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I Introduction

Français:

Le chapitre suivant introduit le sujet du chauffage par induction. Il donne un aperçu
de la structure du document et des idées principales. On introduit le problème du
chauffage par induction à l’égard de son application industrielle concernant un vile-
brequin pour l’industrie automobile. Ensuite, on donne un bref aperçu des aspects
métallurgiques et des phénomènes physiques qui ont lieu pendant le traitement
thermique.

English:

The following chapter introduces the topic of induction heating. It gives an over-
view of the structure of the document and the main ideas of this work. It introduces
the problem of industrial induction heating, with respect to its application to the
surface heat treatment of an automotive crankshaft. Afterwards, a brief overview
is given of the metallurgical aspects and the physical phenomena that are taking
place during the heat treatment procedure.
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I.1 - STRUCTURE OF THIS DOCUMENT I - INTRODUCTION

I.1 Structure of this document

The current chapter gives an overview of the induction heating process for com-
plex geometrical parts. The main example in this work deals with an automotive
crankshaft in the context of the industrial research project OPTIPRO-INDUX.
This chapter outlines the metallurgical aspects of heat treatment, as well as the
major physical phenomena, which affect the heat treating procedure. The physical
phenomena, as well as the metallurgical aspects are very well known. The metal-
lurgical aspects are given in great detail in [Barralis and Maeder, 1997], which has
been referred to extensively in section I.4. Both the equilibrium diagram, shown in
figure I.5, as well as the transformation diagram, presented in figure I.6, have been
reproduced from the above-mentioned source. The experimental data for the given
materials, as well as the main ideas of the theoretical concepts regarding induction
heating in section I.5 can be found in [Rudnev, 2003]. These sources will not be
cited again in these subsections, for reasons of brevity and readability. Additional
sources complementing the former are identified.

Chapter II details the numerical model of the induction heat treatment process,
including the fully transient eddy current model, the introduction of voltage po-
tentials on closed inductor domains, as well as the heat diffusion model. It gives
the reasoning behind the choice of the weak coupling procedure between electro-
magnetic and heat transfer computation and specifies the implementation of this
coupling procedure.

The numerical model of the induction heating process features a coupled multi
physics model that results in a linear system of equations, involving millions of un-
knowns that has to be solved in parallel with efficient numerical solvers. Chapter
III presents the auxiliary space Maxwell multigrid method that is implemented for
the industrial test case presented in this work. It is an algebraic multigrid precondi-
tioner that decreases the residual error very efficiently in each iteration using suit-
able finite element spaces and projection operators. The theoretical background,
as well as details regarding the implementation of this parallel preconditioner are
given. This is followed by an application test case, including a demonstration of
the advantages and shortcomings of several preconditioner combinations.

Chapter IV details a new method for the introduction of the relative movement
between inductor and crankshaft, based on a discrete level set function approach.
It includes the application of the method with respect to the inductor rotation
around an automotive crankshaft for a large scale test case.

Chapter V gives several applications of the induction heating model for different
test cases, followed by the numerical treatment of an industrial crankshaft. The
crankshaft model is provided by industrial partner PSA Peugeot Citroën and in-
cludes an inductor provided by EFD Induction. The material for the crankshaft is
provided by ASCOMETAL.

Finally, chapter VI sums up the key results of this work and gives an outlook on
directions for possible future research.
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I - INTRODUCTION I.2 - INDUCTION HEAT TREATMENT

I.2 Induction heat treatment

The group of industrially produced metallic workpieces is very diverse. Some work-
pieces used in the automotive sector include springs, wires, camshafts, brake disks,
screws or crankshafts. Their production necessitates several distinct steps. In most
cases, the initial raw part is formed, brought into shape and in many cases made
to connect with other raw parts to form a new part. Afterwards or sometimes
in between, the product undergoes further treatment to change its appearance or
material properties. These distinct varieties of the production cycle are achieved
by utilising a wide variety of manufacturing methods. The initial shaping can be
realised by rolling or forging, whereas additional connections can be made by glue-
ing, cold and hot welding or soldering. The appearance of the workpiece is mostly
changed using mechanical techniques like filing, grinding, honing or shaving or
chemical treatments like galvanisation.

The material behaviour, like the hardness or the ductility is influenced by the ma-
terial composition, as well as by the microstructure evolution of the material. The
internal distribution of the material composition, as well as the related microstruc-
ture depend on the chosen production process, the amount of applied deformation
energy, the duration of each procedure, as well as the order of each subsequent
production step. The application requirements of the finished product are as di-
verse as the application areas. Workpieces that are stretched, like springs should
remain ductile during their planned use, yet they must retain their initial shape,
while unloaded. Brake disks are used to transform kinetic energy into heat using
friction. These workpieces must be hard, in order to prevent surface degradation
and to prevent fatigue and crack growth, while ensuring a consistent connecting
area and good heat conducting properties in order to extract the generated heat
from the application area. Screws are used as fasteners to connect different work-
pieces. They are under a constant tensile stress. It is therefore very important that
they resist the effects of creep. Yet, screws must also be able to withstand shocks
under changing load cycles with imposed tensile and shear stresses. Crankshafts
or camshafts are used to translate rotational motion into vertical motions or vice
versa. They are supported by bearings. These components must endure chan-
ging loading cycles, shocks and temperature differences. Their cores must show a
ductile behaviour. In contrast, the surface connection between the shafts and the
supporting bearings or different components like valves for camshafts necessitate a
hardened surface, such that the effects of wear are reduced. This very diverse set
of requirements is often achieved by utilising a heat treatment procedure.

The mechanical behaviour of steel is related to its internal microstructure. An
introduction to the general properties of metals and microstructure evolution can
be found in [Barralis and Maeder, 1997]. The ductility and general softness of
steel is related to the grain size and shape of the microstructure. Ductility can
be increased by annealing. For this procedure the temperature of the material is
increased and held above a point at which diffusion happens more easily. First,
internal dislocations are reduced and the internal grain energy is minimised in the
recovery stage. Afterwards, recrystallisation and grain growth lead to a homogen-
isation and an increase in grain size. The large grains that are bounded by smooth
borders result in a softer material. Hardening by introducing a martensitic phase
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I.2 - INDUCTION HEAT TREATMENT I - INTRODUCTION

is another heat treating procedure. It is achieved by elevating the temperature
of the material up to a point, where the material configuration changes into the
austenitic phase. Afterwards, the material is rapidly cooled by quenching to force
a displacive, i.e. diffusionless transformation into its martensitic form. The large
quantity of dislocations results in a high material hardness.

The heat energy, which is necessary for elevating the process temperature can be
introduced using a wide array of methods, like convective heating using furnaces,
direct electrical resistive heating or induction heating. Convective heating utilises
heat diffusion from an outside heating source to change the temperature distribu-
tion inside the workpiece. This results in a distribution of heating energy inside of
the workpiece that is mostly uniform, with a temperature gradient starting from
the surface, extending up to the core of the workpiece. When the process time is
increased the temperature gradient is minimised, such that the workpiece has a
homogeneous temperature. Joule heating is a direct form of heating that is based
on prescribing currents by generating a voltage potential on opposing contact sur-
faces of the conductive workpiece domain. The internal current generates heat,
due to Ohm’s law. The heating efficiency is very high, but the process itself is
difficult to apply to workpieces of complex shape, because the current can not be
applied locally. It can only be applied in a global manner, such that it is difficult
to focus the current only on certain features of the geometry, like the surface. Elec-
tromagnetic induction heating follows the same approach as resistive Joule heating
in that it induces currents into the workpiece, which then in turn generate heat.
The distinction of electromagnetic induction heating is that the voltage potential
is not imposed using direct contact. Rather, an alternating current is imposed
on an inductor that is placed near the workpiece surface. This changing electric
current creates a changing magnetic field, which induces eddy currents inside the
conducting domain of the workpiece. The skin effect will lead to a concentration
of eddy currents near the surface of the conducting domain. The amount and
penetration depth of the applied heating energy can be influenced by the shape
and magnitude of the applied loading. This permits the contactless heating of
conductive workpieces of complex geometrical shape. The process parameters can
be quickly adapted according to the needs of the producer. The high heating rates
result in a cost effective procedure. One of the major advantages of induction heat-
ing is that alternating currents tend to concentrate near the surface of conducting
domains, due to the skin effect. This allows to concentrate the heating energy
in the regions of interest, without affecting the material core. It is this feature
that makes induction heating a very suitable method for use in surface hardening
applications.

The goal of this work is to introduce a numerical model for the surface harden-
ing procedure by electromagnetic induction for an automotive crankshaft. These
workpieces are commonly formed by forging, followed by a preheating step to el-
evate the workpiece to a uniform initial temperature. Afterwards, heating sources
are applied to the surfaces that will later support bearings, using induced eddy
currents. After a material and process dependent time the workpiece is rapidly
cooled down in a water or oil bath to form the martensite in the region of the
contact surface. A possible tempering step can be added, in order to reduce the
large internal stresses that are generated by the hardening procedure. The steps

8



I - INTRODUCTION I.3 - CRANKSHAFT

for this procedure are comparable to annealing. After quenching the workpiece is
heated to an elevated temperature, which results in a reduction of hardness and
internal stress.

I.3 Industrial induction heating of a crankshaft

Crankshafts are heat treated in the regions that will support bearings. Figure
I.1 shows a typical CAD model of an automotive crankshaft. Two heat treated
regions are indicated using arrows. The production process can be divided into
pre-heating, focused induction heating, quenching and subsequently an optional
tempering step.

Figure I.1: Crankshaft with hardened features

In the beginning, the steel workpiece is clamped to a frame, as can be seen
in figures I.2 and I.3. This allows to rotate the crankshaft, with respect to the
inductors, so that the heating can be generated as evenly as possible. Figure
I.2 shows the inductor assembly. It is housed in a casing that features cooling
pipes and sometimes measuring devices, which can register the temperature. The
inductors, like the crankshaft, will heat up during the heat treatment. Therefore,
the inductors are liquid cooled during the whole procedure.
The heated workpiece is finally quenched after a certain time. This can be achieved,
either by placing the workpiece in a water bath, as can be seen in figure I.3 or by
spray cooling, as is depicted for a heat treated workpiece in figure I.4.
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I.3 - CRANKSHAFT I - INTRODUCTION

Figure I.2: Induction heating of a crankshaft 1 (Image provided courtesy of EFD)

Figure I.3: Induction heating of a crankshaft 2 (Image provided courtesy of EFD)
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I - INTRODUCTION I.4 - METALLURGICAL ASPECTS

Figure I.4: Spray cooling of induction heated workpiece (Image provided courtesy
of EFD)

I.4 Metallurgical aspects of hardening

Hardening of steel is accomplished by changing the microstructure configuration
of the material. The workpiece is usually pre-heated up to a certain temperature
Tp. Afterwards heat is distributed to the regions of interest to further increase the
temperature T up to a temperature Tγ, which is the point where an austenitic phase
γ forms. In general, Tγ is chosen, such that it is well above the transition zone
of each distinct phase to ensure that the regions of interest are well in austenitic
configuration. Yet, it must not be too high in the heat affected zone, so that
the workpiece does not remain in the austenitic region for an extended period
of time during the cooling phase. The precondition for the martensitic phase
transformation is the stable existence of ferrite α and carbide Fe3C at ambient
temperature TA. As an example, figure I.5 shows a simplified equilibrium diagram
for a non-alloyed steel in the low-carbon content range. The practical temperature
range for Tγ for non-alloyed hypoeutectoid and hypereutectoid steels is indicated
in red and green. For hypereutectoid steel it is visible that the martensitic phase
transformation can either start from a phase configuration of pure γ or a mix of γ
and carbides. This temperature range is shown in blue.

The martensitic phase transformation results from a displacive transformation
of austenite γ into martensite M . This change is rapid, nearly instantaneous
and diffusionless. The dissolved carbon in γ can not exit the crystal structure,
which results in the new martensitic configuration M , including the carbon in
a desequilibrium condition. The crystallographic microstructure of martensite is
built from crystals including carbon, preferably on the crystal borders. This results
in a large number of dislocations. The material is in a constant stress/strain
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I.4 - METALLURGICAL ASPECTS I - INTRODUCTION

Figure I.5: Equilibrium diagram for non-alloyed low carbon steel

C % Mn % Si % Ni % Cr % P %
0.41 0.71 0.22 0.26 1.04 0.022

Table I.1: Composition of hypoeutectoid steel 41Cr4, as given by [Bohemen and
Sietsma, 2010]

configuration, which substantially increases the material hardness.
The quenching process is highly dependent on the cooling rate of the workpiece.

Figure I.6 shows a simplified form of the continuous cooling transformation (CCT)
diagram for an alloyed hypoeutectoid steel of type 41Cr4, with the composition
given in table I.1. The diagram shows the microstructure evolution, with respect
to the cooling time for material samples that have been austenitised for 30min
at 850 ◦C. The region, where austenite transforms into martensite, is shown in
light-blue. Above TMs

exists the unstable γ-phase that becomes stable at a certain
temperature Tac1. The stable area is shaded in light red. The light-green shaded
area identifies the region, where ferrite forms, whereas the dark-green and dark-
blue shaded areas indicate the regions, where the phase transforms into a perlitic
and a bainitic structure. The curves ①,② and ③ show the microstructure trans-
formations for samples that have been cooled at three different cooling rates. Curve
① is rapidly cooled, such that the fraction of martensite reaches yM = 1, after the
quenching is finished. Curve ② is cooled more slowly, such that it traverses both
the perlitic, as well as the bainitic regions, before entering the region, where aus-
tenite transforms into martensite. At ambient temperature, the resulting material
composition will include a low fraction of martensite yM ≪ 1. The remaining frac-
tions will consist of a ferritic, a perlitic, as well as a bainitic microstructure. Curve
③ shows the transformation of a very slowly cooled sample. It never reaches the
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I - INTRODUCTION I.4 - METALLURGICAL ASPECTS

region, where austenite transforms into martensite, such that the final fraction of
martensite at ambient temperature will be yM = 0. The final microstructure will
be a composition of a ferritic, as well as a perlitic phase.

The martensitic phase transformation starts at a given temperature TMs
, such

that the evolution of martensitic fraction yM and austenitic fraction yγ can be
written with respect to a lower temperature Tl using an empirical law by [Koistinen
and Marburger, 1959], as

yM = 1− exp(−k(TMs
− Tl)

n). (I.1)

The relative amount of martensite can be given for the temperature change

∆TMsl
= TMs

− Tl, (I.2)

with respect to the fraction of remaining austenite yγ as

∆TMsl
=

n



ln(yγ)

−k
. (I.3)

The starting temperature for the martensitic transformation TMs
, as well as the

final temperature of the martensitic transformation strongly depend on the alloys
of the steel. Physical elements like Cr, Mo, Si, Ni or Mn can be added to the steel,
in order to reduce the cooling velocity. The hardenability of a material is related
the cooling time, for which the material goes directly from the austenitic phase to
a mix of austenitic and martensitic phases. E.g. the steel 36NiCrMo16 forms a
final microstructure decomposition of pure martensite for a sample with a diameter
of 10mm, when allowed to be cooled by the surrounding air. In contrast, for a
sample of a steel of type 2C60 the same final microstructure can only be reached
by quenching in a water bath. The former steel possesses, therefore, a greater
hardenability as 2C60.
E.g. [Bohemen and Sietsma, 2010] states that the temperature TMs

for the hypo-
eutectoid steel 41Cr4 lies approximately at TMs

= 304 ◦C and that both empirical
parameters of equation (I.4) can be given as k = 0.016 and n = 1, such that 50%
of martensite will have formed for a reduction of temperature of

∆TMsl
=

ln(0.5)

−0.016
≈ 43.32 ◦C, (I.4)

whereas 90% of martensite will have formed after a reduction of temperature of

∆TMsl
=

ln(0.1)

−0.016
≈ 143.91 ◦C. (I.5)

The final martensitic steel is very hard and can be very brittle. A tempering
step can be added to the heat treatment procedure to reduce the large internal
stresses in the workpiece. Figure I.7 shows two hypothetical heating cycles for a
production process. First, the workpiece is pre-heated, afterwards heat is applied to
reach Tγ. After a process dependent time tγ the workpiece is quenched to force the
martensitic transformation. The first process, shown in red, reheats the workpiece
to an elevated tempering temperature Tt1 , before the ambient temperature TA is
reached. In the second process, which is shown in blue, the workpiece is fully
cooled to TA before the tempering step begins. A second tempering step with a
lower temperature Tt2 is added to further change the material configuration.

13



I.4 - METALLURGICAL ASPECTS I - INTRODUCTION

Figure I.6: Continuous Cooling Transformation diagram for 41Cr4

Figure I.7: Heat treatment with additional tempering
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I - INTRODUCTION I.5 - MAJOR PHYSICAL PHENOMENA

I.5 Major physical phenomena

I.5.1 Skin effect

Alternating currents tend to concentrate near the surface of the conductor, due to
the changing magnetic field. This magnetic field generates a changing electric field,
which leads to a concentration of eddy currents towards the surface of the domain.
It results in a strong concentration of current near the surface, which is far greater
than at the centre of the workpiece, for which the current density vanishes, due to
current cancellation effects. An increase of the frequency for the applied current
leads to a higher concentration of eddy currents near the surface. The current
density distribution is usually approximated using a decaying function, such that
the current density per unit area at the surface Is decays exponentially as

I = Is exp(−
x

δ
), (I.6)

such that the current density per unit area I inside of the domain decays up to

I =
Is
e

(I.7)

for a distance x = δ. The value δ is the penetration depth of the material. The
assumption is that the conductive domain has an infinite dimension, such that
the surface can be set to x = 0, whereas the centre lies in infinite distance. The
relative amount of current that is distributed inside the workpiece, between x = 0
and x = δ, can then be approximated as

 δ

0
Idx

∞

0
Idx

≃

 δ

0
exp(−x)dx

∞

0
exp(−x)dx

≈ 63.21%. (I.8)

The heating power density Qem is related to the current density J and the electrical
resistivity ρ as

Qem = ρJ2. (I.9)

It follows that the relative amount of heating power that is distributed inside the
workpiece, between the surface and x = δ can, therefore, be approximated as

 δ

0
Qemdx

∞

0
Qemdx

≃

 δ

0
exp(−2x)dx

∞

0
exp(−2x)dx

≈ 86.47%. (I.10)

Accordingly, less than 15% of the heating power during an induction treatment
is distributed further inside the workpiece domain than the penetration depth δ.
The penetration depth can be approximated for a homogeneous solid with constant
resistivity and magnetic permeability µ, by

µ = µ0µr (I.11)
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using the frequency of the induced current f , such that

δ =


2ρ

2πfµ

=


ρ

πfµ0µr

=


ρ

πf4π10−7 H
m
µr

≈ 503


ρ

fµr

H− 1

2m
1

2 .

(I.12)

Here, µ0 is the magnetic constant, often called magnetic permeability in free space
and µr is the relative magnetic permeability of the conducting material. The
magnetic permeability in free space µ0 is arbitrarily defined [Mohr et al., 2012],
such that two current-carrying wires of length l = 1m, seperated by a distance
d = 1m, carrying each a current of Jw = 1A attract each other by a resulting force
of F = 2 · 10−7 N, such that

µ0 = 4π · 10−7 H
m
. (I.13)

Figure I.8 shows the skin effect for the current density per unit area for aluminium
at 20 ◦C for a current,which is alternating with a frequency of 10 kHz. The shad-
owed area marks the penetration depth δ = 0.826513mm. At this temperature
it can be assumed that the electrical resistivity is ρ = 0.027 · 10−6 Ωm, whereas
the magnetic permeability is very close to the magnetic permeability of free space,
such that µr = 1. In general, the penetration depth increases with rising resistivity
and progressively smaller values of the magnetic permeability. It is visible that
the penetration depth is inversely proportional to the frequency of the alternating
current. It can be assumed that metallic materials possess a strong temperat-
ure dependency with respect to the resistivity and relative magnetic permeability.
E.g. the resistivity of stainless steel and aluminium increases with rising temper-
ature. The relative magnetic permeability of aluminium is close to that of free
space, whereas the relative magnetic permeability of stainless steel is higher, but
decreases with rising temperature. At a certain material dependent temperature
TC , which is called the Curie temperature, the material properties of steel change
abruptly, resulting in a relative magnetic permeability of µr = 1.

Figure I.9 shows the effects of increasing temperature to the penetration depth
δ for general steel workpieces. Initially, the penetration depth increases steadily
with rising temperature, due to increasing resistivity and decreasing relative mag-
netic permeability. After reaching the Curie temperature TC the relative magnetic
permeability becomes suddenly µr = 1, which results in a large increase of the pen-
etration depth. Afterwards, the electrical resistivity rises further with increasing
temperature.

Figure I.10 shows the effects of changing frequency on the induced currents for
aluminium at 20 ◦C for f = {1, 10, 100} kHz, which results in penetration depths of
δ = {2.61366, 0.8263, 0.26137}mm (see also table 2.1-1 in [Jürgens and Wohlfahrt,
2005]). The current inside the domain approaches Is for lim f → 0. From equation
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Figure I.8: Current density per unit area for aluminium at 20 ◦C and f = 10 kHz

Figure I.9: General behaviour of the penetration depth δ vs. temperature T
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Figure I.10: Influence of the frequency on the penetration depth δ for aluminium
at 20 ◦C

(I.12) follows that under the assumption of equal resistivity, the penetration depth
of a material with relative magnetic permeability of µr = 100 under the influence
of an alternating current with a frequency of f = 100Hz will have the same pen-
etration depth as a material with a relative magnetic permeability µr = 1 under
the influence of an alternating current with a frequency of 10 kHz. A large relat-
ive magnetic permeability has, therefore, the effect of pushing the induced eddy
currents away from the relative centre of the material. The frequency input, as
well as the duration of the heat treatment, are the defining properties for a surface
hardening process. The frequency has a direct impact on the depth of the induced
eddy currents, whereas the duration of the treatment influences heat diffusion in
the workpiece. This observation leads to the conclusion that a homogeneous heat-
ing is accomplished using low frequencies, whereas surface heat treatment is done
in the high frequency domain. In practice, it must be assumed that the workpiece
material is not homogeneous, which is the case for most of the industrially used
materials and that the workpiece is not of simple shape, such that equation (I.12)
can only be used to approximate the penetration depth. It follows that the induced
electrical current will in general not follow the path of exponential decay, due to
non-linear material behaviour. This motivates the implementation of a numerical
model for the coupled induction heating process.
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I.5.2 Magnetic permeability and Curie temperature

The magnetic permeability µ is the constitutive relationship between the magnetic
flux density B and a magnetising magnetic field H such that

B = µH. (I.14)

This simple relationship states that materials with high relative permeability µr

allow the easy formation of magnetic fields. All materials can be classified into
three sub-categories. Dielectric materials possess a relative magnetic permeability
that is smaller than 1, which means that it is more difficult to form a magnetic field
in these materials than in free space. Diamagnetism is a weak effect present in all
materials. It is the tendency of the material to create an opposing magnetic field to
an external field. Paramagnetic materials possess a relative magnetic permeability
µr ≥ 1, whereas ferromagnetic materials possess a relative magnetic permeability
µr ≫ 1. The distinction between the latter materials is that the crystallographic
structure of ferromagnetic materials is made up of Weiss domains [Kurz et al.,
1999], as can be seen in figure I.11b.

Figure I.11: Difference between paramagnetic and ferromagnetic materials

These domains include regions with equal parallel magnetic moments, produced
by the alignment of the magnetic dipoles inside the material. These domains can
easily adjust in the direction of an applied magnetic field, whereas paramagnetic
materials possess a chaotic distribution of magnetic moments, as can be seen in
figure I.11a. For these materials, an alignment is possible, once the material is
exposed to a magnetic field, but it has to be larger than for the ferromagnetic case.
Ferromagnetic materials show an inherent magnetisation M , such that relation
(I.14) should be rewritten as

B = µ0(H +M)

= µ0(1 +
M

H
)H

= µ0(1 + χ)H,

(I.15)

with the magnetic suscebitibility χ. Ferromagnetic materials retain a magnetic
field M , which forms spontaneously [Kurz et al., 1999]. For these materials, the
relationship between both magnetic flux density B and applied magnetic field H is
highly non-linear as can be seen in figure I.12. Initially, B increases proportionally
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Figure I.12: Saturation effects for ferromagnetic materials

to H up to a certain point Ms, which is the saturation point for the specific material.
It is the maximum attainable magnetic field M inside the material.

The application of an outside magnetising field H leads to a reorientation and
resizing of the existing Weiss domains in a ferromagnetic material. This effect, leads
to a change in remaining magnetisation Mr that remains, even when the outside
excitation is turned off. This magnetic hysteresis effect is visualised in figure I.13.
The initial starting point with zero remaining magnetisation is marked as point ①.
The initial excitation using an outside magnetising field H up to saturation point
② leads to a build up of Mr. Point ③ shows the reminiscence that exists without
outside excitation. The remaining magnetisation vanishes, if a magnetising field is
created that points in the opposite direction. The field strength that is necessary,
such that Mr vanishes is given as the distance between point ④ and point ① and
is defined as the coercive field. A changing magnetic field will create a hysteresis
loop, that goes up to the bottom saturation point ②’ and follows through ③’ to
④’. A rapidly changing magnetic field, like in induction heating applications, will
lead to a repetitive resizing and reorientation of the existing Weiss domains inside
the material. This will lead to hysteresis losses, which result in the formation of
thermal energy. In standard working steels it can be assumed that this effect is
negligible, in comparison to the heat generated by eddy currents inside the work
piece.

Increasing material temperature leads to increased thermal motion of the atoms
of the material. This has the effect that the magnetic monopoles can not align any
more into Weiss domains. This means that the initial ordering of the magnetic
monopoles becomes chaotic, like for the paramagnetic case. Figure I.14 shows
the diminishing internal magnetisability M for rising temperature, with maximum
value M0, in green. TC is the curie temperature, at which the material becomes
paramagnetic. This change in phase occurs simultaneously with a rapid change
of specific heat capacity C, which is shown in red. Let F be the Helmholtz free
energy, G the Gibbs free energy and let S be the entropy of the system. [Gallagher
and Brown, 1998] shows that the entropy is related to the first derivative of F for
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Figure I.13: Hysteresis effect

constant volume as

S = −
∂F

∂T
, (I.16)

whereas the specific heat capacity is related to the second derivative

C = −
∂2F

(∂T )2
. (I.17)

The classification of Ehrenfest [Ehrenfest, 1933] states that a first order phase
change is defined through the emergence of a discontinuity in at least one state
variable, like the entropy (I.16). A second order phase change happens, if the
discontinuity first occurs in a second derivative, like the specific heat capacity
(I.17). Mattis and Swendsen [2008] states that the magnetisation is a state variable
for magnetic materials, such that it can be defined by the first derivative of the
Helmholtz free energy, for constant T (cf. [Callaway, 1974]), as

M = −
∂F

∂H
, (I.18)

such that the magnetic susceptibility is proportional to the second derivative. It
can be written with respect to B as

χ =
∂2G

(∂B)2
. (I.19)

Figure I.15 visualises a first and second order phase transition. Figure I.15a shows
the change of specific heat capacity during the change from solid to liquid phase of
a typical one component system. The phase change happens under the condition
of latent heat, which means that the phase transformation happens as isothermal
process. It can be seen that C is not defined for point Tpc. Standard engineer-
ing materials, like steel are multi-component systems. In these cases, the first
order phase change does not happen as an isothermal process, but in a defined
temperature range. Figure I.15b shows a second order phase change at the Curie
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temperature TC . The specific heat capacity changes rapidly in a discontinuous
manner, but remains defined [Callaway, 1974]. The magnetisation (I.18) will con-
tinuously increase from zero below the Curie temperature to its maximum M0.
The discontinuity exists for the magnetic susceptibility in (I.19) and the specific
heat capacity C in equation I.17, which will result in a jump for both quantities.
For each specific heat capacity, shown in figures I.14 and I.15, the heat capacity
increases from an initial starting value C11 to C12 at the critical phase transition
point. In both of the presented cases, the new starting value C21 for a temperature
T > TC differs from C11. With rising temperature each specific heat capacity in-
creases to its final value C22 for the given temperature range. It must be noted that
steel in γ-phase does not possess a Curie point. The austenitic phase is, therefore,
fully paramagnetic, such that µr = 1. The above-mentioned hysteresis effects can,
therefore, not exist in austenitic steels.

Figure I.14: M and C vs. temperature T

Figure I.15: First and second order phase transformations
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II Numerical model for induction

heating

Français:

Le chapitre suivant introduit le modèle physique, décrivant les phénomènes électro-
magnétiques, fondé sur les équations de Maxwell, ainsi que le modèle classique de
diffusion de chaleur. Ensuite, une version hyperbolique et une version parabolique
sont dérivées pour les équations électromagnétiques. Conformément aux principes
de la classification des équations aux dérivées partielles, en lien avec la méthode
des caractéristiques, nous montrons pourquoi la version parabolique des équations
électromagnétiques est plus adéquate pour décrire le problème du traitement par
induction. Ensuite, nous présentons brièvement la méthode de Galerkin en relation
avec les éléments finis vectoriels du type Nédélec, ainsi que les formulations faibles
pour chaque problème. L’aperçu sur des méthodes de discrétisation est finalisé par
une introduction aux méthodes stables pour la discrétisation en temps. Finalement,
un algorithme est présenté pour le calcul des courants conformes sur des géométries
arbitraires et complexes, ce qui a été identifié comme condition indispensable pour
que le problème électromagnétique soit bien posé.

English:

The following chapter introduces the physical model of electromagnetics based on
Maxwell’s equations, as well as the general heat diffusion model. This is followed
by a derivation of a hyperbolic and a parabolic version of the electromagnetic
equations. Using the classification principles for partial differential equations, in
connection with the method of characteristics, it is shown that the parabolic mag-
netic vector potential form is more adequate to describe the induction heating
problem. This section is followed by a brief introduction to the Galerkin finite
element method, in connection with the curl-conforming Nédélec vector finite ele-
ments and the weak formulations of the magnetic vector potential equation, the
heating equation and the voltage potential problem. This overview over discretisa-
tion methods is finalised by an introduction of stable time discretisation methods.
Finally, an algorithm is presented to impose conforming source currents on arbit-
rarily complex closed inductor geometries, which has been identified as prerequisite
for the well-posedness of the underlying electromagnetic problem.
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II.1 Physical model

II.1.1 Maxwell’s equations

The fundamental equations for describing the electromagnetic phenomena are given
by Maxwell’s equations in integral form (see, e.g. [Jin, 2002]). Maxwell’s equations
are four fundamental equations that are Faraday’s law, the Maxwell-Ampère law,
as well as the flux theorem for the electric flux density of Gauss and the condition
of divergence free magnetic fields.

Let dl, ds and dv be the smallest differential forms of a line, a surface area and
a volume segment. Faraday’s law states that the negative change of the time
derivative of the magnetic flux density B of a given surface area equals the electric
field E over the contour line of this surface area as



line

Edl = −
d

dt



surface

Bds. (II.1)

The Maxwell-Ampère law relates the magnetising field H, expressed through a line
integral, with the sum of the time derivative of the electric flux density D and the
electric current density J integrated over a given area, such that



line

Hdl =
d

dt



surface

Dds+



surface

Jds. (II.2)

Gauss’s flux theorem relates the area integral of the electric flux density E with
the volume integral of the electric charge density γ, enclosed by the former surface
as



surface

Eds = −
d

dt



volume

γdv. (II.3)

The former equations are taken together with Gauss’s magnetic law, which states
that every magnetic field must be divergence free, such that its surface integral
over a closed surface must vanish as



surface

Bds = 0. (II.4)

Let x, y, z be the x-,y- and z-direction of the 3-dimensional space R
3 and ex,ey

and ez the unit vectors defining the respective coordinate system. Let ζv be an
arbitrary differentiable vector field in a given vector space V in R

3 and let ζs be an
arbitrary quantity in the scalar field S. Further, let ∂ζs

∂x
, ∂ζs

∂y
and ∂ζs

∂z
be the spatial

partial derivatives of each scalar quantity of ζv with respect to each coordinate
direction.

The operator ∇ can be defined as the gradient operator mapping from a scalar
field to a vector space

∇ : s ∈ S → v ∈ V, (II.5)

such that
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∇ζ =
∂ζx
∂x

ex +
∂ζy
∂y

ey +
∂ζz
∂z

ez. (II.6)

∇· can be defined as the divergence operator that maps from a vector field into a
scalar space

∇· : v ∈ V → s ∈ S, (II.7)

such that

∇ · ζ =
∂ζx
∂x

+
∂ζy
∂y

+
∂ζz
∂z

. (II.8)

∇× can be defined as the curl-operator, which is an operator mapping from a
vector to another vector

∇× : v ∈ V → v ∈ V, (II.9)

such that

∇× ζ = (
∂ζz
∂y

−
∂ζy
∂z

)ex + (
∂ζx
∂z

−
∂ζz
∂x

)ey + (
∂ζy
∂x

−
∂ζx
∂y

)ez. (II.10)

Stokes’s theorem (see, e.g. [Gurtin, 1981]) states that the closed line integral of a
vector field ζv can be represented by the surface integral over any open surface,
bounded by line l as



surface

∇× ζvds =



line

ζvdl. (II.11)

Gauss’s integral theorem (see, e.g. [Gurtin, 1981]) states that the flow of a vector
field ζv over a closed surface boundary equals the volume integral of the divergence,
such that



volume

∇ · ζvdv =



surface

ζvds. (II.12)

Equations (II.1) and (II.2) can be rewritten in differential form (cf. the original
reformulation by [Heaviside, 1892], Art. 30, sec. 18) using Stoke’s theorem (II.11)
and the localisation theorem of continuum mechanics (see, e.g. [Gurtin, 1981]), as

∇× E = −
∂B

∂t
(II.13)

and
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∇×H =
∂D

∂t
+ J. (II.14)

Under the same assumptions, equations (II.3) and (II.4) can be rewritten using
Gauss’s theorem (II.12) as

∇ ·D = γ. (II.15)

and

∇ ·B = 0. (II.16)

The divergence of a rotational field vanishes (see, e.g. [Girault and Raviart, 1979]),
such that the application of the divergence operator (II.7) to equation (II.14), with
subsequent application of equation (II.15), leads to the equation of continuity for
the electric current density J in relation to the electric charge density γ as

∇ · J = −
∂γ

∂t
, (II.17)

which can also be written in integral form using (II.12) as



surface

Jds = −
d

dt



volume

γdv. (II.18)

Equation (II.16) follows in the same manner from equation (II.13). The differential
form needs to be completed with the constitutive relationships, in order to include
the electromagnetic properties of the materials, using the electrical permittivity ϵ,
the magnetic permeability µ, as well as the electrical conductivity σ, as

D =ϵE (II.19)

B =µH (II.20)

J =σE. (II.21)

II.1.1.1 E-H-J formulation

The E-H-J-formulation can be derived after inserting the constitutive equation
(II.19) into (II.14) and (II.20) into (II.13) and reordering, such that

∂ϵE

∂t
−∇×H = J

∂µH

∂t
+∇× E = 0.

(II.22)

(II.23)

Subsection II.2.1.3 demonstrates that the system of equations (II.22) and (II.23)
is of hyperbolic type. Therefore, it is difficult to handle numerically, due to the
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wave-like nature of the propagation. This is especially problematic in a global fi-
nite element setting, like the one presented in this work, due to scattering effects
and the use of distinct media. The E-H-J formulation has been effectively used in
the context of electromagnetic scattering applications, using explicit formulations
[Hesthaven and Warburton, 2002], based on a decoupled explicit nodal discontinu-
ous Galerkin scheme [Hesthaven and Warburton, 2008]. In these formulations a
wave transport problem is solved, including scattering and refraction effects. For
the industrial setting of induction heating it can be assumed that the electro-
magnetic problem is in a sufficiently stationary condition, so that it possesses a
quasi-stationary behaviour. Therefore, the following diffusion-like magnetic vector
potential formulation is more adequate to describe the electromagnetic phenomena.

II.1.1.2 A-V formulation

The current density in (II.14) can be split into an induced current Jd that depends
on the changing magnetic field and an imposed source current Js, such that

J = Jd + Js. (II.24)

[Heaviside, 1892] shows that the magnetic flux density can be expressed by a mag-
netic vector potential A, such that

B = ∇×A. (II.25)

After inserting (II.25) and (II.21) into Faraday’s law (II.13) and utilising the lin-
earity of the curl operator (II.9) the dependent current Jd can be expressed by

Jd = −σ
∂A

∂t
. (II.26)

According to [Jin, 2002], the source currents can either be expressed directly or by
introducing a voltage potential Φ, such that

E = −∇Φ. (II.27)

Inserting equation (II.27) into the charge conservation equation (II.17) and using
the constitutive equation (II.21) leads to

∇ · σ∇Φ =
∂γ

∂t
. (II.28)

The displacement currents ∂D
∂t

can be neglected in induction heating (see, e.g.
[Rudnev, 2003]). In this context, the Maxwell-Ampère law (II.14) can be rewritten
in the A-V-formulation using (II.25) and (II.28), assuming ∂γ

∂t
= 0 in the imposed

source term, as

σ
∂A

∂t
+∇×

1

µ
∇×A+ σ∇Φ = 0

∇ · σ∇Φ = 0.

