N
N

N

HAL

open science

Dynamic behaviour and fragmentation of quasi-brittle
materials: application to rock fragmentation by blasting
Ahmed Rouabhi

» To cite this version:

Ahmed Rouabhi. Dynamic behaviour and fragmentation of quasi-brittle materials: application to rock
fragmentation by blasting. Sciences of the Universe [physics]. Ecole Nationale Supérieure des Mines

de Paris, 2004. English. NNT: . pastel-00001084

HAL 1Id: pastel-00001084
https://pastel.hal.science/pastel-00001084
Submitted on 28 Feb 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://pastel.hal.science/pastel-00001084
https://hal.archives-ouvertes.fr

T

ECOLE DES MINES
DEPARIS

Collége doctoral
T040120AROU

N° attribué par la bibliothéque

Ay |

THESE

pour obtenir le grade de

DOCTEUR DE L’ECOLE NATIONALE SUPERIEURE DES MINES DE PARIS

SPECIALITE : TECHNIQUE ET ECONOMIE DE L’EXPLOITATION DU SOUS-SOL

présentée et soutenue publiquement par

Ahmed ROUABHI

le 20 Janvier 2004

Comportement et fragmentation dynamiques

des matériaux quasi-fragiles
* % k
Dynamic behaviour and fragmentation
of quasi-brittle materials

Application to rock fragmentation by blasting

Directeur de thése : Michel TIJANI

Jury
M. Alain MILLARD Professeur Commissariat a ’Energie Atomique
M. Peter MOSER Professeur Université de Leoben-Autriche
M. Nicolas CHEIMANOFF Professeur Ecole des Mines de Paris
M. Philippe WEBER Professeur Ecole des Mines d’Alés
M. Hédi SELLAMI Docteur Ecole des Mines de Paris
M. Michel TIJANI Professeur Ecole des Mines de Paris

Rapporteur
Rapporteur
Examinateur
Examinateur
Examinateur
Examinateur

Centre de Géotechnique et d’Exploitation du Sous-Sol - Ecole des Mines de Paris

35, Rue Saint-Honoré - 77305 Fontainebleau Cedex



Acknowledgements

This thesis is in keeping with the scope of two projects. The first one (DBF), carried out
jointly by the Ecole des Mines de Paris and the University of Leoben (Austria), try to get a
better understanding of the mechanisms which cause fragmentation of rock materials. The
second project (LESS FINES), is an European project which seeks to find methodologies
that minimize the generation of fine materials in open pit mines.

The work presented in this dissertation would not have been possible without the support
and the interaction with several other persons.

I would like to acknowledge my advisor, Michel TIJANI, for his patient guidance and help-
ful suggestions during the past three years. His knowledge of computational mechanics is
extensive, and I feel very fortunate to have been one of his students. I wish him a fulfilling
and happy future.

I would also like to thank Nicoals CHEIMANOFF for giving me the opportunity to do
this work, for serving on my thesis committee and for many helpful suggestions during my
first year.

I am especially grateful to Peter MOZER for his guidance and for the many discussions
with him, which were a source of stimulation. Collaborations with his team are gratefully
acknowledged.

I am also grateful to Alain MILLARD and Philippe WEBER for having agreed to be part
of my thesis committee.

I would like to thank Hédi SELLAMI for serving on my thesis committee and for the many
conversations with him.

Special thanks goes to Damien GOETZ who generously supported me and who patiently
corrected my English in several situations.

I was fortunate to meet Finn OUCHTERLONY. The many conversations with him were
of great importance in my understanding of certain points.

Last, but not least, I thank all my colleagues of the CGES center and all my friends for their
support in hard times during the last three years. I am also grateful to Marie-Philoméne

PETITIMBERT for providing help in realizing this publication and for preparing the defence
of my thesis.

A. Rouabhi

i



Abstract

This thesis seeks to find a computational methodology to simulate both the behaviour and
the fragmentation of quasi-brittle materials, such as rocks and concrete, under dynamic
loadings. Such a methodology will help to a better understanding of the explosive rock
breakage mechanisms and, as consequence, will contribute in the optimization of blasting
performances. In this study, we consider that the fragmentation process is a natural exten-
sion of the fracture process. In order to describe the dynamic fracture process, a suitable
phenomenological constitutive model is developed and implemented in a finite element code.
As for the dynamic fragmentation, it is treated by a post-processing analysis based on the
history of the material’s thermodynamic state.

To reproduce the macroscopic behaviour of quasi-brittle materials including load-induced
anisotropy due to cracking, the internal variables method based on continuum thermody-
namics is used. A scalar internal variable is introduced to model, at the macroscopic level,
the strain softening under compressive loadings. Under tensile loadings, a second-order sym-
metric tensor is used to describe the essential features of the induced anisotropic damage.
Under complex loadings, these two models are coupled and the crack closing-reopening effect
is also treated. The integration of the developed model in the finite element code VIPLEF3D
has led to the development of a relaxation method characterized by an explicit updating of
the state variables.

Concerning the dynamic fragmentation, from laboratory blasting tests, a general formu-
lation of predicting the fragment size distribution is provided. In this formulation, a mean
fragment size is linked to a mechanical quantity, which is assumed to be the origin of the
fragmentation process, by an intrinsic function which can be identified by using suitable
laboratory fragmentation tests. This mechanical quantity is given by the resolution of the
Initial Boundary-Value Problem where the developed constitutive model is considered.

Finally, the complete approach is then applied to the modelling of the fracture and the
fragmentation of chamber blasting tests of cylindrical rock material samples.

KEY-WORDS: quasi-brittle materials / dynamic behaviour / dynamic fragmentation / con-

stitutive laws / internal variables method / anisotropic damage / plasticity / viscoplasticity
/ softening / numerical simulations / blasting.
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Résumé

Le but de cette thése est de trouver une méthodologie numérique pour simuler le comporte-
ment et la fragmentation des matériaux quasi-fragiles, tels que les roches et le béton, sous
sollicitations dynamiques. Une telle méthodologie aidera a une meilleur compréhension des
mécanismes de fragmentation des roches a ’explosif et, par conséquent, contribuera dans
Ioptimisation des performances du tir a I’explosif. Dans cette étude, on considére que le
processus de la fragmentation est une extension naturelle de celui de la rupture. Afin de
décrire ce dernier processus, un modéle de comportement phénoménologique adapté aux
matériaux considérés est développé et implémenté dans un code de calcul par éléments finis.
Quant a la fragmentation dynamique, elle est traitée par une analyse en post-traitement
basée sur I’historique de I’état thermodynamique du matériau.

Pour reproduire le comportement macroscopique des matériaux quasi-fragiles incluant I’aniso-
tropie induite par le chargement, la méthode des variables internes basée sur la thermody-
namique des milieux continus est employée. Une variable interne de type scalaire est in-
troduite pour modéliser, au niveau macroscopique, ’adoucissement du matériau suite a des
chargements de compression. Sous des chargements de traction, un tenseur symétrique du
second ordre est utilisé pour décrire '’endommagement anisotrope induit. Sous des charge-
ments complexes, ces deux modéles sont couplés et 1'effet de fermeture-réouverture des fis-
sures est également traité. L’intégration du modéle développé dans le code éléments finis
VIPLEF3D a conduit a I’élaboration d’une méthode de relaxation caractérisée par une actu-
alisation explicite des variables d’état.

Concernant la fragmentation dynamique, & partir d’essais de fragmentation au laboratoire,
une formulation générale permettant de prédire la distribution des fragments est fournie.
Dans cette formulation une taille moyenne de fragments est liée & une grandeur mécanique,
supposée étre 'origine du processus de la fragmentation, par une fonction intrinséque qui
peut étre identifiée en utilisant des essais adéquats de fragmentation. Cette grandeur mé-
canique est donnée par la résolution du probléme aux limites oil le modéle rhéologique est
utilisé.

Enfin, 'approche compléte est alors appliquée a la modélisation des essais de rupture et
de fragmentation, en chambre, d’échantillons cylindriques de roches.

MoTs-CLES: matériau quasi-fragile / comportement dynamique / fragmentation dynamique
/ lois rhéologiques / méthode des variables internes / endommagement anisotrope / plasticité
/ viscoplasticité / adoucissement / simulations numériques / tir a I’explosif.
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Introduction

La rupture séquentielle méne a la fragmentation. Un des aspects les plus importants de la fragmentation dynamique est qu’un
corps de matériau fragile ou quasi-fragile, & la fin du processus de la rupture, est divisé en de nombreur morceauz. Dans
des conditions de chargement quasi-statique, un corps est souvent cassé seulement en deur morceauz. Sous des vitesses de
chargement trés élevées ou de fortes contraintes atteintes dans un temps trés court, le méme corps se casse par fragmentation
en de nombreur morceauz. La fragmentation joue un réle important dans une grande variété de processus industriels dans
laquelle on désire causer la fragmentation de la maniére la plus efficace et la plus contrélée. Ainsi, I’élaboration de méthodes
efficaces et sdres pour l’abattage des roches & l’explosif est d’intérét considérable pour l’industrie miniére. Les opérations
d’abattages réussies peuvent mener & réaliser la distribution la plus appropriée des fragments de roche avec un codt de produc-
tion minimum. Néanmoins, jusqu’d aujourd’hui, la fragmentation dynamique avait été en dehors de la province des méthodes
théoriques générales et a été étudié principalement avec l'utilisation de méthodes ad hoc basées sur une variété d’hypothéses
non contrélables et parfois mutuellement contradictoires.

Avec le développement des ordinateurs a grande vitesse, des efforts considérables ont été orientés pour élaborer des modéles
continus (Grady et Keep, 1980; Preece et al, 1994), discontinus (Potyondy et Cundall, 1996; Donzé et al, 1997) et continus-
discontinus (Mungiza et al, 1995) afin de décrire la fracturation et la fragmentation. D’autres chercheurs ont préféré appliquer
une approche micro-statistique (Curran et al, 1987) au probléme de la fracturation et de la fragmentation dynamiques des
solides. De nos jours et o la connaissance de l’auteur, l’approche la plus appropriée n’a pas été identifiée. Actuellement, il y a
une variété de modéles numériques traitant la rupture et la fragmentation mais qui sont loin d’aboutir d une prévision fiable
et précise de la distribution granulométrique et ce a partir de la connaissance de la géométrie, des propriétés mécaniques et
physiques (dynamiques et statiques), des conditions initiales et des conditions auz limites. Il est en dehors de la portée de ce
rapport de décrire tous les modéles disponibles et donc la revue de la littérature sera illustrative plutot qu’ eczhaustive.

Il semble raisonnable de dire que la fragmentation dynamique est le résultat d’un probléme couplé impliquant l’initiation et la
propagation des fissures dans un milieu initialement intact et la formation de fragments isolés. Ainsi, les aspects du continu et
du discontinu avec la transition continu-discontinu, sont tous présents. Malheureusement, d’un point de vue de la mécanique
des milieuz continus, il n’est pas possible de tenir compte de la formation ezxplicite des fragments. D’autre part, la mécanique
de la rupture en dynamique ne peut pas également traiter, en méme temps, un grand nombre de fissures. Afin de surmonter ces
limitations, dans notre approche, nous suivons l’idée qui considére le processus de la fragmentation comme étant une extension
naturelle de celui de la rupture. En d’autres termes, nous supposons que nous pouvons séparer la rupture de la formation des
fragments (Ortiz R., 2000). Pour décrire la rupture dynamique, un modéle phénoménologique, conforme avec la thermody-
namique des milieuz continus, est développé. Une fois le processus de la rupture est achevé, on procéde & un post-traitement
basé sur l’historique de l’état thermodynamique du milieu. Ensuite, un modéle de fragmentation est employé pour produire la
distribution granulométrique.

Le reste de ce rapport est organisé de la fagon suivante. Le chapitre I traite une formulation générale du probléme de la frag-
mentation dynamique. Le lien entre le probléme aux limites est également présenté. En chapitre II, un modéle de comportement
des matériauz quasi-fragiles sous sollicitations dynamiques est présenté. Des questions au sujet de l’influence de la vitesse de
chargement et des pressions hydrostatiques sur la rupture dynamique sont explorées. L’anisotropie induite par le chargement
est également présentée en chapitre II. Enfin, les simulations numériques de la rupture et de la fragmentation d’échantillons
de roches et la validation de l’approche compléte sont présentées en chapitre I1I. Dans ce chapitre nous développons également

une solution analytique du probléme dit “de cavité” et nous discutons l’interaction ezplosif-matériau.



Sequential fracture leads to fragmentation. One of the most important aspects of dynamic
fragmentation is that a body of brittle or quasi-brittle material, at the end of the fracturing
sequence, is divided into many parts. Under conditions of slow loading, quasi-static fracture
often breaks the body only into two pieces. On the other hand, under very high rates of
loading where large stresses are achieved in a very short time, the same body fails by frag-
mentation into numerous pieces. Fragmentation plays an important role in a wide variety
of industrial process in which one desires to cause fragmentation in the most efficient and
controlled manner. Thus, the development of efficient and safe methods for breaking rocks
with explosives is of considerable interest to the mining industry. Successful blasting opera-
tions can lead to achieve the most suitable distribution of rock fragments with a minimum
total mining production cost. Nevertheless, until now the dynamic fragmentation process
had been outside the province of general theoretical physics methods and was investigated
primarily with the use of ad hoc methods based on a variety of uncontrolled and sometimes
mutually contradicting assumptions.

With the advance of high-speed computer methods, considerable efforts have been directed
toward developing continuum (Grady and Keep, 1980; Preece et al, 1994), discontinuum
(Potyondy and Cundall, 1996; Donzé et al, 1997) and continuum-discontinuum (Munjiza et
al, 1995) descriptions of fracture, fragmentation, and wave propagation to evaluate complex
fracturing events. Others workers have preferred to apply a microstatistical fracture me-
chanics approach (Curran et al, 1987) to the problem of dynamic failure and fragmentation
of solids. Until now, as far as the author knows, the most appropriate approach has not
been identified. There are currently a variety of numerical models dealing with fracture and
fragmentation which are far from achieving the ultimate goal to get reliable and accurate
prediction of the fragment size distribution from the set of geometry parameters, material
properties (dynamic and static), initial conditions and boundary conditions. It is outside the
scope of this report to describe all the models available and therefore the literature review
will be illustrative rather than exhaustive.

It seems reasonable to say that dynamic fragmentation is the result of a coupled problem
involving the initiation and the propagation of cracks in a previously intact material and the
formation of isolated fragments. Thus, aspects of both continuum and discontinuum with
transition from continuum to discontinuum, are present. Unfortunately, from a continuum
mechanics point of view, it is not possible to take into account the explicit formation of
discrete fragments. On the other hand, dynamic fracture mechanics is also unable to treat,
at the same time, a great number of cracks. In order to overcome these limitations, in our
approach, we follow the idea that considers the fragmentation process as a natural extension
of the fracture process. In other words, we assume that we can separate the fracture from
the formation of discrete fragments (Ortiz R., 2000). To describe the dynamic failure, a
continuum phenomenological model, consistent with thermodynamics, is developed. When
the fracture process is complete, the history of the thermodynamic state is post-processed
and used in a fragmentation model to produce fragment size distribution.

The remainder of this report is organized in the following way. Chapter I deals with a general
formulation of the dynamic fragmentation problem. The link between the Initial Boundary-
Value Problem is also presented. In chapter II, a constitutive modelling of quasi-brittle
materials behaviour under dynamic loading conditions is presented. Questions concerning
the influence of the rate and the hydrostatic pressure effects on the dynamic fracture are
explored. The load-induced anisotropy is also introduced in chapter II. Finally, Numerical
simulations of laboratory rock fragmentation by blasting and validation of the complete ap-
proach are presented in Chapter III. In this chapter we develop also an analytical solution
of the cavity problem and we discuss the explosive-material interaction.



Chapter 1

Dynamic fragmentation

Sous l’effet d’une charge impulsive, divers matériauz solides se fragmentent en de nombreuz morceauz. Une telle charge peut
étre due a l’impact avec un autre corps, une radiation énergétique fournie, par exemple, par des rayons X, un choc thermique,
une onde de choc, etc. La fracturation et la fragmentation des matériauz sont en général opposées a leur résistance. En effet,
d’un point de vue stabilité d’une structure, elles sont indésirables. Cependant, il y a une large gamme de procédés industriels
tels que le tir a l’explosif, la démolition, le concassage, le découpage, etc, ot la fracturation et la fragmentation deviennent
désirables.

La fragmentation dynamique des matériaur quasi-fragiles est un processus impliquant un certain nombre de mécanismes
physiques. Dans la plupart des cas, ce processus est trop compleze pour étre traité seulement par des théories déterministes,
des approches statistiques doivent étre également considérés. Un travail pionnier, incorporant des considérations statistiques,
sur la fragmentation des matériauz ductiles a été rapporté par Mott (1947). Des aspects statistiques et géométriques de la
fragmentation des matériauz fragiles ont été introduits par Grady et Kipp (1985).

De nos jours, probablement les modéles théoriques les plus appliqués sont ceuz de Grady (1982) et de Gleen et Chudnovsky
(1986) qui utilisent des approches énergétiques pour prédire la taille des fragments. Récemment, la modélisation de la fractura-
tion, que se soit dans un but de prévention de la rupture ou de la fragmentation, a été l’objet de plusieurs calculs numériques.
Toutefois, malgré ces efforts considérables, une description théorique cohérente du processus de la fragmentation n’est pas
encore disponible.

L’objectif de ce chapitre est d’analyser, a partir de l’observation expérimentale, le processus de la fragmentation afin de mettre
au point une approche théorique du probléme.

Le concept de la fragmentation homogéne et celui de la fragmentation hétérogéne sont introduits. Par ailleurs, pour relier la
taille des fragments aux sollicitations auzquelles le milieu a été soumis, deux modéles basés sur des explications physiques sont
présentés. Le premier modéle utilise l’approche classique du bilan énergétique, quant au deuziéme, il est basé sur la notion de
la zone de cohésion. La formulation générale du probléme, adaptée dans la présente thése, est donnée a la fin de ce chapitre.

La relation entre la taille des fragments et le probléme mécanique auz limites est identifiée.

I.1 Introduction

Several materials fail by fragmentation into numerous pieces when subjected to rapid en-
ergy input. Such rapid energy input may be due to impact with another body, high-energy
radiation provided, e.g., by lasers or X-rays, rapid temperature change, shock wave, etc.
Fracture and fragmentation of engineering materials are in general opposite to the strength
of materials. When considered from the point of view of structure stability, they are unde-
sirable. However, there is a whole range of industrial processes such as blasting, demolition,
crushing, cutting, etc., which are possible only because of the ability of materials to fracture
or fragment.

The dynamic fragmentation of quasi-brittle materials involves a number of physical mecha-
nisms. In most cases, this process is too complex to be treated only by using deterministic
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theories, statistical approaches must also be considered. Pioneering work incorporating sta-
tistical aspects for ductile fragmentation was reported by Mott (1947). The statistical and
geometrical aspects of brittle fragmentation were introduced by Grady and Kipp (1985).
To date, perhaps the most widely applied theoretical models of the fragmentation process
are those of Grady (1982) and Glenn and Chudnovsky (1986) which involve global energy
balance to predict fragment sizes. Very recently, modelling fracture, whether with an aim
of preventing failure or of inducing considerable fracture and fragmentation of material, has
been carried out by large numerical simulations. In spite of these considerable efforts, a
consistent theoretical description of the fragmentation process is not yet available.

The purpose of the present chapter is to analyse, from laboratory experiments, the fragmen-
tation process with an aim of a theoretical formulating of the problem.

The concept of homogeneous and heterogeneous fragmentation are introduced and it will be
shown that the fragmentation is closely connected with an extremely inhomogeneous distri-
bution of the stresses over the target. In order to relate the fragment size to the input loading,
two physics models are discussed. The first one deals with the energy balance concept. The
second concerns the cohesive surfaces approach. In the final section, a general formulation
of the dynamic fragmentation is provided. In this formulation the fragment size distribution
is connected to the Initial Boundary-Value Problem which involves the complexities of stress
loading, geometry, and the interaction of stress and relief waves.

