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1. Introduction

1.1 Context and objectives

The last decade has been characterized by the impressive explosion of image and video content
available and shared over Internet. Since 2010, the amount of video content exchanged over Internet
account for more than half of the total traffic in the United States [Wired 2010], overcoming web or
peer-to-peer traffic. Such a phenomenon is closely related with the emergence of web2.0 technologies,
which operated profound transformations in our manner to consume and share the video content.

As a notable example, let us first mention the YouTube platform, which reports one hour of
video data uploaded every second and 4 billion videos are viewed every day, resulting in 140 views for
every person on Earth in 2011 [YouTube 2012c]. In parallel, the Flickr on-line repository reports 4.5
million photos uploaded daily [Pingdom 2012]. This shows the growing importance of video/image
content in the user’s everyday life: video and, more generally, visual content become today the new
media to be considered.

Moreover, a finer analysis brings us some interesting insights. Thus the most popular camera
used in the case of the Flickr images is not a camera stricto sensus, but a smartphone (i.e., the
iPhone4) [Flickr 2012]. We can thus expect that in the near future an increasing number of uploaded
videos will be recorded by ubiquitous, mobile devices. Over the last decade, such mobile devices have
been undergoing a booming prosperity. A broader variety of handheld devices with audio/video
playback functionalities are available in the market at an affordable price for consumers. In addition,
the huge steps forward made by third generation communication networks enable telecom operators to
provide enhanced mobile multimedia services, with smoother streaming, reduced video uploading time
and higher video quality/resolution.

Such complex socio-economic and technological evolutions through important challenges,
related to the capacity to store, search/retrieve and organize huge video/image data collections. A new
approach for video content organization, taking into consideration a better understanding of the visual
content is needed in order to overcome some of these issues. In addition, tools permitting a more
comprehensive visualization of the video content, including advanced navigation facilities and adapted
to the multiple terminals and operating systems available, would greatly help to improve the access to
video content. Let us underline that the elaboration of advanced query and search strategies is today
required in order to provide the user with a rapid and fine access to elements of interest that are present
in the video content. Existing video description approaches are most often based on monolithic and
global textual representations of the video, which do not take into account the complexity and the
heterogeneity of the information usually present in the video content. Such simple strategies should be
replaced by new paradigms, able to provide precise and accurate access to the elements/object of
interest. Part-based visual representations and content-based retrieval methodologies become the key
ingredients that can make it possible to achieve such a fine level access to the desired information.

Several potential applications are directly concerned by such video indexing, search and
navigation methodologies. Among them, let us mention:
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Web-based video search engine. Most of the video search engines use textual annotations
obtained usually from user tags or comments. Although there could be many cases demanding
the use of visual cues from user for retrieving particular objects, currently no search engine
allowing queries by visual content is available at the scale of the web. Such a tool would be
notably useful as an alternative to the poorly organized tag-based querying process, currently
employed by the majority of available image/vide search engines.

Object retrieval in video surveillance footage. Video surveillance repositories usually
consist of enormous amounts of video footage. Finding the various instances an object of
interest can become rapidly an almost impossible task. Methods allowing to select an object of
interest and to retrieve automatically the video shots where the considered object appears
would save time and improve the work efficiency in this field.

Logo/brand use evaluation and discovery. With the explosion of the amount of available
video content and of communications channels, it becomes increasingly difficult to track and
evaluate the effectiveness of a advertising campaign. Finding the occurrences of a logo or a
brand throughout a video database could become essential tool for the evaluation of
advertising campaigns or for measuring video popularity. In addition, a consumer could also
use his mobile phone to identify and discover supplementary information about products of
interest by just taking a picture or a short video of the item of interest.

Automatic tagging and annotation of video collections. Most of the professional video
archives (such as those of video producers or those available at the national archiving
organizations) rely on expert users to annotate and appropriately index the videos. Methods
permitting to retrieve the occurrences of an object in a large archive would allow the
annotation of the results by tag propagation. This will reduce the annotation burden, making
the database more accessible for search/retrieve purposes, and facilitating the content re-use.

The detection and recognition of objects of interest from video content is among one of the

most difficult problems in the computer vision field, since it requires the use of some partial image
representations that can enable efficient macthing strategies. Fast, accurate, scalable and robust object-
based visual search is a highly challenging issue, because of the following difficulties:

Variations in visual appearance. The appearance of an object can vary dramatically
depending on a series of challenging imaging conditions. Changes in lighting, scale, pose and
rotations can alter strongly the visual appearance of the object, thus increasing the difficulty of
recognizing a query object.

Part based matching. Video sequences are usually dynamic and objects move and interact
with other objects across different sequences. Objects can be occluded and only partially
visible or can be deformed.

Computation time and scalability. Despite the huge amount of information included in
videos, it is mandatory to ensure both retrieval accuracy and computational speed when
increasing the size of the considered data set.

Issues related to video content specificity. Directly related with the previous set of
challenges, one of the main difficulties in video content search is the representation of the
video. Typically, a reduced set of key-frames is selected and used for the search. However
many of them can be blurred or miss the object of interest occurring for a very short time in
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the video clip. Identifying the set of most representative key-frames is a difficult challenge to
tackle.

The mentioned challenges and difficulties are illustrated in Figure 1.1, Figure 1.2 and
Figure 1.3 on typical Flickr videos extracted from the TRECVID 2012 Instance Search Task
corpus [Smeaton 2006].

Figure 1.1. Multiple instances of the object “Eiffel tower” within different video clips.

1.1 Contributions

1.1.1 The DOOR framework

The first part of this thesis tackles the issue of retrieving different instances of an object of interest
within a given video document or within a video database. Within this context, objects are standalone
visual entities with-well defined boundaries, shapes and colors/textures. Examples of typical objects
include buildings, cars, electronic devices, animals, logos.... Let us underline that this work concerns
the detection of different instances of the same object and not the retrieval of objects belonging to the
same class of objects (e.g., different types of chairs, cars), as in the case of semantic image
categorization approaches.
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Figure 1.2. Multiple instances of the object “London Underground logo” within different video
clips.

Figure 1.3. Multiple instances of the object “Brooklyn bridge tower” within different video clips.

The methodological framework proposed, so-called DOOR (Dynamic Object Oriented
Retrieval) exploits a semi-global image representation obtained with the help of an over-segmentation
of image frames. The advantage of region-based approaches comes from the possibility of directly
exploiting the connectivity information (i.e. adjacency between regions), which can be highly useful in
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the matching stage. An aggregation mechanism is considered in order to group a set of sub-regions
into an object similar to the query, under a global similarity criterion.

However, determining the optimum solution in such a situation proves to be an NP-Hard
problem. We propose several optimization techniques for determining near-optimal solutions. The key
ingredient of our approach is a dynamic region construction procedure, which makes it possible to
regroup different individual regions into a candidate object. A global matching score, which measures
the similarity of the candidate object to the given query, needs to be minimized. In order to determine
the global optimum of the similarity function, three different types of optimization strategies are
proposed, including greedy-based techniques, simulated annealing and Graph Cut methodologies.
Different visual representations can be considered, including color, texture and interest points
descriptors. Let us also underline that arbitrary segmentation methods can be considered, since our
goal is to achieve independency with respect to the adopted segmentation procedure.

The object retrieval framework allows the integration of other different visual descriptors and
segmentation methods. In particular, a hybrid region representation, integrating interest point
information is also proposed. The optimization in this case is performed with a spectral graph
matching method.

1.1.2 The OVIDIUS platform

The second part of this work, introduces a novel on-line video browsing and retrieval platform, so-
called OVIDIUS (On-line VIDeo Indexing Universal System). In contrast with traditional and
commercial video retrieval platforms, where video content is treated in a more or less monolithic
manner (i.e., with global descriptions associated with the whole document), the proposed approach
makes it possible to browse and access video content in a finer, per-segment basis. The hierarchical
metadata structure exploits the MPEG-7 approach for structural description of video content. The
MPEG-7 description schemes have been here enriched with both semantic and content-based
metadata. OVIDIUS integrates the DOOR framework and allows fast video object retrieval.

The developed approach shows all its pertinence within a multi-terminal context and in
particular for video access from mobile devices.

1.2 Structure of the manuscript

The rest of the manuscript is organized as follows.

Chapter 2 describes the state of the art in the field of object-based recognition methods. The
main families of existing approaches are here identified and described, with principle, advantages and
limitations.

A first contribution, concerning a region-based visual representation obtained with the help of
existing segmentation techniques is introduced in Chapter 3. The challenge here concerns the various
optimization techniques that are required in order to match a visual object, defined as an image sub-
part with candidate images from a considered database. A global matching score, involving a color-
based quadratic error measure, which makes it possible to evaluate objects described by different
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numbers of regions, is considered. Four different optimization strategies are here proposed. The first
one concerns the greedy and relaxed-greedy methods, which aims at providing a rapid solution. In
contrast, the second method introduced adopts a simulated annealing approach, aiming at optimizing
the retrieval performances. A final optimization scheme proposed involves a Graph Cut technique,
which requires re-visiting the energy functional involved.

Chapter 4 tackles the issue of interest point representations. The various methods proposed in
the literature, for both semantic categorization and object identifications, are here described. A detailed
analysis of existing interest point detectors, interest point descriptors, and related classification
methods is also proposed. Based on this analysis, a reference interest point technique is retained,
which includes the most promising approaches at all of the various stages involved. This method is
used as a baseline technique for our experiments, in order to compare the various approaches
proposed. An additional contribution is proposed in this chapter, which concern a query extension
mechanism. A multi-modal principle is here exploited: starting from a set of textual tags supposed to
be available, a set of representative images, gathered from general public image repositories (e.g.,
Flickr) is determined. Such images are then exploited to perform visual queries in order to retrieve
relevant video content.

