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Résumeé

Ces travaux de thése portent sur I'étude de nouvelles modalités de guidage de la
thérapie transcranienne par ultrasons focalisés, technique non invasive particulierement
prometteuse pour le traitement de troubles neurologiques tels que le tremblement
essentiel ou le tremblement parkinsonien. Une nouvelle technique d’imagerie par
résonance magnetique a tout d’abord été utilisée pour imager I'emplacement du
faisceau ultrasonore produit par un prototype préclinique : les déplacements induits par
les ultrasons dans une cervelle de veau ex vivo ont été imagés sans distorsion a I'aide
d’'une séquence d’écho de spin accélérée, avec un dépdt d'énergie jusqu’a quatre fois
inférieur aux techniques existantes. Nous avons ensuite étudié les effets directs des
ultrasons sur l'activité cérébrale par neuromodulation ultrasonore in vivo, de fagon
similaire a la stimulation magnétique transcranienne, mais avec les capacités de ciblage
millimétriques des ultrasons focalisés. Des expériences ont été tout d’abord menées sur
un modele de rat anesthésié afin d’étudier la pression seuil pouvant induire un effet
moteur. Le champ acoustique simulé dans la téte de rat est fortement affectée par des
réverbérations, ce qui doit étre pris en compte pour I'’évaluation in situ des parametres
acoustiques de neurostimulation, en particulier a basse fréquence et pour les petits
animaux. Enfin, pour la premiere fois, nous avons montré que les ultrasons focalisés de
faible intensité pouvaient moduler de fagcon causale le comportement d’'un primate non
humain éveillé: le temps de latence d'une tache d'anti-saccade est retardé de fagon

significative par des ultrasons focalisés dans le champ visuel frontal.

Mots-clés
ultrasons focalisés ; neuromodulation ; tremblement essentiel ; antisaccades ; force de

radiation ; thérapie par ultrasons



Summary

The work presented in this thesis investigates novel modalities to guide Transcranial
Magnetic Resonance guided Focused Ultrasound (TcMRgFUS). TcMRgFUS is an
emerging and promising non-invasive technique for the treatment of neurological
disorders, such as essential tremor or Parkinsonian tremor. A novel Magnetic
Resonance Acoustic Radiation Force Imaging (MRARFI) has been used to image the
location of the ultrasonic beam produced by a preclinical prototype: an accelerated 2D
spin-echo MR ARFI pulse sequence has been introduced to generate undistorted
ultrasound-induced displacement maps in ex vivo veal brains with minimum energy
deposition. We then investigated direct effects of the ultrasonic beam on brain activity
by conducting in vivo ultrasonic neuromodulation, similarly to what is currently achieved
with transcranial magnetic stimulation (TMS) but with the millimetric targeting capabilities
of the ultrasound. Experiments have been first conducted in an anesthetized rat model
to investigate the motor threshold. Numerical simulations have shown that the acoustic
pattern in the rat head is affected by reverberations and that special care must be taken
when relating acoustic parameters to neurostimulation effects, especially at a low
frequency and for small animals. Finally, for the first time, we used low intensity FUS
stimulation to causally modulate behavior in an awake nonhuman primate brain. We
showed that the latency of an anti-saccade task was delayed significantly in the
presence of ultrasonic beam focused in the Frontal Eye Field. Sham experiments did not

show any significant change in the latencies.

Key-words
focused ultrasound ; neuromodulation ; essential tremor ; antisaccades ; radiation force ;

therapeutic ultrasound
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Chapitre 1 Résumé en francais

1.1 Introduction

Les utrasons sont des ondes mécaniques dont la fréquence ne peut pas étre
entendue par 'homme (Figure 1.1), car I'hnomme entend normalement uniquement les
fréquences sonores comprises entre 20Hz et 20000Hz. Les ultrasons se sont avérés
étre un outil médical important pour le diagnostic et le traitement de plusieurs troubles
physiques.

L’application médicale des ultrasons la plus couramment utilisée et la plus connue est
I'échographie, principalement en raison de son colt raisonnable, de ses bonnes
résolutions temporelles et spatiales mais aussi I'absence d’effet irradiant. Cependant les

ultrasons ne se limitent pas a I'échographie.

Infrasons Zone Audible Ultrasons

20 Hz 20 KHz

Figure 1.1: Echelle de fréquences des ondes sonores

Production des ondes ultrasonores

Pour générer des ondes ultrasonores, un transducteur piézoélectrique qui
convertit I'énergie électrique en son peut étre utilisé. Comme lillustre la Figure 1.2,
L'élément piézo-électrique oscille en expansion et en contraction a plusieurs reprises

sous l'effet de la tension sinusoidale qui lui est appliquée, générant une onde sonore.



L'élément piézo-élec- ~
trique vibre pour ¥
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— .
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Figure 1.2: Génération d'une onde sonore par un élément piézo-électrique

Un matériau de "backing" est généralement ajouté a l'arriere et joue le role de
réflecteur, ce qui permet a la fois de réfléchir I'onde arriére et de renforcer I'onde émise
par la face avant. (Figure 1.3).

iy

li’”“xz

-~

Sans Elément
matériau arriére piézo-électrique

L

p
N p

materiau arriere

Elément
piézo-électrique

— A — uotspndun p manSuo

-
p -
~_
Figure 1.3: Utilisation d'un matériau arriére de "backing" placé derriére I'élément
piézoélectrique

Les ondes ultrasonores générées sont ainsi transmises a partir de I'élément
piézo-électrique par sa face avant. En présence d’'une forte différence d'impédance

acoustique sur le trajet, 'onde sera réfléchie et ne pourra pénétrer d’avantage dans les
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tissus. La présence d’air est donc prohibée et un matériau intermédiaire de couplage

(gel échographique) est placé entre I'élément piézoélectrique et les tissus (Figure 1.4).

Elément Elément
piézo-électri- piézo-électri-

que que

1z
Tissus
Tissus
Avec Sans
gel gel

Figure 1.4: Ondes ultrasonores transmises avec et sans gel

Les ondes ultrasonores ainsi générées dans les tissus sont des ondes
longitudinales (L-Waves, Figure 1.5), pour lesquelles le mouvement particulaire est

dans la méme direction que la propagation des ondes.

Transducteur
ultrasonique

||
Gel

) -

I Mouvement

-

Direction de
londe
longitudinale

Figure 1.5: onde longitudinale
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Les ondes de surpression (compression positive et raréfaction négative) se propagent
ainsi de proche en proche dans le corps humain. Elles sont liées au déplacement

particulaire via 'impédance acoustique du milieu :
P=7Z Xv

Ou Z est Impédance acoustique du milieu et v la vitesse de déplacement

particulaire

L’amplitude de pression Py est la surpression maximale générée, généralement

exprimée en MPa.

D'autres paramétres sont utilisés pour caractériser completement I'impulsion ultrasonore

(Figure 1.6) ; ils seront beaucoup utilisés dans ce manuscrit afin de décrire les émissions

ultrasonores.

Dumee diimpusision
>

Amplitude

Temps d'attente [

Farigde

Y

¥ 3

1/PRF

Curee totale

Figure 1.6: Parameétres ultrasonores.

* Durée d'impulsion: durée de la génération élémentaire d’'une impulsion.

* Fréquence de répétition des impulsions (PRF : pulse repetition frequency): le nombre

de répétitions de I'impulsion par seconde.
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* Temps de cycle: Pourcentage du temps pendant lequel les ultrasons sont générés

(durée d'impulsion) sur la période de répétition des impulsions.

La longueur d'onde est la distance entre deux compressions ou raréfactions
maximales et dépend de la fréquence émise et de la vitesse du son dans le milieu de

propagation selon la formule suivante:

o C
N

Ou c’est la vitesse de I'onde; mesurée en m.s™ et f a fréquence (le nombre de

fois qu'une particule oscille par seconde).

Plus la fréquence ultrasonore est élevée, plus la longueur d'onde est faible et
plus la distance de pénétration dans les tissus est également faible a cause de

I'atténuation, plus forte a haute fréquence.

Les transducteurs ultrasonores pour la thérapie médicale ont des formes et des
dimensions adaptées a l'organe pour lequel ils sont congus. lls sont en général focalisés
pour concentrer I'énergie au point cible (Figure 1.7). C'est le cas des transducteurs que

nous avons utilisés pour les expériences sur rongeurs et sur primates.

F
< > ;
i ’
’
Sy 71E P
\\ D //
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~
- ~
-, N
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Figure 1.7: Focalisation par un élément piézo-électrique
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La taille du foyer est alors déterminée par la géométrie du transducteur (son
ouverture D) et la profondeur F a laquelle il focalise. elle a typiquement la forme d’un
cigare de largeur AF/D et de profondeur 7A(F/D)?.

Le transducteur peut éventuellement comporter plusieurs éléments. Les
dimensions globales de la tache focale restent identiquement liées a la géométrie du
transducteur (Figure 1.8). Un tel réseau multiélément a été utilisé dans le chapitre sur
I'accélération Keyhole de I'imagerie IRM de la force de radiation et permet de déplacer

la tache focale ou corriger les aberrations du crane.
\Q < F ,
A .’
\‘Q] . F -
o -
AF
//m i - -7 - i T T~ \D

Figure 1.8: Focalisation avec un réseau multiéléments

Y

I
|

L'intensité acoustique désigne la puissance d'une onde sonore par unité de
surface Figure 1.9. L'intensité acoustique moyenne sur une période est donnée par la
formule :

[ =
27

Ou Py est 'amplitude de surpression et Z 'impédance du milieu. Elle s’exprime
en Watt par métre carré (W/m2ou W-m?)
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) Pic spatial
Intensité

W/cm?

Moyenne spatiale

largeur du faisceau

Figure 1.9: Le profil de I'intensité en fonction de la distance

Pour des ultrasons pulsés, l'intensité varie de plus avec le temps (Figure 1.10), et

on définit donc usuellement les valeurs suivantes :

* Le pic temporel (TP : time peak) : la plus grande intensité trouvée dans une

impulsion.

* La moyenne temporelle (TA: time average) qui comprend le temps «mort»

entre les impulsions.

* Impulsion moyenne (PA : pulse average) calculée uniquement sur la durée de

I'impulsion donnée sans le temps "mort".

L'intensité est importante lors de la discussion des effets biologiques et l'innocuité

des séquences ultrasonores.
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Pic d'intensité

ﬂ ﬂ [—\ ﬂ ﬂ -
Intensité moyenne

temporelle

Intensité

L On time —1 Off time —1 On time—L Off time —1 On time . Offtime—]

; Temps de répétition l Temps de répétition | Temps de répétition —]

Figure 1.10: Le profil de I'intensité en fonction du temps

Puissances ultrasonores

Les ultrasons interagissent avec les tissus biologiques selon deux types

principaux d’interaction : par effets thermiques ou mécaniques.

Les effets thermiques créent un échauffement du tissu lié a I'absorption des ultrasons
par le tissu. La quantité d’énergie thermique transférée aux tissus par unité de temps est

proportionnelle a l'intensité acoustique.

Les effets mécaniques sont eux-mémes de plusieurs types. Il y a bien sdr la
vibration acoustique elle-méme qui entraine un déplacement du tissu de quelques
dizaines de nanomeétres a la haute fréquence des ultrasons ; 'augmentation de la
pression conduit ainsi a 'augmentation de la 'amplitude de vibration. D’autres effets
plus complexes sont aussi induits, comme la constitution d’une force basse fréquence
appelée force de radiation proportionnelle a l'intensité acoustique moyenne, créant des
déplacements de quelques dizaines de microns a basse fréquence, liés au transfert de
quantité de mouvement. Enfin, la cavitation acoustique de microbulles gazeuses, qui
correspond a l'oscillation stable ou inertielle de microbulles injectées ou générées

spontanément.
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L'index mécanique (Ml : mechanical index) a été introduit par la Food and Drug
administration (FDA) ameéricaine afin d’évaluer les risques d’apparition d’effets

mécaniques. Il est défini par :

PNP
Ml = ——

JE

ou PNP est la pression du pic négatif de I'onde ultrasonore (qui doit ici étre
exprimé en MPa) divisé par la racine carrée de la fréquence centrale (Fc) de I'onde
ultrasonore (qui doit étre exprimée en MHz). L'index mécanique maximal autorisé pour
I'imagerie échographique du cceur ou des feetus est de 1.9. |l est de 0.2 pour I'imagerie

de I'ceil.

Qu’elles soient d’origine mécanique ou thermique, comme toutes interactions, au-
dela d’'un certain seuil, elles peuvent provoquer de sérieux dommages aux tissus,

jusqu’a leur destruction totale ou partielle.

L’absorption thermique peut ainsi entrainer la nécrose du tissu. La cavitation
inertielle peut quant a elle déchirer le tissu cellulaire environnant, provoquant des
hémorragies ou des ruptures tissulaires. Ces deux effets sont mis a profit
respectivement dans le cadre des techniques de HIFU (High Intensity Focused
Ultrasound) et d’histotripsie (destruction des calculs rénaux). Dans le cadre de
l'utilisation des ultrasons en imagerie, des normes strictes sont imposées aux

constructeurs afin de garantir 'innocuité des séquences ultrasonores utilisées.

Mais nous savons aussi que, a des puissances intermédiaires, ces effets
thermiques ou mécaniques peuvent avoir des effets physiologiques qui ne mettent pas
forcément en péril la survie du tissu et permettent des applications médicales
importantes. Un exemple est l'ouverture de la barriere hémato-encéphalique par
ultrasons focalisés et co-injection d’agents de contraste (microbulles de gaz, air, azote
ou perfluorocarbone), qui permet de fagon non invasive et localisée d’ouvrir

transitoirement la barriere pour laisser pénétrer dans le cerveau des molécules qui

17



seraient normalement bloquées en raison de leur taille (> 400 Da). Des études
effectuées a I'University of Columbia (New York, USA) en 2009, ont montré que la
cavitation stable était le phénomeéne responsable de I'ouverture de la barriére (Tung et
al. 2010)(McDannold, Vykhodtseva, and Hynynen 2008)(Tung et al. 2011) et que celle-

ci n’entrainait pas de dommages visibles sur les coupes histologiques.

Un autre effet similaire est la sonoporation qui permet la modification transitoire
de la perméabilité des membranes cellulaires par cavitation acoustique. Cette technique
est employée notamment pour faire pénétrer localement des molécules de taille trop
importante pour traverser d’elle-méme la membrane(Deng et al. 2004), comme des
fragments d’ADN utilisés pour la thérapie génique in vivo. L’adjonction de microbulles

permet la encore de favoriser la cavitation acoustique par rapport aux effets thermiques.

Depuis plusieurs décennies, on a assisté a I'étude des ultrasons comme moyen
de stimulation et d’inhibition réversible de l'activité électrique. Dans les années 30,
Harvey fut le premier a démontrer le potentiel des ultrasons pour stimuler les nerfs et les
fibres musculaires(Harvey 1930). D’autres expériences de stimulation ou inhibition
ultrasonore sur les nerfs ou les muscles ont suivi: sur le nerf saphéne interne du chat in
vitro (Young and Henneman 1961), sur d’autres préparations in vitro de nerfs
périphériques de grenouilles (Lele 1962; Mihran, Barnes, and Wachtel 1990; Tsui,
Wang, and Huang 2005), in vivo sur les nerfs de la main chez 'lhomme(Davies and
Gavrilov 1996), in vivo sur la colonne vertébrale du chat (Shealy and HENNEMAN
1962).

Concernant le tissu cérébral, Fry a montré dés les années 50 que la réponse
induite par un stimulus visuel pouvait étre inhibée de fagon réversible dans le cortex
visuel primaire du chat, par la transmission d’'ultrasons dans le corps géniculé latéral(W.
Fry et al. 1958). L’existence de sensations auditives chez des patients soumis a un
doppler transcranien de l'artére basilaire ont également été rapportées(Magee and
Davies 1993). Des expériences réalisées sur des tranches d’hippocampes de rongeur et
consistant a mesurer directement I'influence des ultrasons sur 'amplitude de potentiels

d’action ont permis de montrer une augmentation ou une diminution de cette amplitude
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en fonction de la puissance des ultrasons (Rinaldi et al. 1991). Il ne s’agit pas la a
proprement parler de stimulation directe par les ultrasons mais d’'une modulation de
I'excitabilité des neurones. On ne parlera pas dans ce dernier cas de stimulation
ultrasonore, expression consacrée a la faculté de stimulation et d’'inhibition directe de

I'activité neuronale par les ultrasons.

Récemment, I'équipe américaine de William Tyler a démontré la possibilité
d’induire une neurostimulation directe a faible pression acoustique (Tyler et al. 2008).
Ces travaux présentent ainsi deux nouveautés : la possibilité de stimuler directement les
neurones et non pas seulement de moduler I'excitabilité neuronale et de le faire a faible
pression acoustique, c’est-a-dire avec des risques de dommages sur le tissu cérébral
potentiellement nuls. Ces études ont montré la faisabilité de générer, par ultrasons a
basse fréquence et faible intensité, des potentiels d’action qui ont été enregistrés par
électrophysiologie, d’abord dans des tranches d’hippocampes de souris(Tyler et al.
2008) (whole-cell current patch-clamp) puis dans des souris in vivo (potentiels locaux de
champ ou LFP)(T. Tufail et al. 2010; Y. Tufail et al. 2011). Sur les tranches, I'ouverture
des canaux calciques a été observée par microscopie confocale tandis que sur des
souris in vivo, sans craniotomie, des contractions musculaires suite a l'insonification du

cortex moteur ont pu étre observées et enregistrées par électromyographie (EMG).

Des travaux similaires ont été publiés un peu plus tard par I'équipe de Yoo sur le
lapin (avec craniotomie) avec des résultats similaires(Yoo et al. 2011). Yoo utilise un
transducteur compatible IRM ce qui lui permet d’ajouter I'IRM fonctionnel a ses
expéeriences de neurostimulation. Il visualise ainsi directement l'activation de la zone
ciblée, ie cortex moteur. Yoo utilise aussi des potentiels évoqués visuels (stimulation
lumineuse) pour mettre en avant l'inhibition de I'activité neuronale dans le cortex visuel,
d’abord par analyse de la composante p30 du signal EEG (pic positif a 30ms) puis
directement par la diminution du signal Bold sur les images fMRI. Pour 'inhibition, Yoo
utilise des impulsions ultrasonores plus courtes tout en augmentant la durée totale
d’insonification (9s), en conservant la pression et la fréquence ultrasonore inchangées.

Dans ces conditions, I'histologie ne montre aucun dommage sur la zone ciblée et
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I'utilisation de I'IRM permet de vérifier I'intégrité de la barriere hémato-encéphalique (par

injection de Gadolinium) et 'absence d’élévation de la température (<0.8°C).

