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introduction: motivation for this work
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An idiophone is any musical instrument
which creates sound primarily by way of the
instrument’s vibrating, without the use of
strings or membranes. Listen to the sound
produced by the following common
instruments belonging to the group: bells,
gongs, cymbals.
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Linear

B Few frequencies
(eigenmodes)

B No harmonic relations

B Small amplitude of
vibrations (|w| � h)

0 2 4
0

500

1,000

1,500

2,000

t [s]
f

[H
z
]

Weakly Nonlinear

B Coupled frequencies

B Amplitude-dependent
frequencies (pitch glides)

B Moderate amplitudes of
vibrations (|w| ∼ h)
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Strongly Nonlinear

B Cascade of energy

B Continuum Spectrum

B Large amplitudes of
vibrations (|w| > h)
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Mechanical properties of idiophones

B Linear elastic material

B Shape is, in many cases, a curved shell

B Type of coupling depends on the
amplitude of vibration (geometrical
nonlinearity)

Two types of complexity

Geometrical
Complexity

Dynamical
Complexity

A flat plate displays the same dynamical
complexity as the curved idiophones, but it
has a straightforward geometry.
Dynamical equations: von Kármán
equations.
[von Kármán , Enk. Mat. Wiss. 1910, Thomas et al.,

JSV 2008; Book by Nayfeh and Pai, 2004]
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Which numerical scheme?

B Finite Difference Scheme: [Bilbao, NMPDE

2008]

B Modal method: To be developed during
PhD!

Big challenge: many interacting modes, never done before for nonlinear synthesis of plates
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Plate Equations And Modes

plate equations and modes
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Plate Equations And Modes Von Kármán equations

Von Kármán equations

B Dimensions Lx, Ly

B Thickness h (h� Lx, Ly)

B Density ρ, Young’s modulus E,
Poisson’s ratio ν

B Rigidity D = Eh3/12(1− ν2)

The dynamics is described the flexural wave
field w(x, t), which is the unknown of the
equations. The function F (x, t) is called
Airy’s stress function and quantifies the
movement in the plane directions.

Kirchhoff linear plate equation︷ ︸︸ ︷
ρhẅ =︸ ︷︷ ︸

inertial term

−D∆∆w︸ ︷︷ ︸
elastic force

−cẇ︸ ︷︷ ︸
damping

+P︸︷︷︸
external loads

+L(w,F )︸ ︷︷ ︸
nonlinear term

∆∆F = −
Eh

2
L(w,w)︸ ︷︷ ︸

equation for stress function F
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Plate Equations And Modes Von Kármán equations

Modal Equations

Need to choose a suitable basis: associated
linear system

Flexural waves

w = Sw

Nw∑
i=1

Φi(x)

‖Φi‖
qi(t);

∆∆Φi(x) =
ρh

D
ω2
iΦi(x).

Airy stress function

F = SF

NF∑
i=1

Ψi(x)

‖Ψi‖
ηi(t);

∆∆Ψi(x) = ζ4
i Ψi(x).
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Plate Equations And Modes Von Kármán equations

Orthogonality and projection

B Modes are orthogonal:
〈Φi,Φj〉S =

∫
S dx Φi Φj = ‖Φi‖2δij

B Use orthogonality to project onto the
coordinate s

q̈s(t) + 2χsωsq̇s(t) + ω2
sqs(t) =

−
E

2ρ

∞∑
n,p,q,r=1

Hn
q,rE

s
p,n

ζ4
n

qp(t)qq(t)qr(t)

+
〈Φs, P (x, t)〉S
‖Φs‖ρh

Coupling coefficients

Two third order tensors appear. These are:

Hn
q,r =

〈Ψn, L(Φq ,Φr)〉S
‖Ψn‖‖Φq‖‖Φr‖

Esp,n =
〈Φs, L(Φp,Ψn)〉S
‖Φp‖‖Φs‖‖Ψn‖

The two tensors can be combined to give the
tensor of nonlinear coupling coefficients

