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Arezki Boudaoud (École Normale Supérieure de Lyon)

Xavier Boutillon (École Polytechnique)
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Abstract. Thin plate vibrations display a rich and complex dynamics that ranges from linear to

strongly nonlinear regimes when increasing the vibration amplitude with respect to the thickness.

This thesis is concerned with the development of a numerical code able to simulate without restric-

tions this large spectrum of dynamical features, described by the von Kármán equations, in the

case of flat, homogeneous plates presenting a rectangular geometry. The main application is the

synthesis of gong-like sounds, within the larger context of physical modelling. For that, a modal

approach is used, in order to reduce the original Partial Differential Equations to a set of coupled

Ordinary Differential Equations. An energy-conserving, second-order accurate time integration

scheme is developed, including a stability condition. The most appealing features of the modal

scheme are its accuracy and the possibility of implementing a rich loss mechanism by selecting an

appropriate damping factor for each one of the modes. The sound produced by the numerical code

is systematically compared to another numerical technique based on Finite Difference techniques.

Fundamental aspects of the physics of nonlinear vibrations are also considered in the course of this

work. When a plate vibrates in a weakly nonlinear regime, modal couplings produce amplitude-

dependent vibrations, internal resonances, instabilities, jumps and bifurcations. The modal scheme

is used to construct and analyse the nonlinear response of the plate in the vicinity of its first eigen-

frequencies, both in free and forced-damped vibrations, showing the effect of damping and forcing

on the nonlinear normal modes of the underlying Hamiltonian system. When plates vibrate in a

strongly nonlinear regime, the most appropriate description of the dynamics is given in terms of the

statistical properties of the system, because of the vast number of interacting degrees-of-freedom.

Theoretically, this framework is offered by the Wave Turbulence theory. Given the large amount of

modes activated in such vibrations, a Finite Difference, energy-conserving code is preferred over the

modal scheme. Such a scheme allows to produce a cascade of energy including thousands of modes

when the plate is forced sinusoidally around one of its lowest eigenfrequencies. A statistical inter-

pretation of the outcome of the simulation is offered, along with a comparison with experimental

data and other numerical results found in the literature. In particular, the effect of the pointwise

forcing as well as geometrical imperfections of the plates are analysed.
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Introduction

This thesis is concerned with the numerical reproduction of the nonlinear vibrations of thin rectan-

gular plates. The scientific interest of studying such a system is really broad, and comprises domains

that are apparently very different. Many applications are found in common engineering problems,

for example: panel flutter in aeronautics [18], energy harvesting of fluttering flexible plates [26],

piezoelectric and laminated plates [20, 36], and others.

Unsurprisingly, thin vibrating structures are found very often in music. For example, plates are

fundamental components of the piano and the guitar, serving as soundboards; plates have been

extensively used as analog reverb units before the advent of digital effects; instruments such as bells,

gongs or cymbals are, roughly speaking, curved plates. In old theatres, large metallic plates were

used at times to simulate the powerful sounds of thunders and storms.

The examples proposed show that the range of applications of plates in musical acoustics is indeed

quite large. A more technical explanation for this can be found by considering the degree of ”nonlin-

earity” involved in such vibrations. In the case of the soundboard and the reverb, the plate is used

as a ”radiating” unit; the vibrations can be categorised as (almost) linear. Acoustically speaking, a

plate is a structure that presents an almost constant density of resonant frequencies covering a large

interval, and so it can radiate very efficiently. The soundboard of a piano, for example, is devoted

to radiate the vibrations coming from the strings attached to it. When used as a reverb unit, the

plate is able to add a somewhat ”wet” character and a longer decay to a dry sound. In any case, in

these examples the plate is always vibrating at amplitudes much smaller than its thickness, which

guarantees that nonlinear phenomena will not come into play.

When a plate vibrates at amplitudes comparable to its thickness (but not larger), nonlinear phenom-

ena of moderate proportions appear. This scenario is typical of some thick chinese gongs. When

listening to the sound produced by these instruments in a weakly nonlinear regime, the most salient

feature appears to be a ”pitch glide” effect. What happens in these cases is that the resonant fre-

quencies of the structure depend on the amplitude of vibration. After the strike, the amplitude grows

quickly, and is successively damped by some loss mechanism: during the instants of rapid growth and

decay, the nonlinear phenomena account for the perceived pitch glide effect.

Thunder plates, gongs and cymbals undergo strongly nonlinear effects when they vibrate at ampli-

tudes larger than their thickness. In this case, not only the resonant frequencies of the plate are

heavily modified, but they also ”couple” in order to activate a cascade of energy to higher frequen-

cies. In terms of acoustics, such a cascade is perceived as a bright, shimmering sound, or a crash.

vii



viii INTRODUCTION

Needless to say, this is one of the most dramatic dynamical features that plate-like structures display,

and it is anticipated that the interest of studying its properties lies beyond its applications in musical

acoustics.

The main motivation at the origin of this work is to be found precisely in its musical application: at

the beginning, the idea was to develop a numerical code able to simulate all types of plate dynamics,

from the linear to the strongly nonlinear case. In this sense, this thesis tries to give a contribution

to the realm of sound synthesis by physical modelling.

Physical modelling is a very appealing, yet challenging way of synthesising sound: the waveform, in

this case, is produced by a computer routine which solves the dynamical equations of a given instru-

ment. The dynamical equations are expressed as Partial Differential Equations (PDEs), because an

instrument is often a continuum where the vibrations are a function of time and space. The computer

routine depends of a few simulation parameters that control, for example, how the instrument is set

into motion, the geometry and material, or what kind of loss mechanism is being simulated. Needless

to say, the computational requirements for this type of synthesis are enormous, and in most cases a

real time simulation is out of reach. However, the increasing computational power of new generation

processors and the use of graphic cards for parallel computing has rendered the computational issues

less of a burden and this is why physical modelling has seen a growing amount of research over the

recent years [10, 13].

Restricting the attention to thin plates, one may be led to believe that the rich dynamics of their

vibrations must be described by complex equations. In actual fact, all types of dynamics of a plate can

be simulated within the description given by the von Kármán equations [2, 83, 91]. Such equations

constitute a system of two PDEs which are nonlinear. The theoretical derivation of such equations

is not extremely difficult as it involves a single second-order correction of the strain tensor in the

in-plane direction with respect to the linear model by Kirchhoff. Despite this theoretical simplicity,

the equations are unsolvable analytically and thus numerics is really the only tool in the hands of the

analyst wishing to simulate without restrictions the large spectrum of dynamical features that such

a system can offer.

Note that, at least to a first approximation, a homogeneous, isotropic, flat rectangular plate can

simulate quite efficiently the sound of a gong, which is a somewhat different structure that could

present inhomogeneities, anisotropy and curvature, other than a circular geometry. Thus, the plate

is very attractive to study numerically because, although it is a very simple structure, its dynamics

is rich enough to simulate actual percussive instruments.

This said, developing a ”good” scheme for sound synthesis is not a straightforward task. There

are, at least, two main problems that need to be addressed: accuracy and stability. An inaccurate

reproduction of the dynamics could spoil to different degrees the quality of the simulation; on the other

hand, an accurate routine might not be necessarily stable, meaning that the numerical simulation

could ”blow up” unexpectedly even after many steps of a seemingly convergent solution.
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Bilbao [8, 7] can be regarded as the first ever reference addressing these kind of problems in the realm

of the von Kármán equations. Bilbao solved the plate equations by making use of Finite Difference

schemes: in particular, he proposed a second-order accurate scheme whose positive definiteness of

discrete energy leads to a stability condition. The same idea of a positive-definite discrete energy is

behind the development of the scheme presented in this work. However, rather than adopting a fully

discretised space-time grid, as in a Finite Difference environment, the code developed for this work

makes use of a modal description.

A plate is a continuous system, and thus, in the language of Mechanical Engineering, it possesses an

infinite number of degrees of freedom. Truncating the degrees of freedom from an infinite number to

a finite one can lead nonetheless to a faithful reproduction of the dynamics. This is common practice

in what is collectively known as ”modal method”, which is the method developed in the course of

this work. In practice, the solution to the dynamical equation is written as a weighted sum of spatial

functions, whose time-dependent weights can be obtained by solving a system of Ordinary Differential

Equations. Modal methods applied to the solution of PDEs are very common, and they have found

applications in many fields, including that of musical acoustics. Entire projects in the realm of sound

synthesis, such as MOSAIC [68] and Modalys [33], are based around the idea of modal projection.

Their scope, however, is limited to linear systems. In actual fact, the modal decomposition appears

as the most natural description of linear dynamical systems, which can be thought of, generally

speaking, as a sum of independent contributions vibrating at specific frequencies, and known as the

modes of the system. When nonlinear vibrations are in place, however, such contributions stop being

independent of each other, and the modes ”couple” together. The nature of these couplings depends

strictly on the nature of the problem, and even seemingly slight changes of the nature of the system

can lead to a completely different set of coupling mechanisms. In the case of a rectangular plate,

for example, a ”slight change” may be realised by changing the aspect ratio or by changing one

boundary condition along one of the edges. In a Finite Difference scheme, the problem of changing

the aspect ratio is treated straightforwardly by adopting an appropriate grid; the different boundary

conditions can instead be simulated by modifying the matrices defining the difference operators. The

very intimate nature of the scheme, however, remains unchanged. This is actually one of the most

appealing features of Finite Differences schemes as opposed to modal techniques: they represent a

very flexible and general method, that can be applied to many different problems.

Modal methods, on the other hand, suffer a lack of generality. This is somewhat surprising given that

such techniques were the first to appear as methods of solution of PDEs [34]. The biggest problem

in applying modal methods is to be able to calculate the eigenfunctions and frequencies for arbitrary

boundary conditions. This is really an essential task that cannot be circumvented. Although there are

some tools at the analyst’s disposal, such as the Rayleigh-Ritz method, there is no universal strategy

to accomplish this task, and a case-by-case study needs to be enforced. A second problem, which has

already surfaced this discussion, has to do with the amount of modes to be retained to simulate the

nonlinear dynamics. Such a number is of the order of a few hundreds, and thus an eigenvalue routine
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capable of calculating that many modes is essential. Ideally, a modal method with application to

sound synthesis should avoid all ad-hoc assumptions and reproduce the dynamics faithfully.

Despite this apparently discouraging outline, there are at least two good reasons to try to perform

modal synthesis of nonlinear plates. These have to do with the accuracy of the calculated solutions,

and the efficiency of the numerical scheme. Modal methods, when properly set up, are accurate.

Not only the characteristic frequencies of vibrations can be computed with a large precision, but

the fact of having decomposed the original, continuous problem onto a series of ”building blocks”

allows to enrich the global dynamics of the plate by enriching the dynamics of each building block.

In this sense, of particular interest is the possibility of adding a damping ratio to each one of the

modes. In turn, this allows to simulate an extremely lively loss effect without having to spend any

extra analytical or computational effort. Such a perspective is indeed very attractive in view of an

application to sound synthesis, namely because loss bears a lot of perceptual information, and it can

help in improving the overall perceived ”quality” of the generated output. Nonetheless, one may

also wish to experiment with unrealistic damping laws, in order to generate sounds which cannot be

obtained when striking a real plate. In addition to being very accurate, modal techniques may as

well be cheaper than Finite Differences. In actual fact, when a plate is not too thin, a fairly small

number of modes suffices to reproduce the dynamics of highly nonlinear phenomena, and thus in a

simulation one may just keep the number of degrees of freedom to a bare minimum, leading to fast

computations.

These two reasons (accuracy and efficiency) are enough to give the modal approach a try in the

realm of nonlinear vibrations. This motivation is further compounded by the fact that, for the von

Kármán system, the modal couplings can be quantified quite easily in terms of the eigenfunctions

of the associated linear problems [83]. Hence, if one is able to calculate with sufficient precision the

eigenmodes of the problem, no ad-hoc assumptions are needed and the dynamics of the plate can be

reproduced faithfully.

The applications of the modal scheme are not limited to sound synthesis. The brief discussion on the

musical aspects of plates at the beginning of this introduction revealed that their acoustical properties

are connected to more fundamental aspect of the science of vibrations and, more generally, physics.

Thus, the outline of this thesis will try to incorporate an investigation of these more fundamental

aspects. For weakly nonlinear vibrations, the amplitude-frequency dependence and stability of peri-

odic solutions should be analysed within the framework on Nonlinear Normal Modes. The cascade

of energy to higher frequencies in a strongly nonlinear regime should instead by studied statistically

within the framework of Wave Turbulence.

The Nonlinear Normal Modes (NNMs) are a theoretical extension of the concept of linear modes. In a

linear setting, modal decomposition allows for a simplified analysis because the modes are invariant (a

solution starting on a given mode will remain indefinitely in the same mode) and they constitute the

basis functions for constructing the most general solution to the PDE. In a nonlinear settings, such

properties cease to exist. In actual fact, nonlinear systems display jumps, bifurcations, subharmonic
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and superharmonic internal resonances, modal interactions, chaotic motions and unstable solutions.

There is, however, a theoretical framework which allows to extend, with some caution, the concept

of linear mode to a nonlinear setting, and thus to help in the analysis of the nonlinear features. This

framework is that of the Nonlinear Normal Modes [77, 78, 90]. There are many ways of defining a

NNM. In essence (and what is actually of interest here) it is possible to show that, for a conservative

system, an invariant manifold still exists, meaning that solutions that start on the manifold will there

remain for all times. Such a manifold is tangent to the manifold of the associated linear setting (a flat

plane) at each equilibrium point. Being able to compute and characterise the stability of such a man-

ifold corresponds to gaining knowledge of the associated nonlinear system. Basically, a representation

of a NNM can help answer questions about the frequency-amplitude relation of the periodic orbits,

the type of bifurcations, the quality and ratio of the internal resonances. Unsurprisingly, calculating

the NNM for a system cannot, in general, be accomplished analytically. Help comes in this case

from continuation analysis, which permits to calculate numerically the periodic orbits as a function

of the period of vibration, as well as their stability. Research of NNM is ongoing, especially in view

of practical modal analysis of vibrating structures with continuously distributed nonlinearities [72].

Cyril Touzé, the first supervisor of this thesis, has largely contributed to this field with publications,

for example, on damped structures [86], shells [87] and general continuous systems [89].

When a very large number of modes (say, thousands) is activated nonlinearly in a plate, a description

of the dynamics must be given in terms of the statistical properties of the system. In fact, a plate at

large amplitudes of vibrations can be viewed as the container of a set of nonlinear waves of different

wavenumbers exchanging energy and producing other waves, and eventually giving rise to a cascade,

or flux, of energy through scales. This scenario is typical of turbulent systems in hydrodynamics,

and hence one may think, reasonably, that the plate also displays some kind of turbulent behaviour.

A proper theoretical framework for such an analysis is offered in this case by Wave Turbulence.

Such a framework was developed heavily in the mid-1960s, and was fundamentally contributed to by

Zakharov, who showed for the first time that turbulent spectra of systems composed by waves only

could be analytically computed by solving the kinetic equations [70, 98]. This is a huge advantage

with respect to the traditional framework of hydrodynamics turbulence, where the spectra can be

deduced only following dimensional arguments.

Von Kármán plates can then be studied within this framework. The seminal work by Düring et

al. [32] laid the foundation for a lot of subsequent work by deriving the theoretical spectra of wave

turbulence for thin elastic plates vibrations described by the von Kármán equations. Of particular

importance are the experimental works carried out by Boudaoud et al. [11] and [67], who showed that

the experimental spectra were in disagreement with the theoretical predictions. Hence, subsequent

papers followed in order to understand, and possibly quantify, the origin of the discrepancy. Of

particular importance here is the numerical aspect of such investigation. In their paper, Düring et al.

[32] show the results coming from early numerical simulations and conclude that they are consistent

with the theoretical prediction. Miquel et al. [63] also perform numerical simulations and conclude
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that, when such simulations are run using a setup close to that of the theory, then the spectra are

recovered. Similar conculsions are drown by Yokoyama and Takaoka in [97].

One may then wonder why more numerical investigation is required. The answer comes from observing

that all the cited works present numerical resolution of the von Kármán equations in Fourier space, not

in physical space. Fundamental aspects of real experiments (such as the type of forcing, dissipation,

boundary conditions, ...) are oversimplified in such Fourier schemes. In fact, in Fourier space one

is free to set injection and dissipation at specific eigenmodes, as the theory assumes, but which can

never be the case in a real experiment. In addition, the influence of physical boundary conditions

and geometrical imperfections is not considered in such works. Part of this thesis is then concerned

with running the Finite Difference scheme by Bilbao [7] in order to construct a numerical setup as

close as possible to a real experiment, particularly thanks to the possibility of injecting energy by

means of a pointwise, sinusoidal forcing, and to dissipate energy at all scales.

Organisation of the manuscript

The work is structured in two parts. The first part is devoted to present the numerical schemes that

have been used for this work. A brief introduction to the von Kármán equations in the framework

of elasticity theory is given in Chapter 1. Chapter 2 presents the modal techniques. This chapter

corresponds to the core of the work developed in the course of this doctorate studies. The Finite

Difference schemes by Bilbao are presented in Chapter 3.

The second part presents the applications of the numerical schemes. Chapter 4 is concerned with the

nonlinear modal interactions and NNM, and corresponds to an article publisheds in Acta Mechanica

[31]. Chapter 5 presents the results of flexural wave turbulence obtained by running the energy

conserving Finite Difference scheme. This chapter corresponds to an article published on Physica D

[28]. Finally, Chapter 6 presents the results obtained in the context of sound synthesis of gongs, by

comparing the simulations coming from the modal code and the Finite Difference Scheme.



Part 1

Part I: Numerical Methods





CHAPTER 1

Dynamical equations of beams and plates

The aim of this chapter is to introduce the equations of motion of the system of interest, the von

Kármán plate. To do so, the Euler-Bernoulli beam and the Kirchhoff plate are first introduced. This

is done for two main reasons: firts, the von Kármán plate is, physically speaking, an extension of the

Kirchhoff plate, who is itself the 2-dimensional counterpart of the Euler-Bernoulli beam; second, in

the following chapter a numerical strategy in terms of modes is outlined for the von Kármán plate,

and again, the beam and Kirchhoff plate will serve as the basis to test the goodness and robustness

of the numerical method.

In this chapter, the equations of motion will be derived following a strict procedure: Hamilton’s

principle. This principle is based on the knowledge of the elastic potential energy of the system

under consideration. Such a function is easily derived in terms of the strain and stress tensors of

the body, and so the elasticity equations are briefly recalled at the beginning of this chapter. The

index notation has been preferred over the tensorial notation making use of boldface fonts. The idea

is to focus on the kinematics of the systems following very simple physical considerations: hence, a

description in terms of the strain vector components will be used instead of the description making

use of momenta and forces.

There are many excellent references that cover the topics overlooked in this chapter. Amongst the

others, one may refer to [56] for the elasticity equations. Hamilton’s principle and the equations of

motion for continuous systems are treated in some detail in [37, 42]. The nonlinear von Kármán

equations are derived in [69], using the tensorial description.

1.1. Elements of Elasticity Theory

An elastic body subjected to forcing displays a deformation. The effect of the deformation is to

displace the body from a reference configuration to a deformed configuration. The reference con-

figuration will be denoted here by unprimed quantities, hence before the deformation the body is

assumed to occupy a certain portion of space V , bounded by a surface or contour Ω, and whose

points are found at a particular position in space described by cartesian coordinates x ≡ xi. After

the deformation occurs, primed quantities will be used to describe the new configuration, where the

body occupies a portion of space V ′ bounded by Ω′ and whose points are described by x′ ≡ x′
i. The

two reference frames are assumed to share the same origin. A displacement vector u ≡ ui can then

3



4 1. DYNAMICAL EQUATIONS OF BEAMS AND PLATES

be defined as the difference between x′
i and xi, so that

(1.1) x′
i = xi + ui.

For the remainder of the chapter, a Lagrangian description will be adopted, meaning that the co-

ordinates x′
i and the vector ui are considered functions of the reference configuration coordinates

xi.

1.1.1. Strain. The deformation of a body can be decomposed into a rigid body motion and

relative displacements of the material particles composing the body. These displacements can be

characterised by an appropriate tensor, called strain tensor. There are different ways of measuring

the strains in a body. Here finite strains are considered, and the Green-Lagrange tensor uij is used.

This tensor is a measure of the difference between two line elements after and before the deformation

occurs and, in the Lagrangian description, is defined as

(1.2) dl′2 − dl2 = 2uikdxidxk.

Note that, for the remainder of this chapter, the summation rule is used1. In addition, partial space

derivatives will be denoted by an index following a comma, (so, for example u,i =
∂u
∂xi

). An overdot

will instead indicate a time derivative. To derive an explicit expression for uij , consider the line

elements dl′2 = dx′
idx

′
i, dl

2 = dxidxi. Differentiating Eq. (1.1) allows to write

(1.3) dx′
idx

′
i = (dxi + ui,kdxk) (dxi + ui,kdxk) .

This results in

(1.4) dl′2 − dl2 = ui,kdxkdxi + ui,kdxkdxi + ui,mui,kdxmdxk.

Secondly, in the second term of the right hand side, the indices i and k are exchanged (this is allowed

as the indices are summed); in the third term of the right hand side the indices i,m are replaced

respectively by l, i so to get

(1.5) uik =
1

2
(ui,k + uk,i + ul,iul,k) .

The Green-Lagrange strain tensor is clearly symmetric and nonlinear, due to the presence of the

quadratic term. The nonlinear terms ul,iul,k can be neglected in the case of small deformations. In

this case the strain tensor takes the form

(1.6) uik =
1

2
(ui,k + uk,i) .

Small deformations will be considered in the remainder of the chapter, except for section 1.3.3, where

a correction to the linear strain tensor will be used.

1The index summation rule states that a same index repeated twice in a product is assumed to be summed over;

hence the expression dx′

i = Zijdxj is equivalent to dx′

i =
∑

3

j=1
Zijdxj
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1.1.2. Stress. When a body is deformed, internal forces arise amongst its material points as a

reaction to the deformation. In the case of elastic bodies, these forces arise in order to restore the

original configuration of the body. Such internal forces are called stresses. The deformation can arise

following forces applied to an element of surface dΩ, or by body forces acting on volume elements

dV . At equilibrium, the sum of the body forces and surface tractions must be zero. The traction

forces per unit surface are denoted here ti. The stress tensor σik is defined as

σiknk = ti,

where nk is the unit outward vector of the element of surface dS. The body forces per unit volume

are denoted here by fi.

When the body is subjected to external forcing, the equation of motion can be derived by assuming

conservation of momentum, which is expressed as
∮

Ω

ti dΩ+

∫

V

fi dV =
d

dt

∫

V

ρu̇i dV.

where ρ is the volumetric density of the body (assumed constant). By making use of the divergence

theorem, one can transform the surface integral into a volume integral, to get
∫

V

[ρüi − σik,k − fi] dV = 0.

Thus, the following equation of motion and boundary conditions are recovered

σiknk = ti on the surface of the body,(1.7a)

ρüi = σik,k + fi inside the body.(1.7b)

The stress tensor is symmetric. This is not evident from its definition as it is for the strain tensor.

However, this can be obtained by considering the total moment of a body in equilibrium. Hence

(1.8)

∫

V

ρ(x× ü) dV =

∮

Ω

x× t dΩ+

∫

V

x× f dV

The cross product between two vector can be expressed in index form using the permutation symbol

eijk =







1 if i, j, k even permutation of 1, 2, 3;

−1 if i, j, k odd permutation of 1, 2, 3;

0 otherwise.

The equilibrium of moment then reads

(1.9)
d

dt

∫

V

eijkxj u̇k dV =

∮

Ω

eijkxjtk dΩ+

∫

V

eijkxjfk dV.

Remembering the equilibrium equations (1.7), and transforming the surface integral into a volume

integral using the divergence theorem, one get

(1.10)

∫

V

eijkσkj dV = 0,

which is verified if and only if σkj = σjk.
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1.1.3. Strain Energy and Stress-Strain Relationships. The energy stored in a body un-

dergoing a deformation can be described in terms of an energy density function. This function is

derived easily by considering the work of traction and body forces for a virtual displacement δui. In

the following, the symbol overbar (̄ ) will denote quantities per unit volume. The total work for a

virtual displacement δui is
∫

V

δW̄ dV =

∫

V

fiδui V +

∮

Ω

tiδui dΩ.

Using the equilibrium equations (in this case u̇ = 0 as the displacement is virtual) and the divergence

theorem gives
∫

V

δW̄ dV =

∫

V

[(σik,kδui),k − σik,kδui] dV =

∫

V

σikδui,k dV.

Now, the strain component ui,k can be written as the sum of the symmetric tensor uik plus the

antisymmetric tensor ωik = 1
2 (ui,k −uk,i). The stress tensor is symmetric, thus σikωik = 0. Plugging

this result in the expression for δW̄ gives
∫

V

δW̄ dV =

∫

V

σikδuik dV.

The work done on the body corresponds to a change in the potential energy Ū of the system, so that

δW̄ = δŪ .

Thus, the strain potential energy is defined as

(1.11) Ū = σikδuik.

The relation above becomes an exact differential by assuming that the potential energy Ū is actually

a function of the strain tensor uik; in that case

(1.12) σik =
∂Ū

∂uik

.

This is the fundamental relation between stress and strain. The exact form of the function Ū depends

on the type of material (homogeneity, isotropy, degree of nonlinearity,...). For a linear, isotropic and

homogeneous material it is possible to show that

(1.13) Ū =
1

2
λ(uii)

2 + µuikuik,

where λ, µ are known as Lamé constants. These constant are related to the more common Young’s

modulus E and Poisson’s ratio ν by

E = µ(3λ+ 2µ)/(λ+ µ) Young’s modulus;

ν =
1

2
λ/(λ+ µ) Poisson’s ratio.
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Now, the expression for Ū is quadratic in the strain tensor; following Euler’s theorem then one has

uik∂Ū/∂uik = 2Ū ; this shows that

(1.15) Ū =
1

2
σikuik.

This is the fundamental relation that will be used in deriving the expressions for the potential energy

in the following sections. The stress strain relationships are obtained easily in terms of Young’s

modulus and Poisson’s ratio as

(1.16a) σik =
E

1 + ν

(

uik +
ν

1− 2ν
ullδik

)

;

(1.16b) uik =
1

E
((1 + σ)σik − νσllδik) ;

where δik is Kronecker delta.

1.2. Variational Principles

Now that the basic equations of elasticity have been derived, the aim is to be able to determine

the equation of an elastic body subjected to forces. The developments will stem from Hamilton’s

principle.

Newton’s basic laws of physics consider the case of material particles acted upon by forces. The

extension of Newtonian methods to a body occupying a finite portion of space is done by integrating

the effects of the single ”material particles” over the volume V . Lagrange generalised this process

for a system comprising a finite number of degrees of freedom, and the motion of the system is

fully specified once position and velocities of all the components are specified at an instant of time

t0. Hamilton stated the problem somewhat differently, by specifying the position of the system at

two instants t0, t1, and by proving that the dynamics therein follows a geodesic. The mathematical

statement of this principle is

(1.17) δ

∫ t1

t0

(T − U +We)dt = 0, δui(t1) = δui(t2) = 0;

where T is the kinetic energy of the system, U is the potential energy, and We is the work done by

the external forces on the system. The symbol δ is intended in the sense of calculus of variations.

The equations of motion and boundary conditions can be derived from the integral above. The three

terms involving T, U,We are now analysed. The symbol ¯ will denote a quantity per unit volume.

The body is assumed to have a constant density ρ. The kinetic energy density is

T̄ =
ρ

2
u̇iu̇i, δT̄ = ρu̇iδui.

Integrating by parts in the time variable gives

δ

∫ t1

t0

T̄ dt =

∫

V

[ρu̇iδui]

∣
∣
∣
∣

t1

t0

dV

︸ ︷︷ ︸
=0

−

∫ t1

t0

∫

V

[ρüiδui] dV dt.
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The potential energy density is

dŪ =
∂U

∂uij

duij ; δŪ =
∂Ū

∂uij

δuij =
1

2

∂Ū

∂uij

(ui,j + uj,i).

Thus

δ

∫ t1

t0

Ū dV =

∫ t1

t0

∫

V

1

2

∂Ū

∂uij

(δui,j + δuj,i)dV.

The last expression can be integrated by parts, to give

δ

∫ t1

t0

Ū dV =
1

2

∫ t1

t0







∮

Ω







∂Ū

∂uij

δuinj +
∂Ū

∂uij

δujni

︸ ︷︷ ︸

A.







dΩ−

∫

V








(
∂Ū

∂uij

)

,j

δui +

(
∂Ū

∂uij

)

,i

δuj

︸ ︷︷ ︸

B.








dV







dt

In A. and B. the indices (i, j) are swapped; owing to the symmetry of the strain tensor and remem-

bering that σij = ∂Ū/∂uij one gets

δ

∫ t1

t0

Udt =

∫ t1

t0

{∮

Ω

σijδuinj dΩ−

∫

V

σij,jδui dV

}

dt.

The last variation to calculate is the external work. This is done easily considering
∫

V

δW̄e dV =

∫

V

fiδui dV +

∮

Ω

tiδui dΩ.

Hence Hamilton’s principle reduces to

(1.18) δ

∫ t1

t0

(T − U +We) dt =

∫ t1

t0

∫

V

[−ρüi + fi + σij,j ] dV dt−

∫ t1

t0

∮

Ω

[σijnj − ti] dΩdt = 0.

It is possible then to recognize the following

Equation of Motion

ρüi = fi + σij,j

Boundary Conditions

σijnj = ti

These equations are formally identical to Eqs. (1.7), and thus it is seen that Hamilton’s principle

allows to derive the same equation of motion and boundary conditions as the classical approach in

terms of equilibrium of forces. In the following sections, the equations of motion will be derived

systematically by making use of Hamilton’s principle. The strategy to follow is to:

(1) list the kinematic hypotheses of the problem in line with physical reasoning;

(2) derive either the strain tensor (stress tensor) in accordance with the hypotheses in 1., and

use Eq. (1.16) to derive the stress tensor (strain tensor);

(3) derive an expression for the potential energy by making use of the general expression (1.15);

(4) use the kinetic and potential energy expressions to formulate Hamilton’s principle;

(5) integrate by parts in order to obtain the equation of motion and the boundary conditions.
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1.3. Applications to Beams and Plates

Now that the constitutive equations of elasticity and variational principles have been recalled, it is

possible to derive the equations of motion for continuous systems. The cases presented here deal

with isotropic materials, for which the linear stress-strain relationships hold. The deformations are

supposed to be homogeneous. Nonlinearities will then appear from geometric considerations, due to

the large amplitude of vibrations. The cases presented here are those that will be considered in the

following chapters: the Euler-Bernoulli beam, the Kirchhoff plate, and the von Kármán plate.

1.3.1. The Euler-Bernoulli Beam. The Euler-Bernoulli beam is the simplest model to de-

scribe bending in a slender elastic structure. It is a linear model valid for small vibration amplitudes,

and considers the flexural vibrations of a slender beam of cross section A(x) and length L. The

following assumptions are considered:

• The material is homogeneous and isotropic, and obeys the linear stress-strain relationships

(1.16).

• The bending is small compared to the length l of the beam.

• The motion is planar and takes place in the x− z plane. Thus uy = 0.

• The bending in the z direction is uniform, so that uz ≡ w = w(x).

• The cross section of the beam remains perpendicular to the neutral axis of the beam after

the deformation occurs. This implies that the longitudinal strain uxx can be written as

uxx = z/rx, where rx is the radius of curvature in the x − z plane. Owing to the small

deflections assumption, one may write 1/rx = −w,xx. Hence uxx = −zw,xx. Thus, ux ≡

u = −zw,x

Owing to the hypotheses above, the linear strain tensor can be written as

uxx = −zw,xx; uxz = uzz = 0.

The equation of motion may be derived from varying the total energy of the system, as in Eq. (1.17).

The potential energy per unit volume can be calculated easily thanks to Eq. (1.15). Thus

Ū =
1

2
σikuik =

1

2
σxxuxx.

The stress component σxx is obtained from the stress-strain relationships (1.16) by setting ν = 0 (the

Poisson effect is neglected). Hence

σxx = Euxx.

The expression for the total potential energy is then given by

U =
1

2

∫ L

0

∫

A(x)

Ez2(w,xx)
2 dxdA.

Introducing the geometric moment of inertia I(x) =
∫

A(x)
z2dA gives

(1.19) U =
1

2

∫ L

0

EI(x)(w,xx)
2 dx.
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The kinetic energy is obtained as the sum of two contributions, the motion in the z direction and the

rotation of the cross section. Hence

T =
ρ

2

∫ L

0

∫

A(x)

(u̇2+ẇ2) dAdx =
ρ

2

∫ L

0

∫

A(x)

(z2(ẇ,x)
2+ẇ2) dAdx =

ρ

2

∫ L

0

I(x)ẇ2
,x dx+

ρ

2

∫ L

0

A(x)ẇ2 dx.

Upon definitions of the mass per unit length m = ρA(x) and the cross section gyration radius

r2 = I(x)/A(x), the form for the kinetic energy is

(1.20) T =
1

2

∫ L

0

mr2ẇ2
,x dx+

1

2

∫ L

0

mẇ2 dx.

The equation for the free vibrations of the Euler-Bernoulli beam can be easily obtained from the

variational principle Eq. (1.17), where it is assumed that no external forces are acting. Thus

(1.21) δ

∫ t2

t1

∫ L

0

[mẇ2 +mr2ẇ2
,x − EI(x)w2

,xx] dxdt = 0.

The integral above contains three terms, the variation of which is given by

(1.22a) δ(mẇ2) = 2mẇδẇ;

(1.22b) δ(mr2ẇ2
,x) = 2mr2ẇ,xδẇ,x;

(1.22c) δ(EI(x)w2
,xx) = 2EI(x)w,xxδw,xx.

To obtain the equation of motion, integration by parts is performed. Particularly, Eq. (1.22a) will be

integrated by parts once in the time variable; Eq. (1.22b) will be integrated once in the time variable,

and once in the space variable; Eq. (1.22c) will be integrated twice in the space variable. This results

in

(1.23a)

∫ t2

t1

∫ L

0

δ(mẇ2) dxdt =

∫ L

0

[

2mẇδw

∣
∣
∣
∣

t2

t1

]

dx

︸ ︷︷ ︸
=0

−

∫ t2

t1

∫ L

0

2mẅδw dxdt;

∫ t2

t1

∫ L

0

δ(mr2ẇ2
,x) dxdt =

[

2mr2ẇ,xδw

∣
∣
∣
∣

t2

t1

] ∣
∣
∣
∣

L

0
︸ ︷︷ ︸

=0

−

∫ L

0

(2mr2ẇ,x),xδw

∣
∣
∣
∣

t2

t1

dx

︸ ︷︷ ︸
=0

(1.23b) −

∫ t2

t1

2mr2ẅ,xδw

∣
∣
∣
∣

L

0

dt+

∫ t2

t1

∫ L

0

(2mr2ẅ,x),x dxdt;

∫ t2

t1

∫ L

0

δ(EI(x)w2
,xx) dxdt =

(1.23c)

∫ t1

t0

{[

2EI(x)w,xxδw,x

∣
∣
∣
∣

L

0

]

−

[

(2EI(x)w,xx),xδw

∣
∣
∣
∣

L

0

]}

dt+

∫ t2

t1

∫ L

0

(2EI(x)w,xx),xx dxdt.
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Following the assumption of zero virtual displacement δw at t1, t2, some boundary integrals vanish

in the equations above. Collecting these results together gives

δ

∫ t2

t1

∫ L

0

(T − U) dxdt =

∫ t2

t1

∫ L

0

[

(mr2ẅ,x),x −mẅ − (EI(x)w,xx),xx

]

δw dxdt+

(1.24)

∫ t2

t1

{
[

(EI(x)wxx),x −mr2ẅ,x

]

δw

∣
∣
∣
∣

L

0

− [EI(x)wxx] δw,x

∣
∣
∣
∣

L

0

}

dt = 0.

This equality permits to state the following

Equation of Motion of Euler-Bernoulli Beam with Rotatory Inertia

ρAẅ = (ρAr2ẅ,x),x − E (I(x)w,xx),xx ;

Boundary Conditions

Simply Supported End

w = w,xx = 0.

Clamped End

w = w,x = 0.

Free End

ρAr2ẅ,x = E (I(x)w,xx),x ;

w,xx = 0.

A further simplification can be introduced at this stage. In actual fact, the inertia terms can be

neglected at low frequencies, because the rotation of the cross section becomes small with respect to

the flexural velocity. When this is done, the Euler-Bernoulli beam equations are obtained as:

Equation of Motion of Euler-Bernoulli Beam without Rotatory Inertia

ρAẅ = −E (I(x)w,xx),xx ;

Boundary Conditions

Simply Supported End

w = w,xx = 0.

Clamped End

w = w,x = 0.

Free End

w,xx = w,xxx = 0.

1.3.2. Small Deflections of Plates: the Kirchhoff Equation. The Kirchhoff plate is the

two-dimensional analogue of the Euler-Bernoulli beam. Its dynamics consists of flexural vibrations,

with no in-plane motion. The plate occupies a portion of space V , composed of a rectangular surface

S and a thickness h, hence V = [0, Lx] × [0, Ly] × [−h/2, h/2], with h ≪ Lx, h ≪ Ly. The plate is

equipped with a neutral surface, which serves as the analogue of the neutral axis of the beam. The

same kinematic assumptions apply, except that now the vertical deflection w is a function of the two

space coordinates x and y, hence w ≡ w(x, y). In addition
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• The material is isotropic, homogeneous with density ρ, Young’s modulus E and Poisson’s

ratio ν, and obeys the linear stress-strain relationships (1.16).

• The bending is small compared to the thickness h of the plate. The small displacement

strain tensor is used.

• On the neutral surface the displacement vector is ui = (0, 0, w(x, y)). Away from the

surface, given the smallness of the thickness, the displacement vector is defined as ui =

(u(x, y, z), v(x, y, z), w(x, y)).

• Plane sections of the plate remain plane and perpendicular to the neutral surface when

deformations occur.

The plate is thin, and the amplitude of the flexural waves developing on the surface are small compared

to the thickness. Thus, relatively small forces are applied to the surface of the plate in order to bend

it. These forces are in magnitude considerably smaller than the stresses developing in the plate, thus

they can be neglected in the boundary term of Eq. (1.7). Hence

σiknk = 0.

The plate is only slightly bent, hence nk = nz everywhere on the surface. Consequently

σxz = σyz = σzz = 0.

These relations hold true along the thickness of the plate, because h is small. From the stress-strain

relationships (1.16), it is seen that uzx ∝ σzx, uzy ∝ σzy, hence

uzx = 0 =
1

2
(u,z + w,x) ; → u = −zw,x

uzy = 0 =
1

2
(v,z + w,y) ; → v = −zw,y

Note that the constant of integration was chosen to make (u, v) vanish on the neutral surface at

z = 0. Thus

uxx = −zw,xx; uyy = −zw,yy; uxy = −zw,xy.

The strain component uzz is derived easily by equating to zero the equation for σzz in the stress-strain

relationships, and by using the strain components above. Hence

uzz =
ν

1− ν
z(w,xx + w,yy).

It is now possible to derive an explicit expression for the strain potential energy density in terms of

the displacement w(x, y):

(1.26) Ū =
1

2
σikuik = z2

E

1 + ν

{
1

2(1− ν)
(∆w)2 +

[
(w,xy)

2 − w,xxw,yy

]
}

,

where the symbol ∆ denotes the bi-dimensional Laplacian. Integrating over the volume element

dV = dxdydz, and introducing the rigidity constant D = Eh3/12(1− ν2) gives

(1.27) U =
D

2

∫ Ly

0

∫ Lx

0

{(∆w)2 + 2(1− ν)[(w,xy)
2 − w,xxw,yy]}dxdy.
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The kinetic energy is expressed easily as

(1.28) T =
ρh

2

∫ Ly

0

∫ Lx

0

(ẇ)2dxdy.

Note that the in-plane contributions of the kinetic energies have been neglected. As for the case of the

beam, this will pose limitations to the validity of the plate model at high frequencies. The equation

of motion with the boundary conditions can be derived by considering variations of the Lagrangian

of the system

(1.29) δ

∫ t2

t1

(T − U)dt = 0; δw(t1) = δw(t2) = 0.

Now

δU = D

∫ Ly

0

∫ Lx

0

{(∆w)δ(∆w) + (1− ν)[2w,xyδw,xy − w,xxδw,yy − w,yyδw,xx]}dxdy;

δT = ρh

∫ Ly

0

∫ Lx

0

ẇδẇ dxdy.

These variations are inserted into Eq. (1.29); the kinetic term is integrated by parts once in the time

variable, whereas the potential term is integrated by parts twice in the space variables. The final

result is

(1.31a) δ

∫ t2

t1

Tdt = −

∫ t2

t1

∫ Ly

0

∫ Lx

0

ρhẅδw dxdydt.

δ

∫ t2

t1

Udt =

∫ t2

t1

{
∫ Ly

0

∫ Lx

0

D∆∆wδw dxdy

+

∫ Ly

0

(w,xx + νw,yy)

∣
∣
∣
∣

Lx

0

δw,xdy −

∫ Ly

0

(w,xxx + (2− ν)w,xyy)

∣
∣
∣
∣

Lx

0

δw dy

(1.31b)

+

∫ Lx

0

(w,yy + νw,xx)

∣
∣
∣
∣

Ly

0

δw,ydx−

∫ Lx

0

(w,yyy + (2− ν)w,xxy)

∣
∣
∣
∣

Ly

0

δw dx+ w,xyδw

∣
∣
∣
∣
at corners

}

dt.

It is evident that the application of Hamilton’s principle allowed to write

δU = δS + δB,

so that the contribution is split between a surface integral and boundary integrals; in other words, part

of the potential energy contributes to the inertial forces that appear in the equation of motion through

δS, and the other part has to be compensated by the boundary conditions, so that δB disappears

along the contour. The results are summarised as follows (the indices n, t refer to a direction normal

and tangential to the boundary, respectively):
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Equation of Motion

ρhẅ = −D∆∆w

Boundary Conditions

Simply Supported Edge

w = w,nn = 0.

Clamped Edge

w = w,n = 0.

Free Edge

w,nnn + (2− ν)w,ntt =

w,nn + νw,tt = 0;

w,nt = 0 at corners.

1.3.3. Large Deflections of Plates: the von Kármán Equations. The results derived in

the previous section are valid in the limit of small vibrations/small frequencies. When large-amplitude

vibrations are considered, stretching arises in the in-plane directions as a consequence of bending.

For example, let a circular plate be bent by applying a force at is centre: if the circumference stays

constant, the diameter must increase; if the diameter remains constant, then the circumference gets

smaller. Again, the plate considered is thin, and occupies a portion of space V , composed of a

rectangular surface S and a thickness h, hence V = [0, Lx] × [0, Ly] × [−h/2, h/2], with h ≪ Lx,

h ≪ Ly. Then

• The material is isotropic, homogeneous with density ρ, Young’s modulus E and Poisson’s

ratio ν, and obeys the elasticity equations (1.16).

• The bending is the same order as the thickness h of the plate. However, nonlinear terms

deriving form the x, y components of the in-plane strain tensor are neglected.

• In-plane inertia terms are neglected.