1.2 HIFU transcraniens

Les thérapies transcraniennes par HIFU ont comme avantage premier d'étre non
invasifs, ce qui permet d'envisager un traitement chez les patients présentant des
risques opératoires. Elles ont lautre avantage d’utiliser des rayonnements non
ionisants. Les radiations ionisées produisent en effet d’'une part des effets secondaires
néfastes sur les patients et imposent des précautions pour le personnel soignant, et
peuvent d’autre part générer des cancers radio-induits en cas de traitements répétitifs.
Les ultrasons présentent d’ailleurs un intérét potentiel pour le traitement du cerveau en
développement des enfants, plus sensibles aux radiations ionisantes. L'impact en
termes de santé publique et de confort pour le patient pourrait étre trés avantageux,
notamment parce qu’un tel équipement s’affranchirait a la fois des problémes posés par
la chirurgie (infections, hémorragies, etc.), de ceux posés par les radiations ionisantes
(radioprotection, etc.) et par son co(t qui pourrait étre inférieur a la radiochirurgie

stéréotaxique.

Récemment les premiers essais cliniques utilisant une fréquence de 660 kHz ont
débuté avec des systemes développés par Insightec pour adresser différentes
pathologies du cerveau. Le systéme utilise une sonde HIFU hémisphérique, ce qui
distribue I'énergie acoustique sur une surface de crane maximale, mais limite par
ailleurs le positionnement de la sonde par rapport a la téte et peut entrainer de grands
angles entre I'axe des éléments et les normales géométriques du crane. Le couplage
est effectué par de I'eau sans autre interface entre la sonde et la téte. Celle-ci est fixée a
un cadre stéréotaxique et peut étre translatée. Une correction d'aberration simple est
effectuée en utilisant un modéle du crane basé sur son épaisseur et des tracés de

rayons entre les éléments et la cible.
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En 2009, le premier essai clinique contre les glioblastomes fat réalisé sur 3
patients a l'aide de ce systéme. Néanmoins les températures maximales atteintes apres
des émissions de 20 s étaient trop faibles (42 °C, 48 °C et 51 °C pour chacun des
patients) pour engendrer un effet thérapeutique significatif (McDannold et al. 2010). La
méme année, onze patients furent traités pour des douleurs neurogéniques chroniques
résistantes aux thérapies existantes (Martin et al. 2009)(Jeanmonod et al. 2012). lIs
étaient conscients, sous sédatif, régulierement interrogés pendant l'intervention, ainsi
que sous monitoring conventionnel. Les cibles de 3 mm a 5 mm de diameétre étaient
dans la partie postérieure du noyau central thalamique latéral. Le traitement fut réalisé
par des émissions HIFU de puissances acoustiques entre 800 W pendant 20 s et 1200
W pendant 10 s. Des températures de 51 °C a 64 °C furent atteintes. Les patients ont
ressenti une diminution plus ou moins importante de la douleur immédiatement aprés
l'intervention et qui semble persister aprés un an, ceci étant confirmé par une
amélioration de mesures électro-encéphalographiques (EEG). Néanmoins pour un
patient, un cas d'hémorragie cérébrale couplé a une ischémie fut détecté par IRM
provoquant des effets secondaires toujours présents un an aprés le traitement
(Jeanmonod et al. 2012). Selon les auteurs, un phénomeéne de cavitation ou de

température trop élevée (64 °C mesurés) pourrait en étre la cause.

Entre 2011 et 2012, 15 patients pharmaco-résistants ont participé a une étude de
phase | contre les tremblements essentiels utilisant également ce type de systéme
(Elias et al. 2013). Le traitement consistait en I'ablation d'une cible située dans le noyau
thalamique (VIM). Les températures maximales atteintes variaient entre 55 et 63 °C et
des échauffements successifs étaient répétés jusqu'a la diminution des tremblements.
Les résultats montrent une diminution moyenne des tremblements de la main contra-
latérale de 67 % un an aprés le traitement, se traduisant par une diminution du handicap
de 83 %. Cependant une légére paralysie faciale et/ou des engourdissements des
doigts ont pu étre observés (de fagon transiente pour 9 patients, et persistante apres un

an pour 4 patients).
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Fin 2012, 4 patients souffrant de tremblements essentiels de la main ont
également été traités a Toronto (Lipsman et al. 2013). Les cibles étaient dans le VIM du
c6té opposé a la main la plus affectée. La focalisation a été vérifiée par des
échauffements modérés puis adaptée afin de ne pas affecter les zones sensorielles
adjacentes. Les lésions ont été progressivement élargies en augmentant la puissance
ou la durée des émissions (entre 12 et 29 fois, par incréments entre 0 et 2 °C et entre
10 s et 25 s) jusqu'a disparition des tremblements ou apparition d'effets négatifs. Des
températures entre 56 °C et 63 °C ont été atteintes. Les tremblements ont fortement
diminué lors du traitement ainsi qu'aprés trois mois. Néanmoins un patient a présenté
lors du traitement une paresthésie (trouble des sensations liées au toucher) de la pointe
du pouce, toujours présente aprés trois mois. Selon les auteurs cet effet secondaire
serait associé a la lésion non souhaitée d'une zone sensorielle adjacente. De plus un
autre patient a présenté une thrombose veineuse profonde qui serait, selon les auteurs,

potentiellement liée a la durée du traitement.

Toutes les études menées entre 2009 et 2013 a 660 kHz ont été conduites avec
le systéme Insightec visible sur la Figure 1.11 (a gauche). Le systéme utilise une sonde
HIFU hémisphérique, ce qui limite son positionnement par rapport a la téte et peut
entrainer de grands angles entre I'axe des éléments et les normales géomeétriques du
crane. Une correction d'aberration simple est effectuée en utilisant un modéle du crane
basé sur son épaisseur et des tracés de rayons entre les éléments et la cible. Un
systéme fonctionnant a plus haute fréquence (1 MHz) est actuellement développé a
I'Institut Langevin en collaboration avec la société SuperSonic Imagine (Aix en
Provence, France) (Figure 1.11, a droite). L’augmentation de la fréquence devrait limiter
les risques de cavitation et diminuer la taille de la zone a traiter, ce qui devrait diminuer

les effets secondaires liés au traitement ultrasonore du tremblement.
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Figure 1.11:Systémes pour les traitements transcraniens de Insightec (Gauche, 660 kHz,
installé a I’'University of Virginia, Charlottesville, USA) et SuperSonic Imagine (droite, 1
MHz, installé a I’hépital de la Pitié Salpétriére, Paris, France).

1.3 Objectif de la thése

L’objectif de cette thése est de développer de nouveaux outils pour permettre le
guidage de la premiéere application clinique envisagée avec le systéeme SuperSonic

Imagine: le tremblement essentiel. Les deux techniques principales proposées ici sont :

e L’imagerie de force de radiation par IRM afin de localiser la focale du faisceau
ultrasonore avec un échauffement minimal les tissus. Cette technique a été
testée sur le systéme de thérapie installé a I'Hbpital de la Pitié Salpétriere (Figure
1.11, a droite)

e La neuromodulation ultrasonore pour moduler réversiblement I'activité des tissus
cérébraux et vérifier que la zone ciblée est bien responsable du tremblement.
Cette approche a été testée dans cette thése sur des modéles rongeur et primate
avec un monoélément focalisé spécialement développé.

Les principaux résultats sont résumeés dans les sous parties suivantes.
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1.4 Localisation des ultrasons par MR ARFI

L’Imagerie par résonance magnétique (MR ARFI) a été récemment présentée
comme une méthode prometteuse pour contréler et planifier les applications
thérapeutiques des ultrasons focalisés de haute intensité guidés par IRM
(MRgHIFU). Le MR ARFI mesure le déplacement induit par la force de radiation
ultrasonore, et révéle l'emplacement de la tache focale sans effets thermiques
importants. Des cartes quantitatives de déplacements obtenues par MR ARFI
fournissent une estimation indirecte de l'intensité du faisceau acoustique a la cible, ce
qui est essentiel dans le cadre des procédures de HIFU transcraniens. La Figure 1.12
détaille la séquence IRM utilisée pour encoder le déplacement. Un tir ultrasonore est
nécessaire pour reconstituer une ligne de I'image, soit N tirs pour une image de N

lignes.
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Figure 1.12: Diagramme de la séquence MR ARFI d’écho de spin 2D. Les tirs ultrasonores
sont synchronisés avec la seconde moitié du gradient d’encodage des déplacements.

Les gradients de codage du déplacement peuvent étre appliqués le long de 'axe
de sélection de tranche (TRA, pour transverse), le long de I'axe de lecture (SAG (per)

pour sagittal et encodage de phase perpendiculaire au faisceau), ou de Il'axe
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d’encodage de phase (SAG (par) pour sagittal et encodage de phase paralléle au

faisceau).
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Figure 1.13(a, b): a- Sagittal view of the MRgFUS experimental setup. b- Imaging
configurations tested in this work for MR ARFI keyhole acquisitions.

Une méthode de mise a jour partielle de l'espace des K, de type Keyhole,
apparait comme étant une méthode de choix pour minimiser le nombre de tirs
ultrasonores et conserver I'innocuité de la technique dans le cadre d’'une application
clinique. Nous avons donc cherché a démontrer I'efficacité de la technique Keyhole

dans I'acquisition des images MR ARFI, avec une distorsion d'image limitée.

La particularité de notre approche repose sur I'hypothése que le profil de
déplacement peut étre décrit par une fonction gaussienne (Figure 1.14), qui est bien
connue pour avoir des propriétés de transformation de Fourier simple. Typiquement,
une large gaussienne dans l'espace image correspond a une gaussienne plus fine dans

I'espace des K et vice-versa.
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Figure 1.14: (ligne noire) profil expérimental du déplacement obtenu par MR ARFI (ici le
long de la dimension de codage de phase avec R = 1). (Ligne rouge) fit gaussien.

Une séquence 2D d'écho de spin MR ARFI a été développée pour échantillonner
une fenétre Keyhole J%,, avec d#, Ak, = 1 /| R, ou Ak, est la gamme compléte de
codage de phase et R I'accélération, encore appelé facteur Keyhole. Pour un facteur R=
2, la moitié seulement des lignes de I'espace des K a été acquise. Les autres lignes
nécessaires a la reconstruction de I'image ont été prises sur une image de référence du
méme plan, acquise en l'absence de tir ultrasonore. L’acquisition des images a été
réalisée sur un scanner (MR) 3T Siemens Verio (Siemens Healthcare, Erlangen,
Allemagne). Les mesures ont été effectuées dans une cervelle de veau fraiche du
commerce placée dans un gel d'agar (3 % en poids) préparé a l'aide d'eau dégazée.
Une attention particuliere a été portée pour éliminer des bulles d'air lors du placement

de la cervelle dans le gel.

Les parametres expérimentaux étaient les suivants : TE = 43 ms, TR = 900 ms.
Les champs carrés de vision (FOV) de 160 x 160mm2 ont été acquis avec une taille de
matrice 64 x 64 et une résolution isotrope de 2,5mm. Les données de référence sans
impulsions US ont été enregistrées et les données de Keyhole ont été acquises avec
des impulsions US de 5 ms. L’'impulsion US a été émise au cours de la seconde moitié

des gradients de mouvement de la séquence MR-ARFI (Figure 1.12) et a été générée

26



avec le prototype a 1 MHz comportant 512 tranducteurs (SuperSonic Imagine, Aix en

Provence, France).

La Figure 1.15 montre les images MR ARFI générées en changeant le facteur
Keyhole R. Lorsque la direction d’encodage de phase est paralléle au faisceau
ulrasonore (ce qui est le cas pour la configuration SAG (par) uniquement), 'image est le
moins dégradé par 'augmentation du facteur R. Dans ce cas, les fréquences spatiales
sont effectivement faibles car le gradient de champ ultrasonore est le plus faible dans la

direction de propagation du champ.
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Figure 1.15: Images expérimentales MR ARFI Keyhole (phase) obtenues dans de la cervelle de
veau en faisant varier les facteurs Keyhole R dans les plans d'imagerie transversales (TRA) et
sagittal (SAG (per) et SAG(par)).

La Figure 1.16 confirme et quantifie les résultats de la Figure 1.15. Elle montre la
phase ¢y mesurée au foyer pour R variant de 1 a 8. Pour la vue TRA et SAG (per), @o
diminue de facon constante en fonction de R. Pour R = 2, g9 maintient plus de 90% de
la valeur initiale, puis elle chute a 60-70% a R = 4 ou a 35-40% a R = 8. Pour le SAG
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(par), @o reste presque inchangée de R =1 a 4 (~ 95%), puis elle diminue a environ
70% a R = 8. La configuration de SAG (par) donne environ deux fois plus de signal par

rapport a la TRA pour R = 8.
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Figure 1.16: (Points noirs) maximum de phase ¢, mesurées a la cible en fonction de
I'inverse du facteur de Keyhole. (Vert) Simulation de I'évolution de I'amplitude A, d'un
objet gaussien basé uniquement sur la propagation extraite de la régression. Les valeurs
de @, ont été utilisées uniquement comme des facteurs d'échelle

La simulation (en vert) montre que la perte de phase est bien prédite par la perte
de signal lié a la dégradation de la gaussienne par la fenétre utilisée pour le calcul de la
transformée de Fourrier. La simulation pourrait donc étre utilisée comme un outil de

prédiction.

Nous le voyons, l'utilisation de la technique Keyhole pourrait permettre de
diminuer le dépot d’énergie ultrasonore d’un facteur 4 a 8 par pour visualiser le faisceau

ultrasonore avant traitement.

1.5 Neuromodulation sur les rats

Une autre facon, plus intéressante encore, de planifier le traitement d’un
tremblement essentiel pourrait étre de moduler de fagon réversible l'activité cérébrale
avec le faisceau ultrasonore, jusqu’a étre capable d’arréter transitoirement le
tremblement. On ne s’assurerait alors pas seulement que le traitement aura bien lieu sur
la cible visée, mais également que la cible visée correspond bien a la zone responsable

du tremblement. Or il a été montré que les ultrasons focalisés de basse intensité
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peuvent stimuler le cerveau d’'une maniére non invasive et sans dommage notable du
tissu. Une telle neuromodulation, non invasive et localisée, pourrait avoir un impact
majeur dans les années a venir. L’émergence de ce nouveau champ de recherche
nécessiterait de nombreuses expériences sur des animaux afin de bien comprendre les
mécanismes de stimulation ultrasonore. Le premier but de mes recherches était
d’étudier la neuromodulation transcranienne par ultrasons de basse fréquence (320khz)
sur des rats anesthésiés avec différentes pressions acoustiques. Ceci afin d’estimer la
distribution in situ de la pression du champ et le seuil moteur correspondant. Etant
donné que la distribution de la pression acoustique correspondant a l'intérieur du
cerveau ne peut pas étre mesurée in vivo, cette étude s’est basée en partie sur des
simulations numériques de la propagation des ultrasons a lintérieur de la cavité
cranienne, afin de reproduire au mieux les conditions expérimentales réalisées dans la
premiére partie, aussi bien en terme de géométrie de transducteur, de géométrie de la

téte qu’en terme de parameétres acoustiques.

Dans cette étude, 29 sessions de neuromodulation ultrasononore ont été

effectuées sur des rats (N=8) en utilisant un transducteur a 320khz.

Dans plus de 60% des expériences réalisées, les impulsions ultrasonores ont
provoqué une réponse motrice. Dans toutes les expériences ayant induit une
stimulation, celle-ci était reproductible jusqu’a un seuil de pression sous lequel aucune
réponse motrice ne se produisait. Ce seuil de pression acoustique moyen avait une
valeur de 0.68 + 0.1 MPa (correspondant a un indice mécanique (Ml) de 1.2 et une
intensité moyenne spatiale et temporelle (Isppa) de 7.5 W.cm™), correspondant aux
calibrations obtenues en champ libre dans de 'eau dégazée avec les mémes tensions
d’alimentation. Une légére variation a été observée entre une phase d’anesthésie
profonde (0.77 = 0.04 MPa) et une phased’anesthésie légére (0.61 £ 0.03 MPa),
phases évaluées a partir du réflexe de la patte du rat a un stimulus mécanique externe.
Plusieurs types de réponses motrices ont été observées telles que: mouvement de la
queue, de la patte arriere, des pattes antérieures, de I'ceil et méme d'une seule
moustache. Chacune de ces réponses a été induite séparément (Figure 1.17).
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Figure 1.17(a, b, c): images successives de stimulations motrices de la queue. a-Avant
ultrasons. b- pendant I'impulsion ultrasonore. c- Apreés la stimulation. (d, e, f): réponse
motrice du systéme occulomoteur du rat. d- avant ultrasons. e- pendant I'impulsion
ultrasonore. f- aprés I'impulsion d'ultrasons. (g, h, i): réponse motrice d’une seule
moustache du rat. g- avant ultrasons. h- Pendant I'impulsion d'ultrasons. i- juste aprés
I'impulsion d'ultrasons.

Le champ ultrasonore dans la téte de l'animal a été simulé afin de pouvoir
évaluer la pression maximum in situ, ainsi que la distribution spatiale de pression. Les
simulations numériques sont basées sur les données micro CT d’une téte de rat a partir
desquelles sont déduites les propriétés acoustiques des os et des tissus mous. Les
champs acoustiques simulés présentent plusieurs pics de pressions secondaires en
raison de réverbérations de I'onde dans la cavité que constitue la téte du rat (Figure

1.18). Les champs acoustiques sont complexes a lintérieur de la téte du rat: en
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conséquence, pour relier les effets de neuromodulation a des paramétres acoustiques
dans le cerveau, il ne suffit pas de prendre en compte la simple atténuation du faisceau
par le passage du crane, en particulier pour I'étude sur les petits animaux et a basse
fréquence. On mesure ainsi dans notre modeéle une pression maximale temporelle et
spatiale (Psptp) 1.8 fois plus grande dans la téte de I'animal que celle simulée dans
'eau en l'absence de crane. L’intensité maximale temporelle et spatiale (Isptp) est
mutipliée par 3.6 (x 1.8) comparativement aux simulations dans I'eau seule. La prise en
compte de la seule présence de la premiére interface, comme cela est souvent fait,
conduirait au contraire a estimer une pression plus faible dans le cerveau que dans
'eau en I'absence de crane. La téte se comporte comme une cavité réverbérante qui
amplifie la valeur du maximum de pression et complexifie la répartition spatiale du

champ.
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Figure 1.18: Simulations numériques dans le modéle de téte de rat @ 320 kHz, normalisé
par rapport a la focalisation dans I’eau

La prise en compte de telles corrections dans les résultats précédemment
obtenus expérimentalement nous conduit a une estimation de la moyenne du seuil de la
pression acoustique dans le cerveau de 1.2+ 0.3 MPa (MI=2.2 et Isppa =17.5 W.cm?)
pour une neuromodulation motrice, a 320khz. Nous avons également mis en évidence
que la stimulation ultrasonore transcranienne dépend non seulement du niveau de

pression dans le cerveau mais également du niveau d’anesthésie du rat.
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1.6 Neuromodulation sur singe éveillé

Le petit animal, de surcroit anesthésié, est donc un modéle plus complexe qu'l
n'y parait pour I'étude de la neurostimulation ultrasonore de basse fréquence. Dans ce
travail de thése, nous avons ainsi utilisé les ultrasons focalisés (FUS) afin de moduler la

latence d’'un paradigme d’anti saccade chez deux singes éveillés (Macaca Mulatta).