(II.29)

(II.30)
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Subsection II.2.1.2 demonstrates that equation (II.29) is a parabolic partial dif-
ferential equation, whereas (II.30) is of elliptic type. Both equations can be weakly
coupled, under the assumption of negligible influence of the electromagnetic phe-
nomena on the voltage potential of the source current, so that each equation can
be treated separately in an efficient manner.

The A-V formulation is widely used in the literature, e.g [Ren, 1996] and [Biro
et al., 1996] use this formulation in a global finite element setting in stationary
form. [Hiptmair and Ostrowski, 2005] uses a time harmonic formulation in con-
nection with a boundary element formulation. [Houston et al., 2005] introduces
a discontinuous Galerkin approach for the stationary vector potential form and
[Kolev and Vassilevski, 2009] uses the fully transient form for a highly parallelised
application involving up to approximately 80 million degrees of freedom on 1024
processor nodes.

An alternative potential formulation can be derived based on a magnetic scalar
potential in connection with an electric current vector potential [Biro et al., 1993b]
(see also [Preis et al., 1992] and [Biro et al., 1993a]). Applications to an induction
hardening application are presented in [Candeo et al., 2011]. It states that with re-
spect to a comparable A-V potential formulation the advantage of this formulation
is a reduction in storage costs and solution time for the electromagnetic problem,
even though the accuracy is reduced.

II.1.2 Heat transfer equations

The first law of thermodynamics states that the total energy of a system can only
change due to incoming and outgoing heat fluxes, work done by or on the system
or as a result of an internal change in energy due to physical phenomena (see,
e.g. [Wriggers, 2008]). These physical phenomena include radioactive decay, heat
generation due to induced eddy currents Qem or heat generation or absorption due
to phase changes (see the definition of TC and the magnetic hysteresis effects in
section (I.5.2)). The internal and external work, as well as the changes in kinetic
energy, can be neglected in the context of induction heating. Therefore, the internal
energy can be stated as a function of internal heat. The internal effects of radiation
and phase changes are much weaker than the heating energy that is generated by
induced eddy currents. Thus, the integral form of the energy conservation law can
be given by

d

dt



volume

ρCTdv = −



surface

qFds+



volume

Qemdv, (II.31)

using the density ρ, the specific heat capacity C, defined in equation (I.17), the
induced heating energy Qem, defined in equation (I.9), as well as the surface heat
flux over the enclosing domain qF , which points in the opposite direction of the
surface normal. The differential form can be written, using Gauss’s theorem (II.12),
such that

∂

∂t
ρCT +∇ · qF = Qem. (II.32)
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Fourier’s law (see, e.g. [Mortimer, 2008]) relates the heat flux to the gradient of
the temperature field T , using the thermal conductivity k, such that

qF = −k∇T. (II.33)

Equation (II.32) can, therefore, be rewritten in the form

∂

∂t
ρCT −∇ · k∇T = Qem. (II.34)

The heating flux qF may describe the heat loss due to temperature differences
between the workpiece and the surrounding medium qFm

or the heating loss fol-
lowing from the emission of electromagnetic radiation qFr

as demonstrated in [Bay
et al., 2003]. The convection flux can be described using the ambient temperature
TA and a convection coefficient h as

qFm
= h(T − TA), (II.35)

whereas the radiation losses qFr
can be defined as

qFr
= εσs(T

4 − T 4
A), (II.36)

using the material emissivity ε and the Stefan-Boltzmann constant σs, as defined
in [Mohr et al., 2012].

In the following sections it is shown that the parabolic equation (II.34) is easier
to handle numerically than equation (II.32), which is hyperbolic. The boundary
conditions (II.35) and (II.36) are not introduced directly in equation (II.34). Both
conditions are introduced after the introduction of the weighted residual formu-
lation and integration by parts with application of Green’s theorem, as shown in
subsection II.2.2.2.

II.2 Numerical model

II.2.1 Classification of PDEs

[Zwillinger, 1989] states that before any given differential equation is approximated,
it should be established, whether it is inherently well-posed. The procedure follows
the criteria of Hadamar (see, e.g. [Lanczos, 1997]), which define that a differential
equation is well-posed if:

• The solution exists.

• The solution is unique.

• The solution is stable, in the sense that small perturbations of the input
data or boundary conditions do not lead to highly different outcomes for the
solution.
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The first two criteria, which are existence and uniqueness depend not only on the
partial differential equation itself, but on the chosen solution method. Subsection
II.2.4 establishes these conditions for the chosen methods of this work. The third
criterion, which is stability, also depends on the chosen solution method, but in
addition it is also inherently related to the characteristic behaviour of the partial
differential equation, i.e. the underlying problem that is described.

Partial differential equations (PDEs) can be divided into three subclasses show-
ing a different numerical behaviour. The subclasses are elliptic, parabolic and
hyperbolic partial differential equations. In the following a second order PDE with
two independent variables will be used to describe the classification theory. The
classification of higher dimensional problems follows analogously. [Zwillinger, 1989]
states that any second order PDE of the above-mentioned form can be written as

A(x, t)
∂2u

∂x2
+B(x, t)

∂2u

∂x∂t
+ C(x, t)

∂2u

∂t2
= Υ(u,

∂u

∂x
,
∂u

∂t
, x, t), (II.37)

where A,B and C are coefficients and Υ is an agglomeration of all operators of
order less than 2. The PDEs are classified as

B2 − 4AC > 0, then equation (II.37) is hyperbolic (II.38)

B2 − 4AC = 0, then equation (II.37) is parabolic (II.39)

B2 − 4AC < 0, then equation (II.37) is elliptic. (II.40)

The behaviour of a PDE can be described using characteristics [Zwillinger, 1989].
These characteristics are ordinary differential equations that solve a given PDE
along curves. These curves define the partial differential equation and demonstrate
the general behaviour of the PDE during the solution phase.

II.2.1.1 Elliptic PDEs

Elliptic partial differential equations are steady state solutions of boundary value
problems involving potentials [Zwillinger, 1989]. Non-transient potential diffusion
problems, like equation (II.30), are a classical type of elliptic partial differential
equation for which condition (II.40) is valid. The general elliptic Laplacian is the
classical example problem for this family of PDEs and can be written in homogen-
eous form as

∇ · σ∇u = 0. (II.41)

It has no real characteristics. The partial differential equation describes the steady
state condition of a potential problem, such that all information, which is imposed
on the boundary, is distributed instantaneously on the whole domain. Figure
II.1 visualises the concept for a two dimensional voltage potential problem, like
(II.30) with constant conductivity σ (cf. [Fletcher, 2005], Fig. 2.9). The boundary
values must be imposed on all four boundaries, so that the physical problem is
well conditioned. The given potential problem will result in a smooth gradient
field as depicted in figure II.1. A change in the boundary condition on any side
is instantaneously felt by the exemplary point ①. This type of PDE is generally

30



II - NUMERICAL MODEL II.2 - NUMERICAL MODEL

well-posed under some assumption on the regularity of the prescribed boundary
values [Fujita and Suzuki, 1990]. Its smoothing property disperses discontinuities,
so that discontinuous solutions or numerical oscillation errors in general do not
destabilise the solution [Ascher, 2008].

Figure II.1: Two dimensional elliptic boundary value problem

II.2.1.2 Parabolic PDEs

The behaviour of parabolic partial differential equations is close to that of elliptic
partial differential equations, in the sense that small perturbations immediately
impact the solution everywhere in the domain. Parabolic PDEs describe transi-
ent diffusion problems. The heating equation (II.34) is of parabolic type, due to
(II.39). A generic example for this class of partial differential equations is the
one-dimensional homogeneous transient diffusion equation

∂u

∂t
−

∂2u

∂x2
= 0. (II.42)

According to [Hoffman, 2001], this type of PDE has a primary temporal charac-
teristic

t− t0 = 0, (II.43)

as well as a secondary spatial characteristic

x− x(t0) = 0. (II.44)
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Figure II.2: Characteristics for parabolic PDEs

Figure II.2 visualises the effects of the characteristics for the one-dimensional ex-
ample problem (II.42) (see also [Hoffman, 2001], Fig. III.4). The boundary value
information is instantaneously distributed on the whole domain at each time step.
A changing boundary condition for t1 or t2 is directly distributed to each point us-
ing the temporal characteristics ① and ②. Yet, its effect is inversely proportional to
the distance of the boundary [Hoffman, 2001], such that the effect decreases with
increasing distance. The characteristics ③ and ④ are spatial characteristics, which
depend on the initial value u(t0). E.g. the spatial point x1 is influenced both at t1
and t2 by the boundary information, but also by its previous time increments. For
the time increment t2 it is, therefore, influenced by the temporal characteristic ①

and by the spatial characteristic ④. This type of PDE is well-defined, if conforming
boundary conditions are imposed and the complete boundary domain and initial
values are prescribed, but numerical solution methods have to include the infinite
information propagation speed [Hoffman, 2001].

II.2.1.3 Hyperbolic PDEs

According to [Zwillinger, 1989], a classical example for hyperbolic PDEs for which
condition (II.38) holds, is the wave equation. The wave equation is defined as

∂2u

(∂t)2
− c2∇ · ∇u = 0, (II.45)

using a constant parameter c. This PDE resembles the parabolic heat equation,
but features a second order derivative in time. In contrast to the above-mentioned
elliptic and parabolic types of equations, it depends on the direction of the data
flow, which is locally confined, so that local perturbations do not affect the com-
plete computational domain. The general behaviour of this familiy of PDEs can
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be visualised using a special class of first order PDEs, which are the transient hy-
perbolic conservation laws [Zwillinger, 1989]. For a homogeneous one-dimensional
setting, using the unknown quantity u, a general conservation equation can be
defined as

∂u

∂t
+ v

∂u

∂x
= 0, (II.46)

with v being a given velocity. The general form of this hyperbolic equation can be
defined using the flux F (u) as

∂u

∂t
+ vF (u) = 0. (II.47)

[Allen and Isaacson, 1998] gives the characteristic curves for problem (II.46) using
the initial time t0 as

(x− x(t0))− v(t− t0) = 0. (II.48)

which are visualised in figure II.3.

Figure II.3: Characteristics for hyperbolic PDEs

Curve ① is the characteristic curve for the leftmost point of the domain defined
at t0. The information of the inflow boundary condition flows along this line with
velocity v. For this class of problems, the boundary condition must be consistent
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with the flow of information. It is visible that the information has only reached
parts of the domain up to time t2. For this time step, the quantities of the red-
shaded domain only depend on the initial values x ≥ xm. It follows that a possible
outflow boundary condition has no effect on the outcome of the computation. In
effect, the simultaneous imposition of inflow and outflow boundary conditions can
lead to inconsistencies, e.g. negative densities, due to numerical errors. A changing
boundary condition will shift the characteristic in time, but it remains parallel to
the initial curve, as can be seen for curve ② that starts from t1 for the leftmost
discretisation point. For the remaining spatial points the characteristic is shifted
likewise for any given time step, as can be seen for curve ③ starting from xm. The
characteristic curve ③ points in the direction of v, such that the left part of the
domain is not influenced by the initial values presented in this part of the domain.
In essence, for hyperbolic equations it is important that the boundary conditions
are in accordance with the flow of information. The initial values do only have to be
described, if the evolution for an initial quantity is needed. These initial quantities
are not necessary to ensure the solvability of the partial differential equation.

E.g. an open pipe of length L with a given inflow condition and a velocity
v = L/t1 will have filled in time t1 irrespective of the initial quantities present
in the pipe. The major drawback regarding hyperbolic PDEs is the dependency
on information flow. A possible time discretisation for a numerical approximation
is, therefore, not only restricted by the chosen discretisation method, but also by
the physical problem itself. It is furthermore noticeable that a non-linear hyper-
bolic PDE can admit discontinuous solutions, even when smooth initial data is
prescribed [Ascher, 2008]. The weak formulation can admit non-physical solutions,
which is why numerical solvers for hyperbolic conservation laws include filters that
discard non-physical solutions. E.g. entropy filters can be used to discard quant-
ities at jumps that would result in a loss of entropy. In essence, hyperbolic partial
differential equations are difficult to handle, both based on a purely mathematical
standpoint, regarding existence and uniqueness of solutions, as well as from a nu-
merical point of view, due to stability and convergence issues. The general finite
element method is, therefore, not commonly used in that context. For this class of
PDEs additional work has to be done, in order to ensure solvability and stability.
E.g. for advection type problems, the Streamline-Upwind-Petrov-Galerkin method
[Brooks and Hughes, 1982] is sometimes used, which creates an artificial diffusion
term in the weak form to smooth discontinuities. Alternatively, the discontinuous
Galerkin method is often used, since it allows naturally to introduce discontinuities
into the discretisation as described in [Cockburn and Shu, 1989], [Cockburn and
Shu, 1998] and [Cockburn and Shu, 2001].

The E-H-J formulation, given in equations (II.22) and (II.23) is of hyperbolic
type. This formulation can be rewritten in matrix formulation, such that the two
curl-operators can be identified as flux (see equation (14) in [Hesthaven and War-
burton, 2002]). The above-mentioned equation system has been extensively used
in electromagnetic scattering applications. E.g. [Hesthaven and Warburton, 2002]
solves the electromagnetic scattering problem using an explicit formulation using
discontinuous Galerkin finite elements (cf. [Hesthaven and Warburton, 2008]). For
these problems, the objective is to model the travelling wave problem of electro-
magnetics. This is in contrast to induction heating, where it is assumed that the
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system of inductor and workpiece is in a quasi-steady state, so that the system it-
self behaves more like a diffusion problem, so that small perturbation immediately
affect the solution values everywhere in the computational domain.

II.2.2 Solution methods and discretisation

The numerical solution of the eddy-current equations involves a discretisation step.
The choice of discretisation depends on different factors. First, an assessment
must be made regarding the computing resources that are available, since different
methods possess different needs regarding computational time or memory capacity.
Secondly, different methods behave differently with respect to numerical inconsist-
encies like oscillations, discretisation errors or problems with respect to floating
point accuracy. In general, a discretisation method ought to be stable and consist-
ent, so that results can accurately be produced with confidence. In addition, it is
important to state, whether the underlying physical problem is fully defined using
boundary values only, or whether volumetric source terms or non-homogeneous
material behaviour necessitates a fully volumetric description.

In the context of electromagnetism two general approaches are widely used that
are based on a domain based integration of the weighted residual of the PDE: the
boundary element method (BEM) and the finite element method (FEM).

Let the general PDE be defined using an operator Υ with unknown solution
vector u and right-hand side b, so that the residual r(u) can be given as

r(u) = Υ(u)− b = 0. (II.49)

The common approaches are based on a weighted integration of the residual
II.49 with the goal of minimising the error eh = u−uh with respect to the discrete
solution vector uh.

The BEM is based on the assumption that the underlying PDE can be trans-
formed into a boundary integral equation using the fundamental form of the dif-
ferential operator of the PDE. It is furthermore assumed that the enclosed com-
putational domain consists of homogeneous materials, that it reacts linearly and
that no inhomogeneous volumetric source excitations exist. An overview of this
discretisation approach can be found in [Sauter and Schwab, 2011]. The advantage
of BEM is that only the boundary of the domain has to be approximated, which
simplifies the application regarding complex domains. It also naturally permits
relative movements of multiple domains. Applications are moving boundary prob-
lems in electromagnetics, e.g. [Frangi et al., 2005] or [Alotto et al., 2008]. The
disadvantage is that the surface integral approach necessitates a direct coupling
of all elements, which results in a direct coupling of all degrees of freedom. For a
practical application, this results in linear systems of equations that are difficult to
treat numerically, due to their dense nature, even though their numbers of degrees
of freedom are highly reduced.

The FEM is based on an elementwise approximation of the computational do-
main using discrete finite elements that, together, approximate the solution of the
PDE. Applications for electromagnetics can be found in [Kwon et al., 2005], [Lu
et al., 1995], [Biro and Preis, 1989] or [Hömberg, 2004]. Its discrete form leads to a
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global linear system of equations with a local coupling of the elements. Therefore,
the discrete form is based on a sparse matrix system, which is simple to handle nu-
merically. Furthermore, efficient solution methods can be employed, e.g. [Hiptmair
and Xu, 2008] and [Kolev and Vassilevski, 2009].

A coupled approach, denoted as mixed FEM/BEM approach, can also be em-
ployed. In common electromagnetic applications, the embedding air-domain is
discretised using a BEM approach, whereas the conductive domains are discretised
using finite elements. The advantage of this coupling is that non-linear effects can
be dealt with. Unfortunately, the resulting coupled linear system of equations is
again difficult to treat numerically. Furthermore, the coupled linear system of equa-
tions is difficult to handle in parallel. Therefore, it can not efficiently be scaled, if
the computational demand increases. Applications for this approach can be found
in [Hiptmair and Ostrowski, 2005], [Meddahi and Selgas, 2008], [Rodríguez and
Valli, 2009], [Camaño and Rodríguez, 2012] or [Touzani and Rappaz, 2014].

Figure II.4: Galerkin orthogonality principle

As stated above, both discretisation methods are applied in connection with an
integration over the computational domain. Independently of the utilised method,
the overall goal is to minimise the approximation error eh. In general, before
integrating over the computational domain, the PDE is multiplied by a test function
in vector form v, so that the result is in scalar form. For the BEM, a widely used
method is the point collocation approach. Here, the test function v is chosen to
be the Dirac delta function [Gaul et al., 2003], resulting in an evaluation of the
underlying physical problem at these collocation points. Alternatively, the Galerkin
approach, as described in [Oden and Reddy, 1976] and [Ciarlet and Lions, 1990],
can be employed, which chooses the test function space equal to the approximation
space of the solution vector u. This approximation method is also the method most
commonly associated with respect to finite element approaches.
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As stated above, the Galerkin method is based on the assumption that both the
approximation space Uh of the solution vector uh, as well as the approximation
space Vh of the test function vh are equal. The Galerkin method possesses the
advantage that the approximation error eh will be orthogonal in the approximation
space, under the assumption that a solution uh exists, that it is uniquely defined and
that the trial spaces are Hilbert spaces [Girault and Raviart, 1979]. This remarkable
property is visualised in figure II.4. The orthogonality property indicates that the
approximative solution uh ∈ Uh must be the best possible approximation for the
unknown vector u ∈ U in the full approximation space Uh. It is, therefore, the
optimal solution with the smallest error eh.

In addition, the weak form of the integral formulation can be used to reduce the
order of the resulting formulation using integration by parts. In essence, Green’s
theorem [Girault and Raviart, 1979] can be applied to the integrated form of the
multiplied operator of the strong form of the PDE, in order to reformulate the
problem into sums of volume and surface integrals. [Oden, 1990] states that the
solution is satisfied in a weak distributional sense. After certain assumptions on the
test function space V, the surface integral formulations incorporating the higher
order derivatives vanish, resulting in a reduction of the order of the PDE. In the
following sections, this approach is applied to the strong form of the elliptic voltage
potential problem (II.30), the parabolic heating equation (II.34) and the magnetic
vector potential formulation (II.29).

II.2.2.1 Weak form of the voltage potential problem

The voltage potential problem, defined in equation (II.30) is a boundary value
problem. Two different kinds of boundary conditions can be identified. A surface
current J0 · n can be prescribed on parts of the surface domain ∂ΩN , whereas a
voltage potential can be prescribed on another part ∂ΩD.

∇ · σ∇Φ = 0, in Ω (II.50)

σ∇Φ · n = J0 · n, on ∂ΩN (II.51)

Φ = Φ0, on ∂ΩD (II.52)

This boundary domain is based on the assumption that the complete surface do-
main is partitioned into these two subsets

∂Ω = ∂ΩN ∪ ∂ΩD, (II.53)

which do not overlap

∂ΩN ∩ ∂ΩD = ∅. (II.54)

The voltage potential problem is only uniquely defined, if boundary conditions are
identified on the complete exterior domain and at least some part is identified as
∂ΩD.

Equation (II.50) can be multiplied by a vector valued test function ṽ and in-
tegrated over the full domain Ω, with subsequent application of Green’s theorem
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[Girault and Raviart, 1979], such that


Ω

∇ · σ∇Φṽ dΩ =−



Ω

σ∇Φ∇ṽ dΩ

+



∂ΩN

(σ∇Φ · n)ṽ d∂ΩN +



∂ΩD

(σ∇Φ · n)ṽ d∂ΩD.
(II.55)

The normal derivatives of the voltage potential do not have to be explicitly defined
on ∂ΩD, if the test function ṽ can be chosen, such that

v = 0, on ∂ΩD. (II.56)

In addition, by identifying the first surface integral of the right-hand side as the
imposed current (II.51), equation (II.55) can be rewritten as



Ω

σ∇Φ∇ṽ dΩ

  

ã(Φ,ṽ)

=



∂ΩN

(J0 · n)ṽ d∂ΩN

  

b̃(ṽ)

. (II.57)

The symmetric left-hand side of equation (II.57) is denoted by ã(Φ, ṽ). It is linear
for argument ṽ for fixed Φ, as well as linear for argument Φ for fixed ṽ, such that it
can be defined as a symmetric bilinear form. The right hand side b̃(v) can equally
be identified as linear operator on argument ṽ.

It follows that the original PDE defined in equation (II.30) can be replaced by an
equivalent boundary value problem using a weak formulation. It is only valid in a
distributional sense [Oden, 1990] . The advantage is that the PDE of second order
with respect to the spatial coordinate, defined in equation (II.30) can be described
by using the boundary value problem including only first order derivatives. The
weak form of the voltage potential formulation is defined as: find Φ, such that

ã(Φ, ṽ) = b̃(ṽ), in Ω

σ∇Φ · n = J0 · n, on ∂ΩN

Φ = Φ0, on ∂ΩD.

(II.58)

(II.59)

(II.60)

II.2.2.2 Weak form of the heat transfer equation

The heat transfer equation, defined in its strong local form (II.34), can be refor-
mulated into a weak form, like the elliptic voltage potential equation (II.30). The
heat transfer problem is defined on the conducting domain ΩC . The second part of
the left-hand side of equation (II.34) can be reformulated using Green’s theorem,
after multiplication by a test function v̄ and integration by parts, such that

−



ΩC

∇ · (k∇T )v̄ dΩC =



ΩC

k∇T∇v̄ dΩC

−



∂ΩCN

(k∇T · n)v̄ d∂ΩCN −



∂ΩCD

(k∇T · n)v̄ d∂ΩCD.

(II.61)
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Here, the conductor boundary is again divided into two separate subsets. Subset
ΩCD defines the boundary with prescribed temperature T0, whereas ΩCN defines
a boundary that permits heat exchange using a numerical flux, as specified in
equations (II.35) and (II.36). The boundary domains are again distinct, such that

∂ΩC = ∂ΩCN ∪ ∂ΩCD, (II.62)

with

∂ΩCN ∩ ∂ΩCD = ∅. (II.63)

The convection flux (II.35) and the radiation loss (II.36) depend on the ambient
temperature TA, as well as on the unknown temperature T , with the radiation loss
being highly non-linear. According to [Bay et al., 2003], it can be linearised using

qFr
= εσs(T

4 − T 4
A)

≈ εσs(Ttn−1
+ TA)(T

2
tn−1

− T 2
A)

  

hr

(T − TA). (II.64)

The parameter hr is introduced explicitly, using the solution values of the previous
time step Ttn−1

. If the test function v̄ is chosen, such that it vanishes on ΩCD and
after inserting the heat flux (II.33) into equation (II.61), the bilinear form ā(T, v̄)
of the weak form of equation (II.34) can be identified as

ā(T, v̄) =



ΩC

ρCT v̄ dΩC +



ΩC

k∇T∇v̄ dΩC +



∂ΩCN

((h+ hr)T · n)v̄ ∂ΩCN ,

(II.65)

whereas the linear form b̄(v̄) can be identified as

b̄(v̄) =



∂ΩC

Qemv̄ dΩC +



∂ΩCN

((h+ hr)TA · n)v̄ d∂ΩCN . (II.66)

The weak formulation of the initial value boundary problem with initial temper-
ature Tt0 at time t0 can, therefore, be stated as: find T , such that

ā(T, v̄) = b̄(v̄), in ΩC

qF · n = (qFr
+ qFm

) · n, on ∂ΩCN

T = T0, on ∂ΩCD

T = Tt0 , for t = t0 in ΩC .

(II.67)

(II.68)

(II.69)

(II.70)

II.2.2.3 Weak form of the magnetic vector potential equation

The weak form of the magnetic vector potential equation can be written in a
simplified manner, like the above-mentioned heat transfer equation, as well as the
voltage potential equation. Integration by parts leads to Green’s theorem including
the curl operator (II.9) using vector valued u and v



Ω

(∇× u)v dΩ =



Ω

(∇× u)(∇× v) dΩ

−



∂ΩN

(∇× u× n)v dΩN −



∂ΩC

(∇× u× n)v dΩC . (II.71)
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The second term of equation (II.29) can, therefore, be rewritten in weak form after
multiplication with a test function v and integration by parts over the domain Ω
as



Ω

∇×
1

µr

∇×A dΩ =



Ω

1

µr

(∇×A)(∇× v) dΩ

−



∂ΩN

(
1

µr

∇×A× n)v dΩN

−



∂ΩD

(
1

µr

∇×A× n)v dΩD.

(II.72)

In the context of induction heating, the boundary surface ∂ΩN is mostly associ-
ated with symmetry conditions. In this work, it is assumed that the global domain
Ω is chosen, such that it fully encloses the conducting surfaces with a size that
is sufficient to assume that no magnetic flux exits or enters over this boundary
surface, which can be identified as ∂ΩD. It is therefore assumed that the complete
embedding boundary is equal to ∂ΩD, such that

∂ΩD = ∂Ω (II.73)

∂ΩN = ∅. (II.74)

It follows that, if the test function is chosen with ∇ × v = 0 on ΩD, the weak
bilinear form of equation (II.29) can be written as

a(A, v) =
∂

∂t



Ω

σAv dΩ +



Ω

1

µr

(∇×A)(∇× v) dΩ, (II.75)

whereas the linear form can be written as

b(v) = −



Ω

σ∇Φv dΩ (II.76)

under the assumption of a weak coupling between voltage potential Φ and mag-
netic vector potential A. The vanishing magnetic flux boundary condition can be
prescribed on ∂ΩD as

B · n = 0 (II.77)

(∇×A) · n = 0, (II.78)

which can be fulfilled if

A× n = 0. (II.79)

The weak form of the initial value problem of the magnetic vector potential can
thus be described using the initial value At0 at time t0 as: find A, such that

a(A, v) = b(v), in Ω

A× n = 0, on ∂ΩD

A = At0 , for t = t0 in Ω.

(II.80)

(II.81)

(II.82)
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II.2.3 Finite element spaces

Finite element spaces are discrete representations of the vector spaces that are
introduced in the weak Galerkin formulations (II.58), (II.67) and (II.80). These
finite element vector functions are specified using the geometrical features of the
chosen finite element discretisation. In practice, commonly used finite elements
include triangles and quadrilateral elements in two dimensions, as well as tetra-
hedral, brick or wedge elements in three dimensions [Wriggers, 2008],[Bathe, 1996].
These discrete spaces are denoted with a subscript h, as

Φ ≈ Φh (II.83)

ṽ ≈ ṽh (II.84)

T ≈ Th (II.85)

v̄ ≈ v̄h (II.86)

A ≈ Ah (II.87)

v ≈ vh (II.88)

and replace the continuous representations in the respective weak formulations.
The representation choice depends on the modelling approach, as well as possible

numerical and physical complications that might arise in a computational treat-
ment. The interpolation function is based on a summation over the test functions
with respect to the chosen geometrical features. In the following, an application
will be given for triangular, as well as for tetrahedral elements, in order to detail
the discretisation steps. A commonly used discretisation technique includes the
Lagrangian finite elements [Oden and Reddy, 1976], which are based on a nodal
representation of the interpolating function. Let u be a generic representation
for the different vector spaces (II.83)-(II.88). For a two-dimensional triangular
element, featuring three independent nodes, a linear interpolation for the local
elementwise form ue of u can be approximated as

ue(ξ, η) ≈ ueh(ξ, η) =
3

i=1

uiNi(ξ, η), (II.89)

with ui being the nodal values, defined at the spatial locations of the discretised
domain and Ni(ξ, η) a two-dimensional interpolation function over the local domain
of the finite element with local coordinates ξ and η. It is chosen, so that the nodal
values of the local test functions in this configuration are

Ni(ξ, η) = 1, if location (ξ, η) coincides with the local node index i (II.90)

Ni(ξ, η) = 0, if location (ξ, η) coincides with the local node index j ̸= i.
(II.91)

For the general linear triangle, defined in equation (II.89), the test functions can
be chosen on a reference triangle, shown in figure II.5a, as

N1(ξ, η) = 1− ξ − η (II.92)

N2(ξ, η) = ξ (II.93)

N3(ξ, η) = η, (II.94)
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Figure II.5: Isoparametric concept with reference triangle (a) and spatial triangle
(b)

such that conditions (II.90) and (II.91) are fulfilled. The advantage of the finite
element method is that the geometry of each triangle element can be chosen in
a flexible manner. Figure II.5b shows a real finite element, henceforth called the
spatial configuration, which could be found in a finite element discretisation. Its
orientation and form can be chosen arbitrarily. The reference finite element II.5a
can be mapped onto the spatial configuration using a representation function T .
This is the isoparametric concept [Jin, 2002, Wriggers, 2008]. It is very advantage-
ous for expressing the spatial derivatives of the local element function by applying
the chain rule. Let ∂

∂ξ
and ∂

∂η
be the spatial derivatives with respect to the local

coordinates of the reference finite element. A connection to the derivatives with
respect to the global spatial coordinates x and y can be specified using the chain
rule as


∂
∂ξ

∂
∂η



=


∂N1(ξ,η)

∂ξ

∂N2(ξ,η)
∂ξ

∂N3(ξ,η)
∂ξ

∂N1(ξ,η)
∂η

∂N2(ξ,η)
∂η

∂N3(ξ,η)
∂η



·






x1

x2

x3






  

J

·


∂
∂x

∂
∂y



, (II.95)

by using the fact that the global coordinate x can be specified using the approach
defined in equation (II.89) as

x(ξ, η) =
3

i=1

xiNi(ξ, η)

=

N1(ξ, η) N2(ξ, η) N3(ξ, η)


·






x1

x2

x3




 .

(II.96)

The matrix J in equation (II.95) can be identified as the Jacobian transformation
matrix. It can be derived for each distinct finite element to map between spatial
and reference configuration.
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The concept extends to finite elements of different shapes and dimensions. E.g.
the linear tetrahedral finite element, which is based on four global coordinates

x =









x1

x2

x3

x4









, (II.97)

can be specified using four local test functions, using

N1(ξ, η, ζ) = 1− ξ − η − ζ (II.98)

N2(ξ, η, ζ) = ξ (II.99)

N3(ξ, η, ζ) = η (II.100)

N4(ξ, η, ζ) = ζ. (II.101)

These linear nodal finite elements are discrete versions of the general Hilbert space
H(Ω), involving square-integrable gradients, which can be defined as

H(Ω) = {u ∈ L
2(Ω);∇u ∈ L

2(Ω)}. (II.102)

Further test functions for higher polynomial orders and different element choices
like quadrilateral elements or brick elements can be found in [Wriggers, 2008].

The choice of nodal values for describing the test functions is not unique. In fact,
many more geometrical features can be used as reference for the description of the
base functions. In electromagnetics it is found that the choice of Lagrangian nodal
finite elements leads to spurious oscillations in the solution [Jin, 2002], [Bossavit,
1998]. This is due to the non-physical properties of the approximating Lagrangian
finite element space with respect to electromagnetics. In fact, in electromagnetics
only the tangential continuity must be enforced between interfaces, due to the
use of the curl-operator (II.9) as stated in [Jin, 2002], whereas in other physical
problems like the heat distribution (II.67) or the voltage potential computation
(II.58) the continuity condition is prescribed for the normal direction. A finite
element space that introduces conforming basis function are the Nédélec/Whitney
form finite elements [Nedelec, 1980],[Bossavit, 1998]. For these finite elements the
geometrical reference feature is chosen as the edge, i.e. the unknown, which is the
magnetic vector potential A, is imposed on each edge degree of freedom. Since
each edge k is uniquely defined by its border points i, j the edgewise test function
Ψk can be expressed using these nodes. For the simple linear tetrahedron, six local
edge test functions can be defined as

Ψk = Ψij = (Ni∇Nj −Nj∇Ni)Lij, (II.103)

using the Lagrangian test functions of the border points i and j. The factor

Lij = ∥xi − xj∥ (II.104)

is the edge length and has been included to normalise each test function, while
making it dimensionless [Jin, 2002]. The test functions are locally divergence free
[Nedelec, 1980], [Jin, 2002], so that

∇ ·Ψk = 0. (II.105)
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The resulting edge vector finite elements are a discrete version for a curl-conforming
Hilbert space H(∇×,Ω) that can be defined as

H(∇×,Ω) = {u ∈ L
2(Ω);∇× u ∈ L

2(Ω)}. (II.106)

The weak formulations (II.58), (II.67) and (II.80) are integral formulas. Follow-
ing [Bathe, 1996] and [Wriggers, 2008], these global integration formulas over the
domain Ω are first replaced by a discrete version over T . Afterwards, the global
integral is replaced by an assembly over the ne local finite element integrals, each
having a unique volume Te, as



Ω

(. . . )dΩ ≈



T

(. . . )dT =
ne

e=1



Te

(. . . )dTe. (II.107)

It is advantageous to integrate each spatial element in the space of the respective
reference element, such that the integral is transformed into the reference space.
For a three dimensional function f(x) the integral transformation is defined as



Ωe

f(x)dΩe =



Ωref

f(ξ, η, ζ)det(J)dΩref, (II.108)

where Ωe is the volume of the spatial element, whereas Ωref defines the volume of
the reference element.

The integration can be done numerically using Gauss quadrature rules [Bathe,
1996], such that equation (II.108) becomes a summation formula



Ωe

f(x)dΩe ≈

np

p=1

f(ξp, ηp, ζp)det(J(ξp, ηp, ζp))Wp. (II.109)

Here, Wp is a weighting parameter of the quadrature rule for the reference domain,
whereas ξp,ηp and ζp are the spatial coordinates in the reference space that are
defined by the chosen quadrature rule, given the polynomial order p. [Wriggers,
2008] gives several parameters for commonly used finite elements. For a linear
tetrahedral element it states that the integration is exact for a choice of p = 1,
with ξp =

1
4
, η = 1

4
and ζ = 1

4
and weighting factor Wp =

1
6
.