For small flexural vibrations the stretching can be neglected. Thus the contribution to the potential

energy comes entirely from flexural deformations. For a plate undergoing large deflections, a second

contribution to the potential energy arises as a consequence of stretching due to bending and hence

the total strain energy density becomes

Ū = Ūb + Ūs,

where Ūb is the energy due to pure bending (see Eq. (1.26)) and Ūs is the contribution coming from

the stretching. This contribution is calculated easily once a corrected form for the in-plane strain

tensor is derived. For that, consider two points on the surface of the plate before the deformation,

separated by an infinitesimal distance dl. Greek indices will be used to denote the coordinates (x, y)

of the plate surface. Hence

dl2 = dxαdxα.

After the deformation, the infinitesimal distance becomes dl′ and is

dl′2 = (dxα + duα)(dxα + duα) + dw2,
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where the strain vector has been denoted ui = (u(x, y), v(x, y), w(x, y)). The expression above can

rewritten as

dl′2 = (dxα + uα,βdxβ) (dxα + uα,γdxγ) + w,αdxα w,βdxβ ,

and thus

(1.32) dl′2 − dl2 = (uα,β + uβ,α) dxαdxβ + wα,βwβ,αdxαdxβ = 2uαβdxαdxβ ,

where the term proportional to uα,βuα,γ (higher order in uα) has been neglected. Then

Ūs =
1

2
σαβuαβ ,

where σαβ is given by the strain-stress relationships (1.16). The total potential energy due to stretch-

ing is obtained by integrating the expression above over the volume of the plate. Hence

Ūs =
h

2

∫ Ly

0

∫ Lx

0

uαβσαβdxdy.

Owing to the symmetry of the stress and strain tensors, the variation of the potential energy becomes

δUs = h

∫ Ly

0

∫ Lx

0

σαβ(δuα,β + wαδw,β)dxdy.

Integrating by parts the expression above gives

(1.33) δUs/h =

∫ Ly

0

(σxxδu+ σxxw,xδw)

∣
∣
∣
∣

Lx

0

dy −

∫ Ly

0

∫ Lx

0

σxx,xδux + (σxxw,x),xδwdxdy

(1.33) +

∫ Ly

0

(σyxδv + σyxw,yδw)

∣
∣
∣
∣

Lx

0

dy −

∫ Ly

0

∫ Lx

0

σyx,xδuy + (σyxw,y),xδwdxdy

(1.33) +

∫ Lx

0

(σxyδu+ σxyw,xδw)

∣
∣
∣
∣

Ly

0

dx−

∫ Ly

0

∫ Lx

0

σxy,yδux + (σxyw,x),yδwdxdy

(1.33) +

∫ Lx

0

(σyyδv + σyyw,yδw)

∣
∣
∣
∣

Ly

0

dx−

∫ Ly

0

∫ Lx

0

σyy,yδuy + (σyyw,y),yδwdxdy

Again, the variation of the potential energy is the sum of boundary terms and surface terms, in other

words

(1.34) δUs/h = δB + δS.

The surface terms can be collected together in the following way

δS = −

∫ Ly

0

∫ Lx

0

{(σxx,x + σxy,x) δu+ (σyy,y + σyx,x) δv+

[

(σxxw,x + σxyw,y),x + (σyyw,y + σyxw,x),y

]

δw
}

dxdy.
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A simplified expression can be found by considering Airy’s stress function χ defined implicitly as

(1.36) χ,xx = σyy; χ,xy = −σxy; χ,yy = σxx.

Owing to this definition, one gets immediately

σxx,x + σxy,y = σyy,y + σyx,x = 0,

and hence the integral for δS above simplifies to

(1.37) δS = −

∫ Ly

0

∫ Lx

0

L(χ,w)dxdy,

where L(·, ·) is a bilinear operator known as von Kármán operator, who reads

(1.38) L(χ,w) = χ,xxw,yy + χ,yyw,xx − 2χ,xyw,xy.

The variation of the pure bending energy δUb was calculated in the previous section. Hence, the

variation of the potential energy for a plate undergoing large deflections can be written as

(1.39) δU = δUb + δUs =

∫ Ly

0

∫ Lx

0

(D∆∆w − hL(χ,w)) δw dxdy = 0.

It is seen that the problem of flexural vibrations is now coupled to in-plane motion in a way described

by the stress function χ. Thus, a second constitutive equation is needed, as the unknowns are now

the vertical displacement w(x, y) and the stress function χ(x, y). This equation is obtained from the

stress-strain relationships for the in-plane motion. The strains are

(1.40) uxx = (σxx − νσyy)/E; uyy = (σyy − νσxx)/E; uxy = (1 + ν)σxy/E.

Hence, inserting (1.36) into (1.40) and remembering the defintion of the in-plane strain tensor uα,β

in (1.32) one gets

(1.41a) u,x +
1

2
(w,x)

2 =
1

E
(χ,yy − νχ,xx);

(1.41b) v,y +
1

2
(w,y)

2 =
1

E
(χ,xx − νχ,yy);

(1.41c) u,y + v,x + w,xw,y = −
2(1 + ν)

E
χ,xy.

Taking ∂2/∂y2 of the first, ∂2/∂x2 of the second, −∂2/∂y∂x of the third and summing gives

(1.42) ∆∆χ = −
E

2
L(w,w).

This is the second constitutive equation that must be used in conjunction with Eq. (1.39). These

equations have to be supplied with boundary conditions. These come from the boundary terms of

the variation of the total potential energy. The variation for pure bending was calculated previously

for the case of the Kirchhoff plate. The contribution to the boundary conditions coming from the
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stretching energy is obtained by exploiting the term δB of Eq. (1.34). The boundary term can be

expressed as

(1.43) δB =

∫ Ly

0

[σxxδu+ σxyδv + (σxxw,x + σxyw,y)δw]

∣
∣
∣
∣

Lx

0

dy +

∫ Lx

0

[...]

∣
∣
∣
∣

Ly

0

dx,

where the second integral is obtained form the first by swapping x and y. For starters, consider the

term
∫ Ly

0

[σxxδu+ σxyδv]

∣
∣
∣
∣

Lx

0

dy.

Two situations are possible:

(1) the edge is movable (δu 6= 0, δv 6= 0);

(2) the edge is immovable (δu = δv = δw = 0).

Case 1. is solved easily by imposing σxx = σxy = 0. In terms of the stress function

χ,yy = χ,xy = 0.

In terms of the normal and tangential indices n, t this conditions is

(1.44) χ,tt = χ,nt = 0.

Case 2. is solved by imposing δu = δv = 0. This form of the boundary conditions is not very useful

as it involves the strain components u, v that should be eliminated in favour of the stress function.

Hence
∫ Ly

0

[σxxδu+ σxyδv]

∣
∣
∣
∣

Lx

0

dy =

∫ Ly

0

[χ,yyδu]

∣
∣
∣
∣

Lx

0

dy

︸ ︷︷ ︸

A

−

∫ Ly

0

[χ,xyδv]

∣
∣
∣
∣

Lx

0

dy

︸ ︷︷ ︸

B

.

Obviously one must impose A = B = 0. Integral A is calculated by parts to give

A = χ,yδu

∣
∣
∣
∣
corners

︸ ︷︷ ︸
=0

−

∫ Ly

0

χ,yδu,y

∣
∣
∣
∣

Lx

0

dy = 0.

The first integral disappears as, by hypothesis, δu = 0. In the second integral, the expression for δu,y

is derived from identities (1.41), and considering that δw = 0. Hence

δu,y = −

(
2(1 + ν)

E
δχ,y + δv

)

,x

.

Thus

A =

∫ Ly

0

[
2(1 + ν)

E
δχ,y + δv

]

,x

χ,y

∣
∣
∣
∣

Lx

0

dy = 0.

Integrating a second time by parts results in

A = χ

[
2(1 + ν)

E
δχ,xy + δv,x

]

︸ ︷︷ ︸

=δu,y=0

∣
∣
∣
∣
corners

−

∫ Ly

0

[
2(1 + ν)

E
δχ,yy + δv,y

]

,x

χ

∣
∣
∣
∣

Lx

0

dy = 0.
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The expression for δv,y is again derived from identities (1.41). Substituting in the integral above

gives

−

∫ Ly

0

δ

E
[(2 + ν)χ,xyy + χ,xxx]χ

∣
∣
∣
∣

Lx

0

dy = 0,

or

(2 + ν)χ,xyy + χ,xxx = 0,

or

(1.45) (2 + ν)χ,ntt + χ,nnn = 0,

The integral B is easily solved. Integration by parts gives

B = χ,xδv
︸ ︷︷ ︸
=0

∣
∣
∣
∣

Lx

0

−

∫ Ly

0

χ,xδv,ydy = 0.

Substituting the expression for δv,y from identities (1.41) gives immediately

B = −

∫ Ly

0

χ,x

δ

E
(χ,xx − νχ,yy)dy = 0,

or

χ,xx − νχ,yy = 0,

or

(1.46) χ,nn − νχ,tt = 0,

Summarising, conditions (1.44) must be imposed for a movable edge in the in-plane direction, whereas

conditions (1.45) and (1.46) must be imposed in the case of an immovable edge. The last part of

the boundary integral (1.43) involves a factor proportional to δw. This part has to be added to the

boundary integrals coming from the pure bending contributions, that are also proportional to δw (see

Eq. (1.31)). These terms describe the conditions of the edge rotation. Summarising

(1) Transversely immovable edge

(1.47) w = 0;

(2) Transversely movable edge

(1.48) w,nnn + (2− ν)w,ntt −
h

D
(χ,ttw,n − χ,ntw,t) = 0.

In order to obtain the equations of motion, the variation of the kinetic energy has to be derived. This

is was done already in Eq. (1.31). Introducing the function F = hχ, the von Kármán equations take

the following form

Equation of Motion

ρhẅ = −D∆∆w + L(w,F );

∆∆F = −
Eh

2
L(w,w).
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Boundary Conditions

In-plane direction

• Movable

F,nt = F,tt = 0.

• Immovable (with w = 0)

F,nn − νF,tt =

F,nnn + (2 + ν)F,ntt = 0.

Edge Rotation

• Rotationally Free

w,nn + νw,tt = 0.

• Rotationally Immovable

w,n = 0.

Edge Vertical Translation

• Transversely Movable

w,nn + (2− ν)w,ntt

−
1

D
(F,ttw,n − F,ntw,t) = 0;

w,nt = 0 at corners.

• Transversely Immovable

w = 0.

1.3.3.1. Properties of the L operator and energy expressions. A useful property of the von Kármán

operator L(·, ·) can be recovered by considering the following integral

I =

∫ Ly

0

∫ Lx

0

αL(β, γ) dxdy,

for generic functions α, β, γ. Integrating by parts results in

(1.49) I =

∫ Ly

0

∫ Lx

0

γL(α, β) dxdy +

∮

Ω

[β,tt(αγ,n − γα,n)− β,nt(αγ,t − γα,t)] dΩ,

which has been called ”triple self-adjointess” property [8, 83].

Consider now the first of the two equations of motion of the von Kármán system. Multiplying both

terms by ẇ and integrating over the surface of the plate gives

ρh

∫ Ly

0

∫ Lx

0

ẅẇ dxdy +D

∫ Ly

0

∫ Lx

0

∆∆wẇ dxdy =

∫ Ly

0

∫ Lx

0

L(w,F )ẇ dxdy.

Integration by parts is now performed. Owing to property (1.49), and remembering that L(w,w) =

−2/Eh∆∆F , one can effortlessly see that the expression above reduces to

(1.50)

d

dt

[

ρh

2

∫ Ly

0

∫ Lx

0

ẇ2 dxdy +
D

2

∫ Ly

0

∫ Lx

0

(∆w)2 dxdy +
1

2Eh

∫ Ly

0

∫ Lx

0

(∆F )2 dxdy

]

= B = 0,

where B is a boundary integral that vanished under the prescribed boundary conditions. The left

hand side can be then interpreted as dE/dt = 0, where E is the total energy of the plate, composed

of

T =

∫ Ly

0

∫ Lx

0

ρh

2
ẇ2 dxdy Kinetic Energy(1.51a)

Ul =

∫ Ly

0

∫ Lx

0

D

2
(∆w)2 dxdy Linear Potential Energy(1.51b)

Unl =

∫ Ly

0

∫ Lx

0

1

2Eh
(∆F )2 dxdy Nonlinear Potential Energy(1.51c)
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These are the expressions for the energy of the plate once the boundary contribution has been

removed.



CHAPTER 2

Numerical Methods I: Modal Techniques

The aim of this chapter is to introduce the modal techniques adopted for the von Kármán equation.

The techniques are developed starting from the case of a linear beam, that serves as the basis for

a more complex strategy for plates. The von Kármán equations will be then projected on the

eigenfunctions of the corresponding linear plate problems.

In this chapter, the literature review and the numerical applications will be considered within the do-

main of ”semi-analytical” techniques. By the expression ”semi-analytical” it is intended an approach

where the eigenfunction is assumed to be an averaged sum of carefully selected expansion functions,

and where the weights and eigenfrequencies are determined by a numerical approach involving either

an infinite determinant or an algebraic eigenvalue problem. Methodologies such as the Rayleigh-Ritz

method (and analogous energy methods) fall into this category. Purely numerical approaches, such as

the Finite Difference and Finite Element methods are instead not considered in this chapter. Finite

Difference schemes will be however briefly treated in the next chapter.

Modal techniques for nonlinear plates have been used for decades. Pioneering analytical work in the

analysis of rectangular thin plate vibrations with geometrical nonlinearities was carried out in the

1950s by Chu and Herrmann [21], demonstrating for the first time the hardening-type nonlinearity

that has been confirmed by numerous experiments; see e.g. [53, 2, 71]. Amongst the others, one may

cite the works by Yamaki [95], Chang et al. [19], Seo et al. [80], Anlas and Elbeyli [4]: all of these

works make use of modal analysis for investigating the nonlinear behaviour of plates in the vicinity

of a particular eigenfrequency.

Hence, to a certain extent, modal techniques are certainly not innovative as compared to more modern

techniques (namely, Finite Elements and Finite Differences), and their use in a numerical context

may rise, so to speak, a few questions. There are, however, at least two good reasons to exploit a

modal approach for nonlinear plates vibration

(1) accuracy of the calculated solution;

(2) possibility of adding damping and forcing factors to each one of the modes.

Point 1. is the pillar of modal the modal approach. The great accuracy of the modal techniques per-

mits to perform a precise dynamical analysis of the nonlinear system (i.e. calculating the amplitude-

dependent responses, drawing bifurcation diagrams, analysing the stability of periodic solutions, ...).

This is, in actual fact, the classical application of the modal description and good amount of research

work is still being done (see, for instance [1] for the case of plates). However, all the cited works

21
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restrict their attention to specific resonances and/or frequency intervals, introducing ad-hoc assump-

tions with respect to the coupling rules amongst the modes. Little or no attention is given to global

dynamical features arising when tens or hundreds of modes are activated.

Point 2. is now discussed. Metallic plates are vibrating structures presenting a very rich damping

mechanism, which is originated by at least three contributions: material damping (i.e. arising from

friction amongst the material particles composing the body, due mainly to thermoelastic and vis-

coelastic effects); damping due to junctions/clamps at the edges and supports; acoustic radiation in

the surrounding medium (for a detailed discussion, see [94]). These contributions are notoriously

hard to be separated and studied independently. However, metallic plates are usually only slightly

damped, meaning that an accurate description of energy loss per mode can be given in terms of a

single viscous modal damping coefficient. In such a description, each one of the modal equations

presents a damping factor proportional to the velocity of the mode, where the constant of propor-

tionality can be obtained experimentally (see, for instance, [54, 73]). Numerically, these coefficients

can be inserted directly in a modal scheme, without requiring any extra effort. On the other hand,

such an implementation is basically impossible in a Finite Difference scheme. In view a possible

application for sound synthesis, the ease of implementation of loss factors in the modal scheme is

very appealing, because loss bears a great deal of perceptual information. On the other hand, sound

synthesis is possible only when hundreds of modes are considered numerically and, as noted for point

1., this large number of degrees of freedom has never been comprised in a modal scheme.

Hence, this work is oriented towards constructing a precise modal scheme allowing to comprise hun-

dreds of modes. Ideally, the scheme should preserve the benefits of the modal description (accuracy)

and to overcome its limitations (small amount of degrees of freedom, ad-hoc assumptions). To this

extent, the solution of the von Kármán equations will be projected on the eigenfunctions of the asso-

ciated linear problems. This will be explained in section 2.6. A theoretical derivation of this approach

is offered in [83]: in this work, it is seen that the modes couple in order to yield a cubic-type nonlin-

earity, where the coupling coefficients are expressed in terms of the eigenfunctions. Hence, no ad-hoc

assumptions are needed, as the coupling is automatically quantified by the tensor of coupling coef-

ficients. So, a numerical scheme based on this approach can comprise, in theory, an infinite amount

of degrees of freedom, as no limitations are imposed by the model when the tensor of coupling coeffi-

cients is known. Clearly, the goodness of the modal scheme depends on the accuracy of the coupling

coefficients, which, in turn, depend on the accuracy of the numerically calculated eigenfunctions.

Thus, a reliable solution of the nonlinear problem depends strictly on the quality of the solutions of

the associated linear problems.

This chapter presents a solid numerical strategy to calculate the eigenfrequencies and functions a

linear plate under various boundary conditions. The case of the beam is presented first, as it will

serve as a basis for the case of plates.

The elastically restrained beam has been treated in some detail by various authors. Early works

focused on some special cases: Rao et al. [74] show the solution for beams presenting asymmetric
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translations and rotations at the end points; Maurizi et al. [60] take into account the case of one

hinged end and a translational restraint at the other end; Goel et al. [39] studied the free vibration of a

cantilever beam carrying a concentrated mass at an arbitrary intermediate location, and Kounandis

[52] studied the free and forced vibrations of a restrained cantilever beam with attached masses.

Wang et al. [92] make use of a sine Fourier series to study the vibrations of beams presenting zero

displacement at the ends. Ding [25] presents the case of a modified sine series in order to comply

with cases where the displacement at the ends does not vanish. Finally, Li [58] presents the case

of a modified cosine Fourier series to study the cases of beams under all boundary conditions. This

methodology will be treated in some detail in section 2.2.1.

The plate problem has been extensively studied by many authors over the years. A summary of

early published papers can be found in the excellent book by Leissa [57]. This book is an extended

compendium of the main works on plate vibrations up to the mid 1960s. Many more papers have

been published ever since, and although Leissa is still regarded as a main source in the field of plate

vibrations, his book has become somehow outdated. Given the large amount of available literature,

one may erroneously led to believe that a general solution exists for plates under general boundary

conditions. Although this is partly true, the vast majority of the available papers focus on very

specific cases, hardly generalisable to other boundary conditions. In addition, many works consider

only the very first few frequencies, with little or no care for high-range eigenfrequencies. Many

authors have found solutions to particular boundary conditions by making use of the beam functions

as expansion functions in the Rayleigh-Ritz method, see for instance [24, 12]. The beam function

approach gives consistent results in some specific cases; however, this strategy is very tedious as

the beam functions change case by case and they depend on frequency parameters that must be

determined numerically for each particular set of boundary conditions. In addition, not all cases can

be treated by such a method. Some authors have tried to use expansion functions different from

the beam functions. Polynomials have been used, amongst the others, by Kim et al. [51], Bhat [6],

Grossi et al. [43]. The problem with polynomials is that they are tend to give slow convergence and

to generate unstable algorithms [59, 46]. Fourier series have been used by Hurlebaus et al. [48] for the

case of an orthotropic plate with free boundaries, as an extension of an analogous strategy developed

for beams [92]. The case of the completely clamped plate has been successfully treated by Mochida

[65] using Gorman’s ”superposition method” [41]: the eigenfunctions are sought as combinations of

building blocks satisfying particular symmetry properties. The idea is to divide the modal shapes

in four groups, according to the symmetry with respect to a cartesian coordinate system having the

origin at the centre of the plate. The four groups are: doubly-symmetric, doubly-antisymmetric,

symmetric-asymmetric, asymmetric-symmetric. The plate is then divided into four quarters and

the solution on each quarter is constructed by summing up two building blocks that satisfy the

symmetry conditions. Implementation of the boundary conditions results in an infinite characteristic

determinant that depends on one free parameter. The eigenfrequencies and shapes are given by the

values of the free parameter that nullify the determinant, searched by trial and error. An extensive
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solution for the elastically restrained plate has been developed by Li [59]. This methodology will be

explained in some detail in section 2.3.1, as an extension of the corresponding strategy for beams

in section 2.2.1. In this work, the case of an elastically restrained plate is solved by making use

of a modified double cosine Fourier series, showing very good convergence and stability properties.

Some cases, however, cannot be treated under the presented framework, namely the cases of plates

presenting at least two free adjacent edges, and hence the problem of the completely free plate.

The problem of the completely free plate is perhaps the hardest amongst all possible combinations of

classical boundary conditions. This has much to do with the fact that none of the boundary conditions

for a free edge are geometrical, and thus less straightforwardly treated in energy methods such as the

Rayleigh-Ritz method. The problem of the free plate has a rich history. The first systematic attempts

at finding modal frequencies and patterns trace back to Ritz [76], who extended Rayleigh results to

compute upper bounds for the eigenfrequencies. Ritz made use of the beam functions as expansion

functions for the plate. This seems a reasonable idea since the plate is a 2-dimensional extension of

the beam. However, due to the added dimension the edge of a free plate behaves somehow differently

from the free end of a beam, mainly because of the presence of a twisting moment parallel to the

edge that causes it to curve. In turn, using beam functions in the Rayleigh-Ritz method results in

slow convergent results for higher modes; moreover some modes are completely left out [57]. Iguchi

[49] wrote an approximate solution in a somewhat different way, by considering

Φ̄(x, y) =
∑

m

Ym(y) cos

(

mπ

(
1

2
+

x

Lx

))

+
∑

n

Xn(x) cos

(

nπ

(
1

2
+

y

Ly

))

,

where the coordinate system is chosen so to have the origin at the centre of the plate. In this way, the

corner conditions is automatically satisfied. The functions Xn, Yn are chosen in order to satisfy the

other boundary conditions, and they expressed as a complicated combination of hyperbolic functions

and four unknown constants to be determined. Convergence for the first few eigenfrequencies is fast,

although the method somehow fails to detect larger eigenfrequencies [57]. Gorman [40] proposed a

solution to free rectangular plate problems by applying the superposition method in the case of free

boundary conditions. Filipich et al. [35] proposed a ”Whole Element Method” (WEM) based on

the construction of a generating sequence forming a complete set in the sense of L2 functions over

the plate domain. The generating sequence depends on unknown coefficients that are determined

through an algebraic process considering the boundary conditions and the symmetry of the modal

shape.

In this chapter, the modal techniques will be presented step by step, starting from the case of a linear

beam. To do so, a quick review of modal decomposition for linear, self-adjoint system is offered at the

beginning of the chapter. This will serve to introduce some notation, and to recall the importance of

modal analysis in vibration problems. The case of an elastically restrained beam is treated thereafter.

It will be shown that an appropriate modification of the Fourier series will allow to solve the equation

under all possible boundary conditions. This is the strategy adopted by Li in [58]. The Kirchhoff

plate is presented next. The idea is to extend the strategy for beams to its 2-dimensional counterpart
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[59]. It will be seen that, to some extent, the extension is almost straightforward; however, the added

dimensionality creates problems when the plate presents two adjacent free edges. Hence, care will

be taken in order to show a particular solution for the completely free plate. This will serve as the

basis to present a solution to the plate under uncommon boundary conditions (i.e. a completely free

plate supported at its centre). The case of the completely clamped plate will also be treated in some

detail, as it will become useful for the second part of this work.

2.1. Generalities on Linear, Self-Adjoint Systems

Modal techniques have been amongst the first to appear as standard resolution strategies for linear

PDEs (Partial Differential Equations).

The idea is to recall the concept of eigemode and eigenfrequency, and to see how modal techniques

help in the analysis of vibrating systems, in the cases where the system is free from external forcing,

or subjected to general nonconservative forcing.

Let a system be continuous, conservative, homogeneous, self-adjoint and linear; its dynamics can be

described by

(2.1) ρ(x)ẅ(x, t) + G(w(x, t)) = 0, ∀x ∈ V, ∀t.

Here w is a scalar displacement field, V is the domain of the problem, bounded by a surface or

contour Ω. The function ρ(x) represents the volumetric density which is a constant for homogeneous

materials, for which then ρ(x) ≡ ρ. The equation above is a PDE, second order in time and pth

order in space, where p is given by the linear differential operator G(w(x, t)) (acting exclusively on

the space variables). The equation does not include damping or forcing terms. The problem is fully

specified once the boundary conditions on Ω are given,

(2.2) Bi(w(x, t)) = 0, ∀x ∈ S, ∀t, i = 1, ..., p.

A solution to Eq. (2.1) is obtained by expanding the displacement field in the following way

(2.3) w(x, t) =

NΦ∑

n=1

eiωntΦn(x),

where ωn are the eigenfrequencies and Φn(x) the eigenfunctions. This is known as expansion theorem.

The number NΦ is, in theory, infinite. However, in all numerical implementations this number is

understood to be a finite integer.

The eigenfunctions clearly satisfy the boundary conditions (2.2), and the following differential eigen-

value problem

(2.4) G(Φn(x)) = ω2
nρΦn(x).

It is possible to show [61] that the eigenfunctions form a complete vectorial basis over the domain

V of the problem, in the sense of L2 function spaces. In other words, any function that satisfies

the same boundary conditions can be expressed as a linear sum of eigenfunctions. These are then
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naturally orthogonal with respect to a suitable inner product; for two eigenfunctions Φa(x), Φb(x)

the orthogonality is expressed as

(2.5)

∫

V

Φa(x)Φb(x)dV = ‖Φa‖
2δa,b.

where δ is Kronecker’s delta, and the symbol ‖ ‖ indicates the norm. Hence, the inner product

between two functions Ψa(x), Ψb(x) (not necessarily eigenfunctions) reads

(2.6) < Ψa,Ψb >V =< Ψb,Ψa >V =

∫

V

Ψa(x)Ψb(x) dV.

It is seen than that the free vibrations of a conservative linear systems can be described in terms of a

sum of uncoupled harmonic oscillators. The extension to forced-damped vibrations is straightforward.

Consider the following system

(2.7) ρẅ(x, t) + G(w(x, t)) = P (x, t)− Cẇ(x, t).

In this system, a general forcing term P (x, t) and a viscous-type damping Cẇ(x, t) were added to

the original PDE (2.1). In this case, the displacement can be sought as

(2.8) w(x, t) =

NΦ∑

n=1

qn(t)Φn(x),

where qn(t) are unknown modal coordinates. Assuming that the forcing is also separable in space

and time (which is the case for many time dependent loads encountered in practical situations), then

taking the inner product with the eigenfunction Φk gives the following modal equation

(2.9) q̈k +
C

ρ
q̇k + ω2

kqk =
pk(t)

‖Φk‖2ρ
; pk(t) =

∫

V

ΦkP (x, t)dV,

which shows that the modal coordinates satisfy a system of uncoupled forced-damped oscillator

equations. In conclusion, once the modal shapes and frequencies are known, the system can be

decomposed onto a series of uncoupled oscillators, each one describing the behaviour of the system

around a particular frequency.

The main problem when using modal techniques applied to continuous system resides in being able

to calculate the eigenfunctions and associated frequencies for nontrivial boundary conditions. In the

case of Kirchhoff plates, algebraic solutions exist only for the cases of plates presenting two opposite

simply-supported edges. Important cases such as the completely clamped plate and the completely

free plate must be solved numerically. Energy methods, such as the Rayleigh-Ritz method, are the

most widely used for this category of problems. The next subsection will serve as a review of such a

technique.

After that, the discussion will continue by considering the Euler-Bernoulli beam subjected to general

boundary conditions. A global strategy based on the Rayleigh-Ritz method will be detailed and

results shown. The Kirchhoff plate problem will then be approached by extending the results for

beams, and finally the von Kármán plate problem will be solved by making use of the results coming

from the linear case.
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2.1.1. Calculating eigenfunctions and frequencies: the Rayleigh-Ritz method. The

Rayleigh-Ritz method is based around the idea that a particular eigenfunction Φ̃(x) can be sought as

a linear sum of expansion function Λm(x). The expansion coefficients are calculated by an algebraic

eigenvalue problem, whose eigenvalues are approximate values for the eigenfrequencies ωn of Eq. (2.3).

The steps leading to the definition of the algebraic eigenvalue problem are here recalled. Let now

Ψ(x) be a generic function (not necessarily an eigenfunction) defined over V in the following way

(2.10) Ψ(x) =

NΨ∑

m=1

amΛm(x),

where NΨ is a finite integer. The functions Λm(x) are understood to come from the set of the

admissible functions, i.e. those functions that satisfy the geometric boundary conditions [62, 38, 3]

of a particular PDE. Such functions, in fact, are expressible as linear combinations of eigenfunctions.

Let then be Λ(x) a generic admissible function. Then one has

Λ(x) =

NΛ∑

m=1

bmΦm(x).

Owing to this definition, one may consider Λ as a particular state of the system; in this way, one

can write the potential and kinetic energy functionals associated to that particular state. Let these

functionals be called U [Λ], T [Λ] respectively. They are defined as

T [Λ] =
1

2

∫

V

ρΛ(x)2 dV(2.11a)

U [Λ] =

∫

V

Ū [Λ] dV,(2.11b)

where Ū [Λ] is the potential energy density of the system in the configuration Λ. Now, the kinetic

and potential energy functionals are calculated for the function Ψ(x) in Eq. (2.10). Because these

functionals are scalars, and they are quadratic functions of their arguments, then one may write them

as

T [Ψ] = aT Ma(2.12a)

U [Ψ] = aT Ka.(2.12b)

where the matricesM,K are known respectively as mass and stiffness matrices, and a = [a1, a2, ..., aNΨ]

is the vector of expansion coefficients of Eq. (2.10). If one considers the following algebraic eigenvalue

problem

(2.13) Ka = σ2 Ma,

then it is possible to show that the eigenvector a renders the function Ψ of Eq. (2.10) an eigenfunction

of the associated PDE, in the limit of NΨ → ∞. In the same way, the eigenvalue σ2 will tend to

the associated eigenfrequency ω2, in the same limit. In actual fact, it is possible to show that the
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convergence of the eigenfrequencies is monotonic and from above. This is, in essence, the core of the

Rayleigh-Ritz method.

The choice of the expansion function is crucial. In fact, a badly selected expansion set may result in

slow convergence, instability issues, or wrong results. Although the Rayleigh-Ritz method has been

known for decades, the literature is vague when it comes to give a precise rule on how to pick the

expansion functions (except of course the fact that they must be admissible functions).

In the following sections, the Rayleigh-Ritz method will be applied constantly, and the choice of the

expansion functions justified case by case.

2.2. Modes of the Euler-Bernoulli beam

In this section the free vibrations of an Euler-Bernoulli beam are solved in terms of modes. The aim

of this section is to outline a procedure that will be adopted in the more complex case of a Kirchhoff

plate under general boundary conditions. Consider a beam of length L with homogeneous density ρ,

constant cross section A, constant moment of inertia I, Young’s modulus E. The equation of motion

and boundary conditions have been derived in section 1.3.1. For clarity they are here recalled

Equation of Motion

ρAẅ = −EIw,xxxx.

Boundary Conditions

• Simply Supported End

w = w,xx = 0.

• Clamped End

w = w,x = 0.

• Free End

w,xxx = w,xx = 0.

In the literature, the beam equation has been extensively studied (for a quick review, see [37, 44]), and

the solutions are given in terms of semi-analytical functions and frequencies. However, this classical

approach is affected by at least 2 issues:

(1) the semi-analytical eigenfunctions, expressed as linear combinations of hyperbolic and trigono-

metric functions, change from case to case according to the boundary conditions;

(2) the eigenfrequencies are found as the roots of a particular transcendental equation, and

hence an extra numerical effort is needed in order to calculate them.

It is evident that the classical approach is unsatisfactory for anyone wishing to approach the beam

equations under general boundary conditions, including elastically restrained ends. This is why a

numerical method will be presented in the next section. The proposed method will provide the

analyst with a global solution, adaptable to an infinity of different cases, making use of only one

algebraic eigenvalue problem.



2.2. MODES OF THE EULER-BERNOULLI BEAM 29

Boundary Condition ζ1/π ζ2/π ζ3/π ζn/π(n > 3)

F - F 1.5056 2.4997 3.5000 1
2 (2n+ 1)

SS - F 1.2499 2.2500 3.2500 1
4 (4n+ 1)

C - F 1.4942 2.5002 3.5000 1
2 (2n+ 1)

SS - SS∗ 1.0000 2.0000 3.0000 n

C - SS 1.2499 2.2500 3.2500 1
4 (4n+ 1)

C - C 1.5056 2.4997 3.5000 1
2 (2n+ 1)

Table 1. Dimensionless eigenfrequencies ζn/π for the Euler-Bernoulli beam un-

der classical boundary conditions. The radian frequencies are given by ωn =

ζ2n/L
2
√

EI/ρA. ∗ denotes exact solution; all other solutions are approximated.

Note that the F-F case presents two rigid body motions at zero frequency (not re-

ported).

The classical approach and related issues are now quickly reviewed. Consider the free vibrations of a

particular solution, i.e.

w̃(x, t) = eiω̃tΦ̃(x).

In the classical approach a form for the eigenfunction Φ̃(x) is expressed as a combination of trigono-

metric and hyperbolic functions, in the following way

(2.14) Φ̃(x) = A cos

(

ζ̃x

L

)

+B sin

(

ζ̃x

L

)

+ C cosh

(

ζ̃x

L

)

+D sinh

(

ζ̃x

L

)

.

This form yields a semi-analytical solution for the beam problem. The useful aspect of this function

is that it is biharmonic in the space variable x, in other words Φ̃(x),xxxx =
(

ζ̃
L

)4

Φ̃(x). Hence,

the eigenfrequencies are recovered by considering ζ̃4 = ρAω̃2

EI
L4. Thus, if the combination of hyper-

bolic and trigonometric functions is able to satisfy the supplied boundary conditions, one obtains

immediately a solution to the problem.

The simplest case is represented by a beam simply supported at both ends: a solution is derived

effortlessly by setting A = C = D = 0, ζm = mπ for any positive integer m. Aside from this

case, more elaborate solutions are needed for other end types. Note that the eigenvalues ζ must be

calculated using numerical methods, for example Newton’s method.

The interested reader can find more examples in [42, 37, 44]. Table 1 presents the formulae for the

eigenvalues for all possible classical boundary conditions. It is seen that, in the classical approach,

looking for solutions of a particular combination of boundary conditions corresponds to finding the

right coefficients in Eq. (2.14) and solving a transcendental equation. In addition, the classical

approach does not permit to solve the beam equation when the ends are elastically restrained. The

next subsection is then devoted to outline a numerical strategy to overcome the limitations of the

classical approach.
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2.2.1. A general numerical strategy for beams. In this subsection, an elastically restrained

beam is considered. The elastic constraints are represented by springs attached at the beam ends:

basically, each end is attached to one rotational spring and one linear spring. The added springs

contribute in a local sense to the potential energy of the beam. For an unconstrained beam, the

potential energy takes the form of Eq. (1.19). When the springs are attached, the potential energy

reads

U =
EI

2

∫ L

0

(w,xx)
2 dx+

1

2

[
k0w

2 +K0w
2
,x

]
∣
∣
∣
∣
x=0

+
1

2

[
kLw

2 +KLw
2
,x

]
∣
∣
∣
∣
x=L

.

In this equation, the symbol k denotes a flexural spring, and the symbol K denotes a rotational

spring. Note that a free end corresponds formally to setting the stiffness of all the springs equal

to zero; a clamped end is recovered when the springs stiffness is infinite; a simply supported end

has zero rotational stiffness and infinite flexural stiffness. The kinetic energy has the same form

as Eq. (1.20) (where the rotatory inertia term is dropped). By making use of Hamilton’s principle

in conjunction with the eigenfunction expansion, one obtains the following eigenvalue problem and

boundary conditions for a particular eigenfunction Φ̃(x)

Φ̃,xxxx =

(

ζ̃

L

)4

Φ̃;

ζ̃4 =
ρAω̃2

EI
L4.(2.15)

k0Φ̃ = −EIΦ̃,xxx, K0Φ̃,x = EIΦ̃,xx

at x = 0;(2.16a)

kLΦ̃ = EIΦ̃,xxx, KLΦ̃,x = −EIΦ̃,xx

at x = L.(2.16b)

A general solution to the elastically restrained beam problem has been proposed by Li in [58]; this

strategy is now outlined.

The idea is to make use of the Rayleigh-Ritz method with carefully selected expansion functions. Let

the expansion function be Xm(x). Hence the generic eigenfunction Φ̃ is expressed as

(2.17) Φ̃(x) =

NΦ−1∑

m=0

ãmXm(x),

for a set of expansion coefficients ãm and a (practically finite) integer NΦ In order to apply the

Rayleigh-Ritz method, Xm(x) must be chosen within the set of the admissible functions. However,

not all admissible functions can guarantee a fast convergence, or correct results.

An equation such as (2.17) is the generic expression that defines an approximation to the function

Φ̃. Function approximation represents a fundamental branch of applied mathematics and computer

science [46]. It is clear that the set of functions Xm(x) must form a complete set over the domain of

the problem. In general, one resorts to class of functions which are proven to be complete: Legendre

polynomials, Chebyschev polynomials, Bessel functions, trigonometric functions. Bessel functions, or
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combinations thereof, are indeed useful but find an application in problems whose geometry shows a

spherical or cylindrical symmetry [34, 50]. Polynomials are also useful, but in practice they tend to

show unstable behaviour for large values of the argument x, or slow convergence when the function

to approximate presents a large number of critical values [46]. The high-frequency modes of a beam

belong to this category. Given the biharmonic nature of the beam equation, it seems almost natural

to seek an expansion (2.17) in terms of trigonometric functions and, in particular, Fourier series.

Fourier series represent an excellent function basis for vibration problems; in the case of the beam, for

example, an eigenfunction Φ̃(x) is a function that has at least four continuous derivatives, and that

is bounded over the interval [0, L]. Thus, Φ̃(x) is square-integrable and its Fourier series converges

at almost every point. The Fourier series for the function Φ̃(x) defined on [0, L] is defined as

Φ̃(x) =

∞∑

m=0

(

d̃m cos
(mπx

L

)

+ g̃m sin
(mπx

L

))

.

From the definition above, one can extract the Fourier cosine series and Fourier sine series (denoted

respectively by the indices c, s). The cosine series expansion is defined as

(2.18) Φ̃c(x) =

∞∑

m=0

d̃m cos
(mπx

L

)

;

and the sine series expansion is defined as

(2.19) Φ̃s(x) =

∞∑

m=0

g̃m sin
(mπx

L

)

.

It is evident that the expansion functions in the Fourier series are orthogonal in the sense of Eq. (2.5).

In fact

∫ L

0

cos
(mπx

L

)

cos
(nπx

L

)

dx =







0 m 6= n

L/2 m = n 6= 0

L m = n = 0

(2.20a)

∫ L

0

sin
(mπx

L

)

cos
(nπx

L

)

dx =

{

0 m 6= n

L/2 m = n 6= 0
∫ L

0

cos
(mπx

L

)

sin
(nπx

L

)

dx =0.

Given the orthogonality properties, the coefficients of the expansions are

d̃0 =
1

L

∫ L

0

Φ̃(x) dx, d̃m 6=0 =
2

L

∫ L

0

Φ̃(x) cos
(mπx

L

)

dx, g̃m =
2

L

∫ L

0

Φ̃(x) sin
(mπx

L

)

.
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-L L
x

y

Figure 1. Graph of the function y = ax + b (black) defined over [0,L] with odd

extension (blue) and even extension (red).

The derivatives of the cosine and sine Fourier series are obtained using the following identities [84]

Φ̃c(x),x =−

∞∑

m=1

(mπ

L

)

d̃m sin
(mπx

L

)

Φ̃s(x),x =
Φ̃s(L)− Φ̃s(0)

L
+

∞∑

m=1

(
2

L

[

(−1)mΦ̃s(L)− Φ̃s(0)
]

+
(mπ

L

)

g̃m

)

cos
(mπx

L

)

Thus, the sine Fourier series can be differentiated term by term if and only if Φ̃s(0) = Φ̃s(L) = 0.

This fact is only apparently peculiar, and can be easily understood by considering Fig. 1. This is

the graph of a simple affine function y(x) = a + bx for a 6= 0. The function is defined over the

interval [0, L], and its odd and even extensions (yo(x) and ye(x)) are also represented over [−L, 0].

Because the sine Fourier series is an odd function, it converges to y(x) over [0, L] and to yo(x) over

[−L, 0]. The function of period 2L to which the sine Fourier series converges is thus only piecewise

smooth. From the Fourier theorem, then, the sine series will converge at almost every point; at the

discontinuities the series will converge to zero, regardless the actual value of the original function

there. Consider now the displacement of an elastically restrained beam at one end point: when the

stiffness of the linear spring is not infinite, the end point is free to move and the odd extension

creates a discontinuity. Thus, the sine series cannot be differentiated term by term. In addition, the

displacement at the end points is formulated in terms of the first three derivatives, as seen from the

boundary conditions (2.16). In conclusion, the convergence of the Fourier series might be greatly

affected by the discontinuity of the eigenfunction Φ̃(x) and its derivatives at the end points.

To overcome this problem, here a modified cosine Fourier series is used. This is the strategy adopted

by Li in [58]. Basically, the displacement function Φ̃(x) is sought in the following form

(2.22) Φ̃(x) = φ̃(x) + p(x).

The function φ(x) is a residual displacement whose values at the end points is zero, along with its

first and third derivatives. The other function p(x) is an auxiliary function that compensates for

the difference between the original and residual displacements at the end points. If the residual
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displacement is expanded onto a cosine Fourier series (truncated to the integer NΦ),

(2.23) φ̃(x) =

NΦ−1∑

m=0

dm cos
(mπx

L

)

,

then its first three derivatives can be taken on a term-by-term basis (following the fact that φ̃,x =

φ̃,xxx = 0 at the boundaries). For that to be accomplished, one must impose the following conditions

on p(x)

Φ̃,xxx(0) = p,xxx(0) = A0, Φ̃,xxx(L) = p,xxx(L) = AL,(2.24a)

Φ̃,x(0) = p,x(0) = B0, Φ̃,x(L) = p,x(L) = BL.(2.24b)

The constants (A0, AL, B0, BL) ≡ AT need to be determined from (2.16). In practice this corresponds

to solving a linear system of four equations, expressed as

HA =

NΦ−1∑

m=0

Qmd̃m;

The matrix H is four by four and depends on the particular form of p(x). Qm is instead a column

vector with four entries; d̃m are the coefficients of the cosine series in (2.23). Hence

(2.25) A = H−1
NΦ−1∑

m=0

Qmd̃m.

From the last equation it is clear that the matrix H has to be invertible in order to yield a form for

A.

