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Aims 
 

Metallic materials exhibit a crystalline structure and are in essence heterogeneous 

materials. They are in fact polycrystals, each crystal presenting a continuous lattice 

orientation. All mechanical and functional properties of metals are strongly related to their 

microstructures, which are themselves inherited from thermal and mechanical processing. In a 

general view, the physical phenomenon induced by the thermo-mechanical processes 

generates complex microstructure changes and these microstructure evolutions modify the 

material properties. Thus, the understanding and modelling of these microstructure evolutions 

during thermo-mechanical processes are of prime importance concerning the prediction and 

the control of the material mechanical properties. In this work, the addressed relevant physical 

phenomena are recovery, recrystallization and grain growth. Microstructural transformations 

such as phase transformation or particles precipitation will not be discussed. 

The term recovery refers to changes in a deformed material which occur prior to 

recrystallization and which partially restore the material properties to their values before 

deformation. It is known that recovery is primarily due to modifications in the dislocations 

structure of the material. A part of the existing dislocations will be annihilated while the 

others are reorganised. Normally, the dislocations reorganize themselves into cells. 

Dislocation recovery corresponds to a series of events which are schematically illustrated in 

figure I.1. 

 

 
Figure I.1: Various stages in the recovery of a plastically deformed material [Humphreys, 2004]. 

 

Whether any or all of these stages occur during the annealing of a particular specimen 

will depend on a important number of parameters, including the material purity, strain, 

deformation and annealing temperature. A review of the  intensive work done concerning the 

recovery of deformed metals can be found in [Beck, 1954], [Bever, 1957], [Titchener, 1958] 

and [Nes, 1995]. 
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The recrystallization process involves the formation of new strain-free grains in certain 

parts of the material and the subsequent growth of these to consume the deformed 

microstructure. The location where these new grains will be formed depends on the material 

microstructure before plastic deformation. It is convenient to divide the recrystallization 

process into two regimes: nucleation which corresponds to the first appearance of new grains 

in the microstructure, and growth during which the new grains replace the deformed material. 

The progress of recrystallization with time is commonly represented by a plot of the 

volume fraction of material recrystallized (X) as a function of time. This plot usually has a 

characteristic sigmoidal form. Figure I.2 illustrates static recrystallization steps. 

 

 
Figure I.2: Static recrystallization scheme [images from Humphreys, 2004]. 

 

The grain boundary motion driving forces are the internal energy difference stored 

during plastic deformation (in the form of crystallographic defects, especially dislocations) 

between two adjoint areas (recrystallization phenomenon) and the reduction in the energy 

which is stored in the form of grain boundaries (grain growth phenomenon). In [Doherty, 

1997] and [Rios, 2005], the authors present a complete review of the recrystallization process.  

Recovery, recrystallization and grain growth processes can occur statically (after plastic 

deformation), or dynamically (during plastic deformation). The way these phenomena will 

occur is based on the material properties and the processing conditions (temperature and strain 

rate). 

Grain growth is a phenomenon occurring during and after a polycrystal full 

recrystallization and has the effect of increasing the average grain size at the expense of 

smaller ones that will tend to disappear. The grain growth kinetics is slower than the 

recrystallization kinetics. The grain growth driving force is the reduction in the material 

energy stored in the form of grain boundaries. Figure I.3 illustrates the grain growth 

phenomenon. 

 

 
Figure I.3: Grain growth scheme [images from Humphreys, 2004]. 

 

Although recrystallization often precedes grain growth, it is of course not a necessary 

precursor. The theoretical basis for understanding grain growth was laid in [Smith, 1948], 

[Smith, 1952], [Burke, 1952], [Hillert, 1965]. 

It is interesting to highlight that materials processing, including recrystallization and 

grain growth, is affected by the grain boundary properties. A grain boundary separates two 
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regions of the same crystal structure but of different orientation. The grain boundary is made 

of many crystal lattice defects (like dislocations and vacancies) with a thickness of a few 

atomic layers (figure I.4). 

 

 
Figure I.4: Scheme of a disordered grain boundary structure [Porter, 2008]. 

 

The nature of any given boundary depends on the misorientation of the two adjoining 

grains and of the orientation of the boundary plane relative to them. The lattices of two grains 

can be made to coincide by rotating one of them through a suitable angle about a single axis. 

In general the axis of rotation will not be simply oriented with respect to either grain or the 

grain boundary plane. However, there are two special types of boundary that are relatively 

simple: pure tilt and pure twist (figure I.5). The difference between these two simple 

boundaries is related to the rotation axis direction relative to the grain boundary. The first 

grain boundary type, the tilt boundary, occurs when the axis of rotation is parallel to the grain 

boundary plane while a twist boundary is formed when the rotation axis is perpendicular to 

the grain boundary.  

 

 
Figure I.5: The relative orientation of the crystals and the boundary forming (a) a tilt boundary and (b) a twist 

boundary [Porter, 2008]. 

 

Another convenient classification of grain boundaries is related to their misorientation. 

The first group corresponds to the grain boundaries whose misorientation is greater than a 

certain critical angle - high angle grain boundaries, and the second corresponds to those 

whose misorientation is smaller than this critical angle - low angle grain boundaries. The 

critical angle at which the transition from low to high angle boundaries occurs is typically 

taken between 10° and 15° for cubic materials. The difference in structure between low angle 

and high angle grains boundaries is illustrated by the bubble-raft model in figure I.6. 
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Figure I.6: Raft of soap bubbles showing several grains varying misorientation. Note that the boundary with the 

smallest misorientation is made up of a row of dislocations, whereas the high angle boundaries have a 

disordered structure in which individual dislocations cannot be identified [Shewmon, 1969]. 

 

High angle boundaries contain large areas of poor fit and have a relatively open 

structure. The bonds between the atoms are broken or highly distorted. In low angle 

boundaries most of the atoms fit very well into both lattices. Normally this boundary is 

formed by a few aligned dislocations. As a consequence, the lattice presents a very little free 

volume and the interatomic bonds are lightly distorted.  

Thus, a precise prediction of grain boundary motion remains also dependent of a precise 

description of the grain boundary physical properties according to its nature and to the 

thermal state. 

Finally, as already underlined, during a deformation, the microstructure of a metal 

changes in several ways, but, the most important change for grain boundary motion is the 

accumulation of dislocations. The stored dislocations are the main defects responsible for the 

internal energy increasing during plastic deformation. The sum of the energy of all 

dislocations represents the deformation stored energy. Knowing that every stage of the 

annealing process involves loss of some of the stored energy, the correct prediction of the 

stored energy after deformation is essential to correctly predict the microstructure evolution 

during annealing treatments. 

 

The objective of this Ph.D. thesis is the development of a numerical model able to 

predict microstructure evolution, including the material hardening, recrystallization and grain 

growth at the mesoscopic scale. The motivation behind the modelling of polycrystalline 

metallic material evolutions during thermo-mechanical treatments at this scale are: 

 

- from a technological point of view, assist the design of thermomechanical processes 

by taking into consideration microstructural features, such as crystallographic 

orientations, in order to account for macroscopic anisotropic behaviour, 

- the use of full field models, as the one presented in this work, allows the verification 

and the improvement of models which were developed based on theoretical 

assumptions which are not easily verified experimentally (mean field models), 

- from a more fundamental point of view, increase our understanding of the 

mechanisms operating at the microstructural scale.  
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Framework and layout of this thesis 
 

Even if the scope of the present work seems rather fundamental, the development of 

more accurate numerical models for the grain size predictions in metals during 

thermomechanical treatments is nowadays of prime importance in order to conform to  

increasingly tighter standards without excessive development costs, mainly in the nuclear and 

aeronautic domains. This observation seems perfectly illustrated by the fact that the present 

work, dedicated to models of polycristalline structures, was supported by an industrial 

consortium involving five partners. Indeed, this PhD thesis was conducted as a part of the 

MicroPro project which gathers the following partners: 

 

- ArcelorMittal/Industeel (www.industeel.info): hot rolled metallic plates producer. 

 

- Areva/Sfarsteel (www.areva.com): world-leading company in nuclear energy. 

 

- Ascometal (www.ascometal.fr): special steels pieces producer. 

 

- Aubert et Duval (www.aubertduval.fr): special steels pieces producer. 

 

- CEA (www.cea.fr): nuclear power applications developer. 

 

The manuscript is organized as follows: the first chapter presents a review of crystal 

plasticity and work hardening models existing in the literature. Also, a detailed description of 

the crystal plasticity model used during this Ph.D. thesis is presented. Two different hardening 

laws are presented and discussed. The first one does not take into account the size effects, 

contrary to the second one. The finite element implementation associated to the model with an 

implicit integration is exposed. After presenting the crystal plasticity models, the digital 

microstructure statistical generation together with the grain boundary description method are 

presented in chapter 2. Two different digital microstructure generation methods are discussed 

and tested in order to statistically obey the features of the considered microstructures: the 

Voronoï, and the Laguerre-Voronoï methods. The grain boundary description is performed 

with an implicit method capturing the grain interfaces and immerging them in a finite element 

mesh [Bernacki, 2009]. This method is based on a level-set approach allowing to define the 

different interfaces and to perform meshing adaptation. In chapter 3, crystal plasticity 

numerical results are presented and discussed. Two different test cases are used in order to 

validate the hardening laws implemented in the crystal plasticity model. The first one 

corresponds to a planar compression test (channel die test) on a 304L steel polycrystal. The 

second one corresponds to a simple compression test on a tantalum olygocrystal composed of 

six different grains. After presenting the crystal plasticity simulations results, an extension of 

the model developed in [Bernacki, 2008], [Bernacki, 2009] and [Logé, 2008] concerning the 

modelling of grain boundary migration in a full field context is proposed. In chapter 4, the 

addition of the grain growth phenomenon by capillarity to the full field model is detailed. A 

few academic tests are presented in order to validate the proposed grain growth algorithm, and 

this is followed by a 2D study of polycrystalline grain growth. Full field predictions are 

compared to those of different grain growth mean field models, and conclusions are drawn on 

the applicability of the latter. Finally, in chapter 5, static recrystallization is investigated. A 

first study analysing the influence of the capillarity effects during the recrystallization process 

is presented and, in a second part, the static recrystallization model is coupled to the crystal 

plasticity model detailed in the first chapter. Comparisons between experimental results on 

http://www.areva.com/
http://en.wikipedia.org/wiki/Nuclear_power
http://www.ascometal.fr/
http://www.aubertduval.fr/
http://www.cea.fr/
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304L steel and the numerical predictions obtained with the proposed new formalism are 

discussed. 

All the developments and calculations of this PhD thesis were performed with CimLib, 

a C++ finite element library developed at CEMEF [Digonnet, 2007]. 

The work involved in this PhD thesis has contributed to the following written 

communications: 

 

 A.L. Cruz-Fabiano, R. Logé and M. Bernacki, Assessment of simplified 2D grain 

growth models from numerical experiments based on a level set framework, 

submitted to Modeling and Simulation in Materials Science and Engineering in 

2013. 

 

and to the following oral communications: 

 

 M. Bernacki, K. Hitti, A.L. Cruz-Fabiano, A. Agnoli, R. Logé, Génération 

statistique de VERs et modélisation EF d’évolutions microstructurales, Journées 

thématiques MECAMAT, 10-11 Mai 2011, CEMEF, Sophia-Antipolis. 

 A.L. Cruz-Fabiano, R. Logé, M. Bernacki, Modelling of static and dynamic 

recrystallization processes at the mesoscopic scale in 304L stainless steel, 

Journées thématiques MECAMAT, 10-11 Mai 2011, CEMEF, Sophia-Antipolis. 

 A.L. Cruz-Fabiano, R. Logé, M. Bernacki, Comparison between different 

simplified grain growth models using “full field” modelling method results, 

ECCOMAS 2012, Vienna, Austria, September 10-14, 2012 
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Perdriset, E. Guyot, Modèles de recristallisation et de croissance de grains de 

l’acier inoxydable 304L et applications industrielles, Journée "Aciers 
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Saint Etienne. 

 M. Bernacki, N. Bozzolo, R. Logé, Y. Jin, A. Agnoli, A.L. Cruz-Fabiano, A.D. 
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Résumé français 
 

Ce chapitre constitue l’introduction de cette thèse. Les objectifs de ce travail de thèse 

ainsi que les concepts généraux de joints de grains,  restauration, recristallisation et croissance 

des grains y sont présentés. Finalement, l’organisation de ce manuscrit de thèse est détaillée et 

les contributions liées à ces travaux de thèse sont énumérées.  

 

  

  



 12 

 

 
 

 

 

Chapter 1 

 

Constitutive Behaviour of Polycrystalline Aggregates 
 

 

 

Contents 
 

1 Introduction ......................................................................................................................... 13 

2 Crystal Plasticity ................................................................................................................. 14 
2.1 Characteristics of deformed microstructure ................................................................... 15 

2.2 Components of a single crystal model ........................................................................... 18 
2.3 Hardening ....................................................................................................................... 19 

2.3.1 Hardening laws without size effects .................................................................... 20 

2.3.2 Hardening laws including size effects ................................................................. 22 

3 Single Crystal Model ........................................................................................................... 31 
3.1 Formulation .................................................................................................................... 31 

3.1.1 Elastic-Viscoplastic Formulation ......................................................................... 31 

3.1.2 Flow rule and hardening law ................................................................................ 34 
3.2 Time Integration Scheme of the constitutive law........................................................... 34 

4 Finite Element Formulation ............................................................................................... 36 
4.1 Balance laws ................................................................................................................... 36 
4.2 Variational formulation .................................................................................................. 37 

4.3 Time discretization ......................................................................................................... 38 
4.4 Spatial discretization ...................................................................................................... 38 

4.4.1 The MINI-element ............................................................................................... 39 

4.4.2 The discrete problem ............................................................................................ 40 

5 Resolution ............................................................................................................................. 42 
5.1 Non linear system of equation to be solved ................................................................... 42 

5.2 Resolution of the non linear system ............................................................................... 43 
5.3 General solution procedure and numerical implementation .......................................... 44 

6 Conclusion ............................................................................................................................ 45 
 



 13 

1 Introduction 
 

As it was discussed in the General Introduction, the main objective of this Ph.D. thesis 

is the development of a numerical model able to predict microstructure evolution, including 

the material hardening, recrystallization and grain growth at the mesoscopic scale. These 

microstructural evolutions are not independent from each other. In a simple way, one can say 

that recrystallization processes depend on the nature of the deformed state, especially the 

dislocation density distribution and the crystallographic misorientations. The material state 

after plastic deformation depends itself on the deformation process (rolling, wire drawing, 

extrusion, compression, tension, torsion, shear, etc.) and on the type of material. Both aspects 

play an important role in the recrystallization kinetics taking place during or after plastic 

deformation.  At the same time, grain growth kinetics is linked to the grain size distribution 

after total recrystallization. Since these phenomena are linked to each other, a first step of an 

accurate modelling of recrystallization and grain growth involves the correct prediction of the 

microstructural heterogeneities developed during plastic deformation. So, in this work, some 

of the phenomena involved in plastic deformation of metals are considered, in order to predict 

important features of a final deformed state. 

The simulation of the microstructure transformation during plastic deformation is not a 

simple problem. Numerous models have been developed to describe the microstructure 

evolution taking into account the material texture and the influence of the neighbouring grains 

(crystal plasticity models). In [Resk, 2010], the author presents an interesting review of 

several models. Here, only the main approaches are described. 

One of the first models proposed to take the texture into account was proposed by 

Taylor [Taylor, 1938]. This model, also known as full-constrained model, is still used in order 

to study the constitutive response of polycrystalline materials due to its low numerical cost. 

However, since this model assumes that all grains deform in the exact same manner as the 

polycrystal, violating the stress equilibrium, the interaction between neighbouring grains are 

not taken into account and, as a result, this model is not able to describe the features of the 

deformed state. Anyhow, in large scale applications, texture-induced anisotropy is fairly well 

predicted [Marin, 1998a], especially for materials presenting a high degree of crystal 

symmetry (like cubic crystals) and subjected to strains well beyond the elastic limit.  

To improve the prediction of polycrystalline deformation behaviour, other models such 

as relaxed-constraint [Honeff, 1981], [Kocks, 1982] and multi-grains-relaxed-constraint 

models [Van Houtte, 2002], [Van Houtte, 2005] have been developed. Relaxed-constraint 

models satisfy selected compatibility relations and ignore some intergranular equilibrium 

components. In other words, these models are based on the idea of freeing some degrees of 

freedom of each grain in order to improve textures predictions. One of the main conceptual 

faults of these relaxed-constraint models is the fact that the volume average of the velocity 

gradients over the whole polycrystal might not be equal to the macroscopic one. 

As opposed to the Taylor model, the self-consistent models satisfy both compatibility 

and equilibrium between grains in an average sense [Eshelby, 1957]. In [Eshelby, 1957] the 

authors considered the problem of determining the stress and strain in an elastic ellipsoidal 

inclusion surrounded by an unbounded elastic medium. The particle and the medium present 

the same properties. When dealing with polycrystalline materials, each grain is considered as 

an inclusion embedded in a polycrystalline medium composed of all other grains. The 

medium behaviour is determined by considering different representative grains. These grains 

represent all other grains having the same crystallographic orientation. Finally, the overall 

behaviour is computed as the average response of the representative grains. Later on, the 

model was extended to elastic-plastic behaviour [Berveiller, 1979], [Hill, 1965], and to 

viscoplastic behaviour [Hutchinson, 1976], [Lebensohn, 1993], [Molinari, 1987]. 
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Both Taylor type and self-consistent models assume that individual grains deform 

homogeneously. As a consequence, it is not possible to predict the exact positions of 

nucleation sites during recrystallization. In order to capture the intragranular heterogeneities 

developed during plastic deformation, two methods can be used. 

The first one is the finite element method. With this method, both intra and intergranular 

heterogeneities can be computed. The constitutive response of each finite element integration 

point is determined using the single crystal constitutive model. The main advantage of finite 

element models compared to the other polycrystal plasticity models is that morphological 

effects (grain size, shape and topology) can be taken into account. 

The second one is the fast Fourier transform (FFT). This method has been used to 

describe the mechanical behaviour of polycrystalline aggregates with periodic boundary 

conditions for elastic deformations [Brenner, 2009] and for rigid-viscoplastic conditions 

[Lebensohn, 2001], [Lebensohn, 2008], [Lee, 2011]. In [Lebensohn, 2001], the authors 

showed that the FFT method is numerically less expensive than the finite element method for 

problems of the same size. However, the need of periodic boundary conditions and of regular 

grids that cannot be adapted during the simulation represent the model principal limits.  

Concerning the crystal plasticity simulations, the work presented in this report is a 

continuation of the work developed by H. Resk [Resk, 2010] during her Ph.D. thesis at 

CEMEF.  The main objective of her Ph.D. project was the development of a crystal plasticity 

finite element model (CPFEM) and its implementation within the CimLib library. The 

hardening model considered during her Ph.D. thesis was a Voce type saturation law, a model 

where the dislocation density is implicitly represented. During the present Ph.D. thesis, due to 

the interest in modelling recrystallization processes based on crystal plasticity simulation 

results, the explicit computation of dislocation densities was adopted, i.e. dislocation densities 

were internal variables of hardening laws. Two kinds of hardening models are studied: the 

first one does not consider grain size effects, while the second one does. When size effects are 

considered, two kinds of dislocation density are taken into account: the statistically stored 

dislocations (SSDs) and the geometrically necessary dislocations (GNDs). 

In this chapter, a bibliographic review of the crystal plasticity theory is presented. 

Different hardening laws that can be found in the literature are highlighted, and the 

differences between the two dislocation types (SSDs and GNDs) are discussed. In a second 

part, the single crystal plasticity model implemented in the CimLib library is presented and 

finally, the finite element implementation of the above constitutive laws is detailed, in the 

context of an implicit integration. 

 

2 Crystal Plasticity 
 

In crystal plasticity theory, the material plastic deformation is modelled using the slip 

system activity concept. Dislocations are assumed to move across the crystal lattice along 

specific slip systems, which are characterized by specific crystallographic planes and 

directions. When the material is subjected to loading, the applied stress resolved along the slip 

direction on the slip plane initiates and controls the extent of dislocation glide. This latter has 

the effect of shearing the material whereas the material volume remains unchanged and the 

crystal lattice remains constant. Moreover, the crystal lattice can deform elastically. However, 

elastic strains are small compared to plastic strains and are sometimes neglected in crystal 

plasticity models. Finally, the crystal lattice can also rotate to accommodate the applied 

loading. This lattice rotation (or spin), is responsible for texture development. The concept of 

lattice rotation in crystal plasticity is not, at first hand, easy to grasp, especially compared to 

material rotation (or rigid body rotation). In [Peeters, 2001], the authors illustrate well this 

fundamental difference with Figure 1.1. 
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Figure 1.1: “(a) and (b) A shear γ on a slip plane does not cause the lattice to rotate, although a material 

vector may rotate; (b) and (c) An additional rotation - which also causes the crystal lattice to rotate - will bring 

the crystal in a position corresponding to the strain forced upon it: e.g. pure elongation in the direction AC” 

[Peeters, 2001]. 

 

Normally, dislocation slip takes place on most densely packed planes and directions. In 

the case of FCC metals (like the 304L austenitic steels), slip occurs in {111} planes and 

<110> directions. Therefore, crystallographic slip is assumed to occur on the 12 octahedral 

{111}<110> slip systems. These considerations form the basis of classical crystal plasticity 

theory. Other modes of deformation in polycrystals, like twinning or grain boundary sliding, 

are neglected in this discussion. 

 

2.1 Characteristics of deformed microstructure 
 

As it was discussed in the General Introduction, the material microstructure after plastic 

deformation plays an important role in recovery, recrystallization and grain growth 

phenomena. In this paragraph, a brief review of the microstructure changes suffered by the 

material during thermo-mechanical process is presented.  

When polycrystalline materials, with an assumed random crystallographic texture, 

plastically deform, deformation is essentially heterogeneous even under simplified condition. 

This is a consequence of the interaction between neighbouring grains leading to the formation 

of complex microstructures. During the material deformation, its microstructure changes in 

diverse ways. First, the grains shape changes and, often, an increase in the total grain 

boundary area takes place. The new grain boundary areas are created during deformation by 

the incorporation of some of the dislocations that are continuously created. The rate of 

increase of grain boundary area per unit volume depends on the mode of deformation. Figure 

1.2 illustrates the calculated increase in the grain boundary area as a function of strain for 

several deformation modes.  
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Figure 1.2: Rate of growth of grain boundary area per unit volume (Sv) for different modes of deformation 

assuming an initial cubic grain size D0, [Humphreys, 2004]. 

 

Nucleation of new grains normally occurs on the areas near the grain boundaries. As a 

consequence, the increase in the grain boundary surface may impact the nucleation of new 

grains during recrystallization.  

A second main microstructural change is the appearance of an internal structure within 

the grains. Once again, this material change is a result of the accumulation of dislocations 

during plastic deformation. Figure 1.3 summarises the main features of the deformed state 

according to their length scale.  

 

 
Figure 1.3: The hierarchy of microstructure in polycrystalline metal deforming by slip. The various features are 

shown at increasing scales: (a) dislocations, (b) dislocation boundaries, (c) deformation and transition bands 

within a grain, (d) specimen and grain scale shear bands. [Humphreys, 2004]. 

 

Shear bands (Figure 1.4a) are non-crystallographic in nature and may pass through 

several grains. They are a result of plastic instability and it can be compared to the ‘necking’ 

occurring in a tensile test. Deformation or transition bands (Figure 1.4b) are the consequence 

of subdivision within grains into regions of different orientations. This is a consequence of 

either heterogeneous stress transmitted by neighbouring grains or the intrinsic instability of 

the grains during plastic deformation. At lower scale, the deformed polycrystalline aggregate 

is made of cells or sub-grains (Figure 1.4c and 1.5b). These cells are essentially low angle 
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grain boundaries which subdivide the grain, producing heterogeneities inside the different 

grains. This is a consequence of having non homogeneous dislocations distributions. Each cell 

boundary contains a rich density of entangled dislocations and the cells bulk areas are almost 

dislocation free. Finally, dislocations can also exist in random structures (Figure 1.5a and 

1.5c), especially after low strains. In metals which do not form cells, such diffuse 

arrangements of dislocations are found even after large strains. 

 

  
(a) (b) 

 
(c) 

Figure 1.4: (a) Shear bands in Al–Zn–Mg alloy cold rolled 90%, (b) deformation bands (B) in a grain (A) in Al-

1%Mg, (c) cell structure in 25% cold rolled copper. [Humphreys, 2004]. 

 

  

(a) (b) 

 
(c) 

Figure 1.5: TEM bright field images of an Al alloy (5005) deformed at (a) 2% and (b) 10% and of another Al 

alloy (3003) deformed at 2%.(c) [Trivedi, 2004]. 

  

Finally, during deformation the crystallographic orientations change relative to the 

direction(s) of the applied stress(es). These changes are not random and involve rotations 

which are related to the crystallography of the deformation (as discussed in the introduction of 
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section 2). As a consequence the grains acquire a preferred orientation (texture), which 

becomes stronger as deformation proceeds.  

Since annealing processes (recovery, recrystallization and grain growth) involve the loss 

of some of the energy stored in the material during plastic deformation, first of all, the 

material microstructure induced by plastic deformation must be correctly characterized and/or 

modelled.  

 

2.2 Components of a single crystal model 
 

In order to account for the mechanics of grain structure heterogeneous deformation, 

crystal plasticity models are based on microstructural variables such as crystallographic 

orientations and dislocation densities. Polycrystal models are based on single crystal models 

as illustrated in Figure 1.6.  

 

 
Figure 1.6: From polycrystal level to slip system level [Resk, 2010]. 

 

In Figure 1.6, poly corresponds to the macroscopic stress applied on the material. Using 

continuum mechanics, we are able to compute the local stress c  and, using crystal plasticity 

theory, we compute the critical resolved shear stress (CRSS)   for slip system α. Once the 

CRSS value is known, the dislocation slip rate   is computed and, based on the dislocation 

slip rate, we are able to compute the local strain ( c ). Finally, based on the computed c , the 

macroscopic strain is calculated ( polyE ).  

Three components are needed in order to describe the mechanical behaviour of a single 

crystal. The first one is a kinematic framework describing the motion of the single crystal. 

Generally, the kinematic decomposition used in crystal plasticity is the multiplicative 

decomposition (originally developed by [Bilby, 1957], [Kröner, 1971], [Lee, 1967] and [Lee, 

1969]) as opposed to an additive decomposition [Shabana, 2008] which is normally used for 

small deformations. In classical plasticity theory, if elastic behaviour is considered, the 

decomposition is composed of a plastic and an elastic term.  

Secondly, an elastic relation describing the elastic behaviour depending on the crystal 

structure of the material is needed. Elastic strains are small compared to plastic ones but are 

sometimes important to consider if the aim of the simulations is to compute residual stress 

[Marin, 1988a]. The assumption of small elastic strains enables nevertheless simplifications in 

the governing equations [Marin, 1988b]. In others applications where elasticity is not of 

concern, the elastic behaviour is neglected [Beaudoin, 1995]. 
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Finally, the evolution rules for the intragranular variables of the model, flow rule and 

hardening rule, need to be established.  Different forms of these equations can be found in the 

literature. In the following, we will concentrate on viscoplastic flow rules.  

In its simplest form, the viscoplastic behaviour is described by a power law, as first 

introduced by [Hutchinson, 1977]: 

 

 


 




 sign

m

c

1

0
   (1.1) 

 

where  MT : is the resolved shear stress, 0  is a reference slip rate, m the sensitivity 

exponent and c  the CRSS for slip system α [Delannay, 2006], [Erieau, 2004], [Marin, 

1988b]. A rate sensitive formulation is used here in order to avoid the non-uniqueness 

problem associated with the identification of the active slip systems in rate independent 

formulations. 

 

2.3 Hardening 
 

The hardening rule represents the strain-induced evolution of the material resistance to 

plastic deformation. This strain-induced evolution is a consequence of the increased number 

of dislocations present in the material during plastic deformation. Although the hardening 

depends on the dislocation density existing in the material, this quantity is not always used 

explicitly in the calculation. In [Resk, 2009], [Resk, 2010], [Logé, 2008] the authors use the 

Voce type saturation law in order to compute the material hardening: 
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where 0  and sat  are, respectively, the initial and saturation values of CRSS, 0H is a 

hardening coefficient. In [Iadicola, 2012] the authors use another example of implicit 

hardening law. In this case, the increase of the CRSS form primary work-hardening is given 

by an extended Voce hardening law: 
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where  ,  01   ,  0 and 
1  are the accumulated slip (shear), the back-extrapolated CRSS, 

the initial hardening rate and the asymptotic hardening rate on each slip system, respectively. 

In this paper the authors incorporate latent hardening of multiple slip planes allowing the 

model to explain the decrease in flow stress when changing from equal-biaxial to uniaxial 

deformation. 

Hardening models can be more physically-based if expressed in terms of dislocation 

densities and if the basic mechanisms of dislocation generation and annihilation are 

considered. Moreover, strain gradient concepts, which lead to size-dependent effects, can be 

introduced directly at the level of the hardening model. In both cases, the CRSS is often given 

by: 
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Tc b   0 , (1.4) 

 

where α is a constant,  is the elastic shear modulus, b  the Burgers vector amplitude, and 
T  

the “total” dislocation density (i.e. considering all types of dislocations). Differences arise 

mainly from the way of computing the evolution of one or more dislocation densities. 

 

2.3.1 Hardening laws without size effects  
 

In this paragraph the size effects are not taken into account, meaning that the 

deformation gradient in the material is no considered when calculating the dislocation 

densities. In other words, only the statistically stored dislocations (SSDs) are considered.  

A common way of writing the dislocation evolution equation is to consider two terms, 

one due to hardening (+), and the other due to annealing (-): 

 

.)()(      (1.5) 

 

The hardening term usually relates to Frank-Read sources of dislocations, while the annealing 

term is connected to the annihilation of parallel dislocations of opposite signs. An exception 

for this kind of presentation is the power law [Montheillet, 2009]: 
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with 0 , since it leads to closed–form expressions. In this case, K1 is a material parameter 

related to the material hardening. The dislocation density rate decreases with strain, even 

though the model does not present a specific term for the recovery. 

The second hardening law is the Yoshie-Laasraoui-Jonas equation [Laasraoui, 1991]: 
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where K1 and K2 are two material parameters, related to the production and the annealing of 

dislocations, respectively. K1 is a positive parameter so as the dislocation density increases 

with the increase of the plastic deformation by slip over all the slip systems. However, the 

increase of the number of dislocations favours on the other hand the annealing mechanism as 

the more dislocations, the higher the probability they come in contact to one another. This 

explains the 2K  term, with K2 a positive parameter. In this case, stress saturation is 

reached when 
2

1

K

K
 . 

A third widely used model is the Kocks-Mecking equation [Kocks, 1976]: 

 





21 KK 




. (1.8) 

 

Here, once again, K1 and K2 are two material parameters representing respectively the 

production and the annealing of dislocations. In this case we consider that the dislocation 

production also increases with the increase in dislocation density. The increase of the number 

of dislocations favours not only the annealing mechanism but also the creation of new 
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dislocations by a Frank-Read source mechanism. In this case, stress saturation is reached 

when  2

21 KK . 

Finally, a more general differential equation for the material hardening can be computed 

[Montheillet, 2009]: 
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The hardening law represented by Equation 1.9, is able to represent both Yoshie-

Laasraoui-Jonas ( 0  - Equation 1.7) and Kocks-Mecking ( 21 - Equation 1.8) 

relations. However, it is valuable to observe that any other expression can be used.  

In [Estrin, 1998a], static recovery is taken into account by including an extra term to the 

above Kocks-Mecking equation: 
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with U0 being the activation energy, β and r0 constants and
Bk  the Boltzmann constant.  

Finally, more sophisticated formulations to calculate the dislocation evolution during 

plastic deformation can be found in the literature. As an example, in [Roters, 2000], Roters et 

al. propose a model based on three different kinds of dislocations: w represents the immobile 

dislocations that we find in the material cell walls; i  represents the immobile dislocations 

inside the cells, and m  the mobile dislocations inside the cells. Figure 1.7 illustrates these 

different types of dislocations. 

 

 
Figure 1.7: Schematic drawing of the arrangement of the three dislocation classes considered in the three-

internal variables model: mobile dislocations (ρm), immobile dislocations in the cell interiors (ρi) and immobile 

dislocations in the cell walls (ρw) [Roters, 2000]. 

 

For each dislocation type an evolutionary equation is proposed. These equations are 

based on physical phenomena of generation and annihilation of dislocations. The mobile 

dislocations carry the plastic strain and it is assumed that the mobile dislocations density can 
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evolve according to three mechanisms: the formation of dislocation dipoles, the formation of 

dislocation locks, and annihilation. It is interesting to note that dislocation dipoles can still 

move, but since their motion does not contribute to the net strain, they are no longer 

considered in the class of mobile dislocations. Consequently, the evolution Equation 1.5 

applied to mobile dislocations becomes: 

 

(dipole)-(lock)ion)(annihilat   mmmmm   . (1.12) 

 

Considering the immobile dislocations ( i ), the rate of increase of the dislocation 

density inside the cells is equal to the decrease of the mobile dislocation due to the formation 

of locks ( (lock)

m ). Since locks cannot glide, the only process to decrease the immobile 

dislocation density is annihilation by dislocation climb. Based on these considerations, the 

evolutionary equation for the immobile dislocations becomes: 

 

(climb).-(lock)(climb)   imiii    (1.13) 

 

The third type of dislocations concerns the immobile dislocations in the cell walls w . 

These dislocations undergo the same processes as those in the cell interiors, but there is one 

additional process, which contributes to the increase of this particular dislocation density. It 

can be assumed that all dislocation dipoles finally end up and accumulate in the cell walls. As 

dipoles are created in the whole volume, but stored only in the walls, they represent the main 

mechanism of w  generation. As a consequence, the evolutionary equation for these 

dislocations is: 
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where wf  is the volume fraction of cell walls. All terms of these different evolutionary 

equations are detailed with various expressions in [Roters, 2000]. In [Estrin, 1998b] Estrin 

proposes a similar model but considering only two dislocation types: immobile dislocations in 

cells walls (ρw) and dislocations inside the cells (ρc). 

The difficulty when dealing with several dislocation types is related to the introduction 

of several material parameters which are often difficult to identify. This largely explains the 

success of simpler equations like those of Yoshie-Laasraoui-Jonas [Laasraoui, 1991] or 

Kocks-Mecking [Kocks, 1976], discussed earlier.  

 

2.3.2 Hardening laws including size effects 
 

When a polycrystalline material is subjected to a stress, the dislocation slip systems are 

activated and the material is plastically deformed. Determining which slip systems will be 

activated in each grain of the polycrystal depends on the grain crystallographic orientation and 

on the crystallographic texture of the material [Sarma, 1996], [Van Houtte, 2005]. In addition, 

differences in the crystallographic orientation between neighbouring grains induce a 

heterogeneous plastic deformation. As we can see in Figure 1.8, if each grain is caused to 

undergo its uniform strain, the result is the formation of overlaps in some places and voids in 

others.  For this reason, a certain amount of dislocations must be introduced into the material 

in order to ensure the crystal lattice continuity.  
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Figure 1.8: If each grain of a polycrystal, shown at (a), deforms in a uniform manner, overlap and voids appear 

(b). These can be corrected by introducing geometrically necessary dislocations, as shown at (c) and (d) [Ashby, 

1970]. 

 

Several examples found in the literature illustrate the importance of these geometrically 

necessary dislocations in the mechanical behaviour of the material [Gerken, 2008a], [Gerken, 

2008b], [Petch, 1953], [Hall, 1951], [Chen, 1998], [Papadopoulos, 1996]: 

 

- The Hall-Patch relation [Petch, 1953], [Hall, 1951], which connects the yield strength 

with the grain size. The increase in the yield strength with the decrease of the grain size is 

explained by the presence of grain boundaries, which represent obstacles to dislocation slip. 

The presence of dislocations due to plastic deformation gradient has an important role 

explaining this phenomenon.  

- the initiation and propagation of cracks across grains are highly dependent on 

deformation gradient effects. Chen [Chen, 1998] showed a maximum shear stress up to three 

times greater than that estimated with the conventional elastic-plastic fracture mechanics. 

- Papadopoulos and Panoskaltsis [Papadopoulos, 1996] discussed the importance of 

these plastic deformation gradients for the fatigue resistance of metals.  

 

The total density of dislocations which can be found in a slip system α is expressed as: 

 
  GST  . (1.15) 

 

In this expression, S
 corresponds to the statistically stored dislocation density (SSD) 

and G
 corresponds to the geometrically necessary dislocations (GND) introduced in the 

model to ensure the crystal lattice continuity.  

 

GNDs and SSDs 

 

The concept of GNDs was first proposed by Nye [Nye, 1953] and Ashby [Ashby, 

1970]. The GNDs appear in areas of strain gradient, thus ensuring the crystal lattice 

continuity.  These regions of deformation gradients are a consequence of the existence of the 

geometric constraints of the crystal lattice, that is to say, inconsistencies in the crystal lattice 

due to the presence of non-uniform plastic deformations, [Arsenlis, 1999], [Evers, 2002], 

[Ma, 2006]. 
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(a) (b) 

Figure1.9: Diagram of the accumulation process of geometrically necessary dislocations (GNDs) edge type (a) 

and screw type (b) [Arsenlis, 1999]. 

 

Figure 1.9 illustrates the GNDs formation process. A crystal divided in several blocks is 

submitted to a shearing stress. Each block of the crystal will suffer a different plastic 

deformation which is not necessarily the same as the neighbouring blocks. The dislocations of 

the same type but with different sign will annihilate. The dislocation excess resulting from 

this annihilation step is proportional to the gradient strain in the direction of the dislocation 

slip [Abrivard, 2009]. In other words, we can say that this dislocation excess is proportional to 

the plastic strain gradient.  

During plastic deformation, grain boundaries areas are more susceptible to plastic 

deformation gradients. As a consequence, the formation of GNDs near the grain boundary 

areas is favoured. The GNDs formed in this area can be identified by transmission microscope 

images as dislocations rooted in the grain boundaries areas. In [Yu, 2005], Yu performed this 

kind of analysis using aluminium samples formed by ultrafine grains initially free of 

dislocations. The presence of GNDs results in an increase of the strain energy near the grain 

boundaries due to the relative rotation between the grains. In other words, the presence of the 

GNDs around the grain boundaries affects the material hardening.  

The GNDs are immobile dislocations. They remain in the areas of strain deformation to 

ensure the continuity of the material. Since the GNDs are immobile dislocations, they do not 

have a significant influence on plastic deformation. However, due to their static nature, these 

dislocations work as obstacles for the slip of other dislocations. As a consequence, the GNDs 

have an important role in the material hardening.  

The SSDs are the dislocations accumulated in the material during homogeneous plastic 

deformation. These dislocations can be divided in two different groups. The first one is the 

mobile SSDs, which are able to glide over activated slip systems. The second one corresponds 

to the immobile SSDs. In this case the dislocations are immobile either because they belong to 

an inactive slip system, or because they are anchored dislocations.  

Physically there is no difference between GNDs and SSDs. They cannot be 

distinguished by image analysis methods. The difference between these two different types of 

dislocations is the role they play during plastic deformation. A second difference is the 

distribution of their sign in space. The SSDs, as a result of their statistical nature, present a 

random distribution across the grains. Some of these dislocations cancel the influence of the 

others and, as a consequence, the SSDs do not contribute to the plastic deformation 

heterogeneity. Unlike the SSDs, the GNDs sign is strongly dependent on the geometry. 

Therefore, the GNDs present a high periodicity since these dislocations exist to ensure the 

material continuity in areas of deformation gradient, for example at the grain boundaries. The 

scheme of Figure 1.10 illustrates the difference between these two types of dislocations. 
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(a) (b) 

Figure 1.10: Schematic illustration of dislocation sign distribution for (a) SSDs and (b) GNDs. 

 

To sum up we can say that the SSD density is a characteristic of the material, that is, of 

the crystal structure, shear modulus, stacking fault energy, etc. On the other hand, the GND 

density is a characteristic of the microstructure, that is, the geometric arrangement and size of 

grains and phases. 

 

Crystal plasticity models based on plastic deformation gradient 

 

Efforts to incorporate inhomogeneities of plastic deformation in the standard models of 

continuum mechanics are multiple, but the proposed theories can be classified into two 

groups: 

 

1 - High-order or top down: the material behaviour is considered to be a function of 

the material deformation and/or the stress state. In this case, the determination of the stress 

and deformation states is considered crucial for determining the mechanical behaviour and the 

evolution of the state of the material. From a more practical point of view, this type of model 

introduces significant changes in the finite element formulation of the classical crystal 

plasticity model. Ohno and Okumura [Ohno, 2007], Gerken and Dawson [Gerken, 2008a], 

[Gerken, 2008b], Gurtin [Gurtin, 2008], [Gurtin, 2002], [Gurtin, 2000] proposed this kind of 

approach. 