II.2.4 Existence and uniqueness

It is mentioned in subsection II.2.2 that the Galerkin orthogonality results in the
best possible approximations on the trial space Uh for the real solution u ∈ U. An
important concept in that regard is the existence and uniqueness of the solution
vector. In fact, without uniqueness, the approximation is arbitrary and any state-
ments regarding the residual error are essentially meaningless. For each of the above
mentioned boundary value problems, namely the elliptic voltage potential equation
(II.58) -(II.60), the heating equation (II.67)-(II.70) and the magnetic voltage po-
tential formulation (II.80)-(II.82), existence and uniqueness can be defined under
certain assumptions with respect to the bilinear operators and with regard to the
regularity of the applied boundary and initial conditions.
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The elliptic boundary value problem, defined in equations (II.58) -(II.60), is a
classical example problem that has been studied in the literature. Many aspects
with regard to existence, uniqueness and error control can be found in, amongst
many others, [Oden and Reddy, 1976] and [Ciarlet and Lions, 1990]. [Oden and
Reddy, 1976] states that the problem of existence and uniqueness, with respect to
elliptic operators, can be reformulated using the Lax-Milgram-theorem [Lax and
Milgram, 2005] as follows: If u ∈ Uh and v ∈ Vh are defined using inner product
spaces, i.e. Hilbert spaces, then there exists a unique u for any arbitrary v, if the
linear operator a(u, v) is bounded using some constant C1

|a(u, v)| ≤ C1∥u∥∥v∥, ∀u ∈ U and ∀v ∈ V (II.110)

and coercive using some constant C2

a(u, u) ≥ C2∥u∥∥u∥, ∀u ∈ U. (II.111)

If the approximation space Uh is then chosen to be equal to the trial space Vh, the
unique approximation uh will minimise the approximation error eh. For the context
of electromagnetic induction [Hömberg, 2004] states that the above-mentioned Lax-
Milgram theorem can be applied to the elliptic voltage potential problem. [Höm-
berg, 2004] states that the weak form (II.58) -(II.60) is uniquely solvable under the
assumption that the inductor domain ΩI is closed, sufficiently regular and inside
the computational domain Ω, any applied source currents are sufficiently smooth,
square-integrable and regular and that the electrical conductivity is bounded inside
ΩI as

0 < σ < ∞. (II.112)

For the transient parabolic problem, existence and uniqueness are assured, if the
bilinearform possesses the above-mentioned coercivity and boundedness for every
fixed time step t in the bounded time interval t ∈ [0, tend], with the additional as-
sumption on sufficient regularity of the initial solution u0 [Lions, 1963]. [Hömberg,
2004] provides conditions for the existence and uniqueness of the heating equa-
tion for a coupled thermomechanical phase transformation model that is weakly
coupled to an electromagnetic model. [Hömberg, 2004] demonstrates existence and
uniqueness of the temperature solution in weak form under the assumption that
the thermal conductivity k, the density ρ and the specific heat capacity C are
positive and bounded inside the workpiece domain ΩC as

0 < k < ∞ (II.113)

0 < ρ < ∞ (II.114)

0 < C < ∞, (II.115)

the heat transfer coefficient α is not negative

α ≥ 0, (II.116)

the initial temperature Tt0 at time t = t0 is at least Lebesgue integrable, i.e. T0 ∈
L
1(ΩC) and the heating source contribution is square integrable Qem ∈ L

2(ΩC).
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The last regularity condition is an important aspect for the solution of the weak
problem, defined in equation (II.67)-(II.70), since it provides for heating source
contributions that are generally non-smooth due to a constant elementwise ap-
proximation.

The conditions for boundedness and coerciveness for the weak form of the para-
bolic magnetic vector potential problem (II.80)-(II.82), follows in the same way.
Coercivity and boundedness is demonstrated by [Hömberg, 2004] under the as-
sumption that in Ω the relative magnetic permeability is positive and greater or
equal to one

µr ≥ 1 (II.117)

and the electrical conductivity complies with (II.112). It is furthermore assumed
that the initial solution At0 is square-integrable, curl-conforming and divergence-
free. For the examples presented in this work, this is established by initialising the
solution vector to zero for the first time step. The existence of a unique magnetic
vector potential A for every subsequent time step t ∈ [0, tend] is problematic, due
to the fact that every solution can be perturbed by an additional term of a gradient
space. Therefore, the magnetic vector potential admits infinitely many solutions.
[Hömberg, 2004] remedies this problem by assuming that the source current is
fully divergence free (cf. Homberg1999, Lemma 2.2). Under this assumption A is
unique.

II.2.5 Stable time discretisation and weak coupling

procedure

The transient magnetic vector potential problem, as well as the heat diffusion
problem, defined in differential form in equations (II.29) and (II.34) have to be
discretised in time. The choice of time discretisation is linked to the mathematical
nature of the physical problem itself, e.g. the material behaviour or the shape of
the imposed source, which can be either a source current for the magnetic vector
potential or a heating source contribution for the heat diffusion equation. In addi-
tion, all time discretisation methods need to comply with the spatial discretisation
of the continuous problems. Let h be a characteristic element size of an element of
the suitable spatial discretisation that has been chosen for the weak forms (II.80),
(II.67), let the parameter P represent the physical behaviour and let t be the time
interval of the observation. The time discretisation methods can be broadly cat-
egorised based on the applicable time step size ∆t of the discretisation method and
the computational cost of calculating every subsequent solution of the discretised
linear system of equations. In general, the time step size can be defined as a func-
tion of the spatial discretisation, the mathematical nature of the partial differential
equation and the time t

∆t = f(h,P, t). (II.118)

Two general families of discretisation methods exist, which are single and multi-step
methods. Multistep methods base the update of each time step on the solutions of
previous computations, whereas one-step methods utilise only the solution at the
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previous time step to compute the updated solution. Each of these categories can
be further divided based on the cost of the numerical application, e.g. storage cost
and computational time or the complexity of the implementation itself.

The solution cost can in a first estimation be related to two different categories of
time discretisation models, notably explicit and implicit methods. Explicit meth-
ods are characterised by the fact that a subsequent solution is a function of the pre-
vious time step only, whereas implicit methods relate the previous and subsequent
time steps using a system of equations. In contrast to implicit methods, explicit
methods are numerically cheap to apply, since they only necessitate an update of
the solution variable of the previous time step. The disadvantage is in general that
the size of the applicable time step ∆t is very small, when compared to implicit
methods. Examples of multistep methods are the explicit Adams-Bashforth and
the implicit Adams-Moulton scheme [Allen and Isaacson, 1998]. A widely used
family of onestep methods are the Runge-Kutta (RK) methods that include the
widely used implicit and explicit Euler methods and the trapezoidal rule. A general
overview of these methods can be found in [Butcher, 2008] or [Ascher, 2008].

Both multistep and onestep methods have advantages and disadvantages. E.g.
[Allen and Isaacson, 1998] mentions that multistep methods are in general more
economical for explicit schemes for comparable higher order onestep methods, since
they are based on the solutions that are demanded by the user, whereas higher order
onestep methods are based on intermediate time steps that are discarded after each
global time step. A major advantage of onestep methods is given by [Ascher, 2008]
with respect to variable error control, which states that it is easier to implement
variable step size methods using onestep RK schemes, due to the smaller overhead
in the step size change with respect to the formulas of the multistep methods.
In addition, higher order multistep methods necessitate an estimation of starting
steps. These starting steps are often generated using RK methods or by using
lower order multistep methods [Hundsdorfer and Verwer, 2003].

Each of these methods creates approximations of the exact solution. Therefore,
the approximation is by definition correct up to a certain approximation order.
The application order relates the updated solution with the approximation error of
the method. It is linked to the consistency of the numerical method. Let utn+1 be
the real solution and u

tn+1

h the approximative solution. E.g. [Kraaijevanger, 1991]
states that a solution method is consistent, if the error e(h) behaves like

lim
h→0

e(h) = 0, (II.119)

with

∥utn+1 − u
tn+1

h ∥ ≤ e(h). (II.120)

The order p ∈ N of the method can then be defined, if the approximation error
of the numerical method behaves like

e(h) = O(hp). (II.121)

An overview of the different approximation errors of common discretisation meth-
ods can be found in [Kraaijevanger, 1991], [Butcher, 2008] or [Ferracina and Spijker,
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2008]. E.g. the application order of the standard explicit and implicit Euler
schemes is p = 1, whereas the application order of the trapezoidal rule is p = 2.

Convergence is not a sufficient condition to ensure usability of a numerical ap-
proximation method. [Butcher, 2008] states that stability analysis is vital to state
the fitness of a numerical method. The behaviour of the numerical approximation
with respect to numerical errors is important, to assess the applicability. [Butcher,
2008] introduces the concept of stability using a model problem involving an un-
known vector y and a linear operator M with the relation

∂y

∂t
= My. (II.122)

After introduction of the explicit Euler approximation scheme a recursive formula
can be given, relating the n-th approximation vector yn to the initial value y0,
using the identity matrix I as

yn = (I+∆tM
  

R

)ny0, (II.123)

with R being identified as stability function. [Butcher, 2008] introduces a base
transformation ∂y

∂t
= S

∂ŷ

∂t
and y = Sŷ, using matrix S, so that equation (II.122)

becomes

∂ŷ

∂t
= S

−1
MSŷ

= M̂ŷ. (II.124)

Equation (II.123) then becomes

ŷn = (I+∆tM̂)nŷ0. (II.125)

Matrix M̂ is chosen as the Jordan canonical form of M, i.e. M̂ can be identified
as a matrix in block form using the Jordan blocks Ji, specified as

Ji =










λi 1
λi 1

. . . . . .
1
λi










. (II.126)

[Butcher, 2008] notes that this transformation can be understood as a decoupling
of the system of differential equations, since the other components of the Jordan
block will depend on the solution, but will not influence its behaviour. It follows
that (II.125) decouples for every general eigenvalue λ : λi ∈ C, so that the stability
function R can be written, using z = ∆tλ as

R(z) = 1 + z. (II.127)
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For n → ∞ stability is assured, if the stability function (II.127) is bounded by 1.
This is true for the condition

1 + z ≤ 1, (II.128)

which is visualised in figure II.6a. Analogously, [Butcher, 2008] gives the stability
function for the implicit Euler method as

R(z) =
1

1− z
. (II.129)

The resulting stability region is shown as shaded area visible in figure II.6b.
[Butcher, 2008] states that, when the stability function R(z) includes the full left
half-plane of the space C of complex numbers, every approximation is bounded, if
the exact function is bounded. This criterion is named A-stability and is according
to [Butcher, 2008] an essential property for numerical methods for approximating
stiff PDEs. It can be seen that the explicit Euler scheme is not A-stable. This
method thus possesses severe time restrictions due to the small stability region of
admissible time step sizes. In fact, [Ascher, 2008] and [Iserles, 1996] state that no
explicit RK method can be A-stable.

A further stability function can be stated for the trapezoidal rule, which is given
by [LeVeque, 2007] as

R(z) =
1 + 1

2
z

1− 1
2
z
. (II.130)

It is thus defined as the full left half plane of the space of complex numbers C. The
stability region is shown in figure II.6c. Additional stability regions for common
RK methods and for the Adams-Bashforth and for the Adams-Moulton schemes
are provided in [Ascher, 2008] and [LeVeque, 2007].

Figure II.6: Stability regions for the explicit Euler scheme (a) the implicit Euler
scheme (b) and the trapezoidal rule (c)

Following the definitions of [Ehle, 1969], oscillations of the solution are only
damped, if the numerical method is A-stable and the stability function approaches
0, if the modulus z becomes large, i.e.

lim
z→∞

∥R(z)∥ = 0, (II.131)
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which is then called L-stability. The trapezoidal rule is A-stable, but not L-stable,
so that numerical oscillation errors are not damped out, which can lead to numerical
instabilities.

It follows that for both the heat transfer equation, as well as for the magnetic
vector potential problem, implicit L-stable methods, like the implicit Euler method
should be employed. This ensures absolute stability, without restrictions on the
applicable time step size. For higher approximation orders, [Beck et al., 2000] states
that the semi-discrete magnetic vector potential problem can be discretised in
time using any singly diagonally implicit Runge Kutta method (SDIRK) [Butcher,
2008],[Ferracina and Spijker, 2008].

Explicit schemes, should be avoided for these types of equations. In the context of
electromagnetics, they are used in [Hesthaven and Warburton, 2002], which demon-
strates the application of higher order explicit Runge Kutta schemes for Maxwell’s
equations in the hyperbolic E-H-J formulation, given in equations (II.22) and
(II.23), for solving the scattering field problem of a travelling electromagnetic wave.
The decoupling of the discontinuous elements enables a localised time stepping, so
that the explicit nature of the time stepping scheme can be dealt with, without
affecting the global time step size.

The underlying phsical problems of electromagnetism and heat transfer act on
different time scales. A typical induction heat treatment procedure is accomplished
in the range of 10 s-20 s, whereas the behaviour of the electromagnetic problem is
linked to the frequency of the applied current load, which ranges roughly between
1 kHz and several MHz. A visualisation with respect to both time scales is provided
in figure II.7. Generally, the discrete time steps for a general heat diffusion problem
can be set to approximately 0.1 s to achieve a good balance between accuracy and
computational time. Unfortunately, a direct numerical treatment of the coupled
induction heating problem including electromagnetic effects is impossible. A rem-
edy is proposed by [Favennec et al., 2004] which introduces an ultra-weak coupling
procedure, replacing the strong interaction of electromagnetic and thermal effects
using an averaging procedure on the heating power contribution.

t

heat transfer timestep

electromagnetic period

Figure II.7: Difference of sizes for the electromagnetic and heat diffusion problem

[Favennec et al., 2004] states that the relative changes of the heating power density
of each electromagnetic period can be averaged for a characteristic time step of
the heat diffusion computation. The general assumption is that the heat source
contribution Qem can be replaced by a stable mean heat source contribution Q̄em
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that is averaged over a given electromagnetic period T ∗ as

Q̄em =
1

T ∗

 T ∗

0

σ∥
∂A

∂t
∥2. (II.132)

In order to account for non-linear effects during the electromagnetic computation,
the heat source contribution is evaluated for several electromagnetic periods, until
convergence to a user supplied convergence parameter εc is reached. The electro-
magnetic computation is repeated for several full electromagnetic periods until the
convergence criterion

Q̄em(T
∗
n+1)− Q̄em(T

∗
n)

Q̄em(T ∗
n)

≤ εc (II.133)

is fulfilled. Here, T ∗
n+1 denotes the current electromagnetic period, whereas T ∗

n

denotes the previous electromagnetic period. To account for non-linear effects
during the electromagnetic computation, each period T ∗ is dvided into nte time
steps, depending on the level of accuracy, as

nte = 2m, m = (4, 5, 6, . . . , n), for n ∈ N. (II.134)

After convergence has been established, it is then assumed that this stable mean
heating power source Q̄em can be included into the linear form of the weak formu-
lation (II.67) until the temperature induced phase changes, affecting the electro-
magnetic computation, i.e. conductivity σ and relative magnetic permeability µr,
necessitate a re-evaluation of the mean heating power density Q̄em.

II.3 Computation of conforming source currents

It is mentioned in section II.2.4 that the existence and uniqueness of the magnetic
vector potential A strongly depends on the conformity of the imposed source cur-
rent J. In fact, the existence and uniqueness theorem presented in [Hömberg and
Sokolowski, 1999] and [Hömberg, 2004] relies on the assumption that the source
current forms a closed loop and is divergence free, so that

∇ · J = 0. (II.135)

It should be noted that the existence and uniqueness are based on the continuous
representation of the weak form. For a discrete implementation, it can be assumed
that discretisation errors and the general loss of accuracy due to the floating point
representation lead to global inconsistencies with respect to the divergence of the
magnetic vector potential, i.e. even a fully conforming system might possess small
perturbations in the solution vector. With the use of Whitney form edge elements
this error is minimised, since these elements are locally divergence free [Nedelec,
1980], [Jin, 2002], even though the divergence free condition is not strongly enforced
in a global manner (cf. [Cockburn et al., 2004]).

For the discrete problem, there exist two independently applicable methods to
minimise the non-physical perturbation errors, due to gradients in the solution
vector of the magnetic vector potential.
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The first method is based on a graph theoretical approach for the discrete finite
element mesh, using a tree-gauge. This tree-gauging method enforces the applic-
ation on additional degrees of freedom in the interior of the domain, to ensure
the divergence free condition of the magnetic field. It is based on the discrete
representation of the inter-element facet flux using assumptions on the discrete
representation of an element-wise conservation law for the magnetic vector poten-
tial A. In the following its influence on the solution and the convergence behaviour
is presented for two test problems.

The second method enforces the correct application of the source current in a
conforming manner, i.e. using discretisation and projection techniques, a possible
divergence of the discrete source current is minimised. It is related to the initial
computation of the source current on complex geometrical parts. Therefore, a
possible solution technique for the introduction of physically conforming source
currents is also described in this section. The conforming source current and its
effect on the solution, as well as the convergence behaviour is demonstrated in
detail for a three dimensional ring inductor test case. Finally, a combination of
this technique, in connection with the tree-gauging method, is proposed.

The three dimensional test case consists of a cylindrical workpiece that is sur-
rounded by a ring shaped inductor on which a voltage potential of Φ0 = 10V is
prescribed. A geometrical representation is given in figure II.8a. The constant ma-
terial data of the different domains, as well as the frequency of the applied current
is given in table II.1. The streamlines of the magnetic field B for the first time
step are indicated in figure II.8b.

Figure II.8: Model of the ring inductor test case (a) and streamlines of the magnetic
field (b)

nperiods f ρ inΩI ρ inΩc µr inΩI µr inΩC

16 1300Hz 2 · 10−8 Ωm 8 · 10−7 Ωm 1 1

Table II.1: Material data and settings for the computation of the ring inductor test
case
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It is mentioned above that the source current has to be solenoidal, in order
to conform to the mathematical model. In practice, this means that the source
current has to form a closed loop. In the literature, this is mostly enforced by
using simple circular shaped forms for the inductor geometry. E.g. [Biro and Preis,
1989] proposes that the source current can be modelled as a source-contribution
lying in the enclosing air-domain. [Candeo et al., 2011] demonstrates an induction
hardening application for gearwheels. The source current is included using a single-
turn induction coil, without taking into consideration the ring effect. [Ren, 1996]
shows that the form of the source current has a major impact on the solvability
of the linear system of equations, demonstrating that small perturbations lead to
non-physical source currents, which might lead to a loss of accuracy and loss of
convergence properties with respect to the iterative solver. [Ren, 1996] proposes to
use the projection method presented in [Albanese and Rubinacci, 1988] to remedy
this problem. In this work, these techniques are demonstrated for the example test
case of the ring inductor.

II.3.1 Two cutting plane current computation technique

The computation of conforming source currents for inductors with complex geo-
metrical features is not extensively dealt with in the literature. E.g. [Ren, 1996]
assumes that the source current follows a simple geometry that can be evaluated
for every spatial coordinate, before the projection techniques are applied. Fur-
thermore, it is mentioned in subsection II.2.2.1 that the weak form of the elliptic
voltage potential problem is defined as boundary value problem. Therefore, bound-
ary values must be defined on the free surface. Unfortunately, a closed geometrical
shape can not support these surfaces directly, because it would invalidate the con-
formity of the solenoidality, i.e. a source current or a source voltage potential can
not conformingly be prescribed inside of a finite element geometry. This is also
noted by [Touzani and Rappaz, 2014], which states that "we are in presence of a
paradox because a torus device does not allow for applying a current or voltage."

In the following, a simple algorithm is proposed to prescribe conforming and
arbitrary source currents and voltage potentials that create conforming source cur-
rents on arbitrarily complex finite element discretisations. The key idea is the
introduction of virtual cutting planes inside the discretised inductor geometry. A
visualisation is provided in figures II.9a-II.9c. This approach is comparable to the
approach of [Touzani and Rappaz, 2014], which also introduces a cutting plane to
impose the data of the power source on a solenoidal inductor coil in a FEM/BEM
context.

Let S1 be a first virtual plane that is introduced, which cuts the inductor geo-
metry, as shown in figure II.9a. It is bounded, so that it only cuts the geometry of
the inductor one time. Based on this virtual plane, two element sets can be defined
as T −

I and T +
I , which lie on each side of the virtual cutting plane. Both element

sets are shown in figure II.9b. If combined, these element sets generate the full set
of finite elements of the discretised inductor TI as

T −
I ∪ T +

I = TI . (II.136)
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As demonstrated in figure II.9c, two element subsets can now be defined, namely
T −
Is and T +

Is , which are each subsets of T −
I and T +

I respectively. They are identified
through the connectivity relationships of the nodal graph of the finite element
discretisation of the inductor geometry, in connection with the prescribed surface
bound. T −

Is is the subset of elements that share common nodes with subset T +
I ,

whereas the element subset T +
Is shares common nodes with the element subset T −

I .
The element subsets T −

Is and T +
Is define thus a discrete, generally non-smooth, cut

through the inductor geometry. The discrete cutting surface ∂T −∩+
I can, therefore,

be defined through the intersection of the surfaces ∂T −
Is of T −

Is and ∂T +
Is of T +

Is as

∂T −∩+
I = ∂T −

Is ∩ ∂T +
Is . (II.137)

Figure II.9: Generation for a cutting surface on an example domain; initial finite
element domain and bounded cutting plane (a), element cutting sets
(b), final cutting surface (c)

A surface source current or a surface voltage potential can now be readily applied
on the closed inductor geometry using this discrete cutting surface ∂T −∩+

I by noting
that a virtual copy of this set can be created with the exact same spatial coordinates
and element connectivity, so that ∂T −∩+

Iv = ∂T −∩+
I .

This virtual cutting plane creates additional degrees of freedom in the linear
system of equations arising from a discretisation of the weak form, as defined in
equations (II.58)-(II.60). For this first cutting plane, these additional degrees of
freedom can be identified as reference Dirichlet voltage potential Φ0v = 0V. It is
thus possible to prescribe an inner voltage potential Φ0 ̸= 0V or a source current
J · n on the cutting surface ∂T −∩+

I , while ensuring the solvability of the linear
system of equations. The derived voltage potential can then be post-processed
into a current that follows a closed loop.

An example of this proposed algorithm is given in figure II.10a for the Laplacian
potential problem, using the continuous geometrical features ΩI of TI , Ω−∩+

I of
∂T −∩+

I and Ω−∩+
Iv of ∂T −∩+

Iv , described as
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∆U = 0, in ΩI (II.138)

U = 1, on ∂Ω−∩+
I (II.139)

U = 0, on ∂Ω−∩+
Iv . (II.140)

Here, the example domain ΩI is defined as a disk of diameter 2, with a circular
shaped hole with a diameter of 1. The vertical cutting plane S1 is bounded to
include only the top part of the domain, with a starting point at x = 0 and y = 0.5,
defined so that its normal points in the x-direction. It serves as an example test
case for a closed industrial inductor.

It can be seen in figure II.10a that the cutting plane accurately identified the
set of virtual cutting nodes. The potential is resolved, leading to a smooth distri-
bution of resulting quantities. The post-processed gradients are visible in figure
II.10b. Initially, it seems that the resulting gradients follow a circular motion. Un-
fortunately, it can be seen in figure II.10c that the strong imposition of Dirichlet
boundary conditions on the virtual cutting plane results in a discretisation error.
The imposition of fixed values on the surface nodes of the virtual cutting plane
results in gradients that do not follow the circular form of the example domain
due to the linear approximation properties of the linear triangular finite elements,
as is demonstrated in figures II.11a and II.11b. In fact, in the underlying finite
element mesh, all Dirichlet boundary conditions are prescribed on the sides of the
triangular finite elements, with most of the cutting surface defining a full triangle
edge of the affected elements. It follows that for most of these surface elements,
two of the three unknown degrees of freedom are prescribed. The value is equal
on these nodes, such that a resulting gradient must point in the direction that is
perpendicular to the imposed triangle edge, as shown in figure II.11b. The remain-
ing degree of freedom affects the magnitude and sign of the gradient, but not its
general direction.

A major advantage of elliptic PDEs is that they possess excellent smoothing
properties, e.g. [Fujita and Suzuki, 1990] mentions that even locally singular
sources can be prescribed without destroying this smoothing property. The solution
in figure II.10b indicates that this smoothing property results in correct gradients
in most of the domain. A natural extension to the above-mentioned method con-
sists therefore in the introduction of a second virtual cutting plane S2. For the
presented example, the cutting plane has been chosen like S1 but restricted to the
bottom half of the geometry. The overall goal is to compute a potential problem
on a closed domain, such that the initially prescribed potential is resolved. In
assuming that the smoothing property of the elliptic PDE results in conforming
values for the second cutting domain, it can be argued that it suffices to re-solve the
original potential problem with these computed values. This is due to the fact that
at this location, the gradient is following a correct circular path. Therefore, the
nodal values of the existing second virtual cutting plane are correctly prescribed. It
thus suffices to prescribe these values as Dirichlet conditions on the discrete nodes
of the second cutting plane ∂T −∩+

I . The nodes on the resulting virtual cutting
plane ∂T −∩+

Iv have to be chosen to conform to the initial potential difference, i.e.
the nodal values of the virtual cutting plane have to be reduced by the value 1.
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Figure II.10: Laplacian on a disc with hole; one cutting plane (a), gradient (b),
detailed view of cutting planes and gradient (c), two cutting planes
(d), gradient (e) and difference between gradients (f)
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Figure II.11: Linear approximation of a triangular finite element with imposed Di-
richlet conditions (a) and resulting gradient (b)

A visualisation is provided in figure II.10d, where it can be seen that one cut-
ting plane has prescribed values in the region of approximately 0.5, whereas the
virtual plane possesses nodes with negative values of approximately -0.5, so that
the initial potential difference remains. Figure II.10e visualises the post-processed
gradient, which is essentially comparable to the initial gradient provided in figure
II.10b. The key difference lies in the conformity of the circular gradients for the
initial cutting surface. The resulting gradient is smooth and follows the circular
direction. Figure II.10f provides the norm of the differences of the initial gradi-
ent and the recomputed gradient. the bottom half shows a good agreement in the
gradients, whereas the top section, close to the first cutting plane, shows the strong
non-conforming deviations of the first gradient.

It follows that this method can be used to compute conforming solenoidal source
currents in arbitrarily complex closed inductor geometries. Figure II.12a presents
the results of this two-cutting plane approach for an industrial inductor on which
a voltage potential of Φ0 = 25V has been prescribed. The cutting planes used
for prescribing the potentials are shown in figure II.12b. The current conforms to
the inductor geometry, as can be seen in figure II.12c, which shows the streamlines
of the post-processed electrical currents. The resulting currents can directly be
used as source-contribution for the computation of the magnetic vector potential
problem, described in equations (II.80)-(II.82). An example for a three-dimensional
ring inductor test case is presented later in this section.

It must be noted that conforming internal surfaces could be generated by special
meshing software, so that the initial computation directly generates conforming
source currents. The drawback with this approach is that special meshing software
is necessary to prescribe the initial conditions, whereas the described algorithm
works for all types of finite element meshes. In addition, it must be noted that it
can not always be known in advance, how the conforming internal surface should be
placed, in order to derive solenoidal source currents, since the application depends
on the complexity of the inductor geometry.
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Figure II.12: Example of the two cutting surface approach for computing conform-
ing current sources; cutting surfaces (a), voltage potential (b) and
streamlines of the source current (c)

II.3.2 Tree gauging method

After the initial source current has been computed, the magnetic vector poten-
tial problem can be solved. As mentioned above, the first technique to improve
the conformity of the resulting solution vector, while enforcing the divergence-free
condition is the tree-gauging method.

The tree-gauging method is based on the discrete representation of the magnetic
vector potential problem. The elemental description of the geometry, including
inductor, workpiece and embedding air domain, is described using finite elements.
These finite elements are described using vertices. Every element is defined by
a local vertex adjacency matrix, which can be applied to the globally assembled
linear system of equations. It follows that an undirected nodal adjacency graph
can be found for the global finite element mesh that connects all nodal vertices.
The connections can be identified as the edges of the finite elements. [Albanese
and Rubinacci, 1988] states that the finite element description can not support
divergences in the solution, if some nodal spanning tree is added to the imposed
Dirichlet conditions. Early applications of this spanning tree technique were used
to reduce the non-definiteness of the linear system of equations. In fact, [Manges
and Cendes, 1995] states that the tree-gauge ensures that the linear system of
equations has a null space that is restricted to zero.

Figure II.13a shows a spanning tree for the ring inductor test case that has been
created with the algorithm provided in [Prim, 1957]. It is visible that the spanning
tree connects all vertices of the finite element mesh, while avoiding cycles. The
edges that are marked by the spanning tree algorithm are prescribed to a fixed
value during the computation of the magnetic vector potential A, in order to
avoid the creation of divergences. The remaining edges make up the co-tree, which
is visible in figure II.13b. For an edge finite element description, the co-tree is
thus the set of remaining unknown degrees of freedom. Figure II.13c visualises the
cylindrical part of the workpiece domain that can be found inside of the embedding
air domain. It is again visible that cycles are avoided, while every vertex node is
connected at least once.
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Figure II.13: Tree of the global domain (a), co-tree of the global domain (b) and
top-view of the tree of the workpiece domain (c) for the ring inductor
test case

The tree-gauging method has been used by many authors, e.g. [Lu et al., 1995],
[Biro et al., 1996] and [Le Ménach et al., 1998]. [Lu et al., 1995] solves the eddy
current problem using an edge finite element approach in connection with an incom-
plete tree gauging method. The incomplete gauging is introduced, to ameliorate
the conditioning of the linear system of equations, in order to increase the con-
vergence rate of the iterative solver. [Lu et al., 1995] reports that the incomplete
tree-gauging method converges better than the full tree-gauging approach, but
that the convergence fails at some point. It is further mentioned that the results
are non-unique. [Biro et al., 1996] states that the numerical stability depends on
the choice of tree that is used to gauge the linear system of equations. Since the
choice of tree is quite arbitrary, it is mentioned that there seems to be no ideal
choice. [Biro et al., 1996] concludes that a simple edge finite element approach
without gauging condition should be chosen over a tree-gauged version, since the
accuracy is comparable, but convergence is faster. [Le Ménach et al., 1998] im-
poses a conforming source current by utilising a continuity approach based on the
discrete flux over the element facets, so that the current is divergence free. A tree
gauging condition is included in this pre-processing step. It is mentioned that the
convergence is faster than for a gauged linear system of equations. Yet, the results
indicate that the convergence can only be achieved up to a certain residual error,
like for the test cases presented in [Lu et al., 1995]. The same approach is used by
[Dular et al., 1997], but it it is not mentioned, what kind of effects it has on the
convergence rate.

The impact on the convergence behaviour for the ring inductor test case is
demonstrated in figures II.14a and II.14b. Both figures show the convergence
behaviour of a preconditioned GMRES solver for the first time step of the electro-
magnetic computation with respect to the reduction of the relative residual errors,
which are scaled to enable a direct comparison. In each case, the source current is
prescribed using the above-mentioned two-cutting plane technique. The blue lines
show the convergence of the ungauged linear system of equation, whereas the red
lines indicate the behaviour of the gauged linear system of equations.
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The preconditioner used for the test case presented in figure II.14a is an algebraic
multigrid preconditioner using a Cleary-Luby-Jones-Plassmann (CLJP) coarsening
technique [Henson and Meier Yang, 2002]. It is visible that the initial ungauged
version of the solver converges rapidly, with a huge reduction of the relative residual
error to 10−7 in less than 20 GMRES iterations. The introduction of the tree-
gauging results in a large decrease of the convergence rate. The convergence curve
is considerably flatter, leading to a comparable reduction of the relative residual
error for the ungauged version in approximately 200 iterations. The impact of
the tree-gauging technique is, therefore, a reduction for the convergence rate by a
factor of 10.

Figure II.14b visualises the convergence behaviour using a Jacobian precondi-
tioner. The convergence rate is equally slow for both the gauged, as well as for
the ungauged linear system of equations, as compared to the previous algebraic
multigrid preconditioner. Even though the tree-gauged version initially converges
better, it can be seen that the reduction of the residual error to 10−4 takes con-
siderably longer, taking into account that the plotted graph is visualised using a
double-logarithmic scale. The final residual error that has been computed after
2000 GMRES iterations is slightly lower for the tree-gauged version, even though
it remains still higher than the residual error of the algebraic multigrid version.
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Figure II.14: Impact of full gauging on the convergence for the ring inductor test
case using a two cutting surface based source current for an AMS,
CLJP (a) and Jacobi (b) preconditioned GMRES solver

The results indicate that the convergence behaviour can not be determined in ad-
vance, since the same tree-gauge leads to slightly different convergence behaviour
for two different preconditioners. This is in accordance with [Biro et al., 1996],
which mentions that the arbitrary choice of the tree leads to inconsistent applica-
tions. A remedy is proposed in [Hiptmair, 2000b] that proposes an algorithm for
computing almost optimal tree-gauges. Unfortunately, it is based on a hierarchical
set of nested finite elements and is, therefore, difficult to apply in practice. There-
fore, the results indicate that the global tree-gauging method should be avoided,
due to the problematic impact on the convergence rate.
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II.3.3 Current potential formulation

The second technique for reducing non-conforming divergences in the solution vec-
tor for the magnetic vector potential is the source current projection method,
presented in [Albanese and Rubinacci, 1988]. [Albanese and Rubinacci, 1988] shows
that the source current J can be represented by a vector potential formulation, us-
ing the source current vector potential H, so that

∇×H = J. (II.141)

The advantage of this formulation is that an application of the curl operator on the
vector potential H automatically filters the solution, like the post-processing of the
magnetic flux B from the magnetic vector potential A. [Albanese and Rubinacci,
1988] states that Nédélec vector type elements can be used to describe this vector
potential, since the tangential inter-element continuity ensures the conformity of
the normal components of the post-processed source current J. The addition of
the large null space in the linear system of equations leads to non-uniqueness of
this vector potential. Therefore, a tree-gauging can be employed to ensure the
uniqueness of the vector potential. [Ren, 1996] demonstrates the effects of this
method on the convergence behaviour of an iterative solver for a symmetrical coil
on which a solenoidal current is applied. In the beginning, [Ren, 1996] shows that
the form of the applied source current has a strong impact on the convergence
behaviour. The initial test includes a source current that is only approximatively
sinusoidal, with an application of the current in straight segments. The resulting
non-physical source current distribution leads to convergence problems, so that the
residual error can not be reduced further after a certain number of iterations. The
second test includes a fully circular source current, applied to the coil geometry.
The convergence is better, but the residual can again only be reduced up to a certain
constant. Afterwards, it is shown that an application of the equation (II.141)
leads to a strong improvement in the convergence rate. The residual error can be
reduced, with increasing number of solver iterations. [Ren, 1996] demonstrates that
the vector potential form H of the source current can be computed using a weak
formulation, by projecting the source current J on the curl of the test function space
v ∈ V ⊂ H(curl,Ω), formulating the problem as: there exists H ∈ U ⊂ H(curl,Ω),
such that



Ω

(∇× v)(∇×H) dΩ =



Ω

(∇× v)J dΩ, ∀v ∈ V. (II.142)

It can be noted that equation (II.142) is a projection on the curl of the complete test
function space. Therefore, it is defined on the global domain Ω. Since no material
quantities are present in equation (II.142), every finite element is qualitatively
equal. It follows that standard preconditioned iterative solvers can be utilised to
solve this equation. In this work, convergence could be rapidly achieved by using
a simple Jacobian preconditioned conjugated gradient (CG) technique.

Afterwards, the linear form b(v) of equation (II.80) can be replaced by the pro-
jection

b(v) =



Ω

v(∇×H) dΩ. (II.143)
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[Ren, 1996] reports an improvement of the convergence rate if the projection of
equation (II.143) is reformulated using integration by parts,

b(v) =



Ω

(∇× v)H dΩ. (II.144)

II.3.4 Benchmark application for a ring inductor test case

In the following the impact on the convergence rate is demonstrated for different
combinations of the above-mentioned techniques for the ring inductor test case
that is presented in figure II.8a.

The convergence history is visualised for the computation of the magnetic vector
potential using different forms of the right-hand source current. It is mentioned
above that the one-cutting plane technique leads to non-conforming source cur-
rents. Therefore, in the following, the impact on the convergence, as well as the
solution of the magnetic vector potential with respect to conforming and non-
conforming source currents is visualised.

First, the source current is computed using the elliptic voltage potential for-
mulation (II.58)-(II.60) using the virtual cutting plane technique. Figures II.15a
and II.15c show the potential computation for one and two cutting planes. Figure
II.15a shows the voltage potential with a voltage potential difference of 10V,which
is applied using a cutting plane in the top region of the ring inductor using a nor-
mal vector pointing in the x-direction. The two cutting plane test case is visible
in figure II.15c with the second cutting plane being applied to the left region of
the inductor, with a normal pointing in the y-direction. The voltage difference on
the cutting nodes and the virtual cutting nodes equals the initial voltage potential
difference of 10V.

The post-processed source currents are shown in figure II.15b for the one cutting
plane test case and in figure II.15d for the two-cutting plane test case. The current
distribution and direction is visualised using vectors. It can be seen that the single
cutting plane technique leads to inconsistencies with respect to the source current
near the first cutting plane. The disturbances are non-physical and due to the
above-mentioned discretisation error, resulting from the strong enforcement of the
Dirichlet voltage conditions on the finite element boundaries. In contrast, the
source current for the two cutting surface technique, shown in figure II.15d, follows
the geometry of the ring inductor. There are no inaccurate approximation errors
near the first nor the second cutting plane. Therefore, it can be argued that the
source current, visible in figure II.15d, ought to be used in the computation of
the magnetic vector potential A, whereas the current in figure II.15c should be
avoided. In the following, the effects of the use of both currents are demonstrated
with regard to the solution vector A, as well as the general convergence behaviour.
In addition, the effects of different right hand side configurations on the resulting
post-processed magnetic flux B are shown. The primary goal is to visualise the
effects of non-physical source currents both on the vector potential A, as well as
on the magnetic flux B. The use of the above-mentioned source current projection
technique and subsequent use of the projected vector potential for the right-hand
side of the magnetic vector potential equation is highlighted. Figures II.17, II.18
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Figure II.15: Computation of the voltage potential problem for the ring inductor
using one virtual cutting plane (a), two virtual cutting planes (c) and
resulting current distribution (b) and (d)

and II.19 show the resulting quantities for the ring inductor test case for both the
workpiece, as well as for the inductor. The subfigures on the left side of each of
these figures show the results due to a source current that has initially been com-
puted with a one-cutting plane technique. This leads to inconsistencies. Therefore
a second primary configuration has been introduced with a two cutting plane source
current computation technique. The resulting quantities are shown in each figure
on the right side. The subfigures (a) and (d) in each of the following visualisa-
tions show the resulting quantities after direct use of the source current, computed
using the elliptic voltage potential formulation. The subfigures (b) and (e) show
the resulting quantities after employing the potential formulation (II.142) and sub-
sequent projection using equation (II.144), whereas the subfigures (c) and (f) show
the results for a projected vector potential current H that has been computed after
the global linear system of equations, resulting from a discretisation of equation
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(II.142), is gauged using a nodal spanning tree in order to ensure uniqueness of the
potential with subsequent projection using equation (II.144).