1.2 Experimental observations

Experimental investigations were done with the collaboration of the Department of Mining
Engineering of the University of Leoben (Peter Moser and co-workers).

All blasting experiments were done in a blasting chamber that allowed to collect close to
100% of the blasted material. Collected fragments are then screened in order to determine
the fragment size distribution. All samples were blasted with a constant 5 mm diameter
PETN charge.

In what follows we will consider results of three cylindrical shaped limestone samples. The
first has a diameter of 300 mm and a height of 500 mm, the second has a diameter of 200
mm and a height of 260 mm and the third has a diameter of 100 mm and a height of 200
mm. The screened muck-pile gives the particle size distributions of Fig. I.1.

Other interesting tests were done, among them we can mention the following two tests. The
first one was done with an aim of identifying the origin of fine materials. Indeed, a cylin-
drical concrete sample composed with 50% of magnetic concrete and 50% of non-magnetic
concrete, was built. Fig. 1.2 shows such a sample.

In this figure, the black color is the magnetic concrete, while the gray one is the non-magnetic
concrete. It should be emphasized that the interface between the two continua was tested
and obtained results showed that it does not represent a weakness plan for the sample. The
result of the test blast is shown in Fig. 1.3 in terms of the fragment size distributions. As
can be seen, the fragmentation curve of the magnetic and the non-magnetic concrete are
ranging from fine particles to big ones. This result shows clearly that particles coming from
either the inner part (magnetic concret) or the outer part (non-magnetic concrete) of the
sample are well distributed. This result disagrees with classical ideas which assume that fine
materials are generated only from regions near the blasthole (Ortiz R., 2000).

The second test was done with an aim of identifying the effect of boundary conditions. For
this purpose, a magnetite concrete cylindrical sample, confined by a steel tube, was blasted.
The blasting result is that the confined sample was intact with no visible cracks (Fig. 1.4).
This result consolidates the fact that the fragmentation event can be influenced not only by
incident waves but also by reflected waves.
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Figure I.1: Particle size distributions (D=Diameter)

Figure 1.2: A section of the composite concrete cylinder

In the following sections, we propose a formulation of the dynamic fragmentation problem
that can interpret the above experiments.
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Figure 1.4: Confined concrete cylinder after blasting



1.3 Theoretical formulation

I.3.1 General considerations

A theoretical understanding of dynamic fragmentation requires a satisfactory statistical as
well as physical explanation. Even in situations of perfect homogeneous loading of perfect
symmetric body, the process of breakup is never deterministic, leading to a distibution in
fragment sizes and shapes. Before going further, it is interesting to point out some concepts
which will be useful for later formulations.

Let IT be a sample space and let X : I — IR be a continuous random variable. The propa-
bility density function (probability distribution) of X is the positive function f : IR — IR,
such that for any interval [a, b] the probability of the event {w € II/ a < X (w) < b} can be
computed as

b
Pla<X <b)= / f(z)dz (L1)
f(z) must satisfy
£>0 and / fla)dz =1 (1.2)
The cumulative distribution function of X is the function F': IR — [0, 1] defined by
VeeR, F(z)=P({well: X <a})= [ flydy (L3)

F(z) is the probability that X will assume a value less than or equal to x. The function F’
has the following characteristics:

F is an increasing function

lim F(z)=0 and lirf F(z)=1 (L.4)

r——0Q0

F'(x) = f(z) V = at which the derivative F'(z) exists.

Now, consider a body € which, under abrupt or impulsive loading, will be broken into
several fragments. We assume that all points in the body are accessible to fracture, which
means that the fragmentation will be regarded as continuous. Under this assumption, the
cumulative mass of fragments having a size less than or equal to s is assumed to be given by

M(s) = /Q 6 (s, sm(T), a(Z))dm (L5)

where

— S, : mean or average fragment size;
— « : shape factor;
— ¢ : cumulative mass density;
— dm : elementary mass.
The cumulative mass density varies as a function of position within the fragmented body

because of spacial variations of the stresses causing fragmentation. In what follows, we will
consider both the homogeneous and the heterogeneous cases.



I1.3.2 Homogeneous fragmentation

Fragmentation in a body is regarded as homogeneous if the average size and the shape factor
of fragments are the same at all points in that body:

o(s, sm(T), a(Z)) = @(s, sm, @) YT €9 (1.6)
Therefore the cumulative mass becomes
M(s) = /Q 35, 5m(T), a(@))dm = (s, sm, @) /Q dm (L7)
Hence, the cumulative passing of mass having a size less than or equal to s is

P(s) = ¢(s, sm, a) (L8)

In general, ¢ is determined by empirical means. Experimental results suggest that the mass
distribution approximately satisfies the exponential law

1 (m
p(m) = —e (g (1.9)
where

— p : the probability density;

— my : scale parameter, my > 0.

Therefore, the cumulative mass density is
/ p(z)dr =1— e () (I.10)
0

Now, assuming that the mass of the fragment is related to its size as follows

Sg is a scale parameter which corresponds to mg. « > 0 is a shape factor which is equal to 3
for cubical or spherical fragments. Hence, the cumulative mass density of fragments having

a size less than or equal to s is
1 — exp [— (3) } (1.12)
S0

Equation (I.12) is the well known two parameter Weibull distribution which can also be
written as

(8, Sm, a) =1 —exp [— In(2) (i)a} (I.13)

where s, is the mean fragment size corresponding to a passing of 50% (¢(Sm, Sm, @) = 1/2).
Using Eq. (I.13), we can, by curve fitting, find s,, and « for the limestone samples (Fig.
[.5 ). The results of fitting show that we can obtain approximately the same shape factor
but a different corresponding mean fragment size. These experiments demonstrate that,
although we kept the same loading conditions and the same material, the fragmentation
process changes with the size of the fragmented body. As a first conclusion, the dynamic
fragmentation within a body is too complexer to be regarded as homogeneous.

LW .D.: Weibull Distribution
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Figure [.5: Comparison of experimental and analytical distributions

1.3.3 Heterogeneous fragmentation

Fragmentation in a body is regarded as heterogeneous if the average size and the shape factor
varie as a function of position within the fragmented body. Several blasting tests show us
that the shape factor can be considered constant. Consequently, in what follows, only the
mean fragment size will varie within the body.

In this work, attention is focused on the study of two different cumulative mass densities:

1. Uniform cumulative mass density

The simplest assumption to make when determining fragment size distribution is to
consider a uniform one. In this case, the cumulative mass can be given by the following
equation:
MSI/ dm:/,%” 5 —5(T))dm I.14
= fre ooy = [ 6= o) (114
where 7 is the Heaviside function.

2. Weibull cumulative mass density

As previously discussed, statistical considerations indicate that a distribution of frag-
ment sizes should be determined around a mean fragment size. Using the function
described by Eq. (I.13), the cumulative mass distribution of fragments having a size
less than or equal to s is

M(s) = /Q [1—exp l— In(2) <WS?)>QH dm (L.15)



[.3.4 Fragment size prediction in dynamic fragmentation
1.3.4.1 Experimental considerations

For an arbitrary body, s,,(7) will be as complex as the complexity of the fragmentation
event. In order to reduce the complexity of the problem we consider the above cylindrical
samples. On the other hand, we assume that the explosive pressure in the drilled hole is
uniformly distributed, so we can expect that the mean fragment size will be only function
of the radius

Sm(T) = $p(r) V1 elry, r (I.16)

where r; is the blasthole radius and r. the sample radius. Finally, we assume that s,,(r) is
an increasing function. This assumption is widely accepted since the fracture process will
be weakened when we move away from the explosive source.

Firstly, let us assume a uniform cumulative mass density. With these considerations, the
cumulative mass distribution of fragments having a size less than or equal to s = s,,,(r) is

M(sm(r)) = h / p()2rwdz (L17)

where p is the material density and h is the sample height. If we assume a uniform material
density, we will have

M (s,,(r)) = 7Thp(7“2 — 7“12) (I.18)
Therefore, the cumulative passing of mass having a size less than or equal to s is
r? — 7“12
P(sm(r)) = o (1.19)

Hence, the function s,,(r) may be given by

sm(r) = P! (TQ - Tz> (1.20)

Since experimental results give us the cumulative passing as a function of the fragment size,
we can determine, by using (1.20), the mean fragment size as a function of the radius. Ex-
perimental results for the three considered samples are presented in Fig. 1.6.

If we keep constant the blasthole radius (r;), one can point out that with the assump-
tion of a uniform cumulative mass density, the cumulative mass distribution of any sample
having an outside radius r. will be determined as follows

2 2 2 2
Tref -7 =
5 X

i

P(sp(r)) = 5 = Whe(5m(r)) (I.21)

r2—r T2 — T3
where P, s is the cumulative passing of a blasted reference sample having an outside radius
rref. Therefore, the case corresponding to @ > 1 can be interpreted in the following way:
knowing only the fragmentation result of a sample with an outside radius r,.¢, we can predict
the fragmentation curve of any sample having an outside radius r. such that r. < r..;. The

predicted cumulative passing can be given by
P(spm(r)) = min (wPyef(sm(r)), 1) (1.22)

Fig. 1.7 shows experimental and predicted results of the considered samples. Predicted re-
sults were based on the experimental fragmentation result of the biggest sample (300 mm in
diameter). As can be seen, theoretical predictions are in good agreement with experiments.

10



However, the use of a uniform cumulative mass with the assumption of an increasing frag-
ment size is in contradiction with experimental results obtained from the composite concrete
cylinder which indicate that, at each position of the sample, one can expect a distribution in
fragment sizes and shapes. In order to overcome this limitation, one possibility consists of
using the Weibull cumulative mass density given by Eq. (I.13). In this case, the cumulative
mass distribution of fragments having a size less than or equal to s will be defined as

M(s) = h / o(x) l1 — exp l— In(2) (L@)(XH onzdz (1.23)

Sm(

From Eq. 1.23, it is difficult to obtain directly the mean fragment size as a radius function.
Since we assume that s,,(r) is an increasing function, we can suggest an analytical function
with n adjustable parameters s,,(r, a1, s, .., ;) and try to find these parameters by curve
fitting. Fig. 1.8 shows s,,(r) obtained by such a method for the three considered samples®.
This figure shows that s,,(r) of the biggest sample contains, approximately, the complete
informations about the others. Thus, once again, we can predict the fragmentation curves
of any sample having a diameter less than the biggest sample diameter. Fitted results for
the biggest one and predicted curves for the two others are shown in Fig. 1.9. This figure
shows that analytical distributions are in good agreement with experiments.

However, in spite of the agreement between theoretical and experimental results, the above
formulations are not complete because the evolution process that leads to catastrophic failure
of the material was not considered. Furthermore, since the boundary conditions influence the
fragmentation event, as was mentioned before, one can expect that, when using the present
formulation which does not include such conditions, we are not able to predict the fragmen-
tation result of the confined magnetite concrete. In order to overcome these limitations, we
should introduce in our approach physical considerations of the breakage mechanisms which
involve fractures governing laws. To convey ideas and assumptions clearly, in the follow-
ing section, we propose to provide, by the analysis of the dynamic deformation problem, a
rational basis for predicting the fragment size resulting from a fragmentation process.

2The suggested expression used for s,,(r) is

as5T

Sm(r) = a1 + aar® + age [mm]

for the considered tests, we obtain (ay, as, as, a4, as) = (—0.650, 0.0136, 1.760, — 0.275, — 7.553)

11
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1.3.4.2 Physics-based modelling of dynamic fragmentation

Several models for dynamic fragmentation have been suggested in the past. To date, the most
widely applied theoretical models of the process are those based on the pioneering studies of
Grady (1982) and Glenn and Chundnovsky (1986). These models, based on energy balance
principles, essentially assume that the energy available to form new fracture surfaces causes
these to form instantaneously. Thus, these models are expected to be accurate at extremely
high strain rates, when the time to fragmentation is extremely short.

Other studies are based on the incorporation of cohesive surfaces between standard elastic
elements, to serve as prospective fracture paths in a dynamic simulation (Camacho and Ortiz,
1996; Espinosa et al, 1998). In what follows, the energy balance models are revisited. Then,
one-dimensional version of the cohesive surface approach (Drugan 2001) is given. These
models will be used to solve the following one-dimensional Initial Boundary-Value Problem.
A bar of brittle elastic material with a uniform cross-sectional area A (Fig. 1.10), occupying
the region —%L <zr< %L, — %h <y< %h, is permitted to deform only in the direction of
the bar’s axis. The bar has a mass density p, a Young’s modulus ¥ and a Poisson’s ratio
v. In addition, we assume that there was some stress level, say o., below which no cracks
would grow for a given material.

Ay
2 R Lo ccmmm e .
i X
[~ I3 "]

Figure 1.10: Bar of brittle elastic material experiencing a uniform z—direction strain rate

The boundary conditions on this bar are

up (£3L, y, t) = £3élt  V(y,t) € [~ (L24)
uy (z, +1h, t):O V (z,t) € [— '
where u, and u, are x and y components of the displacement vector, ¢, is a constant positive
applied strain rate and [0, 7 is the time interval of interest.

The initial conditions, in accord with Grady assumption, are those of zero displacement and
a uniform strain rate, which corresponds to a linear velocity distribution:

u(e, 0. 0)=0. Moy, 0) = (1.25)

where u = wu, is the only non zero displacement.
The energy balance concept

In the present approach we are not concerned with how or how fast a crack propagates,
but only focus our attention on the resulting fragments.

Since the bar experiences a uniform constant strain rate, the axial stress will increase linearly
until reaching .. At this moment, we assume that the bar will be divided, instantaneously,
into several fragments. It is assumed that the fractures at the ends of each fragment occur
simultaneously. As a consequence, the change in forces at the ends of each fragment are
equal but opposite and the net impulse delivered to the fragment during fracturing are zero.

14



The kinetic energy of an isolated fragment of length ¢ can be expressed as

/2

E= %Ap /_;/2 [vo + éoz]” dz = By + 2—1414/)6'863 (1.26)
where v, is the velocity of the fragment mass center and vy + égz Vo € [—¢/2, (/2] is the
velocity of material points at a distance = from the fragment center. E is the kinetic energy
due to the translation of the fragment mass center.
Following Grady (1982), the principal source of energy available to drive the fractures is the
kinetic energy, the effect of the stored elastic energy is neglected. Suppose that I'. is the
average specific fracture energy for the material and that the area of each fracture surface
is the cross-sectional area A. Then a fracture energy of %FCA is consumed at each end of
the fragment from the energy supply within the fragment. In the original model of Grady
(1982), a critical fragment size is estimated by the minimization of the energy E + I', with
respect to the fracture surface area. Where E = E — E is the energy consumed in the
creation of new surfaces. For the present case, we consider the direct energy balance: the
available kinetic energy E is balanced against the energy associated with the new surface
created in the process, then

_ ]
E = ﬁApégé?’ =T.A (1.27)

Thus, an estimate of fragment size ¢ in terms of the initial state represented by ¢, and the
material parameters I'. and p is
1/3
24T,
(- ( ) (1.28)

)
PE€o

This model neglect the effect of the elastic stored energy, an omission that was later accounted
for by Glenn and Chundnovsky (1986). The revised model predicted that the strain energy
should dominate for quasi-brittle materials with low fracture toughness and high fracture-
initiation stress. Moreover, for quasi-static loading, it is clear that fragmentation is controlled
entirely by the balance between potential and surface energy, in accordance with the theory
originally advanced by Griffith (1920).

When o. is reached, the elastic energy stored in a fragment is

2 —
p_loyy po_U-0E
I (1+v)(1—2v)

(1.29)

In this case, The available energy to drive the fractures is the total energy E + P, then the
fragment size will verify the following cubical equation

2
2—14,)6'363 + %%e ~T,=0 (1.30)
The resolution of 1.30 leads to a fragment size which is function of the strain rate and the
material parameters (p, Te, 0., E).

It is important to note that in this approach we assume that the fragmentation process is
instantaneous, it does not include the time dependence of the process. In reality, fragmenta-
tion occurs over finite time during which energy continues to be supplied to the system, and
cracks nucleate and propagate throughout the body. Therefore, we propose, in the following
section, a model that include the time history of the process.

The cohesive surface concept

In general, most rocks (limestone, granite, ...) and concrete, fracture in a quasi-brittle
manner rather than exhibit yielding, but most metallic alloys fail by yielding and seldom by

15



cracking. This distinct difference leads to a distinct fracture process manner. In rocks and
concrete the failure process can be divided into four stages, as illustrated in Fig. 1.11 (Klein
et al, 2001). The location of material at the four stages is indicated with markers in the
figure. The four stages in Fig. 1.11 are

1. The smooth field, or regular part, of the material response;
2. Initiation, or first appearance, of the localized deformation mode;
3. Evolution of the failure mode from the initiation to complete failure;

4. Complete failure and appearance of new surfaces.

Failure evolutiO\ \V=——" Smooth field

| rmmmm—

New surface Localized deformation

Figure I.11: A four-stage view of modelling failure

For each stage, a modelling approach must determine the constitutive laws governing the
response of the material as well as the conditions that mark the transition to the next stage.
One approach to model the above fracture process is the so-called Cohesive zones ap-
proaches. The cohesive approach to modelling fracture has recently become a very active
area of research (Xu and Needleman, 1994; Camacho and Ortiz, 1996). The cohesive view of
material is captured by surface constitutive relations that describe the evolution of traction
generated across the faces of a crack as a function of the opening displacement. In what
follows, we will use this approach in order to predict the minimum fragment size resulted
from the fragmentation of the bar cited above. Following Drugan (2001), the key feature of
the model is to analyse the time-varying dynamic deformation of a prospective brittle elastic
fragment that is jointed by nonlinear cohesive zones to the rest of the body. We shall use
the coordinate system centered in the fragment, as shown in Fig. 1.12. This figure shows
the prospective fragment, where J, is the displacement of the elastic segment end relative to
its center, J. is the displacement of the half cohesive zone relative to the segment end, and
0 = 04 + 0. is the total displacement.

VY =3 O
J\/\/L — E; J\/\/Ll_qs

Figure 1.12: A prospective fragment: elastic segment + two half cohesive zones

Our aim is to predict the minimum fragment size. To do that, we need the following de-
velopments. Let us consider the small displacements assumption. Since we permit only
x-direction deformations, the only nontrivial equilibrium equation is then

00 1 d%u

= p—— 31
or  or (I.31)
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where 0, is the x-direction component of the Cauchy stress tensor ¢. For an homogeneous,
isotropic linear elastic solid, the stress-displacement relation can be written as
~ 0u
Ope = B— 1.32
ox (1:32)
Substituting Eq. (I.32) into (I.31), we obtain

2 2
du _ c2@ =0 (1.33)
ot? Ox?

where ¢ = \/E /p is the elastic waves velocity.

Eq. (I.33) has to be resolved with the initial conditions and by enforcing the appropriate
boundary conditions on the end of the elastic segment (r = ¢/2). These conditions are
displacement and stress continuities with the cohesive surface.

