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Abstract

Since the end of the 1980’s, the development of self-driven autonomous vehicles is an

intensive research area in most major industrial countries. Positive socio-economic

potential impacts include a decrease of crashes, a reduction of travel times, energy

efficiency improvements, and a reduced need of costly physical infrastructure. Some

form of vehicle-to-vehicle and/or vehicle-to-infrastructure cooperation is required to

ensure a safe and efficient global transportation system. This thesis deals with a

particular form of cooperation by studying the problem of coordinating multiple

mobile robots at an intersection area. Most of coordination systems proposed in

previous work consist in planning a trajectory and to control the robots along

the planned trajectory: that is the plan-as-program paradigm where planning is

considered as a generative mechanism of action. The approach of the thesis is to

plan priorities – the relative order of robots to go through the intersection – which

is much weaker as many trajectories respect the same priorities. More precisely,

priorities encode the homotopy classes of solutions to the coordination problem.

Priority assignment is equivalent to the choice of some homotopy class to solve the

coordination problem instead of a particular trajectory. Once priorities are assigned,

robots are controlled through a control law preserving the assigned priorities, i.e.,

ensuring the described trajectory belongs to the chosen homotopy class. It results

in a more robust coordination system – able to handle a large class of unexpected

events in a reactive manner – particularly well adapted for an application to the

coordination of autonomous vehicles at intersections where cars, public transport

and pedestrians share the road.

Keywords: mobile robots, multi robot systems, motion planning, coordination

space, priority graph, homotopy class, safety, robustness, hybrid architecture
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Résumés en Français 165
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Introduction

Contents

1.1 Industrial motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Plan or react ? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Industrial motivation

The last decades have seen a number of projects addressing the automation of

vehicles. The California PATH AHS project (1988-2003) was interested in making

progress in automated highway systems [8, 59] with about 600 person-years of effort

invested [121]. The European CityMobil project, finalized in 2011, addressed the

integration of automated transport systems in the urban environment [2, 133] and

the cooperation is continuing through CityMobil2 started in September 2012 for 4

years and involving 45 partners from system suppliers, city authorities, the research

community and networking organizations [3]. The European interactIVe project,

finalized in 2012, focused more on advanced driver assistance systems (ADAS) for

collision avoidance by active intervention in intelligent vehicles [38]. The DARPA

challenge, a prize competition for American autonomous vehicles, funded by the

Defense Advanced Research Projects Agency, has also stimulated innovation and

research in vehicles automation (see, e.g., [128]).



Chapter 1. Introduction

All these research projects are funded thanks to high expectations in terms of

economic and social impacts. A recent report [137], jointly written by a consulting

company together with an automotive research center, presents self-driving car as

the next revolution in the automotive industry. Car automation is expected to

decrease crashes, to reduce the need for physical costly infrastructures, to create

new models of shared mobility, to reduce and anticipate travel times, to improve

productivity, to improve energy efficiency: a combination of social and economic

positive impacts. To the authors of the report, it is clear that such disruptive

change in the automotive industry opens opportunities for new players and requires

all companies of the sector to embrace innovation or to be left behind.

As autonomous vehicles are now starting to be deployed, cooperation among

autonomous vehicles and also between autonomous and human-driven vehicles is

necessary. This is the topic of the European project Autonet2030 [4], just started

in 2014. Many use cases require cooperation: lane change negotiation, overtaking,

cooperative routing, or cooperative speed control. This thesis focuses on the co-

ordination of autonomous vehicles at intersections. Two main goals motivate the

research in this topic. The first one is to avoid crashes due to collisions that occur

particularly at intersections and because of human error (the leading factor in most

of road accidents [130, 95]). The second one is to enhance road traffic efficiency,

given that intersections represent bottlenecks in the traffic network resulting in con-

gestion, one of the major problems in today’s metropolitan transportation networks.

As the results provided in this thesis can be applied to multiple domains including

self-driving cars, we will use the more generic term robot instead of vehicle. We

consider the problem of coordinating a collection of cooperative mobile robots at

an intersection area, that is a region of space with a high concentration of poten-

tial collisions. According to the taxonomy proposed in [39], we propose to build

a strongly coordinated multi robot control system aiming at ensuring safety and

efficiency at intersection areas.

1.2 Plan or react ?

Since the 1980’s, there is strong debate in the research community on the place

of planning and reactive control in the design of autonomous robots [36]. For a

while, the dominant view in the Artificial Intelligence community was that all the

intelligence of an autonomous robot lies in its planning capabilities. On the other

hand, Brooks, with the introduction of Subsumption architecture [21], gave birth to

a departure from the traditional planning approach, repudiating plans, convinced

that intelligent autonomous robots can be designed through simple interconnected

primitive reactive behaviors. Research work involving researchers from Robotics,

Artificial Intelligence and Sociology, attempts to conciliate both camps by providing

a new view on what planning is. Planning is proposedly considered as the generation

of resources to guide action [6], not as a generative mechanism of action. In the

sequel, the three approaches introduced above are presented in more details and

2



1.2. Plan or react ?

a literature review of the coordination of multiple robots is provided through the

prism of the long-standing debate around the relative place of planning and reactive

control.

1.2.1 Planning as a generative mechanism of action

The Sense-Model-Plan-Act paradigm is the traditional approach of robot

control in Artificial Intelligence with four components executed in a serial fash-

ion [90]. The sensing system receives raw sensor input. The sensing data is turned

into a world model by the modeling system. Provided a world model, the planner

is in charge of computing a sequence of actions in order to achieve some goal: this

step is time consuming and requires reasoning about the future. Finally, a low-level

controller executes the plan. This traditional approach to planning, referred as

plan-as-program [6], considers planning as ”a generative mechanism of action” [123]

as the planner dictates the actions to take in the future.

Reservation-based autonomous intersection management One of the most

known autonomous intersection management system, proposed by Dresner and

Stone [35, 33] (see a screen-shot of the simulator in Figure 1.1), espouses the plan-

as-program paradigm. The system is based on requests sent by vehicles to a central

Figure 1.1: A screen-shot of the ”Autonomous Intersection Management” simulator

developed by the team of the Department of Computer Sciences at the University of

Texas at Austin, USA.

agent in order to reserve space-time regions. Basically, a region of the space where

lies the intersection is reserved for a given vehicle during a certain time interval.

The central agent ensures that accepted reservations are compatible with each other.

Safety is ensured as long as all vehicles respect the specification of their accepted

requests, i.e., the specified starting time and velocity profile through the intersec-

tion. Hence, requests are the representation of the plan-as-program that robots

3



Chapter 1. Introduction

must execute. The approach has been widely studied with several incremental im-

provements (see, e.g., [34, 56, 11]). Variants of the approach have been developed by

several authors. In particular, [26, 91] introduce critical points in order to improve

the precision of the reservation system without increasing its complexity. In [142],

environment variables are taken into account at the planning phase. Reference [64]

proves that a reservation request can be processed in constant time provided the

velocity profiles of vehicles is fixed. Experiments with real vehicles (Cybercars [1])

using a very simple reservation system are presented in [70].

Motion planning in the configuration space In Robotics, motion planning

using the configuration space approach also espouses the plan-as-program paradigm.

Reference [85] introduced the notion of configuration space in order to formalize the

traditional motion planning problem. Basically, each dimension of the configuration

space represents a degree of freedom, and there is an obstacle region in the configu-

ration space which is the set of forbidden configurations for the robot, to model the

presence of a static obstacle or some constraints due to the geometry of the robot

(think of a robot with multiple arms). The traditional motion planning problem

consists in finding a collision-free path in the configuration space from specified ini-

tial/goal configurations. A multi robot system can be considered as a generic robot

whose configuration space is the Cartesian product of the configuration space of each

robot [12, 115]. The obstacle region then contains forbidden configurations of each

robot, plus forbidden composite configurations to account for possible inter-robot

collisions. In this framework, the multi robot motion planning problem consists in

finding a collision-free path from a composite start configuration (the start configu-

ration of all robots) to a composite goal configuration (the goal configuration of all

robots). Many methods have been devised in order to find a path in a constrained

configuration space. For a system of two robots, a shortest path algorithm using the

concept of visibility graph is proposed in [118]. In [124, 125], the authors show how

to use dynamic programming to solve motion planning problems. Sampling based

methods have also demonstrated their efficiency when the number of degrees of free-

dom is reasonable. Partial motion planning (see, e.g., [107, 15]) samples the action

space and chooses the control to apply considering only a finite horizon, guaran-

teeing a bounded computation time. Other sampling methods include probabilistic

roadmaps [67, 69], which have been applied to multiple robot motion planning in,

e.g., [126]. An improvement of the probabilistic roadmaps, particularly useful for

nonholonomic robots is the Rapidly-Exploring Random Trees [74] (an enhanced

provably ”optimal” version is proposed in [66]). All the above methods do not scale

with the number of robots. Finding a path in the composite configuration space

is of high computational complexity and becomes unfeasible in practice for a large

number of robots [58].

In [65], a path-velocity decomposition allowing to reduce the problem’s complex-

ity is proposed. In this setting, each robot is assumed to move along a predefined

path in its own configuration space and then the velocity profiles of the robots along

4



1.2. Plan or react ?

their assigned paths are optimized. The configuration of each robot boils down to

its curvilinear position on its path and the configuration space of the whole system is

called the coordination space. It is a n-dimensional space where n denotes the num-

ber of robots going through the intersection. To prevent collisions between robots,

some configurations of the coordination space must be excluded: they constitute

the so-called obstacle region. Such approaches based on the coordination space turn

the coordination problem into the geometric problem of searching a collision-free

path for a composite robot in a n-dimensional space where the obstacle region has

a cylindrical shape [73, 81] (see Figure 1.2). Even though some authors highlight

Figure 1.2: The cylindrical obstacle region in the coordination space for the coordi-

nation of three robots and a collision-free path (courtesy of [54]).

some cases where the approach fails [114], the approach has become standard in mo-

tion planning [72, 76, 81, 85, 40, 54]. For two-robot systems, optimal solutions have

been proposed [120, 18, 22]. Reference [117] studies the time complexity of the co-

ordination problem, defined as the completion time, i.e., the time for the last robot

to reach its destination: lower and upper bounds are provided. The papers [47, 46]

study the problem of finding Pareto-optimal trajectories, i.e., each robot tries to

optimize its own particular objective function. They propose to first discretize the

coordination space, and then to take advantage of the cylindrical structure to turn

the coordination space into a negatively curved discrete space. Uniqueness of locally

Pareto-optimal trajectories in each homotopy class of trajectories appears then as a

mere consequence of the uniqueness of geodesics linking two points in a hyperbolic

space. However, enumerating all locally optima in each homotopy class to find a

globally optimal trajectory is a problem of high combinatorial complexity, and the

authors point out the solution proposed is of interest only with a few robots and a

low degree of intersection. The complexity of searching a trajectory in the config-

uration space led researchers to develop the so-called prioritized motion planning

5



Chapter 1. Introduction

method.

First introduced in [37], prioritized motion planning avoids the complexity of

searching a trajectory in the n-dimensional coordination space. Instead of directly

searching a trajectory for the composite robot in the coordination space, it con-

sists in planning the trajectory of each robot sequentially. Each robot is mapped

to a real number called the priority of the robot, and the trajectory of each robot

is planned, in order of decreasing priorities: robots for which motion has already

been planned are considered as dynamic obstacles [132]. The approach has been

widely and successfully utilized. The assignment of the priorities is key to the qual-

ity of the planned trajectory, e.g., with regards to the delay due to coordination.

For n robots, since priorities are sequential, there are n! possible priority sched-

ules. In [16, 17], a (randomized) search is proposed to optimize the prioritization

scheme, [109] and [132] define simple heuristics for priority adjustment, and the

heuristics of [23] dynamically updates the priorities of robots. Even if prioritized

motion planning is not explicitly mentioned, the approach of [35, 91] for autonomous

intersection management also belongs to the family of prioritized motion planning,

because the trajectory of robots are planned sequentially. In [14], a prioritized plan-

ning is implemented using a multiagent system approach and taking into account

communication aspects.

In [7, 103, 104], a collision-time formulation is proposed, it formulates the motion

planning problem as a mixed linear programming (MILP) problem. Every robot is

assumed to follow a path with a fixed velocity profile. Hence, the motion planning

problem boils down to decide the starting time of each robot along the assigned

trajectory (fixed path and velocity profile). The MILP formulation enables to solve

the motion planning problem with efficient standard tools for MILP problems, so

that as many as 20 robots can be coordinated, according to the authors.

On the difficulty of following instructions As noticed in [123], the main

weakness of the plan-as-program approach resides in the inherent ”difficulty of fol-

lowing instructions” in the face of environmental uncertainty and unpredictability.

It has rapidly become admitted in the Artificial Intelligence community that un-

predictability makes open-loop plan execution inefficient and leads to undesired

behaviors. Replanning through time to account for new information is an attempt

to treat this issue (see, e.g., [13, 14] for dynamic replanning of a multi robot system).

However, planning is a time consuming task and constantly replanning makes dif-

ficult to respect real time execution constraints. These difficulties are at the origin

of a completely opposite approach. Instead of considering that intelligence lies in

the planning phase, a community of researchers initiated by the seminal work of

Brooks [21] tried to design intelligent robots that do not rely on planning at all.

1.2.2 Intelligence without planning

Reactive and behavior-based robotics In [21], Brooks proposed the founda-

tion of what became behavior-based robotics. The main source of novelty is to

6



1.2. Plan or react ?

abandon a centralized and centrally manipulated representation of the world [89].

Instead, the robot control system is layered with several behaviors, each one achiev-

ing and/or maintaining a specified goal, e.g., ”avoid-obstacles”, ”go-home”. A be-

havior has either absolutely no world model and no internal state in which case

the behavior is purely reactive mapping sensor data to actions, or it has its own

minimal internal state maintained only in order to achieve its own goal. Behaviors

are simple enough to run in real-time, they run in parallel and are layered so that

the capability of the system increases as new behaviors are introduced. The intel-

ligence of the autonomous system is not necessarily obvious when looking at every

individual behavior. However, so-called emergent behaviors – intelligence ”in the

eye of the beholder” [138] – originate from the large amount of interactions between

behaviors in the environment. The belief of the research community advocating for

behavior-based design is that their approach can scale to higher level of complexity

than many researchers of the plan-as-program school assume and result in more

efficient and robust systems than through traditional planning [138].

The ”cocktail party” model is a simple example of such a reactive approach

to the coordination of multiple robots. In this setting proposed in [86], a robot can

only sense the surrounding objects, it knows its current and its target position, it

can distinguish between static obstacle and robots and can sense the instantaneous

motion of other robots. A reactive coordination of robots is proposed with only these

capabilities and without mutual communication. The authors claim the obtained

system demonstrates good performance and a remarkable robustness. The idea

of the proposed algorithm is based on maze-searching techniques. Robots follow

the boundary of static obstacles. For moving obstacles (including other robots),

a collision front is build considering the maximal motion of the moving obstacles.

Then, as for static obstacles, the boundary of the collision front is followed, ensuring

collision avoidance. The term ”cocktail party” is justified by the analogy with the

behavior of a guest willing to talk to someone in a crowded place, such as a cocktail

party. The guest travels between tables, chairs and other guests, planning his/her

motion ”on the fly”. In [86], only the translation of robots in the plane is considered

and robots are assumed to be able to stop instantly. These assumptions are relaxed

in [100] where nonholonomic constraints are considered.

On the difficulty of deadlock avoidance under reactive schemes As no-

ticed in [86, 100], deadlock avoidance is difficult to ensure in such a reactive control

scheme. Reference [86] provides an example itself drawn from a previous work [115]

and depicted in Figure 1.3. As noticed by Lumelsky, the task seems to be ”im-

possible” unless some planning is carried out to coordinate the motion of robots

(see comments in Figure 1.3). Reference [24] proposes a general characterization of

system deadlocks as a situation where the following conditions hold:

• tasks claim exclusive control of the resources they require (”mutual exclusion”

condition);
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Figure 1.3: An example where planning is necessary to achieve a task. ”In order for

the circular robots R1 and R2 to reach their respective targets, their relative position

need to be switched. The only way to do so is to move R2 into one of the ’wedges’

and then move R1 through the other wedge. The task is clearly impossible unless

the motion of both robots is closely coordinated in a centralized manner.” (courtesy

of [115])

• tasks hold resources already allocated to them while waiting for additional

resources (”wait for” condition);

• resources cannot be forcibly removed from the tasks holding them until the

resources are used to completion (”no preemption” condition);

• a circular chain of tasks exists, such that each task holds one or more re-

sources that are being requested by the next task in the chain (”circular wait”

condition).

To illustrate the notion, the authors give an example of traffic deadlock (see Fig-

ure 1.4). As noticed by the authors, in this example, resources are the space occu-

pied by cars. The ”mutual exclusion” condition holds as two cars cannot occupy the

same region without colliding. The ”wait for” condition also holds as cars need to

move forward (to get the next the space region) before releasing the current space

region. The ”no preemption” condition holds as cars cannot disappear from the real

space, and finally the ”circular wait” condition is clearly visible in Figure 1.4. Later

work refined the notion of deadlock in resource allocation systems and studied the

complexity of deadlock avoidance/resolution (see, e.g., [10, 78] and [110, 111, 113]

for a specific study focused on multiple robot systems).

The deadlock avoidance problem mirrors the inability (by design) of reactive

systems to carry out look-ahead to make better choices to accomplish actions. In

the late 1980’s, a research movement initiated by Agre and Chapman attempted to

reconcile the camp of plan-as-program with the school of reactive control by asking

the question: ”what are plans for ?” [6].

1.2.3 Plan as a resource to guide action

Plans should be used to guide, not control, action First of all, inspired by

previous work of social scientists (see references therein [6]), Agre and Chapman

proposed to retire the term ”plan execution” advocated by the plan-as-program

camp, considered as ”prejudicial”, and to use a more neutral term: ”using a plan”.

8
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Figure 1.4: An example of traffic deadlock with a circular chain of vehicles blocking

each other (courtesy of [24])

They noticed that this terminology consideration raises new questions. First, ”what

can one do with a plan besides executing it ?”. Second, if plan users are able to use

plans sensibly rather than simply executing them, what are the implications on the

representation of plans (how a plan looks like) and on the generation of plans (how

to devise a plan easy to use in a sensible way by plan users ?). Conceptually, they

propose to consider planning as the devising of resources to guide action. Plans are

not executed but they are interpreted. Plans are a resource among others to decide

the action to execute. Planning tasks are executed in parallel and asynchronously

in order to retain a reactive quality. Plans are here to let the system be more

goal-directed, to enhance performance, not to dictate action.

Gradient fields as a guide to action As first noticed in [102], gradient fields are

an example of the new kind of plan – a resource to guide action – proposed in [6].

As depicted in Figure 1.5, there is no explicit ”traditional” plan. This plan can,

instead, be interpreted as: ”follow the arrows to reach the goal”. Such plan is much

more flexible than a traditional plan-as-program: at any point of time, a robot may

decide not to follow the arrows for some reason (the sensors of the robot suddenly

detect an obstacle that seems have not been detected at the moment of the gradient

field computation). Nevertheless, the robot can still use the gradient field in the

future no matter where it is currently located. In many scenarios, the robot will

reach the goal without replanning, i.e., without a new time consuming computation

9
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Figure 1.5: A gradient field to guide a mobile robot. The mission of the robot is

to get from its current location to the ”final goal” location, bypassing a gully and

avoiding a large rock. Moreover, along the maneuver, the robot needs to maintain

communication with a remote radio tower. To this purpose, the ”shadow” of the

rock should also be avoided (courtesy of [102]).

of the vector field. Vector fields approaches for single robot (see, e.g., [112]) have

been adapted for the coordination of holonomic robots in [83]. In [31] a totally

distributed version is proposed, the approach of [32] also applies to nonholonomic

robots, and in [105] sensing and communication constraints are taken into account.

Traffic signals as a guide to action Traffic signals are an effective way to coor-

dinate competing traffic flows at intersections. To this purpose, they alternate the

right of way of users (cars, buses, pedestrians). A particular set of feasible simul-

taneous rights of way, called a phase, is decided for a certain period of time [101]

(see Figure 1.6). In an intersection ruled by a traffic signal, the traffic signal does

not dictate actions to users. A pedestrian is not obliged to cross the road even if

he/she is given the right of way. Vehicles are invited to cross the intersection when

they have the right of way. However, they do not have to follow a precise assigned

velocity profile, and if some unexpected event occurs like a pedestrian crossing the

road without the right of way, the vehicle should stop as it is much more important

to avoid pedestrians than to cross the intersection rapidly. Hence, traffic signals are

a good example of a planning process that consists in providing resources to guide

actions. Without such a resource, it would be difficult for vehicles to coordinate.

Rules can also be decided in advance or be displayed using traffic signs, and again,

they constitute the resources to guide action just like the traffic signal, and the

design of rules can be considered as a planning process.

A valuable property of traffic signals compared to static rules is that the traffic

signal can be controlled in order to enhance efficiency. Controlling a traffic light con-

sists in designing rules to decide which phase to apply over time. It is interesting to

10
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Figure 1.6: A typical set of feasible phases at a junction.

see that just like any planning process, traffic signal optimization is a complex time

consuming task. Pre-timed policies activate phases according to a time-periodic

pre-defined schedule. There is much previous work on designing optimal pre-timed

policies, e.g., [93]. However, such policies are not efficient under changing arrival

rates which require adaptive control. Most used adaptive traffic signal control sys-

tems include SCOOT [62], SCATS [84], PRODYN [57], RHODES [94], OPAC [42]

or TUC [30]. These systems update some control variables of a configurable pre-

timed policy on middle term, based on traffic measures, and apply it on short term.

Control variables may include phases, splits, cycle times and offsets [101]. Such al-

gorithms may differ in the way optimization is carried out (e.g., mixed-integer linear

programming [43], dynamic programming, exhaustive enumeration) and in the mod-

eling approach (e.g., queuing network model [98, 99], cell transmission model [82],

store-and-forward [5], petri nets [29]). Many major cities currently employ these

systems which proved to be able to yield various benefits, including travel time and

fuel consumption reduction, as well as safety improvements [119]. More recently,

based on the seminal paper [127], feedback controls have been proposed both in

the case of deterministic arrivals [135], or stochastic arrivals [134, 140, 79]. Time

is slotted and at every time slot, a feedback controller decides the phase to apply

based on current queue lengths estimation. This requires real-time queue length

measures, but it enables to be much more reactive than other traffic controllers

and to have stability guarantees. Reference [127] introduced the so-called back-

pressure control which computes the control to apply based on queue lengths, and

can achieve provably maximum stability. This algorithm was originally applied to

wireless communication networks [96], and some effort has been required to apply

11
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the approach in the context of a network of intersections [134, 140, 52, 51]. A key

feature of this algorithm is that it can be completely distributed over intersections,

in the sense that it can be implemented by running an algorithm of complexity

O(1), requiring only local information, at each intersection.

1.3 Contributions

In this thesis, we advocate for the use of planning as the devising of resources to

guide action. Such approach is more than designing a system with both planning

and reactive abilities. It requires rethinking what a plan for our system is. In [33],

a plan is a set of granted reservation requests (composed of the starting time and

the velocity profile), that vehicles must execute. In [132], the plan is simply the

trajectory for each robot in the configuration space. A recent work [71] attempted

to devise a coordination system for vehicles at intersections allowing some ”freedom

of action to cars” yet ensuring safety. Hence, the motivation is clearly to have a

coordination with both planning and reactive abilities. However, the plan has quite

the same representation as in traditional reservation-based systems. We believe that

thinking plans as a resource to guide action should lead to a new representation of

plans that should differ from traditional systems espousing the plan-as-program

paradigm. What kind of plan to guide action can be designed for a multi robot

system ?

The main contribution of this thesis is to propose a novel tool in multi robot mo-

tion planning: the priority graph. Roughly speaking, priorities describe a high-level

coordination strategy: the relative order of robots. More precisely, they uniquely

encode the homotopy classes of solutions to the multi robot coordination problem.

This powerful theoretical tool is actionable to design a low complexity and robust

priority-based coordination system. The planning process consists in assigning pri-

orities. Under assigned priorities, robots can safely travel through the intersection

in a reactive way provided all robots respect the assigned priorities. As planning

priorities does not dictate a precise trajectory for robots through the intersection,

but only provides useful concise resources for safe and efficient coordination, the

system demonstrates valuable robustness properties in the face of environmental

uncertainty and unpredictability. The thesis is organized as follows.

The first part presents the geometrical foundation of the priority-based approach

using the standard coordination space framework. Priorities are formally defined

and assigning priorities is provably equivalent to constrain the trajectory of robots

to remain in a homotopy class of collision-free trajectories continuously deformable

into each other. Assigning priorities does not plan a particular trajectory that

robots must execute, yet it plans a higher-level coordination strategy describing the

relative order of robots through the intersection: the priority graph. The priority

graph can be considered as a unique meaningful representative of a homotopy class

of trajectories. Planning priorities is a task of high combinatorial complexity as the

set of possible priorities grows exponentially with the number of robots. The most

12
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important feature that the priority assignment policy must demonstrate is that the

assigned priorities are feasible, i.e., that robots respecting the assigned priorities

will eventually go through the intersection. Roughly speaking, the assigned priori-

ties should encode a ”non empty homotopy class” of solutions to the coordination

problem. Interestingly, given assigned priorities, there are two exclusive options:

either the assigned priorities will inevitably lead robots to a deadlock configura-

tion where a circular chain of robots block each other; or the assigned priorities

are feasible and robots will provably never reach a deadlock configuration provided

priorities are respected. As a consequence, deadlock avoidance can be completely

solved at the priority assignment level. It is a valuable property motivating the use

of priorities as a coordination resource to guide robots through the intersection as

deadlock avoidance is difficult to guarantee in a reactive manner.

In contrast with the first part which has a quite mathematical – more precisely,

geometrical – flavor with little care about control issues, the second part shows how

to use priorities to guide robots through the intersection with control laws config-

ured by the priority graph and ensuring priority preservation. Most importantly,

under assigned priorities, for each pair of robots, there is not two but only one

strategy to avoid collisions: the robot with lower priority must decelerate in favor

of the robot with higher priority. As a consequence, the combinatorial complexity of

multi robot control [25] is avoided, and priority preserving control is of polynomial

complexity, thus allowing real-time implementation. Moreover, the proposed con-

trol law demonstrates a quite novel robustness property in the presence of inertia.

Robots may indeed safely brake at any point of time without violating priorities,

in particular without colliding, which is referred as brake safety. This can be use-

ful to handle unexpected events requiring braking like a pedestrian crossing the

road. It is a quite novel property with regards to previous work as the standard

plan-as-program approach constrains robots to track precisely a planned reference

trajectory and thus does not allow a robot to brake if necessary to handle some

unexpected event. Finally, the control scheme proposed in Chapter 5 and 6 is de-

centralized. Each robot can compute the output of the control law independently

without agreement with other robots through communication links. This benefit

results from the prior agreement on the priority graph carried out at the planning

level and requiring of course some form of communication.

The final part of the thesis proposes a priority-based coordination system adopt-

ing a three-layer control architecture. It has a more engineering flavor, specifying

how priorities can be assigned dynamically as new robots arrive at the intersection

and how to integrate priority preserving control proposed in the second part. A

central agent, the intersection controller, constitutes the deliberative layer and as-

signs priorities. Robots implement several behaviors executed in parallel each one

achieving/maintaining a specified goal, they constitute the reactive behavior-based

layer. Behaviors include path following, moving forward, not entering the inter-

section before being accepted by the intersection controller, avoiding pedestrians,

and of course respecting priorities which implements the priority preserving control

law proposed in the second part of the thesis. Robots communicate asynchronously

13
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with the intersection controller through the sequencing layer to request the right

of way and be assigned assigned priorities. The sequencing layer interfaces with

the behavior-based layer by activating/deactivating/configuring behaviors. The

behavior-based layer takes full benefit of the brake safety property. Some behavior,

e.g., the behavior ensuring pedestrian avoidance, may indeed require a robot to

brake at any point of time with the guarantee that it will not result in a priority

violation. Therefore, the coordination system demonstrates significant robustness

as it can handle a large class of unexpected events – all events requiring braking

– without changing priorities, i.e., without replanning. Priority-based coordination

combines the efficiency of traditional planning approaches as complex scheduling

can be encoded by the priority graph – much more complex scheduling than using

traffic signals – as well as the ability to handle a large class of unexpected events in

a reactive manner.
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Part I

Priorities: definition and properties





Introduction

The present part constitutes the geometrical foundation of the priority-based ap-

proach proposed in this thesis. Priorities at road intersections are a well known

concept aiming at organizing traffic. Signs, signals, markings are used to inform

the users about who has the right to go first, or equivalently who has ”priority” [139].

Convinced that the coordination space approach [97] is a convenient mathematical

formulation of the coordination problem, we propose here a formal definition of

priorities as a new concept in the coordination space. In the coordination space

approach, a multi robot system composed of n robots traveling along fixed paths is

considered as a composite robot evolving in a n-dimensional space called the coor-

dination space [97, 73]. Potential inter-robot collisions requires the composite robot

to avoid an obstacle region in the coordination space. The obstacle region has a

cylindrical structure (see Figure 1.2). In traditional motion planning, the coordina-

tion problem is reduced to finding a feasible path in the coordination space (see the

collision-free path in Figure 1.2). It looks like the notion of priorities is completely

lost. In this part, we provide theoretical tools in the coordination space in order

to endow the coordination space approach with a concept of priority. The idea is

that a collision-free path in the coordination space necessarily lies on one side or

on the other side with respect to each collision cylinder. Deciding on which side

to pass with respect to each collision cylinder is equivalent to deciding the relative

order of robots to go through the intersection and constitutes the discrete part of

the coordination problem that we refer as priority assignment. Respecting assigned

priorities does not require robots to follow a precise path in the coordination space

as many collision-free paths respect the same priorities, or equivalently, lie on the

same side with respect to collision cylinders. Hence, it is possible to assign priori-

ties, yet retaining some individual freedom of action to robots. More precisely, the

result of this part enable to go one step ahead in the understanding of the structure

of the solutions to the coordination problem. Previous work noticed the existence

of homotopy classes of feasible paths in the coordination space [47], and this part

demonstrates that priorities are a unique meaningful representative of homotopy

classes – they uniquely encode homotopy classes.

Sketch of the part Chapter 2 starts by exposing the coordination space ap-

proach, introducing assumptions and notations. Priorities are defined as a binary

relation between robots induced by a collision-free path in the coordination space.

As the coordination space is thus endowed with a priority concept, Chapter 3 studies

the structure of the coordination space under assigned priorities. It is proved that

all paths respecting the same priorities are continuously deformable into each other,

forming a homotopy class. Finally, the deadlock avoidance problem is shown to be

solved by assigning so-called feasible priorities which are characterized. This part

motivates the use of priorities as a plan to guide robots through the intersection.
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Sketch of the chapter Section 2.1 is quite expository, it recalls the basics of

the coordination space approach providing the main assumptions and notations.

Section 2.2 endows the coordination space approach with a priority concept, defining

the priority relation as well as the priority graph induced by a feasible path in the

coordination space.