The figures II.17 and II.18 show the magnetic vector potential for the first time
step of the magnetic vector potential computation for two different configurations of
linear solvers. Figure II.17 shows the results that are obtained after 2000 Jacobian
preconditioned GMRES solver iterations, whereas figure II.18 gives the results for
an algebraic multigrid preconditioned GMRES solver using a CLJP coarsening
technique. The respective convergence behaviour for each test case is given in fig-
ures II.16a-II.16d. Figure II.16a shows the convergence behaviour for the algebraic
multigrid preconditioned solver, with a close up given in figure II.16b. The con-
vergence behaviour of the Jacobian preconditioned solver is given in figure II.16c
with an overview of the last iterations given in figure II.16d. It is assumed that
the tree-gauged, two cutting surface technique leads to the most accurate results.
It can furthermore be seen that the algebraic multigrid preconditioned solver con-
verges rapidly, with a large reduction of the residual error, whereas the Jacobian
fails to converge to the same residual error in the maximum number of iteration.
Therefore, all results are scaled by the maximum value that is computed for the
configuration using an algebraic multigrid preconditioner together with a source
current contribution computed by a tree gauged vector potential formulation. This
enables a direct visual comparison of the magnetic vector potential A, as well as
of the post-processed magnetic flux B.

Both figures II.17 and II.18 give qualitatively comparable results. For both fig-
ures the color scale is chosen to reflect outliers in the computation. The scale is
chosen, so that the magnetic vector potential, which is scaled by the maximum
value of the tree-gauged two cutting plane projection using H is directly compar-
able. The scale is slightly enlarged to include values that are up to 10% larger
than the reference value. Every quantity exceeding this limit is visualised in black.
For both figures it is visible that the one cutting plane technique with direct ap-
plication of the computed source current, shown in subfigure (a), leads to strong
inconsistencies. The values close to the cutting plane strongly exceed the values to
be found for the two cutting plane technique in subfigures (d)-(f). A small location
near the cutting plane exceeds the comparison value by less than 10%, whereas a
large part exceeds this value. The introduction of the projection method, using
equation (II.144) effectively filters the most extrem values, as can be seen in sub-
figure (b). Yet, the computed value is lower than the computed reference value
in subfigure (f). An additional tree-gauging, in order to ensure uniqueness of the
computed vector potential H for the source current does not qualitatively alter the
results. For both figures II.17 and II.18 it can be seen that the non-physical source
current leads to deviations in the magnetic vector potential, even in the workpiece.
The computed field is slightly excentric, deviating in the positive y- and negative
x-direction.

Following from the magnetic vector potential A, the magnetic flux B can be
post-processed. From the observation that the magnetic vector potential in figures
II.17 and II.18 are comparable, it follows that it suffices to post-process the results
of the algebraic multigrid preconditioned solution technique, in order to visualise
the magnetic flux density B. Figure II.19 gives an overview of the post-processed
magnetic flux, resulting from the first time step of the electromagnetic computa-
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Figure II.16: Convergence behaviour for different methods of including the source
current

tion. It is visible that the inconsistencies following from the one cutting plane
technique are transported to the magnetic flux B. Figure II.19a demonstrates that
the non-conforming source current results in a non-physical magnetic flux near
the initial cutting surface. Most quantities in this region exceed the comparison
value by more than 10%. Interestingly, the projected source current test cases
also exceed the comparable magnetic flux values, even though the values shown in
figures II.17b and II.17c and II.18b and II.18c are much smaller than the values
presented in each respective subfigure (f). It follows that the non-physical source
current leads to an unpredictable behaviour of the magnetic flux field B. Again,
the figures II.19a-II.19c show a slight eccentricity of the computed field.

Table II.2 gives an overview of the maximal differences for each computation.
The reference value is again the two cutting surface test case using a tree-gauged
H projection technique in connection with an algebraic multigrid preconditioned
GMRES solver. For both the magnetic vector potential A, as well as the magnetic
flux density B, the maximum relative difference of the maximal values is computed.
For the one cutting plane technique it is visible that the maximal value exceeds
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Figure II.17: A scaled by the maximum value of case (f) for one cutting plane (a-
c), two cutting planes (d-f), with projection of source current on edge
potential (b) and (d) and additional tree-gauging (c) and (f) using a
Jacobi preconditioner
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Figure II.18: A scaled by the maximum value of case (f) for one cutting plane (a-
c), two cutting planes (d-f), with projection of source current on edge
potential (b) and (d) and additional tree-gauging (c) and (f) using an
AMS, CLJP preconditioner
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the comparison by more than 400%, whereas the H projection technique effect-
ively filters these maximum value, so that the maximum value is very close to the
comparison value. The results for the magnetic flux B demonstrate again the in-
fluence of non-physical source currents. The initial result for the one cutting plane
technique leads to a maximum value that is almost 700% as large as the maximal
value of the comparison test case. Interestingly, the projected current, which leads
to comparable magnetic vector source fields, leads to strong inconsistencies with
respect to the magnetic flux. The absolute difference for both projected one cutting
plane test cases exceeds the maximum value by more than 300%. In comparison,
all two cutting plane test cases lead to comparable computational results, both for
the magnetic vector potential, as well as for the post-processed magnetic field.

∥max(Ã)−max(A)

max(Ã)
∥ · 100% ∥max(B̃)−max(B)

max(B̃)
∥ · 100%

Jacobi AMS,CLJP Jacobi AMS,CLJP

one cutting plane 407.98 407.99 698.89 698.88

one cutting plane, Hrot 5.17 5.06 358.40 358.42

one cutting plane, Hrot, tree 4.33 5.06 358.20 358.22

two cutting planes 1.39 1.41 0.21 0.21

two cutting planes, Hrot 1.08 6.10 0.005 0.002

two cutting planes, Hrot, tree 0.0079 0 0.005 0

Table II.2: Relative difference of the maximal values for the ring inductor test case
for the magnetic vector potential and the magnetic field for the first
time step of the electromagnetic computation with respect to a precon-
ditioned GMRES solver using a Jacobian and an algebraic multigrid
preconditioner.

The impact of the above-mentioned current contribution techniques on the con-
vergence behaviour is demonstrated in figure II.16. It can be noted that the algeb-
raic multigrid preconditioned solver, shown in figures II.16a and II.16b, converges
rapidly, in much less iterations than the Jacobian preconditioned solver. In fact,
the Jacobian preconditioned solver failed to reach a comparable relative residual er-
ror in the maximum number of iterations. It can further be noted that even though
the non-physical test cases with non-conforming source currents converged rapidly,
the resulting magnetic vector potential is essentially meaningless and not useful for
a further treatment. The Jacobian preconditioned solver, shown in figures II.16c
and II.16d, initially converges very slowly. The convergence rate increases after
approximately 400 iterations and flattens considerably after 1000 iterations.

The algebraic multigrid method converges essentially in between 13 and 15 it-
erations. It can be argued that, therefore, the order of convergence is not distin-
guishable. In contrast, the double logarithmic scale of the Jacobian preconditioned
test case enables a direct comparison of each source contribution technique. The
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Figure II.19: B scaled by the maximum value of case (f) for one cutting plane (a-
c), two cutting planes (d-f), with projection of source current on edge
potential (b) and (d) and additional tree-gauging (c) and (f) using an
AMS, CLJP preconditioner
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overview in figure II.16d shows that the remaining residual error is greatest for
the non-physical contribution of the one cutting plane technique. The relative re-
sidual error is smaller for all the currents contributed using the two cutting plane
technique. Naturally, the projected vector potential approach using the vector po-
tential H leads to the greatest reduction of the residual error, which can be reduced
further by introducing a gauging technique.

The results indicate the validity of the two cutting plane approach for the source
current calculation of complex geometrical parts. Furthermore, it shows that the
projection technique of [Albanese and Rubinacci, 1988] together with the weak
formulation of [Ren, 1996] leads to conforming source contributions. In contrast to
the tree-gauging restriction of the global linear system for computing the magnetic
vector potential A the tree-gauging is limited to the right-hand side contribution.
Therefore, there is no adverse affect on the convergence of the linear system of
equations nor with respect to the quality of the result. A reduction of the degrees
of freedom is, therefore, avoided. The application can be rapidly done, since the
projection technique can be based on an existing edge finite element discretisation.
The resulting weak form, discretised using linear Nédélec vector finite elements, can
be resolved using standard solution techniques. The examples indicate that a tree-
gauging technique of the source current reduces the residual error. Yet, the results
also indicate that for a practical application it suffices to project a conforming
source current on a vector potential H, in order to ensure the conformity of the
resolved magnetic vector potential A.
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III Efficient linear solvers for the

associated electromagnetic

problem

Français:

La solution répétée de la formulation en potentiel vecteur magnétique nécessite
l’application des méthodes de solution efficaces. Ce chapitre donne un aperçu sur
certains choix classique des méthodes de solution concernant les méthodes de sous-
espace de Krylov. Le préconditionnement du système linéaire d’équations est un
aspect important pour l’efficacité du modèle numérique. Le préconditionneur doit
être efficace, adaptable et facile à créer. Un aperçu sur quelques techniques de
préconditionnement classiques est donné. Ensuite, on introduit la méthode de pre-
conditionnement basée sur une espace auxiliaire. Cette méthode est fondée sur
le fractionnement de l’espace discret des éléments finis L2 orthogonaux du type
Helmholtz. Les opérateurs de transfert sont faciles à créer et faciles à appliquer.
Les préconditionneurs qui en résultent aboutiront à des formes bilinéaires ellip-
tiques et peuvent être utilisés pour créer des méthodes de solution efficace basées
sur la méthode multigrille. Par conséquent, la méthode algébrique multigrille peut
être utilisée, afin que l’application ne soit pas dépendante des logiciels de maillage
spéciaux. Les opérateurs sont basés sur la description nodale, afin que la solution
multigrille algébrique standard puisse être employée. À cet égard un aspect im-
portant est la méthode de grossissement de l’opérateur multigrille. Nous donnons
un aperçu sur des méthodes courantes. Plusieurs résultats pour des configurations
de solveur différents sont montrés. On illustre l’application des techniques de solu-
tion efficaces pour un problème impliquant un vilebrequin dans une configuration
d’éléments finis d’arêtes en utilisant un domaine d’air d’encadrement global. Plu-
sieurs résultats pour des configurations différentes sont fournis. Les résultats dé-
montrent l’efficacité du préconditionnement en type auxiliaire dans le cadre d’une
méthode monotone convergente de type GMRES.
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English:

The repeated solution of the electromagnetic magnetic vector potential formulation
necessitates efficient solution methods. The following chapter gives an overview of
some choices regarding classical Krylov subspace solution methods. The precon-
ditioning of the linear system of equations is an important aspect of the solution
phase. The preconditioning operator must be efficient, scalable and easy to setup.
An overview of some classical preconditioning techniques is given. It is followed by
the introduction of the auxiliary space preconditioning technique. This method is
based on an L2-orthogonal Helmholtz-type splitting of the discrete curl-conforming
finite element space. The transfer operators are easy to setup and apply. The res-
ulting preconditioners give rise to elliptic bilinear forms and can be used to create
efficient solution methods based on the multigrid method. Hence, the algebraic
multigrid method can be used, so that the application is not dependent on spe-
cial meshing software. The operators are based on the nodal description, so that
standard algebraic multigrid solution techniques can be employed. An important
aspect in that regard is the coarsening method of the multigrid operator. An over-
view of common methods is provided. The chapter demonstrates the application of
efficient solution techniques for a problem involving a crankshaft in a global edge
finite element configuration. Several benchmark results for different solver config-
urations are provided. They demonstrate the efficiency of the auxiliary subspace
preconditioning technique in connection with a monotonically converging GMRES
method.
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III.1 Requirements for a linear solver for induction

heat treatment

In this work the numerical model of induction heat treatment consists of two weakly
coupled parabolic equations that are discretised in space using finite elements in
connection with the use of implicit methods in time. Therefore, there exists a
need for the repeated solution of the assembled linear systems of equations. The
heat diffusion equation is defined for the conducting workpiece domain ΩC . It is
discretised using nodal Lagrangian finite elements. Classical solution techniques,
like the preconditioned conjugated gradient method (CG) in connection with a
simple diagonal scaling Jacobian preconditioner suffice to achieve rapid conver-
gence. The discretised linear system of equations is positive definite and well
conditioned. Therefore, it is easily invertible, so that a classical LU-decomposition
technique (see, e.g. [Kelley, 1995] or [Saad, 2003]) can be employed, if the memory
space is sufficiently large. Alternatively, a Cholesky-decomposition technique (see,
e.g. [Kelley, 1995] or [Saad, 2003]) can be employed, since the linear system of
equations is symmetric. An incomplete LU-decomposition technique can natur-
ally be employed, if the application of the full LU-decomposition technique would
exceed the computational resources. Furthermore, due to the strong ellipticity of
the heat diffusion problem, it is very advantageous to implement multigrid solv-
ers (see, e.g. [Brandt, 1982]) or algebraic multigrid solvers that are based on the
global adjacency information of the nodal element connectivity (see, e.g. [Henson
and Meier Yang, 2002]). Implementations are often given for the standard Poisson
benchmark model, but results are comparable to the transient parabolic heating
equation. Some benchmarks problems are presented in [Henson and Meier Yang,
2002] and [Stüben, 2001].

In contrast, the global linear system of equations of the magnetic vector potential
problem (II.80) -(II.82) is generally more difficult to treat. The static form of the
magnetic vector potential problem is not as easily solvable as the static form of the
heat diffusion equation, i.e. the Poisson equation. The reason for this is that the
discrete version of the curl-curl operator, found in the bilinear form of equation
(II.80), possesses a large kernel [Manges and Cendes, 1995] that has to be addressed
during the solution phase. This results from the fact that any gradient potential can
be added to the resulting magnetic vector potential, without invalidating equation
(II.25). In fact, [Hiptmair and Xu, 2007] states that the curl-operator results in
a linear system of equations with an infinite null space, since the full space of
gradient functions has to be included. A classical remedy to this problem is the
introduction of a gauging condition

∇ ·A = 0. (III.1)

[Albanese and Rubinacci, 1988] introduces this gauging condition directly, based
on a graph theoretical approach applied in connection with the shape functions
of the finite elements. [Albanese and Rubinacci, 1988] proposes that the degrees
of freedom should only be described on the edges that form a co-tree of the dis-
crete computational domain, since every co-tree edge closes a unique loop, so that
Stoke’s theorem results in a uniquely defined potential field. The resulting gauged
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linear system of equations is invertible. [Manges and Cendes, 1995] shows that
this partitioning of the finite element space into tree and co-tree edges results in
two orthogonal subspaces. Unfortunately, the tree-gauging is not uniquely defined,
since the defining tree graph can be almost arbitrarily defined [Biro et al., 1996].
Therefore, its application is not consistent, which can lead to severe convergence
problems in connection with iterative solvers, as demonstrated in [Ren, 1996] and
[Golias and Tsiboukis, 1994]. A method for the optimal selection of the tree is pro-
posed in [Golias and Tsiboukis, 1994]. It shows that an optimised spanning tree
can be created, based on an elimination of the edges that lie in the principal dir-
ections of the magnetic vector potential A. Initially, a first approximative source
potential distribution is generated, based on the source current J, which is projec-
ted onto the edge degrees of freedom. Afterwards, the spanning tree is generated,
neglecting the trees with large imposed values. The resulting co-tree is optim-
ised, so that the principal direction of the magnetic vector potential is covered
by the unknown degrees of freedom. [Golias and Tsiboukis, 1994] demonstrates
the effects on sample applications, noting that the use of an arbitrary spanning
tree reduces the numerical accuracy and leads to convergence issues with respect
to an incomplete Cholesky type preconditioned CG method. The optimal source
tree is found to increase the convergence rate and numerical accuracy, even though
the ungauged version is still slightly more accurate and converges faster than the
aforementioned techniques. [Dlotko and Specogna, 2011] and [Biro et al., 1996]
state this efficiency problem as the main reason for using an ungauged formula-
tion. [Lu et al., 1995] states that in practice it suffices to establish convergence up
to a certain numerical error, supposing that the resulting magnetic vector potential
is resolved accurately enough to be usable in further applications. The argument-
ation of [Beck et al., 2000] follows in the same way stating that the quantity of
interest is the post-processed curl of the computed vector potential, which in this
work is the magnetic field B, i.e.

B = ∇×A.

It is stated that the magnetic flux density will remain unique, even if the computed
magnetic vector potential is non-unique. Yet, the induction heating formulation in
this work is identified based on the direct application of the eddy current equation
in vector potential form, using the transient equation (II.26), so that the induced
eddy currents inside ΩC are given by

J = −σ
∂A

∂t
.

Therefore, it is important to compute a correct magnetic vector potential. In
that regard, it is established in subsection II.2.4 and II.3 that the conformity of
the imposed right-hand side is an important step to ensure the uniqueness of the
vector potential. It is furthermore shown that the direct tree-gauging, as defined
in [Albanese and Rubinacci, 1988] or [Manges and Cendes, 1995] leads to strong
adverse effects with respect to the convergence during the solution stage.

A numerical solver for the electromagnetic magnetic voltage potential equation
needs to address these problems that are generated by the large kernel of the
matrix. To summarise, it should possess the following features:
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• Iterative application

The size of the linear system of equations for a general induction heating
application, where the global domain Ω is discretised, can attain several
million unknown degrees of freedom. In addition, it is often not possible to
apply direct solution techniques, due to the large demand for storage space.
Furthermore, the large kernel of the curl-curl operator, in connection with
the general bad conditioning of the linear operator can result in the failure
of direct solvers. Therefore, it should be possible to apply the linear solver
iteratively.

• Scalability

Due to the above-mentioned large computational demand, it is natural that
the linear solution stage ought to be done in parallel. The application time
should scale inversely with the number of computational nodes, so that prob-
lems with increased computational demand can be solved efficiently.

• Cheap setup costs

The discrete bilinear form of the magnetic vector potential equation (II.80)
depends on the electrical conductivity σ, which is temperature dependent, as
well as the relative magnetic permeability µr, which depends on the temper-
ature and the applied magnetic field. In general, the weak coupling procedure
results in a repeated application of the linear solver to a changing linear sys-
tem of equations. A possible change of the computational domain, due to
the introduction of movements, complicates this further. It follows, that the
solver should be adaptable to changing material coefficients and cheap to
setup, so that the impact of the changing material coefficients and discret-
isation has no large impact on the overall solution time.

• High reduction of numerical error

The induction heating model is based on generating a heating source term,
based on the transient form of the magnetic vector potential. It follows that
any error in the magnetic vector potential computation transports directly
to the heating source computation. Any error is then redistributed to the
computation of this vector potential, due to the coupling of the material
quantities. Therefore, it is important that the numerical error of the solution
can sufficiently be reduced. In addition, the computational cost should scale
linearly with increased error reduction.

• Incorporation of the problem of the large null space

The solution technique should directly address the underlying numerical
problems of the discretisation. Therefore, it ought to address the large ker-
nel that is generated by the application of the curl-curl operator. The res-
ult should be an advantageous solution technique that generates conforming
solutions.

In the following sections, an overview is given over some commonly applied
classical solution techniques, as well as recently published multigrid algorithms that
address the large kernel of the linear system of equations. Initially, the advantages
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and shortcomings of the classical solution techniques are detailed, including the
context in which they have to be placed with regard to the subsequent multigrid
techniques. Afterwards, a multigrid technique for the electromagnetic problem is
presented. It is shown how it can be implemented in a parallel context, including
a section on coarsening procedures, which is a large research topic for algebraic
multigrid methods.

It is mentioned above that it should be avoided to use direct solution tech-
niques, due to their large computational demand and problems with regard to
non-definiteness. Alternative solution techniques that can be used are the family
of iterative Krylov subspace solvers. Let r0 be the initial residual of the computa-
tion and rn the n-th residual attained at the n-th application of the iterative solver.
A classical Krylov subspace correction technique is the conjugated gradient (CG)
method, proposed in [Hestenes and Stiefel, 1952] (cf. [Weiss, 1995]). Its repeated
application creates a polynomial pn(A), defined by

rn = pn(A)r0, (III.2)

which minimises a quadratic function

f(x) =
1

2
xT

Ax− bTx+ c, (III.3)

which is based on the solution vector x, the linear system of equations A, the right
hand side vector b and some constant c. Unfortunately, the convergence is not
monotonic, which is why in general, the convergence shows an oscillating behaviour.
For exact arithmetic it is proven that the CG method will converge in at least N
steps, where N is the dimension of the linear system of equations, if the matrix A is
symmetric and positive definite. For non-symmetric matrices convergence can gen-
erally not be achieved. In this case, alternative methods need to be considered, like
the bi-conjugated gradient method (BICG), presented in [Fletcher, 1976]. It intro-
duces an additional polynomial p̄n(AT ) based on the transposed form of the linear
operator that introduces a bi-orthogonality for the residual error. Due to the fact
that it leads to large oscillations during the solution stage (see, e.g. [Weiss, 1995]),
alternative techniques have been proposed, like the conjugate gradient squared
(CGS) method in [Sonneveld, 1989] or the stabilised BICG method (BICGStab) in
[Van der Vorst, 1992]. The CGS method introduces a squared form of the initial
matrix polynomial of the CG method, presented in equation (III.2). [Kelley, 1995]
demonstrates that this increases the oscillation effects and can lead to instability
and a loss of convergence. The BICGStab method introduces an additional poly-
nomial Φn(A), which is applied to equation (III.2). It is defined, so that it solves a
one-dimensional optimisation problem in every iteration. The advantage is a gen-
erally smoother convergence, as shown by [Weiss, 1995] and [Van der Vorst, 1992],
in comparison to the classical methods. Yet, its convergence is not monotonic. A
comparable approach to the above-mentioned BICGStab method has been util-
ised in the generalised minimal residual (GMRES) method, which is proposed in
[Saad and Schultz, 1986]. It generates an n-dimensional orthogonal subspace that
is increased in every iteration. In this method the residual rn is minimised for the
full subspace in every iteration. This leads to smooth convergence with monotonic
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behaviour, i.e. the n+1-th residual is always smaller than or equal to the residual
of the former iteration, so that

∥rn+1∥ ≤ ∥rn∥. (III.4)

The disadvantage of the GMRES method is the need to store an n-dimensional
subspace that grows with every iteration. If convergence can be attained in a
reasonable number of iterations it is more advantageous to employ the GMRES
method over comparable solution techniques like the CG method.

III.2 Preconditioners

The iterative solution methods are, in general, not directly applied to the linear sys-
tem of equations. Instead, a preconditioning operator is introduced that enhances
the convergence of the solution procedure. Following [Saad, 2003], the objective
of a preconditioner is an increase of the robustness and efficiency of the solution
method. It states that for most real world problems the quality of the precondi-
tioning technique is more important than the choice of Krylov subspace solution
method. The overall goal of the preconditioning technique is to approximate the
inverse of the linear system of equations in a flexible, yet economical manner, so
that the repeated application of the subspace correction technique leads to fast
convergence. [Kelley, 1995] notes that this can be accomplished if the precondi-
tioner clusters the eigenvalues of the linear system of equations close to one, which
is the classical motivation for the introduction of a preconditioning operator. More
recent developments in the field of electromagnetics show that this does not suffice
[Hiptmair and Xu, 2008]. It shows that the correct replication of the vector com-
ponents of the residual vector is essential, in order to steadily reduce the global
error. The following sections introduce common preconditioners that are employed
in the literature, showing the advantages and disadvantages with respect to an
application in electromagnetics, serving as an introduction to the newer subspace
splitting methods. These methods can be used in connection with multigrid meth-
ods, in order to effectively treat the large kernel of the linear system of equations,
based on a correct reproduction of the underlying finite element spaces of the dis-
crete approximations. In contrast to the above-mentioned classical preconditioners,
this technique greatly reduces the effort of finding a numerical solution, so that the
overall computational time is reduced, which opens up new possibilities for the
numerical modelling of complex geometrical parts, featuring millions of degrees of
freedom.

III.2.1 Classical preconditioners

The classical preconditioners that are used to approximate the inverse of the given
linear system of equations are the Jacobian diagonal scaling preconditioner, the
Gauss-Seidel method (GS), as well as the successive over-relaxation method (SOR)
(see, e.g. [Saad, 2003]). Let D = diag(M) be the diagonal of the linear system of
equations, so that the preconditioned matrix system can be rewritten using the
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Jacobian preconditioner P
−1 as

P
−1
J Mx = D

−1
Mx = D

−1b. (III.5)

If the matrix M is diagonally dominant, the condition number of the transformed
linear system of equations will be smaller than that of the original linear system
of equations, so that convergence of Krylov methods can be achieved in a smaller
number of iterations. The Gauss-Seidel preconditioner PGS, as well as the SOR
precondtitioner PSOR are natural extensions of this method. These preconditioners
are based on the matrix splitting M = L + D + R, where the matrix operators L

and R denote the lower left triangular part and the upper right triangular part
of matrix M. Both preconditioners are based on the approximative solution us-
ing the easily invertible matrix parts in either direct form (GS) or in weighted
form using an overrellaxation parameter (SOR). Implementations can be found in
either [Saad, 2003] or [Kelley, 1995]. For simple, well behaved problems, like the
Laplacian or the the Poisson problem, convergence can be achieved comparatively
fast, but the application does not assure fast convergence in any case. E.g [Kel-
ley, 1995] notes that for general applications to numerical discretisations of partial
differential equations "these preconditioners maybe somewhat useful, but should
not be expected to have dramatic effects". [Briggs and McCormick, 1987] notes
that the remaining residual error during an iterative solution is built from a low
frequency error component enl, as well as a high frequency components enh. [Briggs
and McCormick, 1987] shows that, in essence, the above-mentioned preconditioners
reduce the high frequency parts, but have almost no effect on the low frequency
parts. Therefore, even though convergence is assured at least at the N -th iteraton
when exact arithmetic is used, in practice more elaborate techniques should be
used.

Another particular family of classical preconditioners tries to approximate the
inverse directly using multiplicative decompositioning techniques. Let L̄ and R̄ be
triangular matrices, so that the invertible matrix M can be expressed by M = L̄Ū.
The matrix inverse of M can now easily be expressed by the application of the
inverse of each triangular matrix decomposition. Unfortunately, in practice, this
LU-decomposition is computationally intensive and often results in dense decom-
positioning matrices [Saad, 2003]. Therefore, an incomplete LU-decompositioning
technique (ILU) is often employed that is based on a reduced fill-in, based on a
given matrix fill-in ordering or a prescribed threshold tolerance. For symmetric
positive definite matrices a Cholesky decomposition can be defined, so that the
relationship L = U

T is fulfilled, which results in storage savings. The classical
application domain for this family of preconditioners are again the family of PDEs
that are well-behaved and easily invertible. Yet, in the context of electromagnet-
ism, the ill-conditioning of the linear system of equations results in adverse effects,
during the solution stage. In practice, the application of the ILU-preconditioning
technique can lead to destabilising behaviour, as presented in figure III.1b, which
shows the convergence history of a preconditioned GMRES solver applied to the
magnetic vector potential computation of the given crankshaft test case. The
monotonicity of the GMRES method prevails, even though the application of an
incomplete Cholesky type preconditioner (IC) leads to a severe flattening of the
convergence rate. This can be attributed to the bad approximation qualities of
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the approximate inverse, which are enhanced by floating point inaccuracies. A
simple Jacobian diagonal scaling preconditioner shows a better convergence rate,
which is surpassed by a symmetric version of the SOR technique. Yet, for each
of these classical preconditioning techniques it can be shown that the convergence
rate flattens considerably, so that a repeated application during a solution phase
is infeasible. The same figure details the results of an application of an auxili-
ary subspace correction technique that reduces the numerical error in connection
with an algebraic multigrid method. It can be seen that convergence is achieved
quickly, which can be attributed to the correct treatment of the large null space
of the linear system of equations. The following sections detail the key concepts
of this auxiliary subspace splitting method, including the multigrid method with
its application to electromagnetic magnetic vector potential problems. The result-
ing auxiliary space multigrid method is easily applicable to standard edge element
based discretisations and enables the efficient repeated solution of global electro-
magnetic problems, so that the modelling of large engineering simulations becomes
feasible.
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Figure III.1: Convergence behaviour for the solution of the magnetic vector poten-
tial formulation for the induction heating test case of a crankshaft
with 3.5 million degrees of freedom; solver iterations for different pre-
conditioned Krylov subspace methods (a); impact of different precon-
ditioning methods for a GMRES solver (b)

III.2.2 Stable decomposition of H0(curl,Ω)

The above-mentioned preconditioners are effective in reducing high frequency re-
sidual errors. The peculiarity of the curl-conforming finite element description,
which conformingly discretises the large kernel, necessitates a more direct treat-
ment of the particular error components. [Hiptmair et al., 2006] introduces a space
decompositioning technique that can be used to create effective preconditioners for
every subspace of the approximating curl-conforming finite element space.

Let H0(curl,Ω) be the square integrable curl-conforming inner product space,
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with vanishing surface values, defined through

H0(curl,Ω) := {u ∈ L2(Ω) : ∇× u ∈ L2(Ω)}. (III.6)

The key idea of the stable vector space decomposition is that the vector space
(III.6) can be decomposed into several corresponding Hilbert vector spaces. Let a
generic inner product space be denoted by Xi, so that xi ∈ Xi, where i is chosen
as counting index. The decomposition of any u ∈ H0(curl,Ω) into n orthogonal
vector functions then follows as

u = x1 + x2 + · · ·+ xn, (III.7)

which can be rewritten in discrete form as

uh = xh1 + xh2 + · · ·+ xhn (III.8)

for the linear first order Nédélec finite elements uh ∈ Eh ⊂ H0(curl,Ω) and the
generic discrete Hilbert spaces xhi ∈ Xhi. [Hiptmair and Xu, 2008] states that a
preconditioner can be based on the discrete decomposition, if surjective bounded
linear transfer operators Πhi can be generated for any space Xhi, which define the
map from the generic space to the vector finite element space

Πhi : Xhi →−→ Eh. (III.9)

Then, following from (III.8) a decomposition based preconditioner P
−1
D can be

generated as

P
−1
D =

n

i=1

ΠhiX
−1
hi Π

T
hi, (III.10)

where Xhi is the norm inducing bilinear form on Xhi and X−1
hi is an efficient

preconditioner for the aforementioned bilinear form.
The choice of orthogonal subspace decomposition is quite arbitrary and depends

on the nature of the underlying problem. For the problem of electromagnetics,
an initial Helmholtz-decomposition has been proposed in ([Hiptmair, 2000a], sec.
4). It is based on an L

2-orthogonal decomposition of the curl-conforming space
into a function space of the kernel of the curl operator, denoted by ker, and its
complement. Let H0(Ω) be defined as the usual gradient space

H0(Ω) := {s ∈ L2(Ω) : ∇s ∈ L2(Ω)} (III.11)

and let (H0(Ω))
3 be the corresponding space of vector functions s with respect to

(III.11). The decomposition approach is based on the relationship (see [Kolev and
Vassilevski, 2009], Thm. 3.1)

∀u ∈ H0(curl,Ω) ∃s ∈ (H0(Ω))
3 : ∇× s−∇× u = 0. (III.12)

It is known that for the vector space H0(curl,Ω) the kernel of the differential curl
operator can be represented by

H0(ker(curl),Ω) := {u ∈ H0(curl,Ω) : ∇× u = 0} = ∇H0(Ω), (III.13)
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so that following from (III.12) the two orthogonal subspaces can be identified as

H0(curl,Ω) = (H0(Ω))
3 ⊕∇H0(Ω). (III.14)

Yet, [Hiptmair and Xu, 2007] notes (cf. [Hiptmair and Xu, 2008]) that the ortho-
gonal decomposition (III.14) is only valid in the context of a continuous formula-
tion. [Hiptmair and Xu, 2008] mentions that a discrete decomposition is not valid,
since local oscillatory functions can not be captured in the discrete decomposition.
This contribution is identified as a high frequency contribution in [Hiptmair and
Xu, 2007], which will be denoted as ũh ∈ Eh. This approach is consistent with
the initial motivation of choosing Nédélec vector finite elements, as presented in
chapter II. The main motivation for using the curl-conforming Nédélec edge vector
elements is the correct reproduction of the underlying physical phenomena, which
can not be captured by a nodal description.

Let Nh and (Nh)
3 be the discrete representations of H0(Ω) and (H0(Ω))

3. The
discrete version of s is identified in [Hiptmair and Xu, 2007] in discretely projected
form (see also [Kolev and Vassilevski, 2009] , Thm. 2.1) using the Nédélec interpol-
ation operator Nh as the sum over the ne edges e of the finite element discretisation,
using the line integral over the edge tangent te, multiplied by the corresponding
local test function Ψe as defined in equation (II.103) as

Nhsh =
ne

e=1

(



e

s · tede)Ψe, ∀sh ∈ N
3

h . (III.15)

Similarly, the gradient of the scalar potential s can be defined in discrete form for
all sh ∈ Nh using the gradient operator Gh.

Finally, a stable decomposition of the form (III.8) can then be given using three
discrete projection operators Πh1 = I, Πh2 = Nh and Πh3 = Gh as

uh = Πh1xh1 +Πh2xh2 +Πh3xh3

= Iũh + Nhsh +Ghsh.

The discrete decomposition based preconditioner (III.10) can then be defined as

P
−1
D = Πh1X

−1
h1Π

T
h1 +Πh2X

−1
h2Π

T
h2 +Πh3X

−1
h3Π

T
h3 (III.16)

= X−1
h1 + NhX

−1
h2N

T
h +GhX

−1
h3G

T
h . (III.17)

The bilinear form Xh1 can be identified as the discretised form of the standard
bilinear form of the magnetic vector potential problem (II.80), i.e. a(uh, vh) for
uh, vh ∈ Eh. [Hiptmair and Xu, 2007] notes that the error components are es-
sentially due to high frequency components. Therefore, [Hiptmair and Xu, 2008]
states that for Xh1 a simple smoothing technique, like introduced in subsection
(III.2.1), can be chosen as preconditioning method X−1

h1 .
The bilinear forms Xh2 and Xh3 can be chosen more freely. The definition of

these bilinear forms is essentially based on the choice of auxiliary discretisation
method. E.g. the bilinear forms can be defined on an auxiliary regular mesh, so
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that the auxiliary problems are amenable for a treatment with geometric multi-
grid methods. Alternatively, a discretisation can be based on the existing nodal
description of the finite element discretisation, with the help of suitable projec-
tion operators. A detailed overview over common methods is given in [Kolev and
Vassilevski, 2009]. In the following, some common methods are detailed in order
to illustrate the versatility of the decomposition based preconditioning technique.