The bar experiences a uniform constant strain rate ¢é,, = ¢p until fragmentation initiates.
Therefore, since §(0) = 0, the total relative displacement § can be shown to be

5(t) = %éoft (1.34)

Using the definition of 0, continuity of displacement between the elastic segment and the
cohesive zone requires

" (é t) () = 6(8) — 6u(t) = %éoﬁt 6 (1.35)

The cohesive law is assumed to have a traction-crack opening displacement relation of the
form

26, 20,

T(26.) = Oc s, XP <1 — ) (1.36)
In this case, 0. is the strength of the cohesive surface, which is attained when 26, = §*. The
cohesive crack model parameters can be related to the critical strain energy release rate (per
unit surface) (Whittaker et al, 1992) as follows:

+oo
Cro = / T(26,)d(26,) (L37)
0
For plane strain linear elastic fracture mechanics, G;c can be expressed as follows
1 -2 K?
Gro = 1= )kic E> e (1.38)
Using Eq. (1.36), (1.37) and (I.38), one can determine 6* as follows
(1 -v)Kj,
0= ———= 1.39
exp(1)Eo. (1:39)
The stress continuity between the elastic segment and the cohesive zone requires
~Ou l
E—(=, t) =T(20.(t 1.40
U5 1) = T(26(t) (140

In order to calculate the minimum fragment size, Drugan assumes that the fragmentation
initiation will occurs when the maximum stress level in the cohesive zone is reached. In
terms of the cohesive zone displacement, this requires

20.(tey) = 6* (1.41)
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where ¢, is the time corresponding to T = .. To carry this analysis further, Drugan makes
an addition assumption. He supposes that the determination of the minimum fragment
size (i, requires that at time ¢., the prospective fragment has just stopped expanding, i.e.
0. (ter) = 0. Thus, from Eq. (1.35), it follows that

5::(tcr) = %éoemin (1.42)

Analytical development of the defined Initial Boundary-Value Problem is given by Drugan
(2001). The final result of this development is illustrated by the following system
0V (E) + 0V (F) exp |1 — 0V (E)| = éof,  6(0) =0,  for0<P<Y,
S8 (£) + 6D (B exp |1 — 8 D(P)] = ol — 50V (F— £)+ (1.43)
0(E = Dy exp [1 = 0M(E—10)], 8D (nd) =6 (nd), for nl <T< (n+1)L

C

where

[

FE ot o« o 8(t) - G
= t = — 50 t = , :
T 2co,’ T’ ®) 0% /2 €0
and n is the number of reflexions.

The above system is solved iteratively and ¢,,;, is determined in such a way that Eq. (1.41)

and Eq. (I.42) are simultaneously fulfilled.

=L (1.44)

o /E’ cT
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Figure 1.13: Comparison of several model’s predictions of fragment size versus applied strain
rate (Material constants are: £ = 64 GPa, v = 0.2, p = 2200 Kg/m?, K;c = 1.3 MPay/m,
o.=7MPa, T, = (1 - v*)K},/E)

Fig. 1.13 compares the predictions, for a given brittle material, of the fragment size versus
applied strain rate for the kinetic energy and the total energy (kinetic energy + stored strain
energy) balance approachs, with those of the cohesive surface concept.

One very interesting feature of the results shown in this figure is the fact that the predictions
of all models tend to “converge” at high strain rate. The kinetic energy model gives an upper
limit which probably can be accurate at high strain rates, while the cohesive model gives a
lower limit which probably can be accurate at lower strain rates.

This result is expected because Grady approach assumes that dynamic fragmentation is an
instantaneous event, while Drugan approach accounts for the time-varying dynamic defor-
mation that occurs prior to fragmentation onset.

18



1.3.5 General formulation

From the previous section, the main result that we should keep in mind is that one can
predict the fragment size as a function of material properties and the applied strain rate.
Now, the key feature to consider complex loadings and structures, is to assume that we can
characterize the fragmentation event by the prediction of a mean fragment size s,, which
can be related, at the local level, to a mechanical quantity G (strain rate, energy, ...). This
relationship can be written formally as

sm(T) = W(G(T)) in Q (L45)

where 2 is the considered body which is under impulsive loading. ¢ is an intrinsic (only
material dependent) scalar positive function which can be identified by considering special
fragmentation tests. Concerning the mechanical quantity, it should be calculated by the
resolution of the Initial Boundary-Value Problem. Therefore, if we assume that the shape
factor is constant and that the fragmentation event of 2 is described by the Weibull distri-
bution with parameters s,, and «, we can go up to the the cumulative mass of fragments by
using Eq. (I.15) which can also be expressed as

M(s) = [ 6(s, 4 (G(T)), a)pl@)ae (L.46)

where df) is an elementary volume.

Since we deal only with dynamic fragmentation, it is essential to introduce a critical me-
chanical quantity G, to distinguish between dynamic and static fragmentation. In fact, at
very low rates of loading, most materials resist to fracture until a critical stress is reached.
This is the static failure regime, in which fragmentation is dominated by the growth of a
single weakest flaw. The dynamic regime is entered when growth of this flaw cannot relieve
the applied loading, stresses rise in the adjacent material, and new flaws begin to nucleate
and grow.

With this consideration, Eq. (I.46) becomes

M(s) = [ (s, (G ) p(@)d (L.47)

where )* is defined as
={T e/ GT)>G]} (1.48)

Eq. (I.47) may also be rewritten as
M(s) = [ H(G(T) = G o (s, ¢ (G(T)), ) pl@)d (1.49)

where 77 is the Heaviside function.

The last thing that we want to introduce here is the concept of a minimum value of fragment
size. Indeed, when the mechanical quantity becomes infinite, one can expect that a minimum
non zero fragment size may exist, i.e.

lim (G) = Spin > 0 (1.50)
G—+oo

In fact, since we note that the fragmentation of materials is the result of crack propagation,
one can expect that any two cracks completely propagated must be at a distance greater
than a certain value because of the unloading effect of release waves arising from crack
nucleation. This fact shows that a minimum fragment size must exist. Obviously, this
concept of minimum fragment size can be replaced by an irreducible material element when
we deal with extensively crushing problem.
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Chapter 11

Constitutive modelling

Le processus de la fragmentation est une extension naturelle du processus de la rupture: un fragment est le résultat de
lintersection d’un certain nombre de fissures. Par conséquent, pour comprendre la fragmentation, on doit, tout d’abord,
comprendre les critéres qui conditionnent l’apparition des fissures et la cinétique par laquelle ces derniéres passent.

Depuis une trentaine d’années, a partir des travauz pionniers de Griffith et Irwin, la Mécanique de la Rupture a connu un
développement important. Les mécanismes de rupture ont été bien compris et bien modélisés en rupture fragile dans le cas d’un
milieu contenant initialement une seule fissure macroscopique susceptible de se propager suite & des chargements extérieurs.
Dans le cas d’un grand nombre de fissures, cette approche a montré ses limites et se trouve incapable de traiter un probléme de
fragmentation d’un milieu initialement intact. Pour combler cette limitation, plusieurs autres approches mathématiques ont
été développées (micro-statistiques, phénoménologiques, ... etc).

Dans ce chapitre, il s’agit pas d’analyser toutes ces approches mais plutét de présenter notre propre modéle.

Notre approche, basée sur la thermodynamique des milieux continus, a pour objectif de reproduire le comportement macro-
scopique des matériauz quasi-fragiles de type roches et béton, et ce pour différents types de sollicitations. Pour cette raison,
le présent chapitre sera organisé de la maniére suivante: dans un premier temps, nous présentons le cadre général de notre
modélisation et quelques éléments de base de la thermodynamique des milieuz continus. Deuziémement, nous décrivons les
observations expérimentales faites sur des éléments représentatifs afin d’identifier qualitativement le comportement des matéri-
auz quasi-fragiles. Ensuite, nous présentons l’ensemble du modéle développé et les éléments de base de son implémentation
numérique. Enfin, nous présentons une discussion sur le phénoméne de localisation en rupture dynamique et un exemple 1D

est donné comme illustration de ce probléme.

I1.1 Introduction

The fragmentation process is a natural extension of the fracture process: a fragment is pro-
duced by the intersection of a number of cracks, each crack forming surfaces on two adjacent
fragments. Therefore, to understand fragmentation one must firstly understand both the
threshold conditions that trigger the fracture process and the kinetics by which it proceeds.
The response of a single crack to both static and dynamic loadings has received considerable
attention over the past several decades and it is reasonably well understood. The first and
hitherto the most successful approach dealing with fracture is that pioneered by Griffith and
Irwin, in which a macroscopic crack is treated as a stress-free boundary in a boundary value
problem. The threshold condition for crack instability is assumed to be a critical energy
density, stress intensity factor, or other measure of the stress and strain fields near the crack
tip. This approach, termed fracture mechanics, has been extremely successful in cases where
the behaviour of a single, large crack in brittle material is of prime interest.

However, the response of a system of cracks under stress-wave loading is less well understood:
treatment of each crack individually becomes forbidding. For such cases other mathematical
approaches have been developed, among them one can find the micro-statistical fracture

22



mechanics. In this approach the micro-crack and micro-void concentration as well as orien-
tation and size distributions are specified in the description of the material’s thermodynamic
state. They are considered as internal variables in the constitutive relations for the material.
Difficulties related to accurate data for the formulation of evolution laws of such internal
variables makes this approach unrealized especially for rock materials. Other approaches,
based on continuum phenomenological models, are used extensively in sophisticated design
computer codes to model quasi-brittle phenomena. It is outside the scope of this chapter to
discuss all the models available in literature.

In this work, our main objective is to develop a macroscopic constitutive model for analyzing
deformation and failure of quasi-brittle materials including load-induced anisotropy due to
cracking. The developed constitutive relations will be able to reproduce the macroscopic
stress-strain relations for different loading conditions, neglecting the microscopic mechanism
of the behaviour. Time-dependence is also taken into account in our model. In fact, from a
physical point of view, time-dependence arises naturally from the finite propagation velocity
of cracks. If loading of a quasi-brittle material is imposed at a relatively slow rate then a
single crack or a small number of cracks, which relieve the stresses induced by the applied
loading, is formed leading to catastrophic failure before the growth of any other potential
fracture site is activated. On the other hand, if a body of quasi-brittle material is subjected
to high rate of deformation, large stresses are achieved in a relatively short time, then a
higher density of fractures can be activated and can grow to a significant size without ar-
resting each other. Such processes can be the origin of the apparent increase of the fracture
resistance. This is why the fracture process is often viewed as rate dependent on the macros-
copic scale. In our work, the rate dependence is exhibited through an overstress approach.
The remainder of this chapter is organized in the following way. In section I1.2 we review the
basic formulation of the Initial Boundary-Value Problem and we give the thermodynamic
restrictions to be considered during the development of the constitutive equations. Section
I1.3 describes some typical experimental results characterizing the static and the dynamic
behaviour of quasi-brittle materials. In section II.4 we present the developed constitutive
model. Section I1.5 deals with basic principles of the numerical implementation and some
uniaxial computational results. Finally, in section I1.6 we discuss the localization problem
in dynamic fracture and a one-dimensional example is treated as illustration of this problem.

Notation

Throughout this chapter, the number of underlines beneath a symbol indicates the ten-
sorial order of that variable. Superscript ¢ indicates the transpose operation, while “tr” is
the trace operator. Symbol ’ : ’ denote the inner product with double contraction, e.g.
0 : € = 046, (H:€)i; = Hijren, where indexes denote cartesian components and repeated
indexes imply summation unless otherwise indicated. Symbol ’ . * denote the outer product
with single contraction, e.g. (g . €);; = oier;. The dyadic or tensor product is indicated

with ’ ® 7, e.g. (o ® €)iju = 04j€, Whereas > ® ’ denotes the symmetrized dyadic product

defined as A ® B : C = A.C*.B, for any arbitrary second-order tensors A, B, C, where
C® = (C+C")/2 is the symmetric part of C. I and I° are respectively the second-order and

symmetric fourth-order identity tensors.

I1.2 Continuum problem formulation

Let us consider a continuous body €2 C IR? undergoing a deformation process whose events
are ordered by a scalar parameter ¢ that will be referred as time. The reference configura-
tion is denoted by 2y and 02y denotes the boundary of 2. Points in )y are labeled by

23



their position vectors X relative to some origin. Let [0, T] C IR, be the time interval
of interest. At each instant ¢ € [0, 7] the body occupies a new configuration, denoted
Q, c IR?, with boundary 9€),. This is the current or deformed configuration of the body.
Let X(Y, t) : Qo x [0, T] — € be the non-linear map of material points X € Q onto
spatial points 7 = X(Y, t) € Q.

In what follows we shall be exclusively concerned with small transformations for which
the gradient of the displacement field W(Y, t) : Qo x [0, T] — 2 remain small. For the
sake of simplicity, let denote €2 as the reference configuration of our body.

The small strain tensor is defined as ¢ = V*(@'), where V*® is the symmetric part of the
gradient operator. We denote the stress tensor by o = 0;;¢; ® €;, where 0;; € IR denotes the
component of g relative to the standard basis (€7, €5, €3) of IR®. Second-order symmetric
tensors are linear transformations in S, defined as

S .= {g . R* — IR? | z is linear, and z = 2’ } (IL.1)

In what follows, we assume that 9Q = 9,Q U 0, and 9,2N 9, = 0, where 0, is the part
of 02 where displacements are prescribed as

o0 = W 4(given) (I1.2)
whereas 0,() is the part of 02 where forces are prescribed as
clo,0. 7 = T ,4(given) (I1.3)

Here 7 is the vector normal to 0,€).
Let 7(?, t) be the body force par unit of mass, a given vector field, and denote the mass
density by p(@, t). The local forms of the momentum equations are

g _ P
di %fp7 =P } in Q% [0, T (IL.4)
a=g

This system of partial differential equations is supplemented by the boundary conditions,
specified by (I1.2) and (I1.3), and the initial data

(IL5)

where W, and T’ are prescribed functions in . Equations (II.4) and (I.5), together with
the boundary conditions (I1.2) and (I1.3), yield an Initial Boundary-Valued Problem for the
displacement field @ (7, t), when the stress field o(@, ¢) is related to the displacement
field @ through a constitutive equation.

I1.2.1 Constitutive equations: Thermodynamic approach

According to the principles of determinism and local action, the most general expression
for the constitutive equation of an homogeneous simple material can be given by:

o(T, t) = Fret [¥X (X, 7), T(X, 7)] (IL6)

where .7 is a functional of the history up to time ¢ of the deformation gradient associated
with the motion 7 = Y(Y, t) carrying the material point X in the reference configuration
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to its position T in the current configuration at time ¢ and T is the absolute temperature.
Eq. (II.6) essentially states that the stress tensor ¢ is a function of the entire deformation
history, i.e., that the knowledge of the state of strain at a given time ¢ is in general not
sufficient to determine the stress state.

However, working with such a functional poses formidable experimental problems, even in
the simplest cases. An alternative strategy, which overcomes this difficulty and is commonly
adopted to formulate constitutive equations, is the method of local state.

The method of local state postulates that the thermodynamic state of a continuum at a
given point and instant is completely defined by several state variables (also known as
thermodynamic or independent variables). The time derivatives of those variables are not
involved is the definition of the state, this postulate implies that any evolution can be con-
sidered as a succession of equilibrium states (therefore ultra rapid phenomena are excluded).
They should result from observations at a micro-scale and from a homogenization process.
The number of the state variables is determined by the number of phenomena taken into
consideration. They can be observable (i.e. which can be measured in an experiment) or
internal (or hidden ). For plastic and viscoplastic material behaviour, the hypothesis of small
transformations allows to additively split the total strain into the elastic and inelastic parts,
respectively denoted by € and €™

Cpen (IL.7)

g:

Il

Thus, two state variables, related by the above decomposition equation, are identified. Other
phenomena, such as softening, damage and fracture, call for the introduction of additional
internal variables which will complete the description of the thermodynamic internal state
of the continuum.

Finally, in order to establish a thermodynamic admissible process, the Clausius-Duhem
inequality must be fulfilled.

I1.2.2 Clausius-Duhem inequality
I1.2.2.1 Energy balance law

The energy equation (first law of thermodynamics) states that the energy is conserved, which
for a part II of 2 with boundary OII at the time ¢, can be written as

(1) + K(1T) = P(IT) + Q1) (ILs)
with ]
E(TT) := /H pedll,  K(I) = 5 /H . TdIL (1L.9)
P(IT) — /H p T dl + /6 (g 7) (o) (IL.10)
Q(II) :/HrdH—/an 7. 7d(o1) (IL11)

Here, a dot denotes the rate with respect to time. E and K are the internal and the kinetic
energy, respectively, of the part IT at the time t. Whereas P and Q represent mechanical and
thermal power supply. Moreover, e is the specific internal energy (energy per unit mass), r
is a volumetric heat source, ¢ is the heat flux and 77 is the normal on 9II. Since (II.8) must
hold for any arbitrary chosen part II of {2 and using the equilibrium equation, one can easily
obtain the local form of the first law of thermodynamics called also energy balance law:

pé=g:é+r—div(q) inQx|0, T (I1.12)
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11.2.2.2 Entropy inequality

The entropy inequality (second law of thermodynamics) states that the entropy (disorder)
of a thermodynamic system can not decrease. This law can be stated as:

S(IT) — I'(IT) > 0 (I.13)

with 7.7

S(11) ::/Hpsdn, F(H):/H%dl'[—/an —d(om) (IL.14)

Here, S is the entropy of the part I at the time ¢, s is the specific entropy, whereas I" is the
"entropy flux". Since (II.13) must hold for any arbitrary chosen part IT of €2, one can easily
obtain the local form of the second law of thermodynamics:

r 7

11.2.2.3 Clausius-Duhem inequality

We introduce the Helmholtz specific free energy function :
p=e—Ts (IL.16)

Combining Eq. (I1.12) and (I1.15), one can obtain the inequality:
N
g:é—p(v+sT) - TV(T) >0 inQx[0, 7] (I1.17)

This is the Clausius-Duhem inequality, which corresponds to the positiveness of the dissi-
pated energy and which has to be fulfilled by any model for all possible evolutions.

11.2.2.4 State potential, state laws

The state potential allows for the derivation of the state laws and the definition of the
associate variables or driving forces associated with the state variables to define the energy
involved in each phenomenon. In this study we choose the Helmholtz specific free energy
function as the state potential. Irreversible changes of internal structures can be described
by a set of internal state variables:

& k=1,2, ..} (I1.18)

where &, may be scalars, vectors, or higher order tensors. Among such internal variables
one can find the inelastic strain tensor €. In this case, 1, which depends on the observable
and the internal variables, can be written formally as

=1 (e T, &) (IL19)

By differentiating Eq. (I1.19) with respect to time and substituting the resulting expression
into Eq. (I1.17), the Clausius-Duhem inequality becomes

0 o . o - -
<g_ i);g_p<s+a—¥>1‘—pa—zk—%ﬁ(T)zo in Q x [0, 7] (11.20)
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Thermoelasticity state laws are derived from this inequality which must be fulfilled for any
state (g, T, ék) and any rates of the observable variables € and T.

o
= p— I1.21
2= (IL.21)

N
= —— I1.22
T T (11.22)

Therefore, Clausius-Duhem inequality becomes
N, q :

—p—&,— =.V(T) > Q T 11.23
Pog S~ V(T =0 inQx [, 7] (11.23)

This inequality define the volumetric dissipation which is the sum of an intrinsic dissipation
(or mechanical dissipation) and a thermal dissipation due to heat conduction.

Finally, for the establishment of the inelastic strain and the internal variables evolution laws,
the only restriction that must be fulfilled is the dissipation inequality given by (I1.23).

I1.3 Experimental characterization

The predictive capability of any mathematical constitutive relationship formulated to de-
scribe rocks and concrete behaviour during deformation depends critically on the data on
which it is based. However, designing and performing a sequence of experiments, which will
provide such useful constitutive data, is not a trivial task.

From the mathematical point of view, strains and stresses are defined in a material point,
but the real materials are not continuous. Physically, strains and stresses represent averages
on a fictitious volume element called the representative volume element (RVE). To give a
subjective order of magnitude of a characteristic length, it can be equal to 100 mm for con-
crete and rocks. Thus, our discussion will be restricted to the stress-strain behaviour of a
representative volume element.

Concrete and rocks exhibit non-linear behaviour in tension and compression. The response
prior to the attainment of the material’s ultimate strength is similar to that of any moderately
strain hardening metals. However, the response past the ultimate strength is characterized
by increased deformation with decreasing stress as a result of localization of damage (strain
localization). Such materials may therefore be regarded as quasi-brittle. The non-linear
response is a result of the nucleation, growth and coalescence of microscopic flaws.