 

2 - Low-order or bottom up: the material behaviour is considered as dependent on the 

action of dislocations, and the definition of this dependence through time defines the 

behaviour and material state. This kind of approach is often easier to implement, as compared 

to the higher order models, since the classical crystal plasticity formulation remains 

unchanged. In order to take into account the GNDs effects, the equation of dislocation density 

evolution in time is modified. Evers [Evers, 2004], Bassani [Bassani, 2001], Beaudoin 

[Beaudoin, 2000], Voyiadjis [Abu Al-Rub, 2006], Busso [Busso, 2000], Acharya [Acharya, 

2001], [Acharya, 2004], Ma [Ma, 2006], Acharya and Bassani [Acharya, 2000] proposed this 

kind of model. 



High-order/topdown models 

 

The model proposed by Gurtin [Gurtin, 2008], [Gurtin, 2002], [Gurtin, 2000] can be 

summarized by the following: 

 

1 – Multiplicative decomposition of deformation gradient tensor (F) in elastic (F
e
) and 

plastic (F
p
) portions; 

2 – The mechanical model is linked to the work done by each active slip system. Energy 

principles account for the work associated with each activated slip system. A system of 

microforces also associated to dissipated work accompanies that introduced by dislocation 
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slip. The microforces system consists of a stress vector, 
 , and a scalar value representing 

the internal forces  with a microforce balance that is supplemental to the classical 

Newtonian balances of momentum. Denoting  the stress projected to the slip plane α, the 

microforces equilibrium equation is given by: 

 

0  Div ; (1.16) 

 

3 – A mechanical version of the second thermodynamic law is proposed. In this case, 

the idea that the internal increase in the material internal energy is not greater than the work 

performed by each slip system is considered. Thus, an energy inequality is established: 

 

  0.
1

1  



A

e gradCLJ


   , (1.17) 

 

with  the material internal energy, C the Cauchy stress tensor, 1 eee FFL   the elastic 

deformation rate tensor, eFJ det  and 1det pF  (plastic deformation with volume 

conservation). From the inequality 1.17, constitutive equations for 
  and  are established: 

 

 GTSTSJH t    1)(  , (1.18) 

 

)(1  TsmFJ e  
, (1.19) 

 

where α = 1, 2, …, A labels the individual slip systems and A is the total number of slip 

systems existing in the material. 

Substituting Equations 1.18 and 1.19 into the balance Equation 1.16, the equation used 

to compute the resolved shear stress on a slip system α is obtained: 

 

   )()( 11   TsmFJdivGTSTSJH et   ,        (1.20) 

 

where 
  )( H characterizes the stress dependency on the dislocations slip rate, G is the 

geometrically necessary dislocations (GNDs) density, and 
G

G
T






)(
 represents the GNDs 

energetic contribution to the material hardness. T is a function of partial derivatives that do 

not exist in the classical crystal plasticity model. Moreover, when determining the constitutive 

equations of the model, the internal energy of the material ( ) is expressed as the sum of the 

elastic energy of the material added to an energy value due to the presence of a small amount 

of crystalline defects. The model is therefore only valid for small plastic deformation.  

The tensor G is written as a function of an edge dislocation density (
E ) and a screw 

dislocation density ( S ), as follows: 

 

  


  slssG ES ,    (1.21) 

 

where s  is a vector parallel to the Burgers vector ( b ),  sml  , with m  the normal 

to the slip plane.  ss   and  sl  are canonical dislocation dyads. If  bl  is a 
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dislocation dyad, for an edge dislocation  bl   and for a screw dislocation  bl  . S  

and 
E  are calculated using equations proposed by [Arsenlis, 1999]:  

 
  gradlgrads SE . and .  .                                                        (1.22) 

 

Finally, the addition of a microforces tensor requires the need for supplementary 

boundary conditions beyond the classical macroscopic boundary conditions used. These extra 

boundary conditions are used in order to solve the partial differential equations (PDEs) that 

represent the non-local yield conditions while the standard boundary conditions are used to 

solve the PDEs that represent the standard force balance. Two extra boundary conditions are 

needed: first, if a grain boundary is considered to be “rigid”, i.e. it does not allow the 

dislocation passage, the boundary condition is assumed to be 0 . However, if the grain 

boundary does allow the dislocation passage, only shear stress is assumed to operate at the 

boundary, and the condition is 0. n . 

Ohno and Okumura [Ohno, 2007] proposed a model that takes into account the GNDs 

energy to analyze the grain size impact on the material initial yield strength. The energy value 

is used to construct a high order stress tensor. Both the GNDs energy and the high stress 

tensor are incorporated in Gurtin’s [Gurtin, 2008], [Gurtin, 2002], [Gurtin, 2000] theory of 

plastic deformation gradient. The model has been applied to the determination of the yield 

strength dependence on the grain size of 2D and 3D single crystals. The model is however not 

suited for the modeling of large plastic deformation of polycrystalline materials. 

In [Gerken, 2008a], [Gerken, 2008b], Gerken and Dawson proposed another high-order 

model example. This model is based on the multiplicative decomposition of the gradient 

deformation tensor into three parts. Proposing this multiplicative decomposition, their idea is 

to develop a more accurate representation of the mechanism responsible for deformation. In 

the classical crystal plasticity model, the gradient deformation tensor is usually decomposed 

into two parts: one related to the reversible or elastic part of the deformation, and the second 

one to the permanent or plastic part. In the new model, the third term of the gradient 

deformation tensor corresponds to the “long range” strain that is a deformation of the lattice 

due to dislocations remaining in the lattice (the GNDs). This long range deformation is related 

to slip gradient which results in a differential equation relating the total deformation to the 

three deformation mechanisms represented by the three factors of the multiplicative 

decomposition. Figure 1.11 illustrates the multiplicative decomposition of the gradient 

deformation tensor used in this model. 

 

 
Figure 1.11: Multiplicative decomposition of the deformation gradient including terms for crystallographic slip, 

long range strain, rotation and elastic strain. 
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In Figure 1.11, F
e 

represents the elastic part of the deformation which can be 

decomposed into two parts: U
el
 , corresponding to the stretching of the crystal lattice, and R* , 

representing the lattice rigid rotation. F
d
 represents the deformation induced by dislocations, 

which can also be divided into two parts. The first one, F
p
, represents the permanent 

deformation due to dislocation slip. The second one, F
b
, represents a long range deformation 

due to the GNDs distribution in the crystalline structure. 

Based in this assumption, the shear rate along each active slip system is given by: 

 

 




 


 sgn

1

0

m

g 







  ,     (1.23) 

 

where m the strain rate sensitivity,  the shear stress projected to the slip system, and 
g the 

hardness of the slip system. 
g depends on the SSDs and GNDs densities and is given by: 
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The functions )(1 G  and 














ix
G


2  represent the hardness due to the presence of SSDs, 

and GNDs, respectively. In Equation 1.26 d represents the dislocation slip direction.  

Unlike the model proposed by Gurtin [Gurtin, 2008], [Gurtin, 2002], [Gurtin, 2000], 

this model proposed by Gerken and Dawson [Gerken, 2008a], [Gerken, 2008b] allows the 

modeling of GNDs effects for large plastic deformation, which makes its use more interesting 

in the context of recrystallization phenomena. Furthermore, the model evaluates the GNDs 

effects not only on the material stress state (Equation 1.24), but also on the material 

deformation (F
b
). The F

b
 tensor allows the estimation of the crystal lattice rotation due to the 

presence of GNDs. 

 

Low-order/bottom up models 

 

All low order methods rely on an internal state variable approach to determine the 

macroscopic response of the material whereby strain gradient effects are introduced directly 

into the evolutionary laws of the state variables. The strain gradient effects are incorporated 

by determining the GND density and distribution based on the Nye’s tensor. The Nye’s tensor 

gives a measure of the plastic deformation incompatibility. In a physical way, Nye’s tensor 

can be interpreted as a measure for the closure failure of Burger’s circuit enclosing an 

infinitesimal surface. The inner product of Nye’s tensor with the unit normal vector n of 

surface S is integrated over the surface. 
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
S

ndSG . , (1.27) 

 

with G being the cumulative Burger’s vector. This vector represents the GNDs density 

enclosing the surface S. Finally, the Nye’s tensor is given by 

 

  pp FFcurl  , (1.28) 

 

where F
p
 is the plastic deformation gradient. 

Bassani [Bassani, 2001] and Acharya [Acharya, 2000] propose a model that takes into 

account the influence of GNDs and SSDs implicitly. The CRSS is calculated being 

proportional to the Nye’s tensor. However, dislocation density values are not explicitly 

calculated. When modeling recrystallization phenomena, the dislocation density value is 

usually essential information. Implicit models are therefore not of great interest for 

applications related to recrystallization phenomena. 

Al-Rub [Al-Rub, 2006] has proposed a model that represents, explicitly, the GNDs and 

SSDs contribution to the material hardening. In this case, the CRSS is given by: 

 

.      (1.29) 

 

An evolution equation is proposed for each type of dislocation. As indicated above, the GNDs 

density is linked to the incompatibility of the plastic deformation and the crystal lattice 

rotation.  As a consequence, GNDs are not created or annihilated like the SSDs; either they 

are transported from/to other regions where there is a deformation gradient, or they are the 

result of geometrical reactions between other existing GNDs. 

The GNDs accumulate in proportion to the plastic deformation gradient [Ashby, 1970], 

[Nix, 1998], [Arsenlis, 1999], according to Equation 1.22. The evolution of SSDs density is 

calculated using the equation proposed by Beaudoin [Beaudoin, 2000], based on the Kocks-

Mecking equation (Equation 1.8): 

 

P

SSGS K
b

K
K   








 2

1
0 , (1.30) 

 

where GK 0  represents the immobile dislocations increase due to the tangle of mobile 

dislocations with the GNDs. 

Busso [Busso, 2000] has also proposed a hardening law that explicitly represents the 

GNDs and SSDs contributions. The description of the flow characteristics in a generic slip 

system (α) under a given temperature, microstructural state and resolved shear stress (  ) is 

based on the dislocation mechanics and stress-activation concepts introduced by Busso 

[Busso, 1996]. The particular form of the flow rule exhibits an explicit dependence of the 

activation energy on a driving stress (
 l ) which accounts for lattice friction effects and 

thermally activated obstacles: 

 

0


  Sl  , (1.31) 

 

GSb   0
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where S  represents the athermal component of the flow stress over slip resistance and 0  

the ratio of the shear modulus at the temperature of interest to that at 0 K. Both SSDs and 

GNDs contribute to the total slip resistance S  as follows: 

 

 






  GGGSSbS 22

0
, (1.32) 

 

where λS and λG are statistical coefficients accounting for the deviation from regular spatial 

arrangements of SSDs and GNDs and 
G  is a function representing the interaction between 

different GNDs populations existing in the material. 

SSDs are decomposed into pure edge (


eS ) and screw (


swS ) components in order to 

account for their different mobilities, hardening and recovery process. Dislocations generation 

is assumed to be related to Frank-Read sources and the annihilation is assumed to occur due 

to sign differences between the same type of parallel dislocations. The evolutionary laws are 

written as balance laws between dislocation generation and annihilation: 
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 (1.33) 

 

In this expression, de and dsw are critical distances for spontaneous annihilation of 

opposite sign edge and screw dislocations respectively. Ce and Csw represent the relative 

contributions of edge and screw dislocations to the slip produced by SSDs while Ke and Ksw 

are related to their respective mean free path.  

For describing the evolution of GNDs, a vector field G
  related to the GND density is 

introduced for every slip system. This dislocation line vector can be further discretised into its 

edge and screw components by solving along axes of the coordinate system defined in terms 

of the slip direction m , the slip plane normal n and a third orthogonal direction 
 nmt  : 

 
  ntm

enetsm GGGG
  . (1.34) 

 

Here, 
smG

 refers to its screw component parallel to m  while 
etG

  and 
enG

  are the 

edge components parallel to t  and n , respectively (Figure 1.12). 
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Figure 1.12: Local orthogonal coordinate system of reference for a generic geometrically necessary dislocation 

line in an arbitrary slip system α. 

 

Nye’s dislocation tensor (Equation 1.28) is used to define a tensorial measure of the 

GND density which can be related to the resultant Burger’s vector (Equation 1.27) of all 

GNDs. The evolution of GNDs is obtained by differentiating Equation 1.27 with respect to 

time. As a result of this mathematical treatment, the GNDs density is calculated as: 

 

   p

GGG Fncurlntmb
enetsm

    , (1.35) 

 

where F
p
 is the plastic deformation gradient (Figure 1.13). The determination of Equation 

1.35 is presented in details in [Busso, 2000], [Abrivard, 2009]. The curl term translates the 

dependency of the GND density evolution on the spatial gradient of the slip rate, hence the 

non-local terminology which is sometimes used to describe strain-gradient plasticity concepts. 

Finally, the total GND density value is given by: 

 
 

enetsm GGGG
  . (1.36) 

 

3 Single Crystal Model 
 

Following the previous considerations, it is chosen here to adopt a constitutive 

behaviour at the single crystal level which is based on an elastic-viscoplastic crystal plasticity 

formulation, enriched by the introduction of both SSDs and GNDs, according to the principles 

of low order / bottom up models. 

 

3.1 Formulation 
 

3.1.1 Elastic-Viscoplastic Formulation 
 

The single crystal model described here relies on an elastic-viscoplastic formulation. 

The main concepts are highlighted in this section and more details can be found elsewhere 

[Delannay et al., 2006]. In this model, plastic deformation is achieved by dislocation slip. For 

instance, in the case of an FCC crystal, the dislocation slip happens along the {111} <110> 

crystallographic systems while for a BCC crystal, the dislocation slip takes place especially 

along the {110} <111>. The kinematics of the single crystal is a combination of dislocation 

slip, lattice rotation and elastic stretch. Figure 1.13 illustrates the multiplicative 

decomposition, which corresponds to that given in Figure 1.11 but without the concept of 

long range strain. 
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Figure 1.13: Crystal kinematics: initial (C0), intermediate (Ci) and final configuration (Cf) 

 

The deformation gradient tensor F, typically considered in finite strain kinematics, is 

decomposed as follows: 

 

 (1.37) 

 

where R* is the lattice rotation and U
el
 the elastic stretch. The intermediate configuration Ci 

corresponds to a stress-free configuration or “relaxed” configuration obtained by elastically 

unloading the crystal in the final configuration Cf and rotating it. In other words, this 

intermediate configuration represents the plastic deformation without taking into account the 

elastic deformation. An additional fictitious configuration could be introduced between Ci and 

Cf as in [Marin and Dawson, 1998d] where it is obtained by elastically unloading Cf to a 

relaxed state but without rotation. The crystal constitutive equations could be written in any of 

these configurations and this choice conditions the procedure and scheme used to integrate 

them. Here, the equations are written in the intermediate configuration Ci. In this case, the 

velocity gradient tensor L is given by: 

 

    TelppelTelelT
RUFFURRUURRRFFL *1**1***1 1  

  . (1.38) 

 

The plastic velocity gradient L
p
, accounting for the dislocation slip, is then written as 

follows: 

 

.
1






 MFFL ppp  (1.39) 

 

In this expression, M is the Schmid tensor of slip system α. The Schmid tensor has the 

same expression in the initial and intermediate configuration as crystallographic slip does not 

distort the lattice. 

The elastic strain tensor E is calculated with respect to the intermediate configuration 

and is therefore given by: 
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2

1
1

2

1
 elelelel UUFFE
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 (1.40) 

 

The work-conjugate measure of stress is the second Piola-Kirchhoff stress T. This latter 

is related to the Cauchy stress σ through: 

 

pelpel FURFFF *
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    111

**detdet


 elTelelelelel URRUUFFFT
T

 . (1.41) 

 

The fourth order anisotropic elasticity operator C sets the proportionality of T with 

regards to E via the relation: 

 

CET  . (1.42) 

 

In a crystal with cubic symmetry (such as FCC or BCC), with the cartesian axes 

oriented along the cube edges, the nonzero elements of C are the same ones as for the 

isotropic solid, but the three values C11, C12 and C44 are independent. So, for FCC crystals the 

elasticity matrix takes the following form: 
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This form of the anisotropic elastic tensor allows for the separation of the deviatoric and 

spherical components of T, which has consequences in terms of finite element 

implementation. 

For materials subjected to important plastic strains, the elastic strains are small 

compared to the plastic one. Typically, in metal forming operations, they never exceed 1%. It 

is then assumed that they are small compared to unity. This assumption yields:  

 
elel IU  , (1.44) 

 

where I is the identity tensor, el is a symmetric tensor with 1el . Neglecting higher 

order terms in el  leads to: 
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For the same sake of simplification, for any tensor X, X:el  is neglected compared to 

X. Bearing these assumptions in mind the velocity gradient tensor can be rewritten as: 
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and Equations 1.40, 1.41 and 1.42 simplify to: 
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3.1.2 Flow rule and hardening law 
 

In order to complete the single crystal model, the viscoplastic power law is used as a 

flow rule (Equation 1.1). Regarding the hardening, it is assumed that all slip systems have the 

same c and that they all harden according to Equation 1.4. 

 

Hardening law - SSDs 

 

Considering only the SSDs, the Yoshie-Laasraoui-Jonas equation (Equation 1.7) can be 

implemented within the crystal plasticity model. To transform this equation, used at the 

macroscopic scale, to the dislocation slip scale (mesoscale), the strain term is replaced by the 

total dislocation slip, and K1 and K2 values are divided by the polycrystal Taylor factor (M). 

At the mesoscale (the transformation from macro to mesoscale is discussed in chapter 3), the 

Yoshie-Laasraoui-Jonas equation becomes: 
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1 KK  (1.48) 

 

where 
M

K
K 1'

1   and 
M

K
K 2'

2  . 

 

Hardening law - GNDs 

 

Considering the GNDs, the Busso [Busso, 2000] model (Equation 1.35) may be 

implemented in a standard crystal plasticity model. The gradient terms require a non-local 

computation, which can for example be done using a finite element formulation.   

It is important to highlight that only the GND evolutionary equation proposed by Busso 

is implemented here. The equations considering the SSD density evolution proposed by Busso 

can be replaced by Equation 1.48.  

 

3.2 Time Integration Scheme of the constitutive law 
 

To summarize, the equations describing the elastic-viscoplastic model can be listed as 

follows: 
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    (1.49b) 

Elasticity: elCT  , (1.49c) 

Schmid Law:   MT :  (1.49d) 

Flow:    ,
1

0




 



 sign

m

c

   (1. 49e) 

Hardening: Tcc b    (1. 49f) 

SSDs  

evolution: 
 



  '

2

'

1 KKS  (1. 49g) 
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GNDs  

evolution: 
   Acurl

b
Fncurl

b

p

G 





 
11

 . (1. 49h) 

 

The objective of the integration of the constitutive model is to compute the model-

dependent variables at time t + Δt, given that their values are known at time t and that the 

applied deformation is known for every crystal (L or equivalently D and W). In the previous 

system, the unknown independent variables are: the crystal stress 
tt

T


 (or equivalently the 

elastic deformation 
tt

el


 ), the slip resistance 

ttc 
  and the lattice orientations 

tt
R


* . 

These constitute the state variables of the problem. In order to simplify the time integration 

procedure, one can choose to eliminate the lattice rotation from this system (and hence the 

evolutionary Equation 1.49b) which is approximated by *
~
R  as follows: 

 

ttt
RtWRR **

~
* 


. (1.50) 

 

As mentioned in [Delannay 2006], the impact of such an approximation in negligible in 

metal forming simulations such as those performed in this work. The update of the lattice 

orientation is performed later, after the integration of the rest of the equations, as it is 

explained below. 

Equations 1.49a, 1.49c and 1.49d are combined in order to find the crystal stresses 

tt
T


. A fully implicit time integration scheme yields the following discretized equations: 

 

  ,
2

1
*

~
*

~












 
T

MMRDRCTT T

ttt
 (1.51) 

 

where   ,:
:

1

0 tTMsign
TM

t
tt

m

ttc

tt

tt
































   (1.52) 

 

and 



 





tt

tcttc

b 1

2
. (1.53) 

 

Concerning the evolution of dislocation density, the SSDs density is calculated 

implicitly, transforming equation 1.48 into:  

 

  .'' 21  





tt

KK  (1.54) 

 

In order to determine the evolution of the GNDs, the quantity curl(A) (Equation 1.49h) 

has to be calculated. Given that the spatial variation of the quantity (A) is necessary to 

estimate its curl, spatial information must be known, for example by using a finite element 

mesh (see section 4). A is then calculated at each Gauss point and linearly interpolated to the 

mesh elements nodes using the shape functions of the element. Subsequently, the curl of (A) 

is calculated. As described in equation 1.36 and recalled here, the three components of the 

dislocation density vector field are added, leading to the total GNDs density, for each slip 

system :  
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 

enetsw GGGG
  . (1.55) 

 

Then the GNDs densities of each slip system are added in order to calculate the total 

GNDs density: 

 




 GG
 . (1.56) 

 

An explicit update is performed using a forward Euler scheme, 

 

ttGtGttG t   ,,,   . (1.57) 

 

 Since the GNDs are explicitly updated, the accuracy of the solution is ensured only if a 

sufficiently small time step is used. 

A two level iterative scheme is used to solve the above system. A first Newton-Raphson 

procedure solves Equation 1.51, while a second one computes the slip increments 
  (1.52) 

based on the stress estimate. Slip resistance is computed subsequently using Equation 1.53 

and these three operations are performed until convergence. Finally, regarding lattice 

reorientation, Equation 1.49b is integrated using an exponential map [Simo, 1998]. In 

practice, all these equations are expressed in the crystal reference frame, so that M  is 

identical in crystals belonging to the same phase. At the beginning of the simulation, the 

orientation of each crystal is recorded and used to shift from the sample coordinate system to 

the crystal coordinate system (
T

RR *

0 ). 

 

4 Finite Element Formulation 
 

The finite element model is composed of a representation and meshing of the 

microstructure and of a finite element formulation used to solve the mechanical problem. 

Representation and meshing of the microstructure are discussed in details in chapter 2. In this 

part, the solution of the mechanical model in a finite element formulation is presented. 

Finite element simulations in solid mechanics are dominated either by 

displacement/velocity based formulations or by mixed formulations such as 

displacement/pressure or velocity/pressure formulations.  

In this work, a mixed velocity/pressure finite element formulation is used with 

appropriate combination of interpolation functions. More specifically, the mini-element 

(P1+/P1) with linear continuous pressure and linear velocity with a bubble function added at 

its centre for this latter, is used. Specific details of the formulation are found below. 

  

4.1 Balance laws 
 

The resolution of the mechanical problem is based on momentum and mass 

conservation coupled with the appropriate boundary conditions and constitutive equations. In 

local form, the conservation of momentum and mass is written as: 

 

,
dt

dv
gdiv    (1.58) 
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.0).(  v
dt

d



 (1.59) 

 

where v is the velocity vector, σ is the Cauchy stress tensor, ρ the density and g the gravity. 

Appropriate surface traction and velocity boundary conditions are given by: 

 

app  on Γν, (1.60) 

 

for the velocity vector v, and: 

 

appn tt  on Γt, (1.61) 

 

for the traction vector t where t   is the boundary of the domain Ω. 

In the present work, we restrict our attention to isothermal, quasi-static deformation of 

polycrystalline aggregates. Also neglecting body forces, Equation 1.58 is reduced to: 

 

0div . (1.62) 

 

The Cauchy stress tensor σ can be decomposed into its deviatoric and spherical 

(pressure) components. However, such decomposition is only meaningful if the constitutive 

law, that is to be solved in concert with this equation, can give the evolution of the deviatoric 

and pressure components separately. Besides, for constitutive models that account for the 

elastic behaviour, Equation 1.59 is replaced by the volumetric response of the elasticity 

relations, as the density can be directly determined once the motion of the body is obtained. 

Bearing these hypotheses in mind, the final system of equations to be solved may be written 

as: 

 













,0

,0




p
tr

pdivS




 (1.63) 

 

where S and p are respectively the deviatoric and pressure components of σ,   the bulk 

(elastic) modulus and   the strain rate tensor defined as: 

 

 T 
2

1
  (1.64) 

 

4.2 Variational formulation 
 
The formulation of the finite element problem is based on the weak integral form of the 

system presented in 1.63. The procedure for obtaining the weak form consists of first 

multiplying the equations by test functions Vv *  and Pp *  where V and P are 

appropriate functional spaces given by: 

 



 38 

 
 
 















,)(,

,on  0|)(,

,on  |)(,

2

1

0

1

LppP

vHvvV

vvHvvV

v

d

vapp

d

 (1.65) 

 

with d the space dimension, V the space of kinematically admissible velocity fields and V0 the 

space of kinematically admissible velocity fields to zero. 

Integrating over the volume of the domain Ω and using the Green formula yields the 

following variational problem: 

 

find    PVpv ,,  such that    PVpv ,**, 0 : 

 

































.0*

,0*.*.*)(:)(

dp
p

tr

dvtdvpdvvS

t

app











 (1.66) 

 

4.3 Time discretization 
 

The large deformation of the microstructure is modelled using an updated Lagrangian 

framework. In this incremental approach, the total simulation time ttot is discretized into N 

increments such that  
1

0
,






N

i iiitot tttt . At time t the configuration of the body Ω
t
 is 

known and the solution  tt pv ,  satisfying the balance laws at that time, can be determined 

based on stresses calculated at time t + Δt. The new configuration is the updated one, using a 

finite difference scheme, namely an Euler explicit scheme: 

 

tvxx tttt 
 (1.67) 

 

with x the node coordinates vector and v
t
 the velocity vector solution of the mechanical 

problem on the current configuration. 

 

4.4 Spatial discretization 
 
In order to compute the solution of the variational problem given by Equation 1.66 

using the finite element method, the domain Ω is discretized such that: 

 

,
)(





hK

h K  (1.68) 

 

where h  is a spatial discretization of the domain Ω,  k  a finite element mesh of the 

domain Ω, K a simplex and h a parameter denoting the mesh size. 

We introduce the functional vector spaces of finite dimensions V
h
 and P

h
 close to the 

continuous spaces V and P of infinite dimension, such that the discrete solution 

   kkkk PVpv ,,   is close to the “real” one    PVpv ,,  . The spaces V
h
 and P

h
 have to be 

chosen in such a way that the existence and uniqueness of the solution is guaranteed. For this 
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purpose, these spaces cannot be chosen independently. They have to satisfy the Brezzi 

Babuska stability conditions [Brezzi, 1991]. In this respect, the MINI-element P1
+
/P1 is a 

convenient and an appropriate choice. 

 

4.4.1 The MINI-element 

 
The MINI-element is an isoparametric triangle in 2D and tetrahedron in 3D with a linear 

interpolation for the pressure field. On the other hand, the velocity field interpolation has a 

linear component and a nonlinear one, the so-called bubble function, which is added at the 

centre of the element as shown in Figure 1.14 for the 3D case. 

 

 
Figure 1.14: MINI-Element P1

+
/P1. 

 

For such an element, the finite element spaces can be written as: 
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 (1.69) 

 

where d is the space dimension, Ki, i = 1 … d + 1 are the d + 1 sub-simplexes composing K.  

Denoting N
l
 and N

b
 the linear and bubble shape functions respectively, the discretized 

velocity and pressure fields can be written as: 

 





Nbelt

j

i

b

j

Nbnode

i

i

l

ihhh bxNvxNbvw
11

,)()(  (1.70) 

 





Nbnode

i

i

l

ih pxNp
1

,)(  (1.71) 

 

where Nbnode and Nbelt are the total number of nodes and elements in the mesh respectively. 

On the local level, for each element, the velocity and pressure unknowns are written as: 
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



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1
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d
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l

hhh bxNVxNbvw  (1.72) 

 







1

1

,)(
d

i

i

l

h PxNp  (1.73) 

 

where N
b
 is a linear function defined on each of the d + 1 sub-elements. 

 

For each element K, the bubble function has the following fundamental properties: 

 

1 -  
K

Khdb 0:A   for any constant tensor A , therefore  
K

Khh dbv 0: , 

 

2 -   
K

Khh

K

Khh dbvdbv .. , 

 

3 -  bh = 0 on ΓK. 

 

4.4.2 The discrete problem 

 
The discrete problem is formulated as follows: 

 

find    hhhhhh PWpbw ,,   such that    hhhhhh PWpbw ,, 0

****   : 
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

 (1.74) 

 

Taking into consideration the decomposition hhh bw   and ***

hhh bw   the previous 

system can be rewritten as: 
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

 (1.75) 

 

It has been shown [Jaouen, 1998] that in the case of an elastic-viscoplastic constitutive 

law, the deviatoric component S can be decomposed into a linear S(vh) and a bubble part 

S(bh). This yields to: 
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 (1.76) 

 

In practice, the system 1.76 is equivalent to the following system: 
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(1.77) 

 

Thanks to the bubble function properties, we have: 

 

;0)(:)()(:)( **  
 KK

KhhKhh dvbSdbvS    
(1.78) 

 

.0. * 
K

Khapp dbt  
(1.79) 

 

Considering these properties and removing the subscribe h for more clarity, the system 

1.77 becomes: 
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 (1.80) 

 

The elastic viscoplastic constitutive behavior is used in the crystal plasticity simulations, 

which is a non-linear constitutive behavior. As a consequence, system 1.80 is also non-linear. 

The non-linearity related to the material behavior does not require fundamental reformulation 

of the problem, as opposed to geometric non-linearities. However, the constitutive law and the 

system of equations are written in incremental form. Small step increments are needed to 
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correctly account for path dependence and obtain physically sound solution. In incremental 

form, the problem can be re-written as follows: 

 

Given Sn, pn, tn and Ωn such that equilibrium is satisfied at time t,

   PWpb ,**,* 0 : 
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 (1.81) 

 

Find vn+1 kinematically admissible, Sn+1, pn+1, tn+1 and Ωn+1 that satisfy the equilibrium 

at time t+Δt,    PWpb ,**,* 0 : 
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 (1.82) 

 

In practice, if the time step is taken sufficiently small so as to enable small strain 

increments, Ωn+1 is taken equal to Ωn. The configuration of the body is then updated via 

Equation 1.67.  

 

5 Resolution 
 

5.1 Non-linear system of equation to be solved 
 

The nonlinear algebraic system of Equations 1.77 can be written as global residuals as 

follows: 
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Taking into consideration the various simplifications, the actual discrete problem 1.80 

yields the following system, decoupled in terms of vh and bh: 
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In a more general form, if α stands for a vector containing the discretization parameters 

(pressure and velocity), the incremental problem consists of solving R(αn+1) = 0 starting from 

a (pseudo) equilibrium solution at R(αn) = 0 such that αn+1 = αn + Δαn. 

 

5.2 Resolution of the non-linear system 
 

A Newton-Raphson method is used to solve the non-linear system 1.84. The Newton-

Raphson converges quite rapidly, providing that the initial guess is close to the actual zone 

containing the solution. If this is the case, the convergence is quadratic. Otherwise, it may 

diverge. 

The method consists in linearizing the residual R(αn+1) with respect to the discretization 

parameter α. This yields to: 
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where i stands for the iteration counter. The iterative correction is then given by: 
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Once convergence is achieved, the variables are updated as follows: 
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Applying this procedure to the system 1.84 yields, in each element, the following 

algebraic system: 
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where K
xy

 are the local stiffness matrix components. These are given by: 
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with  pbvyx ,,),(  . 
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A condensation of the bubble is used at the local level in order to eliminate the extra 

degree of freedom δb associated with the bubble [Jaouen, 1998]: 
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This yields to the following local system, where the unknowns are the pressure and the three 

components of the velocity field: 
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In effect, the use of the bubble function in the mini-element is equivalent to adding stabilizing 

terms to the local (and so to global) stiffness matrix of the problem. These stabilizing terms 

are responsible for the versatility of the mini-element, which can be used in all contexts 

(compressible or nearly incompressible materials). 

The Newton-Raphson (NR) method is the most widely used method to solve the 

equilibrium equations in crystal plasticity models. However, different methods to solve this 

equilibrium problem can be found in the literature. In [Hoon Kim, 2013], Hoon Kim proposes 

a Nelder-Mead (NM) simplex algorithm. With this technique it is possible to solve the 

equilibrium equations without the first order derivatives of the constitutive equations. Hoon 

Kim compared the results obtained with both techniques and similar results were obtained. In 

[Chockalingam, 2013], Chockalingam proposes a Jacobian-Free Newton Krylov (JFNK) 

method. In this case the Jacobian can be approximated with finite differences, thereby 

avoiding the calculation of the first order derivatives. In his paper Chockakingam shows that, 

when using a temperature dependent flow rule, the calculation using the JFNK method can be 

seven times faster than the calculation performed using the NR technique. However, when 

using the simpler power flow rule, it was found that the JFNK method was 67% slower than 

NR. 

 

5.3 General solution procedure and numerical implementation 
 

In order to solve the mechanical problem, the constitutive law has to be coupled to the 

finite element scheme. It is important to note that, given the type of element used in this work, 

there is only one Gauss point per element for integration of the constitutive equations. The 

solution procedure at a given time step can be summarized as follows: 

 

CP1  calculate the initial estimate of the velocity vector (solution of the previous 

increment), 

CP2  compute the element velocity gradient used as input to the constitutive model, 

CP3  iterate at the constitutive law level in order to compute the table variables at time t 

+ Δt and the tangent modulus, 

CP4  solve the global system of equations for the velocity and pressure fields at time t + 

Δt using a Newton-Raphson algorithm and go back to point 2 until convergence is achieved, 

CP5  if convergence occurs, update the velocity and pressure fields and the 

configuration of the body and move on to the next increment. 
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To ensure that the strain increment remains small so as to ensure optimum convergence 

of the procedure, an automatic time step adaptation algorithm is used. The automatic 

adaptation of time step depends on the strain imposed in this given time step. If the strain 

increment in a given time increment is higher than a critical value, the time step will 

automatically decrease. On the other hand, if the strain increment is smaller than a limit value, 

the time step will increase. Moreover, an automatic subincrementation algorithm is adopted in 

order to ensure accurate integration of the constitutive equations. This subincrementation is 

performed inside the crystal plasticity code when the calculation does not converge. In this 

case, the time step is divided in a few subincrements and the simulation is repeated for all 

subincrements. 

 

6 Conclusion 
 

As it was discussed in this chapter introduction, the correct simulation of the material 

microstructure evolution during thermo-mechanical process is of prime importance in order to 

simulate recrystallization and grain growth phenomena. In this chapter the process of plastic 

deformation of FCC metals is briefly reviewed so as to underline the resulting intergranular 

and intragranular heterogeneities. The mechanical behaviour of a single crystal is analysed, 

with emphasis on a finite element implementation. The slip system concept represents a 

homogenized way of taking into consideration the motion of individual dislocations gliding 

under the effect of the critical resolved shear stress. The flow rule reflects the non-linear 

relationship between strain rate and stress. Considering the hardening, physically-based 

models were emphasized, focusing on the use of one or several dislocation densities as 

primary variables. The account of size effects was discussed, distinguishing between 

statistically stored dislocations (SSDs), and geometrically necessary dislocations (GNDs). A 

simple model (Yoshie-Laasraoui-Jonas) is adopted to estimate the SSD density evolution with 

plastic deformation, while the Busso model is chosen to calculate the contribution of the GND 

density. Finally, the link between the crystal plasticity model and the finite element 

formulation is presented as well. The crystal plasticity simulation results are presented and 

discussed in chapter 3.  

 

Résumé en Français 
 

Lorsqu’un matériau polycristallin est soumis à une transformation thermomécanique, 

ses propriétés mécaniques évoluent de manière corrélée à sa microstructure. De plus, ces 

changements microstructuraux sont également de première importance vis-à-vis des 

cinétiques de restauration, recristallisation et croissance de grains pendant les traitements de 

recuit. Ainsi, afin de bien modéliser les phénomènes de recristallisation et de croissance de 

grains, la prédiction de l’état microstructural d’un matériau polycristallin après déformation 

plastique doit être correctement réalisée. Dans ce chapitre, la déformation plastique des 

matériaux métalliques présentant une structure de type C.F.C. est brièvement présentée. De 

plus, un état de l’art des différents modèles de simulation de la plasticité cristalline existant 

dans la littérature est présenté : l’accent est mis sur les modèles d’écrouissage. Deux types de 

modèle d’écrouissage sont présentés : un premier modèle qui considère uniquement les 

densités de dislocations totales, et un deuxième modèle qui différencie les dislocations 

statistiquement stockées (SSDs), des dislocations géométriquement nécessaires (GNDs). Dans 

le premier cas, le modèle de Yoshie-Laasraoui-Jonas est implémenté et, dans le deuxième, le 

modèle de Busso. Finalement le couplage entre le modèle de plasticité cristalline retenu et une 
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formulation éléments finis est présenté. Les résultats des simulations de plasticité cristalline 

sont présentés et discutés dans le chapitre 3.  
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1 Introduction 
 

Metallurgical phenomena occurring in metallic materials during thermo-mechanical 

processing (plastic deformation, recovery, recrystallization, grain growth, phase 

transformations, etc.) are closely related to the material microstructural condition. The grain 

size distribution, the presence or not of precipitates together with their shape and distribution, 

the dislocation density distribution after plastic deformation, all these factors can completely 

change the metallurgical phenomena kinetics. As a consequence, the material thermo-

mechanical behaviour will also change. Therefore, in order to accurately model the 

metallurgical phenomena occurring during thermo-mechanical processing, it has become 

more and more frequent to build the so called “digital microstructures”, which are numerical 

representations (and idealizations) of real ones. 

If one looks at the dislocation density distribution induced by plastic deformation, 

different models can be identified in the literature. Such models can be used to compute the 

dislocation density evolution during plastic deformation, and some of them have been 

presented and discussed in chapter 1. In chapter 3, a comparison between crystal plasticity 

simulation results, based on two different hardening laws, are discussed. Finally, the influence 

of the dislocation density distribution on the recrystallization kinetics is analysed in chapter 5. 

In this work, idealized metallic microstructures will be considered, in particular 

ignoring the potential presence of precipitates. An example of digital microstructure generated 

considering the presence of precipitates can be found in [Agnoli, 2012]. In this chapter we 

will focus on the generation of digital microstructures obeying a given experimental grain size 

distribution, and on the construction of the associated finite element meshes. 

The creation of representative digital microstructures based on experimental data is not 

a simple problem and is not related only to the creation of polycrystalline materials. When 

modelling particle suspensions, porous media or powders, the correct representation of the 

experimental data is of prime importance. In [Hitti, 2011], [Hitti, 2012] the authors presented 

and discussed all the challenges that must be overcome in order to correctly generate a 

representative microstructure based on experimental data. In the work presented here, we use 

the model developed by [Hitti, 2011] and implemented in the CimLib library to generate our 

digital microstructures. 

In [Hitti, 2011] two different techniques to generate representative digital 

microstructures are implemented. The first one is the Voronoï tessellation method, a 

geometric method that partitions a space into convex polyhedral cells. Owing to its 

resemblance to many cellular structures appearing in the nature, Voronoï tessellations are 

used in a wide range of fields, including biology [Finney, 1978] and zoology [Mallory, 1983]. 

However, the Voronoï tessellation presents some limitation towards grain size distributions 

despite its widely use and easy numerical implementation. In fact, with this method, the 

location of the Voronoï cell nuclei is the only way to define the Voronoï tessellations without 

control on the cell characteristics. The second technique is the Laguerre-Voronoï tessellation 

method [Aurenhammer, 1987], [Imai, 1985]. A Laguerre-Voronoï diagram corresponds to a 

Voronoï diagram where the location of the cells faces is constrained by a given non-

intersecting spherical packing. 

Once the digital microstructure is generated, it must be connected to finite element 

simulations. Once again, several techniques are available in the literature. The most widely 

used method consists in generating a surface mesh for each grain, and then generating a 

volume mesh based on these surface meshes [Rollet, 2004]. In this work, we use instead an 

implicit method to capture the grain interfaces. This implicit method is based on a level-set 

approach to define the different interfaces. The use of level-set functions in modelling 

equiaxed polycrystals made of Voronoï cells was introduced by Bernacki [Bernacki, 2009]. 
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This approach was applied successfully for the generation of 2D or 3D polycrystals but for a 

moderate number of grains. Indeed, one difficulty of this method is the numerical cost, which 

depends on the number of grains, as well as on the finite element mesh used to describe the 

polycrystal.  

In this chapter both models implemented by [Hitti, 2011], Voronoï and Laguerre-

Voronoï tessellations, are presented. The method used to immerse these digital 

microstructures in a finite element mesh using a level-set approach is discussed. Moreover, 

the methodology used to generate adapted anisotropic finite element mesh is also described. 

Finally, the capabilities of the proposed numerical framework are illustrated. More precisely, 

the characteristics of the generated digital microstructures are discussed in terms of grain size 

distribution (in 2D and 3D) and morphological/topological attributes (in 2D). 

It must be underlined that all the distributions or mean values discussed in this chapter 

concerning grain features (grain size, number of sides...) were evaluated as number-weighted 

(otherwise, it will be indicated in the text). 

