, the two images should be strongly correlated. This

means that the registration is better if we have a high correlation of two images, i.e.

the registration is the best when rcc is 1, and the worst when rcc is 0 or negative.

Minimum Mean Square Error (MMSE) :

Umbaugh [135] proposes the minimum mean square error of two images as the

similarity measure. This metric is used as the default metric in most applications.
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It calculates the sum of squared differences between intensity values:

MSE =

√

√

√

√

N−1
∑

i=0

[Ai −Bi]2, (A.2)

where Ai, Bi are value of the voxel i in the two images.

If the registration is well done, the gray level value of the voxel in the image

A should be close to the one in the image B. This means that the smaller the

minimum mean square error is, the better the registration is.

Mutual Information (MI) and Normalized Mutual Information (NMI) :

Collignon et al. [42] propose the Mutual Information as the similarity measure for

registration. It is defined as

MI(A,B) = H(A)−H(B|A), (A.3)

where H(A) is the marginal entropy of the histogram of image A and H(B|A) is
the conditional entropy that gives the uncertainty about the gray level in B when

the gray level in A is given.

The entropy gives the uncertainty of image voxel intensities. An image consisting

of almost a single intensity will have a low entropy value; it contains very little

information. A high entropy value will be yielded by an image with more or less

equal quantities of many different intensities, which is an image containing a lot

of information. MI is the amount of information A contains about B, i.e. their

dependency. It is a symmetric measure: A and B can be interchanged:

MI(A,B) = H(A) +H(B)−H(A,B), (A.4)

where H(A), H(B) are the marginal entropy of the two images and H(A,B) is

the joint entropy that calculated from the joint histogram of A and B.

This formula shows that maximizing mutual information is related to minimizing

joint entropy. Registration aims at maximizing mutual information: the images

have to be aligned in such a manner that the amount of information they contain

about each other is maximal. The joint entropy is calculated for the joint histogram

of the images and it is therefore sensitive to the size and the contents of overlap.

An issue that can occur when using joint entropy on its own, is that low values

can be found for complete misregistrations.

Studholme et al. [130] proposes to use the normalized mutual information to

eliminate the effect of the overlap area. The normalization makes the alignment
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measure sesnitive to overlap area. It is defined as

NMI(A,B) =
H(A) +H(B)

H(A,B)
, (A.5)

where H(A), H(B) are the marginal entropy of the two images, and H(A,B) is

the joint entropy that calculated from the joint histogram of A and B.
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Résumé

Cette thèse s’inscrit dans le domaine de l’analyse statistique d’images du cerveau. Dans

la première partie, nous avons proposé un nouveau m odèle statistique génératif basé sur

des templates déformables qui prend en compte les différents types de tissus observés

dans les images cérébrales. Un prototype (appelé template) est appris conjointement

avec la variabilité géométrique des formes représentées dans les observations. Ces deux

éléments forment un atlas qui contient à la fois une estimation des cartes de probabilité de

chaque tissu (appelée classes) et la métrique de déformation. Le recalage et la segmenta-

tion, qui sont directement intégrés dans le processus d’estimation, sont effectué conjointe-

ment. Nous utilisons un algorithme EM stochastique (SAEM) couplée avec des méthodes

MCMC pour l’estimation de cet atlas probabilistes. Nous avons prouvé l’existence et

consistance de l’estimateur ainsi que la convergence de l’algorithme d’estimation. Cet

atlas est ensuite utilisé pour segmenter les nouvelles images par une méthode de segmen-

tation contrainte par notre atlas en particulier la métrique de l’espace des déformations

admissibles. Le modèle est ensuite généralisé à des données multidimensionnelles perme-

ttant la prise en comte de diverses modalités comme l’anatomie couplée au fonctionnel.

Ce modèle prend en compte les contraintes biologiques inhérentes au cerveau en parti-

culier le fait que l’activation fonctionnelle n’apparat que dans la matière grise. Inférer

l’abondance des protéines de l’intensité de peptides est l’étape clé dans la protéomique

quantitative. La conclusion est nécessairement plus précis quand de nombreux peptides

sont pris en compte pour une protéine donnée. Pourtant, l’information apportée par les

peptides partagées par différentes protéines est souvent jeté. Dans la troisième partie

du travail, nous proposons un système statistique basée sur une modèle hiérarchique à

inclure cette information. Notre méthodologie, basée sur une analyse simultanée de tous

les peptides quantifiés, gère les erreurs biologiques et techniques ainsi que l’effet des pep-

tides. En outre, nous proposons une mise en uvre pratique adapté à l’analyse de grandes

bases de données en utilisant des méthodes MCMC pour l’estimation d’abondance.
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