I1.3.1 Non-linear stress-strain behaviour

Concrete and rocks contain defects, such as pores and cracks even in the virgin state. These
defects reduce their resistance capacity even under compression. The dominant failure mode
of these materials under compression is the formation of shear bands. Its characteristic
feature is shear displacement along the surface of fracture. A typical stress-strain curve in
a uniaxial compression test is shown in Fig. II.1. As can be seen, past the elastic stage,
the material exhibit moderate strain hardening prior to the attainment of the ultimate
capacity. However, the response past the ultimate strength is characterized by an increase
in deformation with decreasing stress. Such a response is called softening. Under uniaxial
tension, another type of fracture occurs. Its characteristic is a clean separation with no shear
offset between the surfaces.

Therefore, for model development, behaviour of quasi-brittle materials may be simplified
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Figure II.1: Typical uniaxial loading stress-strain curve of a quasi-brittle material showing
(a) the elastic zone, (b) the pre-peak non-linear zone and (c) the post-peak softening zone

into three levels of response: the linear elastic stage, the inelastic stage, and the softening
stage. It should be emphasized that, in the last few years, researchers have started to realize
that the softening in quasi-brittle materials and the associated localization of deformations
cannot be regarded as a pure material property, but rather represents the response of the
structure formed by the specimen together with its complete loading system. This argument
can be supported by compression tests of specimens with different heights. In literature, one
can find tests done by Van Mier (1984) on cylindrical cross section specimens and other done
by Rokugo and Koyanagi (1992) on square cross section ones. The tests results in terms of
stress and strain are shown in Fig. I1.2. As can be seen, the descending branches of stress-
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Figure I1.2: Influence of specimen height on uniaxial stress-strain curve (after Van Mier,
1984; Rokugo and Koyanagi, 1992)

strain curves are not identical but have slopes decreasing with increasing specimen heights.
Therefore, this specimen size dependance, can lead to conclude that the stress-strain curve
of the considered material does not reflect a material property, but it has to be referred to
as a structural property.

I1.3.2 Factors affecting rock strength

Two of the most important factors influencing the behaviour of rocks and concrete are
confining pressure and strain-rate.
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11.3.2.1 Confining pressure effect

A basic principle of the laboratory testing of rock to obtain data for use in design anal-
yses, is that the boundary conditions applied to the test specimen should simulate those
imposed on the rock element in situ. This can rarely be achieved. General practice is to
study the behaviour of the rock under known uniform applied stress systems. An important
feature of the concrete material behaviour in triaxial compression is illustrated by Fig. I1.3.
These, and similar data for rocks, show that, with increasing confining pressure, the peak
strength increases and there is a transition from brittle to fully ductile behaviour. The con-
fining pressure at which the post-peak reduction in strength disappears and the behaviour
becomes fully ductile is known as the brittle-ductile transition pressure (Brady and Brown,
1999). The overall strengthening effect can be represented in a (07 — 03)-01 diagram such as
Fig. I1.4 for amphibolite and sandstone meterials.
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Figure I1.3: Triaxial compression tests with increasing confining pressure on concrete mate-
rial (after Pivonka et al, 2000)
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Figure 11.4: (0; — 03)-0; diagram for amphibolite and sandstone (after Lockner, 1995)
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It is of interest to note that the majority of strength measurements have been conducted
under uniaxial or triaxial stress conditions. A limited number of true triaxial (o; > oy > 03)
measurements have been performed to explore the effect of intermediate principal stress on
failure mode. While the most commonly used failure criteria (e.g., Mohr Coulomb) assume
that failure is independent of the intermediate stress, experimental evidence demonstrates
that this assumption is not strictly true (Lockner, 1995).

I1.3.2.2 Strain rate effect

Dynamic loads are usually associated with high amplitude and short duration. For exemple,
in rock blasting, a blast stress wave is generated and propagates through the rock mass; the
rock mass and rock strcuture are subjected to blast shock loads at different loading strain
rates (from about 10°s~! to 103s71). Under highly dynamic conditions, the strain-rate de-
pendence of concrete and rocks response causes the material behaviour to be significantly
different from what is observed under quasi-static conditions.

Techniques for experiments at high strain rates are not well developed and, in general, leave
questions with respect to interpretation of data when the material behaves in a quasi-brittle
manner. On the other hand, experimental results are usually obtained under the assump-
tion of homogeneous stress and strain fields in the specimen, even in the high dynamic range
where transient loadings are heterogeneous by nature.

The most reliable data at high strain rates are found by using the Split Hopkinson Pres-
sure Bar (SHPB)Technique. The common conclusion of the majority of researchers found
in literature indicates that rocks and concrete exhibit a viscous effect which is reflected in
a strength increase with increasing strain rate (Perkins et al, 1970; Peng, 1973; Chong et
al, 1980; Sierakowski, 1984; Gran et al, 1989; Yalun, 1990; Reinhardt et al, 1990 Olsson,
1991; Gary and Bailly, 1998; Malvar and Crawford, 1998; Tedesco and Ross, 1998; Zhao et
al, 1999; Frew et al, 2001; Grote et al, 2001; to cite only a few).

The Dynamic Increase Factor (DIF), i.e. the ratio of the dynamic to static strength, for the
tensile strength is plotted in Fig. IL.5 versus the strain rate for concrete (Malvar and Craw-
ford, 1998). Fig. I1.6 shows the compressive Dynamic Increase Factor of Indiana limestone
versus the strain rate for different size of the tested samples (Frew et al, 2000). Unlike much
of rocks and concrete data, Fig. I1.6 shows that the Indiana limestone does not present a
size effect.

Zhao et al (1999) show that the dynamic uniaxial compression test for the Bukit Timah
granite in Singapore increases from 205 MPa to 235 MPa with loading rate increasing from
10° to 10° MPa/s.

On the other hand, Blanton (1981) affirms that inertial forces play an important role at
strain rates between 107! and 10 s~!, and the findings of his study on three rocks (Charcoal
Granodiorite, Berea Sandstone and Indiana Limestone) suggest that the apparent sudden
increase in failure stress above a strain rate of about 1 s~! is due to machine inertia and
does not reflect a real increase in material strength. The same idea can be supported by
Nikolaevskiy (1996) who indicates that the dynamic measured strength, which is interpreted
as the dynamic strength, depends on the condition of the shock, sample geometry, etc., and
it does not reflect a material property, but a function of the dynamical process.
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Figure I1.5: DIF for concrete in tension (after Malvar and Crawford, 1998 )
I1.4 Constitutive modelling

It is not a trivial task to derive proper material law for quasi-brittle materials in the 3-
dimensional stress state and which can be used in the hole range of loadings (from quasi-
static to dynamic). Materials such as concrete and rocks undergo elastic, plastic and viscous
behaviour, they are anisotropic, brittle in tension as well as in shear and ductile under high
pressure.

In recent years there has been a tremendous effort aimed at developing accurate models that
predict the response of such materials under various loading conditions. Most of them are of
the phenomenal type. The aim of a phenomenal model is to reproduce mathematically the
macroscopic stress-strain relations for different loading conditions, neglecting the microscopic
mechanism of the behaviour. The plasticity /viscoplasticity and the damage approaches falls
into this category.

In order to estimate stress wave induced fracturing, a coupled elasto-viscoplastic and rate
dependent damage model has been developed. Within the regime of load application, an
isotropic elasticity tensor is used to govern the elastic material behaviour. A pressure de-
pendent elasto-viscoplastic model is used for compressive regime. A second order tensor
measure of damage is used to represent the anisotropic degradation of the elasticity tensor
under tensile regime. Only the isothermal case will be considered.

I1.4.1 Plasticity theory applied to modelling quasi-brittle materials
behaviour under Compressive loading

The classical theory of plasticity was originally developed for metals which have deforma-
tional mechanisms quite different from those of concrete and rocks. However, from a macro-
scopic point of view, they still have some similarities, particularly in the prefailure regime
and under compressive loading with high confining pressure.
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Figure I1.6: DIF of Indiana limestone in compression (after Frew et al, 2000)

I1.4.1.1 Problem formulation

In this work, we assume that the softening behaviour of quasi-brittle materials is a purely
material property. Therefore, both hardening and softening effects can be introduced as
hidden internal variables in the thermodynamic state potential. The Helmholtz specific free
energy is considered here as the thermodynamic state potential depending on both observable
and internal state variables. The form of this potential is given by Eq. (II1.19) where &, in
this case, are the inelastic strain tensor €™ and scalars variables characterizing the isotropic
hardening /softening in plasticity /viscoplasticity.

Addressing the isothermal case, a commonly used assumption is to decompose the Helmholtz
specific free energy into elastic strain dependent potential ¢¢ and internal variable dependent
potential )¢ (Lemaitre and Chaboche, 1985)

(e &) =0 (e) + vt (&) (I1.24)

In this study we assume that ¢¢ = 0. For linearized elasticity, v is a quadratic form in the

elastic strain )

Ve &) =t (€)= 5,¢

where H is the elasticity tensor which, in the case of isotropic behaviour, is given by

(I1.25)

[f/==
”'”;m

H=Mol+2181 (11.26)
where A and p are the Lamé elastic parameters.
Then Eq. (I1.7), Eq. (I1.21) and Eq. (II1.25) imply
c=H: (g — gi”) in Q x [0,7] (IL.27)

The definition of the plastic/viscoplastic model is completed with the introduction of the
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evolution equations for the internal variables (&;). These evolution equations read in general
form

& = ka( €k) (11.28)

Here £, : S x R* — IR* are functions which define the direction of plastic flow and
the hardening/softening evolution laws. The parameter 4 > 0 is the plastic consistency
parameter.

In order to determine 4 we need, in a first time, to define a function F : S x RF — R
called the yield criterion and constrain the admissible states (g, ék) € S x IR in stress
space to lie in the set IE defined as

E={(c, &)€SxR"|F (g &) <0} (I11.29)

One refers to the interior of IE, denoted by int(IE) and given by

int() = { (g, &) €S xR | F (g, &) <0} (11.30)
as the elastic domain; whereas the boundary of IE, denoted by JIE and defined as
OE = {(z, &) € S xR" | F (g, &) =0} (11.31)

is called the yield surface in stress space. Note that IE = int(IE) UJIE and (g, ék) outside
IE are non-admissible.

For the plastic multiplier 7, we will distinguish, in the sequel, the rate-independent plas-
ticity from the rate-dependent plasticity.

1. Rate-independent plasticity
For rate-independent plasticity  is assumed to obey the following Kuhn-Tucker com-
plementary conditions:

4> 0, F( gk)<o andfyF( gk)_o (11.32)

f (g, &) € OIE which implies that F (g, &) = 0, then, the time derivative of
AF ( Ek) = ( gives the consistency condition

V¥ (2, &) =0 (I1.33)

Condition (I1.32) characterize the loading/unloading conditions while Eq. (I1.33) de-
fine the persistency of the plastic state during plastic flow.

Remarks: interpretation of the Kuhn-Tucker complementarity conditions

— Consider the case in which ( Ek) € int(IE) so that, according to (I11.30) F (g, Ek) <
0. Therefore, from condition (I1.32) we conclude that

F(g &)=0 andF<0 = §=0 (I1.34)

Then from (I1.28) it follows that &, = 0. Thus ¢ = ¢, and the rate form of (I1.27)
leads to
(IL.35)

o=

[[f=s
e

This type of response is called instantaneously elastic.
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— Now suppose that (g, £k) € JIE which, in view of (I1.31), implies that F (g, ék) =
0. Then condition (I1.32) is automatically satisfied even if 4 > 0. Whether ¥ is
actually positive or zero is concluded from (II.33). Three situations can arise.

(a) If F (g, Ek) < 0, from condition (I1.33) we conclude that
AF=0and F <0 =4=0 (11.36)

Thus, again from (I1.28) it follows that &, = 0. Since (IL.35) holds and

(g, €k) is on OIE, this type of response is called unloading from a plastic
State.

(b) If F (g, gk) = 0, condition (I.33) is automatically satisfied. If 4 > 0, then

ék # 0. This type of response is called plastic loading. The case ¥ = 0 (and
F = 0) is termed neutral loading

(c) IfF (g, £;€d> > ( for (g, Ek) € JIE at some time ¢, then condition F < 0 would
be violated at a neighboring subsequent time. Therefore, this possibility is
excluded.

2. Rate-dependent plasticity (viscoplasticity)

In order to account for the loading rate dependency, a viscous mechanism needs to be
introduced. Such consideration accounts for the retardation of the mico-crack growth
at higher strain rates.

As in rate-independent plasticity, in classical formulations of viscoplasticity, one also
introduces an elastic range which is defined, in terms of a loading function F (g, ék)
by the same set given by Eq. (I1.29). The basic difference between viscoplasticity
and rate-independent plasticity is that in the former model states (g, Ek), such that

F (g, €k) > 0 that is, stress outside the closure of the elastic range, are permissible,
whereas in the latter constitutive model such states are not allowed.

Among the various constitutive theories for rate-dependent plastic deformation ap-
propriate for high rates of deformation, the Perzyna-type viscoplastic models (1966)
appear well suited for modelling dynamic fracture. In such models, the viscoplasticity
is recovered from the previous expressions by replacing the relations (I1.32) by the

explicit definition
. 1
Y= Ew(F) (I1.37)

where 1 €]0, + oo[ denotes a given material parameter called fluidity or viscosity
parameter, while ¢ denotes a general scalar function satisfying the conditions

o(F)=0for F <0, and ¢'(F)>0forF >0 (I1.38)

for its first derivative ¢'(.), that is, monotonically increasing function ¢(F) of the
loading function for F > 0 (no longer restricted to non-positive values).

I1.4.1.2 Failure surface

To reproduce the above experimental observations, the overall concrete and rocks response
can be divided into three regions: an initial linear elastic regime, a non-linear hardening
pre-peak, and a non linear softening post-peak regime. The elastic response is bounded by
an initial yield surface, which grows with the increasing inelastic deformations (hardening).
During hardening, the loading surface expands and changes its shape from the initial yield
surface to the final shape that matches with the failure surface. In the low-confined com-
pression regime there is a transition point that separates ductile hardening behaviour from
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brittle softening regime. In the softening regime, the yield surface is gradually weakened,
from the failure surface, until reaching a residual strength yield surface.

The yield surface of concrete and rocks in the stress space is not easy to be measured exper-
imentally. For this reason it is usually assumed on the basis of the known failure surface.
It should be emphasized that failure surface can be fromulated in stress, strain or energy
space. The strain-based or energy-based failure descriptions involve elastic material prop-
erties, while failure description in stress space constrains the stress state independently of
elastic material description. As a consequence, the stress-based failure surface infers that
the strength is independent of the stiffness, thus there is no correlation between the elastic
modulus and the uniaxial compressive strength. In contrast, the strain and energy-based
limit models correlate stiffness and strength.

In what follows we will consider only the failure surface formulated in the stress space.

The general form of a failure surface can be expressed by the scalar-valued function F (g) =
0, which describes the failure envelope in six-dimensional stress space. This function must
respect the material symmetry: for isotropic materials, F can only depend on the set
of the three independent scalar invariants, e.g., in the form of three principal stresses,
F(g) = F (01, 03, 03) = 0. Alternatively, F can be written as

F(p, q, ) =0 (I1.39)

where p, ¢ and 6 are three stress invariants given by

t
p— T (I1.40)
3
3
g=1\/=5:58 (I1.41)
2_ =
6 S5) for ge o, T (11.42)
= arccos | —— or — .
2 q "3
Here s; = 01 + p and s denotes the deviatoric stress tensor:
s=ag+pl (I1.43)

and 6 is the deviatoric polar angle.
For 6 € |0, %] and consequently for o; > 09 > 03 we have the following relationship between
(01, 02, 03) and (p, ¢, 0)
o1 = —p+ 2qcosb
oy = —p+ %q sin(6 — %) (I1.44)
03 = —p— %q sin(6 + %)
A particular class of failure surface functions is introduced for pressure-sensitive materials.
In the most cases, this class of functions is illustrated by Mohr-Coulomb and Drucker-Prager
models. The objective of the present section is to propose a formulation which accounts for
a larger response spectrum of stress states and loading paths. Before doing that, we shall

start with a discussion of the Mohr-Coulomb and the Drucker-Prager failure surfaces.
The Mohr-Coulomb failure surface

Let 7 be a unit vector normal to an arbitrary plan passing through a point 7. The
magnitude of the normal stress and the shear stress components at the point 7 can be

expressed as
o=T o W —omn|| (I1.45)

;T =]

(S}
S}
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Mohr’s failure criterion considers that, at a point, the limiting shear stress in a plane is a
function of the normal stress in the same plane, i.e.,

|7| = M(0) (I1.46)

where M is an experimentally determined function. The simplest form of the Mohr function
M is known as Coulomb’s equation defined as

|7| = ¢ —otan¢ (I1.47)

where c is the cohesion and ¢ is the angle of internal friction; both are material constants
determined by experiments. The failure surface associated with Eq. (I1.47) will be referred
to as the Mohr-Coulomb surface. Since (IT1.47) must hold for any arbitrary vector 7', the
principal stresses must verify

=T o $=c— N+os | N0 sin ¢| tan ¢ (I1.48)
2 2 2
If we define 14 sind
sin
K=—— I1.49
1 —sin¢ ( )
and 5 5
¢ CoS
R, =—""= I1.50
1 —sing¢ ( )
Eq. (I1.48) is reduced to
KO’1—0'3:RC for 01 20'2 20'3 (1151)

It is clear from Eq. (II.51) that R. is the strength in the uniaxial compression.
According to Eq. (II.44), (I.51) can also be rewritten, in terms of variables p, ¢ and 0, as
follows

F(p, ¢, 0) =q—g0)f(p)=0 (IL.52)

with ] -
g(0) = oo (9 N %) for 6 € [0, g] (I1.53)
[) = 2 [Re+ (K~ 1)y (1154

It is of interest to note that the ratio ¢|g—o, p)/q|@==/3, p), corresponding to the ratio of the
tensile meridian to the compression meridian, is only internal friction angle dependent

(o

1-K’

q|(9:0, P _ 3 —sin¢
=2, 3+sing

p €]

+ oo (IL.55)

In principal stress space, the Mohr-Coulomb envelope is an irregular hexagonal pyramid. Its
meridians are straight lines (Fig. I1.7), and its cross section in the m-plane (p = 0) is an
irregular hexagon (Fig. 11.8). The hexagons shown in Fig. IL.9 are the intersections of the
pyramid with the coordinate plane o3 = 0. When ¢ = 0, the hexagons become identical
with Tresca’s hexagons as shown in Fig. I1.8 and I.9. In Fig. I1.9 the axes >, >, and X3
are the projections of the axes o1, 09, and o3 on the deviatoric plane.

The Drucker-Prager failure surface

In the principal stress space, the Drucker-Prager surface is a cone with a circular devia-
toric section centered on the hydrostatic axis

F(p, ¢, 0) =F(p, ¢9) =q— f(p) (I1.56)
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Figure I1.7: Meridians of the Mohr-Coulomb failure surface

Y1/Rc

Zzﬂ{y \ Y3/Rc

0=0
Figure 11.8: Mohr-Coulomb failure surface in the deviatoric plane

where f(p) is a linear function of the mean stress p

f(p) = a1p + (I1.57)

where oy and ay are material parameters. Obviously, when a; = 0, the Drucker-Prager
failure surface becomes identical with the Von Mises’s surface.

oy and ay may be calibrated such that the Mohr-Coulomb surface and the Drucker-Prager
surface are made to coincide along the compression meridain (¢ = 7/3). In this case a; and
as can be related to the constants ¢ and ¢ by

6sin(¢) = 6¢ cos(¢)
3 —sin(¢)’ 3 — sin(¢)

The cone corresponding to the constants given by Eq. (I1.58) circumscribes the Mohr-
Coulomb hexagonal pyramid (Fig. 11.10). On the other hand, the inner cone passes through
the tension meridian (f = 0) will be characterised by the constants

_ 6sin(¢) ~ 6ceos(9)
T 34sin(g) 2 3+sin(g)

(I1.58)

Q] =

(11.59)

aq
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Figure I1.9: Mohr-Coulomb failure surface in the coordinate plane o5 =0

However, the approximation given by either the inner or the outer cone to the Mohr-Coulomb
failure surface can be poor for certain stress states as can be seen in Fig. I1.10b for the plan
stress state (o3 = 0).