Chapter 5 introduces a novel, hybrid approach, which integrates both a region-based
representation and a set of interest points. The search and retrieve functionalities are achieved with the
help of a spectral graph matching techniques, under a global similarity measure, integrating both color
and interest-points descriptors.

Chapter 6 presents and analyzes the various experimental results obtained. Experiments have
been carried out on four different datasets, including the Raymond cartoon corpus, and the TRECVID
2010; 2011; and 2012 natural video datasets. The proposed methods are here evaluated under different
experimental settings, with various color spaces and segmentation methods.

In the second part of this thesis, we detail our contribution related to the web-based indexing
platform.

Chapter 7 proposes an overview of the state of the art. The existing systems are here described,
including both desktop-dedicated and mobile platforms, with functionalities supported and related
interaction capabilities.

Chapter 8 introduces the OVIDIUS platform. The focus is here put on the modular, distributed
architecture proposed, which makes it possible to deploy the system on various terminals,
independently of the exploitation systems involved. The technological choices related to video players,
communication protocols, interaction capabilities and supported functionalities are described in detail.
Several use case scenarios are also introduced in this chapter.

Finally, Chapter 9 concludes this manuscript and opens some perspectives of future work.
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2. Object-based retrieval: state of the art

Abstract: In this chapter we present a general review of the state of the art in object recognition

and retrieval techniques. The techniques are classified into two major families, according to their unit
of description considered for representing the object. The first one is based on interest points, while
the second involves a segmented region-based representation. The main principles of the most
representative techniques are described along with an analysis of their advantages and limitations.
We conclude this chapter with a discussion about the main challenges in object instance retrieval and

identify some directions of improvement.

Keywords: object retrieval, region-based representation, interest point representation, multiple

instance detection, object structure, geometric information.

Résumeé: Dans ce chapitre nous présentons une revue genérale de ['état de ['art sur la
reconnaissance des objets et sur les techniques de recherche et indexation. Les techniques sont
classées en deux grandes familles en fonction de leur unité de description considérée pour la
représentation de ['objet. La premiere est basée sur des points d’intérét, tandis que la seconde
implique une représentation basée sur des régions segmentées. Les principes de fonctionnement des
techniques les plus représentatifs sont décrits avec une analyse de leurs avantages et leurs limites.
Nous concluons ce chapitre par une discussion sur les principaux défis dans la recherche des

instances d’objets et nous identifions quelques directions d’amélioration.

Mots clés: recuperation d’objets, représentation basée sur regions, représentation basée sur points

d’intérét structure de l’objet, informations sur la géométrie.
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2.1 Introduction

Video object retrieval is among the most challenging tasks in the field of computer vision and
multimedia indexing. The fundamental problem to be addressed and solved is how to perform
efficiently a partial matching between a visual object, defined as a sub-part of an image/video frame,
and a given image. Within this context, the object modeling and description is a fundamental issue that
needs to be considered appropriately. The video object retrieval methodologies borrow from both
object recognition and image retrieval techniques.

In the field of object recognition, we can identify two different types of methods, each with its
specific objectives. They concern: (1) semantic category identification and (2) object instance
detection.

In the case of category identification methods, the objective is to determine automatically the
semantic category/concept associated with different instances of objects present in an image/video
scene. This process is illustrated in Figure 2.1, in the case of three semantic classes corresponding to
cars, giraffes and chairs. Let us underline that, for a given category, different objects belonging to the
given class can appear. In addition, a same object can be represented in various postures. For these
reasons, the intra-class variability, in terms of visual appearances, can be highly important.

Existing solutions are based on a learning process, and involve various visual features, with
supervised or semi-supervised classifiers. Such an approach requires the availability of a ground truth
dataset, i.e., as set of images for which the corresponding categories are known. Whatever the visual
features/descriptors used for image representation and classification techniques involved, the quality
of the considered ground truth is determinant for achieving successful category recognition. Notably,
in order to deal with the issue of intra-class variability and to ensure good generalization capabilities,
the ground truth should include, for each category considered, a rich variety of object instances, with
different visual appearances.

As an example, let us mention the ground truth used in the ImageCLEF visual concept
detection task [IClef 2011, IClef 2011] and TRECVID semantic indexing task [Smeaton 2006]. In the
ImageClef tasks the dataset is composed of 1 million Flickr images, namely the MIR Flickr collection
[MIR 2012] and the ground truth consists of 25000 manually annotated images, for a set of 90 to 100
concepts. For TRECVID’s Semantic Indexing Task the test dataset consists of 600 hours of content
(approximately 200 hours for training) and the certain number of concepts is selected each year from a
list of 500 concepts mostly derived from the LSCOM ontology [LSCOM 2006].
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Figure 2.1. Semantic category examples: car, giraffe, chair.

In the last years an increasing number of solutions have provided a variety of interesting
results for concept detection and object categorization in videos [Snoek 2008b]. For the TRECVID
tasks, up to 500 concepts can be detected. Hauptmann et al. [Hauptmann 2007] estimate that a concept
lexicon should be sized to at least 5000 items in order to obtain useful descriptions.

However, a major drawback of the learning-based category recognition methods relates to the
strong dependency of the results on the considered ground truth. In addition, many of the concepts
employed are rather general (e.g., vegetation, outdoor) or vague (e.g., city life, euphoric). Even used in
combination, such concepts can hardly describe a specific object, whose instances need to be
retrieved.

Let us now state the principle of the second family of approaches, which concerns the object
instance detection. In contrast to the semantic concept detection, in this case, the objective is to
identify various instances of a same object in different scenes and contexts. This principle is illustrated
in Figure 2.2, where different instances corresponding to the Statue of Liberty, a van with specific
painting or the swimmer Michael Phelps are presented.

As illustrated in Figure 2.2, here again we encounter the problem of variability, a given object
being presented in various postures, from different angles of view, and on different backgrounds.
However, the main difference with respect to semantic identification approaches is that, in this case,
the objective is to detect a given, unique object instead of classes of objects. Usually, the recognition is
performed starting from a single view of the target object. The recognition process involves some
partial matching techniques, which require adequate, semi-global feature representations.
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Figure 2.2. Different object instances: Statue of Liberty, painted van, Michael Phelps.

Concerning the image retrieval techniques, most of the pioneering recognition approaches
[Lowe 1985, Nevatia 1977] were model-based. An object model, such as a 3D representation, is here
considered in order to inject some strong a priori knowledge related to the object of interest. The task
then consisted in developing some 2D/3D matching strategies, in order to perform localization and
pose estimation from a single view. An outcome of such approaches concerns the various viewpoint
independent representations of generic 3D shapes, as well as the formal, rule-based geometric
reasoning methods that have been proposed.

While model-based vision systems represent an important conceptual milestone in the field of
object recognition, their applicability in practice is severely limited by their reliance on relatively
weak and uninformative image features such as line and curve segments. In addition, they lack of
flexibility when modeling non-parametric deformations. For these reasons, a different recognition
paradigm emerged, namely the appearance-based recognition. Here, instead of using precise 3D
geometric descriptions, a statistical model of the 2D object appearance is proposed, leveraging on
discriminative image features. Early work on appearance-based object recognition has mostly involved
global image descriptions. Thus, the majority of the early methods [Niblack 1993, Schiele 2000] are
globally characterizing the entire image with the help of color or texture histograms. The main
drawback of such methods is their lack of robustness to clutter and occlusion. For this reason, global
recognition methods have been substituted over the last decade by part-based methods that seek to
identify statistically or structurally significant object patches that can capture salient appearance
information.

Within this context, one of the first questions to be solved is the following: how can we define
and describe in a consistent and reproducible manner the relevant parts of an image? Let us note that
in the case of model-based approaches, a part is defined as a 3D geometric primitive. In contrast,
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appearance-based approaches have adopted a much more flexible notion of an image part, which can
be defined in various manners and involve different visual features.

As a first example, let us mention the approach proposed in [Schneiderman 2004]. Here,
authors define image parts in the wavelet transformed domain as groups of highly correlated wavelet
coefficients. However, the majority of existing approaches operate directly in the initial image domain.
They involve image fragments or segments obtained with the help of sampling procedures, [Ullman
2001, Mahamud 2003,Yang 2007], corner-like interest points [Agarwal 2002] or scale-invariant
salient regions [Fergus 2003].

During the last decade, the field of object-based content retrieval has been considerably
enriched. Consistent improvements have been brought in terms of object representation, detection and
description of object parts or entities, descriptor clustering, image and object matching strategies,
learning and classification. The most popular methods involve the Bag-of-Words representation [Sivic
2003] and the discriminatively trained deformable part-based models [Felzenszwalb 2008]. Such
methods have been mostly used for object category identification by employing supervised learning
models and algorithms such as Support Vector Machines (SVM) [Boser 1992, Cortes 1995]. While
impressively effective, such methods require the use of an off-line training phase, which is dependent
of the considered training set and of the pre-defined categories.

Recently, an increasing interest has been directed towards the object instance search with
reduced positive example instances. This relatively recent topic of research has been considered in the
TRECVID 2010 [Smeaton 2006] evaluation campaign, under the so-called Instance Search Task,
launched for the first time in 2010 and continued since within the framework of TRECVID 2011 and
2012 editions.

Related work includes two major families of approaches depending on their unit of description
considered for object representation. The first category of approaches considers representations based
on sets of interest points, while and the second one relies on region-based representations. Let us begin
the analysis of the state of the art with the interest point-based representations.