According to Li, p(x) can be selected to be any well-behaved function satisfying conditions (2.24). Li

chooses a polynomial of order four; this form will be denoted by pα(x). However, if Li’s assumptions

are correct, then the choice of p(x) should not affect the final results, as long as the boundary

conditions above are satisfied. This is why a second form for p(x) will be used here; this will be

denoted by pβ(x) and it is a sum of sine functions. Hence

pα(x) =

4∑

n=0

rαnx
n ≡

4∑

n=0

rαnpαn(x);(2.26a)

pβ(x) =

4∑

n=0

rβn sin
(nπx

L

)

≡

4∑

n=0

rβnpβn(x).(2.26b)

The r(α,β)n coefficients are obtained so that the boundary conditions (2.24) are satisfied. Hence

(2.27)











rα0

rα1

rα2

rα3

rα4











=











L3(8a0+7aL)
360 − LbL

6 + Lb0
3

−b0

−aL

12 − La0

6 + bL
2L + b0

2L
a0

6
aL

24L − a0

24L











;











rβ0

rβ1

rβ2

rβ3

rβ4











=











0
(a0−a1)L

3

16π3 + 9(b0−b1)L
16π

(a0+a1)L
3

48π3 + (b0+b1)L
3π

− (a0−a1)L
3

48π3 − (b0−b1)L
48π

− (a0+a1)L
3

96π3 − (b0+b1)L
24π











.



34 2. NUMERICAL METHODS I: MODAL TECHNIQUES

In other words, the vector r(α,β) can be written as the product of a four-by-four matrix times the

vector A, thus

(2.28) r(α,β) = S(α,β)A.

Once the vector A has been determined, the coefficients r(α,β)n, for the auxiliary functions pα(x),

pβ(x) are obtained by combining Eqs. (2.25) and (2.28), and thus

r(α,β) =

NΦ−1∑

m=0

S(α,β)H
−1Qmd̃m ≡

NΦ−1∑

m=0

Rm
(α,β)d̃m.

In this way, the eigenfunction (2.22) is written as

(2.29) Φ̃(x) =

NΦ−1∑

m=0

d̃mXm(x) =

NΦ−1∑

m=0

dm

[

cos
(mπx

L

)

+

4∑

n=0

Rm
(α,β)np(α,β)n(x)

]

,

and the derivatives of Φ̃(x) can be taken term-by-term. Now that a form for the expansion function

has been derived, it is possible to build the stiffness and mass matrix in accordance to the Rayleigh-

Ritz method. The mass and stiffness matrices read

Mmp =
ρA

2EI

∫ L

0

XmXp dx,

Kmp =
1

2

∫ L

0

Xm,xxXp,xx dx

+
1

2EI
[k0XmXp +K0Xm,xXp,x]

∣
∣
∣
∣
x=0

+
1

2EI
[kLXmXp +KLXm,xXp,x]

∣
∣
∣
∣
x=L

.

The algebraic eigenvalue problem is then

(K− (ζ̃/L)4M)d̃ = 0.

where K, M are NΦ×NΦ matrices. Their explicit form (for the function pα(x)) is given in the paper

by Li [58]. In this way the expansion coefficients d̃m can be calculated along with the eigenfrequencies.

2.2.2. Results and discussions. Numerical results for the beam are now considered. Table 2

presents the standard cases of a clamped, simply-supported, free beam at both ends. In each subtable,

the values of the normalised frequencies ζi/π are reported. These are systematically compared with

the values reported in the literature, namely those of Table 1. The results are reported for the two

choices of the auxiliary function p(x). It is seen that the choice of the auxiliary function does not

affect convergence, thus supporting Li’s idea that the choice of the auxiliary function is not crucial.

The total number of expansion terms NΦ is reported at the top of each sub-table. It is seen that

the clamped case is the case that converges the fastest: NΦ = 30 expansion terms are sufficient

to guarantee the convergence of the first five frequencies up to the sixth significant digit. For the

simply-supported and free cases, the number of expansion terms must be increased significantly. Note,

however, that the calculation time in MATLAB for NΦ = 100 is about 1s, and thus the convergence of

the eigenfunctions can be considered ”fast”. In order to simulate the different end types, the stiffness
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C-C beam

NΦ=5

Mode pα(x) pβ(x)

1 1.5046 1.5047

2 2.4839 2.4495

3 3.4900 3.4917

4 4.9128 4.3589

5 6.4257 6.4147

NΦ=10

Mode pα(x) pβ(x)

1 1.5056 1.5056

2 2.4998 2.4995

3 3.5001 3.4995

4 4.5002 4.4986

5 5.5018 5.4995

NΦ=20

Mode pα(x) pβ(x)

1 1.5056 1.5056

2 2.4997 2.4997

3 3.5000 3.5000

4 4.5000 4.4999

5 5.5000 5.4999

NΦ=30

Mode pα(x) pβ(x)

1 1.5056 1.5056

2 2.4997 2.4997

3 3.5000 3.5000

4 4.5000 4.5000

5 5.5000 5.5000

Mode Literature

1 1.5056

2 2.4997

3 3.5000

4 4.5000

5 5.5000

SS-SS beam

NΦ=10

Mode pα(x) pβ(x)

1 1.0005 1.0000

2 2.0099 2.0000

3 3.0206 3.0000

4 4.4255 4.0000

5 5.5598 5.4048

NΦ=40

Mode pα(x) pβ(x)

1 1.0001 1.0000

2 2.0006 2.0000

3 3.0028 3.0000

4 4.0051 4.0000

5 5.0164 5.0109

NΦ=70

Mode pα(x) pβ(x)

1 1.0000 1.0000

2 2.0001 2.0000

3 3.0003 3.0000

4 4.0006 4.0000

5 5.0013 5.0008

NΦ=100

Mode pα(x) pβ(x)

1 1.0000 1.0000

2 2.0000 2.0000

3 3.0001 3.0000

4 4.0002 4.0000

5 5.0004 5.0002

Mode Literature

1 1.0000

2 2.0000

3 3.0000

4 4.0000

5 5.0000

F-F beam

NΦ=10

Mode pα(x) pβ(x)

1 1.5059 1.5073

2 2.5018 2.5056

3 3.5043 3.5083

4 4.5121 4.5142

5 5.5168 5.5312

NΦ=40

Mode pα(x) pβ(x)

1 1.5056 1.5056

2 2.4998 2.4998

3 3.5001 3.5001

4 4.5002 4.5002

5 5.5003 5.5004

NΦ=70

Mode pα(x) pβ(x)

1 1.5056 1.5056

2 2.4998 2.4998

3 3.5000 3.5000

4 4.5000 4.5000

5 5.5001 5.0001

NΦ=100

Mode pα(x) pβ(x)

1 1.5056 1.5056

2 2.4998 2.4998

3 3.5000 3.5000

4 4.5000 4.5000

5 5.5000 5.5000

Mode Literature

1 1.5056

2 2.4997

3 3.5000

4 4.5000

5 5.5000

Table 2. Tables representing the numerical values for the normalised eigenfrequen-

cies ζi/π for a beam under classical boundary conditions. Bottom tables presents

reference values from the literature. The number of expansion functions NΦ is indi-

cated for each subtable.
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values have been set to very large and small values. A clamped end presents K/EI = k/EI = 108; a

simply-supported end presentsK/EI = 108, k/EI = 10−7; a free end presentsK/EI = k/EI = 10−7.

A convergence test for the stiffness is presented in Table 3. It is seen that the selected stiffness values

are indeed a sensible choice to simulate an infinite (zero) stiffness spring.

Li’s method allows to calculate the eigenfrequencies of nonclassical cases, i.e. when the value of the

springs is not infinite or zero. As an example, consider a beam simply-supported at x = 0, and

presenting a infinite linear stiffness at x = L. Changing the value of the rotational spring from

a very large to a very small value allows to obtain the eigenfrequencies of a beam ranging from

the SS-SS to the SS-C configuration. Table 4 presents the values for the first five eigenfrequencies

for different values of KL, when NΦ = 100 and using the auxiliary function pα(x). This example

shows the advantage of Li’s method with respect to the classical approach presented in the previous

section: nonclassical boundary conditions can be calculated with the same precision as the classical

ones, without having to change the form of the expansion functions. In other words, Li’s method is

extremely versatile.

Despite the great ease of application, Li’s method is not completely free from numerical issues, mainly

when it comes to the completely free beam. Consider the second eigenfrequency of the F-F case in

Table 2: the converged value differs from the one reported in the literature (by a very small amount,

however). This is explained by the fact that the springs are still a bit ”too” stiff, so that the second

mode behaves anomalously. The problem here is that reducing the stiffness value of the springs

generates an unstable eigenvalue problem. In addition, the springs cannot be set to be exactly zero

because in this case the matrix H becomes singular. This does not represent a problem when the

very first few eigenfrequencies are looked for: in actual fact the results shown in Table 2 are still very

precise. However, when many modes are needed (say, a few hundred), the stability issue becomes

evident. In reference [58] the results are shown for the first few eigenfrequencies. Here, however, the

robustness of the algorithm is tested when many modes are needed. For example, mode number 200

is calculated here using 500 expansion terms, and using the auxiliary function pα(x). The calculation

time in MATLAB is of the order of 5s. In Table 5, the present results are compared with the literature

values for the 3 classical boundary conditions. It is seen that convergence is obtained up to the fourth

significant digit for the simply-supported and clamped case. The free beam case, instead, leads to

an ill-conditioned algorithm; this happens because, as previously remarked, the matrix H becomes

singular for very small values of the stiffness, and although the first few frequencies can be calculated

with sufficient precision, the stability of the algorithm is not guaranteed for high-frequency modes.

Hence, although the first few eigenfrequencies for the F-F beam can still be calculated with great

precision, it is seen that Li’s method is not the most appropriate method to treat this problem.

The stability problem is not going to be investigated any further in this section. However, it will be

considered in some detail in the next section, where the Kirchhoff plate is considered and solved using

an extension of the Li’s method for beams. It is anticipated that Li’s method fails at calculating the

solution for the completely free plate, and hence a new strategy will be outlined.
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log10 K/EI mode 1

0 1.2872

1 1.4104

2 1.4914

3 1.5041

4 1.5055

5 1.5056

6 1.5056

7 1.5056

8 1.5056

log10 k/EI mode 1

0 0.7675

1 0.8700

2 1.2250

3 1.4721

4 1.5024

5 1.5053

6 1.5056

7 1.5056

8 1.5056

log10 K/EI mode 1

0 1.5574

-1 1.5120

-2 1.5063

-3 1.5057

-4 1.5056

-5 1.5056

-6 1.5056

-7 1.5056

-8 1.5056

log10 k/EI mode 1

0 1.5574

-1 1.5120

-2 1.5063

-3 1.5057

-4 1.5056

-5 1.5056

-6 1.5056

-7 1.5056

-8 1.5056

Table 3. Convergence test for rotational and linear springs in order to simulate

infinite and zero stiffness. The reference value from the literature is ζ1/π =1.5056.

NΦ=100

Mode KL/EI = 10−7 KL/EI = 100 KL/EI = 103 KL/EI = 108

1 1.0000 1.0419 1.2486 1.2499

2 2.0000 2.0232 2.2478 2.2500

3 3.0000 3.0159 3.2468 3.2500

4 4.0000 4.0121 4.2458 4.2500

5 5.0000 5.0098 5.2448 5.2500

Table 4. Transition from the SS-SS to the SS-C beam, obtained by changing the

value of KL.

C-C SS-SS F-F

present 200.48 200.00 -

literature 200.50 200.00 200.50

Table 5. Values for the 200th normalised eigenfrequency ζ200/π for the present

method, compared to the reference values from the literature.

In conclusion, Li’s method was tested to check the its robustness and convergence properties. It was

seen that the first few eigenfrequencies of an elastically restrained beam can be calculated for all

end types, giving excellent agreement with the literature in the case of classical boundary conditions.

It was checked that the auxiliary function does not affect the stability or convergence properties.

Li’s method was also tested in order to obtain high-frequency modes, and it was seen that the

algorithm remain robust for the cases of a clamped and simply-supported beam. The algorithm for

the completely free beam, instead, was seen to be ill-conditioned and thus high-frequency modes

cannot be computed within this framework.
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2.3. Extension to the Kirchhoff plate

In the previous section the case of a beam under general boundary conditions was investigated. This

section is devoted to extending the proposed method to the 2-dimensional problem of a Kirchhoff

plate. For clarity, the eigenvalue problem and boundary conditions for a particular eigenfunction

Φ̃(x, y) are here recalled

Equation of Motion

∆∆Φ̃ =
ζ̃4

L4
x

Φ̃;

(ζ̃4 = L4

xω̃
2ρh/D).

Boundary Conditions

• Simply Supported Edge

Φ̃ = Φ̃,nn = 0.

• Clamped Edge

Φ̃ = Φ̃,n = 0.

• Free Edge

Φ̃,nnn + (2− ν)Φ̃,ntt = Φ̃,nn + νΦ̃,tt = 0;

Φ̃,nt = 0 at corners.

Note that the eigenvalue ζ̃ is an nondimensional parameter, proportional to L4
x. In actual fact,

adimensionalisation could be performed by considering any other parameter having dimensions of

(length)4 (for example, L2
xL

2
x, L

3
xLy,...). The choice of L4

x is due to consistency with the literature.

Opposite to what happens for beams, the plate equation cannot be solved semi-analytically for all

boundary conditions. In a few cases, however, analytical solutions are available. The simplest case

is represented by the SS-SS-SS-SS plate. In this case the particular eigenfunction reads

(2.31) Φ̃(x, y) = sin

(
mπx

Lx

)

sin

(
nπy

Ly

)

, ζ̃2 = (mπ)2 + (Lx/Lynπ)
2,

where m,n are positive integers. It is seen that, in this case, the form for Φ̃(x, y) is the product of

two functions, each one being the beam function with the same boundary conditions in the x and

y directions. In the case of other boundary conditions, the product of two beam functions does not

yield a solution to the eigenvalue problem: this happens because a single beam function Φ̃(x) is

biharmonic in the x coordinate; however, the product of two beam functions in the x and y direction

is not, in general, biharmonic in a 2-dimensional sense, i.e. ∆∆
(

Φ̃(x)Φ̃(y)
)

6= ζ̃4

L4
x
Φ̃(x)Φ̃(y). In

fact, the expression for the 2-dimensional Laplacian involves not only derivatives of order 4, but also

derivatives of order 2 in the x and y directions, ∆∆f(x, y) = f,xxxx + 2f,xxyy + f,yyyy.

The particular case of the plate edges all simply-supported represents an exception as the 2-dimensional

beam function is also harmonic. Other analytical solutions are possible, namely for plates presenting

two opposite sides simply-supported (see [44]for details). All other combinations of boundary condi-

tions cannot be treated analytically, and so it is necessary to develop a numerical strategy in order to

obtain approximate solutions. The next subsection is then devoted to develop a numerical strategy

to solve the plate equation under general boundary conditions.
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2.3.1. A general solution for the Kirchhoff plate: Li’s method. Let a plate be supported

on all edges by rotational and flexural springs. The potential energy for such a plate is now derived.

The potential energy of an unconstrained plate takes the form of Eq. (1.27). When the springs are

attached, the potential energy becomes

U =
D

2

∫ Ly

0

∫ Lx

0

[(∆w)2 − (1− ν)L(w,w)] dxdy

+
1

2

{
∫ Ly

0

[

K0xw
2
,x

∣
∣
∣
∣
x=0

+KLxw
2
,x

∣
∣
∣
∣
x=Lx

]

dy +

∫ Lx

0

[

K0yw
2
,y

∣
∣
∣
∣
y=0

+KLyw
2
,y

∣
∣
∣
∣
y=Ly

]

dx

}

+
1

2

{
∫ Ly

0

[

k0xw
2

∣
∣
∣
∣
x=0

+ kLxw
2

∣
∣
∣
∣
x=Lx

]

dy +

∫ Lx

0

[

k0yw
2

∣
∣
∣
∣
y=0

+ kLyw
2

∣
∣
∣
∣
y=Ly

]

dx

}

.

The symbol K denotes a rotational spring, and the symbol k a flexural one. As for the case of the

beam, a clamped, free or simply supported edge is obtained when (k = K = 0), (k = K → ∞), (k →

∞,K = 0) respectively. To derive an eigenvalue problem for the particular eigenfunction Φ̃(x, y),

the above expression is inserted in Hamilton’s principle along with the kinetic energy expression

Eq. (1.28). The particular solution w̃(x, y, t) is then separated in space and time, and harmonic

time dependence is assumed with radian frequency ω̃: w̃(x, y, t) = eiω̃tΦ̃(x, y). This gives rise to the

following eigenvalue problem and boundary conditions

∆∆Φ̃ =
ζ̃4

L4
x

Φ̃;(2.33a)

k0xΦ̃ = Qx, K0xΦ̃,x = −Mx at x = 0;(2.33b)

kLxΦ̃ = −Qx, KLxΦ̃,x = Mx at x = Lx;(2.33c)

k0yΦ̃ = Qy, K0yΦ̃,y = −My at y = 0;(2.33d)

kLyΦ̃ = −Qy, KLyΦ̃,y = My at y = Ly;(2.33e)

where ζ̃4 = L4
xω̃

2ρh/D, Qx = −D(Φ̃,yyy + (2− ν)Φ̃,xxy), Mx = −D(Φ̃,xx + νΦ̃,yy) (and similarly for

Qy, My).

Elastically restrained plates have been studied in [59]. The idea is to extend the method proposed

for beams to the case of the plate. This method will be referred to as Li’s method. It will be seen

that Li’s method is extremely versatile and allows to calculate the first few eigenfrequencies for a

variety of cases, including mixed and nonclassical boundary conditions. The results are discussed in

the next subsection. However, Li’s method has two major drawbacks: it cannot calculate the case

of the completely free plate and it becomes somehow unreliable when hundreds of modes are looked

for. More on this will be discussed in sec. 2.3.3 onwards.
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Li’s method is now presented. The eigenfunction Φ̃ is now assumed to be written as a weighted sum

of separable functions

(2.34) Φ̃ =

NΦ∑

m,n=0

ãmnXm(x)Yn(y).

This is analogous to the assumption made for the beam, Eq. (2.17). Given that the Kirchhoff plate is

the 2-dimensional extension of the beam, it is plausible to assume that Xm(x) will maintain the same

form as Eq. (2.22): in practice, Li’s hypothesis is to write the eigenfunction Φ̃(x, y) for the Kirchhoff

plate as the product of independent beam functions. Hence, the forms for Xm(x) and Yn(y) are

derived following the steps from Eq. (2.17) to Eq. (2.29). This allows to write

Xm(x) =

NΦ−1∑

m=0

d̃m

[

cos

(
mπx

Lx

)

+

4∑

s=0

Rm
s ps(x)

]

;

Yn(y) =

NΦ−1∑

n=0

d̃n

[

cos

(
nπy

Ly

)

+

4∑

s=0

Rn
s ps(y)

]

;

where ps(x) is a fourth order polynomial with the same properties as pαn(x) in Eq. (2.26), and ps(y)

is obtained accordingly. Application of the Rayleigh-Ritz method gives rise to the following mass and

stiffness matrices

Mmn,pq =
ρh

2D

∫ Ly

0

∫ Lx

0

XmYnXpYq dxdy,

Kmn,pq =
1

2

∫ Ly

0

∫ Lx

0

(∆(XmYn)∆(XpYq)− (1− ν)L(XmYn, XpYq)) dxdy

+
1

2D

{
∫ Ly

0

[

K0xXm,xYnXp,xYq

∣
∣
∣
∣
x=0

+KLxXm,xYnXp,xYq

∣
∣
∣
∣
x=Lx

]

dy

+

∫ Lx

0

[

K0yXmYn,yXpYq,y

∣
∣
∣
∣
y=0

+KLyXmYn,yXpYq,y

∣
∣
∣
∣
y=Ly

]

dx

}

+
1

2D

{
∫ Ly

0

[

k0xXmYnXpYq

∣
∣
∣
∣
x=0

+ kLxXmYnXpYq

∣
∣
∣
∣
x=Lx

]

dy

+

∫ Lx

0

[

k0yXmYnXpYq

∣
∣
∣
∣
y=0

+ kLyXmYnXpYq

∣
∣
∣
∣
y=Ly

]

dx

}

.

The matrices are then used to define the following eigenvalue problem

(2.37) (K− (ζ̃/Lx)
4M)ã = 0.

where K, M are matrices of dimension N2
Φ × N2

Φ, and a is the vector of expansion coefficients of

length N2
Φ defined as ãmn = d̃m · d̃n. The explicit form of the matrices are presented in the paper by

Li [59].
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NΦ=10 Mode

1 2 3 4 5 Method

η =1.0
2.000 5.000 5.000 8.000 10.000 Li

2.000 5.000 5.000 8.000 10.000 Exact

η =1.5
1.444 2.778 4.444 5.000 5.778 Li

1.444 2.778 4.444 5.000 5.778 Exact

η =2.0
1.250 2.000 3.250 4.250 5.000 Li

1.250 2.000 3.250 4.250 5.00 0 Exact

η =2.5
1.160 1.640 2.440 3.560 4.160 Li

1.160 1.640 2.440 3.560 4.160 Exact

Table 6. Normalised eigenfrequencies ζ2i /π
2 for the SS-SS-SS-SS plate under dif-

ferent aspect ratios η = Ly/Lx. The exact values from Eq. (2.31) are also reported.

2.3.2. Preliminary results and discussion. To test the goodness of the proposed model,

a simply-supported plate is first analysed. For that, the flexural springs stiffness have been set to

a very large value, namely k/D = 108 (see section 2.2.2 for a discussion on this). The analytic

frequencies ζi are given in Eq. (2.31) for different aspect rations η = Ly/Lx. It is seen that the first

few eigenfrequencies can be calculated with excellent precision. As a second case, Table 7 considers

the fully-clamped plate. For this, the springs are set as k/D = K/D = 108. In this case Li’s method is

compared to the results obtained by applying Gorman’s superposition method, which represents one

of the main references for this particular problem [40, 41, 65]. It is seen that the two methods yield

the same results. As an application of Li’s method, the C-SS-C-F plate is now considered. For this

problem, there is no analytical solution. Table 8 presents the first five converged eigenfrequencies for

different aspect ratios. Finally, the transition from the C-SS-C-F to the C-SS-C-SS plate is presented

in Table 9. The transition is observed by changing the value of the linear spring at y = Ly. This is

an application of Li’s versatile method, which allows to consider nonclassical boundary conditions.

The examples provided allow to conclude that Li’s method is extremely versatile when it comes to

calculate the first few eigenfrequencies for plates under mixed and nonclassical boundary conditions.

There are, however, two issues that must be discussed: these are the stability of the algorithm for

high-frequency modes, and the problem of plates presenting at least two adjacent free edges. These

issues are considered in the next subsection.

2.3.3. Issues related to Li’s method. The results presented in the previous section are, in

some respect, very convincing. The first eigenfrequencies for the simply supported plate converge

quickly to the fifth significant digit of the exact values. In addition, the fully clamped plate frequencies

are in exact agreement with [65], which shows the results obtained from Gorman’s superposition
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NΦ=10 Mode

1 2 3 4 5 Method

η =1.0
3.645 7.436 7.436 10.965 13.328 Li

3.65 7.44 7.44 10.96 13.33 Gorman

η =1.5
2.736 4.225 6.700 6.740 8.112 Li

2.74 4.23 6.70 6.74 8.11 Gorman

η =2.0
2.490 3.225 4.536 6.417 6.483 Li

2.49 3.22 4.54 6.48 7.20 Gorman

η =2.5
2.396 2.817 3.589 4.729 6.231 Li

2.39 2.82 3.59 4.73 6.23 Gorman

Table 7. Normalised eigenfrequencies ζ2i /π
2 for the C-C-C-C plate under different

aspect ratios η = Ly/Lx. Literature values are taken from [65] which uses Gorman’s

superposition method.

NΦ=10 Mode

1 2 3 4 5

η =1.0 2.376 3.607 6.392 6.766 7.852

η =1.5 2.315 2.834 4.121 6.311 6.348

η =2.0 2.293 2.577 3.251 4.426 6.144

η =2.5 2.283 2.462 2.87 3.578 4.625

Table 8. Normalised eigenfrequencies ζ2i /π
2 for C-SS-C-F plate under different as-

pect ratios η = Ly/Lx.

method. Li’s method has been applied to the case of a C-SS-C-F plate, showing the same rate of

convergence.

However, Li’s method presents two major drawbacks: first, the problem of a plate with at least two

adjacent free edges cannot be treated with such a method; second, the stability of the algorithm is

questionable when a large number of modes (say, a few hundred) is needed.

The stability issue rears its head when high-frequency modes are looked for. As an example, consider

again the fully clamped plate problem. When NΦ = 10, application of the eigenvalue problem should

return, in theory, 100 positive real eigenvalues. However, the algorithm returns only 86 positive

real eigenvalues (i.e. 86% of the total); the other 14 are either complex or negative real numbers.

When NΦ gets larger, the number of complex or negative real eigenvalues grows in proportion. For



2.3. EXTENSION TO THE KIRCHHOFF PLATE 43

NΦ=10 Mode

1 2 3 4 5 kLy

η =1.0

2.376 3.608 6.392 6.766 7.852 10−7

2.378 3.609 6.376 6.768 7.829 100

2.976 5.667 5.820 7.015 10.118 104

2.933 5.547 7.024 9.583 10.357 108

η =1.5

2.315 2.834 4.121 6.311 6.348 10−7

2.316 2.835 4.122 6.305 6.350 100

2.536 3.548 5.532 6.584 7.266 104

2.537 3.557 5.547 6.587 7.660 108

η =2.0

2.293 2.577 3.251 4.426 6.144 10−7

2.294 2.578 3.252 4.427 6.145 100

2.413 2.932 3.954 5.524 6.437 104

2.413 2.933 3.961 5.547 6.437 108

η =2.5

2.283 2.462 2.871 3.578 4.625 10−7

2.284 2.462 2.872 3.579 4.626 100

2.358 2.670 3.276 4.226 5.533 104

2.358 2.671 3.278 4.233 5.547 108

Table 9. Normalised eigenfrequencies ζ2i /π
2 for the transition from the C-SS-C-F

plate to the C-SS-C-SS plate under different aspect ratios η = Ly/Lx, for different

values of the spring kLy.

NΦ = 15, 175 real positive eigenvalues are returned from a total 225 (i.e. 78%). In turn, this issue

has two major consequences: first, some eigenvalues are missed; second, some unwanted values are

returned. The unwanted values are not actual eigenvalues of the problem, and the corresponding

vector coefficient a does not give rise to an eigenfunction. So, Li’s method may pose problems if

one wishes to calculate a few hundred actual modes. Note that the instability issue affects all ranges

of the eigenvalue vector returned by the algorithm; hence a few low-frequency eigenvalues disappear

when NΦ is made larger, and complex or negative eigenvalues are returned. In turn, the results

are unreliable when instability turns up, because it is not possible to know which eigenvalues have

disappeared and where the unwanted eigenvalues are.

The issue of two adjacent free sides is now discussed. The first problem (which was already mentioned

in the case of the beam) is that setting the springs to very small values renders the matrix H singular,

and thus the eigenvalue problem becomes ill-conditioned. In the case of the beam, however, the first

eigenfrequencies can still be calculated with precision. However, this is not possible for the free plate.

This happens because the boundary conditions for a free beam are not the same as those for a free

plate. Li’s method for the plate problem is based around the assumption that the beam functions
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(2.29) can be used as expansion functions for the plate; this works out for the simply-supported

and clamped plate, because the boundary conditions are the same for the plate and for the beam.

However, the edge of the completely free plate is substantially different from the end of a free beam,

because of the presence of a twisting moment that tends to bend the free edge in a direction parallel

to it. In addition, the free plate has a corner condition that is not taken into account by the beam

functions.

In conclusion, Li’s method is a versatile method that allows to calculate a few modes with very high

precision, at least for the plates which do not present at least two adjacent free sides. In the next

sections, the clamped plate problem will be solved instead by modifying Li’s method in order to yield

a more stable eigenvalue algorithm. Next, the problem of the fully free plate will be considered in

some detail, and a so far unavailable solution will be presented.

2.4. An adapted strategy for the clamped plate problem

The clamped plate problem presents two geometrical boundary conditions, namely the vanishing of

the displacement and its slope along the boundary. Solving this problem using Rayleigh-Ritz method

requires then a set of expansion functions that satisfy the prescribed boundary conditions. The idea

is to follow Li’s method, so to write the particular eigenfunction Φ̃(x, y) as

Φ̃(x, y) =

NΦ−1∑

m,n=0

ãmnXm(x)Yn(y) =

NΦ∑

m,n=0

ãmn

[

cos

(
mπx

Lx

)

+ p(x)

] [

cos

(
nπy

Ly

)

+ p(y)

]

.

The functions p(x), p(y) will be looked as polynomials of order four to make Xm(x), Yn(y) satisfy

the boundary conditions. Note that this is a slight, yet substantial variation with respect to Li’s

approach: in fact, it was seen in section 2.3.1 that the added polynomial was selected so to satisfy

conditions (2.24), and the values for the vector ã had to be determined through matrix inversion in

order to comply with the different forms of boundary conditions. Here, instead, the clamped plate

boundary conditions are satisfied a priori by the expansion functions. It can be seen effortlessly that

the following function Xm(x) satisfies the boundary conditions for the clamped plate problem

(2.38) Xm(x) = cos

(
mπx

Lx

)

+
15(1 + (−1)m)

L4
x

x4 −
4(8 + 7(−1)m)

L3
x

x3 +
6(3 + 2(−1)m)

L2
x

x2 − 1.

Note that the form for Xm(x) is obtainable from Li’s method in the limit of infinite stiffness in the

matrix H−1. Thus, the same results and convergence rate are expected when comparing Li’s method

for the clamped plate and the present method. However, having taken the infinite stiffness limit

allows to get rid of the spring parameters in the algorithm, resulting in a simplified form for the

stiffness and mass matrices and more stable results, as it will be seen in the next subsection.
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To apply the Rayleigh-Ritz method, the stiffness and mass matrices are built as follows

Mmn,pq =
ρh

2D

∫ Ly

0

∫ Lx

0

XmYnXpYq dxdy,

Kmn,pq =
1

2

∫ Ly

0

∫ Lx

0

∆(XmYn)∆(XpYq) dxdy

Note the simplified expression of the stiffness matrix with respect to Li’s method: in this case, the

factor proportional to L(Φ̃, Φ̃) has been neglected in the expression for the potential energy, as well

as the spring integrals. This is allowed as all these terms are boundary terms that are obviously zero

along the boundary, given that the clamped boundary conditions are implemented directly in the

expansion function. The matrices are then used to define the following eigenvalue problem

(2.40) (K− (ζ̃/Lx)
4M)ã = 0.

The form of these matrices is presented in Appendix A.

2.4.1. Results for the clamped plate problem. The aim of this section is to present the

results for the clamped plate problem using the presented approach as compared to Li’s method.

First, the clamped plate eigenfrequencies are calculated using NΦ = 10 for both methods. The

results are shown in Table 10. It is seen that the two methods yield the same results. In Table 11

the results for NΦ = 20 are reported. When the number NΦ is made larger, the results for the

square plate show a discrepancy for the fourth eigenfrequency: Li’s method gives a value that is

larger than the value calculated with NΦ = 10. This represents an anomaly as the convergence of

the Rayleigh-Ritz method should be from above, and thus the eigenvalues should get smaller as NΦ

increases (see comments on the Rayleigh-Ritz method in section 2.1.1). The present method, instead,

is not affected by this unwanted instability effect. Examples of eigenfunctions calculated with the

present method are shown in Fig. 2. The high-frequency modes are now investigated. Results from

the present method are now shown for NΦ = 20, 25, 30 in Table 12, taking into account the case of

the square plate. Note that the present method shows an actual convergence, whereas Li’s method

gives inconsistent results due to the instability of the algorithm. In conclusion, the present method,

adapted for the fully clamped plate case, returns a stable algorithm capable of calculating hundreds

of modes without occurring in instability problems. Note that, when NΦ = 30, the present method

returns 899 modes out of 900. As a rule of thumb [62], the total number of ”reliable” modes returned

by the eigenvalue problem corresponds to one half of the total results. The present method is stable

until NΦ = 30, and thus the total number of modes that one can calculate using the present method

is about 450. To the knowledge of the author, this result is unprecedented in the literature and should

thus be regarded as an important result from this work.
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NΦ=10 Mode

1 2 3 4 5 Method

η =1.0
3.646 7.436 7.436 10.965 13.332 Li

3.646 7.436 7.436 10.965 13.332 Present

η =1.5
2.736 4.225 6.700 6.740 8.086 Li

2.736 4.225 6.700 6.740 8.086 Present

η =2.0
2.490 3.225 4.536 6.417 6.483 Li

2.490 3.225 4.536 6.417 6.483 Present

η =2.5
2.396 2.818 3.589 4.729 6.231 Li

2.396 2.817 3.589 4.729 6.231 Present

Table 10. Normalised eigenfrequencies ζ2i /π
2 for the C-C-C-C plate under different

aspect ratios η = Ly/Lx. Comparison between Li’s method and present method, for

NΦ = 10.

NΦ=20 Mode

1 2 3 4 5 Method

η =1.0
3.646 7.436 7.436 11.10 13.33 Li

3.646 7.436 7.436 10.96 13.33 Present

η =1.5
2.736 4.225 6.700 6.740 8.088 Li

2.736 4.225 6.700 6.740 8.086 Present

η =2.0
2.490 3.225 4.536 6.417 6.483 Li

2.490 3.225 4.536 6.417 6.483 Present

η =2.5
2.396 2.817 3.588 4.729 6.231 Li

2.396 2.817 3.588 4.729 6.231 Present

Table 11. Normalised eigenfrequencies ζ2i /π
2 for the C-C-C-C plate under different

aspect ratios η = Ly/Lx. Comparison between Li’s method and present method, for

NΦ = 20. Value in red represents an anomaly due to Li’s algorithm instability.
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Mode

100 150 200 Method

NΦ =20
156.6 221.4 302.3 Li

156.6 219.4 290.3 Present

NΦ =25
143.4 NaN NaN Li

156.6 219.4 288.6 Present

NΦ =30
NaN NaN NaN Li

156.6 219.1 288.5 Present

Table 12. High-range normalised eigenfrequencies ζ2i /π
2 for the square C-C-C-C

plate. Comparison between Li’s method and present method, for NΦ = 20, 25, 30.

Figure 2. First 20 eigenfunctions for a clamped plate of aspect ratio η = 1.5 using

the present method.
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2.5. A simple series solution for the free plate

The plate with completely free edges represents a difficult problem, following the form of the boundary

conditions which depend on Poisson’s ratio ν and involve third order derivatives of the displacement

at boundaries. For clarity, the eigenvalue equation and boundary conditions are here recalled, for a

particular eigenfunction Φ̃(x)

Equation of Motion

∆∆Φ̃ =
ζ̃4

L4
x

Φ̃,

(ζ̃4 = L4

xω̃
2ρh/D).

Boundary Conditions

Φ̃,nnn + (2− ν)Φ̃,ntt = Φ̃,nn + νΦ̃,tt = 0,

Φ̃,nt = 0 at corners.

These equations arose quite easily when Hamilton’s principle was used in section 1.3.2: the boundary

integrals are written as a product of a certain function of the displacement and its derivatives times

the variation of either the displacement or its normal derivative. The former conditions are said

”natural”, whereas the latter are said ”geometrical”. For the plate problem, the boundary conditions

are all natural, including the corner condition. The physical quantities associated with the boundary

conditions are the normal bending moment and Kirchhoff shear force [37].

In this section, the free plate problem is solved by making use of a modified double cosine series,

and the Rayleigh-Ritz method. The idea is to find a new simple solution, with the same convergence

properties as the complicated solutions by the superposition method [40] and WEM [35]. To this

extent, let the generic eigenfunction Φ̃(x, y) be written as a modified double cosine series

Φ̃(x, y) =

NΦ−1∑

m,n=0

ãmnXm(x)Yn(y) =

NΦ−1∑

m,n=0

ãmn

(

cos

(
mπx

Lx

)

+ p(x)

)(

cos

(
nπy

Ly

)

+ p(y)

)

,

where p(x) is, as usual, an auxiliary function of some kind. As noted in section 2.1.1, the expansion

functions for the Rayleigh-Ritz method need not satisfy all boundary conditions, but only the geo-

metrical ones. The free plate problem does not present any such conditions; in fact, the boundary

conditions in this case are all natural.

Here the auxiliary function p(x) is chosen again as a fourth-order polynomial such that

(1) Xm,xxx(x) = 0 for x = 0, x = Lx;

(2) Xm,xx(x) = Xm(x) for x = 0, x = Lx.

When these conditions are fulfilled by the expansion functions, then the boundary conditions for the

free plate problem reduce to Φ̃,tt = 0, plus the corner condition. This conditions will be satisfied

in the limit of NΦ → ∞ when using the Rayleigh-Ritz method. It is important to notice that the

expansion function must not satisfy any geometric boundary conditions, otherwise the Rayleigh-Ritz

method will produce wrong solutions. Note that, contrary to what is done in [40, 35], there is no
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need to impose particular symmetry conditions on the eigenfunctions. It is easy to see that

Xm(x) = cos

(
πmx

Lx

)

−

(
L2
x + π2 m2

) (
L2
x + 6 (−1)

m
− 6
)

L2
x (L2

x − 12)

+
2x
(
L2
x + π2 m2

) (
2L2

x + 6 (−1)
m
+ (−1)

m
L2
x − 6

)

L3
x (L2

x − 12)
−

3x2 ((−1)
m
+ 1)

(
L2
x + π2 m2

)

L2
x (L2

x − 12)
(2.41)

satisfies the conditions 1.,2., above. An analogous form is selected for Yn(y). The eigenvalue problem

is obtained by considering the stiffness and mass matrices as follows

(2.42a) Kmn,pq =
1

2

∫

S

(∆(XmYn)∆(XpYq)− (1− ν)L(XmYn, XpYq)) dxdy;

(2.42b) Mmn,pq =
ρh

2D

∫

S

(XmYnXpYq) dxdy.

In this way, the eigenvalue algebraic eigenvalue problem reads

(2.43) (K− (ζ̃/Lx)
4M)ã = 0.

Note that, as opposed to what happens for the completely clamped plate, in this case the eigenfre-

quencies and functions depend on Poisson’s ratio ν; in the stiffness matrix expression, in fact, the

boundary term proportional to the von Kármán operator cannot be neglected, as in this case the

expansion function do not satisfy the boundary conditions. The explicit forms of the stiffness and

mass matrices are presented in Appendix B.

2.5.1. Results and Discussion. The eigenfrequencies calculated with the present method are

compared with Gorman’s method [65], and WEM [35] in Table 13. Both Gorman’s method and

WEM are considered ”exact” methods by their respective authors. They give, in fact, comparable

results, although Gorman’s method returns, in general, smaller values then WEM’s. The present

method gives results that are within the range of 1-2% difference with Gorman’s, and that are, in

general, larger.

It has been pointed out in [66] that Gorman’s method, although fast converging, is affected by an

instability problem which bears two major consequences: missed frequencies and unwanted results

(similar remarks have been made for the clamped plate problem in section 2.3.3). In actual fact,

the cited literature works do not show any results past the 12th eigenfrequency, suggesting that it

might be difficult to obtain converged results for higher frequency ranges. On the other hand, the

concluding section in [35] mentions that WEM method is not affected by the ”lost frequencies” issue.

However, this statement is not supported by further evidence: in the paper, no results past the 6th

eigenfrequency appear. The present method gives consistent results when compared to WEM and

Gorman’s. For the first time, high-range frequencies are shown for the completely free plate: the

results are summarised in Table 14, where it is seen that the present method allows to produce about

100th eigenfrequencies converging up the third significant digit. Note that the instability issue appears

in the current method as well: when NΦ ≥ 17, the results returned by the eigenvalue algorithm are

unreliable, as some frequencies are missed and others appear, in a completely unpredictable way (see
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NΦ=15, ν = 0.3 Mode

1 2 3 4 5 Method

η =1.0

1.364 1.983 2.456 3.521 3.521 Gorman

1.365 1.987 2.460 3.528 3.528 WEM

1.366 1.988 2.467 3.533 3.533 Present

η =1.5

0.9044 0.9629 2.084 2.244 2.592 Gorman

0.9050 0.9650 2.088 2.248 2.601 WEM

0.9061 0.9667 2.090 2.254 2.604 Present

η =2.0

0.5429 0.6728 1.479 1.505 2.226 Gorman

- - - - - WEM

0.5464 0.6748 1.483 1.513 2.235 Present

η =2.5

0.3473 0.5345 0.9637 1.146 1.877 Gorman

0.3480 0.5348 0.9673 1.148 1.887 WEM

0.3517 0.5371 0.9689 1.149 1.891 Present

Table 13. Normalised eigenfrequencies ζ2i /π
2 for the F-F-F-F plate under different

aspect ratios η = Ly/Lx. Comparison between Li’s method and present method, for

NΦ = 15. Values for Gorman are taken from reference [65]; values for WEM are

taken from reference [35].

remarks about Li’s method for the clamped plate problem, sec. 2.3.3). Hence, no results are shown

in the table for higher values of NΦ. In conclusion, this section shows that the present method gives

results that are close to the ”exact” solutions proposed by [40, 35], where close is to be intended

within a 1-2% range. Plots of the first twenty eigenfunctions, excluding rigid body motions, are

shown in Fig. 3(a). The present method allows to calculate high-range frequencies that have never

appeared in the literature before. These high-range frequencies have been shown to converge to

the third significant digit. With respect to Gorman’s method and WEM, the present method has

the advantage of presenting a really simple implementation: in fact, only one algebraic eigenvalue

problem is required instead of four.

2.5.2. Modes of the completely free plate supported at the centre. As an application,

the presented method has been modified in order to produce results for a completely free plate

supported at the centre. The support has been created by adding a linear spring at the plate centre,

in the limit of infinite stiffness. The potential energy is thus modified with respect that giving rise

to Eq. (2.42a). The modified stiffness matrix is

(2.44) Kmn,pq = ...+
1

2D
kc

∫ Ly

0

∫ Lx

0

δ(x− xc)w
2 dxdy,
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Mode

ν = 0.3 25 50 75 100 NΦ

η=1.0

20.82 46.57 74.19 106.8 11

20.81 46.54 73.83 106.5 13

20.80 46.52 73.75 106.4 15

20.79 46.51 73.72 106.3 17

η=1.5

13.37 32.28 50.49 80.44 11

13.36 32.12 49.68 72.30 13

13.36 32.07 49.65 70.00 15

13.35 32.05 49.63 69.61 17

η=2.0

10.51 22.91 43.40 73.97 11

10.49 22.90 37.36 57.65 13

10.48 22.88 37.32 52.25 15

10.48 22.87 37.30 52.18 17

η=2.5

7.675 20.10 41.95 73.00 11

7.670 18.63 31.89 55.34 13

7.667 18.53 29.91 41.76 15

7.665 18.50 29.90 41.74 17

Table 14. Normalised high-range eigenfrequencies ζ2i /π
2 for the F-F-F-F plate un-

der different aspect ratios η = Ly/Lx, and different values of expansion functions

NΦ, for ν = 0.3.

where ... is the right hand side of Eq. (2.42a), kc is the linear stiffness and xc is the coordinate

of the plate centre. The results are summarised in Table 15, where the stiffness value kx/D has

been set to a very large value, namely 108. These results are calculated here for the first time, to

the knowledge of the author. Note that some unwanted oscillations appear in the results, meaning

that the frequencies stop converging from above, as opposed to what is expected when applying the

Rayleigh-Ritz method. This is similar to what happens when using Li’s method in the case of the

clamped plate (see remarks in section 2.4.1). This unwanted behaviour has to be attributed to the

presence of the springs whose stiffness is not large enough when NΦ is large. Note that, for the

present case, this issue can be simply resolved by modifying the expansion function (2.41) so that the

geometrical boundary condition w(x, y) = 0 at the plate centre is automatically satisfied. However,

this has not been done for the present work. Examples of eigenfunctions are given in Fig. 3(b).
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Mode

ν = 0.3 1 2 3 4 5 25 50 75 100 NΦ

η=1.0

1.147 1.367 1.990 3.538 3.538 21.79 46.60 76.84 106.8 11

1.146 1.366 1.989 3.536 3.536 21.78 46.54 76.47 106.5 13

1.143 1.366 1.989 3.535 3.535 21.77 46.52 76.39 106.4 15

1.140 1.365 1.988 3.533 3.534 21.65 46.51 76.36 106.3 17

η=1.5

0.6136 0.9082 1.587 2.092 2.607 13.50 32.32 53.28 84.29 11

0.6131 0.9072 1.585 2.091 2.606 13.49 32.12 50.31 72.30 13

0.6095 0.9067 1.583 2.090 2.672 13.50 32.07 50.02 70.03 15

0.5889 0.9063 1.579 2.090 2.789 13.50 32.09 49.94 69.76 17

η=2.0

0.3554 0.6775 1.379 1.486 1.514 10.51 22.92 44.05 75.23 11

0.3537 0.6763 1.376 1.484 1.514 10.49 22.92 37.75 58.74 13

0.3507 0.6756 1.374 1.483 2.131 10.48 22.91 37.66 52.27 15

0.3507 0.6752 1.373 1.483 1.863 10.96 22.99 37.52 52.26 17

η=2.5

0.2341 0.5404 0.9701 1.126 1.152 7.674 20.25 42.30 73.14 11

0.2233 0.5389 0.9697 1.123 1.151 7.670 18.85 31.93 55.88 13

0.2287 0.5381 0.9696 1.120 1.150 7.667 18.83 30.08 45.04 15

0.2333 0.5375 0.9692 1.119 1.150 7.664 18.79 29.84 42.01 17

Table 15. Eigenfrequencies ζ2i /π
2 for the F-F-F-F plate supported at the centre

for kc/D = 108, under different aspect ratios η = Ly/Lx, and different values of

expansion functionsNΦ, in the case of ν = 0.3. Values in red correspond to instability

of the algorithm.
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(a) (b)

Figure 3. Examples of eigenfunctions plotted using the present method. (a): First

20 eigenfunctions for a free plate of aspect ratio η = 1.5 and Poisson’s ratio ν = 0.3.