2.1 The coordination space approach

Consider the problem of coordinating the motion of a collection of robots R in a

two-dimensional space. Every robot i ∈ R follows a particular path γi ⊂ R2 and

we let xi ∈ R denote its curvilinear coordinate along the path (see Figure 2.1).

x := (xi)i∈R indicates the configuration of all robots; x ∈ χ := Rn where n denotes

the number of robots going through the intersection. The configuration space χ is

known as the coordination space, first introduced in [97] and which has become a

standard tool [73]. This approach is often referred as path-velocity decomposition.

It reduces the problem’s complexity as each robot has now only one degree of

freedom. For an application to autonomous vehicles at road intersections, this

additional constraint seems particularly well adapted as the road network is strongly

spatially organized (roads and lanes with markings). In the rest of the manuscript,

{ei}1≤i≤n denotes the canonical basis of χ. Given a subset A of the topological

space χ, ∂A refers to the boundary of A. We define the Minkowski sum as follows:

∀x0 ∈ χ,∀A ⊂ χ, x0 +A =
{
x0 + x : x ∈ A

}
(2.1)

∀A,B ⊂ χ, A+B = {x+ y : x ∈ A, y ∈ B} (2.2)
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Figure 2.1: The fixed paths assumption. Every robot travels along an assigned path.

We will use the topology of infinity norm on χ ≡ Rn, so the parallelepiped x0 +
(−r, r)n is the open ball of radius r > 0 centered in x0 ∈ χ.

Some configurations must be excluded to avoid collisions between robots (see

Figure 2.2). The obstacle region χobs ⊂ χ is the open set of all collision configura-

tions. Let κij ⊂ R2 denote the set of configurations x where i and j collide. Let

χobs
ij ⊂ χ denote the set of (global) configurations x where i and j collide, we have:

χobs
ij := {x ∈ χ : (xi, xj) ∈ κij} (2.3)

We obviously take χobs
ii := ∅.

Definition 2.1.1 (Obstacle region, Obstacle-free region). The obstacle region is

the set χobs ⊂ χ of configurations where a collision occurs for some i, j ∈ R, i.e.,

χobs := ∪{i,j}χobs
ij (2.4)

χfree := χ \ χobs denotes the obstacle-free space.

By construction, χobs
ij is a cylinder (based on the plane generated by ei and ej),

and the obstacle region merely appears as the union of n(n − 1)/2 cylinders [73]

corresponding to as many collision pairs. Every cylinder χobs
ij is assumed to have an

open bounded convex cross-section, i.e., κij is open and bounded. The boundedness

condition on χobs is rather technical but ensures the whole intersection lies in a

bounded region. In particular, it implies that there exists a lower bound xobs ∈ χfree

and an upper bound xobs ∈ χfree satisfying:

∀i, j ∈ R,∀x ∈ χobs
ij , x

obs
i < xi < xobs

i and xobs
j < xj < xobs

j (2.5)

A continuous application ϕ : [0, 1] → χ will be called a path and we let Im (ϕ)
denote the set of values taken by ϕ:

Im (ϕ) := {ϕ(t) : t ∈ [0, 1]} (2.6)

A partial order ≤ for configurations is defined as the product order of Rn:

∀x, y ∈ χ, x ≤ y if ∀i ∈ R, xi ≤ yi (2.7)
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Figure 2.2: The left drawing depicts two paths with two robots in collision in the

current configuration. The right drawing shows the obstacle region χobs
ij associated

to the two paths (more precisely its cross-section along the plane generated by ei
and ej) and the collision configuration x ∈ χobs

ij corresponding to the collision of the

left drawing.
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Figure 2.3: The right drawing shows the cylindrical structure of the obstacle region

for the three-robot system of the left drawing. Each cylinder accounts for the possible

collisions between each couple of robots. The right drawing of Figure 2.2 depicts the

base of such cylinders.
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Definition 2.1.2 (Feasible path). A feasible path is a non-decreasing collision-free

path ϕ : [0, 1] → χfree requiring no coordination beyond its endpoints, i.e., a path

satisfying the following conditions:

(a) ϕ is non-decreasing:

∀t1, t2 ∈ [0, 1], t1 ≤ t2 ⇒ ϕ(t1) ≤ ϕ(t2) (2.8)

(b) ϕ is collision-free:

Im (ϕ) ⊂ χfree (2.9)

(c) No coordination is required beyond its start point:(
ϕ(0)− Rn+

)
⊂ χfree (2.10)

(d) No coordination is required beyond its endpoint:(
ϕ(1) + Rn+

)
⊂ χfree (2.11)

We let Φ(χfree) denote the set of feasible paths. Note that the two last conditions

hold in particular for ϕ(0) ≡ xobs and ϕ(1) ≡ xobs. The conditions of the above

definition are more flexible and do not fix the endpoints. More importantly, we

will only consider as feasible motions where robots never move backwards in the

intersection area. It is a standard assumption as neither efficiency nor safety can

be expected from robots moving backwards at an intersection area.

More generally, given a subset C ⊂ χ, we let Φ(C) denote the set of non-

decreasing paths satisfying Im (ϕ) ⊂ C, (ϕ(0) − Rn+) ⊂ C and (ϕ(1) + Rn+) ⊂ C.

This notation is coherent with the definition of Φ(χfree) as the set of feasible paths.

Using this notation, Φ(χ) merely refers to the set of non-decreasing paths as the

additional conditions obviously hold for C ≡ χ. In the following, we provide three

examples where the obstacle region can be computed analytically.

Example 2.1.1 (Two straight paths with circle-shaped robots). Consider two

circle-shaped robots of diameter D moving along straight and perpendicular paths.

Assume that the curvilinear coordinate of each robot is 0 when the center of the

robot is exactly at the paths intersection point. Then, the distance between the

centers of robots is d = x2
i + x2

j . As the diameter of robots is D, the configuration

(xi, xj) is collision-free if and only if d ≥ D, i.e., x2
i + x2

j ≥ D. As a result, the

obstacle region is χobs =
{
x ∈ χ : x2

i + x2
j < D

}
as depicted in Figure 2.4.

Example 2.1.2 (Two perpendicular paths with rectangular robots). Consider two

rectangular robots i, j of lengths Li, Lj and widths li, lj along straight perpendicular

paths. In the real space, there is a rectangular region of area li × lj that can be

occupied by only one robot, exclusively (see the red box in the left drawing of

Figure 2.5). When a robot is at the the entry of this region (robot i in the left

drawing of Figure 2.5), it needs to travel the length of the region plus its own
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Figure 2.4: The obstacle region for two circle-shaped robots along straight perpen-
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Figure 2.5: The obstacle region for two rectangular robots along straight perpendic-
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Figure 2.6: The obstacle region for two robots that follow each other.
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length in order to exit this region (robot i needs to travel distance lj + Li in order

to exit this region). It follows that in the coordination space, the obstacle region is

a rectangular region of length lj + Li along axis i and li + Lj along axis j (see the

right drawing of Figure 2.5).

Example 2.1.3 (Two robots along the same straight path). Finally, consider two

robots of length L traveling along the same straight paths as depicted in Figure 2.6

and assume that the same origin is used for the curvilinear coordinate of both robots.

There are two options: either robot i follows robot j and collision avoidance requires

xj ≥ xi +L, or robot j follows robot i and collision avoidance requires xi ≥ xj +L.

Hence, the collision avoidance requirement including both cases is: |xi − xj | ≥ L,

and the obstacle region should be the band {x ∈ χ : |xi − xj | < L}. However, we

do not aim to model the collisions in an infinite spatial region. Hence, the band is

truncated as depicted in Figure 2.6.

2.2 The priority relation

2.2.1 The completed obstacle region

This subsection shows that the intuitive notion of ”assigning priorities” is equivalent

to a completion of the obstacle region. It is indeed equivalent to consider as for-

bidden configurations both collision configurations and configurations that do not

respect the assigned priorities, resulting in a completed obstacle region.

Let χobs
i�j and χfree

i�j denote the subsets of χ defined below:

χobs
i�j := χobs

ij − R+ei + R+ej (2.12)

χfree
i�j := χ \ χobs

i�j (2.13)

We also define κi�j ⊂ R2 as follows:

xi

xj

xi

xj

φi>j(t) 

φj>i(t) 

χobs
j>i

χobs
i>j

Figure 2.7: Projection of the completed collision cylinders χobs
i�j and χobs

j�i.

κi�j := κij + R− × R+ (2.14)

which is the cross-section of χobs
i�j , i.e.,

χobs
i�j = {x ∈ χ : (xi, xj) ∈ κi�j} (2.15)
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2.2. The priority relation

Figure 2.7 displays the sets χobs
i�j and χobs

j�i. The rationale behind the definition

of these sets is that as a feasible path is non-decreasing, it necessarily lies below or

above each collision cylinder as depicted in Figure 2.7. This reflects the intuitive

notion of priority at intersections. Deciding on which side to pass with respect to

each collision cylinder is equivalent to deciding the relative order of robots to go

through the intersection. In the sequel, we are going to prove that the definition of

the sets χobs
i�j enables to define rigorously the so-called priority relation induced by

a feasible path. We start with some geometric properties that will be used in the

proofs of the presented results.

Property 2.2.1 (Geometric invariances of χobs
i�j and χfree

i�j illustrated in Fig-

ure 2.8). For all i, j ∈ R, the following identities hold:

χobs
i�j − R+ei + R+ej = χobs

i�j (2.16)

χfree
i�j + R+ei − R+ej = χfree

i�j (2.17)

Property 2.2.2 (Invariance through min and max operators illustrated in

Figure 2.8). Given x, y ∈ χ, for all i, j ∈ R, the following implications hold:

x, y ∈ χfree
i�j ⇒ max{x, y} ∈ χfree

i�j (2.18)

x, y ∈ χfree
i�j ⇒ min{x, y} ∈ χfree

i�j (2.19)

Property 2.2.3 (Illustrated in Figure 2.9). For all i, j ∈ R and y ∈ χobs
ij , we

have:

{x ∈ χ : xi = yi} ⊂
(
χobs
i�j ∪ χobs

j�i

)
(2.20)

Property 2.2.4 (Illustrated in Figure 2.9). For all i, j ∈ R, given x1 ∈ χobs
j�i

and x2 ∈ χobs
i�j, we have:{

x ∈ χ : x1
i ≤ xi ≤ x2

i

}
⊂
(
χobs
i�j ∪ χobs

j�i

)
(2.21)

Proof of Property 2.2.1. Take i, j ∈ R. By simple manipulations,

χobs
i�j − R+ei + R+ej = (χobs

ij − R+ei + R+ej)− R+ei + R+ej =
χobs
ij − (R+ + R+)ei + (R+ + R+)ej = χobs

ij − R+ei + R+ej = χobs
i�j (2.22)
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xi

xj

χobs
i>j

xi

xj

χfree
i>j

x

y

y

x

min(x,y)

max(x,y)

Figure 2.8: Illustration of Properties 2.2.1 and 2.2.2.

xi

xj

χobs
j>i

χobs
i>j

χobs
ijy

xi

xj

χobs
j>i

χobs
i>j

χobs
ij

x1

x2

Figure 2.9: Illustration of Properties 2.2.3 and 2.2.4.
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2.2. The priority relation

We have obtained (2.16). Moreover, using the latter result, we have:

x ∈ χfree
i�j ⇔ x /∈ χobs

i�j ⇔ x /∈
(
χobs
i�j − R+ei + R+ej

)
(2.23)

Hence, we have:

x ∈ χfree
i�j ⇔ ∀α, β ≥ 0, x /∈

(
χobs
i�j − αei + βej

)
⇔

∀α, β ≥ 0, (x+ αei − βej) /∈ χobs
i�j ⇔ ∀α, β ≥ 0, (x+ αei − βej) ∈ χfree

i�j (2.24)

We have obtained (2.17).

Proof of (2.18) in Property 2.2.2. Take i, j ∈ R, x, y ∈ χfree
i�j and let z := max{x, y}.

By definition of max, there are four options:

• zi = xi and zj = xj : in this case, (zi, zj) = (xi, xj) /∈ κi�j , so that z ∈ χfree
i�j .

• zi = yi and zj = yj : this is the symmetric case and y ∈ χfree
i�j implies that

z ∈ χfree
i�j .

• zi = xi ≥ yi and zj = yj : in this case, we have zi ≥ yi and zj = yj . By

Property 2.2.1, y ∈ χfree
i�j implies that z ∈ χfree

i�j

• zi = yi ≥ xi and zj = xj : this is the symmetric case and x ∈ χfree
i�j implies

that z ∈ χfree
i�j

Proof of (2.19) in Property 2.2.2. Take i, j ∈ R, x, y ∈ χfree
i�j and let z := min{x, y}.

By definition of min, there are four options:

• zi = xi and zj = xj : in this case, (zi, zj) = (xi, xj) /∈ κi�j , so that z ∈ χfree
i�j .

• zi = yi and zj = yj : this is the symmetric case and y ∈ χfree
i�j implies that

z ∈ χfree
i�j .

• zi = xi and zj = yj ≤ xj : in this case, we have zi = xi and zj ≤ xj . By

Property 2.2.1, x ∈ χfree
i�j implies that z ∈ χfree

i�j

• zi = yi and zj = xj ≤ yj : this is the symmetric case and y ∈ χfree
i�j implies

that z ∈ χfree
i�j

Proof of Property 2.2.3. Take i, j ∈ R, y ∈ χobs
ij and x ∈ {x ∈ χ : xi = yi}. Either

xj ≥ yj and by Property 2.2.1 y ∈ χobs
ij ⊂ χobs

i�j implies that x ∈ χobs
i�j ; or, xj ≤ yj

and by Property 2.2.1 y ∈ χobs
ij ⊂ χobs

j�i implies that x ∈ χobs
j�i. In both cases, we

have x ∈ χobs
i�j ∪ χobs

j�i.
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Chapter 2. Priorities: a geometric concept in the coordination space

Proof of Property 2.2.4. Take x1 ∈ χobs
j�i, x

2 ∈ χobs
i�j , and x ∈ χ satisfying x1

i ≤
xi ≤ x2

i . As x1 ∈ χobs
j�i (which is non-empty open and lower-bounded along axis i

with the same bound as χobs
ij ), x1

i > inf{yi : y ∈ χobs
ji } and as x2 ∈ χobs

i�j (which

is non-empty open and upper-bounded along axis i with the same bound as χobs
ij ),

x2
i < sup{yi : y ∈ χobs

ij }. Hence, we obtain:

inf{yi : y ∈ χobs
ij } < xi < sup{yi : y ∈ χobs

ij } (2.25)

As a consequence, there exists x0 ∈ χobs
ij such that x0

i = xi. By Property 2.2.3, we

obtain x ∈
(
χobs
i�j ∪ χobs

j�i

)
.

2.2.2 The priority relation

The definition of the completed obstacle region enables to easily define a priority

relation for feasible paths. The fact that a feasible path necessarily and exclusively

lies on one side or on the other side of each collision cylinder χobs
ij is indeed equivalent

to intersect, necessarily and exclusively, one of the completed cylinders χobs
i�j , or χobs

j�i.

Definition 2.2.1 (Priority relation). The priority relation � is a binary relation

on the set of robots R. For all i, j ∈ R, i � j if Im (ϕ) ∩ χobs
j�i 6= ∅.

We say � is the priority relation induced by ϕ. The theorem below shows

that the relation � satisfies basic properties that one can expect from a ”priority

relation”. More precisely, � does not define a priority relation between two robots

that cannot collide (χobs
ij = ∅) and if two robots can potentially collide, a priority

relation exists and we have i � j or j � i exclusively, i.e., if robot i has priority

over robot j then robot j does not have priority over robot i.

Theorem 2.2.1 (Priority relation properties). Let ϕ ∈ Φ(χfree) denote a fea-

sible path and � the priority relation induced by ϕ. For all i, j ∈ R such that

χobs
ij 6= ∅, we have necessarily and exclusively i � j or j � i. For all i, j ∈ R

such that χobs
ij = ∅, we have i 6� j.

Note that the first statement of the above theorem can be formulated synthet-

ically as: the binary relation � is asymmetric. To prove Theorem 2.2.1, we start

with the following lemma illustrated in Figures 2.10 and 2.11 and proved in Ap-

pendix A.2:

Lemma 2.2.1 (South-West and North-East completion [97]). For all feasible

paths ϕ ∈ Φ(χfree),

∀i, j ∈ R, Im (ϕ) ∩
(
χobs
i�j ∩ χobs

j�i

)
= ∅ (2.26)
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xi

xj

xi

xj

χobs
j>i

χobs
i>j

χobs
ij

SW

NE

χobs
i>j

χobs
j>i∩

φj>i(t) 

φi>j(t) 

Figure 2.10: Illustration of Lemma 2.2.1. Both ϕi�j and ϕj�i are collision-free

with regards to χobs
i�j ∩ χobs

j�i. Compared to χobs
ij , χobs

i�j ∩ χobs
j�i additionally contains

the south-west (SW) region of the obstacle region and the north-east (NE) region

of the obstacle region. Feasible paths do not go through the south-west region, as

it necessarily leads to a ”deadlock” between robots i and j. The north-east region

cannot be reached by a feasible (non-decreasing) path.

Figure 2.11: Two robots at a deadlock configuration in the south-west region.
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Chapter 2. Priorities: a geometric concept in the coordination space

Note that it was already noticed in [97] that south-west completion enables to

avoid deadlocks in two-robot systems.

Proof of Theorem 2.2.1. Take a feasible path ϕ ∈ Φ(χfree) and let � denote the

priority relation induced by ϕ. Take i, j ∈ R such that χobs
ij = ∅. Then, we

have χobs
j�i = ∅, so that Im (ϕ) ∩ χobs

j�i = ∅, that is i 6� j. Take i, j ∈ R such

that χobs
ij 6= ∅ and take y ∈ χobs

ij . Remember that we have (ϕ(0) − Rn+) ⊂ χfree

and (ϕ(1) + Rn+) ⊂ χfree. As a consequence, there are two options as depicted in

Figure 2.12:

(a) either y ∈ Im (ϕ)− R+ei + R+ej : it implies that Im (ϕ) ∩ χobs
j�i 6= ∅;

(b) or y ∈ Im (ϕ)− R+ej + R+ei: it implies that Im (ϕ) ∩ χobs
i�j 6= ∅.

xi

xj

φ(0) 

φ(1) 

collision-free

y∈χobs 

y∈χobs

case (a)

case (b)

ij

ij
collision-free

x∈χobs 
j>i

x∈χobs

ij

Figure 2.12: The two cases that appear to prove that any path ϕ ∈ Φ(χfree) neces-

sarily intersects χobs
i�j or χobs

j�i provided χobs
ij 6= ∅.

Hence, a feasible path necessarily intersects χobs
i�j or χobs

j�i, so we have necessarily

i � j or j � i.
Now, we will prove that it is exclusive by contradiction. Take a feasible path

ϕ and assume that for some t1 ∈ [0, 1], ϕ(t1) ∈ χobs
i�j and for some t2 ∈ [0, 1],

ϕ(t2) ∈ χobs
j�i. Assume arbitrarily that t1 ≤ t2 (otherwise, exchange the roles of i

and j), which implies that ϕ(t1) ≤ ϕ(t2). Consider the subset of χ defined below:

K :=
{
x ∈ χ : x1

i ≤ xi ≤ x2
i and x1

j ≤ xj ≤ x2
j

}
(2.27)

By Property 2.2.4, we have:

K ⊂
(
χobs
i�j ∪ χobs

j�i

)
(2.28)
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As ϕ is non-decreasing, for all t ∈ [t1, t2], ϕ(t) ∈ K. If ϕ(t) ∈ χobs
i�j ∩ χobs

j�i for

some t ∈ [t1, t2], ϕ would not be feasible by Lemma 2.2.1. Hence, we have:

ϕ(t1) ∈ χobs
i�j \ χobs

j�i (2.29)

ϕ(t2) ∈ χobs
j�i \ χobs

i�j (2.30)

and for all t ∈ [t1, t2],

ϕ(t) ∈
(
χobs
i�j \ χobs

j�i

)
∪
(
χobs
j�i \ χobs

i�j

)
(2.31)

As
(
χobs
i�j \ χobs

j�i

)
∩
(
χobs
j�i \ χobs

i�j

)
= ∅, by continuity of ϕ (see Lemma A.1.1 in

Appendix A.1), there exists some t0 ∈ [t1, t2] such that:

ϕ(t0) ∈ ∂
(
χobs
i�j \ χobs

j�i

)
∩ ∂

(
χobs
j�i \ χobs

i�j

)
(2.32)

As χobs
i�j and χobs

j�i are open, by Lemma A.1.2 (see Appendix A.1), we have χobs
j�i ∩

∂(χobs
i�j \ χobs

j�i) = ∅ and χobs
i�j ∩ ∂(χobs

j�i \ χobs
i�j) = ∅. Hence, we obtain:

∂
(
χobs
i�j \ χobs

j�i

)
∩ ∂

(
χobs
j�i \ χobs

i�j

)
∩
(
χobs
i�j ∪ χobs

j�i

)
= ∅ (2.33)

Equations (2.31) and (2.32) are therefore absurd as disjoint sets have no element in

common.

2.2.3 The priority graph

As any binary relation, the priority relation admits a graph representation.

Definition 2.2.2 (Priority graph). The priority graph induced by a feasible path

ϕ is the oriented graph G whose vertices are V (G) := R and such that there is an

edge from i to j if i � j where � denotes the priority relation induced by ϕ. We

write (i, j) ∈ E(G) where E(G) denotes the edge set of the priority graph.

Two representations of the priority graph are depicted in Figure 2.13. We let

Γ denote the application that returns the priority graph Γ(ϕ) induced by a feasible

path ϕ ∈ Φ(χfree). Γ(ϕ) is the graph of the priority relation � induced by ϕ.

Theorem 2.2.1 can be rewritten as follows:

∀ϕ ∈ Φ(χfree),Γ(ϕ) ∈ G (2.34)

where G is the set of oriented graphs G with vertices V (G) := R, whose edge set

E(G) satisfies:

∀i, j ∈ R, (i, j) ∈ E(G)⇔
{
χobs
ij 6= ∅

(j, i) /∈ E(G) (2.35)

We say a graph G is a priority graph if G ∈ G. It is natural as a graph G ∈ G
defines a binary relation between robots whose paths intersect, i.e., it defines a
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3

2

1

3 2

1

3

2

1

3 2

1

Figure 2.13: Two representations of priority relations. In each drawing relation is

represented in two ways: as a complete oriented graph, where orientation yields the

priority; and as trajectories over time, foreground being first, background later. The

left drawing represents a relation that is an order (even a total order). The right

drawing shows a relation that is not an order.

priority between all and only robots that need to coordinate. Then, a natural

question is: given a priority graph G, does a feasible path exist whose induced

priority graph is G ? Let Γ−1(G) denote the set of feasible paths whose induced

priority graph is G. The question can then be rephrased as: given a priority graph

G, do we have Γ−1(G) 6= ∅ ? If there exists some path ϕ ∈ Γ−1(G), ϕ should be

collision-free with regards to each completed cylinder χobs
i�j for all (i, j) ∈ E(G).

Hence, it is natural to define the completed obstacle region and the collision-free

region with regards to a given priority graph G ∈ G as follows:

χobs
G :=

⋃
(i,j)∈E(G)

χobs
i�j (2.36)

χfree
G := χ \ χobs

G (2.37)

{χobs
G , χfree

G } form a partition of χ. By construction, we have χobs ⊂ χobs
G : respecting

the assigned priorities requires remaining in a more constrained space. For all

feasible paths ϕ ∈ Φ(χfree), we have the equivalences:

ϕ ∈ Γ−1(G)⇔ Im (ϕ) ⊂ χfree
G ⇔ Im (ϕ) ∩ χobs

G = ∅ ⇔ ϕ ∈ Φ(χfree
G ) (2.38)

It results that the set of feasible paths is the union of the sets of feasible paths

respecting a certain priority graph over all possible priority graphs:

Φ(χfree) =
⋃
G∈G

Φ(χfree
G ) (2.39)

However,
{

Φ(χfree
G ) : G ∈ G

}
do not form a partition of Φ(χfree) as some Φ(χfree

G )
may be empty.

The next chapter studies the coordination under assigned priorities, i.e., when

the obstacle region is completed with configurations not respecting the assigned
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priorities, forming the completed obstacle region χobs
G . In Section 3.1, we will see

that each non-empty set of feasible paths respecting a certain priority graph G,

i.e., each non-empty Φ(χfree
G ), is a homotopy class of feasible paths continuously

deformable into each other. Section 3.2 provides a necessary and sufficient condition

on G for Φ(χfree
G ) not to be empty, that is a necessary and sufficient condition on

priorities to guarantee that respecting these priorities, all robots can eventually go

through the intersection (no deadlock).
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Preliminaries of this work can be found in our conference paper [48].

Sketch of the chapter The first section of the present chapter demonstrates

that respecting assigned priorities does not require robots to follow a particular

feasible path in the coordination space. However, the path described by robots in

the coordination space needs to remain in a quite large homotopy class of feasible

paths continuously deformable into each other. This homotopy class is uniquely

encoded by the priority graph. The second section proves that deadlock avoidance

can be guaranteed at the priority assignment phase. Either priorities are ”feasible”

and ensure all robots will eventually go through the intersection provided they

respect the assigned priorities; or, the multi robot system will inevitably reach a

deadlock configuration.

3.1 Priorities: a homotopy invariant

3.1.1 Homotopy classes

Φ(χ) is equipped with the topology of pointwise convergence and the notion of

homotopic feasible paths is defined as follows.

Definition 3.1.1 (Homotopic paths). Given two feasible paths ϕ1 and ϕ2, ϕ1 is

homotopic to ϕ2 if there exists a continuous application H defined on [0, 1] such

that H(0) = ϕ1, H(1) = ϕ2 and for all α ∈ [0, 1], the path H(α) is a feasible path.
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xi

xj Im(φ1) 

χobs
Im(φ2)

φ1(t) 

φ2(t) 

H(α)(t) 

Im(H(α)) 

Figure 3.1: Two homotopic paths. As both paths lie below the obstacle region, they

can be continuously transformed into each other remaining collision-free along the

transformation.

We write ϕ1 ∼ ϕ2. Said differently, two feasible paths are homotopic if they

can be continuously transformed into each other remaining feasible (in particular

collision-free and non-decreasing) along the transformation as depicted in Figure 3.1.

Homotopy defines an equivalence relation on feasible paths:

Property 3.1.1 (Homotopy: an equivalence relation). The homotopy rela-

tion ∼ is an equivalence relation on Φ(χfree).

Proof. We have to prove that ∼ is an equivalence relation, i.e., that it is (a) reflexive,

(b) symmetric and (c) transitive.

(a) Take a feasible path ϕ ∈ Φ(χfree) and consider the constant application H : α ∈
[0, 1] 7→ ϕ. H(0) = ϕ, H(1) = ϕ and for all α ∈ [0, 1], the path H(α) ≡ ϕ is a

feasible path. Hence, ϕ ∼ ϕ and ∼ is reflexive.

(b) Take feasible paths ϕ,ψ ∈ Φ(χfree) and assume that ϕ ∼ ψ. Then, there exists

H defined on [0, 1] such that H(0) = ϕ, H(1) = ψ and for all α ∈ [0, 1], the

path H(α) is a feasible path. Consider G : α ∈ [0, 1] 7→ H(1 − α). We have

G(0) = ψ, G(1) = ϕ and for all α ∈ [0, 1], the path G(α) ≡ H(1 − α) is a

feasible path. Hence, ψ ∼ ϕ and ∼ is symmetric.

(c) Take feasible paths ϕ1, ϕ2, ϕ3 ∈ Φ(χfree) and assume that ϕ1 ∼ ϕ2 and ϕ2 ∼ ϕ3.

Then, there exists H12 defined on [0, 1] such that H12(0) = ϕ1, H12(1) = ϕ2

and for all α ∈ [0, 1], the path H12(α) is a feasible path and there exists H23

defined on [0, 1] such that H23(0) = ϕ2, H23(1) = ϕ3 and for all α ∈ [0, 1], the
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path H23(α) is a feasible path. Consider H defined on [0, 1] as follows:

∀α ∈ [0, 1/2], H(α) := H12(2α) (3.1)

∀α ∈ (1/2, 1], H(α) := H23(2(α− 1/2)) (3.2)

H is continuous as limα→
<

1/2H(α) = H12(1) = ϕ2 and limα→
>

1/2H(α) =

H23(0) = ϕ2. Moreover, H(0) = ϕ1, H(1) = ϕ3 and for all α ∈ [0, 1],
the path H(α) is a feasible path as it satisfies H(α) ≡ H12(2α) or H(α) ≡
H23(2(α − 1/2)) which are both feasible paths. Hence, ϕ1 ∼ ϕ3 and ∼ is

transitive.

As a direct consequence of Property 3.1.1, we can define homotopy classes as the

equivalence classes induced by this equivalence relation. Let Hfree := Φ(χfree)/ ∼
denote the homotopy classes of feasible paths, that is the quotient set of Φ(χfree)
by the equivalence relation ∼. Homotopy classes form a partition of Φ(χfree) [61].

Figure 3.2: Two homotopy classes of feasible paths (and two elements of each class)

in a three-dimensional coordination space.

The existence of homotopy classes of solutions to the coordination problem was

already noticed, e.g., in [47] (see Figure 3.2). In [60], it is also noticed that there

exist a finite number of homotopy classes of solutions to the coordination of multiple

agents moving on a plane between fixed points using the concept of braids [19].

However, in that work, the geometric paths of agents is not fixed, and optimization

is precisely carried out in order to find an optimal trajectory, both spatially and

timely. This is not adapted for an application to the coordination of robots on

roadways as the two-dimensional space is very constrained and robots have a quite

low degree of freedom to choose a geometric path to go through the intersection. It

thus appears much more suitable to study the homotopy classes of feasible paths in

the coordination space instead of studying the homotopy classes of braids.
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Chapter 3. The coordination space under assigned priorities

3.1.2 Invariance of the priority graph

If previous work already noticed the existence of homotopy classes in multi robot

coordination, to our knowledge, no meaningful representative is proposed to encode

homotopy classes. In the following, we present the main result of this part: prior-

ities uniquely encode homotopy classes of feasible paths in the coordination space.

The existence of a finite number of homotopy classes thus merely appears as the

consequence of the finite number of possible priority graphs.

We let Γ(Φ(χfree)) := {Γ(ϕ) : ϕ ∈ Φ(χfree)} denote the set of values taken by

the priority graph over all feasible paths. Γ(Φ(χfree)) is a subset of G containing

graphs G such that there exists a feasible path ϕ ∈ Φ(χfree) satisfying Γ(ϕ) = G.

The following theorem (illustrated in Figures 3.3 and 3.4) shows that priorities and

homotopy classes are strongly linked: more precisely, there is a bijective relationship

between homotopy classes and ”feasible priority graphs” (this term will be precisely

defined in Section 3.2). We say the priority graph encodes the homotopy class.

3

2

1

Figure 3.3: A homotopy class of feasible paths in a three-dimensional coordination

space and its corresponding unique representative as a priority graph.

Theorem 3.1.1 (Invariance of the priority graph). The priority graph is an

invariant of the homotopy classes of feasible paths that it is distinct for each

class: Hfree is in bijection with Γ(Φ(χfree)).