2.2 Interest-point-based representations

Interest points are among the most popular tools for object recognition and classification for both
images and videos and are extensively used in a variety of computer vision applications, such as object
tracking [Gabriel 2005], motion estimation [Torr 2000], image matching [Chum 2008b, Jégou 2008,
Jégou 2010], scene classification [Snoek 2008], image understanding [Fergus 2007, Leibe 2008],
stereoscopic correction [Matas 2002] and disparity field estimation [Wills 2006].

Early approaches for object retrieval using interest points have been developed by Sivic and
Zisserman in their Video Google system [Sivic 2003]. Inspired by text retrieval techniques, the bag-of-
words (BoW) representation is obtained by extracting and describing scale invariant patches from
images, clustering them into “visual words”, quantizing them to the “visual words” and obtaining a
histogram of occurrences of the visual words for each image. In this case, SIFT descriptors [Lowe
2004] are extracted from video keyframes with the help of two types of overlapping image patches:
Harris-affine [Mikolajczyk 2002] regions and so-called Maximally Stable Extreme Regions (MSER)
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[Matas 2002]. The BoW is used for achieving fast and efficient retrieval of objects interactively
selected by the user with the help of a bounding box. However, since the BoW is practically an order-
less collection of visual words and their relative frequencies of occurrence, all the spatial information
describing the geometric relative position of the visual words in the images is discarded.

The lack of spatial information represents the major drawback of bag-of-words inspired
methods. Numerous researches have investigated various ways for improving this aspect. In a general
manner, the objective is to improve the power of the representation by injecting some spatial
localization information in the visual representation. In this respect, several approaches employ the
RANdom SAmple Consensus (RANSAC) algorithm [Fischler 1981]. RANSAC is a robust method for
model fitting to noisy data with outliers. The main idea is to randomly sample a minimal set of
correspondences, and compute the aligning geometric transformation. Because of the associated
computational complexity, RANSAC is typically applied in a post-search process, solely on a set of
top retrieved results, which are re-ranked according to their spatial consistency. Different RANSAC
improvements and variants have been proposed in the last years [Chum 2003, Chum 2005, Philbin
2007, Raguram 2008, Ni 2009].

Another family of solutions introduces the spatial information directly in the BoW
representation or in the matching process. Lazebnik et al. [Lazebnik 2006] proposed a spatial pyramid
matching in order to encode and partition the image into sub-regions at different levels of detail, from
coarse to fine. The image can be then represented with multiple local histograms concatenated in a
single global image histogram, where each local histogram corresponds to an image sub-region. The
local histograms are weighted in such a manner that matches identified in larger cells are penalized as
they involve increasingly dissimilar features. Vedaldi et al. [Vedaldi 2009] propose the use of dense
and sparse visual words at different levels of spatial organization. Wu et al. [Wu 2009] leverage on the
high scale representation of the MSER regions to group Harris-affine regions. Harris-affine regions
having the centroids inside the same MSER elliptical shape are grouped into clusters and a dedicated
BoW vector is computed for each such cluster. In this manner, the BoW includes implicitly regions
which are located in a relatively close neighborhood.

Other solutions act in the local feature detection phase. Instead of using scale or affine
invariant region detectors, such methods perform a dense sampling of the image with a regular grid
(possibly defined over a range of scales) [Fei-Fei 2005, Jurie 2005, Tuytelaars 2007, Tola 2008]. In
this manner, the neighborhood of the interest points can be defined on the grid. In addition, less
textured image patches that would have been omitted by the local feature detectors can be now
described. Let us note that in this case, the scale invariance can be ensured by performing the sampling
at different scales. In other words, multiple grids need to be defined for each image. Such approaches
prove to be particularly useful for stereo matching purposes [Tola 2008]. On the downside, dense
sampling cannot reach the same level of repeatability as obtained with interest points, unless sampling
is performed extremely dense. However, in this case the number of features becomes unacceptably
large. The principle is illustrated in Figure 2.3.
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Figure 2.3. Dense sampling. In the first column we illustrate the original image and the regions
detected by the Hessian-affine detector. In the rest of the columns dense sampling examples with
various grid settings are illustrated. Notice how, for coarse grids many textured regions are
missed, while for fine grids every patch of the image is sampled.

In order to combine the advantages of both schemes, Tuytelaars [Tuytelaars 2010] has recently
introduced the so-called dense interest points method. Starting from densely sampled image patches,
the author applies for each detected patch a local optimization of the position and scale within a
bounded search area. The outcome of this process is a set of interest points defined on a semi-regular
grid, densely covering the entire image as is the case of dense sampling, but with repeatability
properties closer to those of standard interest points. Thus, the newly obtained interest points inherit
from dense sampling the simple spatial relation between points. This principle is illustrated in Figure
2.4.

In a similar framework, Ferrari et al. [Ferrari 2006] propose a robust method for simultaneous
object recognition and segmentation from two images. Starting from a set of initial matches, the
method gradually explores the surrounding image areas; constructing in a recursive manner a set of
additional matching regions. In this way, the object is covered with a set of matched regions. A final
integration stage measures the consistency of configurations of groups of regions associated to
different model views. While the method is robust to clutter, occlusion and viewpoint changes, its
computational cost makes it prohibitive in an indexing, search and retrieval framework.

In a different setting and aiming to identify recurring objects in large collections of tourist
photographs, Philbin et al. [Philbin 2011] construct a matching graph, where each image represents a
node. Images presenting a large number of matched visual words are inter-connected with a weighted
edge. In this manner, images containing the same objects can be identified as connected components
in the graph. Objects are discovered accurately with the help of a Latent Dirichlet Association
algorithm [Blei 2002] performed on the graph. The method presents interesting performances on
touristic landmarks image datasets. However, the construction of the image graph is expensive as each
image from the dataset is queried over the entire dataset in order to identify its most similar images. In
addition, whenever a new set of images is added to the dataset, the graph needs to be reconstructed and
each image is queried again.

26



2%
Chapter 2. Object-based retrieval: state of the art %Z
Pari<Tech

original image dense sampling dense interest points interest points

Figure 2.4. Dense interest points (middle) form a hybrid scheme between dense sampling on a
regular grid (left) and interest point detection (right).

Abandoning the BoW paradigm and starting from the method proposed in [Jiang 2007], Li et
al. [Li 2010] group points of interest in graphs by using Delaunay triangulations. They introduce
different geometric constraints with the goal of characterizing the geometric properties of the
neighborhood of each node. Moreover, each node is represented as an affine combination of its
neighboring nodes, whose weights can be determined with a least squares fitting method. The obtained
graph model is then matched at different scenes using linear programming techniques, in order to
determine the object of interest.

Cho et al. [Cho 2009] also employ a graph matching technique. Here, the graph nodes
represent pairs of points from the two images to be matched and the edges connect agreeing pairs. A
hierarchical agglomerative clustering algorithm is employed to identify the strongest nodes in the
graph (i.e., best matches) leveraging on both photometric and consistency of local features.

Duchenne et al. [Duchenne 2009] use higher-order constraints instead of unary or pairwise
ones between nodes, which result in a tensor representation capturing the affinity between tuples of
features. The resulting energy function is optimized using the multi-dimensional power iteration
method [Golub 1996], computing quickly the main eigenvector of the affinity matrix associated to the
pairs of points from the two images.

Such methods are highly powerful, being in particular robust to strong deformations of the
objects. Their main limitation concerns the computational complexity, which makes them
inappropriate for search and retrieval applications in large repositories.

A different method, exploiting the Histogram of Oriented Gradients (HOG) [Dalal 2005] has
been proposed in [Felzenszwalb 2008]. The object models consist of hierarchical structures of
rectangular groups of HOGs, associated with a set of sliding windows, specified at different scales.
The method achieved the top performances in the Pascal VOC challenge in the past years
[Everingham 2010]. While providing extra spatial information and robustness to object deformations,
a significant number of sliding windows verifications is required for retrieving object candidates. This
has a strong impact on the computational time needed for the matching process. In addition, many
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objects in practice cannot be fully covered by the considered bounding box representation, which leads
to erroneous results.

In a general manner, interest-point-based representations provide useful solutions for both
instance object search and semantic categorization purposes. The main limitation to be overcome is
related to the issue of spatial information, which is not straightforward to handle in pure interest point-
based representations. In addition the interest-point representation decrease dramatically in
performance in the cases of texture-less objects when few interest points are detected and used for
recognition.

The second family of object retrieval approaches exploits a region-based representation,
obtained with the help of image segmentation techniques.

2.3 Region-based representations

Inspired by the Bag-of-Words method, Gu et al. [Gu 2009] propose the so-called Bag-of-Regions
technique. Here, a set of regions is obtained with the help of the hierarchical segmentation algorithm
described in [Arbelaez 2009]. A set of weights, representing the probability of belonging to an object
category and corresponding to multiple descriptors (contour shape, edge histogram, color histogram
and textons) are assigned to each region.

In [Chevalier 2007] authors construct region adjacency graphs of pre-segmented objects and
retrieve similar objects with the help of a new graph matching method based on an improvement of the
relaxation labeling technique [Hummel 1983].

Starting from the assumption that no segmentation method can be perfect, in terms of
identified objects in a given scene, in [Pantofaru 2006, Pantofaru 2008] authors exploit multiple image
segmentations with different parameters. The various segmentation results obtained are then combined
and the resulting regions are described with both SIFT and color descriptors, with the help of the so-
called Region Context Features (RCF). RCFs rely on both segmented regions and local feature
patches. For each segmented region, the visual words from its neighborhood are counted into a
histogram of occurrences. The histograms of all regions are then clustered into a vocabulary of RCFs
and the regions are assigned to their nearest RCF.