 

2 Voronoï and Laguerre Voronoï tessellations 
 

The Voronoï tessellation is the most widely used method for generating digital polycrystalline 

microstructures [Rollett, 2004]. In [Logé, 2008], [Bernacki, 2009], [Resk, 2009] and [Quey, 

2011] the authors use the Voronoï method associated with a level set framework and a finite 

element formulation to model crystal plasticity and static recrystallization. Another example 

can be found in [Elsey, 2009] where the authors also generate their digital microstructures 

using the Voronoï method. They then simulate the grain growth phenomenon using a level set 

framework associated with a finite difference formulation. Such attractiveness of Voronoï 

tessellation can be explained by its simplicity of implementation. Indeed the Voronoï 

tessellation or diagram is fully described by a set of N seeds or Voronoï nuclei  
NiiS

,...,1 . Each 

nucleus Si defines a Voronoï cell Vi, which consists of all points closer to Si than to any other 

nucleus (see Figure 2.1): 
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d

i SxdSxdRxV
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  (2.1) 

 

where d is the space dimension and d(.,.) is the usual Euclidian distance. 

 

 
Figure 2.1: A Voronoï diagram in 2D. 

 

The Voronoï diagrams can be generated using two different techniques. The first one is 

a direct method, which consists in constructing the perpendicular bisectors of the adjacent 

sites and their intersections will form the diagram. The second is based on the construction of 
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Delaunay’s triangulation (Voronoï’s dual) and then drawing the perpendicular bisectors of its 

edges. Figure 2.2 illustrates the Voronoï nuclei (left side) used to generate a 3D Voronoï 

diagram made of 100 cells.  

Despite its widespread use, the classical Voronoï method does not allow to obey a given 

grain size distribution. In fact, only the mean grain size is set. Even though, in general, this 

limit is not discussed; in [Xu, 2009], Xu highlighted divergences between statistical properties 

classically observed in equiaxed polycrystals and the results obtained using Voronoï method.  

 

  
(a) (b) 

Figure 2.2: (a) 100 sites of Voronoï in a unit cube and (b) the resulting 3D Voronoï structure. 

 

Hence, obeying a specific grain size distribution while generating a statistical digital 

microstructure is not easy. To obtain such microstructures, the Laguerre-Voronoï tessellation 

Method can be used [Aurenhammer, 1987], [Imai, 1985]. This method consists in using a 

distribution of non-intersected spherical particles that serves as a basis for constructing the 

microstructure. In this case, the Laguerre-Voronoï tessellation is described by a set of N seeds 

and weights  
Niii rS

,...,1
,


. Each nucleus and weight  ii rS ,  defines a Laguerre-Voronoï cell Li, 

which consists of all points closer to Si, via the power distance (defined below), than to any 

other nucleus: 

 

    j
Nj

i

d

i SxSxRxL ,min,/
1




, (2.2) 

 

where     22
,, iii rSxdSx   is the power distance of Si to x. Figure 2.3 illustrates a set of 

spherical particles used as a base to generate the corresponding Laguerre-Voronoï cells. 

 

 
Figure 2.3: A 3D Laguerre-Voronoï tessellation and the dense sphere packing used to generate it.  
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This method was successfully used to model polycrystalline structures [Fan, 2004], 

[Hitti, 2011], [Hitti, 2012] and nanostructured materials [Benabbou, 2010]. In [Lavergne, 

2013], using the Laguerre-Voronoï method, the authors generate not only microstructures 

with equiaxed grains but also more complex microstructures with elongated or flat grains. It is 

important to underline that the simplicity of Laguerre-Voronoï methodology is only apparent. 

Indeed, in order to obey statistically a given grain size distribution, the principal difficulty of 

the Laguerre-Voronoï methodology is in the generation of the dense sphere packing which 

must obey the size distribution with the highest possible density. Once the microstructure is 

generated, the digital microstructure must be linked to the finite elements mesh. In the context 

of unstructured meshes, as used in this work, different methods can be found in the literature. 

The most widely used method consists in generating a surface mesh for each cell (coincident 

with the neighboring grain) and then generating a volume mesh based on these surface 

meshes (Figure 2.4) [Rollet, 2004].  

  

 
Figure 2.4: Three-dimensional mesh of an equiaxed single-phase microstructure containing 134 grains (Voronoï 

cells) generated using a surface mesh [Rollet, 2004].
 

 

This method is appropriate in the case of polycrystals deformation simulation. However, 

when modeling recrystallization and grain growth, the grain boundaries move with nucleation 

and disappearance of certain grains. In these situations, the remeshing operations needed to 

take into account these topological events are extremely complex. So, the use of this method 

is not straightforward in those conditions. That is the reason why finite element methods 

emphasizing an explicit description of grains boundaries (for example: Vertex methods 

[Barrales, 2008]) are confronted to problems of mesh management which are mainly 

inextricable in 3D, and this explains also the current craze for methods favoring an implicit 

grain boundaries description such as the phase field [Suwa, 2008], [Takaki, 2010] or level set 

methods. 

Since 2005, CEMEF works on the development of a formalism to generate polycrystals 

immerged into finite element mesh. This formalism, described in the following,  is based on 

an optimized level set functions calculation from Voronoï or Laguerre-Voronoï sites, and a 

mesh adaptation in the context of a large number of level set functions forming a partition of 

the study area [Loge, 2008], [Hitti, 2012], [Bernacki, 2009], [Resk, 2009]. 
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3 Microstructure immersion in FE Mesh 
 

In our methodology, the locations of the grain boundaries are defined implicitly using a 

level-set framework. A level-set function  , defined over a domain Ω, is called distance 

function of an interface Γ  of a sub-domain ΩS if, at any point x of Ω, it corresponds to the 

distance from Γ. In turn, the interface Γ is given by the zero isovalue of the function  : 
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with 
S the characteristic function of  ΩS equal to 1 in ΩS and 0 elsewhere. With the 

previous proposed equation: 0)( x  inside the domain defined by the interface Γ and 

0)( x  outside this domain. Assuming that the domain is a polycrystal, for each existing 

grain in the domain, a level-set function is created. So, if domain Ω is formed by N grains, we 

will have N level set functions  Nii 1, . In this case, a global unsigned level-set function 

can be defined as: 

 

 )(max)(  ,
1

xxx i
Ni

glob 


 . (2.4) 

 

This function is positive everywhere and tends to zero on the grain boundaries network. 

Figures 2.5 a, b, c illustrates three level set functions for three different grains forming a triple 

junction in 2D (grain boundaries correspond to the black lines) and Figure 2.5d illustrates the 

global level set function (Equation 2.4) for these three same grains. 

 

 
Figure 2.5: (a), (b) and (c) Three level-set functions defining three grains and (d) the global level-set function. 

 

In the following, we explain how the level-set functions of the considered cells (in 

Voronoï or Laguerre-Voronoï formalisms) can be defined in an unstructured FE mesh. 

Concerning Voronoï cells, the idea is to consider for each FE mesh integration point  X 

of coordinates x and two Voronoï nuclei si and sj, the function: 
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which corresponds to the signed distance of X to the perpendicular bisector of [sisj]. The level-

set function )(xi , defining the Voronoï cell of the nucleus si, is then given by: 
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Moreover, for the above level-set calculation, the Delaunay triangulation [Frey, 1999], 

[Hitti, 2012] can be helpful. The Delaunay triangulation gives the graph of each nucleus si, 

which is the set of the nuclei  iss j ,  that share an edge of the Delaunay triangulation with 

si. As a consequence, the graph of each nucleus si, which corresponds to the set of its 

neighbours in the Delaunay triangulation, is sufficient to determine the level-set functions and 

Equation 2.6 can be rewritten: 

 

  .1,)(min)(
)(

Ni  xx ij
sGraphj

i
i




  (2.7) 

   

Figure 2.6 illustrates how useful the Delaunay triangulation is for calculating level-set 

functions. Without it, to calculate the level-set defining the Voronoï cell of nucleus Si, all the 

nuclei Sj ( ij  ) must be taken into consideration in the algorithm. Thanks to the Delaunay 

triangulation, only the points Sj belonging to the graph (Si) are considered. The computation 

time decrease depends on the number of grains and the number of nodes existing in the 

domain. In [Hitti, 2011] the computation time decrease for different meshes and number of 

grains is presented. 

 

 
Figure 2.6: FE Mesh (red), Delaunay triangulation (white), si site (black), its graph (white dots) and the global 

level-set function [Hitti, 2011]. 

 

Concerning Laguerre-Voronoï cells, the level-set functions are also given by Equation 

2.7 (with graph(si) given by the weighted Delaunay triangulation [Hitti, 2011], [Hitti, 2012]) 

but the αij functions (Equation 2.5) are modified as follows: 
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where ri and rj are, respectively, the radii of si and sj.  

 Until now, only the microstructure generation and its immersion into a finite element 

mesh have been discussed without dealing with the problem of the mesh refinement required 

for a good accuracy of the calculations. The use of a monolithic approach in association with 

a level set description of the digital microstructure leads to the need of using a fine mesh or a 

high interpolation degree at the interfaces to ensure the correct description of the 

microstructure. It is important to highlight that the grain boundary velocity during grain 

growth and recrystallization depends on the grain morphology (grain boundary curvature – 

see chapter 4). So, the correct description of the microstructure is of prime importance in 

order to ensure the correct simulation of grain boundary motion.  Moreover, an accurate 

description of the grain boundaries is also needed when dealing with possible physical 

properties discontinuities appearing at interfaces or multiple junctions. In our numerical 

strategy, meshing adaption with a P1 interpolation order was preferred. If a global isotropic 

remeshing of the mesh can be used to reach the desired accuracy in the interface description, 

this strategy leads to a significant increase in computational resources. Therefore, an adaptive 

anisotropic remeshing technique is favored. It is valuable to underline that the use of 

anisotropic mesh elements generates no damage to recrystallization or grain growth 

simulations since grain boundary velocity is always perpendicular to the grain boundary, i.e. 

in the direction of the mesh refinement. Different ways to generate an adapted anisotropic 

mesh are found in the literature. In this Ph.D. work, two methods have been used to build 

anisotropic mesh metrics, from which anisotropic meshes were built using the MTC 

topological mesher-remesher developed by Coupez et al. [Coupez, 2000]. 

The first method, called a priori, consists in refining the mesh in a small thickness zone 

around the interfaces. The refinement operates only in the direction perpendicular to the 

interface, leading to an anisotropic mesh. In order to create an anisotropic mesh, in a first step, 

the thickness (e) of the re-meshing zone is defined. Next, the mesh size in the direction 

perpendicular to the interface (hf) inside the re-meshed zone is imposed. Finally, a coarser 

mesh size (h) is imposed far from the interface. The h value is also generally used as the mesh 

size in the direction tangential to the interface, inside the re-meshed zone. 

 When dealing with polycrystalline aggregates and multiple interfaces, the above 

strategy is repeated for each grain. Combining all information, the number of refinement 

directions is then evaluated at each mesh node. For the nodes outside the remeshed zone, there 

is no refinement direction and, as a consequence, the mesh size is isotropic with a mesh size 

equal to h. As the number of refinement directions increases, the mesh size is reduced in one 

or several directions. This happens when the node is placed on the remeshing zone of two 

different level-set functions. As a consequence, at the triple or multiple junctions, the 

refinement may become isotropic with a mesh size equal to hf [Resk, 2009], [Bernacki, 2009].   

When using this method, the number of elements existing in the final mesh cannot be 

easily controlled, which can lead to a dramatically increase of the computation time, 

especially in 3D. 

The second method, called a posteriori method, consists in using an error analysis in 

order to obtain an optimal mesh for a given physical field and number of elements [Almeida, 

2000], [Mesri, 2008]. In our particular case, as we seek to adapt our mesh in the grain 

boundary areas extending perpendicularly to the interfaces, we use a function based on the 

global level set function of our microstructure to generate the adapted mesh. This anisotropic 
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(re-)meshing method leads to a very high accuracy near the interfaces without increasing 

dramatically the computation resources [Coupez, 2000] since the number of elements is 

imposed. [Almeida, 2000], [Mesri, 2008]. Figure 2.7 illustrates meshes obtained with the two 

methods, a priori and a posteriori. 

 

  
(a) (b) 

 
(c) 

Figure 2.7: (a) Zoom of a 2D microstructure immerged in a finite element mesh adapted using an a priori 

method. The mesh is formed by 148 802 elements. (b) Zoom of a 2D microstructure immerged in a finite element 

mesh adapted using an a posteriori method. This mesh is formed by 102 135 elements. (c) 3D polycrystal 

immerged in a finite element mesh adapted using an a posteriori technique. This mesh is composed of 984 884 

elements. 

 

4. Microstructure Generation - Results 
 

In the above topics of this chapter, all the numerical tools needed to generate the digital 

microstructures used in all simulations performed during this project have been presented. 

Once the basic concepts are well understood, we are now interested in study the capabilities 

and the limitations of the digital microstructure generation methods.  

In the following topics, we will discuss the relevance of choosing the Laguerre-Voronoï 

method instead of the Voronoï method, based on the ability of obeying a given grain size 

distribution (2D and 3D). Finally, a topological and morphological analysis of 2D digital 

microstructures generated using the Laguerre-Voronoï method is presented. 
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4.1 Obeying a grain size distribution in 2D microstructures 
 

A 2D 304L experimental grain size distribution was obtained using optical microscope 

image analysis (Fig. 2.8). Surface preparation included a standard metallographic method 

consisting in successive wet grinding from 600 grit paper to 4000 grit. The sample was then 

polished using a 1 µm diamond paste. A final procedure using colloidal silica (OPS) was used 

to obtain a good finish of the surface. The polished samples were etched with a chemical 

solution composed of a 50 ml hydrochloric acid (HCl) solution (100 ml of HCl for 1 litre of 

water)  and 15 drops of H2O2 (~5ml). To obtain a representative result, 21 images have been 

combined. Figure 2.8 shows a part of the total image. Grain boundaries were identified and 

are drawn with white lines. The thin and elongated twin boundaries were not taken into 

account when determining the number-weighted grain size distributions. 

 

 
Figure 2.8: Optical microscope image of 304L stainless steel with grain boundaries drawn in white lines. 

 

Image analysis of the surface was done with the Visilog 6.3 software, and involved the 

calculation of individual grain areas. Equivalent circles with the same areas were used to build 

the statistical distributions. Only the grains with a radius larger than 30µm were considered, 

for the following reasons: 

 

 The total volume fraction of small grains is limited (volume fraction = 0.025) 

and therefore does not influence very much the macroscopic mechanical 

behaviour; 

 in grain growth regime, the smallest grains disappear fast, within a first initial 

transient; 

 from a mesh adaptation point of view, it is preferable to limit the grain size 

difference between smaller and larger grains. 

 

4.1.1 Voronoï Tessellation Method 
 

Thanks to the previously described experimental work, the mean grain radius of 304L 

steel samples was estimated at 67.4 µm. In order to study the Voronoï method, two digital 

microstructures obeying this mean grain size have been randomly generated (ten times). The 

first one is composed of 280 grains, in a 2 mm x 2 mm square domain, and the second one 

exhibits 10080 grains, in a 12 mm x 12 mm square domain (see Figure 2.9). The average of 
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the numerical grain size distributions obtained was then compared to the experimental 304L 

grain size distribution as illustrated in Figure 2.10. We can observe that the generated 

distributions are really different from the experimental one. While the experimental 

distribution shows a log-normal behavior, both numerical microstructures are closer to a 

Gaussian number-weighted grain size distribution, independently of the number of grains in 

the aggregate.  

 

 
(a) 

 
(b) 

Figure 2.9: Virtual generation of a 304L polycrystal using the Voronoï method (10080 grains in a 12 mm x 12 

mm square domain): (a) complete image of the digital microstructure, (b) zoom of the same microstructure. 
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(a) 

 
(b) 

Figure 2.10: Comparison between experimental 304L data and digital microstructures generated (average of 

ten generations) using a Voronoï method in a 2 mm x 2 mm domain and in a 12 mm x 12 mm domain: (a) grain 

size distribution and (b) cumulative fraction. 

 

The L2 errors (Equation 2.9 - with fex the discrete experimental fractions and fnum the 

discrete numerical ones) were evaluated for the two Voronoï tessellations in terms of both 

grain size distribution and cumulative fraction distribution. The results are summarized in 

Table 2.1.  
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Table 2.1 Probability in number and cumulative fraction L2 error for Voronoï microstructures (average of ten 

generations). 

Voronoi 

mR 4.67  

Histogram 

L2 Error (%) 

Cumulative fraction 

L2 Error (%) 

Number of 

grains 

2 mm x 2 mm 78.6 11.8 280 

12 mm x 12 mm 63 11.2 10080 
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These results illustrate that the Voronoï method is not appropriated to generate a log 

normal grain size distribution and that, more precisely, its use should be restricted to Gaussian 

grain size distributions. Considering that log normal grain size distributions are extremely 

common, the Voronoï method is not, in general, the appropriate tool to generate a numerical 

aggregate obeying an experimental grain size distribution. Xu, in [Xu, 2009], highlighted 

similar divergences between statistical properties classically observed in equiaxed 

polycrystals, and the results obtained using the Voronoï method. 

 

4.1.2 Laguerre-Voronoï Tessellation Method 
 

Regarding the Laguerre-Voronoï method, first results concern the experimental 304L 

steel grain size distribution: 8 different digital microstructures are generated using 8 different 

domain sizes: x mm x x mm, x {1, 2, …, 6, 8, 12}. Figure 2.11 illustrates the average results 

obtained for ten generations of microstructures in the domains 4 mm x 4 mm, 8 mm x 8 mm 

and 12 mm x 12 mm. The L2 error between the experimental data and the numerical results 

for the considered microstructures are presented in Figure 2.12.  
 

 
(a) 

 
(b) 

Figure 2.11: (a) Comparison between numerical grain size histograms obtained using a Laguerre-Voronoï 

method (average of ten generations in domains 4 mm x 4mm, 8 mm x 8 mm and 12 mm x 12 mm) and the 

experimental one (for 304L steel) and (b) comparison between the cumulative fraction distributions for the same 

cases. 
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Analysing Figure 2.12, we observe that the L2 error decreases with the increase of the 

domain size. This behaviour is expected since increasing the domain size implies generating a 

larger number of grains and hence a better representation of the microstructure. For domains 

larger than 4 mm x 4 mm, the error stabilises around 12 %. In the histogram of Figure 2.11, 

the grain size distribution error is concentrated in the small grain size families. This is due to a 

slight mismatch between the size of the Laguerre-Voronoï sphere and the grain size obtained 

after the creation of the Laguerre-Voronoï cells. Thereby, a few grains that should be placed 

in the range [30, 40] are placed in the [40, 50] range. Considering the cumulative fraction 

curve of Figure 2.11, the error is smaller than 3.5% for all investigated cases. Nevertheless, 

when compared to the results obtained for Voronoï tessellations (Table 2.1), and to the state 

of art [Hitti, 2012], the errors obtained here correspond to very good descriptions of the 

experimental distribution. There is however a need to continue improving the algorithm of 

digital microstructure generation, especially for the small grain size range. 

 

 
Figure 2.12: Error L2 between experimental data and numerical results (average of ten generations) of digital 

microstructures obtained using a Laguerre-Voronoï method - Histogram error (blue line) and cumulative 

fraction error (pink line). 

 

Figure 2.13 illustrates one of the digital microstructures generated using the Laguerre-

Voronoï method in the 12 mm x 12 mm domain. 
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(a) 

 
(b) 

Figure 2.13: A 2D digital microstructure made of 8294 grains obtained using a Laguerre-Voronoï method, 

based on a 304L steel experimental grain size distribution (domain size: 12 mm x 12 mm): (a) complete image of 

the digital microstructure, (b)zoom of the same microstructure. 

 

After analysing the possibility of generating a digital microstructure with a grain size 

distribution close to that of the experimental 304L steel, a more general study can be done 

about the capacity to generate various grain size distributions. Six different 2D digital 

microstructures are studied, whose features are presented in Table 2.2. 
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Table 2.2: Features of 6 grain size distributions. 

 

Mean 

Radius - μ 

(µm) 

Standard 

Deviation - 

σ (µm) 

σ/ μ 

Initial 

number of 

grains 

Domain 

Size 

(mm) 

Log1 61.7 7.2 0.12 9728 11 x 11 

Log2 63.7 14.1 0.22 10517 12 x 12 

Log3 67.4 23.5 0.35 10464 13 x 13 

Log4 71.4 31.6 0.44 9999 14 x 14 

Log5 75.3 38.4 0.51 8583 14 x 14 

Bimodal 62.8 24.3 0.37 9933 12 x 12 

 

The first five distributions are “synthetic” log normal, meaning that they are not based 

on real experimental data. In these cases, the mean grain size is more or less the same, with a 

standard deviation ranging between 7µm and 40µm. The last distribution corresponds to a 

“synthetic” bimodal distribution. The number of grains is around 10,000 for all 

microstructures, ensuring good microstructure representativity. Figure 2.14 describes 

comparisons between imposed distributions and the obtained numerical results, and between 

the theoretical and numerical cumulative fractions. Distributions and cumulative fractions are 

given as a function of the normalized equivalent radius   RR , where <R> corresponds to 

the mean grain size. Table 2.3 gives the L2 errors between the theoretical and the numerical 

distributions and cumulative fractions. 

 

 
(a) 
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(b) 

Figure 2.14: Grain size distributions histograms (a) Log1, Log2, Log3, Log4, Log5 and Bimodal and cumulative 

fraction (b) Log1, Log2, Log3, Log4, Log5 and Bimodal. 

 
Table 2.3 Distribution and cumulative fraction L2 errors for the 6 microstructures of Table 2.2. 

 
Histogram L2 

Error (%) 

Cumulative fraction 

L2 Error (%) 

Number of 

grains 

Bimodal 34.7 8.3 9933 

Log1 9.0 2.9 9728 

Log2 9.2 7.1 10517 

Log3 11.4 2.0 10464 

Log4 16.8 1.8 9999 

Log5 18.9 4.9 8583 

 

Errors are higher for more complex distributions, like the Bimodal distribution. 

However, as mentioned earlier, when compared to the state of art in this domain [Hitti, 2012], 

the errors obtained here correspond to very good descriptions of all distributions.  

 

4.2 Obeying a grain size distribution in 3D microstructures  
 

In order to generate a 3D digital microstructure close to that of 304L, the 3D 

experimental grain size distribution was estimated using the Saltykov method [Underwood, 

1970].  This method allows converting a 2D grain size distribution (bar-plots), for an 

equiaxed microstructure, to a 3D discrete grain size distribution. This method is based on the 

idea that all grains are spheres and the 3D distributions prediction is based on the probability 

of a sphere being intersected by a plane section. In [Tucker, 2012] the authors have shown, for 

a Ni-Based superalloy, that the Saltykov method corrects the disparity between the 2D and 3D 

grain size distribution mainly for the mean and the upper grain size ranges. The method is 

explained in details in Appendix 1. Figure 2.15 describes the 3D extrapolated discrete grain 

size distribution of the 304L steel. 
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Figure 2.15: 3D extrapolated grain size distribution obtained using the Saltykov method, for the 304L steel. 

 

The predicted distribution exhibits a large number of small grains. The mean grain 

radius is equal to 48.8 µm in 3D (in 2D, mean grain radius is equal to 67.4µm). 

 

4.2.1 Voronoï Tessellation Method 
 

Figure 2.16 illustrates one of the digital microstructures obtained using the Voronoï 

method, considering 16636 grains randomly generated in a 2 mm x 2 mm x 2 mm RVE (i.e. 

obeying the prescribed 3D mean grain size of 48.8 µm for 304L). As for the 2D discussions, 

ten distinct digital microstructures have been generated and Figure 2.17 gives a comparison 

between the average of those numerical distributions, and the experimental one. 

 

 
Figure 2.16: A 3D microstructure of 16636 grains generated using a Voronoï method in the domain 2 mm x 2 

mm x 2mm for the 304L steel. 
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Figure 2.17: Comparison between the numerical 3D grain size distribution (average of ten calculations – bar-

plots) obtained using a Voronoï method and the 3D extrapolated 304L one (“theoretical” discrete distribution). 

 

The L2 error between the experimental and numerical distributions is equal to 137.8% 

(each set of the numerical distributions being replaced by its mean value for this calculation); 

showing that the digital microstructure obtained using the Voronoï method is completely 

inadequate. 

 

4.2.2 Laguerre-Voronoï Tessellation Method 
 

Regarding the Laguerre-Voronoï method, ten digital microstructures were also 

generated based on the extrapolated 304L steel 3D grain size distribution obtained with the 

Saltykov method. Figure 2.18 illustrates a comparison between the experimental distribution 

and the average of the numerical grain size distributions. 

 

 
Figure 2.18: Comparison between the 3D numerical grain size distribution (average of ten calculations – bar-

plots) obtained using a Laguerre-Voronoï method and the extrapolated 304L one (“theoretical” discrete 

distribution). 
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The average of the number of grains generated in a 2 mm x 2 mm x 2 mm domain is 

equal to 6407. The L2 error between the experimental distribution and the average of the 

numerical ones (each bin of the numerical distributions being replaced by its mean value) is 

equal to 53%. In Figure 2.18, once again, the error is concentrated in families of smaller radii. 

Knowing that the smallest grains are the first to disappear during grain growth modelling and 

also that the reduced volume fraction of smaller grains (volume fraction = 0.02) leads to a 

minor influence on the global mechanical behaviour of the RVE, one can decide to compare 

the experimental and numerical volume-weighted grain size distributions (Figure 2.19). In this 

case, the L2 error is reduced to 36.3%. The results become acceptable, although some 

improvements could be done in the future. The same analysis was performed for the 

microstructure generated using the Voronoï method, and the error for the volume-weighted 

distribution, 212.2%, is even larger than the error for the number-weighted distribution 

(137.8%). 

 

 
Figure 2.19: Comparison between the 3D numerical volume weighted grain size distribution (average of ten 

calculations – bar-plots) obtained using a Laguerre-Voronoï method and the extrapolated 304L one 

(“theoretical” discrete distribution). 

 

Figure 2.20 illustrates one of the 3D digital microstructures obtained using the 

Laguerre-Voronoï method. 

 

 
Figure 2.20: A 3D microstructure made of 6400 grains generated using a Laguerre-Voronoï method in the 

domain 2 mm x 2 mm x 2mm for the 304L steel. 
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4.3 Topological study of 2D Laguerre-Voronoï microstructures 
 

In this work, all digital microstructures will be used in order to simulate plastic 

deformation with crystal plasticity (chapter 3), static recrystallization (chapter 5) and grain 

growth (chapter 4) phenomena. Previous discussions in this chapter have illustrated the 

capability of the proposed numerical strategy to generate polycrystals in a FE context, which 

obey grain size distributions in 2D and in 3D. However, all the above cited phenomena are 

also dependent on the material structure and on the microstructural topology. For example, in 

chapter 5, a discussion about the topological distribution of new (recrystallized) grains and its 

influence on the recrystallization kinetics is presented. In the case of grain growth, the 

associated kinetics depends on the microstructure topology, especially the number of sides of 

each grain, as discussed in [Hillert, 1965], [Abbruzzese, 1992a], [Abbruzzese, 1992b]. In 

addition, in [Abbruzzese, 1992a], [Abbruzzese, 1992b] the authors show that their grain 

growth equations, commonly used in grain growth mean field models [Bernard, 2011], are 

valid only if the microstructure obeys a “Special Linear Relationship” (SLR) between the 

grain number of sides, and the radius size. In this subsection, the topological characteristics of 

seven 2D different grain size distributions (the six distributions presented in Table 2.2 plus the 

304L distribution) are presented. In fact, a similar topological study as the one presented in 

[Abbruzzese, 1992a] is performed and the SLR is studied in order to verify if the Abbruzzese 

grain growth model hypothesis is valid for the initial microstructures generated using our 

Laguerre-Voronoï algorithm. Considering the 3D microstructures, despite our capability to 

generate them numerically, it is currently estimated that the accuracy of the grain size 

distribution still needs improvements, in order to generate realistic results, from which 

topological and morphological studies could be performed. 

Table 2.4 shows that all seven digital microstructures present a mean number of sides 

around 6. However, from Figure 2.21 it is observed that distributions of sides number (n) vary 

significantly from one case to another. For example, the Log1 distribution is narrower than 

the others, while the Bimodal distribution has two peaks.  

 
Table 2.4 Average number of sides for the seven microstructures generated numerically. 

 

Initial 

number of 

grains 

Mean 

number 

of sides 

(n) 

Domain 

Size 

(mm) 

Log1 9728 5.99 11 x 11 

Log2 10517 5.98 12 x 12 

Log3 10464 5.88 13 x 13 

Log4 9999 5.95 14 x 14 

Log5 8583 6.00 14 x 14 

Bimodal 9933 5.90 12 x 12 

304L 9211 5.88 13 x 13 
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Figure 2.21: Number of sides distributions for all seven 2D digital microstructures: 304L, Bimodal, Log1, Log2, 

Log3, Log4 and Log5. 

 

One can notice also a correlation between the number of sides distribution and the grain 

size distribution. For the same microstructure, both curves present more or less the same 

shape. Based on this idea, one can imagine a correlation between the sides number and the 

grain radius. This intuition is confirmed in Figure 2.22, where radius values are normalized 

according to: 

 

  RRr . (2.10) 

 

 

  
304L Bimodal 

  
Log1 Log2 
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Log3 Log4 

 
Log5 

Figure 2.22: Normalized radius vs. number of sides for all considered digital microstructures. 

 

Since, in general, the larger grains have a larger number of sides, the two parameters r 

(normalized radius) and n (number of sides) of the distribution are not independent of each 

other. But a unique mathematical relationship between the values r and n which would be 

valid for individual grains cannot exist, i.e. grains with the same equivalent radius may have 

different number of sides. Only statistical relationships considering grain families (each 

family being labeled with a subscript i) can be expressed. In [Abbruzzese, 1992a], 

Abbruzzese proposes the following two linear relationships between ri (grain radius of grain 

family i) and ni (number of sides of grain family i). 

 

ii aran  0 , (2.11) 

 

 ii rbbn 0 , (2.12) 

 

with a0, a, b0 and b being constants. The curve )( ii rfn  is obtained by averaging over the 

n at a given ri while the curve )(  ii rfn is calculated by averaging over the ri at a given n. 

Also, in [Abbruzzese, 1992a], it is shown that:  

 

60  bbaa o . (2.13) 

 

Verifications of these relations have been performed on the seven digital 

microstructures generated with the Laguerre-Voronoï tessellations.  

Figure 2.23 illustrates the relationships )(  ii rfn  and Table 2.3 gives the 

corresponding b and b0 values obtained by linear regression. 
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Figure 2.23: )(  ii rfn relationship for all seven digital microstructures. 

 
Table 2.5: Values of b0 and b (Equation 2.13) obtained by linear regression. 

 b b0 b0+b 

304L 4.56 1.33 5.98 

Bimodal 4.64 1.37 6.01 

Log1 8.26 -2.52 5.74 

Log2 4.36 1.76 6.12 

Log3 4.52 1.44 5.96 

Log4 4.22 1.65 5.87 

Log5 4.21 1.67 5.88 

 

In [Abbruzzese, 1992a], it was found b = 4.14 and b0 = 1.83. Except for the Log1 

distribution, the b and b0 values measured in the digital microstructures are similar. 

Interestingly, the study performed by Abbruzzese is based on an experimental distribution of 

an Al-3%Mg alloy with a log normal grain size distribution. Log1 distribution is close to a 

sharp normal distribution which may be the reason for the different behaviour presented by 

this distribution. However, the summations of b0 + b for all digital microstructures are around 

6, which agrees well with 2.13. 

Now, considering relationship 2.12, Figure 2.24 illustrates the relationship between 

)( ii rfn  obtained for the seven digital microstructures, and Table 2.4 gives a and a0 

values obtained by linear regression. 
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Figure 2.24: )( ii rfn   relationship for all seven digital microstructures studied. 

 
Table 2.6: Values of a0 and a (Equation 2.12) obtained by linear regression. 

 a0 a a0+a 

304L 3.01 2.99 6.00 

Bimodal 3.22 2.77 5.99 

Log1 3.10 2.88 5.98 

Log2 3.02 2.9 5.92 

Log3 2.99 3.02 6.01 

Log4 3.22 2.8 6.02 

Log5 3.20 2.78 5.98 

 

In [Abbruzzese, 1992a], it was found a = 2.99 and a0 = 2.98, with therefore a good 

agreement with Table 2.6. The summations of a0 + a are all very close to 6, which again 

validates relation 2.13. Relation 2.12 is the “Special Linear Relationship” proposed by 

Abbruzzese and used to determine the Abbruzzese mean field grain growth model presented 

in [Abbruzzese, 1992b]. Hence, the results obtained here illustrate that topological 

characteristics of the 2D Laguerre-Voronoï tessellations are in agreement with the topological 

assumptions of the famous Hillert and Abbruzzese grain growth model. More global analysis 

concerning grain growth modelling of the considered microstructures in the full field FE/level 

set context will be detailed in chapter 4. 

 

4.4 Morphological study of Laguerre-Voronoï microstructures 
 

The Laguerre-Voronoï method is generally used to generate microstructures composed 

of equiaxed grains. Since the Laguerre-Voronoï method consists in using a distribution of 

non-intersected spherical (in 3D, circular in 2D) particles that serve as a basis for constructing 

the microstructure, one can indeed expect to generate equiaxed grains when using this 

method. However, if these spherical (in 3D, circular in 2D) particles compaction is not as 

dense as possible, the generated digital microstructure may present non-equiaxed grains. In 

other words, the generation of equiaxed digital grains is ensured by a good dense sphere 

packing algorithm in the Laguerre-Voronoï tessellation. In this subsection, the digital 

morphology of the seven 2D different grain structures numerically generated is analyzed. The 

objective is to verify the absence of a morphological texture in the digital microstructures.  
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One way to verify in 2D if a grain is equiaxed is to compare its equivalent radius whose 

calculation is based on the grain surface (R), with the equivalent radius calculated using the 

grain perimeter (ReqS – Equation 2.14, where L is the grain perimeter).  

 

2

L
ReqS  . (2.14) 

 

The smallest the difference between R and ReqS, the closest to a circular shape the grain 

is and consequently the more equiaxed. In Figure 2.25, this analysis was performed for all 

grains of the considered digital Laguerre-Voronoï microstructures (one of the ten 

generations). It can be recognized that, roughly, RReqS  for all microstructures. 

 

  
304L Bimodal 

  
Log1 Log2 

  
Log3 Log4 
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Log5 

Figure 2.25: ReqS vs. R for all seven digital microstructures: 304L, Bimodal, Log1, Log2, Log3, Log4 and Log5 

 

For nearly equiaxed grains, the difference between R and ReqS is rather small, amounting 

to mean value smaller than 12% [Abbruzzese, 1992a]. From Table 2.7 we observe that all 

digital microstructures exhibit a mean error between R and ReqS which is smaller than 12%. 

However, analysing the graphs from Figure 2.26, it can be concluded that this difference is 

concentrated on grains with smaller equivalent radii. Statistically speaking, the smaller grains 

are less equiaxed than the largest ones. This means that with the Laguerre-Voronoï method, 

compaction problems occur mainly on small circles areas. 

 
Table 2.7: Mean error between ReqS and R for all digital microstructures. 

 Mean error between 

 ReqS and R (%) 

304L 8.8 

Bimodal 9.8 

Log1 7.5 

Log2 8.1 

Log3 8.3 

Log4 9.9 

Log5 10.8 

 

  
304L Bimodal 
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Log1 Log2 

  
Log3 Log4 

 
Log5 

Figure 2.26: Difference between ReqS and R vs. radius dispersion for all seven digital microstructures studied. 

 

Finally, the relationship between the grain perimeter S and the grain area A is studied. 

Analyzing graphs from Figure 2.27, an approximate equation )(AfS   was obtained for all 

the considered microstructures, which are summarized in Table 2.8. Behaviours are very 

similar.  
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Log3 Log4 

 
Log5 

Figure 2.27: Grain perimeter as a function of grain area dispersion for all digital microstructures: 304L, 

Bimodal, Log1, Log2, Log3, Log4, and Log5. 
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Table 2.8: )(AfS   equations for all digital microstructures: 304L, Bimodal, Log1, Log2, Log3, Log4 and 

Log5. S is the mean perimeter and A the mean area of grains. 

 )(AfS   

304L 5.081.3 AS   

Bimodal 5.085.3 AS   

Log1 5.083.3 AS   

Log2 5.084.3 AS   

Log3 5.082.3 AS   

Log4 5.085.3 AS   

Log5 5.086.3 AS   

 

Based on an average of the equations from Table 2.8, a statistical equation for the 

relationship between the grain perimeter and the grain surface for a 2D microstructure 

generated using the Laguerre-Voronoï method can be proposed: 

 
5.084.3 AS  . (2.15) 

 

Comparing Equation 2.15 with the one expected for a perfect circular shape 

 5.05.3 AS  , it is concluded that the Laguerre-Voronoï method not only generates 

microstructures obeying a given grain size distributions, but also leads to equiaxed 

microstructures. 

 

5 Conclusion 
 

This chapter presents the main mathematical tools used to generate and to immerge 

digital microstructures into a finite element mesh. Initially, with respect to the microstructure 

generation, the Voronoï and the Laguerre-Voronoï methods were presented. The conclusions 

are: 

 For 2D digital microstructures, the use of a Laguerre-Voronoï method allows the 

generation of a microstructure obeying an experimental grain size distribution 

with a very low L2 error, and this does not require a very high number of grains 

in the digital microstructure.  

 The use of the Voronoï method in 2D does not allow obeying a given grain size 

distribution. Even though the mean grain size can be set properly, the error 

between the numerical and the experimental grain size distributions can be very 

high, even when generating a large number of grains.  

 The above results were also verified for 3D digital microstructures. 

 

In a second part, a topological study of seven different 2D digital microstructures was 

presented. In all microstructures, the mean number of grain sides was around six, but the 

distribution of the number of sides differed from one microstructure to another. Two 

statistical linear relationships between the grain size and the number of sides, proposed by 

[Abbruzzese, 1992a], were critically analysed. For all investigated 2D digital microstructures, 

these linear relationships were verified. 

Finally, a morphological study of the same seven 2D digital microstructures was 

presented. The objective of this study was to verify if the digital microstructures generated 

using the Laguerre-Voronoï algorithm are equiaxed. Based on the results discussed in this 

chapter, one can conclude that, even though the smallest grains are less equiaxed than the 



 77 

larger ones, the digital microstructures generated with our Laguerre-Voronoï algorithm can be 

considered, overall, as very close to perfectly equiaxed microstructures.  

Concerning the last two topics, recommended future work would be to perform the 

same study in 3D. 

 

Résumé en français 
 

Dans ce chapitre, les principaux outils numériques utilisés dans la génération statistique 

et l’immersion des microstructures digitales dans un maillage éléments finis sont présentés. 

Concernant la génération statistique des microstructures digitales, deux méthodes sont 

discutées : l’approche de type Voronoï et l’approche de type Laguerre-Voronoï.  Il est tout 

particulièrement illustré que la méthode de Laguerre-Voronoï permet de respecter une 

distribution expérimentale de taille de grains contrairement à l’approche de type Voronoï.  

Dans une deuxième partie, une étude topologique de sept microstructures digitales 2D 

générées par l’ approche de type Laguerre-Voronoï retenue est présentée. Il est mis en lumière 

que les relations de type SLR proposées par Abbruzzese [Abbruzzese, 1992a] sont vérifiées 

pour l’ensemble des microstructures.  

Finalement, une étude morphologique des mêmes microstructures digitales en 2D est 

présentée afin de vérifier le caractère equiaxe ou non des microstructures générées par cette 

approche.  
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Chapter 3 

 

Deformation behaviour of 304L steel polycrystal and 

tantalum oligocrystal 
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1 Introduction 
 

Recrystallization processes depend on the nature of the deformed state. In order to 

accurately model recrystallization, microstructural heterogeneities, and the associated 

distribution of defects, must be understood, and even predicted. This explains the close 

connection between recrystallization and plasticity phenomena.  

In this chapter, a crystal plasticity model, based on the concept of dislocation slip 

(presented in details in chapter 1) is tested and calibrated using two different test cases. The 

first one corresponds to a planar compression test (channel die test) on a 304L steel 

polycrystal, taking place at high temperature. The second one corresponds to a simple 

compression test on a tantalum oligocrystal composed of six different grains. In both 

materials, emphasis is given on the use of statistically stored dislocations (SSD), and 

geometrically necessary dislocations (GND). The latter introduce grain size effects in 

plasticity, and reorganize the spatial distribution of dislocation densities, which is shown to 

influence the potential location of recrystallization nuclei. 