Proof of invariance. First we will prove that the priority graph is an invariant of

the homotopy classes of feasible paths. Consider a feasible path ϕ ∈ Φ(χfree). For

all i, j ∈ R, (i, j) ∈ E(Γ(ϕ)) if ϕ intersects χobs
j�i and the set χobs

j�i is open. If a

feasible path ϕ intersects an open set, any feasible path ψ ∈ Φ(χfree) close enough

to ϕ (in the topology of pointwise convergence) also intersects this open set. Hence,

we have:

∀i, j ∈ R, (i, j) ∈ E(Γ(ϕ))⇔ (i, j) ∈ E(Γ(ψ)) (3.3)
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xi

xj

Im(φ1) 

χobs
Im(φ2)

φ1(t) 

φ2(t) 

H(α)(t) 

Im(H(α)) 

Im(φ3) 

Im(φ4)

φ3(t) 

φ4(t) H'(α)(t) 

Im(H'(α)) 

Figure 3.4: In a two-dimensional scenario (χ = R2), provided χobs
ij 6= ∅, there are

exactly two homotopy classes: all feasible paths lying above the obstacle region form

the first homotopy class and all feasible paths lying below the obstacle region form

the second homotopy class.

provided ψ is close enough to ϕ. Therefore, Γ is continuous and since it takes discrete

values, it is thus constant in homotopy classes of feasible paths. (We identify Γ with

the set of applications gij : Φ(χfree) → {−1, 0, 1} satisfying gij(ϕ) = 1 if i � j, −1
if j � i, and 0 otherwise.) In conclusion, the priority graph is an invariant of the

homotopy classes of feasible paths.

Proof of uniqueness. To prove uniqueness, consider two feasible paths ϕ1 and ϕ2

with the same induced priority graph G: ϕ1, ϕ2 ∈ Φ(χfree
G ). We have to prove that

ϕ1 and ϕ2 are homotopic. Consider the following continuous transformation:

H : α ∈ [0, 1] 7→ min
{
αϕ2(1) + (1− α)ϕ1(1), ϕ1(•+ α),max

{
ϕ1, ϕ2

}}
(3.4)

where by convention ϕ1(t + α) ≡ ϕ1(1) if t + α ≥ 1. Figure 3.5 illustrates the

proposed transformation in the particular case where the two paths have the same

endpoints.
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xi

xj

χfree
i>j

φ1(t0) 

max(φ1(t0),φ
2(t0)) 

xi

xj

χfree
i>j

φ1(t0) 

max(φ1(t0),φ
2(t0)) 

φ1(t1) 

φ1(t1) 

Figure 3.5: Illustration of the transformation of ϕ1 into max(ϕ1, ϕ2). At any point

of time t0, max(ϕ1(t0), ϕ2(t0)) necessarily lies on the north-east with respect to

ϕ1(t0). As a consequence, the two above cases may appear, and in each case, ϕ1(t0)
can be continuously transformed into max(ϕ1(t0), ϕ2(t0)) without collision by fol-

lowing the red arrows.

H is continuous,

H(0) = min
{
ϕ1(1), ϕ1,max

{
ϕ1, ϕ2

}}
= ϕ1 (3.5)

H(1) = min
{
ϕ2(1), ϕ1(1),max

{
ϕ1, ϕ2

}}
(3.6)

Hence, H continuously transforms ϕ1 into min{ϕ2(1), ϕ1(1),max{ϕ1, ϕ2}}. Now,

we prove that for all α ∈ [0, 1], H(α) is a feasible path. We need to prove that for

all α ∈ [0, 1], (a) H(α) is continuous, (b) satisfies (H(α)(0) − Rn+) ⊂ χfree and (c)

(H(α)(1) + Rn+) ⊂ χfree, (d) is non-decreasing, and (e) is collision-free.

(a) H(α) is continuous as the result of the application of continuous operators min,

max and delay on continuous paths.

(b) ϕ1 and ϕ2 being feasible, we have (ϕ1(0)−Rn+) ⊂ χfree
G and (ϕ2(0)−Rn+) ⊂ χfree

G .

Hence, we also have (max(ϕ1(0), ϕ2(0))−Rn+) ⊂ χfree
G by Property 2.2.2, which

implies that (H(α)(0)− Rn+) ⊂ χfree
G ⊂ χfree.

(c) ϕ1 and ϕ2 being feasible, we have (ϕ1(1)+Rn+) ⊂ χfree
G and (ϕ2(1)+Rn+) ⊂ χfree

G .

Hence, we also have (max(ϕ1(1), ϕ2(1)) +Rn+) ⊂ χfree
G by Property 2.2.2, which

implies that (H(α)(1) + Rn+) ⊂ χfree
G ⊂ χfree.

(d) H(α) is non-decreasing as the result of the application of non-decreasing oper-

ators min and max on non-decreasing paths.

(e) Take (i, j) ∈ E(G) and α, t ∈ [0, 1]. We have ϕ1(t+ α) ∈ χfree
i�j as ϕ1 ∈ Φ(χfree

G )
and we have also max{ϕ1(t), ϕ2(t)} ∈ χfree

i�j as ϕ1, ϕ2 ∈ Φ(χfree
G ) and using Prop-

erty 2.2.2. Moreover, (ϕ1(1) +Rn+) ⊂ χfree
i�j and (ϕ2(1) +Rn+) ⊂ χfree

i�j imply that

αϕ2(1) + (1−α)ϕ1(1) ∈ χfree
i�j (using Property 2.2.1). By Property 2.2.2, apply-

ing the min operator on three configurations in χfree
i�j returns a configuration in

χfree
i�j . In conclusion, we have H(α)(t) ∈ χfree

G ⊂ χfree
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3.2. Feasible priority graphs

As a result, ϕ1 is homotopic to min{ϕ2(1), ϕ1(1),max{ϕ1, ϕ2}}. As ϕ1 and ϕ2

have symmetric roles, ϕ2 is homotopic to min{ϕ1(1), ϕ2(1),max{ϕ2, ϕ1}}, that is

min{ϕ2(1), ϕ1(1),max{ϕ1, ϕ2}}. Homotopy defining an equivalence relation, ϕ1

and ϕ2 are homotopic.

Proof of bijective correspondence. For each h ∈ Hfree, take an arbitrary ϕh ∈ h. As

the priority graph is invariant in homotopy classes, we have:

Γ(Φ(χfree)) =
{

Γ(ϕh) : h ∈ Hfree
}

(3.7)

As the priority graph Γ(ϕh) is distinct for each class h ∈ Hfree, the application

Ψ : h ∈ Hfree 7→ Γ(ϕh) is a bijection from Hfree to Γ(Φ(χfree)). In conclusion, Hfree

is in bijection with Γ(Φ(χfree)).

We have proved that all feasible paths sharing the same priorities are contin-

uously deformable into each other. A direct consequence of the above theorem is

that there exists a finite number of homotopy classes of feasible paths. When as-

signing the priority between each pair of robots, there is indeed two possibilities.

As there is at most n(n−1)/2 collision pairs i, j satisfying χobs
ij 6= ∅, there is at most

2n(n−1)/2 priority graphs. There is thus a finite number of homotopy classes – at

most 2n(n−1)/2 – and each homotopy class of feasible paths is uniquely encoded by a

priority graph G ∈ G. A natural question is: does any priority graph G ∈ G encode

a (non-empty) homotopy class of feasible paths ? This mathematical question is

equivalent to: given assigned priorities, is it possible for robots to go through the

intersection, respecting the assigned priorities ?

3.2 Feasible priority graphs

Here, we propose to give a characterization of the set of feasible priority graphs,

that we define as graphs G ∈ G such that there exists a feasible path whose induced

priority graph is G:

Definition 3.2.1 (Feasible priority graph). A priority graph G ∈ G is feasible if

and only if Φ(χfree
G ) 6= ∅.

Using the application Γ, the set of feasible priority graphs can be denoted as

Γ(Φ(χfree)). We start with some examples that show that the existence of a feasible

path respecting given priorities is strongly related to the notion of deadlock, and

we highlight the role of priority cycles in the formation of deadlocks.

Deadlock examples First of all, consider the example on the left drawing of

Figure 3.6. The assigned priorities are 1 � 2, 2 � 3 and 3 � 1. Hence, the

priority graph is cyclic. It is clear that respecting the assigned priorities leads to

the deadlock configuration represented in Figure 3.6. None of the robots can move

without colliding. The right drawing of Figure 3.6 gives a similar example with a

larger number of robots involved in the priority cycle.
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1
3
2

3

2

1 ...

...

...

...

Figure 3.6: Two examples of deadlock configurations. On the left side, 3 robots are

involved in the deadlock. On the right side, the deadlock is caused by a priority cycle

involving much more robots. In both examples, none of the robots can move without

colliding. It is a deadlock configuration.

1

2

3

Figure 3.7: Cyclic deadlock-free examples
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Cyclic deadlock-free examples According to the above example, it is clear

that cycles in the priority graph have a strong role in the formation of deadlocks.

Now, consider the example in the left drawing of Figure 3.7. Again, the assigned

priorities, 1 � 3, 2 � 1 and 3 � 1, are cyclic. However, it is clear that there exists a

feasible path respecting the priorities and all robots will eventually go through the

intersection. The right drawing of Figure 3.7 provides a similar cyclic deadlock-free

example involving four robots.

The above examples justify the motivation to obtain a characterization of pri-

ority graphs such that there exists a feasible path respecting the given priorities.

This characterization refines the role of cycles in the formation of deadlocks.

A singular deadlock-free priority graph Before providing such a character-

ization, we expose a last example where the priority graph G is feasible in that

there exists a feasible path whose priority graph is G; however, all feasible paths

respecting these priorities are in contact with the boundary of χobs
G . Figure 3.8 de-

picts such an example. It is very likely that such priorities should not be considered

as feasible in practice as they require a very precise control. Note also that it is a

singularity caused by the (arbitrary) openness of the obstacle region.

3.2.1 Sufficient condition for priorities feasibility

The above examples tend to indicate that no deadlock can occur under acyclic

priorities. It is not surprising as deadlocks usually involve a ”circular wait” [24].

In many circumstances, imposing acylic priorities is not a problematic constraint

and demonstrates some benefits including deadlock avoidance (see Part III). That

is why we start by providing a sufficient condition for priorities feasibility stating

that acyclic priorities ensure deadlock avoidance.

Theorem 3.2.1 (Sufficient condition for priorities feasibility). All acyclic pri-

ority graphs are feasible.

The proof of the above theorem relies on the fact that under acyclic priorities,

a simple feasible path respecting the acyclic priorities can be constructed by letting

robots go through the intersection one by one.

Proof. Take an acyclic priority graph G ∈ G. To prove that G is feasible, we are

going to exhibit a particular feasible path whose induced priority graph is G. As G

is acylic, it admits a topological ordering of its nodes R. Consider a relabeling of

robots along this topological ordering, i.e., robot 1 is the maximal element of this

topological ordering, ... robot i is the ith element of the topological ordering, ...

and robot n is the minimal element of the topological ordering. Consider the path

ϕ constructed as follows. ϕ(0) := xobs and for all i ∈ {1 · · ·n}, within time interval

[(i − 1)/n, i/n], robot i moves forward from xobs
i to xobs

i (for example ϕi is linear

in that time interval and takes values [xobs
i , xobs

i ]) while other robots j 6= i do not
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γ3
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Figure 3.8: In this (quite imaginative) scenario, robots maintaining constant velocity

do not collide and slide on each other to go through the intersection. It is a very

singular scenario. There exists a feasible path satisfying the cyclic priorities 2 � 1,

3 � 2, 4 � 3 and 1 � 4, but with absolutely no ”safety margin” as robots need to

slide on each other.
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move (ϕj constant in that time interval). This path is feasible and takes values in

χfree
G .

Note to the reader The two following subsections intend to treat the case of

cyclic yet feasible priorities. They are quite technical and the reader having no

particular interest in this case can go directly to Subsection 3.2.4. It will not affect

the understanding of the rest of the thesis.

3.2.2 Safety margin

As shown in the examples presented previously, only considering feasibility as a

binary question is quite insufficient in practice as some priority graphs are feasible

but require robots to slide on each other, i.e., to travel through very risky configu-

rations. That is why we propose a notion of feasibility endowed with the notion of

safety margin.

We say that the priority graph is feasible with a (safety) margin r ≥ 0 if there

exists a feasible path ϕ ∈ Φ(χfree
G ) keeping a distance r from the obstacle region

χobs
G (in infinity norm). Given a path ϕ ∈ Φ(χ), d(ϕ, χobs

G ) is defined as follows:

d(ϕ, χobs
G ) := sup

{
r ≥ 0 : ∀t ∈ [0, 1],∀x ∈ χobs

G , ‖ϕ(t)− x‖∞ ≥ r
}

(3.8)

When d(ϕ, χobs
G ) ≥ 0, we say that ϕ is safe with regards to χobs

G with a margin

d(ϕ, χobs
G ). The use of the distance of infinity norm makes sense since it means that

a path is safe with regards to χobs
G with a margin r ≥ 0 if robots traveling along

this path with an individual precision of r will not collide (with regards to χobs
G ).

We have indeed the following equivalence:[
∀x ∈ χobs

G , ‖ϕ(t)− x‖∞ ≥ r
]
⇔
[
(ϕ(t) + [−r, r]n) ⊂ χfree

G

]
(3.9)

It is direct that the set of paths ϕ ∈ Φ(χfree
G ) satisfying d(ϕ, χobs

G ) ≥ r is precisely

Φ(χfree
G 	 [−r, r]n) where 	 denotes the erosion operator, i.e.,

χfree
G 	 [−r, r]n :=

{
x ∈ χfree

G : x+ [−r, r]n ⊂ χfree
G

}
(3.10)

χfree
G 	 [−r, r]n is the erosion of χfree

G with the structuring element [−r, r]n [116]

(see Figure 3.9). The form of the structuring element is due to the use of the

infinity norm (it is the closed ball of radius r with regards to the infinity norm).

Φ(χfree
G 	 [−r, r]n) denotes the set of feasible paths whose priority graph is G and

keeping a distance r from χobs
G . It is natural to define a safety margin associated to

the priority graph G as follows:

ρG :=

 max
{
r ≥ 0 : Φ(χfree

G 	 [−r, r]n) 6= ∅
}

if Φ(χfree
G ) 6= ∅

−min
{
r > 0 : Φ(χfree

G + [−r, r]n) 6= ∅
}

else.
(3.11)

• When Φ(χfree
G ) 6= ∅, ρG ∈ R+ ∪ {+∞} denotes the maximal distance between

χobs
G and feasible paths whose priority graph is G.
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xj

χobs
i>j

r

χobs+[-r,r]n
i>j

xj

r

χobs
i>j

χobs - [-r,r]n
i>j

xi xi

Figure 3.9: The left drawing represents the dilatation of χobs
i�j with the structuring

element [−r, r]n. The right drawing show the erosion of χobs
i�j with the structuring

element [−r, r]n.

• When Φ(χfree
G ) = ∅, ρG < 0. The value taken by ρG < 0 can be interpreted as

an indicator of how far the priority graph G is from being feasible.

The use of the maximal (resp. minimal) element is justified by Lemma A.3.1 proved

in Appendix A.3 that stipulates that the upper (resp. lower) bound is attained, i.e.,

there exists a path with maximal margin. We refer to ρG as the safety margin of G.

This definition is coherent as a feasible priority graph has necessarily a non-negative

safety margin since Φ(χfree
G ) 6= ∅.

3.2.3 Characterization of feasible priorities

Before providing a formal characterization of feasible priority graphs, a geometric

interpretation is provided about why in certain circumstance cyclic priorities are

not feasible. In Figure 3.10, the obstacle cylinders in the coordination space are

depicted for both the cyclic deadlock-free example of Figure 3.7 and the deadlock

example of Figure 3.6. The main difference is that in the deadlock case, cylinders

intersect with each other. In contrast, in the deadlock-free case, cylinders do not

intersect each other, there is a certain distance between each cylinder. Thanks to

this distance between cylinders, the multi robot system can decide, independently

for each collision cylinder, on which side to travel. On the contrary, if there is not

a sufficient distance between cylinders, theses decisions are not independent. It is

very clear on the right drawing of Figure 3.10 that if a feasible path lies above the

obstacle cylinder χobs
23 (the blue one) and below χobs

13 (the red one), then it also must

lie on the right relative to the obstacle cylinder χobs
12 (the cyan one). In terms of

priorities, it means that if 3 � 2 and 1 � 3, then we must have 1 � 2, i.e., the cycle

2 � 1 � 3 � 2 is forbidden.

The definition of the completed obstacle regions χobs
i�j enables to provide a very

synthetic characterization of feasible priority graphs. It confirms and refines the
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Figure 3.10: The left drawing depicts the obstacle cylinders in the coordination space

for the three-robot system of Figure 3.7 in a deadlock-free configuration. The right

drawing depicts the obstacle cylinders in the coordination space for the three-robot

system of Figure 3.6 stuck in a deadlock.

role of priority cycles in the formation of deadlocks. In particular, Condition (3.12)

gives a necessary and sufficient condition for a priority cycle to be feasible. We let

cycles(G) denote the elementary cycles of a priority graph G ∈ G.

Theorem 3.2.2 (Characterization of feasible priority graphs). A priority graph

G ∈ G is feasible if and only if for all elementary cycles C in G, we have:⋂
(i,j)∈E(C)

χobs
i�j = ∅ (3.12)

If Condition (3.12) holds, the safety margin is given by:

ρG = max

r ≥ 0 : ∀C ∈ cycles(G),
⋂

(i,j)∈E(C)

(
χobs
i�j + [−r, r]n

)
= ∅

 (3.13)

A complete proof of the above theorem is provided in Appendix A.4. In the

following, we prove that (3.12) is a necessary condition for priority graph feasibil-

ity, and we also provide a slightly stronger sufficient condition for priority graph

feasibility.

Proof of the necessary condition. We will prove the necessary condition by contra-

position. Take G ∈ G and assume that there is an elementary cycle C of G such that

the subset
⋂

(i,j)∈E(C) χ
obs
i�j is not empty, and let x1 be an element of this set. We have
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to prove that Φ(χfree
G ) = ∅. To this end, we are going to build a hyper-orthant in

the coordination space capturing any path of Φ(χfree
G ). For each j ∈ V (C), consider

Kj := {x ∈ χ : xj = x1
j and xi ≤ x1

i for i 6= j}. By Property 2.2.1 we have:

x1 ∈ χobs
i�j =⇒ Kj ⊂ χobs

i�j (3.14)

As ∀(i, j) ∈ E(C), x1 ∈ χobs
i�j , applying the latter result yields:

∀(i, j) ∈ E(C),Kj ⊂ χobs
i�j (3.15)

As a consequence,
⋃

(i,j)∈E(C)Kj ⊂ χobs
G , and as C is a cycle, every vertex j ∈ V (C)

is involved in some edge (i, j) ∈ E(C), so that we have:⋃
j∈V (C)

Kj ⊂ χobs
G (3.16)

In the coordination space restricted to the coordinates which appear in C,
⋃
j∈V (C)Kj

is the set of upper faces (that is the boundary) of the orthant (depicted in Fig-

ure 3.11):

O := {x ∈ χ : ∀j ∈ V (C), xj ≤ x1
j} (3.17)

And we have by Equation (3.16):

∂O =
⋃

j∈V (C)
Kj ⊂ χobs

G (3.18)

Now, we will prove that Φ(χfree
G ) is empty by contradiction. Assume it is not

empty and take an element ϕ of it. We must have
(
ϕ(0)− Rn+

)
⊂ χfree

G , which

implies that:

ϕ(0) ∈ O (3.19)

and
(
ϕ(1) + Rn+

)
⊂ χfree

G , which implies:

ϕ(1) /∈ O (3.20)

Since ϕ is continuous, by Lemma A.1.1 (see Appendix A.1), there exists t ∈ [0, 1]
such that ϕ(t) ∈ ∂O =

⋃
j∈V (C)Kj ⊂ χobs

G and ϕ intersects χobs
G . It is is contradic-

tion with ϕ ∈ Φ(χfree
G ).

x1

x2

x31
3

2

φ(0) 

φ(1) 

Figure 3.11: The hyper-orthant used in the proof of the necessary condition of The-

orem 3.2.2 (in a three-dimensional scenario).
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In order to provide a constructive proof of the existence of feasible paths taking

values in χfree
G under certain conditions, we first introduce the concept of local

priority graph. Given a radius r ≥ 0 and a configuration x ∈ χ, the local priority

graph at configuration x with radius r ≥ 0 is the sub-graph G|x,r of G with the

same vertices and whose edge set is defined below:

E(G|x,r) :=
{

(i, j) ∈ E(G) : x ∈
(
χobs
i�j + [−r, r]n

)}
(3.21)

As depicted in Figure 3.12, computing the local priority graph at a given config-

uration x with a given radius r ≥ 0 consists in copying G and keeping only edges

(i, j) ∈ E(G) such that x belongs to the dilatation of χobs
i�j by the structuring ele-

ment [−r, r]n, i.e., we keep only edges (i, j) such that the distance (with the infinity

norm) from x to χobs
i�j is strictly lower than r.

It is interesting to notice that in the deadlock-free example of Figure 3.12, the

depicted local priority graph is acyclic. By contrast, at the deadlock configuration

of Figure 3.13, even for very small radius, the local priority graph is cyclic.

Lemma 3.2.1 (Sufficient condition for locally acyclic priority graph). Consider

a priority graph G ∈ G satisfying for all elementary cycles C in G:⋂
(i,j)∈E(C)

(
χobs
i�j + [−ε, ε]n

)
= ∅ (3.22)

for some ε > 0, then G|x,ε is acyclic at all configurations x ∈ χ.

Proof. Take G ∈ G and assume Equation (3.22) is satisfied for all elementary cycles

C in G. By construction, we have:

E(G|x,ε) =
{

(i, j) ∈ E(G) : x ∈
(
χobs
i�j + [−ε, ε]n

)}
(3.23)

The existence of a cycle C in G|x,ε would imply that x ∈ ∩(i,j)∈E(C)
(
χobs
i�j + [−ε, ε]n

)
,

and would therefore contradict Equation (3.22) for this cycle.

It is of high interest to know that the local priority graph with radius ε > 0 is

acyclic at all configurations x ∈ χ. Indeed, when this condition is satisfied, whatever

the current configuration x ∈ χfree
G of the system, it is always possible to find a robot

i ∈ R which can move forward the distance ε > 0 without colliding, which enables

to construct a feasible path in χfree
G by iterations. Based on this idea, we propose

now to give a slightly stronger sufficient condition for the existence of feasible paths

satisfying a given priority graph G ∈ G. We prove in the sequel that a sufficient

condition for Φ(χobs
G ) 6= ∅ is that for all elementary cycles C in G:⋂

(i,j)∈E(C)

(
χobs
i�j + [−ε, ε]n

)
= ∅ (3.24)

for some ε > 0. It is a slightly stronger condition than in Theorem 3.2.2 as ε > 0
(instead of ε ≡ 0).
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Figure 3.12: Computation of the local priority graph for a three-robot system. Note

that due to the geometry of paths (in particular their relative position), for small

enough radius ε > 0, the local priority graph is acycle at all configurations.
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Figure 3.13: Computation of the local priority graph for a three-robot system in a

deadlock configuration. Note that the local priority graph is cyclic at the deadlock

configuration, even for very small radius.
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Proof of the sufficient condition under a slightly stronger assumption. Take G ∈ G
and assume that we have ε > 0 such that for all elementary cycles C in G, Equa-

tion (3.24) holds. We will provide a constructive proof of the existence of a path

ϕ ∈ Φ(χfree
G ). By Lemma 3.2.1, the local priority graph G|x,ε is acyclic at all con-

figurations x ∈ χ. Let xgoal ∈ χfree denote the desired final configuration defined

componentwise as: xgoal
i = xobs

i +ε (satisfying
(
xgoal + Rn+

)
⊂ χfree

G ). We define the

finite time flow φ(x, t) starting at initial condition x component-wise as follows for

t ∈ [0, 1] and j ∈ R:

φj(t, x) :=

xj if ∃(i, j) ∈ E(G|x,ε)
min(xgoal

j , xj + tε) else.
(3.25)

First we prove that the flow starting from an initial configuration in χfree
G remains

in χfree
G . Consider x ∈ χfree

G and (i, j) ∈ E(G). By construction of φ, we have for all

t ∈ [0, 1]:
φi(t, x) ≥ xi (3.26)

For j, consider the two following options:

• (i, j) ∈ E(G|x,ε). Then, we have for all t ∈ [0, 1]:

φj(t, x) = xj (3.27)

By Property 2.2.1, since Equations (3.26) and (3.27) hold, x ∈ χfree
i�j implies

that φ(t, x) ∈ χfree
i�j .

• (i, j) /∈ E(G|x,ε). Then, we have for all t ∈ [0, 1]:

φj(t, x) = min(xgoal
j , xj + tε) ≤ xj + ε (3.28)

Moreover, by construction of the local priority graph, (i, j) /∈ E(G|x,ε) is

equivalent to:

x /∈ χobs
i�j + [−ε, ε]n (3.29)

which implies that:

x+ εej ∈ χfree
i�j (3.30)

By Property 2.2.1, since Equations (3.26) and (3.28) hold, Equation (3.30)

implies that φ(t, x) ∈ χfree
i�j .

In conclusion, for all x ∈ χfree
G and t ∈ [0, 1], φ(t, x) ∈ χfree

G . Now, consider the path

ϕ(t) defined iteratively as follows:

ϕ(0) := xobs (3.31)

∀p ∈ N,∀t ∈ [0, 1], ϕ(p+ t) := φ(t, ϕ(p)) (3.32)

ϕ(0) ∈ χfree
G and by induction, ϕ takes values in χfree

G . It is non-decreasing as

φj(t, x) ≥ xj , and we are going to prove that it reaches xgoal in finite time. The
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local priority graph at configuration x only contains edges (i, j) such that xj < xgoal
j

(xj = xgoal
j = xobs

j + ε implies that x /∈ (χobs
i�j + [−ε, ε]n)). Since the local priority

graph is acyclic, for all x ∈ χ with x < xgoal, there exists a maximal element j ∈ R
satisfying xj < xgoal

j and ∀i ∈ R, (i, j) /∈ E(G|x,ε). By construction of φ, it results

that for all p ∈ N, if ϕ(p) 6= xgoal, then there exists at least one robot j such that

ϕj(p + 1) = min(xgoal
j , xj + ε), i.e., robot j travels a distance ε or reaches its goal

configuration in time interval [p, p+1]. The distance to travel considering all robots

is finite:
∑
i∈R x

goal
i −x0

i . As a result, xgoal is reached in finite time T , ϕ(T ) = xgoal

and T satisfies:

T ≤
⌈∑

i∈R x
goal
i − xobs

i

ε

⌉
(3.33)

where d.e denotes the ceiling function. Rescaling time by a factor 1/T yields a path

ϕ̃ ∈ Φ(χfree
G ).

3.2.4 Absence of deadlocks

To this point, we have proved a necessary and sufficient condition for Φ(χfree
G ) 6= ∅,

i.e., for the existence of feasible paths whose priority is graph G. In the following,

we prove that provided Φ(χfree
G ) 6= ∅, there is no deadlock configuration in χfree

G .

This means that for all configurations x ∈ χfree
G , there exists a path ϕ ∈ Φ(χfree

G )
going through configuration x. It is a very valuable result as a direct consequence is

that provided the assigned priorities are feasible, there will be no deadlock, as long

as priorities are ”respected”, i.e., as long the configuration of the system remains in

χfree
G .

Theorem 3.2.3 (Absence of deadlocks). Given G ∈ G satisfying Φ(χfree
G ) 6= ∅,

for all x ∈ χfree
G , there exists ϕ ∈ Φ(χfree

G ) going through x.

Proof. Take a priority graph G ∈ G, x ∈ χfree
G , assume Φ(χfree

G ) 6= ∅ and take

ϕ ∈ Φ(χfree
G ). First of all, note that concatenating ϕ with the segment joining ϕ(0)

and min(x, ϕ(0)) and with the segment joining ϕ(1) with max(x, ϕ(1)) gives a path

in Φ(χfree
G ) starting from a configuration lower than or equal to x and ending at a

configuration greater than or equal to x. Hence, assume without loss of generality

that ϕ(0) ≤ x and ϕ(1) ≥ x. Define ϕ̃1 := max(x, ϕ) and ϕ̃2 := min(x, ϕ). These

paths take values in χfree
G by Property 2.2.2. The concatenation of ϕ̃1 and ϕ̃2 gives

a path ϕ̃ ∈ Φ(χfree
G ) going through x.
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Conclusions

The present part proposed a novel tool in multi robot coordination: the priority

graph. It enables to go one step ahead in the understanding of the structure of

the solutions to the coordination problem. Previous work noticed the existence

of homotopy classes of feasible paths in the coordination space [47]. Our results

demonstrate that priorities uniquely encode these homotopy classes. The existence

of a finite number of homotopy classes of feasible paths then merely appears as the

consequence of the finiteness of possible priority graphs. Assigning priorities plans

a high-level coordination strategy represented by the priority graph describing the

relative order of robots through the intersection. Under assigned priorities, the

path of robots in the coordination space is just required to remain in a homotopy

class of feasible paths continuously deformable into each other. Respecting assigned

priorities is weaker than following a particular feasible path as a large (homotopy)

class of feasible paths induce the same priorities. The size of the homotopy class

provides some freedom of action. Therefore, priorities appear a relevant resource to

guide robots through an intersection area. A key asset of planning priorities is that

well-chosen feasible priorities – in particular, acyclic priorities – completely solves

the deadlock avoidance problem (see Threorem 3.2.2). Theorem 3.2.3 proves that

provided feasible priorities are respected, robots will never be stuck in a deadlock

configuration. It is key to solve the deadlock avoidance problem at the planning

level as deadlocks are difficult to avoid in a reactive manner.

The results of the present part are quite conceptual with little care about the

dynamics model and control issues. It does not specify how to use priorities to

control robots. In traditional planning, the control part consists of executing the

plan by tracking the planned reference trajectory. This is known as the trajectory

tracking problem [63, 80, 92, 122, 141]. The reference trajectory configures the

control law which tries to minimize the tracking error (e.g., using a linear-quadratic

regulator [129]). In priority-based coordination, there is no reference trajectory to

track, the plan is merely the priority graph. The next part of the thesis assumes

that priorities are assigned and it aims at building control laws configured by the

priority graph ensuring that priorities are respected and that all robots eventually

go through the intersection. From the point of view of the present part, control

laws proposed in the next part ensure that the resulting path described by robots

in the coordination space belongs to the homotopy class encoded by the assigned

priorities.





Part II

Priority preserving control





Introduction

Previous work noticed the combinatorial complexity of multi robot control (see,

e.g., [25]). In [25], the expected application is a driver assistance system to avoid

crashes between human driven vehicles just in time. It is thus completely right to

try to find a particular schedule to avoid the crash. In this thesis, we are in a much

different context and we assume that robots are in a safe state when approaching

the intersection, and a lot of different schedules – more precisely, a lot of different

priority graphs – are possible to safely coordinate robots. The present part assumes

that feasible priorities are assigned, that the assigned priorities are compatible with

the initial state of the robots, and focuses on how to use the assigned priorities to

guide robots through the intersection. As priorities are assigned, there is no com-

binatorial problem, and so-called priority preserving control can be carried out in

polynomial time. In traditional planning, the plan is a reference trajectory which

configures a control law in charge of tracking the reference trajectory. In priority-

based coordination, the plan is the priority graph, so the control law is configured

by the priority graph and is in charge of ensuring priority preservation (no collision

occurs and priorities are respected). Ensuring priority preservation is much weaker

than tracking a reference trajectory, so robots retain some freedom of action. The

proposed control law guarantees liveness, i.e., following the control law, all robots

eventually go through the intersection. The freedom of action enabled by planning

only priorities is highlighted, as under the presented control law, robots may brake

at any point of time without violating priorities, in particular without colliding.