In [Gorisse 2010], the individual video frames are divided into rectangular cells forming a
grid. Different visual descriptors, such as HSV histogram, MPEG-7 Edge Histogram, wavelet
histogram, are associated to each cell. The descriptors of each cell are clustered into visual
vocabularies (i.e., one for each descriptor) similarly with the BowW framework [Sivic 2003]. The cells
are then quantized and a BoW vector is generated for each frame. This approach is however restricted
to rectangular queries. In [Vieux 2012], a Bag of Regions representation is computed from segmented
regions and low level descriptors. Regions are generated with the efficient graph-based [Felzenszwalb
2004] and TurboPixels [Levinshtein 2009] segmentation methods, and described with HSV color
histograms and Local Binary Patterns [Ojala 2002]. Different vocabularies are built for every
combination of regions and descriptors, while the results for all runs of the same query are then
aggregated in a single ranked list.
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Different state-of-the-art object retrieval techniques rely on an exhaustive search over the
image to determine the optimal candidate object position within a sliding window. Thus, in [Sande
2011], authors employ segmented regions to define possible object entities. This selective search
reduces significantly the number of object locations to consider. The method starts from an over-
segmentation obtained with the graph-based segmentation method from [Felzenszwalb 2004]. A
greedy algorithm is used in order to iteratively group the two most similar regions together and
compute the similarities between the new regions and their neighbors (i.e., texture and size similarity).
The process leads to the construction of a hierarchical structure of regions. Object locations can be
then identified by considering all segments through the hierarchy. The newly defined object entities
can be then described by popular object recognition techniques such as BoW with SIFT descriptors
densely extracted from each pixel on a single scale.

A similar and complementary approach has been proposed in [Malisiewicz 2007] where
authors study the use of multiple segmentations as spatial support to accurately define objects from the
ground truth of the Pascal challenge database [Pascal 2006], as an alternative to bounding boxes.

A region-based method using graphs for discovering object instances from images of daily
living has been proposed in [Kang 2011]. Regions obtained with two different segmentation methods
(i.e., efficient graph based segmentation [Felzenszwalb 2004] and active segmentation with fixation
[Mishra 2009]) are compared with the help of color histograms, SIFT and shape descriptors. They are
then grouped in a graph of regions according to their similarity. The similarity between regions is
adaptive with respect to the degree of texturing of the regions. Thus, textured regions are represented
with quantized SIFT features, while for less textured regions a color-based representation is proposed.
The pairs of regions are further verified in a shape similarity step. Regions belonging to the instances
of the same objects are thus determined as connected components in a graph containing all the regions
in the dataset and connecting the similar regions (Figure 2.5). Co-occurring segments are used for
composing object models consisting of multiple object parts.

Let us also mention the approach introduced in [Kim 2011]. Here, a different region-based
representation is proposed. The image is represented as a dense map of (overlapping) regions. Starting
from multiple overlapping segmentations [Arbelaez 2009], a distance transform is computed with
respect to the boundary of each segment. Then, each segment is divided into a set of cells distributed
over a regular grid. For each cell, an “element” is sampled at the location of maximal distance
transform value within the cell. The radius of the element is set to the corresponding maximal distance
value. The elements are then linked together under spatial (Euclidean distance) and similarity (contour
strength [Maire 2008]) constraints. An element and its linked elements constitute a boundary
preserving local region, which is described with Pyramids of Histograms of Oriented Gradients [Bosch
2007]. The determined regions can then be matched individually according to this descriptor.
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Figure 2.5. Graph of regions and discovery of regions belonging to the same object as connected
components [Kang 2011].

Vijayanarasimhan and Grauman [Vijayanarasimhan 2011] build a region adjacency graph
using superpixels and describe each region with SURF points [Bay 2008] and shape descriptors [Gu
2009]. Objects or object parts are identified as connected subgraphs of the adjacency graph with an
improved branch and bound scheme [Lampert 2008], which maximizes the score of a classifier. The
similarity scores are computed by summing the responses of the classifier for each identified
subgraph. Recently, Duchenne et al. [Duchenne 2011] proposed a different, graph of regions
representation. Here, authors formulate the object recognition problem as a multi-label MRF
optimization. A set of regions is extracted from a coarse grid and represented with the help of a graph
structure. A MRF-like energy optimization is considered in order to take into account the similarity of
pairs of regions. The energy functional involved is optimized with an extension [Ishikawa 2003] of the
GraphCut technique [Boykov 2001], able to solve multi-labeling problems. As the graphs to be
matched play asymmetric roles in this energy function, the similarity between two graphs is computed
with a kernel defined over the energies between the two graphs. This kernel is then employed for
training a support vector machine classifier to retrieve different object instances. The approach is
mostly suitable for object retrieval in images containing solely a unique object. Another limitation is
related to the scale invariance issues, which are treated in a more or less heuristic manner.

One of the major advantages of the region-based approaches comes from the possibility of
taking into account the spatial information in a natural way, by exploiting the adjacency relations
between the considered regions. However, the challenge that needs to be solved is related to the
optimization procedures involved, which need to exploit such information in an effective and
computationally efficient manner.
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2.4 Discussion

The analysis of the state of the art shows that the task of retrieving different instances of the same
object is still a challenging issue of research. Most of the existing approaches are currently focused on
identifying generic categories of objects. The choice of descriptors and segmentations specific to each
category is then performed during the off-line learning stage. While solving the issue of how to match
two images or two object entities, such approaches transfer the problem to the off-line learning stage.
However, the problem of retrieving different instances of specific objects becomes even more
difficult, as distinctive ground truth sets need to be generated for each such object in order to train the
classifier.

Concerning the identification of the location of the object candidates, many approaches rely on
an exhaustive sliding window search, making it increasingly difficult to retrieve new objects in an
unsupervised manner. We have seen that segmented regions can provide good spatial support and that
regions and group of regions can identify reliably objects or objects parts [Sande 2011], thus greatly
reducing the number of sliding windows to consider. However, the number of possible object
configurations to check is still elevated.

Large scale search systems can be effectively developed with interest points by employing the
BoW framework. The main difficulty is related with the lack of relative geometric information
between interest points. RANSAC based approaches solve this problem partially, by identifying
consistent groups of points from two matched images. However, such consistency verifications
compute homographies only by using the coordinates of the matched points and usually identify
correctly the consistent matches for limited viewpoint variations. The insertion of spatial information
by dividing the image at different scales [Lazebnik 2006] is difficult to extend to large datasets and
vocabularies (e.g., a spatial pyramid on 2 layers with 4 cells in the second layer extends the size of the
BoW vector 5 times).

Many researchers have concluded that the inclusion of spatial information has proven to be
essential in improving the retrieval results for interest point approaches. The most performing
approaches formulate the problem of interest point matching of two images or objects as a graph
matching problem. Such methods show superior robustness to many object transformations and
deformations. The price to pay is related to the expensive computational cost. For this reason, no such
technique has been yet proposed for large scale search yet. However, many of the findings in this field
could inspire a more light-weight object representation robust to multiple variations of object pose,
scale and small deformations.

An important drawback of the interest points approaches is that less textured images with a
low number of interest points become practically non-retrievable by the search engine or non-
matchable by interest point graph matching techniques. Usually such problems are tackled with
region-based representations relying on segmented regions and their color information. Most of the
approaches do not define a consistent object model, but represent it as a pool of regions collected from
different images where the object of interest occurs. The pertinence of each region for the object class
is computed by a classifier which extracts useful information from a set of manually annotated images.
The matching between images and objects is performed only at the level of individual regions and the
matching of groups of regions it still in its early days [Vijayanarasimhan 2011].
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Only a few approaches [Chevalier 2007, Duchenne 2011, Vijayanarasimhan 2011] consider
objects as consistent groups of regions; usually formalized as graph of regions over a grid or region
adjacency graphs. Graph-based structures provide increased flexibility to different object poses,
viewpoints, occlusions and deformations and leverage on multiple studies on combinatorial
optimization to identify groups of relevant regions from each object. Yet, graph-matching is among
the most computationally expensive approaches and new light weight variants should be proposed in
order to use them for large scale search.

Finally, recent researches have shown that the recall of retrieval methods can be improved by
leveraging on the top retrieved results. The query can be enriched/expanded with the descriptors of the
top results and a new query is issued in order to retrieve more positive results [Chum 2007]. In a
similar manner the top results can be used to train a linear classifier which is then for finding new
object instances [Arandjelovic 2012]. The drawback of such methods is that they rely on the results
retrieved from a first query and if the top results are false the query expansion fails to improve the
recall. An alternative mechanism that would ensure that the expanded query consists of positive object
instances should be developed for improvements in recall.

In our work, we propose an object retrieval framework relying on a region-based
representation. Frames are represented as region adjacency graphs and objects are identified are sub-
graphs according to a global similarity criterion with the query object. We propose multiple
optimization methods to identify the most relevant region configurations for an object given a query
model. In addition, we propose a hybrid object representation relying on both interest points (i.e.,
affine co-variant regions) and segmented regions. For each representation we propose a matching
technique and an optimization strategy. Our aim is to include pertinent relative geometric information
of groups of regions in the object representations and to localize the object without the use of
exhaustive sliding windows.

Query expansion techniques improve significantly the recall of the search engines but are
limited by the quality of the first retrieved results. We propose a technique that overcomes this
limitation by leveraging on general public search engines for retrieving positive instances of query
objects to be used for building a novel query. The most representative instances are chosen after a
verification stage and a new query is generated with the description of these images. We show how a
visual query can be generated by using textual descriptions of the object to be retrieved in a video
repository.
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3. Region-based representation

Abstract: In this chapter, we propose a region-based representation for objects. Multiple
segmentation methods (MeanShift, Superpixels, Efficient Graph Based Segmentation) that are suitable
for such an approach are first briefly recalled. The segmented regions are described with the help of
an extended version of the MPEG-7 dominant color descriptor, able to support an arbitrary number of
colors. The segments adjacency information is also retained and stored with the help of an adjacency
graph. The identification of groups of regions corresponding to an object instance that is similar with
an object model is an NP-hard problem. We propose a global similarity score for measuring the
correspondences between two groups of regions and employ it as an energy functional to be
minimized over multiple region configurations. In order to identify the global minimum of the energy,
we propose and describe four different strategies, namely Greedy, Relaxed Greedy, Simulated
Annealing and GraphCut.

