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Résumé 
La protection des zones littorales contre les agressions naturelles provenant de la mer, et no-
tamment contre le risque de submersion marine, est essentielle pour sécuriser les installations 
côtières. La prévention de ce risque est assurée par des protections côtières qui sont conçues et 
régulièrement vérifiées grâce généralement à la définition du concept de niveau de retour d’un 
événement extrême particulier. Le niveau de retour lié à une période de retour assez grande (de 
1000 ans ou plus) est estimé par des méthodes statistiques basées sur la Théorie des Valeurs 
Extrêmes (TVE). Ces approches statistiques sont appliquées à des séries temporelles d’une va-
riable extrême observée et permettent de connaître la probabilité d’occurrence de telle variable.  

Dans le passé, les niveaux de retour des aléas maritimes extrêmes étaient estimés le plus souvent 
à partir de méthodes statistiques appliquées à des séries d’observation locales. En général, les 

séries locales des niveaux marins sont observées sur une période limitée (pour les niveaux ma-
rins environ 50 ans) et on cherche à trouver des bonnes estimations des extrêmes associées à 
des périodes de retour très grandes. Pour cette raison, de nombreuses méthodologies sont utili-
sées pour augmenter la taille des échantillons des extrêmes et réduire les incertitudes sur les 
estimations. En génie côtier, une des approches actuellement assez utilisées est l’analyse régio-
nale.  

L’analyse régionale est indiquée par Weiss (2014) comme une manière très performante pour 
réduire les incertitudes sur les estimations des événements extrêmes. Le principe de cette mé-
thodologie est de profiter de la grande disponibilité spatiale des données observées sur différents 
sites pour créer des régions homogènes. Cela permet d’estimer des lois statistiques sur des 

échantillons régionaux plus étendus regroupant tous les événements extrêmes qui ont frappé un 
ou plusieurs sites de la région. 

De récents travaux sur la collecte et l’utilisation des événements du passé dans les analyses 
statistiques des extrêmes ont montré le rôle essentiel de ceux-ci sur les estimations. Lorsqu’on 
estime des événements extrêmes, les événements historiques, s’ils sont disponibles, doivent être 
considérés pour calculer des niveaux de retour fiables. Etant collectés grâce à différentes 
sources, les événements du passé sont des observations ponctuelles qui ne proviennent d’aucune 
série temporelle. Pour cette raison, dans la plupart des cas, aucune information est disponible 
sur les éventuels événements extrêmes qui sont survenues avant et après cette observation du 
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passé. Cela ainsi que le caractère particulier de chaque événement historique ne permet pas son 
utilisation dans une analyse régionale classique.  

Une méthodologie statistique appelée FAB qui permet de réaliser une analyse régionale tenant 

en compte les données historiques est développée dans ce manuscrit. Elaborée pour des données 
POT (Peaks Over Threshold), cette méthode est basée sur une nouvelle définition d’une durée 
d’observation, appelée durée crédible, locale et régionale et elle est capable de tenir en compte 
dans l’analyse statistique les trois types les plus classiques de données historiques (données 
ponctuelles, données définies par un intervalle, données au dessus d’une borne inferieure). En 
plus, une approche pour déterminer un seuil d’échantillonnage optimal est définie dans cette 
étude. 

La méthode FAB est assez polyvalente et permet d’estimer des niveaux de retour soit dans un 
cadre fréquentiste soit dans un cadre bayésien. Une application de cette méthodologie est réali-

sée pour une base de données enregistrées des surcotes de pleine mer (données systématiques) 
et 14 surcotes de pleine mer historiques collectées pour différents sites positionnés le long des 
côtes françaises, anglaises, belges et espagnoles de l’Atlantique, de la Manche et de la mer du 
Nord. 

Enfin, ce manuscrit examine la problématique de la découverte et de la validation des données 
qui représentent les évènements du passé.   
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Abstract 
The protection of coastal areas against the risk of flooding is necessary to safeguard all types of 
waterside structures and, in particular, nuclear power plants. The prevention of flooding is guar-
anteed by coastal protection commonly built and verified thanks to the definition of the return 
level’s concept of a particular extreme event. Return levels linked to very high return periods 
(up to 1000 years) are estimated through statistical methods based on the Extreme Value Theory 
(EVT). These statistical approaches are applied to time series of a particular extreme variable 
observed and enables the computation of its occurrence probability. 