 

2 304L Steel Case 
 

2.1 304L stainless steel 
 

2.1.1 Chemical composition 
 

304L steel is an F.C.C. (face centred cubic) stainless steel. The major feature of a 

stainless steel is its resistance to corrosion. This property is reached by adding more than 

10.5% of chromium to the alloy. Except for chromium, the principal added element is nickel, 

which helps stabilizing austenite at low temperatures. Austenitic stainless steels do not 

undergo phase transformation upon cooling or heating. They are therefore good candidates for 

the investigation of recrystallization and grain growth processes.  The chemical composition 

of 304L steel is presented in Table 3.1. 

 
Table 3.1: 304L stainless steel chemical composition [Roucoules, 1994]. 

Component C Mn Si P S Cr Ni N 

Weight 

percentage 
<0.03 <2.00 <0.75 <0.045 <0.03 12.0~18.0 8.0~12.0 <0.10 

 

Sometimes, residual ferrite is found in 304L steel (as shown in Figure 3.1), but it 

usually represents less than 1% of the total volume. The presence of residual ferrite may be a 

consequence of heterogeneous nickel distribution, and/or solidification conditions. 

 

 
Figure 3.1: EBSD analysis showing residual ferrite in a 304L austenitic stainless steel. The red zones 

correspond to the austenitic phase while the green zones correspond to the ferrite phase.  
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Since the residual ferrite represents a small amount of the material, it will not be 

considered in the modelling work, i.e. 100% austenite will be assumed. 

The 304L alloy is widely used in equipment and utensils for food processing and 

handling, beverages and dairy products. It is also found in heat exchangers, piping, tanks and 

other equipment which are in contact with fresh water. 

 

2.1.2 Mechanical behaviour 
 

The mechanical properties and behaviour of metallic materials depend mostly on the 

dislocation content and structure, the grain size and the texture. The dislocation density of a 

typical annealed state is ~10
11

 m
-2

 (although this may significantly vary from one material to 

another), which may increase to as much as ~10
16

 m
-2

 when the material is heavily deformed. 

The increase of material dislocation density is responsible for the material work hardening. In 

1934, Taylor [Taylor, 1934] put forward the idea of hardening: some dislocations become 

‘stuck’ inside the crystal and act as sources of internal stress, which oppose the motion of 

other gliding dislocations [Ashby, 2009]. Also, dislocations multiplication and annihilation 

depend on the temperature and strain rate. It is therefore expected that the material mechanical 

behaviour will depend on temperature and strain rate. It is interesting to highlight that when 

deformation at sufficiently high temperature exceeds a critical strain, dynamic 

recrystallization is initiated and increases with further deformation until a steady state where 

the microstructure is stable due to a dynamic equilibrium between softening by dynamic 

nucleation and work-hardening. The onset of dynamic recrystallization is identified as a peak 

on the stress-strain curve followed by a material softening. 304L steel recrystallizes 

dynamically under the analysed conditions so, its stress-strain curves will present the typical 

dynamic recrystallization behaviour. All experiments presented in this topic were performed 

by Ke HUANG during his PhD Thesis [Huang, 2011]. 

 

Temperature influence 

 

In order to study the temperature influence on the 304L steel mechanical behaviour, 

torsion tests (Appendix 3) at 900°C, 1000°C, 1100°C and 1150°C were conducted with a 

constant strain rate of 0.01 s
-1

. The smoothed stress-strain curves are presented in Figure 3.2. 

 

 
Figure 3.2:  Stress - strain curves for 304L steel torsion test for different temperatures: 900°C, 1000°C, 1100°C 

and 1150°C -  =0.01 s
-1 

[Huang, 2011]. 
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At a deformation temperature of 900°C, the flow stress increases gradually and no 

apparent stress peak is found before fracture. The dynamic recrystallization of 304L steel in 

these conditions is very slow, which may explain the difficulty in identifying a peak. 

At a moderate temperature of 1000°C, some changes of stress-strain curves are 

observed. The stress shows more softening compared to the curve at 900°C. Considering the 

microstructure evolution, the flat grain boundaries become irregular after a small deformation 

of 0.3 (Figure 3.3.a), and start to serrate at a deformation level equal to 0.5 (Figure 3.3.b). 

Some small nuclei (new recrystallized grains) can be found among the original grain 

boundaries while other initial grain boundaries remain undecorated at ε = 1.0 (Figure 3.3.c). 

One can conclude that dynamic recrystallization starts at a strain between 0.5 and 1.0 at this 

temperature. With further deformation (Figures 3.3.d, 3.3.e and 3.3.f), the dynamically 

recrystallized grains volume fraction increases gradually and a large fraction of the initial 

microstructure is replaced by smaller grains.  

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.3:  Microstructure of samples deformed a 1000°C,  =0.01 s
-1

 for (a) ε = 0.3, (b) ε = 0.5, (c) ε = 1.0, 

(d) ε = 1.5, (e) ε = 2.0 and (f) ε = 2.5 [Huang, 2011]. 

 

The stress-strain curves at higher temperature (1100°C and 1150°C) exhibit typical 

dynamic recrystallization behaviour, with a distinct stress peak followed by a mechanical 

steady state, which continues until fracture of the sample. 

Comparing all stress-strain curves, the usual trend is confirmed, i.e. (i) the flow stress 

decreases with increasing temperature, and (ii) the peak stress appears at lower strain with 

increasing temperature. 
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Strain rate influence 

 

In order to study the strain rate influence on the 304L steel mechanical behaviour, tests 

with   = 0.01 s
-1

,   = 0.1 s
-1

 and   = 1 s
-1

 were conducted at a constant temperature of 

1000°C. The smoothed stress-strain curves are presented in Figure 3.4. 

 

 
Figure 3.4:  Stress - strain curves for 304L steel torsion test for different strain rates; 0.01 s

-1
, 0.1 s

-1
 and 1 s

-1
 at 

1000°C. 

 

Analysing Figure 3.4 the expected trend of a stress increase with increasing strain rate is 

found. For example, increasing the strain rate from   = 0.01 s
-1

 to   = 1 s
-1

 leads to an 

increase of flow stress of about 80 MPa. At lower strain rate (   = 0.01 s
-1

) the typical flow 

stress curve induced by dynamic recrystallization is obtained (as already mentioned in 

paragraph A.1.2.1). As strain rate increases to   = 0.1 s
-1

 and   = 1 s
-1

, the flow curves show a 

broader peak followed by softening. This is likely due to deformation heating, as documented 

in the literature [Mataya, 1990]. In [McQueen, 1995], [Mirzadeh, 2013], [El-Wahabi, 2003], 

[Dehghan-Manshadi, 2008] the authors present 304L steel experimental results for different 

test conditions. All results show similar tendencies to the ones presented here. 

In this chapter, only plastic deformation is studied, and therefore only the first part of 

the stress-strain curves, before the stress peak, is considered in the comparisons between the 

numerical and experimental results. Even though it is possible to simulate large simulations, 

as Resk describes in [Resk, 2009], [Resk, 2010], in the case of 304L steel, the numerical 

results have no physical meaning for strain values higher than the strain peak, due to the 

occurrence of dynamic recrystallization transforming the microstructure. In the case of a 

deformation at 1000°C and 0.01 s
-1

, stress-strain curves are analysed for strain values smaller 

than 0.6. 

 

2.1.3 Microstructural characterization - initial state 
 

The initial state of 304L steel samples is characterized using EBSD maps. From Figure 

3.5, we observe that the initial sample present a completely recrystallized microstructure. 

Also, we identify a large number of twin boundaries: 48% of all grain boundaries are, in fact, 

annealing twins.  
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Figure 3.5: 304L steel EBSD map  

 

As discussed in chapter 2, in the initial state, the material presents a log-normal grain 

size distribution (chapter 2, paragraph 4). From the pole figure given in Figure 3.6 and the 

orientation distribution functions (ODF) in Figure 3.7, it is concluded that the material has a 

quasi-random crystallographic texture.   

 

 
Figure 3.6: 304L steel pole Figure - initial state. 

 

 
Figure 3.7: Orientation distribution function of 304L steel at the initial state. 
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In the description of the initial microstructure of the investigated 304L steel, and in 

particular for the crystal plasticity calculations, the discrete set of grains crystallographic 

orientations is therefore selected in a random way. The corresponding Euler angles are given 

in Appendix 2.  

 

2.2 Planar compression test (Channel Die test) 
 

2.2.1 Description of the test 
 

The planar compression test is a compression test where deformation proceeds along 

two directions, as the case in the rolling process. In the simulations, a normal force is applied 

in the –z0-direction and the material thinning results in extension along the x0-direction, as 

illustrated in Figure 3.8.a. 

 

 
 

(a) (b) 

Figure3.8: (a) Channel die test description. (b) Homogeneous strain rate boundary conditions for a channel die 

test. 

 

Homogeneous strain rate boundary conditions are applied: at every node belonging to 

the boundary of the domain  , the three components of the velocity v are prescribed 

according to the following equation: 

 

XLv


  on  , (3.1) 

 

where L represents the velocity gradient tensor and X


the position vector in the current 

configuration. For the channel die example, L is given by: 

 

























00

000

00

L  (3.2) 

 

with β being a constant. Figure 3.8.b illustrates the boundary conditions for the channel die 

test. 
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2.2.2 Material parameters - 304L 
 

As discussed in chapter 1, the material hardening is computed according to the 

following rule: 

 

Tc bM   0 , (3.3) 

 

where 0  is the “dislocation free” yield stress, M the Taylor factor, α a constant, μ the shear 

modulus, b  the magnitude of the burgers vector, and 
T  the total dislocation density which is 

often expressed as GST   . In this case S  is the statistically stored dislocation (SSD) 

density and G  the geometrically necessary dislocation (GND) density. 

Considering only the SSDs, the Yoshie-Laasraoui-Jonas [Laasraoui, 1991] equation was 

implemented in our crystal plasticity model: 

 

  
TS KK 21  , (3.4) 

 

where K1 and K2 are material parameters. Since these parameters are identified from 

macroscopic mechanical tests, Equation 3.4 needs to be adjusted to the context of crystal 

plasticity, describing mesoscopic scale phenomena. This adjustment is explained in details in 

the following topics. 

Considering the GNDs, the Busso [Busso, 2000] model was implemented in the crystal 

plasticity model (chapter 1, paragraph 2).  

 

   p

GGG Fncurlntbb
enetsm

    . (3.5) 

 

Six parameters involved in Equations 3.3 to 3.5 can be found in the literature: the shear 

modulus μ; the constant α; the magnitude of the burgers vector b ; the components of the 

anisotropic elastic tensor modulus C11, C12 and C44. On the other hand, K1, K2 and 0  must be 

identified from mechanical testing at different temperatures and strain rates.  

 

Shear modulus μ 

 

Following the method proposed by Frost and Ashby [Frost, 1982], Gavard [Gavard, 

2001] analysed the 304L steel shear modulus evolution with temperature using experimental 

data presented in Table 3.2 

 
Table 3.2: Shear modulus of 304L [ASM, 1982]. 

T(°C) 24 149 260 371 482 593 704 816 

µ (GPa) 79/77 73/72 70/68 66/64 55/61 59/58 55/55 50/52 

 

Linear dependence with temperature was found between 24 and 816°C, as shown in 

Figure 3.9. 
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Figure 3.9: Shear modulus evolution of 304L steel with temperature [Gavard, 2001] 

 

The curve of Figure 3.9 is then extrapolated until 1200
o
C, which leads to shear modulus 

values presented in Table 3.3. 

 
Table 3.3: Shear modulus from room temperature to 1200°C for 304L steel [ASM, 1982] 

T(°C) 25 850 950 1000 1050 1100 1200 

µ (GPa) 75.8 50.2 47.0 45.5 43.9 42.4 39.3 

 

K’1, K’2 and τ0 

 

At the macroscopic scale, the material hardening is computed using Equations 3.3 and 

3.4. The K1 and K2 identification procedure at this scale is explained in details in [Jonas, 

2009]. To compute the hardening at the mesoscopic scale, Equations 3.3 and 3.4 are modified 

according to Equations 3.6 and 3.7 by considering the meaning of the Taylor factor (M). The 

Taylor Factor is a geometric factor which describes the propensity of a crystal to slip (or not 

slip) based on the orientation of the crystal relative to the sample reference frame. 

 
Macroscopic  Mesoscopic 

   

 bMc  0    bc  0  (3.6) 

   

  )( 21 KK    


  )''( 21 KK  (3.7) 

 

Equation 3.3 is divided by M, i.e. 
M

0
0


  . In Equation 3.4, 

M

K
K 1'

1  , 
M

K
K 2'

2   due to 

the fact that 


 M . The Taylor factor value depends on the mechanical solicitation and 

on the grain orientation [Humphreys, 2004]. As a consequence, parameters K1, K2 and 0  are, 

at the grain scale, also dependent on the Taylor factor. On the contrary, K’1, K’2 and 0  are 

independent of the Taylor factor value; they are intrinsic to the material, at a given 

temperature and strain rate. As a consequence, once K’1, K’2 and 0  are correctly identified, 

the crystal plasticity model can be used to model any mechanical condition, and should 

account for the loading path influence. The identification procedure of these parameters is 

detailed below. 

First of all, K1, K2 and 0  are identified using experimental curves of 304L steel torsion 

tests. Figure 3.10 illustrates a comparison between the experimental (1000°C and 01.0 ) 
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results (green line) and the theoretical curve (red line) obtained with K1 = 10.1 10
14

 m
-2

, K2 = 

3.3 and MPa530   (red line). 

 

 
Figure 3.10: Comparison between experimental results and theoretical stress - strain curves for 304L steel at 

1000°C and deformation rate equal to 0.01 s
-1

. 

 

Secondly, the 304L steel mean Taylor factor during a torsion test is identified using 

EBSD analysis. As shown in paragraph 2.1.3, the 304L steel exhibits a quasi-random texture. 

To further verify the material isotropy, the mean Taylor factor of a torsion test is calculated 

for 3 different solicitation directions, using the TSL OIM Analysis software. According to 

Table 3.4, the mean M is 3.3. In order to obtain K’1, K’2 and 0 values, we therefore need to 

divide K1, K2 and 0  by this value. For a planar compression test, the mean Taylor factor is in 

average 3.33, but no experimental data is available for this test. 

As the Taylor factor depends on the grains crystallographic orientations, the particular 

set of representative grains used in simulations may influence the mean Taylor factor value 

and, as a result, influence the polycrystal mechanical behaviour. In this work we perform 

simulations with 50-grain domains and 100-grain domains. The corresponding mean Taylor 

factor values for our 50-grain and 100-grain polycrystal are given for torsion and planar 

compression tests in Table 3.4. The crystallographic orientations of all grains are given in 

Appendix 2.  
 

Table 3.4: 304L steel mean Taylor factor for planar compression and torsion solicitations for a 50-grain, 100-

grain polycrystal, and for the total domain measured experimentally. 

Planar compression test 

 

Torsion test 

Velocity 

gradient tensor 

(L) 

Taylor factor Mean 

Velocity 

gradient 

tensor (L) 

Taylor factor Mean 
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

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
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

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
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


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3.31 
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Based on Table 3.4, we conclude that, in all cases, the Taylor factor value is higher for a 

planar compression solicitation than for a torsion solicitation. Also, for both cases, the 100-

grain domain shows the same mean Taylor factor value as that of the total measured domain.  

In the case of planar compression solicitation, we observe that the mean Taylor factor value 

for a 50-grain domain is larger than the one for a 100-grain domain. For the torsion 

solicitation, the inverse is observed. Knowing the K’1, K’2 and 0  intrinsic parameters of 

304L, and the mean Taylor factor values of 304L for different mechanical solicitations and 

domain size, theoretical stress-strain curves can be predicted from numerical simulations. 

This reasoning is however valid when considering only SSDs. 

When considering both SSDs and GNDs, an extra amount of dislocation is added to the 

material. As a consequence K’1, K’2 and 0  values must be re-adjusted to keep a good match 

with experimental results.  

 

304L steel parameters 

 

Table 3.5 presents the material parameters used in simulations considering only SSDs 

and simulations considering both SSDs and GNDs. Due to confidentiality, these parameters 

are represented using capital letters. These parameters are valid for deformations at 1000°C 

and with a strain rate of 0.01 s
-1

. For different conditions, new parameters need to be 

identified, using the same procedure as that explained in the above paragraphs. 

 
Table 3.5: 304L steel parameters used in the crystal plasticity model. 

 SSDs 
SSDs + 

GNDs 

 
 SSDs 

SSDs + 

GNDs 

K’1 (m
-2

) A A 0 (s
-1

) 0.001 0.001 

K’2 B 2.9B α D D 

0  (MPa) C C μ (GPa) E E 

C11 (GPa) 202 202 b (m) 0.254 10
-9

 0.254 10
-9

 

C12 (GPa) 86.6 86.6 m F F 

C44 (GPa) 57.7 57.7  

 

The only different parameter between the SSDs and the SSDs+GNDs case is the K’2 

value. As discussed in chapter 1, when the GNDs are taken into account, an extra amount of 

dislocations is introduced. As a consequence, in order to match the macroscopic mechanical 

behaviour, dislocation recovery is chosen to increase, leading to a higher value of K’2. 

It is important to note that other combinations of parameter values for the SSDs+GNDs 

case would probably allow to correctly predict the experimental stress-strain curve. It is 

chosen here to keep the same K’1 value, and to adapt the K’2 value, but additional tests with 

variable initial grain sizes would potentially provide other solutions. We also keep in mind 

that the presence of GNDs introduces strong intragranular gradients of dislocation densities. 

Those are not easily captured by such a simple model, which ignores, for example, dislocation 

transport [Arsenlis, 2004]. 
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2.3 Effects of mesh type in highly resolved polycrystalline 

simulations 
 

The study of mesh size effect on the material mechanical behaviour or on the texture 

predictions is a subject discussed by several authors. In fact, meshes can be structured 

(“regular”) or unstructured (“free”), with various degrees of mesh refinement. 

In order to study the mesh influence on the mechanical behaviour of 304L steel, when 

considering only SSDs, a 50-grain polycrystal is generated in a 0.4 mm x 0.4 mm x 0.4 mm 

domain. The crystallographic orientations of all grains are based on experimental EBSD 

measurements, and given in Appendix 2.  

Four different meshes are studied: 2 of them are isotropic without local mesh 

adaptation, and the other 2 meshes are also isotropic but with mesh adaptation around the 

grain boundaries. Table 3.6 sums up all meshes features and Figure 3.11 gives a graphical 

illustration. A planar compression test is simulated using material parameters from Table 3.5. 

In Table 3.6, the mesh size is normalized by the mean grain radius. 

 
Table 3.6: Mesh features - considering only SSDs. 

  
Normalized mesh 

size inside the grain 

Normalized mesh 

size on the grain 

boundary 

Number of mesh 

elements 

Mesh 1 Non adapted 0.297 0.297 80,000 

Mesh 2 Non adapted 0.178 0.178 400,000 

Mesh 3 Adapted 0.297 0.119 745,000 

Mesh 4 Adapted 0.237 0.119 780,000 

 

    
Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Figure 3.11: The four meshes used to test the mesh influence on crystal plasticity numerical results, considering 

only SSDs – colour scale represents the distance function. 

 

2.3.1 Considering only SSDs 
 

In [Sarma, 1996] the authors show that the use of a coarse discretization, in conjunction 

with regular meshes and with only one element per grain (but with more than one integration 

point), is relatively adequate for texture evolution predictions. Other authors have shown that 

increasing mesh refinement has very little impact on the global stress-strain response of the 

polycrystal when using conventional crystal plasticity [Barbe, 2001a], [Barbe, 2001b], 

[Buchheit, 2005], [Diard, 2005], [Resk, 2009]. However, all agree that finely discretized 

meshes are needed to capture local details of microstructure evolution and local gradients, 

regardless of the mesh type. 

In this case, the mesh influence on the stress-strain curve is studied. The macroscopic 

stress is computed based on the equivalent Von-Mises stress (at each mesh element) as 

follows: 
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 , (3.8) 

 

where V is the total volume of the representative volume element (RVE). Similarly, the 

macroscopic strain is computed based on the equivalent strain as: 

 




 d
V

eqmacro 
1

 and  













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eqeq dtdt   :
3

2
. (3.9) 

 

The obtained stress-strain curves for meshes 1, 2, 3 and 4 are then compared to the 

theoretical curve calculated using parameters from Table 3.5 and the Taylor factor value for a 

50-grain domain under a planar compression solicitation (M = 3.36, Table 3.4). Figure 3.12 

presents the obtained results. 

 

  
(a) (b) 

Figure3.12: Stress - strain curves comparison between the theoretical result and the numerical result obtained 

with four different finite element meshes: (a) complete curve; (b) zoom for strains from 0.1 to 0.18. 

 

Comparing mesh 1 (red line) and mesh 2 (green line) curves (both meshes are isotropic 

and non-adapted), it is concluded that accuracy is improved when decreasing the mesh size. 

Comparing mesh 3 (orange line) and mesh 4 (light blue line) - both meshes are isotropic 

and adapted with the same mesh size near the grain boundaries – leads to the influence of the 

intragranular mesh size, which is small. In other words, the mesh size near the grain 

boundaries matters more than the intragranular one, even though we only deal here with 

SSDs. This is further confirmed by comparing mesh 1 (red) to mesh 3 (orange): the sole 

refinement of mesh size near the grain boundaries is enough to significantly improve the 

results. 

 

2.3.2 Considering both SSDs and GNDs  
 

Once again, the stress-strain curves are plotted using Equations 3.8 and 3.9 in order to 

study the mesh influence. Figure 3.13.a presents the stress-strain curves for all four meshes 

compared to the theoretical curve (which considers only SSDs). 
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(a) (b) 

Figure 3.13: Stress - strain curves comparison between the numerical results obtained with four different finite 

element meshes and the theoretical curve calculated when considering only SSDs: (a) complete curve; (b) zoom 

for strains from 0 to 0.08. 

 

From Figure 3.13.b representing the stress-strain curves for low strain levels, it is seen 

that all meshes present a similar behaviour as the one obtained previously with only SSDs. 

However, for strains larger than 0.1, we observe that simulations using mesh 3 (orange line) 

and mesh 4 (light blue line) predict a more important hardening. It is interesting to highlight 

that this mesh influence takes place only after the GND density reaches a critical value. For 

small deformations, dislocation density is mostly controlled by SSD density, and the extra 

hardening behaviour is not observed. As GNDs build-ups are associated with slip gradients 

developing at the grain boundaries, in this case, the mesh sensitive response is linked to a 

significant increase in the number of GNDs relative to the SSD population. Thus mesh 

sensitivity increases as the element size around the boundaries decreases. Figure 3.14 

illustrates the increased GND density in mesh 3 and 4 along grain boundaries, as compared to 

mesh 1 and mesh 2. The dislocation density distribution will be discussed in more details in 

paragraph 2.4.2. 

 

 
 

Mesh 1 Mesh 2 
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Mesh 3 Mesh 4 

Figure 3.14: GND density distribution for four different meshes for ε = 0.3.  

 

In [Abrivard, 2009] the authors also show the effect of the mesh refinement on the 

stress-strain curves of a 2D 20-grain Al polycrystal. Their model presents mesh sensitivity as 

soon as plastic deformation occurs. Also, this effect has been underlined by Cheong in 

[Cheong, 2005] for Cu polycrystal from grains smaller than 30 µm during tensile loadings. In 

order to avoid this mesh sensitivity, [Abrivard, 2009] proposes that the strain gradient should 

be calculated not for all Gauss points presented in the mesh, but only for Gauss points with a 

critical distance from each other. The critical distance would be linked to the GNDs spread at 

the grain boundary [Liang, 2009]. In the present study, since the stress difference between the 

different meshes is small (around 10 MPa), the method was not implemented. It may be done 

in future work however. 

 

2.4 Results 
 

The planar compression test presented earlier is used to simulate 304L steel rolling. A 

0.5 mm x 0.5 mm x 0.5 mm cubic 100-grain RVE is generated. 

 

2.4.1 Stress - Strain analysis 
 

The macroscopic stress-strain numerical curve is plotted considering the equivalent 

Von-Mises stress (at each mesh element) using Equation 3.8, and the equivalent strain using 

Equation 3.9. Figure 3.15 illustrates a comparison between the numerical results, the 

theoretical result and the experimental torsion-test result.  

 

 
Figure 3.15: Stress - strain curves: comparison between numerical, theoretical and experimental results. 
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Both SSDs and SSDs+GNDs models predict well the experimental mechanical 

behaviour, even though the simulation is in plane strain compression, while the experimental 

curve comes from a torsion test. This is due to the fact that mean Taylor factors are close to 

each other, as shown previously in Table 3.4. This can be visualized by comparing the 

“theoretical curve”, which takes into account the correct mean Taylor factor, and the 

experimental curve: they are very close to each other. 

Looking at the stress distribution throughout the RVE (Figure 3.16), it is seen that in 

taking into account SSDs + GNDs, the stress concentration near the grain boundaries becomes 

more evident. Consequently, even though the macroscopic stress-strain behaviour is similar 

for both hardening models, the stress distribution in the microstructure is different.  

 

 

 
SSD SSD+GND 

Figure 3.16: 304L steel stress distribution for ε = 0.5, for strain rate equal to 0.01 s
-1 

and T = 1000
o
C. 

 

A possible outcome of these crystal plasticity simulations is the possibility to predict 

nucleation events in recrystallization regime. This motivates further a detailed study of 

dislocation densities and strain distribution inherited from plastic deformation. 

 

2.4.2 Dislocations density and energy distribution analysis 
 

Figure 3.17 shows the dislocation density distribution considering the two hardening 

models, for ε = 0.5. 

 

  
SSD SSD+GND 

Figure 3.17: Dislocation density distribution for ε = 0.5, for strain rate equal to 0.01 s
-1 

 and T = 1000
o
C. 
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Analysing Figure 3.17, we observe that the model taking into account both SSDs and 

GNDs presents a dislocation density concentration near the grain boundaries while the model 

considering only the SSDs densities present a more homogeneous dislocation density 

distribution. 

The average dislocation density over the whole RVE is computed as: 

 




 d
V

moy 
1

, (3.10) 

 

where ρ is the dislocation density in a given mesh element. 

Figure 3.18 shows that dislocation density is an increasing and non-linear function of 

the plastic deformation. For simulations considering only SSDs, saturation of hardening leads 

to a maximum dislocation density given by 
14

2

1 10 06.3
'

'


K

K
 m

-2
.  

For the model considering SSD + GND, for strain levels between 0 and 0.4, the 

dislocation variation behaviour is similar to previous case. However, for strain levels higher 

than 0.4, an extra increase of the dislocation variation is observed. At this stage, the material 

hardening near grain boundaries becomes high, and continued hardening in these zones might 

be overestimated.  

 

  
SSD SSD+GND 

Figure 3.18: Global dislocation density evolution with macroscopic strain. 

 

The dislocation energy is computed using the dislocation density from: 

 




2

2b
Edisloc  , (3.11) 

 

where μ is the shear modulus. The global dislocation energy evolution therefore follows the 

same trend as that of the global dislocation density given in Fig. 3.18.  

Instead of looking at the global dislocation density evolution (RVE scale), it is 

interesting to focus on the dislocation density evolution at the grain scale. To do so, ten 

randomly chosen grains are analysed. We compute their dislocation density evolution using: 

 






grain

d
Vgrain

grain 
1

. (3.12) 

  

Figure 3.19 illustrates the calculated evolutions for both hardening models. 
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SSD 

 
SSD+GND 

Figure3.19: Dislocation density evolution for ten randomly chosen grains. 

 

The mechanical response of the selected grains is different from each other, with 

dislocation densities spreading around the RVE (global) value. A first reason comes from the 

grain crystallographic orientations: the distribution of slip rates along the different slip 

systems results in dissimilar dislocation density evolutions. A second reason comes from the 

location of the grains, whether they interact with neighbours, with the fixed walls of the 

channel die, or with the zone of free boundaries. 

It is also noticed that the grain behaviour may change during deformation. For example, 

when considering only SSDs, grain 80 initially hardens faster than grain 28, but after a while, 

this trend is inversed. This is of course the consequence of crystal lattice rotation, keeping in 

mind that this rotation is non homogeneous. Another example can be found in comparing 

grains 27 and 47. 

Comparing the two hardening models, similar trends are observed for small strain 

levels, since hardening is then mostly controlled by SSDs multiplication. For higher strain 

levels, the introduction of GNDs does make a difference, as discussed already when analysing 

the global RVE behaviour. For example, at a strain level of 0.5, the highest dislocation 

density is not reached for the same grains with the two hardening models (see grain 28). This 

can be connected to the saturation behaviour, which automatically leads to dislocation 
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densities of 
'

2

'

1 KK  for all grains in the SSDs model, whereas no saturation is reached when 

introducing GNDs. 

At the intra-granular scale, the dislocation density distribution can be analysed as a 

function of the distance to the grain boundary. All mesh elements are then taken into account 

and the mean dislocation density (taken over the entire polycrystal) is computed only as a 

function of the distance to the closest grain boundary. Figure 3.20 shows the results for 

different deformation levels. The distance to the closest grain boundary is normalized by the 

polycrystal mean grain size. 

 

  
SSD SSD+GND 

Figure 3.20: Dislocation density distribution as a function of the normalized distance to the closest grain 

boundary for ε=0.1, ε=0.2, ε=0.3, ε=0.4, ε=0.5 and ε=0.6. 

 

In the SSD hardening model, the dislocation density is, in average, slightly higher near 

the grain boundaries. However the difference between the grain boundaries zone and the grain 

bulk is small. SSDs have a statistical nature, and only the local increase of the amount of 

strain near the boundaries can explain this result. In average, the dislocation distribution 

throughout the grain is quasi uniform. 

On the other hand, when considering the SSD + GND hardening model a clear increase 

of the dislocation density is noticed near the grain boundaries, as expected. Since the 

nucleation of new grains is often considered to predominantly take place in zones of highest 

dislocation densities, it is concluded here that the choice of hardening model will have a 

strong impact on the predicted location of recrystallization nuclei. 

One way of normalizing the above results is to write: 

 

    )(,/)(,/)(   RxRx , (3.13) 

 

where   ,/)(  Rx  is the mean dislocation density at position )(x , )(   is the 

RVE mean dislocation density,   ,/)(  Rx  is the proportionality coefficient and  R

is the mean grain size. Figure 3.21 illustrates the   ,/)(  Rx  values evolution obtained 

for both hardening models. 
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SSD SSD+GND 

Figure 3.21: Beta value as a function of the normalized distance to the closest grain boundary for ε=0.1, ε=0.2, 

ε=0.3, ε=0.4, ε=0.5 and ε=0.6. 

 

In the SSD model, the dislocation density is shown to be more and more uniform when 

the strain level increases. The opposite holds for the SSD + GND model. 

Instead of looking at mean values, one can also detail the spread of dislocation densities 

as a function to the normalized distance to the closest grain boundary (Figure 3.22), and for a 

given strain level. 

 

  
SSD – a SSD + GND – a 

  
SSD – b SSD + GND – b 

Figure3.22: Dislocation density spread for (a) ε=0.3 and (b) ε=0.5. 

 

Even with the SSD hardening model, the spread of dislocation densities is highest near 

the grain boundaries. As a consequence, dislocation energy gradients are also expected to be 

the highest near the grain boundaries, and this is confirmed by Figure 3.23. This, again, 

promotes a preferential positioning of recrystallization nuclei near the grain boundaries. 

However, in the SSD model, Figure 3.24 shows that not all the grain boundaries would be 

potential nucleation sites. 
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SSD SSD+GND 

Figure 3.23: Norm of dislocation energy gradient as a function of the normalized distance to the closest grain 

boundary for ε=0.1, ε=0.2, ε=0.3, ε=0.4, ε=0.5dand ε=0.6. 

 

  
SSD SSD + GND 

Figure 3.24: Norm of dislocation energy gradient distribution for ε = 0.5, for strain rate equals to 0.01 s
-1

 and  

T = 1000
o
C.  

 

Coming back to Figure 3.22, with the SSD+GND hardening model, it is observed that 

not only the mean dislocation density is higher near the grain boundaries, but also the 

deviation from the mean. This dislocation density spread increases with increasing strain 

levels. This leads, as in the SSD case, to an increase of dislocation energy gradient near the 

grain boundaries, but with higher amplitude (Figure 3.23). The norm of dislocation energy 

gradient globally increases near the grain boundaries as illustrated in Figure 3.23. The slight 

decrease observed in Figure 3.23.SSD+GND very close to the grain boundaries is due to a 

mesh size effect. Indeed, this is a purely interpolation effect and it should not be considered in 

the physical analysis. Also, the increase is more systematic (i.e. it holds for all grain 

boundaries), as can be seen in Figure 3.24. 

Figure 3.25 describes the dislocation density distribution for five different normalized 

distances to the grain boundary (d = 0.037, d = 0.113, d = 0.414, d = 0.827 and d = 1.128) and 

for two different deformation levels (ε = 0.3, ε = 0.5). 
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SSD – a SSD + GND – a 

  
SSD – b SSD + GND – b 

Figure 3.25: Dislocation density distribution for five different normalized distances to the grain boundaries: d = 

0.037, d = 0.113, d = 0.414, d = 0.827 and d = 1.128. Results for two strain levels (a) ε=0.3 and (b) ε=0.5 are 

presented. 

 

The distributions depend on the distance to the grain boundary. In the SSD model, the 

distribution is wider when approaching the grain boundary. Reversely, it becomes narrower 

with increased deformation levels. The highest dislocation densities always remain close to 

the grain boundary, although the mean value is almost uniform (as noticed earlier). 

In the SSD+GND model, one can summarize that (i) both the distribution width and the 

mean dislocation density are increased when approaching the grain boundaries, and (ii) with 

increasing strain levels, distributions become wider and spatially more heterogeneous.   

Based on the above results, one can conclude that nucleation processes during 

recrystallization will be predicted to take place mostly near the grain boundaries, in both 

hardening models, since in this area we find the highest levels of dislocation density and 

dislocation gradient values. A striking difference between the SSD and the SSD+GND 

hardening models, is that the former predicts homogenization of hardening with increased 

levels of strain, whereas the latter predicts more and more heterogeneity. 

 

2.4.3 Strain distribution analysis 
 

From Figure 3.26, the introduction of GNDs does not have a significant influence on 

strain distribution. A few areas of higher strain levels can be identified, but the difference 

with the SSD model is minor. 

At the intra granular scale, Figure 3.27 describes the mean strain as a function of the 

distance to the closest grain boundary, following the idea used already for dislocation 

densities. Here again, distances are normalized by the mean grain size of the polycrystal, and 

results are given for different macroscopic deformation levels. 
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SSD SSD+GND 

Figure 3.26: Strain distribution for ε = 0.5, for strain rate equals to 0.01 and T = 1000
o
C.  

 

  
SSD SSD+GND 

Figure 3.27: Strain distribution in function of the normalized distance to the grain boundary for ε=0.1, ε=0.2, 

ε=0.3, ε=0.4, ε=0.5 and ε=0.6. 

 

The strain distributions show slightly higher values near the grain boundaries, for both 

hardening models. In Figure 3.28, the spread of these values is, like for dislocation densities, 

increased near the grain boundaries. 

 

  
SSD – a SSD + GND – a 
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SSD – b SSD + GND – b 

Figure 3.28: Strain dispersion for (a) ε=0.3 and (b) ε=0.5. 

 

The deviation of strain values with respect to the mean increases with an increase of the 

macroscopic strain, for both hardening models. The spread in the SSD+GND model is a little 

higher. 

 

 

 

2.4.4 Grain size effects 
 

The grain size effect on the 304L steel mechanical behaviour has been investigated at   

T = 1000
o
C. The simulated strain rate is 0.01 s

-1
. The simulations predictions for three grain 

sizes (0.2< R >,< R > and 3.2 < R >, with < R > being the experimental mean grain size) are 

presented in Figure 3.29.a. It is observed that an initial grain size reduction results in the 

polycrystal strengthening. For each grain size, the build-up of strain gradients leads to the 

accumulation of GNDs during deformation, affecting significantly the hardening behaviour of 

polycrystalline aggregates. 

 

  
(a) (b) 

Figure 3.29: (a) Stress-strain numerical curves for three different initial grain sizes: 0.2< R >, < R > and 3.2 < 

R > with < R > being the mean grain size measured on 304L samples. (b) Flow stress dependency on grain size 

at various strain levels (black dots) with the fitted Hall-Petch relation (blue lines). 

 

It was found that the grain size dependence of the flow stress, σ, follows a modified 

Hall-Petch equation of the type: 



 102 

 

2

1

0 )()(


 dk  , 
(3.14) 

 

where )(0   and k(ε) are parameters varying with the strain level. In Figure 3.29.b, the linear 

interpolation of the numerical results for different grain sizes is done in a Hall-Petch graph. 

The stress variation with the grain size follows well relation (3.14), for all investigated 

macroscopic deformation levels. 

In [Mirzadeh, 2013], the effect of 304L steel grain size influence on the stress-strain 

curve is studied, and a similar behaviour is observed. Also, it is important to highlight that, for 

smaller grain sizes, the dynamic recrystallization onset is at smaller strain levels. As a 

consequence, for a polycrystal with 0.2<R>, results for strain levels larger than 0.3 may not 

have a physical meaning. 

Predicted stresses probably overestimate the experimental results, as was already 

noticed by [Abrivard, 2009] in the small grain sizes range. This is probably a consequence of 

the GND evolution model, which does not account well for dislocation transport and/or the 

annihilation of dislocations. Dislocation annihilation is computed only by the SSD evolution 

equation. 

The SSD+GND model however predicts physical results in terms of grain size effects. 

In order to improve this study, complementary experimental tests, with samples presenting 

different initial mean grain sizes, should be done. Also, an improvement in the GND 

evolution equation formalism is needed. 

 

3 Tantalum Case 
 

This second study relates to uniaxial compression tests of tantalum olygocrystals. 

Olygocrystals are macroscopic samples containing only a few grains, i.e. the grains have mm 

to cm sizes. The experimental compression tests were performed by Christophe Kerisit during 

his Ph.D. [Kerisit, 2012]. Tantalum was chosen here for two main reasons: (i) the technical 

possibility of producing olygocrystals, with columnar structures and (ii) its high ductility at 

room temperature. 

With such samples, it is possible to perform a numerical study on: 

 

- the evolution of the macroscopic shape of the samples, which is a consequence of the 

plastic anisotropy of single crystals; 

- the local distributions of dislocation densities and strain (as was done for 304L steel); 

- global and local texture evolutions. 

 

Some of these quantities can be measured experimentally, and can serve as validations 

of the crystal plasticity models. In future work, heat treatments of the deformed samples can 

then be used to identify the spatial positioning of recrystallization nuclei, and attempt the 

development of appropriate nucleation criteria. 

 

3.1 Tantalum 
 

Tantalum is a rare material presenting a B.C.C. (body-centred cubic) crystalline 

structure, with a lattice parameter equal to 3.3 x 10
-10

 m. This material has a high fusion 

temperature (2996 °C) and also a high density (16650 kg.m
-3

). The 3 active slip systems 
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families accommodating plastic deformation are {110} <111>, {112} <111> and {123} 

<111>, leading, in total, to 48 different slip systems. 

Pure tantalum is known to be very ductile at room temperature, but when temperature 

increases, hydrogen (for T > 200°C), oxygen (for T > 300°C), nitrogen (for T > 1100°C) and 

carbon (for T > 1200°C) diffuse into the material. The introduction of these elements results 

in a strength increase, and a ductility decrease. As a consequence, all tantalum heat treatments 

should be performed under good vacuum conditions. The mechanical behaviour of tantalum is 

identified and studied in details in [Kerisit, 2012]. The hardening model used to describe 

tantalum hardening is the equivalent to the Laasraoui-Jonas implemented in the crystal 

plasticity code. 

 

3.2 Compression test 
 

3.2.1 Test description 
 

Figure 3.30 illustrates the principle of uniaxial compression tests performed on the Ta 

samples.  

 

  
(a) (b) 

Figure 3.30: Simple compression test sketch: (a) test description, (b) imposed boundary conditions. 

 

The mean digital microstructure deformation (over the volume Ω) is controlled by 

imposing the velocity on the z = za and z = zb planes (Fig. 3.30.b). In this case,  = 0.01 s
-1

. 

 

3.2.2 Digital oligocrystal 
 

The studied oligocrystal is a 28.2 mm x 5.9 mm x 5 mm parallelepiped composed of 6 

grains which are assumed to be quasi columnar. The oligocrystal is digitally generated and 

immerged into a finite element mesh. In this case, neither the Voronoï nor Laguerre-Voronoï 

methods are used. Each grain is generated individually and then, the six different grain 

meshes are immerged in a unique mesh. Each grain is represented using a different level set 

function (chapter 2). Figure 3.31 illustrates the real and the digital olygocrystals. 

 

 
 

(a) (b) 
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(c) 

Figure 3.31: (a) Real tantalum oligocrystal, (b) digital oligocrystal and (c) the same digital olygocrystal 

immerged into a finite element mesh. 

 

3.2.3 Material parameters 
 

Tantalum material parameters used in the simulations are presented in Table 3.8.  

  
Table 3.8: Tantalum parameters at room temperature [Frénois, 2001]. 