Note that the three modes at zero frequency corresponding to rigid motions and

rotations are not shown. (b): First 20 eigenfunctions for a free plate supported at

its centre of aspect ratio η = 1.5 and Poisson’s ratio ν = 0.3. Note that the two

modes at zero frequency corresponding to rigid rotations are not shown.
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2.6. Extension of the modal techniques to the case of the von Kármán plate

In section 2.1 it was shown that modal techniques can be applied in a quite general manner to the

case of linear, self-adjoint systems. These properties allow to represent the general state of the system

at a particular time t as a superposition of independent contributions, i.e. the eigenfunctions, which

can be proved to be orthogonal in the sense of L2 function spaces and thus constitute a suitable

vector basis for the domain in which they are defined.

When the system is nonlinear, such properties cease to exist. In fact, the nonlinearities tend to couple

the modes in some manner, and thus the response of the system cannot be obtained by summing up

the single modal responses, as now each one of them may affect the others. In the case of the von

Kármán plate the nonlinearities are purely geometrical, as pointed out is section 1.3.3, meaning that

they are expected to come into play when the amplitude of motion is large (i.e. of the order of the

plate thickness). The von Kármán equations are here recalled for the sake of clarity.

Consider a rectangular plate of dimensions Lx, Ly and thickness h (with h ≪ Lx, Ly). The plate

material is homogeneous, of volume density ρ, Young’s modulus E and Poisson’s ratio ν. Its flexural

rigidity is then defined as D = Eh3/12(1−ν2). The von Kármán system then reads (see section 1.3.3)

D∆∆w + ρhẅ = L(w,F ),(2.45a)

∆∆F = −
Eh

2
L(w,w),(2.45b)

where ∆ is the Laplacian operator, w = w(x, y, t) is the transverse displacement and F = F (x, y, t)

is the Airy stress function.

The strategy adopted here to solve the von Kármán system makes use of the linear modes for the

displacement w and Airy stress function F . This strategy is particularly useful for investigating the

free and forced vibrations of the system, in the sense that it allows for the reduction of the dynamics

of the problem from an infinite number of degrees of freedom to a finite one. The eigenfunctions for

the displacement w will be denoted by the symbol Φk(x, y) and thus w(x, y, t) is written as

(2.46a) w(x, y, t) = Sw

NΦ∑

k=1

Φk(x, y)

‖Φk‖
qk(t),

where Φk is such that

(2.46b) ∆∆Φk(x, y) =
ρh

D
ω2
kΦk(x, y).

Note that the sum in Eq. (2.46a) is terminated at NΦ in practice. The linear modes can be defined

up to a constant of normalisation that can be chosen arbitrarily. For the sake of generality, Sw here

denotes the constant of normalisation of the function Φ̄ = Sw
Φk(x,y)
‖Φk‖

. The norm is obtained from a

scalar product < α, β > between two functions α(x, y) and β(x, y), defined as

(2.47) < α, β >=

∫

S

αβ dS −→ ‖Φk‖
2 =< Φk,Φk > .



2.6. EXTENSION OF THE MODAL TECHNIQUES TO THE CASE OF THE VON Kármán PLATE 55

Eq. (2.46b) is the eigenvalue problem definition, and it is a Kirchhoff-like equation for linear plates.

The Airy stress function is expanded along an analogue series

(2.48a) F (x, y, t) = SF

NΨ∑

k=1

Ψk(x, y)

‖Ψk‖
ηk(t),

(2.48b) ∆∆Ψk(x, y) = ζ4kΨk(x, y).

The linear modes so defined are orthogonal with respect to the scalar product, and are therefore a

suitable function basis [44]. Orthogonality between two functions Λm(x, y),Λn(x, y) is expressed as

(see section 2.1)

(2.49) < Λm,Λn >= δm,n‖Λm‖2,

where δm,n is Kronecker’s delta.

Once the linear modal shapes are known, system (2.45) may then be reduced to a set of ordinary dif-

ferential equations, each referring to the k−th modal coordinate qk(t), k = 1, ..., NΦ. NΦ represents

the order of the system of ODEs.

The introduction of the expansion series (2.46a) and (2.48a) allows for the decomposition of the

original von Kármán problem onto a set of coupled, nonlinear ordinary differential equations (ODEs).

As a starting point, Eq. (2.48a) is substituted into Eq. (2.45b) to obtain

(2.50) ηk = −
Eh

2ζ4k

S2
w

SF

∑

p,q

qpqq

∫

S
ΨkL(Φp,Φq)dS

‖Ψk‖‖Φp‖‖Φq‖
.

Integration is performed over the area of the plate, and the orthogonality relation is used. Injecting

Eq. (2.46) and (2.50) into Eq. (2.45a) gives

ρhSw

∑

k

ω2
kΦk

‖Φk‖
qk + ρhSw

∑

k

Φk

‖Φk‖
q̈k

(2.51) = −
EhS3

w

2

∑

n,p,q,r

1

ζ4n

L(Φp,Ψn)

‖Ψp‖‖Φn‖

∫

S
ΨnL(Φq,Φr)dS

‖Φq‖‖Φr‖‖Ψn‖
qpqqqr.

Then the equation is multiplied on both sides by Φs and integrated over the surface of the plate. The

result is

(2.52) q̈s + ω2
sqs = −

ES2
w

2ρ

n∑

p,q,r

Hn
q,rE

s
p,n

ζ4n
qpqqqr.

Two third order tensors, Hn
q,r and Es

p,n appear in Eq. (2.52). These are defined as

(2.53) Hn
p,q =

∫

S
ΨnL(Φp,Φq)dS

‖Ψn‖‖Φp‖‖Φq‖
, Es

r,n =

∫

S
ΦsL(Φr,Ψn)dS

‖Φr‖‖Φs‖‖Ψn‖
.
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It is seen that the ODEs are cubic with respect to the variables qs, so a fourth order tensor Γ can

conveniently be introduced in the equations, as

(2.54) Γs
p,q,r =

NΨ∑

n=1

Hn
p,qE

s
r,n

2ζ4n
.

A stable, energy-conserving scheme will be presented in section 2.7. Such a scheme will be used to

solve the von Kármán equations over time in order to reproduce the sound of gongs and cymbals.

The results will be presented in Chapter 6. In addition, the modal equations (2.52) will be used to

perform bifurcation analysis of free and forced vibrations of a reduced-order system comprising a few

modes, in order to study the nonlinear behaviour of the plate around a particular eigenfrequency.

Such a study will be carried out by means of continuation techniques, and the results will be shown

in Chapter 4.

2.6.1. A discussion on the von Kármán boundary conditions. In the previous section,

it was seen that the solution to the von Kármán system can be sought in terms of functions that

satisfy the linear plate equation, Eqs. (2.46a) and (2.48a). Such equations must satisfy a particular

set of boundary conditions, chosen amongst those presented in the table at the end of sec. 1.3.3. For

clarity, the possible choices are here recalled in terms of the particular eigenfunctions Φ̃, Ψ̃

In-plane direction

• Movable

Ψ̃,nt = Ψ̃,tt = 0

• Immovable (with w = 0)

Ψ̃,nn − νΨ̃,tt =

Ψ̃,nnn + (2 + ν)Ψ̃,ntt = 0

Edge Rotation

• Rotationally Free

Φ̃,nn + νΦ̃,tt = 0

• Rotationally Immovable

Φ̃,n = 0

Edge Vertical Translation

• Transversely Movable

Φ̃,nn + (2− ν)Φ̃,ntt

−
1

D
(Ψ̃,ttΦ̃,n − Ψ̃,ntΦ̃,t) = 0

Φ̃,nt = 0 at corners.

• Transversely Immovable

Φ̃ = 0

As a start, consider the in-plane movable conditions for Ψ̃; these can be replaced by

(2.55) Ψ̃,n = Ψ̃ = 0.

It is clear that such conditions are sufficient to satisfy the original conditions (if a function is constant

along one edge, then all derivatives taken along the edge direction are zero). When Eq. (2.48b) is

used in combination with Eq. (2.55), then the problem for the Airy stress function is expressed

mathematically as the problem of the clamped Kirchhoff plate. For that, the modal techniques of

sec. 2.4 can be used to find the eigenfunctions and frequencies and thus to calculate the tensor of

coupling coefficients. When the edges are movable in the in-plane directions, then the conditions

for a transversely movable edge reduce to the conditions of a free Kirchhoff plate, which was solved

in sec. 2.5. The results from that section can be used as well to calculate the in-plane immovable

conditions of Ψ̃ by replacing ν with −ν. In turn, all the combinations of boundary conditions for
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the von Kármán plate can be solved using the techniques presented in the previous section, with

the sole exception of the in-plane immovable/transversely movable conditions (the latter becoming a

nonlinear condition in this case).

For the rest of this work, a simply supported plate with in-plane movable edges is considered. Hence

w = w,nn = 0;(2.56a)

F = F,n = 0.(2.56b)

Such conditions were chosen before by Touzé et al. [88], who investigated the transition scenario to

turbulence in a rectangular plate by making use of a Finite Difference Scheme. This scheme will be

presented in the next chapter and will be used consistently to test the goodness of the present model.

2.6.2. Von Kármán equations with damping and forcing terms. So far damping and

forcing have not been taken into account in the discussion. For linear systems, it was shown in

sec. 2.1 that these terms are treated straightforwardly in terms of the modes, as it suffices to project

them on the particular eigenfunction Φ̃. Such an extension can be done for the von Kármán system

as well. For that, consider a modification of Eq. (2.45a)

D∆∆w(x, t) + ρhẅ(x, t) = L(w(x, t), F (x, t))− Cẇ(x, t) + δ(x− x0)P (t).

In this equation, a viscous-type damping term appears proportional to the velocity field, as well as

a forcing term (which is supposed to be localised in space and having a time-dependent amplitude

P (t)). Projecting this equation onto a the mode s results in

(2.57) q̈s + ω2
sqs + 2χsωsq̇s = −

ES2
w

ρ

∑

p,q,r

Γs
p,q,r qpqqqr +

Φs(x0)

‖Φs‖ρhSw

P (t),

where the modal viscous damping (a dimensionless quantity) was introduced for each mode as χs =

C/(2ρhωs). Such a definition for damping is most definitely appropriate, as metallic plates are

usually slightly damped structures and thus the damping coefficient matrix can be thought as being

composed by diagonal elements only (see [94]). Hence, the modal equations (2.57) allow the inclusion

of a damping mechanisms which can be, in theory, very close to reality, when the damping coefficients

are known (for instance, by measuring them experimentally [54]).

In view of a comparison with a previously developed finite difference scheme [7, 88], a different

version of the damping mechanism is now presented. In a finite difference domain, damping can only

be inserted in the global dynamical equations via an ad-hoc time domain representation. This can

be done as

(2.58) D∆∆w(x, t) + ρhẅ(x, t) = L(w(x, t), F (x, t)) +R0(ẇ) +R1(∆ẇ) + δ(x− x0)P (t),

where the loss terms are

R0(ẇ) = −2σ0ẇ(x, t); R1(∆ẇ) = 2σ1∆ẇ(x, t),



58 2. NUMERICAL METHODS I: MODAL TECHNIQUES

where σ0, σ1 have the dimensions of, respectively, [ML−2T−1] and [MT−1]. Taking Fourier trans-

forms of the damping laws results in

R̃0( ˜̇w) = γ0(f) ˜̇w(k, t); R̃1( ˜̇w) = γ1(f) ˜̇w(k, t),

where

(2.59) γ0(f) = −2σ0; γ1(f) = −2σ1
2π

hcb
f.

For the last equality, the linear dispersion equations for flexural waves in plates was used

ω = hcb|k|
2,

with cb =
√

E/12(1− ν2)ρ indicating the bulk velocity. The meaning of Eq. (2.59) is that R0

dissipates energy at equal rates at all frequencies, whereas R1 is proportional to the frequency. A

frequency-dependent loss factor is desirable as, in plates, frequencies past the ”critical frequency”

are dissipated at higher rates, mainly due to radiation in air. Physically speaking, R0 is a common

viscous-type law; R1, however, does not correspond to a physical loss mechanism. Bilbao [8] points

out that R1 appears as an easier-to-implement modification of a damping law proposed by Ruiz

[79] for piano strings. Regardless the introduction of a frequency-dependent loss, the capability of

simulating an accurate damping model in a Finite Difference scheme should be regarded as very

limited when compared to the modal equations. This topic will be discussed further when comparing

sound-synthesis results in Chapter 6.

2.6.3. Adjointness and symmetry properties. In section 1.3.3 a ”triple self-adjointness”

was shown. In the general case, this is [83]

∫ Ly

0

∫ Lx

0

αL(β, γ) dxdy =

∫ Ly

0

∫ Lx

0

γL(α, β) dxdy +

∮

Ω

[β,tt(αγ,n − γα,n)− β,nt(αγ,t − γα,t)] dΩ.

where Ω is the contour of the plate. The triple self-adjointness property has a direct consequence on

the tensors H,E. In fact, integrating by parts the integral in the definition of E in Eq. (2.53) gives

‖Ψq‖‖Φn‖‖Φp‖E
n
p,q =

∮

Ω

[

ΦnΨq,yΦp,xx − 2ΦnΨq,xΦp,xy −Ψq

∂

∂y
(ΦnΦp,xx)

]

ŷ · n dΩ+

+

∮

Ω

[

ΦnΨq,xΦp,yy + 2Ψq

∂

∂y
(ΦnΦp,xy)−Ψq

∂

∂x
(ΦnΦp,yy)

]

x̂ · n dΩ+

∫ Ly

0

∫ Lx

0

ΨqL(Φp,Φn) dxdy,

where x̂, ŷ are unit vectors in the x, y directions, and n is the unit vector normal to the boundary Ω.

This property is useful when the boundary integrals vanishes. For that, the eigenfunctions Φk, Ψk

need to satisfy particular combinations of boundary conditions. The case that will be mostly used

in this work, i.e. a simply supported plate with in-plane movable edges, conditions (2.56) render the

boundary integral null. Hence

(2.60) En
p,q = Hq

p,n.
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Owing to this property, the tensor Γ may then be conveniently written as

(2.61) Γs
p,q,r =

NF∑

n=1

Hn
p,qH

n
r,s

2ζ4n
.

Note that the tensor H as defined in Eq. (2.53) is divided by the norms of the modes, so the value

of Γ is independent of the particular choice for the constants Sw, SF in Eqs. (2.46b), (2.48b). Note

also that the tensor H possess a straightforward symmetry property stemming from its definition

Hi
p,q = Hi

q,p.

This property means that a few permutations of the Γ tensor indices will produce the same numerical

value. These permutations are

(s, p, q, r), (r, p, q, s), (s, q, p, r), (r, q, p, s), (q, r, s, p), (p, r, s, q), (q, s, r, p), (p, s, r, q).

2.6.4. Energy components in terms of the modes. Eqs. (1.51) are the energy expressions

for the von Kármán plate. When the eigenmode expansions (2.46a),(2.48a) are inserted in the energy

expressions, one obtains

T =
ρh

2
S2
w

NΦ∑

k,l=1

∫ Ly

0

∫ Lx

0

ΦkΦl

‖Φk‖‖Φl‖
dxdy q̇k(t)q̇l(t);(2.62a)

Ul =
D

2
S2
w

NΦ∑

k,l=1

∫ Ly

0

∫ Lx

0

∆Φk∆Φl

‖Φk‖‖Φl‖
dxdy qk(t)ql(t);(2.62b)

Unl =
S2
F

2Eh

NΨ∑

k,l=1

∫ Ly

0

∫ Lx

0

∆Ψk∆Ψl

‖Ψk‖‖Ψl‖
dxdy ηk(t)ηl(t);(2.62c)

The integrals in Eqs. (2.62b), (2.62c) are calculated by parts. Owing to the selected boundary

conditions,Eq. (2.56), the boundary integrals vanish and one is left with

∫ Ly

0

∫ Lx

0

∆Φk∆Φl

‖Φk‖‖Φl‖
dxdy =

∫ Ly

0

∫ Lx

0

∆∆Φk Φl

‖Φk‖‖Φl‖
dxdy;(2.63a)

∫ Ly

0

∫ Lx

0

∆Ψk∆Ψl

‖Ψk‖‖Ψl‖
dxdy =

∫ Ly

0

∫ Lx

0

∆∆Ψk Ψl

‖Ψk‖‖Ψl‖
dxdy.(2.63b)

Making use of Eqs. (2.46b), (2.48b) and of the orthogonality relationship gives

∫ Ly

0

∫ Lx

0

∆Φk∆Φl

‖Φk‖‖Φl‖
dxdy =

ρh

D
ω2
kδk,l;(2.64a)

∫ Ly

0

∫ Lx

0

∆Ψk∆Ψl

‖Ψk‖‖Ψl‖
dxdy = ζ4kδk,l.(2.64b)



60 2. NUMERICAL METHODS I: MODAL TECHNIQUES

The expressions for ηk, ηl in Eq. (2.62c) are obtained from Eq. (2.50). Putting these results all

together, and remembering the expression for Γs
p,q,r in Eq. (2.61), one obtains

T =
ρh

2
S2
w

NΦ∑

k=1

q̇2k(t);(2.65a)

Ul =
ρh

2
S2
w

NΦ∑

k=1

ω2
kq

2
k(t);(2.65b)

Unl =
Eh

4

S4
w

S2
F

NΦ∑

p,q,r,s=1

Γs
p,q,rqp(t)qq(t)qr(t)qs(t);(2.65c)

These are the time-dependent energy expressions for a von Kármán plate in terms of the modes.

Note that the last expression can be written in terms of the components η as

(2.66) Unl =
1

2Eh

NΨ∑

k=1

ζ4kη
2
k(t).

This last expression will become useful to prove energy conservation of the stable scheme presented

in sec. 2.7. Energy conservation reads

(2.67)
d

dt
(T + Ul + Unl) = 0.

2.7. Time integration schemes

In the previous sections the original Partial Differential System was discretised onto the space formed

by the eigenmodes of the system. This allowed to reduce the problem to a series of coupled Ordinary

Differential Equations depending on the time variable. Thus, it is necessary to develop a numerical

scheme in order to perform integration over time. In this section, two numerical time integration

schemes are presented. The first is a classical integration scheme, i.e. the Störmer-Verlet scheme.

Properties of this scheme can be found in the book by Hairer et al. [45]. The second scheme is an

energy-conserving, stable scheme developed by Bilbao [7], and used before by this author [27].

The aim of a numerical time-integration scheme is to approximate the solution to the differential

equation

q̈ = f(q, t),

where q is the vector of the state variables (for instance, the modal coordinates), and f is the

function describing the dynamics (which is a nonlinear function in the case of the von Kármán plate).

In order to do so, a discretisation of the time variable is introduced, depending on a sampling rate

Fs or, equivalently, a time step k = 1/Fs. Hence, the solution can be calculated at discrete instants,

separated by the distance k; the discrete instant at which the solution is calculated can be denoted by

the index n, and the discrete solution denoted by q(n). The goal of a scheme is to introduce discrete

mapping λk which pushes the solution from the step n to the step n+ 1, such that

λk : q(n) −→ q(n+ 1).
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A list of discrete operators is now introduced. A more exhaustive list will be presented in Chapter 3

dealing with Finite Difference schemes. The most obvious operator is the identity operator, denoted

by

(2.68) 1q(n) = q(n).

The backward and forward shift operators are, respectively,

(2.69) et−q(n) = q(n− 1); et+q(n) = q(n+ 1).

Backward, centered, forward approximations to first time derivatives are defined as

δt− ≡
1

k
(1− et−); δt· ≡

1

2k
(et+ − et−); δt+ ≡

1

k
(et+ − 1).(2.70)

An approximation to the second time derivative can be constructed by combining the previous oper-

ators. In such a way, a particular form employed here is given by

(2.71) δtt ≡ δt+δt− =
1

k2
(et+ − 2 + et−)

Backward, centered, forward averaging operators are introduced as

µt− ≡
1

2
(1 + et−); µt· ≡

1

2
(et+ + et−); µt+ ≡

1

2
(et+ + 1).(2.72)

The accuracy of each operator can be calculated applying the operator to a generic well-behaved

function u(t) (defined over the continuous time variable t) and by expanding the result in Taylor

series about t. As an example, consider the backward discrete time derivative operator; applying it

to the function u gives

δt−u(t) =
1

k
(u(t)− u(t− k)).

Now define τ = t− k and expand u(τ) around the point τ = t

u(τ) = u(t)− k

(
du

dt

)

+ k2
(
d2u

dt2

)

+O(k3).

Hence

(2.73) δt−u(t) =
1

k
(u(t)− u(τ)) =

du

dt
+O(k).

It is seen that the operator δt− approximates the first time derivative to the order of k, the timestep.

In a similar manner, one can show that the the centered operators are O(k2) accurate, whereas the

backward and forward operators are O(k) accurate. The approximation to the second time derivative

is also O(k2) accurate.
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2.7.1. Störmer-Verlet scheme. Consider the von Kármán modal equations without forcing

and loss terms, Eq. (2.52). A Störmer-Verlet scheme is obtained by considering

(2.74) δttq(n) = f(q(n))

(Note that in this case the function f does not depend explicitly on t). Such a scheme is second-order,

symmetric and symplectic [45]. When adding and forcing terms are introduced in the von Kármán

system as in Eq. (2.57), one has to choose an approximation to the first time derivative. Here the

choice is to use a centered derivative as it is second-order accurate. The discrete counterpart of

Eq. (2.57) is now written as

(2.75) δttq(n) = −Kq(n)−Cδt·q(n)− s(n) + p(n).

In the equation above, the matrices K, C denote the normalised stiffness and damping matrices

(independent of the step n). In practice, if NΦ denoted the length of the vectors, then these matrices

are NΦ ×NΦ; the two matrices are diagonal, and their elements are

Km,m = ω2
m;(2.76a)

Cm,m = 2χmωm.(2.76b)

The vector s is the vector of the nonlinear terms, acting as a coupling. This is, simply

(2.77) sm(n) =
ES2

w

ρ

NΦ∑

j,k,l=1

Γm
j,k,lqj(n)qk(n)ql(n).

Finally, p is the vector containing the forcing terms, i.e.

(2.78) pm(n) =
Φm(x0)

‖Φm‖ρhSw

P (n).

Developing the discrete operators gives the following algebraic system, to be solved for the variable

q(n+ 1)

(2.79)

(
I

k2
+

C

2k

)

q(n+ 1) =

(
2I

k2
−K

)

q(n) +

(
C

2k
−

I

k2

)

q(n− 1)− s(n) + p(n),

where I is the identity matrix. This scheme is explicit, and the algebraic linear system can solved

easily in MATLAB by means of the operator \ (backslash). If the nonlinear terms of scheme (2.79)

are set to zero, along with the damping and forcing terms, a discrete energy conservation law can be

stated in the following form

(2.80) δt+

{
NΦ∑

s=1

S2
w

ρh

2

[

(δt−qs(n))
2
+ ω2

sqs(n) (et−qs(n))
]
}

= 0,

or

(2.81) δt+

NΦ∑

s=1

(τs(n) + υl
s(n))
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Figure 4. Time simulations of a linear steel plate of dimensions Lx × Ly =

0.4 × 0.6m2 and thickness h = 1mm. The plate is excited at input location

xi = [0.3Lx 0.2Ly] with a discrete dirac delta of length 1 sample and amplitude

1; the output is taken at xo = [0.7Lx 0.3Ly]. The number of transverse modes is

NΦ = 20: the highest eigenfrequency of the system is ω20 = 1893.7rad/s; hence the

stability condition Eq. (2.82) gives the limiting sampling frequency Fs = 947Hz. (a)

Time series sampled at 5kHz, showing linear behaviour (w ≪ h); (b) total energy

(black thick line), kinetic (grey) and linear potential (navy).

which corresponds to Eq. (2.67) (where the nonlinear energy is zero). In the equation above, τs(n),

υl
s(n) can be though of as, respectively, the discrete kinetic and linear potential energies.

Conservation of discrete energy allows to derive a stability condition for the scheme applied to the

linear plate equation. Let ωs denote the largest eigenfrequency of the system, then the scheme is

stable when

(2.82) k <
2

ωs

.

When this condition is enforced, then the discrete energies are positive definite. This condition (along

with the mathematical proof) will be extended to the nonlinear system in the next subsection. Fig 4

shows that when the system is a linear regime, then energy is conserved.

If one wishes to solve Eq. (2.58), a modification of the damping matrix is needed. The only part that

may pose problems is the term proportional to the Laplacian of the velocity. However, for simply

supported boundary conditions on the transverse modes, the solution is harmonic, and so ∆ẇ ∝ ẇ.

Given the modal expansion (2.46a) and the simply supported boundary conditions, one can easily

find the modal projection onto the mth coordinate; this is

(2.83)

〈

Φm, Sw

NΦ∑

n=1

∆Φn

‖Φn‖

〉

= −Sw

[(
m1π

Lx

)2

+

(
m2π

Ly

)2
]

‖Φm‖Φm,
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where m1, m2 replace the generic indices m,n of Eq. (2.31). Thus, the damping matrix now reads

(2.84) Cm,m =
2σ0

ρh
+

[(
m1π

Lx

)2

+

(
m2π

Ly

)2
]

2σ1

ρh
.

The damping matrix is still diagonal constant over time, and the frequency dependence is expressed

through the modal indices m1, m2.

The Störmer-Verlet scheme will be used extensively in Chapter 6 to obtain gong-like sounds. In fact,

although stability for such a scheme cannot be proved, the implementation of such a scheme is really

easy, and leads to fast computations. However, if one wishes to perform a study of the plate in a

strongly nonlinear regime, stability becomes a priority. This is why, in the next section, a stable

scheme will be presented.

2.7.2. A stable, energy-conserving scheme. In this section, a stable scheme is presented.

A stability condition will stem directly from the conservation of a discrete quantity which will act as

the counterpart of the total energy of the plate. The scheme is constructed as follows

δttqs(n) +Ks,sqs(n) =
SF

ρh

NΦ∑

k=1

NΨ∑

l=1

Es
k,lqk(n)[µt·ηl(n)]− Cs,sδt·qs(n) + ps(n);(2.85a)

µt−ηl(n) = −
Eh

2ζ4l

S2
w

SF

NΦ∑

i,j=1

H l
i,jqi(n)[et−qj(n)].(2.85b)

In the scheme above, the stiffness and damping matrices K, C are the same as in the previous

subsection. Rearranging all the terms gives

(
1

k2
+

Cs,s

2k

)

qs(n+ 1) +
ES2

w

ρ

NΦ∑

i,j,k=1

Γs
k,i,jqk(n)qj(n)qi(n+ 1) =

(
2

k2
−Ks,s

)

qs(n) +

(
Cs,s

2k
−

1

k2

)

qs(n− 1) +
SF

ρh

NΦ∑

k=1

NΨ∑

l=1

H l
k,s

(
ηl(n− 1)− ηl(n)

2

)

qk(n) + ps(n);

(2.86a)

ηl(n+ 1) = −ηl(n)−
Eh

ζ4l

S2
w

SF

NΦ∑

i,j=1

H l
i,jqi(n+ 1)qj(n).(2.86b)

This scheme is implicit, therefore more computationally demanding than Störmer-Verlet. However,

for such a scheme there exist an energy conservation law, in a discrete sense. Energy conservation

is obtained by multiplying Eq. (2.85a) (without losses and forcing) by δt· qs(n) ρh and by summing
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over the index s. In addition, Eq. (2.85b) is multiplied by δt+. This gives

ρh

NΦ∑

s=1

(δt·qs(n)) δtt qs(n) + ρh

NΦ∑

s=1

(δt·qs(n))Ks,sqs(n) = SF

NΦ∑

k,s=1

NΨ∑

l=1

Es
k,l (δt·qs(n)) qk(n)(µt· ηl(n))

(2.87a)

µt− (δt+ηl(n)) = −
EhS2

w

2ζ4l SF

NΦ∑

k,s=1

1

k
H l

k,s (qk(n+ 1)qs(n)− qk(n)qs(n− 1))

(2.87b)

Now, owing to the symmetry property of the H tensor when the indices k, s are swapped, the right

hand side of Eq. (2.87b) can be written as

1

k
H l

k,s (qk(n+ 1)qs(n)− qk(n)qs(n− 1)) =
1

k
H l

k,s




 qs(n+ 1)qk(n)

︸ ︷︷ ︸

indices are swapped owing to symmetry of H

−qk(n)qs(n− 1)






= 2H l
k,sqk(n)δt·qs(n).

Hence Eq.(2.87b) may be rewritten as

(2.89) −
ζ4l SF

EhS2
w

µt− (δt+ηl(n)) =

NΦ∑

k,s=1

H l
k,sqk(n)δt·qs(n)

Owing to the triple self-adjointness property, one may write Es
k,l = H l

k,s and insert the left hand side

of Eq. (2.89) into the right hand side of Eq. (2.87a). This gives

SF

NΦ∑

k,s=1

NΨ∑

l=1

(δt·qs(n))qk(n)(µt·ηl(n))) = −
1

S2
wEh

NΨ∑

l=1

[µt−(δt+ηl(n))](µt·ηl(n))

= −
δt+

2EhS2
w

NΨ∑

l=1

(µt−(ηl(n)ηl(n)))ζ
4
l .(2.90)

The left hand side of Eq. (2.87a) can be rewritten as

(2.91)

ρh

NΦ∑

s=1

(δt·qs(n)) δtt qs(n) + ρh

NΦ∑

s=1

(δt·qs(n))ω
2
sqs(n) =

ρh

2
δt+

NΦ∑

s=1

(

(δt−qs(n))
2
+ ω2

sqs(n) (et−qs(n))
)

Putting together Eq. (2.90) and (2.91) gives

(2.92) δt+

{
NΦ∑

s=1

S2
w

ρh

2

[

(δt−qs(n))
2
+ ω2

sqs(n) (et−qs(n))
]

+
1

2Eh

NΨ∑

l=1

(µt− (ηl(n)ηl(n))) ζ
4
l

}

= 0,

which is a discrete counterpart to Eq. (2.67).
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Figure 5. Time simulations of a steel plate of dimensions Lx × Ly = 0.4 × 0.6m2

and thickness h = 1mm. The plate is excited at input location xi = [0.3Lx 0.2Ly]

with a discrete dirac delta of length 1 sample and amplitude 5000; the output is

taken at xo = [0.7Lx 0.3Ly]. The number of in-plane modes is NΨ = 32, the

number of transverse modes is NΦ = 20: the highest eigenfrequency of the system

is ω20 = 1893.7rad/s; hence the stability condition Eq. (2.82) gives the limiting

sampling frequency Fs = 947Hz. (a) Time series sampled at 10kHz; (b) total

energy (black thick line), kinetic (grey), linear potential (navy), nonlinear potential

(dark green).

For this equation to make sense, the discrete energy must be a positive definite quantity. A proof of

this is now offered. Let the conservation of discrete energy be written as

(2.93) δt+

NΦ∑

s=1

(τs(n) + υl
s(n)) + δt+

NΨ∑

l=1

υnl
l (n) = 0,

where τs(n), υ
l
s(n), υ

nl
l (n) are, respectively, the discrete kinetic, linear and nonlinear potential energy

expressions at the step n. The equation above means that, given a certain amount of energy ǫ at the

time n = 0, then one has

(2.94) ǫ(n) = ǫ(0) ≡ ǫ.

Now, it is easy to see that υnl
l (n) is a positive definite quantity. In fact

(2.95) υnl
l (n) =

ζ4l
4Eh

(ηl(n)ηl(n) + ηl(n− 1)ηl(n− 1)) ,

and hence υnl
l (n) is the sum of squared quantities (thus surely positive definite). The next step is

to prove that τs(n) + υl
s(n) is also positive definite. This quantity is the contribution to the linear

energy of the transverse mode s at the time n. One may write

(2.96) ǫls(n) = τs(n) + υl
s(n),
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where ǫls(n) is interpreted as the linear discrete energy coming from the mode s at the time n. The

idea is to prove that ǫls(n) > 0 ∀n. Now, developing the operators in the definition of ǫls(n) gives

(2.97) ǫls(n) =
ρh

2
S2
w

(
qs(n)qs(n) + qs(n− 1)qs(n− 1)− 2qs(n)qs(n− 1)

k2
+ ω2

s qs(n) qs(n− 1)

)

.

This last expression can be written as the equation of a conic in the x − y space, where x = qs(n)

and y = qs(n− 1). This gives

x2 + y2 + 2αxy =
2k2ǫls(n)

ρhS2
w

α =
k2ω2

s

2
− 1.

A closed conic (ellispe or circle) is obtained when |α| < 1, in which case
2k2ǫls(n)
ρhS2

w
> 0 and

(2.98) |x|, |y| ≤

√

2k2ǫls(n)

ρh(1− α2)S2
w

This last equation is the bound on the solution size. Note that the stability condition |α| < 1 is

obtained when

(2.99) k <
2

ωs

.

Fig. 5 shows energy conservation for a plate activated impulsively in a strong nonlinear regime; Fig. 6

shows that failing to respect the stability condition leads to unstable solutions. In addition, when the

stability condition is not fulfilled the linear energies are not positive definite (see Fig. 7), although

the total sum ǫ(n) is still constant over time.

2.7.3. Vectorisation. The numerical scheme presented in the previous section are written in

terms of tensors. The tensors are often summed over their indices, and thus a convenient way of

handling this has to be devised in a numerical code. The schemes above have been implemented

in MATLAB. On one hand, this is a reasonable choice as MATLAB is able to handle tensors very

comfortably. On the other hand, it is important to avoid all nested loops when doing sums, and work

with a ”vectorised” code. In such a code, the sum over a particular tensor is not written using a for

loop, but using a convenient matrix multiplication. As it will be seen in Chapter 6, the number of

modes needed to simulate a large plates in a strongly nonlinear regime is of the order of NΦ ≈ 500 ,

and thus it is important that the code manages memory and calculation in the smartest way possible.

Examples of how to do that are now presented.

The norm of the Airy stress eigenfunctions Ψk is now considered. These functions are sought as the

eigenfunctions of a Kirchhoff clamped plate, because of the particular form of the boundary conditions

Eq. (2.56). Borrowing from section 2.4, one may then write

Ψ̃(x, y) =

NΨ−1∑

m,n=0

ãmnXm(x)Yn(y),
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Figure 6. Time simulations of a steel plate of dimensions Lx × Ly = 0.4 × 0.6m2

and thickness h = 1mm. The plate is excited at input location xi = [0.3Lx 0.2Ly]

with a discrete dirac delta of length 1 sample and amplitude 10; the output is taken

at xo = [0.7Lx 0.3Ly]. The number of in-plane modes is NΨ = 32, the number

of transverse modes is NΦ = 20: the highest eigenfrequency of the system is ω20 =

1893.7rad/s; hence the stability condition Eq. (2.99) gives the limiting sampling

frequency Fs = 947Hz. (a) simulation at 1kHz (above stability limit); (b) simulation

at 0.5kHz (below stability limit) showing unstable behaviour.

where Ψ̃(x, y) is one particular eigenfunction. The norm of such a function is then

(2.100) ‖Ψ̃‖2 =

NΨ−1∑

m,n,p,q=0

ãmnãpq

∫ Lx

0

XmXp dx

∫ Ly

0

YnYq dy.

It is seen that the calculation of this norm involves a quadruple sum over the indices m,n, p, q. When

calculating these sums in a code, a possible way is to create four nested for loops over each one of

the indices and summing up the partial results. This is not very convenient in an environment such

as MATLAB, which is notoriously slow when it comes to nested loops. However, the sum can be

replaced by a convenient matrix manipulations.

The idea is to create two column vectors, ŝ, â of length N4
Ψ, so that

• ŝ is the vector containing the values of the integral product
∫ Lx

0
XmXp dx

∫ Ly

0
YnYq dy,

ordered in some manner;

• â is the vector containing the values of ãmnãpq ordered in the same manner as ŝ.

Obviously the order of the indices m,n, p, q in ŝ, â is arbitrary, because the indices are summed;

however, the two vectors must be ordered in the same way. Once the column vectors are created,

then one has immediately

(2.101) ‖Ψ̃‖2 = (â)T ŝ.
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Figure 7. Time simulations of a steel plate of dimensions Lx × Ly = 0.4 × 0.6m2

and thickness h = 1mm. The plate is excited at input location xi = [0.3Lx 0.2Ly]

with a discrete dirac delta of length 1 sample and amplitude 5000; the output is

taken at xo = [0.7Lx 0.3Ly]. The number of in-plane modes is NΨ = 32, the

number of transverse modes is NΦ = 20: the highest eigenfrequency of the system

is ω20 = 1893.7rad/s; hence the stability condition Eq. (2.99) gives the limiting

sampling frequency Fs = 947Hz. The figures are obtained using a sampling rate

Fs = 0.5kHz (below the stability limit). (a) Total energy (black thick line), kinetic

(grey), linear potential (navy), nonlinear potential (dark green); (b) linear potential

energy showing non physical behaviour (it is not positive definite).

A way for obtaining this is now explained, in view of an easy implementation in MATLAB. Let the

matrix Gx be defined as

Gx
m,p =

∫ Lx

0

XmXp dx.

This matrix is clearly NΨ ×NΨ. Let the vector g be defined as

gxpm = Gx
m,p.

In practice, g is a column vector of length N2
Ψ obtained by stacking up together the columns of G.

This is easily accomplished in MATLAB using the function reshape. The vector g is then used to

create the matrix Ĝ in the following way

Ĝx = [gx gx gx ... gx

︸ ︷︷ ︸

N2

Ψ
times

]

In practice, Ĝ is a N2
Ψ×N2

Ψ matrix. In MATLAB, this can be done easily using the function repmat.

Owing to the definition of Ĝ, a matrix D̂ of dimensions N2
Ψ ×N2

Ψ is obtained as

D̂ = Ĝx ◦ (Ĝy)T ,
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where the symbol ◦ denotes the Hadamard (or pointwise) product between two matrices1, and T

denotes the transpose. (The matrix Ĝy is obtained exactly as Ĝx by replacing the functions Xm, Xp

with Yn, Yq and by integrating over y). The vector ŝ is obtained as

(2.102) ŝqnpm = D̂mq,pn.

In MATLAB this operation is accomplished by first transforming D̂ into a fourth order tensor using

reshape, by then permuting dimensions using permute, and finally by using rehsape again to obtain

a column vector.

The vector â is obtained easily by constructing the matrix Â as

Â = [ã ã ã ... ã
︸ ︷︷ ︸

N2

Ψ
times

]

where ã is the vector of expansion coefficients coming from the algebraic eigenvalue problem. Then

construct the matrix B̂ = ÂT ◦ Â. Hence

(2.103) âqnpm = B̂qn,pm.

In MATLAB, a correct implementation of Eq. (2.101) allows to calculate 100 norms in about 2s,

whereas about 20min are needed when using four nested for loops and Eq. (2.101).

Using similar matrix manipulations, one can calculate the expression for the tensor Γs
p,q,r of (2.61)

and avoid nested loops. Once the off-line calculation for Γs
p,q,r is completed, one may save the tensor

as use it at the input for schemes (2.79) and (2.85). Note, however, that such a tensor requires a lot

of physical memory to be stored. If, for instance, NΦ = 150, then the tensor of coupling coefficients

contains 1504 = 506250000 entries, and occupies about 4Gb of memory. On the other hand, the

tensor H with NΦ = 150 and, for example, NΨ = 100 occupies only 18Mb. In order to maximise

the number of transverse modes that one can keep in a code, it is then necessary to replace Γs
p,q,r by

Eq. (2.61) in both schemes (2.79) and (2.85).

1In practice, (A ◦B)i,j = Ai,jBi,j .



CHAPTER 3

Numerical Methods II: Finite Difference Schemes

In this chapter, a quick review of Finite Difference techniques is offered. Finite Difference schemes

are used primarily to solve PDEs: for that, the spatial domain upon which a problem is defined is

restricted to a set of grid points at which the solution is computed. Time is discretised in a similar

way, by means of a sampling frequency. Needless to say, a great deal of literature exists. For a general

introduction, see the book by Mitchell and Griffiths, [64].

Such methods have a very long history and can be traced back to the seminal work of Courant,

Friedrichs and Lewy in 1928 [22] (in German; for an English version see [23]), who treated the cases

of elliptic and hyperbolic problems of classical physics (including the vibrating string) in terms of

discrete approximations. A lot of early work has successively been devoted to electromagnetics-related

problems [81, 82, 96], dealing with potential theory and propagation.

The realm of musical acoustics, and in particular sound synthesis, has served as a great field of

application of Finite Difference techniques. The first work in this sense can be traced back to the

work of Ruiz on string vibrations [79], although it was not until the work by Chaigne that sophisticated

models started to be considered [15, 16, 17]. Nonlinear plate vibrations have been treated extensively

by Bilbao [7] and, more recently, by Torin [85]. Bilbao is also the author of a book [8] in which Finite

Difference schemes are systematically adopted in the realm of sound synthesis. The contents of this

Chapter, and the notation, are largely borrowed from that reference.