III.2.2.1 Auxiliary mesh method

The auxiliary mesh method has been proposed in [Hiptmair et al., 2006]. The initial
problem is defined on a locally refined and unstructured finite element discretisation
T , discretised using linear edge elements Eh. [Hiptmair et al., 2006] introduces a
regular auxiliary mesh Ta, discretised using vector type finite elements of second
order Ẽh [Nedelec, 1986], with two degrees of freedom per edge. In this context,
the interpolation operator Πh2 is identified as interpolation operator from a regular
auxiliary mesh to the initial mesh

Πh2 = T : Ẽh →−→ Eh. (III.18)

The discrete preconditioner (III.10) is then defined as

P
−1
D =X−1

h1+ThX
−1
h2T

T
h+GhX

−1
h3G

T
h , (III.19)

where Xh1 describes the bilinear form on T using Eh and Xh2 is the bilinear form
on Ta using Ẽh. Xh3 is chosen as the variationally equivalent Poisson restriction of
the original bilinear form

Xh3 = GhXh1G
T
h . (III.20)

[Hiptmair et al., 2006] proposes a Gauss-Seidel smoothing technique for the pre-
conditioners X−1

h1 and X−1
h3 , whereas X−1

h2 is defined using a geometric multigrid
method on the auxiliary mesh Ta. Details for multigrid methods applied to the
curl-conforming finite element vector space can be found in [Hiptmair, 1999] and
[Arnold et al., 2000]. For the auxiliary mesh method, [Hiptmair et al., 2006] gives
some results regarding two-dimensional sample test problems, showing good con-
vergence results when the preconditioner is used in connection with a CG solver.
Furthermore, [Hiptmair et al., 2006] states that the considerations regarding the
auxiliary finite element space can be relaxed, so that in a practical application the
auxiliary space can be chosen as Eh, but concluding that problems with strongly
varying material coefficients might need entirely different bilinear forms on the aux-
iliary space. The auxiliary mesh preconditioning approach has also been studied by
[Kolev et al., 2008], which gives results for several numerical experiments. [Kolev
et al., 2008] shows that the approach is, in general, very efficient, but depends
on the chosen auxiliary mesh, stating that, in comparison to matching auxiliary
meshes, non-matching auxiliary meshes lead to a reduction in the convergence rate.
In addition, it is mentioned that, in comparison to an additive application, a multi-
plicative application of the preconditioners leads to an increase in the convergence
rate.
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III.2.2.2 Auxiliary nodal space method with discrete elliptic operators

The auxiliary nodal space method is based on the assumption that the auxiliary
space can directly be discretised using the existing nodes of the finite element
mesh. The decomposition based preconditioner can then directly be chosen as
(III.17), with the given transfer operators Πh1 = I, Πh2 = Nh and Πh3 = Gh.
Again, operator Xh1 can be identified as the bilinear form on the initial edge finite
element mesh, with suitable smoothing preconditioner X−1

h1 . In the discrete elliptic
approach, both bilinear forms Xh2 and Xh3 are explicitly discretised using a weak
formulation. [Hiptmair and Xu, 2008] proposes the forms

Xh2 =



Ω

α∇uh∇vh dΩ, ∀uh, vh ∈ (Nh)
3 (III.21)

Xh3 =



Ω

τ∇uh∇vh dΩ, ∀uh, vh ∈ Nh, (III.22)

whereas [Kolev and Vassilevski, 2006a] proposes to use the original bilinear form,
so that

Xh2 =



Ω

τuhvh dΩ+



Ω

α∇uh∇vh dΩ, ∀uh, vh ∈ (Nh)
3 (III.23)

Xh3 =



Ω

τ∇uh∇vh dΩ, ∀uh, vh ∈ Nh. (III.24)

The parameter α and τ depend on the magnetic permeability µ = µ0µr, the elec-
trical conductivity σ and the time step size ∆t. In this work, they can be defined
as

α =
1

µr

(III.25)

and

τ =
µ0σ

∆t
. (III.26)

After conducting numerical experiments, [Hiptmair and Xu, 2008] concludes that
the preconditioner is robust with a convergence that is mesh independent. The use
of this auxiliary space preconditioner, in connection with a one level algebraic mul-
tigrid solver for the elliptic weak forms, leads to a rapid convergence in connection
with a CG solver. [Kolev and Vassilevski, 2009] (cf. [Kolev and Vassilevski, 2006a])
gives additional results regarding large coefficient jumps, including a semi definite
problem with vanishing electrical conductivity, in a highly parallel setting on up to
1024 processors for problems up to approximately 70-100 million degrees of free-
dom. It is shown that the method is efficient and scalable in connection with a one
level algebraic multigrid preconditioner for both bilinear forms. In addition, it is
stated that a variationally equivalent formulation of (III.23) and (III.24) shows an
even better performance. It is furthermore shown that the auxiliary space precon-
ditioner behaves qualitatively like a comparable Laplacian example problem that
is solved using standard nodal algebraic multigrid. [Kolev and Vassilevski, 2009]
conjectures that any advancement in standard algebraic multigrid method should
be applicable to the auxiliary space preconditioning technique.
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III.2.2.3 Auxiliary nodal space method with variationally equivalent elliptic

operators

The variationally equivalent auxiliary nodal space method has been proposed in
[Kolev and Vassilevski, 2006a]. Here, the auxiliary operators of the elliptic forms
in equation (III.17) are specified using variationally equivalent bilinear forms. The
transfer operators remain as Πh1 = I, Πh2 = Nh and Πh3 = Gh.

The bilinear form Xh1 is the bilinear form on the initial edge finite element mesh,
so that a smoothing preconditioner X−1

h1 can be utilised. [Kolev and Vassilevski,
2006a] notes that the elliptic operators can be generated by a weak Galerkin pro-
jection approach, using the existing transfer operators Nh and Gh, so that Xh2

Xh2 = N
T
hXh1Nh, (III.27)

whereas Xh3 can simply be defined as

Xh3 = G
T
hXh1Gh. (III.28)

Again, the preconditioners for each of the resulting bilinear form can, in prin-
ciple, be chosen arbitrarily. [Kolev and Vassilevski, 2006a] notes that the forms
provided in equations (III.27) and (III.28) are essentially equivalent to the for-
mulation provided in equations (III.23) and (III.24), so that one-cycle multigrid
methods are sufficient to approximate the inverse forms. Its application is simple,
since the weak formulations can be generated automatically, from the existing bi-
linear form of the original problem and both linear transfer operators Nh and Gh

that have to be created for the transformation. [Kolev and Vassilevski, 2006a]
recommends formulation (III.27) and (III.28), since the discretely formed elliptic
operators, defined in equations (III.23) and (III.24), are not variationally equivalent
to the initial bilinear form, so that convergence is not guaranteed.

III.2.2.4 Discretisation of Nh and Gh

The discrete gradient matrix maps from vertex space Nh to the curl-conforming
finite element space Eh, so that

Gh : Nh →−→ Eh. (III.29)

For the space of linear Nédélec vector finite elements, the discrete version is simple
to generate. Following [Hiptmair and Xu, 2008], in this configuration the gradient
can be approximated for each edge e as the vertex difference of each edge endpoint
vertex i and j. The dimensions of Gh then follows from the number of edges and
vertices in the finite element mesh. The matrix Gh is very sparse with only two
non-zero entries per row. Let Gh[i, j] denote the entry for the i-th row and j-th
column of the discrete operator Gh. Its row-wise definition then follows for each
corresponding edge e as

Gh[e, i] = −1 (III.30)

Gh[e, j] = 1. (III.31)
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The number of rows equals the number of edge degrees of freedom ne, whereas the
number of columns equals the number of vertex nodes nv, so that its structure can
be visualised as

Gh =









− 1 1
−1 1

. . .
. . .

−1 1









(III.32)

nv

ne.

According to [Hiptmair and Xu, 2008], the transfer operator Nh can be defined
in a similar manner, by noting that it details an equally weighted transfer of nodal
values to the edge. It has to be accomplished for three components in R

3, so
that it can be directly based on the gradient operator (III.29), which defines an
unweighted vertex difference. Its discrete form can be given in block form as

Nh =
1

2


N

x
h N

y
h N

z
h


(III.33)

3× nv

ne,

where 1
2

is the weighting factor for the two edge vertices and N
x
h,N

y
h and N

z
h are

block matrices with the same sparsity structure as Gh (see [Hiptmair and Xu,
2007], eq. 7.4, [Kolev and Vassilevski, 2006b], sec. 5 and [Kolev and Vassilevski,
2009], sec. 5). The number of rows equals the number of edge degrees of freedom
ne, whereas the number of columns equals the number of vertices nv multiplied by
the dimension of the vector space, i.e. three for R

3. The block matrices can be
formed after application of the gradient matrix Gh to the vertex coordinates x, y
and z in R

3. The i-th and j-th column entry for row e equals the corresponding
row of the matrix vector product of the gradient operator and the vertex nodes.
The first block matrix N

x
h can be defined as

N
x
h[e, i] =(Ghx)[e] (III.34)

N
x
h[e, j] =(Ghx)[e], (III.35)

whereas N
x
h and N

x
h are defined as

N
y
h[e, i] =(Ghy)[e] (III.36)

N
y
h[e, j] =(Ghy)[e] (III.37)

and

N
z
h[e, i] =(Ghz)[e] (III.38)

N
z
h[e, j] =(Ghz)[e]. (III.39)

It can be noted that this adjacency information is readily available for edge finite
element applications. Therefore, the implementation costs are very low.
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III.3 Multigrid methods

Let n denote the current iteration of the numerical solution method. [Briggs and
McCormick, 1987] states that the residual error en for the n-th iteration can be
split into two components as

en = enh + enl. (III.40)

The first component enh is denoted as high frequency component, whereas the
second component enl is described as low frequency component. The denomination
stems from the observation that a smoothing operator S, like the standard Jacobian
or Gauss-Seidel method (see subsection III.2.1) can very effectively reduce a given
component enh, but fail to reduce enl [Brandt, 1982]. The behaviour is mesh
dependent, so that an increase or decrease of the characteristic element size changes
the behaviour of the smoothing operator with respect to the numerical error. If
the residual is restricted to a coarser discretisation, the error component enl starts
to behave more like a high frequency component enh, so that smoothing becomes
more effective.

A multigrid method uses this effect to rapidly decrease the residual error. The
most basic form is a V-cycle [Barth et al., 2002]. The number of coarsening levels
can be adapted to the underlying problem and depends on the available computing
resources. In the following, the key ideas of the multigrid method are demonstrated
using a three-step scheme including two fine discretisations. Figure III.2a gives an
overview of this three-level multigrid discretisation. The application ordering of
the operators of the corresponding standard V-cycle is depicted in III.2b. Initially,
a smoothing operator S1 is applied to an initial discretisation, which is denoted in
discrete matrix form as A1, with index 1 denoting the first level. This results in a
decrease of the high-level error component. Afterwards, a restriction operator R12

is used to restrict the computed residual to a coarser level, which can be denoted
as A2. The indices denote the direction of the transformation from fine grid 1 to
coarse grid 2. As stated above, the remaining low frequency error of the residual
component becomes a high-level component on the coarse grid, so that a second
smoothing operation S2 can be applied. This recursive procedure can be done until
the coarsest level Am has been reached at the m-th level. Afterwards, the restricted
residual has to be interpolated up to the fine initial discretisation. This is achieved
by using an interpolation operator Pjk that prolongates the results of the j-th level
to a finer level k.

In the classical multigrid scheme, the discrete operators A1, . . . ,Am and the
respective restriction and prolongation operators are defined using nested discret-
isations. Restrictions and prolongations are particularly easy to accomplish, if the
discretisation is based on a regular mesh. Non-regular finite element meshes neces-
sitate a treatment using special meshing software, in order to create nested finite
element sub-meshes. Unfortunately, it is particularly difficult to create these for
higher dimensional problems and finite element discretisations involving complex
geometries. Example implementations for electromagnetic problems are presen-
ted in [Hiptmair, 1999], [Hiptmair, 2000a] and [Mifune et al., 2002]. The method
presented in [Hiptmair, 1999] and [Hiptmair, 2000a] is based on a Helmholtz-type
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Figure III.2: multgrid discretisation on three levels (a) and sequence of operator
applications for a standard V-cycle (b)

orthogonal subspace decomposition, i.e. it is based on the decomposition of the
vector field F into an irrotational and a rotational part, so that

F = Firr


∇×Firr=0

+ Frot


∇·Frot=0

, (III.41)

which results in the continuous decomposition of the kernel of the differential curl-
operator and its complement, demonstrated in the equation (III.14). The multigrid
schemes are based on nodal multigrid techniques that conform to the initial edge
finite element description. These methods form the basis of the auxiliary subspace
correction schemes. [Hiptmair, 1999] demonstrates the good convergence beha-
viour for this multigrid scheme for problems with homogeneous materials. It is
furthermore demonstrated that it is not heavily influenced by the time step size of
an implicit discretisation. Yet, [Hiptmair, 1999] reports that despite some success
for problems with non-homogeneous materials, the convergence rate deteriorates if
the number of non-homogeneous domains is increased.

An enhancement to the classical multigrid method is the algebraic multigrid
method [Stüben, 2001]. In contrast to the geometrical multigrid method, all
coarsening operators are based on a coarsening of the initial matrix representation
A1. The resulting discretisations are comparable to the two-dimensional example
discretisation, visible in figure III.2a. The initial mesh is non-regular. The coarser
meshes are defined by removing certain edges and nodes. A possible coarsening
method that is based on the matrix discretisation A1 uses the same approach to
generate coarser discretisation levels. This means that discretisations like A2 or A3

in figure III.2a can directly be specified using recursive relationships with respect
to A1. The application is, therefore, not dependent on an outside coarsening of the
underlying discretisation. Therefore, the resulting method is very flexible and ad-
aptable, since there is no need for special meshing software. Example applications
for electromagnetic problems are presented in [Mifune et al., 2002], [Lee and Tong,
2006] and [Kolev and Vassilevski, 2009].

The method demonstrated in [Mifune et al., 2002] is a classical nodal multi-
grid scheme for a nodal finite element description, showing good parallel efficiency
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and generally good convergence for a simple two-dimensional example domain in
structured and unstructured form. But it has to be noted that the discretisation
problems of the nodal finite element method hinder the application of this method
in more complex cases.

[Kolev and Vassilevski, 2009] demonstrates the application of the auxiliary sub-
space decomposition technique using the efficient algebraic multigrid implementa-
tion presented in [Henson and Meier Yang, 2002], showing an excellent scalability
and numerical efficiency for large scale applications. [Kolev and Vassilevski, 2009]
demonstrates that it suffices to use a one-level V-cycle type multigrid method to
achieve a high convergence rate.

[Lee and Tong, 2006] proposes a Helmholtz-type decomposition based multigrid
scheme using a tree and co-tree based decomposition of an edge finite element
discretisation. Several test cases are presented, including examples with varying
coefficients. The viability of the method is demonstrated, but the splitting into tree
and co-tree spaces results in a coupled linear system of equations in block form,
resulting in an implementation that is not as simple as the auxiliary subspace
correction technique used in [Kolev and Vassilevski, 2009].

It has to be noted that the coarsening procedure depends on the underlying
problem and the available computing resources. In the following an overview of
some available coarsening schemes is given. The choice of coarsening has an impact
on the convergence behaviour of the multigrid method, the setup costs, but also
on the parallelisability.

The multigrid method is especially efficient for solving problems of elliptic type.
Therefore, these methods are particularly efficient for solving the preconditioning
technique presented in subsection III.2.2, which is based on a stable subspace
decomposition using elliptic forms. The application of the algebraic multigrid
method results in very versatile and flexible preconditioners that can increase the
convergence rate of standard Krylov subspace methods.

III.3.1 Coarsening techniques

An application of the algebraic multigrid method necessitates a coarsening of the
fine matrix operators. In the following, some common coarsening schemes are
detailed, which can be used in connection with the auxiliary subspace correction
technique. Each coarsening algorithm is briefly explained and the key ideas that
lead to its development are presented. Afterwards, the advantages and shortcom-
ings of each method are highlighted.

III.3.1.1 Requirements

Coarsening algorithms are interpolation and reduction algorithms relating some
nodes F of a fine mesh to a coarse nodal subset C, so that the reduction relationship
to the coarser level describes the relationship

GN = C ∪ F, (III.42)

where the full set of nodes in the graph of the initial level is denoted as GN . The
nodal subset F builds the set of interpolatable nodes, which are the complementary
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part for the coarse set C on the coarser level k, so that

C ∩ F = ∅. (III.43)

Following [Henson and Meier Yang, 2002], the interpolation describes the nu-
merical error ei for each fine point i ∈ F as a function of coarse grid points, so that
the error can be reproduced on the finer grid using the coarse interpolation nodes
of the subset Ci ⊂ C as

ei =


j∈Ci

wij · ej, (III.44)

where wij is a weighting factor that describes the influence of the coarse point with
index i on the fine point with index j and ej is the numerical error at the j-th
coarse point. A stabilised interpolation formula for the weightings wij is presented
in [Henson and Meier Yang, 2002]. [Henson and Meier Yang, 2002] states that the
modified interpolation weights can be defined as

wij = −
1

aii +


k∈(Dw
i ∪Fi)

aik



aij +


k∈Ds
i \Fi

aikâkj


m∈Ci
âkm



 . (III.45)

Here, the values aii, aik, aij and aik are entries of the discretisation matrix A on
the corresponding level and âkj and âkm are defined as

âkj =



0, if sgn(akj) = sgn(ajk)

akj, else
(III.46)

and

âkm =



0, if sgn(akm) = sgn(ajm)

akm, else.
(III.47)

The nodal subsets Dw
i describes the points connecting to i that influence it only

weakly, whereas Ds
i describes the points that strongly influence i. Both of these

subsets do not coincide with the coarse points C, i.e. Dw
i ̸⊂ C and Ds

i ̸⊂ C. This
modified formula for generating weighting values slightly deviates from the classical
interpolation formula and has been derived by [Henson and Meier Yang, 2002] to
avoid extremely large interpolation weights, which are sometimes generated in the
classical formula and which might lead to numerical errors and divergence.

The defining operation for each type of algebraic multigrid method is the choice
of coarsening. For each coarsening scheme a heuristic is described, which forms the
basis of the algorithm that divides GN into F and C.

According to [Sterck et al., 2006] the heuristics of common coarsening schemes
can be defined as
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H1: If j strongly influences i ∈ F then either j ∈ C or j strongly (III.48)

depends on a k ∈ C that also strongly influences i.

H2: C should form a maximal independent set [Tutte, 2001] in GN . (III.49)

It is mentioned that H1 ensures adequate interpolation, so that the convergence
rate of the algebraic multigrid method is constant and bounded away from one,
whereas H2 is chosen, so that there is a sufficient number of coarse points to
accurately interpolate, but not more than necessary. In that regard the term
strongly denotes a connection for which

−aij ≥ αtmax(−aik), ∀k ̸= i (III.50)

is valid. The variable αt is a supplied threshold value that reduces the storage
demand of the discrete operators. Its value is chosen between 0 < αt ≤ 1. A large
number of connections generally leads to an increase in the convergence rate, but
at the same time, to an increase in the storage and application cost.

Additionally, two ratios can be defined, which describe the behaviour of an al-
gebraic multigrid method. The operator complexity c is defined as the quotient
of the sum of non-zero values, defined as nnz, of all discretisations on all m dis-
cretisation levels, with respect to the initial level. The application of the multigrid
method in the context of this work is related to a one-cycle multigrid method, so
that the operator complexity reduces to

c =
nnz(A1) + nnz(A2)

nnz(A1)
. (III.51)

The stencil s is a coefficient value expressing the average number of non-zero values
per row for each respective discretisation level. It is motivated by noting that a
large stencil size leads to an increase in setup time and application cost, since the
discretisation becomes more dense. [Meier Yang, 2006] notes that this is a common
problem for multiple coarsening levels, so that the coarsest level possesses a large
stencil size. In the context of the auxiliary subspace preconditioning technique,
this value can be neglected, since only one coarse level is formed.

Following is a brief overview of common coarsening methods that have been used
in this work to create coarse discretisations. A more general overview can be found
in [Henson and Meier Yang, 2002] and [Sterck et al., 2006].

III.3.1.2 RS, RS2 and RS3

The Ruge-Stüben (RS) method has been proposed in [Ruge and Stüben, 1987].
This method is based on a variable λi that counts the number of points j, which
are strongly influenced by i. From all the nodes of the nodal set with the maximum
connections, one node is randomly picked and designated as coarse node in C. All
nodes that depend on i are included in the set F . These interpolated points are
connected to neighbour points, denoted as k. If these neighbour points strongly
influence the points in the set F , each corresponding value λk is incremented. Af-
terwards, one node will be designated as additional coarse point and subsequently
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added to the set of coarse points C. The algorithm is then recursively applied,
until every node has been assigned.

[Sterck et al., 2006] states that counterexamples can be generated for which
points i, j ∈ F can be found that invalidate the condition H1. For these cases
correct interpolation is, therefore, not assured. A remedy is the second stage
Ruge-Stüben (RS2) method that adds a second pass over all nodes in F . For every
node i ∈ F it is checked, whether there exists a strong dependency between i and
a different node j ∈ F that is not related to a common coarse point k ∈ C. If such
a pair is found, one node will be assigned to the set C, so that a correct fine grid
interpolation is assured.

The RS and RS2 methods are inherently sequential. A parallelisation can be
implemented by dividing the nodal subset GN into smaller subsets, followed by
a local application of RS2. This results in inconsistencies for the nodes on the
processor boundaries. As a remedy, [Henson and Meier Yang, 2002] proposes a
third pass Ruge-Stüben (RS3) method by simply applying the second stage of the
RS2 algorithm to every boundary node, so that correct C sets are produced.

The RS method enforces neither H1 nor H2, whereas RS2 and RS3 enforce H1,
but not H2. But it can be noted that in all cases H2 is approximatively fulfilled.

III.3.1.3 CLJP

The Cleary-Luby-Jones-Plassman (CLJP) algorithm is proposed in [Cleary et al.,
1998]. Let rand(0,1) be a random number in the range [0, 1]. The CLJP algorithm
initially bases the coarse grid selection on a randomised definition of the number of
influencing points, in order to ensure uniqueness of the set of maximal connecting
nodes, replacing λi by

λ̃i = λi + rand(0, 1). (III.52)

As noted by [Sterck et al., 2006], the CLJP-algorithm possesses local maximal meas-
ures, which contrasts to the global maximal measures of the original RS method.
It follows that the coarsening points can be selected in parallel, which increases
the scalability with respect to the sequential procedure of the RS method. [Sterck
et al., 2006] notes that the advantage of the CLJP method is that it can be ef-
ficiently parallelised, while retaining the original scalability of the RS coarsening
algorithm, but it is also mentioned that due to the randomness of the selection
algorithm, fine grid information can be lost by the coarsening procedure, which
might lead to a degradation of convergence, even though the algorithm might still
be more advantageous for unstructured problems than the classical RS methods.
The advantage of the CLJP method is that the coarsening is only dependent on
the initial assignment of weighting factors. It follows that the coarsening struc-
ture is not influenced by the number of processors and that any communication is
restricted to the communication between boundary sets.

III.3.1.4 Falgout

The Falgout scheme is a simple extension of the RS and CLJP algorithms and has
been presented in [Henson and Meier Yang, 2002]. Initially, the parallel application
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of a node distribution algorithm results in the assignment of the untreated nodes
to each local processor. For each of these nodes an RS2 method is performed to
generate a locally conforming coarse set. Since the boundary nodes might still
possess dependencies that are not treated by a correct coarsening, an initial first
independent set D of coarse points C is defined locally. Every coarse point i
in C is included in D, if it is entirely local for each processor and not adjacent
to any boundary point. From this set of starting values, a second CLJP pass
is performed to generate coarse points on the processor boundaries. [Henson and
Meier Yang, 2002] notes that the quality of the interior coarsening is generally very
good for RS methods, whereas it is comparatively worse for the CLJP method. The
application of the Falgout scheme leads therefore to a good quality of the coarsening
for the interior domains, while ensuring a correct treatment of the boundary nodes.
[Henson and Meier Yang, 2002] states that the Falgout scheme can be understood
as a CLJP scheme with a different initial independent set D. The disadvantage is
stated as the large growth in complexities for three-dimensional problems, which
is a common problem for the Falgout, CLJP, as well as for the RS method. It
is furthermore noted that, if the grid structure is regular, the Falgout algorithm
is in general more efficient with much lower complexities than the RS and CLJP
methods. This advantage can not be shown for irregular grids. For a problem on
an irregular grid it is demonstrated that the complexities of both the CLJP and
the Falgout method are comparable so that the solution times are almost equal.
For a three-dimensional Laplacian problem with varying material coefficients it is
demonstrated that the Falgout method is slightly faster than the CLJP method,
with complexities that are approximately three times smaller.

III.3.1.5 PMIS

The parallel modified independent set (PMIS) method is proposed in [Sterck et al.,
2006], which notes that it can be understood as a simplified version of the CLJP
algorithm. The goal is to create a fully parallel algorithm that minimises message
passing in that it only necessitates an interaction between neighbouring processors.
It is furthermore independent on the number of processors, leading to the same
coarsening for different parallel configurations.

The heuristic H1 is ignored and replaced by H1′, which is identified as

H1′: There exists at least one point j ∈ C with a (III.53)

strong connection to i for every point i ∈ F .

The technical details of the implementation of the PMIS algorithm are presented
in [Sterck et al., 2006]. Three different categories of nodal set are defined, which
can be identified as the coarse nodes C, the fine nodes F and the unassigned
nodes R. The iterative algorithm proceeds until all remaining nodes of the nodal
set R have been assigned to either F or C. In the beginning R = Gn and the
relationship (III.50) is used to identify the initial set of fine points F , by noting
that the nodes that do not strongly influence any other nodes must belong to F .
The first independent set that is assigned to C is chosen as a random initial set,
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weighted in favour of strongly influencing points, using relationship (III.52), i.e.
for the remaining nodes R every node i is assigned to the set C for which the
relationship

λ̃i ≥ λ̃j, ∀j connecting to i (III.54)

is fulfilled. Afterwards, every point j that is found to remain in R, which is strongly
influenced by a new point i ∈ C, is included into F . The algorithm then proceeds
for the remaining points R up until every node has been assigned, either to C or
F . It follows that the final independent set C is a maximal independent set, so
that condition H2, defined in (III.49), is enforced.

[Sterck et al., 2006] notes that for example test cases, PMIS can be two to
three times faster than both the CLJP and the Falgout schemes with operator
complexities of less than half the size. But it is also noted that the aggressive
coarsening leads to a reduction in the convergence rate.

III.3.1.6 HMIS

The hybrid modified independent set (HMIS) method is proposed in [Sterck et al.,
2006]. Like the Falgout algorithm it is a hybrid method. It is based on an initial
local treatment using the RS scheme, i.e. on all processors the distributed nodes
are divided into local sets F̃ and C̃ using the classical RS algorithm. The nodes
i ∈ C̃ that are not on an internal boundary are chosen as first initial set C. The
remaining boundary nodes form the set of remaining nodes R. These boundary
nodes are then treated in a following step by using the PMIS method, which is
used instead of a CLJP stage for the Falgout scheme. The strength of the HMIS
method is a reduction of the operator complexity and a decrease in setup costs.
The disadvantage is a reduction of the convergence rate. It must be noted that it
enforces condition H1′, whereas condition H2 is not strictly enforced due to the
application of the RS method for the interior nodes.

[Sterck et al., 2006] notes that for a three-dimensional Laplacian problem on a
regular domain, both the PMIS, as well as the HMIS method have much smal-
ler complexities and reduced stencil sizes than the CLJP and Falgout coarsening
methods, with the complexity being around six times smaller than for the CLJP
scheme. In addition, it is demonstrated that the PMIS and HMIS algorithms lead
to algebraic multigrid operators necessitating more iterations to converge, but it
is also shown that the reduction of the complexity leads to an overall reduction
of computational time. In addition, it is shown that the convergence rate of the
PMIS and HMIS method degrades, if the number of processors is increased, which
is not a large problem for the Falgout and CLJP method. For an irregular descrip-
tion of the Laplacian problem it is shown that the complexities for the PMIS and
HMIS algorithms are around three times lower than for corresponding Falgout and
CLJP schemes. Again, an increase in the number of processors leads to a decrease
in the convergence rate, but the net effect is a reduction of overall solution time.
After introducing spatially varying material coefficients into the above-mentioned
Laplacian formulation it is noted that the convergence rate severely degrades. The
number of iterations for a sequential application for both the PMIS and HMIS
methods is around seven times larger than for corresponding CLJP and Falgout
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schemes. It is shown that for a highly parallel test case with 1000 processors the
convergence rate deteriorates further, so that around 40 times more iterations are
necessary to achieve convergence.

III.3.1.7 ECGC

An important aspect in parallel coarsening is the correct treatment of boundary
nodes. [Griebel et al., 2006a] states that the classical schemes necessitate message
passing between distinct boundaries, to ensure a correct interpolation by coarse
grid points. The addition of coarse points on the processor boundaries, like for the
RS3 scheme results in an increase of operator complexity. For the CLJP algorithm
this even leads to an increase of coarse points in the inside of the domain. There-
fore, [Griebel et al., 2006a] proposes the coarse grid correction (CGC) method,
which allows a parallel coarsening without the need of direct communication dur-
ing the initial coarsening phase. The key idea follows from the observation that
the classical RS scheme leads to distinct coarsening results, if different starting
points are chosen. This allows to create several initial distinct coarsenings on each
local processor domain. Afterwards, a weighted graph of these multiply defined
coarsenings can be created that can be used to identify the local subsets that
best approximate the global coarsening, i.e. the local coarsenings are picked that
best match the neighbour coarsenings. If any remaining points i ∈ F exist that are
strongly coupled to a node j ∈ F , they are associated to C. The resulting algorithm
has a slightly higher setup cost than the alternative methods, since many initial
coarse sets need to be generated. But it is mentioned by [Griebel et al., 2006a]
that the cost of the additional local coarsenings is negligible, since the decrease of
the operator complexity leads to time savings in the solution stage.

The drawback of the CGC algorithm is that it can not handle arbitrary small
coarsenings, i.e. the algorithm fails, if the number of nodes is relatively small
compared to the number of processors. [Griebel et al., 2006b] mentions that this
leads to smallest coarsenings that scale with the number of cpus nproc, so that the
coarsest node size N behaves like

N = O(nproc). (III.55)

The extended coarse grid classification (ECGC) algorithm remedies this problem.
It is proposed in [Griebel et al., 2006b]. The ECGC method extends the original
CGC method, by replacing local coarsenings that can be interpolated by outside
grid points using empty grids in the global selection step. This allows arbitrary
levels of coarsenings on the global level up to a single point.

[Griebel et al., 2006b] provides several example results for the CGC and ECGC
method in comparison to a Falgout scheme. It shows that the convergence factors
and solution times of the CGC and the ECGC method are comparable to the
Falgout method. It is furthermore demonstrated that the ECGC method leads
to a reduction in setup times for highly parallel test cases, with respect to the
CGC method. It is shown that the setup times are comparable to the setup times
of the Falgout scheme, but it is mentioned that the ECGC method leads to the
fastest setup times for highly parallel test cases. The operator complexities for the
ECGC method for highly parallel test cases are slightly smaller than the operator
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complexities for comparable configurations involving the Falgout method, which
leads to a reduction of solution time.

III.4 Application

The following section demonstrates the efficient solution of the magnetic vector
potential problem for the example test case of an automotive crankshaft, embedded
in an enclosing air domain. The source current is applied using a closed inductor
of complex geometry. The finite element mesh includes around 3 million finite
elements, resulting in around 3.5 million edge degrees of freedom. The sparse linear
system of equations consists of approximately 55 million non-zero values. The
impact on the different operator settings are detailed for common operator choices
for the algebraic multigrid solver, which addresses the large kernel of the linear
system of equations. The discretisation is based on the variationally equivalent
method, as explained in subsection III.2.2.3. This allows the description based on
the transfer operators Nh and Gh, so that the variationally equivalent operators
can be defined using a projection approach, as detailed in equations (III.27) and
(III.28). The discrete approximate inverse operators are denoted as

BΠ ≈ X
−1
h2 (III.56)

for operator (III.27) and

BG ≈ X
−1
h3 (III.57)

for operator (III.28). The inverse of the original bilinear form Xh1 is approximated
by a smoothing operation

Rh ≈ X
−1
h1 . (III.58)

The resulting algebraic multigrid preconditioner is based on a one-cycle reduction
technique, which enables a fast application. The memory demand and setup time
are reduced, since only one coarsening level is featured in the multigrid step.

III.4.1 Impact of coarsening type on convergence behaviour

The choice of coarsening operator has a large impact on the quality of the mul-
tigrid operator. The coarsening technique impacts the quality of the coarsening
operator and, therefore, the convergence behaviour of the solution phase. Figures
III.3 and III.4 show some typical combinations for the variationally equivalent op-
erators. The discretisation is largely affected by the granularity of the partitioning.
A large number of partitions, which is equivalent to a high processor count, results
in a high ratio of internal boundaries towards unique partitioning volumes. There-
fore, the inter-process communication is very high for highly parallel test cases, as
presented in figure III.4. In contrast, lower processor counts result in large par-
titioning volumes with relatively small processor boundary surfaces, as shown in
figure III.3. Both figures contrast different combinations of coarsening methods for
the variationally equivalent operators (III.27) and (III.28). The first abbreviation
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in the legend specifies the choice for operator (III.56), whereas the second label
indicates the coarsening method for operator (III.57), which is related to the large
null space of the linear system of equations.

For both figures it is visible that the convergence behaviour is largely impacted
by the choice for operator BG that is used to reduce the error associated to the large
null space. Even though operator BΠ has a measurable impact on the convergence
behaviour, it is shown that the correct description of the kernel is important for
achieving a high error reduction rate.

The efficiency of the coarsening operators is mostly impacted by the surface
area of the inter-processor boundary surfaces. For the lowly parallelised test case,
shown in figure III.3, it can be noticed that the RGST, CLJP, FALG, as well as
the, ECGC method show a comparable convergence behaviour. The RGST method
naturally shows a very good convergence behaviour for this test case, since the setup
structure is nearly sequential. The RGST method results in operator descriptions,
with very high quality interior points. The discretisation quality only diminishes
in the boundary regions. The lowly parallelised test case can, therefore, naturally
be described by this method. The CLJP method has been developed to address
the bad quality of the coarsening in the surface regions. Its use results in higher
coarsening qualities for large numbers of partitionings with respect to the RGST
method. Unfortunately, the interior coarsening quality is slightly reduced, when
compared to the classical RGST technique. For the lowly parallelised test case on
four processors, both methods show a near identical behaviour. The behaviour of
the FALG scheme is naturally equivalent, because it is a combination of the RGST
and CLJP methods. The ECGC scheme is used for very high processor counts and
addresses the problem of very high parallel granularity. For the low partition count,
depicted in figure III.3, it is visible that the behaviour is very close to the classical
coarsening schemes. Its coarsening quality is nearly identical to the RGST, CLJP,
as well as the FALG scheme. This is in stark contrast to the HMIS method, which
results in weak convergence for all operator combinations. The use of the HMIS
method results in coarsened operators with low operator complexities. It is used
to reduce the memory demand and the cost of application, due to the reduction of
coarse reconstruction points. The side effect is a large reduction in the convergence
rate.

For the highly parallel test case, shown in figure III.4, the differences for each op-
erator combination are stronger. The solver combination using the CLJP method
shows the strongest error reduction, whereas the HMIS method leads to the weak-
est convergence. For this highly parallel test case it is noticeable that the RGST
method results in an increase of iteration counts, when compared to the CLJP,
FALG, as well as the ECGC techniques. This can be explained by the bad coarsen-
ing quality on the processor boundaries.

The results indicate that the most important element in the discretisation phase
is the adequate representation of the variationally equivalent operator (III.28) that
addresses the large null space of the linear system of equations. The impact of
operator (III.27), which is based on the transfer operators for nodal to edge values
is measurable, but clearly offset by the coarsening method for the former operator.
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Figure III.3: Convergence behaviour with respect to coarsening type for a parti-
tioning on 4 processors
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Figure III.4: Convergence behaviour with respect to coarsening type for a parti-
tioning on 16 processors
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III.4.2 Impact of coarsening type on setup and solver setup

time

The choice of coarsening method impacts both the setup and the solution phase.
The setup phase is an initial cost that impacts the overall solution time and is an
important aspect for problems with varying material properties, due to the need
for reevaluating the entries in the linear system of equations. The solution phase is
related to the application cost of the operator and the operator application count.
A high error reduction rate, which leads to a low iteration count, is beneficial to a
reduction of the solution time.

Figures III.5 and III.6 show the setup and solution times for a 4 processor and
a 16 processor test case. In both instances, it can be observed that the setup time
is very much affected by the choice for the variationally equivalent operator BΠ,
which is much larger than operator BG. The operator that is related to the kernel
of the linear system of equations has no practical influence on the setup time, due
to its much smaller discretisation size.

For the 4 processor test case it can be seen in figures (III.5a- III.5e) that the HMIS
method leads to faster setup times, compared to the CLJP, RGST, FALG and
ECGC method. The RGST method is the slowest, due to the problematic treat-
ment of inter-processor boundary nodes. The CLJP, FALG and ECGC method
are nearly equivalent.

The solution time is visibly related to the coarsening operator BG, because it
largely affects the convergence behaviour of the multigrid solver. The choice of the
HMIS method for this operator increases the iteration count and, therefore, the
solution time, as can be seen in figures (III.5f-III.5j). The strongest increase in
solution time is visible in figure III.5g for the combination of RGST solver for op-
erator BΠ and HMIS method for operator BG. In contrast, it is very advantageous
to employ the cost effective HMIS method for the discretisation of the larger oper-
ator, in combination with a strongly converging discretisation method for operator
BG, as can be seen in figure III.5i.