Γsp,r,q ≡
NF∑
n=1

Hn
q,rE

s
p,n

ζ4
n
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Plate Equations And Modes Boundary Conditions

Boundary Conditions

In-plane direction

B Movable

Ψ,nt = Ψ,tt = 0

B Immovable (with w = 0)

Ψ,nn − νΨ,tt =

Ψ,nnn + (2 + ν)Ψ,ntt = 0

Edge Rotation

B Rotationally Free

Φ,nn + νΦ,tt = 0

B Rotationally Immovable

Φ,n = 0

Edge Vertical Translation

B Transversely Movable

Φ,nn + (2− ν)Φ,ntt

−
1

D
(Ψ,ttΦ,n−Ψ,ntΦ,t) = 0

Φ,nt = 0 at corners.

B Transversely Immovable

Φ = 0

The selected boundary conditions can be reduced to

B Φ = Φ,nn = 0

B Ψ = Ψ,n = 0
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Plate Equations And Modes Boundary Conditions

Equation for flexural modes

∆∆Φ =
ρh

D
ω2Φ

Φ = Φ,nn = 0

Equation for Airy modes

∆∆Ψ = ζ4Ψ

Ψ = Ψ,n = 0

Simply Supported Kirchhoff Plate
Equation

Clamped Kirchhoff Plate Equation

Φ ∝ sin m1πx
Lx

sin m2πy
Ly

[Leissa, 1993; Hagedorn and DasGupta,

2007 ]

Ψ?
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Plate Equations And Modes Modes of a Clamped Plate

Modes of a Clamped Plate

Ψ1(x, y)

x y

Ψ2(x, y)

x y

Ψ3(x, y)

x y

Eigenfunctions of a clamped plate of aspect ratio

2/3

The Clamped Plate Problem

Requirements for this work

B Many (hundreds) of modes

B Fast convergence

B Stable algorithm
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Plate Equations And Modes Modes of a Clamped Plate

Brief literature review

The literature reveals that the clamped
plate problem has been treated by many in
the course of history.

Ad-hoc methods (only clamped plate)

B Leissa’s book (a collection of them)
[Leissa, 1993]

B Gorman’s superposition method [Gorman

et al., Comp. & Struct. 2012]

Not enough frequencies! (∼ 10)

General methods (all boundary conditions)

B Li (use of flexural and rotational springs
to simulate different boundary
conditions) [Li, JSV 2004]

Easier to implement but does not meet all
requirements! (number of modes...)

NONE OF THE METHODS SATISFIES ALL THE REQUIREMENTS!
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Plate Equations And Modes Modes of a Clamped Plate

Idea

Modification of general Li’s method in order
to

B Create an ad-hoc, stable solution for
the clamped plate

B Create an ad-hoc, stable solution for
the free plate (impossible to treat in
Li’s general method!)

Implementation

B Rayleigh-Ritz method

B Modified cosine Fourier series

B Expansion function must satisfy a
priori the geometrical boundary
conditions of the problem
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Plate Equations And Modes Modes of a Clamped Plate

Rayleigh-Ritz Method

Write eigenfunction as

Ψ(x) =

NΨ∑
i=1

aiΛi(x)

Insert into energy functionals

T [Ψ] = aTMa

U [Ψ] = aTKa

Use stiffness and mass matrices to define the
algebraic eigenvalue problem

Ka = ζ4Ma

Clamped Plate Problem

Expansion functions are chosen as

Λn(x, y) = Xn1 (x)Yn2 (y)

where

Xn1 (x) =

cos

(
n1πx

Lx

)
+

15(1 + (−1)n1 )

L4
x

x4−

4(8 + 7(−1)n1 )

L3
x

x3 +
6(3 + 2(−1)n1 )

L2
x

x2 − 1

and similarly for Yn2 (y)
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Plate Equations And Modes Modes of a Clamped Plate