Keywords: energy minimization, region based representation, Greedy, Simulated Annealing,
GraphCut, MPEG-7 DCD, segmentation, MeanShift, SuperPixels, efficient graph based segmentation.

Résumé: Dans ce chapitre nous proposons une représentation une représentation d’objet basée sur

des régions segmentées. Plusieurs méthodes de segmentation (e.g., MeanShift, Superpixels,
Segmentation Efficace Basée sur Graphes) qui se prétent a une telle approche sont d’abord
briévement rappelés. Les régions sont décrites par une version étendue du descripteur MPEG-7
Couleur Dominante, capable de supporter un nombre arbitraire de couleurs. L’information
d’adjacence des segments est également exploitée et stocké a [’aide d’un graphe d’adjacence.
L’identification des groupes de régions correspondant a une instance d’objet qui est semblable @ un
modeéle d'objet est un probléeme NP-difficile. Nous proposons un score de similarité globale pour
mesurer les correspondances entre deux groupes de régions et nous I’en utilisons comme une énergie
fonctionnelle & minimiser par rapport aux multiples configurations des régions. Afin d'identifier le
minimum global de I'énergie, nous proposons et décrivons quatre stratégies différentes, a savoir

Greedy, Greedy Détendu, Recuit Simulé et GraphCut.

Mots clés: minimization d’énergie, representation basée sur régions, Greedy, recuit simulé,

GraphCut, MPEG-7 DCD, segmentation, MeanShift ; SuperPixels, segmentations basée sur graphe.
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The principle of the proposed Dynamic Object-Oriented Retrieval (DOOR) approach consists of
representing an image as a set of regions/segments, obtained with an arbitrary segmentation technique.
As we cannot expect to dispose of an “ideal” segmentation technique, able to provide a precise region
of support for each object present in a video scene, the goal here is to exploit an over-segmentation of
each image into segments. The problem then can be formulated as follows: given a query object Q,
represented as a set of regions homogeneous with respect to a given criterion, together with their
adjacency information, and a candidate image I, also decomposed into a set of segments on the same
basis, how can we determine the sub-set of regions in image | that optimally fits (with respect to a
visual similarity measure) the query object Q?

Within this framework, each set of segments under consideration is supposed to be described
by some visual descriptors. In our case, we have adopted a color-based description, based on the
MPEG-7 Dominant Color Descriptor (DCD) [MPEG 2002].

Concerning the construction of the candidate object, the following strategy has been adopted.
In a first stage, we perform a pre-filtering of each candidate image, which aims at eliminating
individual regions with far-off colors, based on a color similarity criterion. Let us underline that the
objective of this stage is not to directly (and precisely) determine the candidate object, but to roughly
restrict the number of candidate regions, by eliminating colors that are highly improbable to belong to
the query object. Thus, a rather permissive threshold has to be used. The resulting regions are labeled
into connected components. Each connected component is then considered as an initial candidate
object to be matched with the query.

Next, each candidate object is iteratively refined by successively removing and/or adding
regions until the global matching distance is minimized. An overview of the proposed approach is
illustrated in Figure 3.1.

Let us note that an exhaustive search approach which would test all possible configurations is
computationally intractable (non-polynomial complexity with respect to the number of regions). In
order to obtain a method of reasonable complexity, we have considered the following four
optimization approaches:

e arecursive, greedy optimization strategy,

o arelaxed greedy method,

e asimulated annealing-based approach [Kirkpatrick 1983],
e a Graph Cut method [Boykov 2004].

Our approach relies on a region-based image representation, obtained with the help of a
segmentation method. The next section recalls the three segmentation methods adopted in our work,
with principle and choices of the main parameters involved.
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Figure 3.1. Overview of the DOOR approach: Stepl: The user selects an object and the
corresponding group of segmented regions is extracted; Step.2: Regions with colors highly
different from the query are filtered out. Remaining regions are separated into connected

components and each component is considered as a candidate object; Step 3: Different

configurations of candidate objects are generated by adding and removing color segments; Step
4: The object with the minimal distance from the query is selected and displayed in its bounding
box.

3.1 Adopted segmentation approaches

A first segmentation approach is the well-known MeanShift approach.

3.1.1 MeanShift segmentation

The MeanShift segmentation technique [Comaniciu 2002] relies on a feature space analysis. The
technique includes two basic steps: a mean shift filtering of the original image data (in the feature
space) and a subsequent clustering of the filtered data points.

The filtering step of the mean shift segmentation algorithm consists of analyzing the
probability density function underlying the image data in feature space. The feature space consists of
the (X, y) coordinates each pixel in the image and the (smoothed) pixel color in L*u*v* space (L*, u*,
v*). The modes of the probability density function underlying the data in this feature space will
correspond to the locations with highest data density, and data points close to these modes can be
clustered together to form a segmentation. The mean shift filtering step consists of determining these
modes through an iterative kernel density estimation of the gradient of the probability density
function. Edge information is also considered, in order to better guide the clustering process. Among
the various variants of the Meanshift algorithm, we have adopted the method integrated in the publicly
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available EDISON system, described in [Christoudias 2002]. Let us note that the algorithm can be
parallelized and implemented on GPU, boosting its computational efficiency.

As we can observe, the regions generated by the Mean Shift segmentation accurately follow
the edges of the image. The number of regions is not specified, but is instead determined by the
bandwidth parameters involved and by the image content. Since our objective is to use the segmented
regions as primitives for object construction, we require a relatively high number of segmented
regions. Thus, the segmentation parameters (e.g., color range, spatial range, minimum region size) are
adjusted in order to perform an over-segmentation of the images. This results in up to 200-300 regions
per image, with an average of 160 regions per image (cf. Section 6.1.2).

Figure 3.2 and Figure 3.3 illustrates some examples of MeanShift segmentation, for both
synthetic (cartoon) and natural images.

Figure 3.2. Cartoon video frames (left) and their MeanShift segmentations (right). A number of
80-150 segmented regions provide in this case a “recognizable” image. The regions are displayed
with their corresponding Dominant Color.

Figure 3.3. Video frames (left) and their MeanShift segmentations (right). A number of 200-300
segmented regions provides in this case a “recognizable” image. The regions are displayed with
their corresponding Dominant Color.
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In the segmented images the color of each region corresponds to the average value of the
colors of all the pixels included in the considered region. We can observe that despite the inherent loss
in accuracy, the image content can still be visually recognized from the segmented images, which
offers good premises in terms of object recognition capabilities.

Let us finally note that due to its advantageous properties, the MeanShift algorithm is a
frequent choice in the field of object-based retrieval [Pantofaru 2006, Malisiewicz 2007, Yang 2007,
Pantofaru 2008].

A second segmentation technique retained is presented in the following section.

3.1.2 Efficient graph-based segmentation

The efficient graph-based segmentation (EGBS), introduced by Felzenswalb and Huttenlocher in
[Felzenszwalb 2004] uses a variation of a single linkage clustering [Comaniciu 1999] based on
dilating points in a parameter space. The authors employ a minimum spanning tree of the data points
(pixels) from which any edges with length greater than a given hard threshold are removed. The
method eliminates the need for a hard threshold, which is here replaced with a data-dependent term.

Thus, the merging of two components is performed with a variable threshold, unlike
MeanShift where the pixels are assigned region labels under fixed thresholds. This adaptive
thresholding mechanism allows two components to be merged effectively if the minimum edge
connecting them does not have a length greater than the maximum edge in either of the components’
minimum spanning trees. The EGBS technique is thus adaptively sensitive to edges in areas of low
variability, and less sensitive to them in areas of high variability.

The efficient graph-based segmentation has been successfully employed in vision applications
on object recognition [Pantofaru 2008, Kang 2011, Sande 2011, Vieux 2012] for its simplicity and for
its segmentation pertinence to object entities, as in many cases objects are segmented into a single
region. While a fixed number of regions per image cannot be set, we have tuned the algorithm to
return an average of 170 regions with a maximum value of 1000 regions

3.1.3 Superpixels

Many vision applications benefit from representing an image as a collection of superpixels [Ren 2003,
Malisiewicz 2007, Pantofaru 2008, Fulkerson 2009]. Intuitively, a superpixel is regarded as a
perceptually meaningful atomic region of the image. Thus, a superpixel should contain pixels that are
similar in a certain feature (e.g. color, texture...) and therefore are likely to belong to the same
physical world object. Moreover, the size and shape of the superpixels of a given image should be
highly similar.

Let us mention that the “superpixel” denomination is often used for regions resulted from
popular segmentation methods (e.g., normalized cuts [Shi ], MeanShift [Comaniciu 2002], graph
based [Felzenszwalb 2004]) when such techniques are tuned such that they lead to an over
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segmentation of the image. However, when running in superpixel mode, such methods do not follow
the boundaries of the objects and the resulting superpixels have irregular shapes and sizes. These
drawbacks have been approached by specialized superpixels segmentation algorithms such as
normalized cuts superpixels [Ren 2003], TurboPixels [Levinshtein 2009], energy-based superpixels
[\Veksler 2010].