Les animaux ont été spécifiquement dressés pour un paradigme d’anti saccade
(AS), dans lequel on leur demandait de fixer sur un stimulus central de couleur marron
apparu sur un écran. Apres la fixation, ce stimulus disparait et une cible latérale rouge
apparait a gauche ou a droite de I'écran. Les singes ont été entrainés a ne pas regarder
cette cible latérale, mais initier le plus t6t possible une saccade dans la direction

opposée Figure 1.19.

Experience room Control room

OSCILLOSCOPE

Transducer

RF POWER AMPLIFI':R

Inhut  Oufp

Figure 1.19: Dispositif de neuromodulation ultrasonore sur singe éveillé.

Les mouvements des yeux ont été enregistrés par un suivi oculaire infrarouge
(Eyelink 1k, SR-Research, Ontario, Canada) et la position de I'ceil a été enregistrée pour
des analyses ultérieures. Dans une série de 23 expériences indépendantes, les
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animaux ont exécutés 3 blocs d’entrainement AS par session (Figure 1.20). Une ligne de
base d’un bloc de 100 essais (50 gauche/50 droite) d’AS; des blocs de 400 essais (360
essais sans FUS (180 pour chaque cété) et 40 essai avec FUS (20 pour chaque cété) et
un dernier bloc de 100 essais en tant que test post traitement. Le FUS consistait en une
insonification de 100ms avec un transducteur a 320khz (H115, Sonic Concept, Bothell,
WA, USA) focalisée sur le champ oculaire frontal (frontal eye field ou FEF) et identifié
par ses coordonnées stéréotaxiques. La Figure 1.20 schématise l'organisation des
sessions. La pression dans le cerveau a été estimée a 0.35 + 0.05 MPa (Ispta 13.46 £

3.78 mW/cm?), sur la base de mesure en cuve avec et sans crane de singe.
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100 Trials (360 + 40 with ultrasound|pseusoe-randomly imedeaved ) 100 Trials

- - X 2 monkeys
/ Anti saccade task + Ultrasound \
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| | Lt i
| | L >

P —————
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Figure 1.20: Les 3 blocs d’entrainement AS par session
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Comme le montre la Figure 1.21, la stimulation ultrasonore ciblée dans le FEF
gauche affecte les latences des anti saccades. Plus spécifiquement, durant les sessions
expérimentales, la latence moyenne de [Ianti-saccade ipsilatérale a été
significativement ralentie par simulation ultrasonore (singe Y: p= 0.0018; singe L: p<
0.001), comparé aux cas non stimulés (singe Y: noUS= 221 ms US= 235 ms; singe L:
noUS= 239 ms US= 269 ms).

350r  ipsilateral contralateral
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Figure 1.21: Latences moyennes des antisaccades Ipsilatérales et contralatérales avec et
sans ultrasons sur les singes

Pour les 2 animaux, les latences moyennes des anti-saccades contralatérales
n‘ont pas été significativement ralenties (t-test: singe Y: p> 0.8; singe L: p> 0.6),
comparativement aux cas sans ultrasons.
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La stimulation utrasonore appliquée sur une zone contrble (cortex pre-moteur)
n’a affecté significativement ni les latences ipsilatérales (t-test: singe Y: p> 0.69; singe L:

p> 0.1), ni les latences contralatérales (singe Y: p> 0.11; singe L: p> 0.74).

L’effet de la stimulation a été transitoire (pas d’effets significatifs observés sur les

essais consécutifs (p> 0,5) pour les 2 animaux).

Dans le cas des pro-saccades, la stimulation ultrasonore n'affecte que
marginalement les latences controlatérales, et ce pour un seul animal (respectivement
p <0.001 and p > 0.52).

Pour les deux singes, un sham d'ultrasons focalisés, calqué sur les sham
d’expériences de Transcranial Magnetic Stimulation (TMS) a été mis en place : le
transducteur était reculé de 3 cm et une couche d’air empéchait ainsi les ultrasons de
pénétrer dans le cerveau. Aucun changements significatifs des latences ipsilatéralesou

controlatérales (p>0,5) n'ont été observés.

L’étude démontre la faisabilité de la neuromodulation du cerveau par ultrasons

focalisés de moduler d’une fagon transitoire un processus cognitif avancé et conscient.
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Chapitre 2 Introduction

2.1 Introduction

Ultrasound is a mechanical wave with a frequency higher than the upper limit of
the human hearing range (Figure 2.1). An average man can hear sound frequencies
between 20 Hz and 20,000 Hz, a range which narrows with age and is unique to each

person.

Ultrasound is best known to the general public for its application in medical
imaging. Ultrasound imaging has been used clinically for several decades. Its main
advantages are cost, temporal and spatial resolution, and the absence of radiating
effects. But ultrasound is not restricted to imaging and can also have therapeutic benefit

as shown in this work.

Infrasound Audible area Ultrasound

20 Hz 20 KHz

Figure 2.1: Approximate frequency ranges corresponding to ultrasound

How ultrasonic waves can be generated?

Piezoelectric transducers convert electric energy into sound. A piezoelectric
element with electrodes affixed on both sides oscillates by repeatedly expanding and

contracting when a sinusoidal tension is applied, generating a sound wave (Figure 2.2).
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Figure 2.2: Sound wave generated by a piezoelectric element

A backing material is generally placed behind the piezoelectric element in order
to reflect the wave on the back and reinforce the wave emitted by the front face (Figure

2.3).
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Figure 2.3: Function of the backing material behind the piezoelectric element

Generated ultrasonic waves are transmitted from the piezoelectric element into
the patient. Any difference in acoustic impedance on the path will reflect ultrasound and

potentially prevent ultrasonic waves from reaching their target. In particular, the wave is
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completely reflected in the presence of air. To avoid this phenomenon, an intermediate
echographic gel is placed between the piezoelectric element and the tissues (Figure

2.4), so that transmission is optimum.

Piezoelectric Piezoelectric
element element

1z cil— 4§
2 2

Tissue
Tissue
Without With
gel gel

Figure 2.4: Ultrasonic waves transmitted with and without gel

Waves generated within tissue are longitudinal (L-Waves, Figure 2.5), where the
particle movement is in the same direction as the wave propagation.

Ultrasonic
Transducers

Gel

/

Particle Motion

it
}

L-Wave
Direction

Figure 2.5: longitudinal wave

The pressure waves (positive compression and rarefaction negative) are thus
propagated in the human body. Pressure is related to particle velocity through the

medium acoustic impedance:
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P=Z7ZXv

Where Z is the medium acoustic impedance and v is speed particle displacement.

The amplitude of pressure Py is the maximum pressure generated, usually expressed in

MPa.

Other parameters are used to fully characterize the ultrasonic pulse (Figure 2.6),

and are widely used in this manuscript.
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Figure 2.6: ultrasonic parameters

* Pulse duration: the time required for one single pulse to occur.
* Pulse repetition frequency (PRF): the number of pulses occurring in 1 s.

» Duty cycle: Percentage of time that ultrasound is being generated (pulse duration) over

the pulse repetition period

The wavelength is the distance between maximum of two compressions
or rarefaction and depends on the frequency transmitted and the speed of sound in the

propagation medium according to the following formula:
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Y Iy

Where c is the speed of the wave; measured in m.s™ and f is the frequency (the

number of times a particle oscillates per second).

The higher the frequency, the lower the wavelength and the shorter the penetration
depth due to higher attenuation.

Focused Ultrasound

Ultrasonic transducers for medical therapy have shapes and dimensions adapted to the
organ for which they are designed. In general, they have a spherical shape in order to
focus ultrasound at the target (Figure 2.7), as do the transducers which were used in

this work for neuromodulation on rodents and primates.
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Figure 2.7: Focused ultrasound transducer by one spherical piezoelectric element

The focal spot size is determined by the geometry of the transducer (aperture D)
and the depth (F) of the target. It typically has the shape of an ellipsoid (length: AF/D and
depth: 7A(F/D)?).

Transducers can also be comprised of many elements (Figure 2.8) in order to
achieve electronic beam steering out of the geometrical focus or perform aberration

correction (for human transcranial treatments for example). We used such a
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multielement transducer for accelerating Magnetic Resonance Imaging
Radiation Force (MR ARFI) with a Keyhole technique.
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Figure 2.8: Multielement focused ultrasound transducer

Acoustic

Sound intensity refers to the power of a sound wave per unit area (Figure 2.9).

The average acoustic intensity at focus over a period is given by the formula:

I =
27

Where Py is the pressure amplitude of the impedance Z in the medium. It is

expressed in watts per square meter (W / m? or W - m-2)

. Spatial peak
Intensity

W/cm?

Spatial average

Distance across beam
Figure 2.9: The profile of the intensity as a function of the distance
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Intensity varies with time when using pulsed ultrasound (Figure 2.10) and the

following definitions are commonly used:
* Temporal peak (TP) is the greatest intensity found in a pulse.
* Temporal average (TA) includes the "dead" time between pulses.
 Pulse averaged (PA) intensity pulse averaged intensity is the average intensity

during the "on" time period of the pulse only.

Temporal peak
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Figure 2.10: The profile of the intensity versus time

The acoustic intensity is important when discussing biological effects and safety.
Ultrasound interacts with biological tissues via two main mechanisms: thermal and

mechanical.

Thermal effects are related to the absorption of ultrasonic waves by the tissue. In
tissues, thermal energy deposition per unit of time is proportional to the acoustic

intensity and to the frequency.
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Mechanical effects are of several types. The acoustic vibration itself causes movement
of the tissue of a few tens of nanometers at the ultrasonic frequency. But other more
complex effects exist, such as the generation of a radiation force proportional to the
average acoustic intensity. This force induces tissue displacement of few tens of
microns with a low frequency, through transfer of momentum. Finally, acoustic cavitation
can occur, corresponding to the stable or inertial oscillation of microbubbles (either
injected or generated spontaneously). The mechanical index (MI) has been introduced

to evaluate the risk associated with cavitation effects and is defined by:

PNP
Ml =—

JE

Where PNP is the peak negative pressure of the ultrasonic wave (expressed in MPa)

and Fc is the center frequency of the ultrasonic wave (expressed in MHz)

Like all interactions, beyond a certain threshold they can cause serious tissue
damage, up to its partial or total destruction. Thermal absorption can cause tissue
necrosis and inertial cavitation can literally tear cellular tissue, causing cell necrosis.
These two effects are exploited respectively in HIFU (High Intensity Focused
Ultrasound) and histotripsy. In the context of the use of ultrasound imaging, strict
standards are imposed on manufacturers to ensure the safety of the ultrasound

sequences used.

Nevertheless we also know that, at intermediate powers, thermal and mechanical effects
also have physiological effects that do not necessarily put the tissue at risk and allow
important medical applications. An example is the opening of the blood-brain barrier
(BBB) using focused ultrasound and co-injection of contrast agents (microbubbles of
gas, air, nitrogen or perflurocarbon): it allows molecules to enter the brain, that would
normally be blocked because of their size (> 400 Da). The opening is noninvasive,
transient and localized. It is believed to rely on stable cavitation (Tung et al.,
2010)(McDannold, Vykhodtseva, and Hynynen 2008)(Tung et al. 2011) which do not

cause visible damages on histological sections.
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A similar effect is sonoporation, allowing transient change in cell membrane
permeability by ultrasound. This technique is used in particular to allow the local
penetration of molecules too large to pass through the membrane itself(Deng et al.
2004), such as DNA fragments used for in vivo gene therapy. The addition of

microbubbles promotes sonoporation, similarly to BBB opening.

In addition, ultrasound has been shown to be able to produce nervous
peripherical stimulation and reversible inhibition of electrical activity for decades. In the
30s, Harvey was the first to demonstrate the potential of ultrasound to stimulate nerves
and muscle fibers (Harvey 1930). Other experiments of stimulation or inhibition of
ultrasonic nerves or muscles followed: the saphenous nerve of the cat in vitro (Young
and Henneman 1961), in vitro preparations of peripheral nerves of frogs (Lele
1962)(Mihran, Barnes, and Wachtel 1990)(Tsui, Wang, and Huang 2005), in vivo nerves
of the hand in humans (Davies and Gavrilov 1996), in vivo spinal cat (Shealy and
HENNEMAN 1962).

On brain tissue, Fry showed in the 50s that the response induced by a visual
stimulus could be reversibly inhibited in the primary visual cortex of the cat by focusing
ultrasound in the lateral geniculate body (W. Fry et al. 1958). The existence of auditory
sensations in patients undergoing a transcranial Doppler of the basilar artery has also
been reported (Magee and Davies 1993). Experiments on slices of rodent and
seahorses directly measured the influence of ultrasound on the amplitude of action
potentials and have shown an increase or decrease in the amplitude as a function of
ultrasonic power (Rinaldi et al. 1991). It is not, strictly speaking, direct stimulation by

ultrasound but a modulation of the excitability of neurons.

Recently, the U.S. team of William Tyler has demonstrated the possibility of
inducing a direct neuromodulation with low acoustic pressure (Tyler et al. 2008). This

has two novel aspects:

- the ability to directly stimulate neurons and not only modulate neuronal

excitability
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- the use of low acoustic pressure, that is to say, with minimum risk of

damaging brain tissue.

Action potentials generated by low-frequency low intensity ultrasound were recorded by
electrophysiology, first in slices of mouse hippocampi (Tyler et al. 2008) (whole-cell
current patch clamp ) and in vivo in mice ( local field potentials or LFP ) (T. Tufail et al.
2010)(Y. Tufail et al. 2011). The opening of calcium channels was observed in slices by
confocal microscopy. In mice in vivo, without craniotomy, muscle twitching was observed
and recorded by electromyography (EMG) when insonification was performed in the

motor cortex.

Similar work has been published later by the Seung Schick Yoo’s team on rabbits
(with craniotomy) with similar results (Yoo et al. 2011). Yoo used an MR-compatible
transducer and performed functional MRI during ultrasonic neuromodulation. Functional
MRI provided direct visualization of the target area, i.e. the motor cortex. Yoo et al also
used visual evoked potentials (light stimulation) to highlight the inhibition of neuronal
activity in the visual cortex, first by analyzing the p30 component of the EEG signal
(30ms positive peak) and second by the decrease of Bold signal on fMRI images. For
inhibition, Yoo used shorter ultrasonic pulses while increasing the total insonification
time (9s), keeping the pressure and ultrasonic frequency unchanged. Under these
conditions, histology showed no damage of the targeted area and MRI was used to
confirm the integrity of the blood-brain barrier (Gadolinium) and the absence of

temperature elevation (< 0.8 ° C).

2.2 Transcranial HIFU

Transcranial HIFU therapy has the advantage of being non-invasive and thus allows the
treatment of patients for whom operation are not safe. Accuracy is typically of the order
of a millimeter. In addition, temperature elevation used in thermal ablation can be

measured with dedicated MRI sequences to verify the proper course of the treatment.
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The non-ionizing nature of this approach is an advantage in terms of simplicity of
implementation and integration. The absence of radiation allows repeated treatments if

necessary, unlike radiotherapy treatments.

Note the potential benefits of the procedure on the developing brain of children,
more sensitive to ionizing radiation(Goske et al. 2008)(Duffner et al. 1993). The impact
in terms of public health and comfort for the patient could be very beneficial, especially
because such equipment helps overcome potential risks of both surgery (infection,
bleeding, etc.) and ionizing radiation (radioprotection, etc.) and also because its cost is

expected to be lower than stereotactic radiosurgery.

Recently, the first clinical trials with a frequency of 660 kHz have been performed
with a system developed by Insightec to address different pathologies of the brain. They
used a hemispherical HIFU probe, which distributes the energy over the largest skull
surface possible but consequently limits the position of the probe in regard to the head
and can cause large angles between the axis of the elements and the normal of the skull
surface. Coupling is performed with water without any membrane between the probe
and the head along the beam path, for better transmission. It is attached to a
stereotactic frame and can be translated. Aberration correction is performed using a CT-
derived model of the skull and based on ray tracings between the elements of the array

and the target, taking into account the skull thickness.

In 2009, a first clinical trial on glioblastomas was performed on three patients
using this system. However the maximum temperatures reached after 20 s emissions
were too low (C 42 ° , 48 ° C and 51 ° C for each patient ) to generate a significant
treatment effect (McDannold et al. 2010).

The same year, eleven patients were treated for chronic neurogenic pain
resistant to existing therapies (Martin et al. 2009)(Jeanmonod et al. 2012) . Patients
were sedated but aware, regularly interviewed during surgery, as well as under
conventional monitoring. Regions of 3 mm to 5 mm in diameter were generated in the

posterior area of the central thalamic nucleus. Moderate heating with temperature
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varying between 39°C and 42°C was used to verify the location of the targeting.
Treatment involved exposure to acoustic powers between 800W for 20s and 1200W for
10s. Temperatures of 51°C to 64°C were reached. Patients experienced a varying
decrease of pain immediately after the procedure. The effect persisted for one year, as
confirmed by improved electroencephalographic (EEG) measurements. However, for
one patient, a case of cerebral hemorrhage coupled with ischemia was detected by MRI
causing side effects still present one year after treatment (Jeanmonod et al. 2012).
According to the authors, cavitation or excessive temperature (64°C measured) could be

the cause.

Between 2011 and 2012, 15 drug-resistant patients participated in a phase |
study on essential tremor with the same device (Elias et al. 2013). The treatment
consisted of a thalomotomy of the ventralis intermediate nucleus (VIM). The maximum
temperatures reached varied between 55 and 63 ° C and successive thermal rises were
repeated until the tremor decreased. The results showed an average decrease of the
tremor of 67% one year after treatment, resulting in a reduction of disability of 83%.
However, a mild facial paralysis and numbness of the fingers were observed in some

cases (transiently for 9 patients, and persistent after one year for 4 patients).