The use of Mohr-Coulomb and Drucker-Prager models for the description of rocks and con-
crete is restricted to moderately stresses. However, because of their relatively simple formu-
lation, these models are commonly used in numerical analysis beyond their original range
of applicability. The need for realistic material models covering a larger response spectrum
of stress states and loading paths is evident when we try to consider the blasting problem
which involves, amongst other things, high hydrostatic pressures.

It’s well known that failure envelopes for rocks are, in general, concave towards the mean
stress p. At high pressures, strength eventually becomes insensitive to pressure (Lockner,
1995) and the material behaviour becomes fully ductile. Because the classic strength theories
used for other engineering materials have been found not to apply to quasi-brittle materials
over a wide range of applied compressive stress conditions, a number of empirical strength
criterion have been introduced for practical use. Among them one can find the empirical
strength criterion that was developed by Hoek and Brown (1980) for rock masses. For such
criterion, the failure surface can be expressed in terms of the maximum principal stress o;
and the minimum principal stress o3 as

01 — 03 2 01
{ = ] +mE—e=0 (TL60)
where m, ¢ and R, are material parameters.

In what follows we will propose a formulation, based on the Hoek and Brown failure surface,
which accounts for a large spectrum of stress states. The formulation aims at taking into
account the effect of the third stress invariant and the high hydrostatic pressure.

To overcome the fact that Eq. (I1.60) does not account for the intermediate principal stress,
one can use Eq. (I1.44) to exchange principal stresses (o1, o3) by the description using
(p, q, 0) invariants

2 2 9 0
{5% <COS€ + sin(0 + %))] - gch;;)cs - m}% —c=0 (IL61)
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Figure I1.10: The Mohr-Coulomb and the Drucker-Prager failure surfaces matched along
the compressive and the tensile meridians: (a) in the deviatoric plane; (b) in the coordinate
plane o3 = 0.

In particular, for § = 7/3, Eq. (I1.61) becomes

2
[ﬁ} PR R (IL62)

where ¢. = q|(9=r/3, p)- In order to consider a smooth deviatoric section, Klisinski (1985)
proposed to replace the stress components g. by the polar coordinate ¢/£(6), where £ is a
smooth elliptic function given by

2(1 — %) cos O+ (26 — 1)4/4(1 — 32) cos? 0 + 532 — 473 1
¢06) = = 52)(308\2/«94— 25— 1) o Belm 1l (1163)

in which the parameter 5 = q|(g=0, p)/q|(9=/3, p) is referred to as eccentricity. Along the
tensile (¢ = 0) and the compressive (0 = 7/3) meridians, the elliptic function takes the

following values
£00)=p
- I1.64
{ £(3) =1 (IL.64)

Since the isotropy is assumed, the cross section of the failure surface in the deviatoric plane
have a 27/3 period and 7/3 symmetry. Therefore, although it is only defined in the sector
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0 € [0, %], £ extends, by symmetry, to all polar directions 6 € [0, 27].

To preserve the convexity, the eccentricity must satisfy the condition § € [1/2, 1]. At the
upper limit, 3 = 1, the influence of the ploar angle 6 disappears, and the deviatoric shape
of the failure surface becomes circular. At the lower limit, 5 = 1/2, the deviatoric shape
becomes a triangle.

Thus, the resulting failure surface, expressed in terms of the three stress invariants p, ¢, and
0, can be defined as

2
1 ¢ m| 1 ¢ D
F 0)=|—<— — === —-—m=—c=0 I1.65
000 =[] 5 [awrie] - (IL65)
Alternatively, Eq. (I1.65) can be reduced to
F(p, ¢, 0) =q—£(0)f(p) = (11.66)
with
. p  _ q i m 1 [m? B
_r 4 __m Lym .y 11.67

In order to ensure the concavity of the meridians of the failure surface at high pressures, we
can introduce an additional parameter n < 1 in such a way that the failure surface becomes

F(p, ¢, 0)=q—£0)f(p)" =0 (11.68)
G,/R.
-1 —6.5 U 61/R,
-0.5 1
Hoek and Brown 1
01=‘iz,,,,ff"' B=0.78

Figure I1.11: Failure locus on o7 — 03 plane (o3 = 0) of the smooth and the Hoek & Brown
failure surfaces.

The difference between the smooth failure surface as compared to the original Hoek and
Brown surface is best appreciated if one considers the failure locus in the principal stress
plane oy — 09 (Fig. II.11) and in the deviatoric plane (Fig. 11.12). These figures show both
failure surfaces for n = 1 and 8 = 0.78. The elliptic variation of the deviatoric strength
exhibits the effect of the intermediate principal stress that is missing in the original strength
proposals by Hoek and Brown.

Fig. 11.13 shows the compressive meridian of the new failure surface for different value of n.
At high pressures, the pressure sensitivity decreases when n — 0, it disappears completely
for n = 0.

The influence of the eccentricity 3 is best illustrated in plane stress when the failure surface
intersects the o3 = 0 plane. Fig. II.14 shows the trace of the failure surface for different
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Figure I1.12: The smooth and the Hoek & Brown failure surfaces in the deviatoric plane.

3 q/R.
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Figure I1.13: The compression meridian of the smooth failure surface for different n.

values of the (3. It can be seen that the eccentricity strongly affects the biaxial compression
region.
Fig. I1.15 shows the failure surface defined by Eq. (I1.68) in the principal stress space.

Now, if we consider the compressive meridian, we can by curve fitting on triaxial tests
data, calculate R., m, ¢, and n. Fig. I1.16 shows the fitting results for the amphibilite and
the sandstone defined in section I1.3.

Finally, from experimental investigations found in literature, it is shown that the ratio
q](6=0)/4|(9==/3) can be a pressure dependent parameter. In fact, as indicated by Chen and
Han (1987), it may increases with increasing hydrostatic pressure: it is about 1/2 near the
m-plane and reaches a high of about 1 for high hydrostatic pressure. To account for this
pressure dependency, one possibility is to choose the eccentricity [ as a pressure dependent
function

B =B(p) (I1.69)
subjected to the restrictions
. . 1
Jim G(p) =1 and lim 5(p) =7 (11.70)

Here, py denotes the intersection point of the failure surface with the hydrostatic axis.
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Figure I1.14: Plane stress sections of the smooth failure surface for different [.

Figure I1.15: Failure surface in principal stress space.
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Figure I1.16: The new failure surface compared to experimental data

I1.4.1.3 Internal variables evolution laws

In what follows &, will denote only hardening/softening internal variables.
Inelastic strain evolution law

If we admit that the rate effect on failure surface reflect a material property rather than
a structural one, then, in this case, the natural way to take into account, this rate effect,
is to consider rate-dependent models such as viscoplasticity. In the opposite case, rate-
independent models seem to be the most appropriate. However, when strain softening is
introduced, the last type of models may induce localization problem (we will discus this
problem in section I1.6). To overcome this problem, one possibility consists of using rate-
dependent models. In such case, the fluidiy parameter, introduced in section II.4, will not
referred as a material parameter, but it will be used only in order to regularize the localiza-
tion problem.

In this study, we will restrict ourselves to the rate-dependent plasticity, in particular that of
Perzyna-type. In this case, €”? will denotes the inelastic strain tensor (¢™ = €'?).

In classical plasticity/viscoplasticity, ¢” always denotes a vector parallel to the normal of a
smooth scalar potential function ) = @) (g, ék)

oQ
cop _.o0Q
@ differs from the yield function F in the non-associated case.

With the Helmholtz specific free energy given by Eq. (I1.25), the Clausius- Duhem inequality
(I1.23) leads to

g: 7 =90:m>0 (IL.72)

Since 4 is a positive function, inequality (I1.72) is further reduced to

og:m>0 (I1.73)

I

When F = (), the specification of a smooth scalar yield function which is convex with respect
to g and satisfying F (g, £k) < 0 is a sufficient condition to respect the preceding inequality.

For the plastic multiplier, it is defined by Eq. (I1.37), where ¢(F) is a monotonically in-

creasing function of the loading function for F > 0. At this stage, it is essential to introduce
the following additional assumption: the viscoplastic strain rate must be bounded, i.e., does
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not increase indefinitely. In fact, stress states propagate in materials with the elastic wave
velocities, but fracturing has its own limit velocity that is essentially smaller. The limit
velocity is explained by the growth of the material toughness when the velocity is close to
the Rayleigh wave velocity or by the dynamic instability of cracks at high-velocity growth
(Nikolaevskiy, 1996). An elementary treatment leading to a prediction of maximum crack
velocity is given by Meyers (1994). More rigorous solutions to this problem were given by
Freund(1990). This assumption will be introduced through the following plastic multiplier

A(a, &) = v. [1 — exp (— <M>n)] (I1.74)

R(&)

where (z) = (x + |z|)/2 denotes McAuley brackets, v., n. are material parameters. v, rep-
resents the maximum viscoplastic rate and R is the uniaxial compressive strength which is
assumed to be function of the hardening/softening variables &;.

Non-Linear isotropic softening law

The material behaviour is assumed to be isotropic during the entire deformation history.
Inelastic deformations occur when the elastic limit, which is defined by the initial yield sur-
face, is exceeded. In consequence of strain-hardening, the compressive strength may increase,
until the failure surface is reached. The evolution of the yield surface from its initial location
to the failure surface can be controlled by strain-hardening internal variable. However, since
the initial yield surface has a different shape than the failure surface, both the size and shape
of the subsequent yield surfaces must vary continuously during hardening from the initial
yield shape to the final failure shape. This is why the hardening is relatively complicated
and the complexity will increase if we also consider the rate-dependent plasticity.

For this reason, in this study, we will restrict ourselves to the softening behaviour, i.e. the
initial yield surface will be confused with the failure surface. As discussed above, the soft-
ening can be considered as a structural phenomenon rather than a material property, but in
this work we assume also that it will be the case.

The principal task when developing such a formulation is to link the evolution of the yield
surface with the degradation of the compressive strength and identify the internal variables
which control the process. Isotropic softening will be assumed and the softening of the
yield surface will be controlled by the change of the uniaxial compressive strength, thereby
translating the failure surface along the hydrostatic axis (away from the tensile region) to
finally arrive at a residual state. Like many other models, we introduce the following internal
variable

t
& =&, 1) = [ 11E7(T, 7)lldr (11.75)
o 1<
The reduction of the compressive strength is assumed to be given by the following relationship

R(&) =R, {oz + (1 —«a)exp (—wcfa)} , a€l0, 1], w.>0 (IL.76)

where R., o and w. are material parameters.

I1.4.2 Damage theory applied to modelling quasi-brittle materials
behaviour under tensile loading

On the phenomenological level, it’s widely accepted that the failure of quasi-brittle materials
under compressive loading can be modelled by means of classical plasticity theory. In this
case, we can, as introduced earlier, use a scalar internal variable to describe the isotropic soft-
ening process. However, when we deal with tensile loading, the formation of cracks induces a
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directional bias to the material structure. In fact, tensile loading in one direction leaves the
tensile capacity intact in the transverse direction, the evolution of the corresponding yield
surface in the stress space by an isotropic softening rule is questionable. To overcome this
difficulty, several approaches have been investigated. Among them, one can find the use of
a kinematic softening rule (Feenstra and De Borst, 1995). Nevertheless, this formulation,
which was used only in 2D, was not able to take into account the crack-closure-reopening
effect. Another approach which can be used in a particularly convenient manner to model
both the load-induced anisotropy and the unilateral condition due to crack-closure-reopening
effect is the so-called damage theory. The pioneering work of Kachanov (1958) furnishes the
first example of a damage theory, restricted in principle to either one-dimensional or isotropic
theories, via the effective stress concept. Since the introduction of this concept, models in-
volving damage become progressively more popular and are nowadays often used for the
constitutive description of quasi-brittle materials, such as rocks, concrete, ceramics, etc.
Damage in materials is usually induced by nucleation, growth and coalescence of certain
microscopic cracks and cavities. Since the development of these cracks and cavities is gov-
erned by the action of applied stress and strain, material damage is essentially anisotropic.
This feature is especially important in quasi-brittle materials damaged by the development
of distributed and oriented microscopic cracks. Thus, a scalar damage variable often has a
serious limitation to the description of material damage, and a number of theories have been
developed to model the anisotropic damage state by means of damage variables ranging from
a vector to higher order tensor.

The second-order symmetric damage tensors are the most commonly employed because they
are mathematically simpler than the higher order tensors, and yet can describe most essential
features of anisotropic damage. Though this second-order damage tensor cannot describe
more complicated damage state than orthotropy, it has been often employed in the develop-
ment of anisotropic damage theories (Cordebois and Sidoriff, 1982; Murkami and Kamiya,
1997; Halm and Dragon, 1998; Carol et al, 2001; to cite only a few).

In what follows, we will use the following damage tensor

@

=Y O, ®M,; (I1.77)

=1

where ©, and T; are respectively the principal values and the unit vectors of principal
directions of the tensor ©.

11.4.2.1 Effective stress and strain, energy equivalence

Degradation may be understood as the average effect of distributed micocracks. Effective
stress and effective strain are defined as stress and strain to which the material skeleton
between micro-cracks is subjected. In this context, the relation between effective stress o
and effective strain € describes the constitutive behaviour of the undamaged material, which
for the sake of simplicity, is assumed to be linear elastic and isotropic

L E = 2é + Atr(€) (I.78)

ISE

1=

where Hy is the Hook isotropic elasticity tensor of the undamaged material.

Damage variables must relate the effective quantities to their nominal counterparts, which
are the ones that are measured externally (observable variables) and satisfy equilibrium and
compatibility at structural level. The relation between nominal stress ¢ and nominal strain
€ describes the constitutive behaviour of the damaged material

(S}

=H(9) ¢ (11.79)
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where H is the Hook elasticity tensor for the damaged material.

In a geieral state of deformation and damage, the nominal stress tensor g can be related to
the effective stress tensor g by the following linear transformation

(I1.80)

Q:

=
ISE

where M is a fourth-order linear transformation operator. Depending on the form used
for M, it is very clear from Eq. (IL.80) that the nominal stress tensor ¢ is generally non-
symﬁetric. Using a non-symmetric effective stress tensor as given by Eq.(I1.80) to formulate
a constitutive model will result in the introduction of the Cosserat and micropolar continua.
However, the use of such complicated mechanics can easily avoided by symmetrizing the

effective stress. Omne of the symmetrization methods is given by Cordebois and Sidoroff
(1982) and is expressed as follows:

[
Qe
IIQ

(NI

(I1.81)

(S}

(@

The fourth-order damage effect tensor corresponding to Eq. (I1.80) can be defined such that

1 1

M=0:%g 07 (IL.82)

where advantage has been taken of the symmetry of g to obtain a fourth-order tensor M

with major symmetry
Mk = Myi; = Mji = My (11.83)

For undamaged state, © = I, which corresponds to the identity transformation (g = Q)
In literature, one can find the damage tensor denoted by D and defined such that

0=(1- Q)_l (11.84)

The two tensors © and D share principal axes and their principal values are related according

to
1

1—D;
D; can be interpreted as the ratio of the area reduction in the plane perpendicular to 7,
caused by the development of cracks (Murkami and Kamiya, 1997). D, varies between 0 and
1 while ©; varies between 1 (no damage) and +oo (full damage).
O is considered as an internal state variable which characterises the anisotropic phenomenon
of micro-crack distribution in the material.
In order to find the relation between nominal strain tensor and effective strain tensor, in
literature, one can find three approaches: strain equivalence, stress equivalence and energy
equivalence. In contrast to the strain and stress equivalence, energy equivalence induces
symmetry in the secant stiffness and compliance tensors. For this reason we have made the
choice of energy equivalence. In this approach, the stored elastic energy is the same in terms
of effective quantities or in terms of nominal quantities:

%g re= %i P (I1.86)
Using Eqgs. (I1.81) and (I1.86 ) we can easily obtain
=97 ¢ .9 (I1.87)
Combining Eqgs. (I1.81) and (I1.87) with Eq. (IL.78), Eq. (II.79) becomes
c=2p0"" . .0+ \Ne: 010! (11.88)



Where © 3 Q% nd ©' can be expressed as
3
1

= i=1 i=1 i

l\DI»—A

Finally, Eq. (II.88) together with Eq. (I1.79) lead to the following expression of the stiffness
tensor:

[[f}==

(@) =re'we '+ O™ (I.90)
The compliance tensor can also be expressed as:

1+v
E

Notice that Eq. (I1.90) and Eq. (I1.91) presents the orthotropic structure of the stiffness
and the compliance tensors in which g_l and © simply replace the second-order identity
tensor I in the undamaged state.

[f}==

(@) =-reee+—088 (IL.91)

I1.4.2.2 Damage evolution law

In this context, the thermodynamic state can be described by the total strain tensor ¢ and the
damage tensor ©. Thus, the Helmholtz specific free energy function can take the following
form

v="1(c ©) (IL.92)
In order to establish a thermodynamically consistent damage evolution law, the only thermo-

dynamic restriction to be fulfilled is the Claussius-Duhem dissipation inequality (Eq. (I11.23))
which, in this case, can be written as

%

o 87

IIS
||®

) >0 (11.93)

where w = —p% is the thermodynamic conjugate force associated to the state variable ©.

The conjugate force associated to the state variable €is

%
11.94
2= P (11.94)
Using Eq. I1.79 and I1.94 we can easily obtain
1 e
v (e 8) = 5pE" H(©):c+v° () (11.95)

In what follows we assume that ¢»© = 0. In view of Eq. (I1.95), the thermodynamic conjugate
force corresponding to © becomes

W= e Odg H:e (I1.96)
On the other hand, stiffness and compliance tensors are inverse to each other, i.e.,
H:H'=T (11.97)
where I° = 1 ® I is the symmetric fourth-order identity tensors. By differentiation, Eq.
(I1.97) leads to
doH=-H:909g H':H (I1.98)
47



The thermodynamic conjugate force w is then rewritten as

1 0

-1 (11.99)

(S}

[[[l=s
(S}

[
Il
DO —

Making use of Eq. (II.91), one can obtain the following convenient expression of w

1+v v
=~ cg.9 —E(g.g)g (I1.100)

=
&

This force has no clear physical meaning, which makes it difficult to propose and interpret
damage rules (Chaboche, 1992). This reason motivates Carol et al (2001) to suggest a new
internal state variable L. This variable is a function of the history up to time ¢ of the damage
tensor © and is given by the following differential equation

L=26"7.0.07 (IL.101)
with
L(t=0)=0 (11.102)
Thus, the new thermodynamic conjugate force corresponding to L can be simply expressed
as 1 1 i 1.
QZ§Q2 Lw. 92 =52 £ (I1.103)

Note that, this conjugate force has the same principle axes as ¢ and €. Its principal values
are equal to

1
a; = §&i €; (no summation), i=1,2,3 (I1.104)
In addition, its first invariant is equal to the elastic stored energy
tr(a) = 25 E— 2o (11.105)
a)=52:-£=52-¢ .

It is noteworthy that for isotropic damage L =/ I, the thermodynamic force conjugated to
¢ is the stored energy tr(a).

With these considerations, inequality (I1.93) becomes

O=a:L>0 (11.106)

w:

As mentioned above, the only restriction to formulate evolution laws is that the second law
of thermodynamics must be fulfilled, i.e. that the dissipation inequality (II.106) must be
fulfilled.