Table: Convergence of clamped plate frequencies, ζ2
kLxLy , ξ = 1 (square plate)

NΨ

k
12 112 312 392

1 35.986 35.985 35.985 35.985
10 218.67 210.52 210.52 210.52
50 - 805.35 805.34 805.34
100 - 1546.2 1546.1 1546.1
200 - - 2848.0 2847.6
300 - - 4191.6 4188.0

Observations

B Stability

B Hundreds of modes calculated VERY
accurately (accuracy out of reach with
other methods like FD or FEM)

M. Ducceschi Nonlinear Vibrations of Plates 11 - 02 - 2014 19 / 70



Plate Equations And Modes Modes of a Clamped Plate

Table: Comparison of clamped plate frequencies, ζ2
kLxLy , ξ = 1 (square plate)

Source

k R.R method
(NΨ = 400)

Leissa FD (161×161)

1 35.98 35.99 35.54
2 73.39 73.41 72.49
3 73.39 73.41 72.49
4 108.2 108.3 106.9
20 371.3 - 366.7
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Plate Equations And Modes Modes of a Clamped Plate

Results

B Discretised von Kármán system

B Clamped plate modes and frequencies
calculated with great precision using a
stable algorithm capable of calculating
hundreds of modes (not available
before!)

B Coupling coefficients calculated with
great precision

What’s next?

B Discretised system of ODEs needs to
time-integrator

B Are standard integration routines ok for
highly nonlinear dynamics?

B Can a stable integrator be constructed
for this problem?
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Time Integration Schemes
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Time Integration Schemes

time integration schemes
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Time Integration Schemes

Overview

B A scheme is needed to find an
approximate solution to the differential
equation

q̈ = f(q, t)

B Introduce timestep k and mapping λk
to push the solution from the step n to
the step n+ 1, such that

λk : q(n)→ q(n+ 1)

Selecting an appropriate scheme

B Störmer-Verlet

B Newmark

B Runge-Kutta

B ....

M. Ducceschi Nonlinear Vibrations of Plates 11 - 02 - 2014 24 / 70



Time Integration Schemes

Example of Instability

B Störmer-Verlet is usually fine, but not
ok for high amplitudes of vibrations

B One must construct a stable scheme

0 1,000 2,000 3,000
−60

−40

−20

0

Samples

w
/
h

Example of unstable Störmer-Verlet simulation

Stability issue must be addressed for sound
synthesis

B Nonlinearity

B Large amplitudes of vibrations

B Large number of modes (i.e. large
frequency range)
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Time Integration Schemes Störmer-Verlet Scheme

Störmer-Verlet Scheme

Choice 1: Störmer-Verlet
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Time Integration Schemes Störmer-Verlet Scheme

Störmer-Verlet

B second-order

B symmetric

B symplectic

Implementation

δttq(n) = f(q(n))

where

δttq(n) =
q(n+ 1)− 2q(n) + q(n− 1)

k2

(second order accurate derivative operator)
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Time Integration Schemes Störmer-Verlet Scheme

B explicit scheme

B conserves energy when f is the linear plate system

Energy conservation reads

δt+


NΦ∑
s=1

S2
w

ρh

2

[
(δt−qs(n))2 + ω2

sqs(n) (et−qs(n))
] = 0

or

δt+

NΦ∑
s=1

( τs(n)︸ ︷︷ ︸
K.E. of mode s at time n

+ υls(n)︸ ︷︷ ︸
P.E. of mode s at time n

) = 0
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Time Integration Schemes Energy-conserving, Stable Scheme

Energy-conserving, Stable Scheme

Choice 2: Energy conserving, Stable Scheme
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Time Integration Schemes Energy-conserving, Stable Scheme

Construction of an Energy Conserving Scheme

The scheme is constructed as follows

δttqs(n) +Ks,sqs(n) =
SF

ρh

NΦ∑
k=1

NΨ∑
l=1

Esk,lqk(n)[µt·ηl(n)]