At the end of 2012, four patients with essential tremor of the hand were also
treated in Toronto (Lipsman et al. 2013). The targets were in the VIM opposite to the
most affected hand. The focus was verified by moderate heating and adapted so as not
to affect the adjacent sensory areas. The lesions were gradually extended by increasing
the power or duration of emissions (between 12 and 29 times in increments between 0
and 2 °C and 10 s and 25 s) until the disappearance of tremor or occurrence of adverse
effects. Temperatures between 56 °C and 63 °C were reached. The tremors decreased
significantly during treatment and after three months. However paresthesia at the tip of
the thumb occurred in one patient during treatment, still persisting after three months.
According to the authors, this side effect is associated with undesirable sensory area of
an adjacent lesion. Another patient had a deep vein thrombosis which, according to the

authors, was potentially linked to the duration of treatment.
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All studies conducted between 2009 and 2013 at 660 kHz have been conducted
with the ExAblate 4000 Insightec system displayed in Figure 2.11(left). A system
operating at a higher frequency (1 MHz) is currently developed at Institut Langevin in
collaboration with SuperSonic Imagine (Aix en Provence, France) (Figure 2.11, right).
Increasing the frequency should decrease the risk of cavitation events and decrease the
treated volume. Both are expected to lower side effects during essential tremor
treatments. | used the 1MHz prototype for the experiments on MR ARFI optimization:

MR ARFI will be used in the future to help guide the treatment.

Figure 2.11: Systems for transcranial treatments Insightec (Left, 660 kHz) and SuperSonic
Imagine (right, 1 MHz).

At Institut Langevin, the first clinical trials are envisioned to be on essential tremor. The
treatment planning and target accuracy has been tested recently on sixteen
cadavers(Chauvet et al. 2013): the neurologist selected the targeted area (the ventral
intermediate (VIM) nucleus), from a T1 weighted image of the brain and the planning
software automatically computed the position of the array and phase corrections to
apply to individual elements. MR temperature imaging was performed to image the
temperature elevation during sonication. A millimetric accuracy was found between the

location of the maximum temperature elevation and the location of the target.
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The objectives of the work described in this thesis are first to investigate a new method
for minimizing energy deposition when localizing the ultrasonic beam in the brain, using
an accelerated MR acquisition technique. The second objective is to investigate
ultrasonic neuromodulation, which has only been tested on anesthetized rodents in the
literature, by doing experiments first in an anesthetized rat model to investigate the
motor threshold and ultrasonic field and then, for the first time, in awake monkeys in
order to advance toward potential future clinical applications such as better targeting of
the essential tremor focus, or treatment of other brain disorders similarly to that currently

achieved with transcranial magnetic stimulation (TMS).
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Chapitre 3 Keyhole Acceleration for Magnetic
Resonance Acoustic Radiation Force Imaging (MR
ARFI)

3.1 Introduction
Magnetic Resonance Acoustic Radiation Force Imaging (MR ARFI) (McDannold

and Maier 2008) has recently been introduced as a promising method to plan and
monitor therapeutic applications of magnetic resonance guided focused ultrasound
(MRgFUS). MR ARFI measures the displacement induced by the radiation force that
accompanies the acoustic beam, and provides the location of the focal spot without
significant heating effects. The displacement is MR encoded into the phase. Quantitative
displacements maps obtained with MR ARFI are used as an optimization parameter in
MR-guided adaptive focusing procedures (Larrat, Pernot, Montaldo, et al.
2010)(Hertzberg et al. 2010). The heterogeneous nature of biological tissues induces
the distortion of acoustic waves which can result in severe degradations of the focusing
pattern. In particular, transcranial (Tanter et al. 2007) (Pernot et al. 2007) or transcostal
(Aubry et al. 2008) FUS is hampered by the large disparity between speed of sound in
bone versus that in tissue, which leads in turn to a spreading of the focal spot and a
lowering of the pressure at the focus. Adaptive focusing techniques can restore the
focusing quality by estimating and applying a phase correction to each element of the
ultrasonic array. To obtain the phase corrections, MR-guided adaptive focusing methods
(Larrat, Pernot, Montaldo, et al. 2010) rely on the indirect estimation of the acoustic
wave at the target by transmitting at least 3N Hadamard-coded ultrasound signals, with
N the number of elements of the array that typically ranges from 256 to 1024. Hence, a
large number of serial MR ARFI images (a minimum of 768 images) must be acquired
for the full procedure. It is thus of primary importance to offer fast MR ARFI techniques

in order to reduce the total scan time. In addition, a low number of acquisitions or scans
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is desired to ensure minimal heat deposition during the focus restoration, as ultrasonic

sonication is required for each MR acquisition of the radiation force.

MR ARFI can also be used for beam localization with low energy before switching
to ablative sonications. Again, minimizing the number of sonications to acquire an image

is important to minimize energy deposition.

MR ARFI has already been performed using dedicated MR pulse sequences,
such as line-scan(McDannold and Maier 2008), two-dimensional gradient-echo (Huang
et al. 2009) or spin-echo(Larrat, Pernot, Montaldo, et al. 2010)(Larrat, Pernot, Aubry, et
al. 2010). The technique has recently found its rapid expression in the development of
single-shot echo-planar imaging (EPI) versions (Hertzberg et al. 2010)(Kaye, Chen, and
Pauly 2011). The EPI method is an accelerated technique that could be suited for
adaptive focusing. However it requires the use of long echo-times (TE) and high
bandwidth values, which unavoidably decrease the signal to noise ratio (SNR) and thus
require larger displacements and higher pressure levels. Adaptive focusing requires
substantial SNR in MR ARFI images to estimate the phase corrections accurately
(Marsac et al. 2012). Single-shot MR ARFI echo-planar images also suffer from inherent
geometric distortions arising from magnetic field inhomogeneities and fail to provide very

accurate localization of the focal spot.

To reach a compromise between SNR, high spatial resolution, limited geometric
distortions, and reduced total scan time, a partial k-space updating technique, such as
“keyhole” (Van Vaals et al. 1993)(Jones et al. 1993), may be a method of choice. The
dynamic imaging keyhole technique was originally introduced as a technique to follow
the uptake of contrast agent rapidly (Van Vaals et al. 1993)(Jones et al. 1993). Keyhole
was rapidly extended to cardiac MRI (Doyle et al. 1995)(Suga et al. 1999) and has been
used to improve the temporal resolution of functional MR imaging (Gao et al.
1996)(Xiong, Fox, and Gao 1999), diffusion tensor imaging in mouse brains (Sun et al.
2010), MR elastography(Murphy et al. 2010), MR thermometry(Han and Mun 2011),
interventional MRI (Duerk, Lewin, and Wu) or chemical exchange saturation transfer
imaging(Varma, Lenkinski, and Vinogradov 2012). The technique relies on the fact that
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the low spatial frequencies contain the coarse appearance of an image, while the
contours and the fine contrast are provided by the higher frequencies. A keyhole
acquisition updates only a central subset of k-space lines, which is then merged with
complementary peripheral lines taken from a previously recorded reference image.
Keyhole is particularly suitable for accelerating 2D gradient-echo or spin-echo
acquisition, whose times of acquisition (TA) are determined by the number of phase-
encoding steps. The temporal gain increases linearly with the number of outer lines
shared between the reference and the dynamic images. However, the keyhole
technique must be employed with caution since it provides only a low resolution image
of the updated or changing data (Hu 1994). Truncation artifacts appear when the
change contains high-spatial frequency components in the phase-encoding (PE)
direction and significant intensity drops occur for small dynamic objects when the

number of shared lines is too high (Spraggins 1994).

In this thesis, we demonstrate the efficiency and the advantages of keyhole
acquisitions for a 2D spin-echo MR ARFI pulse sequence used in the context of MR-
guided adaptive focusing preparation (Clement and Hynynen 2002)(Botros, Ebbini, and
Volakis 1998) and target visualization, for essential tremor treatments with the 1MHz
device. The uniqueness of our approach relies on the a priori knowledge of the dynamic
object, since the profile of the displacement induced by ultrasound bursts can be
described by a Gaussian shape (Sarvazyan et al. 1998). A Gaussian function is well-
known to have straightforward Fourier Transform (FT) properties; typically a broad
Gaussian in the image space generates a sharp Gaussian in the k-space and vice-
versa. First, we hypothesize and demonstrate that the spread, i.e., the size, of the
Gaussian profile in the PE dimension is the key parameter affecting the keyhole
technique in a predictable way for a spin-echo MR ARFI sequence. We show via
simulations and experiments the importance of adequate choice of the imaging plane
and the PE direction with respect to the ellipsoidal shaped ultrasound focal spot to take
full advantage of the keyhole technique. We show how well the displacement profile and

maximum intensity at the target are preserved when increasing the number of shared
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lines and thus the acceleration factor. All experiments of this proof of concept have been

performed in an ex-vivo calf brain.

3.2 MR ARFI

MR ARFI measures the quasi-static displacement induced by the ultrasonic
radiation force at the focus(McDannold and Maier 2008). The diagram of the 2D spin-
echo MR ARFI pulse sequence used here is presented in Figure 3.1. The displacement
is MR encoded into the phase using gradients applied along the direction of the
ultrasound beam (corresponding to the direction of the induced tissue displacement).
Repeated bipolar displacement encoding gradients were used to cope with artifacts
originating from bulk motions and eddy currents and to enhance the signal to noise ratio
(SNR) (Chen, Watkins, and Pauly 2010). The ultrasound bursts were emitted during the
second lobe of the displacement encoding gradients and were generated with an MR
compatible 1 MHz 512 channel prototype of ultrasonic brain therapy (SuperSonic
Imagine, Aix en Provence, France). The amplitude of the gradient was set to |Ge| = 20
mT/m. The duration of each lobe was t = 5 ms. each pair of displacement encoding

gradients is shifted symmetrically away from the refocusing pulse by a 4 ms delay.
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Figure 3.1: Diagram of the 2D spin-echo MR ARFI pulse sequence used for keyhole
acquisition. The displacement-encoding gradients can be applied along the slice-
selection axis, the readout axis or the phase-encoding axis. The ultrasound bursts are
synchronized with the second half of displacement-encoding gradients.

This configuration minimizes the encoding of motion due to the first ultrasound
burst during the first lobe of the second displacement encoding gradient and augments
the SNR. To obtain absolute displacements maps, a pair of phase images is generally
acquired with displacement encoding gradients applied with opposite polarity to double
the sensitivity(McDannold and Maier 2008). Subtraction of the two acquisitions ensures
removal of background phase Vvariations originating from magnetic field
inhomogeneities. In this work, a single reference phase image was acquired with
identical imaging parameters but without ultrasound emission. The phase difference A¢g
between the acquisitions obtained with ultrasound emission and the reference

acquisition can be translated to a displacement map as:
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where Ad is the displacement and y is the gyromagnetic ratio of protons. For the
sake of simplicity, only phase difference maps are presented and discussed in this work.
Figure 3.2a displays a typical phase map obtained in a 4% w/w ex-vivo calf brain
immersed in an agar gel using a MR ARFI spin-echo sequence at 3T (FOV size:
128x128 mm2, resolution 2x2x7 mm3, matrix size 64x64, TE = 43 ms and TR = 900
ms). The focal spot is a three-dimensional anisotropic ellipsoidal object. The
displacement can be described in any of the three MR main axes by a Gaussian profile
(Sarvazyan et al. 1998). Depending on the chosen axis, the displacement profile is
sharp (smallest axis of the ellipsoid) or broad (longest axis). Figure 3.2b shows one-
dimensional maximum displacement profiles taken from Figure 3.2a and along the two
imaging axes. The excellent agreement between the experimental profiles and a non-
linear least square fit using a Gaussian function supports this hypothesis. Note that
Figure 3.2a shows a transverse plane in which the focal spot is isotropic, giving phase
profiles with similar spreads.
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Figure 3.2 (a, b): a- Phase difference image obtained with a MR ARFI spin-echo sequence
at 3T (transversal imaging plane). The imaging parameters were: FOV size: 128%x128 mm?,
resolution 2x2x7 mm, matrix size 64x64, TE = 43 ms and TR = 900 ms. The background air
noise has been removed by applying a mask created from the magnitude image (not
shown). b- 1D phase profiles of the focal spot in readout and phase-encoding dimensions
(black). Non-linear least square fit using a Gaussian function (red).
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3.3 Influence of the human skull on displacement profiles

To investigate the influence of the human skull bone on the displacement profiles,
hydrophone measurements were performed on twelve human skulls. The skulls were
extracted from 12 fresh human cadavers at the “Institut d’Anatomie UFR Biomédicale
des Saints-Péres Université René Descartes”, Paris and were lent to the authors for the
duration of the study. All the specimens fulfilled the “Centre du Don des Corps” criteria
and had given their informed consent before death. The 512 element therapeutic probe
was used in a water tank and a hydrophone (HNC-0400, Onda Corporation) was placed
at its geometrical focus with stepped motors. The skulls had been used in previous
study on the evaluation of the precision of the treatment for targeting the thalamic
nucleus ventro-intermedius (VIM) implicated in essential tremor(Chauvet et al. 2013).
The geometrical focus was set to the same location it is intended to be in the first clinical
target envisioned with the prototype used in this study: the VIM. Skulls were mounted on
a stereotactic frame and placed between the probe and the hydrophone. The
hydrophone was then scanned (FOV size: 6x6x12 mm3, resolution 0.375x0.375x2
mm3) to record the intensity field in the presence of the skull. Intensities were measured
with and without skull aberration correction. Skull aberration correction was achieved by

hydrophone-based time reversal:

i. aten cycle TMHz signal was first emitted by the hydrophone

ii. after propagation through the skull bone, the distorted wave front was recorded
on the therapeutic array; the wave front was then time reversed in order to
compensate for the diffraction and refraction effects induced by the skull bone:
each transducer was driven by an independent electronic channel capable of
generating the temporally inverted signal stored in memory

iii. time reversed signals where re-emitted in order to focus back through the skull
towards the initial position
The corresponding intensity profiles were calculated and fitted with a Gaussian

function.
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3.4 Keyhole
Keyhole is a data-sharing method (Van Vaals et al. 1993)(Jones et al. 1993). A
reference image with a complete PE range 4k, is recorded once. Then, only a central

subset of k-space data lines J%;, i.e., the keyhole range, is collected from the image.
The subset Jd%; is then merged with the peripheral lines of the k-space of the reference

image and then Fourier transformed to generate updated images Figure 3.3.

Reference data central subset of k-space lines Merged full data

BN - s

Figure 3.3: Principle of Keyhole technique

The gain in temporal resolution, the so-called keyhole factor, is defined as:

Ak,

R=6,—ky

Consider a one-dimensional profile f(y) in the PE dimension which characterizes
the change to update. We denote the Fourier Transform (FT) by F(k,). Without contrast
enhancement, the keyhole range is simply the product of F(k,) by a window function
WF(ky), which is equal to 1 (0) inside (outside) the keyhole. As a result of the
convolution theorem, the profile f(y) is convolved by a point-spread function (PSF) p(y),
which is the FT of WF(ky), i.e. a sinc function. The keyhole degrades the resolution of
the change image in the PE dimension (Hu 1994) and the minimum number of lines to
be acquired is ultimately determined by the size of the dynamic object (Spraggins 1994).
Keyhole performed with a high keyhole factor R factor may result in an image intensity

drop for small objects (Spraggins 1994).
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3.5 Keyhole and MR ARFI: simulations

Numerical simulations were performed to determine the effect of the keyhole
method on phase images containing a two-dimensional Gaussian profile f(x, y). In the
following, the x and y axes denote the readout and PE (keyhole) axis respectively. The
Gaussian profile was characterized by spreads {0y, 0,} and was centered at a given

position {xo, yo}. Simulated data were generated in two ways.

First, the impact of the keyhole sampling on a dynamic Gaussian object of
amplitude Ap was studied. Magnitude images of the Gaussian profile were produced for
{ox, oy} = {1, 1} or {1, 4} pixels, Ao = 1 (a.u.), {xo, yor = {49, 49} and with N,xN, = 96x96
points. Simulated keyhole (magnitude) images were generated for every even keyhole
range J#;, i.e., by replacing pairs of lines, one on each edge of k-space with zeroes, and

this repeatedly until %, = 0.

Secondly, the two-dimensional Gaussian profile was encoded into the
background phase of an experimental image, as would occur in a realistic MR ARFI
experiment. A spherical phantom filled with doped water (17 cm diameter, Siemens
Healthcare, Erlangen, Germany) was used to generate a background image. A spin-
echo sequence was implemented with a FOV of 192x192 mm using an isotropic
resolution of 2 mm (matrix size = 96x96). The slice was approximately positioned at the
center of the sphere, resulting in a ~17 cm in-plane disc image. In order to remove
background phase variations, two acquisitions were performed and only the phase
difference image, combined with one of the two magnitude images, was considered in
the simulations. As in the previous case, the Gaussian profile was arbitrarily positioned
and inserted with spreads {oy, o,} = {1, 1} or {1, 4} pixels. For the sake of clarity, we
have denoted by ¢o (in radians) the amplitude of the Gaussian profile encoded into the
phase. This second category of simulations was achieved with ¢ = 1 rad. The keyhole
acquisitions were simulated by replacing the outer k-space lines of the synthetic phase
images by the corresponding lines taken from the initial experimental set of raw data.

Again, this was achieved for every even keyhole range J%;.
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3.6 Ex-vivo experiments

Images were acquired on a 3T Siemens Verio MR scanner (Siemens, Erlangen,
Germany). The measurements were performed in an ex-vivo calf brain immersed in a
3% agar gel. Flexible phased array receiving coils were wrapped around the object.
Inversion recovery experiments were previously conducted to extract longitudinal
relaxation times T1. These ranged between 0.7 s and 1 s. A spin-echo sequence (Figure
3.1) was modified to sample a specific keyhole range J%,, such as d#, /Ak, = 1/R = 8/8
(R=1), 7/8, 6/8, 5/8, 4/8 (R = 2), 3/8, 2/8 (R = 4) and 1/8 (R = 8). Experimental
parameters were: TE = 43 ms, TR = 900 ms (= T1), bandwidth = 390 Hz/pixel, the
number of excitations Nex was 1. Each acquisition was preceded by 3 dummy scans.
Square fields of view (FOV) of 160x160 mm2 were acquired with a matrix size of 64x64,
isotropic resolution of 2.5 mm (Vyoxel = 15.6 mm3). With R =1, TA = 61 s. Two reference

datasets without ultrasound pulses were recorded with a complete PE rangedk,,. In

addition, one dataset for each permitted keyhole range range d%; (i.e., Aky, 7x Aky/8, 6%
Aky/8... Aky/8) was acquired with ultrasound pulses. Each keyhole data was merged
with complementary peripheral lines taken from the first reference dataset. Background
phase variations were removed by subtracting the updated image and the second
reference image. Note that a use of the same reference dataset for data-sharing and the
subtraction of background phase variations would result in a low resolution version of
the background phase image in the PE dimension. The experiments were performed for
three imaging configurations: one transverse (TRA) view and two sagittal (SAG) views
with the PE axis being either perpendicular (per) or parallel (par) to the longest axis of
the ultrasonic focal spot as illustrated in Figure 3.4. The displacement encoding
gradients were applied along the slice, readout, and PE axis when using the TRA, SAG
(per) and SAG (par) configurations respectively. Regional saturation bands were
necessary to avoid folding along the PE direction due to the water flowing in the
coupling system located between the ultrasound transducer array and the ex-vivo tissue.