As given by Eq. (I1.103), a does not distinguish between tension and compression, which is a
fundamental aspect of quasi-brittle material’s behaviour. In order to handle this restriction,
Carol et al (2001) propose to redefine the conjugate force as follows

a=5(a)(€) (11.107)

It is clear from Eq. I1.107 that the principal values a; of a are positive.

Finally, with these considerations, we introduce the following damage evolution law

3 ~ ~
k=1

(1=
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where T, are the principal directions of a. For the plastic multiplier, we will use a similar
definition of that used in the viscoplastic compression model

Aa(ag) = vg [1 — exp (— <%; - 1>ndﬂ (I1.109)

where vy, Ry and ny are material parameters. v, represents the maximum damage rate
associated with the material microcracking.

Using evolution law given by Eq. (I1.108), and noting that zA,(z) > 0 Vz € IR', we can
prove easily that inequality (I1.106) is satisfied:

3 N N 3 B B 3 .
k=1 k=1 k=1

I1.4.3 Coupled response of the elasto-viscoplastic and the rate de-
pendent damage models

In this section, we try to link the independent models developed earlier. As the first step,
we assume the additive decomposition of the total nominal strain tensor

e=¢ +e” (IL.111)

Since the elasto-viscoplastic response of the damaged material is considered here, the Helmholtz
specific free energy can be given as follows

v=1(e O ¢ €7) (IL112)

where ¢ characterize the isotropic softening in viscoplasticity and © characterize the anisotropic
damage. Once again, we assume that v is independent of the internal scalar variable ¢ and
is supposed to be written in the following form

(0 (g, 9, &, gvp) = iee : % (@) i €f (I1.113)

On the other hand, the relation between effective stress g and effective elastic strain €°, which
describes the constitutive behaviour of the undamaged material, is assumed to be expressed
as

[1Qe

€6 = 20" + Mr(e9)]1 (I1.114)

1=

The relation between nominal stress o and nominal elastic strain €® describes the constitutive
behaviour of the damaged material

(@) :¢ (11.115)

Q:

[]/=s

The effective stress tensor is related to the nominal stress tensor by Eq. (I1.81). The energy
equivalence approach allows us to find the relationship between the effective elastic strain
tensor and the nominal elastic strain tensor

=

E=0"7.¢&.070 (I.116)

Il

Finally, the Claussius-Duhem dissipation inequality (I1.23) becomes, in this case

g éP4a:L>0 (IL.117)
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where g can take the following new from
a=2(5).(&) (IL118)

It is noteworthy that the last inequality is the sum of the viscoplastic dissipation (I1.72) and
the damage dissipation (II.110). Thus, if we consider the evolution laws of €”” and L given
respectively by Eq. (I1.71) and Eq. (II.108), inequality (I1.117) will be respected.

Let us now reintroduce the inelastic strain tensor gi” such that
c=Hy: (g - gm) (I1.119)

Using Eq. (I1.111) together with Eq. (I1.115) and Eq. (I1.119), one can easily obtain

m o_

T H(©): (e—€7) (T1.120)

Il
lig}

B

I1.4.4 Stiffness recovery

The previous model presumes that damage is always active, i.e. damage continues to grow
whether the micro-cracks are open or closed. However, it is obvious that damage is pro-
moted mainly in the tensile stress regime, whereas compressive stresses tend to close the
micro-cracks. This scenario motivates the introduction of a unilateral condition, i.e. the
active/passive condition, due to the micro-crack-closure-reopening effect.

A common approach in literature for discerning the different response in tension and com-
pression is to extract the tensile stresses or strains by introducing projection operators (Ortiz,
1985). In this study, we select a second-order projection operator defined as

3
P=) H(on)TW,® Ty (IL.121)

k=1

where 7 is the Heaviside function. o, are the principal values of the stress tensor and 7',
are its principal directions.
Using this projection operator, we define an active damage tensor as follows

@ =I1+P[O-1]|P

(I1.122)

After this definition, three basic properties of ©“ can be mentioned

1. For undamaged state: 0“=0=1
2. For triaxial compression (2 = g) 0" =1
3. For triaxial tension (2 = l) 0" =0

In order to avoid computational difficulties associated with the use of the Heaviside function,
we suggest to replace 7 by the following smooth function

T — X

™

1 1
h(z) = st arctan < p

> . k>0 (I1.123)

where z( and x are monitoring parameters.
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I1.5 Integration of constitutive equations

Let 7 € Q be a given point of interest in the body. At this point, the local state of the
body can be described by the rate dependent constitutive model which can be written as
the following

2-H () (- ) = Yoo
- k=1
3
0“=1+R[@-1|P, B= 3 h(on) T @ Ty —
0-f(z ©)
&7 =yg(c ¢)
§=n(e €)

Here, f, g, h are known functions.

I1.5.1 Numerical integration: basic principles

The solution of the constitutive problem is carried out by subdividing the time interval into

a finite number of time steps
N

[0, T] = Ultn, tns+] (IL.125)

n=0
The unknown functions are substituted by the algorithmic values assumed at the beginning
and at the end of the time steps so that the original problem is reduced to subsequent
solutions of finite step problems.
At time t,,, we assume that the local state of the body at point 7 is completely defined. By
this statement we mean that the value of

{gnv Qica &ns gzp} (T1.126)
are known and, therefore, the stress state
o, =H(€"): (c, —€7) (IT.127)

is also known. The basic problem we shall be concerned with is the update of the fields
(I1.126) to time t,,1 = t,, + At in a manner consistent with the constitutive model.

Before writing the discrete form of the evolution laws, let us firstly review a classical family
of schemes for numerical integration of ordinary differential equations.

Let x : IR — IR be a smooth function, and consider the initial-value problem

(1) = x ((1)) -
2(0) = 70 } in [0, T (I1.128)

We shall be concerned with the following one-parameter class of integration algorithms called
the generalized midpoint rule

Tpt1 = Tp + AtX(xn-i-ﬁ)
{ Ty =021 + (1 —Nzxy; 9 € [0, 1] (TL.129)
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Here, x,,1 = x(t,+1) denotes the algorithmic approximation of the exact value x(t,1) at
time t,,,1 = t, + At. We note that this family of algorithms contains well-known integrative
shemes, in particular,

¥=0 = explicit integration sheme (forward Euler)
=1 = midpoint integration sheme (I11.130)
¥v=1 = implicit integration sheme (backward Euler)

Given the complexity of the constitutive relations and their aim which is to model quasi-
brittle materials in fast dynamics, we have chosen to implement an explicit sheme because
time integration needs to be extremely fast in 3D transient dynamics where time increments
are very small and where the number of degree of freedom is very high. In addition, we
assume that the strain tensor can be kept constant within an increment. This method, re-
ferred to as relazation method, was tested and it was shown that it gives accurate results.
The stress state used in the numerical calculations is that given by Eq. (I1.119). Therefore,
by using relaxation method, the inelastic strain tensor given by Eq. (I1.120) can be expressed
at time ¢, as

SIS

" =¢ —2_1 :g(@ff ) : (e —e? ) (I1.131)
where {Q‘flﬁrl, Ent1, gZ’jrl} can be given by

0" =0 +At f (g, 8%)

—n+1
er =er+Atg(a, &) (11.132)

fns1 = En+ AL R (gn, gn)

Finally, this present algorithm has been implemented in a transient dynamic finite element
code VIPLEF3D. In this numerical tool, the time derivative, arising in the local form of
the momentum equations, is replaced by the well-known Newmark algorithm. Large strain
computation was taken into account by decomposing the body motion into small steps and
by updating not only the body’s geometry but also the stress state.

I1.5.2 Uniaxial computational results

Due to the lack of data for material behaviour under high hydrostatic pressure, we will use,
for the sake of simplicity, a Mohr coulomb failure criterion and a Drucker-Prager potential
function in the elasto-viscoplastic model.

Values of material parameters are given in chapter III.

I1.5.2.1 Uniaxial tension test

Fig. I1.17 shows the response of the model in uniaxial tension test carried out at constant
strain rate. Upon unloading, the material returns to its initial stress and strain free state;
no permanent (plastic) strain occurs. Fig. 11.18 shows the response of the model in uniaxial
tension tests carried out at various strain rates. As can be seen, the response is dependent
upon the strain rate.

In Fig. II.19 the Dynamic Increase Factor (DIF), i.e. the ratio of the dynamic to static
strength, is reported, in a semi-log plot, as a function of strain rate. These results are in
agreement, with experiments.
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Figure I1.17: Model response for uniaxial tension test

11.5.2.2 Uniaxial compression test

Fig. 11.20 shows the response of the present model in a uniaxial compression test carried
out at a constant strain rate. The unloading-reloading line does not change with plastic
deformation. Fig. II.21 shows the response of the model in uniaxial compression tests
carried out at various strain rates. In Fig. II1.22 the Dynamic Increase Factor (DIF) is
reported, in a semi-log plot, as function of strain rate. These results are also in agreement
with experiments.

I1.5.2.3 Cyeclic uniaxial tension/compression test

Fig. 11.23 illustrates the applied strain-time curve. The result of this loading is reported in
Fig. I1.24. As shown, damage controls the response under tension, while plasticity is active
under compression. Under tension regime the material unloads at the degraded secant
stiffness. Under compressive regime the elastic stiffness is recovered simulating the closing
of micro-cracks. Once the compressive stress exceeds the yield stress, the material exhibits
softening plastic response. Upon reversing the strain path, the stress follows the elastic
response with the undamaged secant stiffness. When the loading cycle is back to tension,
the degraded secant stiffness is recovered, simulating the re-opening of the micro-cracks.
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Figure 11.18: Model response for several strain rates in uniaxial tension test
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Figure 11.20: Model response for uniaxial compression test
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Figure I1.21: Model response for several strain rates in uniaxial compression test
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Figure I1.24: Model response for cyclic uniaxial tension/compression

II.6 Localisation problem in dynamic fracture

In many structures subjected to extreme loading conditions, the initially smooth distribu-
tion of strain changes into a highly localized one. Typically, the deformation is trapped in
narrow band in which the strain can grow unboundedly. Nonlocal models (Engelen et al,
2003; Peerlings et al, 2001) and rate-dependent models are among the continuous approaches
proposed to regularize the localization problems. Here our attention will be focused on the
second class of models. Failure predictions of rate-independent plasticity are analysed and
compared with the rate-dependent one.

The mechanical response of quasi-brittle material such as rocks and concrete is strongly
non-linear. As consequence, the constitutive functional .# used in section II.2 to define
the stress state must be non linear. However, working with non linear functionals poses
formidable problems, even in the simplest cases. An alternative strategy, which overcomes
this difficulty and is commonly used in the non-linear mechanics, is to adopt an incrimental
(or rate-type) formulation in which the stress state is given as a function of the deformation
rate and the current thermodynamic state of the material. For small deformation theory, &
can be written as

o= (o, &, &) (I1.133)

If the constitutive function ¢ is linear in ¢, then the material is said to be incrementaly
linear. In this case, & can be expressed as

6=E(g &):é (IL.134)

Here, E is the tangent stiffness tensor. We will see below that we can identify its expression

for both rate-independent and rate-dependent plasticity theory .

IFor rate-independent formulation, a change in the time scale does not affect the material response, which
implies
VAeRT :g(g, 51@; )\g) = \9 (g, ﬁk, g)

o7



If we assume that E obey the minor symmetry conditions

Eijr = Ejit = Eijik, (I1.135)
then, Eq. (II.134) can also be expressed as
¢=E(z &):é=E(z &): Y7 (11.136)

Now, with Eq. (I1.136) in hand, we will focus on the condition for localization. From Eq.
(IL.4), the equation of motion takes the form
*v
ot?

divg = p in Q x [0, 7] (11.137)
Here, the body force ? is assumed to be time independent.
Thus, the use of Eq. (I1.136) and (1I.137) renders

*v

ot?
To carry our analysis further we need to make an additional assumption about the stiffness

tensor. We assume that it is independent of the position vector 7 and can be given at a
homegeneous reference state (go, 5,2), ie.,

div {g : gw’] ~p in Q x [0, 7] (11.138)

E(z(7, 1), &(T, 1) =E(2’(). &) VT €Q (IL.139)

With such an assumption in hand, one of general forms of the solution to Eq. (I.138) can
be written as
(T, t) =Ty f(T.T — ct) (I1.140)

where T, is the velocity at @ = 0 and ¢ = 0, ¢ the wave speed, 7 the unit normal to the

wave front, and f is a scalar function. Substituting Eq. (I1.140) into (II1.138), we obtain
C(TM) Vo= pc* Vo (I11.141)

with
C(M)="T1. E n (I1.142)

¢ (7) is the so-called accoustic tensor. It can be seen from Eq. (II.141) that the wave
speed is proportional to the eigenvalues of the acoustic tensor. As consequence, a spatial
discontinuity will be formed when the acoustic tensor becomes singular in some direction.
Thus, the condition for localization can be given by

det €(7) = 0 (11.143)

From a numerical point of view, a singularity of the acoustic tensor corresponds to the
lost of the hyperbolicity of the Initial Boundary-Value Problem which causes severe mesh-
dependence.

In what follows, our attention will be focused on the formulation of the tangent stiffness
tensor for both elasto-plastic and the Perzyna viscoplasticity formulations.
For this purpose, we will use the linear elasticity framework,

€ (I1.144)

g:

[[fa=
lien

where H is the constant elasticity tensor obeying the major symmetry conditions

Hijri = Hyiij = Hji = Hijie (I1.145)

In other words, the function ¢ is homogeneous of degree one in ¢ (in a way restricted to the positive value
of \).

o8



I1.6.1 The elasto-plastic tangent stiffness tensor

Irreversibility is introduced by requiring that the state of the material (g, fk) e E. If

F (g, fk) < 0, the response is instantaneously elastic:

(11.146)

g:

[[fa=
i

Now, suppose that (g, Ek) € OJIE which implies that F (g, Ek) = 0. According to the
consistency condition (II.33) and to the expression (II1.28) and (II.71), one can find, when
using the chain rule, that

F(o, &)=

oF : 'laF: : F ol <0 (I.147)

@ :

Introducing the scalar hardening/softening modulus of the material

H(g,&)::—ggek (I1.148)

A positive value of H denotes hardening, a negative value indicates softening, while H = 0
characterize perfect plasticity.
In order to carry our development further we need to assume that

OF

K(Q? Ek):@

+H>0 (11.149)

[ff==

[

Such an assumption is crucial in the establishement of the correct formulation of the load-
ing /unloading conditions in presence of softening 2.
With these considerations in mind, it follows from the consistency condition that

1 (oF
V_K Jo

Finally, according to the additive decomposition of the total strain into an elastic and plastic
part, to (I1.144), and to (IL.71), it follows that

[[fa=
1)

:') (I1.150)

o=H:(e-¢")=H: (- m) (IL.151)
Then substituting (I1.150) in (II.151), we obtain
F=E7: ¢ (I1.152)

where E? is the elasto-plastic stiffness tensor given by

if 4 = 0,

H 50 (I1.153)

=i

:@@

e
=
[
(=R

=
Q
SE

Note that, due to the non-associativeness of the flow rule, the stiffness tensor does not pos-
sess major symmetry.

2For hardening or perfect plasticity, characterized by H > 0, K is always > 0 when the flow rule is

associative, i.e. m = g—g. This conclusion is the result of the positive definiteness of the elasticity tensor.
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Following the above considerations, the acoustic tensor, in this particular case, can take
the form

¢ =% (W, H) (I1.154)

In this equation, the dependence, for a given thermodynamic state, of the acoustic tensor
on the normal 7" and the hardening/softening modulus is emphasized. In addition, let 2
be the set of values of H for which & becomes singular in some direction 7":

Z={HeR|IWeR*; || W||=1; det|¢ (7, H)| =0} (11.155)

If & # (), one can choose the critical hardening/softening modulus defining the localization
as the maximum one belonging to 2

Her = max [H € 2] (11.156)

The corresponding direction 7., define the possible direction of propagation of the discon-
tinuity B
To€{TWEeR?; | W] =1; det[€ (7, He)| =0} (11.157)

I1.6.2 The Perzyna elasto-viscoplastic tangent stiffness tensor

For deriving the tangent stiffness tensor of the Perzyna viscoplasticity, the flow rule is dis-
cretized and the solution is analysed over a finite time increment. To this purpose, we
consider a typical time increment [¢, ¢t + At]. We assume that all variables are known at t.
For the sake of simplicity, we also assume that the hardening/softening variables will be con-
stant within the time increment. The quantity € (¢ + At), corresponding to the viscoplastic
strain at the time t = ¢ + At, is thus given by

t+AL
e (t+ Al =g + / EPdr = 7 + Ae” (IL.158)
t

where 7 = €"P(t) and Ae™ is the viscoplastic strain increment. In this case, we will consider
an implicit integration sheme, such that

A" = Ae”? (g) (I1.159)

where ¢ = ¢ (t + At). Using Eq. (I1.28) and (I1.37), (I11.159) reduces to

e” = ¢ + gs@(g@(g) (IL.160)

- n
Now, according to the additive decomposition of the total strain into an elastic and vis-
coplastic part and using Eq. (I1.160), the resulting discrete equation read in stress residual
form as

E(Q, g) =g—-H:iet+—p(@H:m(g)+H:g"=0 (IL.161)
- N T - = = T} = - = = -

—=:do+=:de=0 (I1.162)

0 At O At
P om+p—|=H: H‘1+—¢—@+——8w®m (11.163)
o o = |= n " Oa n 0o =



=_-_H (IL.164)

Thus, substituting (11.163) and (I1.164) into (II.162) we obtain

2
IS
I

E? :de with E°P = [ﬂl +—p=+—-"0m (I1.165)
= = = = n " da n do ~ —

where E“? is the elasto-viscoplastic stiffness tensor.

Finally, by using the Woodbury formula 3, the tangent stiffness tensor of Perzyna viscoplas-
ticity can be expressed as

-1
e _ o | a0 dp
E7=4 lAt tm:A: 8g] A da ®m:A (I1.166)
where »
A= lﬂ—l + EB] with B = 808_@ (T1.167)

It is of interest to note that Ee”p has the same structure as Eep with A playing the role of

the elasticity tensor H.

Therefore, from (II.1:65) when n — oo, E“? — H, resulting in instantaneous elasticity.

However, when n — 0, A — &Q‘l , then,_it follows from (I1.166) that

B1 <@:

In other terms, the limiting case n — 0 results in instantaneous zero tangent stiffness tensor.
This particular behaviour may cause numerical instabilities.

n
Eevp
= At

[fles;
[fles;

. Op 830 _
1. 1 . 1
: —8g> B : 5, ®m: (I1.168)

I11.6.3 Example: one-dimensional bar problem

A bar of quasi-brittle material with a uniform cross-sectional area is permitted to deform only
in the direction of the bar’s axis (Fig. I1.25). The bar has a mass density p = 2000 kg/m?,

s

— X — G =0R,

- L=1m

- L
- —

Figure 11.25: One-dimensional bar problem

a Young’s modulus £ = 50 GPa and a poisson’s ratio v = 0. The boundary conditions on
this bar are

(I1.169)

u(0, t) =0 Vt>0
o(L, 1) =6R, Y1>0

3The Woodbury Formula: let A be a square n x n invertible matrix, whereas U and V are two n x k
matrices with & < n and  an arbitrary scalar. Assume that the k x k matrix ¥ = I, + SV'A~'U, in which
I, denotes the k x k identity matrix, is invertible. Then

717

(A +pUV) - pATUS VAT

This is called the Woodbury formula
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where R, is the tensile strength, § is a positive scalar, u is the uniaxial displacement, and o
is the uniaxial stress.
The initial conditions are

(I1.170)

u(z, 0) =0 Vzell L
{v(az,O):O Vaelo, L]

where v is the uniaxial velocity. If 6 € [1/2, 1], then the transient wave will propagate
through the bar and its reflection at the fixed end will induce a tensile stress which exceed
the tensile strength. Therefore, a localized softening zone emerges.