3.1. Finite Difference Operators

In this section grid functions will be used. A grid function is any function defined over a discrete

grid. For the moment, for simplicity, let the grid be 1D. Given that a constant grid size will be used,

of step h, the grid can be identified with the set of the integer numbers, Z, or a subset of it. For 1D

systems such as a bar or a string, the subset can selected as UN = [0, 1, ..., N − 1] and the boundaries

of this interval correspond to the ends of the bar or string. Time is discretised in a similar manner

as space, hence a sampling frequency Fs (with corresponding timestep k = 1/Fs) is introduced. A

grid function is identified in the following section as

wn
l ≡ w(hl, kn),

meaning that the continuous function w(x, t) has been approximated by the grid function wn
l evalu-

ated at the time kn and grid point hl. A list of temporal difference operators was offered in sec. 2.7,

along with their accuracies. It was seen that centered discrete operators are second-order accurate,

71
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whereas forward or backward operators are first-order accurate. Spatial operator in 1D are derived

straightforwardly from the temporal operators. Hence

• Backward and forward shift operators:

(3.1) ex−w
n
l = wn

l−1; ex+w
n
l = wn

l+1.

• Backward, centered, forward spatial difference operators:

δx− ≡
1

h
(1− ex−); δx· ≡

1

2h
(ex+ − ex−); δx+ ≡

1

h
(ex+ − 1).(3.2)

• Backward, centered, forward averaging operators:

µx− ≡
1

2
(1 + ex−); µx· ≡

1

2
(ex+ + ex−); µx+ ≡

1

2
(ex+ + 1).(3.3)

Approximations to the second and fourth space derivatives can be obtained by considering

(3.4)

δxx ≡ δx+δx− =
1

h2
(ex+ − 2 + ex−); δxxxx ≡ δxxδxx =

1

h4
(ex+ex+ − 4ex+ + 6− 4ex− + ex−ex−).

Note that, owing to Taylor series arguments,

(3.5) δxxxx =
∂4

∂x4
+O(h2),

and thus this operator is second order accurate.

When one wants to approximate a function depending on two space variables, a 2D grid is needed.

In this case, the grid function can be indicated by

wn
l,m ≡ w(hxl, hym, kn),

meaning that the function w(x, y, t) has been approximated by the grid function wn
l,m depending on

the spatial steps hx, hy and the timestep k. It is assumed that the grid is cartesian, which is the

case of interest here given that the rectangular geometry of the plate leads naturally to this kind of

discrete approximation. Hence, for an infinite system, (l,m) ∈ Z
2; for the case of a plate, which is a

bounded system, (l,m) ∈ U
2
Nx,Ny

= {(l,m) ∈ Z
2, 0 ≤ l ≤ Nx − 1, 0 ≤ m ≤ Ny − 1}.

Spatial shift operators may be defined as

(3.6) ex+w
n
l,m = wn

l+1,m; ex−w
n
l,m = wn

l−1,m; ey+w
n
l,m = wn

l,m+1; ey−w
n
l,m = wn

l,m−1.

Owing to these definitions, one may construct the forward, backward, centered difference operators

in the x and y directions in an analogous manner as (3.2). Hence

δx− ≡
1

hx

(1− ex−); δx· ≡
1

2hx

(ex+ − ex−); δx+ ≡
1

hx

(ex+ − 1)(3.7)

δy− ≡
1

hy

(1− ey−); δy· ≡
1

2hy

(ey+ − ey−); δy+ ≡
1

hy

(ey+ − 1).(3.8)

In an analogous way as Eq. (3.4), one may approximate second derivatives in the x and y directions,

as well as introducing averaging operators. In view of an application to the plate equations, one
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may wish to approximate the Laplacian and double Laplacian operators. This can be done quite

straightforwardly as

(3.9) δ∆ = δxx + δyy = ∆+O(h2); δ∆∆ = δ∆δ∆ = ∆∆+O(h2).

See [8] for more options.

The idea of a discrete inner product between two grid functions can be given by analogy with Eq. (2.6).

Hence the symbol

(3.10) < α, β >U2

Nx,Ny
=

∑

(l,m)∈U2

Nx,Ny

h2αl,mβl,m

denotes the ”inner product” (a Riemann sum) over the domain of definition of the discrete problem.

3.1.1. Matrix Interpretation and Boundary Conditions. In view of practical implemen-

tations in a code, the spatial operators are here given an interpretation in terms of matrix multipli-

cation. Consider the state vector wn, and assume for the moment the vector to be defined over all

Z. Consider, for example, the operator δx− defined in Eq. (3.2); one may define a new vector un by

considering un
l ≡ δx−w

n
l = 1

h
(wn

l − wn
l−1). In a matrix form, one may write

un = Dx−w
n,

where

Dx− =
1

h
















. . . 0

. . . 1

−1 1

−1 1

−1 1

0
. . .

. . .
















.

Now, the matrix above is obviously infinite as the state vector wn is unbounded. In this matrix,

the entries on the main diagonal are all 1, and the entries on the diagonal underneath the main

diagonal are all -1. Similarly, one may define matrices corresponding to the other difference operators

of Eqs. (3.2) and (3.4). These are

(3.11) Dx+ =
1

h
















. . .
. . . 0

−1 1

−1 1

−1 1

−1
. . .

0
. . .
















;
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(3.12)

Dxx =
1

h2
















. . .
. . . 0

. . . −2 1

1 −2 1

1 −2 1

1 −2
. . .

0
. . .

. . .
















; Dxxxx =
1

h4




















. . .
. . .

. . .
. . . 0

. . . 1 6 1 −4

−4 1 6 1 −4

−4 1 6 1 −4

−4 1 6 1
. . .

. . .
. . .

. . .
. . .

0
. . .

. . .




















.

The cases of practical interest are those where the state vector wn takes values over a bounded

interval, for example UN (defined above). In this case, the form of each matrix changes according

to the boundary conditions supplied with the problem. As an example of such, consider the simple

conditions

(3.13) w0 = wN−1 = 0
︸ ︷︷ ︸

Dirichelet conditions

, δx·w0 = δx·wN−1 = 0
︸ ︷︷ ︸

Neumann conditions

,

and consider the operator Dxx. For the Dirichelet-type conditions one has

Dxx











w1

w2

...

wN−3

wN−2











=
1

h2











−2 1 0

1 −2 1
. . .

. . .
. . .

1 −2 1

0 1 −2





















w1

w2

...

wN−3

wN−2











.

Note that the points u0, uN−1 have not been considered as they are constantly zero.

For Neumann-type conditions one has

Dxx











w0

w1

...

wN−2

wN−1











=
1

h2











−2 2 0

1 −2 1
. . .

. . .
. . .

1 −2 1

0 2 −2





















w0

w1

...

wN−2

wN−1











.

When the grid functions are two dimensional, they are themselves naturally written as matrices. In

this way, the two dimensional spatial operators such as those of Eq. (3.9) can be though of third-

order tensors. However, the matrix describing a given grid function can be transformed into a vector

by, say, stacking up its columns; similarly the third-order tensor associated with a given difference

operator becomes a standard two-dimensional matrix. Implementation of boundary conditions can

then be done in an analogous way as in 1D (see [8]).
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3.2. Linear plate vibrations

Linear plate vibrations without damping and forcing terms may be simulated by discretising the

Kirchhoff equation in the following way

(3.14) ρhδttw = −Dδ∆∆w.

This is not, obviously, the only option. It is, indeed, quite a straightforward one. Despite its simplicity,

such a scheme is energy conserving in a discrete sense. To prove numerical energy conservation, one

could take an inner product of the form (3.10) of Eq.(3.14) and δt·w, so to get

(3.15) δt+

{
ρh

2
〈δt−w, δt−w〉UNx,Ny

+
D

2
〈δ∆w, et−δ∆w〉UNx,Ny

}

= b,

where b is a boundary term. At the edge x = 0 such term vanishes under the following numerical

boundary conditions

Simply-Supported

w = δxxw = 0.

Clamped

w = δx−w = 0.

Free

(δxx + νδyy)w =

δx−(δxx + (2− ν)δyy)w = 0;

δx−y−w0,0 = 0. (condition at

corner)

The conserved, discrete energy can be proven to be a non-negative scalar under particular circum-

stances (see [8]); in that case, scheme (3.14) is stable.

Note that the same scheme can be used to calculate the eigenvalues and vectors of the Kirchhoff

plate. In fact, it is sufficient to consider the eigenvalue equation

(3.16) ω2Φ =
D

ρh
δ∆∆Φ

and to calculate eigenvalues and vectors of the matrix D∆∆. One has

(3.17)
ω2
mρh

D
= eig(D∆∆)m; Φm = eigenvector(D∆∆)m.

The results can be compared with those coming from the Rayleigh-Ritz method, presented in Chap-

ter 2. This is done in the next subsection.

3.2.1. Eigenfunctions and frequencies of the Kirchhoff plate. In this section, the Kirch-

hoff plate equation is solved using the Finite Difference scheme (3.16). As a first case, consider

Table 1 presenting the results for the completely simply-supported plate. Four different aspect ratios

are considered: η = 1.0, 1.5, 2.0, 2.5; for all cases Lx = 1m. The ”grid density” rg can be recovered by

dividing the number of grid points Nx ×Ny by the surface size Lx ×Ly. Hence, for η = 1.0 one has,

for the values proposed in the table, rg = 8100, 12100, 16129 points/m2. Note that, for larger aspect

ratios, the number of grid points in the y direction increases so to keep the grid density constant for

all aspect ratios.
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Mode

1 2 3 4 5 25 50 75 100 Nx ×Ny

η=1.0

2.000 4.998 4.998 7.997 9.992 39.87 72.58 105.3 142.9 90× 90

2.000 4.999 4.999 7.998 9.994 39.91 72.72 105.5 143.6 110× 110

2.000 4.999 4.999 7.998 9.996 39.93 72.79 105.6 143.9 127× 127

2.000 5.000 5.000 8.000 10.00 40.00 73.00 106.0 145.0 Analytical

η=1.5

1.444 2.777 4.443 4.998 5.776 25.73 49.20 70.69 93.00 90× 135

1.444 2.777 4.443 4.999 5.776 25.74 49.28 70.83 93.15 110× 165

1.444 2.778 4.444 4.999 5.777 25.75 49.32 70.90 93.22 127× 190

1.444 2.778 4.444 5.000 5.778 25.78 49.44 71.11 93.44 Analytical

η=2.0

1.250 2.000 3.249 4.248 4.998 19.97 36.87 52.76 71.74 90× 179

1.250 2.000 3.250 4.249 4.999 19.98 36.91 52.84 71.82 110× 219

1.250 2.000 3.250 4.249 4.999 19.99 36.93 52.88 71.87 127× 254

1.250 2.000 3.250 4.250 5.000 20.00 37.00 53.00 72.00 Analytical

η=2.5

1.160 1.640 2.440 3.559 4.158 16.61 28.93 43.70 56.59 90× 225

1.160 1.640 2.440 3.559 4.159 16.62 28.96 43.75 56.67 110× 275

1.160 1.640 2.440 3.560 4.159 16.63 28.97 43.77 56.71 127× 317

1.160 1.640 2.440 3.560 4.160 16.64 29.00 43.84 56.84 Analytical

Table 1. Eigenfrequencies ζ2i /π
2 for the SS-SS-SS-SS plate, under different aspect

ratios η = Ly/Lx (Lx = 1m) and different values of grid points Nx ×Ny. Analytical

values are also given.
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Figure 1. Relative error of the eigenfrequencies of the SS-SS-SS-SS plate calculated

using the FD scheme using a grid density rg = 16129point/m2 and compared to exact

values from Eq. (2.31). Error plotted for different aspect ratios η = Ly/Lx. Red:

η = 1.0, blue: η = 1.5, brown: η = 2.0, green: η = 2.5.
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Mode

1 2 3 4 5 25 50 75 100 Nx ×Ny

η=1.0

3.567 7.274 7.274 10.73 13.04 45.30 79.45 113.08 151.8 90× 90

3.581 7.303 7.303 10.80 13.09 45.52 79.89 113.72 153.1 110× 110

3.590 7.321 7.321 10.80 13.12 45.65 80.14 114.10 153.8 127× 127

η=1.5

2.681 4.151 6.557 6.630 7.925 29.97 55.23 77.26 99.15 90× 135

2.691 4.164 6.582 6.650 7.954 30.11 55.53 77.58 99.59 110× 165

2.697 4.172 6.598 6.662 7.971 30.19 55.70 77.77 99.85 127× 190

η=2.0

2.439 3.167 4.467 6.328 6.343 22.37 41.51 58.68 76.24 90× 179

2.448 3.178 4.479 6.344 6.368 22.43 41.67 58.98 76.57 110× 219

2.454 3.184 4.487 6.354 6.384 22.46 41.77 59.15 76.76 127× 254

η=2.5

2.345 2.760 3.531 4.664 6.153 18.95 33.27 47.35 60.34 90× 225

2.354 2.774 3.542 4.675 6.167 19.00 33.35 47.49 60.64 110× 275

2.360 2.780 3.548 4.680 6.176 19.03 33.40 47.56 60.81 127× 317

Table 2. Eigenfrequencies ζ2i /π
2 for the C-C-C-C plate, under different aspect ra-

tios η = Ly/Lx (Lx = 1m) and different values of grid points Nx ×Ny.

The values calculated using the FD scheme can be compared to the analytical values (here called ζ2t )

of Eq. (2.31). The relative error can be defined as

(3.18) ∆ζ2 =
ζ2t − ζ2FD

ζ2t
;

note that there is no need to introduce the absolute value notation as the FD results converge from

below. Fig. 1 reproduces ∆ζ2 for the first 100 modes and the four aspect ratios. The square plate is

the one presenting the largest deviation, which however remains quite small (∆ζ2 . 0.7%); for the

other aspect ratios, the error remains bounded below 0.4%.

For the cases of the completely clamped and free plates there is no analytical solutions. The values

of the eigenfrequencies calculated using the FD code are presented in Table 2 (clamped plate) and

Table 3 (free plate). The grid densities are the same as the simply-supported case. Note that

convergence is again from below.

Instead of calculating a relative error, one may construct a table to show upper and lower bounds

for the eigenfrequencies of the clamped and free plates. In fact, the convergence of the Rayleigh-

Ritz method is from above, and FD converges from below. Table 4 presents such bounds for the

clamped plate, and Table 5 considers the free plate. Note that, in most cases, the modal approach

and the FD scheme yield the same results up to the second significant digit, meaning that the ”true”

eigenfrequencies are bounded within an error of the order of 1%.
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Mode

ν = 0.3 1 2 3 4 5 25 50 75 100 Nx ×Ny

η=1.0

1.326 1.945 2.407 3.431 3.431 21.18 49.92 76.39 105.7 90× 90

1.333 1.952 2.416 3.448 3.448 21.30 50.20 76.90 106.4 110× 110

1.337 1.956 2.422 3.459 3.459 21.37 50.37 77.19 106.8 127× 127

η=1.5

0.8834 0.9511 2.040 2.200 2.555 14.19 32.38 51.61 70.25 90× 135

0.8873 0.9535 2.049 2.209 2.563 14.24 32.50 51.85 70.66 110× 165

0.8896 0.9549 2.054 2.214 2.567 14.27 32.56 51.99 70.89 127× 190

η=2.0

0.5382 0.6586 1.451 1.494 2.182 11.32 24.27 38.35 52.38 90× 179

0.5392 0.6612 1.457 1.497 2.191 11.34 24.38 38.47 52.56 110× 219

0.5398 0.6628 1.460 1.499 2.196 11.36 24.45 38.54 52.67 127× 254

η=2.5

0.3451 0.5239 0.9589 1.126 1.870 8.837 19.72 29.62 41.62 90× 225

0.3456 0.5259 0.9603 1.130 1.873 8.852 19.80 29.75 41.74 110× 275

0.3459 0.5270 0.9612 1.132 1.875 8.861 19.86 29.83 41.81 127× 317

Table 3. Eigenfrequencies ζ2i /π
2 for the F-F-F-F plate, for ν = 0.3, under different

aspect ratios η = Ly/Lx (Lx = 1m) and different values of grid points Nx ×Ny.

Mode

ν = 0.3 1 2 3 4 5 25 50 75 100 Bounds

η=1.0
3.646 7.436 7.436 10.96 13.33 46.43 81.60 116.2 156.7 Upper

3.590 7.321 7.321 10.80 13.12 45.65 80.14 114.1 153.8 Lower

η=1.5
2.736 4.225 6.700 6.740 8.086 30.69 56.69 78.89 101.4 Upper

2.697 4.172 6.598 6.662 7.971 30.19 55.70 77.77 99.85 Lower

η=2.0
2.490 3.225 4.536 6.417 6.483 22.69 42.49 60.17 77.64 Upper

2.454 3.184 4.487 6.354 6.384 22.46 41.77 59.15 76.76 Lower

η=2.5
2.396 2.817 3.589 4.729 6.231 19.20 33.69 47.99 61.83 Upper

2.360 2.780 3.548 4.680 6.176 19.03 33.40 47.56 60.81 Lower

Table 4. Upper and lower bounds for the eigenfrequencies ζ2i /π
2 of the C-C-C-C

plate, under different aspect ratios η = Ly/Lx Lower bounds are taken from Table 2;

upper bounds are taken from running the modal scheme presented in section 2.4 with

NΦ = 25.
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Mode

ν = 0.3 1 2 3 4 5 25 50 75 100 Bounds

η=1.0
1.365 1.988 2.467 3.534 3.534 21.86 51.49 79.16 109.6 Upper

1.337 1.956 2.422 3.459 3.459 21.37 50.37 77.19 106.8 Lower

η=1.5
0.9063 0.9667 2.090 2.254 2.605 14.50 33.11 52.92 72.46 Upper

0.8896 0.9549 2.054 2.214 2.567 14.27 32.56 51.99 70.89 Lower

η=2.0
0.5464 0.6752 1.483 1.513 2.235 11.52 24.93 39.10 53.83 Upper

0.5398 0.6628 1.460 1.499 2.196 11.36 24.45 38.54 52.67 Lower

η=2.5
0.3517 0.5375 0.9690 1.149 1.891 8.941 20.22 30.43 42.55 Upper

0.3459 0.5270 0.9612 1.132 1.875 8.861 19.86 29.83 41.81 Lower

Table 5. Upper and lower bounds for the eigenfrequencies ζ2i /π
2 of the F-F-F-F

plate, for ν = 0.3, under different aspect ratios η = Ly/Lx Lower bounds are taken

from Table 3; upper bounds are taken from running the modal scheme presented in

section 2.5 with NΦ = 17.

3.3. Finite Difference schemes for the von Kármán equations

In this section two resolution schemes are presented for the von Kármán equations in terms of Finite

Differences approximations. The first scheme is a semi-explicit scheme and the second one is an

implicit, energy-conserving scheme. Both schemes are presented in the book by Bilbao [8], to which

the reader is referred for a more detailed discussion. The conservative scheme presented here is but one

of a family of schemes depending on two parameters. The choice presented here is a particularly useful

one in terms of ease of implementation, and stability properties. See [7] for a complete discussion.

When discretising the von Kármán system, an important first step is the discretisation of the von

Kármán operator, presented in Eq. (1.38). For the schemes presented here, the discrete counterpart

will be denoted by l, acting on two generic grid functions α, β, defined as

(3.19) l(α, β) = δxxαδyyβ + δyyαδxxβ − 2µx−µy−(δx+y+αδx+y+β).

This choice will prove useful for showing energy conservation of the implicit scheme. In addition, the

triple self-adjointness property Eq. (1.49) finds a discrete counterpart when the von Kármán operator

is approximated as in Eq. (3.19). Hence

(3.20) < α, l(β, γ) >UNx,Ny
=< l(α, β), γ >UNx,Ny

+j,

where the symbol < ·, · >UNx,Ny
denotes a discrete inner product over the plate discrete domain

UNx,Ny
, and j is a boundary integral.
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3.3.1. A semi-explicit scheme. Referring to the von Kármán Eq. (2.58), one may approximate

the continuous system as

Dδ∆∆w + ρhδttw = l(w,F )− 2σ0δt·w + 2σ1δ∆δt−w + finP ;(3.21a)

δ∆∆F = −
Eh

2
l(w,w).(3.21b)

Note that fin denotes a distribution corresponding to the spatial part of the input mechanism, and P is

its temporal component. The parameters σ0 and σ1 are the same as those found in Eq. (2.58), leading

to the dissipation laws in the frequency domain described in Eq. (2.59). In this case, Eq. (3.21b) needs

a linear system solver, whereas Eq. (3.21a) may be updated explicitly. Stability of such a scheme

is not guaranteed at high excitation amplitudes, although it will be used in Chapter 6 to produce

gong-like sounds.

3.3.2. An implicit, energy conserving scheme. In Chapter 5, the plate will be excited to

high amplitudes in order to produce a cascade of energy and study the statistical properties of such

turbulent system. For that, scheme (3.21) is not a good candidate as the instability issue would make

impossible to simulate such a large cascade of energy. Hence, a stable scheme is needed. The stable

scheme is now presented, and its properties briefly described. See [7] for more details.

The scheme is

Dδ∆∆w + ρhδttw = l(w, µt·F )− 2σ0δt·w + 2σ1δ∆δt−w + finP ;(3.22a)

µt−δ∆∆F = −
Eh

2
l(w, et−w).(3.22b)

When run in absence of damping and forcing terms, such a scheme is energy conserving, and energy

conservation leads directly to a stability condition. Derivation of an energy-conserving property is

done in [7], and reads

(3.23) δt+

{
ρh

2
〈δt−w, δt−w〉UNx,Ny

+
D

2
〈δ∆w, et−δ∆w〉UNx,Ny

+
1

2Eh
〈δ∆F, δ∆F 〉

UNx,Ny

}

= b,

where b is a boundary term that vanishes under special combinations of boundary conditions on w,F .

For the edge at x = 0, a set of such conditions may be extracted as

(3.24) w = (δxx + νδyy)w = 0, F = δx−F = 0,

which correspond formally to Eq. (2.56) identifying a simply supported, in-plane movable edge.

Energy conservation leads naturally to a stability condition, and to bounds on the solution size (see

[7, 88]), and thus it will be used to simulate a wave turbulence state in Chapter 5, where the plate

attains large amplitudes of vibration. Such condition can be expressed as a bound on the timestep

k, as a function of the spatial steps hx, hy, and reads

(3.25) k ≤
h2
x h2

y

2(h2
x + h2

y)

√

ρh

D
.
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Note that the step hy can always be expressed as a function of hx by considering hy = Ly/Lxhx.

Hence, the condition above is basically a link between the grid size and the sampling rate. In other

words, one can fix the sampling rate and get the grid steps in order to satisfy the relation above as

close as possible to equality, as Bilbao suggests in [8].

Although this relation is given here for the implicit scheme (3.22), in Chapter 6 it will be used for

scheme (3.21) as well. This choice is justified on a pragmatic basis: in most cases occurring in

Chapter 6, such a condition gives a convergent solution and is thus systematically adopted.





Part 2

Part II: Applications





CHAPTER 4

Nonlinear Modal Interaction

In this chapter the Nonlinear Normal Modes of the von Kármán plate are calculated. This chapter

corresponds to a paper published in Acta Mechanica [31]. Sections 2 and 3 have been covered in

great detail in Chapter 2. Section 4 gives the numerical values of a few coupling coefficients, and an

heurstic rule to identify the null ones. Section 5 is the core of this Chapter, presenting the periodic

solutions of the nonlinear system. See also [29]. Bibliographic references as well as appendices are

included in this chapter, and not at the end of the manuscript.
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Abstract Nonlinear vibrations of thin rectangular plates are considered, using the von Kármán equations in
order to take into account the effect of geometric nonlinearities. Solutions are derived through an expansion over
the linear eigenmodes of the system for both the transverse displacement and the Airy stress function, resulting
in a series of coupled oscillators with cubic nonlinearities, where the coupling coefficients are functions of the
linear eigenmodes. A general strategy for the calculation of these coefficients is outlined, and the particular
case of a simply supported plate with movable edges is thoroughly investigated. To this extent, a numerical
method based on a new series expansion is derived to compute the Airy stress function modes, for which an
analytical solution is not available. It is shown that this strategy allows the calculation of the nonlinear coupling
coefficients with arbitrary precision, and several numerical examples are provided. Symmetry properties are
derived to speed up the calculation process and to allow a substantial reduction in memory requirements.
Finally, analysis by continuation allows an investigation of the nonlinear dynamics of the first two modes
both in the free and forced regimes. Modal interactions through internal resonances are highlighted, and their
activation in the forced case is discussed, allowing to compare the nonlinear normal modes (NNMs) of the
undamped system with the observable periodic orbits of the forced and damped structure.

1 Introduction

Plates elements are commonly found in a variety of contexts in structural mechanics. An understanding
of their vibrational properties is crucial in many contexts, e.g. fluid-structure interaction problems, plate
and panel flutter in aeronautics [13], energy harvesting of fluttering flexible plates [18], piezoelectric and
laminated plates [15,21], as well as their coupling with electro-magnetic and thermal fields [22]. When the
plates are thin, vibration amplitudes can easily attain the same order of magnitude as the thickness. In this
case, the nonlinear geometric effects cannot be neglected, resulting in a rich variety of dynamics [2,38].
Examples can be given ranging from weakly to strongly nonlinear cases: nonlinear vibrations of plates with
moderate nonlinearity [2,45], fluid–structure interaction problems [25] and the transition from periodic to
chaotic vibrations [4,37,50]. Aside from typical engineering problems, the chaotic dynamics exhibited by thin
plates excited at large amplitudes finds application in the field of musical acoustics, as it accounts for the bright
and shimmering sound of gongs and cymbals [6,7,12,29]. It was pointed out recently, from the theoretical,
numerical and experimental viewpoints that the complex dynamics of thin plates vibrating at large amplitudes

M. Ducceschi · C. Touzé (B )
Unité de Mecanique, ENSTA-ParisTech, 828 Boulevard des Maréchaux, Palaiseau, France
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S. Bilbao · C. J. Webb
James Clerk Maxwell Building, University of Edinburgh, Edinburgh, Scotland
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displays the characteristics of wave turbulence systems, and thus, it should be studied within this framework
[9,20,34,35,49].

A widely used model in nonlinear plate modelling is due to von Kármán [54]. This model takes into account
a quadratic correction to the longitudinal strain, as compared to the classical linear plate equation by Kirchhoff
[16,33,38,46]. The type of nonlinearity introduced is thus purely geometrical. The von Kármán equations are
particularly appealing because they describe a large range of phenomena while retaining a relatively compact
form, introducing a single bilinear operator in the classic linear equations by Kirchhoff.

Pioneering analytical work in the analysis of rectangular thin plate vibrations with geometrical nonlineari-
ties was carried out in the 1950s by Chu and Herrmann [17], demonstrating for the first time the hardening-type
nonlinearity that has been confirmed by numerous experiments; see, e.g. [1,28]. Restricting the attention to
the case of rectangular plates, the work by Yamaki [55] confirms analytically the hardening-type nonlinearity
for forced plates. The case of 1:1 internal resonance for rectangular plates (where two eigenmodes have nearly
equal eigenfrequencies) has been studied by Chang et al. [14] and by Anlas and Elbeyli [3]. Parametrically
excited nearly square plates, also displaying 1:1 internal resonance, have also been considered by Yang and
Sethna [56]. All these works focus on the moderately nonlinear dynamics of rectangular plates where only a
few modes (typically one or two) interact together. In these cases, the von Kármán plate equations are projected
onto the linear modes, and the coupling coefficients are computed with ad-hoc assumptions that appear difficult
to generalise. Finite element methods have also been employed—see, e.g. the work by Ribeiro et al. [42–44],
and Boumediene et al. [10] to investigate the nonlinear forced response in the vicinity of a eigenfrequency. Re-
cently, numerical simulations of more complex dynamical solutions, involving a very large number of modes in
the permanent regime, have been conducted, in order to simulate the wave turbulence regime and to reproduce
the typical sounds of cymbals and gongs. For that, Bilbao developed an energy-conserving scheme for finite
difference approximation of the von Kármán system [5], which allows the study of the transition to turbulence
[49] and the simulation of realistic sounds of percussive plates and shells [6,7]. Spectral methods with a very
large number of degrees of freedom have also been employed in [20] to compare theoretical and numerical
wave turbulence spectra.

This work aims at extending the possibilities of the modal approach to simulate numerically the non-
linear regime of rectangular plates. Instead of introducing ad-hoc assumptions, a general model is here
presented; this model retains a vast number of interacting modes, making possible the investigation of the
global dynamics of the plate while making it very precise. Within this framework, the advantages of the
modal approach are retained (accuracy of linear and nonlinear coefficients, flexibility in setting modal damp-
ing terms in order to calibrate simulation with experiment, . . .), and its limitations are overcome: there is
no restriction with respect to the amount of modes that one wants to keep. In this work, the possibility of
simulating dynamical solutions with a large number (say a few hundred) of modes is detailed. The case un-
der study is that of a simply supported plate with in-plane movable edges. For this particular choice, the
transverse modes are readily obtained from a double sine series [26]; the in-plane modes, however, are not
available in closed form. Interestingly, it was shown in [46] that the problem of finding the in-plane modes
for the chosen boundary conditions corresponds mathematically to the problem of finding the modes of a
fully clamped Kirchhoff plate. To this extent, a general strategy proposed in [31] is here adapted to find the
clamped plate modes. To validate the results, the resonant response of the plate in the vicinity of the first
two modes is numerically investigated, for vibration amplitudes up to three to four times the thickness. Sec-
ondly, a thorough comparison of the modal approach with the finite difference method developed in [5,6] is
also given. Calculation of the free response allows the study of the first two nonlinear normal modes of the
plate and to highlight the complicated dynamics displayed at large amplitudes. Modal couplings, resonant
and nonresonant, are investigated. Finally, the forced response is also computed, and the link between the
backbone curve and the forced response is investigated, showing the role of internal resonance and damp-
ing.

2 Model description

Plates whose flexural vibrations are comparable to the thickness are most efficiently described by the von
Kármán equations [17,33,39,46]. In the course of this paper, a rectangular plate of dimensions Lx , L y and
thickness h (with h ≪ Lx , L y) is considered. The plate material is homogeneous, of volume density ρ,

Young’s modulus E and Poisson’s ratio ν. Its flexural rigidity is then defined as D = Eh3/12(1 − ν2). The
von Kármán system then reads
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D∆∆w + ρhẅ + cẇ = L(w, F) + δ(x − x0) f cos(Ωt), (1.1)

∆∆F = −
Eh

2
L(w, w), (1.2)

where ∆ is the Laplacian operator, w = w(x, y, t) is the transverse displacement, and F = F(x, y, t) is
the Airy stress function. The equations present a viscous damping term cẇ and a sinusoidal forcing term
δ(x − x0) f cos(Ωt) applied at the point x0 on the plate. The damping will take the form of modal viscous
damping once the equations are discretised along the normal modes. The bilinear operator L(·, ·) is known as
von Kármán operator [46] and, in Cartesian coordinates, it has the form of

L(α, β) = α,xxβ,yy + α,yyβ,xx − 2α,xyβ,xy, (2)

where ,s denotes differentiation with respect to the variable s. This operator, although itself bilinear, is the
source of the nonlinear terms in the equations. All the quantities are taken in their natural units, so that Eq.
(1.1) and Eq. (1.2) have the dimensions, respectively, of kg m−1 s−2 and kg m−2 s−2. The term L(w, w) in Eq.
(1.2) is quadratic in w and its derivatives, so once the solution for F is injected into (1.1), a cubic nonlinearity
will appear, leading to a Duffing-type set of coupled ordinary differential equations (ODEs).

2.1 Linear modes

The strategy adopted here to solve the von Kármán system makes use of the linear modes for the displacement
w and Airy stress function F . This strategy is particularly useful for investigating the free and forced vibrations
of the system, in the sense that it allows for the reduction of the dynamics of the problem from an infinite
number of degrees of freedom to a finite one. The eigenmodes for the displacement w will be denoted by the
symbol Φk(x, y), and thus w(x, y, t) is written as

w(x, y, t) = Sw

Nw
∑

k=1

Φk(x, y)

‖Φk‖
qk(t), (3.1)

where Φk is such that

∆∆Φk(x, y) =
ρh

D
ω2

kΦk(x, y). (3.2)

Note that the sum in Eq. (3.1) is terminated at Nw in practice. The linear modes can be defined up to a constant
of normalisation that can be chosen arbitrarily. For the sake of generality, Sw here denotes the constant of

normalisation of the function Φ̄ = Sw
Φk(x,y)
‖Φk‖

. The norm is obtained from a scalar product (α, β) between two

functions α(x, y) and β(x, y), defined as

< α, β >=

∫

S

α β d S −→ ‖Φk‖
2 =< Φk, Φk >. (4)

Eq. (3.2) is the eigenvalue problem definition, and it is a Kirchhoff-like equation for linear plates.
The Airy stress function is expanded along an analogue series:

F(x, y, t) = SF

NF
∑

k=1

Ψk(x, y)

‖Ψk‖
ηk(t), (5.1)

∆∆Ψk(x, y) = ζ 4
k Ψk(x, y). (5.2)

Boundary conditions for w and F will be specified in the next subsection. The linear modes so defined are
orthogonal with respect to the scalar product and are therefore a suitable function basis [26]. Orthogonality
between two functions Λm(x, y),Λn(x, y) is expressed as

< Λm, Λn >= δm,n‖Λm‖2, (6)

where δm,n is the Kronecker delta.
Once the linear modal shapes are known, system (1.1) may then be reduced to a set of ordinary differential

equations, each referring to the kth modal coordinate qk(t), k = 1, . . . , Nw. Nw represents the order of the
system of ODEs.
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2.2 Reduction to a set of ODEs

The introduction of the expansion series (3.1) and (5.1) allows for the decomposition of the original von
Kármán problem onto a set of coupled, nonlinear ordinary differential equations (ODEs). As a starting point,
Eq. (5.1) is substituted into Eq. (1.2) to obtain

ηk = −
Eh

2ζ 4
k

S2
w

SF

∑

p,q

qpqq

∫

S
Ψk L(Φp, Φq)dS

‖Ψk‖‖Φp‖‖Φq‖
. (7)

Integration is performed over the area of the plate, and the orthogonality relation is used. Injecting Eqs. (3)
and (7) into Eq. (1.1) gives

ρhSw

∑

k

ω2
kΦk

‖Φk‖
qk + ρhSw

∑

k

Φk

‖Φk‖
q̈k + cSw

∑

k

Φk

‖Φk‖
q̇k

= −
EhS3

w

2

∑

n,p,q,r

1

ζ 4
n

L(Φp, Ψn)

‖Ψp‖‖Φn‖

∫

S
Ψn L(Φq , Φr )dS

‖Φq‖‖Φr‖‖Ψn‖
qpqqqr + δ(x − x0) f cos(Ωt). (8)

Then, the equation is multiplied on both sides by Φs and integrated over the surface of the plate. The result is

q̈s + ω2
s qs + 2χsωs q̇s = −

E S2
w

2ρ

n
∑

p,q,r

Hn
q,r E s

p,n

ζ 4
n

qpqqqr +
Φs(x0)

‖Φs‖ρhSw

f cos(Ωt), (9)

where a modal viscous damping is introduced in the equation, scaled by χs = c/(2ρhωs) (a dimensionless
parameter). A practical advantage of the modal description is that χs can be estimated experimentally for a
large number of modes [11], and so the modal approach allows the simulation of complex frequency dependent
damping mechanisms with practically no extra effort.

Two third order tensors, Hn
q,r and E s

p,n , appear in Eq. (9). These are defined as

Hn
p,q =

∫

S
Ψn L(Φp, Φq)dS

‖Ψn‖‖Φp‖‖Φq‖
, E s

r,n =

∫

S
Φs L(Φr , Ψn)dS

‖Φr‖‖Φs‖‖Ψn‖
. (10)

It is seen that the ODEs are cubic with respect to the variables qs , so a fourth-order tensor Γ can conveniently
be introduced in the equations, as

Γ s
p,q,r =

NF
∑

n=1

Hn
p,q E s

r,n

2ζ 4
n

. (11)

Once the tensor Γ is known, one is left with a set of coupled ODEs that can be integrated in the time variable
using standard integration schemes. Alternatively, continuation methods can be employed to derive a complete
bifurcation analysis of the nonlinear dynamics.

2.3 Boundary conditions

To recover the von Kármán equations, one may define the potential and kinetic energies of a bent plate, in the
following way:

V =

3
∑

i,k=1

h

2

∫

S

σikuikdS, (12.1)

T =
ρh

2

∫

S

ẇ2dS, (12.2)

U =

2
∑

i,k=1

h

2

∫

S

σ̃ik ũikdS (12.3)
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where V, T are the potential and kinetic energies for pure bending, and U is the potential energy for the
stretching in the in-plane direction. Note that two strain tensors (uik and ũik) and two stress tensors (σik and
σ̃ik) are introduced, in order to account for the pure bending and in-plane energies; note also that the indices of
the in-plane tensors can take only two values. Suppose that the displacement vector is u = (ux , u y, w) defined
in a Cartesian set of coordinates x = (x, y, z). The symmetric strain tensor uik is linear and can be given in
terms of the vertical displacement w as follows [23]:

uxx = −z∂2w/∂x2; uyy = −z∂2w/∂y2; uxy = −z∂2w/∂x∂y; uzz =
ν

1 − ν
z(∂2w/∂x2 + ∂2w/∂y2),

(13)

and zero for all the other components. The stress–strain relationships are also linear, as the material is assumed
to be, and read

σik =

3
∑

l=1

E

1 + ν

(

uik +
ν

1 − 2ν
ull δik

)

. (14)

The symmetric, two-dimensional strain tensor ũik is nonlinear and given by

ũik =

[

1

2

(

∂ui

∂xk

+
∂uk

∂xi

)

+
1

2

∂w

∂xi

∂w

∂xk

]

, (15)

and the stress–strain relationships for the in-plane stretching are given as

σ̃xx =
E

1 − ν2
(ũxx + νũyy); σ̃yy =

E

1 − ν2
(ũ yy + νũxx ); σ̃xy =

E

1 + ν
ũxy (16)

and zero for all the other components. The Airy stress function F is introduced as

σ̃xx = ∂2 F/∂y2; σ̃yy = ∂2 F/∂x2; σ̃xy = −∂2 F/∂x∂y. (17)

Note that the only nonlinear term that appears in the definitions of the energies is the quadratic factor in ũik .
It is possible to make use of Hamilton’s principle, stated in the form

t1
∫

t0

δ(T − V − U ) dt = 0, (18)

to recover the equations of motion (1.1) plus the boundary conditions. These can be categorised as follows
[46] (here ,n, ,t denote differentiation along the normal and tangent directions, respectively):

– In-plane direction
– free edge: F,nt = F,t t = 0
– immovable edge (w = 0 along the boundary): F,nn − νF,t t = F,nnn + (2 + ν)F,nnt = 0

– Edge rotation
– rotationally free: w,nn + νw,t t = 0
– rotationally immovable w,n = 0

– Edge vertical translation

– free: w,nnn +(2 − ν)w,ntt − 1
D

(F,t tw,n − F,ntwt ) = 0
– immovable w = 0.

A corner condition arises as well, and it is

w,xy = 0 at corners. (19)

This constraint has to be imposed as an extra condition only when the edge is transversely free. It is evident that
the boundary conditions must be fulfilled by all the linear modes Φk, Ψk that appear in the expansions (2.1),
(5.1). For the transverse function, simply supported boundary conditions are considered for the remainder of
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the paper. These describe a fixed, rotationally free edge and permit a simplified analysis because a solution is
readily available:

Φk = sin

(

k1πx

Lx

)

sin

(

k2πy

L y

)

; ω2
k =

D

ρh

[

(

k1π

Lx

)2

+

(

k2π

L y

)2
]2

. (20)

For the in-plane direction, a free edge is considered. However, a different form of the boundary conditions
will be used, i.e. F = F,n = 0. It is evident that the assumed conditions are sufficient to satisfy the proper
conditions F,nt = F,t t = 0. Note that, mathematically speaking, the assumed conditions on F turn the stress
function problem into a transversely clamped plate problem.

The selected boundary conditions are also known as simply supported with movable edges [1].

3 A solution for the clamped plate

As shown in the previous section, the eigenvalue problem for F with the chosen boundary conditions is
equivalent to that of a clamped Kirchhoff plate. To this extent, the Galerkin method is employed, as an
analytical solution for the problem is not available.

The starting point of the Galerkin method is to express the eigenfunction Ψk of Eqs. (5) as a series of this
form:

Ψk(x, y) =

Nc
∑

n=0

ak
nΛn(x, y) (21)

where Λn(x, y) are the expansion functions depending on some index n, and ak
n are the expansion coefficients:

these depend on the index n and of course on the index k. The total number of expansion functions is Nc,
and obviously, the accuracy of the solution improves as this parameter is increased. The Λ’s must be carefully
selected from the set of all comparison functions [48]; this is to say that they need to satisfy the boundary
conditions associated with the problem that they are at least p times differentiable (where p is the order of the
PDE), and they form a complete set over the domain of the problem. Completeness is quite a rather involved
property to prove; however, one generally resorts to variations of sine or cosine Fourier series, for which
completeness follows directly from the Fourier theorem.

For this work, the expansion functions were selected according to a general method proposed in [31], where
it is shown how a Kirchhoff plate problem can be solved by means of a double modified Fourier cosine series,
i.e.

Λn(x, y) = Xn1(x)Yn2(y) =

(

cos

(

n1πx

Lx

)

+ pn1(x)

)(

cos

(

n2πy

L y

)

+ pn2(y)

)

, (22)

where pn1(x), pn2(y) are fourth-order polynomials in the variables x and y, and depending as well on the
integers n1, n2. Note that the order of the polynomials corresponds to the order of the PDE. The role of the
polynomial is to account for possible discontinuities at the edges due to the boundary conditions. Li [31]
is mainly concerned with a general solution strategy, where the plate is equipped with linear and rotational
springs at the edges to simulate the effect of different boundary conditions. In [31], the polynomials of Eq.
(22) do not appear explicitly, as they are obtained through matrix inversion in order to comply with the general
form of the boundary conditions. In turn, these matrices present the values of all the springs, and the general
expression of the Λ’s is rather involved. However, given that the focus here is on the clamped plate only, the
analytical limit of all the springs having infinite stiffness is taken, so that an explicit form for (22) can indeed
be recovered, and this is:

Xn1(x) = cos

(

n1πx

Lx

)

+
15(1 + (−1)n1)

L4
x

x4 −
4(8 + 7(−1)n1)

L3
x

x3 +
6(3 + 2(−1)n1)

L2
x

x2 − 1, (23)

and similarly for Yn2(y). Note that for the clamped plate satisfaction of the boundary conditions is essential for
a fast converging solution. This is because the conditions at the edges for the clamped plate are geometrical,
as they prescribe the vanishing of the displacement and of the slope. Thus, an expansion function that does not
satisfy these conditions could lead to slow converging solutions, if not to wrong results.
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Table 1 Convergence of clamped plate frequencies, ζ 2
k Lx L y, ξ = 2/3

k Nc

25 100 144 255 400 484
1 40.509 40.508 40.508 40.508 40.508 40.508
2 62.563 62.556 62.556 62.556 62.556 62.556
3 99.193 99.187 99.187 99.186 99.186 99.186
4 99.790 99.787 99.783 99.783 99.783 99.783
5 119.75 119.71 119.71 119.71 119.71 119.71
20 476.05 359.60 359.58 359.57 359.57 359.57
50 – 859.52 839.38 839.31 839.31 839.31
100 – 2,439.9 1,669.7 1,574.3 1,500.3 1,500.3

Table 2 Comparison of clamped plate frequencies, ζ 2
k Lx L y, ξ = 2/3

k Source

Galerkin (Nc = 400) Leissa FD (241 × 161)
1 40.51 40.51 40.05
2 62.56 62.58 61.93
3 99.19 98.25 98.00
10 208.0 207.9 205.5
20 359.6 – 355.32

It is seen that this expansion satisfies the clamped plate conditions, but not the differential equation. It is
possible to show however that one particular choice for the expansion coefficients ak

n will render the function Ψk

an eigenfunction for the problem. The Galerkin method describes how to build up stiffness and mass matrices
in order to calculate the coefficient vector ak

n and the corresponding eigenfrequency ζ 4
k . For the problem (5.2),

these matrices are

Ki j =

∫

S

[∆ Λi ∆ Λ j − L(Λi , Λ j )]dS, Stiffness Matrix (24.1)

Mi j =

∫

S

Λi Λ j dS, Mass Matrix (24.2)

where L(·, ·) is the von Kármán operator. Note that the integrals can be calculated analytically, because of the
simple form of the expansion function. Explicit forms of the integrals are presented in “Appendix A”. Then,

K a = ζ 4 Ma, (25)

which is the required eigenvalue problem that leads to the expansion coefficients and the eigenvalues.