C11(GPa) C12(GPa) C44(GPa) 
0 (s

-1
) μ (GPa) b (m) m 

266 161 82 0,001 72 0,286 10
-9

 20 

 

0 is a reference slip rate and m the sensitivity exponent.  K’1, K’2, 0  and α parameters have 

been identified as well, but, for confidentiality reasons, the numerical values are not given. 

The same material parameters are used for both SSD and SSD + GND hardening models, 

because the GND influence on the macroscopic mechanical behaviour is negligible when 

dealing with very large grain sizes, as it is observed in figure 3.32.  

 

 
Figure 3.32:  Stress-strain numerical curves compared to the theoretical curve. 

 

The Euler crystallographic orientation angles and Taylor factors are given for each of 

the 6 grains in Table 3.9. 

 
Table 3.9: Crystallographic orientation (Euler angles) and Taylor factor of all six oligocrystal grains. 

 
Φ1 Ф φ2 

Taylor Factor for a 

simple compression test 

Grain 0 76,6
 o
 43,3

 o
 304,2

 o
 3.351 

Grain 1 8,0
 o
 4,2

 o
 343,8

 o
 2.431 

Grain 2 276,0
 o
 36,0

 o
 92,0

 o
 3.493 

Grain 3 227,5
 o
 51,8

 o
 138,9

 o
 3.644 

Grain 4 18,1
 o
 40,3

 o
 354,4

 o
 3.605 

Grain 5 300,5
 o
 35,0

 o
 49,2

 o
 3.058 
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Although the BCC structure exhibits 48 different slip systems, it was chosen here to 

restrict the description to 24 slip systems ({110} <111>, {112} <111>). 

 

3.3 Results 
 

3.3.1 Sample shape 
 

The first thing to be examined is the oligocrystal shape after deformation. Figure 3.33 

compares the experimental and the two numerical oligocrystals obtained after a deformation 

of 5.0ZZ . The two numerical simulations correspond to the two usual hardening models 

(SSDs, SSDs + GNDs). 

  

 
Experimental 

 
SSDs 

 
SSDs + GNDs 

Figure 3.33: Comparison between experimental and numerical (both SSDs and GNDs+SSDs simulations) 

oligocrystal shapes after a deformation of 0.5 (εZZ = 0.5). 

 

A first observation is that the hardening model does not influence the predicted final 

shape. 

Comparing with experiments, it is noticed that grains 2, 3, 4 and 5 have a final shape 

which is well predicted. Grain 3 in particular: the material shear – a consequence of the 

anisotropy – goes in the good direction, with appropriate curvatures of the external 

boundaries. Similar comments apply to grains 2 and 4. 

However, numerical results of grains 0 and 1 do not agree well with the experimental 

results. Experimentally, these two grains bend downwards, while the prediction goes 

upwards. The shearing of grain 0 seems to follow a good trend, but there is clearly an 

experimental change which cannot be captured by the model. One possible explanation would 

be the existence of another grain underneath the surface, before deformation, which then came 
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onto the surface during deformation (which would mean that the initial microstructure was 

not, as assumed, columnar in this region).  

Despite some differences between the experimental and numerical results one can 

conclude that the numerical model has a good ability in predicting final shapes induced by 

plastic deformation. 

 

3.3.2 Dislocations density distribution 
 

Figure 3.34 gives the spatial distributions of dislocation densities for both hardening 

models (only SSD and SSD+GND), in the final deformed configuration. 

 

 
SSDs 

 
SSDs + GNDs 

Figure 3.34: Dislocation density distribution for εZZ = 0.5, for two numerical olygocrystals: considering only 

SSD and considering both SSD + GND.  

 

As usual, the introduction of GNDs increases the dislocation density near the grain 

boundaries. 

Once again, the average dislocation density over the whole sample is computed using 

Equation 3.10, and the evolution with the macroscopic strain is presented in Figure 3.35. 

 

 
Figure 3.35: Sample average dislocation density evolution for hardening models considering only SSDs and 

both SSD + GND.  
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Differences between the two hardening models start appearing around a deformation of 

0.2. However, even after a deformation of 0.5, the predicted average dislocation densities 

remain very close (and hence lead to a similar macroscopic mechanical behaviour), due to the 

very large grain sizes in the sample.  

A grain-by-grain analysis is done in Figure 3.36.  

 

  
(a) SSDs (a) SSDs+GNDs 

Figure 3.36: (a) Dislocation density evolution as a function of strain for six tantalum grains. 

 

For both hardening models, grain 3 exhibits the highest dislocation density during the 

total material deformation. Differences may appear for other grains. In chapter 5, these type of 

numerical results will be used to simulate recrystallization processes. In this context, the 

above differences can result in a difference in the nucleation site positions and, as a 

consequence, in differences on the predicted recrystallization kinetics. 

 The intra granular scale analysis can be performed as well, looking at the mean 

dislocation density as a function of the distance to the closest grain boundary. This is done in 

Figure 3.37 for different deformation levels, and with distances expressed in cm. 

 

  
SSDs SSDs+GNDs 

Figure 3.37: Dislocation density distribution as a function of the distance to the closest grain boundary for 

ε=0.1, ε=0.2, ε=0.3, ε=0.4, ε=0.5, ε=0.6 and ε=0.7. 

 

For distances between 0.2 cm and 0.4 cm, the dislocation density is higher than for 

distance around 0.1 cm. In the SSDs model, the dislocation density in this area is actually 

even higher than near the grain boundary. This is a consequence of a geometrical effect in the 

oligocrystal, which can be understood from Figure 3.38. A high density dislocation area is 

observed far from the grain boundaries, represented by yellow and green zones, due to strong 

local curvatures. Note that in Figure 3.38, the oligocrystal is viewed from behind, when 

compared to the views given previously (e.g. Fig. 3.34). 
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SSDs 

 
SSDs + GNDs 

Figure3.38: Dislocation density distribution for εZZ = 0.5 (view from behind). 

 

This behaviour is therefore particular to the large grains oligocrystals: it is not expected 

to happen in standard polycrystals, at least not in uniaxial compression. 

From Figure 3.37, SSD results would indicate a preferential nucleation of 

recrystallization between 0.2 and 0.4 cm from the closest grain boundary. On the contrary, 

when introducing GNDs, grain boundaries remain the preferential sites. 

In order to understand in more details the dislocation density distribution for each grain, 

the spread, or dispersion of values is displayed in Figure 3.39. 

 

  
All grains – SSDs All grains - GNDs + SSDs 

  
Grain 0 – SSDs Grain 0 - GNDs + SSDs 
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Grain 1 – SSDs Grain 1 - GNDs + SSDs 

  
Grain 2 – SSDs Grain 2 - GNDs + SSDs 

  
Grain 3 – SSDs Grain 3 - GNDs + SSDs 

  
Grain 4 – SSDs Grain 4 - GNDs + SSDs 
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Grain 5 – SSDs Grain 5 - GNDs + SSDs 

Figure 3.39: Dislocation density distribution at εZZ = 0.5 for the whole oligocrystal and for all six individual 

grains. 

 

Comparing the dislocation density dispersion obtained with both models, we observe 

that, for all grains, the dispersion near the grain boundary is more important when the GND 

density is taken into account.  

Also, it is interesting to observe that each grain behaves differently. For example, grain 

0, 1, 4 and 5 present a narrower distribution. On the other hand, grain 2 is very heterogeneous. 

Finally, grain 3, with its five neighbouring grains, has an intermediate behaviour. In some 

regions, the dislocation density is relatively homogeneous (similar to grains 0, 1, 4 and 5), and 

in others it is much more heterogeneous. The dislocation density profiles at interfaces 

between neighbouring grains (Figure 3.40) vary also, indicating more or less compatible 

deformations between the neighbours. 

 

  
SSDs SSDs+GNDs 

  
SSDs SSDs+GNDs 

Figure 3.40: Dislocation density distribution for εZZ = 0.5 for the neighbouring zones of grain 3. 

 

Coming back to criteria for the nucleation of new grains, not only a critical dislocation 

density is necessary, but there is also a role played by dislocation density gradients (grain 

boundary motion and driving forces are discussed in details in chapters 4 and 5).  

Dislocation energy is calculated using Equation 3.11. Figure 3.41 presents the norm of 

dislocation energy gradient distribution for εZZ = 0.5, and Figure 3.42 presents the intra 

granular dislocation energy gradient distribution.  
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SSDs 

 
SSDs + GNDs 

Figure 3.41: Norm of dislocation energy gradient distribution for εZZ = 0.5. 

 

  
SSDs SSDs+GNDs 

Figure 3.42: Norm of dislocation energy gradient as a function of the distance to the closest grain boundary for 

ε=0.1, ε=0.2, ε=0.3, ε=0.4, ε=0.5, ε=0.6 and ε=0.7. 

 

Dislocation energy gradients, especially near the grain boundaries, are slightly increased 

with the SSD+GND hardening model, however profiles look similar. Two areas of high 

gradients are near the grain boundaries, and around 0.4 cm from them. The second one is 

related to the geometrical effects already discussed for Fig. 3.38. 

 

3.3.3 Deformation distribution 
 

As already noticed in the 304L plane strain test case, the hardening model does not 

influence much the spatial distribution of strains in the sample (Fig. 3.43). 
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SSDs 

 
SSDs + GNDs 

Figure 3.43:  strain distribution in the oligocrystal for εZZ = 0.5. 

 

  
SSDs SSDs+GNDs 

Figure 3.44: (a) Strain evolution as a function of the macroscopic strain for the six tantalum grains. 

 

The grain-by-grain evolution of strain given in Figure 3.44 exhibits that grain 0 is the 

one that eventually deforms the most. The initial Taylor factor is not the highest (M = 3.351 – 

Table 3.9), but crystal reorientation with plastic deformation is responsible for the progressive 

increase of strain. The connection between Taylor factor and amount of strain is quite 

systematic, with however some neighbourhood effects which can influence the strain 

distribution (e.g. grain 5 which is the 2
nd

 most deformed, but with a Taylor factor which is not 

the 2
nd

). 

Analysing the intragranular strain distribution (Figure 3.45), it is observed that both 

hardening models present almost the same curves.  
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SSDs SSDs+GNDs 

Figure 3.45: Strain evolution in function of the distance to the grain boundary for ε=0.1, ε=0.2, ε=0.3, ε=0.4, 

ε=0.5, ε=0.6 and ε=0.7. 

 

The strain dispersion within individual grains of the oligocrystal (Figure 3.46) shows 

once again contrasted behaviours, with a distinction between grains 0, 1, 4 and 5 

(homogeneous), and grains 2 and 3 (more heterogeneous). With the SSD+GND model, strain 

dispersion near the grain boundaries is increased. 

 

  
All grains – SSDs All grains - GNDs + SSDs 

  
Grain 0 – SSDs Grain 0 - GNDs + SSDs 
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Grain 1 – SSDs Grain 1 - GNDs + SSDs 

  
Grain 2 – SSDs Grain 2 - GNDs + SSDs 

  
Grain 3 – SSDs Grain 3 - GNDs + SSDs 

  
Grain 4 – SSDs Grain 4 - GNDs + SSDs 
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Grain 5 – SSDs Grain 5 - GNDs + SSDs 

Figure 3.46: Strain dispersion for εZZ = 0.5 for the whole oligocrystal and for all six individual grain. 

 

3.3.4 Texture analysis 
 

In this section, predicted crystallographic textures are analysed and compared to 

experimental results in Figure 3.47. The numerical textures are gathered from all finite 

elements on the surface of the mesh. Experimentally, however, textures are measured from 

local scans within the different grains. This explains a general trend in having more dispersed 

crystallographic orientations from the model. 

 

   
Experimental SSDs SSDs+GNDs 

Grain 0 

   
Experimental SSDs SSDs+GNDs 

Grain 1 

   
Experimental SSDs SSDs+GNDs 

Grain 2 
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Experimental SSDs SSDs+GNDs 

Grain 3 

   
Experimental SSDs SSDs+GNDs 

Grain 4 

   
Experimental SSDs SSDs+GNDs 

Grain 5 

Figure 3.47: Comparison between experimental and numerical pole figures. The black dots correspond to the 

initial crystallographic orientation and the coloured dots represent the crystallographic orientation for εZZ=0.5 

for direction (001). 

 

Numerical predictions do not exactly match the experimental results, at least for some 

grains. In [Resk, 2010], the texture prediction of an Al (FCC) polycrystal was successfully 

predicted, using the same model. In the Ta case, the bcc structure differs. Also, it was noticed 

earlier that some geometrical evolutions of the oligocrystal were not well predicted. 

Additional measurements, covering the whole surface of the oligocrystal, should help in 

understanding better the origins of the discrepancies. For example, grain 2 is very well 

predicted by the model, including the crystallographic fragmentation of the grain, and it is 

also the smallest grain in size, which means that experimental and numerical surfaces are 

probably the closest. 

One way of analysing intragranular texture evolutions is to look at the rotation angle 

from the initial state (Figure 3.48). Experimentally, the fragmentation of grain 2 is significant, 

and this is reflected by the wider dispersion of rotation angles, as compared to the other 

grains. When the distributions of rotation angles are narrow, it indicates a “global” 

crystallographic rotation, with no significant fragmentation. 
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All grains – SSDs All grains - GNDs + SSDs 

  
Grain 0 – SSDs Grain 0 - GNDs + SSDs 

  
Grain 1 – SSDs Grain 1 - GNDs + SSDs 

  
Grain 2 – SSDs Grain 2 - GNDs + SSDs 
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Grain 3 – SSDs Grain 3 - GNDs + SSDs 

  
Grain 4 – SSDs Grain 4 - GNDs + SSDs 

  
Grain 5 – SSDs Grain 5 - GNDs + SSDs 

Figure 3.48: rotation angle from initial state at  εZZ = 0.5 for the whole olygocrystal and for all six individual 

grains. 

 

It is interesting to highlight that the increased dispersion of grain 2 is not only observed 

for the rotation angle from the initial state, but also for the dislocation density and the local 

strain. This makes him a good candidate for early initiation of recrystallization. 

 

4 Conclusion 
 

In this chapter, numerical microstructures induced by plastic deformation are 

investigated. The Crystal Plasticity Finite Element (CPFEM) model used is this chapter is 

explained in details in chapter 1. Two different hardening models are studied: the first one 

computes the total dislocation density, and the second one distinguishes two different 

dislocation types – statistically stored dislocations (SSD) and geometrically necessary 

dislocations (GND). Test cases are performed based on (i) a plane strain compression of a 

304L steel at 1000
o
C and 01.0 s

-1
, and (ii) a uniaxial compression of a 6-grains 

oligocrystal of Ta, at room temperature, with 01.0 s
-1

. 
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Considering the first test case, both hardening models can correctly predict the stress-

strain experimental behaviour. The dislocation density distribution calculated with the SSD 

hardening model is more homogeneous than that obtained with the SSD+GND model. In the 

latter case, the dislocation density is larger near the grain boundaries. Even though the 

dislocation distribution is different, for both models, the dislocation density dispersion is 

larger near the grain boundaries. It is in this area that the highest dislocation density values 

are found. As a consequence, the norm of the dislocation energy gradient is also larger near 

the grain boundaries. 

When the local strain distribution is analysed, both hardening models present similar 

results. The strain intragranular distribution is rather homogeneous, with however, once again, 

an increased dispersion near the grain boundaries. Based on these results, nucleation of new 

grains during a recrystallization process should take place near the grain boundaries, as most 

often observed in experiments. 

For the second test case (tantalum oligocrystal), the prediction of final macroscopic 

shape is well predicted for four grains, out of six. Once again, the dislocation density 

distribution shows a concentration near the grain boundaries, especially when using the 

SSD+GND hardening model. Other maxima of dislocation density (and its gradient) are 

found away from the grain boundaries, as a consequence of macroscopic geometrical effects. 

The predicted material texture of the oligocrystal at 5.0ZZ  tends to overestimate the 

spread of crystallographic orientations, and sometimes does not predict well the mean 

orientation. However, it is noticed that when the numerical and experimental areas are very 

close to each other (as the case for grain 2), both the mean orientation and the grain 

fragmentation are well predicted. Based on three different criteria on the dislocation densities 

and their gradients, the distribution of local strain, and the grain fragmentation, one grain of 

the polycrystal – grain 2 – is a good candidate for early recrystallization, if the olygocrystal is 

to be subjected to a heat treatment. 

The numerical results obtained is this chapter will be used in chapter 5 in order to 

predict the location of nucleation sites, and the kinetics of static recrystallization. 

 

Résumé en Français 
 

Dans ce chapitre, la déformation plastique de microstructures digitales, générées grâce 

aux outils numériques présentés dans le chapitre précédent à partir de données 

expérimentales, est étudiée en utilisant le formalisme de plasticité cristalline introduit dans le 

premier chapitre. Différents cas tests sont considérés (description différenciée ou non des 

SSDs et GNDs) pour différents essais : le premier correspond à un essai de compression plane 

sur un polycristal d’acier 304L  101.0 ,1000  sCT o   tandis que le deuxième correspond 

à un essai de compression simple à froid d’un oligocristal de tantale composé de six grains 

avec une vitesse de déformation égale à 0.01 s
-1

. Concernant l’acier 304L, il est mis en 

évidence, entre autres, que les deux lois d’écrouissage permettent de prédire correctement son 

comportement et que les résultats sont similaires en terme de distribution de déformation. La 

distribution de densité de dislocations obtenue est cependant plus hétérogène lorsque les deux 

types de dislocation sont  considérés avec principalement une plus forte dispersion au niveau 

des joints de grains.  

Concernant l’oligocristal de tantale,  une confrontation directe entre les formes des 

grains obtenues après essai et les formes prédites numériquement est réalisée. La distribution 

de densité de dislocations est également plus élevée dans les zones plus proches des joints de 

grains, ce phénomène étant, comme pour le 304L, exacerbé lorsque la distinction entre SSDs 

et GNDs est faite. L’aspect prédiction de texture est également abordé.  
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1 Introduction 
 

Grain growth phenomena in polycrystalline metals occur during and after full 

recrystallization, and have the effect of increasing the average grain size at the expense of 

smaller ones that will tend to disappear. Even if this phenomenon of capillarity is always 

present, it is generally neglected during primary recrystallization comparatively to the 

predominant driving force induced by the inhomogeneous spatial distribution of dislocations 

stored energies. Grain growth is however known to be of primary importance when dealing 

with long annealing treatments, where capillarity effects become predominant. It then largely 

dictates the final grain size of the material. 

In chapter 5 it will be shown that, depending on the spatial position of new grains 

(nuclei), capillarity effects may have a significant impact during recrystallization on the 

evolving microstructures and on the recrystallization kinetics. Understanding and modelling 

capillarity forces and their interactions with other driving forces appears therefore to be an 

important challenge, besides the better understanding of pure grain growth itself. 

In this chapter, after a brief overview of the state of art concerning full field modelling 

of grain growth, a new full field grain growth model is proposed, in the context of isotropic 

grain boundary energy and mobility. The model is based on a finite element formulation 

combined with a level set framework. It is initially tested with some academic cases 

presenting known results. In a second part, polycrystalline grain growth is simulated and the 

assessment of two 2D mean field grain growth models is done based on the full field 

simulation results. The two mean field grain growth models discussed in this chapter are: the 

Burke and Turnbull model and the Abbruzzese/Hillert model.  The mean field models, which 

were developed based on theoretical assumptions, are not easily verified experimentally. 

Since the full field method presented in this chapter allows the control of the initial 

microstructure and of the material properties, the verification of the mean field models under 

different conditions can be done in details. Also, based on the results obtained using a full 

field model, mean field models can be corrected or improved. All the simulations presented in 

this chapter are 2D simulations and for all systems solved (convective and/or diffusive 

equations), a stabilized P1 solver as SUPG or RFB method was used. 

In the next chapter, the proposed full field method will be extended to a primary 

recrystallization model, and applied to 2D and 3D static recrystallization cases. 

As in chapter 2, all the distributions or mean values discussed in this chapter concerning 

grain features were evaluated as number-weighted. 

 

2 Context and Equations 
 

2.1 Full Field modelling of grain growth assuming isotropic grain 

boundary energy and mobility 
 

For the last three decades, under simplified conditions of isotropic grain boundary 

energy and mobility, several grain growth modelling methods at the mesoscopic scale have 

been developed [Miodownik, 2002].  The improvement of the physical understanding of grain 

growth phenomena associated to an explosion of numerical resources, explain the 

improvement in the field of grain growth modelling.  

The most famous and still widely used grain growth modelling technique is the 

probabilistic Monte-Carlo method (MC). This method is based on two main points: first, the 

use of a pixilated or voxelated description of the granular microstructure and, secondly, the 

construction of probabilistic evolution rules [Rollet, 2001]. In the case of grain growth 
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modelling, a Hamiltonian energy minimization, defined by summing the interfacial energies, 

is used as an evolution rule. The interfaces are represented by the faces of the elementary 

cells, favouring the modelling of the topological evolutions. This is the first main advantage 

of this method. Moreover, it is noticeable that the use of regular grids associated with a simple 

evolution law, results in a negligible numerical cost for any simulation [Hassold, 1993]. 

However, the simple nature of this approach is also synonymous of defects. Indeed, the 

absence of time scale complicates any comparison with experimental data [Rollet, 1997]. 

Moreover, this method is only statistically representative, which means that a large number of 

simulations, having a great number of cells could be necessary to ensure a good statistics of 

the phenomenon. This is even more important when the material presents a heterogeneous 

microstructure.  

The cellular automaton (CA) approach is another probabilistic method. Several physical 

rules are used to locally determine the cell propagation in relation to the neighboring cells and 

all the cells can be updated at the same time solving the first MC negative aspect. However, 

as in the MC approach, the stochastic nature can lead to the same problem of representativity. 

In a finite element context, three main methods are developed nowadays: the Vertex 

method (VM), the Phase Field method (PF) and the Level-Set method (LS). Only the VM 

method presents an explicit grain boundary description. Surface elements of the considered 

mesh are used to describe the grain boundaries. This approach allows a simple representation 

of the initial microstructure in a finite element mesh and the microstructure evolution is 

modeled by calculating the new position of the nodes belonging to the grain boundaries. A 

velocity field normal to the grain boundary is used to calculate the new nodes position [Nagai, 

1990]. However, the main weakness of this approach is that topological events are controlled 

by mesh adaptation rules. As a consequence, the management of topological events (like 

grains disappearance) is not straightforward.  Even though a set of well calibrated changing 

mesh rules exists in 2D, its extension in 3D is very complex and expensive [Weygand, 2001], 

[Siha, 2010], [Barrales, 2008]. 

In both PF [Chen, 1995] and LS [Zhao, 1996] methods, the grains boundaries are 

implicitly described. For the PF method, this representation is obtained from a continuous 

approximation of the Heaviside function at the interface (hence the notion of fuzzy or diffuse 

interfaces). For the LS method, as explained in chapter 2, the zero isovalue of a distance 

function represents the grain boundary. As a consequence, these two approaches can 

automatically handle topological changes. For the PF method, each granular orientation is 

used as an order parameter field and the grain free energy is expressed as a Landau 

development of the structural order parameters. The grain boundary energy is introduced as 

the gradient of structural order parameters and the interfaces are described by an isovalue 

(arbitrary within the diffuse zone) of the order parameter fields. An important number of 

publications have illustrated the potential of this approach in modeling the grain growth 

phenomenon in 2D [Chen, 2002] and, more recently, in 3D [Moelans, 2009]. The main 

difficulties of this approach remain:  

- the construction of the free energy density expression (using a Landau development) 

which must reflect as closely as possible the material physical properties and microstructure;  

- the abrupt phase functions transition within the interfaces can be synonymous of 

intensive and expensive calculations, especially in 3D (degree of interpolation, mesh 

refinement …);  
Finally, grain growth can also be modelled using a level set description of interfaces in the 

context of uniform grids [Elsey, 2009] or finite elements (FE) [Bernacki, 2011], [Fabiano, 2013]. 

As for the PF approach, in the LS method, topological changes are treated automatically. 

From a purely mathematical point of view, a grain disappears when the corresponding level 

set function becomes negative over the entire domain. The level set technique was used in 
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[Elsey, 2009] to model 2-D and 3-D isotropic grain growth in the context of uniform grids 

with a finite-difference formulation. In this work grain growth simulations are performed 

using level set techniques combined with a finite element formulation, not only to avoid all 

the disadvantages presented by the other methods, but also, as it will be illustrated in the next 

chapter, to be able to extend these developments to a primary recrystallization model, and to 

couple them to the CPFEM calculations developed within the same formalism [Logé, 2008], 

[Bernacki, 2009]. 

 

2.2 The equations 
 

The mechanism of boundary migration depends on several parameters including the 

boundary structure which, in a given material, is a function of the misorientation between two 

neighbouring grains, and of the boundary plane. It also depends on the experimental 

conditions, in particular the heat treatment temperature. Finally, the grain boundary migration 

is strongly influenced by point defects such as solutes and vacancies.  

It is usually assumed that grain boundary displacement can be approximated by 

[Humphreys, 2004], [Bernacki, 2009], [Kugler, 2004]: 

 
nEMv


)(  , (4.1) 

 

where M is the grain boundary mobility; E is the material internal energy gradient, which 

depends on the dislocation density;   is the grain boundary energy,  is the grain boundary 

mean curvature and n


 is the outward unit normal to the grain boundary. The grain boundary 

driving force can therefore be divided into two parts: the first one is related to the internal 

material energy field ( nE


 ), and the second one is related to the grain boundary capillarity 

effects ( n


 ). In pure grain growth, a homogeneous dislocation density may be assumed, 

with E =0, and therefore only the capillarity term is taken into account.  

It will be considered that grain boundary mobility and energy are uniform throughout 

the microstructure, however a brief recall of the meaning of these physical parameters is done 

below. 

 

2.2.1 Mobility 
 

Low angle grain boundaries migrate through climb and glide of dislocations. As a 

consequence, many aspects of low angle grain boundary migration may be interpreted in 

terms of the theory of dislocations. In general, low angle boundary mobilities are lower than 

those of high angle boundaries. In the case of high angle grain boundaries, the basic process 

for boundary migration is the atoms transfer to and from neighbouring grains. The activation 

energy for boundary migration was found to be a function of misorientation up to, 

approximately, 14°, above which it remained constant.  

As the transfer of atoms together with dislocations climb and glide are temperature 

dependent, we can also say that the mobility of grain boundaries is temperature dependent. 

Actually, it is usually found that the grain boundary mobility evolution as a function of 

temperature obeys an Arrhenius type relationship of the form [Humphreys, 2004], [Bernacki, 

2009], [Kugler, 2004]: 
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where bQ the boundary diffusion activation energy. Figure 4.1 illustrates the mobility 

dependence on temperature and misorientation in Al-0.05%Si [Humphreys, 2004]. 

 

  
(a) (b) 

Figure 4.1: (a) The effect of misorientation and temperature on boundary mobility in Al-0.05%Si as a function 

of misorientation, measured from subgrain growth in crystals of Goss and Cube orientation [Huang, 2000]. (b) 

The effect of misorientation on activation energies for low angle boundary migration in Al-0.05%Si measured 

from subgrain growth in single crystals [Humphreys, 2004]. 

 

In the context of this PhD work, the misorientation impact on the mobility is not 

considered and the value of the mobility at high misorientation is used uniformly. In the case 

of 304L steel, El Wahabi [El Wahabi, 2003] reports bQ = 280 kJ.mol
-1

 and )(0 Tm  = 0.156. 

Table 4.1 summarizes the 304L steel mobility values for temperatures ranging between 

1000°C and 1200°C. 
 

Table 4.1: 304L Steel grain boundary mobility in function of temperature and in isotropic mobility context. 

Temperature 

 (°C) 

Mobility 

(m
4
/J.s) 

1000 5.08 10
-13

 

1050 1.37 10
-12

 

1100 3.48 10
-12

 

1150 8.25 10
-12

 

1200 1.84 10
-11

 

 

All grain growth simulations in this chapter were performed using an Arrhenius 

interpolation of the data coming from table 4.1. 

 

2.2.2 The grain boundary energy 
 

Low angle boundary energy 

 

Grain boundary energy also depends on the misorientation. Low angle grain boundaries 

can be represented by an array of dislocations. In this case, each dislocation accommodates 

the mismatch between the two lattices on either side of the boundary. For small values of 

misorientation between two neighbouring grains, the dislocation spacing is large and the grain 

boundary energy is approximately proportional to the density of dislocations in the boundary. 

The free energy of a low angle grain boundary can be calculated from the Read-Shockley 

theory, resulting in the following equation [Shockley, 1949], [Humphreys, 2004], [Bernacki, 

2009]: 
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where   is the grain boundary misorientation, m and m  are, respectively, the grain boundary 

energy and the misorientation for a high-angle boundary. According to Equation 4.3, the grain 

boundary energy   increases with the misorientation , as shown in Figure 4.2 for various 

metals. 

 

 
Figure 4.2: The measured (symbols) and calculated (solid line) energy of low angle tilt boundaries as a function 

of misorientation, for various metals [Shockley, 1949]. 

 

High angle boundary energy 
 

For low angle boundaries, the Read-Shockley model has been well established. 

However, for misorientations higher than 15°, measurements of grain boundary energy reveal 

no further change with increasing rotation angle. In this case, the dislocation spacing is so 

small that the dislocation cores overlap and it is then impossible to physically identify the 

individual dislocations. As a consequence the dislocation model fails and the grain boundary 

energy is almost independent of misorientation. 

However, not all high angle boundaries have an open disordered structure as presented 

in the general introduction. There are some special high angle grain boundaries which have 

significantly lower grain boundary energy. These boundaries only occur at particular 

misorientations and boundary planes which allow the two adjoining lattices to fit together 

with relatively little distortion of the interatomic bonds. One example of special grain 

boundary is the twin boundary. A twin boundary is a symmetry plane between two areas of 

the crystal. In the case of F.C.C. crystal, planes {111} are close packed with a stacking 

sequence …ABCABCABC… A change in this stacking sequence that divides the crystal in 

two parts, one being the reflection of the other, …ABCABACBA… is a twin boundary.  

One may classify twin boundaries as either coherent or partially coherent. Figure 4.3.a 

illustrates a complete coherent twin boundary, which is obtained without any deformation of 

the lattices since a perfect lattice is automatically obtained. If the twin boundary rotates off 

the symmetry plane (figure 4.3.b) we obtain a partially or non coherent twin boundary. The 

energy of a twin boundary is therefore very sensitive to the orientation of the boundary plane. 
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(a) (b) 

Figure 4.3: (a) a coherent twin boundary and (b) a partially coherent twin boundary [Verhoeven, 1975]. 

 

Figure 4.4 describes measured grain boundary energies for several symmetric tilt 

boundaries in aluminium. When the two grains are related by a rotation about (100) axis 

(figure 4.4.a), we observe that the grain boundary energy is relatively constant for high angle 

grain boundaries. So, the high angle grain boundaries in this case have a relatively disordered 

structure characteristic of random boundaries. However, when two grains are related by a 

rotation about a (110) axis (figure 4.4.b), several high angle orientations which have 

significantly lower grain boundary energy than the random boundaries are observed. The 

misorientation equal to 70.5° corresponds to a F.C.C. coherent twin boundary. 

 

 
Figure 4.4: Measured grain boundary energies for symmetric tilt boundaries in Al (a) when the rotation axis is 

parallel to (100) and (b) when the rotation axis is parallel to (110) [Hasson, 1971]. 

 

Finally, if heterogeneity of the energy boundary is directly responsible of local 

fluctuations of the grain growth kinetics (see Equation 4.1), another impact of the energy 

boundary, less visible, concerns the equilibrium position of the multiple junctions. The triple 

junction angles are determined based on the grain boundary energies by [Humphreys, 2004], 

[Garcke, 1991]: 
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 , (4.4) 

 

where ij  represents the energy boundary between grain Gi and Gj and    the angle formed by 

the grain Gi at the triple junction. Based on the relationship 4.4, if the boundary energy is 

homogeneous, the triple junction angles are then equal to 120°.  
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3 Finite element model in a level set framework 
 

In order to properly model the grain growth phenomenon, we must, initially, generate a 

digital microstructure that is representative of the material of interest. We come back here to 

the 304L steel discussed previously. The grain size distribution is determined based on optical 

microscope image analysis. The corresponding digital microstructure is generated using a 

Voronoï-Laguerre method (chapter 2, paragraph 2). The grains are implicitly identified using 

level set functions and the mesh is adapted around the grain boundaries. All numerical tools 

used were already described in details in chapter 2. 

 

3.1 Velocity field expression 
 

The model presented here is an extension of the recrystallization model proposed by 

[Loge, 2008], [Bernacki, 2009]. This extension includes the capillarity term of the grain 

boundary kinetics Equation 4.1 into the recrystallization model, as was briefly described in 

[Bernacki, 2011]. In recrystallization regime, the grain boundary velocity between two 

neighbouring grains (Gi and Gj) is defined as the addition of a primary recrystallization term 

(PR) with a grain growth term (GG):  
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In this chapter, only grain growth is taken into account, so 0



ijPRv  and .

iGGij vv


  The GG 

term depends on the grains curvature which can be computed from the level set description of 

the granular structure. Indeed, by considering i  the level set function of grain Gi, we have: 
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Knowing that in our FE formalism, a linear approximation (P1) for the level set 

functions is used and that a P1 description of the curvature is necessary (since velocity 

interpolation must be P1), the direct use of Equation 4.6 to calculate
iGGv


 is not recommended. 

Indeed, such approach will imply a two-step P0-P1 interpolation and therefore a very poor 

accuracy. Another difficulty in the grain curvature calculation is related to its non regular 

behaviour in polygonal grains. At the multiple junctions, the curvature has extremely high 

values (theoretically infinite), making any attempt to solve the convective problem very 

difficult. So, to avoid the direct grain curvature calculation (Equation 4.6), the following grain 

curvature equation was considered and solved in a weak sense: 
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with   a diffusive term allowing the regularization of the grain curvature calculation. This 

equation also allows avoiding the two-step P0-P1 interpolation thanks to the integration of its 

weak form. Even though this technique is effective when considering a circular grain 
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shrinking study (paragraph 4.1), it has not improved the grain curvature calculation in 

multiple junctions in the case of polyhedral structures (paragraph 4.2).  So, an alternative 

approach, considering the level set functions metric properties is used. If level set functions 

remain, near the grain interfaces, distance functions, then, for GNi 1  (NG being the 

number of grains): 
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so: 

 

),(),(),(),(),().,( txMtxtxntxMtxtxv iiiiiGGi
 


. (4.9) 

 

Therefore, the convection term of the grain boundary motion problem becomes a simple 

diffusion term. In [Merriman, 1994], [Elsey, 2009], the same approach was used in a finite-

difference method context. Finally, the problem solved in order to model the pure grain 

growth process boils down to a diffusion problem: 
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The system is solved for all NG grains present in the domain Ω. Solving the weak form 

of Equation 4.10 avoids the resolution of a difficult curvature-dependent convection problem. 

The assumption that the capillarity effects can be described by a level set diffusion equation is 

true if and only if the level set functions satisfy a distance function property near the 

boundaries. So, to ensure this condition, a re-initialization treatment must be done at each 

time step [Osher, 1988]. 

Also the diffusion of the level set function can generate some kinematic 

incompatibilities: vacuums regions or level set overlapping [Merriman, 1994]. To avoid this 

kind of problem, a treatment at multiple junctions is performed [Bernacki, 2011]. This 

treatment is presented in details in the following paragraph. 

 

3.2 Numerical treatment for multi-junctions 
 

Compatibility problems, as vacuum or overlapping regions, can occur when the 

diffusion approach is used [Merriman, 1994]. To avoid this problem, a multiple junction 

treatment is performed at each time step, after solving Equation 4.10. This method consists in 

removing all incompatibilities by modifying all level set functions according to: 
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In other words, this method calculates the bisector between the debonding level set 

functions (red dashed lines in Figure 4.5) and replace the zero isovalue of these level set 

functions to the bisector position. Figure 4.5 illustrates the method. 
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Figure 4.5:  Scheme of how the numerical treatment of multiple junctions works: calculation of the bisector 

between the debonding level set functions (red dashed lines) and replace the zero isovalue of these level set 

functions to the bisector position. 

 

However, this method presents the disadvantage of being valid only in case of 

homogeneous grain boundary energy, i.e. when the triple junction equilibrium angles are 

equal to 120° (according to Eq. 4.4). 

Also, it is important to highlight that this treatment is performed only in a thin layer 

around the zero isovalues, and always before the re-initialisation treatment (since it modifies 

the distance functions metric properties). 

 

3.3 Container level set functions 
 

All the presented procedures (diffusion of level set functions, re-initialisation technique 

and numerical treatment at multiple junctions) are solved for each level set function existing 

in the domain. So, the principal weakness for the grain growth algorithm remains the 

numerical cost, particularly in 3D. A first waste of computational resources can be identified 

in the fact that we work with one-level set per grain. Even for the recrystallization modelling 

(which will be detailed in chapter 5), a global velocity depending on local properties can be 

defined without the knowledge of individual grains topology. Finally when modelling 

recrystallization or grain growth phenomena, knowing the individual level set function of 

each grain is not necessary to perform numerical simulation. In order to limit the number of 

required level-set functions needed in our simulations, we use a classical technique of graph 

colouring [Kubale, 2004]. The idea is to colour the vertices of a graph such that no two 

adjacent vertices share the same colour with a minimal number of colours. The most famous 

result from the graph colouring field of research is the four colour theorem [Kubale, 2004]. 

Here we use the algorithm implemented by Hitti [Hitti, 2012]. The idea developed by Hitti is 

to use a simple graph coloring algorithm on the Delaunay (or weighted Delaunay) 

triangulation used on level set functions calculation (see chapter 2). Several non-neighbouring 

grains are grouped in only one level set function (called container level set function). As a 

consequence, the whole microstructure can be represented by a few level set functions 

corresponding to a set of strictly disjoint grains. Figure 4.6a illustrates a 2D equiaxial 

polycrystal made of 2000 grains represented using only five level set functions (each colour 

representing one container level set function). Figure 4.6b illustrates a 3D polycrystal of 440 

grains represented using only 15 container level set functions.  
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(a) (b) 

Figure 4.6: (a) A 2000-grain 2D equiaxial polycrystal described using five level set functions and (b) a 440-

grain 3D equiaxial polycrystal described using 15 level set functions. 

 

The above technique however presents the limitation that when two grains belonging to 

the same container level set function start touching each other, they coalesce. In [Elsey, 

2009], a method is proposed to avoid this problem: when two different grains belonging to the 

same container level set function get closer than a critical distance, one of the two grains is 

removed from the container level set function, and placed in another one. However, if the 

proposed methodology can be used in the context of regular grids where the connected 

components (the individual grains) of each container level set function can be easily 

extracted, the problem becomes much more complex for unstructured FE meshes. Therefore, 

in this work, in order to delay the onset of grains coalescence, a constraint is introduced in the 

graph colouring such that only the n
th

 (n = 2, 3, 4…) nearest neighbour can belong to the same 

level set function.  The simulation is then stopped as soon as two grains begin to coalesce. 

The choice of n value depends on how long we want to simulate the phenomenon before 

coalescence appears.  

 

3.4 Grain growth algorithm 
 

Using all the numerical tools presented above, we propose the following grain growth 

algorithm: 

 

GG1 – Resolution of Equation 4.10 for all active container level set functions. 

GG2 – Numerical treatment (Equation 4.11) for all active container level set functions. 

GG3 – Re-initialization step for all activate container level set functions. 

GG4 – Deactivation of all container level set functions that are negative all over the 

domain (meaning that all grains of the container level set function have disappeared). 

GG5 – Re-meshing operation. 

 

4 Results 
 

4.1 Academic Test - Circular grain case 
 

In order to verify the grain growth algorithm proposed in paragraph 3, one first simple 

test case is performed. The interest is to compare a pure diffusive approach (paragraph 3) with 

a convective approach associated with the reinitialization procedure [Coupez, 2007], 

[Bernacki, 2009]  
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where s is a function of   and   a coefficient defined thanks to the mesh size and the time 

step. We refer the reader to [Coupez, 2007] for a more precise description of the method and 

its extension (regular truncation of  ). In the convective approach (Eq. 4.12), the grain 

curvature is calculated using the resolution of the weak form of Equation 4.7 in our context of 

P1 interpolation. To compare these two approaches, we consider a test case defined by a grain 

embedded in another large grain. The domain size is 1 mm x 1 mm and an a priori remeshing 

technique is used to adapt the mesh around the grain boundary (see chapter 2). Both grain 

boundary mobility and energy are considered isotropic and equal to one. In the test case, the 

grain shrinks while remaining a circle, and the GG kinetics could be summarized as a simple 

differential equation on the circle radius: 
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The initial grain radius is set to 0.25 mm. In a first stage, both methods are tested under 

the same mesh and time step conditions. In this case, the mesh size outside the adapted zone 

is equal to 0.01 mm. Within the adapted zone, the mesh size in the direction perpendicular to 

the boundary is equal to 2 µm, and remains equal to 0.01 mm in the tangential direction. The 

time step is set to 0.1ms. Remeshing operations are performed at each time step with the same 

parameters. Figure 4.7 compares the grain shrinking kinetics of both approaches with the 

analytical solution.  