This robustness property is quite novel among existing coordination systems and is

highly valuable as it is very likely to happen that robots need to brake to handle

some unexpected event (e.g., a pedestrian crossing the road, a loss of communica-

tion abilities, a congestion at the exit of the intersection). Finally, the proposed

control scheme in Chapters 5 and 6 is decentralized as the output of the control

law can be computed on each robot independently without an agreement through

communication links.

Sketch of the part The assigned priorities are assumed to be acyclic. Under

this assumption, Chapter 4 provides a priority preserving control law for robots

controlled in velocity; Chapter 5 examines the case of robots controlled in acceler-

ation; and in Chapter 6, robustness of priority preserving control with respect to

bounded noise is illustrated. The reader is referred to Appendix B for an extension

of the results of this part to feasible cyclic priority graphs under mild assumptions.

Note to the reader The two first chapters of the present part are independent.

However, it is advised to start with the first chapter for a gradual understanding

of the proposed method. The last chapter is not necessary to the understanding of

the rest of the thesis. The reader without special interest in considering uncertainty

concerns can skip Chapter 6 and go directly to Part III.
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Chapter 4

Priority preserving control

in the absence of inertia
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In the present chapter, the velocity of the robots is assumed to be controlled,

and a control law aimed at coordinating multiple robots with assigned priorities is

proposed.

Sketch of the chapter Section 4.1 exposes the dynamics model and shows that

the resulting system is a monotone control system [9]. Section 4.2 constructs a

priority preserving control law. Optimality and liveness properties are provided.

4.1 A monotone control system

Each robot i is modeled as a first-order control system with state xi ∈ R, whose

evolution is described by the differential equation:

ẋi(t) = vi(t) (4.1)

where vi : R+ → Vi is the control of robot i. We let Vi := {0, vi} be the set of

feasible control values. The control is assumed to be updated in discrete time every

∆t > 0:

∀k ∈ N,∀t ∈ [k∆t, (k + 1)∆t),vi(t) ≡ vi(k∆t) (4.2)

The time interval [k∆t, (k + 1)∆t) will be referred to as (time) slot k. For the

sake of simplicity we let ∆t := 1 in the sequel. We let Vi denote the set of controls

vi : R+ → Vi piecewise constant on intervals [k, k+1), k ∈ N. We let t 7→ φi(t, xi,vi)
denote the flow of the system starting at initial configuration xi ∈ R with control

vi ∈ Vi as depicted in Figure 4.1.
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t
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ij
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Φi(t,xi,vi)
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Figure 4.1: An example of piecewise constant velocity control vi (left) and the cor-

responding flow t 7→ φi(t, xi,vi) starting from the initial configuration xi (right).

We also define the vectorial control v := (vi)i∈R ∈ V :=
∏
i∈RVi, and the

vectorial flow: φ(t, x,v) := (φi(t, xi,vi))i∈R. We let v := (vi)i∈R and we define the

constant control v(t) := v. We introduce partial orders as follows:

∀v1
i ,v2

i ∈ Vi,v1
i � v2

i if ∀t ≥ 0,v1
i (t) ≤ v2

i (t) (4.3)

∀φ1, φ2 : R+ → χ, φ1 � φ2 if ∀t ≥ 0, φ1(t) � φ2(t) (4.4)

The control system (4.1) is a monotone control system [9] with regards to the relative

orders defined above. More precisely, the following key property holds:

Property 4.1.1 (Order preservation). The flow t 7→ φi(t, xi,vi) is order-

preserving with regards to xi and vi.

Note that in our open loop model, control vi only acts on robot i, that is, v is

a collection of independent controls: it does not achieve any kind of coordination

between the robots. The control law introduced in the sequel is precisely aiming at

coordinating the robots to avoid collisions and respect priorities.

4.2 The proposed control law

Now, we propose to build a control law fG : χ→ V such that starting from an initial

collision-free configuration, the flow of the system controlled by the control law fG

is ensured to remain in χfree
G (thus being collision-free and respecting priorities G).

In other words, using the terminology of [68], χfree
G shall be positively invariant for

the system under control law fG.

The rationale for our control law is as follows. Each robot i ∈ R moves forward,

unless moving forward violates the priority with regards to some robot j ∈ R with
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(j, i) ∈ E(G). In the coordination space, violating such a priority means that the

configuration of the system would collide with χobs
j�i. The control law can then be

formulated synthetically component-wise:

fGi (x) :=

0 if ∃(j, i) ∈ E(G), ∃t ∈ [0, 1] s.t.
(
x+ t

(
viei + fGj (x)ej

))
∈ χobs

j�i

vi else.

(4.5)

First of all, note that fG appears in both the left-hand side and the right-hand side

in Equation (4.5). Hence, it is not obvious that Equation (4.5) effectively defines

a control law which is stated by the following theorem. Note that a decentralized

version of the proposed control law could be used alternatively by considering the

worst case scenario for each robots (j, i) ∈ E(G), i.e., when robot j stops (see the

decentralized control law of Chapter 5). However, the optimality result that we

obtain in the present chapter would not hold anymore.

Theorem 4.2.1 (Control law existence). Given an acyclic priority graph G,

Equation (4.5) uniquely defines a control law fG : χ→ V .

Proof. The priority graph is assumed to be acyclic. Hence, there exists a topological

ordering of the graph such that for every edge (j, i) ∈ E(G), j comes before i in the

ordering. Following the topological order induced by G, it is possible to compute

fGi (x) for all i ∈ R iteratively. As a result, Equation (4.5) uniquely defines a control

law fG : χ→ V .

Figure 4.2 and 4.3 show the evolution of a three-robot system under control law

fG under acyclic priorities. It is clear in Figure 4.3 that the control law belongs

to the ”bug” family, emanating from the work of [87]. Indeed, the robots go at

maximum speed until they are too close to the boundary of the obstacle region.

Then, they follow the boundary with a certain distance as long as necessary.

Now, we need to introduce the following notation. Given a feedback control

law f : χ → V , with a slight abuse of notation we let t 7→ φ(t, x, f) denote the

vectorial flow of the system starting at initial condition x ∈ χ and controlled by

v ∈ V satisfying:

∀k ∈ N,v(k) ≡ f(φ(k, x,v)) (4.6)

4.2.1 Priority preservation

First of all, we prove the key property of our control law that is the safety guarantee.

More precisely, starting from a configuration in χfree
G , the system under control law

fG is ensured to remain in χfree
G , i.e., priorities G are preserved. Following the

terminology of [68], χfree
G is positively invariant under control law fG as stated in

the following theorem:
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t = 0 t = 1 t = 2 t = 3

Figure 4.2: A three-robot system with acyclic assigned priorities: 1 � 2, 2 � 3, and

1 � 3. Robots are controlled under control law fG. The drawings show the evolution

of the robots along their paths.
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Figure 4.3: Trajectory in the coordination space for the three-robot system under

control law fG of Figure 4.2.
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Theorem 4.2.2 (Priority preservation). Given an acylic priority graph G,

χfree
G is positively invariant for the system under control law fG, i.e.,

∀x ∈ χfree
G ,∀t ≥ 0, φ(t, x, fG) ∈ χfree

G (4.7)

Proof. Take an acyclic priority graph G and an initial configuration x ∈ χfree
G . By

induction, it is sufficient to prove that the flow satisfies:

∀t ∈ [0, 1], φ(t, x, fG) ∈ χfree
G (4.8)

By construction, for all i ∈ R and for all (j, i) ∈ E(G), we have two options:

• either fGi (x) = 0. For all t ∈ [0, 1], we have:

xi + tfGi (x) = xi (4.9)

xj + tfGj (x) ≥ xj (4.10)

Hence, by Property 2.2.1, x ∈ χfree
j�i implies that for all t ∈ [0, 1],

(
x+ t

(
fGi (x)ei + fGj (x)ej

))
∈

χfree
j�i.

• or fGi (x) = vi. Then, by construction of the control law, we have for all

t ∈ [0, 1],
(
x+ t

(
fGi (x)ei + fj(x)Gej

))
≡
(
x+ t

(
viei + fGj (x)ej

))
∈ χfree

j�i.

Hence, in both cases, we obtain:

x+ t
(
fGi (x)ei + fGj (x)ej

)
∈ χfree

j�i (4.11)

Moreover, we have:

φi(t, x, fG) = xi + tfGi (x) (4.12)

φj(t, x, fG) = xj + tfGj (x) (4.13)

As a result, Equation (4.11) implies that φ(t, x, fG) ∈ χfree
j�i for all (j, i) ∈ E(G) and

t ∈ [0, 1], i.e., φ(t, x, fG) ∈ χfree
G for all t ∈ [0, 1].

Given a configuration x ∈ χfree
G and a priority graph G, we say v is a collision-

free control for the pair (x,G) if the flow starting from x ∈ χfree
G remains in χfree

G .

We write v ∈ Vfree
G (x) defined as follows:

Vfree
G (x) :=

{
v ∈ V : φ(R+, x,v) ⊂ χfree

G

}
(4.14)
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4.2.2 Optimality

First of all, we define the notion of optimality under assigned priorities used in the

sequel. Given a priority graph G and a control law f , we say f is optimal for the

priority graph G if for all configurations x ∈ χfree
G and for all controls v ∈ Vfree

G (x),
we have:

∀t ≥ 0, φ(t, x, f) ≥ φ(t, x,v) (4.15)

In other words, the control law is optimal if for each robot, it maximizes the dis-

tance travelled through time while respecting priorities G. Note that this kind of

optimality is even stronger than the family of Pareto optimality. Pareto optimality

would state that it is impossible to make any individual robot travel farther with-

out making at least one robot travel less. By contrast, our optimality result states

that even if other robots travel less, it’s impossible to make one robot travel farther

while respecting the assigned priorities, i.e., all individual objectives are optimized.

As a consequence, the obtained trajectory is optimal for a whole set of utility func-

tions, more precisely, all utility functions which grow with the distance traveled by

robots. For example, it minimizes the average exit time of robots, it also minimizes

the maximum exit time of robots (the time at which the last robot exits the inter-

section). However, it is important to note that the optimality result is conditioned

on the assigned priorities. Note that the trajectory resulting from the application of

the proposed control law corresponds to the left-greedy optimal trajectory of Ref-

erences [47, 46], where it is noticed that it is a local optimum, in that it is optimal

over trajectories belonging to the same homotopy class. Hence, obtaining a globally

optimal trajectory would require exploring all feasible priorities, i.e., exploring all

homotopy classes.

Theorem 4.2.3 (Optimality). Given an acyclic priority graph G, the control

law fG is optimal for the priority graph G, in the sense that for all controls

v ∈ Vfree
G (x), we have:

∀t ≥ 0, φ(t, x, fG) ≥ φ(t, x,v) (4.16)

Proof. We will prove Theorem 4.2.3 by contraposition. Take an acyclic priority

graph G, an initial condition x ∈ χfree and a control v ∈ V, Assume that there

exists i ∈ R and t ≥ 0 such that φi(t, x, fG) < φi(t, x,v). We have to prove that

φ(R+, x,v) ∩ χobs
G 6= ∅. Consider I := {t ≥ 0 : ∃i ∈ R : φi(t, x, fG) < φi(t, x,v)}.

By assumption, I 6= ∅, then I is a lower-bounded non-empty subset of R, so that

t0 = inf I exists. Let k0 be the unique k ∈ N such that t0 ∈ [k, k+ 1). By definition

of t0 and as the velocity control is piece-wise constant, we have:

∀j ∈ R, φj(k0, x, fG) ≥ φj(k0, x,v) (4.17)

and there exists i ∈ R such that:

φi(k0 + 1, x, fG) < φi(k0 + 1, x,v) (4.18)
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As Vi = {0, vi} (binary velocity control), Equations (4.18) and (4.17) imply that:

φi(k0, x, fG) = φi(k0, x,v) (4.19)

vi(k) = vi > fGi (x0) = 0 (4.20)

where x0 := φ(k0, x, fG). As fGi (x0) = 0, by construction of the control law fG,

there is necessarily an edge (j, i) in the graph G satisfying:(
x0 + t

(
viei + fGj (x0)ej

))
∈ χobs

j�i (4.21)

for some t ∈ [0, 1]. Assume additionally that i is chosen to be a maximal element

of the (acyclic) sub-graph of G containing only vertices satisfying Equation (4.18).

Then, as (j, i) ∈ E(G), j does not satisfy Equation (4.18) and we have:

φj(k0 + t, x, fG) ≥ φj(k0 + t, x,v) (4.22)

Combining Equations (4.19) and (4.22), we obtain:

x0
i + tvi = φi(k0, x,v) + tvi = φi(k0 + t, x,v) (4.23)

x0
j + tfGj (x0) = φj(k0 + t, x, fG) ≥ φj(k0 + t, x,v) (4.24)

By Property 2.2.1, as Equations (4.23) and (4.24) are satisfied, Equation (4.21)

implies that:

φ(k0 + t, x,v) ∈ χobs
j�i ⊂ χobs

G (4.25)

In conclusion,

φ(R+, x,v) ∩ χobs
G 6= ∅ (4.26)

The above theorem is illustrated in Figure 4.4. It is clear that if at some point

x1

χobs
1>2

x1

χobs
1>3

t = 0
t = 1

t = 2 t = 3

t = 0

t = 1
t = 2

t = 3

x3

x2

χobs
2>3

x3

t = 0

t = 1
t = 2

t = 3

x2

collision
collision

Figure 4.4: Illustration of the optimality of the control law for a three-robot system.
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of time one robot tries to go faster than prescribed by the control law, a collision

would occur. For example, in the left drawing, one can see that if robot 3 tries to

move forward at time t = 0 instead of stopping as prescribed by the control law, a

collision occurs (see the orange segment).

4.2.3 Liveness

A key property in motion planning is liveness, i.e., the guarantee that every robot

eventually reaches its goal. In the particular case of the problem studied here, every

robot is expected to exit the obstacle region. Hence, liveness is guaranteed if every

robot i ∈ R eventually reaches the region χgoal := xobs + Rn+.

Theorem 4.2.4 (Liveness). Given an acyclic priority graph G and a configu-

ration x0 ∈ χfree
G , there exists T > 0 such that:

φ(T, x0, fG) ∈ χgoal (4.27)

The idea of the proof is that under acyclic priorities there is always at least

one non exited robot able to move forward at maximum velocity until it exits the

intersection.

Proof. Take an acyclic priority graph G. Consider the trajectory of the robots

under control law fG. G being acyclic, there exists an extremal vertex i1 ∈ R such

that for all j ∈ R, (j, i1) /∈ E(G). As a result, under the control law fG, robot i1
will always travel at maximal velocity and it will exit the intersection (it will reach

position xobs
i ) in finite time T1.

Now, assume that at time Tm, robots i1 · · · im have exited the intersection and

m < n (there remain some robots). G being acyclic, there exists an extremal

element for the remaining robots denoted im+1 ∈ R \ {i1 · · · im} such that for all

j ∈ R \ {i1 · · · im}, (j, im+1) /∈ E(G). Collisions occurring only with non exited

robots, for t ≥ Tm j will always be at maximum velocity and it will exit the

intersection in finite time at instant Tm+1 ≥ Tm.

Iterating this process yields a sequence (T1 · · ·Tn) and all robots have exited the

intersection at time T := Tn.
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In the present chapter, the acceleration of the robots is assumed to be controlled,

and a control law is proposed aiming at coordinating multiple robots with assigned

priorities under second-order kinodynamic constraints. The method is inspired by

References [28, 25, 71, 136, 55] dealing with the coordination of a small number of

vehicles without explicit notion of priorities. Preliminaries of the presented results

are presented in our conference paper [50], and a more accomplished version in our

article [49].

Sketch of the chapter Similarly to the previous chapter, the first section exposes

the second-order dynamics model and shows that the resulting system is a monotone

control system. The second section constructs a priority preserving control law.

Liveness is provably guaranteed and a robustness property is provided stating that

a robot may brake at any moment with neither colliding, nor violating priorities.

5.1 A monotone control system

Each robot i is modeled as a second-order control system with state si = (xi, vi) ∈
Si := R× [0, vi], whose evolution is described by the differential equation:

ẋi(t) = vi(t) (5.1)

v̇i(t) = ui(t) δ(ui(t), vi(t)) (5.2)

where ui : R+ → Ui is the control of robot i and vi denotes the non-negative speed

limit for robot i. We let Ui := [ui, ui] be the set of feasible control values. ui < 0
represents the maximum brake control value and ui > 0 represents the maximum

throttle control value. δ is a binary function merely ensuring that vi ∈ [0, vi] at



Chapter 5. Priority preserving control under kinodynamic constraints

all times, that is, δ(ui(t), vi(t)) = 1 except for vi(t) = 0 and ui(t) < 0, and for

vi(t) = vi and ui(t) > 0, where it vanishes.

The control is assumed to be updated in discrete time every ∆t > 0:

∀k ∈ N,∀t ∈ [k∆t, (k + 1)∆t),ui(t) ≡ ui(k∆t) (5.3)

The time interval [k∆t, (k + 1)∆t) will be referred to as (time) slot k. For the

sake of simplicity we let ∆t := 1 in the sequel. We let Ui denote the set of controls

ui : R+ → Ui piecewise constant on intervals [k, k+1), k ∈ N. We let t 7→ φi(t, si,ui)
denote the flow of the system starting at initial condition si ∈ Si with control

ui ∈ Ui. We also define the vectorial state s := (si)i∈R ∈ S, the vectorial control

u := (ui)i∈R ∈ U :=
∏
i∈RUi, and the vectorial flow: φ(t, s,u) := (φi(t, si,ui))i∈R.

We let u := (ui)i∈R, u := (ui)i∈R and we define the constant controls u(t) := u and

u(t) := u.

We define projection operators as follows: given a state s = (x, v) = (si)i∈R =
((xi, vi))i∈R, we let πx(s) := x, πx,i(s) := πx,i(si) := xi, πv(s) := v, and πv,i(s) :=
πv,i(si) := vi. We also define projected flows as follows: φx = πx ◦φ, φx,i = πx,i ◦φ,

φv = πv◦φ and φv,i = πv,i◦φ. Figure 5.1 depicts the projected flow t 7→ φx,i(t, si,ui)
for a particular control ui.

t

Φx,i(t,si,ui)

Φx,i(t,si,ui)

xi

0 2 4 6

Φx,i(t,si,ui)
t

ui

0 2 4 6

ui

ui

Figure 5.1: An example of piecewise constant control ui (left) and the corresponding

projected flow t 7→ φx,i(t, si,ui) starting from the initial configuration si (right).

We introduce partial orders as follows:

∀u1
i ,u2

i ∈ Ui,u1
i � u2

i if ∀t ≥ 0,u1
i (t) ≤ u2

i (t) (5.4)

∀s1
i = (x1

i , v
1
i ), s2

i = (x2
i , v

2
i ) ∈ Si, s1

i � s2
i if x1

i ≤ x2
i and v1

i ≤ v2
i (5.5)

∀φ1, φ2 : R+ → S, φ1 � φ2 if ∀t ≥ 0, φ1(t) � φ2(t) (5.6)

The control system (5.1)-(5.2) is a monotone control system [9] with regards to the

relative orders defined above as easily seen in Figure 5.1 (in this example, we have

ui � ui � ui). More precisely, the following key property holds:
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Property 5.1.1 (Order preservation). The flow t 7→ φi(t, si,ui) is order-

preserving with regards to si and ui.

Note that in our open loop model, control ui only acts on robot i, that is, u is

a collection of independent controls: it does not achieve any kind of coordination

between the robots. The control law introduced in the sequel is precisely aiming at

coordinating the robots to avoid collisions and respect priorities.

5.2 The proposed decentralized control law

In the absence of inertia as in Chapter 4, robots can stop instantly to respect

priorities. With second-order dynamics, robots cannot stop instantly anymore and

need to anticipate, taking into account their brake distance, to effectively respect

priorities. The idea proposed here is to constrain the multi robot system to remain

in so-called brake safe states where robots can always safely brake without colliding.

Define the set of brake safe states as follows:

BG := {s ∈ S : φx (R+, s,u) ⊂ χfree
G } ⊂ S (5.7)

According to the above definition, a state s ∈ S is brake safe if, starting at initial

condition s under maximum brake control, the system remains in χfree
G (see Fig-

ure 5.2). In particular, a state (x, 0) with x ∈ χfree
G is brake safe, so BG is not empty

provided χfree
G is not empty. Figure 5.2 illustrates brake safety in the coordination

space and Figure 5.3 attempts to represent the concept in the real space. Brake

safety is more conservative than remaining in the escape set proposed in [28], which

includes all states from which there exists at least one control (not necessarily u)

avoiding future collisions. It is also more conservative than not entering an in-

evitable collision state as defined in [41, 20] where neither the geometric path in R2
nor the control to avoid collisions are fixed. The idea behind this quite conservative

approach is twofold:

(a) designing a decentralized control law: the output of the control law proposed

in the following can be computed independently on each robot. It is much

different from approaches where collision-free trajectories are computed, either

in a centralized manner (see, e.g., [25] where decentralization is considered as

a possible extension), or with some agreement with message-passing through

communication links (see, e.g., [13]).

(b) demonstrating robustness regarding unexpected deceleration of some robots:

we believe that this is a highly valuable property as many unpredictable events

requiring a robot to brake may happen in real applications.

Importantly, note that checking whether a state s ∈ S is brake safe consists in

computing a finite time single flow t 7→ φ(t, s, u) and checking for collisions with
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xi

xj

χobs
i>j

Φx(t,s
1,u)

Φx(t,s
2,u)

collision

Figure 5.2: Illustration of brake safety in the coordination space for a two-robot

scenario with the assigned priority (i, j) ∈ E(G). The flow starting from s1 (resp.

s2) under control u is constructed. s1 is not brake safe as this flow collides χobs
i�j.

s2 is brake safe as the flow is collision-free with regards to χobs
i�j.

1

2
2

1

Brake safe state Non brake safe state

Figure 5.3: Illustration of brake safety in the real space for a two-robot scenario.

Robots with lower opacity are used to represent the flow under maximum brake

command. In the left drawing, the two robots stop without colliding when applying

maximum brake command: they are in a brake safe state. In the right drawing, a

collision occurs when the two robots brake maximally: they are not in a brake safe

state.
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respect to each completed obstacle region χobs
i�j for all (i, j) ∈ E(G), yielding a

quadratric complexity.

We propose to build a control law gG : S → U such that starting from an initial

brake safe state in BG, the flow of the system controlled by the control law gG is

ensured to remain in BG (thus being collision-free and respecting priorities G). In

other words, using the terminology of [68], BG shall be positively invariant for the

system under control law gG.

The rationale for our control law is as follows. Consider a robot i and a robot

j that has priority over i. Given an initial configuration of the two robots, the

worst-case scenario is when j brakes whereas i accelerates in the next time slot. If

the trajectory of the system in the next time slot under this worst-case scenario is

collision-free and if the reached state is brake safe, robot i may accelerate in any

case. Otherwise, it is required to brake. This is formalized below.

Let uimpulse
i ∈ Ui denote the impulse control for robot i defined by (see Fig-

ure 5.4):

uimpulse
i (k) :=

ui if k = 0
ui if k ≥ 1

(5.8)

Now let ũi denote the worst-case vectorial control with regards to i defined com-

t

ui
impulse = ui 

ui

ui

~i

t

uj = uj 

uj

uj

~i

Figure 5.4: The control ũi used in the formulation of the control law. For j 6= ß
(right drawing), ũij is simply the maximum brake command uj. For j = i (left

drawing), ũii is the impulse control uimpulse
i .

ponentwise by (see Figure 5.4):

ũij :=

uimpulse
i if j = i

uj if j 6= i
(5.9)

The control law can then be formulated synthetically:

gGi (s) :=

ui if ∃(j, i) ∈ E(G),∃t ≥ 0 s.t. φx(t, s, ũi) ∈ χobs
j�i

ui else.
(5.10)
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x2

x1

χobs
1>2

x3

x2

χobs
2>3

x1

x3

χobs
1>3

Figure 5.5: Look of the trajectory for a three-robot system with acyclic assigned

priorities 1 � 2, 2 � 3 and 1 � 3 under control law gG.

This simply means that robot i always keeps a safe distance so that if a higher-

priority robot j suddenly brakes, robot i may apply the maximum brake command

until possibly stop without violating the priority. To this purpose, robot i looks at

the state that would be reached if it accelerates while the higher-priority robot j

brakes. If the simulated reached state is brake safe, i may accelerate; otherwise, it

must brake (see the two cases in Figures 5.6 and 5.6). The look of the trajectory

under control law gG is depicted in Figure 5.5. Note that, as for brake safety

checking, computing the output of the control law is of quadratic complexity for

the same reasons: it requires to compute a finite time single flow and to check for

collisions. Note also that each component gGi (s) can be computed independently

for each i ∈ R, which means that the proposed control law is decentralized.

5.2.1 Priority preservation

Now, we need to introduce the following notation. Given a feedback control law

g : S → U , with a slight abuse of notation we let t 7→ φ(t, s, g) denote the vectorial

flow of the system starting at initial condition s ∈ S and controlled by u ∈ U
satisfying:

∀k ∈ N,u(k) ≡ g(φ(k, s,u)) (5.11)

First of all, we prove the key property of our control law that is the safety guarantee.

More precisely, starting from a brake safe state in BG, the system under control

law gG is ensured to remain in BG, i.e., priorities G are preserved and the system

is always in a brake safe state. Following the terminology of [68], BG is positively

invariant under control law gG as stated in the following theorem:
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2

1

2

1If robot 2 accelerates
and

robot 1 brakes

t t+1

Not brake safe in 
the worst-case scenario:

robot 2 must brake at time t

Figure 5.6: In this setting where robot 1 is assumed to have priority, the worst-case

scenario under which robot 2 accelerates and robot 1 brakes leads to a new state

which is not brake safe. In this case, the control law requires robot 2 to brake.

Robots with lower opacity are used to represent the brake trajectory.

If robot 2 accelerates
and

robot 1 brakes

t t+1

Brake safe in 
the worst-case scenario:

robot 2 may accelerate at time t

2

1

2

1

Figure 5.7: In this setting where robot 1 is assumed to have priority, the worst-case

scenario under which robot 2 accelerates and robot 1 brakes leads to a new state

which is brake safe. In this case, the control law allows robot 2 to accelerate. Robots

with lower opacity are used to represent the brake trajectory.
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Theorem 5.2.1 (Priority preservation). Given a priority graph G ∈ G, the set

of brake safe states BG is positively invariant (in discrete time) for the system

under control law gG, i.e.,

∀s ∈ BG,∀k ∈ N, φ(k, s, gG) ∈ BG (5.12)

Moreover, the configuration of the system remains in χfree
G through time, i.e.,

∀s ∈ BG,∀t ≥ 0, φx(t, s, gG) ∈ χfree
G (5.13)

The above theorem asserts that under control law gG, provided the system starts

in a brake safe state, the sequence of future states at the beginning of each time slot

is a sequence of brake safe states (see Equation (5.12)). Moreover, the flow of the

system remains in χfree
G in continuous time (see Equation (5.13)), i.e., no collision

occurs and priorities are preserved. It is a direct consequence of Theorem 5.2.2 and

appears as a limiting case.

5.2.2 Robustness

The control law gGi returns the maximum control value that robot i can safely apply,

but it is in fact always safe to apply a lower control value, including letting all robots

brake as much as possible, i.e., leading to an emergency stop. This property stated

in Theorem 5.2.2 below is very valuable because for applications in intelligent trans-

portation systems, even without considering extreme situations such as emergency

stops, it is very usual that a vehicle needs to brake because of an unpredictable

event such as a pedestrian crossing the road, or a loss of sensing/communication

abilities.

Theorem 5.2.2 (A broad class of priority preserving controls). Given a pri-

ority graph G ∈ G, an initial condition s ∈ BG, and a control u ∈ U that

satisfies:

∀k ∈ N,u(k) ≤ gG(φ(k, s,u)) (5.14)

The set of brake safe states BG is positively invariant (in discrete time), i.e.,

∀k ∈ N, φ(k, s,u) ∈ BG (5.15)

Moreover, the configuration of the system remains in χfree
G through time, i.e.,

∀t ≥ 0, φx(t, s,u) ∈ χfree
G (5.16)

Proof. Take a priority graph G ∈ G, an initial condition s ∈ BG and a control

u ∈ U satisfying Equation 5.14. By induction, it is sufficient to prove that the flow
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is collision-free for t ∈ [0, 1] and the reached state φ(1, s,u) is brake safe. Now, we

prove that the flow of Theorem 5.2.2 does not intersect χobs
G for t ∈ [0, 1]. Take

arbitrary t ∈ [0, 1]: we have to prove that for all (j, i) ∈ E(G), φx(t, s,u) ∈ χfree
j�i.

By construction of gG, for each robot i, there are two cases:

• gGi (s) = ui: in this case,

φi(t, s,u) = φi(t, s,u) (5.17)

and by order-preservation, for all robots j such that (j, i) ∈ E(G) we have:

φj(t, s,u) ≥ φj(t, s,u) (5.18)

Since s is brake safe, φx(t, s,u) ∈ χfree
j�i. Hence, by Property 2.2.1, Equa-

tions (5.17) and (5.18) ensure that φx(t, s,u) ∈ χfree
j�i as well.

• gGi (s) = ui: by construction of the control law, φx(t, s, ũi) ∈ χfree
G . By order-

preservation, using ũii(0) = ui, we obtain:

φi(t, s, ũi) = φi(t, s,u) ≥ φi(t, s,u) (5.19)

For all robots j such that (j, i) ∈ E(G), using ũij(0) = uj , we have:

φj(t, s, ũi) = φj(t, s,u) ≤ φj(t, s,u) (5.20)

Since φx(t, s, ũi) ∈ χfree
G , φx(t, s, ũi) ∈ χfree

j�i, and by Property 2.2.1, Equa-

tions (5.19) and (5.20) ensure that φx(t, s,u) ∈ χfree
j�i as well.

As a final step, we prove that the reached state s1 := φ(1, s,u) is brake safe.

Take arbitrary t ≥ 0: we have to prove that for all (j, i) ∈ E(G), φx(t, s1,u) ∈ χfree
j�i.

As previously, there are two cases:

• gGi (s) = ui: then, s1
i = φi(1, s,u) and we have:

φi(t, s1,u) = φi(1 + t, s,u) (5.21)

Moreover, by order-preservation, for all j such that (j, i) ∈ E(G): s1
j ≥

φj(1, s,u). As a result, by order-preservation:

φj(t, s1,u) ≥ φj(1 + t, s,u) (5.22)

Since s is brake safe, φx(1 + t, s,u) ∈ χfree
j�i. Hence, by Property 2.2.1, Equa-

tions (5.21) and (5.22) ensure that φx(t, s1,u) ∈ χfree
j�i as well.