3.1 Numerical results for the clamped plate

In this section, the results obtained by Galerkin’s method are compared to the classical results found in Leissa’s
tables [30]. A finite difference scheme (FD) developed by Bilbao [5] is as well used as a benchmark. A useful
parameter in plate problems is the aspect ratio, here defined as Lx/Ly and denoted by the symbol ξ . Assume
that two plates present the same aspect ratio: then, it is straightforward to show that the quantity ζ 2Lx L y is

constant for the two plates, where ζ is defined in Eq. (5.2) (thus making ζ 2Lx L y a nondimensional parameter).
As a first step, the rate of convergence of the eigenfrequencies is proposed in Table 1. The plate has an aspect
ratio of 2/3. Nc denotes the number of modes kept in the expansion (21). Note that convergence for the
first 100 eigenfrequencies is obtained up to the fifth significant digit when Nc = 400. This corresponds to a
calculation time of less than 10 s in MATLAB on a standard machine equipped with an Intel Core i5 CPU 650
@ 3.20 GHz, and a memory of 4 GB. In Table 2, the results obtained by Galerkin’s method are compared to
those found in Leissa as well as to the outcome of the FD scheme. For this, the plate parameters have been set
as: Lx = 0.4 m, L y = 0.6 m, ρ = 7, 860 kg/m3, ν = 0.3, h = 0.001 m, E = 2 × 1011 Pa. The FD scheme

employs 241 × 161 discretisation points, so that
∆x∆y

S
= 2.6 × 10−5. Even though Leissa’s book represents
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Table 3 Convergence of clamped plate frequencies, FD scheme, ζ 2
k Lx L y, ξ = 2/3

k Grid points

36 × 54 51 × 76 114 × 171 161 × 241 228 × 342 280 × 419
1 38.539 39.094 39.862 40.048 40.182 40.242
2 59.889 60.638 61.682 61.934 62.115 62.196
3 93.993 95.484 97.509 97.995 98.343 98.499
4 95.768 96.914 98.491 98.865 99.134 99.253
10 197.00 200.20 204.48 205.49 206.22 206.54

Table 4 Convergence of clamped plate frequencies, ζ 2
k Lx L y, ξ = 1 (square plate)

k Nc

25 100 144 255 400 484
1 35.986 35.985 35.985 35.985 35.985 35.985
2 73.398 73.394 73.394 73.394 73.394 73.394
3 73.398 73.394 73.394 73.394 73.394 73.394
4 108.24 108.22 108.22 108.22 108.22 108.22
5 131.60 131.58 131.58 131.58 131.58 131.58
20 376.42 371.37 371.35 371.35 371.34 371.34
50 – 805.89 805.42 805.35 805.34 805.34
100 – 2,217.0 1,588.7 1,546.2 1,546.1 1,546.1

Table 5 Comparison of clamped plate frequencies, ζ 2
k Lx L y, ξ = 1 (square plate)

k Source

Galerkin (Nc = 400) Leissa FD (161 × 161)
1 35.98 35.99 35.54
2 73.39 73.41 72.49
3 73.39 73.41 72.49
4 108.2 108.3 106.9
20 371.3 – 366.7

Fig. 1 First four modes for the clamped plate, ξ = 2/3

one of the main references in the area of plate eigenmodes and frequencies, its results are somehow outdated,
being about 40 years old. Thus, discrepancies between the presented Galerkin’s method and the numbers from
Leissa’s book are not at all concerning. On the other hand, it is known that FD schemes converge at a slower
rate than a pure modal approach. This is a consequence of the fact that FD schemes rely on discrete grid
meshes. Convergence for the first eigenfrequencies for the plate using the FD scheme is presented in Table
3. Note that the eigenfrequencies tend to converge to the same values as Galerkin’s method. However, the
calculation time in MATLAB for a mesh grid of 280 × 419 points is much slower (about 20 min). Table 4
presents the eigenfrequencies for the square plate, using Galerkin’s method. It is possible to appreciate the
same rate of convergence as for the previous case. Again, the results are compared with Leissa and to the FD
scheme outcome (161 × 161 grid points) in Table 5. Plots of some clamped plate eigenmodes are presented in
Fig. 1. These results show that the Galerkin method, with the carefully chosen expansion (23), is indeed a fast
converging strategy for the calculation of the eigenfrequencies, as it allows for precisely computing hundreds
of modes within seconds.
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4 The nonlinear coupling coefficients

4.1 Symmetry properties

In this section, symmetry properties for the coupling coefficients Γ that appear in Eq. (11) are presented. First,
it is obvious that

H i
p,q = H i

q,p, (26)

because of the symmetry of the operator L(·, ·). Secondly, integrating by parts, the integral in the definition of
E in Eq. (10) gives

‖Ψq‖‖Φn‖‖Φp‖En
p,q =

∮ [

ΦnΨq,yΦp,xx − 2ΦnΨq,xΦp,xy − Ψq

∂

∂y

(

ΦnΦp,xx

)

]

y · n dΩ +

+

∮ [

ΦnΨq,xΦp,yy + 2Ψq

∂

∂y

(

ΦnΦp,xy

)

− Ψq

∂

∂x

(

ΦnΦp,yy

)

]

x · n dΩ

+

∫

Ψq L(Φp, Φn)dS. (27)

It is easy to see that the selected boundary conditions make the surface integrals vanish, so that the following
property holds:

En
p,q = H

q
p,n . (28)

In this way, the tensor Γ may then be conveniently written as

Γ s
p,q,r =

NF
∑

n=1

Hn
p,q Hn

r,s

2ζ 4
n

. (29)

Note that the tensor H as defined in Eq. (10) is divided by the norms of the modes, so the value of Γ is
independent of the particular choice for the constants Sw, SF in Eqs. (3.2), (5.2). Basically, the symmetry
properties for Γ mean the following sets of indices will produce the same numerical value:

(s, p, q, r), (r, p, q, s), (s, q, p, r), (r, q, p, s), (q, r, s, p), (p, r, s, q), (q, s, r, p), (p, s, r, q). (30)

These symmetry properties can lead to large memory savings when the number of transverse and in-plane
modes is a few hundred.

4.2 Null coupling coefficients

For the sake of numerical computation, it would be interesting to know a priori which coupling coefficients are
null. In actual fact, empirical observations of the Γ tensor suggest that only a smaller fraction of coefficients
is not zero. As an example, consider Table 6 where the nonzero values for the coefficients Γ 1

5,q,r for a plate

with ξ = 2/3 were collected (with p, q = 1 . . . 10): the table presents only 24 nonzero coefficients out of
a total of 100. These coefficients measure the amount of interaction between the different transverse modes.
As a matter of fact, the modes can be classified according to the symmetry with respect to the x and y axis
where the origin is placed at the centre of the plate. Four families exist, and they are: doubly symmetric
(SS), antisymmetric-symmetric (AS and SA) and doubly antisymmetric (AA). For instance, the first mode is
a doubly symmetric mode because it presents one maximum at the centre of the plate, and is thus symmetric
with respect to the two orthogonal directions departing from the centre of the plate in the x and y directions,
whereas mode 5 is AA. The first sixteen modes for the case under study may be classified in the following
groups:

◦ SS: 1, 4, 8, 11, 12
◦ SA: 2, 7, 9, 14, 16
◦ AS: 3, 6, 13, 15
◦ AA: 5, 10
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Table 6 Nonzero Γ 1
5,q,r (Lx L y)

3, ξ = 2/3, for q = 1 : 10, r = 1 : 10

Value q r Modal shape groups Value q r Modal shape groups
21.36 1 5 SS AA SS AA 27.55 6 2 SS AA AS SA
−21.75 1 10 SS AA SS AA 150.98 6 7 SS AA AS SA
48.46 2 3 SS AA SA AS 36.52 6 9 SS AA AS SA
7.55 2 6 SS AA SA AS −72.47 7 3 SS AA SA AS
122.11 3 2 SS AA AS SA 119.51 7 6 SS AA SA AS
−169.47 3 7 SS AA AS SA 56.36 8 5 SS AA SS AA
−69.44 3 9 SS AA AS SA −64.89 8 10 SS AA SS AA
56.71 4 5 SS AA SS AA 10.19 9 3 SS AA SA AS
9.8 4 10 SS AA SS AA 65.63 9 6 SS AA SA AS
3.1 5 1 SS AA AA SS −51.96 10 1 SS AA AA SS
144.68 5 4 SS AA AA SS 97.76 10 4 SS AA AA SS
46.47 5 8 SS AA AA SS 30.75 10 8 SS AA AA SS

This list will become useful when interpreting the free vibration diagrams of the next section. Remarkably, the
number of indices of the Γ coefficients (four) matches the number of modal shape sets. Table 6 presents the
modal families to which the interacting modes belong; observation of alike tables permits to state the following
heuristic rule:

the indices (s, p, q, r) will give a nonzero value for Γ s
p,q,r if and only if modes s,p,q,r come all from

distinct modal shape groups or if they come from the same group two by two.

For example, the combinations (SS, SS, AS, SA) and (SS, SS, SS, AS) will definitely give a zero value; on the
other hand, the combinations (SS, SS, SS, SS), (SS, AA, SS, AA) and (SS, AS, SA, AA) will give a nonzero
value. A rigorous mathematical proof is not carried out as it involves a rather lengthy development which is
beyond the scope of the present work. However, it has been numerically checked for a large number of Γ ’s
involving a few hundred modes, providing an exhaustive verification of this rule.

This rule, in combination with the previous remarks on symmetry, can be used to speed up the calculation
of the Γ tensor (for example by pre-allocating the zero entries when using a sparse matrix description). In
some way, this observation relates to the already noted property of von Kármán shells [47]. There, the coupling
rules are actually more involved, but they can be somehow more directly proved mathematically.

4.3 A few words on the FD scheme

To validate the computational results for the Γ tensor, an FD scheme developed in [5] has been extensively
used. In this sense, the role of the discretised L operator in Eq. (11) is central. For two discrete functions α, β

defined over the plate grid, the form for the discrete counterpart l(α, β) has been selected as

l(α, β) = δxxαδyyβ + δyyαδxxβ − 2µx−µy−(δx+y+αδx+y+β). (31)

The δ’s are discrete derivative operators, and the µ’s are averaging operators, as follows from

δxx =
1

h2
x

(ex+ − 2 + ex−); δx+ =
1

hx

(ex+ − 1); µx− =
1

2
(ex− + 1), (32)

where ex+ (ex−) is the positive (negative) shifting operator, and hx is the step size along the x direction. Note
that this particular choice for the l operator is due to the fact that it produces an energy-conserving scheme, as
explained exhaustively in [5]. The eigenmodes are obtained by solving discrete counterparts of Eqs. (3.2) and
(5.2), and thus, a discrete double Laplacian is needed. At interior points, it can be approximated by

δ∆⊞δ∆⊞ = (δxx + δyy)(δxx + δyy) = ∆∆ + O(hx hy). (33)

Enforcing of boundary conditions (simply supported and clamped) is described in [6]. Once the modes are
known, one makes use of (31) to get the values of the coupling coefficients in Eq. (11).
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Table 7 Convergence of coupling coefficients, Γ k
k,k,k(Lx L y)

3, ξ = 2/3

k NF

100 144 225 400 484 625
1 20.033 20.034 20.034 20.034 20.034 20.034

20 7.5605 × 103 9.4893 × 103 9.4960 × 103 9.4970 × 103 9.4975 × 103 9.4977 × 103

50 1.3928 × 104 1.3929 × 104 1.3937 × 104 1.3937 × 104 1.3937 × 104 1.3937 × 104

100 1.4847 × 104 2.7360 × 104 1.2413 × 105 1.3334 × 105 2.2100 × 105 2.2108 × 105

Table 8 Convergence of coupling coefficients, FD scheme, Γ k
k,k,k(Lx L y)

3, ξ = 2/3, NF = 100

k Grid points

36 × 54 51 × 76 114 × 171 161 × 241 228 × 342 280 × 419
1 21.113 20.523 20.523 20.380 20.252 20.188

20 9.8904 × 103 9.7238 × 103 9.6364 × 103 9.5761 × 103 9.5218 × 103 9.4944 × 103

50 1.4542 × 104 1.4430 × 104 1.4319 × 104 1.4224 × 104 1.4124 × 104 1.4070 × 104

100 1.0864 × 104 8.2016 × 103 6.8281 × 103 5.9133 × 103 5.1224 × 103 4.7387 × 103

Table 9 Convergence of coupling coefficients, FD scheme, Γ k
k,k,k(Lx L y)

3, ξ = 2/3NF = 225

k Grid points

36 × 54 51 × 76 114 × 171 161 × 241 228 × 342 280 × 419
1 21.114 20.728 20.523 20.381 20.253 20.189

20 9.9634 × 103 9.7935 × 103 9.7035 × 103 9.6413 × 103 9.5851 × 103 9.5567 ×103

50 1.4552 × 104 1.4440 × 104 1.4329 × 104 1.4234 × 104 1.4134 × 104 1.4080 × 104

100 2.0268 × 105 2.0223 × 105 2.0227 × 105 2.0246 × 105 2.0271 × 105 2.0286 × 105

4.4 Numerical results

In this subsection, some numerical results are presented. It is somehow useful to note that the Γ ’s depend only
on the aspect ratio. In other words, the quantity

Γ s
p,q,r (Lx L y)

3 (34)

is constant for all the plates sharing the same aspect ratio. Table 7 presents a convergence test for a plate of
aspect ratio ξ = 2/3. The convergence in this case depends on two factors: the first is the amount of stress
function modes retained in the definition of Γ [NF in Eq. (11)]; the second is the accuracy on the Airy stress
function modes and frequencies [quantified by the number Nc in Eq. (21)]. For clarity, in the following Tables,
NF is always the same as Nc. It is seen that a four-digit convergence up to the Γ 100

100,100,100 coefficient is
obtained when NF = 484, and thus, the convergence rate for these coefficients is slower than that of the stress
functions eigenfrequencies alone. For the FD scheme, convergence depends on the number of modes retained
and also on the grid size. Thus, Tables 8 and 9 present some values for NF = 100 and NF = 200, respectively.
Note that, contrary to what happens for the eigenfrequencies, convergence for the coupling coefficients is from
above for FD and from below for the modal approach. It is also evident that a sufficiently large number of
stress modes has to be retained to calculate reasonable approximate values for the Γ ’s: failing to do so may
result in completely erroneous estimates (see for instance the last row of Table 8 compared to the last row of
Table 9).

5 Analysis of the periodic solutions

The nonlinear dynamics of the plate is now analysed in terms of periodic solutions. The periodic orbits of
the conservative system, also called the nonlinear normal modes (NNMs) [53], are first computed thanks to a
pseudo arc-length numerical continuation method implemented in the software AUTO [19]. The amplitude–
frequency relationships (i.e. the backbone curves) are exhibited for the first two modes up to 3–4 times the
thickness, displaying a complicated network of bifurcation branches generated by internal resonances and
modal couplings. Secondly, the forced responses of the damped plate are computed and their relationship with
the backbone curve illustrated.
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Fig. 2 Backbone curve (principal branch) convergence for mode 1: Nw = 6 (black), Nw = 8 (red), Nw = 10 (grey), Nw = 14
(green), Nw = 16 (blue), Nw = 18 (purple) (colour figure online)

5.1 Mode 1

5.1.1 Free vibrations

Figure 2 is an illustration of the backbone convergence, for mode 1. The backbone is the curve obtained by
plotting the maxima of the periodic solutions, in the case of undamped, unforced vibrations, which can be
stable (continuous lines) or unstable (dashed lines). Note that only the principal branch is represented, and
thus, the figure does not take into account the secondary branches departing from the bifurcation points. The
figure presents the six backbones obtained when Nw = 6, 8, 10, 14, 16, 18. It is evident that the period of
the vibration decreases as the amplitude increases, and thus, the curves bend to the right in the diagram;
this behaviour is known in the literature as hardening-type nonlinearity. The backbone curves obtained for
Nw = 14, 16, 18 are almost exactly superimposed showing the convergence of the main solution branch for
vibration amplitudes up to 4h. Note also that the cases Nw = 8, 10 are exactly superimposed because modes 9
and 10 do not belong to SS (the family of mode 1); hence, the shape of the backbone does not change, although
the stability intervals do not coincide. No stable solutions are detected by AUTO for vibrations larger than 4h:
this result is consistent with numerous experimental and numerical simulations of large amplitude vibrations
of plates; higher vibration amplitudes give way to unstable solutions, in quasiperiodic or turbulent regimes
[49,50]. The range of convergence of the backbone decreases when less modes Nw are considered; particularly
for the case of Nw = 6, the backbone displays significant differences from the converged solution. In addition,
unstable solutions in this case set in much earlier, leading to the conclusion that when Nw = 6 the backbone
curve depicts an unrealistic scenario for amplitudes larger than 1.8h. The principal branch for the cases
Nw = 14, Nw = 16, Nw = 18 undergoes an internal resonance around ω/ω1 ≈ 1.27. This is a resonance
between mode 1 and mode 11, and will be commented later. It is seen that the cases Nw = 16, Nw = 18 are
perfectly superimposed, and thus, a total number of Nw = 16 modes is sufficient for full convergence; hence,
this is the number of modes that will be considered in the remainder of the paper. Figure 3 shows the complete
resonance scenario for mode 1, and in other words, it presents the backbone and the bifurcated branches.
Figure 3 is basically a representation of the first NNM as a function of the frequency of vibration for the first
mode. For clarity, only the most significant modal coordinates are represented. Branches are denoted by the
symbol Bi

k where the index i refers to the branch number and k is the coordinate involved. Thus, B1 is the main

(backbone) branch, and B2, B3, . . . are secondary branches featuring a sudden loss of energy of q1 in favour of
other nonlinearly resonant modes. The appearance of internal resonance tongues due to the exchange of energy
between modes at nonlinear frequencies of vibration has been previously observed for systems involving a
few degrees of freedom, or for continuous systems with local nonlinearities [8,24,27,41]; in turn, these works
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(a)
(b)

(c)

(d)

Fig. 3 a Free vibration diagram for mode 1, Nw = 16. b– d Bifurcated branches and internal resonances (colour figure online)

show that NNM branches may fold in the presence of internal resonances. In this paper, internal resonance
foldings in the NNM branches are reported for a continuous structure with distributed geometric nonlinearity.
The bifurcated branches are composed mainly by unstable states along intricate paths and are difficult to
compute numerically when using continuation. Note, however, that the free NNM is a physical abstraction:
when damping and forcing are introduced in the system, most of the complicated details disappear, as it will
be shown in the next subsection.

Observing B1 before the first bifurcation point, it is easily seen that modes 4 (B1
4, green), 8 (B1

8, light green),

11 (B1
11, magenta) and 12 (not shown) bear a relatively important contribution. Here, a typical nonresonant

coupling is at hand. As it can be deduced from Sect. 4.2, the only nonvanishing coefficients Γ
p

1,1,1 with
p = 1, . . . , 16 are obtained for p = 1, 4, 8, 11, 12. These coefficients are of prime importance as they give
rise to a term of the form Γ

p
1,1,1q3

1 in the equation for qp. Thus, when q1 is large, modes 4,8,11 and 12 acquire

nonnegligible energy through the nonresonant coupling terms Γ
p

1,1,1, which act on the modal equations as
forcing terms. These coefficients have been referred to as invariant-breaking terms because they have the
property of breaking the invariance of the linear normal modes through modal coupling [51,52]. The coupling
in these cases is nonresonant because no commensurability relationship exists between the frequencies of
vibration.

The first bifurcated branch is B2 and develops along a very narrow frequency interval between 1.2435 <

ω/ω1 < 1.248. It is a very small branch, and it is visible in Fig.3b (B2
1) and Fig.3d (B2

2). The modes involved
in this bifurcation are 1 and 2. It is evident that mode 2, so far quiescent, is activated by an internal resonance
with mode 1. The order of the internal resonance can be obtained from a temporal simulation of the system
comprising Nw = 16 modes, fed at the input by the maximum displacements and velocities for all the modal
coordinates along B2. In this work, a fourth-order Runge–Kutta scheme is used for the time integration, giving
at the output the oscillation in time for all the modes in the periodic regime. Figure 4a represents modes 1 and
2 in the time domain on the point at ω/ω1 = 1.246 along the branch B2. The figure shows that the period
of vibration for mode 2 is exactly half the period of mode 1, resulting in a 1:2 internal resonance. Note that
starting the simulation on any other point of the same branch will lead to the same resonance ratio.

In the next section, it will be seen that the bifurcation giving rise to B2 is key to the dynamics of the driven
damped oscillations: this branch tends to occupy larger portions of the phase space as the forcing and damping
terms increase, modifying the local structure of the invariant NNM manifold.

Following the principal branch in Fig. 3b, one encounters a second bifurcation giving rise to B3. This is
an interesting branch where again quiescent modes are activated by internal resonances. Figure 3d reveals
that these are modes 2 (B3

2, red), 14 (B3
14, grey) and 16 (B3

16, black). Note that the branch B3 emerges at
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(b) (c)(a)

Fig. 4 a Modes 1 (blue) and 2 (red) along B2 displaying 1:2 internal resonance. b Modes 1 (blue) and 2 (red) along B3 displaying

1:2 internal resonance. c Modes 1 (blue), 14 (grey) and 16 (black) along B3 displaying 1:10 internal resonance (colour figure
online)

ω/ω1 = 1.285 and first develops to the left towards decreasing frequencies. The branch is characterised at
first by a strong coupling between modes 1 and 2 (visible in Fig. 3d) and then by a coupling amongst modes
1,14 and 16. The order of the resonance can again be extrapolated from a Runge–Kutta time-domain scheme
fed with the AUTO output. This gives Fig. 4b, c where it is seen that modes 1 and 2 undergo a second 1:2
internal resonance, whereas modes 1–14 and 1–16 display a 1:10 internal resonance. Thus, the dynamics of
this branch is again dominated by even-order internal resonances. The last branch is B4. This is an improper
labelling because this branch is actually the principal branch undergoing an internal resonance with mode 11
(B4

11, magenta). This branch is almost entirely unstable, and the Runge–Kutta time-domain simulation does not
return stable periodic solutions. There is no doubt, however, that the branch is activated by internal resonance
between modes 1 and 11, given the rapid growth of the latter in the bifurcation diagram at the expense of mode
1.

The analysis of the first NNM revealed some important aspects of the nonlinear system: in particular, it was
shown that the bifurcated branches are generated by even-order internal resonances which, in turn, break the
symmetry of the cubic nonlinearity possessed by the system. This symmetry-breaking bifurcation has already
been observed for the simple Duffing equation [32,40], as well as in systems with material nonlinearity [36].
Physically speaking, the most important properties returned by the analysis of the free NNM are as follows:
(i) the loss of stability of the periodic solutions for amplitudes above 3h; (ii) the pitchfork bifurcation giving
rise to B2 presenting a strong coupling between modes 1 and 2. The next subsection will treat in some detail
a few examples of forced-damped vibrations, and it will be seen how the shape of the NNM gets modified by
the damping and forcing terms.

5.1.2 Forced-damped vibrations

In this section, forced-damped vibrations are considered. The plate is forced with a sinusoid of maximum
amplitude f and frequency Ω [see Eq. (9)] varied around the eigenfrequency of the first mode, ω1. In turn,
damping and forcing terms modify the shape of the invariant manifold corresponding to the NNM of the
previous section. Internal resonances change too: some are basically unseen by the modified NNM, whereas
others play a major role.

The first case under study presents a forcing amplitude of f = 0.17 N, and a damping coefficient χi = 0.001
(same for all modes). The result is pictured in Fig. 5. In the figure, the forced branches are represented with
the usual colouring scheme (blue for mode 1 and red for mode 2), whereas the black lines are the branches
from the Hamiltonian dynamics. The point labelled G in Fig. 5 corresponds to a pitchfork symmetry-breaking
bifurcation, driven by the underlying Hamiltonian dynamics and by the existence of the 1:2 internal resonance.
The main branch becomes unstable in favour of stable periodic orbits where both modes 1 and 2 are activated in
a 1:2 internal resonance. Hence, branch B2 reveals its importance as it has a major effect in the damped-driven
case. One can also notice that, for this small amount of damping, the turning point J is located just before the
resonant tongue along the original backbone curve.

In order to understand more deeply the role of the branch B2, two more cases of interest are portrayed
in Figs. 6 and 7. Here, f = 1.36 N for both cases, and χi = 0.005 for Fig. 6 and 0.001 for Fig. 7. The first
important remark is the location of the pitchfork bifurcation along the main branch: q1/h = 1.899 for Fig. 6 and
q1/h = 1.824 for Fig. 7. It is seen that the invariant manifold of the Hamiltonian dynamics is largely affected
by the damping and forcing terms: the bifurcation G is located at very different points in the phase space
when comparing free and forced-damped vibrations. The 1:2 internal resonance giving rise to B2 becomes
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Fig. 5 Forced response for mode 1 with f = 0.17 N, χ = 0.001. G: pitchfork bifurcation point leading to the coupled solution;
J turning point. Mode 1: blue, mode 2: red (colour figure online)

Fig. 6 Forced response for mode 1 with f = 1.36 N, χ = 0.005. G: pitchfork bifurcation point leading to the coupled solution;
J turning point. Mode 1: blue, mode 2: red (colour figure online)

in the latter case a dominant part of the dynamics, taking up a large portion of the phase space composed
mainly of stable solutions. As a consequence, stable solutions are found on B2 at amplitudes larger then 3h.
In addition, there is no trace of the other bifurcations giving rise to B3, B4 in the Hamiltonian dynamics.
This observation leads to the conclusion that the free and forced-damped analyses are complementary: on
one hand, it is not straightforward to understand which bifurcations are key to the forced-damped vibrations
when looking solely at the Hamiltonian dynamics; on the other hand, the forced-damped system is more easily
interpreted by making use of the free vibrations diagrams. Hence, a complete scenario for the forced-damped
vibrations cannot be obtained if a preliminary analysis of free vibrations is disregarded.
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Fig. 7 Forced response for mode 1 with f = 1.36 N, χ = 0.001. G: pitchfork bifurcation point leading to the coupled solution;
J turning point. Mode 1: blue, mode 2: red (colour figure online)

Fig. 8 Backbone for mode 2 obtained when Nw = 16. Modes 7 (pink) and 9 (dark blue) are activated by the nonresonant coupling
within the SA family; mode 5 (brown) from the AA family is activated by 1:2 internal resonance (see inset) (colour figure online)

5.2 Mode 2

5.2.1 Free vibrations

Figure 8 shows the second NNM for Nw = 16. Convergence in this case is not shown for the sake of brevity;
note, however, that the convergence study gave results comparable to those of mode 1. Thus, the same model
including Nw=16 modes is kept for the remainder of the study. Once again, one can notice that no stable
solutions are found beyond a certain amplitude limit, which is numerically found at 1.5h for mode 2. Actually,
the principal branch loses its stability at the appearance of the coupled branch. As for mode 1, some modes are
activated by nonresonant coupling, and these are the modes belonging to the same family as mode 2 (SA): the
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(a) (b) (c)

Fig. 9 Examples of forced-damped vibrations around the NNM for mode 2. a f = 1.2 N, χ = 0.001; b f = 2.0 N, χ = 0.001;
c f = 3.2 N, χ = 0.01. Mode 2: red, mode 5: brown (colour figure online)

Figure shows for clarity only modes 7 (B1
7, pink) and 9 (B1

9, dark blue). The most salient feature of the dynamics

is the internal resonance between modes 2 and 5: a time integration was performed on B2 at ω/ω1 = 2.0515,
leading to the solution visible in the inset of Fig. 8 showing a 1:2 internal resonance. Interestingly, this branch
is almost entirely unstable, except on the interval 2.051 ≤ ω/ω1 ≤ 2.052. As for mode 1, the Hamiltonian
manifold will be modified when damping and forcing are introduced in the system.

5.2.2 Forced-damped vibrations

Examples of forced-damped solution are presented in Fig. 9. The cases (a) and (b) present the same damping
coefficient, χi = 0.001, and the forcing values are, respectively, f = 1.2 N, f = 2.0 N. Both forcing values
are sufficient to reach amplitudes high enough to detect the internal resonance with mode 5. For case (a), the
bifurcated branch remains almost completely unstable, as for the Hamiltonian dynamics. When the forcing is
high enough, however, stable solutions appear along the interval 2.2 ≤ ω/ω1 ≤ 2.3. As a consequence, mode
2 possesses a secondary branch of stable periodic orbits of amplitude larger than 1.5h, which was seen to be
the limit of stability for the Hamiltonian manifold. As for mode 1, it is seen that the introduction of forcing and
damping may lead to extended stable solutions on the coupled branches. Another case of interest is portrayed
in Fig. 9c. Here, the maximum forcing is f = 3.2 N, and the damping coefficient is χi = 0.01. In this case,
the damping effects are so evident that the turning point is located away from the backbone. Distortion is a
typical effect of damping: the forced response does not fit tightly along the backbone, and the turning point
moves away from it.

In turn, the analysis of the forced responses for mode 1 and 2 revealed some interesting aspects of the global
dynamics: (i) symmetry-breaking resonances are common and key to the dynamics of the dynamical response;
(ii) stable solutions on the coupled branches may reach higher amplitudes than the Hamiltonian manifold, for
particular combinations of damping and forcing factors.

6 Conclusions

The nonlinear dynamics of rectangular plates has been investigated. A robust numerical method has been
developed to obtain accurate modal solutions for a very large number of modes. In this sense, a fast converging
solution strategy has been derived for the calculation of the eigenmodes of a fully clamped plate (needed
here to solve for the Airy stress function of a plate in a nonlinear regime). Formal symmetry properties and
coupling rules have been illustrated to allow large computational and memory savings when calculating the
coupling coefficients Γ ’s. Reference values for some of these coefficients, previously unavailable in the case
of a rectangular geometry, have been presented.

Free and forced vibrations have then been taken under consideration for the first two modes. For the
first time, the NNM branches of solution (conservative case) have been drawn out to very large amplitudes,
showing the existence of internal resonance branches. An important feature, the nonexistence of periodic
solutions beyond some vibration amplitude (4h for mode 1, 1.8h for mode 2) has been found. A thorough
comparison of the Hamiltonian dynamics with the forced-damped (observable) dynamics has been derived, in
order to highlight: (i) the necessity of a preliminary analysis of the free vibrations, (ii) the main differences one



230 M. Ducceschi et al.

can expect between the NNMs of the conservative systems and the observable periodic orbits of the forced-
damped system. Simple features such as the shift of the turning point from the backbone for large values of
the damping have been found. More interestingly, the importance of certain internal resonance tongues (those
with the simpler ratio) has been underlined, whereas other are mostly undetected in the forced case. Finally, it
has been found that some coupled branches may override the amplitude limit of existence of periodic solutions
predicted by the backbone curve.

Even though the results presented here involve at most 16 modes, the numerical scheme developed is
able to consider a few hundreds of them interacting together. The results shown here have been necessary to
validate the model, which will be used to undertake further study of more involved dynamical problems (i.e.

wave turbulence or sound synthesis of damped impacted plates for the reproduction of gong-like sounds).

Appendix A: Matrices for the clamped plate problem

To set up the eigenvalue problem, Eq. (25), one may proceed as follows. First, it is necessary to define the size
of the square matrices Ki j , Mi j . Suppose this size is A2 × A2 (where A is an integer). Then, the indices n1, n2

for the expansion function (22) range from 0 to A − 1. In this way, the total number of eigenvalues calculated
will be A2. Note that all the quantities that appear in the definition of the matrices are quadratic, so one needs
really four indices to define the i j entry in each matrix. Suppose these indices are (m, n) and (p, q). Then,

K (i, j) = K (mn, pq) =

Lx
∫

0

X ′′
m(x)X ′′

p(x)dx

L y
∫

0

Yn(y)Yq(y)dy +

Lx
∫

0

Xm(x)X p(x)dx

L y
∫

0

Y ′′
n (y)Y ′′

q (y)dy

+2

Lx
∫

0

X ′
m(x)X ′

p(x)dx

L y
∫

0

Y ′
n(y)Y ′

q(y)dy,

M(i, j) = M(mn, pq) =

Lx
∫

0

Xm(x)X p(x)dx

L y
∫

0

Yn(y)Yq(y)dy.

The integrals are

Lx
∫

0

X ′′
m(x)X ′′

p(x)dx =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

720/L3
x ; if m = p = 0

(π4m4 − 672(−1)m − 768)/(2L3
x ); if m = p 	= 0

0 if m or p = 0 and m 	= p

−24(7(−1)m + 7(−1)p + 8(−1)m(−1)p + 8)/L3
x ; otherwise,

Lx
∫

0

Xm(x)X p(x)dx =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

10Lx/7; if m = p = 0

67Lx/70 − (−1)m Lx/35 − 768Lx/(π
4m4) − 672(−1)m Lx/(π

4m4); if m = p 	= 0

3Lx ((−1)p + 1)(π4 p4 − 1680))/(14π4 p4); if m = 0 and p 	= 0

3Lx ((−1)m + 1)(π4m4 − 1680))/(14π4m4); if p = 0 and m 	= 0

−(Lx (11760(−1)m + 11760(−1)p − 16π4m4 + 13440(−1)m(−1)p+

(−1)mπ4m4 + (−1)pπ4m4 − 16(−1)m(−1)pπ4m4 + 13440))/

(70π4m4) − (Lx (13440m4 + 11760(−1)mm4 + 11760(−1)pm4

+13440(−1)m(−1)pm4))/(70π4m4 p4); otherwise,



Nonlinear dynamics of rectangular plates 231

Lx
∫

0

X ′
m(x)X ′

p(x)dx =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

120/(7Lx ); if m = p = 0

(768π2m2 − 47040(−1)m + 35π4m4 + 432(−1)mπ2m2 − 53760)/(70Lxπ
2m2); if m = p 	= 0

(60((−1)p + 1)(π2 p2 − 42))/(7Lxπ
2 p2); if m = 0 and p 	= 0

(60((−1)m + 1)(π2m2 − 42))/(7Lxπ
2m2); if p = 0 and m 	= 0

192/(35Lx )(1 + (−1)m(−1)p) − 192/(m2 p2Lxπ
2)((p2 + m2)(1 + (−1)m(−1)p))

−168/(m2 p2Lxπ
2)((p2 + m2)((−1)m + (−1)p))

+108/(35Lx )((−1)m + (−1)p); otherwise,

and similarly for the integrals involving the functions Y .
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CHAPTER 5

Plates in a Strongly Nonlinear Regime: Wave Turbulence

This chapter corresponds to a paper published on Physica D [28] and dealing with the aspects of

Wave Turbulence in elastic plates. Section 2 gives the dynamical equations of von Kármán plates and

the Finite Difference scheme to solve them, and thus it has been treated in great detail in Chapters

2 and 3. Section 4 is the core of the article, presenting the results and scaling properties of the

turbulent plate. Bibliographic references as well as appendices are included in this chapter, and not

at the end of the manuscript.
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a b s t r a c t

The dynamics of the local kinetic energy spectrum of an elastic plate vibrating in a wave turbulence
(WT) regime is investigated with a finite difference, energy-conserving scheme. The numerical method
allows the simulation of pointwise forcing together with realistic boundary conditions, a set-up which
is close to experimental conditions. In the absence of damping, the framework of non-stationary wave
turbulence is used. Numerical simulations show the presence of a front propagating to high frequencies,
leaving a steady spectrum in its wake. Self-similar dynamics of the spectra are found with and without
periodic external forcing. For the periodic forcing, themean injected power is found to be constant, and the
frequency at the cascade front evolves linearlywith time resulting in a increase of the total energy. For the
free turbulence, the energy contained in the cascade remains constantwhile the frequency front increases
as t1/3. These self-similar solutions are found to be in accordance with the kinetic equation derived
from the von Kármán plate equations. The effect of the pointwise forcing is observable and introduces a
steeper slope at low frequencies, as compared to the unforced case. The presence of a realistic geometric
imperfection of the plate is found to have no effect on the global properties of the spectra dynamics. The
steeper slope brought by the external forcing is shown to be still observable in amore realistic case where
damping is added.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wave Turbulence (WT) describes a system of waves interact-
ing nonlinearly away from thermodynamical equilibrium [1,2]. Al-
though the system under study is composed of waves only, the
term ‘‘turbulence’’ is used here in analogy with hydrodynamic tur-
bulence, where the energy of the system is transferred through
scales (referred to as a cascade) resulting in a large bandwidth en-
ergy spectrum. A particular property is that, for WT systems, the
form of the spectrum can be derived analytically [3] and not just

∗ Corresponding author. Tel.: +33 1 69 31 97 34; fax: +33 1 69 31 99 97.
E-mail address: cyril.touze@ensta-paristech.fr (C. Touzé).

in terms of dimensional analysis as for the Kolmogorov 41 theory
of hydrodynamics turbulence [4]. Using the assumption of weak
nonlinearity, and an appropriate separation of timescales, a natural
closure arises leading to an analytical expression for the equation
for the second ordermoment (e.g. the kinetic energy spectrum). So-
lutions to this equation lead to two physically different scenarios:
the first one represents the system at equilibrium, where the total
energy of the system is equally spread among all the Fourier com-
ponents of the system (knownas themodes), and thus correspond-
ing to a Rayleigh–Jeans type of spectrum. The second scenario is
out-of-equilibrium and leads to the Kolmogorov–Zakharov spec-
trum that describes a flux of energy from the injection scale, where
energy is input in the system, to the dissipation scale such as in
hydrodynamics turbulence. In the latter scenario the modes re-

http://dx.doi.org/10.1016/j.physd.2014.04.008
0167-2789/© 2014 Elsevier B.V. All rights reserved.
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ceive and give energy to adjacent modes, thus creating a cas-
cade of energy through scales. WT formalism has been applied
to many systems in a variety of contexts, ranging from quantum-
mechanical to astrophysical systems, and includes many systems
encountered in the ordinary world. An exhaustive list may be
found in [1]; here some examples are recalled: capillary [5,6]
and surface gravity waves [7–9], Alfvén waves [10,11], and Kelvin
waves [12,13].

Flexural waves produced by large amplitude vibrations of
elastic plates have been studied within the framework of the
wave turbulence theory [14] applied to the von Kármán equa-
tion [15,16] for the transverse displacement w. The analytical Kol-
mogorov–Zakharov spectrum is then given by

Pv(f ) =
Ch

(1 − ν2)2/3
ε1/3
c log1/3



f ⋆
c

f



; (1)

where εc is the constant flux of energy transferred through scales,
Pv refers to the power spectrum of the transverse velocity v = ẇ,
h is the thickness of the plate, ν Poisson’s ratio of the material, and
C a constant. Because the theory is fully inertial, f ⋆

c is the frequency
at which energy is removed from the system. In experiments, this
is ensured by the damping of the plate. At first order the
spectrum is flat, but with a log-correction in the inertial range of
frequencies. The WT theoretical result has been compared to ex-
periments [17,18], showing discrepancies regarding the shape and
scaling of the spectrumwith the energy flux. Thus, recentwork has
focused on the investigation of thepossible causes for suchdiscrep-
ancies. Experimentally, thewave-structure and dispersion relation
was checked in [18], leading to the conclusion that the nonlinear
vibrations of a plate are indeed due to a set of waves following the
theoretical (linear) dispersion relation. The correct separation of
timescales, necessary assumption for the WT theory, was verified
in [19]. A first discrepancy effectwas observed in [20], showing that
the local forcing of the shaker is responsible for a steeper slope in
the supposed inertial range of the energy spectra. More recently,
damping has also been shown to be the cause for a steeper slope of
the spectrum, indicating that the inertial range might not exist for
thin plates used in experiments, rendering then meaningless any
comparison with the WT theory [21]. From the numerical stand-
point, it is worth mentioning that all the numerical methods used
so far are spectral schemes [14,22,21,23–25]. Hence the forcing is
in the Fourier space, a feature that is different from a pointwise ex-
citation used in experimental conditions. All available numerical
results recover the KZ spectrum of Eq. (1) when the damping is lo-
calized at high frequency only. However, when realistic damping is
added, see e.g. [21,23], the same conclusions as for the experiment
are met.

Other sources of discrepancies have not been addressed yet,
such as the finite size effects or the possibility of three wave in-
teractions (quadratic nonlinearities) in real plates. Because of the
w → −w symmetry of the von Kármán equation, these non-
linearities are not taken into account in [14]. Indeed, geometrical
imperfections are unavoidable in real plates, and they are known
to break this symmetry and to produce quadratic nonlinearities
[26,27]. In particular, it has been shown in [28,29] that imperfec-
tions play an important role in the transition scenario to turbulence
and favor instabilities and the appearance of quasiperiodic vibra-
tions.

The numericalmethod used in this work relies on a finite differ-
ence, time domain, energy-conserving scheme [30,29]. The main
advantages are that: (i) the time-stepping integrationmethod con-
serves energy up to machine accuracy, so that essential properties
of the underlying continuous Hamiltonian systems are preserved
by the discretization [31]; (ii) the external forcing is pointwise in
space just as in the real experiments; (iii) realistic boundary con-
ditions can be implemented instead of using periodic boundary

conditions as considered by previous numerical investigations us-
ing spectral methods [14,22,25].

The aim of this article is to investigate numerically wave turbu-
lence produced by the von Kármán plate equations. With a numer-
ical scheme close to experimental conditions, unavoidable effects
in real experiments such as pointwise forcing and geometric im-
perfections can be accounted for. In order to properly distinguish
the different effects, most of the presented results are obtained in
the absence of damping, where the framework of non-stationary
wave turbulence should be used [32,33]. The theory predicts self-
similar dynamics of the spectra with a front propagating to higher
frequencies. Such propagation has been observed for surface grav-
ity waves in experiments [34]. On the contrary, capillary turbu-
lence [35,36] exhibits a decay that begins from the high frequency
endof the spectral range. The discrepancywith the self-similar the-
ory ofwave turbulence is ascribed to thepresence of finite damping
at all frequencies of the wave system [35,37].