In the past, return levels of extreme coastal events were frequently estimated by applying sta-
tistical methods to time series of local observations. Local series of sea levels are typically 
observed in too short a period (for sea levels about 50 years) in order to compute reliable esti-

mations linked to high return periods. For this reason, several approaches are used to enlarge 
the size of the extreme data samples and to reduce uncertainties of their estimations. Currently, 
one of the most widely used methods in coastal engineering is the Regional Analysis. 

Regional Analysis is denoted by Weiss (2014) as a valid means to reduce uncertainties in the 
estimations of extreme events. The main idea of this method is to take advantage of the wide 
spatial availability of observed data in different locations in order to form homogeneous regions. 
This enables the estimation of statistical distributions of enlarged regional data samples by clus-
tering all extreme events occurred in one or more sites of the region.  

Recent investigations have highlighted the importance of using past events when estimating 
extreme events. When historical data are available, they cannot be neglected in order to compute 
reliable estimations of extreme events. Historical data are collected from different sources and 
they are identified as data that do not come from time series. In fact, in most cases, no infor-

mation about other extreme events occurring before and after a historical observation is availa-
ble. This, and the particular nature of each historical data, do not permit their use in a Regional 
Analysis. 

A statistical methodology that enables the use of historical data in a regional context is needed 
in order to estimate reliable return levels and to reduce their associated uncertainties. 

In this manuscript, a statistical method called FAB is developed enabling the performance of a 
Regional Analysis using historical data. This method is formulated for POT (Peaks Over 
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Threshold) data. It is based on the new definition of duration of local and regional observation 
period (denominated credible duration) and it is able to take into account all the three typical 
kinds of historical data (exact point, range and lower limit value). In addition, an approach to 
identify an optimal sampling threshold is defined in this study. This allows to get better estima-
tions through using the optimal extreme data sample in the FAB method. 

FAB method is a flexible approach that enables the estimation of return levels both in fre-
quentist and Bayesian contexts. An application of this method is carried out for a database of 
recorded skew surges (systematic data) and for 14 historical skew surges recovered from dif-
ferent sites located on French, British, Belgian and Spanish coasts of the Atlantic Ocean, the 
English Channel and the North Sea. Frequentist and Bayesian estimations of skew surges are 
computed for each homogeneous region and for every site. 

Finally, this manuscript explores the issues surrounding the finding and validation of historical 
data.
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 Chapter 1 

INTRODUCTION 

La connaissance de la probabilité d’occurrence des événements maritimes ex-
trêmes est indispensable pour concevoir et préserver les installations côtières 
et, notamment, les parcs nucléaires en bord de mer contre le risque inondation. 
Ces probabilités peuvent être estimées à partir des éléments de base de la Théo-
rie des Valeurs Extrêmes et, en particulier, du concept de niveau de retour : un 
événement associé à une période de retour de T ans correspond à un événement 
qui a une probabilité d’être dépassé une fois tous les T ans en moyenne. 

Dans le passé, les niveaux de retour des aléas maritimes extrêmes étaient éva-
lués à travers des analyses statistiques locales. Le principe de ces analyses est 
d’utiliser la TVE sur des événements extrêmes observés sur un unique site. Dans 
la plupart de cas, les résultats des applications locales montrent d’importantes 
incertitudes liées aux estimations des événements extrêmes. 

Pour ces raisons, différentes approches alternatives comme l’analyse régionale 
et l’utilisation des données historiques sont actuellement utilisées en génie côtier 
pour améliorer les estimations des événements extrêmes.  

L’analyse régionale est une méthodologie statistique qui permet d’identifier tous 
les événements extrêmes qui se sont produits dans une région et de les utiliser 
dans l’analyse statistique. Cette approche conduit souvent à des estimations plus 
fiables à travers l’exploitation d’un plus grand nombre des données extrêmes. 
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Différents types d’approches régionales ont été proposés depuis le 1960 pour 
les applications environnementales. En ingénierie maritime, l’approche la plus 
récente et complète est l’Analyse Fréquentielle Régionale proposée par Weiss 
(2014).  