• gGi (s) = ui: then, by construction of the control law, φx(1 + t, s, ũi) ∈ χfree
G .

Define s̃1 := φ(1, s, ũi). We have ũi(1 + τ) = u for τ ≥ 0. As a result,

φ(1 + t, s, ũi) = φ(t, s̃1,u). Since φx(1 + t, s, ũi) ∈ χfree
G , φx(t, s̃1,u) ∈ χfree

G .

By order-preservation, using ũii(0) = ui, we obtain:

s̃1
i = φi(1, s, ũi) = φi(1, s,u) ≥ φi(1, s,u) = s1

i (5.23)
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For all robots j such that (j, i) ∈ E(G), using ũij(0) = uj , we have:

s̃1
j = φj(1, s, ũi) = φj(1, s,u) ≤ φj(1, s,u) = s1

j (5.24)

Hence, by order-preservation, Equations (5.23) and (5.24) imply:

φi(t, s̃1,u) ≥ φi(t, s1,u) (5.25)

φj(t, s̃1,u) ≤ φj(t, s1,u) (5.26)

Since φx(t, s̃1,u) ∈ χfree
G , φx(t, s̃1,u) ∈ χfree

j�i, and by Property 2.2.1, Equa-

tions (5.25) and (5.26) ensure that φx(t, s1,u) ∈ χfree
j�i as well.

To illustrate the interest of Theorem 5.2.2, given priorities G and an initial

condition s ∈ BG consider the two examples below.

Example 5.2.1 (Individual brake application). Consider a control u ∈ U satisfy-

ing:

∀k ∈ N,ui(k) =

ui if k ∈ K
gGi (φ(k, s,u)) else.

(5.27)

∀j ∈ R, j 6= i,uj(k) = gGj (φ(k, s,u)) (5.28)

i ∈ R is a particular robot and K ⊂ N is a subset of slots. Under the control de-

scribed above, the system is perfectly controlled by the control law, except during

slots K where the particular robot i brakes while other robots are still perfectly

controlled by the control law. Such a scenario may arise, for instance, in case of

a momentary communication/sensing failure for one robot: if the current state is

not available, the control law cannot be applied, and a brake maneuver is per-

formed instead. The condition of Theorem 5.2.2 is clearly respected since for j 6= i,

uj(k) = gGj (φ(k, s,u)) ≤ gGj (φ(k, s,u)), and ui(k) = gGi (φ(k, s,u)) ≤ gGi (φ(k, s,u))
or ui(k) = ui ≤ gGi (φ(k, s,u)). Hence, the flow t 7→ φ(t, s,u) is collision-free and

preserves priorities G. This illustrates that the control law is robust with regards

to an individual brake application of a particular robot for an arbitrary long time,

yielding a deviated but still collision-free flow respecting the assigned priorities.

Example 5.2.2 (Simultaneous brake application). Consider a control u ∈ U sat-

isfying:

∀k ∈ N,u(k) =

u if k ∈ K
gG(φ(k, s,u)) else.

(5.29)

Again, K ⊂ N is a subset of slots. Under the control described above, the system is

perfectly controlled by the control law, except during slots K where all robots brake

simultaneously. It may arise in case of a global failure requiring an emergency brake

to be performed. Again, the condition of Theorem 5.2.2 is clearly respected since
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u(k) = gG(φ(k, s,u)) ≤ gG(φ(k, s,u)) or u(k) = u ≤ gG(φ(k, s,u)). It illustrates

that the control law is robust with regards to a simultaneous brake application of

all robots for an arbitrary long time, yielding again a deviated but still collision-free

flow respecting the assigned priorities.

5.2.3 Liveness

As in the case of velocity control, we aim at guaranteeing liveness, i.e., the guarantee

that every robot i ∈ R eventually reaches the region χgoal := xobs + Rn+.

Theorem 5.2.3 (Liveness). Given an acyclic priority graph G and an initial

brake safe state s ∈ BG, there exists T > 0 such that:

φx(T, s, gG) ∈ χgoal (5.30)

Again, the idea of the proof is that under acyclic priorities, there is always a

non exited robot able to travel at maximum throttle command until it exits the

intersection.

Proof. Take an acyclic priority graph G. Consider the trajectory of the robots

under control law gG. G being acyclic, there exists an extremal vertex i1 ∈ R such

that for all j ∈ R, (j, i1) /∈ E(G). As a result, under the control law gG, robot i1
will always accelerate as much as possible and it will exit the intersection (it will

reach position xobs
i ) in finite time T1.

Now, assume that at time Tm, robots i1 · · · im have exited the intersection and

m < n (there remain some robots). G being acyclic, there exists an extremal

element for the remaining robots denoted im+1 ∈ R \ {i1 · · · im} such that for all

j ∈ R \ {i1 · · · im}, (j, im+1) /∈ E(G). Collisions occurring only with non exited

robots, for t ≥ Tm j will always accelerate and it will exit the intersection in finite

time at instant Tm+1 ≥ Tm.

Iterating this process yields a sequence (T1 · · ·Tn) and all robots have exited the

intersection at time T := Tn.

81





Chapter 6

Robustness with respect

to bounded noise

Contents

6.1 Control model with bounded noise . . . . . . . . . . . . . . . 84

6.2 Evolution of the non-deterministic information state . . . . 85

6.3 The proposed decentralized control law . . . . . . . . . . . . 87

6.3.1 Priority preservation . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.3 Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

In the plan-as-program approach, a low-level controller is assumed to be able to

follow the planned trajectory. Uncertainty is taken into account at the control phase.

This is known as the trajectory tracking problem. Many trajectory tracking systems

have been proposed for different robot dynamics models [63, 80, 92, 122, 141].

In [131], a linearisation of the robot dynamics model around the tracked trajectory

enables to obtain a linear-quadratic regulator [129], and under Gaussian models of

uncertainty, the a-priori distribution of the trajectory around the tracked trajectory

can be computed. It makes possible to compare several possible motion planning

strategies in terms of collision probability, and to select one of them based on some

criteria/cost function. However, even when a-priori knowledge on uncertainty is

used as in [131] to plan the trajectory, the trajectory tracking approach is still

quite decoupled as the reference trajectory remains unchanged as new information

comes in during the execution of the plan. It can result in undesirable behaviors

particularly in case of large deviation from the reference trajectory.

In priority-based coordination, there is no reference trajectory to track. There

are assigned priorities to preserve which is ensured by a control law configured by

the assigned priorities (see previous chapters of the present part). In this setting,

information on uncertainty can be used as an additional resource to take into ac-

count when acting, i.e., as an additional input for the control law. In [75, 77], the

information space approach is proposed. The information state at time t contains

all the information history up to date t. Under probabilistic uncertainty, the cur-

rent information state can be considered as the distribution of the current state of

the system conditionally to current history. Under non deterministic uncertainty,

the current information state is the set of all possible ”true” current states of the

robot: one can see the non-deterministic information state as a ”bubble” of possible
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current ”true” states. In this approach, the action of robots is a function of the

current information state: the control law takes into account the uncertainty on the

estimated current state to decide action. The approach has since become standard

(see, e.g., [106, 45]). This chapter espouses the information space approach.

Priority preserving control under bounded noise in the coordination space is

considered. As in Chapter 5, priorities guide the action of robots by configuring the

control law. However, in this chapter, the control law does not take the current state

of the robot as input as it is not known. We take a model of bounded uncertainty

which enables to apply the non-deterministic information space approach [75, 77].

The control law takes as input the non-deterministic information state of the robots,

i.e., the set of all possible current positions and velocities of robots along their

paths. Uncertainty is only considered from the coordination space point of view.

Uncertainty on the path following assumption (lateral control) and more generally

realistic models of uncertainty based on real sensors/actuators models are beyond

the ambition of the present thesis (it is mentioned as a perspective in the concluding

part). The present chapter only aims at providing elements demonstrating the

robustness abilities of the proposed priority preserving approach in the presence of

bounded noise.

Sketch of the chapter Section 6.1 exposes the second-order dynamics model

with bounded noise. Section 6.2 defines the so-called non-deterministic information

state for our particular multi robot system and provides the equations describing

its evolution through time. The last section of the chapter builds a priority pre-

serving control law taking into account uncertainty information by considering the

worst-case scenario. It is guaranteed that for all possible errors/perturbations in

sensing/control, no collision occurs, priorities are respected and all robots eventually

go through the intersection. Additionally, the brake safety property of Chapter 5

stating that robots may safely brake at any point of time without violating priorities

still holds.

6.1 Control model with bounded noise

We slightly modify the model of Chapter 5 to account for bounded control noise.

Each robot i is modeled as a second-order control system with state si = (xi, vi) ∈
Si := R× [0, vi], whose evolution is described by the differential equation:

ẋi(t) = vi(t) + 1vi(t)=vi
dvi (t) (6.1)

v̇i(t) = (ui(t) + dui (t)) δ(ui(t) + dui (t), vi(t)) (6.2)

with the same notations as in Chapter 5 and with 1C returning 1 if condition

C holds, 0 else. Basically, dv models the uncertainty on maintaining maximum

velocity and du models the uncertainty on the brake command. d = (dv,du) is the

overall exogenous control uncertainty signal. We assume that control uncertainty

is bounded and we let D :=
∏
i∈RDi with Di := [di, di] and di ∈ R2

− and di ∈ R2
+.

84



6.2. Evolution of the non-deterministic information state

We let Di denote the set of uncertainty controls di taking values in Di and D :=∏
i∈RDi. We let t 7→ φi(t, si,ui,di) denote the flow of the system starting at initial

condition si ∈ Si with control ui ∈ Ui and uncertainty control di. As in Chapter 5,

projected flows are defined as follows: φx := πx ◦ φ and φv := πv ◦ φ. We introduce

a partial order for uncertainty signals as follows:

∀d1
i ,d2

i ∈ Di,d1
i � d2

i if ∀t ≥ 0,d1
i (t) ≤ d2

i (t) (6.3)

Property 6.1.1 (Order preservation). The flow t 7→ φi(t, si,ui,di) is order-

preserving with regards to si, ui and di.

Finally, we make the following assumptions for all i ∈ R:

dvi + vi > 0 (6.4)

ui + dui > 0 (6.5)

ui + d
u
i < 0 (6.6)

Basically, it means that:

• even with uncertainty on maintaining maximum velocity, the velocity is always

positive;

• even with uncertainty on control, when a robot applies maximum throttle

command, it will effectively accelerate;

• and when a robot applies maximum brake command, it will effectively brake.

6.2 Evolution of the non-deterministic information state

We let 2A denote the power set of any set A. We assume that we have observations

at the beginning of every time slot. We model observations as a signal y : R∗+ → 2S
satisfying y(t) = S if t /∈ N, and y(k) is a parallelepiped:

∀k ∈ N∗+,y(k) =
∏
i∈R

yi(k) =
∏
i∈R

yxi (k)× yvi (k) (6.7)

yxi (k) denotes the observation on the position of robot i at time slot k and yvi (k) the

observation on the velocity of robot i at time slot k. An observation y(k) provides

a set of possible (true) states given the sensors information. y(t) = S if t /∈ N
means that there is no observation data at time t /∈ N. We let Yi denote the set of

observation signals yi satisfying the above assumptions and Y :=
∏
i∈RYi.

We remind that the non-deterministic information state at time t provides the

set of possible (true) states at time t: if the current non-deterministic information

state is ŝ ∈ 2S , the current (true) state s ∈ S satisfies s ∈ ŝ. The evolution of the

non-deterministic information state accounts for both the uncertainty on control
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and on sensing. Given k ∈ N, for t ∈ (k, k+ 1), the uncertainty on control (through

d) increases the size of possible states as time goes by. At time k + 1, a new

observation is available, and the new state of the system necessarily belongs to the

range given by the observation.

The above statements lead to the non-deterministic information state flow t 7→
φ̂(t, ŝ,u,y) associated to an initial condition ŝ, a control u and an observation signal

y ∈ Y defined as follows.:

φ̂(0, ŝ,u,y) := ŝ (6.8)

∀k ∈ N, ∀t ∈ (0, 1), φ̂(k+ t, ŝ,u,y) :=
{
φ(t, s,u,d) : d ∈ D, s ∈ φ̂(k, ŝ,u,y)

}
(6.9)

∀k ∈ N, φ̂(k+1, ŝ,u,y) :=
{
φ(1, s,u,d) : d ∈ D, s ∈ φ̂(k, ŝ,u,y)

}
∩y(k+1) (6.10)

The evolution of the non-deterministic information state flow is illustrated in Fig-

ure 6.1. By order-preservation, as D and y(k) are parallelepipeds, and as the in-

tersection of two parallelepipeds is a parallelepiped, it is clear that starting from

an initially parallelepipedic non-deterministic information state ŝ, φ̂(t, ŝ,u,y) is a

parallelepiped at any point of time. Note that it makes its computation easier as

only two extremal points need to be computed. As for deterministic flows, projected

flows are defined as follows: φ̂x := πx ◦ φ̂ and φ̂v := πv ◦ φ̂.

ŝ

{Φ(1,s,u,d), s∈s, d∈D}^

y(1)

s1:=Φ(1,s,u,y)^^^

{Φ(1,s,u,d), s∈s1, d∈D}^

y(2)

s2:=Φ(1,s1,u,y)^^^

t = 0 t = 1 t = 2

Figure 6.1: Evolution of the non-deterministic information state. For t ∈ (0, 1),
the ”size” of the non-deterministic information state grows until a new observation

is available at t = 1. The intersection with y(1) at t = 1 enables to take into

account the new observation and reduces the ”size” of the updated non-deterministic

information state ŝ1.

We let S denote the constant observation signal y(t) ≡ S, i.e., there is no

observation data for all t ≥ 0. We define the set of brake safe non-deterministic

states B̂G as follows:

B̂G :=
{
ŝ ∈ 2χ : ∀t ≥ 0, φ̂x(t, ŝ,u,S) ∈ 2χfree

G

}
(6.11)

=
{
ŝ ∈ 2χ : ∀s ∈ ŝ, ∀d ∈ D, ∀t ≥ 0, φx(t, s,u,d) ∈ χfree

G

}
(6.12)

86



6.3. The proposed decentralized control law

A non-deterministic state ŝ ∈ 2χ is brake safe if starting from any true state

s ∈ ŝ, the flow under maximum brake command u is collision-free for all possible

control uncertainty signals d ∈ D.

6.3 The proposed decentralized control law

We are going to build a control law for the non-deterministic system. The control

law maps the current information state of the system to the control to apply, i.e., it

is a map ĝ : 2S → U . We let t 7→ φ̂(t, ŝ, ĝ,y) denote the flow t 7→ φ̂(t, ŝ,u,y) where

u satisfies:

∀k ∈ N,u(k) ≡ ĝ(φ̂(k, ŝ,u,y)) (6.13)

For all i ∈ R, we define the operator s̃upi and the uncertainty signal d̃i as

follows:

∀j ∈ R, s̃upij(ŝ) :=

sup ŝi if j = i

inf ŝj if j 6= i
(6.14)

∀j ∈ R, d̃ij :=

di if j = i

dj if j 6= i
(6.15)

Basically, s̃upi(ŝ) represents the worst-case possible true state of the system for

collisions with regards to χobs
j�i. Similarly, d̃ij is the worst-case possible disturbance

with regards to χobs
j�i. The rationale of the proposed control law is to apply the

same control law as without uncertainty but considering the worst-case scenario

(both worst-case disturbance and worst-case true state). The control law can be

formulated synthetically as follows:

ĝGi (ŝ) :=

ui if ∃(j, i) ∈ E(G),∃t ≥ 0 s.t. φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χobs
j�i

ui else.
(6.16)

6.3.1 Priority preservation

As previously, we first focus on the most important property: safety, i.e., priority

preservation.
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Chapter 6. Robustness with respect to bounded noise

Theorem 6.3.1 (Priority preservation). Given a priority graph G ∈ G, the set

of brake safe non-deterministic information states B̂G is positively invariant

(in discrete time) for the non-deterministic system under control law ĝG, i.e.,

∀y ∈ Y,∀ŝ ∈ B̂G, ∀k ∈ N, φ̂(k, ŝ, ĝG,y) ∈ B̂G (6.17)

Moreover, the non-deterministic system remains in 2χfree
G through time, i.e.,

∀y ∈ Y,∀ŝ ∈ B̂G, ∀t ≥ 0, φ̂x(t, ŝ, ĝG,y) ∈ 2χfree
G (6.18)

As in Chapter 5, the above theorem is a limit case of Theorem 6.3.2 proved in

the sequel.

x2

x1

χobs
1>2

x3

x2

χobs
2>3

x1

x3

χobs
1>3

Figure 6.2: Look of the trajectory for a three-robot system with acyclic assigned

priorities 1 � 2, 2 � 3 and 1 � 3 under control law gG. A band is used to represent

the set of all possible real configurations through time.

6.3.2 Robustness

As in Chapter 5, the control law ĝGi returns the maximum control value that robot

i can safely apply, but it is in fact always safe to apply a lower control value. Hence,

we obtain the same robustness property that is highly valuable for applications in

autonomous cars.
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6.3. The proposed decentralized control law

Theorem 6.3.2 (A broad class of priority preserving controls). Given a pri-

ority graph G ∈ G, an initial condition ŝ ∈ B̂G, an observation signal y ∈ Y
and a control u ∈ U that satisfies:

∀k ∈ N,u(k) ≤ ĝG(φ̂(k, ŝ,u,y)) (6.19)

The set of non-deterministic brake safe states B̂G is positively invariant (in

discrete time), i.e.,

∀k ∈ N, φ̂(k, ŝ,u,y) ∈ B̂G (6.20)

Moreover, the configuration of the non-deterministic system remains in 2χfree
G

through time, i.e.,

∀t ≥ 0, φ̂x(t, ŝ,u,y) ∈ 2χfree
G (6.21)

Proof. Take a priority graph G ∈ G, an initial condition ŝ ∈ B̂G and a control

u ∈ U satisfying Equation (6.19). By induction, it is sufficient to prove that the

flow remains in 2χfree
G for t ∈ [0, 1] and the reached state φ̂(1, ŝ,u,y) ∈ B̂G. First,

we prove that the flow of Theorem 6.3.2 does not intersect 2χobs
G for t ∈ [0, 1]. Take

arbitrary t ∈ [0, 1] and (j, i) ∈ E(G): we have to prove that φ̂x(t, ŝ,u,y) ∈ 2χ
free
j�i .

By construction of φ̂, it is equivalent to prove that for all d ∈ D and s ∈ ŝ,

φx(t, s,u,d) ∈ χfree
j�i. By construction of ĝG, there are two cases:

• ĝGi (ŝ) = ui: in this case,

φi(t, s,u,d) = φi(t, s,u,d) (6.22)

and by order-preservation:

φj(t, s,u,d) ≥ φj(t, s,u,d) (6.23)

Since ŝ ∈ B̂G, φx(t, s,u,d) ∈ χfree
j�i. Hence, by Property 2.2.1, Equations (6.22)

and (6.23) ensure that φx(t, s,u,d) ∈ χfree
j�i as well.

• gGi (s) = ui: by construction of the control law, φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χfree
G .

By order-preservation, using ũii(0) = ui, d̃ii = di and s̃upii(ŝ) = sup ŝi, we

obtain:

φi(t, s̃upi(ŝ), ũi, d̃i) = φi(t, sup ŝ,u,d) ≥ φi(t, s,u,d) (6.24)

Again, by order-preservation, using ũij(0) = uj , d̃ij = dj and s̃upij(ŝ) = inf ŝj ,
we have:

φj(t, s̃upi(ŝ), ũi, d̃i) = φj(t, inf ŝ,u,d) ≤ φj(t, s,u,d) (6.25)

Since φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χfree
j�i, by Property 2.2.1, Equations (6.24) and (6.25)

ensure that φx(t, s,u,d) ∈ χfree
j�i.
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As a final step, we prove that the reached state φ̂(1, ŝ,u,y) is brake safe. It is

sufficient to prove that:

ŝ1 := {φ(1, s,u,d) : d ∈ D, s ∈ ŝ} ∈ B̂G (6.26)

φ̂(1, ŝ,u,y) is indeed a subset of ŝ1 by construction of φ̂ (see Equation (6.10)). Take

arbitrary t ≥ 0 and (j, i) ∈ E(G): we have to prove that for all s1 ∈ ŝ1 and d1 ∈ D,

we have φx(t, s1,u,d1) ∈ χfree
j�i.

Take arbitrary s1 ∈ ŝ1 and d1 ∈ D. We have s1 = φ(1, s,u,d) with d ∈ D and

s ∈ ŝ. Consider d2 ∈ D and u2 ∈ U satisfying d2(0) = d(0), u2(0) = u(0) and

for all k ∈ N, d2(k + 1) = d1(k) and u2(k + 1) = u. By construction, we have:

φ(t, s1,u,d1) = φ(1 + t, s,u2,d2).
As a result, we have to prove that φx(1 + t, s,u2,d2) ∈ χfree

j�i. As previously,

there are two cases:

• gGi (s) = ui: then, we have u2
i = ui, so that:

φi(1 + t, s,u2,d2) = φi(1 + t, s,u,d2) (6.27)

Moreover, by order-preservation, we have:

φj(1 + t, s,u2,d2) ≥ φj(1 + t, s,u,d2) (6.28)

Since s is brake safe, φx(1 + t, s,u,d2) ∈ χfree
j�i. Hence, by Property 2.2.1,

Equations (6.27) and (6.28) ensure that φx(1 + t, s,u2,d2) ∈ χfree
j�i as well.

• gGi (s) = ui: then by construction of the control law, φx(1+ t, s̃upi(ŝ), ũi, d̃i) ∈
χfree
G . Using u2

i ≤ ũii, s̃upii(ŝ) = sup ŝi and d̃ii = di, by order-preservation, we

have:

φi(1 + t, s̃upi(ŝ), ũi, d̃i) = φi(1 + t, sup ŝ, ũi,d) ≥ φi(1 + t, s,u2,d2) (6.29)

Moreover, by order preservation, using ũij = uj , s̃upij(ŝ) = inf ŝj and d̃ij = dj ,
we have:

φj(1 + t, s̃upi(ŝ), ũi, d̃i) = φj(1 + t, inf ŝ,u,d) ≤ φj(1 + t, s,u2,d2) (6.30)

Since φx(1 + t, s̃upi(ŝ), ũi, d̃i) ∈ χfree
j�i, by Property 2.2.1, Equations (6.29)

and (6.30) ensure that φx(1 + t, s,u2,d2) ∈ χfree
j�i as well.

6.3.3 Liveness

Despite uncertainty, the proposed control still ensures all robots will eventually go

through the intersection. As in previous chapters, robots are expected to eventually

reach the region χgoal := xobs + Rn+.
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Theorem 6.3.3 (Liveness). Given an acyclic priority graph G, an initial brake

safe non-deterministic state ŝ ∈ B̂G and an observation signal y ∈ Y, there

exists T > 0 such that:

φ̂x(T, ŝ, ĝG,y) ∈ 2χgoal
(6.31)

A proof of the above theorem is provided in Appendix B.3 (under weaker as-

sumptions).
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Conclusions

Part I suggested to use priorities as a plan to guide robots. In traditional planning,

the plan is a reference trajectory to track and the trajectory tracking problem

is a well-established problem with many existing solutions consisting in devising a

control law configured by the reference trajectory in charge of tracking. However, in

priority-based coordination, there is no reference trajectory. The plan is the priority

graph and there is no standard tool to control robots under assigned priorities.

Devising such tools has been the topic of the present part. The proposed control

laws are configured by the assigned priorities, and guarantee priority preservation

and liveness (all robots eventually go through the intersection). First of all, as

priorities are assigned, the combinatorial complexity of multi robot control (see [25])

is avoided, and computing the output of the control laws proposed in this part is of

polynomial complexity. Moreover, in contrast with a trajectory tracking approach,

the priority preservation approach retains some freedom of action at the control

phase, as there is a large class of trajectories respecting the assigned priorities

(instead of only one reference trajectory). In particular, the proposed control law

ensures that robots – only one, several, or even all – may brake at any time without

violating priorities. In Chapter 4, we have proposed priority preserving control for

robots controlled in velocity. The trajectory resulting from the application of the

proposed control law is optimal for the assigned priorities, recovering the existence of

a left-greedy optimal trajectory in a given homotopy class noticed in [47]. Chapter 5

demonstrates that the presence of inertia can be handled using the notion of brake

safety that merely consists in some kind of anticipation. The proposed control law

is decentralized and demonstrates a remarkable robustness regarding unexpected

deceleration of robots. The final chapter of the present part has given some elements

to take into account uncertainty in priority-based coordination. Under bounded

uncertainty, the idea is to consider the worst-case scenario which is well defined when

priorities are assigned. Priority preservation and liveness can still be guaranteed

as in the deterministic case. This chapter demonstrates the ability of the priority-

based approach to handle uncertainty in a reactive manner. For example, if the

current uncertainty on the position of robots is very large, under priority preserving

control, all robots will brake and eventually stop safely, and will not restart until

a sufficiently small uncertainty enables to go safely through the intersection. By

contrast, tracking a reference planned trajectory when the uncertainty on position

is very large would likely result in collisions. Hence, with a plan execution approach,

if the uncertainty becomes very large, the designer should anticipate by providing

an emergency maneuver to execute. Then, a new planning phase should be carried

out before restarting. With priority-based coordination, such change in uncertainty

– even a complete lost of sensing capabilities – can be handled in a reactive manner.
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Introduction

Part I suggested using priorities to guide robots and Part II provided solutions to

control robots under assigned priorities. To this point, many aspects of the design

of a coordination system at intersections have been left behind. Most importantly,

the multi robot coordination system is an open system as robots arrive and exit

the intersection through time. Hence, priorities need to be assigned dynamically.

Moreover, priority assignment and control under assigned priorities need to be ex-

ecuted in parallel. This part has a more engineering flavor, it specifies the system

architecture, how priority assignment and priority preserving control are integrated

and how they interface. The proposed approach is inspired from drivers’ behavior

at signalized intersections. Before entering the intersection, the driver follows the

preceding vehicles without colliding, and as long as the traffic signal does not give

him/her the right of way, the driver does not go through the intersection. Once the

vehicle is given the right of way (green signal), the driver goes through the inter-

section. However, the driver still retains some reactive abilities and will hopefully

not enter the intersection if other vehicles are blocked and/or a pedestrian crosses

the road.

In priority-based coordination, the so-called control area is a region of space

that robots should not enter unless they have been accepted and assigned a priority

with respect to other accepted robots. We adopt a three-layer architecture [44], par-

ticularly adapted to the approach considering plans as a resource to guide action.

The reactive quality of the system is ensured by a behavior-based layer. Robots’

behaviors include ’follow geometric path’, ’move forward’, ’do not enter the con-

trol area’, ’respect priorities’, ’avoid pedestrians’. The entry of the control area is

managed by a central agent, the intersection controller. The intersection controller

assigns priorities, yet it does not assign a precise trajectory for the accepted robots.

It constitutes the deliberative layer of the system, processing time-consuming tasks

reasoning about the future. Finally, robots have a sequencing layer in charge of

activating/deactivating/configuring behaviors. The robustness property of the con-

trol law ensuring robots may safely brake at any point of time is shown to be of

high interest in the proposed architecture. It is indeed possible for, e.g., behav-

ior ’avoid pedestrians’ to require the robot to brake to avoid a detected pedestrian,

without conflicting with behavior ’respect priorities’, as the control law ensures that

it is always priority preserving to brake at any point of time (see Theorem 5.2.2).

Preliminaries of the presented results can be found in our article [49].

Sketch of the part Chapter 7 describes the system architecture and how prior-

ities may be assigned. Chapter 8 provides simulation results demonstrating safety

and robustness of priority-based coordination.
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Sketch of the chapter The first section presents the proposed three-layer archi-

tecture and provides details on how layers interact. The second chapter focuses on

priority assignment: a simple and easily implementable priority assignment policy

is described, and some adaptations in order to guarantee request processing liveness

and queues stability are discussed.

7.1 Three-layer architecture

For its ability to design systems with reactive qualities yet retaining planning capa-

bilities, a three-layer architecture is proposed. As noticed in [44], such an architec-

ture organizes control algorithms according to whether their internal state reflects

the present, the past, or predictions of the future. Figure 7.1 gives a quick overview

of the proposed architecture detailed in the sequel.

7.1.1 The intersection controller

The intersection controller constitutes the deliberative layer of the proposed ar-

chitecture – reasoning on the future – and manages the control area, defined as

a subset of the two-dimensional real space in which the collision area wholly re-

sides. The control area must contain, at least, the subset of the two-dimensional

space corresponding to all possible collisions between robots, excluding only regions

where collision avoidance is reduced to safe car following (see Figure 7.2). For each
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Move forward

Follow geometric path

Do not enter the control area

Respect priorities

Avoid pedestrians

...

Priority assignment

...

Get the right of way

Robot

Intersection controller
Deliberative layer

Sequencing layer

Behavior-based layer

Entry requests

Assigned priorities

activates/deactivates/configures

Figure 7.1: The three-layer architecture of priority-based coordination
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Figure 7.2: The control area.

path, an entry position and an exit position are defined. Let xentry
i denote the entry

position for robot i and xexit
i its exit position. Robot i is in the control area if

xi ∈ [xentry
i , xexit

i ]. To enter the control area, robots send a request to the intersec-

tion controller. The job of the intersection controller is to process requests. Either

the request is rejected, the robot cannot enter the control area and will have to

send a new request; or, the request is accepted and priorities with respect to robots

already accepted in the control area are assigned. This task, referred as priority

assignment is the topic of Section 7.2.

7.1.2 The behavior-based layer

The behavior-based layer ensures the reactive quality of the system and is imple-

mented by designing control laws.

Move forward All robots implement behavior ’move forward’. Using the second-

order dynamics model of Chapter 5, ’move forward’ behavior for robot i consists in

applying maximum throttle command ui. However, this behavior is subsumed [21]

by all other behaviors, e.g., the robot will brake if another behavior like ’respect

priorities’ requires braking.

Do not enter the control area Robots also implement ’do not enter the control

area’ behavior. Each robot i that has not already been accepted in the control area

checks at every time slot whether accelerating (or maintaining maximum velocity)

during the next time slot will inevitably result in an entry into the control area. If

this is the case and if it is not accepted into the control area, robot i must brake. To

formulate this mathematically, the final (and maximal) position reached by robot i
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with initial state si under impulse control is computed as follows:

xstop
i (si) := max φx,i(R+, si,uimpulse

i ) (7.1)

The condition for ’do not enter the control area’ behavior to make robot brake then

simply becomes: xstop
i (si) > xentry

i .

Respect priorities Robots also implement priority preserving control of Part II

(Chapter 5) through ’respect priorities’ behavior. This behavior cannot be active

before priorities are assigned as it needs priorities as input to configure the control

law gG by specifying the priority graph G.