The article is organized as follows: the governing equations
together with the numerical approach are described in Section 2.
Section 3 presents the data analysis tools used to study the spectral
dynamics. The main results are given in Section 4. Periodically
forced turbulence for a perfect plate is first considered. A self-
similar propagation of a steep front towards the high frequencies,
leaving in its wake a steady spectrum, is observed. The frequency
of the front is found to evolve linearly with time. The presence
of realistic geometric imperfections is then taken into account
and shown to have no influence on the spectral dynamics. In
Section 4.2, the case of a free, undamped turbulence is exhibited.
In that case, self-similar dynamics of the spectra are also observed,
but now the front evolves with time as t1/3. Self-similar solutions
derived from the kinetic equation are found to display the same
dependences, thus validating the numerical results that give in
addition the shape of the self-similar function. The pointwise
forcing is found to influence the shape of the universal spectrum
left in the wake of the front, with a steeper slope for the forced
case. Finally, the effect of the pointwise forcing, underlined in the
undamped cases, is confirmed in Section 4.3, where a decaying
turbulence with a simple frequency-independent damping law is
addressed. Discussion and concluding remarks appear in Section 5.

2. Dynamical equations

2.1. Continuous time and space equations

The system under study is a rectangular elastic plate of thick-
ness h, dimensions Lx, Ly, volume density ρ, Poisson’s ratio ν and

Young’s modulus E. Its flexural rigidity is defined as D = Eh3

12(1−ν2)
.

The dynamics of weakly nonlinear waves for the transverse dis-
placement w(x, t) can be described by the von Kármán equa-
tions [15,16]. The general case of an imperfect plate is here
considered. If w0(x) denotes the initial (static) imperfection, then
the equations of motion read [26,38,27]

D11w + ρhẅ = L(w + w0, F) + F (x, t) − R(ẇ, t), (2a)

11F = −
Eh

2
L(w + 2w0, w), (2b)

where ∆ is the Laplacian operator, 1a(x) = a,xx + a,yy, and L(·, ·)
is the bilinear symmetric von Kármán operator, L(a(x), b(x)) =
a,xx b,yy + a,yy b,xx − 2a,xy b,xy. F(x, t) is an auxiliary function called
the Airy stress function which encapsulates the behavior of the
plate in the in-plane direction, R(x, t) is a loss factor of some kind
which will be specified shortly and F (x, t) is the external excita-
tion load. In this work, the material parameters are chosen to cor-
respond to a steel plate; thus E = 2 × 1011 Pa, ρ = 7860 kg/m3,
ν = 0.3. The other geometrical and physical parameters will be
reported case by case.
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The dynamics of the plate is not complete until the boundary
conditions are not selected. Physical boundary conditions can be
derived by conducting an energy analysis based on the Lagrangian
of the system [16,39,40]. For this work, the particular case of a
transversely simply supported plate with movable in-plane edges
is considered. In turn, the following conditions hold along the
boundary ∂S

w = w,nn = 0 ∀x ∈ ∂S, (3a)

F = F,n = 0 ∀x ∈ ∂S, (3b)

where n is the direction normal to the boundary. This is an im-
portant difference with respect to previously presented numerical
simulations, where periodic boundary conditions were employed.

The term R(x, t) represents losses. An artificial damping law
may be used,

R(ẇ, t) = 2σ0ẇ, (4)

that dissipates energy at equal rates at all scales. In the context
of time-domain simulations of damped plates, the problem of an
accurate representation of the damping law with an ad-hoc time
operator is complex and has led numerous authors to various
laws, the implementation of which still remains a numerical
challenge; see e.g. [41]. Here the simplest time-domain operator
has been chosen allowing us to explore numerically its effect on
the dynamics of the cascade. The reader should however keep in
mind that it is ad-hoc and does not correspond to a real case.

The forcing is pointwise and of the form:

F (x, t) = δ(x − xF )A(t) sin(2π fpt). (5)

The injection point has been chosen at xF = (0.42Lx, 0.57Ly) for
all the simulations. The forcing frequency fp is selected to be close
to the fourth eigenfrequency of the system, in order to activate the
cascade more easily [29]. A(t) is chosen to be:

A(t) =



A0 t/t0 for 0 ≤ t ≤ t0;
A0 for t0 ≤ t ≤ t1;
0 for t ≥ t1.

(6)

In the above definition, t0 corresponds to the ramp time: the
forcing ramps linearly from zero up to A0 in t0 seconds. Then,
the forcing remains constant at A0 for t1 − t0 seconds, where t1
corresponds to the total length of the simulation in the case of
periodic forcing.

The injected power is defined in this work as

ε(t) = F (x, t) · ẇ(xp, t)/ρS. (7)

After division by the factor ρS, where S = LxLy is the area of the
plate, the injected power has the dimension of a velocity cubed.

2.2. Finite difference time domain scheme

In this section the numerical solution to system (2) together
with boundary conditions (3) is presented. Although numerical
simulations of von Kármán plates in the context of WT have been
successfully developed in previous studies [14,22,25,23,24], here
a time domain simulation in physical space is presented. Time
and space are discretized so that the continuous variables (x, y, t)
are approximated by their discrete counterparts (lδx,mδy, nδt),
where (l,m, n) are integer indices and (δx, δy, δt) are the steps.
Boundedness of the domain implies that (l,m) ∈ [0,Nx] × [0,Ny]
so that the grid size is given by (Nx +1)× (Ny +1). The continuous
variablesw(x, t), F(x, t) are then approximated bywn

l,m, F
n
l,m at the

discrete time n for the grid point (l,m). Time shifting operators are
introduced as

et+wn
l,m = wn+1

l,m , et−wn
l,m = wn−1

l,m . (8)

Time derivatives can then be approximated by

δt· =
1

2ht

(et+ − et−), δt+ =
1

ht

(et+ − 1),

δt− =
1

ht

(1 − et+), δtt = δt+δt−. (9)

Time averaging operators are introduced as

µt+ =
1

2
(et+ + 1), µt− =

1

2
(1 + et−),

µt· =
1

2
(et+ + et−), µtt = µt+µt−. (10)

Similar definitions hold for the space operators. Hence, the
Laplacian ∆ and the double Laplacian ∆∆ are given by

δ∆ = δxx + δyy, δ∆∆ = δ∆δ∆. (11)

The von Kármán operator at interior points L(w, F) can then be
discretized as

l(w, F) = δxxwδyyF + δyywδxxF

− 2µx−µy−(δx+y+wδx+y+F). (12)

Thus the discrete counterpart of (2) is

Dδ∆∆w + ρhδttw = l(w + w0, µt·F) + Pn
l,m − Rn

l,m; (13a)

µt−Dδ∆∆F = −
Eh

2
l(et−(w + 2w0), w). (13b)

The damping terms are

r0(l,m, n) = 2σ0δt·w
n
l,m; r1(l,m, n) = −2σ1δ∆wn

l,m. (14)

When σ0 = 0, the scheme is energy conserving, where the
discrete energy is positive definite and yields a stability condition,
as proved in [30,42]. Implementation of boundary conditions is
explained thoroughly in [42].

3. Data analysis

The work is focused on the turbulent response at one point of
the plate chosen as (0.3Lx, 0.2Ly). The kinetic energy spectrum is
given by the velocity power spectrum which is calculated starting
fromavelocity discrete-time series. For the remainder of the paper,
the symbol vn will identify the discrete velocity at the output point,
at the time t = nδt . Spectra analyses are performed on time
windows of duration τ . The discrete-time velocity power spectrum
is then defined as:

Pv(f ) =
(δt)2

τ











N


n=1

vne
−i2π fn











2

(15)

where N = τ/δt is the total number of samples within the time
window. For the typical case of a thickness h = 1 mm and surface
0.4×0.6m2, the sampling frequency is chosen as 1/δt = 400 kHz
and a time window of τ = 0.05 s is selected for the analysis of
the spectra. In order to obtain a better convergence of the shape of
the spectra, a mean is taken over M = 3 consecutive spectra; in
other words, the symbol ⟨Pv(f )⟩ will identify the mean take over 3
spectra covering a total timewindow T = Mτ . When the thickness
of the plate changes, timewindow and sampling frequency change
accordingly. So, for instance, for a thickness h = 0.1 mm, the time
window is multiplied by a factor of 10, τ = 0.5 s and the sampling
frequency is divided by a factor of 10, 1/δt = 40 kHz. The number
M remains instead fixed. In the following, the brackets ⟨· · ·⟩ will
denote an averaging on T which will generally depends on the
time.
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Fig. 1. (a) Displacement field in the turbulent regime for an undamped, perfectly flat plate of thickness h = 0.1 mm and dimensions Lx × Ly = 0.4 × 0.6 m2 .
(b) Corresponding velocity field.

Table 1

Case studies.

A0 (N) h (mm) fp (Hz) S Grid points

Case 1 10 1 75 0.4 × 0.6 102 × 153
Case 2 20 1 75 0.4 × 0.6 102 × 153
Case 3 30 1 75 0.4 × 0.6 102 × 153
Case 4 45 1 75 0.4 × 0.6 102 × 153
Case 5 70 1 75 0.4 × 0.6 102 × 153
Case 6 2.5 0.5 37.5 0.4 × 0.6 102 × 153
Case 7 5 0.5 37.5 0.4 × 0.6 102 × 153
Case 8 0.75 0.4 30 0.4 × 0.6 102 × 153
Case 9 1.5 0.4 30 0.4 × 0.6 102 × 153
Case 10 0.1 0.2 15 0.4 × 0.6 102 × 153
Case 11 0.02 0.1 7.5 0.4 × 0.6 144 × 216
Case 12 0.005 0.1 7.5 0.4 × 0.6 102 × 153
Case 13 1 0.5 20 1 × 2 114 × 227
Case 14 1.75 0.5 20 1 × 2 114 × 227
Case 15 2.5 0.5 20 1 × 2 114 × 227

The analysis for the injected power follows the same averaging
rules. The injected power discrete time series is denoted by εn,
from which the mean ⟨ε⟩ and the variance ⟨ε2⟩ are calculated. The
temporal average ε̄ is defined as the mean over the total data.

A characteristic frequency fc for the velocity power spectrum is
here introduced as

fc =



⟨Pv(f )⟩ f df


⟨Pv(f )⟩ df
, (16)

with Pv(fc) also defining a characteristic spectral amplitude.
Note that fc should not be confused with the theoretical cut-off
frequency f ⋆

c defined in Eq. (1). The characteristic frequency fc will
be used in the next section in order to quantify the self-similar
dynamics of the spectra in the non-stationary cases.

4. Numerical results

This section presents the results obtained for the following
cases:

(i) R(ẇ, t) = 0, w0(x) = 0 (perfectly flat, undamped plate);
(ii) R(ẇ, t) = 0, w0(x) ≠ 0 (imperfect, undamped plate);
(iii) R(ẇ, t) ≠ 0, w0(x) = 0 (perfectly flat, damped plate).

Simulations are also conducted by varying the dimensions S
and the thickness h of the plate for different forcing amplitudes A0

and frequencies fp. The first part is devoted to periodically forced
turbulence and the second to free turbulence (or decaying, when
damping is added) after the forcing is stopped.

4.1. Periodically forced undamped turbulence

4.1.1. Perfect, undamped plates

Typical numerically obtained displacement and velocity fields
are shown in Fig. 1 for illustration. The displacement field presents
low frequency patterns; taking the velocity filters out these low
frequencies resulting in amuchmore homogeneous field, meaning
that velocity measurements at one point are relevant for the
turbulent property of the whole plate as already mentioned
in experiments having similar forcing schemes [17–19]. The
anisotropy effects due to the local forcing have been evidenced and
characterized experimentally by Miquel and Mordant [19].

A case study is first examined to serve as a master example of
the type of analysis that has been conducted on all the simulations.
It corresponds to case 1 in Table 1 considering a plate of thickness
h = 1 mm, forced at fp = 75 Hz with a forcing of amplitude A0 =
10 N and a ramp time t0 = 0.5 s (see Eq. (6), where t1 is the whole
duration of the simulation). The surface is Lx × Ly = 0.4 × 0.6 m2

and the grid size is 102 × 153 points, corresponding to a sampling
rate of 400 kHz for the time integration.

Fig. 2(a) shows the spectrogram (evolution of the frequency
spectra with respect to time) of the velocity at the measurement
point. It reveals the activated frequencies of the turbulent cascade
as a function of time. The energy keeps flowing into the system,
creating a never ending cascade where modes of higher frequency
receive energy from the adjacent lower frequency modes. Fig. 2(b)
shows the velocity power spectra at different stages of the
dynamics. It is evident that for these simulations no stationary
state exists: the spectra tend to occupy larger portions of the
available frequency range as time goes by. It should be pointed
out that the cascade front will develop up to half the sampling
frequency of the computation (200 kHz in this case): when the
cascade hits this limit, an artificial boundary reflects the energy
back into the box, towards smaller frequencies. This is a peculiar,
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Fig. 2. (a) Spectrogram of the velocity for the perfect undamped plate of thickness h = 1 mm, forcing from 0 to 10 N in 0.5 s (case 1 from Table 1), and then kept constant.
(b) Corresponding velocity power spectra computed every 2.5 s from 5 to 25 s.

unwanted numerical phenomenon that is not taken into account
in the analysis. The simulation is stopped before the boundary
reflection happens; in this way, the cascade can be regarded as
developing within an infinite frequency domain. Fig. 3(a) shows
that the evolution of the characteristic frequency fc(t) is linear, fc =
cf · t . The cascade front in Fig. 2 then develops to larger frequencies
with a constant cascade velocity cf . The spectral amplitude at the
characteristic frequency ⟨Pv(fc)⟩ in Fig. 3(b) is seen to be fairly
constant over time. The power velocity spectra, rescaled using both
the characteristic frequency fc and amplitude Pv(fc), are displayed
in Fig. 4. They all satisfactorily superimpose, indicating that the
dynamics of the energy spectrum is self-similar. This allows us to
write for the spectra

⟨Pv(f )⟩ = ⟨Pv(fc)⟩φP



f

fc



, (17)

where their shapes are given by the unique function φP (f /fc) (the
subscript P stands for periodically forced turbulence).

The injected power during the self-similar dynamics is shown
in Fig. 5(a): the fluctuations increase with time while the average
stays constant. More precisely, Fig. 5(b) shows that ⟨ε2⟩ = Dt ,
and ⟨ε⟩ = ε̄. Hence, the self-similar dynamics originate with the

a b

Fig. 3. (a) Time evolution of the characteristic frequency fc , (b) corresponding
spectral amplitude of the spectra shown in Fig. 2(b) (case 1 in Table 1). The
characteristic frequency evolves as fc = cf t with cf = 412.05 s−2 and the mean
amplitude is ⟨Pv(fc)⟩ = 1.11 · 10−4 m2/s2/Hz.

injection of a stationary energy flux characterized by ε̄. Meanwhile,
the fluctuations of the injection flux grow following a diffusion-
type behavior characterized by the coefficient D.

The analysis described above is now applied to 15 different
cases, summarized in Table 1. For all cases, the self-similar
dynamics display a constant injected power ε̄, a linear growth of
the variance of injected power



ε2


, a linear increase of fc over time
and constant ⟨Pv(fc)⟩ has been observed. It is worth noting that
the forcing values cover about four decades; this results in a large
range for the mean injected power ε̄. The thickness values cover
one decade also. For each one of the cases, the cascade velocity cf ,
the spectral amplitude at the characteristic frequency ⟨Pv(fc)⟩, the
diffusion coefficient D are calculated. These quantities are plotted
in Fig. 6 as functions of combinations of ε̄ and h having the same
dimensions. It can be seen that for all cases a linear relationship
is found, confirming the consistency of the dimensional argument.
The constants of proportionalities are found from best linear fits:

⟨Pv(fc)⟩ = 2.51h(ε̄)1/3, (18a)

cf = 0.20
(ε̄)2/3

h2
, (18b)

D = 2.07 · 104 (ε̄)7/3

h
. (18c)

In conclusion, the main result arising from the numerical
simulations of the periodically forced undamped plate is a self-
similar evolution of the power spectra. It is characterized by the
progression towards higher frequencies of a steep cascade front,
which leaves a steady self-similar spectrum in its wake. The self-
similar progression is found to be linear with time and has been
characterized by nondimensional numbers. The spectral amplitude
at fc is found to have a dependence on (ε̄)1/3 (see Fig. 6) and the
self-similar spectrum can be expressed as

Pv(f ) = 0.42h(ε̄)
1
3 ΦP



f

fc



, (19)

where ε̄ is the mean injected power. In the absence of damping,
the mean injected power can be confounded with the energy flux
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Fig. 4. Spectra of Fig. 2(b) but normalized using the characteristic frequency fc and amplitude Pv(fc). Continuous red line shows a power law f − 1
4 . Continuous black lines

show the log correction log1/3


f ⋆c
f



of the KZ spectrum, see Eq. (1), with f ⋆
c = fc and f ⋆

c = 5fc . (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Fig. 5. Time evolution of the injected power for the perfect undamped plate (case 1 in Table 1). (a) Time series, (b) ⟨ε⟩ and εrms =


⟨ε2⟩. Continuous lines are best fits that
give ε̄ = 9.65 · 10−5 m3/s3 , and D = 1.6 · 10−6 m6/s7 (see the text).

transfer εc through scales. The progression of the cascade front

towards higher frequencies is given by fc(t) = cf t ∝ ε̄
2
3

h2
t

(from Eq. (18b)). The function ΦP displayed in Fig. 4 increases as
frequencies decrease towards the forcing frequency fp. A best-fit
approximation of the slope of ΦP indicates that it follows a power-
law for low frequencies with a small exponent close to −1/4; see
Fig. 4.

The self-similar solutions for the kinetic equation derived
from the von Kármán plate equations are given in Appendix A.
Considering a self-similar solution for the wave spectrum n(k, t)
of the form:

n(k, t) = t−qf1(kt
−p) = t−qf1(ξ), (20)

one finds for the power frequency spectrum Pv(ω, t):

Pv(ω, t) ∼ f1




ω

t



= g1

ω

t



. (21)

This relationship clearly evidenced that the frequency of the front
must evolve linearlywith time,which is retrieved by the numerical
simulation. The function g1 can be identified with the function ΦP

found numerically.
Let us now compare the self-similar spectrum with the KZ

solution. As the theoretical cut-off frequency f ⋆
c cannot be related

to a given physical quantity in our numerical framework, the KZ
spectrum is built from Eq. (1) by selecting f ⋆

c = fc and f ⋆
c = 5fc , and

reported in Fig. 4. As one is interested in the power-law behavior
in the low-frequency range, one can observe that selecting f ⋆

c = fc
or f ⋆

c = 5fc has little influence on the slope comparison. It appears
that even though the log-correction of the KZ spectrum cannot be

Table 2

Case studies for the imperfect plate.

A0 (N) h (mm) fp (Hz) Z (mm)

Case 1 7 0.5 8.5 1
Case 2 3 0.5 8.5 1
Case 3 0.02 0.1 10.5 0.5
Case 4 0.01 0.1 10.5 0.5
Case 5 0.03 0.1 13 1
Case 6 0.02 0.1 8.5 0.1
Case 7 0.02 0.1 13 1
Case 8 0.01 0.1 8.5 0.1
Case 9 100 1 127 10
Case 10 70 1 127 10
Case 11 90 1 103 5
Case 12 60 1 103 5

discarded, the slope of the self-similar numerical solution appears
to be a bit steeper.

The injected power fluctuation is found to increase as a
diffusive law during the self-similar dynamics. A comprehensive
interpretation of this behavior may be given by the model of
injected power proposed in [43,44] for this system. In this work,
the velocity ẇ(xF , t) at the forcing point is assumed to result from
a turbulent feedback v described by the velocity spectrum, and a
linear response of the deterministic forcing F (x, t), say:

ẇ(xF , t) = v + LF , (22)

with L a linear operator. The feedback turbulent velocity is
assumed to be statistically independent of the forcing. Thus, using
Eq. (22) and the periodic forcing in Eq. (5)withA(t) = A0, themean
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Fig. 6. Results of simulations for the perfect, undamped plate with a periodic
forcing, for all the 15 cases reported in Table 1. (a) Spectral amplitude ⟨Pv(fc)⟩ /h,
(b) cascade velocity cf and (c) diffusion coefficient D.

a

b c

Fig. 7. Plate of dimensions 0.4 × 0.6 m2 with imperfection in the form of a raised
cosine. (a) 3D view, (b) and (c) x and y axes views.

of the squared injected power becomes:

⟨(F ẇ)2⟩ =
A2
0

2
⟨v2⟩ + ⟨(LF )2F 2⟩. (23)

After a sufficiently long time, the stationary forcing term will be
negligible comparedwith the quadratic term that keeps increasing

with time as the cascade propagates. Using Parseval’s identity:

⟨v2⟩ =

 ∞

0
Pv(f )df (24)

and the expression of the self-similar time-dependent spectrum in
Eq. (19), Eq. (23) becomes:

⟨(F ẇ)2⟩ ∼
A2
0

2
⟨v2⟩ ∝ A2

0

ε̄t

h
, (25)

then

⟨ε2⟩ ∝ A2
0

ε̄t

h(ρS)2
(26)

which gives the expected diffusive behavior. Hence, the injected
power fluctuation is the consequence of a direct feedback of the
propagation of the kinetic energy spectrum during the self-similar
dynamics.

4.1.2. Imperfect, undamped plates

The effect of the presence of a plate imperfection on the
turbulent dynamics is now investigated. Results are presented
following the same procedure as for the perfect plate.

The static deformation w0(x) appearing in Eq. (2) is chosen in
the form of a raised cosine

w0(x) =
Z

2



1 + cos



π


(x − x0)2 + (y − y0)2

L



, (27)

when (x − x0)
2 + (y − y0)

2 ≤ L2, and zero otherwise. Here
Z is the static (vertical) deflection, L is the width and x0 is the
center of the deformation. The plate area is 0.4 × 0.6 m2 and the
width is here selected to be 0.2 m, and x0 is the center of the
plate; see Fig. 7. Z is then a free parameter that changes case by
case. This form of imperfection has been selected as it is close
to what can be observed in experiments, where large plates are
generally affected by a pattern of largewavelength. Our goal is thus
to quantify the effect of a selected realistic geometric imperfection
in order to assess its potential effect on the turbulence spectra.
For the perfect plate with w0(x) = 0, the internal restoring
force is symmetric so that only cubic nonlinearities are present
in the von Kármán equations. However when an imperfection is
considered, quadratic nonlinearity appears in themodel equations
and so three-wave processes are present in the dynamics.

A case study (case 11 in Table 2) is first examined. It corresponds
to a platewith a thickness h = 1mm, and a deformation Z = 5mm
as defined in Eq. (27). As the eigenfrequencies increase with the
imperfection (see e.g. [29,27]), the excitation frequency is now
shifted so as to remain in the vicinity of the fourth eigenfrequency,
so that now fp = 103 Hz, and the forcing amplitude is selected as
A0 = 90 N.

During the dynamics, it is observed that the velocity power
spectra evolve almost identically to the case of the perfect plate,
so that the spectrogram and power spectra of the imperfect plate
are similar to those shown in Fig. 2. The characteristic frequency
increases linearly with time while the characteristic amplitude
remains fairly constant as shown in Fig. 8. The normalized spectra
in Fig. 9 are superimposed according to a curve φP(f /fc) =
⟨Pv(f )⟩/⟨Pv(fc)⟩ indicating self-similar dynamics. The self-similar
dynamics is also produced during a mean constant injection flux
with diffusive-type fluctuations, as seen in Fig. 10.

A total of 12 simulations are considered for imperfect plates.
The parameters are listed in Table 2. Note that the magnitude of
the imperfection considered is large (Z ≥ h), and of the order
of what can be expected in real experiments. In particular, it has
been shown in [45,27,46] that an imperfection of the order of the
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Fig. 8. Imperfect, undamped plate, case 11 of Table 2. (a) Time evolution of the characteristic frequency, (b) corresponding spectral amplitude. Continuous lines are best fit
fc = cf t with cf = 226 s−2 (a), and the mean amplitude ⟨Pv(fc)⟩ = 2.66 · 10−4 m2/s2/Hz.

Fig. 9. Normalized velocity spectra using the characteristic frequency fc and amplitude Pv(fc) (case 11 in Table 2). Continuous black line shows the log correction log1/3


f ⋆c
f



of the KZ spectrum, see Eq. (1), with f ⋆
c = fc . Dashed red line shows a power law f − 1

4 . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

thickness h is able to change the type of nonlinearity of the low
frequency modes. For each one of the cases, the cascade velocity
cf , the spectral amplitude at the characteristic frequency Pv(fc) and
the coefficient D are plotted as functions of combinations of ε̄ and
h. It can be seen that for all cases a linear relationship is found
(Fig. 11):

⟨Pv(fc)⟩ = 2.30hε̄1/3 (28a)

cf = 0.19
ε̄2/3

h2
(28b)

D = 1.86 · 104 ε̄7/3

h
. (28c)

The scaling laws are identical to the perfect case, although
the data are a bit more scattered in Fig. 11 than in Fig. 6.

The obtained values for the proportional constants are also very
close. The quadratic nonlinearity introduced by an imperfection is
then hardly discernable in the turbulent cascade dynamics which
indicates that the vibration amplitudes are sufficiently important
so that the cubic term dominates the quadratic one; hence only
the cubic nonlinearity seems to drive the main characteristics.
In conclusion, the geometric imperfection retained in this study,
and which has been selected as it provides insight into realistic
imperfections one may encounter in experimental situations, has
no effect on the main characteristics of the turbulent spectra.
Hence it appears that plate imperfections should not be considered
as a potential cause for explaining the discrepancies observed
between theory derived for perfect plates and real experiments
with unavoidable imperfections.

Fig. 10. Time evolution of the injected power for the imperfect undamped plate (case 11 in Table 2). (a) Time series, (b) ⟨ε⟩ and εrms =


⟨ε2⟩. Continuous lines are best fits:
ε̄ = 1.15 · 10−5 m3/s3 , and D = 0.0015 m6/s7 (see the text).
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Fig. 11. Results of simulations for the imperfect, undamped plate with a periodic
forcing, for the 12 cases reported in Table 2. (a) Spectral amplitude ⟨Pv(fc)⟩/h,
(b) cascade velocity cf and (c) coefficient D.

In the remainder of the paper, the plate imperfections are no
longer considered. The next section is devoted to the study of
free (unforced) turbulence in order to highlight the effect of the
pointwise forcing.

4.2. Free undamped turbulence

We now consider the case where the perfect, undamped plate,
given an initial turbulent spectrum energy, is left free to vibrate
in the absence of forcing and develops a cascade. The plate
dimensions are Lx×Ly = 0.4×0.6m2, and the thickness is selected
as h = 0.1 mm. The sampling rate is chosen as 40 kHz resulting in
a grid size of 102 × 153 points. The excitation frequency is in the
vicinity of the fourth eigenmode at 7.5 Hz. The forcing amplitude
reaches A0 = 0.1 N linearly after a duration t0 = 0.1 s and is
then abruptly stopped. The response of the system is shown over
a long time duration in the spectrogram of Fig. 12(a). Even after
stopping the external excitation, the number of excited modes
keeps increasing slowly. Because of the slowness of this dynamics,
the data analysis has been exceptionally changed with respect
to the standard procedure explained in Section 3. Here the time
window is τ = 0.1 s and the number of spectra over which the
average is taken is M = 100, resulting in a time T = Mτ = 10 s.

The velocity power spectra of the free decaying turbulence are
shown at different stages of the dynamics in Fig. 12(b). The shape
of the spectra changes abruptly just after the forcing is stopped.
There is an evidence of a flattening in the low-frequency part of

Fig. 12. (a) Spectrogram of the velocity of the perfect, undamped plate for which
the forcing is stopped after 0.1 s. The plate is of thickness h = 0.1 mm and the
sampling rate 40 kHz. (b) Corresponding velocity power spectra averaged over 10 s,
displayed for time intervals of 30 s. The first one (red) is computed from0.1s (i.e. the
end of the forcing) to 10.1 s. Straight red line corresponds to the power law f −1/4 .
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the spectra, indicating once again the effect of the external forcing
has on the power-law slope. On the other hand, the cascade front
still progresses towards high frequencies even without forcing.
The corresponding characteristic frequency evolution is shown in
Fig. 13(a) and follows a clear 1/3 power law, significantly different
from the linear dependence found for the case with external
forcing. The energy conservation during the dynamics justifies the
−1/3 power law best fit for the spectra amplitude in Fig. 13(b).
More precisely, the characteristic frequency is found to behave as

fc = at1/3 with a = 331.5 s−
4
3 , whereas the spectral amplitude

reads Pv(fc) = bt−1/3 with b = 1.1 · 10−7 m2 s−
2
3 . In order

to express these dependences with nondimensional numbers, one
can introduce the conserved quantities of the system, i.e. the total
energy ξ = h

2



Pv(f )df of the turbulent fluctuations – once
the forcing stopped the system is conservative – and the plate
thickness h. The energy ξ may locally fluctuate since it is actually
the energy of the whole plate that is conserved. However, for
the point considered, it is found to keep reasonably constant at
ξ ≈ 2 · 10−8 m3/s2 during the self-similar dynamics, as shown in
Fig. 14. Using the relationships derived from the best fits obtained
in Fig. 13 together with a dimensional analysis, one can reexpress
the dependences as

fc(t) = 0.45
ξ

2
3

h2
t
1
3 Pv(fc) = 0.41hξ

1
3 t−

1
3 . (29)

The two constants now appearing in Eq. (29) should be universal,
as are the nondimensional numbers derived from the analyses in
previous sections.

The normalized spectra using both the characteristic frequency
and corresponding spectra amplitude are shown in Fig. 15 for times
larger than 10 s (i.e. after the low frequency spectra flattening).
They all superimpose showing that the dynamics becomes self-
similar with a spectrum universal shape ΦF such that Pv(f ) =

Pv(fc)ΦF



f

fc



.

The progression of the cascade front towards higher frequencies
must be accomplished by the presence of an energy flux εc . It can
be estimated from the energy dξc of the activated modes between
fc and fc + dfc as the cascade propagates during the time interval
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Fig. 13. Undamped free turbulence. (a) Time evolution of the characteristic frequency fc and (b) corresponding spectral amplitude. Continuous lines are best fits fc = at1/3

with a = 331.5 s−
4
3 (a), and Pv(fc) = bt−1/3 with b = 1.1 · 10−7 m2 s−

2
3 (b).

Fig. 14. Time evolution of the kinetic energy ξ = h
2



Pv(f )df for the free
undamped turbulence.

dt , εc =
dξc
dt

= h
2Pv(fc)

dfc
dt
. Using both evolutions in Eq. (29), the

estimation gives:

εc = 0.03ξ t−1. (30)

The spectrum in the self-similar dynamics of free turbulence can
thus be expressed as:

Pv(f ) = 13.34hε
1
3
c ΦF



f

fc



. (31)

As for the first case with periodic forcing, the dependence of
the frequency front in t1/3 can be derived from the theoretical
kinetic equation governing the dynamics of the wave spectrum
for vibrating plates. Following the calculations presented in
Appendix A, and considering now that, for the self-similar solution
of the form given by Eq. (20), the total energy of the system is
conserved, one finds that the power frequency spectrum should

fulfill the relationship:

Pv(ω, t) ∼ t−1/3f2




ω

t1/3



= t−1/3g2

 ω

t1/3



. (32)

This theoretical results clearly exhibits the fact that the frequency
front should evolve as t1/3 while the total energy as t−1/3. In
this case of free turbulence, the function g2 can now be directly
identified from the numerical solution ΦF .

Let us now compare the self-similar solution with the theoreti-
cal KZ spectrum for vibrating plates. Because of the spectral flatten-
ing highlighted in Fig. 12(b), one can observe that the function ΦF

is now very close to the log-correction of the theoretical KZ spec-
trum for vibrating plates, as displayed in Fig. 15, and shown here
for f ⋆

c = fc . The similarity between the self-similar spectrum of
decaying turbulence with the stationary KZ spectrum has already
beenmentioned for surface gravity waves [34] and capillary waves
[35,37,36]. The comparison between the self-similar spectra of pe-
riodically forced turbulence (Fig. 4) and free turbulence (Fig. 15)
shows a steeper slope when forcing is present. This result should
be retrieved in a more realistic case where damping is also con-
sidered and should corroborate the experimental results shown
in [20]. The aim of the last section is thus to verify this numerically
in the case of a decaying turbulence.

4.3. Damped turbulence

The effect of the forcing is now studied in a damped case. The
plate dimensions are Lx × Ly = 0.4 × 0.6 m2, the grid size is
102 × 153 and h = 1 mm. The damping introduced in Eq. (4) is
selected as σ0 = 0.5 s−1. The forcing frequency is fp = 75 Hz, with
a forcing amplitude of A0 = 140 N and a ramp time t0 = 0.5 s. The
forcing remains periodic from 0.5 to 3.5 s (t1 = 4 s in Eq. (6)) and
then abruptly stopped at t = 4 s.

Fig. 15. Free undamped turbulence. Normalized velocity power spectra of Fig. 12(b) for t > 10 s during the self-similar dynamics. Black line shows the log correction

log1/3


f ⋆c
f



of the KZ spectrum, Eq. (1), with f ⋆
c = fc .
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Fig. 16. (a) Spectrogram of the velocity for the perfect damped plate. (b) Corre-
sponding velocity power spectra averaged over T = 0.15 s computed every 5 s
from 5 to 20 s.

Fig. 17. Time evolution of the injected power, ⟨ε⟩ and εrms =


⟨ε2⟩ for the
decaying turbulence experiment shown in Fig. 16.

The response of the damped system is shown over 20 s of
duration in the spectrogram in Fig. 16(a). The spectra reach a
nearly steady state just before t = 4 s that corresponds to the
time at which the forcing is stopped. Meanwhile, the injected
power remains fairly constant in Fig. 17, ⟨ε⟩ (t) ≃ ε̄, and the
characteristic frequency grows, just as for the undamped case
studied in Section 4.1. Themain difference is that the characteristic
frequency (Fig. 18) will saturate to a constant value once the
statistical steady state of turbulent energywill be reached. In other
words, the cascade velocity front decreases towards zero when
approaching the steady state.

As the cascade progresses to higher frequencies,more andmore
modes are activated, which results in an increase of the dissipation
flux εd since each mode has a linear energy loss parameterized
by σ0 that should be compensated by the incoming flux. Hence,
less and less energy flux εc is available to propagate the cascade
front velocity, since ⟨εc⟩ (t) = ε̄ − ⟨εd⟩ (t). Once the forcing is
stopped at t = 4 s, the characteristic frequency overshoots as
shown in Fig. 18 and then sharply saturates. The drastic increase
of the characteristic frequency is provoked by the flattening of the
spectral shape at low frequencies as observed in Fig. 16(b).

The effect of the pointwise forcing evidenced in previous
sections is here retrieved for the damped dynamics. The numerical

experiment shown here shares similarities with the experimental
result of [20], where the spectral flattening was also observed in
the decaying turbulence regime. Once the forcing stopped, the
spectrum simply decreases exponentially as e−2σ0t as expected
by a pure damping linear dynamics; see Fig. 18(b). Actually one
can observe that the nonlinear dynamics are still present but very
weak since the nonlinear propagation depends on the vanishing
turbulent energy ξ(t). Note that selecting other damping laws
should lead to different behaviors in the decaying regime, resulting
from the competition between the nonlinear propagation effect
with the energy losses, both of which having different frequency-
dependences associated to different timescales. Here the damping
law is frequency independent so that the results lend themselves
to an easy physical interpretation.

5. Discussion and concluding remarks

The nonlinear dynamics of turbulent vibrating plates has been
studied numerically with a finite-difference, energy-conserving
scheme including a pointwise forcing together with realistic
boundary conditions. The most important results have been ob-
tained in the absence of damping, in the framework of non-
stationary wave turbulence. Self-similar solutions for the energy
spectrum have been exhibited for a wide range of parameter vari-
ations. The simulations display the presence of a front propagat-
ing to high frequencies. With pointwise forcing, this propagation
is linear with time, whereas for free turbulence the dependence is
in t1/3. These self-similar behaviors can be directly retrieved from
the kinetic equation by analyzing the admissible self-similar solu-
tions. From the numerical solutions, one is thus able to get a nu-
merical value for the self-similar functions in non-stationary wave
turbulence for plates, for the two cases studied in this paper, with
and without external forcing. Comparing the shape of these nu-
merically obtained functions, one observes that they share simi-
larities with the theoretical KZ spectrum computed by [14], albeit
exhibiting interesting differences. In the case of a pointwise forc-
ing, a steeper slope is observed as compared to the free undamped
turbulence. Note also that the power 1/3 dependence on the en-
ergy flux is numerically retrieved.

This observation is robust to adding the damping in the
simulations and thus recovers experimental results shown in [20].
It can thus be concluded that the local pointwise forcing has a
measurable effect on the slope in the low-frequency range. This
effect has been related in [20] to an anisotropy induced by the
presence of the shaker. A direct extension of the results presented
herein should thus to compute spatial spectra in order to verify
numerically that the same argument holds.

For the first time, our numerical set-up allows for an investiga-
tion of the effect of a geometrical imperfection on the turbulent
dynamics. The results, obtained in a non-stationary framework,
clearly indicates that perfect and imperfect plates present identi-
cal characteristics in the WT regime. This emphasizes the fact that
in this regime the cubic nonlinear terms dominate the quadratic
ones, which thus have no measurable effect on the spectral char-
acteristics of the WT. Note however that this is not true for the
regimes of transition to turbulence that involve weaker excitation
amplitudes [28,29]. Note also that only a simple, low-frequency
pattern has been introduced as a geometric imperfection, in order
to present numerical results close to what can be expected in real-
life situations. The conclusions, based on numerical experiments,
are only valid for those cases. Extensions of the present work could
consider more complex geometric imperfections, with smaller
wavelengths, in order to continue the quantification of the tran-
sition between perfect and imperfect plates’ turbulent dynamics.

Finally, dimensional arguments have been used in order to
properly quantify the results in non-stationary cases. As no
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Fig. 18. (a) Time evolution of the characteristic frequency fc and (b) corresponding spectral amplitude decreasing as ⟨Pv(fc)⟩ = 0.012e−2σ0 t of the spectra shown in Fig. 16,
with σ0 = 0.5 s−1 (blue thick line).

theoretical prediction for the non-stationary evolution of systems
with log-corrected spectra exist at the present time, we believe the
results shown here could be used so as to ascertain a theoretical
development that may predict the observations reported in this
contribution.

Acknowledgments

S. Bilbao was supported by the European Research Council,
under Grant number StG-2011-279068-NESS. The authors want to
thank Christophe Josserand for a fruitful discussion on the collision
integral.

Appendix. Self-similar solutions for non-stationary wave tur-

bulence in plates

This appendix is devoted to the derivation of self-similar
solutions from the kinetic equation describing thewave turbulence
in the von Kármán plate equations. Following the theoretical
calculations reported by Düring et al. [14], the 4-waves kinetic
equation has the general expression given by Zakharov et al. [2],
and reads

∂n(k, t)

∂t
= I(k), (A.1)

with n(k, t) ≡ nk the wave spectrum and I(k) the collision
integral, the expression of which can be found in [14]:

I(k) = 12π



|Jk123|
2fk123δ(k + s1k1 + s2k2 + s3k3)

× δ(ωk + s1ω1 + s2ω2 + s3ω3)dk1dk2dk3, (A.2)

where Jk123 stands for the interaction term and fk123 is such that

fk123 =


s1,s2,s3

nknk1nk2nk3



1

nk

+
s1

nk1

+
s2

nk2

+
s3

nk3



. (A.3)

Following [2], let us introduce a self-similar solution for the non-
stationary evolution, depending only on the wavevector modulus,
as

n(k, t) = t−qf (kt−p) = t−qf (η). (A.4)

Plugging this ansatz in the kinetic equation (A.1), and taking into
account the expression of |Jk123|2 found in [14], one gets

−t−q−1


qf (η) + pηf ′(η)


= I(η)t−3q+2p, (A.5)

so that a solution of the form (A.4) is possible only if the condition
−q − 1 = −3q + 2p is satisfied. It can be rewritten as

2(q − p) = 1. (A.6)

Let us introduce the total energy of the distribution

ξ =



ω nk dk (A.7)

and consider the two cases numerically studied:

Case 1: The plate is forced by a sinusoidal pointwise forcing of
constant amplitude and excitation frequency. In this case
the total energy increases linearly with time so that ξ ∼ t .

Case 2: The plate is left free to vibrate, given an amount of energy
as the initial condition. In this case the total energy is
constant so that ξ ∼ t0.

Substituting (A.4) into (A.7) one obtains a second relationship
between p and q, which reads, depending on the case considered

4p − q =



1 for case 1
0 for case 2. (A.8)

Solving for (p, q) in both cases give

case 1 : p = 1/2, q = 1, (A.9)

case 2 : p = 1/6, q = 2/3. (A.10)

The last step consists in expressing the self-similar solution for
Pv(ω) the power spectrum of the transverse velocity v = ẇ
used in the analysis, which is related to the power spectrum of
the displacement Pw(ω) by a proportionality relationship Pv(ω)
∝ ω2Pw(ω). Using the space–frequency relationship Pw(ω)dω ∝
Pw(k)kdk, together with the dispersion relation, one finds Pw(ω) ∝
Pw(k), such that Pv(ω) ∝ k4Pw(k). Finally, using the relationship
Pw(k) ∝

nk
ω

given in [14], one obtains finally Pv(ω, t) ∝ k2n(k, t),
so that the self-similar solutions for Pv(ω, t) finally reads for the
general case with nk given by Eq. (A.4):

Pv(ω, t) ∼ t2p−qf (ω1/2t−p). (A.11)

Specifying now the solutions for (p, q) found for the two cases
under study, one obtains for case 1:

Pv(ω, t) ∼ f1




ω

t



= g1

ω

t



, (A.12)

and for case 2:

Pv(ω, t) ∼ t−1/3f2




ω

t1/3



= t−1/3g2

 ω

t1/3



, (A.13)

where g1,2 (or f1,2) have been indexed with respect to case 1 and
case 2, and are functions to be defined.
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CHAPTER 6

Sound Synthesis of Gongs

In the previous chapters, the von Kármán equations were shown to be an appealing system to study

because they give rise to a vast range of nonlinear phenomena despite the apparent simplicity of the

system under consideration (a vibrating thin plate). An attractive possibility of numerical modelling

of thin plates resides in the synthesis of gong-like sounds.

The aim of this chapter is to present some simulation results coming from running the modal code. For

the first time, a modal approach is used in reproducing the weakly and strongly nonlinear vibrations

of thin plates. The chapter presents at the beginning a discussion on how to implement an excitation

mechanism to set the plate into motion, and convenient ways of extracting the output.

A quick discussion on loss is then offered, to show that the modal approach is very flexible in terms

of the damping law that one wants to implement. Successively, a discussion on the number of modes

to be retained in the simulation is offered, and finally a comparison with a Finite Difference scheme

is given. See also [30].

6.1. Simulation Parameters

In this section the setup for the simulations is presented. The excitation, output and damping factor

choices are explained and examples given.

6.1.1. Plate excitation. In order to produce a gong-like sound, a plate must be excited in a

way that approximates how one may actually set a gong into motion. The most obvious way is to

strike a plate. For that, one may think of the excitation mechanism P (x, t) to be in the form of

(6.1) P (x, t) = f(x)p(t),

where f(x) is some kind of spacial distribution and p(t) is a temporal forcing. The spacial distribution

can be safely chosen to be a Dirac delta, f(x) = δ(x − xi), where xi is the input location. This is

largely sufficient, in many cases, for striking. When the ratio between mallet size and area of the

plate gets larger, however, one may choose a different form for f(x); for example a 2D raised cosine

distribution [8]. Such a function, here denoted by fr(x), is

(6.2) fr(x) =







H
2

[

1 + cos
(

π
√

(x− xi)2 + (y − yi)2/r
)]

if (x− xi)
2 + (y − yi)

2 ≤ r2;

0 if (x− xi)
2 + (y − yi)

2 > r2.
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Figure 1. 2D raised cosine distribution, Eq. (6.2), with amplitude H = 1m and

width r = 0.2m, centered around the point xi = [0.2m 0.3m]. (a): 3D view; (b):

x-section; (c): y-section

Such a function depends on 2 parameters, a radius r and an amplitude H; an example of such a

function is given in Fig. 1.