The impact of domain partitioning can be seen in figures (III.6a- III.6e). The
very ineffective RGST method, shown in figure III.6b, has a setup cost that is four
times larger than the HMIS method shown in figure III.6d. The CLJP and FALG
method, shown in figures III.6a and III.6c show a comparable behaviour. The
advantageous use of both CLJP and RGST method in case of the FALG method
efficiently reduces the setup time and minimises the discretisation problems of the
RGST method in this highly partitioned test case. Figure III.6e demonstrates that
the ECGC method is almost as efficient as the HMIS method.

It is again recognisable that the application cost has a large impact on the
solution time. Figures (III.6f- III.6j) show that the HMIS method should be avoided
as a discretisation choice for operator BG, whereas it can be advantageous to use
for operator BΠ, as can be seen in figure III.6i. Figure III.6g demonstrates that it is
highly disadvantageous to combine the RGST method and the HMIS method, due
to the large iteration count and high application cost. The solution time for this
combination is roughly twice as costly as for the more efficient combinations. It can
be noticed that the ECGC, CLJP, FALG and the HMIS method are an effective
choice for operator BΠ. An advantageous choice of discretisation combinations,
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i.e. a strongly converging operator for the operator related to the null space of
the linear system of equations and a low cost operator for the larger operator, can
reduce the computational time by roughly 50% to around 40 s, when compared to
the worst case combination.
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Figure III.5: Setup time (a-e) and solver time (f-j) with respect to coarsening type
for a partitioning on 4 processors
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Figure III.6: Setup time (a-e) and solver time (f-j) with respect to coarsening type
for a partitioning on 16 processors

101



III.4 - APPLICATION III - LINEAR SOLVERS

III.4.3 Impact of coarsening threshold on convergence

behaviour

The size of the coarsened structure is principally influenced by the coarsening
strength threshold αt, as defined in equation (III.50). A high coarsening threshold
parameter leads to a large drop of coarsening information, which results in a low
operator complexity. The discrete operators generally have a smaller memory
demand, but also lead to a reduction of the convergence rate. Figures III.7 and III.8
show the effects of using different combinations of operators with different operator
complexities on the convergence behaviour, the setup, as well as the solution time
for the solution stage on 4 and 16 processors. The coarsening algorithm that
is used in this test case is a standard HMIS approach using a one-cycle AMS
preconditioner. The first threshold in the legend denotes the strength threshold
for operator BΠ, whereas the second number indicates the strength threshold for
operator BG. In both figures, the impact on the convergence behaviour, the setup
time and the solver time is shown.

The results for the 4 processor test case, shown in figures (III.7a-III.7c) show
again a strong dependency on the coarsening quality of the operator, which is
related to the large null space of the linear system of equations. The coarsening
quality of the other operator has only minor influence. For operator values of
αt = 0.25 and αt = 0.5 the convergence behaviour is nearly identical, which is
also reflected in the setup times and the solution times, as shown in figures III.7d
and III.7e. It is visible that a very high strength threshold, i.e. a low operator
complexity, for operator BG leads to a large reduction of the convergence rate,
which is shown in the greater solver times. The advantage of a bigger strength
threshold is a reduction in memory demand. Figure III.7d demonstrates that
a reduction of the operator complexity for operator BΠ measurably reduces the
setup cost for αt = 0.9.

The same behaviour is demonstrated for the highly partitioned test case on 16
processors in figure III.8. Figures (III.8a-III.8c) show a strong dependency of the
convergence rate and the good quality reproduction of the operator related to the
large null space of the linear system of equations. The qualitative reduction of
setup time in comparison to the lowly parallelised test case is shown in figure
III.8d, which shows that the most efficient setup is possible, if operator BΠ is
discretised using a low operator complexity. The solution times are reduced, but
only by approximately 35%. It is again visible that a large increase of the strength
threshold for operator BG leads to a huge increase in solver time.

Both test cases demonstrate that the strength threshold can safely be increased
to αt = 0.5 without large negative effects on the convergence rate, setup or solution
time. The advantage of reducing the operator complexity is a reduction of memory
demand for the storage of the discrete operator structures. It is noticeable that the
good coarsening quality of the operator dealing with the error reduction associated
to the large null space is again the most important aspect of a good error reduction
rate, which is also demonstrated in subsections III.4.1 and III.4.2.
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Figure III.7: Convergence behaviour for different operator complexities for a par-
titioning on 4 processors
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Figure III.8: Convergence behaviour for different operator complexities for a par-
titioning on 16 processors
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III.4.4 Impact of operator ordering on convergence behaviour

The typical application of the AMS method involves a symmetric application of
smoothing and multigrid operators. The normal configuration involves an error
smoothing operation Rh, the error reduction for the projected vector components
BΠ, defined in equation (III.56) and the reduction of the residual error for the large
null space of the linear equation system, denoted by BG, as defined in equation
(III.57).

The major focus of the standard AMS method is the reduction of the error due
to the large null space of the linear system of equations. Its focus lies, therefore,
on the application of operator BG. This is normally achieved in a multiplicative
manner, but can also be done using an additive form, here denoted as AMS-A. An
alternative implementation of this complete preconditioning operator is denoted
as AMS-Π, which focusses on operator BΠ. In addition, it might be advantageous
to smooth out the error after each application of the coarsened operator using
additional smoothing cycles Rh. Table III.1 gives an overview of different operator
orderings that can be easily implemented based on the coarsened operators.

type operator ordering application type
AMS Rh, BG, BΠ, BG, Rh multiplicative
AMS-A Rh, BG, BΠ, BG, Rh additive
AMS-Π Rh, BΠ, BG, BΠ, Rh multiplicative
AMS-GS Rh, BG, Rh, BΠ, Rh, BG, Rh multiplicative

Table III.1: Different operator orderings for the AMS method

Figure III.9 shows the impact of the different operator orderings on the con-
vergence behaviour for a preconditioning operator, which is based on an HMIS
coarsening method. It is visible that the additive version of the standard precondi-
tioner results in a large reduction of the convergence rate. The error is very slowly
reduced, which leads to a large increase in computational effort. The additive
form leads to an increase in computational time by a factor of approximately 2.
The AMS-Π preconditioner converges slower than the standard AMS solver. In
the above-mentioned subsections it is demonstrated that a large error reduction is
only possible, if the preconditioning operator focusses on the large kernel of the
linear system of equations. It can be seen that the overweighting of operator BΠ

with respect to BG leads to an increase in computational time by roughly 50%. In
addition, it can be noted that additional smoothing operations do not lead to an
increase in the error reduction rate. In fact, the computational time is increased,
due to an increase in computing cost, without a visible increase of the convergence
rate, as is shown for the AMS-GS ordering type.
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Figure III.9: Impact of the operator ordering on the convergence behaviour

III.4.5 Impact of material parameter distribution on

convergence behaviour

A typical steel work piece can show a highly temperature dependant behaviour.
The relative magnetic permeability is greatest for the initial temperature and de-
creases for rising temperature values. The changes of the material parameters are
reflected in the values of the linear system of equations, which are weighted dif-
ferently according to the material parameters at the integration points inside each
finite element. In addition, large material jumps are possible, due to the constant
permeability of the surrounding air, which is fixed at µr = 1, whereas the relative
magnetic permeability of steel can be several magnitudes higher. The large mater-
ial discontinuities can lead to instabilities in the solution phase, due to an impact
on the convergence quality.

In order to model the impact of temperature dependency, a reasonable bound-
ary test case is shown. Initially, it is assumed that the crankshaft possesses a
constant homogeneous relative magnetic permeability of µr = 10. The compu-
tation is advanced by one predetermined time step and the resulting temperature
distribution is utilised to evolve the relative magnetic permeability. Here, the func-
tion µr = f(B) is defined using a predetermined range beginning by µr = 1 and
increasing to the initial relative magnetic permeability µr = 10. It is assumed that
the maximum temperature is equal to the specific Curie temperature of the ma-
terial (cf. subsection I.5.2). The temperature range is further subdivided into ten
equal parts, which are each associated to a corresponding relative magnetic per-
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meability. This stepwise association describes a reasonable boundary test case for
temperature dependant material evolution models. In practice, the temperature
distribution, as well as the resulting relative magnetic permeability, are smooth,
due to the smooth transitioning of the temperature distribution. Here, the de-
scribed test case leads to strong discontinuities inside the work piece and large
material jumps. These jumps may lead to instabilities that can be assumed to
model a worst case scenario.

Figure III.10 shows the discontinuous material distribution for a cut of the the
supporting sides of the crank shaft domain. It is visible that the material evolution
leads to large material jumps, including large differences near the problematic
boundary edges. The highest material jumps are, therefore, near the parts of the
computational domain that are most difficult to treat numerically.

Figure III.11 shows another view for the heat treated region. It is again visible
that the chosen material evolution model leads to large discontinuities with a com-
plicated structure. The step wise layering leads to large material jumps inside of
the crankshaft domain and, therefore, directly affects many neighbouring entries
in the linear system of equations.

Figure III.10: Distribution of discontinuous magnetic permeability µr = f(B) of
the crankshaft in the support region of the bearing, cut in the x-y-
plane

Figure III.12 gives results for the convergence behaviour using a standard HMIS
based AMS preconditioned solver. It is visible that an increase in the relative
magnetic permeability and, thus, a difference in weighting of the entries in the
linear system of equations, leads to a reduction of the convergence rate. Yet,
a very large increase of the material jumps by a magnitude of 3 for µr = 103

leads only to a slight increase in computational effort by a factor of approximately
less than 2. The test case that is based on the highly discontinuous material
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Figure III.11: Distribution of discontinuous magnetic permeability µr = f(B) of
the crankshaft, cut in the y-z-plane

distribution model, as shown in figures III.10 and III.11 has only negligible effects
on the convergence behaviour. The highly discontinuous material distribution does
not destabilise the solution behaviour. In effect, the many layers of discontinuities
do not lead to a reduction of the convergence rate compared to the test case with
constant relative magnetic permeability of µr = 10. It can be observed that the
AMS preconditioned solver is not destabilised and converges monotonically. For
every test case, the solution method is stable and consistent.
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Figure III.12: Solver iterations as a function of the relative magnetic permeability
inside the crankshaft domain
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IV Modelling inductor motion

Français:

Le chapitre suivant décrit une nouvelle approche pour le mouvement de l’inducteur
dans une configuration Lagrangienne en utilisant une transformation rigide de la
surface de l’inducteur. La fonction d’identification est basée sur une fonction dis-
crète level set qui est créée en utilisant la forme primitive de l’inducteur discrétisé.
L’algorithme est local, efficace et pourrait être parallélisé. Au début, le cadre du
problème est défini. Ensuite, un aperçu est donné sur des méthodes existantes dans
le contexte du traitement par induction et des méthodes venant d’autres applica-
tions. Les approches classiques, comme la méthode ALE ainsi que des algorithmes
discrets sont présentées. L’avantage d’une approche avec la méthode locale de le-
vel set est montré. La description de l’algorithme est ensuite donnée. Un domaine
de dimension deux est choisi pour illustrer la technique d’identification level set.
Ensuite, des résultats sont présentés pour un cas d’exemple : la rotation d’un in-
ducteur autour d’un vilebrequin. Il est démontré que la qualité du maillage est
préservée dans les étapes suivantes.

English:

The following chapter describes a novel approach for the inductor movement in a
Lagrangian setting using a local remeshing technique that uses a rigid transforma-
tion of the initial inductor surface. The identification function is based on a discrete
level set function, which is created using the surface primitives of the discrete in-
ductor domain. The resulting algorithm is local, efficient and can be parallelised.
In the beginning, the problem is outlined. Afterwards, an overview of existing
methods in the context of induction heating and other applications is given. Clas-
sical approaches using the Arbitrary-Lagrangian-Eulerian (ALE) method, as well
as discrete algorithms are presented. The advantage of a local level set approach is
shown. Following is the description of the proposed algorithm. A two-dimensional
example domain has been chosen to illustrate the level set identification technique.
Afterwards, results are presented for a test case: the rotation of an inductor around
a crankshaft. It is shown that the initial mesh quality is preserved in subsequent
time steps.
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IV.1 Problem statement

It is mentioned in section I.3 that the industrial application of the heat treatment
process of the automotive crankshaft involves a relative motion of inductor and
crankshaft during the procedure. The crankshaft is placed in a mounting device,
visible in figure IV.1 that allows a relative rotation during the heating stage. Af-
terwards it can be used to immerse the workpiece in a cooling liquid, like water
or oil or it can act as a support for cooling showers. The relative movement is
included into the heat treatment procedure for several reasons.

Figure IV.1: Induction heating of a crankshaft (Image provided courtesy of EFD)

The eddy currents are created by the rapidly changing magnetic field, circulating
in the surface of the crankshaft domain. The geometric centre of this loop will not
feature any measurable current, due to current cancellation effects. A heating
in these regions can only be accomplished, either by conduction or by a relative
movement of the inductor, so that the region is shifted to a location without current
cancellation effects.

The skin effect results in a distribution of eddy currents near the surface of the
domain. An approximation for the penetration depth of a homogeneous domain
has been presented in section I.5. The exponential decaying model is presented in
equation (I.6). It can be seen that the penetration depth depends inversely on the
applied frequency, i.e. a high frequency leads to a small penetration depth. The
higher the frequency, the higher any heating pattern error will be, if the inductor
is slightly misaligned, with respect to the conductor. In addition, it must be
noted that neither the inductor geometry nor the workpiece is fully symmetric. A
relative movement during the heat treatment can help to smooth out the applied
heating energy. An industrial application using relative movement can increase the
reliability of the induction heating process.

The overall goal of an induction heat treatment of the crankshaft is the gener-
ation of a layer of austenite near the contact surface, where the bearing will be
placed. This austenitic phase will be transformed into the martensitic state in a
subsequent quenching procedure. The relative motion ensures that the heat can be
applied evenly, even though the geometry is relatively complex. E.g. the automot-
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ive crankshaft includes problematic features like holes and sharp corners, which
can lead to either under- or over-heating during the induction process. The heat
treatment process is, in essence, an interaction of the electromagnetic induction
heating, which is the major driving force for the increase of the temperature, as
well as heat conduction and relative motion, which both allow the heat to distrib-
ute evenly and towards regions that are not directly affected by strongly induced
eddy currents. For these cases, heat conduction is advantageous with respect to an
application of heat in these regions, even though it negatively affects the centre of
the workpiece, i.e. in general, conduction is avoided, since it leads to an increase
in temperature in the interior of the workpiece. Therefore, the induction heating
process is achieved as quickly as possible.

The introduction of relative movements in numerical simulations is difficult,
since it complicates the numerical discretisation. Existing numerical models like
the remeshing applications for forming processes or moving domain problems in
fluid dynamics are highly problem dependent and can not be used directly for
the induction heating process in an efficient manner. This is due to assumptions
made in these models that might not be applicable to the induction process or
features that might lead to a severe increase in computational complexity, such
that the practical application is not possible in this context. Section IV.2 gives
an overview over different concepts of general models for relative movements in
numerical simulations, as well as in the context of induction heating. Afterwards,
section IV.3 proposes a new model for the description of inductor motion in the
context of electromagnetic induction heating that is efficient and parallelisable. It
is followed by section IV.4, which presents results for the application of inductor
motion in the context of a global finite element analysis including the geometry of
a sample industrial crankshaft.

IV.2 Existing methods

Existing methods for the description of movements of computational domains can
be divided into several sub-categories. First, it is illustrative to sort them by
the approach that is used to describe the movement. Generally, there are two
configurations that are applied in classical mechanics. The first description is the
Lagrangian approach, which attaches quantities of interest to a particle, which
moves in time, i.e. any quantity like the temperature or the density is attached
to a physical object that might change its shape and position through time. In
contrast, the Eulerian approach fixes a certain control volume at a spatial location.
The quantities of interest are allowed to pass through at any given time step. The
first approach associates the quantities to objects, whereas the second approach
associates quantities to spatial locations.

The Lagrangian approach is advantageous, since it allows to consistently track
the outlines of the real geometries. Unfortunately, it is very difficult to include
movements in such a description, since these generate large distortions in the grid.
The Eulerian approach observes the physical quantities, moving in a fixed grid,
therefore, the mesh does not get distorted. The disadvantage of this approach is
that the boundary surface of the approximated object might not align with the
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boundary of the discretisation, which leads to interface approximation errors.
A generalisation of the above-mentioned methods is the Arbitrary Lagrangian

Eulerian (ALE) approach that has been introduced to utilise the advantages of
both approaches, while minimising the shortcomings. A general introduction to
this method can be found in [Donea et al., 2004]. In the ALE approach neither the
material (Lagrangian) nor the spatial (Eulerian) configuration is used solely for the
description of the evolution of the physical quantities. Instead, a third intermediate
reference configuration is employed. This reference configuration is used to track
the computational grid during the evolution of the boundaries. In this approach,
small movements are represented using an update of the grid itself, stemming from
a Lagrangian point of view, whereas large deformations, which would lead to a
large distortion of the discretisation, are represented using a Eulerian approach.
The ALE method has been used extensively in moving boundary applications, e.g.
[Nguyen, 2010] and [Persson and Willis, 2010], which use ALE to describe flow
around deformable domains or [Feldman et al., 2005] that uses an ALE approach
in a mostly Eulerian fluid flow formulation, allowing mesh deformations using the
semi-Lagrangian surface tracking technique of [Bargteil et al., 2006] to incorporate
advection velocities in a deformed mesh.

Unfortunately, the ALE method can pose problems with respect to approxim-
ation errors, due to interpolation errors if large deformations are computed. E.g.
[Wall et al., 2006] mentions for fluid structure interaction problems that remesh-
ing must be done, if the underlying discretisation is severely distorted, which can
arise for certain problems, stating "Such scenarios include problems with topology
changes, e.g. when a fluid penetrates an opening crack or when a valve closes, or
simply if the structure moves too far in the domain or rotates."

In addition to the categorisation in material or spatial tracking approaches, it
can be useful to divide the employed methods in further sub-categories based on
the choice of discretisation. The approaches mentioned above, i.e. Lagrangian,
Eulerian, and the ALE technique are valid in a continuous, as well as a discrete
context. These approaches can be used for various discretisation methods. Ex-
amples are methods utilising a weak formulation in a Galerkin finite element con-
text, finite difference approximations or boundary element approaches. E.g. the
boundary element approach can be used in a Lagrangian context, mostly in a mixed
formulation due to the necessity of fully discretising the conductive domains. Rep-
resentations for this approach with respect to an application of moving domains in
electromagnetics can be found in [Frangi et al., 2003, 2005], whereas general mixed
boundary element formulations can be found in [Alotto et al., 2008, Camaño and
Rodríguez, 2012, Meddahi and Selgas, 2008, Rodríguez and Valli, 2009]. [Frangi
et al., 2003, 2005] describe the mechanical problem of an industrial relay using a
mixed FEM/BEM formulation, allowing relative movement without the need of
remeshing. [Alotto et al., 2008] solves a general eddy current system without im-
posing movements using a discrete cell element model for the conducting regions,
coupled using boundary elements. A movement could easily be incorporated, which
is also possible for the general mixed-models proposed in [Camaño and Rodríguez,
2012, Meddahi and Selgas, 2008, Rodríguez and Valli, 2009]. The advantage of
these approaches is that a relative movement, as well as the vanishing magnetic
field condition at a certain distance from the conducting objects, can easily be
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taken into account. The disadvantage is the need to solve a coupled linear system
of equations that is difficult to handle numerically (cf. chapter III).

Another discretisation based approach has been presented in [Alotto et al., 2002],
which introduces a local discontinuous Galerkin method for the computation of ro-
tating electric machines in a global embedding domain. The method is based on
introducing a slip-surface that allows hanging nodes, such that a relative circular
movement of a rotor with respect to a stator can be included in the discretisation.
The discontinuous Galerkin method utilises a finite element description in such
a way that the solutions are allowed to have discontinuous values across element
boundaries. The inter-element connection is established by incorporating a numer-
ical flux, arising in the weak-form (cf. section II.2.2.3) that approximates the real
inter element flux. The freedom of choice for this numerical flux makes the discon-
tinuous Galerkin method very applicable to hyperbolic conservation problems. A
general introduction to this method can be found in [Hesthaven and Warburton,
2008] or [Cockburn and Shu, 2001]. An example for the discontinuous Galerkin
method, applied to problems including second order derivatives in space, has been
presented in [Cockburn and Shu, 1998] (cf. [Arnold et al., 2002] for a general
discussion of the discontinuous finite element method for elliptic problems). This
flux-based coupling enables the introduction of hanging nodes in the finite element
mesh, as long as the inter-element fluxes can be prescribed in a consistent manner.
[Alotto et al., 2002] suggests this method can be used to deal with the moving
mesh problem in electromagnetics. Unfortunately, the hanging node approach is
only feasible for domains including a certain symmetry, making the movement of
complex domains problematic, e.g. the example in [Alotto et al., 2002] features a
circular shaped rotor. In addition, the introduction of discontinuous elements in-
creases the degrees of freedom of the numerical system. Furthermore, the hanging
nodes can result in solutions featuring spurious oscillations on irregular meshes,
requiring additional correction methods, as shown by [Buffa et al., 2008].

Another discretisation technique for incorporating moving domains in the eddy
current formulation is the dual mesh technique proposed by [Flemisch et al., 2004].
It incorporates the movement of the conductive domains by using non matching
overlapping triangulations using a mortar element technique. Unfortunately, the
projection operator used in this context is based on a Lagrange multiplier tech-
nique, which is numerically difficult to handle.

An example for a Eulerian approach can be found in [Bay et al., 2003] that
introduces the movement of the inductor, by utilising an inter-element transport-
ation method of the inductor material in a fixed mesh. This standard Eulerian
technique is problematic in the the context of induction heating, since it is very
important to track the correct boundaries of each object. Otherwise, the discret-
isation might not conform to the physical problem, i.e. the surface effect could
lead to a large deviation of the induced eddy currents inside the domain, leading
to further approximation errors, which might amplify in subsequent time steps.

It follows that the simplest description in the context of induction heating is
a standard Lagrangian approach. This allows a tracking of the initial interface,
ensuring that the physical effects can be correctly reproduced. Unfortunately, in
practice it is problematic to include the moving boundary problem in such a global
Lagrangian description. In essence, the finite element mesh has to be adapted
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at every time step of the numerical computation, in order to reflect the correct
relative placement of each respective physical object. A standard approach in this
context is the mesh adaptation of an existing finite element description, based on
a remeshing indicator.

An example for a remeshing technique of this type can be found in [Boussetta
et al., 2006] that defines a remeshing technique based on a Zienkiewicz-Zhu error-
estimator [Zienkiewicz and Zhu, 1987]. It defines an adaptive remeshing technique
for an existing mesh that undergoes a large deformation, imposing a local mesh
improvement procedure during the process. The examples provided in [Boussetta
et al., 2006] include workpieces that are deformed by external tools. The boundary
conditions are provided using surface-to-surface contact methods. The material
domain is described using a full Lagrangian approach, so that the material itself is
tracked using the elements of the finite element description. The model proposed
in [Boussetta et al., 2006] deals, therefore, with separate domains that are not
embedded in a global finite element domain, but can be treated independently,
due to the contact condition. In contrast, the induction heating problem in this
work deals with a configuration of workpiece and surrounding inductor that is
embedded in a surrounding air domain. A remeshing method, like the one proposed
in [Boussetta et al., 2006] could be used to describe this problem, even though
a fully global remeshing operation might be numerically difficult to apply. In
addition, mesh coarsening and refining operations can lead to interpolation and
approximation errors that lead to model errors. A remeshing process that is based
on error estimators can not guarantee the consistency of the discretised surface
during the computation, i.e. for the problem of induction heat treatment the
remeshing might lead to a discretisation error of the inductor or the crankshaft
surface, which can have a severe impact on the quality and form of the computed
magnetic field.

It is demonstrated in chapter III that the electromagnetic computation of the
induction heating problem can be efficiently solved, if a global surrounding air do-
main approach is used. This method leads to large, but sparse symmetric matrices
that can be solved using very efficient solution techniques. Therefore, a very ad-
vantageous approach should strive to include the relative movement of inductors
in such a manner that every subsequent time step is essentially comparable to the
first time step, in terms of mesh discretisation and mesh quality. In addition, a
prospective method should not necessitate the introduction of additional unknowns
in the final electromagnetic problem, which might destroy the good convergence
properties or the applicability of the efficient solvers that are presented in chapter
III.

In the following section IV.3 a mesh identification and mesh readaptation al-
gorithm is proposed that can be used to describe the inductor motion in a global
finite element mesh using discrete level set functions. The fundamental observation
is that the interfaces of the objects do not change their shape or come into contact
during the heat treatment. Therefore, any description of motion can be described
using rigid body transformations in a Lagrangian setting in such a way that the
initial mesh description reflects the correct boundaries throughout the full compu-
tation. The algorithm is based on the discrete representation, i.e nodes, edges and
faces of the discrete elements. The practical application is based on geometrical
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searching algorithms that can be implemented in an efficient manner and are local
in nature, so that they can be treated in parallel. The resulting finite element
mesh has the same quality as the initial mesh in every subsequent time step of the
numerical computation.

IV.3 Inductor motion using discrete level set

functions

The proposed algorithm is presented using a two-dimensional example domain,
depicted in figure IV.2a. It consists of an embedding model domain Ω that fully
encloses an inductor Ωtn

I . The method is indifferent to the number of enclosed
domains, e.g. inductor, crankshaft and flux concentrator. Therefore, it suffices to
demonstrate the algorithm using a simple configuration with only one conducting
element. A sample triangulation of the initial computational domain Ω using tri-
angular finite elements is visible in figure IV.2b. The full computational domain
is given as T , whereas the inductor domain is specified as T tn

I . The index tn spe-
cifies that this domain is an initial time step. The initial geometry serves as basis
for the transformed domain T tn+1

I that will be used in the next time step of the
computation.

Figure IV.2: Model domain (a) and computational domain (b)

The following time step, depicted as tn+1 is the next discrete time increment for
the imposed movement. The key observation for induction heat treatment is that
the surfaces of the involved objects can be assumed to be rigid, so that the initial
domains can change their position and orientation but not their shape. It follows
that the transformed inductor domain Ω

tn+1

I can be described using a rigid body
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transformation, as

Ω
tn+1

I = Ψ(Ωtn
I , tn+1), (IV.1)

which can directly be applied to its discrete form T tn+1

I , such that

T tn+1

I = Ψ(T tn
I , tn+1). (IV.2)

Another observation is that neither contact nor inter-object penetrations can
occur during the heat treatment. In addition, each rigid object moves in the
embedding air, which is not affected by the electric computation, i.e. neither a
temperature change nor the applied magnetic loading are assumed to change its
relative magnetic permeability or its conductive properties. This invariant property
of the air domain leads to the conclusion that the movement of the inductor passes
entirely through a domain of which the properties are known in advance for each
subsequent computational step. The main idea of the proposed algorithm is that
it is theoretically possible to fully remove the embedding air domain, followed by a
connecting remeshing operation. This idea originates from observations regarding
the creation of the initial finite element discretisation. In the beginning, several
conducting domains are placed in a surrounding container object. Afterwards
the air-gap is filled with finite elements, in order to create a conforming finite
element mesh for the electromagnetic computation. The conclusion is that it would
be possible to initially transform the inductor in the first time step, before the
computational mesh has been processed, followed by the connecting meshing step.
The resulting finite element mesh would qualitatively be comparable to the non-
transformed initial time step.

The disadvantage of this approach is that a full meshing of the embedding domain
is computationally intensive. Furthermore, the meshing time, as well as the quality
of the resulting mesh are undetermined for arbitrary transformations. In practice,
the initial finite element mesh is prescribed by meshing algorithms, like the ones
presented in [Peraire and Morgan, 1997] or in [Gruau and Coupez, 2005], which
are assisted by metrics, specifying a prescribed element size. These bounding
geometries have to be described manually, in order to ensure the correct initial
meshing of complicated features. It is furthermore useful to initially prescribe
the element size in areas that are important for the numerical analysis. E.g. a
crankshaft that is heat treated by one rotating inductor can be meshed, such that
areas with strong gradients are finely meshed, whereas not strongly affected features
in a certain distance to the inductor are meshed in a coarse manner, in order to
save memory and computational time.

The proposed algorithm rests on the assumption that an initial finite element
discretisation is valid, such that any element in a certain distance to the initial geo-
metries will have been discretised using element sizes that are consistent with the
physical model. Let meas define a measure of a geometry, such that the intersection
of the transformed geometry Ω

tn+1

I and initial geometry Ωtn
I can be used to bound

the relative change of the permissible range of the rigid body transformation. The
prescribed bound is defined by

meas(Ωtn+1

I ∩ Ωtn
I )

meas(Ωtn
I )

≥ Z, (IV.3)
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where Z is a user supplied constant

0 ≤ Z ≤ 1, (IV.4)

which bounds the relative permissible change of the transformable geometry. If
Z is sufficiently large, the transformation will move through a layer of the em-
bedding air-domain that will possess a comparable element size. The goal is to
identify this layer of elements, which can be removed, due to the assumption of the
above-mentioned invariant properties of the constitutive elements. This surface
element layer defines a boundary that can be used akin: to the initial boundary
domain to recreate a conforming finite element mesh. The key difference is that
the finite element description can be assumed to include enough information to
facilitate a remeshing step, without the need of manual interaction, like in the
above-mentioned global remeshing case. In practice, the parameter Z will depend
on the rigid body transformation, as well as the initial finite element mesh. A
choice of Z = 0.8 would indicate that the permissible change is valid, if the trans-
formation of the boundary will result in a transformed geometry that coincides
with 80% of the volume of the initial step. The condition, described in equation
(IV.3) can be used throughout the computation, for validating the imposed time
step. If the condition indicates that the transformation exceeds the permissible
range, the time step can simply be reduced. This does not change the outcome of
the computation, since the identification algorithm is based on the discrete form
of the correct boundaries. A smaller time step that passes condition (IV.3) will
necessarily result in a consistent finite element description.

The removable subset of discrete elements will be denoted as T tn+1

ER
. The in-

dex denotes that these elements are related to the embedding air domain. The
transformed inductor domain T tn+1

I is embedded in this air domain. The remov-
able subset can be described using an identification function L (x) that describes,
whether a discrete geometrical feature, represented by the geometrical point x, is
affected by the transformation described using equation (IV.2). The removable
subset can, therefore, be defined as

T tn+1

ER
= (T tn

I ∪ T tn+1

L
) \ T tn+1

I , (IV.5)

using the discrete subset of finite elements T tn+1

L
, which have been defined using

L (x). It can be observed that the set of affected finite elements is only a small
subset of all possible finite elements in the computational domain T . In practice,
a further reduction technique can be applied to the embedding elements, such that

T tn+1

ER
⊆ T tn+1

E∗

⊆ T tn
E . (IV.6)

Figure IV.3a depicts the initial global finite element mesh, with an overlay of the
transformed inductor domain T tn+1

I in red. The elements near the border, as well
as the bottom range are unaffected by the transformation. In practice, a reduction
of the searchable finite element space can be achieved by applying an embedding
bounding geometry Ω

tn+1

BV . Possibilities are bounding spheres, as well as simple
bounding boxes. Figure IV.3b indicates such a bounding volume in green.
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Figure IV.3: Inital embedding domain (a) and spatially restricted search domain
(b)

This bounding volume is useful to restrict the searchable set of finite elements.
Figure IV.4a shows the identified subset of embedding elements in light-blue. The
identification function L (x) can now be used to reduce this subset to the set of
removable air elements T tn+1

ER
using the discrete set T tn+1

L
. Figure IV.4b shows this

removable subset in yellow.

Figure IV.4: Restricted searchable finite element set (a) and identified removable
element subset (b)

The identified elements T tn+1

ER
are now removed from the embedding air domain

T tn
E . Afterwards the elements of the initial inductor T tn

I are transformed using
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equation (IV.2) to T tn+1
I . In practice, this operation can be achieved by an update

on the vertices of the finite element mesh. The local element incidence information
is not influenced by this transformation algorithm. Afterwards, the remaining mesh
can be closed to create a conforming finite element mesh. The recreated mesh T tn+1

R

is depicted in violet in figure IV.5. It is a subset of the new embedding domain
T tn+1

E that can serve as a base for subsequent time steps of the inductor movement.

Figure IV.5: Recreated finite element mesh for the subsequent time step

The identification algorithm has led to a local remeshing strategy that affects
only a small subset of finite elements of the computational domain. The character-
istic element size of the affected elements should be in relation to the velocity and
time step, which is also assured by the conformity condition described in equation
(IV.3).

The mesh identification function L (x), which identifies the affected elements
T tn+1

L
, can be described independently of the local adaptation algorithm. In the

context of induction heating with rotating inductors, it is advantageous to base
this function on the initial transformed geometry, due to the assumption of object
rigidity. In the following, this function is identified as a discrete level set function
that is based on the geometrical features of the discrete inductor surface. In a two-
dimensional setting it consists of vertices and edges, whereas it consists of vertices,
edges and faces in three dimensions.

The function can be described using the relative distances of these geometrical
base features, with subsequent ordering according to the minimal distance. The
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resulting algorithm is simple and can be applied in parallel. Since it is based on
the discrete version of the geometries, any identification data will be accurate up
to the floating point accuracy. The mesh quality is not affected by the number
of time steps, i.e. since the accuracy of the finite element mesh in subsequent
time steps is always comparable to the initial time step, due to the restrictions
of the permissible time step size and velocity, the accuracy remains good for all
subsequent time steps.

A level set function is a spatial function that implicitly defines a surface. The
function maps a geometrical point x in the scalar space of real functions R, defining
whether it lies inside, outside or on the specified surface boundary. For simple
geometries it can be stated explicitly. E.g. a circle in the two dimensional space
can be specified by its center xc = [xc1, xc2], as well as its radius r, such that L (x)
can be defined for any point x = [x1, x2] as

L (x) =


(xc1 − x1)2 + (xc2 − x2)2 − r. (IV.7)

Further implicit level set distance functions for simple shapes like rectangles, poly-
gons, as well as boolean operations on these can be found in [Persson and Strang,
2004] which proposes a mesh generation technique based on implicit level set dis-
tance functions. Figure IV.6a visualises the implicit level set function of a unit
circle at coordinates xc = [1, 1], figure IV.6b gives that of a square with minimum
point xmin = [1, 1] and maximum point xmax = [3, 3], whereas figure IV.6c shows
a union of the former two implicit level set distance functions, which is defined as
the minimal value.

Figure IV.6: Level set function of a circle (a), a square (b) and the union of these
domains (c)

These types of level set distance functions can directly be used to identify the
set T tn+1

ER
. Unfortunately, it is difficult to describe a three-dimensional object like

an inductor using polygonal shape functions. In general, level set functions are
used in a Eulerian setting to describe the surface evolution. Such techniques are
commonly employed in fluid dynamics, e.g. [Barton et al., 2011] or [Marchandise
et al., 2007]. The usual practice consists in computing an initial level set distance
function L (x) in the setup phase. Afterwards, the level set function is transported,
using a velocity field v. The general level set advection formula (see, e.g. [Osher
and Sethian, 1988] or [Osher and Fedkiw, 2003]) relates the transient evolution of
the level set surface to its gradient, such that

∂L (x)

∂t
+ v∇L (x) = 0. (IV.8)
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This hyperbolic conservation equation is solved in subsequent time steps to com-
pute the advective transport of the initial surface. It is numerically difficult to
handle, thus requiring more elaborate solution techniques, like the streamline-
upwind-Petrov Galerkin finite element methods that deal with discontinuities and
shocks by introducing artificial diffusion in the weak form (see, e.g. [Brooks and
Hughes, 1982]) or discontinuous Galerkin finite element methods (see, e.g. [Cock-
burn and Shu, 1989]).

In this work it is proposed to describe a discrete version of the level set function
based on the surface primitives of the initial inductor domain. This is possible, due
to the assumption of rigidity. The level set function will, therefore, in the following
be described by its discrete equivalent L (x, T tn+1

I ) that is defined by

L (x, T tn+1

I ) = d(x, ∂T tn+1

I )sgn(nxs
·∆x). (IV.9)

The symbol T tn+1

I denotes the set of finite elements that identify the discrete
version of the inductor, whereas ∂T tn+1

I specifies the surface. In a three dimen-
sional setting, these surface elements consist of triangles, if tetrahedral elements
are chosen for the finite element discretisation. The first part of equation (IV.9)
defines the infimum distance of the geometrical point x to the discrete surface
∂T tn+1

I , which can be defined as

d(x, ∂T tn+1

I ) = inf ∥ x− xs ∥, ∀s ∈ ∂T tn+1

I . (IV.10)

The second part of equation (IV.9) specifies whether the geometrical point x is
inside, outside or on the discrete surface. It uses the surface normal nxs

of the
closest geometrical feature, defined by point xs, of the discrete surface ∂T tn+1

I for
the point x. The signum function is used to measure the sign of the scalar product
between the normal vector nxs

and the difference vector ∆x = x− xs.
The general application of this discrete level set function, in order to identify the

element subset T tn+1

I , does not necessitate the explicit knowledge of the distance
itself. The definition of equation (IV.9) includes the scalar distance, since it is a
by-product of the algorithm for searching the closest geometrical feature. Its value
can be used in a remeshing step to monitor or impose local mesh sizes.