Additional behaviors In addition to the behaviors presented above, in charge of

coordination, robots may implement other behaviors, not directly related to coordi-

nation. First of all, the fixed paths assumption (see Section 2.1, Figure 2.1) requires

robots to implement a ’follow geometric path’ behavior using lateral control. More

interestingly, robots may implement behaviors to react to unexpected events. For

example, for an application in autonomous vehicles, an ’avoid pedestrians’ behavior

is a must. It is not conceivable to let autonomous vehicles go through an intersection

in an urban area, executing an open-loop planned trajectory without implementing

a behavior to detect pedestrians and react accordingly. The benefit of the proposed

behavior-based architecture is that a behavior like ’avoid pedestrians’ can be im-

plemented in a manner that it subsumes all other behaviors. Most of the time,

such reactive safety behaviors will require the robot to brake, and priorities will

be conserved as the control law of Chapter 5 guarantees that it is always priority

preserving to brake at any point of time (see Theorem 5.2.2). Hence, priority-based

coordination can handle a large class of unexpected events – all events requiring

one or more robots to brake – without need to replan, i.e., without need to reassign

priorities.

7.1.3 The sequencer

In a three-layer architecture, the sequencer’s job is to activate/deactivate and/or

configure the behaviors [44] that we just listed above. When should ’do not enter

the control area’ behavior be deactivated in favor of ’respect priorities’ behavior

? Note that the state of the sequencer reflects the past as it is necessary to store

whether the robot is accepted or not into the control area and to store priorities as

well, in order to configure and activate/deactivate behaviors accordingly.

The sequencer communicates with the deliberative layer, i.e., the intersection

controller, by sending queries. The goal of these queries is to ’get the right of

way’. The condition xstop
i (si) > xentry

i − δ is used as the condition to request the

entry of the control area. The margin δ ≥ 0 enables to anticipate the entry of

the control area, so that the intersection controller can possibly accept the robot

into the control area in the remaining time, before ’do not enter the control area’

behavior’s brake condition xstop
i (si) > xentry

i holds. The sequencer communicates
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asynchronously with the intersection controller to ensure a reactive quality. As long

as the intersection controller does not accept the robot, the sequencer keeps ’do not

enter the control area’ behavior active. When the robot is accepted into the control

area, ’do not enter the control area’ behavior is deactivated in favor of ’respect

priorities’. The assigned priorities received by the sequencer in the response of the

intersection controller serve as input of ’respect priorities’ behavior to configure the

control law by specifying the priority graph G.

7.2 Priority assignment

This section focuses on how priorities are assigned, i.e., how the intersection con-

troller processes entry requests.

Priorities as a byproduct of traditional trajectory planning algorithms

First of all, it is key to notice that priorities can be obtained as a byproduct of all

existing trajectory planning algorithms espousing the plan-as-program paradigm.

One can simply assign the priorities induced by the feasible path returned by the

planning algorithm. For certain existing algorithms, e.g., in [7], priorities are even

directly accessible (in [7], they can be retrieved through the binary variables of

the MILP formulation of the problem). Therefore, priority assignment is not the

core of the present thesis and we will not provide complex priority assignment

policies adapting existing algorithms. In this section, a simple priority assignment

policy is proposed resulting in acylic and thus necessarily feasible priorities. Then,

perspectives towards ”liveness” and ”stability” guarantees are presented.

7.2.1 A simple priority assignment policy

The idea of the proposed policy is to let robots spend as little time as possible in

the intersection area, inspired from [35]. Thus a robot is accepted into the control

area only if it can travel with maximum throttle command and with lowest priority.

The second point is key: assigning the newly accepted robot the lowest priority

with regards to robots already accepted into the control area leads to a necessarily

acyclic graph, enforcing liveness (see Theorem 5.2.3). This can be formulated as

follows and implementation aspects are presented in Section 8.1.

First of all, recall the control law of Chapter 5 when robots are controlled in

acceleration:

gGi (s) :=

ui if ∃(j, i) ∈ E(G), ∃t ≥ 0 s.t. φx(t, s, ũi) ∈ χobs
j�i

ui else.
(7.2)

As κj�i is the cross-section of χobs
j�i, using the definition of ũi, the control law can
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be formulated as follows:

gGi (s) :=

ui if ∃(j, i) ∈ E(G), ∃t ≥ 0 : (φx,j(t, sj ,uj), φx,i(t, si,u
impulse
i )) ∈ κj�i

ui else.

(7.3)

Consider a robot i that requests the entry of the control area. To decide to

accept it or not, we can simulate a trajectory that consists in applying control ui
constantly to robot i while robots j 6= i follow the trajectory that they would have

followed in the absence of i, i.e., following control law gG. Let s = (sj)j∈R denote

the current state of robots j ∈ R, let si denote the current state of the requesting

robot i and let ς denote the simulated trajectory defined as follows:

∀t ≥ 0, ςi(t) := φi(t, si,ui) (7.4)

∀j ∈ R, ∀t ≥ 0, ςj(t) := φj(t, s, gG) (7.5)

Then, there are two options:

• if for all k ∈ N and for all j ∈ R satisfying κij 6= ∅, we have:

∀t ≥ 0, (φx,j(t, ςj(k),uj), φx,i(t, ςi(k),uimpulse
i )) /∈ κj�i (7.6)

the request is accepted and we do:

R ← R∪ {i} (7.7)

E(G) ← E(G) ∪ {(j, i) : j ∈ R, κij 6= ∅} (7.8)

• else the request is rejected.

Note that the described algorithm ensures the priority relation to be a partial

order, that is G to be a directed acyclic graph at all times. Each robot is sequentially

accepted into the control area by the intersection controller if it can go through the

intersection at maximum throttle command and after all already accepted robots.

Condition (7.6) ensures that once robot i is accepted and controlled by the control

law gG, if all robots follows gG (no uncertainty, no unexpected event), the control

law will always return ui. This means that, in the absence of uncertainty, the co-

ordination system will result in robots either waiting at the entry of the control

area (possibly stopped at the entry), or accepted into the control area and apply-

ing maximum throttle command, thus going through the intersection at maximum

speed. This is what is observable in the simulations of Subsection 8.2.1. However,

remind that a key motivation for our priority-based approach is precisely to handle

uncertainty. Hence, if some robot does not apply maximum throttle command at

some point for an arbitrary reason, the priority preserving control law will ensure

that priorities are nevertheless respected as demonstrated by the simulations of

Subsection 8.2.2.
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7.2.2 Request processing liveness

The weakness of the policy presented above is quite similar to the one of the First-

Come-First-Serve policy of [35]. As highlighted in [11] for First-Come-First-Serve

reservation policy, and it also holds for the priority assignment policy presented

above, handling requests separately and not taking into account the history of

requests, causes undesired behaviors like a vehicle in an alley waiting indefinitely

at the entry of the intersection.

A solution is presented in [11] to avoid this phenomenon. A batch policy with

locking is proposed, consisting of mapping requests to a real value computed using

a cost function of the form f(wait) := a × waitb where a, b are constants and

wait is the estimated amount of the time the robot has been waiting to enter the

intersection. The ”locking” mechanism is described as follows: when a request r has

an associated cost greater than a threshold, then requests from other robots whose

path intersects the path of the robot of r will not be granted, until the robot of r is

accepted. Interestingly, the proposed policy provably guarantees liveness, i.e., every

robot waiting to enter the intersection can eventually enter. This liveness property

is different from the one proved in Part II which ensures that once robots are

accepted into the intersection, respecting the assigned priorities, they will eventually

go through the intersection. The ”locking” mechanism can be easily adapted to

enhance performance and ensure liveness of the simple priority assignment proposed

in Subsection 7.2.1.

7.2.3 Stability guarantees

In traffic signal control, queue lengths are a standard indicator of a control policy’s

performance. In particular, recently, back-pressure control [127] applied to traffic

signals (see, e.g., [134, 140, 52, 51]) aims at providing stability guarantees of the

control policy. Loosely speaking, stable queues do not grow indefinitely through

time. We believe that this work can be used to endow the priority assignment

policy with stability guarantees.

We do not aim to formalize the proposed approach in the general case as it is

beyond the scope of the present thesis, so the approach is presented for a particular

example. Consider the intersection depicted in Figure 7.3. We let Q11, Q12, Q21,

Q22 denote the queues lengths at the entry of each path. If the intersection was

controlled by a traffic signal, there would be two phases: p1 and p2. Assuming this

intersection is isolated, under standard back-pressure control, phase p1 (resp. p2)

is applied if Q11 +Q12 ≥ Q21 +Q22 (resp. Q11 +Q12 < Q21 +Q22).

Traffic signal control is not efficient at low traffic density because of the phase

duration. A typical situation is a single vehicle waiting at the intersection for the

right of way. The vehicle needs to wait for the end of the current phase before

obtaining the right of way. At high traffic density, there are always queues at the

entry of the intersection, so traffic signal control is particularly efficient as it lets

vehicles move in platoons. Moreover, under back-pressure control, optimal stability

107



Chapter 7. Overall priority-based coordination system

Q11

Q12 Q21

Q22

Phase p1

Phase p2

Figure 7.3: A four-path intersection, with two phases and four queues. Phase p1
empties queues Q11 and Q12 and phase p2 empties queues Q21 and Q22.

can be proved, i.e., the queuing network is stabilized for all arrival rates that can

be stably handled considering all control policies. That is why we propose an

adaptive priority assignment policy that consists in applying back-pressure priority

assignment if robots accumulate at the entry of the intersection (above a certain

threshold), while the basic priority assignment policy presented in Subsection 7.2.1

is applied otherwise. More precisely, a phase duration T and a threshold ∆Qlim ≥
0 are chosen, and periodically, for t = 0, T, 2T · · · , the phase update algorithm

proceeds as follows:

• if (Q11 + Q12) − (Q21 + Q22) ≥ ∆Qlim: phase p1 is applied. It means that

for all the duration of the phase (T ), only the entry requests of robots on

the corresponding paths will be accepted. However, requests still need to be

accepted according to the priority assignment policy presented in Section 7.2.

Typically, when there is a phase switch, the first requests will probably be

rejected as there are still robots of the other phase in the intersection. These

first requests which are rejected can be seen as a kind of yellow time.

• if (Q21 +Q22)− (Q11 +Q12) > ∆Qlim: it is the symmetric case, and phase p2
is applied.

• otherwise, all phases are activated (both p1 and p2), so that the requests of

all robots can be potentially accepted. The priority assignment policy is not

affected by the phase, and is exactly as presented in Subsection 7.2.1.
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Sketch of the chapter The first section provides some details on the imple-

mentation of priority-based coordination in simulations. In particular, collision

checking, robots random generation and the size of the control area are discussed.

Mainly qualitative simulations results are then presented and interpreted.

8.1 Implementation aspects

For the sake of the simplicity, we have implemented our algorithms for circle-shaped

robots along straight paths. This choice eases the computation of the obstacle region

as every κij is the interior of an ellipse whose equation can be easily derived from

the radius of robots and the angle between the two straight geometric paths. All

robots are supposed to be circle-shaped with a common diameter D. Note that the

collision region between each couple of paths can be precomputed once and for all

during the design phase of the intersection controller. The lateral control is not

simulated and all robots are assumed to follow their assigned geometric path.

To check whether a trajectory is collision-free, as all we can do is to compute a

discrete sequence of points, we have used a conservative collision checking algorithm.

Basically, to check whether a given flow (φ(t, s,u))t≥0 is collision-free with regards

to χobs
i�j , we compute the following sequence of points of R2:

xi(k) := φx,i(k, s,u) (8.1)

xj(k) := φx,j(k + 1, s,u) (8.2)

Our collision checking algorithm asserts that the flow (φ(t, s,u))t≥0 is collision-free

with regards to χobs
i�j if and only if the sequence (xi(k), xj(k))k∈N is collision-free

with regards to κi�j . This method is illustrated in Figure 8.1. It is direct that it is
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conservative as some collision-free trajectories are not asserted to be collision-free;

yet the difference vanishes for small enough time slot length.

xi

xj

χobs
i>j

Φx(k,s,u)

Φx(k+1,s,u)x(k)

xi(k)

xj(k)

xi

xj

χobs
i>j

Φx(k,s,u)

Φx(k+1,s,u)x(k)

xi(k)

xj(k)

xi

xj

χobsi>j

Φx(k,s,u)

Φx(k+1,s,u)x(k)

xi(k) xi

xj

χobs
i>j

Φx(k,s,u)

Φx(k+1,s,u)

x(k)

xi(k)

xj(k) xj(k)

Figure 8.1: Method used for collision checking based on a discrete sequence of points.

In the two top drawings, the trajectory for t ∈ [k, k + 1] is collision-free. However,

in the case of the top right drawing the collision checking algorithm will consider

the trajectory as non collision-free. In the two bottom drawings, the trajectory for

t ∈ [k, k + 1] is not collision-free. In the case of the bottom left drawing, both

φx(k, s,u) and φx(k+ 1, s,u) are collision-free. However, x(k) is not collision-free.

This case illustrates that checking whether the endpoints are collision-free is not

sufficient, which justifies the use of x(k).

Robots are generated at the origin of each path randomly at a constant rate.

Basically, at each time slot, for each path, a random value between 0 and 1 according

to a uniform distribution is taken, and if this value exceeds a certain threshold,

a robot is generated on this path. The value of this threshold is precisely the

generation rate at the path. When generated, a robot i is positioned with zero

velocity at the coordinate 0 of the path, or if there is already a robot j at position

xj ≤ D, i is positioned at the coordinate xj −D.
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As noticed in [35], maximizing the velocity of robots in the intersection min-

imizes the time spent within the collision region, yielding a better performance.

Hence, to ensure that robots have a maximum velocity within the collision region,

the entry of the control area is defined to be far enough from the collision region

(in the simulation videos we see that the robots that are not already accepted in

the control area stop way before potential collision configurations).

Finally, the priority assignment policy of Subsection 7.2.1 is simplified based

on heuristic considerations. To decide whether robot i can be accepted or not, we

need to check whether, under maximum throttle command, it can go through the

intersection after all robots already accepted in the control area. To do so, note

first that it is sufficient to check if it is the case for the lastly accepted robot of each

intersecting path. Now, assume that robot j is the lastly accepted robot on path

γj . Intuitively, it is clear that, under maximum throttle command, robot i can go

through the intersection after robot j, if and only if there is a sufficient time offset

between their entries. To this purpose, we compute:

• τi : the number of time slots necessary for robot i, under maximum throttle

command, to reach ”the entry of the collision area between paths γi and γj”,

i.e., to reach position min{xi : x ∈ χobs
ij };

• τj : the number of time slots necessary for robot j, under maximum throttle

command, to reach ”the exit the collision area between paths γi and γj”, i.e.,

to reach position max{xj : x ∈ χobs
ij }.

Our heuristic approach considers that, under maximum throttle command, robot i

can go through the intersection after robot j if and only if τi ≥ τj . It looks quite

natural as it means that robot i should ”enter the collision area between paths

γi and γj” after robot j exits this area. Naturally, due, e.g., to the brake safety

constraint, this is not equivalent to the formulation of Subsection 7.2.1. However, it

is much easier to implement and checking whether the heuristic condition is satisfied

is also much less time consuming. Simulation results of Subsection 8.2.1 confirm

the efficiency of our heuristic approach as robots seem to enter the control area at

the right time, so as to go through the intersection at maximum speed.

8.2 Simulation results

The purpose of the presented simulations is fourfold; they aim to demonstrate:

(a) the ability of priority-based coordination to carry out as complex scheduling as

with plan-as-program approaches;

(b) the robustness enabled by planning priorities instead of precise trajectories,

making possible to handle unexpected events requiring braking without re-

planning, making also possible to deal with bounded, possibly time-varying,

uncertainty;
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(c) and the ability of priority assignment policies to implement back-pressure algo-

rithms guaranteeing queues stability and opening avenues for the control of a

network of autonomous intersections.

8.2.1 Simulations under deterministic control

The experimental intersection is depicted in Figure 8.2. It is composed of eight

straights paths. The maximum velocity of robots is such that a robot at maximum

velocity travels D/2 (one radius) during one slot. All robots share the same kin-

odynamic constraints with u = −u and 20 slots are necessary to go from stop to

full speed (and conversely). Hence, to ensure that robots are at maximum velocity

when they reach the first potential collision configuration, the entry position is fixed

at a distance 6D from the first potential collision configuration. Symmetrically, the

exit position is fixed at a distance 6D after the last potential collision configuration.

As communication aspects are not considered in this simulation setting, there is no

delay for the intersection controller to respond to requests, so robots do not need

to anticipate their entry and we take δ ≡ 0, i.e., robots request the entry of the

control area if xstop
i (si) > xentry

i , that is just in time.

Figure 8.2: The intersection composed of eight straight paths used for simulations.

A video capture of the simulation for an arrival rate of 0.04 robots per time

slot on each path is available here1. One can observe that robots not accepted in

the control area stop at a distance equivalent to 6 robots before the first potential

collision configuration. In this simulation, there is no uncertainty, and the video

capture confirms that in the absence of uncertainty, the presented algorithms result

in robots always at maximum throttle command inside the control area. Finally,

note that the entry management of the control area is not a first come first serve

policy. Some robots requesting the entry before another robot may be accepted into

the control area after that robot.

The latter phenomenon is more obvious in the video capture of the simulation

for an arrival rate of 0.08 robots per time slot available here2. At such an arrival

1http://youtu.be/T5ASnKuJLT4
2http://youtu.be/tYC6m7Z-S3Y
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rate, queues are formed at the entry of the control area, but the size of the queues

are not considered for processing the requests. Finally, note that queues are stable

at this arrival rate which denotes an ergodic dynamics of the system.

At this point, it just appears that priority-based coordination enables to carry

out as complex scheduling as traditional approaches using a plan-as-program ap-

proach, e.g., [35]. However, the benefit of the priority-based approach is not visible,

because in the absence of uncertainty, the control law under assigned priorities

always returns u, it is very similar to an open-loop plan execution.

8.2.2 Robustness regarding unexpected deceleration

Here, to illustrate the robustness of the proposed coordination system with respect

to unexpected events requiring deceleration, we consider a scenario in which robots

may decide to brake within the control area unexpectedly. The intersection con-

troller, when assigning priorities, does not know that the robot is going to brake

within the control area. At the beginning of every time slot, each robot i may switch

from a controlled regime under the control law gG to an unexpected deceleration

under constant control ui, and vice versa, with probability transitions displayed

in Figure 8.3. The probability values p, q are chosen arbitrarily, as the goal is is

Robot controlled 
with control law gi

G
Robot brakes 

p = 0.001 

ui = uiq = 0.03 

Figure 8.3: Non-deterministic transitions between control regimes

not to reproduce a realistic scenario but to test and validate the robustness of the

approach. One may consider transitions to brake control regime as modeling some

unexpected events subject to occur in applications to transportation systems such

as a loss of communication abilities or a pedestrian crossing the road, both requiring

the robot to slow down unexpectedly.

A video capture of the simulation for an arrival rate of 0.04 robots per time slot

on each path is available here3. Even if some robots stop within the control area,

other robots adapt and brake if necessary thanks to the control law. In contrast

with simulations under deterministic control, the control law is useful here and

enables to handle robots slowing down unexpectedly. No collision occurs during

the simulation, the control law is effectively safe and robust with regards to brake

application. We see that the priorities are satisfied, that no collision occurs, and

that all robots eventually exit the intersection, although the trajectory may be very

far from the trajectory under perfect control law.

3http://youtu.be/8Xz3S_OhK80
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8.2.3 Robustness regarding bounded uncertainty

The simulation results that follow aim at demonstrating the robustness of priority-

based coordination in the presence of bounded uncertainty in sensing and control.

The same inertia/geometrical parameters as for the previous simulations are used.

However, uncertainty is additionally considered.

First of all, we assume the presence of control uncertainty, so the dynamics of

robots is described by Equations (6.1)-(6.2). In the presented simulations, the value

of control uncertainty bounds are different for each robot. Their average values are

(here, n denotes the total number of robots through the simulation run and the

sum is over all these robots):

1
n

∑
i

|dvi | =
1
n

∑
i

d
v
i = 0.1 |ui| (8.3)

1
n

∑
i

|dui | =
1
n

∑
i

d
u
i = 0.1 ui = 0.1 |ui| (8.4)

and the actual control uncertainty bounds on each robot vary between 0 and twice

the average values according to a uniform distribution. This enables to illustrate

that the proposed approach can deal with different control uncertainty bounds on

each robot. In average, the uncertainty in control is 10% of the maximum control

value as stated by Equations (8.3) and (8.4).

Uncertainty in sensing is also simulated and again, as for control uncertainty,

the value of sensing uncertainty bounds are different for each robot. Let δyxi and δyvi
denote the respective maximum absolute errors in position and velocity observations

on robot i, their average values are:

1
n

∑
i

δyvi = 0.1 vi (8.5)

1
n

∑
i

δyxi = D/2 (8.6)

and again, the actual observation uncertainty bounds on each robot vary between

0 and twice the average values according to a uniform distribution. In average, the

uncertainty in position is one radius of robot and the uncertainty in velocity is 10%
of the maximum velocity as stated by Equations (8.5) and (8.6).

Note that to decide to accept or not a robot in the control area, the intersection

controller can only access to the non-deterministic state of robots. The heuristic

approach is adapted to deal with that and the values of τi and τj (see Section 8.1),

which are necessary to decide to accept or not a robot in the control area, are

computed based on the average state of robots considering all possible current true

states.

A video capture of the simulation for an arrival rate of 0.02 robots per time slot

on each path is available here4. The red segments represent the set of positions

4http://youtu.be/vpqHbNE6smM
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8.2. Simulation results

where a robot believes it is located in. One can see that no collision occurs, neither

between robots, nor between the red segments. It confirms that the control law in

the non-deterministic information space proposed in Chapter 6 results in a collision-

free trajectory of the non-deterministic information state.

Finally, to demonstrate the robustness of our approach regarding time-varying

uncertainty, we consider a scenario where uncertainty on the observation of position

is much higher during a limited time period. In the following simulations, all the

parameters are unchanged, but between time slots t = 500 and t = 1000, the

uncertainty on position measures is suddenly multiplied by a factor 10. A video

capture of the simulation for an arrival rate of 0.02 robots per time slot on each

path is available here5. It is remarkable that such a change in the uncertainty

of position observation can be handled in a completely reactive manner. Note also

that, interestingly, the priority assignment policy during the period of large position

uncertainty demonstrates an emerging traffic signal like behavior.

8.2.4 Stability guarantees under back-pressure control

The following simulation results illustrate the ability of priority-based coordination

to ensure both efficiency in term of travel time at low traffic density and stability

of the queue lengths at high traffic density, in an adaptive manner. The adaptive

priority assignment policy proposed in Subsection 7.2.3 has been implemented with

the same inertia/geometrical parameters as the simulations presented previously

and simulations results are presented in Figure 8.4. For the phase duration, we take

T = 100 time slots and the threshold is ∆Qlim = 30. We compare the behavior

of the system under the simple priority assignment policy presented in Section 7.2

(referred as ”NO BP” in Figure 8.4) versus the adaptive priority assignment policy

proposed here (referred as ”BP” in Figure 8.4). The top drawings provide the

evolution of the arrival rate through time for the two scenarios considered. The

drawings in the center depict the evolution of the sum of the four queue lengths

(Q = Q11 +Q12 +Q21 +Q22) through time. Finally, the bottom drawings represent

the average total time spent by robots currently in the intersection. On the left

drawings of Figure 8.4, it is clear that at low traffic density, the behavior under

both policies are identical: it is not surprising as the queue difference is not likely

to be greater than the threshold, so that the two priority assignment policies coincide

most of the time. On the right drawings of Figure 8.4, it appears that the queues

get unstable under the priority assignment policy of Section 7.2 for an arrival rate

of 0.12 robots per time slot. By contrast, under adaptive priority assignment policy,

queues are stable. In conclusion, the proposed adaptive priority assignment policy

combines the efficiency of the priority assignment policy of Section 7.2 at low traffic

density and the stability guarantees of back-pressure control at high traffic density.

5http://youtu.be/k14t-fYpy3g
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Chapter 8. Simulations
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Figure 8.4: Simulations under adaptive priority assignment policy for two arrival

rate scenarios.
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Conclusions

The present part proposed a priority-based coordination system adopting a three-

layer architecture integrating both priority assignment – in the deliberative layer –

and priority preserving control – in the behavior-based layer – which are executed

in parallel and interface through the sequencing layer. The proposed coordination

system is able to manage continuous arrivals of robots at the intersection and to

assign priorities dynamically. The proposed architecture takes full benefit of the

brake safety property of priority preserving control of Part II as some behavior

may require a robot to brake at any moment to handle some unexpected event

with the guarantee that priorities will be respected. Priority-based coordination

demonstrates both planning and reactive abilities.

In the proposed setting, priority assignment is centralized and is processed by

the intersection controller. It is the planning – time consuming – task: assigning

efficient priorities requires reasoning about the future. Interestingly, previous work

can be used to design efficient priority assignment policies. Priorities are indeed

a byproduct of existing trajectory planning algorithms as it suffices to assign the

priorities induced by the output planned trajectory. That is why little attention has

been paid to the design of efficient priority assignment policies in this part. However,

what is quite novel is that, some algorithms commonly used for the control of traffic

signals proved useful to assign priorities at high traffic densities as it becomes more

efficient to have a traffic-signal-like behavior. Interestingly, priority assignment

can adapt to traffic load resulting in a traffic-signal-like behavior ensuring queue

lengths stability at high traffic density, and in a much more complex scheduling

through combinatorial optimization of priorities to minimize travel delays at low

traffic density. This brings elements to the debate about whether autonomous

intersection management can really outperform traffic signals. We believe that at

high traffic density, a traffic-signal-like behavior is likely to be an optimal strategy

as it enables to move robots in platoons, maximizing throughput. However, at

low traffic density, optimizing priorities can significantly decrease travel delays and

outperform traffic signals. The results of the present part demonstrate that priority-

based coordination is able to perform both strategies adaptively.

As highlighted in the introduction of the thesis, a key motivation to the automa-

tion of transportation systems is a reduced need of costly infrastructure. Therefore,

a major concern of the architecture proposed here is that it requires a central agent

at each junction with processing capabilities. However, the only task which is cen-

tralized is priority assignment. We believe that the conciseness of the priority graph

that merely maps each couple of robot identifiers to a binary value encoding the

priority, is a real asset to design a distributed priority assignment policy. However,

if first-come-first-serve distributed priority assignment is likely to be quite easily de-

signed, distributed priority assignment performing some combinatorial optimization

will be a much more challenging task.
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Conclusions

This thesis proposed to study the coordination of mobile robots at intersections

espousing an approach considering planning as the computation of resources to

guide – not control – robots. As a result, the plan representation appeared to differ

widely from what it is in traditional motion planning. In traditional approaches,

planning consists in computing a planned reference trajectory that robots must

execute. The reference trajectory constitutes the plan and in the control phase,

a control law configured by the reference trajectory is in charge of tracking the

planned trajectory. In the approach of this thesis, the plan is the priority graph

encoding the particular homotopy class chosen to solve the coordination problem

and to our knowledge, there existed no standard control scheme to ensure the de-

scribed trajectory belongs to the chosen homotopy class, i.e., to ensure priorities are

respected. In priority-based coordination, as there is no reference trajectory, there

is no trajectory tracking which is replaced by so-called priority preserving control.

Our approach using priorities as a plan to guide – not control – robots confirmed

suitable to coordinate multiple robots at an intersection area, endowing the sys-

tem with robustness properties. Part I provides a powerful tool to characterize the

structure of solutions to the coordination problem: the priority graph. Previous

work already noticed the existence of homotopy classes of feasible paths in the co-

ordination space, yet without providing a meaningful representative of homotopy

classes. The main contribution of the first part of the thesis is to provide such a

meaningful representative: the priority graph. Priorities uniquely encode the ho-

motopy classes of feasible paths. Choosing a particular priority graph to coordinate

robots appears as the discrete part of the coordination problem. It thus provides

a geometrical understanding in the coordination space of why planning priorities

instead of a precise trajectory results in an increased robustness. It merely appears

as the consequence of constraining the path of robots in the coordination space to

remain in a homotopy class – a large set of feasible paths continuously deformable

into each other –, instead of assigning a particular precise feasible path to follow.

The ”size” of the homotopy class provides some freedom of action. Part II demon-

strates that robots can easily go through the intersection while respecting priorities

in a reactive manner. Under assigned priorities, the combinatorial complexity of

multi robot control is avoided as for each pair of robots there is not two strategies

to avoid collisions anymore: the robot with lower priority must decelerate in favor

of the robot with higher priority. It is thus not surprising that priority preserv-

ing control can be carried out in polynomial time. From the coordination space

point of view, priority preserving control ensures that the trajectory described by

the multi robot system belongs to the homotopy class encoded by the assigned

priorities. To this purpose, a control law is configured by the assigned priorities

and is in charge of priority preservation. It is very different from the trajectory

tracking approach as it allows for example all robots to stop for a while to han-

dle some unexpected event while respecting priorities, i.e., without replanning. By

contrast, in traditional motion planning, the plan must be executed, and the only
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way to recover some freedom of action is replanning. In the absence of inertia, the

control law proposed in Chapter 4 ensures that the resulting trajectory is optimal

for the assigned priorities, recovering the existence of a local optimum in each ho-

motopy class [47]. Even though the dynamics model used in Chapter 5 is quite

simple, it convinces that the additional complexity in the presence of kinodynamic

constraints can be easily tackled by introducing the brake safety constraint. The

byproduct of the conservative brake safety constraint is an increased robustness re-

garding unexpected deceleration of robots. Moreover, the proposed control scheme

is decentralized as the output of the control law can be computed on each robot

independently, thus not requiring any form of agreement through communication

links. This valuable benefit is allowed by the prior agreement on the priority graph

which is done at the planning level. This prior agreement which requires some form

of communication enables to select a particular strategy for collision avoidance –

the priority graph –, so that no more agreement is required at the control level

which can be decentralized. Finally, Chapter 6 provides some elements to control

the system in the presence of uncertainty. It shows that bounded uncertainty can

be handled by considering worst-case scenarios. Even though the uncertainty model

is quite simple, it demonstrates that the key benefit of priority-based coordination

is its ability to handle uncertainty in a reactive manner. For example, robots may

stop for a while if uncertainty is very large due to communication concerns and

restart without replanning, merely using a control law in the information space.

Part III has a more engineering flavor and proposes a three-layer architecture inte-

grating both priority assignment and priority preserving control which are executed

in parallel. Priority assignment is carried out by a central deliberative intersection

controller. Robots implement multiple behaviors including one ensuring priorities

are respected. Robot’s sequencer interfaces the reactive and the deliberative layers

through asynchronous communication with the intersection controller to negotiate

the entry of the control area and by activating/deactivating/configuring primitive

behaviors. Compared to traditional plan-as-program approaches, robots retain re-

active capabilities through the intersection. A large class of unexpected events –

all events requiring braking – can be handled in a reactive manner without need

to replan endowing the system with significant robustness. This thesis proposes a

novel class of coordination systems at intersections – using priorities to guide robots

– and therefore still suffers from some limitations and opens several perspectives for

future work.

Limitations and perspectives

From the theoretical point of view

Homotopy classes under imperfect lateral control The path-following as-

sumption of Figure 2.1 is key to the definition of priorities and to the existence

of homotopy classes of feasible paths uniquely encoded by priorities. In real sys-

tems, perfect path following cannot be guaranteed as lateral control is based on
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imperfect mapping/localization data and imperfect actuators. Hence, future work

should investigate which assumptions on lateral control still guarantee all the re-

sults of Part I which is the foundation of the priority-based approach. We believe

that under bounded uncertainty on lateral control, the results of Part I can be

extended by considering the worst-case obstacle region considering all possible ge-

ometric paths. However, this could decrease performance and it would raise the

problem of handling a lateral error beyond the fixed bound.