Turning the attention to the temporal excitation, one may wish to represent it as interaction between

the surface of the plate and a mallet. Let wH(t) be the position of the mallet at the time t. Then

the force acting on the plate due to the mallet interaction is given by Newton’s second law

p(t) = −mHwH,tt,

where mH is the mass of the mallet. This force is usually represented as a ”one-sided” nonlinearity,

i.e. a nonlinear function of which acts when its argument is positive and is zero otherwise. Hence

−mHwH,tt = kα+1
H

(

[wH − 〈fr, w〉]
+
)α

,

where kH a stiffness parameter and

([wH − 〈fr, w〉]
+
)α =

{
0 if wH − 〈fr, w〉 ≤ 0;

(wH − 〈fr, w〉)
α if wH − 〈fr, w〉 > 0.

Such a contact model has been used by Rhaouti et al. for membranes [75], as well as by Lambourg

et al. for anisotropic plates [55]. The most attractive feature of such a nonlinear model is that the

contact duration depends on the velocity of the striking mallet, leading to brighter sounds when the

velocity is increased [8].

Given the short contact duration of the mallet and the plate (usually of the order of a few millisec-

onds), one may wish to make use of a simplified model for p(t). This form is again in the form of a

raised cosine, this time in the form of

(6.3) p(t) =







pm
2

[1 + cos (π(t− t0)/Twid)] if |t− t0| ≤ Twid;

0 if |t− t0| > Twid.
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Figure 2. Time-dependent raised cosine to simulate the impact of a timpani mallet

(blue) or a drumstick (black). Twid is selected as 2ms for the mallet and 1ms for the

stick; pm is 20N for the mallet and 70N for the stick.

In this case, the contact distribution is symmetrical about the time t0, and Twid represents half of the

contact duration. When activating the plate using a raised cosine distribution, one is free to select

the contact duration and the amplitude of the distribution. Typically, one may select Twid ≈ 1−3ms

and pm ≈ 10 − 50N for a timpani mallet (softer strike, longer contact); Twid ≈ 0.25 − 1ms and

pm ≈ 40− 100N for a drumstick (harder strike, shorter contact). Fig. 2 depicts two examples of such

distribution.

Note that the examples presented in the next sections will be derived using a raised cosine as input

conditions on one point of the plate; hence, for the remainder of this work

P (x, t) = δ(x− xi)p(t),

where p(t) is as in Eq. (6.3).

Striking is not the only way that one may set a plate into motion. Very interesting effects can be

obtained by bowing the plate at one edge. In this case, the function f(x) is a Dirac delta at an input

point xi of a free edge. The temporal function can be looked for as

(6.4) p(vrel) = −pbφ(vrel),

where vrel = w(xi, t),t− vbow is the relative velocity of the bow and the input point on the plate, and

φ(vrel) is, in general, an antisymmetric function of the velocity presenting a steep slope near zero (see

[8] for details and examples). The attractive feature of such an input is that the variety of sounds

that can be produced is very large, ranging from quasi-harmonic tones to noisy samples. However,

examples of that will not be considered in this work.

In a scheme such the Störmer-Verlet or the energy conserving scheme of sec. 2.7, initial conditions can

be inserted directly on q(0), q(1) (or, equivalently, in a displacement/velocity fashion, by considering

an approximation to the velocity at the initial time, v = δt+q(0) such that q(1) = kv + q(0)). An

interesting effect might be obtained by considering a random excitation, i.e. by inputting random

noise at the initial instant. This gives rise to a broadband excitation which resembles a strike, and
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that can be used as an alternative to the input strategies described before. Note, however, that not

only such an excitation cannot be justified on a physical basis, but also that it cannot be controlled

(it is a random sequence). Hence, implementing such initial conditions should really be regarded as a

helpful shortcut while prototyping a code; this choice should however be discarded in refined models.

6.1.2. Output. When listening to a vibrating plate, the ears are sensitive to changes in the air

pressure due to the waves produced on the surface of the plate and transmitted in the surrounding

medium. The problem may be further compounded by the presence of walls and refractive objects

in a closed space. Thus, a complete model of a sounding plate is achievable only when the sur-

rounding environment is somehow taken under consideration in the simulations. Needless to say, for

such simulations the computational requirements in terms of memory and time are enormous, even

for small-sized rooms. Recently, the use of graphic cards and parallel computing has allowed the

simulation of large scale environments and complex geometries; see, for instance, the work by the

NESS project [9, 93, 10, 85], and the work by Chabassier on the piano [13, 14].

As a first approximation, however, one may extract the output directly on the surface of the plate, by

recording the displacement of a particular point or by moving the output point around the surface of

the plate (creating an interesting ”phaser” effect). For the present work, the output is always taken at

a point of the plate. Once the displacement waveform is extracted, it is possible to obtain the velocity

and acceleration of the point by considering for instance the forward time derivative approximation

in Eq. (2.70). These are high-pass filters that render the sound brighter, should one want to get rid

of the low-frequency component of the displacement waveform. An example are presented in Fig. 3.

In the figure, the time series of the displacement, velocity and acceleration are shown (normalised to

have a maximum amplitude of 1, so to be played as audio samples). It is evident that the velocity and

acceleration tend to privilege the high-frequency range of the output, and thus they are preferable

over the displacement when trying to reproduce a bright, shimmering sound such that of a gong.

This said, the low-frequency part of the spectrum is also important because it gives an idea of the

dimensions of the gong that is being simulated. Hence, in many cases the velocity time series should

be preferred over the acceleration. Notice, however, that the choice cannot be made in terms of pure

physical arguments, and choosing amongst displacement, velocity and acceleration really becomes a

question of taste.

6.1.3. Damping. Another factor that influences the perception of sound is damping. A distinct

advantage of the modal approach is that one is able to tune the damping coefficients at will with

practically no extra effort. This is indeed the most attractive feature of the modal approach applied to

sound synthesis of gongs. A question remains to what damping law one should use for this problem.

The question of damping in plates is an open one, and it has to do with the fact that the perceived

”loss” is the contribution of a number of independent factors and underlying physical mechanisms.

Generally speaking, one may try to categorise loss in terms of
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Figure 3. Time domain simulation of a steel plate of thickness 0.001 and dimensions

0.4 × 0.6m2. The plate presents NΦ = 50 transverse modes and NΨ = 12 in-plane

modes. The plate is activated using raised cosine of amplitude pm = 100N and

Twid = 0.001s, applied at the point [0.3Lx 0.3Ly]. The output is recorded at

[0.7Lx 0.3Ly]. (a): time series of normalised displacement at output point; (b):

time series of normalised velocity at output point; (c): time series of normalised

acceleration at output point; (d): displacement spectrogram at output point; (e):

velocity spectrogram at output point; (f): acceleration spectrogram at output point.

• thermoelastic effects: the vibrational energy is in this case transformed into heat generated

by the friction between the molecules when the plate is deformed;

• visoelastic effects : the vibrational energy is lost to viscosity;

• radiation damping : the continuity equation between the air and the surface of the plate

allows to define a ”coincidence frequency” after which the flexural waves developing on the

plate are passed into the surrounding medium (air). This happens when the speed of the

flexural waves corresponds to the speed of the sound in air, denoted by c. The coincidence
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frequency can be given as

(6.5) fr =
c2

2π

√

12ρ(1− ν2)

Eh2
;

• edge damping : losses due to clamps and supports of the vibrating plate.

Lambourg [54] tried to quantify experimentally the modal damping factors. He obtained results

analogous to those presented in Fig. 4. In Fig. 4(a), one can appreciate that, after the coincidence

frequency, the damping ratios increase sensibly. This means that the radiation damping is prominent

in the frequency range past that frequency. On the other hand, at smaller frequencies the viscoelas-

tic and thermoelastic effects dominate, and the modal damping ratios present variations around a

supposedly mean value (Fig. 4(b)).

Arcas [5] points out that, for a thin plate with simply-supported boundary conditions, the contribution

of the thermoelastic effect can be given as

(6.6) γth(f) =
4π2f2RC

2(4π2f2h2 + C/h2)
,

where R, C, are constants depending on the thermal properties of the material (temperature, con-

ductivity, ...). For steel, C ≈ 1.8 · 102 [rad/m2/s] and R ≈ 9.7 · 103 (nondimensional constant).

In view of an application to wave turbulence, Humbert experimented with a thin steel plate (h ≈

0.5mm) for which the coincidence frequency can be estimated to be fr ≈20kHz [47]. In the audi-

ble range for such a plate, then, the viscoelastic and thermoelastic effects dominate, and Humbert

measures a power-law dependence for the loss mechanism, as in

(6.7) γh(f) = 0.05f0.6 [s−1].

An estimate of the loss mechanism in plates is beyond the scope of the present Thesis. However,

the modal code was developed precisely because of the lack of a numerical models able to simulate a

general damping law. In a Finite Difference environment, even a (seemingly) simple law such as (6.7)

becomes a numerical challenge, but in the modal code, one just needs to set the damping coefficients

in Eq. (2.57) as

(6.8) χs(fs) =
0.05

4π
(fs)

−0.4
.

In this way, the discrete set of points given by 2χsωs will belong to the continuous curve γh(f) of

Eq. (6.7), see Fig. 6. Hence, very complicated damping laws can be fitted in the modal code, which

is not possible in a Finite Difference scheme.

In his book [8], Bilbao proposes two damping laws for his finite difference scheme; these laws are

summarised in Eq. (2.58) and they are global laws proportional to, respectively, the velocity field

and the Laplacian of the velocity field. The coefficients σ0, σ1 can be chosen according to the plate

reverberation time, which is is the typical time after which the Sound Pressure Level drops by 60dB

(see [5]).
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(a)

(b)

Figure 4. Damping ratios measured by Lambourg for a plate of dimensions Lx ×

Ly × h = 0.23m × 0.2205m × 2mm vibrating in a linear regime. Figures are taken

from reference [54].

For plates, one may choose them as

(6.9) σ0 ∼ 0.38ρh [s−1]; σ1 ∼ 1.5 · 10−4ρhLxLy [s−1].

Such parameters give realistic decay times for plates of different sizes, see Fig. 5 for examples, where

it is seen that the waveforms fall to zero about 10s after activation.
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Figure 5. Time domain simulation of two steel square plates of thickness 0.5mm.

The plates present NΦ = 20 transverse modes and NΨ = 12 in-plane modes. The

plates are activated using raised cosine of amplitude pm = 150N and Twid = 0.1ms,

applied at the point [0.3Lx 0.3Ly]. The output is recorded at [0.7Lx 0.3Ly]. The

dimensions of the plates are [0.1m 0.1m] ((a) and (c)) and [1m 1m] ((b) and (d)).

Figures (a) and (b) were obtained by setting σ0 = 0.38ρh [s−1] and σ1 = 0; Figures

(c) and (d) were obtained by setting σ0 = 0 and σ1 = 0.015ρhLxLy [s−1], as

suggested in Eq. (6.9).

6.1.4. Number of in-plane and transverse modes. When using a modal approach, a ques-

tion arises as to how many modes one should retain. This is an important point because the memory

and calculation requirements grow significantly as the number of modes is increased. Note that the

sampling rate at which the scheme is run has also a large influence on the calculation time. All the

simulations presented in this chapter can be obtained by running the Störmer-Verlet scheme, as in

Eq. (2.79). Although the stability of such a scheme cannot be guaranteed in a nonlinear regime, for

impulsive loading (like a strike) on a damped plate a sensible choice for the sampling rate is twice

as much the limit of stability for the associated linear system, Eq. (2.82). Hence, for the following

it is intended that Fs = 2F lim
s = f lim, where f lim is the largest eigenfrequency (measured in Hz)
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Figure 6. (a): Damping law proposed by Humbert, Eq. (6.7) (red thick line)

and damping coefficients χs set in order to belong to the curve (blue circles),as

in Eq. (6.8); (b): damping laws for a steel plate of dimensions [0.403m 0.618m]; the

blue and black line are obtained by setting σ0, σ1 as suggested in Eq. (6.9).

of the system. Note that the energy diagrams shown in this section are obtained by running the

conservative scheme, (2.85) (for which the discrete energy counterparts exist). However, when the

calculation times are presented, these refer to the Störmer-Verlet scheme.

Consider first the number of in-plane modes, NΨ. A criterion to select this number might be given

by considering the convergence of the coupling coefficients, as explained in Chapter 4: one selects as

many in-plane modes as the required accuracy. As an order of magnitude, this would correspond to

setting NΨ ≈ 500 to obtain a convergence up to the fourth significant digit for the coupling coefficient

Γ50
50,50,50. For coupling coefficients of higher modes, NΨ increases drastically for such a convergence

limit. In view of an application to sound synthesis, then, one must look out for a compromise amongst

precision, memory requirements and calculation time. As pointed out in section 2.7.3, the modal code

is written in terms of the H tensor, in order to maximise the number of transverse modes that one

can keep in a simulation. This means that, in the time integration scheme, at each time step one must

sum over the index defining the in-plane function; hence, increasing NΨ corresponds to increasing the

computational time, as well as occupying memory that could possibly be allocated for more transverse

modes. Ideally, one wants to keep enough in-plane modes in order to generate a nonlinear dynamics

with a cascade of energy, but at the same time NΨ must be kept at a minimum in order to maximise

the efficiency of the scheme.

As usual in this cases, direct experimentation with different parameters can help to shed some light on

the problem. Three cases are here considered, namely a plate activated in a (almost) linear regime, a

weakly nonlinear regime, and a strongly nonlinear regime. The question of the number of transverse

modes is first addressed, followed by a discussion of the number of in-plane modes. Before running

a massive simulation, it is useful to run a simulation with, say, NΦ ∼ 10, NΨ ∼ 10 and to look at

the displacement waveform. This parameters are obviously too small for sound synthesis. However,
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Figure 7. (a): Time domain simulation of a steel plate of dimensions Lx × Ly =

0.203m×0.118m and thickness h = 1mm, activated with a raised cosine of amplitude

pm = 100N and duration Twid = 0.8ms; the total number of transverse modes is

NΦ = 100, and the total number of in-plane modes is NΨ = 12. Damping coefficients

selected as in Eq. (6.8). (b): Kinetic energy (grey), linear potential energy (navy)

and nonlinear potential energy (green), showing that the plate is vibrating in a linear

regime.

they suffice to understand the order of magnitude of the displacement and the decay characteristic

for a plate of typical size Lx × Ly × h ≈ 0.5m × 0.5m × 1mm; hence this serves a preliminary test

that allows to understand how to set the forcing parameters and the damping.

If the displacement is smaller than the thickness, then the plate is vibrating in a linear regime. Once

that the forcing and damping parameters are set, one may increase NΦ (obviously there is no need

to change NΨ because the dynamics is linear; to save memory and time one may as well set this

parameter to zero). A plate vibrating in a linear regime produces a bell-like sound; pitch glides and

crashes are not reproduced. The harmonics in the higher range, however, produce a nice effect when

the damping ratios are set to appropriate values. In this case, it can be appreciated that NΦ ∼ 100

suffices to catch the most salient features of the sound. For such a simulation, the calculation time

in MATLAB (using a fully vectorised code) is of the order of 10s per second of simulation, on a plate

of dimensions Lx × Ly × h = 0.203m × 0.118m × 1mm. See Fig. 7 where the displacement and the

corresponding energies are plotted versus time.

A plate vibrates in a weakly nonlinear regime when w(xo, t) ∼ h. For a plate of dimensions Lx×Ly =

0.203m × 0.118m and thickness h = 0.5mm, this can be achieved by forcing the plate with a raised

cosine of amplitude pm=15N and half width Twid = 2ms. In this case, a small cascade of energy is

produced, resulting in a slight crashing effect and moderate pitch glides. In Fig. 8, the number of

stress function is chosen as NΨ = 12, and the number of transverse modes is NΦ = 120. With these

settings, the calculation time is about 12s per second of simulation.
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Figure 8. (a): Time domain simulation of a steel plate of dimensions Lx × Ly =

0.203m × 0.118m and thickness h = 0.5mm, activated with a raised cosine of am-

plitude pm = 15 and duration Twid = 2ms; the total number of transverse modes

is NΦ = 120, and the total number of in-plane modes is NΨ = 12. Damping coef-

ficients selected as in Eq. (6.8). (b): Kinetic energy (grey), linear potential energy

(navy) and nonlinear potential energy (green), showing that the plate is vibrating in

a weakly nonlinear regime.

Finally, a strong nonlinear regime is activated. The dimensions are chosen as Lx × Ly = 0.203m ×

0.218m, h = 0.5mm. The plate is forced at pm = 100N and Twid = 2.5ms (see Fig.9). For such

a simulation, NΨ = 12, and NΦ = 450 are chosen. Given the dimensions of the plate, the sound

resembles that of a small gong or a small crash cymbal. With these settings, about 80s per second of

simulation are needed.

For all the previous simulations, the number NΨ has been kept to a bare minimum in order to improve

the computation time. For the linear case, increasing this parameter would be a waste of memory

and time as the in-plane modes are not activated in a linear regime. For a weakly nonlinear regime,

increasing the number of in-plane modes does not lead to a sensible increment of the quality of the

simulation. Hence, one may safely assume that the ratio NΦ/NΨ = 10 suffices to simulate a plate

vibrating in such a regime. When the strong nonlinear regime is activated, increasing NΨ to 90 seems

to improve the sound (in terms of a less artificial sounding cascade). However, the improvement is

really minimal, the simulation with NΨ = 12 being already sufficiently good. In any case, one may

set the ratio NΦ/NΨ = 5 for a strong nonlinear regime.

The reader should take these parameters with caution. As pointed out before, such parameters are

too small to guarantee an accurate calculation of the coupling coefficients. However, from a sound

synthesis point of view, the role of the nonlinear couplings is to create a cascade of energy and to

change the periods of vibration of the eigenmodes, corresponding to, respectively, a crashing sound

and pitch glides (which are extremely inharmonic effects). Hence, in this sense, the accuracy of the
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Figure 9. (a): Time domain simulation of a steel plate of dimensions Lx × Ly =

0.203m× 0.218m and thickness h = 0.5mm, activated with a raised cosine of ampli-

tude pm = 100N and duration Twid = 2.5ms; the total number of transverse modes

is NΦ = 450, and the total number of in-plane modes is NΨ = 12. Damping coef-

ficients selected as in Eq. (6.8). (b): Kinetic energy (grey), linear potential energy

(navy) and nonlinear potential energy (green), showing that the plate is vibrating in

strongly nonlinear regime.

nonlinear mechanism is not of extreme importance because it only bears information regrading the

perceived ”naturalness” of such features. In turn, the number of the in-plane modes should be set

according to the taste of the performer, rather than on an objective prescription.

The question remains on how to choose the number of transverse modes. An answer might come in this

case by analysing the spectrogram of the simulation. Fig. 10(a) depicts the displacement spectrogram

of the strongly nonlinear regime obtained running a Finite Difference code. It is evident that, for

such a simulation, the energy cascade and the damping act on the system with opposite effects: the

cascade would tend to activate more and more frequencies, while damping removes energy from the

system so that, at some point, the eigenmodes start losing energy. At the peak of the cascade activity,

it is plausible to identify a ”peak frequency” which can be defined as the highest frequency activated

by the cascade. When running the modal code, it is important that the number of transverse mode

reaches the peak frequency (or at least close to that). If the peak frequency is correctly identified,

then adding more transverse modes will not improve the quality of the simulation, despite the evident

modal cutoff. Fig 10(b) shows that, in this case, NΦ = 250 is not a large enough number. In Fig 10(c)

the number of transverse modes is increased to 450, past the peak frequency.

As a concluding remark, it was seen that, for fairly thin plates, NΦ = 450, NΨ = 90 are large enough

parameters to give rise to very rich sounds. An estimate of how ”thin” this plate is can be conducted

by introducing the nondimensional parameter α, obtained by dividing the typical size of the surface

of the plate (for instance
√
LxLy) by the plate thickness. For the strongly nonlinear simulation

presented in this section one has α =
√

LxLy/h ∼ 420. On a machine equipped with MATLAB 64bit
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Figure 10. Displacement spectrograms of a a steel plate of dimensions Lx × Ly =

0.203m× 0.218m and thickness h = 0.5mm, activated in a strongly nonlinear regime

with a raised cosine of amplitude pm = 100N and duration Twid = 2.5ms. (a):

Finite Difference scheme with sampling rate 100kHz and grid size 35×37 points.(b):

NΦ = 120, NΨ = 18. (c): NΦ = 450, NΨ = 18.

and 8G of RAM, the physical limit for the present code is NΦ ∼ 650, NΨ ∼ 162, which suffices largely

to simulate a plate of α ∼ 700. An example is given by a plate of about 0.5m per side, 0.8mm thick

(α = 625). With carefully chosen parameters, a time domain simulation of such a plate resembles

closely the sound of a thunder plate, especially when run on powerful speakers able to simulate the

vast dynamic range of this plate. Note that the calculation time under such conditions is about 30min

per second of simulation.

6.2. Comparison between the modal approach and the Finite Difference scheme

In this section, the finite difference scheme and the modal method are compared when run using

the same forcing and damping parameters. Again, the comparison will consider the cases of plates

vibrating in linear, weakly nonlinear and strongly nonlinear regimes. The damping has been tuned

by selecting an appropriate value for σ1, because it gives a more natural decay queue. The three

cases are summarised as follows

Linear regime

• dimensions: Lx × Ly ×

h = 0.2m× 0.1m× 1mm

• forcing parameters:

pm = 100N, Twid =

0.8ms

• damping factor: σ1 =

0.002s−1

• FD grid: 24×11; sam-

pling rate: 100kHz

• Number of modes:

NΦ = 100, NΨ = 12

Weakly nonlinear regime

• dimensions: Lx × Ly ×

h = 0.2m×0.1m×0.5mm

• forcing parameters:

pm = 35N, Twid = 0.4ms

• damping factor: σ1 =

0.0005s−1
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• FD grid: 35×16; sam-

pling rate: 100kHz

• Number of modes:

NΦ = 120, NΨ = 12

Strongly nonlinear regime

• dimensions: Lx × Ly ×

h = 0.3m×0.3m×0.5mm

• forcing parameters:

pm = 50N, Twid = 3ms

• damping factor: σ1 =

0.0008s−1

• FD grid: 35×16; sam-

pling rate: 100kHz

• Number of modes:

NΦ = 250, NΨ = 50

Note that, for the Finite Difference code, the grid size is chosen according the sampling rate, as in

Eq. (3.25).

The linear case is sketched in Fig. 11. When listening to the samples, the Finite Difference scheme

returns an overall less high-pitched sound: this happens because the eigenfrequencies of the Finite

Difference system converge from below (see remarks in Chapter 3), and, in a linear regime, they are

basically the only activated frequencies. Calculation times for the current settings can be given as

90s per second for the Finite Differences and 10s per second for the modes.

The weakly nonlinear case is summarised in Fig 12. In this case, the waveforms and spectrograms are

very similar. Note the modal truncation in Fig.12(d). Indeed, it looks quite crude when compared

to the spectrogram obtained running the Finite Difference scheme. However, the modes past the

truncation are activated in a linear way, and thus they do not contribute to the overall ”quality” of

the sound. Calculation times for these settings can be given as 90s per second for the Finite Difference

scheme, and 12s per second for the modes.

The last case presented here is summarised in Fig. 13. In this case, the waveforms and spectrograms

are quite different. Note that the nondimensional size of the plate is in this case α = 600, and

thus, in the modal approach, the number of modes retained is not sufficient. In fact, the nonlinear

cascade flows well beyond the limit imposed by the last mode (see Fig. 13(c)). In this case, the

simulation coming from the Finite Difference scheme is somehow better, because it includes the effect

of high-frequency modes being activated by the nonlinear cascade. The modal approach, on the other

hand, returns a reasonable simulation, although the number of transverse modes should be increased.

Calculation times for these settings can be given as 90s per second for the Finite Difference scheme,

and 50s per second for the modes.

6.3. Final Remarks

In this chapter sound synthesis results were shown. It was seen that, under a careful selection of

parameters, the dynamics of flat plates can simulate, to a first approximation, the sound of a gong

or a cymbal. The modal approach was shown to be particularly useful because of the possibility of

adding arbitrary damping ratios on each one of the modes. When compared to the Finite Difference

scheme, the modal approach gives comparable results in the time and frequency domains. Despite

the modal truncation (which looks quite crude on the spectrograms) the number of modes retained

in the simulations need not be extremely large, especially for the linear and weakly nonlinear cases.

For strongly nonlinear vibrations, the number of modes to be retained depends on how ”thin” the
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Figure 11. Comparison between Finite Difference and modes for a steel plate vi-

brating in a linear regime. Time domain representation of the displacement for Finite

Differences ((a)) and modes ((b)); velocity spectrograms for Finite Differences ((c))

and modes ((d)).

plate is. A study in this sense was conducted and it was seen that, for plates of nondimensional size

α = 420, 450 transverse modes suffice to catch the dynamics of strongly nonlinear vibrations (at least

in a sound synthesis perspective). For plates of larger α, however, this number must be increased.

The number of Airy stress function modes can be set to 1/5 of the number of transverse modes for

strongly nonlinear vibrations, and to 1/10 for weakly nonlinear vibrations.

As compared to the Finite Difference scheme, the modal approach really becomes an alternative. The

”quality” of the sounds cannot be completely justified on an objective basis. For sure, the modal

approach offers possibilities that are unaccessible to a Finite Difference code (especially in terms of

loss implementation), and thus it should be regarded as an alternative scheme to do sound synthesis.

Sound synthesis of gongs in weakly and strongly nonlinear regimes using a modal approach has never

been performed before this work (to the knowledge of the author), and thus this should be regarded

as one of the major results of this thesis.
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Figure 12. Comparison between Finite Difference and modes for a steel plate vi-

brating in a weakly nonlinear regime. Time domain representation of the displace-

ment for Finite Differences ((a)) and modes ((b)); velocity spectrograms for Finite

Differences ((c)) and modes ((d)).
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Figure 13. Comparison between Finite Difference and modes for a steel plate vi-

brating in a strongly nonlinear regime. Time domain representation of the displace-

ment for Finite Differences ((a)) and modes ((b)); velocity spectrograms for Finite

Differences ((c)) and modes ((d)).





Conclusions and Perspectives

Conclusions

This thesis presented a solid numerical method to simulate the dynamics of von Kármán rectangular

plates. The method is based on modal projection and thus a great deal of work was spent in order

to find robust strategies to calculate the eigenmodes of the plate equations under various boundary

conditions. Particularly, the fully clamped linear plate equation was solved with great precision,

and a solid eigenvalue routine was developed using the Rayleigh-Ritz method in order to compute

hundreds of modes with great precision.

The case of the completely linear free plate was also solved using a simple expansion function series

and the Rayleigh-Ritz method. Not only this solution is in agreement with previously published

results, but it is also simpler and allows to look for high-frequency eigenmodes. The same expansion

function series was used to treat the more practical problem of a plate with free edges supported at

its centre.

The solution to the clamped plate problem allowed to treat in some detail the case of a simply

supported von Kármán plate with in-plane movable edges, because the boundary conditions for the

stress function are formally identical to those of a linear clamped plate. For such a problem, the

von Kármán equations were discretised on the linear eigenspaces, reducing the original system of

Partial Differential Equations to a system of coupled Ordinary Differential Equations. The coupling

coefficients were calculated with great precision and a stable, energy conserving time-integration

scheme was developed for the system of Ordinary Differential Equations. Symmetry properties and

useful vectorisation strategies allowed to construct a numerical code, written in MATLAB, able to

simulate the dynamics of von Kármán plates with hundreds of interacting modes.

The scheme was used primarily to perform sound synthesis of gong-like sounds. For the first time,

a modal approach was used to reproduce the dynamics of plates ranging from a linear regime to

a strongly nonlinear regime. From a sound synthesis perspective, the modal approach should be

regarded as an alternative to other numerical schemes, namely Finite Difference schemes. Although

it is difficult to quantify objectively the quality of the reproduced sounds, the modal scheme allows to

implement a very rich damping mechanism and thus it is, in this sense, more versatile than a Finite

Difference scheme.

The modal scheme was also used to calculate the Nonlinear Normal Modes of the von Kármán

plate. The scheme allowed for the first time to draw bifurcation branches to very high amplitudes

showing a very rich dynamics, particularily because of the presence of many internal resonances. The

139
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Hamiltonian dynamics was seen to be strongly modified by the introduction of damping and forcing

terms.

Finally, simulations obtained by running an energy conserving Finite Difference scheme allowed to

investigate the case of a plate in a strongly nonlinear regime displaying a cascade of energy, and thus

studied within the framework of Wave Turbulence. The case of an unstationary, undamped turbulence

was treated for the first time in the case of plates. A self-similar dynamics was recovered, and scaling

laws proposed. The case of a stationary, undamped turbulence was recovered by stopping the forcing,

and it was seen that the shape of the spectra is highly affected by forcing. In particular, the spectra

flatten in the absence of forcing. Geometrical imperfections were also added to the simulated plate,

and it was seen that they do not introduce significant changes in the scaling properties of the system.

Perspectives

This work has prototyped a modal scheme for sound synthesis of gong-like sounds. Its capabilities have

not been exploited in full. Particularily, it is advisable to port the scheme to another programming

language than MATLAB, notably C. In this way, the scheme could benefit from improved calculation

times and memory requirements.

A useful extension of this work could be represented by developing a scheme for circular plates. In

this case, analytical solutions for the eigenmodes exist for all boundary conditions in the form of

combinations of Bessel functions. Thus, it should be possible to calculate the nonlinear coupling

coefficients for different combinations of boundary conditions, including the important case of a plate

with a free transversely and in-plane edge. Once that the coupling coefficients are calcualated, one

may use the temporal scheme developed for this work is order to solve the system of Ordinary

Differential Equations. The case of a spherical shallow shell could be treated thereafter. Such

geometries are indeed very close to those of a gong or cymbal.

This work has proved that modal synthesis is possible even for strongly nonlinear regimes, and thus

it could represent a valid alternative when approaching the problems of the circular plate or the

spherical cap, which are notoriously difficult to treat in the context of Finite Difference schemes.



APPENDIX A

Matrices for the clamped plate eigenvalue problem

The stiffness and mass matrices for the clamped plate problem are set up as follows:

K(i, j) = K(mn, pq) =
∫ Lx

0

X ′′
m(x)X ′′

p (x)dx

∫ Ly

0

Yn(y)Yq(y)dy +

∫ Lx

0

Xm(x)Xp(x)dx

∫ Ly

0

Y ′′
n (y)Y ′′

q (y)dy+

2

∫ Lx

0

X ′
m(x)X ′

p(x)dx

∫ Ly

0

Y ′
n(y)Y

′
q (y)dy

M(i, j) = M(mn, pq) =

∫ Lx

0

Xm(x)Xp(x)dx

∫ Ly

0

Yn(y)Yq(y)dy

The integrals are

∫ Lx

0

X ′′
m(x)X ′′

p (x)dx =







720/L3
x; if m = p = 0

(π4m4 − 672(−1)m − 768)/(2L3
x); if m = p 6= 0

0 if m or p = 0 and m 6= p

−24(7(−1)m + 7(−1)p + 8(−1)m(−1)p + 8)/L3
x; otherwise

∫ Lx

0

Xm(x)Xp(x)dx =

141
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





10Lx/7; if m = p = 0

67Lx/70− (−1)mLx/35− 768Lx/(π
4m4)− 672(−1)mLx/(π

4m4); if m = p 6= 0

3Lx((−1)p + 1)(π4p4 − 1680))/(14π4p4); if m = 0 and p 6= 0

3Lx((−1)m + 1)(π4m4 − 1680))/(14π4m4); if p = 0 and m 6= 0

−(Lx(11760(−1)m + 11760(−1)p − 16π4m4 + 13440(−1)m(−1)p+

(−1)mπ4m4 + (−1)pπ4m4 − 16(−1)m(−1)pπ4m4 + 13440))/(70π4m4)

−(Lx(13440m
4 + 11760(−1)mm4 + 11760(−1)pm4 + 13440(−1)m(−1)pm4))/(70π4m4p4); otherwise

∫ Lx

0

X ′′
m(x)Xp(x)dx =







−120/(7L); if m = p = 0

−(768π2m2 − 47040(−1)m + 35π4m4 + 432(−1)mπ2m2 − 53760)/(70Lxπ
2m2); if m = p 6= 0

−(60((−1)p + 1)(π2p2 − 42))/(7Lxπ
2p2); if m = 0 and p 6= 0

−(60((−1)m + 1)(π2m2 − 42))/(7Lxπ
2m2); if p = 0 and m 6= 0

(24(m2 + p2)(7(−1)m + 7(−1)p + 8(−1)m(−1)p + 8))/(Lxπ
2m2p2)

−((108(−1)m + 108(−1)p + 192(−1)m(−1)p + 192))/(35Lx); otherwise

and similarly for the integrals involving the functions Y .



APPENDIX B

Matrices for the free plate eigenvalue problem

The stiffness and mass matrices for the completely free plate are set up as follows:

K(i, j) = K(mn, pq) =
∫ Lx

0

X ′′
m(x)X ′′

p (x)dx

∫ Ly

0

Yn(y)Yq(y)dy +

∫ Lx

0

Xm(x)Xp(x)dx

∫ Ly

0

Y ′′
n (y)Y ′′

q (y)dy+

∫ Lx

0

X ′′
m(x)Xp(x)dx

∫ Ly

0

Yn(y)Y
′′
q (y)dy +

∫ Lx

0

Xm(x)X ′′
p (x)dx

∫ Ly

0

Y ′′
n (y)Yq(y)dy−

(1− ν)

[
∫ Lx

0

X ′′
m(x)Xp(x)dx

∫ Ly

0

Yn(y)Y
′′
q (y)dy +

∫ Lx

0

Xm(x)X ′′
p (x)dx

∫ Ly

0

Y ′′
n (y)Yq(y)dy

−2

∫ Lx

0

X ′
m(x)X ′

p(x)dx

∫ Ly

0

Y ′
n(y)Y

′
q (y)dy

]

M(i, j) = M(mn, pq) =

∫ Lx

0

Xm(x)Xp(x)dx

∫ Ly

0

Yn(y)Yq(y)dy

The integrals are

∫ Lx

0

X ′′
m(x)X ′′

p (x)dx =







(144Lx)/(L
2
x − 12)2; if m = p = 0

(36((−1)m + 1)2(L2
x + π2m2)2)/(L3

x(L
2
x − 12)2) + (π3m3(2pim))/(4L3

x); if m = p 6= 0

(72((−1)p + 1)(L2
x + π2p2))/(Lx(L

2
x − 12)2); if m = 0 and p 6= 0

(72((−1)m + 1)(L2
x + π2m2))/(Lx(L

2
x − 12)2); if p = 0 and m 6= 0

(36((−1)m + 1)((−1)p + 1)(L2
x + π2m2)(L2

x + π2p2))/(L3
x(L

2
x − 12)2); otherwise

∫ Lx

0

Xm(x)Xp(x)dx =

143
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





(6Lx(L
4
x − 20L2

x + 120))/(5(L2
x − 12)2); if m = p = 0

Lx/2 + L3
x((4(L

2
x + π2m2)2(2L2

x + 6(−1)m + (−1)mL2
x − 6)2)/(3L6

x(L
2
x − 12)2)+

(2(3(−1)m + 3)(L2
x + π2m2)2(L2

x + 6(−1)m − 6))/(3L4
x(L

2
x − 12)2))+

((L2
x + π2m2)2(L2

x + 6(−1)m − 6)2)/(L3
x(L

2
x − 12)2)+

(9Lx((−1)m + 1)2(L2
x + π2m2)2)/(5(L2

x − 12)2)−

((2L2
x + 2π2m2)(L2

x + π2m2)(L2
x + 6(−1)m − 6)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(L3

x(L
2
x − 12)2)−

((2L2
x + 2π2m2)(3(−1)m + 3)(L2

x + π2m2)(2L2
x + 6(−1)m + (−1)mL2

x − 6))/(2Lx(L
2
x − 12)2)−

(2(2L2
x + 2π2m2)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(Lxπ

2m2(L2
x − 12))+

(2 cos(πm)(2L2
x + 2π2m2)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(Lxπ

2m2(L2
x − 12))−

(4Lx cos(πm)(3(−1)m + 3)(L2
x + π2m2))/(π2m2(L2

x − 12)); if m = p 6= 0

(L3
x((−1)p + 1)(π2L2

xp
2 − 60L2

x + π4p4 + 720))/(10π2p2(L2
x − 12)2); if m = 0 and p 6= 0

(L3
x((−1)m + 1)(π2L2

xm
2 − 60L2

x + π4m4 + 720))/(10π2m2(L2
x − 12)2); if p = 0 and m 6= 0

((3(−1)m + 3)(L2
x + π2m2)(L2

x + π2p2)(L2
x + 6(−1)p − 6))/(3Lx(L

2
x − 12)2)+

((3(−1)p + 3)(L2
x + π2m2)(L2

x + π2p2)(L2
x + 6(−1)m − 6))/(3Lx(L

2
x − 12)2)−

((2L2
x + 2π2m2)(L2

x + π2p2)(L2
x + 6(−1)p − 6)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(2L3

x(L
2
x − 12)2)−

((2L2
x + 2π2p2)(L2

x + π2m2)(L2
x + 6(−1)m − 6)(2L2

x + 6(−1)p + (−1)pL2
x − 6))/(2L3

x(L
2
x − 12)2)−

((2L2
x + 2π2m2)(3(−1)p + 3)(L2

x + π2p2)(2L2
x + 6(−1)m + (−1)mL2

x − 6))/(4Lx(L
2
x − 12)2)−

((2L2
x + 2π2p2)(3(−1)m + 3)(L2

x + π2m2)(2L2
x + 6(−1)p + (−1)pL2

x − 6))/(4Lx(L
2
x − 12)2)+

((L2
x + π2m2)(L2

x + π2p2)(L2
x + 6(−1)m − 6)(L2

x + 6(−1)p − 6))/(L3
x(L

2
x − 12)2)+

((2L2
x + 2π2m2)(2L2

x + 2π2p2)(2L2
x + 6(−1)m+

(−1)mL2
x − 6)(2L2

x + 6(−1)p + (−1)pL2
x − 6))/(3L3

x(L
2
x − 12)2)+

(Lx(3(−1)m + 3)(3(−1)p + 3)(L2
x + π2m2)(L2

x + π2p2))/(5(L2
x − 12)2)−

(2Lx cos(πm)(3(−1)p + 3)(L2
x + π2p2))/(π2m2(L2

x − 12))−

(2Lx cos(πp)(3(−1)m + 3)(L2
x + π2m2))/(π2p2(L2

x − 12))−

(2 sin((πp)/2)2(2L2
x + 2π2m2)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(Lxπ

2p2(L2
x − 12))−

(2 sin((πm)/2)2(2L2
x + 2π2p2)(2L2

x + 6(−1)p + (−1)pL2
x − 6))/(Lxπ

2m2(L2
x − 12)); otherwise

∫ Lx

0

X ′′
m(x)Xp(x)dx =
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





−(12Lx)/(L
2
x − 12); if m = p = 0

(4L4
x − 12L2

x − 12L2
x + 4L4

x + 24(−1)pL2
x + 4(−1)pL4

x − 12π2p2−

12π2p2 + 10L2
xπ

2p2 − (L4
xπ

2p2)/2 + 24(−1)pπ2p2+

4(−1)pL2
xπ

2p2−

(πL4
xp sin(2πp))/4 + 4L2

xπ
2p2)/(L3

x(L
2
x − 12)); if m = p 6= 0

0; if m = 0 and p 6= 0

−(6π2m2((−1)m + 1))/(Lx(L
2
x − 12)); if p = 0 and m 6= 0

(2(L2
x + π2p2)(12(−1)p sin((πm)/2)2 + 3(−1)mL2

x−

12 sin((πm)/2)2 + 4L2
x sin((πm)/2)2+

3(−1)m(−1)pL2
x + 2(−1)pL2

xsin((πm)/2)2))/(L3
x(L

2
x − 12)); otherwise

∫ Lx

0

X ′
m(x)X ′

p(x)dx =







(12L3
x)/(L

2
x − 12)2; if m = p = 0

(π2m2)/(2Lx)− (2(2L2
x + 2π2m2)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(L3

x(L
2
x − 12))+

(12((−1)m + 1)2(L2
x + π2m2)2)/(Lx(L

2
x − 12)2)−

+(4(L2
x + π2m2)2(2L2

x + 6(−1)m + (−1)mL2
x − 6)2)/(L5

x(L
2
x − 12)2)−

(4(−1)m(3(−1)m + 3)(L2
x + π2m2))/(Lx(L

2
x − 12))+

(2(−1)m(2L2
x + 2π2m2)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(L3

x(L
2
x − 12))−

(2(2L2
x + 2π2m2)(3(−1)m + 3)(L2

x + π2m2)(2L2
x + 6(−1)m + (−1)mL2

x − 6))/(L3
x(L

2
x − 12)2); if m = p 6= 0

(6Lx((−1)p + 1)(π2p2 + 12))/(L2
x − 12)2; if m = 0 and p 6= 0

(6Lx((−1)m + 1)(π2m2 + 12))/(L2
x − 12)2; if p = 0 and m 6= 0

(4(3(−1)m + 3)(3(−1)p + 3)(L2
x + π2m2)(L2

x + π2p2))/(3Lx(L
2
x − 12)2)−

(2 sin((πm)/2)2(2L2
x + 2π2p2)(2L2

x + 6(−1)p+

(−1)pL2
x − 6))/(L3

x(L
2
x − 12))− (2(−1)p(3(−1)m + 3)(L2

x + π2m2))/(Lx(L
2
x − 12))−

(2(−1)m(3(−1)p + 3)(L2
x + π2p2))/(Lx(L

2
x − 12))−

(2 sin((πp)/2)2(2L2
x + 2π2m2)(2L2

x + 6(−1)m + (−1)mL2
x − 6))/(L3

x(L
2
x − 12))−

((2L2
x + 2π2m2)(3(−1)p + 3)(L2

x + π2p2)(2L2
x + 6(−1)m + (−1)mL2

x − 6))/(L3
x(L

2
x − 12)2)−

((2L2
x + 2π2p2)(3(−1)m + 3)(L2

x + π2m2)(2L2
x + 6(−1)p + (−1)pL2

x − 6))/(L3
x(L

2
x − 12)2)+

((2L2
x + 2π2m2)(2L2

x + 2π2p2)(2L2
x + 6(−1)m + (−1)mL2

x − 6)×

(2L2
x + 6(−1)p + (−1)pL2

x − 6))/(L5
x(L

2
x − 12)2); otherwise
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and similarly for the integrals involving the functions Y .
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89. C. Touzé, O. Thomas, and A. Huberdeau, Asymptotic non-linear normal modes for large-

amplitude vibrations of continuous structures, Computers and Structures 82 (2004), no. 3132,

2671 – 2682.

90. A.F. Vakakis, Non-linear normal modes (NNMs) and their applications in vibration theory: an

overview, Mechanical Systems and Signal Processing 11 (1997), no. 1, 3 – 22.
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