The discrete inductor surface is not C1-continuous. Therefore, there is no ana-
lytically defined normal at the vertices and edges of the discrete surface. As a
remedy, a pseudo normal has to be implemented that approximates the continuous
normal. E.g. [Gouraud, 1971] proposes an average weighting of the normal nG

xs
,

stating that "This normal could be computed as, for example, the average of the
normals to each polygon associated with this particular vertex", such that

nG
xs

=

n

i=1 nfi

∥
n

i=1 nfi∥
, (IV.11)

for the n connecting faces to the vertex point xs, each defining a surface normal
nfi . Unfortunately, this simple averaging is problematic, since it equally weights
each of the connecting face normals. Consider the examples in figures IV.7a and
IV.7b. Equation (IV.11) defines the same surface normal for the vertex xs for the
example presented in figure IV.7a as for the example in figure IV.7b. This leads to
inconsistencies for complex finite element discretisations.
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Figure IV.7: Sideview of a simple pyramid build from three tetrahedral elements.
The third tetrahedron it is out of view.

[Bærentzen and Aanæs, 2005] proves that the angle weighted pseudo normal nα
xs

,
provided in ([Séquin, 1987], p. 15), can instead be used for the sign computation
in equation (IV.9). Comparisons to alternative pseudo normals, like the method of
[Glassner, 1990] that creates a vertex normal based on a least squares minimisation
technique or [Huang et al., 2001] that defines the surface normal based on the
largest inner product between the distance vector ∆x and the incident face normals,
can be found in section 2.1 of [Bærentzen and Aanæs, 2005].

The angle-weighted pseudo normal is a weighted version of the above-mentioned
Gouroud normal, defined in equation (IV.11). Let αi be the incidence angle of
the face, in relation to the vertex point. E.g. for the above-mentioned example in
figures IV.7a and IV.7b the incident angle for the left face is α1, whereas it is α2

for the right face. It follows that the angle-weighted pseudo normal is defined as
the weighted sum

nα
xs

=

n

i=1 αinfi

∥
n

i=1 αinfi∥
. (IV.12)

The influence of the vanishing angle α1 in figure IV.7b can therefore be accounted
for. [Bærentzen and Aanæs, 2005] shows that the angle weighted pseudo normal
can be defined for vertices and edges, observing that it is a generalisation of the
face normal, so that it can be used to distinguish whether a point lies inside or
outside of a closed surface. Specifically, the following inequalities hold

sgn(nxs
·∆x)







< 0, if x lies inside of T tn+1

I

= 0, if x lies on the surface ∂T tn+1

I

> 0, if x lies outside of T tn+1

I .

(IV.13)

The generalisation of [Bærentzen and Aanæs, 2005] defines three distinct normals
that are useful in the signed distance computation, namely the vertex normals,
defined using the incident angles αi, as well as the edge normals and the face
normals. In fact, the incident angle of an edge is equal to π, so that equation
(IV.12) leads to the average
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nα
xs

=
πnf1 + πnf2

∥πnf1 + πnf2∥
=

nf1 + nf2

∥nf1 + nf2∥
. (IV.14)

The incident angle of a face is 2π, so that the equation (IV.12) for the angle
weighted pseudo normal simplifies to the face normal itself

nα
xs

=
2πnf1

∥2πnf1∥
=

nf1

∥nf1∥
. (IV.15)

IV.4 Application of mesh adaptation for an

automotive crankshaft

This section demonstrates the mesh adaptation algorithm for a heat treated auto-
motive crankshaft. The location of the work piece and the inductor for initial time
step tn = 0 s is shown in figure IV.8. The crankshaft is spatially fixed and depicted
in blue. The inductor, which is shown in green, rotates around the local z-axis of
the excentric part with an angular velocity of ω = 5

36
π rad

s
. The mesh is adapted

for a time step of tn+1 = 0.1 s, which is equivalent to an inductor rotation of 2.5 ◦.

Figure IV.8: Initial location of inductor and crankshaft for the mesh adaptation
test case

The inductor geometry features steep angles and corners. It is modelled using
a solid square copper bar that is shaped into the present form. The surfaces are
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bounded by sharp corners and edges. The bottom part is rounded to enlarge the
heat affected zone inside of the crankshaft in the radial direction. This base is
directly joined to the elongated connectors resulting in a geometrical description
with steep angles.

This complicated inductor geometry can not easily be expressed by analytical
functions. Therefore, the discrete triangle surfaces are used to generate a discrete
identification function to model the inductor motion. The discrete level set function
(IV.9) is based on the correct representation of the pseudo normals, which are
computed for the geometric features of each finite element, namely faces, edges
and vertices. Each localised computation utilises the incident angle of each feature
and can be achieved in parallel.

Figure IV.9 shows the resulting angle weighted pseudo normals for the geometric
features of the inductor, as described in equation (IV.12). The pseudo normals are
shown in red. It can be seen that the normals on the flat surfaces are pointing in
the same directions as the original triangle surface normals. The edge normals, as
well as the vertex normals, are formed using the incidence angle weighted normals
of the adjacent connecting geometric features. For the top surface it can be noted
that the resulting edge normals point in a 45 ◦ angle. The pseudo normals for the
vertex point at the corner edges are built using three consolidated surfaces. It
follows that these pseudo normals correctly approximate the surface normals of
the geometry, so that they can be utilised in the computation of the discrete level
set function of the rotated inductor domain.

In order to identify the elements in the enclosing air domain T tn
E that are in-

fluenced by the movement, the closest feature of each finite element has to be
identified. The geometric test has to be done for all geometric features of each
finite element. Figure IV.10 depicts an exemplary tetrahedral element, in order
to visualise the element identification procedure. The tetrahedron is depicted in
blue. As can be seen, its closest feature is the element edge that is nearest to the
corner of the rotated discrete inductor domain T tn+1

I . The angle weighted pseudo
normal at the inductor corner can be utilised with the distance vector to the closest
feature, shown in red, in order to compute the discrete level set value, given by
equation (IV.9). It can be noted that the level set value associated to this finite
element is positive, since it is unaffected by the inductor rotation.

Figure IV.11 shows the resulting discrete level set function values for the com-
plete domain for the final rotation at time step tn+1 as a cut in the x-y-plane. The
initial inductor domain T tn

I is overlayed as a reference. It can be seen that the set
of affected finite elements is limited to the area surrounding the initial inductor
domain. The negative values of these elements are shown in red. The negative
values indicate that these elements are affected by the inductor rotation, i.e. the
rotated inductor domain penetrates any geometrical feature of these discretisation
elements.

The tetrahedral elements with negative values compose the list of removable
elements T tn+1

ER
that can be safely removed from the enclosing air domain T tn

E . The
element subset is localised to the inductor movement, so that the finite element
mesh can be readapted with standard remeshing schemes. In practice, a simple
connecting operation with additional interior vertex seed points can be used to
generate the bounded domain.
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Figure IV.9: Angle weighted pseudo normals for the inductor domain

The results demonstrate that the identification step can be restricted to an initial
restricting geometry, as proposed in equation (IV.6). This restricting geometry
can be used to significantly reduce the computational time, because it reduces the
number of possible removable elements based on a simple bounding geometry that
reasonably encloses the moving domain.

Possibilities for shapes are detailed in [Arvo, 1991]. These include simple spheres,
oriented bounding boxes (OBB) or axis aligned bounding boxes (AABB). OBBs
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Figure IV.10: Closest point of a tetrahedral element with respect to the inductor
domain

are rectangular bounding domains that are based on the directions of the global
coordinate system, whereas AABBs are standardised on a local coordinate system
that is related to the principal orientation of the reference geometry. Oriented
bounding boxes are simpler to implement, but fixed to the given global coordinate
system. Boundary tests that are necessary to identify elements belonging to the
subset of possible removable elements are simple to implement. For rectangular
shaped geometries all four sides and each of the eight vertex points need to be
tested. The computational effort can be minimised by utilising a tree structure
that is based on the coordinate directions. Unfortunately, any possible geometric
rotation of the underlying geometry can not efficiently be included in the bounding
geometry of an OBB, since the global directions of the global coordinate system are
fixed. In contrast, AABBs are based on the principal directions of the moveable
reference domain itself. Therefore, the bounding geometry can be rotated together
with the rigid inductor geometry. The computational effort is slightly elevated,
but is outweighed by the reusability of the bounding geometry throughout the full
heat treatment computation.

Figure IV.12 visualises a cut of the full global finite element mesh at time step
tn+1 including the rotated inductor domain T tn+1

I in green, the fixed crankshaft
domain TC in blue and the locally readapted enclosing air domain T tn+1

E in grey
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Figure IV.11: Discrete level set function values for an inductor rotation of 2.5 ◦

around the z-axis

with the remeshed removable subset T tn+1

R shown in orange. It can again be noted
that the readapted mesh is highly localised to the surrounding area of the rotated
inductor. The element size is evenly distributed, so that the remeshing phase does
not introduce distortions. The mesh quality remains comparable to the initial
mesh. It can be seen that the localised algorithm results in the adaptation of a
very restricted subset of elements, so that the mesh quality remains high.

The local mesh adaptation can now be utilised inside the heat treatment proced-
ure of the complete work piece and inductor system. Figure IV.13 visualises the
cut of the final mesh after the initial inductor rotation by 2.5 ◦. The initial distri-
bution of heat in the crankshaft domain results in an elevated temperature profile
close to the crankshaft surface that is nearest to the inductor. The power of the
current source is chosen so that the surface temperature of the heat treated zone
rises by approximately 20 ◦C once the next time step is reached. It is visible that
the volume of the heat affected area is effectively enlarged in the radial direction,
due to the round shape of the inductor bottom part.

The rotated inductor domain at the next time step tn+1 is fully embedded in
a precise enclosing domain T tn+1

E , which is coloured in grey. The average finite
element size increases closer to the surface area ∂T tn+1

E of the embedding domain.
Close to the inductor surface, the embedding elements are smaller and approach the
size of the elements of the inductor surface. The details of the fine mesh are clearly
visible in the small air strip between inductor domain and crankshaft surface near
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Figure IV.12: Cut of the recreated global finite element mesh after mesh adapation
with new enclosing domain T tn+1

R

the round shaped bottom part of the inductor.
The orange coloured finite elements indicate the recreated finite element mesh

that is generated to fill the void, due to the exclusion of the removable subset.
The new elements do not diverge in size or shape from the initial description. The
quality of the finite element mesh is comparable to the initial domain and does
demonstrably not diminish the discretisation quality, if a reasonably bound on
the permissible inductor motion is defined, as demonstrated in equation (IV.3).
The highly efficient mesh identification and adaptation algorithm can be used for
all subsequent time steps, ensuring the correct coupling between inductor and
workpiece.
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Figure IV.13: Adapted finite element mesh T tn+1 corresponding to an inductor ro-
tation of 2.5 ◦ with temperature distribution of the crankshaft at
time step tn+1 = 0.1 s
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V Industrial applications

Français:

Ce chapitre détaille quelques applications industrielles. Le but est de démontrer la
fiabilité du modèle numérique qui a été présentée dans cet ouvrage. Les exemples
sont rangés par ordre de difficulté croissante. Le premier exemple concerne un cy-
lindre chauffé par un inducteur dans une configuration en boucle. Ce modèle est
utilisé pour montrer l’application générale avec l’évolution du matériau en tempé-
rature. Les résultats sont comparés avec le modèle de pénétration exponentielle,
qui a été introduit dans un chapitre précédent.
Ensuite, le modèle numérique est appliqué pour analyser le traitement par induc-
tion d’un pignon. Il s’agit d’une géométrie complexe qui nécessite une discrétisation
avec un maillage très raffiné. Le modèle est traité en supposant que les proprié-
tés matériau restent constantes pendant la simulation. Néanmoins, il est montré
pourquoi il serait nécessaire d’utiliser une simulation numérique pour cette géomé-
trie complexe par rapport à une approximation simple en utilisant le modèle avec
une estimation exponentielle. En effet, le courant d’annulation qui est créé dans
les dents du pignon aboutit à une distribution complexe de la densité de chaleur
générée par les courants induit.
Le dernier cas présenté fait l’objet du projet OPTIPRO-INDUX et concerne le
problème complètement non-linéaire du traitement par induction d’un vilebrequin.
Nous analysons d’abord les d’application du courant sur un domaine complexe,
i.e. l’inducteur utilisé. Nous analysons ensuite l’évolution de la température, avec
prise en compte de l’évolution des propriétés matériau et une illustration des effets
qui apparaissent. Finalement, l’efficacité numérique du solveur est illustré par sa
convergence rapide et stable.
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English:

This chapter details several industrial applications. The goal is to demonstrate
the reliability of the numerical model that has been presented in this work. The
examples are ordered by increasing difficulty. In the beginning, there is a model
of a cylinder that is heated by an inductor in ring-configuration. The results will
be compared to the exponential penetration model that has been introduced in a
previous chapter.
Afterwards, the numerical model is applied to calculate the induction heat treat-
ment of a gearwheel. It concerns a complex geometry, which necessitates a fine
finite element discretisation. The model is treated with the assumption that the
material remains constant throughout the simulation.
Nevertheless, it is possible to indicate why it is necessary to utilise a numerical
simulation to deal with this complex geometry in contrast to an approximation
using the exponential decaying model. In effect, the current cancellation effect,
which is created in the teeth of the gearwheel, leads to a complex behaviour of the
heating power density, which is generated by the eddy currents.
The final example is the automotive crankshaft of project OPTIPRO-INDUX.
It possesses a fully non-linear material behaviour. In the beginning, there is a
demonstration of the application of the source current on a complex domain, i.e.
the used inductor. Afterwards, the evolution of the temperature is shown, followed
by the evolution of the material and a demonstration of the effects that appear.
Finally, the good behaviour of the efficient solver is illustrated, which leads to a
rapid and stable convergence.
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V.1 Cylinder spin hardening

This test case involves a cylindrical shaped part with a diameter of 7.5mm that
is placed in the centre of a ring shaped inductor on which a voltage potential is
applied that changes in time using a frequency of 10 kHz. An overview of the model
is given in figure V.1.

Figure V.1: Model of the cylinder spin hardening test case

The material properties of the workpiece ΩC are non-linear and depend on the
temperature T . The thermal properties are chosen according to an N-alloyed aus-
tenitic steel of type 316L (X2CrNiMoN17-12). The electrical resistivity is defined
using a certain transition temperature Tt, where the character of the behaviour
changes. The material behaviour is defined for the temperature T in ◦C using the
following conditional form

if (T < Tt)

ρ = ρ0



1 + αρ



exp


T

τ1



− 1



(V.1)

else

ρ̄ = ρ0



1 + αρ



exp


Tt

τ1



1 +
τ2
τ1



− 1



(V.2)

ᾱρ = −αρ

ρ0τ2
ρ̄τ1

exp


Tt

τ1
+

Tt

τ2



(V.3)

ρ = ρ̄



1 + ᾱρ exp



−
T

τ2



(V.4)

end if,

where αρ, τ1 and τ2 are curvature parameters for the temperature regions before
and after the transition temperature Tt has been reached and ρ0 defines a reference
electrical resistivity. For the cylinder spin hardening test case, these parameters are
chosen as Tt = 200 ◦C, αρ = 0.6, τ1 = 150 ◦C, τ2 = 500 ◦C and ρ0 = 1.35 · 10−7 Ωm.
The initial temperature has been defined as Tt0 = 600 ◦C, so that the material is
well above the transition temperature Tt. It follows that the electrical resistivity
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inside the workpiece domain is defined using the non-linear relationship given in
equations (V.2)-(V.4). The relative magnetic permeability is defined as

µr(T ) =



max(µmax
r (1− exp(T−TC

αµ
)), 1), if T < TC

1, if T ≥ TC .
(V.5)

For the cylinder spin hardening test case the material is defined, using a Curie
temperature of TC = 850 ◦C, the curvature parameter αµ = 140 ◦C and an initial
maximum value of the relative magnetic permeability of µmax

r = 10.
In the following, the evolution of the physical quantities is presented for three

distinct time steps. Time step ① is the initial step at the end of the final electro-
magnetic period, after the convergence of a stable heating power density has been
established.

Time step ② is at a later instant of time, after the temperature has been allowed
to evolve, but before the Curie temperature has been reached. Afterwards, time
step ③ is shown after the Curie temperature has been reached in a large part of
the inductor domain.

Figure V.2a gives an overview of the temperature evolution for each time step,
measured using a centre cutting line. The initial time step ① gives the magnetic
field strength for the final sub-time step of the first heating power density calcula-
tion, before the first temperature evolution computation is accomplished. There-
fore, the cylindrical part is fully homogeneous, due to the weak coupling procedure
of the electromagnetic/temperature evolution problem.

The second time step ② shows an exponentially decaying behaviour, such that
the largest temperature is to be found near the surface of the domain, which then
decreases in an exponential manner to the centre of the workpiece. It can be
noticed that the temperature at the centre of the workpiece is greater than the
initial temperature. This is solely due to temperature diffusion effects, since there
are no eddy currents in the centre of the material, because of current cancellation
effects.

Finally, time step ③ shows a non-exponentially decaying temperature distribu-
tion. Its form follows a waveform. This pattern is due to the non-linear interaction
of the material evolution and the changes in the applied magnetic field.

The distribution of the relative magnetic permeability is visualised for several
distinct time steps in figure V.2b. The relative magnetic permeability decreases
with rising temperature. Therefore, the relative magnetic permeability is greatest
for the initial time step ①. The second time step shows that the relative mag-
netic permeability starts to decrease in the complete domain, with smallest values
close to the surface of the workpiece. The former time step shows a temperature
distribution that is well below the Curie temperature. In contrast, time step ③

shows the relative magnetic permeability for a time step with parts of the domain
well in the austenitic region. Therefore, the relative magnetic permeability in large
parts of the domain instantaneously jumps to the value of the relative magnetic
permeability in free space, i.e. µr = 1.

The induced heating power density is greatest for the initial time step ①, because
the penetration depth is smallest for this time step, as can be seen in figure V.2c.
The heating power density is scaled by the maximum value of the first step. The
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Figure V.2: Temperature distribution (a), relative magnetic permeability (b) and
heating power density scaled by the maximum value (c) for the cyl-
indrical part at three different time steps
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heating power density follows the exponentially decaying form of the approximation
that is presented in subsection I.5.1. The induced heating power density of the
second time step ② is smaller than that of the initial time step, due to the increase
of the penetration depth, as has been mentioned above. Time step ③ shows a
highly non-linear behaviour that shows a non-exponential behaviour. In contrast
to the approximation using the eddy current distribution of equation (I.6), the
maximum value of the heating power is not found near the surface, but in the
interior of the domain.

Figures V.3a, V.3b and V.3c show the magnetic field for each of the above-
mentioned time steps with an addition of streamlines, in order to visualise the
direction of the generated magnetic field. The cylindrical part, as well as the ring-
inductor, are shown as solids using the colors grey and red. The skin effect is
clearly visible for the first time step in figure V.3a, showing a large concentration
of the magnetic field near the surface of the cylindrical part. The magnetic field
is symmetric and extends in a ring-like manner in the orthogonal direction of the
principal winding direction of the inductor.

The magnetic field strength is largest in this time step, in contrast to time steps ②

and ③, as can be seen in figures V.3b and V.3c. This can be explained by the change
of the physical properties of the cylindrical part, due to a rising temperature, which
results in a decrease of the relative magnetic permeability, leading to an increase of
the penetration depth with respect to the applied frequency as has been presented
in equation (I.12)

δ ≈ 503


ρ

fµr

H− 1

2m
1

2 .

The volume of the affected zone increases, resulting in a decrease of the magnetic
field strength. This results in a decrease of the applied heating power density for
the later time steps. This effect has been mentioned in [Rudnev, 2003] (see also
[Grum, 2002]), which gives several examples for the highly non-linear waveshaped
pattern of real world induction heating applications. The penetration depth of the
cylinder test case is approximately 2mm, which is larger than the non-magnetic
layer visible in figure V.2b. [Rudnev, 2003] mentions that the wave-like form ar-
rangement is due, in essence, to the remaining magnetic properties inside of the
workpiece domain, which is called the dual-properties phenomenon. It is further-
more mentioned that these non-linear effects can lead to an overheating in the
interior of the domain, which is not predicted by the approximation theory presen-
ted in subsection I.5.1. It is used as a demonstration for the need of a coupled
numerical analysis, in order to explain real world heating phenomena. The same
wave shaped pattern can be found in [Nikanorov et al., 2013], which gives examples
regarding high frequency induction welding of steel tubes. Two numerical models
are presented. The first model includes a full discretisation of tube, inductor and
an impeder. The second model is a localised version including only the welded
tube. Both models are defined in a global configuration including a surrounding
air domain. The local model is chosen, since it allows to increase the accuracy
of the model without exceeding available computing resources. The temperature
profile in the welding point of the steel tube (see figure 9 in [Nikanorov et al., 2013])
is given for the full wall thickness. It follows a waveshaped curve, which flattens in
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(a) Streamlines of the magnetic field for the cylndrical part at time step ①

(b) Streamlines of the magnetic field for the cylndrical part at time step ②

(c) Streamlines of the magnetic field for the cylindrical part at time step ③

Figure V.3: Streamlines of the magnetic field for the cylindrical part for three dif-
ferent time steps
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the surface region, as presented in figure V.2a. It should be noted that the com-
plex interaction of thermal and magnetic properties result in a complex system
response. [Nikanorov et al., 2013] notes that a full model is absolutely necessary
for studying the correct system behaviour with respect to parametrical studies and
optimisation. Yet, the localised model can be used to study the non-linear effects
in the welding point.

It can be concluded that the approximative penetration depth model, using
assumptions of exponentially decaying induced eddy currents, is only applicable
for simple geometries with fully homogeneous materials.

V.2 Gearwheel spin hardening

This section shows the application of induction heat treatment for the complex
geometry of a gearwheel. These workpieces are hardened in the regions of their
teeth, mostly on the faces and the flanks. In an industrial setting the heating is
usually done in several heating cycles with different frequencies to evenly distribute
the heat in the heat affected zone. In the following, the effects of the choice of
frequency on the distribution of induced eddy currents is shown for a low frequency
of 1 kHz in comparison to a high frequency of 100 kHz.

Figure V.4 shows some features of the geometry around which a circular ring
shaped inductor is placed. The non-indicated corners have been rounded with a
radius of 0.25mm. The depth of this workpiece is 20mm.

Figure V.4: Geometrical details of the gearwheel test case

The gearwheel base circle can be identified as the circular shape that would
persist if the teeth were cut. This region behaves like a general cylindrical part
during induction heating, as described in section V.1. In contrast to the base
circle, the teeth show a complicated behaviour, due to current cancellation effects
[Rudnev, 2003]. The magnetic field created by the inductor enters each tooth
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not only through the top face, but also from both sides of the rest of the flank.
This generates opposing eddy currents that cancel each other out, such that the
heating power is showing a highly complex, geometry dependent behaviour. In the
following, a non-magnetic material for the gearwheel is considered, using a relative
permeability µr = 1 and a temperature independent resistivity ρ = 1.43 · 10−7 Ωm,
such that the current cancellation effects can be visualised without introducing
additional effects due to non-linear material behaviour. The thermal properties
are chosen according to a carbon steel of type C45.

Figures V.5a and V.5b show the location of two cutting lines that are used to
visualise the power density in different subsections of the gearwheel. The wire
frame model visualises the finite element model of the workpiece. The first line
extends from the centre outwards, cutting only the base circle. The radius of the
base circle is 50 mm, with a cylindrically shaped hole of radius 15mm in the centre.

Figure V.6a and V.6b show the distribution of induced heating energy for an
applied frequency of 1 kHz and 100 kHz. The penetration depth for the low fre-
quency test case is δ = 6.015mm, whereas it is 0.0615mm for the high frequency
test case.

It is visible in figure V.6a that the low frequency test case features a deep distri-
bution of induced eddy currents inside the workpiece. The heating power density
following the first line is showing an exponentially decaying behaviour, as pre-
dicted by the assumptions on the current distribution using equation (I.6). The
penetration depth is indicated and coincides well with the numerical results. The
blue-dotted line indicates the heating power density of the second cutting line. It
cuts through a tooth. The penetration depth is much larger than the width of each
tooth. Therefore, the current cancellation effects lead to a decrease of the induced
eddy currents inside the workpiece in these regions. This is clearly visible for the
region farther away of the base circle in figure V.6a. The induced heating power
density only follows an exponential behaviour inside of the base-circle domain.

Figure V.6b shows the effects of a high frequency on the distribution of induced
heating power density, inside the workpiece, using a frequency of 100 kHz. The
theoretical penetration depth for this material is indicated in the same manner as
for figure V.6a. As predicted by the theoretical assumptions on the eddy current
distribution, the heating power density decays rapidly in the direction of the interior
domain, such that it practically only heats up the outer diameter of the base circle.
For this test case, the penetration depth is smaller than the characteristic diameter
of each tooth, such that the current cancellation effects are not very pronounced.
The blue-dotted line in figure V.6b clearly shows that the current cancellation
effects are weak, such that the heating power density follows an exponential like
behaviour, even though it shows some divergences near the transition to the base
circle.

For both cases it is visible that the maximum heating power density and, there-
fore, the maximum induced eddy current is on the outermost point of the base
circle.

The distribution of heating power, using the above-mentioned frequencies, leads
to an uneven distribution of heat in the workpiece. Even though heat dissipates
in the domain, this can lead to an over-heating or under-heating of the teeth.
Therefore, the actual heating in an industrial setting has to be done using changing
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(a) Location of the first cutting line

(b) Location of the second cutting line

Figure V.5: Finite element discretisation of the gearwheel geometry with indication
of cutting lines for the heating energy density comparison
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(a) Heating power density for f = 1 kHz

(b) Heating power density for f = 100 kHz

Figure V.6: Heating power density over two cutting lines for the gearwheel test
case, scaled by the maximum value
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heating cycles including different applied frequencies, in order to evenly apply the
heat in the workpiece [Rudnev, 2003].

Figures V.7a-V.7d show the evolution of the temperature for the low frequency
case for different steps of one heating cycle. Figures V.8a-V.8d show the same
process with the applied frequency of 100 kHz.

Figure V.7: Temperature evolution for f = 1 kHz

The low frequency case visualises how the region of the base circle is heated,
without affecting the regions of the teeth, i.e. in this configuration the teeth are
under-heated due to the current cancellation effects. In this configuration a face
and flank hardening can only be achieved by applying a very high source current
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Figure V.8: Temperature evolution for f = 100 kHz
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and utilising conductive effects. The drawback would be that the region of the
base-circle might overheat, relative to the teeth.

For the high frequency test case, shown in figure V.8, it is visible that the
heating energy is only applied close to the surface of the gearwheel. The centre of
the workpiece and even the centres of the teeth near the roots are mostly heated
by conductive effects.

[Schlesselmann et al., 2013] provides several temperature and resulting martens-
itic phase profiles for the teeth of hardened gearwheels, computed by numerical
simulations and derived by experiments. An interesting effect is demonstrated re-
garding differences in the assumption of the simulation sequence in contrast to the
real experiment. [Schlesselmann et al., 2013] visualises the simulated temperature
profile of a gear, indicating a contour shaped hardening pattern. In contrast to the
simulation, the experimental result shows a through hardening of the full tooth.
[Schlesselmann et al., 2013] explains that this is due to the neglecting of the ne-
cessary holding time between induction heating and quenching procedure. During
this production phase, which lasts 0.4 s, temperature diffusion leads to a heat flow
in the direction of the core, so that the resulting martensitic structure is different
to the simulation.

The results are in accordance with the examples presented in [Rudnev, 2003]. In
addition, [Rudnev, 2003] shows special flux concentrator designs that can be used
to focus the heat effectively on the flanks, without affecting the region of the base
circle. These Gap-by-Gap inductors focus the heat either in each unique tooth or
in the roots of the gearwheel and are an alternative to the spin hardening using
circular shaped ring inductors to create non-uniform contour profiles to enable a
wide variety of hardness profiles.

The numerical test case is not fully centred on the symmetrical point of the
ring-centre, as can be seen in figures V.7 and V.8. It deviates slightly in the
positive x- and y-direction. The impact is larger for the high frequency test case.
In essence, this leads to a relative overheating of the teeth in the top region,
compared to the lower region. This is a common problem in induction heating,
such that homogeneous hardening patterns can only be achieved when the coil is
located in full symmetry to the workpiece [Rudnev, 2003]. Numerical analysis can
be used to spot such problems for complex geometrical parts, before the production
process begins.

An additional example for the influence of induction positioning is presented
in [Przyłucki and Smalcerz, 2013] for the heat treatment of a gearwheel, which
mentions that the heating is more uniform if the distance between inductor and
workpiece is increased. In order to derive correct temperature fields, [Przyłucki and
Smalcerz, 2013] includes a dual frequency heating approach (cf. [Grum, 2002]). In
an initial phase the workpiece is heated by applying a medium frequency of 10 kHz
for 1.5 s, followed by a high frequency heating phase using a frequency of 100 kHz
for 0.2 s.

An alternative approach consists in the application of superimposed frequencies
(see, e.g. [Biasutti et al., 2012], [Kobos et al., 2013] or [Schwenk et al., 2013]). This
approach is based on a direct application of several superimposed current sources.
The simultaneous application is motivated by noting that it can then be avoided
to switch between frequencies or distinct coils during the heat treatment [Biasutti

144



V - APPLICATIONS V.2 - GEARWHEEL SPIN HARDENING

et al., 2012]. The heating cycle is shorter, so that the possibility of cool-downs or
unwanted temperature diffusion is minimised.

[Schwenk et al., 2013] gives an experimental validation of a dual frequency in-
duction heating approach, with a focusses on the residual stress profiles in the
hardened zone, due to the material phase transformation, concluding that induc-
tion heating using superimposed middle and high frequency sources is a promising
approach.

[Biasutti et al., 2012] presents several examples with respect to the dual frequency
heating of a gearwheel. It notes several phenomena, which affect the distribution
of the induced eddy currents. It mentions that the proximity effect results in non-
uniform distributions inside the inductor. Furthermore, it is mentioned that the
end effect and edge effect result in non-uniform magnetic fields in the axial direction
of the heat treated workpiece, resulting in a variation of the induced heating power
in the axial direction. As a remedy, it is found that the coil size can be adapted
to counteract this effect and that flux concentrators should be placed on top and
below the workpiece. The edge effect results in an increase of the induced heating
power in the top region of the teeth near the corners, due to an interaction of the
axial and radial components of the magnetic field at these points. [Biasutti et al.,
2012] mentions that it is affected by the applied heating frequency, as well as the
coil geometries.

Additional examples for the influence of the edge effect on the temperature evolu-
tion of heat treated gear wheels are presented in [Bocher et al., 2013] (cf. [Candeo
et al., 2011]). The experimental setup involves a high frequency power supply
provided by EFD Induction, which generates source currents with a frequency of
190 kHz. [Bocher et al., 2013] shows comparable results to [Biasutti et al., 2012],
demonstrating a relative overheating of the region of the teeth. It mentions that
the edge effect is, in essence, influenced by the electromagnetic material properties
of the model, whereas the temperature gradient is more influenced by the thermal
parameters. It is shown that many physical effects can be reproduced, but it con-
cludes that the correct reproduction of the full thermal history of a surface heating
procedure is still an open problem.

[Kobos et al., 2013] analyses dual frequency generators for induction heating
applications. It gives several examples of output waveforms generated by different
generator sources (see, e.g. figure 2 and figure 3 in [Kobos et al., 2013] or figure 8
in [Biasutti et al., 2012]).

The numerical model proposed in this work is based on a fully transient formula-
tion of electromagnetic vector potential. The applied frequency can, therefore, be
applied using an arbitrary shape, which would make it particularly useful for the
above-mentioned dual frequency simulations using superimposed source currents.

The finite element mesh of this complex geometrical part includes around 1.4
million elements, resulting in around 4 million edge degrees of freedom for the
electromagnetic problem. The linear system of equations for the electromagnetic
problem can be represented using slightly over 65 million non-zero entries. The
convergence is uniform throughout the computation, as can be seen in figures V.9a
and V.9b, even though the geometry is highly detailed, featuring steep edges, many
possible re-entrant corners and sharp changes between element sizes. The solution
technique includes a GMRES solver using an auxiliary space one-cycle algebraic
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multigrid preconditioner, including a CLJP coarsening technique with a coarsening
strength threshold of 0.25. This configuration is chosen, because the material is
defined as linear and homogeneous, such that the initial electromagnetic computa-
tion can be used throughout the full heating cycle. The blue line in each respective
figure shows the convergence of the fastest converging time step, whereas the red
line shows the time step that needed the most iterations to reach convergence. The
residual error has been scaled to the same initial value, in order to enable a direct
comparison of the convergence behaviour.

The convergence is mostly uniform and depends strongly on the frequency of the
applied loading. This is due to the fact that the frequency changes the admissible
time step size, i.e. it decreases for higher frequencies. Therefore, the linear system
of equations, as well as the right-hand side, are weighted differently with respect
to the low frequency test case.

Figure V.9a shows that convergence can be achieved in a very low number of
iterations for the low frequency test case. On average, the linear system of equations
converges in 24 iterations.

The high frequency test case converges weaker, needing on average 51 solver
iterations to reach convergence. Yet, both cases show that the convergence is very
uniform with only slight variations for the different loading cycles, since both the
median and the mean are equivalent for each case. An overview of the compu-
tational time for the electromagnetic computation is given in table V.1 for the
1 kHz, as well as for the 100 kHz configuration using an auxiliary space multigrid
preconditioned GMRES solver in connection with a CLJP coarsening technique in
a sequential configuration.

elements nodes edges f elec. time steps elec. solver time
3.340.884 559.382 4.000.553 1 kHz 48 238 min
3.340.884 559.382 4.000.553 100 kHz 48 412 min

Table V.1: Discretisation, time steps and total cpu time for the electromagnetic
computation of the gearwheel test case on one processor using a CLJP
coarsening technique

The parallel convergence behaviour for this test case is indicated in figures V.10a,
in connection with a CLJP coarsening technique, as well as for an HMIS conver-
gence technique, in figure V.10d. It is visible that the HMIS convergence technique
shows convergence problems in highly parallelised test cases. It can be noted that
the convergence starts to severely degrade for parallel coarsening with 8 or more
partitions.

This is in accordance with the numerical experiments by [Sterck et al., 2006],
which shows that the HMIS convergence technique converges much slower than
the CLJP technique. Furthermore, it shows that the convergence behaviour of the
HMIS technique is severely affected by the granularity of the coarsening. For a
3D elliptic problem with varying material coefficients it is shown that the HMIS
technique needs approximately 12 times more solver iterations to converge than
a CLJP technique for the same granularity for a test case with a distribution of
approximately 64.000 nodes per processor. For the gearwheel test case, it can
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Figure V.9: Convergence behaviour of the electromagnetic problem for the gear-
wheel spin hardening test case

be observed that the strong loss of convergence is observed for the 16 processor
test case, which results in a rough distribution of 200.000 degrees of freedom per
processor. The setup time for each coarsening technique is visible in figures V.10b
and V.10e. It can be seen that the setup time peaks for the 2 processor test cases,
since the effects of the parallel computation, i.e. parallel messaging due to process
communication, together with a large coarsening surface, lead to a large increase in
computational time. The curve decreases for a rising processor count and flattens
for the highly parallel test cases. The good convergence behaviour of the CLJP
technique leads to lower solution times, as can be seen in figure V.10c. It can be
noted that the efficiency is greatest for the 8 processor configuration. An increase of
the granularity leads to an increase in process communication and a general loss in
numerical efficiency. This can also be seen in figure V.10f for the HMIS coarsening
technique. For this case, it is visible that the bad convergence behaviour leads to
a strong increase in the solution time. In comparison to the CLJP technique, the
most efficient parallel configuration is achieved by using a 4 processor setting.
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Figure V.10: Parallel convergence behaviour for the first electromagnetic time step
of the gearwheel test case with f = 100 kHz for the CLJP (a)-(c) and
HMIS (d)-(f) coarsening techniques
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V.3 Automotive crankshaft

This section demonstrates the numerical analysis of the induction heat treatment
of an automotive crankshaft. The model is visible in figure V.11. The crankshaft
is shown in light-blue. The inductor, shown in green, is placed to heat the third
eccentric axis, as seen from the origin of the coordinate system. The flux con-
centrators are shown in black, placed on top of the inductor. The crankshaft is a
complex part, featuring holes, steep edges and many sharp corners. The overall
goal is to heat the surface of the cylindrical part that will be used as a support for
a bearing. The industrial application features a relative movement of the inductor,
with respect to the crankshaft. Here, only the static case is presented to visualise
the main effects that happen during a fully non-linear analysis of an induction heat
treatment process.