Image processing was performed off-line using Matlab (Mathworks, Natick, MA).
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Figure 3.4 (a, b): a- Sagittal view of the MRgFUS experimental setup. b- Imaging
configurations tested in this work for MR ARFI keyhole acquisitions.

3.7 Results

3.7.1 Simulated data

Figure 3.5a presents simulated keyhole magnitude images of a two-dimensional
Gaussian object of various spreads and of amplitude Ay = 1. Figure 3.5b displays the
cross-sections taken along the y axis that pass through the position of the maximum for
R =1, 4 and 8. When R increases, the Gaussian shape is gradually convolved by a sinc
function in the PE dimension. The convolution results in a loss of resolution. As shown in
Figure 3.5c, the keyhole method also leads unavoidably to a decrease of the amplitude
Ao; however the rate at which it occurs is lower when the spread o, increases. To
explain these features, consider again a 1D Gaussian profile f(y) in the y (PE or keyhole)
dimension. It is known that a broad Gaussian profile f(y) in the image space generates a
sharper Gaussian F(k,) in the magnitude of the k-space and vice-versa. Indeed, the full
width at half maximum (FWHM) of f(y) is directly proportional to o, (FWHM ~ 2.35x oy),
while the FWHM of F(ky) is inversely proportional to g, and depends on the number
(denoted N) of complex data points involved in the discrete FT (FWHM ~ 0.37/Nx o).
Truncation of high frequencies would thus be more severe for a sharp Gaussian object,

resulting in earlier convolution process and decrease of amplitude when R is increased.
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Figure 3.5 (a, b, ¢): a- Magnitude images of a Gaussian profile f(x, y) centered on {xy, yo} =
{49, 49} with an amplitude A, = 1 and spreads {o, o,} = {1, 1} or {0, 0,} = {1, 4} pixels. b-
1D profiles obtained with o, = 1 pixel (black line) or o, = 4 pixels (blue line) taken from the
y axis for various keyhole factors. c- Plot of the amplitude A, versus the inverse of the
keyhole factor R. The size of the dynamic object is a crucial parameter for the keyhole
technique.

Figure 3.6a shows synthetic keyhole phase images made with a two-dimensional

Gaussian profile encoded into the phase of an experimental image. Figure 3.6b and
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Figure 3.6c displays the 1D Gaussian profiles passing through the maximum phase in
the two imaging dimensions. Results are shown for spreads oy = 1 pixel, o, = 1 and 4
pixels. As R increases, the profile in the x dimension remains intact, while the resolution
is gradually lost in the y dimension. The convolution process and the decrease of
maximum phase are again attenuated when o, is increased. With ¢o = 1 rad, the PSF
that convolves the Gaussian profile seems to be similar to a sinc function.
Experimentally, it is expected that the maximum phase will rarely exceed one or two

radians.
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Figure 3.6 (a, b, c): a- Synthetic phase images containing a two-dimensional Gaussian
profile f(x, y) obtained with R=1, 2, 4 and 8. The profile was introduced with an isotropic
spread o, = 0, = 1 pixel and a phase amplitude ¢, = 1 rad and was centred arbitrarily at
{xo0, ¥o} = {49, 49}. b- 1D maximum phase profiles taken from Fig. 4a. and along the x axis.
c- ldem along the y (keyhole) axis with o, = 1 pixel (black line), o, = 4 pixels (blue line).

Figure 3.7 plots the evolution of ¢, versus the inverse of the keyhole factor for

spreads o, = 1 and 4 pixels. The evolution is almost coincident with the curves obtained

for Ao in our preceding simulations (Figure 3.5). Changes in the position of ¢, as well as
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the size of the object in the background image had no influence on the keyhole features
simulated here (data not shown). As a result, the evolution of the displacement profile
using the keyhole method can be simulated from a simple 1D Gaussian object. The a
priori knowledge of the spread of the displacement profile in the PE dimension is then

sufficient to predict the decaying rate of the intensity at the target.
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Figure 3.7: Plots of A, (dashed line) and ¢, (continuous line) versus the inverse of the
keyhole factor R using A, =1 and ¢, = 1 rad.
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3.7.2 Experimental MR ARFI data

Experimental MR ARFI images obtained in an ex-vivo calf brain using four
different keyhole factors are shown in Figure 3.8. The acquisitions were performed for a
transverse (TRA) view and two sagittal (SAG) views with the displacement being
oriented perpendicular (per) or parallel (par) to the PE direction. From keyhole factors R

= 1 to 8, the phase amplitude at the focal spot decreases and the resolution is gradually

lost.
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Figure 3.8: Ex-vivo calf brain phase images obtained with MR ARFI using keyhole factors
R =1, 2, 4 and 8 for a transversal view (TRA), and sagittal views (SAG) with the longest
axis of the focal spot oriented perpendicular (per) or parallel (par) to the phase-encoding
direction.

Figure 3.9a shows non-linear least square fits using a Gaussian function of the
phase profile of the focal spot taken along the PE axis when R = 1. The spread and

maximum phase values are o, ~ 1 pixel (FWHM ~2.35 pixels) and ¢o = 0.83 rad for the
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TRA view, o, ~ 1.2 pixels (FWHM ~3 pixels) and ¢ = 0.87 rad for the SAG (per) view,
and o, ~ 2.6 pixels (FWHM ~6.1 pixels) and ¢, = 0.94 rad for the SAG (par) view. Figure
3.9b shows the plots of the phase ¢, measured at the target for 1/R = 1/8 to 1, in steps
of 1/8. For the TRA and SAG (per) view, @o continuously decreases with R. For R = 2,
@o keeps more than 90 % of the original value and then falls to 60-70% at R = 4 or to 35-
40 % at R = 8. For the SAG (par), ¢o remains almost intact from R = 1 to 4 (~95 %), and
then decreases to ~70 % at R = 8. The configuration SAG (per) gives roughly two times
more signal than TRA when R = 8. According to our simulations, it is sufficient to apply
the keyhole technique to a Gaussian object encoded into the magnitude to reproduce
properly the evolution of the phase values as a function of the keyhole factor. With
spreads extracted from the fits displayed in Figure 3.9a and ¢y values measured in
phase images displayed in Figure 3.8, the simulated curves are in good accordance with

the experimental data (Figure 3.9b).
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Figure 3.9(a, b): a- (black) 1D phase profiles of the focal spot in the phase-encoding
dimension taken from Figure 3.8. (red) Non-linear least square fit using a Gaussian
function. b- (black dots) Maximum phase ¢, measured at the target versus the inverse of
the keyhole factor. (green) Simulated evolution of the amplitude A, of a Gaussian object
based only on the spread extracted from the fit. The ¢, values were only used as scaling
factors. For the SAG (par) configuration, note that the small discrepancy between the
experimental phase profile and the Gaussian-fit is due to the phase differences in the
background between the phantom and the water coupling system.
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3.7.3 Experimental evaluation of the influence of the skull on the intensity

profile

2
Table one list coefficient of determination R of Gaussian fits along each axis for

all transcranial sonications, with and without aberration correction. Time reversed

2 2
focusing corresponds to higher values of R . Nevertheless, the lowest mean R without

correction is equal to 0.968.

Without correction Time Reversal correction
R2 along x axis 0.968 +/-0.0431 0.999 +/-0.000394
R along y axis 0.986 +/-0.0225 0.997 +/-0.00315
R2 along z axis 0.991 +/-0.0122 0.999 +/-0.000414

Figure 3.10 shows examples of experimental intensity profiles (blue) and
corresponding Gaussian fits (red). Skull #5 and skull #8 illustrate typical plots obtained
with all skulls. For sake of conciseness only non-corrected profiles are displayed for
these two skulls (Figure 3.10a and b). The worst case scenario has also been displayed
(skull #12) with time-reversal-based aberration correction (Figure 3.10d) and without
(Figure 3.10c).
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Figure 3.10(a, b, c, d): Normalized intensity profiles along each axis obtained at focus
when sonicating through typical skulls (skull #5 and skull #8) and the worst case
focusing (skull #12): a- skull #5 without any correction, b- skull #8 without any correction,
c- skull #12 without any correction, d- skull #12 with time reversal correction.
Experimental data (blue lines) are compared to Gaussian fits (red lines)

3.8 Discussion

Compared to the most popular applications of the keyhole technique, our
approach benefits from the a-priori knowledge of the dynamic object since it is known
that the displacement profile can be described by a Gaussian shape constrained by the
geometrical characteristics of the ultrasonic transducer and the ultrasonic sonication
parameters. Water tank measurements showed that even if the skull affects the

propagation of ultrasound, the Gaussian functions can fit the beam profile along the

2
three main axis with a high R coefficient (more than 0.968), at least for targeting the
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centrally located VIM(Chauvet et al. 2013). A Gaussian function has straightforward
Fourier transform properties that deserve to be exploited in the context of keyhole
imaging. Typically, a broad Gaussian in the image space generates a sharp Gaussian in
the reciprocal space and vice-versa. The PSF that characterizes the magnitude image of
a Gaussian object obtained with keyhole is a sinc function. We have shown via
numerical simulations that a keyhole acquisition results in a degradation of the
resolution in the phase-encoding dimension and in a drop of the maximum amplitude
when the keyhole factor R is increased. In addition, our simulated data indicate that the
spread of the Gaussian determines in-fine the rate at which its amplitude decays. In
particular, a broad Gaussian in the image space minimizes the deleterious impact of the

keyhole technique.

MR ARFI encodes the Gaussian displacement profile into the phase of the image
(McDannold and Maier 2008) not into its magnitude counterpart. To our knowledge,
there exists no analytical expression for the corresponding PSF. The impact of the
keyhole method on a Gaussian phase profile has thus been investigated here with
numerical simulations based on experimental MR images. The simulations were made
with @o = 1 rad. It is indeed expected that the maximum phase, i.e. the displacement,
that can be measured in a real (through skull or ribs) in-vivo experiment would never
exceed this threshold. Under this condition, it has been observed that the PSF was very
similar to a sinc function. Accordingly, the decrease of the phase at the target was
almost coincident with the decay of the amplitude of a Gaussian magnitude profile.
Though less realistic, future work could determine wether this similarity holds when the

phase at the target is increased by several fold.

The experiments were performed in an ex-vivo calf brain. We have demonstrated
that the keyhole technique can dramatically enhance the acquisition speed of a 2D spin-
echo MR ARFI sequence. The unwanted effects of keyhole are mitigated when the
phase-encoding axis of the imaging plane is parallel to the longest axis of the focal spot.
This agrees with our simulations and our theoretical description. Using this particular

imaging configuration, SAG (par), the 1D profile of the focal spot taken along the phase-
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encoding axis is the broadest. It is then possible to maintain seventy percent of the initial
phase amplitude when a keyhole factor R = 8 is employed. In brief, this configuration
makes best use of the keyhole technique for MR ARFI and would enable a reduction by
a factor eight of the time required for adaptive focusing procedures. To guarantee no
major changes of the phase information at the target, the keyhole method could be
employed at least with R = 2 (TRA configuration) or R = 4 (SAG (par) configuration). If
the time required the 3N MR ARFI images was one hour, the keyhole acceleration would

decrease this duration respectively to 30 for R=2 or 15 minutes for R=4.

To a certain extent, the phase decay is thus predictable when the keyhole
method is implemented. Only the knowledge of the spread of the Gaussian profile in the
phase-encoding dimension would be required to achieve the calculations. It can either
be determined experimentally in a calibration measurement without keyhole acceleration
or be determined given the ultrasonic characteristics of the transducer (active surface,
focal distance, acoustic power, central frequency and duration of the sonication). In the
context of adaptive focusing, a knowledge of the spread would be absolutely necessary
to correct for the decrease of maximum phase corresponding to the keyhole factor
employed and thus to retrieve the true acoustic beam intensity at the target. The main
objection to the keyhole method for MR ARFI would reside in artifacts originating from
patient motion. However, this risk is minimum for FUS brain treatments and during MR-

guided adaptive focusing procedures since the patient’s head is immobilized.

3.9 Conclusion

The keyhole method applied to a 2D spin-echo MR ARFI pulse sequence is able
to generate rapidly undistorted displacement maps and offers an alternative to echo-
planar imaging sequence. The principal requirements for MR-guided adaptive focusing
procedures are fulfilled since keyhole ensures a reduction of the total time of acquisition
and minimal heat deposition. It is demonstrated that the method is strongly dependent
on the size of the ultrasound focal spot, and thus on imaging configurations. Indeed, the

coincidence between the phase-encoding axis and the longest axis of the focal spot
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preserves a significant amount of the phase information at the target, even when high
acceleration keyhole factors are used. A natural extension of this technique could be to
apply it to MR temperature monitoring during FUS therapy. The geometry of both the
radiation pressure and the temperature elevation distribution are indeed constrained by
the focal spot profile, so that one would again benefit from a priori knowledge of the

dynamic object.
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Chapitre 4 Neuromodulation on rats

4.1 Introduction

If temperature elevation and radiation force are important tools for transcranial
MRgFUS either as monitoring or correction tools, it may also be useful to rely on more
subtle effects of ultrasound which are specific to the neural tissue: ultrasonic
neuromodulation. It can be interesting to use ultrasound as a non invasive
neuromodulation tool either to validate the targeting of a specific structure, based on its
functional response to the stimulation (such as a transient stop of tremor) or to directly
induce a therapeutic effect due to the repetitive stimulation of a specific structure, such
as is currently achieved with transcranial magnetic stimulation, but with a better spatial

resolution.

Although it is not yet fully understood, ultrasonic neuromodulation is not a new
effect and has a long history. In 1958, Fry(F. Fry, Ades, and Fry 1958) was able to
demonstrate that the transmission of ultrasound waves to the lateral geniculate nucleus
could suppress the induced response in the primary visual cortex in cats, as evidenced
by standard electroencephalogram recordings (EEG). In 1976, Gavrilov and
colleagues(Gavrilov LR, Gersuni GV, llyinsky OB, Sirotyuk MG, Tsirulnikov EM 1976)
studied the effect of ultrasound in humans and demonstrated that it was a powerful tool
for stimulating nerve structures and produced different thermal, tactile, and pain
responses. Later, Tyler and colleagues(Tyler et al. 2008; T. Tufail et al. 2010), proved
the ability of low frequency, low intensity ultrasound waves to induce motor stimulation
without producing damage to the brain tissue. Yoo and colleagues(Yoo et al. 2011)
obtained similar results in rabbits in 2010 and used a magnetic resonance imaging
(MRI)-compatible transducer to visualize the activation of the motor cortex using

functional MRI.

Ultrasound can be focused through the intact human skull using multi-element

transducers and phase correction (Thomas and Fink 1996; Tanter, Thomas, and Fink
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1998; Hynynen and Sun 1999), thus making it possible to translate these animal studies

to humans.

Compared to current non-ultrasonic neurostimulation techniques such as
transcranial direct current stimulation (tDCS)(Nitsche et al. 2008), implanted
electrodes(Ressler and Mayberg 2007), Transcranial Magnetic Stimulation (TMS)(Hallett
2000) or optogenetics(Szobota et al. 2007; Zhang et al. 2007), transcranial ultrasonic
neuromodulation offers a unique combination of high spatial resolution (a few
millimeters), good time resolution (few hundreds of milliseconds), good access to deep
brain structures and non-invasiveness. Transcranial ultrasound neuromodulation could
thus open the door to unique high resolution and non-invasive neuromodulation
applications. Recent results confirm this potential, as focused ultrasound was shown to
be able to modulate the level of cortical neurotransmitters(Yang et al. 2012) and thus,
may have diagnostic as well as therapeutic implications for DA/5-HT-mediated

neurological and psychiatric disorders.

Important questions on the mechanisms behind ultrasound neuromodulation
remain. On the physiological scale, different hypotheses have been proposed from the
ultrasound-induced release of neurotransmitters inside the synaptic cleft(Borrelli, Bailey,
and Dunn 1981) to the ultrasound-induced opening of mechano-sensitive channels on
the membrane(Krasovitski et al. 2011) that would then trigger action potentials(Tyler et
al. 2008). On a more macroscopic scale, it has not yet been demonstrated wether the
effect is linked to thermal or mechanical interactions of the ultrasound beam with
neuronal tissue, which is nonetheless critical to optimize efficacy and safety. One way to
investigate these interactions is to vary ultrasound parameters such as pressure, burst
length and frequency and to study the resulting stimulation strength. However the
existence of an acoustic threshold lower bound for the effect has been questioned as,
interestingly, Tufail et al. reported higher electromyography (EMG) responses when
lower acoustic intensities were used(T. Tufail et al. 2010). In contrast, King et al.(King et
al. 2013) reported an acoustic threshold below which no stimulation was observed for

ultrasonic neuromodulation in rats.
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In order to investigate the potential mechanisms involved further, the exact value
of the in situ acoustic threshold in the brain needs to be determined, as must the spatial
distribution of the beam (for correlation with brain structures), due to the presence of
standing waves. While investigating ultrasonic blood brain barrier opening, O’Reilly et
al.(O’Reilly, Huang, and Hynynen 2010) reported pressure modulation due to standing
waves, as measured in a rat skull inside a water tank. We propose here to take
advantage of numerical simulations to investigate the spatiotemporal pressure field
using a full rat head model surrounded by air, in the same experimental conditions used

for neuromodulation.

In this thesis, we first studied the motor response of 8 rats using a low frequency
transducer (320 KHz) transcranially for different ultrasonic pressure levels. We
investigated the different kinds of motor responses elicited and the existence of an
acoustic pressure threshold for the response. Since the exact pressure in the head
cavity cannot be measured in vivo, the corresponding acoustic field was then simulated
numerically using a full rat head 3D computed tomography (CT) scan and finite-
difference time-domain (FDTD) software with identical acoustic parameters. The
simulated pressure peak and spatial distribution inside the head cavity were then
compared to that which was simulated in water. The correction of the motor thresholds

for in situ pressure and the acoustic field spatial distribution are then discussed.