µt−ηl(n) = −
Eh

2ζ4
l

S2
w

SF

NΦ∑
i,j=1

Hl
i,jqi(n)[et−qj(n)]

µt·ηl(n) =
1

2
(ηl(n+ 1) + ηl(n− 1))

µt−ηl(n) =
1

2
(ηl(n) + ηl(n− 1))

et−qj(n) = qj(n+ 1)
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Time Integration Schemes Energy-conserving, Stable Scheme

Construction of an Energy Conserving Scheme

After some manipulations, one can show that

δt+


NΦ∑
s=1

S2
w

ρh

2

[
(δt−qs(n))2 + ω2

sqs(n) (et−qs(n))
]

+
1

2Eh

NΨ∑
l=1

(µt− (ηl(n)ηl(n))) ζ4
l

 = 0

or

δt+

NΦ∑
s=1

(τs(n) + υls(n)) + δt+

NΨ∑
l=1

υnll (n)︸ ︷︷ ︸
P.E. of Airy mode l at time n

= 0
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Time Integration Schemes Energy-conserving, Stable Scheme

B Given x = qs(n) and y = qs(n− 1) one
has

x2 + y2 + 2αxy = g(εls(n))(
α =

k2ω2
s

2
− 1

)
where g(εls(n)) is a function of the
linear energy of the mode s at time n.

B A closed conic (ellipse or circle) is
obtained when |α| < 1. This gives a
bound on the solution size

|x|, |y| ≤

√
2k2εls(n)

ρh(1− α2)S2
w

B Stability condition is |α| < 1, or

k <
2

ωs
.
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Time Integration Schemes Energy-conserving, Stable Scheme
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(b)

Stability Condition: OK

Time simulations of a steel plate of
dimensions Lx × Ly = 0.4× 0.6m2 and
thickness h = 1mm.
(a) Time series sampled at 10kHz;
(b) total energy (black thick line), kinetic
(grey), linear potential (navy), nonlinear
potential (dark green).
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Time Integration Schemes Energy-conserving, Stable Scheme
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(c)

Stability Condition: NOT OK

Time simulations of a steel plate of
dimensions Lx × Ly = 0.4× 0.6m2 and
thickness h = 1mm.
(a) Time series;
(b) total energy (black thick line), kinetic
(grey), linear potential (navy), nonlinear
potential (dark green);
(c) linear potential energy showing non
physical behaviour (it is not positive
definite).
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Time Integration Schemes Energy-conserving, Stable Scheme

Results

B Constructed energy-conserving scheme

B Energy conservation leads to stability
condition

B Nonlinear von Kármán system is now
fully solved in terms of modes (not
available before!)

What’s next?

B Application: weakly nonlinear vibration
analysis using the very precise modal
scheme (not presented)

B Application: compare FD and modes
for sound synthesis

B Application: use FD to create
thousands of interacting modes and
analyse the turbulent system
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Application: Sound Synthesis
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Application: Sound Synthesis

sound synthesis of idiophones
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Application: Sound Synthesis

State of the Art

Linear Models

B MOSAIC and Modalys: sound synthesis
using modal approach
[Morrison et al., Comp. Mus. Jour. 1993; Eckel et

al., Proceedings of ISMA 1995]

B Implementation of different damping
laws using Finite Differences
[Chaigne et al., JASA 2001]

B Plate reverberation using Finite
Differences
[Arkas, PhD thesis 2009]

Nonlinear Models

B Von Kármán equations solved using
energy-conserving Finite Differences
[Bilbao, NMPDE 2008]

B Propagation model added
[Torin et al., Proceedings of DAFX 2013]
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Application: Sound Synthesis

In this work

Extend the modal synthesis to nonlinear
plate vibrations.

First: validate model by comparing with
Finite Differences.