We have adopted the energy-based superpixels, recently introduced by Veksler et al. [Veksler
2010] for their superior performances over Turbopixels in both boundary precision and computation
time. The superpixels are obtained with a graph-cut optimization approach [Boykov 2001, Boykov
2004, Kolmogorov 2004] which finds an optimum distribution of a collection of overlapping square
patches covering the whole image. Each pixel is covered by several patches, and the task is to assign a
pixel to one of them. If two neighboring pixels are assigned to the same patch, there is no penalty. If
they belong to different patches, then there is a stitching penalty that is inversely proportional to the
intensity difference between the pixels. Intuitively, patches are stitched in such a manner that the
seams are encouraged to become aligned with the image edges. The principle is illustrated in Figure
3.4, where three patches are considered (Figure 3.4a). In this example, there is a strong intensity
gradient at the level of the lip boundary. Therefore, the cut between patches should be aligned with the
lip boundaries (Figure 3.4b). This process of boundary regularization is due to the stitching energy
function. A superpixel cannot be too large, i.e., not larger than the considered size of the patch. Small
superpixels are also discouraged because they contribute with a higher cost to the stitching energy.

An important advantage of the superpixels is their regularity in size and shape. This makes it
possible to specify the approximate number of superpixels for each image. In our approach,
superpixels can also be regarded as a quasi-regular grid that provides information about the
positioning of the superpixels and groups of superpixels relative to each other and does not cross the
object boundaries. In order to test the influence of the number of regions in the object retrieval
process, we have considered three levels of granularity for the superpixels segmentation with an
average number of 250, 500 and 750 superpixels.

(a)Three patches. (b) Obtained superpixels.

Figure 3.4. Patch stitching for superpixels. Left: three patches (orange, green, purple). Right:
the resulting superpixels.

Figure 3.5 illustrates the results of the three segmentation techniques retained for a same
image. We can observe the high regularity of the regions obtained with the help of the Superpixels
method.
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EGBS 750

Figure 3.5. Examples of segmentation results for the considered techniques. In the right column,
the regions are displayed with their corresponding average color.
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Whatever the segmentation technique, the resulting segmented image should be described
appropriately in order to enable object-based retrieval. In our case, we have adopted a color-based
representation, based on the MPEG-7 dominant color descriptor, presented in the following section.

3.2 DCD description

Each region (or segment) determined needs to be described individually in such a manner that its
descriptors can be also integrated in the description of a group of regions. In our approach, each
segment is described by a unique, homogeneous color, defined as the average value of the pixels of the
given region. The set of colors, together with their percentage of occupation in the image (i.e., the
associated color histogram) are regrouped into a visual representation, which is similar to the MPEG-7
DCD [MPEG 2002].

More precisely, let ¢; = {ci, ci, ... CIIVI} be the set of N, colors obtained for image I, and

H, = (p, v, .. p,’\,l) the associated color histogram vector. The visual image representation is
defined as the couple (C,, H)). In contrast with the MPEG-7 DCD, which supports a maximal number
of eight colors, in our case an arbitrary number of dominant colors is supported. Note that other
descriptors such as color histograms, contour shape or local gradient descriptor for each region can be
employed in this framework.

The query is by definition an object of arbitrary shape and is processed in the same manner in
order to derive its visual representation. Let us also note that more sophisticated DCD-based
approaches, such as those introduced in [Yang 2008, Zin 2009], can also be considered.

The advantage of the DCD representation comes from the fact that objects with arbitrary
numbers of colors can be efficiently compared by using, for example, the Quadratic Form Distance
Measure introduced in [Hafner 1995], which can be re-written for arbitrary length representations as
described by the following equation:

Ng Nq N; Njp Ng N
DZ(Hy, H)) = ZZa(ciQ, c,?) pl-Qp,i2 + ZZa(C}, ) vipl — ZZa(ciQ, cJ’) piQp§ ) (3-1)
i=1 k=1 == i=1j=1

where Hy = (02, pY, .. pSQ) and H, = (p}, p}, ... pk,) respectively denote the DCD histogram
vectors of length Ny, and N, respectively associated to the query (Q) and candidate (1) images. The
function a, describe the similarity between two colors ¢; and c; and is defined as:

d(ci, ¢j)

dmax

: (3-2)

a(cl-, cj) =1-

where d is the Euclidean distance between colors c¢; and ¢; and d,,4, is the maximum Euclidean
distance between any 2 colors in the considered color space .
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Let us note that each color region in a candidate image has a specific contribution to the global
distance. Thus, the contribution of color cj’ in an image | to the global distance between image | and
query Q is expressed as:

Ny Nq
c(h@)= ) aleh ) pjpi = ) alcl, ) nlp] )
=1 i=1

Let us emphasize the flexibility provided by this similarity measure. As groups of regions
evolve and regions are added or removed, the contributions of each region to the similarity measure
can be easily updated according to the current region configuration.

The above-defined distance is used as a global criterion in the matching stage. Here, the
objective is to determine, in each key-frame of the considered video sequence, candidate regions
which are visually similar with the query.

In order to capture the internal structure of the objects as clusters of neighbor regions, we
employ a graph-based representation. The advantage of graph based representation lies in its
flexibility, the integration of spatial information and in the possibility of defining relevant parts of the
object as sub-graphs or connected components.

Let us consider an undirected graph G = (V, &) with n vertices and m edges. Each vertex
represents a segmented region, hence n is the number or regions in the given image. Vertices are inter-
connected with an edge if their corresponding regions are adjacent. In our case, the weights of the
vertices are their corresponding dominant colors. For the edges, we have explored different weighting
mechanisms, related to the neighborhood structure (i.e., Potts-like potential) or to the similarity of the
two corresponding regions (cf. Section 5.2).

An important characteristic of the graph is the possibility identifying and using sub-graphs and
connected components. More precisely, the objective is to determine, for each candidate image, a sub-
graph that minimizes the dissimilarity measure defined in Equation (3-1).

Within this framework, we have considered several optimization strategies. The first one,
described in the next section, concerns a greedy region construction mechanism.

3.3 Greedy region construction

The algorithm starts from the initial set of regions obtained after the filtering stage. At each stage, we
consider the current candidate object in image | and attempt to improve the current similarity measure
between query and candidate objects. More precisely, we recursively eliminate the color segment
which provides the highest contribution to the global distance (Equation (3-3)). We then check if the
global distance is decreasing or not. If yes, we eliminate the corresponding region, update the color
frequency vector H,, and re-iterate the algorithm on the new candidate object obtained. If not, the
region is maintained and the algorithm successively tries to eliminate the following regions (sorted by
decreasing order of their contribution to the global distance).
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Let us note that each time an attempt to eliminate a segment is performed, the region
connectivity needs to be re-calculated in order to determine the eventually newly created connected
components. Each connected component is then treated separately.

The algorithm stops when no improvement to the current global distance is obtained, whatever
the region under investigation. We then return to the previously obtained best score configuration and
stop the algorithm.

The strategy of recursively eliminating the highest contributor to the global score increases the
speed of the algorithm, by pruning the search space. However, there is a risk to remain blocked in a
local minimum, because whenever the distance is increasing, the algorithm stops. For this reason we
investigated a different approach, based on a modification of the current greedy scheme.

3.4 Relaxed Greedy Scheme

Here, the principle consists of relaxing the exit condition in the previously described greedy scheme,
in order to allow the algorithm to test additional region configurations, which are not necessarily
lowering the global score at the current step. Thus, we constrain the algorithm to stop generating
configurations when the current distance becomes “considerably” higher than the previous one. We
consider that if the current distance is é % higher than the previous obtained one, the candidate object
has a low probability of reaching a configuration with a better score. In this case, the algorithm should
stop and return the current best distance. Otherwise, it should continue removing the regions with the
highest contributions to the score as it could find another minimum after this “uphill” configuration. In
our experiments, we have used values of 6 between 5% and 20%, which provide a good trade-off
between the number of generated configurations and the computational time.

Let us note that the Relaxed Greedy (RG) scheme, although simple, becomes more useful in
the case of images described by a relatively high number of segments since in this case the probability
of getting stuck in a local minimum is significantly increasing. The main limitation of the greedy
approaches is that they do not ensure the retrieval of an optimal solution. In order to achieve
asymptotic optimality, we have adopted a simulated annealing matching strategy, described in the next
section.

3.5 Simulated Annealing Optimization

The Simulated Annealing (SA) algorithm is a well-known stochastic optimization technique inspired
from the behavior of condensed matter at low temperatures. The procedure employs methods that
originated from statistical mechanics to find global minima of systems with large numbers of degrees
of freedom. The correspondence between combinatorial optimization problems and the way natural
systems search for the ground state (lowest energy state) was first realized by Kirkpatrick et al.
[Kirkpatrick 1983] who applied Monte-Carlo methods in order to determine the solution of global
optimization problems. Furthermore, authors generalized the Metropolis algorithm [Metropolis 1953]
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by using an approach with successively decreasing temperatures. At each stage, the system is
simulated by the Metropolis procedure until the system reaches equilibrium.

The system starts with a high temperature T. Then, a cooling (or annealing) scheme is applied
by slowly decreasing the temperature T according to some given procedure. At each temperature T, a
series of random new states are generated and the states that improve the cost function are accepted.
Instead of always rejecting states that do not improve the cost function, such states can be accepted
with some finite probability depending both on the amount of energy increase and of the current
temperature T. This process randomizes the iterative improvement phase and also allows occasional
uphill moves (i.e., moves that do not improve the solution) in an attempt to reduce the probability of
blocking the algorithm into a local minimum. As temperature T decreases, configurations that increase
the cost function are more likely to be rejected. It has been demonstrated that the SA procedure is
asymptotically optimal, i.e. leads to a solution that is arbitrary close to the global minimum [Lundy
1986].