4.2 Experimental setup

A custom holder was used to lift the body of the animal while allowing free motion
of its tail, forelegs and hind legs in order to easily visualize motor excitations. A
stereotactic frame (502603, WPI, Sarasota, FL,USA) was used to immobilize the head.
A single element focused ultrasound transducer (H115, Sonic Concepts, Bothell, MA,
USA) (central frequency 250 KHz, diameter 64 mm, FD# 1) was used. A coupling cone
(C103, Sonic Concepts, Bothell, WA, USA) filled with degassed water was used in
between the transducer and the animal head (Figure 4.1). The transducer was fixed on

two linear motors (Micos sMc Pollux, Freiburg, Germany) that allow a translation inside
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the horizontal plane to position the transducer over the desired target area. Echographic
gel (Aquasonic 100, Parker Laboratories Inc., Fairfield, NJ, USA) was applied between
the head to ensure acoustic coupling. All experiments were recorded on video to allow
further determination of the motor threshold. The motor response was then manually
classified in three categories: no response, moderate or strong motor response. A
strong motor response was considered when a clear limb movement was elicited.
Moderate motor response was considered when a muscular contraction was clearly
visible but no limb movement occurred. Visual motor response classification was
preferred to electromyography recordings (EMG) because EMG measurements were
found to be affected by electrical cross-talk with the transducer driving signals. Several
electrodes and shielding have been tested but too many false responses were recorded,
as demonstrated by additional measurements without coupling gel and thus without

actual ultrasound transmission.

320 KHz Ultrasonic transducer ~ Stereotacticframe  Rat holder Rat
with coupling cone y Vs

(b)

Figure 4.1(a, b): a - Experimental setup showing the stereotactic frame, ultrasound
transducer, linear motors and support frame with the electronics equipment, b -
Schematic diagram with the animal positioned in the stereotactic frame and holder. The
transducer with coupling cone is positioned on the head of the animal.
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4.3 Ultrasound sequence and calibration

The ultrasound sequence used is based on the protocol of Tufail et al.(Y. Tufail et
al. 2011), with a slightly higher center frequency of 320 kHz instead of 300 kHz; this
corresponds to a peak in the transducer spectrum and a longer total sonication duration

of 250 ms instead of 100ms, which was found to be more efficient.

The detailed parameters are as follows: ultrasound frequency was 320 KHz,
number of cycles was 75 per pulse (pulse duration = 230 ps), pulse repetition frequency
(PRF) was 2 KHz (duty-cycle=50%) and the total burst duration was 250 ms. Only the
pressure was changed in this study to identify the threshold, and ranged from 0.4 MPa

to 1 MPa peak pressure.

In order to build such sequence, two generators were used (AFG3101, Tektronix,
Melrose, MA); a 75 Watt amplifier (75A250A, Amplifier Research, Souderton, PA) was
then used to deliver the required power to the transducer and the input voltage of the
transducer was monitored using an oscilloscope (TDS2022B, Tektronix, Melrose, MA)
and voltage probe (P6139A, Tektronix, Melrose, MA).

The transducer was calibrated with a custom built heterodyne
interferometer(Royer, Dubois, and Fink 1992) in degassed water. The heterodyne
interferometer uses a laser beam to detect the small vibration of the ultrasound wave on

a mylar membrane which is then converted to pressure.

The calibration was first performed in free water. It was also performed behind
three excised rat skulls. The skulls were cut in half in the horizontal plane to allow the
positioning of the mylar membrane just behind the top of the skulls. Transmission
through the rat skulls was measured at three different locations for all skulls, as shown
in Figure 4.2b: position A at +1, +1 mm from Lambda (N=3 skulls), position B at -1.5, -

1.5 mm from Bregma (N=3 skulls) and position C at Bregma (N=1 skull).
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Interaural
Line-

Figure 4.2(a, b): a- Image showing the position of the half-skull between the transducer
and the heterodyne interferometer, b- the three different locations of attenuation
measurement on the half-skull sample

4.4 Preliminary experiments

We spent a lot of time finding the appropriate dosage of sedatives
(Ketamine/Xylazine). We varied dosage from 30 mg/Kg of Ketamine (respectively 8.45
mg/Kg of Xylazine) to 72 mg/Kg of Ketamine (respectively 20 mg/Kg of Xylazine) to
sedate the rats. A total of 8 different dosages were tested three times : 24 experiments
were thus conducted. The most stable and reproducible response after US stimulation
was obtained with the following dosage: 66 mg/Kg of Ketamine and 13 mg/Kg of

Xylazine.

We also investigated various PRF (ranging from 500Hz to 4kHz) and chose the

value of 2 kHz as the most robust parameter.

This parametric exploration (n=14 animals) was used as a first step to find a good

and reproducible response and design our final protocol but could in no way be
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interpreted as statistically relevant since the number of experiments conducted for each
parameter was low (n=1-3 sessions max). However, it should be possible in future work
to investigate those additional parameters with more animals in order to provide a more

robust estimation of their influence.

4.5 Animal preparation and ultrasound neuromodulation

protocol
All animals were Sprague Dawley rats (N=8; all male, body weight 150-250 Q).

Each rat was shaved prior to the experiment and was injected intraperitoneally with
Ketamine and Xylazine for sedation (66 mg Ketamine for 1 kg body weight, 13 mg
Xylazine for 1 kg body weight). Eight to ten minutes after anesthesia, and once the rat
was deeply anesthetized, the animal was placed on the holder and his head was fixed in
the stereotactic frame. A coupling gel was placed over the rat head and the ultrasonic

transducer was positioned using the motors at the desired location (Figure 4.3).

25 to 30 minutes after injection, we started to apply ultrasound pulses every 10
seconds to the rat brain with a pressure of 0.75 MPa, as estimated from the calibration
measured in free water, around the locations Lambda —1 mm, - 1 mm and -3 mm as can
be seen in Figure 4.2. These chosen locations correspond to the best success rate in
obtaining motor responses, even though they did not correspond to the motor cortex
area. The position was adjusted during this phase to find the best motor responses,
although it was generally stable when moved less than a few millimeters. When a stable
response was obtained, the pressure was reduced until the response was barely

noticeable.

For each series of measurements, 30 different pressure amplitudes centered
around this value were defined randomly in order to investigate the motor responses
versus pressure curves. New series were added until the rat started to wake up and to
show motor activity uncorrelated with the ultrasound pulses. This temporal window of
acceptable anesthesia level typically lasted around 10 to 15 minutes depending on the
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rat weight and anesthesia strength. Meanwhile, the anesthesia level was regularly
estimated by assessing the pedal reflex of the rat, assuming that no reflex meant a deep
anesthesia level and a reflex meant a lower anesthesia level. For each series,

experimental points were fitted with a sigmoid curve using Matlab (MathWorks, Natick,

MA, USA) in order to obtain a more accurate threshold value for the motor response.

Figure 4.3(a,b): The ultrasound transducer is initially positioned close to the lambda
anatomical point and has been marked by a laser beam here. The rat head is shaved and
echographic gel was inserted between the coupling cone and the rat skin.

Possible damage was investigated by careful examination of the skin of the rats
after the experiment and one day later. The behavior of the rats was also investigated
over several days after each neuromodulation session and their weight controlled. No
change in behavior or weight was observed, although no histology was performed in this
study. In order to minimize the number of animals required for the study, each rat
underwent several neuromodulation sessions with at least one week of recovery

between each.
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4.6 Numerical simulation of the experimental setup

In order to investigate the ultrasound field in the whole rat brain while taking into
account complex effects of the full skull cavity and head geometry, three-dimensional
(3D) numerical simulations of the ultrasound propagation were conducted. Acoustic
density and velocity maps were reconstructed from a 80 pm micro-CT scan
(Skyscan1178, Bruker micro-CT, source 65kV) of a rat head using an approach
validated on different animal models(Aubry et al. 2003; Marquet et al. 2009; Deffieux
and Konofagou 2010; Tanter et al. 2007). The skull was considered as a homogeneous
layer since the only apparent variations were due to the smoothing from the CT
reconstruction algorithm and not to the microstructure. The acoustic parameters are
summarized in Table 1. The acoustic density and velocity 3D maps were then sub-

sampled to a 240 um isotropic resolution which gave a ratio of 20 pixels per wavelength.

An in-house 3D finite-difference time-domain acoustic simulation software (Acel,
Institut Langevin, Paris, France), was used to perform the purely acoustic and linear
ultrasound propagation simulation through skull structures(Aubry et al. 2003; Marquet et
al. 2009; Tanter et al. 2007). The coupling cone and the tissue-air interfaces around the
head were modeled as perfectly reflecting interfaces since the reflection coefficients
between water and air and between tissue and air are close to 99.9% (Z,,=408 Pa.s/m,
Zwater=Ziissue=1.5 .10° Pa.s/m).

80



Water Brain Skull Other tissue
(muscle, ears, skin
..)
Velocity(m/s) 1540 1560(International 3000(Marquet et al. | 1540(Marquet et al.
Commission on 2009) 2009)
Radiation Units and
Measurements
1998)
Density (kg/m"°) 1000 1040(International 1850(Marquet et al. | 1000(Marquet et al.
Commission on 2009) 2009)
Radiation Units and
Measurements
1998)
Attenuation 0 o6@1 6.9 @ 1 MHz(Culjat 0.3@ 1 MHz
(dB/cm) MHz(International et al. 2010) 0.1 @ 320 kHz
Commission on 2.2 @ 320 kHz
Radiation Units and
Measurements
1998)
0.19 @ 320 kHz

Table 1: Acoustic parameters used in the rat head model

Three simulations were performed: one in free water, one behind the half-skull
immersed in water and one inside the full head cavity in air. The same acoustic
parameters were used as in the experimental setup but the total simulation duration was
limited to 500 ps of which 230 ps corresponded to a single ultrasonic pulse, as defined
in the “ultrasound calibration and sequence” subsection (i.e. the full 75 periods of the
320 kHz ultrasound burst).

For each simulation, the pressure field was stored in three dimensions for all time

steps in a 180 gigabyte file.

Time profiles of the acoustic pressure were extracted at the geometric focus for
the three configurations and normalized to the spatial peak, time peak pressure
simulated in free water. The spatial peak position in free water corresponds to the
acoustic focus of the transducer which is slightly closer to the transducer than the

geometric focus at low frequencies.

Maps of the in situ time peak pressure were also estimated by taking the time

peak of the pressure field at each pixel for the sagittal, coronal and horizontal views,
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centered on the geometric focus. All maps were then normalized to the spatial peak,

time peak pressure simulated in free water.

Spatial peak, time peak pressures (Psptp) were estimated for each configuration
to discuss the effect of reverberations. These values were normalized to the Psptp

simulated in water.

Spatial peak, time peak acoustic intensities (Isptp) were estimated for each

configuration by squaring the Psptp with the same normalization.

Spatial peak, pulse averaged acoustic intensities (Isppa) were estimated for each
configuration by first squaring the space-time pressure field then averaging over the 75
cycles (taking into account the propagation delay for each pixel) and finally taking the

spatial maximum. Those values were normalized to the Isppa simulated in free water.

For the estimations of these normalized values, only the acoustic field inside the
brain volume was taken into account, disregarding any other peaks outside of this

volume.

In order to investigate the robustness of these results with respect to the
transducer position, 10 different locations of the transducer were simulated. These
locations were chosen randomly in a cube of length equal to the wavelength (i.e. 5 mm
at 320 kHz) to generate different configurations of interference patterns between the
transducer and the skull surface. This artificially increases the standard deviation of the
estimated values but provides more insight on the influence of the transducer-skull

interferences with respect to the intra head cavity reverberations.

4.7 Results

4.7.1 Ultrasound pressure calibration through the half skulls

Measurements of the ultrasound transmission through the rat half-skulls shows

that, on average, for the three positions tested, 89% of the pressure amplitude can be
82



recovered behind the half-skulls immersed in water (see Table 2 and Figure 4.2). This is
to be expected due to the low frequency used here (320 kHz) as skull thicknesses were
estimated to be approximately 0.41 mm +/-0.16 mm using a digital caliper rule (Fischer

Darex, Le Chambon Feugerolles, France).

In specific cases, transmission could be higher than 100%, which is due to
constructive interference between the skull sample and the transducer surface and can

also be observed in simulations with the half skull model.

Transmission Position A Position B Position C All measurements

320 KHz 91+8% 83+9% 75% (std N/A) 89+10%

Table 2: Transcranial transmission coefficient over the three different points on the skull surface.
Positions tested are given in the Methods section.

4.7.2 Ultrasound neuromodulation experiments

Following the protocol described in the Material and Methods section, we
obtained motor responses of the tail and hindlegs in more than 60% of the experimental
sessions. In the case of failed experiments (40%), no stimulation at all could be
observed for any of the trials performed on a given day for a given animal and for any
acoustic pressure tested (up to 1 MPa). Successful experiments, however, were
consistent and always repeatable during the same day. They were strong, and clearly

visible to the naked eye.

In these cases, a reproducible response was observed above a pressure
threshold. Figure 4.4 illustrates such a motor response obtained in a rat with a strong tail

movement triggered by the ultrasound pulse.
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Figure 4.4 (a, b, ¢, d, i, f): Pictures of our successful experiments in our laboratory. We
can see an immediate motor response in the tail. a- the moment before sending a sound
wave. (d- close-up picture of the tail at the moment). b- during sending a sound wave. (e-

close-up picture of the tail at the moment). c- through the end of the sound wave. (f-
close-up picture of the tail at the moment.

While the observed motor responses largely involved the hindlegs and the tail,
other motor responses have also been observed, such as contraction of the forelimbs or
facial muscles, without tail or hindleg movement. These other motor responses did not
seem to be linked to a particular position of the ultrasound transducer on the skull but

were perfectly reproducible during the whole experimental session duration.

In some experimental sessions (N=3), we were also able to trigger a motor
response of the occulomotor system alone (cf. Figure 4. 5) yielding a movement of the

eyes. Both eyes were seen to move in the same direction. The focus zone was
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approximately 3 mm anterior, —2 mm right of the lambda point and the effects remained

visible a few millimeters around this point.

Figure 4.5 (a, b, ¢, d, i, f): We can see an immediate motor response in the eyes. a- the
moment before sending a sound wave. (d- close-up picture of the eyes at this moment). b-
During sending a sound wave. (e- close-up picture of the eyes at this moment). c- through

the end of the sound wave. (f- close-up picture of the eyes at this moment).

In another experimental session (N=1), we were able to trigger the motor
response of a single whisker (cf. Figure 4. 6) during the whole duration of the
experiment. Only the left whisker was seen to move. The focus point was contralateral

to the whisker movement, 3 mm anterior, —1 mm right of the lambda point.
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Figure 4. 6(a, b, ¢, d, i, f): We can see an immediate motor response in the mustache. a-

the moment before sending a sound wave. (d- close-up picture of the mustache at this

moment). b- During sending a sound wave. (e- close-up picture of the mustache at this

moment). c- through the end of the sound wave. (f- close-up picture of the mustache at
this moment).

The motor neuromodulation of very specific structures such as the occulomotor
system or a single whisker are particularly interesting, since the size of the focal spot
should theoretically not allow focusing only on such small brain regions (typically the
occulomotor and lateral facial nuclei are submillimetric). One possibility is that their
stimulation thresholds became lower in some of the experimental sessions due to
specific brain activity state during the animal’s sleep. Another possibility is that their
activation involves the stimulations or inhibitions of several other structures that a given
pressure pattern is able to trigger specifically. In order to get more insight into the spatial
distribution of the ultrasound pressure field, results of numerical simulations of the

ultrasound beam in a full rat head model are displayed in section 4.7.4 .
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4.7.3 Pressure threshold

Figure 4.7 presents two response curves for the same animal, but at different
times in the experiment, i.e. for different anesthesia stages: the motor response is
plotted as a function of estimated pressure at focus, as evaluated in water, ranging from
“no response”, “muscular contraction but no limb movement” to “muscular contraction
with limb movement”. In those compiled results, rats of the same age and weight (200 g)
were used with the same anesthesia protocol and we focused on the motor stimulation

of the hindlegs and tail that were more consistently obtained.

Two experimental series are presented in Figure 4.7 on the same animal for deep
and light anesthesia stages. As described in the methods section, a sigmoid fit (red
curve in Figure 4.7) was used to find the pressure thresholds, respectively 0.79 and 0.59
MPa in those cases. On average for all of the animals, we found a pressure threshold of
0.68 MPa (N=29 series), with a standard error of 0.02 MPa. Pressures are given as if in
free water, without any correction applied. The standard deviation of the threshold
corresponds to 0.1 MPa which is likely due to the anesthesia conditions and timing, as
illustrated in Figure 4.7a and Figure 4.7b. Indeed, in the light anesthesia stage, the
threshold was always found to be lower than in the early anesthesia stage (0.59 MPa in
Figure 4.7b versus 0.79 MPa in Figure 4.7a), while the sigmoid also appears less sharp

in Figure 4.7b, indicating more deviation in the responses for late anesthesia.

By using the results on which the pedal reflex was used as a classification tool
between light and deep anesthesia (N=7 series), we found a threshold of 0.77 + 0.04
MPa for early (deep) anesthesia (N=3 series, SE=0.02 MPa) and 0.61 £ 0.03 MPa for
late (light) anesthesia (N=4 series, SE=0.015 MPa).
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Figure 4.7 (a, b): Two response curves corresponding to different anesthesia stage on the
same rat during the same experiment. a- In the beginning of the experiment, the sigmoid
presents a sharp threshold at 0.79 MPa (uncorrected pressure). b- In the last minutes of

the experiment, the sigmoid is not as sharp with a lower threshold around 0.59 MPa
which corresponds to a diminishing threshold while the animal starts to wake up slowly.

All pressure thresholds are estimated in water for the equivalent input voltage, i.e.
uncorrected for the skull transmission or any other effects. In order to provide values
closer to the reality inside the brain, numerical simulations of the acoustic field in a full
head model were performed and correction values for the pressure and intensity peaks

are estimated in the next section.

4.7.4 Acoustic numerical simulation of the experiment

Numerical simulations of the acoustic field were performed using the geometry of
the transducer and a CT scan of the rat head. All the ultrasonic parameters were similar
to the real experiment.

Figure 4.8 presents the temporal pressure profile obtained at the geometric focus
for the three configurations. In the case of the full head model, the pressure is not
steady and oscillates over time due to acoustic interference in the head. It is also
noticeable that the pressure is not zero, even at the end of the ultrasound pulse due to

strong reverberations inside the head cavity, although the pressure amplitude is reduced
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by a factor two. This behavior is also present, albeit with a much lower pressure
amplitude left, in the case of pressure curves through the half skull in water due to
reverberations between the skull surface and the transducer and inside the coupling
cone respectively. In the case of the half-skull, the time profile clearly shows the
interferences between the direct and reflected waves which appear to be primarily
destructive in the case presented below (t=120 ps...).
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Figure 4.8: Simulated pressure amplitude at the geometric focus as a function of time; in
free water (black), in the full head model (blue) and behind the half skull (red).