Second: Experiment with modal parameters
and do synthesis

Note that an efficient modal scheme could open up possibilities that cannot be implemented
in Finite Differences: DAMPING RATIOS.
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Application: Sound Synthesis

Set a plate into motion: Strikes

B Impulsive forcing in time

B Dirac’s delta in space

Raised cosine function

P (x, t) = δ(x− x0)p(t),

where

p(t) =
p0

2
(1 + cos(π(t− t0)/∆t)),

for |t− t0| ≤ ∆t, and zero otherwise.
0.095 0.1 0.105

0

10

20

30

40

t [s]

P
[N

]

Dashed line: mallet-like configuration,
∆t = 5ms, p0 = 20N. Thick line:
drumstick-like configuration, ∆t = 0.3ms,
p0 = 40N
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Application: Sound Synthesis Comparison with FD

comparison with Finite Differences
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Application: Sound Synthesis Comparison with FD

Damping laws implemented in FD

Here two damping laws are considered

R0(x, t) = 2σ0ẇ; R1(x, t) = −2σ1∆ẇ.

Taking Fourier transforms

R̃0(k, t) = γ0(f) ˜̇w(k, t)

R̃1(k, t) = γ1(f)w̃(k, t)

where

γ0(f) = 2σ0; γ1(f) = 2σ1
2π

hc
f.

0 2,000 4,000 6,000 8,000 10,000
0

20

40

60

80

100

f [Hz]

χ
[s
−

1
]

Damping laws implemented in FD code

B LIMITED POSSIBILITIES IN FD!
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Application: Sound Synthesis Comparison with FD

Weak FD
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Application: Sound Synthesis Improved Modal Samples

improved modal samples
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Application: Sound Synthesis Improved Modal Samples

Modal Damping

B Using the modal code, the damping
ratios can be inserted directly in the
code

Measured damping factors

(figure from [Lambourg, PhD thesis, 1997 ] )

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t [s]

w̄

Example Time Series

B NΦ ∼ 600 modes suffices for gong-like
sounds!

B Very natural sounding synthesis thanks
to natural decay ratios

B Very fast computations for weakly
nonlinear dynamics (almost real time in
Matlab,NΦ ∼ 100 )
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Application: Sound Synthesis Improved Modal Samples

Results

B Compared efficiently modes with FD

B Modal approach CAN reproduce the
sound of strongly nonlinear vibrations
(crashes)

B Possibility of adding realistic decaying
rates for each one of the modes

B Modal synthesis CAN be extended to
nonlinear dynamics for sound synthesis
(NEW!!)

What’s next?

B Ran simulations with ∼ 105 modes
using FD

B Analyse statistical properties of the
cascade
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Application: Wave Turbulence
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Application: Wave Turbulence

plates in a strongly nonlinear regime: wave
turbulence
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Application: Wave Turbulence
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Observations

B Many (thousands) of modes are
activated

B Production of a ”cascade” to higher
frequencies

B Modal interaction away from an
equilibrium condition

This scenario is referred to as ”turbulent”.
The interacting partners are the modes of
the system (Fourier components), hence the
name ”wave turbulence” (WT)
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Application: Wave Turbulence
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State of the Art (Theory/Experiments)

B Plate equations are solved in terms of
WT formalism and power spectrum
formula given (KZ spectrum) [Düring et

al., PRL 2006]

B Experiments show deviations from
theory [Boudaoud et al., PRL 2008; Mordant,

PRL 2008]

B WT assumptions (separation of time
scales) are checked and verified [Miquel et

al., PRE 2011]

B Forcing introduces anisotropy in space;
removing forcing gives spectra closer to
theory [Miquel et al., PRL 2011]

B Damping heavily responsible for slopes
in the spectra [Humbert et al., EPJ 2013]
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Application: Wave Turbulence
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State of the Art (Numerics)

B Spectral methods: when numerical
experiments are set-up following the
hypothesis of the theory, KZ spectra are
recovered [Düring et al., PRL 2006; Yokoyama

et al., PRL 2013]

All the numerical experiments are set up in
Fourier space. In real experiments, however,
one works in physical space.
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Application: Wave Turbulence

In this work

Use FD scheme to produce a cascade of
energy including thousands of modes

Create close-to-reality numerical conditions
(physical boundary conditions, pointwise
forcing, conservation of energy, ...)