In what follows we choose § = 0.75. Our attention will be focused on the evaluation of
the ability of the rate-independent and the rate-dependent plasticity models to describe the
dynamic failure process. Explicitly, a rankine plasticity model will be investigated. It will
be shown that, in the context of softening elasto-plasticity theory, the Rankine model bring
to light an ill-posed problem. On the other hand, the introduction of a viscosity param-
eter can, in the context of softening elasto-viscoplasticity theory, suppress the localization
problem and lead to a well-posed problem.

11.6.3.1 Elasto-plastic Rankine model

The governing equations of the elasto-plastic model are specified as follows

24 (g—gp) + Atr (g—gp)l

T®W—R(E) <0 (IL171)
eP el

(€)= Ri[a+ (1 —a)exp (—w€?)], ael0, 1], w>0

I
™
I

~ M.EH:‘Q@. IS}
1D
P
~— 3

where R denotes the tensile strength and 7 the unit vector associated to the maximum
principal stress direction. Fig. I1.26 shows the response of the model in a uniaxial tension
test. Constitutive parameters are also presented in Fig. I11.26 *.

Fig. 11.27 shows, in a semi-log plot, the axial strain as a function of the distance from the
bar end at ¢ = 0.3 ms. As can be seen, there is an intense localisation of deformation into
a narrow zone near the fixed end of the bar. The numerical solution that is obtained from
finite element analyses reveals a dependence on the fineness of the mesh as shown in Fig.
I1.27. Furthermore, we have conducted several simulations and we have found that upon
mesh refinement no physically meaningful solution can be obtained. All these results are in
agreement, with analytical predictions.

11.6.3.2 Elasto-viscoplastic Rankine model

The governing equations of the elasto-viscoplastic model are specified as follows

4 —1) (I1.172)
€= |levl| = 27 27
R

4Values of material parameters have been selected for illustrative purposes only.
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Figure 11.26: Elasto-plastic Rankine model response for uniaxial tension test

where 7 €]0, + oo[ denotes a given viscosity parameter.

Fig. 11.28 shows the response of the elasto-viscoplastic model in uniaxial tension test carried
out at various strain rates. As can be seen, the response is strongly dependent upon the
strain rate. For comparison, the elasto-plastic response is also presented in this figure. In
this situation, the elasto-viscoplastic model, unlike plastic model, produces a regularised
numerical solution, which can be concluded from Fig. 11.29 which shows the axial strain as
a function of the distance from the bar end. This figure reveals also the convergence towards
one unique solution for several discretisations using an increasing number of elements.

The regularising effect of this rate-dependent model becomes more clear when the viscosity
parameter is increased as can be seen from Fig. 11.30. This observation may be explained by
the fact that when the viscosity parameter increases, the material can acquire some ductility
which avoid the development of a localized zone. This can be visualised by plotting the axial
stress near the fixed end as shown in Fig. I1.31. It can be seen that, unlike plasticity where
the softening is very strong, the rate-dependent model shows moderate degradation and
the softening becomes negligible when the viscosity parameter is increased. This particular
behaviour will keep open the question of the wave propagation in softening material, which
undergo, even under high strain rates, a stongly degradation response.
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Figure I1.27: Axial strain as a function of the distance from the bar end at ¢t = 0.3 ms
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Figure I1.28: Comparison of the elasto-viscoplastic model response carried out at various
strain rates and the elasto-plastic response for the uniaxial tension test
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Chapter 111

Application: Laboratory Rock
Fragmentation by Blasting

La connaissance des mécanismes de fragmentation induits par l’abattage o U’explosif est d’une importance capitale pour un
abattage efficace des roches. Un meilleur résultat de tir a pour objectif une bonne qualité de fragmentation pour un codt de
production minimal.

Le développement de modéles numériques capables de simuler le processus entier du tir a l’explosif représente pour la commu-
nauté scientifique, a travers le monde, un défit magjeur qui reste en cours de développement. A notre connaissance, actuellement,
il n’existe aucun outil numérique, basé sur des considérations physiques réalistes, qui soit en mesure de modéliser ’intégralité
du processus de la fragmentation & l’explosif. Ce manque de modélisations fiables peut étre expliqué, d’un point de vue mé-
canique, par le fait que l’abattage des roches a explosif réunit deux branches difficiles, a savoir la mécanique des roches et
la thermodynamique des explosifs (la détonique). Pour la premiére, la difficulté réside dans la complexité du milieu rocheuz
(fissuration & l’échelle microscopique et macroscopique). Les plans de faiblesses, qu’ils soient naturels ou induits par des tirs
précédents, sont trés difficiles d’étre pris en compte dans des outils numériques déterministes. Cependant, ces plans sont d’une
importance fondamentale dans la conception d’un tir optimisé. Ainsi, la construction de modéles numériques réalistes doit
intégrer, entre autres, le fait que le résultat final du tir, en termes de distribution de fragments, est une combinaison de la
distribution des blocs de roche qui ont été simplement détachés sous l’effet de l’explosion et la distribution des fragments venant
de la fragmentation des blocs intacts. Quant a la détonique, la difficulté réside dans l’élaboration de lois de comportement
capables de tenir en compte la transformation chimique des produits de détonation et l’interaction de ces produits avec la roche
environnante.

Ce chapitre ne traite ni un probléme réel de tir pratique, ni les détails des opérations d’abattage o l’explosif, mais se concentre
sur lanalyse du processus de rupture et la prévision de la distribution des fragments & partir des essais de fragmentation faits
o petite échelle. Néanmoins, pour avoir une idée sur l’interaction roche-explosif, un modéle théorique simple a été traité. Dans
notre modélisation numérique, cette interaction a été introduite par une condition auz limites donnant la pression générée par

les produits de détonation en fonction du temps.

ITI.1 Introduction

Knowledge of fragmentation mechanisms induced by explosive loading is of engineering im-
portance to break rock efficiently, and furthermore to control fracture extension in order
to limit damage inflicted to the surrounding rock mass. Successful blasting operations can
lead to the reduction of reinforcement costs and to the application of highly economic and
profitable extraction techniques to recover less accessible but valuable resources.

The development of tractable computer based models to describe the entire blasting process
from detonation to the particle size distribution is a great challenge which is still under
development. To our knowledge, at present, it does not exist a unified numerical tool that
can model the full process by using realistic physical approach. This lack of models can be
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explained, from a mechanical point of view, by the fact that the blasting problem couples two
difficult fields which are the rock mechanics and the detonation of explosives. Concerning
rock mechanics, the difficulty is related to the material’s heterogeneous nature. The weak
planes, which are formed by geological structures and previous blastings are not easy to
be taken into account in deterministic numerical tools. However, these weak planes are of
fundamental importance in the design of an optimised blast which achieve the most suitable
rock fragments distribution with a minimum mining production cost. So, construction of a
realistic numerical model to simulate the physical process of the rock blasting should, among
other things, take into account the fact that the final blast result, in terms of particle size
distribution, is a combination of both the distribution of the natural rock fragments that
have simply been loosened by the blast and the distribution of fragments coming from the
fragmentation of intact blocs.

Turning to the detonation of explosives, the difficulty in this field is related firstly to the lack
of an accurate description of the explosive behaviour, secondly to the interaction between
the detonation gases and the surrounding fractured rock.

This chapter treats neither a complete practical blasting problem nor the details of rock-
blasting operations, but focuses on the analysis of the fracture process and the prediction of
the particle size distribution of laboratory blasting tests. As was mentioned in the chapter
I, the experimental results that will be described were obtained from chamber blasting tests,
done in Montan University of Leoben, of cylindrical or cubical samples of rock material. The
blasted material was collected and in some cases a rebuilding attempt was done. Figs. III.1

Figure ITI.1: Rebuilt cylindrical and cubical samples

shows typical results of such rebuilding obtained from the blasting of a cylindrical and a
cubical sample.

Both figures show a radial fractured region and a material missing zone which indicates that,
near the blasthole, the fracture process is so intense that any rebuilding attempt was failed.
It is widely accepted that this zone is the result of a crushed zone around the drill hole and
an intensively fractured zone probably resulting from a compressive shear loading.

In our numerical modelling, the response of the structure was our main interest. The model-
ling of the blast loading is taken into account by using a defined pressure-time history on
an equivalent hole wall. At present, the numerical model cannot handle the interaction
between solid and fluid (detonation gases) problems. However, in order to have an idea
about the stress state in the immediate vicinity of the blasthole, an analytical approach was
developed. In this approach, the explosive-material interaction was taken into account. The
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fragmentation is treated only with the numerical modelling.

IT1.2 Analytical modelling

In rock blasting operations, the rock is fragmented by using an explosive charge confined
within the space of the borehole. After the ignition of the charge, the detonation propagates
through the charge at the velocity of detonation. The detonation process results in a phase
change of the explosive material, as a result hot detonation gases at high pressure is pro-
duced. Often, the behaviour of the explosive is represented by an equation of state and a
decomposition law of the form

e=e(p, pe, A)y, T=r(p, pe, A (ITL.1)

Here, e, p, p., 7, A are the specific internal energy, the pressure, the density, the reaction rate
and the progress variable of the chemical reaction. When A = 0 the explosive is unreacted;
A = 1 corresponds to a completely reacted explosive. In this study, we assume that the
generation of the detonation gases occurs instantaneously (A = 1) and that these gases are
described by the polytropic equation of state
I p

M. po) = % (111.2)
where v is the polytropic gas constant.
Concerning the solid, we consider an homogeneous, isotropic and linear elastic solid. As for
the borehole, both spherical and cylindrical case will be treated. Finally we assume that the
detonation parameters can be given by the Chapman-Jouguet states and that the expansion
of the detonating explosive from the original explosive volume to the borehole volume is an
isentropic process.
In the following subsections we will firstly investigate the analytical solution of the so-called
cavity problem. Secondly, we will present briefly the Chapman-Jouguet states. Following
this, the explosive-material interaction problem will be treated.

I11.2.1 Solution of the cavity problems

We consider the dynamic behaviour of cylindrical and spherical cavity in an infinite homo-
geneous, isotropic and linear elastic solid. The cylindrical cavity will be treated with the
assumption of plain strain condition.

Let us consider the small displacements assumption. Thus, the deformed configuration will
be the same as the reference configuration. In cylindrical coordinates (r, 6, z), the stress-
displacement relations can be written as

o, = E l@ TR - 5)3] (IIL.3)
or r
o= E l(1 - g)% 4 (k(1—0) +0) %1 (I11.4)
with (1 ) -
E= (1+v)(1—2v)’ =1 (IL5)

where u is the radial displacement, o, and oy are respectively the radial and the tangential
stresses. k is an integer defining the studied case (k = 1 for cylindrical cavity, k = 2 for
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spherical cavity).
The only nontrivial equilibrium equation is the radial one
0o, o, — Og 0*u
k = I11.6
or * r P o ( )
where p is the solid density. Using Eq. I11.3, II1.4 and III.6, one can obtain the following
wave equation

2 0
0“u k;(@u u) 18u:F:0 (1IL7)

a2 "r\ar r) der
where ¢ = \/E/ p is the velocity of longitudinal elastic waves in an infinite medium, and
I' is a radial volumetric weight. Eq. IIL.7 has to be solved with the following initial and
boundary conditions

u(r, 0)=0 Vr>a (IT1.8)
lim_u(r, 1) =0 V>0 (I1L.9)
or(a, t)=—p(t) Yt>0 (II1.10)

where a is the original cavity radius and p(t) is the pressure on the borehole wall. By using
the isentropic process expansion assumption, the borehole pressure can be expressed as the
following
—(k+1)y
¥ u(a, t

p(t) =Py (Pe/ﬂg) = I (1 + %) (II1.11)
where P, is the initial shock pressure on the borehole wall, and ¥ is the initial density of
the explosive.
Eq. II1.11 is obtained with the assumption that the density of the detonation gas decreases
only due to the gas expansion. Now, if we assume that u(a, t)/a < 1, Eq. I1I11.11 becomes

p(t) = By <1 — (k+ 1)7@> (IIL.12)

To solve the defined initial boundary value problem, we will use the solution developed by
Tijani (1993). Firstly, we introduce the dimensionless variables

§= (T11.13)

r
a

ct—r

n=1+ (111.14)

By asymptotic considerations, Tijani shows that the radial displacement can be written as

u(r, )= 2o 066, ) (IIL15)

where ¢ is given by
$(&, n) =& p(n) + E20(n) (IIL.16)

©(n) and ¥ (n) are determined by minimization of the volumetric weight I with respect to a
defined metric. I' = 0 corresponds to the exact solution. In view of Eq. III.15 and II1.16, T’

takes the from P 2k

where f’(z) = df /dx. For the spherical cavity, it is possible to nullify I" by simply taking
V() =¢'(n) Ynelo, +oof (I11.18)
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In this case, the obtained solution will correspond to the exact one. However, since, we can
not obtain an exact solution for the cylindrical cavity, Tijani suggests that

Y(n) =A¢' (n) Vneld, +oof (I11.19)

where A is a constant determined by the minimization of I'. To do that, one way consists of
the minimization of the distance between f(£) = 2A¢%/2 and g(&) = 2 defined as

() 1/2
(. 9) = | [ (1) - 9(©)) ] (111.20)
This leads to A = 8/5.
Finally, the general solution can be written as
P, P,
u(r, t) = Za 8l¢, 1) = Zal¢ e + AEH ) (I1.21)

with

— k=1and A = 8/5 for cylindrical cavity (approximate solution)
— k=2 and A =1 for spherical cavity (exact solution)

— ¢(0) = ¢'(0) = 0 (Initial conditions)

- o1, n) = B 2—?(1, n) +k(1=0¢(1, n) — %(1, n)| = —p(n) (Boundary condi-

tion)

Therefore, the only unknown function is ¢ (1) which can be easily determined by considering
the boundary condition at the cavity wall (¢ = 1). Thus, we obtain the following second
order linear differential equation

" +my +wp=1/A (IT1.22)

where

(I11.23)

{7n=%—§+kz+Wk+D%
1
Ww=3

(k+ 4k +1)2)

Let A = m? — 4w. To solve Eq. II1.22, we will distinguish the following three cases

— Case 1: A >0

p(n) = Fexp (—(m — VA) n/2) + Gexp (—(m + VA) 1/2) + i (I11.24)

— Case 2: A=0 .
o) =(F+Gn)exp(—m n/2) + I (I11.25)
— Case 3: A <0
o(n) = [F cos (\/I 77/2) + G'sin (\/j 77/2)} exp (—m n/2) + i (I11.26)
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where I’ and G are integration constants evaluated by using the initial conditions (¢(0) = ¢’(0)
Pressure-time history on the blasthole wall

The developed analytical approach will help us to have an appreciation on the dynamic
stresses on the wall of the blasthole produced by the rapid expansion detonation gases. For
a given I and v, Fig. II1.2 illustrates a typical result for the radial stress on the blasthole
wall as a function of time for the spherical and the cylindrical cavity in limestone material.
Firstly, the radial stress, starting from —F, at t = 0, will increase in a few micro seconds to
a maximum value. In a second time, it will decrease until reaching a static value which can
be given by

P,
P, atic — I11.27
Stat 1+7(k+}>P0 ( )
klE
25 r
3 ST
B85 f e
4 /\
© H
ol H
O 45
bH H
5 Spherical cavity
Cylindrical cavity ---------
=3 Quasi-static -===-=
-6
—6.5 L L 1 L f
0 1 2 3 4 5

Time [us]
Figure III.2: Radial stress at wall cavity

The static value produces behind the stress wave a quasi-satic stress distribution in the solid.
The fact of obtaining a great static value is related, probably, to the assumption that the
density of the detonation gas decreases only due to the gaz expansion (i.e. the change of
the gaz volume). However, since the tangantial stress (Fig. II1.3), which becomes rapidly
tensile, is considerably higher, radial cracks will be developed and, as a consequence, the
detonation gaz density will decrease also due to the gaz flow through the created cracks.

I11.2.2 Balance laws and Chapman-Jouguet state

Consider a shock front moving with the normal speed D,. Ahead of the front, we assume
that we have
pe=p v, =0, p=0, e=eg (I11.28)

where v, is the normal particle velocity and eq is the specific internal energy in the totally

expanded state. For gases
ep =€+ Q (IT1.29)
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Figure II1.3: Tangential stress at the wall cavity
where e is the internal energy of the solid explosive and () is the specific chemical energy

released by the detonation. In this study, we assume that ej = 0.
Thus, the normal jump conditions across the interface can be given by

[pe(vn, — D) =0 (IT1.30)
[pevn (v — D) +p] =0 (IT1.31)
[E (v, — Dy) +vp] =0 (I11.32)

where [ | denote the jump in a quantity across the interface and F is the total energy, defined
by
1
E =p, (e + 5@,3) (I11.33)
With the polytropic equation of state, the jump condition algebra derives a quadratic equa-
tion for the normal velocity v,. If we identify the speed D,, as the Chapman-Jouguet (CJ)

value (D¢y), the quadratic equation for v,, can be solved to give

 Des+ /D3 —2(12 - 1) e
v+1

The ClJ-state is found by setting to zero the argument of the radical, which leads to the
identification of either the Dy in terms of the energy ey or vice versa. Since we generally
regard D¢ as being given experimentally, we choose to write the condition as

(I11.34)

Un

D%,
= = I1I.
IRICCIY (I11.33)
Then the CJ-state can be characterized by
+1
pos = pe <VT> (I11.36)
072
peDC'J
— J I11.37
Dbcy 1 ( )
D¢y
vog = IT1.38
0r =% (111.38)
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I11.2.3 Explosive-Material interaction: initial shock parameters

The initial shock pressure on the borehole wall (P,) is an unknown parameter. In order to
calculate it we should take into account the explosive-material interaction.

The interaction of a detonating explosive with a material in contact with it or in close
proximity is extremely complex, since it involves detonation waves, shock waves, expanding
gazes, and their interrelationships (Meyers, 1994). In this study we will use a simplified
approach based on the “impedance matching” technique used in solid-solid impact problems
(Meyers, 1994). To do that, we proceed as the follows

— We assume that, prior to the impact on the borehole wall, the detonation gases are
traveling at the CJ velocity given by Eq. II1.38, whereas the solid is at rest. After
impact, two compressive shock waves are created: one travels into the solid, with
velocity vp, and one travels into the detonation gases, with velocity, v..

— The material has to be continuous across the impact interface, that is, the same particle
velocity exists in the compressed region.

— The pressure has also to be the same in the compressed region.