 

 
Figure 4.7: Comparison between numerical and theoretical results for the shrinking of a circular grain with a 

mesh size equal to 0.01 mm outside the remeshed zone and 0.002 mm on the anisotropic adapted zone (in the 

normal direction to the interface) 

 

Graph from figure 4.7 illustrates that, for the mesh and time step conditions tested in 

this case, the convective approach is not stable and the simulation of a shrinking circular grain 

is not possible. On the other hand, when using the diffusive approach, the grain shrinking 

simulation was possible. So, a second test of the convective approach, using a finer mesh and 

a smaller time step is performed. In this case, the mesh size outside the adapted area and 

within the adapted area in the tangential direction remains equal to 0.01 mm, whereas the 
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mesh size near the interface in the normal direction is fixed to 0.8 µm.  The time step is 

reduced to 50 µs.
 
 Figure 4.8 presents the comparison between the convective and diffusive 

approaches. 

For this simple case presenting a regular grain curvature, both approaches ensure a good 

description of the grain shrinking kinetics. For both cases, the L2 error (Equation 2.9 applied 

to the equivalent radius) is smaller than 1% 

 

  
(a) (b) 

Figure 4.8: Comparison between numerical and theoretical result for the shrinking of a circular grain: (a) 

complete evolution in function of time; (b) zoom of grain shrinking end. The number of mesh elements at the 

simulation beginning is equal to 27900 for the diffusive approach and 44000 for the convective approach. 

 

For the diffusive approach, the computation time is about 40 minutes (1 CPU, 2.3 GHz, 

2 Go) while for the convective approach, the computation time is equal to 1 hour and 10 

minutes (1CPU, 2.3 GHz, 2 Go). 

These results show that for a simple grain growth case, when the grain curvature is 

regular all over the domain, both diffusive and convective approaches can describe with good 

accuracy the grain shrinking kinetics. However, with the convective approach a finer mesh 

around the boundaries (for this case, 2.5 times smaller) and a smaller time step (for this case, 

2 times smaller) is needed in order to obtain the same accuracy as the diffusive method. 

Finally, since a finer mesh and a smaller time step is needed, the calculation time for the 

convective approach is higher than for the diffusive approach. 

 

4.2 Academic test - 3 grains case 
 

In this part, two different tests were performed, both with 3 polygonal grains. In both 

cases the grain boundary mobility and energy are isotropic and uniform, equal to one. The 

first test represents a triple junction in the equilibrium state (angles between the grain 

boundaries are equal to 120°) in the middle of a 1mm x 1 mm domain. As the triple junction 

is already in the equilibrium state, the triple junction should not deform or move during the 

simulation. An a priori anisotropic remeshing technique is used. The number of mesh 

elements present in the domain is equal to 110000. The time step of the simulation is equal to 

2.5 ms. Figure 4.9 illustrates the configuration of this test. 
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Figure 4.9: Initial configuration of the triple junction test - triple junction in equilibrium conditions respecting 

the 120° equilibrium angle.  

 

It was not possible with the considered mesh adaptation and time step to model this 

triple grain configuration using a convective approach either by direct (Equation 4.6) or 

indirect (Equation 4.7) calculation of the grain curvature. On the other hand, the diffusive 

approach allows the verification that the equilibrium state from figure 4.9 does not evolve 

during the simulation (simulation was performed until t = 1.75 s). So the diffusive approach 

leads to the equilibrium angle of 120° at the triple junctions. 

The second test case is the « T » configuration. In [Garcke, 1991], Garcke has proved 

the existence of an exact solution for the grains configuration when pure grain growth takes 

place. In this case we use an a posteriori mesh adaptation and the number of mesh elements is 

equal to 32800. Figure 4.10a illustrates the initial configuration and figure 4.10b represents 

the obtained result. 

 

  
(a) (b) 

Figure 4.10: Garcke case: (a) initial configuration, (b) equilibrium configuration (black line) compared with the 

theoretical result (red line) for t = 47 ms – zoom of triple junction. 

 

Red line in figure 4.10b represents the theoretical result while the black line is the 

numerical result obtained at t = 47 ms (time step is equal to 1 ms). The L2 error concerning 

the final positions of the interfaces is smaller than 1%. 

These two tests illustrate that the diffusive algorithm associated with an anisotropic 

mesh adaptation allows an accurate simulation of pure grain growth phenomena, even with a 

non regular grain curvature.  

 

4.3 Von Neumann-Mullins cases 
 

From Equation 4.4 we note that in a two dimensional grain structure, when the grain 

boundary energy is isotropic, the only stable arrangement which can fulfil the boundary 
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tension equilibrium requirements is an array of regular hexagons. This is true because regular 

hexagons angles are equal to 120° (figure 4.11) which is the equilibrium angle for grains 

triple junctions. Any other topological arrangement will inevitably lead to grain growth. From 

figure 4.11 we observe that for grains with a number of sides different from 6, in order to 

maintain the 120° angles at the vertices, the sides of the grains must become curved. Grain 

boundary migration then tends to occur in order to reduce the boundary area, and the 

boundaries migrate towards their centre of curvature. Any grain with more than six sides will 

tend to grow because its boundaries are concave. Similarly, any grain with less than six sides 

will tend to shrink since its boundaries are convex. 

 

 
Figure 4.11: 2D grain boundary configurations. The arrows indicate the directions boundaries will migrate 

during grain growth [Porter, 2008]. 

 

Based on this idea, von Neumann [vonNeumann, 1952] and Mullins [Mullins, 1956] 

proposed that the growth of a 2D grain of area A and N sides is given by the following 

relation: 

 

where C is a constant that depends on the material parameters. In order to verify if the grain 

growth algorithm obeys this model, we simulate the grain growth of five different regular 

polygons: a square, a pentagon, a hexagon, a heptagon and an octagon. In all cases the grain 

boundary mobility and energy are considered isotropic and uniform (equal to one). Also, an 

adapted mesh around the boundaries is used and the simulation time step is fixed to 0.1 ms.  

The adapted mesh is generated using an a posteriori remeshing technique. The number of 

mesh elements depends on the polygon. For example, for the hexagon, the initial number of 

mesh elements existing in the domain is equal to 50,000.  A remeshing operation is performed 

at each time increment. Figure 4.12 illustrates the different shape evolutions throughout the 

simulations (with    the surface ratio), and the graph in figure 4.13 shows the corresponding 

grain growth kinetics. 

 

    
t = 0 s t = 0.0178 s t = 0.0358 s t = 0.0517 s 

Sr = 1.0 Sr = 0.75 Sr = 0.5 Sr = 0.25 

.)6( CN
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dA
  (4.14) 
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t = 0 s t = 0.0395 s t = 0.0769 s t = 0.1078 s 

Sr  = 1.0 Sr = 0.75 Sr = 0.5 Sr = 0.25 

    
t = 0s t = 0.05s t = 0.1s t = 0.15s 

Sr = 1.0 Sr = 1.0 Sr = 1.0 Sr = 1.0 

    
t = 0 s t = 0.0494 s t = 0.1013 s t = 0.1553 s 

Sr = 1.0 Sr = 1.25 Sr = 1.5 Sr = 1.75 

    
t = 0 s t = 0.404 s t = 00825 s t = 0.1262 s 

Sr = 1.0 Sr = 1.5 Sr = 2.0 Sr = 2.5 

Figure 4.12: Polygonal grains evolution in function of time: square, pentagon, hexagon, heptagon and octagon-

shape grains. 

 

 
Figure 4.13: Normalized area evolution for all five different polygons studied: square, pentagon, hexagon, 

heptagon and octagon. 
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From Figure 4.12, we observe the change in the grain boundaries shapes in order to 

conform to the 120° equilibrium angle at the vertices. Consequently the grains with a number 

of sides smaller than 6 shrink, a grain with 6 sides remain unchanged and grains with more 

than 6 sides grow, following the von Neumann-Mullins theory. Finally, analysing the graph in 

figure 4.13, we observe that the area mainly evolves linearly with time. The non linearity in 

the end of the simulation for grains which disappear, i.e. with 4 and 5 sides, is a consequence 

of numerical accuracy issues when the ratio "grain size/ finite element mesh size near the 

grain boundaries" becomes too low. Indeed, while the mesh evolves spatially with time it does 

maintain constant parameters concerning the mesh size. When the ratio becomes low, the 

grain interfaces become poorly described and the numerical simulation accuracy drops. One 

way to avoid this problem is to decrease the mesh size near the grain boundaries (at least in 

the normal direction) during the simulation. Now, to verify if the kinetic behaviour of the 

grains obeys Equation 4.14, we analysed the linear part of all curves, and calculated the alpha 

value from Equation 4.15. 

 

The graph in Figure 4.14 compares the numerical results obtained from the simulations 

with the theoretical results from which 6 N  (Eq. 4.14). 

 

 
Figure 4.14: Comparison between the von Neumann Mullins model and the numerical results of polygonal 

grains: square, pentagon, hexagon, heptagon and octagon-shape grains.  

 

The L2 error between the two curves is less than 7% for all considered shapes, which 

represents a clear agreement with the von Neumann-Mullins model, and therefore a good 

validation of the numerical approach. 

 

4.4 304L - 2D polycrystal grain growth 
 

After testing academic configurations with well-known theoretical results, a polycrystal 

grain growth simulation is performed. The digital microstructure is generated using the 

Laguerre-Voronoï technique (chapter 2, paragraph 2) based on an experimental 304L steel 

grain size distribution. The heat treatment is performed at 1050°C. Grain boundary energy 

and mobility are isotropic and uniform equal to 0.6 J/m² and 1.37x10
-12

 m
4
J

-1
s

-1
, respectively. 
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The size of the square domain is set to 4 mm x 4 mm and approximately one thousand grains 

are generated. An a posteriori remeshing adaptation is used and the number of mesh elements 

existing initially in the domain is equal to 1450000. The time step is set to 120 seconds. 

Figure 4.15 illustrates the resulting microstructure evolution as a function of time. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.15: Grain growth of 304L steel at 1050°C after: (a) t = 0; (b) t= 20 min; (c) t = 1h 40 min; (d) t = 5 h.  

 

Again, the grains with more than 6 sides grow while those with less than 6 sides shrink, 

in agreement with the von Neumann Mullins theory.  

Figure 4.16 describes the number of grains and the mean grain surface evolution as a 

function of time. 
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Figure 4.16:  Evolution of number of grains (green line) and mean area (blue line) in function of time. 

 

The mean surface per grain evolves quasi linearly with time, while the evolution of the 

number of grains is proportional to t1 . A more detailed study of grain growth kinetics, with 

comparisons with the Burke and Turnbull model [Burke, 1952] and with the 

Hillert/Abbruzzese model [Hillert, 1965], [Lücke, 1992], [Lücke, 1998] and [Abbruzzese, 

1992] is presented in paragraph 5. 

A selection of four individual grains is done in order to analyse the normalized area 

evolution (normalized by the initial grain surface) and the number of sides evolution with 

time (figure 4.17).  The area evolution with time is clearly not linear, and the type of 

evolution is related to the interaction with neighbours. However, the number of sides of each 

grain does dictate the tendency to grow, shrink, or remain stable, in agreement with the von 

Neumann Mullins theory.   

 

  
(a) (b) 

  
(c) (d) 

Figure 4.17:  Evolution of grain normalized area (full red lines) and number of sider (dashed red lines) in 

function of time. 
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In figure 4.17c, we clearly see the connexion between the grain growth rate and the 

number of sides. At the beginning the grain grows fast since the number of sides is around 10. 

At t = 4500 s, the number of sides decreases to 8, and the grain area evolution becomes 

slower. In the end the number of sides becomes equal to 6 and, once again, the grain growth 

rate decreases, becoming negligible. The same kind of analysis can be done with figures 

4.17a, 4.17b and 4.17d and all of them will show the same type of connexion between the two 

monitored quantities. 

 

This first pure grain growth simulation of a 304L polycrystal illustrates the capability of 

the proposed formalism. We now come back to the issues already discussed in chapter 2 

concerning the impact of the method used to generate digital microstructures. In chapter 2, the 

geometrical aspects of polycrystalline aggregates were analysed for two different generation 

methods (Voronoï, and Laguerre-Voronoï). In what follows, a similar analysis is done 

regarding the grain growth prediction. Section 5 will then be dedicated to the impact of the 

grain size distribution, and comparisons with grain growth mean field models predictions. 

 

4.5 Influence of the microstructure generation method on grain 

growth prediction 
 

As it was discussed in chapter 2, the Voronoï method is the most widely used technique 

to generate a digital microstructure. The Voronoï approach allows to define the mean grain 

size by setting the number of grains (i.e. the number of Voronoï sites) in a given volume. 

However, using this method it is not possible to obey a given grain size distribution. On the 

other hand, with the Laguerre-Voronoï technique (also discussed in details in chapter 2), a 

given grain size distribution can be obeyed. In [Xu, 2009], Xu highlighted divergences 

between statistical properties classically observed in equiaxed polycrystals and those obtained 

using the Voronoï method. However the influence of the grain size distribution on the grain 

growth kinetics and the importance of obeying an experimental grain size distribution are not 

well discussed in the literature. So, in this section, a comparison between the grain growth 

kinetics of two digital microstructures with the same mean grain size but generated with 

different methods (Voronoï and Laguerre-Voronoï) is performed. The digital Laguerre-

Voronoï microstructure was already used in the previous paragraph (304L grain size 

distribution, square domain of 4 mm x 4 mm, 1033 grains). In the digital Voronoï 

microstructure, the mean grain size of the 304L microstructure is set (67.4µm) using 1120 

grains randomly generated in the 4 mm x 4 mm square domain. For both cases the grain 

boundary mobility and energy are isotropic and uniform (T=1050°C), equal to 0.6 J/m² and 

1.37 10
-12

 m
4
J

-1
s

-1
, respectively. Figure 4.18 illustrates the two digital microstructures (a 

similar comparison has already been done in a 12 mm x 12 mm square domain from figures 

2.9 and 2.13 in chapter 2) and figure 4.19 presents the grain size and the number of sides 

distribution for both of them. 



 140 

  
(a) (b) 

Figure 4.18: 304L Polycrystal in a 4 mm x 4 mm square domain generated using a (a) Laguerre-Voronoï 

method (1033 grains) and (b) Voronoï method (1120 grains) 

 

 
 

(a) (b) 

Figure 4.19: Comparison of (a) grain size distribution and (b) number of sides’ distribution for both digital 

microstructures, one generated with the Voronoï method and the other generated using a Laguerre-Voronoï 

method. 

 

Comparing Laguerre-Voronoï and Voronoï grain size distributions, we observe, as 

already discussed in chapter 2, that Laguerre-Voronoï is a log normal distribution while 

Voronoï is a Gaussian distribution. Considering the number of sides distribution, even though 

both microstructures present a mean number of sides around 6 (5.95 for Voronoï and 5.97 for 

Laguerre-Voronoï), their distributions are different. Once again, the number of sides 

distribution is closer to a Gaussian shape for the Voronoï case, and closer to a log-normal 

shape for the Laguerre-Voronoï case. In Table 4.2, we observe that even though both grain 

structures present a majority of grains with less than 6 sides, this proportion in almost 10% 

higher for the Laguerre-Voronoï structure. The proportion of grains with more than 6 sides is 

almost the same for both microstructures, but the Laguerre-Voronoï distribution presents 

larger grains, with more sides. Finally, the Voronoï microstructure shows a higher proportion 

of grains with 6 sides. 

 
Table 4.2: Proportion of grain with less than 6 sides, exactly 6 sides and more than 6 sides for the Laguerre-

Voronoï and Voronoï grain structure of 304L generated in a 4mm x 4mm square domain. 

 Laguerre-Voronoï Voronoï 

n < 6 48.4 % 39.2% 

n = 6 22.7 % 30.1% 

n > 6 28.9 % 30.7% 
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Analysing the graph of the normalized average grain surface evolution with time 

(Figure 4.20), we observe that the Laguerre-Voronoï grain growth is faster than the Voronoï 

one. This behaviour is related to the grain size distribution. The Laguerre-Voronoï distribution 

is more spread and as a consequence, the difference between the equivalent radii of 

neighbouring grains is, in average, larger for the Laguerre-Voronoï distribution. This 

behaviour is also observed in Figure 4.18. For the Laguerre-Voronoï microstructure (Figure 

4.18a) a few bigger grains are surrounded by small grains. In these areas the local curvatures 

will be increased and the grain growth kinetics will be faster. For the Voronoï microstructure, 

since the grain size difference between neighbouring grains is smaller, the local curvatures are 

not as high.  

 

 
Figure 4.20: Comparison for 304L in a 4mm x 4mm square domain of the normalized number of grains 

evolution during pure grain growth regime for the Laguerre-Voronoï method (blue dashed line) with the one for 

the Voronoï method (red dashed line); comparison of the normalized mean grain area evolution for the 

Laguerre-Voronoï methods (blue full line) with the one for the Voronoï method (red full line). 

 

It is confirmed in this chapter that taking into account the neighbourhood effects is of 

fundamental importance in determining the kinetics of grain growth. Generating a digital 

microstructure using a Voronoï method cannot ensure a good prediction of experimental grain 

growth when dealing with log-normal grain size distributions. On the contrary the Laguerre-

Voronoï method is appropriate. 

In the next section a more detailed study of the influence of the grain size distribution 

on grain growth kinetics is performed. 

 

5 Assessment of simplified 2D grain growth models from 

numerical experiments based on a level set framework 
 

The study presented in this paragraph has two main purposes. The first one is to test, in 

2D, two mean field grain growth models existing in the literature - Burke and Turnbull 

[Burke, 1952] and Hillert/Abbruzzese [Hillert, 1965], [Lücke, 1992], [Lücke, 1998], 

[Abbruzzese, 1992] – under simplified conditions of isotropic grain boundary energy and 

mobility, constant temperature, and absence of precipitates, using the results obtained with 

our full field modelling method for different initial grain size distributions. These models 

were developed based on theoretical assumptions and they are not easily verified 
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experimentally. So, the idea is to use the full field simulations results, thus verifying if and 

when the mean field model predictions are acceptable. The second main purpose of this 

section is to study whether or not a full field model is needed under these simple conditions. 

In [Kamachali, 2012], the authors present a similar study using a phase field framework 

combined with a finite difference modelling technique. Kamachali discusses both statistical 

and topological perspectives of ideal grain growth using the results of 3D simulations. The 

paper shows that, despite a few discrepancies with the mean field theory (Burke and Turnbull 

model and Hillert model) the parabolic kinetics of grain growth remains valid for the entire 

process. The simulation reaches a steady state and the grain size distribution in this steady 

state agrees with the Hillert distribution [Hillert, 1965].  The volumetric growth rate obtained 

compares well with the mean field assumptions. However, the paper analyses only one initial 

grain size distribution, putting aside the influence of the initial grain size distribution on the 

grain growth kinetics. In this section, the influence of the initial grain size distribution is 

studied by considering seven different cases in 2D configurations. 

  

5.1 Grain size distributions 
 

To check the validity of different grain growth models, we now study seven different 

grain size distributions. These seven grain size distributions were described in details in 

chapter 2. Table 4.3 sums up their principal features. 

 
Table 4.3: Characteristics of grain size distributions and error concerning the digital generation of the seven 

microstructures 

 

Mean 

Radius - μ 

(µm) 

Standard 

Deviation - 

σ (µm) 

σ/ μ 

Initial 

number of 

grains 

Domain 

Size 

(mm) 

Error (%) 

Log1 61.7 7.2 0.12 9728 11 x 11 2.9 

Log2 63.7 14.1 0.22 10517 12 x 12 7.1 

Log3 67.4 23.5 0.35 10464 13 x 13 2.0 

Log4 71.4 31.6 0.44 9999 14 x 14 1.8 

Log5 75.3 38.4 0.51 8583 14 x 14 4.9 

304L 67.4 31.0 0.45 9211 13 x 13 5.3 

Bimodal 62.8 24.3 0.37 9933 12 x 12 8.3 

 

In all cases, the number of grains is around 10000, which ensures a good statistics 

during the simulation. 

Figure 4.21 recalls the comparison between the targeted microstructures and those 

built numerically (see Figures 2.14 and 2.11b). In this figure, the x-axis corresponds to the 

normalized radius   RR , where <R> corresponds to the mean grain size. Table 4.3 

presents the L2 errors between the theoretical and the obtained numerical distributions. 
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(a) (b) 

Figure 4.21: Numerical initial grain size distributions compared with the targeted one: (a) Bimodal and 304L 

distribution; (b) Log1, Log2, Log3, Log4 and Log5 distributions. 

 

For all simulations presented here and referring to the 304L steel properties, the time 

step is 120 seconds, the thermal treatment is applied 5h and the temperature is constant and 

equal to 1050
o
C (M = 1.37 10

-12
 m

4
/(J.s) and γ = 0.6 J/m

2
). The finite elements meshes are 

adapted thanks to the a posteriori method in a square domain of 13 mm x 13 mm, leading to 

an average of 3,200,000 mesh elements for the initial microstructures. The computation time 

is around 24 hours using 128 cpu for all calculations.  

A graph colouring technique (paragraph 3.4) is used for limiting the number of level set 

functions required to describe the whole microstructure. In other words, one level set function 

will describe several non-neighbouring grains instead of describing only one grain. So, 

instead of dealing with NG level set functions in the domain, we will have NC container level 

set functions, knowing that NC is significantly smaller than NG. In order to delay the onset of 

grains coalescence, we impose that only the 4
th

 nearest neighbour can belong to the same level 

set function. Therefore, using this coloration technique, the whole aggregate (around 10000 

for the considered microstructures) can be fully described using only around 30 container 

level set functions. Figure 4.22 illustrates the grain growth simulation of the 304L grain 

structure. 
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(a) 

 
(b) 
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(c) 

 
(d) 



 146 

 
(e) 

Figure 4.22: 304L steel grain growth at 1050°C : (a) to (d) grain interfaces after, respectively, 0 min, 20min, 

1h40min and 5h; and (e) zoom on a few grains after 1h30min where an anisotropic FE mesh appears in white. 

Grey levels of the grains relate to the container level-set functions. 

 

All the studied distributions – except for the Bimodal distribution (which will be 

discussed later) – reach at some point a quasi stationary steady state. The final grain size 

distributions calculated from the six distributions are compared with Hillert [Hillert, 1965] 

and Rayleigh distributions. The Rayleigh distribution was originally derived in the 2D grain 

growth context by Louat [Louat, 1974] and corrected by Mullins in [Mullins, 1998]. Table 4.4 

presents the equations for these theoretical stationary distributions in 2D. 

 
Table 4.4: Hillert and Rayleigh distribution equations. 
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The Hillert distribution has a non-analytic cut off at   RR  = 2 while the Rayleigh 

distribution presents an infinite tail. In Figure 4.23 the obtained numerical quasi-stationary 

distributions are in good agreement with the Rayleigh distribution, which is coherent with 

Mullins work (the Bimodal distribution did not reached a quasi-stationary state so the 

corresponding results will be discussed later). 
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Figure 4.23: Quasi-stationary state and comparison with Hillert and Rayleigh predictions.  

 

According to [Mullins, 1998], the reason for the discrepancy between the Hillert 

theoretical distribution and the experimental and/or numerical results comes from topological 

reasons: in 2D, the Hillert distribution is reached only if the average number of sides relates 

linearly to the grain size. The relationship between the number of sides and the grain size in 

the results presented in Figure 4.23 should therefore be the subject of future work. 

 

5.2 Burke and Turnbull study 
 

The first mean field model tested is the Burke and Turnbull model [Burke, 1952]. This 

model is based on three main hypotheses: 

 

 the driving force for the phenomenon is proportional to the grain boundary mean 

curvature  R1 , where R is the equivalent radius. So the grain boundary 

migrates toward the centre of its curvature, which in turns reduces the interfacial 

area as well as its associated energy; 

 the mobility and grain boundary energy are isotropic and uniform. As a 

consequence the angles in the triple junction are equal to 120
o
C; 

 the heat treatment temperature is constant. 

 

These hypotheses lead to the following grain growth kinetics equation in 2D:   

 

tMRR 
2

1
² 2

0 , (4.16) 

 

where  R  (resp. 0 R  ) corresponds to the average grain radius (resp. at t = 0s). With 

this equation, neither the topological nor the neighbouring effects are taken into account; the 

grain growth kinetics is characterized only by the average grain size.  

To check the consistency between the full field simulation results and this model, the 

curves    )log(log 2

0

2 tfRR   have been plotted in Figure 4.24 for each initial 

distribution described in Table 1, except for the Bimodal distribution, which will be treated 

separately. For these distributions, Equation 4.17 is generalized according to: 

 
ntMRR  2

0² . (4.17) 
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From Equation 4.17, the validity of the Burke and Turnbull model can be verified if the 

slope of    )log(log 2

0

2 tfRR  , n, is equal to 1 and if the fitted curve leads to an α 

value around 0.5. Computed curves and their linear fits are given in Figure 4.24 and lead to 

the α and n parameters summarized in Table 4.5. 

 
Table 4.5: Burke and Turnbull model analysis thanks to full field simulations results for different grain size 

distributions. 

Distribution Slope (n) α 
Number of 

grains in the end 
σ/ μ 

Log1 2.48 1.21 10
-7

 4078 0.12 

Log2 1.59 1.08 10
-3

 3747 0.22 

Log3 1.19 0.08 2889 0.35 

Log4 1.02 0.38 2782 0.44 

Log5 0.89 2.30 2743 0.51 

304L 1.04 0.42 3271 0.45 

 

 Figure 4.24: Computed evolutions of grain structures starting with different initial grain size distributions, using 

the full field model. Linear approximations are used for comparison with the Burke and Turnbull model. 

 

As illustrated in Table 4.5 and Figure 4.24, n and α are highly dependent on the initial 

grain size distribution. Only the Log4 and 304L distributions lead to the values of n and α 

expected by the Burke and Turnbull model. Both distributions are log-normal with a value of

45.0  (see Table 4.3). For the other distributions, it can be noticed in Figure 4.25 that n 

values decrease with the increase of  , while α values increase with  . These 

evolutions can be approximated by the following simple relationships: 

 

,62.8ln15.11ln 












  (4.18) 

1.0ln.08.1 












n . (4.19) 
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Figure 4.25:  Relationship between α and n fitted parameters and σ/μ of the initial grain size distributions (given 

in Table 4.3) 

 

For a log-normal distribution, α presents an power law dependence on   and n a 

logarithmic dependence. Equations 4.18 and 4.19 confirm that grain growth kinetics 

significantly depends on grain structure and neighbourhood effects. 

Figure 4.26 shows that the Bimodal kinetics can be divided in two linear parts – ‘A’ 

between t = 0s and t = 4400s and ‘B’, between t = 4400s and t = 18000s. In an attempt to 

understand this behaviour, the grain size distribution at t = 0s, t = 4400s and t = 10800s 

(figure 4.27) are analysed. 

 

 
Figure 4.26:  Burke and Turnbull model study for Bimodal grain structure. 

 

 
 

(a) (b) 
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(c) 

Figure 4.27: Grain size distribution at (a) t=240s, (b) t=4400s and (c) t=10800s for the Bimodal grain 

structure. 

 

Figure 4.27 shows that for t = 0 s, we have two different grains populations. The 

number of grains belonging to the smaller radius family is bigger than the one belonging to 

the larger radius family. Knowing that the average grain curvature is equal to the inverse of 

the equivalent radius, grains having a smaller radius will have a bigger curvature and, as a 

consequence, will be quickly consumed. At t = 4400 s, the grain size distribution has changed, 

and starts switching to a single peak distribution. The average grain curvature decreases, and 

the grain growth kinetics consequently becomes slower. Finally, t = 10800 s, a single peak 

distribution is reached. One can conclude that the slope change in the kinetics of grain growth 

coincides with the quasi disappearance of the smallest grains population, i.e. with the 

switching from a bimodal distribution to a single peak distribution.  

 It is therefore concluded that the Burke and Turnbull model is not valid for most of the 

investigated grain size distributions. The model only behaves well for lognormal grain size 

distributions, with a  value close to 0.45. 

 

5.3 Hillert/Abbruzzese model study 
 

In a second part, both Hillert [Hillert, 1965] and Abbruzzese [Lücke, 1992], [Lücke, 

1998], [Abbruzzese, 1992] mean field models were studied. Both models are derived from 

von Neumann-Mullins [von Neumann, 1952], [Mullins, 1956] model. Even though the 

development of the model proposed by Hillert is different from the one proposed by 

Abbruzzese, both authors finally propose the same grain growth model equation (Equation 

4.20). In the development of the Abbruzzese model, the authors use the “Special Linear 

Relationship” (SLR) 











R

R
n i

i 1.3  [Abbruzzese, 1992] discussed in chapter 2. In this 

work, both models are analysed as one. The central equation is: 

 
















i

i
RR

MV
11

 , (4.20) 

 

where the grain structure is assumed to be described by a discrete set of grain families (each 

family being labelled with a subscript i), Vi corresponds to the average grain boundary 

velocity of the grain family i,  R  corresponds to the average grain size and   is a constant 

generally assumed to be 0.5 in 2D, and 1 in 3D, even though other values can be found in the 

literature. For example, in [Kamachali, 2012], Kamachali found a value of 1.25 in 3D, using a 

phase field framework combined with a finite-difference modelling technique.  In [Rios, 





 151 

2008], Rios and Glicksman calculated a 3D value of 0.81, using the average N-hedra method 

(ANH) [Glicksman, 2005]. 

In this model, the neighbouring effects are taken into account by the addition of the 

term  R1 . This term represents the mean curvature of all the grains belonging to the 

domain. Also, in the Hillert/Abbruzzese model, the grain growth behaviour of a histogram 

with several grain families is analysed. As a consequence, the interaction between the 

different families is also taken into account (in the Burke and Turnbull model this interaction 

is ignored). Figure 4.28 illustrates the interaction between the different families. 

 

 
Figure 4.28:  Grain size distribution: probability (φi) vs. radius (Ri). Examples for the grain size flux during 

grain growth are indicated for the cases Ri’ < Rcr and Ri > Rcr) [Lücke, 1998]. 

 

To check the consistency between the full field simulation and the Hillert/Abbruzzese 

model, we compared the grain size distributions obtained with the full field model and the 

mean field model described by Equation 4.20, and implemented within a more general model 

described in [Bernard, 2011]. Three different time steps (t = 2 min, t = 76 min and t = 150 

min) were analysed. Figure 4.29 illustrates the comparison and table 4.6 numerically 

quantifies the comparisons for the seven grain size distributions. 

 
Table 4.6: Error between histograms obtained with full field model and Hillert/Abbruzzese mean field model. 

 Error L2 (%) 

t = 2 min t = 76 min t = 150 min 

Log1 10.7 4.6 3.9 

Log2 4.5 4.6 6.3 

Log3 1.9 4.0 6.0 

Log4 1.6 4.5 7.6 

Log5 1.9 2.4 3.4 

304L 1.9 5.5 5.5 

Bimodal 4.9 6.8 10.3 
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Log5 

Figure 4.29: Comparison between full field results and Hillert/Abbruzzese mean field results for all grains 

structures studied: 304L, Bimodal, Log1, Log2, Log3, Log4, and Log5. 

 

From Table 4.6 it can be concluded that the Hillert/Abbruzzese mean field model is in 

good agreement with the computations. For all considered grain size distributions, the error 

between the grain size cumulative histograms obtained with the two different approaches is 

smaller than 11%, even for the Bimodal distribution. A closer look at the distributions 

illustrated in Figure 4.29, shows that errors increase in the lowest grain sizes range. A 

hypothesis was initially made to explain this localization. The idea was to relate this error to 

volume conservation issues discussed in [Bernard, 2011]: volume changes of the shrinking 

grains are computed by redistributing the total volume changes of growing grains. 

Consequently, the rates of volume change for small grain sizes are slightly modified from the 

values strictly deriving from Equation 4.20. Comparing the results obtained using the mean 

field model discussed in [Bernard, 2011] and the direct use of Equation 4.20, we observe that 

the effect of this volume conservation treatment is more important for a small number of 

representative grains (around 50). In fact, when using 40 representative grain families (as in 

the comparisons presented in Figure 4.29), the direct use of Equation 4.20 gives better results 

than the use of the model presented in [Bernard, 2011]. However, for a number of 

representative grains around 200, both methods present the same results, and the volume 

conservation treatment does not affect the results anymore.  

Therefore, in the simple considered configurations, i.e. when grain boundary mobility 

and energy are isotropic throughout the polycrystal, and no Zener pinning forces are taken 

into account (absence of second phase particles), the Hillert/Abbruzzese mean field models 

describe quite accurately the grain growth phenomenon for any initial grain size distribution. 

 

6 Conclusion  
 

In this chapter a finite element model was proposed in order to simulate the grain 

growth phenomenon. Grain boundaries are implicitly represented using level set functions. 

Two different methods to simulate grain boundary motion are tested: a convective approach 

and a diffusive approach. Even though both approaches are appropriate to simulate grain 

growth with regular grain curvature (for example, a circular grain immerged in an infinite 

medium), the diffusive approach was the only method able to simulate polyhedral grain 

growth with no regular grain curvature.  
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It was also shown that the diffusive approach associated with a multiple junction 

treatment and isotropic boundary energy leads to the expected 120° equilibrium angle at triple 

junctions. Finally, the simulation results of different polyhedra (square, pentagon, hexagon, 

heptagon and octagon) growth rates is shown to agree well with the von Neumann-Mullins 

theory. 

A comparison between the grain growth kinetics of two different digital 

microstructures, one based on setting the mean grain size (Voronoï approach), and the other 

based on obeying a grain size distribution (Laguerre-Voronoï), has been performed for an 

isotherm thermal treatment. The kinetics were shown to be significantly different: the 

Laguerre-Voronoï one is faster than the Voronoï. This result highlights the importance of the 

size distribution on global grain growth kinetics.  

Finally, in this chapter we discussed the validity of two grain growth models (Burke and 

Turnbull, Hillert/Abbruzzese) using full field modelling results. Seven initial grain size 

distributions have been considered in order to test these mean field methods. 

The Burke and Turnbull model, which does not take into account the topology or the 

neighbourhood effects, is valid only for two distributions and both of them are lognormal and 

present a standard deviation value roughly equal to 0.45 of the mean grain size. 

Coincidentally, one of these two distributions is the one based on experimental 304L data. 

Also, this kind of distribution is classically observed in polycrystalline metals. On the other 

hand the Hillert/ Abbruzzese model is valid for all tested distributions, even for the bimodal 

one. Consequently, if the development of full field models is justified for the description of 

grain growth in complex conditions, their use appears disproportionate in the simple 

configurations investigated here, where the Hillert/ Abbruzzese approach is sufficient. 

This assessment test was not performed in 3D because of lack of time. 3D simulations 

with a representative number of grains (around 10000 grains) are time and computational 

resources consuming. During this Ph.D. thesis we did not have the time to perform all these 

simulations. Comparisons between 3D grain growth simulations and mean field models will 

be done in the near future. 

In chapter 5, the grain growth model introduced in this chapter is extended to a 

recrystallization model. The influence of capillarity effects is investigated. The coupling 

between the recrystallization – grain growth model with the crystal plasticity model is then 

detailed. The chapter ends with an analysis of nucleation criteria in recrystallization. 

 

Résumé en français 
 

Un modèle de croissance de grain à l'échelle mésoscopique basé sur une formulation 

éléments finis dans un cadre level-set est proposé dans ce chapitre. Dans une première partie, 

deux approches pour simuler la capillarité des joints de grains sont testées: une approche 

convective et une approche diffusive. L’approche diffusive développée est finalement retenue 

par sa capacité à simuler précisément la croissance de grains initialement polyédriques en 

respectant les angles d’équilibre de 120° aux joints multiples imposés physiquement par 

l’hypothèse d’isotropie de l’énergie d’interface.  

Finalement, grâce au formalisme développé, un travail d’analyse de modèles de 

croissance des grains à champ moyen existant dans la littérature est réalisé. Deux modèles 

particuliers ont été étudiés : celui de Burke et Turnbull et celui de Hillert/Abbruzzese. En 

comparant ces modèles avec les résultats obtenus par notre approche en champ complet, il est 

mis en évidence que le modèle simple de Burke et Turnbull, qui ne prend pas en compte les 

caractéristiques topologiques de la microstructure, n’est pas approprié pour décrire la 

croissance de grains pour tout type de distribution initiale de taille de grains. Pour le modèle 

de Hillert/Abbruzzese, nous prouvons que le modèle est valide pour toutes les distributions 
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analysées. Dans le chapitre 5, le modèle de croissance de grains présenté dans ce chapitre est 

couplé à un modèle de recristallisation statique.  
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1 Introduction 
 

A driving force for grain boundary displacement arises when a boundary displacement 

leads to a reduction of the total energy. In recrystallization phenomena, two kinds of energy 

are responsible for the grain boundary motion: (1) an excess of energy due to grain boundary 

itself (grain boundary curvature) and (2) a free energy difference between the adjacent grains 

due to energy stored during deformation. In chapter 4, grain boundary migration due to the 

grain boundary curvature was presented and discussed in details. In this chapter, grain 

boundary motion based on both driving forces (recrystallization regime) is studied. A first 

study analysing the influence of the grain boundary curvature effects during the 

recrystallization process is presented, and the results show that the capillarity effects cannot 

be neglected in all cases, in contrast with what is often accepted in the literature. In fact, the 

importance of the grain boundary curvature effects on recrystallization kinetics depends on 

the nuclei spatial distribution throughout the material. These results highlight the importance 

of the developments performed in this work, for the improvement of the formalism developed 

in [Bernacki, 2009] and [Logé, 2008]. In a second part, the static recrystallization model is 

coupled to the crystal plasticity model discussed in chapter 1. An analysis of nucleation 

criteria for static recrystallization is presented, distinguishing the two crystal plasticity 

hardening laws discussed in chapters 1 and 3 (one model considering the total dislocation 

density and a second model considering two dislocation types, SSDs and GNDs). 

 

1.1 Static recrystallization 
 

The recrystallization process involves the formation of new strain-free grains in certain 

parts of the material and the subsequent growth of these to consume the deformed 

microstructure. The microstructure at any point is divided into recrystallized or non-

recrystallized regions (Figure 5.1). The recrystallized fraction increases from 0 to 1 during the 

recrystallization process.  

 

 
Figure 5.1: An SEM channelling contrast micrograph of aluminium showing recrystallized grains growing into 

the recovered sub grain structure [Humphreys, 2004]. 

 

It is convenient to divide the recrystallization process into two regimes: (i) nucleation 

which corresponds to the appearance of new grains and (ii) growth of these new grains, which 

replace the deformed material. 

The extent of recrystallization is often described by the recrystallized fraction (Xv). 

However, it is also possible to follow the progress of recrystallization by measurement of 

various physical or mechanical properties, like the material hardening.  
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1.1.1 Nucleation mechanisms 
 

Nucleation is the key concept in the understanding of microstructure recrystallization. 

The classical homogeneous nucleation theories associated with solidification or phase 

transformation do not hold true for recrystallization due to its low driving force and high grain 

boundary energies [Humphreys, 2004]. Dislocation free regions are not formed by thermal 

fluctuations, as in the solidification process. It is now well-known that a critical stored energy 

must be reached before the onset of recrystallization. Also, nuclei mostly originate at or near 

the pre-existing grain boundaries, since this is where the highest dislocation density is found.  

Even though extensive investigation has been made, significant disagreements on the 

mechanisms of nucleation still exist. The mostly accepted mechanisms are summarized 

below. 

 

Strain induced boundary migration (SIBM) 

 

SIBM is the most common nucleation mechanism and it is also known as bulging or 

migration of pre-existing grains boundaries. This mechanism was originally proposed by 

Beck and Sperry [Beck, 1950] based on Al optical microscopy observations. This mechanism 

considers the migration of a pre-existing grain boundary toward the interior of a more highly 

deformed grain, leaving a dislocation free region behind the migrating grain boundary. Figure 

5.2 illustrates this phenomenon. In this case, the nuclei have a similar orientation to the old 

grain, from which they have grown.  

 

 
Figure 5.2: (a) SIBM of a boundary separating a grain of low stored energy (E1) from one of a higher energy 

(E2), (b) dragging of the dislocation structure behind the migrating boundary, (c) the migrating boundary is free 

from the dislocation structure, (d) SIBM originating at a single large subgrain. 

 

The SIBM mechanism occurs when the process is energetically favourable. In other 

words, the decrease of stored energy due to the elimination of dislocations in the area behind 

the migrating grain boundary should be higher than the total grain boundary surface increase 

due to boundary bulging. The growth condition is given by: 

 

E
L b




2
, (5.1) 
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where  is the grain boundary surface energy per unit of area,  is the released energy 

associated with the decrease in defects, and 2L is the initial bulging boundary length (Figure 

5.3.a). Therefore, a critical stored energy difference is necessary for the nucleation onset.  