Dealing with partial information In the current setting, all robots are as-

sumed to know the assigned priorities and the current state of other robots. Even

though Chapter 6 provides elements on how to deal with bounded uncertainty,

it still assumes that all robots know the complete priority graph and the current

non-deterministic information state of all other robots, which is still a strong as-

sumption. Further work should focus on relaxing these assumptions. We believe

that priority-based coordination has real strengths to deal with partial information

concerns. First of all, some priorities are redundant, as if robots 2 and 3 travel

along the same path (say 3 follows 2) and have both priority over robot 1, then

robot 1 only needs to know that it has priority over the first of the two robots, i.e.,

robot 2. Moreover, to execute the priority preserving control law, a given robot

only needs to know the current state of robots in the neighborhood as there is no

need to anticipate beyond a certain area.

Distributed priority assignment As highlighted in the conclusion of Part III,

while a key motivation to the automation of transportation systems is a reduced

need of costly infrastructure, the proposed three-layer architecture requires a central

agent at each junction with processing capabilities. Distributed priority assignment

would imply a consensus algorithm as all robots need to agree on a common de-

cision: the assigned priorities. We believe that without efficiency considerations,

previous work on consensus algorithms should help to design simple distributed pri-

ority assignment policies, e.g., a first-come-first-serve policy. However, optimizing

priorities requires to perform time consuming algorithms reasoning about the future

and a distributed implementation of such algorithms should prove challenging.

From the application point of view

Challenges for an implementation in real systems First of all, localization

and mapping aspects have not been addressed in this thesis and are challenges

in themselves. These topics are intensive research fields, both in robotics and in-

telligent transportation systems communities. Priority-based coordination requires

building a map specifying predefined geometric paths to go through the intersection

and robots need to have an estimate of their position on their path. We believe that

for an application in self-driven vehicles, existing maps of the road network and lane

markings/panels – more generally, the physical infrastructure – should help localiza-

tion and mapping tasks. Communication is another important aspect that has been
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left behind. Standardized messages should be designed to support priority-based

coordination, taking into account constraints in terms of delay and amount of data.

This is one of the tasks currently achieved in the European project Autonet2030

where a complete cooperative system architecture is designed for the cooperation of

intelligent vehicles supporting, in particular, coordination at intersections. We be-

lieve that the conciseness of the plan representation – the priority graph is merely

mapping couple of robot identifiers to a binary value – is a valuable feature of

priority-based coordination as it limits the amount of data to be exchanged. By

contrast, plan-as-program approaches need to exchange precise trajectories which

include much more data.

Sharing the road between autonomous and human-driven vehicles Au-

tonomous vehicles will arrive gradually, and they will have to ”share the road” for

a while. According to [27], only 50% of vehicles will be autonomous by 2030. Co-

operation between autonomous/semi-autonomous/human-driven vehicles thus ap-

pears necessary. As respecting priorities is a capability of both humans and robots,

the priority-based approach is particularly adapted for the development of algo-

rithms aiming at coordinate both human-driven and autonomous vehicles. In [108],

a priority-based autonomous intersection management system is proposed in this

context of ”mixed traffic flow”. Priorities are assigned by an intersection controller,

yet human-driven vehicles are not aware of that, and just respect traffic signals as

in a usual signalized intersection. A video capture of simulations is available here6.

Energy efficient priority preserving control Priority preserving control pro-

posed in Part II is a kind of bang-bang control switching quite abruptly between

maximum brake and maximum throttle. Such control law, while priority preserving,

raises energy efficiency concerns as abrupt control switches are energy consuming.

To this purpose, we believe that model predictive control with a cost function ac-

counting for both priority preservation, delay reduction and energy efficiency should

prove useful by anticipating the need to brake and result in smoother trajectories

as demonstrated by recent work [88].

Handling priority violation The present work assumed robots respect the as-

signed priorities. We are convinced that the ability to respect priorities is a must

that self-driven vehicles need to possess to be deployed on the roads. People would

accept that vehicles cannot follow a precise trajectory through an intersection. By

contrast, they would not accept an autonomous vehicle unable to respect assigned

priorities. That is why we believe that priority violations should occur mainly under

major system failure of one robot. Another reason why it can occur in an appli-

cation to self-driven cars is when a driver decides to stop the self-driving system

and to take back the control of the vehicle for some unexpected reason. Such cir-

cumstances would require both priority violation detection and real-time dynamic

6http://www.youtube.com/watch?v=L3B_FrNn_Pk
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priority assignment with all the attention paid on safety, i.e., collision avoidance.

Towards a network of autonomous intersections All the work around traf-

fic signal control demonstrates that controlling a network of intersections is of high

complexity. Recent work based on back-pressure algorithms tend do demonstrate

that queues stability guarantees of the network can be obtained, while each in-

tersection controller uses only local information. Future work should extend the

simple back-pressure priority assignment policy at a single intersection proposed in

Chapter 7 and consider adaptive priority assignment at a network of autonomous

intersections using back-pressure algorithms.

Towards coordination of aerial drones Finally, even though this work was

originally motivated by applications in autonomous vehicles on roadways, applica-

tions to other fields should be investigated. For instance, the results of this thesis

may be applicable to coordinate aerial drones in a three-dimensional space pro-

vided the geometric three-dimensional paths followed by drones are fixed. If so,

each drone i still has only one degree of freedom – its curvilinear coordinate along

its three-dimensionnal path γi ⊂ R3 – and the priority-based framework proposed

in this thesis is still applicable.
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Appendix A

Appendix of Chapter 2

A.1 Topology results

In the sequel, given a topological space X and a subset C ⊂ X, Cc denotes the

complementary of a C in X, cl (C) its closure and ∂C its boundary.

Lemma A.1.1. Let A and B be two disjoint subsets of a topological space X

(A ∩ B = ∅). Let f : [0, 1] → A ∪ B denote a continuous application taking

values in A ∪ B and satisfying f(0) ∈ A and f(1) ∈ B. Then there exists

t0 ∈ [0, 1] such that f(t0) ∈ ∂A ∩ ∂B.

A

B

f(0)

f(1)
f(t0)

Figure A.1: Illustration of Lemma A.1.1

Proof. Consider t0 defined below:

t0 := sup{t ∈ [0, 1] : f(t) ∈ A} (A.1)

= sup{t ∈ [0, 1] : f(t) /∈ B}

It exists as the supremum of a non-empty (f(0) ∈ A) upper-bounded subset of R.

Take some r > 0 and let B(f(t0), r) denote the open ball of radius r centered in

f(t0). Consider two options:

• either t0 = 1, and B(f(t0), r) ∩B 6= ∅ as f(1) ∈ B;

• or t0 < 1, then, by continuity of f , for small enough η > 0, we have f(t0 +η) ∈
B(f(t0), r) and f(t0 + η) ∈ B as t0 + η > t0 by definition of t0.
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In both cases, we have B(f(t0), r) ∩B 6= ∅. Again, consider two options:

• either t0 = 0, and B(f(t0), r) ∩A 6= ∅ as f(0) ∈ A;

• or t0 > 0, then, by continuity of f , for small enough η > 0, we have for all

t ∈ (t0 − η, t0], f(t) ∈ B(f(t0), r) and there exists some t1 ∈ (t0 − η, t0] such

that f(t1) ∈ A by definition of t0 (otherwise, t0 would not be the supremum

defined in Equation (A.1)).

In both cases, we have B(f(t0), r) ∩A 6= ∅.
In conclusion, for all r > 0, we have:

B(f(t0), r) ∩A 6= ∅ (A.2)

B(f(t0), r) ∩B 6= ∅ (A.3)

Let Cc denote the complementary of a subset C of X. Since A ∩ B = ∅, we have

B ⊂ Ac and A ⊂ Bc, so that we also have:

B(f(t0), r) ∩Bc 6= ∅ (A.4)

B(f(t0), r) ∩Ac 6= ∅ (A.5)

By definition of the boundary, as Equations (A.2) and (A.5) are satisfied for all

r > 0, we have f(t0) ∈ ∂A and as Equations (A.3) and (A.4) are satisfied for all

r > 0, we have f(t0) ∈ ∂B. In conclusion, we have:

f(t0) ∈ ∂A ∩ ∂B (A.6)

Lemma A.1.2. Let A and B be two subsets of a topological space X and assume

that B is open, then we have:

∂ (A \B) ∩B = ∅ (A.7)

Proof. By simple manipulations, we obtain:

∂ (A \B) ⊂ cl (A \B) = cl (A ∩Bc) ⊂ cl (Bc) (A.8)

As B is open, Bc is closed, so that:

∂ (A \B) ⊂ Bc (A.9)

As a consequence,

(∂ (A \B) ∩B) ⊂ (B ∩Bc) = ∅ (A.10)
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A.2 Proof of the South-West North-East completion

First of all, note that the following property is a direct consequence of the non-

decreasing constraint.

Property A.2.1. For all ϕ ∈ Φ(χfree), t0 ∈ [0, 1], we have:

∀t ∈ [0, 1], ϕ(t) ∈
(
ϕ(t0)− R∗n+

)
∪
(
ϕ(t0) + Rn+

)
(A.11)

Proof of Lemma 2.2.1. We will prove Lemma 2.2.1 by contradiction. Take i, j ∈ R,

x0 ∈
(
χobs
i�j ∩ χobs

j�i

)
and assume there exists a feasible path ϕ ∈ Φ(χfree) such that

for some t0 ∈ [0, 1], ϕ(t0) = x0. Define A and B as follows:

A := x0 − R+ej + R+ei (A.12)

B := x0 − R+ei + R+ej (A.13)

As x0 ∈
(
χobs
i�j ∩ χobs

j�i

)
, we have:

χobs
ij ∩A 6= ∅ (A.14)

χobs
ij ∩B 6= ∅ (A.15)

Take x1 ∈ χobs
ij ∩ A and x2 ∈ χobs

ij ∩ B. By construction of A and B, the following

inequalities hold:

x2
i ≤ x0

i ≤ x1
i (A.16)

x1
j ≤ x0

j ≤ x2
j (A.17)

By convexity of χobs
ij and as χobs

ij is a cylinder,

Σ :=
{
x ∈ χ : xi = αx1

i + (1− α)x2
i

xj = αx1
j + (1− α)x2

j

, α ∈ [0, 1]
}

(A.18)

is a subset of χobs
ij . Define K+ and K− as follows:

K+ := Σ + R+ei + R+ej (A.19)

K− := Σ− R∗+ei − R∗+ej (A.20)

Note that K+ ∩K− = ∅ and ∂K+ ∩ ∂K− = Σ. By construction, we have:(
ϕ(t0) + Rn+

)
⊂ (K+ ∪K−) (A.21)(

ϕ(t0)− R∗n+
)
⊂ (K+ ∪K−) (A.22)

Hence, by Property A.2.1, we have for all t ∈ [0, 1],

ϕ(t) ∈
(
K+ ∪K−

)
(A.23)
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x2∈B
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Figure A.2: The two cases that appear in the proof of Lemma 2.2.1

By construction, we have two options as depicted in Figure A.2:

• either x0 ∈ K+ (right drawing of Figure A.2). This case can be interpreted

as the case when x0 is not ”reachable”. As (ϕ(0) − Rn+) ⊂ χfree and ϕ(0) ∈
(ϕ(t0)− Rn+), we have:

ϕ(0) ∈ K− (A.24)

ϕ(t0) ∈ K+ (A.25)

Hence, as ϕ is continuous, by Lemma A.1.1 (see Appendix A.1), there exists

some tΣ such that ϕ(tΣ) ∈
(
∂K− ∩ ∂K+) = Σ ⊂ χobs

ij and ϕ is not collision-

free.

• or x0 ∈ K− (left drawing of Figure A.2). This case can be interpreted as the

case when x0 will inevitably lead to a deadlock between robots i and j. As

(ϕ(1) + Rn+) ⊂ χfree and ϕ(1) ∈ (ϕ(t0) + Rn+), we have:

ϕ(1) ∈ K+ (A.26)

ϕ(t0) ∈ K− (A.27)

Hence, as ϕ is continuous, by Lemma A.1.1 (see Appendix A.1), there exists

some tΣ such that ϕ(tΣ) ∈
(
∂K+ ∩ ∂K−

)
= Σ ⊂ χobs

ij and ϕ is not collision-

free.

In conclusion, there is no feasible path going through any configuration x0 ∈ χobs
i�j ∩

χobs
j�i.

A.3 Proof of the existence of paths with maximal mar-

gin
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Lemma A.3.1 (Existence of paths with maximal margin). Given a priority

graph G ∈ G, consider ρG defined as follows:

ρG :=

 sup
{
r ≥ 0 : Φ(χfree

G 	 [−r, r]n) 6= ∅
}

if Φ(χfree
G ) 6= ∅

− inf
{
r > 0 : Φ(χfree

G + [−r, r]n) 6= ∅
}

else.
(A.28)

ρG ∈ R ∪ {+∞} and if ρG ∈ R, it is attained, so that we can use the maximal

element notation:

ρG :=

 max
{
r ≥ 0 : Φ(χfree

G 	 [−r, r]n) 6= ∅
}

if Φ(χfree
G ) 6= ∅

−min
{
r > 0 : Φ(χfree

G + [−r, r]n) 6= ∅
}

else.
(A.29)

Proof of ρG ∈ R ∪ {+∞}. Consider a path ϕ ∈ Φ(χ) whose image is the segment

joining xobs to xobs. For big enough enough r ∈ R+, this segment is collision-free

with regards to χobs
G 	 [−r, r]n. Moreover, (xobs − Rn+) ⊂ χfree

G ⊂ χfree
G + [−r, r]n

and (xobs + Rn+) ⊂ χfree
G ⊂ χfree

G + [−r, r]n, so that ϕ ∈ Φ(χfree
G + [−r, r]n). Hence,

ρG 6= −∞ and we obtain ρG ∈ R ∪ {+∞}.

Proof that it is attained. Take a priority graph and assume that ρG ∈ R. Define

C free
G := χfree

G 	 (−ρG, ρG)n if ρG ≥ 0 (resp. C free
G := χfree

G + (−|ρG|, |ρG|)n if ρG ≤ 0)

and Cobs
G := χ \ C free

G . We have to prove that:

Φ(C free
G ) 6= ∅ (A.30)

We have the following identity:

C free
G =

⋂
r>0

(
C free
G + [−r, r]n

)
(A.31)

Hence, Φ(C free
G ) can be expressed as the limit of a nested sequence of sets of paths

as follows:

Φ(C free
G ) =

⋂
r>0

Φ
(
C free
G + [−r, r]n

)
(A.32)

By definition of ρG, we have Φ
(
C free
G + [−r, r]n

)
6= ∅ for all r > 0, so that (Φ

(
C free
G + [−r, r]n

)
)r>0

is a nested sequence of non-empty sets of paths whose limit is Φ(C free
G ). We have

to prove that this limit is not the empty set.

Consider the topology of pointwise convergence on Φ(χ). Define Φ(χ) ⊂ Φ(χ)
as follows:

Φ(χ) :=
{
ϕ ∈ Φ(χ) : ∀t ∈ [0, 1], xobs ≤ ϕ(t) ≤ xobs

}
(A.33)

As for all ϕ ∈ Φ(χ) and i ∈ R, Im (ϕi) ⊂ [xobs
i , xobs

i ], by Tychonoff’s theorem, Φ(χ)
with the topology of pointwise convergence is compact in Φ(χ). Intersecting with

Φ(χ) in (A.32), we obtain:

Φ(C free
G ) ∩ Φ(χ) =

⋂
r>0

(
Φ
(
C free
G + [−r, r]n

)
∩ Φ(χ)

)
(A.34)
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Now, we are going to use Cantor’s intersection theorem to prove that Φ(C free
G )∩

Φ(χ) 6= ∅. To this purpose, we are going to prove that for all r > 0, Φ
(
C free
G + [−r, r]n

)
∩

Φ(χ) is a non-empty compact in Φ(χ). As Φ(χ) is compact, it is sufficient to prove

that Φ
(
C free
G + [−r, r]n

)
∩ Φ(χ) is (a) non-empty and (b) closed in Φ(χ).

(a) Φ
(
C free
G + [−r, r]n

)
is non-empty. Moreover, taking a path ϕ ∈ Φ

(
C free
G + [−r, r]n

)
,

and building the path ϕ̃ := min(max(xobs, ϕ), xobs) yields a path in Φ(χ) ∩
Φ
(
C free
G + [−r, r]n

)
. As a result, Φ

(
C free
G + [−r, r]n

)
∩ Φ(χ) is not empty.

(b) First, we prove that the complementary of Φ
(
C free
G + [−r, r]n

)
in Φ(χ) is open.

Take a path ϕ ∈ Φ(χ) and assume ϕ /∈ Φ
(
C free
G + [−r, r]n

)
. As ϕ ∈ Φ(χ), ϕ is

necessarily non-decreasing, so that ϕ /∈ Φ
(
C free
G + [−r, r]n

)
means that ϕ (or

ϕ(0) − Rn+, or ϕ(1) + Rn+) is not collision-free with respect to Cobs
G 	 [−r, r]n,

which is an open set. Hence, any path ψ ∈ Φ(χ) close enough to ϕ (in the

topology of pointwise convergence) also interects Cobs
G 	 [−r, r]n, so that ψ /∈

Φ
(
C free
G + [−r, r]n

)
. It results that Φ

(
C free
G + [−r, r]n

)
is closed in Φ(χ) (as its

complementary is open). Moreover, Φ(χ) is also closed as it is compact. In

conclusion, Φ
(
C free
G + [−r, r]n

)
∩ Φ(χ) is closed in Φ(χ) as the intersection of

closed sets in Φ(χ).

Applying Cantor’s intersection theorem, we obtain that Φ(C free
G ) ∩ Φ(χ) is a non-

empty compact of Φ(χ), which implies that Φ(C free
G ) 6= ∅.

A.4 Proof of the characterization of feasible priority

graphs

Theorem 3.2.2 is a direct consequence of the following lemmas. We let Cobs
G :=

χobs
G + [−r, r]n (or Cobs

G := χobs
G 	 [−r, r]n) with Cobs

i�j := χobs
i�j + [−r, r]n (resp.

Cobs
i�j := χobs

i�j	 [−r, r]n) and we let C free
G := χ\χobs

G . Note that Cobs
G satisfy the same

invariance properties as χobs
G (Properties 2.2.1, 2.2.2, 2.2.3 and 2.2.3). Lemma A.4.1

provides a necessary condition for the existence of a feasible path taking values in

C free
G and Lemma A.4.3 provides a sufficient condition for the existence of such path.

Note that the lemmas apply in particular for Cobs
G ≡ χobs

G (r = 0).

Lemma A.4.1. Given a priority graph G ∈ G, a necessary condition for

Φ(C free
G ) 6= ∅ is:

∀C ∈ cycles(G),
⋂

(i,j)∈E(C)
Cobs
i�j = ∅ (A.35)

The proof of the above lemma is omitted as it is exactly the same as the proof

of the necessary condition of Theorem 3.2.2 where Cobs
G replaces χobs

G .
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In order to provide a constructive proof of the existence of feasible paths taking

values in C free
G under certain conditions, we introduce the concept of local priority

graph (an extension of the concept introduced in the corpus of the manuscript

with Cobs
G instead of χobs

G ). Given a radius r > 0 and a configuration x ∈ χ, the

local priority graph with regards to Cobs
G at configuration x with radius r ≥ 0 is

the sub-graph G|Cobs
G ,x,r of G with the same vertices and whose edge set is defined

below:

E(G|Cobs
G ,x,r) :=

{
(i, j) ∈ E(G) : x ∈

(
Cobs
i�j + [−r, r]n

)}
(A.36)

Note that G|x,r ≡ G|χobs
G ,x,r which is simply referred as the priority graph at config-

uration x with radius r ≥ 0 (without mentioning χobs
G ).

Lemma A.4.2 (Sufficient condition for locally acyclic priority graph). Con-

sider a priority graph G ∈ G satisfying for all elementary cycles C in G:⋂
(i,j)∈E(C)

(
Cobs
i�j + (−ε, ε)n

)
= ∅ (A.37)

for some ε > 0, then G|Cobs
G ,x,ε is acyclic at all configurations x ∈ χ.

The proof of the above lemma is omitted as it is exactly the same proof as

Lemma 3.2.1 where Cobs
G replaces χobs

G .

It is of high interest to know that the local priority graph with radius ε > 0 with

regards to Cobs
G is acyclic at all configurations x ∈ χ. Indeed, when this condition

is satisfied, whatever the current configuration x ∈ C free
G of the system, it is always

possible to find a robot i ∈ R which can move forward the distance ε > 0 without

colliding, which enables to construct a feasible path in C free
G by iterations.

Lemma A.4.3. Given a priority graph G ∈ G, a sufficient condition for

Φ(C free
G ) 6= ∅ is:

∃ε > 0 : ∀C ∈ cycles(G),
⋂

(i,j)∈E(C)
(Cobs

i�j + (−ε, ε)n) = ∅ (A.38)

The proof of the above lemma is omitted as it is exactly the same proof as

Lemma 3.2.1 where Cobs
G replaces χobs

G .

Proof of Theorem 3.2.2. We will prove Theorem 3.2.2 by combining the above lem-

mas. Take a priority graph G ∈ G and consider two options.

• If G satisfies:

∃r > 0 : ∀C ∈ cycles(G),
⋂

(i,j)∈E(C)
(χobs
i�j + [−r, r]n) = ∅ (A.39)
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Then, by Lemma A.4.3, Φ(χfree
G ) 6= ∅, so G is feasible. Moreover, take r

defined as follows:

r := sup
{
r > 0 : ∀C ∈ cycles(G),

⋂
(i,j)∈E(C)

(χobs
i�j + [−r, r]n) = ∅

}
(A.40)

r exists in R+ ∪ {+∞} as the supremum of a non-empty subset of R (it is

non-empty as (A.39) is satisfied). By Lemma A.4.1, for all r > r, Φ(χfree
G 	

[−r, r]n) = ∅. And by Lemma A.4.3, for all r < r, Φ(χfree
G 	 [−r, r]n) 6= ∅ (take

0 < ε < r − r). By definition of ρG, we have ρG = r, i.e.,

ρG = max

r > 0 : ∀C ∈ cycles(G),
⋂

(i,j)∈E(C)
(χobs
i�j + [−r, r]n) = ∅

 (A.41)

where max replaces sup since Φ(χfree
G 	 (−ρG, ρG)n) 6= ∅ (see Lemma A.3.1)

implies
⋂

(i,j)∈E(C)(χobs
i�j + (−ρG, ρG))n) = ∅ by Lemma A.4.3.

• If G satisfies:

∀r > 0 : ∃C ∈ cycles(G),
⋂

(i,j)∈E(C)
(χobs
i�j + [−r, r]n) 6= ∅ (A.42)

Then, by Lemma A.4.1, ρG ≤ 0 (G is not feasible or it is feasible with a safety

margin of 0). Take r defined as follows:

r := inf
{
r ≥ 0 : ∀C ∈ cycles(G),

⋂
(i,j)∈E(C)

(χobs
i�j 	 [−r, r]n) = ∅

}
(A.43)

By Lemma A.4.3, for all r > r, Φ(χfree
G + [−r, r]n) 6= ∅ (take 0 < ε < r − r)

and by Lemma A.4.1, for all r < r, Φ(χfree
G + [−r, r]n) = ∅. By definition of

ρG, we have ρG = −r, i.e.,

ρG = −min

r ≥ 0 : ∃C ∈ cycles(G),
⋂

(i,j)∈E(C)
(χobs
i�j 	 [−r, r]n) = ∅

 (A.44)

where min replaces inf and ≥ replaces > as Φ(χfree
G 	 (−ρG, ρG)n) 6= ∅ (see

Lemma A.3.1) implies
⋂

(i,j)∈E(C)(χobs
i�j 	 (−ρG, ρG)n) = ∅ by Lemma A.4.3.

Hence, in that case, G is feasible if and only if
⋂

(i,j)∈E(C) χ
obs
i�j = ∅.

In conclusion, a necessary and sufficient condition for G being feasible is:

∀C ∈ cycles(G),
⋂

(i,j)∈E(C)
χobs
i�j = ∅ (A.45)

and if this condition is satisfied, the feasibility margin is given by:

ρG = max

r ≥ 0 : ∀C ∈ cycles(G),
⋂

(i,j)∈E(C)
(χobs
i�j + [−r, r]n) = ∅

 (A.46)

where ≥ replaces > of Equation (A.41) to include the case ρG = 0.
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Appendix B

Priority preserving control:

extension to feasible cyclic priorities

The results presented in Part II have been proved under the assumption that the

assigned priorities are acyclic. However, they can be extended to all feasible priority

graphs – including those containing cycles – under certain mild conditions. This is

the topic of this appendix chapter.

Sketch of the chapter Sections B.1, B.2 and B.3 respectively extend the re-

sults of Chapter 4 (control in velocity), 5 (control in acceleration) and 6 (bounded

uncertainty).

B.1 In the absence of inertia

First of all, we examine the case of robots controlled in velocity along their paths.

In Chapter 4, the acyclicity of G is key as it is even necessary to the existence of

the control law (see Theorem 4.2.1). A relaxed sufficient condition on the priority

graph for all the results of Chapter 4 to hold is that the maximum distance traveled

by a robot in one time slot satisfies:

max
i∈R

vi ≤ ρG (B.1)

In particular, it is necessary for the safety margin to be strictly positive. In practice,

to satisfy this assumption, one can choose a sufficiently small time slot length (the

maximum distance traveled by a robot in one time slot is proportional to the time

slot length). However, due to actuators limitations, there is a lower bound in time

slot length. Assume that the minimal time slot length is chosen. A robot i either

is stopped or travels the distance vi which can be seen as the control resolution.

Basically, Equation (B.1) states that the control resolution needs to be lower than

the safety margin ρG.

All the results of Section B.1 (existence, priority preservation, optimality, live-

ness) are extended under Condition (B.1) and proofs are provided. The key idea is

to use the fact that if the priority graph is feasible with a strictly positive margin

ρG, then the local priority graph is acyclic at all configurations. Hence, it is al-

ways possible to move forward some robot provided the control resolution is small

enough. The evolution of the multi robot system under control law fG with cyclic

priorities is depicted in Figure B.1 (the evolution of the local priority graph is also

represented). Figure B.2 depicts the trajectory in the coordination space.
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Figure B.1: A three-robot system with cyclic assigned priorities: 1 � 2, 2 � 3, and

3 � 1. Robots are controlled under control law fG. The top drawings show the

evolution of the local priority graph and the bottom drawings depict the evolution of

the robots along their paths.
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Figure B.2: Trajectory in the coordination space for the three-robot system under

control law fG of Figure 4.2.
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B.1.1 Existence

Theorem B.1.1 (Control law existence). Given a feasible priority graph G

with a strictly positive feasibility margin satisfying Condition (B.1), Equa-

tion (4.5) uniquely defines a control law fG : χ→ V .

Proof. Take a feasible priority graph satisfying Condition (B.1). By Lemma 3.2.1,

G|x,ρG
is acyclic at all configurations x ∈ χ. Moreover, by definition of the local

priority graph and as Condition (B.1) is satisfied, Equation (4.5) is equivalent to:

fGi (x) :=

0 if ∃(j, i) ∈ E(G|x,ρG
), t ∈ [0, 1] s.t. (x+ t (viei + fj(x)ej)) ∈ χobs

j�i

vi else.

(B.2)

Since G|x,ρG
is a directed acyclic graph, there exists a topological ordering of the

graph such that for every edge (j, i) ∈ E(G|x,ρG
), j comes before i in the ordering.

Hence, following the topological order induced by G|x,ρG
, it is possible to compute

fGi (x) for all i ∈ R iteratively. As a result, Equation (B.2) uniquely defines a control

law fG : χ→ V .

B.1.2 Safety

Theorem B.1.2 (Priority preservation). Given a feasible priority graph G

with a strictly positive feasibility margin satisfying Condition (B.1), χfree
G is

positively invariant for the system under control law fG:

∀x ∈ χfree
G ,∀t ≥ 0, φ(t, x, fG) ∈ χfree

G (B.3)

The proof is omitted as it is exactly the same as the proof of Theorem 4.2.2.

Indeed, in the proof of Theorem 4.2.2, the acyclicity of the priority graph is useful

only to ensure that the control law fG is well defined. Condition (B.1) precisely

ensures that the control law fG is well defined even if priorities are cyclic (see

Theorem B.1.1).

B.1.3 Optimality

Theorem B.1.3 (Optimality). Given a feasible priority graph G with a strictly

positive feasibility margin satisfying Condition (B.1), the control law fG is

optimal for the priority graph G.

The proof is omitted as it is exactly the same as the proof of Theorem 4.2.3.

Again, in the proof of Theorem 4.2.3 is useful only to ensure that the control law

fG is well defined which is already guaranteed by Condition (B.1).
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B.1.4 Liveness

Theorem B.1.4 (Liveness). Given a feasible priority graph G with a strictly

positive feasibility margin satisfying Condition (B.1) and a configuration x0 ∈
χfree
G , there exists T > 0 such that:

φ(T, x0, fG) ∈ χgoal (B.4)

Proof. Take a feasible priority graph G satisfying Condition (B.1). First of all, note

that by Lemma 3.2.1, the local priority graph of radius ρG > 0 is acyclic at all

configurations. Take a configuration x0 ∈ χfree
G . Define the set I(t) ⊂ R defined as

follows for all t ≥ 0:

I(t) :=
{
i ∈ R : φi(t, x0, fG) < xobs

i

}
(B.5)

Theorem B.1.4 is equivalent to the existence of T > 0 such that:

I(T ) = ∅ (B.6)

First of all, note that the set I(t) decreases through time, as the trajectory

of robots is non-decreasing. At every time slot k, if I(k) is not empty, consider

i∗, a maximal element of the (acyclic) sub-graph of G|φ(k,x0,fG),ρG
retaining only

vertices in I(k). Remember that, by definition of the local priority graph and as

Condition (B.1) is satisfied, the definition of the control law is equivalent to:

fGi (x) =

0 if ∃(j, i) ∈ E(G|x,ρG
), t ∈ [0, 1] s.t. (x+ t (viei + fj(x)ej)) ∈ χobs

j�i

vi else.

(B.7)

Hence, by construction of i∗, we have fGi∗ (φ(k, x0, fG)) = vi∗ , so that:

φi∗(k + 1, x0, fG)− φi∗(k, x0, fG) = vi∗ (B.8)

Hence, at every time slot k, there is at least one robot i∗ ∈ I(k) traveling

distance vi∗ . As there is initially a finite number of robots in I(0) and as each robot

i has a finite distance to travel to reach position xobs
i , it is guaranteed that I(t) gets

empty in finite time, i.e., the multi robot system reaches χgoal in finite time.