Study aspects of the turbulent regime that
have not been considered

B Nonstationary turbulence

B Effects of geometrical imperfections

Note that the absence of damping will necessarily create a state of NONSTATIONARY
turbulence: this is NOT the system described by the theoretical framework of [Düring et al., PRL

2006] . Hence comparison with K-Z spectrum is not appropriate.
Framework in this case given by [Falkovich et al., JNS 1991; Connaughton et al.Physica D 2003] .
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing

Nonstationary Turbulence 1: Steady Forcing

Steady Sinusoidal Forcing in Conservative Flat

Plates
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing
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Comments

B Presence of an nonstationary
turbulence

B Cascade developing in an
infinite box limit (up to
Nyquist frequency)

Analysis

B Try to quantify the front of
the cascade in terms of a
characteristic frequency fc

B Study the evolution of fc and
Pv(fc)

B Characterise the injection in
terms of the flux ε (the
injected power)
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing
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Definitions

B Characteristic frequency:

fc =
∫∞
0 Pv(f) f df∫∞
0 Pv(f) df

B Spectral amplitude: Pv(fc)

Results

B fc = cf · t
B Pv(fc) ∼ cnst
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing

Analysis

Scaling of Spectra: divide each of the
spectra by Pv(fc) and plot against f/fc

10−2 10−1 100 101
10−10

10−3

104

f/fc

P
v

(
f
)
/
P
v

(
f
c
) Observations

B Self-similar dynamics

Pv(f) = Pv(fc)φ

(
f

fc

)
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing
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Injected Power

ε(t) =
P (t) · ẇ(xi, t)

ρS

Observations

B < ε >∼ cnst = ε̄

B Self-similar dynamics is linked to the
constant injection ε̄
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing

To do: run more simulations

Change parameters of the system

B Forcing amplitudes (large range!
[0.005− 70] N)

B Thickness ( [0.1− 1] mm)

Look for scaling laws

The constant injection ε̄ and the thickness h
are the defining parameters of the turbulent
state.
IDEA: look for power law dependence of the
spectral amplitude Pv(fc) and the cascade
velocity cf with appropriate combinations of
ε̄ and h using dimensional arguments. In
other words

B Pv(fc) ∝ ε̄1/3h
B cf ∝ ε̄2/3/h2
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing
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Application: Wave Turbulence Nonstationary Turbulence 1: Steady Forcing

Final Remarks

B The dynamics of nondissipative plates
under steady forcing is self-similar and
nonstationary

B The self-similar function is

Pv(f) = Pv(fc)φ

(
f

fc

)
,

where Pv(fc) and cf can be given in
terms of ε̄ and h, as in

Pv(fc) = 0.42ε̄1/3h

fc = 0.20ε̄2/3/h2 · t

B NOTE that

φ

(
f

fc

)
= φ

(
f

t

)
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Application: Wave Turbulence Nonstationary Turbulence 2: Impulsive Forcing

Nonstationary Turbulence 2: Impulsive Forcing

results for impulsively forced, undamped flat plates
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Application: Wave Turbulence Nonstationary Turbulence 2: Impulsive Forcing
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Application: Wave Turbulence Nonstationary Turbulence 2: Impulsive Forcing
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Results

B fc ∼ t1/3

B Pv(fc) ∼ t−1/3
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Application: Wave Turbulence Nonstationary Turbulence 2: Impulsive Forcing
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Comments

B Self-Similar Dynamics
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Application: Wave Turbulence Nonstationary Turbulence 2: Impulsive Forcing