This mechanism is believed to be particularly important for strains up to 40%. Recent 

research has shown that the SIBM mechanism is also very important during recrystallization 

after high temperature deformation of steels. In this case, the material presents a deformed 

microstructure more homogeneous than when the material is deformed at low temperature 

[Theyssier, 1999], [Hutchinson, 1999]. Other types of nucleation also seem possible in 

association with existing grain boundaries. Beck and Sperry [Beck, 1950] also presented 

evidence for new recrystallized grains which did not share either of the parent grains’ 

orientation. The same phenomenon has been observed in bicrystals of iron by Hutchinson 

[Hutchinson, 1989]. 

 

Nucleation by low angle boundary migration 

 

This model has been presented independently by both Beck [Beck, 1949] and Cahn 

[Cahn, 1950] in the 1940s. The dislocation density around low angle boundaries maybe 

relatively high, promoting their migration. During the migration of the sub-boundaries, the 

dislocations are continuously absorbed increasing the low angle boundary orientation until it 

is finally transformed into a high angle boundary. The microstructural defects behind the 

moving subgrain boundaries are removed or rearranged hence decreasing the stored energy. In 

[Rios, 2005], the authors summarized the experimental evidences for this nucleation 

mechanism. In this paper the authors also exhibit that this mechanism usually occurs at high 

strains, largely spread subgrain size distribution, high annealing temperatures. Finally this 

mechanism occurs specially in low SFE (stacking fault energy) metals. Figure 5.3 illustrates 

the sub boundary migration nucleation mechanism.   

 

 
Figure 5.3: The sequence shows the nucleation of a recrystallized grain starting from a subgrain: (a) initial 

substructure; (b) the larger (middle) subgrain growth over the other (smaller) ones and (c) an area free of 

defects associated to the large angle boundary that is being formed [Rios, 2005]. 

 

Figure 5.4 presents an experimental analysis of a low angle boundary migration. In this 

case, the recrystallization of a Zr-2Hf alloy deformed by planar compression test at room 

temperature is studied. 

 

b E
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Figure 5.4: HVEM bright field images of the same area (a) in the as-deformed condition (55% strain) and (b) 

after in situ annealing at 700 C for 5 min, revealing the rearrangement of dislocations into a subgrain structure 

and low angle boundary migration (white arrows) [Zhu, 2005]. 

 

Nucleation by subgrains coalescence 

 

The mechanism of subgrain coalescence is based upon the coalescence of two adjacent 

subgrains. This coalescence is equivalent to the rotation of the grains causing the crystal 

lattices to coincide, as illustrated in Figure 5.5. 

 

 
Figure 5.5: Coalescence of two subgrains by “rotation” of one of them: (a) original structure prior to 

coalescence; (b) rotation of the CDEFGH grain; (c) subgrain structure subsequent to coalescence and  (d) final 

structure after sub-boundaries migration. 

 

This mechanism seems to be associated with transition bands (which consists of a 

cluster of long narrow cells or subgrains with a cumulative misorientation from one side of 

the cluster to the other [Humphreys, 2004]), large spread in the distribution of subgrains 

angles, moderate strains, relatively low annealing temperature and metals with high SFE.  

Figure 5.6 presents an experimental analysis of a low angle boundary migration. In this 

case, a Zr-2Hf alloy deformed by planar compression test at room temperature is used in order 

to study static recrystallization. 
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Figure 5.6: HVEM bright field images of the same area after in situ annealing at 700 C for 5 min (a) and 30 min 

(b), revealing the coalescence of subgrains. Subgrains A, B and C form a larger subgrain D [Zhu, 2005]. 

 

Table 5.1 sums up some conditions for which the different nucleation mechanisms 

occur. 
 

Table 5.1: Summary for nucleation mechanism. 

Strain induced grain boundary 

migration 
Sub-boundary migration Subgrain coalescence 

 small strains (up to 40%) 

 hot working 

 high strains 

 high temperatures 

 heterogeneous subgrain 

size distribution 

 low SFE metals and alloys 

 moderate strains 

 relatively low 

temperatures 

 large spread in the 

distribution of subgrain 

misorientation 

 transition bands 

 high SFE metals and 

alloys 

 

1.1.2 Nuclei growth 
 

The expansion of new grains follows the grain boundary motion equations already 

discussed in chapter 4. It is generally accepted that the velocity of a high angle grain 

boundary can be approximated by [Humphreys, 2004], [Bernacki, 2009], [Kugler, 2004]: 

 

 nEMv


  (5.2) 

 

where M is the grain boundary mobility; is the material internal energy difference, which 

depends on the dislocation density;   is the grain boundary energy;   is the grain boundary 

mean curvature and  is the outward unit normal to the grain boundary. As already explained, 

the grain boundary driving force can be divided in two parts: the first one is related to the 

internal material energy gradient ( ) and the second one is related to the grain boundary 

capillarity effects ( ). Experimentally, the driving force of grain boundary motion, and 

therefore the boundary velocity, may not remain constant during recrystallization. In 

particular, the driving force may be lowered by concurrent recovery and both the driving force 

and the mobility may vary through the specimen. As a consequence, the grain boundary 

velocity, which is an important parameter in any recrystallization model, is a complex 

function of the material and the deformation and annealing conditions. 

In this work, the material recovery is not considered during the recrystallization 

simulations. As a consequence, the internal energy stored by dislocations during the plastic 

deformation will not evolve during the recrystallization simulations. 

 

E

n


nE




n



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1.3 The Johnson-Mahl-Avrami-Kolmogorov (JMAK) model 
 

The first and still widely used model to describe the recrystallization process based on 

nucleation and growth of new grains was developed in the 30’s by [Johnson, 1939], [Avrami, 

1939], [Kolmogorov, 1937]. This model, also known as the Johnson-Mehl-Avrami-

Kolmogorov (JMAK) model is largely discussed in the literature. For example, in [Cho, 

2001], [Barraclough, 1979], [Towle, 1979], the authors use the JMAK approach to model 

304L steel static recrystallization kinetics.  

This model is based on three main hypotheses: (i) thermal treatment is performed in 

isothermal conditions; (ii) the material presents a homogeneous state after plastic 

deformation; (iii) nucleation sites are assumed to be randomly distributed. 

When recrystallization begins, new grains nucleate with a nucleation rate and grow 

with a growth rate . The resulting recrystallized fraction Xv is given by: 

 

, (5.3) 

 

where B is a constant depending on a shape factor f, and  (Equation 5.4), and n is the 

JMAK or Avrami exponent.  

 

. (5.4) 

 

This JMAK model proposed above assumes that the rate of nucleation and growth 

remains constant during the recrystallization process. In [Avrami, 1939], the authors also 

considered the case in which the nucleation rate is not constant, but a decreasing function of 

time,  having a simple power law dependence on time. In this situation, the obtained n 

value is different from the case where is constant. Also, the exact value of n depends on the 

form of  functions. 

Two limiting cases are important: the first one in which  is constant with a three 

dimensional growth and the second one, where the nucleation rate decreases so rapidly that all 

nucleation events occur at the recrystallization start. This is termed site saturated nucleation. 

In this case, is replaced by N (number of nuclei) in Equation 5.4. Once again the n value 

obtained in these conditions will be different from the n value obtained with constant .  

Finally, if the grains are constrained either by the sample geometry or by some internal 

microstructural constraint, the nuclei will grow only in one or two dimensions. As a 

consequence, in these situations, the JMAK exponent will present different values 

summarized in Table 5.2. 

 
Table 5.2: Ideal JMAK exponents for different nucleation conditions. 

Growth 

dimensionality 

Site 

saturated 

nucleation 

Constant 

nucleation rate 

3-D 3 4 

2-D 2 3 

1-D 1 2 

 

In [Cahn, 1956], the author has extended the theory to include nucleation at random 

sites near the grain boundaries and found n ranging from 4 at the start of recrystallization to 1 

at the end. However, no general analytical treatment of non-randomly distributed nucleation 
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sites is available. In this work, for all simulations, a site saturation nucleation condition is 

considered. This means that for all simulations, all nuclei are created at the same time, at the 

beginning of the simulation. 

 

1.4 304L steel static recrystallization 
 

The material studied in this chapter is 304L steel. In this section, a brief review of the 

304L steel static recrystallization behaviour is presented. All experiments presented here were 

performed by Ke HUANG during his PhD Thesis [Huang, 2011]. Samples have been 

submitted to torsion tests (Appendix 3), and heat treated afterwards for different times. 

Recrystallized fractions have been measured using the EBSD technique (Appendix 4). 

 

1.4.1 Strain level effect 
 

Besides the processing conditions (temperature and strain rate, which will be discussed 

in the next subsection), the amount of applied deformation plays a role on the static 

recrystallization kinetics. When the material is deformed until higher strain levels, the amount 

of stored energy is higher. As a consequence, the static recrystallization kinetics will change. 

Figure 5.7 presents two different static recrystallization tests, both of them were performed at 

1000°C with a strain rate equal to 0.01 s
-1

 but one sample was deformed until ε = 0.3 (blue 

line) and the other until ε = 0.5 (red line). 

 

 
Figure 5.7: Effect of applied strain on the static recrystallization kinetics in 304L steel deformed at 1000°C to ε 

= 0.3 and ε = 0.5 with a strain rate of =0.01 s
-1

. 

 

Comparing both kinetics curves, we observe that larger strain levels can decrease the 

incubation time needed to start the static recrystallization process and, at the same time, 

accelerate recrystallization kinetics. 

Also, as it was discussed in paragraph 1.1.1, the type of nucleation mechanism is also a 

function of strain. If the nucleation type changes when the strain level increases, new spatial 

distributions of grains may impact the recrystallization kinetics as well. 

 

1.4.2 Temperature and strain rate effects 
 

At temperatures where thermally activated restoration processes such as dislocation 

climb occur during deformation, the microstructure will be dependent on the deformation 

temperature and strain rate in addition to the strain. After deformation at high temperatures 

the stored energy will be reduced and recrystallization will occur less readily than after 


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deformation to a similar strain at low temperature. On the other hand, since the grain 

boundary motion velocity depends on the grain boundary mobility (Equation 4.2 – chapter 4) 

and, as it was discussed is chapter 4, the mobility increases with temperature, one can 

conclude that the grain boundary motion also increases when increasing the heat treatment 

temperature. So, when deformation and static recrystallization are performed at higher 

temperatures, a competition between the material recovery, which decreases the internal 

energy, and the grain boundary mobility, which increases the grain boundary motion will take 

place. 

In the case of 304L steel, from Figure 5.8 (both samples are deformed with  = 0.1 s
-1

 

until ε = 0.3 for two different temperatures) we observe that when increasing the deformation 

and annealing temperature, the recrystallization kinetics becomes faster. So, in this case, the 

effect of the grain boundary mobility is more important than the material recovery.  

 

 
Figure 5.8: Effect of temperature on the static recrystallization kinetics in 304L steel deformed at 1000°C and 

1100°C to ε = 0.3 with a strain rate of =0.1s
-1

. 

 

Considering the strain rate effect, after deformation with lower strain rate, the stored 

energy and, as a consequence, the recrystallization driving force will be reduced. Figure 5.9 

describes the recrystallization kinetics for two 304L steel samples, both of them deformed (ε 

= 0.3) and annealed at 1000°C, but with different strain rates. 

 

 
Figure 5.9: Effect of strain rate on the static recrystallization kinetics in 304L steel deformed at 1000°C to         

ε = 0.3,  strain rates of =0.01 s
-1

 and =0.1 s
-1

. 

 

The recrystallization kinetics is faster when the material is deformed with a higher strain 

rate, which agrees with the expectations [Humphreys, 2004]. In [Cho, 2001] and [McQueen, 

1995], a similar analysis of 304L steel recrystallization behaviour is presented and the results 

agree with those reported above. 





 
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1.5 Recrystallization simulations using a full field formulation 
 

All full field methods developed for grain growth modelling were described in details in 

chapter 4. In this chapter a brief recall of these methods with their applications in 

recrystallization simulations is presented. 

The first method is the probabilistic Monte-Carlo method (MC). When used to model 

recrystallization phenomena, this method presented the following disadvantages: 

 

- the linear relationship between the grain boundaries velocity and the stored energy 

cannot be verified when using the standard form of these approaches;  

- the absence of time scale complicates any comparison with experimental data [Rollet, 

1997];  

- these method principles are only statistically representative, meaning that a large 

number of simulations need to be done in order to ensure the simulation validity. 

 

The cellular automaton (CA) approach is another probabilistic method, which is usually 

used to model the primary recrystallization phenomenon [Raabe, 1999]. Several physical 

rules are used to locally determine the cell propagation in relation to the neighbouring cells, 

solving the first MC negative aspect. However, this method still presents a few negative 

points when modelling the recrystallization process:  

 

- at present, there is not an effective CA method to manage new grains nucleation 

during recrystallization [Rollet, 1997]. 

 

In a finite element context, three main methods are developed nowadays: Vertex (VM) 

Phase Field (PF) and Level-Set (LS). Although the VM method was initially developed for 

the grain growth modelling [Nagai, 1990], this approach was recently extended to primary 

recrystallization modelling, taking into account an early nucleation phase [Piekos, 2008a; 

Piekos, 2008b]. As for the grain growth modelling, topological events are controlled by mesh 

adaptation rules. As a consequence, the management of topological events (like grains 

nucleation or grains disappearance) is not always easy. Nowadays, a VM technique taking 

into account a non-early nucleation phase does not exist. 

For the PF method, despite recent developments [Takaki, 2008], modelling the 

nucleation phase during primary recrystallization, remains an open problem. 

In LS methods [Zhao, 1996], [Osher, 1988], [Sussman, 1994], [Merriman, 1994], the 

grains boundaries are implicitly represented. This method has already been used to model 2D 

or 3D primary recrystallization, including the nucleation stage [Bernacki, 2008], [Bernacki, 

2009], [Loge, 2008]. This method was first briefly described in [Bernacki, 2008] for very 

simple microstructures. It was then improved to deal with more realistic 2D and 3D 

microstructures and to make the link with stored energies induced by large plastic 

deformations [Bernacki, 2009], [Loge, 2008]. As it was already discussed in chapter 4, one of 

the prominent advantages of level set approaches is that topological changes are automatically 

taken into account. In the case of primary recrystallization, the introduction of new nuclei 

during the simulation can be easily done. A simple method to create a nucleation site is to 

build a new signed distance function at a desired time increment and at a given spatial 

position. The new distance function can be initialized as the distance to a sphere (3D) or to a 

circle (2D), centred around one node of the mesh. The signed distance functions of grains 

intersecting these new nuclei are accordingly modified. 
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In this chapter, a level set method associated with a finite element formulation is chosen 

to model recrystallization and grain growth phenomena not only to avoid all the limitations 

presented by the other methods, but also in order to make an efficient link with the crystal 

plasticity model discussed in chapters 1 and 3. 

 

2 Finite element model and level set framework 
 

In order to model the recrystallization phenomenon, we must, initially, generate a digital 

microstructure and a set of nuclei throughout the microstructure. The grains and nuclei are 

implicitly identified using level set functions and the mesh is adapted around the grain 

boundaries. All numerical tools are described in details in chapter 2. 

 

2.1 Velocity field expression 
 

The model presented here is an extension of the recrystallization model proposed by 

[Loge, 2008], [Bernacki, 2009]. This extension includes the capillarity term [Fabiano, 2013] 

of the grain boundary displacement (Equation 5.2) into the recrystallization model, and was 

briefly described in [Bernacki, 2011]. The impact of the capillarity term on static 

recrystallization modelling is one of the aspects which have not been discussed in depth, and 

for which the literature is relatively quiet.  

Considering the global recrystallization model, the grain boundary velocity between two 

neighbouring grains (Gi and Gj) is defined as the addition of a primary recrystallization term 

(PR) and a grain growth term (GG):  
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Until now, as described in chapter 4 by the Equation 4.12 and recalled here with the 

following Equation 5.6, interfaces motion during recrystallization was modelled using a set of 

convection-reinitialization equations [Bernacki, 2008], [Bernacki, 2009], [Loge, 2008], 

[Coupez, 2000]: 
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where 
  

was null in chapter 4 and now defined by Equation 5.5. At any time t, the 

interface Γi of grain Gi is implicitly given by the equation . The third term of 

Equation 5.6 is a reinitialization term necessary to keep the property of the distance function 

, which is crucial for the accuracy of the resolution. It is important to highlight that 

Equation 5.6 is solved, in our formalism, with one single velocity value at each mesh node 

and a given time t, in order to avoid kinematic incompatibilities due to the convection part of 

our formulation. Indeed, these incompatibilities would result from Equation 5.5, where 
ijPRv


is 

built according to parameters which are specific to local features (grain Gi and its 

neighbours). In [Bernacki, 2008], the authors propose instead a velocity expression, denoted 

),( txv
ijPR



0),( txi
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),( txvPR


, allowing to use a common global velocity for all grains of the microstructure. This 

velocity expression is given by: 

 

 (5.7) 

 

where α is a positive parameter [Bernacki, 2008], ),( txn j


the unit outside normal of grain Gj 

calculated as the opposite of the function 
j gradient (with the considered sign convention of 

level-set generation), and ),( tx
iG is the characteristic function of grain Gi. During this Ph.D. 

thesis, the capillarity term 
iGGv


 was  introduced into the recrystallization formulation. 

As it was discussed in details in chapter 4, the GG term depends on the grains curvature 

and is treated as a diffusion term in our formalism (see Eqs. 4.8 and 4.9). 

Finally, the problem solved in order to model the recrystallization process taking into 

account the capillarity effects boils down to a convection-diffusion problem: 

 

 (5.8) 

 

The system is solved for all NG grains present in domain Ω. Of course, as for pure grain 

growth problems discussed in the previous chapter, the translation of the capillarity term into 

a diffusive term is only true if the level set functions satisfy a distance function property 

 near the boundaries. So, to ensure this condition, a re-initialization treatment must 

be done at each time step [Osher, 1988]. Moreover the treatment in multiple junctions, 

detailed in chapter 4 paragraph 3.2, is also performed at each time step.  

Finally, a few simulations presented in this chapter were performed using the colouring 

techniques (chapter 4, paragraph 3.3). The use of this technique in the context of 

recrystallization is less systematic and more restrictive than for pure grain growth. This is due 

to the fact that the energy of each container level set function must be assumed homogeneous 

to be used in Equation 5.7. When this strategy is used, it implies that all the grains of a 

considered container level-set function have the same stored energy.  It will specify for each 

described simulation if this hypothesis is verified.  

 

2.2 Recrystallization algorithm 
 

Using all the numerical tools presented above and considering the use of the container 

level-set functions, we propose the following recrystallization algorithm (at each time step): 

 

RX1 – Calculation of ),( txvPR


 from Equation 5.7 (with a double summation over the 

container level-set functions). 

RX2 – Resolution of system 5.8 for all active container level set functions. 

RX3 – Numerical treatment (Equation 4.11, chapter 4) for all active container level set 

functions. 

RX4 – Re-initialization step for all active container level set functions [Osher, 1988], 

[Coupez, 2000]. 
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RX5 – Deactivation of all container level set functions that are negative all over the 

domain (meaning that all grains of the considered container level set functions have 

disappeared). 

RX6 –Nucleation criteria: Probabilistic or deterministic rule to choose the new 

nucleation sites (ignoring the part of the domain that is already recrystallized). A nucleus is 

assumed circular in 2D (spherical in 3D) and centred around one node of the FE mesh. If at 

least one nucleation site is activated, the corresponding new signed distance functions are 

built and the container level-set functions of the existing grains, which have an intersection 

with these new grains, are modified accordingly. More precisely by denoting, at the 

considered time step, )(x a container level-set function and )(xn  the level-set function 

corresponding to the distance to the union of the new nuclei, the modified container level-set 

function )(xm  is obtained, at each integration point, thanks to the following equation: 

 

 )(),(min)( xxx nm   . (5.9) 

 

RX7 – Re-meshing operation. 

 

Two main remarks: 

 when each grain is considered separately (no container level-set functions), the same 

algorithm is used by replacing the term container level-set function by level-set 

function, 

 the previous algorithm is in fact adapted in the more global context of non site 

saturated nucleation, which is not considered in the simulations presented in this 

chapter. Finally, when only site saturated nucleation is considered, the step RX6 can 

be ignored and the generation of the new grains is performed only at the beginning of 

the simulation. 

 

3 Results 
 

3.1 Academic Test - Circular grain case 
 

Analysing the grain boundary motion equation (Equation 5.2) we observe that a 

competition between the two driving forces (driving force due to internal energy gradients, 

nEM


 , and driving force due to grain boundary capillarity effects, nM


 ) can take place 

during the recrystallization process.  

A first simple test case was performed in order to verify if the recrystallization 

algorithm correctly describes the grain boundary motion when the two driving forces are 

taken into account. To do so, we have considered a grain embedded in a media where the 

capillarity effect promotes the grain shrinking while the internal energy difference promotes 

the grain growth. The domain size is 1 mm x 1 mm and an a priori remeshing technique is 

used to adapt the mesh around the grain boundary. The initial grain radius is set to 0.2 mm 

and the grain is centred in the middle of the domain. The mesh size outside the adapted zone 

is 10 µm. In the adapted zone, the mesh size in the direction perpendicular to the grain 

interface is 2 µm, and 10 µm in the tangential direction. The number of elements at the 

simulation beginning is 40300. Both grain boundary mobility and energy are considered 

isotropic and equal to one. Finally, an internal energy difference between the circular grain 

and the domain is imposed. Six different values of internal energy difference are tested: 2, 3, 

4, 5, 6 and 7 J/mm². Figure 5.10 illustrates the test scheme and table 5.3 sums up all tested 
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cases. In Figure 5.10 the black arrows represent the grain boundary motion due to internal 

energy difference, while the orange arrows represent the grain boundary motion due to the 

grain capillarity forces. 

 

 

Figure 5.10: Circular grain case scheme. The black arrows represent the grain boundary motion due to internal 

energy difference while the orange arrows represent the grain boundary motion due to the grain capillarity 

forces. White lines represent the mesh used. 

 
Table 5.3: Internal energy difference values tested. 

 ΔEnergy (J/mm²) 

Case 1 2 

Case 2 3 

Case 3 4 

Case 4 5 

Case 5 6 

Case 6 7 

 

Knowing that the initial grain radius is set to 0.2 mm, the initial grain curvature is equal 

to 5 mm
-1

. As a consequence, for cases 1, 2 and 3 we expect that the circular grain will shrink 

with different shrinking rates. For test case 4, the grain will remain unchanged and, finally, 

for test cases 5 and 6, we expect the grain to grow, with different growing rates. As for the 

configuration of the shrinking of one circular grain by pure capillarity grain growth 

considered in the previous chapter, the problem could be summarized as a simple differential 

equation in time for the circle radius, but here without analytical solution. In order to compare 

the 2D-FE predictions with a theoretical radius value, the following first-order scheme, 

explicit in time, was used: 

 

     









t

ttt

R
EtRR

1
, (5.10) 

 

where R
t+Δt

 and R
t
  are, respectively, the grain radius at t+Δt and t, ΔE is the internal energy 

difference and Δt is the time step. Figure 5.11 illustrates the kinetics curves for all the tested 

cases. Concerning the radius of the FE simulations, it was obtained, at each time step, as an 

average of the distance of positions of the grain interface to the centre of the domain (each 

position being separated by an angle of 45°). 
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Figure 5.11: Comparison between numerical and theoretical result for the static recrystallization of a circular 

grain embedded in an infinite medium. 

 

For all test cases, the model correctly simulates the behaviour of the circular grain. L2 

errors on the radius prediction remain smaller than 2% (table 5.4). 

 
Table 5.4: L2 errors for the six circular grains test cases. 

 ΔEnergy 

(J/mm²) 

L2 Error 

(%) 

Case 1 2 1,6 

Case 2 3 1,4 

Case 3 4 0,9 

Case 4 5 0,2 

Case 5 6 0,8 

Case 6 7 0,9 

  

These results illustrate that the diffusive-convective approach developed here can 

represent with a very good accuracy the grain motion kinetics resulting from the competition 

between two driving forces: internal energy difference and grain boundary curvature. 

 

3.2 Academic Test – 2 grains case 
 

The second test case corresponds to a bicrystal recrystallization. Once again, the grain 

boundary mobility and energy are isotropic and equal to one. An energy difference is imposed 

between the two grains. The domain size is 1 mm x 1 mm and an a priori remeshing 

technique is used to adapt the mesh around the grain boundary with the same features as those 

described for the previous test case. The number of elements at the simulation beginning is 

12,300. Figure 5.12 illustrates this second test case setup. 
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Figure 5.12: Bicrystal test case: the black vectors correspond to the recrystallization velocity at the grain 

interface. 

 

The internal energy of the blue grain is null while the internal energy of the red grain is 

10 J/mm². As a consequence, the grain boundary will move towards the red grain and the blue 

grain will grow while the red grain will shrink. Since the grain boundary is flat, the grain 

boundary curvature is equal to zero: only the internal energy difference will drive the grain 

boundary motion, and the grain boundary will remain flat. Figure 5.13 describes the grain 

boundary motion obtained by solving the system 5.6. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 
Figure 5.13: Bicrystal test results. The black line represents the numerical result while the red line corresponds 

to the theoretical result. (a) t = 0 s ; (b) t = 2 ms ; (c) t = 4 ms ; (d) t = 6 ms ; (e) t = 8 ms and (f) t = 10 ms. 

 

Errors between the numerical and theoretical results are smaller than 3% for all cases 

(obtained by the comparison of the theoretical vertical position of the grain interface with an 

average of the vertical coordinates of ten positions of the simulated grain interface). One can 

conclude that the convective-diffusive approach associated with an anisotropic mesh 

adaptation allows here an accurate simulation of the static recrystallization phenomenon. 

 

 

E = 0 

E = 10 
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3.3 Polycrystalline 2D simulation 
 

Usually, when modelling the recrystallization phenomena, the capillarity effects are not 

taken into account and only the internal energy difference is considered [Montheillet, 2009], 

[Bernacki, 2009]. So, the first interesting point to test with our modelling methodology is 

whether or not this assumption is valid. In other words, we want to estimate the impact of the 

capillarity term on the recrystallization kinetics and on the microstructure after total 

recrystallization. Simulations with random nucleation sites and with necklace-type nucleation 

are studied, and are restricted for the moment to 2D configurations. For all tested cases, grain 

boundary mobility and energy were considered isotropic throughout the domain and are equal 

to, respectively, 5.08 10
-13

 m
4
/(J.s) and 0.6 J/m². These values correspond to 304L steel data at 

1000°C. 

 

3.3.1 Random nucleation sites 
 

In this first recrystallization test, 636 randomly distributed nuclei are generated in a 

polycrystal with 76 grains. The energy difference between the matrix and the nuclei is 

homogeneous throughout the domain and it is equal to 2.18 10
-4

 J/mm
2
. In this case, the 

colouring technique was used separately for the initial unrecrystallized grains and for the 

initial nuclei. Indeed, as initial unrecrystallized grains are assumed to have the same stored 

energy, the graph colouring technique can be used without any difficulty. The same procedure 

is used for the initial nuclei (which share the same null energy). Finally, the initial 

"unrecrystallized grain - container level-set functions", modified thanks to Eq. (5.9) in order 

to take into account the presence of the nuclei, are concatenated with the "nuclei - container 

level-set functions" to generate the initial set of container level-set functions used for the 

simulation. It must be noticed that for the nuclei, the colouring technique is applied to the 

Delaunay triangulation of the sites formed by the centres of the nuclei, in contrast with the 

initial unrecrystallized grains where the Delaunay triangulation is performed with the 

Laguerre-Voronoï sites. Figure 5.14 illustrates a comparison of the microstructure evolution, 

as a function of time, between recrystallization simulations with and without capillarity 

effects. The graph in Figure 5.15 presents a kinetics comparison of these two cases and also 

the Avrami exponent analysis. 

 
Time 

(s) 
ReX with capillarity effects ReX without capillarity effects 

0 

  

 Recrystallized fraction: 5% Recrystallized fraction: 5% 
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50 

  

 Recrystallized fraction: 26% Recrystallized fraction: 42% 

100 

 

 

 Recrystallized fraction: 69% Recrystallized fraction: 80% 

250 

  

 Recrystallized fraction: 100% Recrystallized fraction: 100% 

Figure 5.14: Microstructure evolution comparison, in function of time, between the recrystallization simulation 

with capillarity effects and without capillarity effects (304L, T= 1000°C)  
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(a) (b) 

Figure 5.15: Recrystallization kinetics comparison between a case taking into account the capillarity effects 

(red line) and another case that do not take into account the capillarity effects (green line). 

 

Comparing the kinetics of both cases (Figure 5.15.a) we observe that, at the beginning 

of recrystallization, the kinetics of the simulation which does take into account the capillarity 

effects is slower than the one which does not. This is a consequence of the competition held 

between the two types of driving forces, as discussed in paragraph 3.1.  

Analysing a zoom of the microstructure for t = 40 s (Figure 5.16), few differences can 

be observed between the two simulations. 

 

  
(a) (b) 

Figure 5.16: Zoom of the microstructure for t = 40s: (a) simulation with capillarity effects, (b) simulation 

without capillarity effects. 

 

Considering the nuclei within the grains in Fig. 5.16, we observe that capillarity effects 

reduce their size. As we discussed above, this difference is again a consequence of the 

competition between the two types of driving forces.  

Looking now at the nuclei localized on the grain boundaries, we observe a difference 

between the two cases concerning their shape. Capillarity effects lead to nuclei which are no 

longer circular, but ovalized. This is a consequence of the equilibrium angle of 120° at a triple 

junction (Figure 5.17) [Bernacki, 2009], [Humphreys, 2004].  
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Figure 5.17: A triple junction for a nucleus on a grain boundary - equilibrium contact angle of 120°. 

 

The competition between the two driving forces is more apparent for small nuclei as 

their curvature is high. When the nuclei become larger, the capillarity forces are reduced, but 

the rate at which recrystallization progresses remains different from the case where capillarity 

forces are ignored (see Fig. 5.15). In the end, however, both simulations reach 100% of 

recrystallization almost at the same time, due to an asymptotic behaviour which appears to be 

faster when including capillarity.  

Analysing a zoom of the microstructure for t = 250s (Figure 5.18), we observe that 

generally the microstructures obtained in the two simulations are very similar. A difference 

comes from the existence of equilibrium angles at multiple junctions when introducing 

capillarity, but in the presence of stored energy forces, these equilibrium angles may not be 

satisfied completely during recrystallization (Fig. 5.14). At the end of recrystallization, we 

still find a few quadruple junctions, or grains with only 3 or 4 faces (Figure 5.18), but these 

features disappear progressively with increasing annealing time, which is not the case when 

only stored energy forces act on the microstructure.  

 

  
(a) (b) 

Figure 5.18: Zoom of the microstructure for t = 250s. (a) Simulation with capillarity effects, (b) simulation 

without capillarity effects. 

 

Concerning results of Fig 5.15(b), they are in agreement with the JMAK model (see Eq. 

5.3) as the function    vX1/1lnln  is a linear function of  tln  for both cases. Moreover the 

Avrami exponent obtained for both cases is very close of its theoretical value of 2 for this 

topological configuration (site saturated nucleation with a growth dimensionality equal to 2 as 

the nucleation is random, see Table 5.2).  

As a conclusion, for randomly distributed nuclei, taking into account the grain curvature 

changes the shape of the recrystallization kinetics curve but does not change significantly the 

time needed to fully recrystallize the material. Ignoring capillarity effects lead to multiple 
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junctions which do not form 120° equilibrium angles, and the corresponding microstructures 

are therefore not very realistic.  

 

3.3.2 Necklace-type nucleation sites 
 

It is widely recognized that the nucleation sites in recrystallization are non-randomly 

distributed. They are often located in the grain boundaries areas. So, to verify the influence of 

the grain curvature on the recrystallization kinetics, 1236 nuclei distributed along the grain 

boundaries were generated in a polycrystal with 100 grains. Once again, the energy difference 

between the matrix and the nuclei is homogeneous throughout the domain and it is equal to 

2.18 10
-4

 J/mm
2
. The same strategy used in the previous test case concerning the 

unrecrystallized grains and nuclei colouring can be used. Figure 5.19 illustrates a comparison 

of the microstructure evolution, as a function of time, between the recrystallization simulation 

with capillarity effects and without capillarity effects. The graph in Figure 5.20.a presents a 

kinetics comparison of between the two cases, and Figure 5.20.b describes the Avrami 

exponents for both simulations. 

 
Time 

(s) 
ReX with capillarity effects ReX without capillarity effects 

0 

  

 Recrystallized fraction: 10% Recrystallized fraction: 10% 

50 

  

 Recrystallized fraction: 33% Recrystallized fraction: 46% 
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150 

  

 Recrystallized fraction: 62% Recrystallized fraction: 79% 

400 

  

 Recrystallized fraction: 93% Recrystallized fraction: 100% 

650 

  

 Recrystallized fraction: 100% Recrystallized fraction: 100% 

Figure 5.19: Microstructure evolution comparison, as a function of time, between the recrystallization 

simulation with and without capillarity effects. 
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(a) (b) 

Figure 5.20: Recrystallization kinetics comparison between a case with capillarity effects (red line) and another 

case without the capillarity effects (green line). 

 

From Figures 5.19 and 5.20 we see that the effects of the grain curvature on the 

recrystallization kinetics and geometry are more important than in the first case (with 

randomly distributed nucleation sites). Here, when the capillarity effects are not taken into 

account, total recrystallization is reached after about 400 seconds. When the capillarity effects 

are introduced, total recrystallization is reached after 600 seconds. This is a consequence, 

once again, of the competition between the driving forces. 

 

  

(a) (b) 

Figure 5.21: Microstructure after 400s when taking into account the capillarity effects: (a) general view and 

zoom of an area with unrecrystallized and recrystallized grains.  

 

In Figure 5.21, we observe that the local radii of recrystallized grains are small as a 

consequence of the initial position of the nuclei. Therefore, the capillarity effects cannot be 

neglected and they continue to be significant during all the recrystallization process.  

Interestingly, as expected for this topological configuration (site saturated nucleation 

with a growth dimensionality equal to 1 due to the necklace-type configuration), both 

simulations present an Avrami exponent around 1 (see Fig. 5.20b). In comparison to the 

previous test case, the capillarity effects here seem to affect only the coefficient B of Eq. 5.3, 

but not the Avrami exponent. 

Looking at microstructures in the fully recrystallized state (Figure 5.22), we observe 

again the issue on the triple junction equilibrium angle of 120°. This leads to very unrealistic 

shapes, as those highlighted with the red squares in Fig. 5.22b.  



 180 

 

  

(a) (b) 

Figure 5.22: Zoom of the microstructure for 100% recrystallization fraction: (a) simulation with capillarity 

effects, (b) simulation without capillarity effects. The red squares highlight grains with unrealistic shape 

obtained when capillarity effects are not taken into account. 

 

As a conclusion, for necklace-type nucleation, taking into account the grain curvature 

affects both the recrystallization kinetics and the fully recrystallized microstructure. 

Neglecting capillarity effects not only results in non equilibrium angles at triple junctions, but 

also to very unrealistic grain shapes.  

In order to study this competition between the grain curvature and the internal energy 

gradients in more details, we carried out five different tests. In all cases we have the same 

initial distribution as for the previous necklace-type configuration. The grain boundary 

mobility and grain boundary energy are the same for all cases. Stored energy is assumed to be 

constant in the recrystallized part (equal to 0 J/mm
2
),

 
and also in the unrecrystallized part. The 

internal energy value for the unrecrystallized part is changed from one test to another, as 

shown in Table 5.5.  

 
Table 5.5: Tests performed in order to study the competition between the internal energy gradient and the 

curvature effects in the recrystallization phenomenon for a necklace-type site saturated nucleation.  

 ΔEnergy (J/mm²) γ ( J/mm) ΔEnergy/ γ (mm
-1

) 

1 2.18 10
-4

 6.0 10
-7

 362.8 

2 4.40 10
-4

 6.0 10
-7

 733.3 

3 6.60 10
-4

 6.0 10
-7

 1100 

4 8.80 10
-4

 6.0 10
-7

 1466.7 

5 11.0 10
-4

 6.0 10
-7

 1833.3 

 

For all cases we simulate the recrystallization with and without the capillarity effects. 

Figure 5.23 describes all the recrystallization kinetics curves obtained and Figure 5.24 

presents the corresponding L2 “errors” (or difference) between the simulations with and 

without the capillarity effect. 
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(a) 

 
(b) 

Figure 5.23: (a) Recrystallization kinetics comparison between a case taking into account the capillarity effects 

(Rex+GG continuous lines) and another case that does not take into account the capillarity effects (Rex - dashed 

lines). (b) Avrami exponent analysis for all tested cases. 

 

 

Figure 5.24: Error between the recrystallization kinetics curves obtained with and without the capillarity effect 

for the 5 studied cases. 
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In Figures 5.23.a and 5.24, it is interesting to observe that the impact of the grain 

curvature effects decreases when the ratio /E  increases and that the L2 error converges 

toward zero. Based on these results we can estimate how the capillarity forces will affect the 

recrystallization kinetics. Also, for any /E , we have confirmed that the capillarity effects 

changes only the coefficient B of Eq. 5.3, but not the Avrami exponent (Figure 5.23.b) in the 

considered necklace-type sites saturated nucleation.   

The next step for the static recrystallization simulation consists in coupling the crystal 

plasticity simulation results to the recrystallization simulation. This is the topic of the next 

section. 

 

4 Coupling crystal plasticity and static recrystallization 
 

After analysing the influence of the capillarity effects on static recrystallization 

phenomena, the recrystallization algorithm is now coupled to the crystal plasticity model. A 

100-grain digital microstructure is subjected to a plane strain compression up to ε = 0.3. For 

this deformation level, the appearance of new grains has not started. So, only static 

recrystallization is simulated. The calculated dislocation density distribution is used to define 

a set of potential nucleation sites. Then, the dislocation density average of each grain is 

computed in order to calculate the grain boundary motion rate (Equation 5.7). In the next 

sections, the definition of the nucleation sites is explained. Finally, the obtained numerical 

results are compared to the available experimental results. 

 

4.1 Critical dislocation density and nucleus radius 
 

Static recrystallization may occur when a deformed material is subsequently annealed. 

In [Kerisit, 2012], the critical dislocation density for static recrystallization is identified based 

on experimental tests. These experimental tests correspond to mechanical tests followed by an 

annealing treatment. However, a large number of tests, with different strain rates at different 

annealing temperatures need to be performed in order to correctly estimate the critical 

dislocation density needed to trigger recrystallization, after a given time. 

In this current work, we use the same equations used as those found in the numerical 

model proposed in [Huang, 2011]. The framework of this model is the same as that of the 

dynamic recrystallization (DRX) mean field model, with however some modifications due to 

the different nature of static recrystallization (SRX) as compared to DRX.  

For the DRX model, the critical dislocation density depends on deformation conditions 

(temperature and strain rate), and can be determined from the energy changes in relation to 

the formation of a nucleus on a pre-existing grain boundary. In [Sandstrom, 1975], the authors 

proposed a semi-quantitative approach by assuming that DRX is only possible when the rate 

of boundary migration of the potential nucleus is high in relation to the rate of reaccumulation 

of dislocations behind it. Following their model, [Roberts, 1978] further analysed the critical 

condition for DRX. Based on the results presented in [Roberts, 1978], the following Equation 

5.11 is proposed, using parameters of the mean field model developed in [Huang, 2011], to 

calculate the critical dislocation density value for nucleation in dynamic recrystallization: 

 

, (5.11) 
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where is the dislocation line energy and . It is observed from Equation 5.11 that 

is indirectly influenced by temperature and strain rate through the parameters K1 and K3. 

As it was discussed in chapter 3 (Yoshie-Laasraoui-Jonas equation), K1 is a material 

parameter representing the material hardening.  Temperature variation of  is mainly 

dictated by K3 through the temperature dependence of M (Equation 4.2, chapter 4). The 

influence of strain rate is incorporated only by the variations of K1. In general, Equation 5.11 

expresses that the critical dislocation density increases with decreasing temperature and 

increasing strain rate, which is physically justified.  

However, the critical dislocation density obtained using Equation 5.11 neglects the 

material recovery. So, in order to take it into account,  is finally defined as a solution of 

the following equation: 

 

, (5.12) 

 

where K2 is a material parameter representing the material recovery (as it was discussed in 

details in chapter 3 - Yoshie-Laasraoui-Jonas equation). The initial guess value of  is 

obtained directly from Equation 5.11 and iterative calculation by Equation 5.12 leads to a 

converged value of  which is then used in the model. 

In the current work, the critical dislocation density for static recrystallization process,

, is related to the  using the following equation: 

 

, (5.13) 

 

where  is a constant chosen equal to 0.3 according to the analysis presented in [Huang, 

2011]. 