Figure V.11: Crankshaft and inductor

The applied electrical loading varies with a frequency of 10 kHz. The inductor is
modelled using a fully closed domain, in order to achieve conformity with the weak
form of the electromagnetic problem, such that uniqueness and fast convergence
is ensured. The voltage potential distribution on the inductor domain is visible
in figure V.12. It can be seen that the inductor is modelled with sharp edges,
especially at the points where the generated electrical current changes directions.
This is due to using a simplified CAD geometry that only approximates the form
of the real inductor. Sometimes, these design inaccuracies can lead to convergence
problems, which makes this inductor a reasonably problematic boundary test case.
It will be shown later in this section that the convergence is, in fact, not negatively
influenced by these sharp edges.
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The flux concentrators, visible in black, are placed on top and inside the loop,
created by the inductor wiring. They are used to focus the magnetic fields. Possible
materials are ferrites or other metals or ceramics with a high relative magnetic
permeability. The flux concentration effect is shown later in this section.

Figure V.12: Voltage potential of the inductor and placement of the flux concen-
trators

The initial computation of the voltage potential on this complex domain is
achieved using the double cutting plane technique that is shown in subsection II.3.
Figure V.13 shows the 4 distinct cutting surfaces for this inductor. The cutting
plane on top with normal in the x-direction results in two separate surfaces marked
in light-blue and orange. The second cutting plane in the y-direction, which is also
visible in figure V.12 creates two additional cutting surfaces, shown in blue and
green.

The initial cutting plane is used to compute an initial voltage potential distribu-
tion using the formulation (II.58)-(II.60). The elements are not aligned perfectly
in the direction of the cutting plane, thus the strong imposition of the Dirichlet
conditions leads to slight inaccuracies near the cutting plane. The current at this
section will be slightly divergent. The second cutting plane is chosen in a straight
section, where it can be assumed that the computed current of the first compu-
tation will be uniformly pointing in the y-direction. The second cutting plane
can therefore be used with the resulting nodal values of the initial computation,
in order to compute a fully conforming voltage potential, resulting in a smooth
non-diverging source current.
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Afterwards, the source current is projected using the curl-conforming potential
representation presented in subsection II.3, in order to ensure the full conformity
of the applied source current. This procedure can be used for arbitrarily complex
inductors, to ensure the conformity of the applied currents and the fast convergence
of the electromagnetic magnetic vector potential problem.

Figure V.13: Cutting surfaces for the voltage potential computation of the closed
inductor domain

The impact of the flux concentrators can be seen in figure V.14. It shows the
magnetic field B scaled by each respective maximum value to enable a direct com-
parison. Figure V.14a and V.14b show cuts in the y-z-plane in the middle of the
flux concentrator, closest to the origin. For the first test case the flux concen-
trator is modelled with a relative magnetic permeability of µr = 1 for figure V.14a,
whereas it is µr = 1000 for the second test case in figure V.14b. Figures V.14c
and V.14d show the magnetic field for a cut in the x-y-plane for the inductor arc
closest to the origin.

The electromagnetic time step shown is the final step of the first electromag-
netic computation with a homogeneous relative magnetic permeability, before the
convergence of the heating source density is established. Therefore, this test case
is equal to a fully linear homogeneous test case.

It can be seen that the induction application without flux concentrators, i.e.
a relative magnetic permeability equal to the one of the surrounding air-domain,
leads to a wide distribution of the magnetic field in the crankshaft domain. Figure
V.14c shows the homogeneous distribution over the circular domain.

In contrast, figures V.14b and V.14d show the effect of using flux concentrators
with a high relative magnetic permeability on the computed magnetic field B. The
magnetic field is concentrated below the flux concentrators. In particular, this
effect is visible in figure V.14d, which shows that the flux concentrators lead do a
large relative decrease of magnetic field strength near the centre.
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Figure V.14: Influence of flux concentrators on the distribution of the magnetic
field for µr = 1 for (a) and (c) and µr = 1000 for (b) and (d)
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Figures V.15a-V.15c show a top-view of the crankshaft surface, without showing
either the flux concentrators or the inductor, for three different test cases at a same
later time step.

Figure V.15a shows the temperature distribution for a test case without concen-
tration of the magnetic field B in the regions of the flux concentrators. Figures
V.15b and V.15c show the temperature distribution for test cases using relative
magnetic permeabilities of µr = 100 in figure V.15b and µr = 1000 in figure V.15c.

The concentration of the magnetic field throughout the computation is greatest
for the case using a flux concentrator with a relative magnetic permeability µr =
1000, even though the concentration effects of the test case with µr = 100 is only
slightly smaller. The main difference is visible in contrast to the case shown in
figure V.15a that results in a very homogeneous distribution of heat under the
inductor. The application volume of the heating power is enlarged, such that the
final maximal temperature is much lower than for the cases involving efficient flux
concentrators.

In the following, the fully non-linear effects of the numerical model will be demon-
strated for the test case using flux concentrators with a relative magnetic permeab-
ility of µr = 100. The material model of the workpiece shows a temperature de-
pendent behaviour. Its thermal properties are defined according to a steel of type
38MnSi4. The relative magnetic permeability is described using the model presen-
ted in equation (V.5), using a Curie temperature of TC = 732 ◦C, the curvature
parameter αµ = 80 ◦C and an initial maximum value of the relative magnetic
permeability of µmax

r = 10. The electrical resistivity is modelled using equations
(V.2)-(V.4) with given transition temperature Tt = 200 ◦C. The reference resistiv-
ity is given as ρ0 = 1.35 · 10−7 Ωm, whereas the curvature parameters are defined
as αρ = 0.6, τ1 = 150 ◦C and τ2 = 500 ◦C. The non-linear material models for the
electromagnetic parameters are visualised for the given temperature range of this
test case in figures V.16a and V.16b.

Figure V.17a gives an overview of the temperature distribution after the material
has been allowed to evolve. The temperature range is slightly above the Curie
temperature in some parts of the domain. It can be seen that the temperature
evolution is not only influenced by the position of the flux concentrators, but also
by the geometrical features of the crankshaft itself; like the hole used for fixing the
bearings.

The relative magnetic permeability for this time step is visualised in figure V.17b.
The relative magnetic permeability is mostly homogeneous in the crankshaft do-
main. It decreases only in the region close to the inductor, where the temperature
is elevated. The blue regions indicate the domains where the Curie temperature
TC is reached, such that the material is in austenitic configuration.

The electrical conductivity σ, seen in figure V.17c, closely resembles the distribu-
tion of the relative magnetic permeability. Yet, it can be seen that its distribution is
smoother, due to the fact that there are no discontinuities in the material evolution
curve V.16a.

In the following, four different time steps are shown for a cut in the x-y-plane
directly under the flux concentrator closest to the origin. Figure V.18 shows the
cut for the first final converged electromagnetic computation, defined as ①. The
homogeneous temperature is shown in V.18a, whereas V.18b shows the relative
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Figure V.15: Influence of flux concentrators on the distribution of the temperature
for µr = 1 (a), for µr = 100 (b) and for µr = 1000 (c)
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Figure V.16: Non-linear material law provided by EDF for the electrical resistivity
(a) and the relative magnetic permeability (b)

magnetic permeability. The line, indicated in V.18b is used to enable a comparison
of the temperature, the relative magnetic permeability, as well as the heating power
density in each time step.

Figures V.19a and V.19b show the temperature and relative magnetic permeabil-
ity in a later time step, indicated as ②. The temperature has increased, but remains
well below the Curie temperature, such that the relative magnetic permeability,
shown in figure V.19b, is well above µr = 1 in the whole domain.

Figures V.20a and V.20b show the same region just after the Curie temperature
has been reached in parts of the domain for time step ③, visible by the dark-blue
shading in figure V.20b. The influence of the flux concentrators is clearly visible
in the temperature evolution in figure V.20a, due to the large concentration of the
high temperature directly below the flux concentrators.

Figures V.21a and V.21b show the temperature and relative magnetic permeab-
ility for the time step ④, well after the Curie temperature has been reached. The
large domain, shaded in dark-blue in figure V.21b is an indication that large parts
of the crankshaft domain under the flux concentrator have been transformed into
the austenitic phase. The temperature distribution in figure V.21a shows that the
temperature on the sides has increased well above TC , whereas the centre remains
relatively cold. This is due to the fact that the induced heating power density is
zero at the centre, because of current cancellation effects. The temperature can
only increase through conductive effects.

The overall temperature range begins from T = 593 ◦C, since it is based on the
temperature in the full crankshaft domain. Radiation effects and the exchange
between the crankshaft surface and the surrounding air, have let to a cooling in
parts of the domain that have not been influenced by the induced eddy currents.

The cutting line, visible in figure V.18b enables a comparison of the heating
power density for each time step. The comparison is shown in figure V.22. Each
heating power density is scaled by the maximum value of the first time step ①.
The heating power density for the homogeneous temperature and, therefore, the
homogeneous distribution of relative magnetic permeability µr is shown as a black
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(a) Temperature distribution

(b) Relative magnetic permeability

(c) Electrical conductivity

Figure V.17: Temperature (a), relative magnetic permeability (b) and electrical
conductivity (c), shortly after the Curie temperature has been reached
in parts of the domain
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Figure V.18: Temperature and relative magnetic permeability for a cut of the
crankshaft with homogenous initial temperature distribution and in-
dication of the sampling line for time step ①
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Figure V.19: Temperature and relative magnetic permeability for a cut of the
crankshaft before Tc is reached for time step ②
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Figure V.20: Temperature and relative magnetic permeability for a cut of the
crankshaft shortly after Tc is reached for time step ③
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Figure V.21: Temperature and relative magnetic permeability for a cut of the
crankshaft well after Tc is reached with large austenitic region for
time step ④
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line. The blue line in figure V.22 indicates the heating power density after the tem-
perature has increased, but remains well below the Curie temperature, as shown in
figure V.19a. The penetration depth is slightly increased, such that the maximum
value of the heating power density is lower than for the fully homogeneous test
case.

The red line indicates the heating power density for time step ③, shortly after
the Curie temperature has been reached in parts of the domain. The penetration
depth has increased further, resulting in a decrease of the maximum value of the
heating power density and a deeper distribution of heat in the crankshaft domain.

Finally, time step ④ is indicated in yellow for a point in time, where a large
domain of the heat affected zone has reached the Curie temperature. The penetra-
tion depth is largely increased, such that the heat is applied deeper in the material
than for the former time steps. Yet, the large increase in penetration depth results
in a large reduction of the maximum value of the applied heating power density.

Figure V.22: Comparison of induced heating power density for different distribu-
tions of relative magnetic permeability
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The finite element model, including the global surrounding air domain, is discret-
ised using around 2.6 million elements, resulting in a linear system of equations for
the electromagnetic vector potential computation, consisting of around 3 million
edge degrees of freedom. It is described using roughly 50 million non-zero entries.

The linear system of equations is solved using a preconditioned GMRES solver,
with an auxiliary Maxwell space one-cycle algebraic multigrid preconditioner, fea-
turing an HMIS coarsening technique and a coarsening strength threshold of 0.25.
In contrast to the CLJP coarsening scheme, the HMIS coarsening technique con-
verges slower, but is easier to set up, as has been shown in chapter III. Therefore,
the HMIS coarsening technique is chosen, because the non-linear behaviour of
the material necessitates a reassembling of the linear system of equations during
the temperature evolution. The disadvantage is the weaker convergence of this
coarsening scheme, in relation to the stronger converging methods.

Figures V.23a, V.23b and V.23c show the convergence behaviour for a full nu-
merical solution for three different test cases, using no flux concentrators in the
test case shown in figure V.23a, using flux concentrators with a relative magnetic
permeability of µr = 100 in figure V.23b and using flux concentrators with a relat-
ive magnetic permeability of µr = 1000 in figure V.23c. The relative residual error
is scaled to the same value, in order to enable a direct comparison.

Each figure shows the fastest converging time step for the full non-linear analysis
in blue, whereas the slowest converging time step is indicated in red. It is visible
that the convergence rate is very homogeneous, since the average value is very
close to the median in each test case. Convergence for each case can be achieved
in slightly over 50 solver iterations.

Interestingly, the large change of relative magnetic permeability µr has no pro-
found impact on the convergence behaviour, i.e. the solution time is not highly
influenced by the choice of relative magnetic permeability of the flux concentrators.
It is visible that the test case using a flux concentrator with µr = 100, visible in
figure V.23b, shows a slightly worse convergence than the case with no flux con-
centrators, visible in figure V.23a. Yet, the test case with the flux concentrators
featuring the highest permeability of µr = 1000, visible in figure V.23c, converges
faster than both former test cases.

It is difficult to assess the reason behind this phenomenon, since the coupled ana-
lysis features distinct temperature dependent material models that each influence
the distribution of the magnetic field, due to the impact on the penetration depth.
Judging from the results of figures V.23a- V.23c it is, therefore, reasonable to as-
sume that the choice of relative magnetic permeability for the flux concentrators
has no profoundly negative impact on the computational time.

The non-linear material evolution has been demonstrated, as well as the effect of
changing penetration depths on the distribution of the heating power density. The
computational representation of the crankshaft involves many geometrical features
that can be considered to be problematic with respect to numerical computations,
like holes, steep edges, sharp corners, larger material coefficient jumps and large
differences in relative finite element mesh sizes.

This test case shows the applicability of the preconditioned GMRES solver using
the auxiliary space algebraic multigrid method, for solving the global linear system
of equations of the electromagnetic vector potential formulation. The introduction
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of conforming source currents for the complex inductor geometry, using the dual
cutting plane approach, in connection with the curl-space projection of the source
current density, results in fast convergence with a large reduction of relative residual
errors. This test case shows the feasibility of the weak coupling approach for the
induction heating simulation for complex workpieces.

An overview of the fully coupled electromagnetic/temperature evolution compu-
tation is given in table V.2 for a sequential computation using a HMIS coarsening
technique.

elements nodes edges electromagnetic time steps total solver time
2.612.618 435.714 3.049.254 256 40.48h

Table V.2: Discretisation, time steps and total solver time for the fullly coupled
electromagnetic/temperature evolution computation for the crankshaft
test case with µr = 100 on one processor using a HMIS coarsening
technique

The good convergence behaviour of the auxiliary space Maxwell algebraic mul-
tigrid solver in connection with a CLJP coarsening technique is visible in figure
V.24a. For this test case the convergence behaviour is not affected by the par-
allel coarsening of this method. In contrast, figure V.24d shows the convergence
behaviour using a HMIS coarsening. It is visible that the convergence behaviour
is better than for the geometrically complex gearwheel test case, shown in figure
V.10d. It can be assumed that this effect is due to the more homogeneous distribu-
tion of elements and materials in the crankshaft test case. The gearwheel test case
features strong changes in element size, coupled with the highly detailed discret-
isation of the teeth. The coarsening leads to a dispersion of the initial gearwheel
surface that is increased with rising granularity. In contrast, the crankshaft test
case features small elements in the region directly between inductor and crankshaft
surface. The element size decreases smoothly towards the outside surface of the
air domain, thus leading to a more equal distribution in the coarsening step. Even
though the crankshaft test case shows a better convergence behaviour than the
gearwheel test case, the negative effects of the parallel partitioning are also visible.
Interestingly, the highly parallel test case using 32 processors converges slightly
better than the test case using 24 processors, as can be seen in figure V.24d. This
is an indication of the complex relationship between coarsening, parallel partition-
ing and numerical convergence.

The parallel setup time, visible in V.24b and V.24e follows the same behaviour
as the gearwheel test case V.10b and V.10e. Again, the setup time is related to
the surface coarsening area and the amount of parallel coarsening. The setup time
peaks for the 2 processor configurations, decreases with increasing parallelism and
flattens out for higher processor counts. The advantage of the HMIS coarsening
technique should rest in the faster setup times. Interestingly, this effect can only
be noted for the sequential, as well as for the highly parallel test cases. Unfortu-
nately, the gains in the highly parallel configurations are marginalised by the loss
of efficiency in the solution step.

The solution time shows the influence of the convergence, as well as parallel
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effects, like reduced efficiency due to increased inter-processor communication. The
CLJP solver is more efficient, due to its better convergence. The disadvantage
of the HMIS coarsening technique is clearly visible for the highly parallel test
cases, shown in figure V.24f. The increase of the processor count leads to an
increase in computational time. The same effect is visible for the CLJP coarsening
technique, even though it is not as strong as for the HMIS coarsening. For the
HMIS coarsening it is shown that for this configuration a 4 processor partitioning
leads to a faster solution than both a 24 and a 32 processor partitioning. Figure
V.24c shows that the fastest solution can be attained using a CLJP coarsening using
a 16 processor partitioning. The 24 processor test case necessitates approximately
the same computational time as an 8 processor test case.
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Figure V.23: Influence of the relative magnetic permeability of the flux concen-
trator on the convergence behaviour of the electromagnetic problem
of the automotive crankshaft test case

Figures V.23a-V.23c indicate the good convergence behaviour with respect to
the reduction of the residual error. Table V.3 shows the reduction of the residual
error with respect to the solution time for the first increment of the crankshaft test
case in a parallel setting using 16 processors. The computational time increases
linearly, with the reduction of the residual error. It can be seen that a reduction of
the numerical error by 10−10 is only twice as costly as the reduction of the residual
by 10−5. The results indicate that the auxiliary space algebraic multigrid technique
is useful in applications, which have a need for a large reduction of the residual
error.

residual error reduction 10−5 10−6 10−7 10−8 10−9 10−10

time in s 29.7 35.3 39.2 47.2 52.5 58.0

Table V.3: Reduction of the residual error for the first time step in comparison to
the solution time for the crankshaft test case on 16 processors using a
CLJP coarsening technique
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Figure V.24: Parallel convergence behaviour for the first electromagnetic time step
of the crankshaft test case with µr = 100 for the CLJP (a)-(c) and
HMIS (d)-(f) coarsening techniques
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VI Conclusions

Français:

Le dernier chapitre résume les principaux résultats. Les hypothèses concernant
le modèle numérique sont comparées avec les conclusions sur les applications de
référence, afin d’évaluer les domaines d’application possibles des méthodes numé-
rique proposées. Les résultats acquis concernant les méthodes de résolution efficaces
sont présentés pour le traitement numérique des applications industrielles à grande
échelle. Une conclusion est ensuite donnée au sujet de l’algorithme proposé pour
l’adaptation de maillage, y compris certains domaines d’application supplémen-
taires possibles. Enfin, les perspectives pour la recherche future et des suggestions
pour l’amélioration du modèle numérique sont données.

English:

The final chapter sums up the key results. The assumptions regarding the numer-
ical model are compared to the findings of the benchmark applications, in order
to assess possible scopes of application of the proposed numerical method. The
findings regarding efficient solution methods are presented in view of the numerical
treatment of large scale industrial applications. Afterwards, a conclusion is given
regarding the proposed mesh adaptation algorithm, including some possible addi-
tional application areas. Finally, an outlook for future research and suggestions for
the improvement of the numerical model are given.
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VI.1 Numerical model and industrial applications

The numerical model for induction heating involves electromagnetics, heat diffusion
and material phase changes. Each of these sub-problems interacts within a global
framework that needs to be efficiently coupled. In this context, the electromagnetic
formulation has been identified as the most difficult problem from a numerical
perspective. The nature of induction heating allows to model the problem using
a partial differential equation of parabolic type, due to the quasi-steady state of
the electromagnetic induction process. The resulting induced eddy currents can
be post-processed to a heating energy term that can be included in a coupled heat
diffusion formulation. The parabolic nature of the heat diffusion equation ensures
that the coupled system is solvable using standard iterative solution techniques,
leading to smooth temperature distributions.

The ultra-weak coupling procedure has been identified as advantageous, since it
allows to introduce a coupling between thermal effects and electromagnetic com-
putation involving different time scales. The bridging of the different time scales
allows to focus on the electromagnetic problem and the heat diffusion problem sep-
arately. The electromagnetic/thermal coupling procedure is based on an averaging
of the induced eddy currents on the electromagnetic time scale. The computation
is controlled, by user supplied parameters that allow to influence the strength of the
coupling, allowing a fine grained control of the approximation of the non-linear ma-
terial evolution. The parameters define thresholds for admissible material changes.
The weak coupling results in a re-evaluation of the thermal source terms, after the
relative change of a material quantity reaches the prescribed thresholds, ensuring
a correct approximation of the heating source contribution.

The numerical model allows for spatially varying material coefficients, with the
possibility to include a vanishing electrical conductivity σ in parts of the domain.
Both the electrical conductivity σ, as well as the relative magnetic permeability µr

are allowed to vary with respect to both the temperature and the magnetic field.
An algorithm for the computation of source currents on arbitrary closed inductor
domains is presented. It ensures the correct introduction of the source currents, so
that they are divergence free, resulting in conforming source current distributions
leading to a fast reduction of the residual error during the solution stage. The fully
transient application of the source current distribution on arbitrary complex closed
inductor geometries allows the application of non-linearities on the electromagnetic
time-scale. The source currents need not to be sinusoidal so that it is feasible to
include more complicated excitation currents. This opens up the possibility to
directly model the full induction circuit system including the system response of
the power source (see, e.g. [Blinov et al., 1994] or [Dughiero et al., 2013]).

Several example applications have been presented, in order to show the validity
of the approach. Large scale industrial examples are provided, including the surface
heat treatment of an automotive crankshaft, as well as the spin hardening proced-
ure of a gearwheel. The applications show the viability of the numerical model in
connection with efficient solution methods. The automotive crankshaft test case
demonstrates the impact of non-linearities during the solution phase, resulting in
complex heating power and temperature distributions. The non-linear behaviour
of the electrical conductivity and the relative magnetic permeability lead to chan-
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ging penetration depths. These non-linearities affect the temperature distribution,
which in turn affects the generated magnetic field. The results are compared to
the theoretical skin depth formula, validating the numerical model.

The gearwheel spin hardening test case shows the advantages of using a numer-
ical model for computing the temperature distribution for a problem involving a
relatively complex geometry. The impact of different frequencies on the skin depth
is shown. Even though the material properties are homogeneous and chosen to be
constant, with respect to the applied magnetic field and temperature. It can be
seen that the current cancellation effect leads to a complicated distribution of the
induced eddy currents, so that it does not suffice to use simpler methods like the
skin depth approximation formula.

VI.2 Efficient linear solvers for the associated

electromagnetic problem

The electromagnetic magnetic vector potential problem is implicitly discretised
in time, allowing for arbitrary source currents. The applications presented in this
work introduce a source current with sinusoidal excitation that is discretised in time
using equally spaced time steps in connection with an implicit Euler discretisation.

The linear system of equations is sparse, symmetric and semi definite with a large
null space. It is shown that the classical Krylov subspace iteration techniques can
be employed for the repeated solution of this linear system of equations. It is
demonstrated that the GMRES method is superior to the CG, CGS, BICG and
BICGStab methods. The advantage of this solver type is its monotonic convergence
behaviour, so that the residual error can be steadily reduced with increasing number
of iterations. The GMRES method can be effectively employed if the preconditioner
is efficient, so that it is not necessary to restart the method by discarding the
generated Krylov subspace.

It is shown that the classical preconditioners, like the Jacobian, the SSOR or
the IC preconditioning techniques are relatively ineffective. In that regard, it is
demonstrated that the correct treatment of the large null space is the key to gener-
ating efficient solution techniques. The auxiliary space preconditioning technique
is shown to lead to very effective preconditioning techniques. It is based on the
description of the solution vector with respect to a nodal auxiliary finite element
mesh. The residual error of the solution vector that is discretised using an edge
element approach can very effectively be reduced, after it has been projected onto
this nodal auxiliary space with subsequent application of complying precondition-
ing operators. The transformation operators can be generated with the existing
adjacency information of the edge finite element discretisation. The bilinear forms
of the resulting finite element decomposition show an elliptic behaviour. This
allows the efficient application of standard multigrid techniques.

Since the auxiliary space is based on a nodal description, it is very advantageous
to apply an algebraic multigrid coarsening procedure to generate efficient precon-
ditioners. It is only necessary to employ approximative solution techniques. The
combination of the GMRES method in connection with a one-cycle algebraic mul-
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tigrid preconditioner using an auxiliary space decompositioning technique leads to
very efficient solution schemes that enable the computation of large scale real world
applications. An important aspect in that regard is the choice of the coarsening
technique for the discrete operator. To that extent several up-to-date coarsening
techniques are presented, including the RS3, CLJP, Falgout, PMIS, HMIS and the
ECGC technique. The impact of each coarsening method is demonstrated for large
scale industrial applications in sequential and parallel configurations.

A detailed investigation regarding the effects of different solver configurations is
presented for an automotive crankshaft test case. The source current is applied
using a closed inductor of complex geometry. The finite element mesh includes
around 3 million finite elements, resulting in around 3.5 million edge degrees of
freedom. The sparse linear system of equations consists of approximately 55 mil-
lion non-zero values. Additional engineering applications have been demonstrated
for a detailed model of an industrial crankshaft with approximately 3 million edge
degrees of freedom, resulting in around 50 million non-zero entries and for a gear-
wheel test case with approximately 4 million edge degrees of freedom, resulting in
around 65 million non-zero entries.

It is shown how the coarsening threshold affects the set up, as well as the solution
times, since it effects the operator complexity of the coarsened operator. In that
regard it is demonstrated that a high approximation quality for the operator related
to the large kernel of the linear system of equations is indispensable for a high error
reduction rate.

It is found that the CLJP and Falgout techniques lead to coarsened operators
that can very effectively be used in sequential or lowly parallel configurations. A
large operator complexity leads to a low number of iterations, during the solution
stage.

For highly parallel test cases and problems with changing material coefficients,
which might necessitate a recreation of the preconditioning operator, it is shown
that the HMIS, as well as the ECGC method can be employed very efficiently. In
comparison to the CLJP, Falgout and especially the RS3 method, the setup times
are reduced. The lower complexities lead to an increase in the iteration numbers,
due to a decrease of the convergence rate, but the lower cost of application leads
to an efficient scheme in a highly parallel setting. Yet, it must be noted that test
cases are provided for which an increase in iterations leads to a large increase in
computational time, which offsets the lower application cost.

It is furthermore shown that changing material properties, including many dis-
continuous effects, do not lead to a large increase in the solution time. This shows
the versatility and robustness of the presented solution scheme.

The solution of the linear system of equations can be handled in parallel, so that
scalability and an efficient solution time is ensured. Yet, it must be noted that a
simple parallel application might not directly translate into a reduction of compu-
tational time. In several example problems it is shown that the parallel efficiency
is reduced, if the local grid size becomes small. The result is an increase in solution
time, which can be even higher for highly parallel configurations, compared to lowly
parallel configurations. This is a direct result of inter-processor communication and
certain difficulties related to the correct treatment of the coarsening operators for
nodes on processor boundaries. In a parallel setting, the initial grid is divided into
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several distinct parts. An application of the parallelised operator necessitates par-
allel communication over processor boundaries. An increase in parallel granularity,
i.e. an increase in the number of processors, results in the decrease of the average
local grid size and, therefore, leads to a growth of the inter-processor boundaries.
In addition, it must be noted that the auxiliary space preconditioning technique is
based on a nodal auxiliary subspace. It follows that the bandwidth of the algeb-
raic multigrid operator should be optimised with respect to the nodal adjacency
numbering. Yet, the matrix bandwidth in this work is only optimised for an edge
element approach, so that the discrete elliptic operators of the associated bilinear
form of the preconditioning operator might possess a large bandwidth, which could
lead to an unnecessary increase in inter-processor communication.

VI.3 Modelling inductor motion

Another important aspect with respect to the numerical treatment of industrial
induction heating problems is the introduction of a relative movement of workpiece
and inductor domains. A novel method has been presented, which is based on the
rigid approximation of the moving inductor domain. The resulting algorithm is
based on the discrete description of this movement, using a level set function that
can be generated using the surface primitives of the rigid inductor domain. The
novel algorithm is very efficient and it is based on local computations, so that it
can effectively be computed in a parallel configuration. The algorithm depends on
the identification of the relative positioning of discrete geometrical elements like
points, lines and faces with respect to the discrete inductor geometry, which is
defined using surface elements. The angle weighted pseudo normal has been used
to correctly identify this relative position in a very efficient manner, which is valid
for inductors of arbitrary shape. It can be noted that the resulting algorithm is
independent of the element size, element type and polynomial order, so that it
can be used for problems involving tetrahedral or hexahedral formulations of any
shape. The application is controlled by a user supplied constant that bounds the
maximum relative change of the inductor positioning. The transformation can be
monitored during the computation. If it exceeds the prescribed permissible range,
the time step size can be reduced until the transformation results in a conforming
displacement.

An application for a heat treated automotive crankshaft including the rotation
of a complex inductor is provided. The discrete level set identification technique is
utilised to readapt the global finite element mesh. The recreated mesh is presented
for a rotation of 2.5 ◦. The identified removable subset of elements is minimal and
restricted to the embedding elements closest to the rotating inductor. It is shown
that the readapted mesh possesses a very high quality that is comparable to the
initial finite element mesh.
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VI.4 Outlook

It is shown that the numerical solution techniques involving the auxiliary subspace
preconditioning technique lead to a large reduction of computational time. This
opens up the possibility to compute large scale numerical simulations, involving
highly detailed numerical models of real world problems. To that extent, the
numerical model needs to be validated by industrial heat treatment test cases.

The applications in this work involve material non-linearities with respect to
changing temperature fields. The influence of the magnetic field on the relative
magnetic permeability has not been included in these test cases. This can result
in approximation errors with respect to the heating source contribution, due to an
inaccurate reproduction of the correct penetration depth of the induced eddy cur-
rents. Nevertheless, the numerical model allows the introduction of a dependency
with respect to the changing magnetic field following from the computation of the
electromagnetic magnetic vector potential. It should be quantified how large the
effect of the non-linear material behaviour is with respect to an industrially sized
workpiece, like an automotive crankshaft. Additional effects like the holding time
between induction and quenching procedure must be included in the simulation,
since it has a profound effect on the resulting martensitic phase profiles, as has
been demonstrated by [Schlesselmann et al., 2013].

In addition, the fully transient time discretisation is achieved using an implicit
Euler time discretisation, which might be replaced by higher order singly diagonally
implicit Runge Kutta (SDIRK) methods to increase the numerical accuracy.

The source currents in this work are modelled using sinusoidal forms. More com-
plex source excitations are possible, which include the direct system response of the
induction power supply, e.g. it could be advantageous to include the full transistor
circuits, which might generate source currents containing harmonics or to introduce
currents with non-sinusoidal waveforms. This would allow a greater control over
the heat affected zones and might lead to smoother temperature profiles, as shown
by [Biasutti et al., 2012]. An example for a coupled finite element model between
a quasi resonant (QR) converter power source and an electromagnetic induction
heating model is given in [Dughiero et al., 2013]. This coupled model is an example
for a fully transient analysis, including non-sinusoidal waveforms (see figure 7 in
[Dughiero et al., 2013]). It is used to model the real system response. It mentions
that a classical ICCG solver results in unreasonable simulation times, which is why
a parallel direct solver has been utilised to reduce the simulation time by a factor
of approximately 14. Alternatively, the auxiliary space multigrid preconditioners
could be used to increase the scalability of the numerical model.

The proposed mesh adaptation algorithm, which is based on a discrete level set
function, is applicable to different problems, for which the movement can be de-
scribed in a Lagrangian setting. The precondition is that the simulation includes
a moveable rigid geometrical feature. Possible example applications are adapta-
tions to existing Lagrangian formulations which necessitate changes in the model
geometry, like the replacement or change of rigid walls or the displacement of rigid
tools in a forming or forging simulation.

Another important aspect for induction heating design is process optimisation.
Many simulation parameters can influence the outcome of a simulation. E.g. the
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shape, relative placement of the inductor or the frequency and magnitude of the
applied source current can be changed. The optimisation process can be reformu-
lated as the minimisation of an objective cost function with different constraints
(see, e.g. [Favennec et al., 2004], [Rapoport and Pleshivtseva, 2007], [Di Barbara
et al., 2013] or [Touzani and Rappaz, 2014]). Typical objectives in an industrial
application are the optimisation of the energy consumption, the control of the fi-
nal temperature or to ensure that the temperature does not exceed a given value
during the treatment. The optimisation procedure entails a search in the space of
possible solutions, so that many sample points need to be computed, resulting in
large requirements for computing power. It has been demonstrated that the fully
transient magnetic vector potential formulation can be used in the context of a
weak coupling procedure to compute industrially sized problems in a reasonable
amount of time. The efficient treatment of the resulting semi definite linear system
of equations is ensured by the application of the auxiliary space multigrid method.
In the future, the model might be applied to optimal control problems, such as the
optimisation of the heat affected zone of the presented automotive crankshaft.
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Modélisation Numérique du Chauffage par Induction de Pièces à 

Géométrie Complexe 

RESUME : Le chauffage par induction électromagnétique est un procédé efficace permettant 

de chauffer directement une zone d’épaisseur contrôlée sous la surface de pièces métalliques 

en vue de les tremper. Cette thèse présente un modèle mathématique couplé 

électromagnétique/thermique et des approches numériques pour modéliser le procédé. Le 

modèle électromagnétique est basé sur une formulation en potentiel vecteur magnétique. Les 

courants de source sont imposés à l'aide d'une formulation en potentiel scalaire électrique 

permettant  de modéliser des inducteurs de forme géométrique arbitraire. Le problème du 

transfert de chaleur est modélisé à l'aide de l'équation classique de diffusion de la chaleur. Le 

modèle électromagnétique est entièrement transitoire, afin de permettre l'introduction des effets 

non linéaires. La discrétisation spatiale est basée sur une approche éléments d’arêtes en 

utilisant un domaine global air/pièce/inducteur. Le système linéaire d'équations issu de la 

formulation implicite est creux et défini semi-positif ;  il possède un noyau de taille importante. Il 

est démontré qu'un préconditionneur basé sur une méthode multigrille algébrique construit 

conjointement avec un solveur du type Krylov réduit substantiellement le temps de calcul du 

problème électromagnétique par rapport aux méthodes classiques de solution et peut être très 

efficace pour le calcul  parallèle. Des exemples d’application pour le traitement thermique d'un 

pignon et pour un vilebrequin automobile sont présentés. Le traitement thermique des surfaces 

des pièces aux géométries complexes nécessite l'introduction d'un mouvement relatif de la 

pièce et de l’inducteur pour assurer un traitement homogène de la surface. Une nouvelle 

méthode est proposée, basée sur une représentation discrète d’une fonction level set du 

mouvement de l'inducteur qui peut être utilisée pour générer des maillages éléments finis 

conformes dans le cadre d’une configuration lagrangienne. 

Mots clés : Chauffage par induction, durcissement de surface, équations de Maxwell, 

éléments finis d’arêtes, méthode level set, multigrille algébrique 

Numerical Modelling of Induction Heating for Complex Geometrical Parts 

ABSTRACT : Electromagnetic induction heating is an efficient process allowing to directly heat 

up a prescribed area beneath the surface of metallic workpieces to enable quenching. This work 

presents a mathematical model for the coupled electromagnetic/heat transfer process as well as 

numerical solution methods. The electromagnetic model is based on a magnetic vector potential 

formulation. The source currents are prescribed using a voltage potential formulation enabling 

the modelling of arbitrary inductor geometries. The heat transfer problem is modelled using the 

classical heat diffusion equation. The electromagnetic model is fully transient, in order to allow 

the introduction of non-linear effects. The space discretisation is based on an edge finite 

element approach using a global domain including air, workpiece and inductor. The resulting 

linear system of equations of the implicit formulation is sparse and semi-definite, including a 

large kernel. It is demonstrated that a preconditioner based on the auxiliary space algebraic 

multigrid method in connection with a Krylov solver substantially reduces the solution time of the 

electromagnetic problem in comparison to classical solution methods and can be effectively 

applied in parallel. Applications for the heat treatment of a gearwheel and for an automotive 

crankshaft are presented. The surface heat treatment of complex geometrical parts requires the 

introduction of a relative movement of workpiece and inductor to ensure a homogeneous 

surface treatment. A novel method is proposed, which is based on a discrete level set 

representation of the inductor motion that can be used to generate conforming finite element 

meshes in a Lagrangian setting. 

Keywords : Induction heating, surface hardening, Maxwell’s equations, edge finite elements, 

level set method, algebraic multigrid 
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