We employ the SA algorithm in order to take advantage of the higher number of possible
region configurations and, thus, determine the global optimum score for all candidate regions. The
energy E considered here is defined as the global matching score between the query and the candidate
objects (Equation (3-1)). A binary state S =35(c) is associated to each color segment ¢ indicating
whether the segment is considered as part of the current object or not.

During each step, the algorithm attempts to change the state of the current color segment, by
investigating the variation of the global energy AE = E(S') — E(S) when the state S is set to its
complementary value S’. If this variation AE < 0, then the current state S is replaced by its
complementary value S’. If the energy variation AE has a positive value indicating an augmentation of
the energy, then a random variable a, 0 < @ < 1 is generated. The current state S is replaced byS’ if
the following condition is satisfied:

a < eCAE/M and E(S") > E(S) (3-4)

where T denotes the value of the temperature at the current state.

A multiple number of iterations, denoted by ny, are performed for a given temperature. The
temperature of the system is then iteratively lowered, according to a given freezing scheme (or
annealing schedule). In our work, we have adopted the following temperature variation:

Thi1 = 1Ty (3-5)

where 7 is the (constant) cooling rate with value between 0 and 1, and T,, is the temperature at the n"
iteration. Let us note that as the temperature is decreased bytT,,, the probability of accepting a large
decrease decays exponentially towards zero. The algorithm starts at an initial temperature T,, and stops
when a freezing temperature T; is reached.

In addition, the connectivity information is used to guide the SA process. Thus, in order to
ensure a smooth variation of the energy functional, a given segment is allowed to change state only if
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this process does not modify the topology of the candidate object (i.e., it does not create holes or new,
isolated connected components).

Let us also observe that, in contrast with the greedy-based approaches (where the only
operation supported is the removal a given segment), here a color segment can be both removed and
added to the current candidate object.

A particular attention has to be paid to the parameters involved in the considered freezing
scheme. Keeping the same temperature for a long period of time will guarantee finding the best
solutions since the SA algorithm is asymptotically optimal. This means that the longer the algorithm
runs, the better is the quality of the solution obtained. However, from a practical point of view, this is
not acceptable because of computational issues. Concerning the other parameter values, we consider
the initial temperature T, between 0.5 and 0.9 and the freezing temperature T; in the range 10 — 10,
Finally, the typical values of the cooling factor t are in the range from 0.9 to 0.99.

The considered SA approach is illustrated in Figure 3.6. At step 1, we randomly select a
segment from the current region configuration and add it or remove it from the current regions
configuration depending on its previous state. At step 2, we check if the operation made to the current
region changes the consistency of the current region configuration. If it generates two new connected
components or creates a whole within the current region configuration, it will not be accepted and
marked as processed and we return to step 1 to select another segment from the non-processed
segments. If the region passes the consistency check, at step 3 we compute the color similarly between
the query model and the current region configuration using Equation (3-1). This similarity represents
the energy of the current object state E£(S’) and we compare with the energy of the previous state E(S).
If there is an improvement in the energy score from the previous step (i.e., AE = E(S§") — E(S) < 0)
we accept the current state and replace the previous state with it at step 5 and then return to step 1 to
select another segment to add or to remove. If there is no improvement in the energy score (i.e.,
AE > 0), we perform the test from Equation (3-4) to decide whether to accept the current state or not.
If the test is passed, the current state is accepted and replaces the previous one at step 5. We return
then to step 1. If the current state does not pass the test from step 4, the current state is rejected and the
algorithm goes directly to step 1 to test another segment. When all segments from the current region
configuration have been processed, the current iteration is completed. We then mark as non-processed
all the segments and start a new iteration. We perform n;; = 5-10 such iterations for each temperature.
After n; iterations the temperature decreases as indicated in Equation (3-5). The temperature is then
successively decreased until it reaches the freezing temperature T.

The SA algorithm offers the advantage of generality, being able to optimize arbitrary energy
functions. However, approaching the global optimum requires a very slow cooling rate (i.e., parameter
T close to 1) and as a consequence, the optimization process becomes very slow and intractable in
practice. For this reason, it is necessary to decrease the algorithm's temperature parameter faster than
required by the theoretically optimal schedule. The price to pay is of course the sub-optimality of the
resulting solution, since in this case the algorithm will converge to a local minimum: Greig et al.
[Greig 1989] demonstrate that practical implementations of simulated annealing lead to results that are

far from the global optimum.
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Figure 3.6. Overview on the Simulated Annealing implementation.

Moreover, all the above described optimization strategies integrate solely a minimal spatial
information, related to the connectivity between adjacent regions. Spatial information could help in
identifying pairs or groups of matched regions which co-occur in both query and test images. This
information could be then used to privilege or penalize groups of regions in the region construction

process.

In order to overcome such limitations, the graph-cut optimization method, presented in the
following section, adopts a different approach, which considers no longer individual state

modifications, but operations associated to groups of regions, so-called moves.

3.6 Graph-Cut Optimization

Let us consider a set of sites P (which can be sets of pixels in an image, or sets of nodes in a
graph representation) and a set of labels £. The objective is to determine a labeling function f (i.e. a
mapping from 2 to £) which minimizes a given energy function.

The Graph-Cut optimization method has been developed within a Markovian framework and
is thus dedicated to the minimization of Gibbs functionals, which can be expressed as described by the
following equation:

E(f) = Zpe? Dp(fp) + Zp,qe]\f Vp,q (fprfq): (3-6)

where ' € P X P is a neighborhood system supposed to be available.
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The term D,(f,) is a function derived from the observed data that measure the cost of
assigning the label f, to the site p (i.e., it measures how well the label f, fits the site p given the
observed data). It can also be referred to as the data term, or the unary term. The term V,, . (f,, fg)
measures the cost of assigning the labels f,,, f; to the adjacent sites p, g and is used to impose spatial
smoothness. It is also referred to as the smoothness term or the pairwise term.

Let us note that at the borders of objects, adjacent sites will often have different labels. In this
case, it is important that the energy functional E does not add extra penalization to such labeling. This
requires that the term V4 should be a non-convex function of |f,,— f;|. Such an energy function is
called discontinuity-preserving [Geman 1984, Kolmogorov 2004].

Since functions like E are non-convex functions in a space with thousands of dimensions, their
minimization is a highly challenging issue. They have been traditionally minimized with general-
purpose optimization techniques, such as simulated annealing [Kirkpatrick 1983], that can minimize
arbitrary energy function. The Graph-Cut technique has been developed as an alternative to such high
complexity methods. Let us recall the basic principle.

3.6.1 Graph-Cut basics

Let G = (V, ) be a graph which consists of a set of nodes V and a set of directed edges € that connect
them. The set of nodes V = {s,t} U P contains two specific terminal nodes, so-called source s and

sink t, as well as a set of non-terminal nodes P.

Each graph edge is assigned a non-negative weight (or cost) denoted by c(p, q). A cost of a
directed edge (p, q) may differ from the cost of the reverse edge (g, p). An edge is called a t-link if it
connects a non-terminal node in P with a terminal. An edge is called n-link if it connects two non-
terminal nodes. Let us denote by IV the set of all n-links. The set of all graph edges £ consists of n-
links in v and t-links {(s,p), (p,t)} for non-terminal nodes p € P. Such a graph is illustrated in
Figure 3.7, where t-links are shown in red (for the source node s) and blue (for the sink node t), while

n-links are shown in yellow.

An s/t cut C is by definition a partition of the graph nodes into two disjoint subsets S and T
such that the source node s is in S and the sink node tis in T. An example of of a cut is illustrated in
Figure 3.7.

To each cut C = {S,T} , we can associate by a binary labeling f defined from the set of the
vertices V — {s, t} to {0,1}, with f(p) =0forp e Sand f(p) =1 forp € T.

Thus, the minimization of the energy functional in Equation (3-6) can then be formulated as
the determination of an optimal cut, as described in the following section.
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SOIce

Figure 3.7. Graph construction in Greig et. al. Edge construction reflected by thickness. A graph
G (left) and a cut on G (right).

3.6.2 The Min-Cut and Max-Flow problem

To each cut, a cost measure is associated with. By definition, the cost of a cut C = {S, T} is the sum of
costs of all boundary edges (p,q) suchthat p € Sand q € T. If (p,q) is a boundary edge, then we
say that cut C severs the edge (p, g). Intuitively, the cost of the cut is the sum of costs of all edges that
gofromStoT:

C(S,T)= ZpeS,qET,(p,q)eE c(p,q) - (3-7)

The minimum cut problem is to determine a cut that has the minimum cost among all the
possible cuts. One fundamental result in combinatorial optimization states that the minimum s/t cut
problem can be solved by finding a maximum flow from the source s to the sink t. Intuitively, this can
be interpreted as follows. If we consider the source node as a source of water, the sink node as a tank
and the graph edges as directed “pipes” with capacities equal to the edge weights, the maximum flow
is the maximum amount of “water” that can be transported from the source to the tank. The theorem of
Ford and Fulkerson [Ford 1962] states that a maximum flow from s to t corresponds to a set of edges
in the graph partitioning the nodes into two disjoint parts {S, T} corresponding to a minimum cut.
Thus, min-cut and max-flow problems are equivalent and the maximum flow value is equal to the cost
of the minimum cut.

There are many standard polynomial time algorithms for min-cut/max-flow [Cook 1998].
Such algorithms can be divided into two main groups: “push-relabel” methods [Goldberg 1988] and
algorithms based on augmenting paths [Ford 1962]. In practice, the push-relabel algorithms perform
better for general graphs. In the field of computer vision, more specialized algorithms are used, in
particular the method of Boykov and Kolmogorov [Boykov 2004] and its more recent extensions
[Kohli 2007, Goldberg 2011], described in the next section.
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3.6.3 Energy minimization using graph cuts

In order to minimize E using graph cuts, a specialized graph is created such that the minimum
cut on the graph also minimizes E (either globally or locally). The form of the graph depends on the
exact form of V,4 and on the number of labels. In certain restricted situations, it is possible to
efficiently compute directly the global minimum. Thus, in the case of binary labeling Greig et. al.
[Greig 1989] proposed a method to compute the global minimum of E. This is also possible for an
arbitrary number of labels as long as the labels are consecutive integers and V4 is the L; distance. The
construction is due to [Ishikawa 1998] and is a modified version of [Roy 1998]. This construction has
been further generalized to handle an arbitrary convex potentials V4 [Ishikawa 2003].