In order to quantify the overall increase in peak pressure, the spatial peak and
time peak pressures were estimated for each configuration and normalized to that
corresponding to the free water simulation. Peak pressure maps for the water and full

head configuration in the sagittal, coronal and horizontal planes are presented in Figure
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4.9. One can notice that the full head configuration shows considerable interference
patterns with secondary and shifted peaks and an overall increased peak pressure
inside the head due to standing waves. Those patterns arise in the full head and not
only inside the animal brain, suggesting that the air-tissue interface is the primary cause
of the reverberations in front of the tissue-skull interface, which could be expected given

the small thickness of the skull with respect to wavelength.
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Figure 4.9 (a, b, c, d, e, f): Peak pressure spatial distribution relative to the peak pressure
in water (%). Note the change in color-bar scale between the two columns. The isocontour
represents half maximum of each configuration. a- Peak pressure map in water
(horizontal view). b- Equivalent view for the full head model (skull is represented in
white). c- Peak pressure map in water (coronal view). d- Equivalent view for the full head
model. e- Peak pressure map in water (sagittal view). f- Equivalent view for the full head
model. Views are centered on the geometric focus.
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Spatial profiles of the time peak pressure are given in Figure 4.10, for the free
water and full head configurations along the coronal and sagittal axes and centered at
the geometric focus. It is clear from these spatial profiles, that there is both a uniform
background pressure of approximately 40% of the spatial peak, time peak pressure in
water (approximately 30% of the spatial peak, time peak pressure in the brain) and
multiple secondary peaks that are smaller than the focal spot in water, which are
typically half-a-wavelength wide and are expected in the case of standing wave

interferences forming in a cavity.
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Figure 4.10: Spatial profiles at the geometric focus. a- Coronal axis. b- Sagittal axis. Skull
bone is indicated in gray. The profiles show spatial oscillations of approximately half a
wavelength typical of standing waves pattern. Although this gives rise to peaks smaller
than the focus spot in water, the pressure is not well focused and is distributed over the
whole head at approximately 30% of the peak value in the head cavity (40% of the peak

value in free water).

As presented in Table 3, the spatial peak, time peak pressures were estimated for
the half skull and full head configuration and normalized to the spatial peak, time peak
pressure simulated in free water. Since part of the transmitted pressure is due to
constructive or destructive interferences between the transducer and the half-skull as

evidenced by the pressure profile behind the half skull in Figure 4.8, we averaged the
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results over 10 different positions of the transducer when estimating the pressures and

intensities.
Simulations of the experiment Mean + Std
Spatial peak, time peak pressure behind the half skull normalized to water 1.1+£0.2
Spatial peak, time peak pressure inside the head normalized to water 1.8+0.4
Spatial peak, time peak intensity behind the half skull normalized to water | 1.1 +0.2
Spatial peak, time peak intensity inside the head normalized to water 3.6+1.8

Spatial peak, pulse averaged intensity behind the half skull normalized to 0.9+0.4
water

Spatial peak, pulse averaged intensity inside the head normalized to 231
water

Table 3: Simulated pressures and intensities behind the half skull and inside the head
normalized to those in free water.

We estimate that the spatial peak, time peak pressure inside the head of the
animal has a 1.8-fold increase, on average, due to the reverberations of the ultrasound
wave. The standard deviation of this ratio due to the 10 different positions simulated was
found to be 0.4 and seems to be due to the destructive or constructive nature of
interference between the transducer and animal skull. The spatial peak, pulse averaged
intensity showed a 2.3-fold increase for a 3.6-fold increase for the spatial peak, time
peak intensity. Intensity and pressure are thus very different from an estimation based
on water measurements only and could potentially lead to local tissue heating even

when the acoustic intensity was found to be low in water (Table 3).

Regarding the transmission through the half skull, we observe on the pressure
time profile behind the half skull (red curve in Figure 4.8) an initial transmission of 90%,
before the interferences start to play a role either destructively or constructively. This

value is close to the experimental transmission found on three skulls (cf. Table 2).

4.8 Discussion

This work confirms the existence of a pressure threshold in the brain for motor

stimulation using transcranial focused ultrasound. The ultrasonic sequence for
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neuromodulation was based on that described in detail in Nature Protocols (Y. Tufail et
al. 2011). Only the pressure amplitude was modified, and all other ultrasonic parameters
were kept constant. This enables the study of a single parameter in order to evaluate the
existence of a neuromodulation threshold. However, it does not permit conclusions
about whether the threshold is a mechanical threshold or a thermal threshold, which
remains an open question. In further studies, several different transmit sequences
(changing PRF, duty cycle and pressure amplitude) should be used in order to answer

this question.

Failure to obtain any motor response was observed in 40% of the attempts, even
though the same protocol was followed and was specific for a given animal and a given
day. It can be hypothesized that any change in the anesthetic cocktail or in the
physiological state of the animal that day can play a major role in these experiments.
Even though we suspect anesthesia, no correlation could be made with any specific
animal, or the date of the opening of the anesthetic cocktails. When successful (60%),
the experiments were consistent for the whole experimental session on a particular day
and always demonstrated an acoustic threshold, as shown in Figure 3.6a and Figure
3.6b. The mean pressure value was 0.68 + 0.1 MPa (N series=29), measured in water.
One should also notice that depending on the anesthesia stage the threshold varied
from 0.61 £ 0.03 MPa (N series=3) to 0.77 + 0.04 MPa (N series=4). The excitability thus
appears to be highly dependent on the anesthesia. These pressures are again
measured in water, uncorrected for skull transmission or reverberations, and correspond

to an average Isppa of 7.5 W/cm?.

For most experiments on acoustic neuromodulation published in the literature, the
acoustic pressure values and Isppa reported correspond to calibration experiments
performed in water or behind a half skull only. Our results are consistent with those
observed by Yoo (Yoo et al. 2011) on the rabbits who found a Isppa of about 12.5
W/cm? using limb movements and considering we used a much lower frequency (320
kHz versus 690 kHz) which is known to reduce the threshold (T. Tufail et al. 2010)(King
et al. 2013). Comparison with other published studies is difficult due to the different
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protocols involved in terms of motor threshold definition (EMG statistics versus limb
movement), species, acoustic parameters or anesthesia levels (T. Tufail et al.
2010)(King et al. 2013).

Based on our numerical simulations, the acoustic pressure induced in situ was
found to be strongly biased by the influence of ultrasound reverberations in the head
cavity. The tissue-air interfaces were found to be predominant in generating such
reverberations compared to the tissue-skull interfaces. In simulations, taking into
account only the half skull transmission does not yield an accurate estimation of the

acoustic pressure inside the animal head.

At 320 kHz, a mean 1.8-fold increase in spatial peak, time peak pressure inside
the rat head compared to free space simulations was determined here. This indicates
that the acoustic pressure threshold for motor threshold, which was found to be around
0.7 MPa based on free water measurement, should be corrected to approximately 1.2 +
0.2 MPa. A 2.3-fold increase was found for the pulse-averaged intensity. This indicates
that the maximum energy deposition in the brain is two times higher than expected and

thermal effects could thus be higher than anticipated.

Applying these corrections on the estimation of the Mechanical index (MI) and
Intensity Spatial Peak Pulse Average (Isppa) would yield a threshold of respectively

MI=2.2 for the mechanical index and Isppa =17.5 W.cm™.

The correction of such biases should be taken into account when comparing
results obtained with different frequencies, as well as the results from different species
with significantly different head size, since, in both cases, the reverberations should be

highly dependent on those parameters.

Moreover, the spatial distribution of pressure field using the 320 kHz ultrasound
transducer was found to be strongly spread over the entire brain with much of the brain
still receiving approximately 30% of the peak pressure in situ. Moreover, many
secondary peaks were found, with a size of half a wavelength smaller than the focal spot

in free water and typical for interferences pattern.
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Even though the locations of the secondary peaks were not linked to any specific
structure on a brain atlas, such random sub-wavelength peaks could provide new insight
into the fine activations sometimes observed, such as for a single whisker or eye
movement, which involve very small brain structures. It cannot be excluded, however,
that these specific activations are simply the results of lower activation thresholds in the

corresponding structures due the anesthesia level or to the brain activity state.

The results show that the neurostimulating acoustic field is much more complex
than a single localized acoustic spot at the geometric focus. Combined with the intrinsic
variability and complexity of the brain activity and its dependence on the anesthesia
level and sleep state, it might be difficult to assess the mechanisms behind
neuromodulation in such configurations. Simpler configurations that are less prone to
reverberations, such as shorter pulse, higher frequencies, or chirps (Tang and Clement
2010; Deffieux and Konofagou 2010; O’Reilly, Huang, and Hynynen 2010), or simply
larger animals could help in further simplifying the acoustic problem and looking at the
neuromodulation effect itself. For a given frequency, such reverberation effects and
pressure field distortion should be much lower in primate or human heads due to the
larger size of the head. Additional numerical and experimental studies (Deffieux and
Konofagou 2010) will be required to quantify this effect when investigating motor

thresholds and safety in those species.

4.9 Conclusion

A transient motor response has been elicited in anesthetized rats by 320 kHz
transcranial ultrasound in more than 60% of the experimental sessions, with a pressure
threshold estimated at 0.68 MPa (Isppa = 7.5 W.cm™, Mechanical Index=1.2) as
measured in free water. In some cases, the stimulation of very specific structures such
as the occulomotor system or a single whisker was observed, even though the
wavelength at 320 kHz is approximately 5 mm. Simulation using a finite-difference-time-
domain software and CT scan shown ultrasound reverberations in the head cavity
yielding a 1.8-fold increase of the spatial peak, time peak pressure compared to free

water and a 2.3-fold increase of spatial peak, pulse averaged intensity. At this low
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frequency, several sub-wavelength peaks are also created. The acoustic field resulting
from the reverberations needs to be carefully taken into account for small animal studies
at low frequencies. Switching to larger animals (primates for example) would allow a
better control of the ultrasonic field in the head.
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Chapitre 5 Neuromodulation on the awake monkey

5.1 Introduction

Compared to Transcranial Magnetic Stimulation (TMS), low intensity ultrasonic
neuromodulation shows great promise, because it is non-invasive and has a high spatial
resolution. Nevertheless, we saw in the previous chapter that achieving
neuromodulation in rodent models was not straightforward. Anesthetized animals with a
Ketamine/Xylazine mixture respond to ultrasonic neuromodulation only within a 15min
time window and with high variability. Moreover, at the low frequency suitable for
ultrasonic neuromodulation, the rodent head forms a cavity where ultrasonic waves

reverberate and create a complex pattern difficult to predict.

Another reason to consider another animal model is that, in the future, ultrasonic
neuromodulation has the potential to become an alternative to TMS. Working on awake
animals would help translating the technique to the clinic, and achieve neuromodulation
on an animal much closer to humans: primates - ideally awake monkeys. In
collaboration with Pierre Pouget’s team at Institut du Cerveau et de la Moelle (ICM), we
performed neuromodulation experiments in the Frontal Eye Field (FEF) of two awake
Maccacas using a protocol directly derived from transcranial magnetic stimulation

experiments : the antisaccade paradigm.

5.1.1 Frontal Eye Field

In primates, the Frontal Eye Fields (FEF) is a sophisticated cortical brain area that
plays an important role in the control of visual attention and eye movements Figure 5.1.
Invasive intracortical microstimulation has been widely used in combination with
oculometric measurements and mapping techniques, such as electrophysiological and
fMRI recordings in non-human primates. These approaches have provided causal
evidence about the role of the FEF, with direct bearing on oculomotor functions (Huerta,
Krubitzer, and Kaas 1987)(Marrocco 1978). More recently, the causal contributions of
the FEF in attentional orienting has been demonstrated (Moore and Fallah 2001) as well
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as its ability to influence different aspects of visual perception (Moore and Armstrong
2003)(Ekstrom et al. 2008).

Frontal eye field

Figure 5.1: Schematic representation for the Frontal Eye Fields (FEF) in primate

5.1.2 Antisaccade

In addition to looking towards new visual targets, an important part of saccadic
behaviour is to suppress eye movements that would be made to novel but behaviourally
irrelevant stimuli. To investigate such control of voluntary versus reflexive saccades, a
special test paradigm called the antisaccade task has been developed (Figure 5.2). In
this task, the subject is required to suppress a saccade (the ‘prosaccade') towards a
stimulus that appears in the periphery of vision and instead generate a voluntary
saccade of equal size towards the opposite side (the "antisaccade'). After time for the
antisaccade to be made, a target light is turned on at the correct location to check the
accuracy of the movement (Fischer and Weber 1998). The simplest measure of the
response to this test concerns the direction of the initial saccade, expressed as the ratio
of antisaccades to prosaccades; this can be tested at the bedside (Currie 1991). Normal
subjects initially make frequent errors in this task, but after a brief period of practice,
error rates fall below 15 percent. Functional imaging studies have shown that FEFs are
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activated bilaterally during both prosaccades and antisaccades, but more so for the
latter (Connolly et al. 2002)(DeSouza, Menon, and Everling 2003). The right hemisphere
DLPC has also been shown to be activated during antisaccades (DeSouza, Menon, and
Everling 2003). However, it has been reported that, at the cortical level, only patients
with discrete lesions affecting the Dorsolateral prefrontal cortex (DLPC) have an
increased percentage of errors in the antisaccade test (Pierrot-Deseilligny C, Muri, R M.
Ploner, C J. Gaymard, B. Demeret, S. Rivaud-Pechoux 2003); in contrast, patients with
FEF lesions had a normal percentage of errors on the antisaccade task, but their correct
anti-saccades were made at increased latency. Thus, it has been suggested that, during
the antisaccade task, inhibition of reflexive misdirected saccades is due to the DLPC,
whereas triggering of the intentional, correct antisaccade depends upon the FEF
(Rivaud et al. 1994)(Pierrot-Deseilligny C, Miri, R M. Ploner, C J. Gaymard, B. Demeret,
S. Rivaud-Pechoux 2003). In a patient with a discrete brainstem lesion, increased
distractibility was attributed to interruption of a pathway from the DLPC to the superior
colliculus (Gaymard et al. 2003). Whether the FEF is also important for suppression of
reflexive saccades is disputed (Pierrot-Deseilligny C, Muri, R M. Ploner, C J. Gaymard,
B. Demeret, S. Rivaud-Pechoux 2003).
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a)

Baseline Mixed 400 Post
100 Trials (360 Trials + 40 Trials with ultrasound) 100 Trials
( Anti saccade task + ( Ultrasound ) \
Fixation
b) Oms

Target
500-1000 ms

(Ultrasound )
Target +100 ms

Anti Saccade

Figure 5.2 (a,b): a) Experimental session. One session consists of three blocks with left
and right (50%) anti-saccade trials (100 trials for the baseline, 400 trials including 40 trials
with ultrasound during the central block and 100 trials as a post block). b) The
Antisaccade Paradigm. Monkeys were required to initially keep fixation on a central
stimulus. After initial fixation onset, a red square (target) appeared right or left. Monkeys
were trained to initiate as soon as possible a saccade towards the opposite direction.
During ultrasound trials, 320 kHz ultrasound was applied for 100 ms, 100 ms after the
target appearance.
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5.1.3 Objectives

We used focused ultrasound on macaque frontal brain areas to interfere with the
activity of antisaccade preparatory processes driven by spatial visual stimuli. More
precisely, we decided to induce focused ultrasound driven interferences on the FEF, a
complex area hosting highly overlapped networks likely to be involved in functions such
as sensory integration, attentional orienting, oculomotor planning, saccade execution,
spatial short term memory, visual detection, discrimination and visual awareness (Moore
and Fallah 2001)(Connolly et al. 2002)(DeSouza, Menon, and Everling 2003)(Rivaud et
al. 1994)(Kanai, Muggleton, and Walsh 2012)(Kirchner et al. 2009)(Kirchner et al.
2009)(Gerits et al. 2012). Our short-term goal was to demonstrate the feasibility of
online focused ultrasound experiments in awake and freely performing non-human
primate. Such an approach has the potential to clarify in the near future some of the
mechanisms underlying the effects of focused ultrasound, and serve to the causal non-

invasive exploration of cognition in non-human primate models.

5.2 Focused ultrasound

A single element focused ultrasound transducer (H115, Sonic Concepts, Bothell,
WA, USA) (central frequency 250KHz, diameter 64mm, FD# 1) was used in these
experiments. A coupling cone (C103, Sonic Concepts, Bothell, WA, USA) filled with
degassed water was placed between the transducer and the animal head. The
transducer was fixed on a mechanical arm with 4 rotation axes (Viewmaster LCD,
Osmond Ergonomics, Wimborne, UK) to provide the flexibility for the positioning and
orientation of the transducer over the tattooed target as can be seen in Figure 5.3. A thin
layer of echographic gel (Aquasonic 100, Parker Laboratories Inc., Fairfield, NJ, USA)
was applied on the skin and on the membrane of the coupling cone to ensure acoustic

coupling.
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Figure 5.3: The ultrasonic transducer is manually positioned so that the cigar-shaped
focal spot target the left Frontal Eye Field (FEF). A coupling cone filled with water ensures
the ultrasonic coupling between the transducer and the animal’s head.

The ultrasound frequency was set to 320 kHz (peak frequency of the transducer)
with a pressure amplitude of 0.6 MPa (as measured in free water, see effects of skull
below) using a first function generator (33250A, Agilent, Santa Clara, CA). The pulse
duration was set to 100 ms (number of cycles 32000), with rise and fall times of 1 ms
using a second function generator (AFG3101, Tektronix, Melrose, MA) which was
connected to the amplitude modulation entry of the first generator. This setup is based
on Tufail & al (Y. Tufail et al. 2011) and allows the testing of different waveform
configurations. In this thesis all sonications are restricted to a single configuration with

the simplest case of a single ultrasonic pulse.

A 75 Watts amplifier (75A250A, Amplifier Research, Souderton, PA) was then
used to deliver the required power to the transducer and the input voltage of the
transducer was monitored using voltage probe (P6139A, Tektronix, Melrose, MA)
connected to an oscilloscope (TDS2022B, Tektronix, Melrose, MA).

102



The transducer was calibrated in degassed water behind a primate skull
(Maccaca Mulatta skull) with a custom built heterodyne interferometer. An heterodyne
interferometer uses a laser beam to detect the small vibration of the ultrasound wave on
a mylar membrane which is then converted to pressure with very high sensibility and a

flat frequency response.