Final Remarks

B The dynamics of nondissipative plates
in free turbulence is self-similar and
nonstationary.
NOTE particularly (because of previous
argument)

Pv(f) ∝ t−1/3φ

(
f

t1/3

)
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Application: Wave Turbulence Theoretical Framework of Nonstationary Turbulence

Theoretical Framework of Nonstationary Turbulence

theoretical framework for nonstationary turbulence
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Application: Wave Turbulence Theoretical Framework of Nonstationary Turbulence

Consider the kinetic equation relating the
wave action n(k, t) to the collision integral
I(k)

∂n(k, t)

∂t
= I(k)

B Ansatz (self-similar dynamics)

n(k, t) = t−qz(kt−p) = t−qz(η)

B Plug ansatz into kinetic equation and
get

−t−q−1
[
qz(η) + pξz′(η)

]
= I(η)t−3q+2p

The last equality is derived considering the
expression of I(k) provided by [Düring et al.,

PRL 2006] . The equality gives 2(q − p) = 1.

Consider now the following easily derived
relations

B Pv(f, t) ∝ fn(f, t) (definition of power
spectral density)

B ξ(t) =
∫∞
0 f Pv(f, t) df (definition of

total energy)

In the two cases considered before, it was
found that

B ξ(t) ∝ t (steadily forced turbulence)

B ξ(t) ∝ t0 (impulsively forced
turbulence)
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Application: Wave Turbulence Theoretical Framework of Nonstationary Turbulence

Putting all together gives

B 4p− q = 1 (steadily forced turbulence)

B 4p− q = 0 (impulsively forced
turbulence)

Hence, this gives the following equations for
the spectral density

B Pv(f) ∝ φ1

(
f
t

)
(steadily forced

turbulence)

B Pv(f) ∝ t−1/3φ2

(
f

t1/3

)
(impulsively

forced turbulence)

These laws are exactly the same as those
found numerically!

The theory does not give a form for the
functions φ1, φ2. Numerically the forms are

10−2 10−1 100
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100

102

f/fc

φ
( f f c

)
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Application: Wave Turbulence Imperfections

Imperfections

results for continuously forced, undamped imperfect

plates
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Application: Wave Turbulence Imperfections

Why Deformations?

B Deformations are always present in
experimental plates

B They introduce quadratic nonlinearities,
e.g. 3-wave processes that might affect
the dynamics

Deformations introduced as raised cosines in
x and y directions. Deformation amplitudes
up to 10 times the thickness.
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Plate with imperfection in the form of a
raised cosine.

THE SELECTED DEFORMATIONS DO NOT CHANGE THE SCALING PROPERTIES
OF THE SYSTEM
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Application: Wave Turbulence

Results

B Successfully reproduced nonstationary
turbulence in continuous and impulsive
forcing

B The numerical scaling laws of the
spectra is consistent with theory of
nonsationary 4-wave processess

B Numerics gives form of self-similar
functions that are not predicted in the
theory

B Numerics gives also coefficients for
evolution of the front of cascade and
spectral amplitude

B Imperfections (3-wave processess) do
not change the scaling properties of the
system
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General Conclusions and Perspectives

Major Results

Successful reproduction and analysis of the
nonlinear vibrations of plates using
appropriate numerical schemes.
Most important results from today’s
discussion

B Difficult problems such as the clamped
and free plate problems solved in terms
of Rayleigh-Ritz method with high
precision and stability for hundreds of
modes

B Previously unavailable modal code
developed for sound synthesis of plates.
Damping can be now tuned at will

B Nonstationary wave turbulence of
4-wave processes analysed and
self-similar function shape proposed.
Precise coefficients given for scaling laws

Extensions

B Translate modal code from Matlab to C
(improved memory management and
speed of calculation)

B Use modal approach for circular
plates/shells (difficult to treat in FD)

B Use modal code for wave turbulence
(possibility of adding damping at
arbitrary frequency)
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