However, a convex V,q is not discontinuity preserving and optimizing an energy function with
such a V,q4 leads to over-smoothing at the borders of objects. The ability to determine the global
minimum efficiently, while theoretically of great value, does not overcome this drawback.

Moreover, efficient global energy minimization algorithms even for the simplest
discontinuity-preserving energy functions do not exist. Let us consider the following form for the
pairwise potential:

Voo f0) =TSy # fo] - (3-8)

, Where the indication function T[-] is 1 if its argument is true and zero otherwise.

This smoothness term corresponds to a Potts model [Potts 1952], and is discontinuity
preserving. Yet, it is known that its minimization is a NP-hard problem [Boykov 2001].

However, graph cut algorithms have been developed that compute a local minimum in a
strong sense [Boykov 2001]. Such methods minimize an energy function with non-binary variables by
iteratively minimizing an energy function with binary variables. Boykov et al. [Boykov 2001]
introduce two algorithms based on graph cuts that can find efficiently a global minimum with respect
to two types of large moves, namely expansion moves and swap moves, which simultaneously change
the label of multiple sites. This is in contrast with popular optimization algorithms previously
proposed, such as Iterated Conditional Modes (ICM) [Besag 1986] and Simulated Annealing [Geman
1984], which allow only one site at a time to change its label.

Any labeling f can be uniquely represented by a partition of image sites P = {;|leL} where
P, = {peP|f, = 1} is a subset of sites assigned with the label L. In the case of the swap moves, given a
pair of labels a, B, a move from a labeling f or a partition 2 to a new labeling f' or partition P’ is
called a« — 8 swap is P, = P’; for any label | # a,B. More precisely, this means that the only
difference between P and P’ is that some pixels that were labeled « in P are now labeled g in 7', and
some pixels that were labeled g in P are now labeled « in P’. Let us note that a special case of a
a — [ swap is a move that gives the label a to a set of pixels previously labeled S. Figure 3.8
illustrates examples of a-B-swap moves.
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current labeling f a a-f-swap another a-B-swap ay- B-swap

Figure 3.8. Examples of swap moves with respect to the current labeling f is shown at left. A a-p-
swap move is made from binary choices: each f, involved can choose either a or p (illustration
from [Delong 2011]).

For the expansion moves, given a label a, a move from a partition 2 (or labeling f) to a new
partition ' (or labeling f') is called an a-expansion if , ¢ P’, and P, c P’; for any label | # a.
This means that an a-expansion move allows any set of image pixels to change their label to «a.
Examples of expansion moves are illustrated in Figure 3.9.

Summarizing the two methods, for the swap moves, given an input labeling f (partition ) and
a pair of labels a, 8, the objective is to determine a labeling £ that minimizes E over all labelings
within one a — 8 swap of f. In the case of the expansion moves, given an input labeling f (partition )
and a label a, a labeling fminimizing E over all labeling within one a-expansion of f has to be
determined.

Q 3 ! 3 Q
Current labeling f A a-expansion Another a-expansion A y-expansion

Figure 3.9. Examples of expansion moves with respect to the current labeling f is shown at left.
An a-expansion move is made from binary choices: a can either expand to pixel p, of leave f;, as

it is (illustration from [Delong 2011]).

In our work we have adopted the expansion move algorithm proposed in [Boykov 2004]
which is one of the most effective algorithms for minimizing discontinuity-preserving energy. This
algorithm can be used whenever V,4 is a metric on the space of labels; which includes several

important discontinuity preserving energy functions.

The expansion move algorithm cycles through the labels « in a fixed or random order and

determines the lowest energy a-expansion move from the current labeling. If this expansion move has

51



24
Chapter 3. Region-based representation }/7

MINES
Tech

lower energy than the current labeling, then it becomes the current labeling. The algorithm terminates
with a labeling that is a local minimum of the energy with respect to expansion moves. More

precisely, there is no a —expansion move, for any label a, with lower energy.

3.6.4 DOOR Graph-Cut integration

Let us first note that the direct minimization of the global quadratic similarity measure defined in
Equation (3-1) is not possible with the Graph Cut technique, since such a measure is not reducible to a
Gibbs energy functional (Equation (3-6)) [Kolmogorov 2004, Freedman 2005]. Instead, we guide our
Graph Cut process with a dedicated Gibbs energy, which is defined as described in the following.

We formulate the problem of region based object recognition as a binary labeling graph cut
problem. Similarly with the segmentation approaches, the values of the binary labels can be
foreground and background [Boykov 2001b, Li 2004, Boykov 2006], indicating whether the
considered segment is inside or outside the object of interest. The foreground label is assigned to the
segments similar with the regions of the query object, while the background label is assigned to non-
similar regions from the current image.

We have considered the graph-based representation described in Section 3.2. Thus, the set of
nodes P represents the set of segments obtained with an arbitrary segmentation procedure. The
adjacency relations between them are also supposed to be available.

Let f = (fu far 0 fpr -, fip|) be the binary vector of labels associated with the set of
segments P. For each segment p, the corresponding label can be either “foreground” (f, = 1) or
“background” (f, = 0). In this manner, each vector f defines an object candidate, constructed from

with the regions labeled as “foreground”. In order to obtain the vector f, we define a set of soft
constraints on region and boundary properties of f with the help of the following cost function:

E(f)=2-D(f)+ V() (3-9)

, Where D(f) is the regional, data or unary term and represents the likelihood energy, encoding the
cost when the label of p is f,:

D(f) = Yper Dp(fy) - (3-10)

The function V(f) is the smoothness or pairwise term and represents the internal energy, specifying
the cost when the labels of adjacent nodes p and g are f and f; respectively:

V= D Vha Sper (311)
.QeN
with
5= { Loiffy # 14 (3-12)
W= = 0 if fp = fq '
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The real, positive parameter A (4 > 0) from Equation (3-9) weights the relative importance of
the data term D(f) with respect to the boundary properties term V(f). Let us note that such an approach
has been extensively used within the framework of interactive image segmentation. In such cases, the
user marks the image with so-called scribbles indicating regions that belong to the foreground or
objects of interest and regions that belong to the background [Boykov 2001b, Li 2004, Boykov 2006,
Bai 2007]. The segmentation algorithm employs these scribbles as seeds for building regions and
segmenting out the objects of interest. Such scribble information can be integrated naturally in the
GraphCut optimization in the data term as source/foreground and sink/background nodes. The
scribbles typically boost the segmentation accuracy and speed, and can be deployed in general public
video editing tools (e.g., Adobe After Effects [Bai 2009, Adobe 2012b]).

The principle is illustrated in Figure 3.10. Users draw on a given image a set of scribbles
hinting the object of interest (foreground) with blue curved lines and the non-interesting regions
(background) with green curved lines. The segmentation algorithm performs the segmentation starting
from these user hints. The result is then displayed to the user and if the segmentation is not accurate,
he can then add other helping scribbles to be considered for improving the segmentation results.

Figure 3.10. Principle of scribble-based interactive segmentation. In the left column, images with
user drawn scribbles (foreground - blue curves, background — green curves). The segmentation
results are presented in the right column.

It would be of great help to manage to introduce such a scheme within our object retrieval
scheme in an automatic manner. This requires constructing automatically the scribbles, as described in
the following section.
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3.6.4.1 Pseudo scribble construction

Since we dispose of a query model indicated by the user, we introduce a pseudo-scribble approach for
enhancing the object detection. The regions that compose the query object are considered as
foreground scribbles.

For each candidate image under consideration, the corresponding set of regions is filtered,
according to their color similarity with the query regions (cf. Section 3.3). Here; we adopt a relaxed
threshold in order to avoid eliminating potentially useful regions that might present low similarity
scores because of lightening variations or noise. The filtered-out regions are considered as background
regions and are annotated as background pseudo-scribbles. The rest of the regions are considered as
detected foreground regions.

Let us note that in our case, and in contrast with traditional segmentation approaches, the
foreground scribbles do not belong to the candidate image, but to the query model.

This principle is illustrated in Figure 3.11, Figure 3.12 and Figure 3.13. Figure 3.11 illustrates
the query model, which is interactively specified by the user. Its constitutive segments will define the
set of foreground scribbles.

Il

—" e

- [ ¥
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©

User selection on frame Oversegmented frame Query object segmented out

Figure 3.11. Query object extraction from user selection. After the regions composing the query
model have been extracted, all these regions become foreground pseudo-scribbles (dashed blue-
curve).

Figure 3.12 illustrates the case of a candidate image which is visually similar with the query
frame (i.e., the pose of the character of interest is almost the same, the color tones of the background
are highly similar).

Despite the similarity, some mislabeled regions are here detected (e.g., pieces of furniture
assigned to foreground, parts of face and shirt assigned to background).
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Current frame Over-segmentation

Backgroundregions

Figure 3.12. Background pseudo-scribbles extraction from a frame similar with the query frame
illustrated in Figure 3.12. Each image is firstly passed through color filtering that removes all
regions with colors far-off from the ones in the query model. The filtered out colors become
background pseudo-scribbles (dashed green line).

In Figure 3.13 we illustrate a different case, where the object of interest is significantly
differen