B.2 Under kinodynamic constraints

When robots are controlled in acceleration, the control law gG proposed in Chapter 5

is well defined, safe and robust even if the priority graph G is not feasible. However,

the liveness guarantee of Theorem 5.2.3 has been proved under the assumption that

priorities are acyclic. Actually, liveness is still guaranteed under a less restrictive
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assumption on the priority graph. Again, the assumption is on the safety margin

of the priority graph:

max
i∈R

sup
t∈R+

φx,i(t, 0,uimpulse
i ) ≤ ρG (B.9)

Basically, under control in acceleration, supt∈R+ φx,i(t, 0,u
impulse
i ) represents the

control resolution as it is the maximum distance traveled by a robot starting from

stop and applying an impulse control considering all robots. Again, Equation (B.9)

states that the control resolution needs to be lower than the safety margin. Liveness

under Condition (B.9) is proved in the sequel.

Theorem B.2.1 (Liveness). Given a feasible priority graph G with a strictly

positive feasibility margin satisfying Condition (B.9) and an initial brake safe

state s ∈ BG, there exists T > 0 such that:

φx(T, s, gG) ∈ χgoal (B.10)

We start with some lemmas.

Lemma B.2.1. Given i ∈ R, si ∈ Si and ui ∈ Ui taking values in {ui, ui},
the following implication holds:[

∀k ∈ N, φx,i(k, si,ui) ≤ xobs
i

]
⇒
[
∃k0 ∈ N : ∀k ≥ k0,ui(k) = ui

]
(B.11)

Proof. We reason by contraposition. Consider i ∈ R, si ∈ Si and ui ∈ Ui taking

values in {ui, ui}. Assume that ∀k0 ∈ N, ∃k ∈ N, k ≥ k0 : ui(k) = ui. Then, we

can build an infinite sequence of slots {k0
1, k

0
2, ...} where ui takes value ui. At each

of them, the increase in φx,i(k, si,ui) within the slot is at least of φx,i(1, 0,ui) > 0.

Hence, we have limk→+∞ φx,i(k, si,ui) = +∞ and in particular φx,i(k, si,ui) > xobs
i

for some k ∈ N.

Lemma B.2.2. Given i ∈ R, for all si ∈ Si, there exists k1 ∈ N such that:

∀k ≥ k1, φv,i(k, si,ui) = 0 (B.12)

Proof. Take i ∈ R, si ∈ Si and consider the trajectory of robot i under control ui.
At each time slot, there are two options:

• the velocity of robot i vanishes within the slot;
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• the variation of the velocity of robot i within the slot is ui < 0.

In conclusion, the velocity of robot i vanishes in finite time.

Lemma B.2.3. Given a priority graph G ∈ G satisfying Condition (B.9) and

a state s ∈ S, for all i ∈ R satisfying πv,i(s) = 0, we have:

gGi (s) =

ui if ∃(j, i) ∈ E(G|πx(s),ρG
), ∃t ≥ 0 s.t. φx(t, s, ũi) ∈ χobs

j�i

ui else.
(B.13)

Proof. Take a priority graphG ∈ G satisfying Condition (B.9), a state s = (x, v) ∈ S
and i ∈ R satisfying πv,i(s) = 0. By construction of gG, we have:

gGi (s) :=

ui if ∃(j, i) ∈ E(G), ∃t ≥ 0 s.t. φx(t, s, ũi) ∈ χobs
j�i

ui else.
(B.14)

Hence, we have to prove that for all (j, i) ∈ E(G), if φx(t, s, ũi) ∈ χobs
j�i for some

t ≥ 0, then we have (j, i) ∈ E(G|x,ρG
). We will prove this by contraposition.

Take (j, i) ∈ E(G) and assume that (j, i) /∈ E(G|x,ρG
), then we have:

x+ ρGei ∈ χfree
j�i (B.15)

By assumption, we have πv,i(s) = 0. Hence, we obtain for all t ≥ 0:

φi(t, s, ũi) = si + φi(t, 0, ũi) (B.16)

Using Condition (B.9) and as t 7→ φx,j(t, s, ũi) is non-decreasing, we obtain:

φx,i(t, s, ũi) ≤ xi + ρG (B.17)

φx,j(t, s, ũi) ≥ xj (B.18)

By Property 2.2.1, Equation (B.15) implies that φx(t, s, ũi) ∈ χfree
j�i for all t ≥ 0.

Lemma B.2.4. Given s ∈ S, for all i, j ∈ R, for all u ∈ U, the following

implication holds:[
∃t ≥ 0 : φx(t, s,u) ∈ χobs

j�i

]
⇒
[
πx,j(s) < xobs

j

]
(B.19)

Proof. Take s ∈ S, i, j ∈ R and u ∈ U. The flow t 7→ φx(t, s,u) is non-decreasing.

Hence, we have:

φx,j(t, s,u) ≥ φx,j(0, s,u) = πx,j(s) (B.20)

Assume that φx(t, s,u) ∈ χobs
j�i for some t ≥ 0. It implies that φx,j(t, s,u) < sup{xj :

x ∈ χobs
j�i} ≤ xobs

j . By transitivity, we obtain πx,j(s) < xobs
j .
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Proof of Theorem B.2.1. Take a priority graph G ∈ G satisfying Condition (B.9).

Remember that the local priority graph with radius ρG is acyclic at all configuration

by Lemma 3.2.1. Consider the set I(t) defined as follows:

∀t ∈ R+, I(t) :=
{
i ∈ R : φx,i(t, s, gG) < xobs

i

}
(B.21)

We prove Theorem B.2.1 by contradiction. Theorem B.2.1 is equivalent to the

existence of T > 0 such that:

I(T ) = ∅ (B.22)

Assume that for all t ≥ 0, I(t) 6= ∅. Then, consider I defined as follows:

I := ∩t≥0I(t) 6= ∅ (B.23)

We have for all i ∈ I,

∀k ∈ N, φx,i(k, s, gG) < xobs
i (B.24)

By Lemma B.2.1, a necessary condition for the above equation to be satisfied is

that for all i ∈ I, there exists k0
i ∈ N such that:

∀k ≥ k0
i , g

G
i (φ(k, s, gG)) = ui (B.25)

Hence, for k0 := maxi∈I k0
i , we have:

∀i ∈ I, ∀k ≥ k0, gGi (φ(k, s, gG)) = ui (B.26)

By Lemma B.2.2, the velocity of all robots i ∈ I will vanish in finite time. There

exists k1 ≥ k0 such that:

∀k ≥ k1, gGi (φ(k, s, gG)) = ui (B.27)

φv,i(k, s, gG) = 0 (B.28)

Take k ≥ k1 big enough, so that I(k) = I. By Lemma B.2.3, for all i ∈ I, there

exists (j, i) ∈ E(G|φx(k,s,gG),ρG
) such that φx(R+, φ(k, s, gG), ũi) ∩ χobs

j�i 6= ∅ and we

have necessarily φx,j(k, s, gG) < xobs
j by Lemma B.2.4, i.e., j ∈ I(k) = I. As a

result, G|φx(k,s,gG),ρG
should be cyclic (there would be a cycle involving vertices in

I). It is absurd.

B.3 Under uncertainty in control and sensing

Again, the control law ĝG under the scenario of bounded uncertainty in control and

sensing, as proposed in Chapter 6 is well defined, safe and robust even if the priority

graph G is not feasible. However, if the priority graph is feasible but contains cycles,

we need to make an additional assumption in order to prove liveness. First of all,

we assume that the observation signal y is such that for all i ∈ R and k ∈ N, yxi (k)
is an interval of length σxi . We say σx is the observation precision on the position.

The condition to ensure liveness is:

max
i∈R

(
σxi + sup

t∈R+

φx,i(t, 0,uimpulse
i ,di)

)
≤ ρG (B.29)
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Basically, under control in acceleration with uncertainty, supt∈R+ φx,i(t, 0,u
impulse
i ,di)

represents the control resolution as it is the maximum distance traveled by a robot

starting from stop and applying an impulse control under maximal disturbance con-

sidering all robots. However, compared to Equation (B.9), a new term appears: σxi ,

the precision on the position. Hence, Equation (B.29) states that the sum of the

control resolution and the observation precision on the position needs to be lower

than the safety margin. It is not surprising that the precision on the position ap-

pears in the liveness condition. Consider the scenario of Figure B.3 where priorities

are cyclic. As the uncertainty in position is large, it is very similar to as if robots

were much larger than they are. Hence, one can easily see that a deadlock can

possibly occur.

1

2

3

Figure B.3: A three-robot scenario where Condition (B.29) is not respected. Even if

the priority graph is feasible, due to a large uncertainty on position, liveness cannot

be guaranteed and robots following the control law will be possibly stuck in a deadlock

configuration.

Liveness under Condition (B.29) is proved in the sequel.

Theorem B.3.1 (Liveness). Given a feasible priority graph G with a strictly

positive feasibility margin ρG satisfying Condition (B.29), an initial brake safe

non-deterministic state ŝ ∈ B̂G and an observation signal y ∈ Y, there exists

T > 0 such that:

φ̂x(T, ŝ, ĝG,y) ∈ 2χgoal
(B.30)

We start with some lemmas.
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Lemma B.3.1. Given i ∈ R, ŝi ∈ 2Si, yi ∈ Yi and ui ∈ Ui taking values in

{ui, ui}, the following implication holds:[
∀k ∈ N, inf φ̂x,i(k, ŝi,ui,yi) ≤ xobs

i

]
⇒
[
∃k0 ∈ N : ∀k ≥ k0,ui(k) = ui

]
(B.31)

Proof. We reason by contraposition. Consider i ∈ R, si ∈ Si, yi ∈ Yi and ui ∈
Ui taking values in {ui, ui}. Assume that ∀k0 ∈ N,∃k ∈ N, k ≥ k0 : ui(k) =
ui. Then, we can build an infinite sequence of slots {k0

1, k
0
2, ...} where ui takes

value ui. At each of them, the increase in inf φ̂x,i(k, ŝi,ui,yi) within the slot is

at least of φx,i(1, 0,ui,di) > 0 (see Assumptions (6.4) and (6.5)). Hence, we have

limk→+∞ inf φ̂x,i(k, ŝi,ui,yi) = +∞ and in particular inf φ̂x,i(k, ŝi,ui,yi) > xobs
i

for some k ∈ N.

Lemma B.3.2. Given i ∈ R, for all ŝi ∈ 2Si and yi ∈ Yi, there exists k1 ∈ N
such that:

∀k ≥ k1, sup φ̂v,i(k, ŝi,ui,yi) = 0 (B.32)

Proof. Take a priority graph G ∈ G satisfying Condition (B.29), a robot i ∈ R,

a non-deterministic state ŝi ∈ 2Si and a control yi ∈ Yi. Consider the trajectory

t 7→ φ(t, ŝi,ui,yi) of robot i under control ui. At each time slot, there are two

options:

• sup φ̂v,i(t, ŝi,ui,yi) vanishes within the slot;

• the variation of sup φ̂v,i(t, ŝi,ui,yi) within the slot is lower than ui + di < 0
(see Assumption (6.6)).

In conclusion, sup φ̂v,i(t, ŝi,ui,yi) vanishes in finite time.

Lemma B.3.3. Consider a non-deterministic state ŝ ∈ 2S included in an open

parallelepiped whose side along axis i has length σi. Then, for all i ∈ R satis-

fying πv,i(sup ŝ) = 0, we have:

ĝGi (ŝ) :=

ui if ∃(j, i) ∈ E(G|πx(inf ŝ),ρG
),∃t ≥ 0 s.t. φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χobs

j�i

ui else.

(B.33)

159



Appendix B. Extension to feasible cyclic priorities

Proof of Lemma B.3.3. Take ŝ ∈ 2S and i ∈ R satisfying πv,i(sup ŝ) = 0, take i ∈ R
and (j, i) ∈ E(G). By construction of ĝG, we have:

ĝGi (ŝ) :=

ui if ∃(j, i) ∈ E(G), ∃t ≥ 0 s.t. φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χobs
j�i

ui else.
(B.34)

Hence, we have to prove that for all (j, i) ∈ E(G), if φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χobs
j�i

for some t ≥ 0, then we have (j, i) ∈ E(G|πx(inf ŝ),ρG
). We will prove this by

contraposition.

Assume that (j, i) /∈ E(G|πx(inf ŝ),ρG
), then we have:

πx(inf ŝ) + ρGei ∈ χfree
j�i (B.35)

By assumption, we have πv,i(sup ŝ) = 0, hence πv,i(s̃upii(ŝ)) = 0. As the length

of ŝ along axis xi is σxi , we have πx,i(s̃upii(ŝ)) ≤ πx(inf ŝi) + σxi . Hence, by order-

preservation, we obtain for all t ≥ 0:

φx,i(t, s̃upi(ŝ), ũi, d̃i) ≤ πx(inf ŝi) + σxi + φx,i(t, 0, ũii, d̃ii) (B.36)

By Equation (B.29), we obtain:

φx,i(t, s̃upi(ŝ), ũi, d̃i) ≤ πx(inf ŝi) + ρG (B.37)

As t 7→ φj(t, s̃upi(ŝ), ũi, d̃i) is non-decreasing, we obtain:

φx,j(t, s̃upi(ŝ), ũi, d̃i) ≥ πx(inf ŝj) (B.38)

By Property 2.2.1, Equation (B.35) implies that φx(t, s̃upi(ŝ), ũi, d̃i) ∈ χfree
j�i for all

t ≥ 0.

Lemma B.3.4. Given ŝ ∈ 2S, for all i, j ∈ R, for all u ∈ U and d ∈ D, the

following implication holds:[
∃t ≥ 0 : φx(t, s̃upi(ŝ),u,d) ∈ χobs

j�i

]
⇒
[
πx(inf ŝj) < xobs

j

]
(B.39)

Proof. Take ŝ ∈ 2S , i, j ∈ R, d ∈ D and u ∈ U. The flow t 7→ φx(t, s̃upi(ŝ),u,d))
is non-decreasing. Hence, we have:

φx,j(t, s̃upi(ŝ),u,d) ≥ φx,j(0, s̃upi(ŝ),u,d) = πx(s̃upij(ŝ)) = πx(inf ŝj) (B.40)

Assume that φx(t, s̃upi(ŝ),u,d) ∈ χobs
j�i for some t ≥ 0. It implies that φx,j(t, s̃upi(ŝ),u,d) <

sup{xj : x ∈ χobs
j�i} ≤ xobs

j . By transitivity, we obtain πx(inf ŝj) < xobs
j .
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Proof of Theorem B.3.1. Take a priority graph G ∈ G satisfying Condition (B.29).

Consider the set I(t) defined as follows:

∀t ∈ R+, I(t) :=
{
i ∈ R : inf φ̂x,i(t, ŝ, ĝG,y) < xobs

i

}
(B.41)

We prove Theorem B.3.1 by contradiction. Theorem B.3.1 is equivalent to the

existence of T > 0 such that:

I(T ) = ∅ (B.42)

Assume that for all t ≥ 0, I(t) 6= ∅. Then, consider I defined as follows:

I := ∩t≥0I(t) 6= ∅ (B.43)

We have for all i ∈ I,

∀k ∈ N, inf φ̂x,i(k, ŝ, ĝG,y) < xobs
i (B.44)

By Lemma B.3.1, a necessary condition for the above equation to be satisfied is

that for all i ∈ I, there exists k0
i ∈ N such that:

∀k ≥ k0
i , ĝ

G
i (φ̂(k, ŝ, ĝG,y)) = ui (B.45)

Hence, for k0 := maxi∈I k0
i , we have:

∀i ∈ I,∀k ≥ k0, ĝGi (φ̂(k, ŝ, ĝG,y)) = ui (B.46)

By Lemma B.3.2, the velocity of all robots i ∈ I will vanish in finite time. There

exists k1 ≥ k0 such that:

∀k ≥ k1, ĝGi (φ̂(k, ŝ, ĝG,y)) = ui (B.47)

sup φ̂v,i(k, ŝ, ĝG,y) = 0 (B.48)

Take k ≥ k1 big enough, so that I(k) = I. By Lemma B.3.3, for all i ∈ I, there exists

(j, i) ∈ E(G| inf φ̂x(k,ŝ,ĝG,y),ρG
) such that φx(R+, s̃upi(φ̂(k, ŝ, ĝG,y)), ũi, d̃i)∩χobs

j�i 6= ∅
and we have necessarily inf φ̂x,j(k, ŝ, ĝG,y) < xobs

j by Lemma B.3.4, i.e., j ∈ I(k) =
I. As a result, G| inf φ̂x(k,ŝ,ĝG,y),ρG

should be cyclic (there would be a cycle involving

vertices in I). It is absurd.
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Résumés en français





Coordination de robots mobiles  

par affectation de priorités 

RESUME : Depuis la fin des années 1980, le développement de véhicules autonomes est un champ de 

recherche très actif dans la plupart des grands pays industrialisés. La diminution du nombre 

d’accidents, des temps de trajet plus courts, une meilleure efficacité énergétique et des besoins en 

infrastructure plus limités, sont autant d’effets socio-économiques espérés de leur déploiement. Des 

formes de coopération inter-véhicules et entre les véhicules et l’infrastructure routière sont 

nécessaires au fonctionnement sûr et efficace du système de transport dans sa globalité. Cette thèse 

s’intéresse à une forme de coopération particulière en étudiant la coordination de robots mobiles 

aux intersections. La majorité des systèmes de coordination existants planifie une trajectoire que les 

robots doivent exécuter afin d’assurer l’absence de collision. C’est une approche classique de la 

planification, qui est alors considérée comme un mécanisme de génération de l’action. Dans cette 

thèse, seules les priorités entre les robots sont planifiées – l’ordre relatif de passage dans 

l’intersection – ce qui est bien plus faible car un grand nombre de trajectoires respectent les même 

priorités. Plus précisément, les priorités encodent les classes d’homotopie de solutions au problème 

de coordination. Affecter les priorités revient à choisir une certaine classe d’homotopie pour 

résoudre le problème de coordination sans planifier une trajectoire particulière. Une fois les priorités 

affectées, les robots suivent une loi de contrôle qui s’assure de leur respect, c’est-à-dire que la 

trajectoire effectuée appartient bien à la classe d’homotopie choisie. Il en découle un système de 

coordination robuste, capable de gérer toute une classe d’événements imprévisibles de façon 

réactive, ce qui est particulièrement adapté à la coordination de véhicules autonomes aux 

intersections où voitures, transports en commun et  piétons partagent la route. 

PARTIE I : La première partie de cette thèse s'intéresse à définir formellement une notion de priorité 

pour le problème de coordination de robots mobiles le long de chemins fixés. Dans le langage 

commun des automobilistes, la priorité entre deux véhicules définit leur ordre de passe. Pour définir 

formellement le concept dans le problème de coordination qui nous intéresse, nous utilisons 

l'approche standard par l'espace de coordination qui transforme le problème de coordination dans 

l'espace réel en un problème de recherche de chemin dans un espace abstrait appelé l'espace de 

coordination, de dimension n où n désigne le nombre de véhicule coordonnés. L'évitement de 

collision dans l'espace réel est équivalent à l'évitement d'une zone de collision dans l'espace de 

coordination. Cette dernière a une structure bien particulière, puisqu'elle est constituée d'une union 

de cylindres de collision, chacun correspondant aux collisions potentielles entre chaque couple de 

robots. La contribution de cette première partie consiste à utiliser cette structure géométrique 

particulière afin d'équiper l'espace de coordination d'une notion de priorité. Nous proposons un 

nouveau cadre théorique – basé sur la notion de priorité – pour étudier le problème de coordination. 

Comme un chemin dans l'espace de coordination doit éviter chaque cylindre de collision, il doit 

nécessairement passer d'un côté ou de l'autre de ce dernier. Ainsi, nous montrons qu'un chemin sans 

collision dans l'espace de coordination induit une relation binaire entre chaque couple de robots. Il 

apparait alors que choisir de quel coté passer par rapport à un cylindre de collision est équivalent à 

choisir l'ordre de passage entre deux robots, justifiant ainsi d'appeler priorité cette relation binaire. 

Nous montrons alors deux résultats fondamentaux de la relation de priorité. Le premier stipule que 

l'ensemble des chemins sans collision dans l'espace de configuration respectant des priorités 



données forme une classe de chemins homotopiques, c'est-à-dire continument déformables les uns 

vers les autres tout en respectant les priorités données. Ainsi, fixer les priorités  revient à choisir une 

classe d'homotopie particulière pour résoudre le problème de coordination : les priorités structurent 

topologiquement l’espace de coordination. Le second résultat porte sur la question suivante: existe-

t-il nécessairement une solution au problème de coordination respectant des priorités données ? 

Nous mettons en évidence que des cycles dans les priorités peuvent générer des chaînes de blocage 

où chaque robot de la chaîne est arrêté et attend le suivant pour pouvoir continuer la traversée de 

l’intersection. Cependant, l'absence de cycles n'est pas une condition nécessaire à l'existence d'une 

solution respectant des priorités données, et nous présentons une condition nécessaire et suffisante 

– une caractérisation – des priorités dites faisables, c'est-à-dire pour lesquelles il existe bien une 

solution au problème de coordination satisfaisant les priorités données. Cette caractérisation raffine 

le rôle des cycles dans la formation de blocage. Une façon géométrique de comprendre pourquoi 

tous les graphes de priorités ne sont pas faisables est de noter que selon la position relative des 

cylindres de collision dans l'espace de configuration, le choix de passer d'un coté ou de l'autre de 

chaque cylindre, ne peut pas toujours se faire indépendamment pour chacun d'eux. Enfin, nous 

montrons que choisir des priorités faisables résout entièrement le problème de l’évitement de 

blocage : plus précisément, soit les priorités choisies ne sont pas faisables et le système va 

inévitablement atteindre une configuration de blocage, soit elles sont faisables auquel cas il est 

garanti que le système ne peut jamais se trouver bloqué. C’est une propriété très intéressante dans 

la mesure où l’évitement de blocage est un problème complexe, qu’il est difficile de résoudre de 

façon réactive. En définitive, cette partie de la thèse justifie l’utilisation des priorités comme plan de 

coordination. Contrairement aux approches traditionnelles de planification de trajectoires, le plan est 

ici le graphe de priorités résumant de façon synthétique la stratégie de coordination en précisant 

l’ordre relatif de passage entre les robots, et non pas leurs trajectoires spatio-temporelles. Ce plan ne 

peut être simplement exécuté par un contrôleur en charge du suivi de trajectoires puisque les 

trajectoires proprement dites ne sont pas planifiées. Le plan de coordination doit être interprété, 

utilisé par les robots comme une ressource de coordination afin de traverser l’intersection. Ceci est le 

sujet de la seconde partie de la thèse qui s’intéresse au contrôle de robots à priorités fixées. 

PARTIE II : Dans la seconde partie de cette thèse, nous supposons disposer d’un système de robots 

mobiles se déplaçant le long de chemins fixés et dont les priorités telles que définies en première 

partie sont fixées et supposées faisables. Nous nous proposons alors de mettre au point une loi de 

contrôle permettant aux robots de traverser l’intersection en respectant les priorités données. La loi 

de contrôle doit assurer que le chemin parcouru par le système dans l’espace de coordination reste 

bien dans la classe d’homotopie correspondant aux priorités fixées. Dans un premier temps, les 

robots sont supposés contrôlés en vitesse et une loi de type Bang-Bang est proposée. Celle-ci 

consiste pour chaque robot à tenter d’avancer à vitesse maximale et à s’arrêter aussi tard que 

possible, juste à temps pour laisser passer un robot prioritaire. Cette loi de contrôle garantit  le 

respect des priorités, l’optimalité à priorités fixées de la trajectoire résultante, et assure également 

que tous les robots traverseront l’intersection en temps fini pourvu que les priorités fixées soient 

bien faisables. Dans ces premiers résultats, l’inertie des robots est totalement négligée puisqu’ils 

sont supposés être capables de s’arrêter instantanément. C’est pourquoi une loi de contrôle pour 

des robots contrôlés en accélération est ensuite proposée, intégrant les distances de freinage, et 

consistant à anticiper le besoin de freiner pour laisser passer des robots prioritaires. La sécurité et la 

traversée en temps fini sont à nouveau garanties. D’autre part, cette loi de contrôle présente une 



robustesse particulière vis-à-vis de toute une classe d’événements imprévus qui nécessitent le 

freinage d’un, de plusieurs, ou de tous les robots. A tout moment, un robot peut freiner pour réagir à 

un événement imprévu (perte de signal des capteurs, obstacle détecté sur la voie, etc.), et les autres 

robots sont assurés de respecter malgré tout les priorités fixées en appliquant simplement la loi de 

contrôle. C’est une propriété originale en comparaison avec les méthodes standards de coordination 

par planification de trajectoires qui nécessitent soit le suivi de la trajectoire planifiée – ce qui n’est 

pas possible si un robot doit freiner pour réagir à un événement imprévu –, soit une replanification 

coûteuse en temps de calcul et ne garantissant pas une réponse du système en temps réel. Le 

dernier chapitre de cette partie s’intéresse enfin aux cas de robots toujours contrôlés en 

accélération, mais où des incertitudes bornées sont présentes à la fois sur le contrôle des robots et 

sur les observations. Dans ce cadre non déterministe, la loi de contrôle proposée présente toujours 

les propriétés recherchées de sécurité, de robustesse et de garantie de traversée en temps fini.  

PARTIE III : La première partie de cette thèse a suggéré l’utilisation des priorités pour guider les 

robots au sein de l’intersection et la deuxième partie a fourni des solutions au contrôle de robots à 

priorités fixées, laissant de coté de nombreux aspects de la mise au point d’un système de 

coordination multi-robot. Tout d’abord, un tel système est ouvert puisque des robots arrivent dans 

l’intersection et en sortent au cours du temps. Ainsi, les priorités doivent être affectées de façon 

dynamique. De plus, l’affectation des priorités et le contrôle des robots à priorités fixées doivent 

s’exécuter en parallèle. La dernière partie de cette thèse se propose donc de fournir une architecture 

de contrôle pour un système de coordination de robots mobiles basé sur l’affectation de priorités. 

Nous adoptons une architecture hybride comprenant trois couches : une couche purement 

délibérative gérée par une infrastructure centrale, une couche purement réactive distribuée sur 

chaque robot, et une couche intermédiaire – le séquenceur – également distribuée et jouant un rôle 

d’interface. Le contrôleur d’intersection est l’infrastructure centrale en charge d’autoriser les robots 

à pénétrer dans la zone de contrôle et d’affecter les priorités. C’est une tâche purement délibérative 

puisqu’elle consiste à raisonner sur le futur pour effectuer un choix efficace d’affectation des 

priorités. La tâche du séquenceur des robots est de communiquer avec le contrôleur de l’intersection 

afin d’obtenir le droit d’entrer dans la zone de contrôle et d’être affecté une priorité vis-à-vis des 

autres robots. La couche réactive implémentée par les robots consiste en un ensemble de 

comportements simples implémentés par chacun d’eux. Tout d’abord, un robot ne doit pas entrer 

dans la zone de contrôle tant qu’il n’y a pas été accepté par le contrôleur d’intersection. D’autre part, 

une fois accepté et affecté une priorité par rapport aux autres robots, il doit implémenter une loi de 

contrôle assurant le respect des priorités fixées telle que celles présentées en deuxième partie. Enfin, 

le robot peut également implémenter d’autres comportements lui permettant de réagir à son 

environnement comme la détection d’obstacles ou de piétons sur la voie, l’amenant par exemple à 

freiner. La robustesse au freinage de la loi de contrôle présentée en deuxième partie apparait alors 

particulièrement intéressante puisqu’elle autorise un comportement du robot à requérir un freinage 

– par exemple pour éviter un obstacle sur la voie – tout en conservant la garantie du respect des 

priorités, et donc l’absence de collisions. De plus, une fois que l’élément requérant le freinage a 

disparu, le système peut redémarrer en conservant les mêmes priorités et en appliquant la même loi 

de contrôle sans replanification. Les simulations présentées dans cette dernière partie tentent de 

montrer les avantages qualitatifs significatifs, en termes de robustesse, du système de coordination 

proposé par rapport à l’état de l’art.  





 

Coordination de robots mobiles par affectation de priorités 

RESUME: Depuis la fin des années 1980, le développement de véhicules autonomes est un 

champ de recherche très actif dans la plupart des grands pays industrialisés. La diminution du 

nombre d’accidents, des temps de trajet plus courts, une meilleure efficacité énergétique et des 

besoins en infrastructure plus limités, sont autant d’effets socio-économiques espérés de leur 

déploiement. Des formes de coopération inter-véhicules et entre les véhicules et l’infrastructure 

routière sont nécessaires au fonctionnement sûr et efficace du système de transport dans sa 

globalité. Cette thèse s’intéresse à une forme de coopération particulière en étudiant la 

coordination de robots mobiles aux intersections. La majorité des systèmes de coordination 

existants planifie une trajectoire que les robots doivent exécuter afin d’assurer l’absence de 

collision. C’est une approche classique de la planification, qui est alors considérée comme un 

mécanisme de génération de l’action. Dans cette thèse, seules les priorités entre les robots 

sont planifiées – l’ordre relatif de passage dans l’intersection – ce qui est bien plus faible car un 

grand nombre de trajectoires respectent les même priorités. Plus précisément, les priorités 

encodent les classes d’homotopie de solutions au problème de coordination. Affecter les 

priorités revient à choisir une certaine classe d’homotopie pour résoudre le problème de 

coordination sans planifier une trajectoire particulière. Une fois les priorités affectées, les robots 

suivent une loi de contrôle qui s’assure de leur respect, c’est-à-dire que la trajectoire effectuée 

appartient bien à la classe d’homotopie choisie. Il en découle un système de coordination 

robuste, capable de gérer toute une classe d’événements imprévisibles de façon réactive, ce 

qui est particulièrement adapté à la coordination de véhicules autonomes aux intersections où 

voitures, transports en commun et  piétons partagent la route. 

Mots clés : robots mobiles, systèmes multi-robot, planification de mouvement, espace de 

coordination, graphe de priorités, classe d’homotopie, sécurité, robustesse, architecture hybride 

Priority-Based coordination of mobile robots 

ABSTRACT: Since the end of the 1980’s, the development of self-driven autonomous vehicles 

is an intensive research area in most major industrial countries. Positive socio-economic 

potential impacts include a decrease of crashes, a reduction of travel times, energy efficiency 

improvements, and a reduced need of costly physical infrastructure. Some form of vehicle-to-

vehicle and/or vehicle-to-infrastructure cooperation is required to ensure a safe and efficient 

global transportation system. This thesis deals with a particular form of cooperation by studying 

the problem of coordinating multiple mobile robots at an intersection area. Most of coordination 

systems proposed in previous work consist in planning a trajectory and to control the robots 

along the planned trajectory: that is the plan-as-program paradigm where planning is 

considered as a generative mechanism of action. The approach of the thesis is to plan priorities 

– the relative order of robots to go through the intersection – which is much weaker as many 

trajectories respect the same priorities. More precisely, priorities encode the homotopy classes 

of solutions to the coordination problem. Priority assignment is equivalent to the choice of some 

homotopy class to solve the coordination problem instead of a particular trajectory. Once 

priorities are assigned, robots are controlled through a control law preserving the assigned 

priorities, i.e., ensuring the described trajectory belongs to the chosen homotopy class. It results 

in a more robust coordination system – able to handle a large class of unexpected events in a 

reactive manner – particularly well adapted for an application to the coordination of autonomous 

vehicles at intersections where cars, public transport and pedestrians share the road. 

Keywords : mobile robots, multi robot systems, motion planning, coordination space, priority 

graph, homotopy class, safety, robustness, hybrid architecture 
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