Therefore, prior to impact, all particles in the detonation gases have the same velocity ve .
Upon the impact, the particle velocity in the compressed region of the detonation gases
is reduced by a value v, so that the resultant particle velocity is vo; — v.. In the solid,
the particle velocity in the compressed region is vy. Then from the equality of the particle
velocities one can obtain

Ve + Vo = Vo (IT1.39)

From the balance laws (Eq. I11.30, II1.31, I11.32) and by using the polytropic equation of
state (Eq. II1.2), we can express the pressure in the compressed region of detonation gases

1
Po= 50+ 102 + Qufy — 1) (111.40)

This pressure will be equal to F,. Thus, from Eq. 1I1.39 one has

1
Py = 5/)2(7 + 1) (ves —vo)* 4+ Qp2(y — 1) (IT1.41)

On the other hand vy can be given by

au PO
=—(a,0)=—Ap"(0 I11.42
w =G (a.0) = 245" (0 (I11.42)
¢©"(0) is also function of Py. Consequently vy is the solution of a non linear scalar equation
which can be solved iteratively.
It is worth noting that we can obtain simply the same result by using Eq. 1I1.39 and equating
P, to pcuy.
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The influence of the solid and explosive properties

To identify the contribution of each parameter of both the solid and the explosive, the
initial shock pressure and the initial particle velocity are computed with one variable at a
time while keeping the others unchanged. As can be seen from Fig. IIl.4a, the increase of
Young’s modulus increases the initial pressure but decreases strongly the particle velocity.
The increase of the explosive density or the detonation velocity causes the increase of the
shock pressure and the particle velocity as illustrated in Fig. I11.4b and Ill.4c. Fig. I11.4d
shows the influence of the polytropic gas constant !. Both initial pressure and initial particle
velocity decrease with increasing +.
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Figure I11.4: Effect of Young’s modulus, explosive density, detonation velocity and polytropic
gas constant

II1.3 Numerical Simulation of the fracture process

I11.3.1 Main assumptions
I11.3.1.1 Explosive-material interactions

As stated earlier, immediately after the detonation of the explosive, the whole blasthole is
filled with detonation gases at very high pressure and temperature. The pressure of the
explosion pulse greatly exceeds the compressive strength of the rock, as a result a thin
annulus is formed around the blasthole where the rock has been broken and crushed. The

IFor most explosives, 7 is found to vary between 1.3 and 3 (Meyers, 1994).
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outer boundary of this crushed annulus then exerts a radial stress on the surrounding rock.
The radius of the pulverized area encloses what is called the equivalent hole. In this study, the
boundary condition will be considered at this equivalent hole which for cylindrical charges
will be of the form

or(a, z, t)=—p(z, t) V (2, t) €[0, h] x [0, T] (IT1.43)

where o, is the radial stress; p is the applied pressure; a is the equivalent hole radius; t is
time; A is the equivalent hole length; and 7" is the loading duration.

The detonation waves propagate with a high velocity (between 2000 to 7000 ms~—! depending
on the type of explosive) which justifies the assumption that the pressure in the equivalent
hole acts uniformly along the z-axis

o(a, z, t)=—p(t) Vtel0, T] (II1.44)
p(t) is assumed to be expressed as
p(t) = poexp |— (%)2} ift €10, to

p(t) = po (%) exp [w(l — %)} ift € Jto, T] (I11.45)
(po, to, S, w) € ]Ri

The first part of Eq. (II1.45) is introduced to reproduce mainly the shock wave effect, as for
the second part, it is introduced to take the blasthole gases effect into account (Fig. IIL5).
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Figure II1.5: Pressure-time history on the equivalent hole wall

I11.3.1.2 Time-dependent fracture process

For a sufficient number of radial cracks, we assume that the fracture process can be simulated
by using the constitutive law described in chapter II. The coupled rate dependent damage
elasto-viscoplastic model will be used. Thus, the anisotropy introduced by radial cracks can
be taken into account by the anisotropic damage model, while the compressive shear failure
arround the equivalent hole, can be taken into account by the elasto-viscoplastic model. For
complexe loading, the coupled models will be activated.
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II1.3.2 Cylindrical one-dimensional simulations

The constitutive model contains 12 parameters which can be fitted to a specific type of
material from a series of experiments. The model response for uniaxial tests is given in
section I1.5.2. The following table gives these calibrated parameters in the case of a limestone
rock type.

Elastic parameters Elasto-Viscoplastic

compression model parameters

E(MPa) | 64 x 10° K 3
v 0.2 o 0.77
Tensile damage model W, 10°
parameters «Q 0.1
R.(1/m®) | 7.8 x 10° || R.(MPa) 70
va(s™h) 5 x 10° ve(s71) 30x103
Ny 2 Ne 2

In addition, we consider an equivalent hole with a radius equal to the blasthole radius mul-
tiplied by a factor 2. Fig. II1.6 shows the pressure-time history used on the equivalent hole.
po can be approximated since the size of the crushed annulus can be determined by the
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Figure II1.6: Used pressure-time history

dynamic triaxial compressive strength of the rock.

The numerical results that will be described will concern three cylindrical samples : the first
(A) with a diameter of 300 mm, the second (B) with a diameter of 100 mm, as for the third
(C), it will have a diameter of 100 mm and a fixed outside surface. Numerical solutions were
obtained by using unifrom discretisations with 6 noded quadrilateral elements. 900, 300 and
300 elements were used for, respectively, sample (A), (B) and (C). The time step used for
computations, which were done with large strain formulation, was At = 1075 ms.

Obtained numerical results indicate that the only damage tensor component which was
influenced by stress waves is the tangential one. Otherwise, slabbing regions are absent
which is in good agreement with experimental observations.

Fig. II1.7, I11.8 and II1.9 show tangential stress at the inner surface of each sample. It can
be seen that at first the tangential stress is tensile. When the tensile criterion is reached,
tangential damage starts to increase and radial cracks appear. The compressive criterion is
reached later. Fig. II1.8 and II1.9 show clearly that, for the same loading duration, boundary
conditions can influence the stress state of the same material with the same geometry. Fig.
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Figure II1.7: Tangential stress, tangential damage and the softening variable as a function
of time at the inner surface of sample (A)

IT1.10, ITI.11 and II1.12 show tangential stress at the medium of each sample. Negligible in-
crease of tangential damage is shown in Fig. I11.12 which indicates the absence of any failure
mechanism. Howerver, Fig. II1.10 and Fig. III.11 show two different failure mechanism. For
sample (A), failure is due to direct tensile stress, as for sample (B), failure is the result of
the reflected tangential stress.

Fig. I11.13, II1.14 and III.15 show tangential stress at the outside surface of each sample.
Contrary to the cases of sample (A) and sample (B), the tangential stress at the outside
surface of sample (C) is compressive. Furthermore, this compressive state is too little to
cause failure.

Fig. I11.16, I11.17 and TI1.18 show tangential damage and the softening variable as a function
of radius at different times. As can be seen, two complementary region are clearly distin-
guished. The first region, in the close vicinity of the equivalent hole, is caused by shear failure
mechanism. This region, of limited extent, is practically the same for the three considered
samples. As regards the second region, commonly known as the fracture zone, the failure
mechanism is due to tangential stress. For sample (C), this region is absent since reflected
tangential stresses are compressive.

ITI1.4 Fragment size distribution prediction

In the previous section, the fracture process leading to material failure was described. Since,
it is not feasible for the continuum description to account for the formation of discrete
fragments, the obtained result, in terms of the thermodynamic state, of the time dependent
fracture process are postprocessed to produce the fragment size distribution.

The cumulative mass of fragments having a size less than or equal to s is given by Eq. 1.49.
The mean fragment size is related to the mechanical quantity by Eq. 1.45. In this study, we
assume that the mechanical quantity is given by

G(T) = max (a(T, 1)) (

telo, T

(T, 1)) (111.46)

lIn
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Figure II1.8: Tangential stress, tangential damage and the softening variable as a function
of time at the inner surface of sample (B)

In order to show the capability of the proposed approach to predict the fragment size distri-
bution, we consider again the three samples described in chapter I. The intrinsic function ¢
is identified by curve fitting. The following empirical relationship is used

K a@)) ™ Smin for G(T d
sm(T) = (G(T)) = < o > Homin for GLT) € (G Gl (I11.47)

() e )<

(K, N1, N2y, Smin, Ga) € ]Ri are material parameters. s,,;, and GG, are respectively the
minimum fragment size and the critical mechanical quantity introduced in the first chapter.
The fitting result for the considered samples is

Kk = 1.832 mm
ny = 6.601 (III.48)

Spin = 0.023 mm
Gy =1.278 GPa/s

Now, from numerical simulations of the fracture process we can calculate the distribution
of the mechanical quantity G as a function of radius (Fig. II1.19). Knowing the intrin-
sic function 1), we can easily calculate the mean fragment size and therefore the fragment
size distribution of each sample. Fig. I11.20 shows that numerical predictions are in good
agreement with experimental results.
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Conclusions and prospects

Une formulation pour décrire et prévoir le comportement et la fragmentation des matériaur quasi-fragiles sous des chargements
dynamiques sévéres a été développé en utilisant les hypothéses principales suivantes :

— Les hétérogénéités a grande échelle sont ignorées. A petite échelle, nous supposons qu’une éprouvette de laboratoire est
mécaniquement homogéne et continue.

— Le processus de rupture, dépendant du temps, peut étre décrit en utilisant un modéle phénoménologique qui reproduit
mathématiquement les relations macroscopiques de contrainte-déformation pour différentes conditions de chargements,
négligeant les mécanismes microscopiques du comportement.

— Basé sur Uhistorique de l’état thermodynamique du matériau, nous postulons que nous pouvons remonter, en utilisant
un post-traitement adéquat, & la taille des fragments.

Par conséquent, en wutilisant ces considérations, un modéle approprié au comportement des matériaur quasi-fragiles a été
développé. Il est capable de décrire le comportement non linéaire et l’anisotropie induite par le chargement. Le modéle est
alors implanté dans un code de calcul par éléments finis (VIPLEF3D). Son intégration conduit au développement d’une méthode
de relazation permettant une actualisation explicite de ses variables. D’autre part, en se basant sur les essais de fragmentation
en laboratoire, un modéle de fragmentation dynamique est présenté pour prédire la distribution granulométrique.

L’approche développée est alors appliquée pour modéliser la fragmentation, en laboratoire, des roches a l’explosif. Les capacités
du modéle sont alors évaluées par comparaison des résultats expérimentaux et numériques.

Cependant, ce travail pose plus de questions qu’il en répond. Dans ce qui suit, je décrirai mon point de vue concernant les
futurs développements concernant les besoins liés aur domaines du comportement rhéologique, de la fragmentation dynamique
et de la fragmentation des roches a l’explosif.

Comportement rhéologique: les modéles analytiques du comportement statique ou dynamique des matériauz quasi-fragiles
soumis & un large spectre de contraintes et de déformations sont souvent basés sur des lois constitutives phénoménologiques
déduites des observations macroscopiques, ce qui était le cas dans cette thése. En conséquence, les capacités prédictives de
n’importe quel modéle phénoménologique dépendront essentiellement des données sur lesquelles il est basé. Malheureusement,
actuellement les techniques expérimentales ne sont pas assez développées et les interprétations des données, en particulier quand
il s’agit d’un matériau fragile ou quasi-fragile, sont encore incertaines. En effet, des efforts considérables doivent étre adressés
pour développer des techniques expérimentales précises et capables d’identifier le comportement intrinséque des matériauz et
en particulier pour clarifier le caractére adoucissant et l’effet de la dynamique sur la résistance des matériaur quasi-fragiles.
D’autre part, bien que le progrés dans la modélisation continue de la rupture statique et dynamique soil encourageant, il
est évident que plus de développements sont nécessaires. En particulier, pour une meilleure compréhension du processus de
la rupture, des modéles physiques plus réalistes devraient étre étudiés. Les modéles phénoménologiques, ol une description
locale de la rupture est employée, semblent étre inadéquats pour des matériauz présentant un adoucissement. En fait, pour
les modéles indépendants du temps physique, la solution numérique, obtenue par éléments finis et utilisant l’élastoplasticité
standard, ot une description locale de la rupture est employée, indique une grande dépendance a l’égard du maillage comme
discuté dans cette thése. Cette dépendance du maillage est la conséquence du probléme mathématique mal posé, c.-a-d. le
probléme auz limites perd son ellipticité en statique et son hyperbolicité en dynamique. Ceci signifie que, pour la dynamique
par exemple, les ondes ne peuvent plus se propager et la déformation est localisée dans une bande infiniment étroite dans
laquelle les déformations peuvent évoluer indéfiniment. Ainsi, des modéles incorporant des formulations évoluées doivent étre
étudiés. L’ajout de termes mon locaur ou de type gradients aur modéles constitutifs semblent étre une approche attrayante,
particulierement dans des problémes dynamiques ou le caractére dispersif de la propagation des ondes joue un réle important
dans le processus de la rupture. Ces modéles utilisent, pour la plupart, une longueur intrinséque liée & la micro-structure et

auzr mécanismes de rupture.
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fragmentation dynamique: le modéle phénoménologique utilisé pour la prédiction de la distribution granulométrique semble
étre attrayant, particuliérement quand le matériau & fragmenter se trouve bien caractérisé. Cependant, la relation locale entre
la taille moyenne des fragments et la quantité mécanique responsable de la fragmentation semble étre inappropriée pour des
faibles chargements dynamiques ot la fragmentation peut étre considérée comme structurale. A cet égard, d’autres études
doivent étre entreprises pour mieux clarifier la transition entre la fragmentation statique et celle dynamique. Des données
expérimentales additionnelles de haute qualité sont également nécessaires pour dériver un modéle général de fragmentation.
Fragmentation des roches a l’explosif: les performances des tirs a l’explosif sont déterminées par ’interaction des produits
de détonation de ’explosif et de la roche environnante. Dans notre modélisation numérique l’effet de l’explosif est introduit
par Vutilisation d’une pression, fonction du temps, exercée sur un trou équivalent. On a montré que la durée et la forme de la
courbe de pression-temps peuvent influencer directement les mécanismes de rupture.

Maintenant, je suis convaincu qu’un chargement en terme de pression-temps n’est qu’une approzimation grossiére et d’autres
études doivent étre entreprises pour mieuz tenir compte du probléme couplé comportant le processus de détonation et ceuz de
la rupture, de la fracturation et de la fragmentation de la roche. L’action de l’onde de choc sur le broyage de la roche autour
du trou de charge doit étre également le résultat du probléme couplé. A cet égard, les modéles utilisant des équations d’état ou,
dans le cadre de plasticité, une surface de charge & écrouissage positif et fermée sur l’aze hydrostatique afin de modéliser l’effet
de l’onde de choc semblent étre inadéquats. En fait, ces modéles indiquent essentiellement que l’interaction ezplosif-matériou
aura comme conséquence un mécanisme de rupture caractérisé par la compaction des vides et des pores du matériau. De tels
modéles ne peuvent pas reproduire la vraie interaction explosif-matériau qui est extrémement compleze, puisqu’elle comporte
linteraction des ondes de détonation, des ondes de chocs, l’expansion des gaz et la circulation des gaz dans les fissures crées.
Dans des problémes de tir réels, il est évident que les propriétés du massif rocheuz influenceront le processus de la fragmentation.
En effet, les propriétés de la roche intacte ainsi que les discontinuités jouent un réle important dans la détermination de la
distribution granulométrique la plus appropriée. Basé sur l’approche développée dans cette thése, la distribution des fragments
de la roche intacte lors d’un tir a l’explosif peut étre obtenu. D’autre part, la distribution initiale des bloc formant le massif
rocheuz peut étre également déterminée en utilisant des méthodes de probabilité et de statistiques. Ainsi, o I’avenir, la recherche
pourra se concentrer sur la maniére de combiner ces différentes données afin de développer une méthodologie compléte qui pourra

étre utilisée dans des applications industrielles.

A formulation for describing and predicting the behaviour and the fragmentation of quasi-
brittle materials under high dynamic loadings has been constructed utilizing the following
main assumptions:

— Material’s heterogeneities on large scale are ignored. On small scale, we assume that
a laboratory-sized specimen is mechanically homogeneous and continuous.

— The time dependent fracture process can be described by using a phenomenological
model which reproduces mathematically the macroscopic stress-strain relations for dif-
ferent loading conditions, neglecting the microscopic mechanisms of the behaviour.

— Based on the history of the material’s thermodynamic state, we postulate that we can
go up to the fragment size by a post-processing analysis.

Therefore, using these considerations a suitable constitutive model for quasi-brittle materi-
als has been developed. The model is capable of describing the rate-dependent non-linear
behaviour and the load-induced anisotropy. This constitutive model is then implemented
in a finite element program (VIPLEF3D). The integration of the rate dependent damage
elasto-viscoplastic constitutive model leads to the development of a relaxation method char-
acterized by an explicit updating of the model’s variables.

On the other hand, based on experimental laboratory blasting tests, a dynamic fragmenta-
tion model is introduced to account for the fragment size distribution.
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The developed approach is then applied to the modelling of the laboratory rock fragmenta-
tion by blasting. The model capabilities are then evaluated through the comparison between
experimental and numerical results.

However, this work still asks more questions than it answers. In what follows, I will outline
my point of view on future basic research needs in constitutive modelling, dynamic fragmen-
tation and rock fragmentation by blasting fields.

Constitutive modelling

Analytical models of static or dynamic behaviour of quasi-brittle materials to large spec-
trum of stress states and strain rates are often based on phenomenological constitutive laws
deduced from macroscopic observations, which was the case in this thesis. In consequence,
the predictive capability of any phenomenal model will depend critically on the data on
which it is based. Unfortunately, at present, techniques for experiments are not well de-
veloped and interpretation of data, in particular when the material behaves in brittle or
quasi-brittle manner, are still questionable. Indeed, tremendous effort must be addressed to
develop accurate experimental techniques able to identify the intrinsic material behaviour
and especially to clarify the softening behaviour and the strength time-dependence of quasi-
brittle materials.

On the other hand, although progress in continuum modelling of static and dynamic fail-
ure, is encouraging, it is apparent that further advancements are needed. In particular, for
a best understanding of failure process, more realistic physical models should be investi-
gated. Phenomenological models, where a local description of the softening material is used,
seem to be inappropriate for materials exhibiting strong strain softening. In fact, for rate-
independent models, the numerical solution which is obtained from finite element analyses
employing standard continuum elasto-plasticity, where a local description of the softening
material is used, reveals a great dependence on the fineness of the finite element mesh as
discussed in this thesis. This mesh-dependency is the consequence of the ill-posedness of the
mathematical problem, i.e. the Initial Boundary-Value Problem loses ellipticity in statics or
hyperbolicity in dynamics. This means that, in dynamics for example, loading waves can no
longer propagate and the deformation is trapped in an infinitely narrow band in which the
strain can grow unboundedly. Thus, models incorporating higher-order formulations must
be investigated. Adding nonlocal or gradient terms to the constitutive modelling appear to
be an attractive approach, especially in dynamic problems where the dispersive character of
wave propagation plays an important role in the fracture process. These models use, for the
most part, an intrinsic length scale which is related to the microstructure and the failure
mechanisms during fracture process.

Dynamic fragmentation

The phenomenal model used to predict the fragment size distribution seems to be an attrac-
tive approach, especially when the material to be fragmented is well characterized before
energy input. However, the local relationship between the mean fragment size and the me-
chanical quantity appears to be not valid for low dynamic loadings where the fragmentation
can be defined as a structural failure. In this regard, further studies must be undertaken
to better clarify the transition between static and dynamic fragmentation. Additional high-
quality experimental data is also needed to derive a general fragmentation model.

Rock fragmentation by blasting

Blasting performances are determined by the interaction of the detonation products of the
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explosive and the confining rock mass. In our numerical modelling the blast loading is in-
troduced by using a pressure-time history on an equivalent hole. It was shown that the
magnitude, duration and shape of the pressure-time curve can influence directly the fracture
mechanisms.

Now, I am convinced that a pressure-time history is only a crude approximation and further
studies must be undertaken for better taking into account the coupling problem involv-
ing detonation process and the breaking, the fracturing and the fragmentation of the rock.
The crush action of shock wave around the borehole must also be the result of the cou-
pled problem. At this regard, models using equations of sate or, in plasticity framework, a
hardening closed yield surface on the hydrostatic pressure side for the purpose of modelling
the shock wave effect seem to be inappropriate. In fact, these models essentially indicate
that the explosive-material interaction will result in a failure mechanism characterized by
the compaction of material voids and pores. Such models are unable to reproduce the real
explosive-material interaction which is extremely complex, since it involves detonation waves,
shock waves, expanding gazes, gas flow through induced cracks, and their interrelationships.
In real blasting problems, it is evident that the rock mass properties will influence the frag-
mentation process. Indeed, the properties of both the intact rock and the discontinuities
play an important role in determining the most suitable fragmentation distribution with a
minimum cost. Based on the approach developed in this thesis, the blasting fragmentation
distribution of the intact rock can be obtained. On the other hand, the initial block dis-
tribution can also be determined by using probability and statistics methods. Thus, future
work can focus on the way to combine these different data in order to develop a complete
methodology which can be used in real industrial applications.
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