The transmission of the pressure through the degassed primate skull was
assessed at 7 different randomly chosen points on the skull (Figure 5.4). The
transmission was found to be 58.2% + 8.3%. The in situ pressure delivered to the

monkey brain transcranially can thus be corrected to 0.35 + 0.05 MPa.

Figure 5.4: Image showing the position of the primate skull between the transducer and
the heterodyne interferometer

The equivalent Mechanical index (MI) value is 1.07 with an Intensity Spatial Peak
Pulse Average (Isppa) of 11.68 W/cm? in free water, those values need to be corrected
to respectively Ml = 0.62 £ 0.09 and Isppa =4.04 £ 1.14 W/cm? behind the primate skull.
By taking into account the pulse duration and repetition frequency (respectively 100 ms
and 30 s) during the neuromodulation sequence, the Intensity Spatial Time Average
(Ispta) can be estimated to 38.96 mW/cm? in free water and 13.46 + 3.78 mW/cm?
behind the primate skull. Even though the frequency is lower than for typical ultrasound

imaging, they are all much below the Food and Drug Administration (FDA) limitations for
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ultrasound imaging safety guidelines (Ml = 1.9, Isppa = 190 W/cm?% Ispta = 720
mW/cm?) ensuring that the parameters used here are completely safe as defined by the
FDA.

5.3 Task

Prior to the first experimental session, animals were specifically trained in an

antisaccade (AS) paradigm,

In the middle of the screen which is -16 to +16 degree in size, a green spot in a
10 degree window appears at the beginning. When the monkey looks at the green spot
for a short period of time, we reward him with a drop of water. Then we decrease the

window to 5 degrees. This requires a week of training.

Pro-saccades: the central spot (target) appears for 500-1000 millisecond, and
then the target appears on one side, either the right or the left side. When the monkey
looks at the target on the right or left, he is rewarded with a drop of water. This requires

three weeks of training.

Anti-saccades: the most difficult test which requires four months of training. The
first stage: the central target appears in brown, and simultaneously, two targets appear
on both sides of the central target, one on the right and the other on the left, one in red
and the other in green, but both have the same size of the central target, 1 degree. The
monkey here should look at the green target not the red one (64 pixel2 = 8x8 pixel). This
requires one week of training. We then start to decrease the size of the green target that
appears on the side to 1 pixel. This requires eight weeks of training. Then the green
target that appears on the side disappears completely and in that configuration it
requires two months to teach the monkey to look at the opposite side of the red target
Figure 5.2(b). When the monkey has learnt and got good at this, we can start our

experiment. We accepted a relative error of 15% in pointing at the exact target.

Failure to trigger a saccade within 2000 msec after target onset cancelled the

trial. The AS task was chosen since prior human and monkey TMS experiments have
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revealed prosaccade paradigms to be much less sensitive to single pulse TMS

interference than antisaccades (Olk et al. 2006).

Eye movements were recorded with an infra-red eye tracker (Eyelink 1k, SR-
Research, Ontario, Canada), and eye position was digitized and sampled at 1000 Hz
and stored for off-line analyses. Visual paradigms and data acquisition were under the
control of a computer running a real-time data acquisition system (Rexeno software; for
further details see (Pouget et al. 2010)(Valero-Cabre et al. 2012). Saccades were
detected using homemade matlab scripts that searched first for significantly elevated
velocity (> 30°/s). Saccade initiation and termination were then defined as the beginning
and end of the monotonic change in eye position lasting 12 ms before and after the
high-velocity gaze shift. On the basis of the 1000-Hz sampling rate, this method is

accurate to within 1 ms.

5.4 Experimental protocols

Two captive-born macaques (Maccaca Mulatta, “Y”, and “L”) participated in this
study. The monkeys were paired-housed and handled in strict accordance with the
recommendations of the Weatherall Report on good animal practice. Monkey housing
conditions, surgical procedures and experimental protocols were all carried out in strict
accordance with the National Institutes of Health guidelines (1996) and the
recommendations of the EEC (86/609) and the French National Committee (87/848).
The authorization for conducting our experiments in the institute was delivered by the
Animal Health and Veterinary Medication Division of the Department of Public Veterinary
Health, Nutrition and Food Safety of the French Ministry of Health (last renewals. no.
Arrété prefectoral N° DTPP 2010-424). Our routine laboratory procedures included an
environmental enrichment program where monkeys had access to toys, mirrors and
swings. Monkeys also had visual, auditory and olfactory contact with other animals and,
when appropriate, could touch/groom each other. Any possible pain associated with
surgery was pharmacologically ameliorated by means of a daily injection of Ketofen

(0.03ml/kg) or Buprecare (0.067ml/kg). An institutional veterinary doctor constantly
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monitored the well-being and health conditions of the monkeys. Prior to participating in
the study, both animals were periodically chaired, head-posted and trained to perform a
series of tasks for a period of 6-12 months, until they became regular and proficient

performers.

5.5 Surgical procedure

After buying the two monkeys, they were isolated in a cage for ten days in order
to make sure they are not bearing any diseases. A plastic collar was placed around the
neck of each one. They were trained to take the fruit from our hands to build trust
between us. This usually happens in ten days. They were trained after that to approach
the special chair that is related to the experiment by themselves. Then, fruit and water
was given to them while they were on the chair only, not in the cage. This process took
two weeks. The next step was the most difficult one: to train the monkey to extend his
head out of the chair. This took two more weeks. When the monkey learned to approach
the chair alone and extend his head through the chair every day, he became ready to
have the head-post placed into his head. The surgical procedures for titanium headpost
implant were the same as previously published (Pouget et al. 2010)(Valero-Cabre et al.
2012).

After preparing the room and sterilizing and disinfecting the instruments, we first
injected the monkey with ketamine hydrochloride (5 mg/kg i.m.) to induce the
anesthesia. Then we took him to the operating room. Then we continued the anesthesia
with 3-4% isoflurane gas via a dedicated mask that facilitates the intubation process.
After the intubation anesthesia was reduced to 2% Isoflurane with oxygen (0.5 L/h). We
placed the head of the monkey in a stereotactic device. Then we injected the monkey

with antibiotics and analgesics intravenously.

Heart rate, O2 saturation and temperature were monitored. With a sterile scalpel
we opened the scalp and then removed the muscles and periosteum. The area was

cleaned with Betadine and sterile saline. Holes were drilled in the skull to install the
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head post. Head posts (9/32” or 7.1 mm internal diameter) were commercially available
as Part \#6-FHP-X2F produced by Crist Instrument, Hagerstown, MD, USA. They had an
"X"-shaped footplate designed for attachment to the skull with a total of 12 titanium bone

screws Figure 5.5.

Figure 5.5: Head post (12 holes)

The vertical post had a tapered cross section, designed to mate with a headpost
holder (see Part \#6-FHB-S2B, Crist Instrument, Hagerstown, MD, USA, Figure 5.6).

e ——— WY, -

Figure 5.6: Head post holder

The skin was finally sutured with absorbable sutures. We put cement in the head
post (Figure 5.7). Isoflurane was stopped and O2 was left only, until the monkey woke up
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and extubated himself alone. The whole procedure time was 3 hours. We then took the
monkey back to the cage.

Figure 5.7: Monkey before performing surgery (Left), Monkey after surgery (right).

In monkey Y’ the center of the head post was located adjacently caudal to the
stereotaxic zero bar, aligned with the interauricular scalp line. In monkey ‘L’ the

headpost was placed slightly more rostral than in monkey Y’ (Figure 5.8).

Monkey Y Monkey L

Figure 5.8: FUS stereotaxic placement
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Six months are needed after surgery for complete recovery of the monkey. The
first fixation of the head to the chair has to be short (30 minutes), with more positive
reinforcement (fruit and water) than usual, for the monkey to be as calm as possible in

the chair.

The FEF field was identified using stereotaxic coordinates. Its site was labeled
with a color tattoo on the monkey skin, which lasted for several weeks and was renewed
when fading. FUS pulses were delivered at a 100 ms stimulus onset asynchrony
interval (SOA), post visual target appearance, which was selected based on preliminary
monkey’s saccade latency measurements. In order to keep conditions as similar as
possible during sham FUS sessions, the transducer was first placed above the expected
location for FEF region and then moved up 4 cm above the skin, keeping an identical

orientation.

For each experiment session, animals performed a total of 3 blocks of AS
training. First, monkeys performed a 100 trials block of AS (50 for each side) as
baseline. Then, a second block of 400 trials was done: 360 trials without FUS (180 for
each side) and 40 trials with FUS (20 for each side) were presented. Trials with FUS
were pseudo-randomly interleaved with trials without FUS. A last block of 100 trials was

performed as post-test. Monkey Y performed 10 sessions and monkey L 12 sessions.

5.6 Data analysis and presentation

Trials in which blinking responses interfered with eye recordings, or incomplete
AS, were eliminated from the data set. The AS latency for each individual trial was
calculated as the time between stimulus presentation and the onset derivative of the eye
saccade velocity reaching a speed of 30°/s. Individual AS latency values were averaged
for trials with FUS (focused ultrasound trials) and compared to those without stimulation
(no-focused ultrasound trials), for each session and each experimental condition

explored in the study on each monkey.
109



5.7 Results

5.7.1 Focused ultrasound-modulated antisaccade latencies

As shown in Figure 5.9, FUS stimulation did affect antisaccade latencies. More

specifically, across the experimental sessions, ipsilateral mean AS latencies with

ultrasound stimulation were significantly slowed (monkey Y: p= 0.04; monkey L: p<

0.001) compared to the non-stimulation condition (monkey Y: noUS= 219 ms US= 233

ms ; monkey L: noUS= 236 ms US= 251 ms).
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Figure 5.9 (a,b,c): a) Ipsilateral and contralateral antisaccades mean latencies with and
without ultrasound on both monkeys. Ispsilateral antisaccade latencies are significantly
slowed (p<0.05) with ultrasound. b) Same with prosaccade tasks. ¢) Antisaccades
latencies when the transducer is positioned over the premotor cortex. No significant
changes in latencies are observed. Error bars represent standard errors over all trials.

For the two animals, contralateral mean AS latencies were not significantly

slowed (t-test: monkey Y: p= 0.6; monkey L: p= 0.09) compared to the non-stimulation

condition.
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A sham stimulation has also been performed while the transducer was placed on
the side of the animal head, so that the ultrasound beam was reflected by air and no
ultrasonic signal could be transmitted to the head of the animal. In both monkeys, sham

focused ultrasound did not interfere with ipsi or contralateral saccade latency (p> 0.5).

5.7.2 Focused ultrasound Effect on Antisaccade Error Rate and Amplitude

The impact of focused ultrasound stimulation over FEF on AS error rate was
statistically tested separately for each condition. Ipsilateral error rate AS with ultrasound
stimulation were not different to the non-stimulation condition (p> 0.5, across conditions
and animals). Contralateral error rate AS increased marginally with ultrasound

stimulation (US=9 % =%=5.7 error US= 5.1 % =*=3.1 error, p=0.05) only for monkey Y. The

US pulses did not affect eye movement metrics. As compared to sham non-stimulated
trials, amplitude of eye movement during trials with US did not significantly vary in any of

the experimental conditions (p>0.5, for all conditions in both animals).

5.8 Discussion

The study demonstrates the feasibility of using focused ultrasound to modulate

behaviour in awake non-human primate brain causally.

In this study, continuous pulses of ultrasound of duration 100 milliseconds were
used with a low frequency 320 kHz and a low pressure amplitude, estimated at 0.35
MPa in situ (corresponding MI : 0.62). A pause time of at least 30 seconds was
implemented between each pulse (corresponding Ispta: 13.5 mW/cm?). Such
conservative values were used to ensure that they was no possible damage to the
neural tissue. This sequence is well below the Food and Drug Administration (FDA)
limitations for transcranial ultrasound imaging safety guidelines (Ml = 0.62 < 1.9, Isppa =

4 Wicm? < 190 W/cm?% Ispta = 13.5 mW/cm? < 94 mW/cm?) ensuring that the
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parameters used here are safe and could be used for imaging in human brain. Even
though the center frequency and pulse duration are very different than those used for
brain ultrasound imaging, it is particularly interesting that the neuromodulation effect is
significant with these conservative parameters. Our group and others have recently
reported on the ultrasonic motor threshold of anesthetized rodents which was found to
be around 1.2 MPa in situ (Younan et al. 2013)(King et al. 2013). By using higher-
pressure amplitude and by targeting the motor cortex of the monkeys, the next step
would be to try to elicit a motor response in the awake monkey as it has been

demonstrated with transcranial magnetic stimulation (Valero-Cabre et al. 2012).

Compared with the effect obtained with optogenetic manipulation (Szobota et al.
2007)(Zhang et al. 2007) our results with focused ultrasound appear to be as effective
(lengthening ipsilateral movement) and as strong (5-20 ms). Compared with the
moderate modulation of response times observed with TMS (shortening ipsi and contra
lateral movement (Hallett 2000)) our results appear to be less affected by baseline
variability of response times (no normalization was required) and no discomfort has
been noticed for the animals. Even though the exact mechanisms are still unknown,
ultrasonic neuromodulation is believed to be mechanical rather than thermal in origin, as
illustrated by experimental evidence on rodents where lower frequencies yield lower
motor thresholds (King et al. 2013): this is a typical behavior for mechanical effects
whereas thermal effects would be more intense for higher frequencies due to increased

tissue absorption.

Low frequencies have been favored in most recent neuromodulation studies.
Indeed, the phase aberrations induced by the skull are less for low frequencies, so that
the lower the frequency, the better the transcranial focusing will be. The lower the
frequency the lower the transmission loss through the skull (here approximately 50% at

320 kHz), making it easier to target the brain non-invasively.

Nevertheless, using higher frequencies would yield smaller focal spots and thus a
higher targeting resolution. At 320 kHz, the focal spot is approximately 35 mm long and

5 mm wide (approximately 400 mm3). This is already better than can be achieved with
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transcranial magnetic stimulation and could be achieved at any depth in the brain. It is
our goal, in future studies, to estimate experimentally the targeting resolution of our
setup by targeting smaller and deeper structures in the brain and to investigate higher
frequencies up to 1 MHz. Using phase correction techniques and a programmable 1
MHz multi-elements array (Pernot et al. 2007), it should be possible to obtain a targeting
resolution of approximately 14 mm3 anywhere in the brain for such low in situ
intensities. The possibility that focused ultrasound can modulate small and deep brain
structures has crucial implications for treatment of numerous disorders e.g. Parkinson'’s
disease, essential tremor, or disorders of consciousness. Ultrasound neuromodulation is
thus a promising and competitive neuromodulation technique, especially compared to
transcranial magnetic stimulation, with a higher resolution, a larger targeting envelope
and the absence of noise or mechanical vibrations during the stimulation. Although the
mechanism behind the focused ultrasound neuromodulation is still unknown, the
modulatory potential of this non-invasive and spatially specific tool warrants further

investigation in awake non-human primates.

5.9 Conclusion

Focused ultrasound (US) stimulation of awake primates in the left frontal eye field
(FEF) influences the anti-saccade latencies. Ipsilateral mean AS latencies with
ultrasound stimulation were significantly slowed compared to the non-stimulated
condition (monkey Y: noUS= 221 ms US= 235 ms; monkey L: noUS= 239 ms US= 269
ms). For the two animals, contralateral mean AS latencies were not significantly slowed

(t-test: monkey Y: p> 0.8; monkey L: p> 0.6) compared to the non-stimulated condition.

The study demonstrates the feasibility of using focused ultrasound brain
neuromodulation to causally modulate high-level cognitive behaviour and opens the
door for further parametric studies. In particular, it would be of interest to investigate
whether ultrasounic neuromodulation is able to transiently stop tremor when focusing
ultrasound in the thalamus as this would help to refine the location of the target for the

treatment of essential tremor.
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General Conclusion

In this thesis, we have investigated two techniques to achieve a safer planning for
essential tremor treatments with transcranial MR guided focused ultrasound. We have
shown that the Keyhole technique can be used to minimize ultrasonic energy deposition
at the target while imaging the location of the focal spot with pulsed ultrasound. The MR
ARFI keyhole technique is known to improve the temporal resolution and to produce
undistorted two-dimensional images compared to EPI sequences. Nevertheless, we
showed that this acceleration technique is dependent on the US focal spot size. The
coincidence between the phase-encoding orientation and the longest axis of the focal
spot allowed preserving up to 75 % of the original intensity at the focal spot with a
keyhole acceleration factor of eight. Simulation and experiment were in good
agreement. The method offers a good compromise between spatial resolution, SNR and
scan time and could be valuable for adaptive focusing procedures and acoustic beam

visualization.

Furthermore, we investigated the feasibility for directly modulating brain activity
locally with ultrasound. Such a modulation would be of interest for checking if the
defined target in the VIM is indeed responsible for the tremor. We thus investigated
transcranial ultrasonic neuromodulation at low frequency (320 kHz) on anesthetized rats
and we estimated the motor threshold to be 0.68 MPa (Isppa = 7.5 W.cm™, Mechanical
Index=1.2) as measured in free water. The corresponding acoustic pressure distribution
inside the brain, which cannot be measured in vivo, was investigated with numerical
simulations of the ultrasound propagation inside the head cavity. Numerical simulations
have shown that the pressure distribution in the head is complex and showed ultrasound
reverberations in the head cavity yielding a 1.8-fold increase of the spatial peak, time
peak pressure compared to free water and a 2.3-fold increase of spatial peak, pulse

averaged intensity. Although the rat model is useful for performing initial low intensity
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neuromodulation experiments, it is not suitable for providing an understanding of the

neuromodulation effect in awake conditions or within a larger skull cavity.

Finally, for the first time, we used low intensity FUS stimulation to causally
modulate behavior in an awake nonhuman primate brain. We showed that the latency
of an anti-saccade task was significantly delayed (p <0.05) in the presence of ultrasonic
beam focused in the Frontal Eye Field. Sham experiments did not show any significant

change in the latencies.

These promising results will hopefully help guide the treatment of essential tremor
during upcoming clinical trials at Institut du Cerveau et de la Moelle with the 1MHz
multielements array developed at the Langevin Institute in collaboration with SuperSonic
Imagine. The Keyhole technique has been validated with this device. Some work
remains to be done before neuromodulation can be achieved with the 1MHz device: all
neuromodulation experiments have been conducted with a 320kHz single element
transducer and neuromodulation at higher frequencies needs to be investigated. For that
purpose, a 1MHz single element transducer, with the same geometry, is being
investigated as a next step will be tested on the monkeys toward the clinical goal of

achieving neuromodulation with the 1MHz multielements array.
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