A nucleus becomes viable when its radius reaches a critical value . This 

corresponds to the condition when the stored energy of the material is large enough to 

overcome the capillarity force of the nucleus, so we have: 

 

 i.e. . (5.14) 

 

To overcome the problem that a nucleus may shrink soon after its creation, all the nuclei 

created in the REV have a radius bigger than  , thereby ensuring that a created nucleus 

has the needed driving force to grow. 

 

4.2 Number of nucleation sites 
 

It is assumed that new grains appear in areas where the dislocation density is greater 

than a critical value cr . As a consequence, in the mean field theory, the nucleation of new 
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grains will happen in grains presenting a dislocation density value higher than the critical 

dislocation density. Since the nucleation rate is difficult to evaluate experimentally 

[Humphreys, 2004], it is presumed that a certain percentage per unit time of the potential 

nucleating sites actually nucleates. If nucleation happens in the bulk, the number of potential 

nucleating sites Np will be proportional to the total volume of grains with a dislocation density 

higher than . If nucleation happens mainly at grain boundaries, the total surface of the 

same grains will be considered instead of the volume. In the general situation, the number of 

potential nucleation sites Np is therefore written as 

 





cricri

q

ipip RNN


, (5.15) 

 

where q = 2 in case of necklace-type nucleation and q = 3 in case of bulk nucleation. Ri is the 

grain radius of the i
th

 grain family presenting a dislocation density value higher than the 

critical dislocation density.  Based on experimental 304L analysis [Huang, 2011], we observe 

that, during static recrystallization, the 304L steel new grains appear near the grain 

boundaries, like a necklace-type nucleation. So, the value q = 2 is chosen. Equation 5.16 is 

then applied to each representative grain presenting a dislocation density value higher than the 

critical dislocation density in order to determine the number of nucleation sites: 

 

. 
(5.16) 

  

where bg is a constant which is chosen to be 3, as found in [Montheillet, 2009], and 

a probability constant depending on the processing conditions, Scr the total 

surface area of grains with , and Nk the number of grains composing the k
th

 family of 

grains. All nuclei are assumed to start with the same initial radius . The Kg value used in 

this work was identified by [Huang, 2011]. 

 

4.3 Coupling with crystal plasticity results 
 

Previous equations allow evaluating the critical dislocation density and the volume of 

new grains appearing during the static recrystallization process. The next step is then to 

couple the static recrystallization simulations to the crystal plasticity results. As it was 

discussed in chapter 3, in this work, two different hardening models have been studied: the 

first one considering the material total dislocation density, and a second one considering two 

dislocations types: statistically stored dislocations (SSD) and geometrically necessary 

dislocations (GND). In this paragraph, the analysis of nucleation sites is done for both 

hardening models and the influence of the results on the recrystallization kinetics is presented. 

For both cases the applied deformation is 0.3 and the annealing treatment temperature is 

1000
o
C (still referring to 304L steel). 

Initially, the critical dislocation density for the mean field model and the number of new 

grains are calculated. Using the parameters presented on table 5.6 (for confidentiality, the 

parameters are presented as letters) the critical dislocation density calculated using Equations 

5.11, 5.12 and 5.13 is equal to 1.6 10
14

 m
-2

 and the number of grains to be generated, 

calculated using Equation 5.16, is 2060. 
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Table 5.6: 304L steel parameters. 

K1 (m
-2

) A 

K2 B 

K3 C 

Kg D 

τ (J/m) E 

 (ms
-1

) 1 

 

It is important to highlight that the critical dislocation density calculated with Equations 

5.11, 5.12 and 5.13 are valid for the mean field models. The value needs to be adapted to the 

mesoscopic scale, based on the crystal plasticity formulation. As it was discussed in details in 

chapter 3, it is possible to assume that the dislocation density, at any point of the grain is 

defined with the following equation: 

 

       ,/)(,/)( RxRx , (5.17) 

 

where     is the mean dislocation density in the RVE and   ,/)(  Rx  a function 

of the deformation and of the distance to the closest grain boundary normalized by  R , the 

polycrystal mean grain size. This function is described in Fig. 5.25 for ε = 0.3 with and 

without the introduction of GNDs.  

 

 
Figure 5.25: 304L steel β function as a  function of the normalized distance to the grain boundary for ε = 0.3 at 

T = 1000
o
C. 

 

Knowing that for the 304L steel, nucleation takes place mainly near the grain 

boundaries, we can calculate the mesoscopic critical dislocation density using Equation 5.17 

from the knowledge of the   function at the grain boundary. Based on Figure 5.26, we obtain 

  03.13.0,0 SSD  and   22.13.0,0 GNDSSD . Using Equation 5.17 and both β values, we find 
1410 65.1)3.0( SSD

cr m
-2

 and 1410 95.1)3.0( GND

cr m
-2

. To choose the nucleation sites in the 

mesoscopic simulation, we choose only the nodes presenting a dislocation density higher than 

these values. Figure 5.26 presents the dislocation density dispersion for the two hardening 

models, together with the mean field critical dislocation density and the mesoscopic critical 

dislocation density.  
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(a) SSD (b) SSD+GND 

Figure 5.26: Dislocation density dispersion compared to the mean field and mesoscale critical dislocation 

densities. 

 

The number and distribution of possible new nucleation sites based on the crystal 

plasticity simulations results are different for the two hardening models. Considering only the 

SSDs dislocations (Figure 5.26.a), the possible nucleation sites are found all over the material 

and not only near the grain boundary. Also, half of the material shows a dislocation density 

higher than the critical mesoscopic dislocation density. On the other hand, in Figure 5.26.b we 

observe that the possible nucleation sites are only concentrated near the grain boundaries as 

only this zone presents a dislocation density higher than the critical mesoscopic dislocation 

density.  

For both cases, the number of nodes presenting a dislocation density higher than the 

mesoscopic critical dislocation density is larger than the 2060 nuclei expected in the RVE. So, 

two different criteria are set in order to choose the nucleation sites. The first one takes the 

dislocation density and the distance to the grain boundary into account and the second one 

considers only the dislocation density value. Table 5.7 sums up these criteria. 

 
Table 5.7: Nucleation test cases description. 

Case 1 

- the first 2060 nodes with a normalized distance to the 

grain boundary smaller than 0.075; 

and with the highest dislocation density values. 

Case 2 
- the first 2060 nodes presenting the highest 

dislocation density values. 

 

Figure 5.27 shows the first 2060 nodes taken into account for each case and for each 

hardening model. Each node corresponds to a new nucleus.  
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(a) (b) 

Figure 5.27: Dislocation density dispersion graph with the description of the nucleation sites for two types of 

hardening models: (a) only SSDs and (b) both SSDs+GNDs. 

 

When only SSDs are taken into account, the new grains positions are quite different for 

both tested cases. For case 1, the new grains mean normalized distance to the grain boundary 

is equal to 0.057, while for case 2, the normalized distance becomes 0.131.  When both SSDs 

and GNDs are taken into account, the new grains mean normalized distances are 0.055 and 

0.075, respectively for cases 1 and 2. They are therefore closer to each other. In the next 

paragraph, the influence of the choice of nucleation sites on the recrystallization kinetics is 

studied. 

 

4.4 3D recrystallization kinetics results in site saturated nucleation 

conditions 
 

The static recrystallization simulation was performed for the two test cases defined in 

the previous section and for both hardening models. In these simulations, all the new grains 

are represented initially using the same level set function. As a consequence, only the 

recrystallization front is simulated (not the individual nuclei). Figures 5.28 and 5.29 present 

the recrystallization evolution when only SSDs are taken into account and Figures 5.30 and 

5.31 present the recrystallization evolution when both SSDs and GNDs are taken into 

account. 

 
Xv Internal Energy Recrystallization front 

0% 
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Figure 5.28: 3D recrystallization simulation based on the crystal plasticity simulation results considering only 

SSDs and for Case 1 concerning the nuclei positions. 

 
Xv Internal Energy Recrystallization front 
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Figure 5.29: 3D recrystallization simulation based on the crystal plasticity simulation results considering only 

SSDs and for Case 2 concerning the nuclei positions. 

 
Xv Internal Energy Recrystallization front 
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Figure 5.30: 3D recrystallization simulation based on the crystal plasticity simulation results considering both 

SSDs+GNDs and for Case 1 concerning the nuclei positions. 
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Figure 5.31: 3D recrystallization simulation based on the crystal plasticity simulation results considering both 

SSDs+GNDs and for Case 2 concerning the nuclei positions. 

 

The recrystallization kinetics summarizing the above figures are compared to the 

experimental data in Figure 5.32. 

 

  
(a) (b) 

Figure 5.32: Recrystallization kinetics simulation results compared to the experimental results when (a) only 

SSDs are taken into account and when (b) both SSDs + GNDs are taken into account. 
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In Figure 5.32.a, when considering only SSDs, we observe that the recrystallization 

kinetics is not the same for case 1 and case 2. Comparing both cases with the experimental 

data, we observe that only case 1 correctly predicts the experimental static recrystallization 

kinetics. For case 2, the recrystallization kinetics is slower than the experimental data. From 

Figures 5.27.a, 5.28 and 5.29 we observe that the nucleation sites distribution is different for 

cases 1 and 2. While for case 1 all nuclei are localized near the grain boundaries; for case 2, 

the nuclei are more spread inside the grain. So, these results show, once again, that the 

recrystallization kinetics is strongly dependent on the spatial distribution of nuclei. Based on 

these results, one can conclude that, when only SSDs are taken into account, not only the 

dislocation density but also the distance to the closest grain boundary must  be taken into 

account in order to define a nucleation model allowing to  predict correctly the 

recrystallization kinetics. 

In Figure 5.32.b, considering the SSDs+GNDs hardening model, we observe that both 

cases results correctly reproduce the experimental recrystallization kinetics. Analysing 

Figures 5.27.b, 5.30 and 5.31 we observe that for both cases, the nucleation sites are localized 

near the grain boundaries. One can conclude that, when a static recrystallization model is 

based on crystal plasticity calculations considering both SSDs and GNDs, a simple 

dislocation density criterion is sufficient to correctly predict the nucleation sites positions, and 

the corresponding recrystallization kinetics. 

As seen in Figure 5.27, the mesoscale critical dislocation density calculated from crystal 

plasticity simulations considering only the SSDs is much smaller than the nucleation sites 

dislocation density. When considering both SSDs and GNDs, the mesoscale critical 

dislocation density this time corresponds to the minimum value found in the selected 

nucleation sites. It can therefore be reasonably concluded that taking into account both 

dislocation densities is important to correctly predict nucleation in static recrystallization. 

In the above simulations, only the recrystallization front is followed and, as a 

consequence, only the recrystallization kinetics is studied. In order to study the final grain size 

distribution after the recrystallization process, several level set functions are needed to 

represent the evolution of the individual grains. The study of the grain size distribution after 

the recrystallization process is left for future work. It would also be interesting to perform 

similar analyses for different deformation levels in order to validate the current conclusions.  

 

5 Conclusion 
 

In this chapter, a finite element model was proposed in order to simulate the static 

recrystallization phenomenon. Grain boundaries are implicitly represented using level set 

functions. A convective-diffusive approach is used to simulate the grain boundary motion 

taking two driving forces into account: (1) an excess of energy due to grain boundary itself 

(grain boundary curvature) and (2) a free energy difference between the adjacent grains due to 

energy stored during deformation. The convective part of the model represents the grain 

boundary motion due to the free internal energy gradients and the diffusive part represents the 

grain boundary motion due to the grain boundary curvature. Two academic test cases with 

well-known results have been presented in order to illustrate the capability of the proposed 

convective-diffusive approach to finely model the considered phenomena. 

In a second part, the effect of introducing capillarity forces in site saturated nucleation 

conditions is studied. Considering randomly distributed nucleation sites, it is observed that 

taking into account the grain curvature impacts the shape of the recrystallization kinetics 

curve (even though the JMAK exponent are the same for both simulations) but do not change 

significantly the time needed to fully recrystallize the material. However, the microstructure 
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obtained when ignoring the capillarity effects fails to impose the 120° equilibrium angle at the 

triple junctions. As a consequence, the microstructures contain grains with unrealistic and/or 

unstable shapes. In necklace-type nucleation conditions, taking into account the grain 

curvature driving force affects both the recrystallization kinetics and the microstructure, but 

the Avrami exponent of the JMAK model is, this time, not affected.   

 From a global perspective, it is demonstrated that the influence of the grain curvature 

decreases when increasing the ratio between the magnitude of the internal energy gradients, 

and the boundary energy.  

In a third part, the static recrystallization model is coupled to the crystal plasticity 

simulation results from chapter 3. A nucleation criterion is borrowed from that introduced in 

the mean field model developed in [Huang, 2011]. The influence of the dislocation density 

distributions obtained with two hardening models is evaluated based on the capacity to 

determine nucleation sites. The corresponding static recrystallization kinetics are compared to 

experimental data obtained in previous work [Huang, 2011]. It is concluded that considering a 

hardening model which introduces geometrically necessary dislocations is important to 

correctly predict nucleation in static recrystallization, as well as the recrystallization kinetics.   

In order to study the final grain size distributions after the recrystallization process, 

several level set functions are needed in order to represent the evolution of the individual 

grains. This is left to future work. Other extensions of the present work include the modelling 

of dynamic recrystallization. 

 

Résumé en français 
 

Dans ce chapitre, un modèle de recristallisation à l'échelle mésoscopique basé sur une 

formulation éléments finis dans un cadre level-set est proposé. Les deux forces motrices du 

phénomène de recristallisation sont prises en compte. Une approche convective-diffusive est 

utilisée afin de modéliser le déplacement des joints de grains. La partie convective correspond 

à la migration des joints de grains liée aux gradients d’énergie stockée sous la forme de 

dislocations tandis que la partie diffusive, développée dans le chapitre précédent, correspond à 

celle liée à la capillarité des joints de grains. Plusieurs cas tests académiques sont présentés 

afin de valider l’algorithme proposé. 

Ensuite, l’influence de la prise en compte des effets capillaires est étudiée à partir de la 

simulation de la recristallisation statique de microstructures présentant différentes 

distributions de germes en site saturé. Il est par exemple illustré que pour une distribution 

aléatoire des germes, la prise en compte des effets capillaires a peu d’influence sur le temps 

total de recristallisation mais modifie de manière significative les paramètres du modèle 

JMAK. Pour une distribution en collier, les effets capillaires influencent alors le temps total 

de recristallisation et l’exposant d’Avrami du modèle JMAK.  

Finalement, l’algorithme de recristallisation statique est couplé aux résultats des 

simulations de plasticité cristalline (chapitre 3). La recristallisation d’un échantillon déformé 

de 304L jusqu’à 0.3 à 1000°C est étudiée et les prédictions numériques sont confrontées aux 

résultats expérimentaux. L’influence du type de modèle d’écrouissage utilisé dans le modèle 

de plasticité cristalline sur la cinétique de recristallisation statique est discutée principalement 

pour les critères de germination qui en découlent. 
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Conclusions and future work 
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The full field modeling of metallurgical phenomena which occur during thermal and 

mechanical processes is nowadays of prime importance in order to provide correct predictions 

of crystallographic orientations (textures) and grain size distributions. Indeed, metallurgical 

transformations are complex phenomena and, generally, their experimental study is not easily 

done. The numerical work performed in this PhD thesis, dedicated to the development of a 

new full field FE formalism for recrystallization and grain growth, can be summarized in 

three main parts:  (i) the generation and the immersion of statistical digital microstructures in 

a finite element context (chapter 2); (ii) the crystal plasticity modeling (chapters 1 and 3) and 

(iii) the grain boundary motion modeling (chapters 4 and 5). 

Considering the digital microstructures statistical generation, two different generation 

methods were presented: Voronoï and Laguerre-Voronoï.  Based on the results discussed in 

this document, we can conclude that the use of a Laguerre-Voronoï method allows the 

generation of a microstructure that obeys the experimental grain size distribution with a very 

small L2 error, even for a digital microstructure generated with a reasonable number of 

grains. Moreover, it was also proved that the well-known and widely used Voronoï method 

does not allow to obey a given grain size distribution. Even though the mean grain size is well 

defined, the error between the numerical and the experimental grain size distribution can be 

very large, even for a microstructure with a high number of grains. These observations were 

verified for 2D and 3D microstructures. In a second part, a topological and morphological 

study of seven different digital microstructures, generated using a Laguerre-Voronoï method, 

was also presented. The ability of this approach to generate, in 2D, equiaxed microstructures 

and to obey the well-known SLR (special linear relationship) of Abbruzzese [Abbruzzese, 

1992a] was described. Future work will consist in extending this study to 3D Laguerre-

Voronoï digital microstructures.  

The process of plastic deformation of FCC metals was briefly reviewed so as to 

underline the resulting intergranular and intragranular heterogeneities, from crystal plasticity 

simulations. The crystal plasticity finite element model used in this work was presented and 

analysed. Considering the material hardening, physically-based models were emphasized, 

focusing on the use of one or several dislocations densities as primary variables. The account 

of size effects was discussed, distinguishing between statistically stored dislocations (SSDs), 

and geometrically necessary dislocations (GNDs). A simple model (Yoshie-Laasraoui-Jonas 

[Laasraoui, 2009]) was adopted to estimate the SSD density evolution with plastic 

deformation, while the Busso model [Busso, 2000] was chosen to evaluate the contribution of 

the GND density.  

Two different mechanical tests were used to validate the crystal plasticity model: a 

channel-die hot compression test of a 304L steel for a 100-grains polycrystal, and a simple 

uniaxial compression test of a tantalum 6-grains oligocrystal. For both mechanical tests, the 

two investigated hardening laws were compared.  Considering the first test case (304L 

polycrystal), the hardening models correctly predict the stress-strain experimental behaviour. 

The dislocation density distribution calculated with the first hardening law (only considering 

the total dislocation density) is more homogeneous than the dislocation density distribution 

computed with the model which takes into account both SSDs and GNDs. Even though the 

dislocation distribution is different, for both cases the dislocation density dispersion is 

increased near the grain boundaries, where the highest and lowest dislocation density values 

are found. When the strain distribution is analysed, we observe that both models present 

similar results. The strain intragranular distribution as a function of the distance to the closest 

grain boundary is rather homogeneous. Once again, the strain dispersion is more important 

near the grain boundaries. Based on these results, nucleation of new grains during the 
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recrystallization process is expected to take place near the grain boundaries, as experimental 

results show. 

For the second test case (tantalum oligocrystal), we observe that the oligocrystal shape 

induced by plastic deformation is correctly predicted for four grains, out of six. Once again, 

the dislocation density distribution exhibits concentration near the grain boundaries. When 

comparing the two investigated hardening models, dislocation density near the grain 

boundaries is higher when both SSDs and GNDs are taken into account.  The material texture 

changes for 5.0zz  predicted with the crystal plasticity model overestimate the 

experimental results, but this can be partly attributed to the difficulty in comparing similar 

areas. In one grain where numerical and experimental areas are expected to be close to each 

other, the texture changes are well predicted, including the extent of grain fragmentation. The 

fragmentation is observed not only for the crystallographic orientations, but also for 

dislocation density and strain. 

Finally, considering grain boundary migration, two phenomena were studied. The first 

one is the grain growth phenomenon where the decrease of the interfacial energy is the 

driving force of the grain boundary migration. An improvement of the level-set formalism 

developed at CEMEF for primary recrystallization modelling [Bernacki, 2009], [Logé, 2008], 

was proposed in order to take into account the capillarity effects. The ability, in the 

considered isotropic mobility and interface energy context, of the proposed diffusive approach 

to simulate very accurately academic test cases, to deal with complex 2D configurations and 

to be connected with primary recrystallization simulations was illustrated.  

This numerical development was used to discuss the impact of an initial grain size 

distribution on the grain growth phenomenon in a single phase material. Based on full field 

simulations, the validity of two grain growth mean field models was discussed. It was 

illustrated that, in general, the simple model of Burke and Turnbull is not predictive, contrary 

to the Hillert/ Abbruzzese model. The latter approach was shown to be predictive for all 

considered grain size distributions, even for the more complex ones. Consequently, if the 

development of full field models is justified for the description of grain growth in complex 

conditions, their use appears disproportionate in the simple configurations investigated here, 

where the Hillert/ Abbruzzese approach is sufficient. By lack of time, the same assessment 

was not performed in 3D but such a study represents a short-term extension of this work. 

As explained above, the diffusion formulation accounting for capillarity effects was 

added to the pre-existing primary recrystallization algorithm developed in [Bernacki, 2009], 

[Logé, 2008]. Once again, this new model was validated for academic and complex test cases. 

With these developments, it was mainly highlighted that the classical hypothesis which 

consists in neglecting the capillarity term when stored energy gradients and nucleation of new 

grains are present, can be very harmful concerning the predictions of the grain shapes, but 

also for statistical results such as the grain size distribution or the recrystallized fraction. This 

result is amplified when necklace-type site saturated nucleation is considered.  It was also 

proved that the influence of the capillarity effects decreases with the increase of the stored 

energy gradient/boundary energy ratio.  

 The static recrystallization model has been finally coupled to the crystal plasticity 

simulation results. A nucleation criterion is borrowed from that introduced in the mean field 

model developed in [Huang, 2011]. The influence of the dislocation density distributions 

obtained with two hardening models is evaluated based on the capacity to determine 

nucleation sites. The corresponding static recrystallization kinetics are compared to 

experimental data. It is concluded that considering a hardening model which introduces 

geometrically necessary dislocations is important to correctly predict nucleation in static 

recrystallization, as well as the recrystallization kinetics. 
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Finally, if the developments performed in this work have allowed focusing on different 

fine metallurgical questions, they have also permitted to build a robust and precise FE 

framework concerning the modelling of recrystallization. Besides the improvement of the 

numerical cost, which is still a limitation of the proposed methodology for 3D simulations 

with a large number of grains, current other developments concerning these numerical tools 

are dedicated to Zener pinning phenomenon, anisotropy of mobility and boundary energy, 

twinning appearance and disappearance/impact of the twins in the recrystallization kinetics, 

and dynamic recrystallization modelling.      
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Appendix 1: Saltykov method 
  

 

Considering that the grains are represented by their equivalent spheres, the Saltykov 

method is dedicated to the question of how to work backward from a grain size distribution 

(bar-plots) of two-dimensional sections of a material to a three-dimensional grain size 

distribution (discrete) of it. The problem is further complicated by the fact that for any 

positive value d, all the spheres with a diameter superior to d can contribute to the circles of 

diameter d obtained in a section of the considered 3D particle.  

Now, considering the following notations in the discretization of the enunciated 

problem: 

 

- Δ is defined as the ratio of the maximum diameter, maxmax 2RD  , to the total 

number of grains families considered, m. Then, the diameter of the 3D-particles 

belonging to the j
th

 group is equal to jΔ  with   mDmax . 

- NA(i),  mi ,...,1 , is defined as the number, per unit area, of 2D-grains with a 

diameter between (i-1)Δ and iΔ. 
AN denotes the corresponding vector. 

- )( jNV ,  mj ,...,1 , is defined as the number of 3D-grains, per unit volume, with 

a diameter equal to jΔ,. VN  denotes the corresponding vector. 

- ),( jiN A
,      mjji ,,1,,1,   , is the contribution of the 3D-grains from 3D-

class j to the 2D-class i. 

 

The number of grains in 2D-class i can be written as: 

 





m

j

AA jiNiN
1

),()( . (A.1) 

 

Now, with the notations of the Figure A.1 which describes a 3D-grain of radius 

2


 jr j : this grain will contribute to the 2D class i   ji ,...,1  if this grain is intercepted 

between hi-1 and hi with  jkrrh kjk ,..,122  . 

 

 
Figure A.1: Geometry involved in the intersection of a sphere of radius rj by a plane within the slice h. 
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Thus, the contribution of grains from 3D-class j to the 2D-class i is given by: 

 

))((2),( 1 iiVA hhjNjiN   , (A.2) 

 

where the factor 2 is a consequence of considering both grain hemispheres. Then,  

 

   
   .,...,1,...,1),( ,)1( convention with the

)()1()(2)(2),(

2222

2222222

1

2

mjjiijijk

kjNijijjNrrrrjNjiN

ij

ijVVijijVA



 
 (A.3) 

 

It is interesting to highlight that kij coefficients depend only on the families size index i 

and j. By combining Eqs.(A.1) and (A.3), the upper triangular matrix, K , composed by the 

ijk  coefficients allows to exhibit a 2D grain size distribution (bar-plots) based on the real 3D 

grain size distribution (discrete): 

 

VA

iV

m

j

Vij

m

j

AA jNkjiNiN

NKN

NK

. i.e.

).()(),()(
11



 
  (A.5) 

 

As K  is an invertible matrix, indeed, 

 

0
!2

)!2(
12)det(

11

 
 m

m
ik

m

m

i

m

i

iiK  (A.6) 

 

the purpose of this annex, i.e. to be able to build a three-dimensional grain size distribution 

(discrete) thanks to a grain size distribution (bar-plots) of a two-dimensional section, is 

obtained by an inversion of Eq A.5: 

 

AV NKN
11 


 . (A.7) 

 

The Table A.1 illustrates the values of the matrix 1
K  for .15m  If the use of the 

Saltykov methodology is based, of course, on an important number of hypotheses as the 

choice of m, the representativeness of the 2D section used to generate the 3D distribution and 

the approximation of the grain shape by spherical particles, it remains however a very useful 

tool to build a first approximation of a 3D distribution thanks to 2D data. 
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Table A.1: Coefficients of the Saltykov matrix 
1

K for m=15 

1.00 -1.55e-1 -3.57e-2 -1.3e-2 -6.07e-3 -3.28e-3 -1.97e-3 -1.27e-3 -8.69e-4 -6.19e-4 -4.57e-4 -3.46e-4 -2.69e-4 -2.13e-4 -1.72e-4 

 5.77e-1 -1.53e-1 -4.19e-2 -1.72e-2 -8.73e-3 -5.04e-3 -3.18e-3 -2.13e-3 -1.50e-3 -1.10e-3 -8.30e-4 -6.41e-4 -5.06e-4 -4.06e-4 

  4.47e-1 -1.38e-1 -4.07e-2 -1.77e-2 -9.42e-3 -5.65e-3 -3.67e-3 -2.53e-3 -1.82e-3 -1.36e-3 -1.04e-3 -8.15e-4 -6.51e-4 

   3.78e-1 -1.26e-1 -3.86e-2 -1.74e-2 -9.52e-3 -5.85e-3 -3.89e-3 -2.73e-3 -1.99e-3 -1.51e-3 -1.17e-3 -9.25e-4 

    3.33e-1 -1.16e-1 -3.65e-2 -1.68e-2 -9.40e-3 -5.88e-3 -3.97e-3 -2.82e-3 -2.09e-3 -1.59e-3 -1.25e-3 

     3.02e-1 -1.08e-1 -3.46e-2 -1.62e-2 -9.19e-3 -5.83e-3 -3.98e-3 -2.86e-3 -2.14e-3 -1.64e-3 

      2.77e-1 -1.02e-1 -3.29e-2 -1.56e-2 -8.96e-3 -5.74e-3 -3.95e-3 -2.86e-3 -2.16e-3 

       2.58e-1 -9.60e-2 -3.15e-2 -1.51e-2 -8.71e-3 -5.63e-3 -3.90e-3 -2.85e-3 

        2.43e-1 -9.13e-2 -3.01e-2 -1.46e-2 -8.47e-3 -5.51e-3 -3.85e-3 

         2.29e-1 -8.72e-2 -2.90e-2 -1.41e-2 -8.25e-3 -5.39e-3 

          2.18e-1 -8.36e-2 -2.79e-2 -1.36e-2 -8.03e-3 

           2.09e-1 -8.04e-2 -2.70e-2 -1.32e-2 

            2.00e-1 -7.76e-2 -2.61e-2 

             1.92e-1 -7.50e-2 

              1.86e-1 
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Appendix 2: 304L crystallographic orientation of 

grains 
 

The grains crystallographic orientation in a polycrystalline sample can be defined in 

different ways. The most common orientation representation is based on the three Euler 

angles and is expressed as  21 ,,   gg  (symbol “g” is traditionally used for denoting the 

orientation). The three angles correspond to the successive rotations according to a specific 

sequence (Bunge, Roe, symmetric). In this work, the Bunge convention is used to represent 

the grains crystallographic orientations. 

 

 

 φ1 (
o
) Ф(

o
) φ2(

o
)   φ1(

o
) Ф(

o
) φ2(

o
)   φ1(

o
) Ф(

o
) φ2(

o
) 

1 84.1 18.6 298.8  35 3.0 38.4 327.6  68 98.1 18.7 235.3 

2 215.1 33.9 136.0  36 159.2 10.3 226.4  69 195.3 48.2 142.8 

3 139.4 47.2 249.9  37 261.6 23.6 98.3  70 113.9 19.9 253.4 

4 170.1 32.4 227.7  38 118.4 38.2 253.1  71 26.4 19.0 353.5 

5 354.1 38.3 42.4  39 335.9 11.8 355.6  72 108.2 30.5 230.2 

6 73.9 33.4 271.2  40 28.5 24.3 305.9  73 136.9 54.1 210.6 

7 196.3 22.4 191.7  41 354.9 38.2 41.9  74 233.1 53.9 135.7 

8 127.5 40.6 244.1  42 35.5 26.7 2.1  75 202.8 26.2 119.4 

9 238.0 44.2 134.9  43 7.8 41.6 327.3  76 37.0 37.6 331.4 

10 298.6 35.1 96.0  44 211.2 30.9 118.6  77 265.4 12.2 136.8 

11 191.9 25.3 158.5  45 321.3 44.2 3.6  78 295.1 37.8 26.7 

12 238.4 44.3 135.0  46 55.9 17.0 312.8  79 34.6 26.4 350.9 

13 305.1 50.0 33.3  47 126.8 41.1 243.8  80 292.2 51.5 39.9 

14 127.0 40.8 244.4  48 251.0 22.5 84.3  81 226.1 11.0 138.5 

15 37.3 26.6 1.2  49 138.0 34.7 233.5  82 97.0 2.8 297.0 

16 128.9 51.4 210.5  50 182.9 14.0 219.8  83 286.3 49.8 40.5 

17 19.8 36.5 337.5  51 19.7 36.9 337.3  84 231.0 53.3 146.2 

18 163.5 26.0 176.2  52 240.2 19.9 161.3  85 247.5 33.4 113.5 

19 174.2 16.6 160.5  53 122.6 36.8 219.8  86 58.8 14.6 340.2 

20 4.3 32.4 22.0  54 121.7 21.5 227.6  87 317.6 43.5 43.7 

21 257.2 47.7 138.4  55 150.0 41.1 335.4  88 350.8 28.2 32.3 

22 92.4 40.5 292.7  56 289.3 8.4 61.6  89 122.5 21.7 226.2 

23 251.8 8.6 81.3  57 174.3 5.2 189.0  90 320.1 48.4 53.7 

24 203.8 40.6 165.4  58 270.6 16.6 120.4  91 90.3 30.3 232.4 

25 136.8 13.9 267.4  59 295.3 39.8 77.4  92 47.5 43.8 343.6 

26 77.7 41.6 298.2  60 54.7 53.5 312.1  93 294.1 12.3 37.8 

27 170.1 25.9 178.8  61 119.6 17.4 219.2  94 157.4 11.5 196.1 

28 126.9 41.0 244.3  62 239.0 46.0 118.9  95 120.3 38.0 207.8 

29 310.9 7.3 23.4  63 239.2 33.3 124.8  96 135.7 33.8 225.9 

30 336.5 39.6 2.0  64 357.6 24.1 336.6  97 141.2 43.1 221.5 

31 85.2 18.4 298.2  65 0.0 17.7 32.5  98 290.5 40.0 110.5 

32 128.7 51.0 211.1  66 137.4 33.4 222.9  99 223.3 38.9 174.8 

33 202.4 24.5 201.8  67 48.3 58.7 315.0  100 238.7 26.5 130.8 

34 103.6 44.1 233.7           
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Appendix 3: Torsion test 
 

In the torsion test, the samples are submitted to a rotating load, as illustrated in Figure 

A.2. The experimental results presented in this report were obtained using samples presenting 

a cylindrical shape. 

 

 
Figure A.2: Torsion test scheme. 

 

Using torsion tests we are able to reach large strains before plastic instability occurs. In 

addition to this, the samples do not undergo significant shape change as they are deformed as 

long as the gage section is restrained to a fixed length. On the other hand, the interpretation of 

torsion test data is more complex than that used for axial –testing methods due to the fact that 

the strain and strain rate vary linearly with the sample radius. 

In torsion tests, the stress-strain curves are derived from the torque-time data recorded 

automatically by the torsion test system. Assuming that the deformation along the rotation 

axes is homogeneous, the equivalent strain is calculated as: 
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where N is the number of laps, N is the rotation speed (Rad/s), L is the gauge length (mm) 

and R is the gauge radius (mm).  

The equivalent tensile stress  )(R  is obtained using the Fields and Backofen [Fields, 

1957] analysis: 
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where T is the torque (N.m), m~ is the slope of the straight line   NfT lnln  , for a given 

number of laps N, n~  is the slope of the straight line   NfT lnln  , for a given rotation speed 

N . In other words, m~  and n~  correspond respectively to: 
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It is interesting to notice the hypotheses of the Fields and Backofen [Fields, 1957] 

analysis: 

 

 the materials are homogeneous and isotropic (material hardening is represented 

by an isotropic hardening law). In other words, the sample cylindrical shape 

does not change during deformation; 

 plastic deformation is homogeneous throughout the sample; 

 the deformation is uniform along the specimen (no flow localization); 

 the cross sections are straight and move as a rigid body motion with speed ω. 
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Appendix 4: EBSD test 
 

 

 

Electron backscattered diffraction (EBSD) is based on the acquisition of diffraction 

patterns from bulk samples in the scanning electron microscope (SEM). The EBSD 

acquisition hardware comprises a sensitive CCD camera and an image processing system for 

pattern averaging and background subtraction. Figure A.3 presents a schematic diagram 

illustrating the main components of an EBSD system. 

 

 
Figure A.3: Schematic diagram of a typical EBSD installation in an SEM [Humphreys, 2004]. 

 

The EBSD acquisition software (TSL OIM data collection 5) is used to control the data 

acquisition, to solve the diffraction patterns and to store the data. In order to analyse, 

manipulate and display all the stored data, the TSL OIM Analysis version 5.0 software is used 

in this work.  

EBSD is carried out on a specimen which is tilted between 60° and 70° from the 

horizontal and a series of data points are obtained by scanning the electron beam across the 

sample.  

 



 



 

 

Modélisation de la plasticité cristalline et de la migration des joints de grains 

de l'acier 304L à l'échelle mésoscopique 

RESUME : Les propriétés des matériaux métalliques sont très liées à leurs caractéristiques 

microstructurales. Par exemple il est bien connu que la taille de grains joue sur la limite élastique du 

matériau ainsi que sur ses capacités d’écrouissage. Ainsi, la compréhension et la modélisation de 

l’évolution de la microstructure d'un métal pendant un traitement thermomécanique est d'une 

importance primordiale afin de prédire finement son comportement ainsi que ses propriétés finales. 

Dans le cadre de cette thèse, nous nous  sommes concentrés sur la modélisation, à l'échelle d'un 

agrégat polycristallin, de la plasticité cristalline, de la recristallisation statique et de la croissance des 

grains dans un contexte de mobilité et d'énergie d'interface isotrope. Un  modèle à champ complet 

dans un cadre éléments finis (EF) est proposé. Les grains sont représentés grâce à un formalisme 

level-set. L’étude EF développée peut être divisée en trois grandes parties: la génération statistique 

de microstructures digitales, la modélisation de la plasticité cristalline et la modélisation de la migration 

des joins de grains en régime de recristallisation statique. Concernant la génération statistique des 

microstructures digitales, une étude comparative entre deux méthodes de génération (Voronoï et 

Laguerre-Voronoï) a été réalisée. La capacité de la deuxième approche à respecter une 

microstructure basée sur des données expérimentales est mise en valeur en  2D et en 3D. Dans une 

deuxième étape, la plasticité cristalline des matériaux métalliques est étudiée. Deux modèles 

d’écrouissage ont été implémentés et validés : un premier modèle considérant uniquement les 

densités de dislocations totales, et un deuxième modèle différenciant les dislocations statistiquement 

stockées (SSDs) des dislocations géométriquement nécessaires (GNDs). Afin de valider 

l'implémentation de ces deux modèles issus de la littérature  deux cas ont été étudiés : le premier 

correspond à l’étude à chaud d’un essai de compression plane d’un acier 304L, et le deuxième 

correspond à l’étude d’un essai à froid de compression simple d’un oligocristal de tantale composé de 

6 grains. Les résultats numériques obtenus sont comparés avec les données expérimentales des 

deux essais. La migration des joints de grains est étudiée dans le contexte des régimes de 

recristallisation statique et de croissance de grains. Par rapport aux travaux pre-existants dans un 

cadre level-set, l’accent est mis sur la prise en compte des forces capillaires. La croissance des grains 

pure est en effet développée dans le formalisme éléments finis/level set considéré, et des validations 

à partir de résultats analytiques connus sont présentées. De plus, un travail d’analyse de modèles de 

croissance des grains à champ moyen existant dans la littérature est réalisé. Deux modèles en 

particuliers sont étudiés : celui de Burke et Turnbull et celui de Hillert/Abbruzzese. En comparant ces 

modèles avec les résultats obtenus par l'approche en champ complet développée, il est mis en 

évidence que le modèle simple de Burke et Turnbull n’est pas approprié pour décrire la croissance de 

grains pour tout type de distribution initiale de taille de grains. La recristallisation statique est ensuite 

abordée, avec une prise en compte des deux forces motrices liées  (i) aux gradients d’énergies 

stockées sous la forme de dislocations, et (ii) aux effets capillaires. L’influence des effets de capillarité 

apparaît comme fortement liée à la distribution spatiale des nouveaux germes. Finalement, les 

résultats des simulations réalisées en plasticité cristalline sont utilisés comme données d’entrée du 

modèle de recristallisation statique développé. La comparaison des prédictions obtenues 

comparativement aux résultats expérimentaux sur 304L permet d'illustrer la pertinence d'une 

approche de type SSD/GND afin de prédire les sites de germination potentiels. 

Mots clés : Modélisation à champ complet, plasticité cristalline, recristallisation, croissance des 

grains. 

 

 

 



 

 

Modelling of crystal plasticity and grain boundary motion of 304L steel at the 

mesoscopic scale 

ABSTRACT: Mechanical and functional properties of metals are strongly related to their 

microstructures, which are themselves inherited from thermal and mechanical processing. For 

example, the material grain size distribution plays an important role on the material yield limit and work 

hardening. The understanding of these microstructure evolutions during thermo-mechanical processes 

is of prime importance for a better prediction and control of the material mechanical properties. During 

this Ph.D., we have worked on the modelling of crystal plasticity, static recrystallization and grain 

growth at the mesoscopic scale in the context of isotropic mobility and interface energy. The full field 

model developed is based on a finite element formulation combined with a level set framework used to 

describe the granular structure. This Ph.D. thesis is divided in three main parts: statistical generation 

of digital microstructures, crystal plasticity modelling and grain boundary migration modelling. In what 

concerns the digital microstructures statistical generation, a comparative study between two methods 

(Voronoï and Laguerre-Voronoï) is presented. The ability of the second approach to respect a given 

grain size distribution is highlighted in 2D and 3D. Secondly, the metallic materials crystal plasticity is 

studied. Two hardening laws have been implemented and validated: the first one considering the total 

dislocation density and a second one that differentiates the statistically stored dislocations (SSD) from 

geometrically necessary dislocations (GNDs). Two different tests cases are used in order to validate 

the implementation of both hardening laws in the considered crystal plasticity model. The first one 

corresponds to a planar hot compression test (channel die test) on a 304L stainless steel whereas the 

second one corresponds to a simple cold compression test on a tantalum olygocrystal composed by 

six different grains. The obtained results are compared to experimental data for both cases. Grain 

boundary migration is studied for static recrystallization and grain growth phenomena. Compared to 

previous work in the considered level-set framework, the focus is on the consideration of capillary 

forces. Indeed pure grain growth is developed in the considered finite elements/level set formalism 

and this algorithm is validated using well-known analytical results. Moreover, the results of the 

developed full field grain growth model are compared in 2D with several well-known mean field grain 

growth models (Burke and Turbull model and Hillert/Abbruzzese model). The results obtained illustrate 

that only the Hillert/Abbruzzese model accurately describes grain growth kinetics for all initial grain 

size distributions. The validity of the Burke and Turnbull model is, on the contrary, restricted to specific 

distributions. Static recrystallization is then discussed considering both driving forces: (i) internal 

energy gradient and (ii) grain boundaries capillarity effects.  The influence of capillary effects appears 

to be strongly related to the spatial distribution of the new grains. Finally, the crystal plasticity 

numerical results are used as input data of the developed static recrystallization full field model. The 

comparison of the numerical predictions obtained with 304L experimental results allows to illustrate 

the relevance of the SSDs/GNDs formalism used concerning the prediction of the nuclei potential 

position. 

 

Keywords : Full field modelling, crystal plasticity, recrystallization, grain growth. 

 