L’apport des données historiques dans les analyses statistiques locales est une 
autre approche utilisée qui permet d’obtenir des estimations liées à des incerti-
tudes réduites. La plupart de ces analyses sont permises grâce à l’utilisation du 
concept de seuil de perception (Gaume et al., 2010 ; Payrastre et al., 2011 ; 
Bulteau et al., 2015 ; Hamdi et al., 2015). Cette notion permet d’évaluer la pé-
riode d’observation historique en supposant l’exhaustivité des données histo-
riques au-dessus de ce seuil de perception. 

La combinaison de ces deux approches pourrait contribuer à améliorer encore 
plus les estimations des événements extrêmes. Cependant, l’utilisation des don-
nées historiques dans un contexte régional est un sujet compliqué à traiter en 
génie maritime. En effet, la connaissance de la période d’observation est indis-
pensable pour réaliser une analyse statistique. Les aléas maritimes historiques 
manquent souvent d’informations supplémentaires concernant leurs périodes 
d’observations. Pour cette raison, aucune hypothèse d’exhaustivité ne peut être 
vérifiée et donc le concept de seuil de perception ne peut pas être utilisé. La 
définition d’un nouvel élément qui permet d’estimer de manière crédible la du-
rée d’observation des données historiques est requise. 

Une méthodologie régionale (appelé FAB) basée sur le nouveau concept de du-
rée crédible est développé dans ce manuscrit. Elle permet de considérer tous les 
types des données historiques les plus communes dans l’analyse régionale des 
événements maritimes extrêmes. Enfin, des estimations fréquentistes et 
bayésiennes peuvent être évaluées avec l’application de cette méthode. 
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1.1 Thesis context 

1.1.1 Industrial framework 

The protection of coastal infrastructures and, in particular, nuclear power plants from flooding 
is an overriding priority for EDF. The characterisation of extreme sea weather conditions allows 
the design of suitable protections in order to guarantee the safety of nuclear fleets against flood 
risk.  

 

Fig. 1 - The Blayais Nuclear Power Plant located in the Gironde estuary near Blaye (France) 

EDF manages the flood risk of its nuclear fleets originated by external hazards in accordance 
with the French regulatory framework (ASN, 2013). In particular, different situations of flood 
risk are defined, all of which must be used to design protections in order to preserve the safety 
of nuclear fleets. Flood of a platform on which a nuclear power plant is installed can provoke 
water infiltration in internal rooms containing important elements for the nuclear safety. Floods 
can also indirectly induce negative effects such as the accumulation of different types of debris 
in water intake of pump stations that can cause problems on cooling circuits. 

The flood risk linked to high sea levels requires the computation of a high sea level of reference. 
This high sea level of reference enables the design and the verification of protections for nuclear 
power plants located on the coastline.  
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The French regulatory framework (ASN, 2013) provides guidelines for the evaluation of the 
high sea level of reference of each particular nuclear power station. The high sea level of refer-
ence must be calculated as the sum of the maximum astronomical tide, the upper bound of 70% 
confidence interval of the skew surge associated to a return period of 1000 years and the mean 
sea level trend. If the maximum astronomical tide is evaluated by results obtained from local or 
regional measurement stations, extreme skew surges are evaluated by statistical methods. 

The estimation of skew surges associated to a return period of 1000 years can be performed 
both by local analysis and by regional analysis applied to time series of reliable observations. 
Moreover, the ASN (2013) clarifies that historical skew surges have to be considered in statis-
tical estimations. Local analysis has several limitations as, for instance, a proper consideration 

of outliers (very rare events) in the extreme skew surge estimations. For this reason, the use of 
a regional analysis is allowed by the ASN (2013) only if this statistical methodology is able to 
show the suitability of the observed outliers.  

The processing of a proper regional analysis methodology that allows the exploitation of all 
spatial data and historical skew surges available is needed in order to be able to estimate extreme 
skew surges that properly take into account the outliers. 

1.1.2 Scientific framework 

For the design of defence’s coastal infrastructures, the estimation of the occurrence probability 
of extreme sea water levels is required. Probabilities of extreme events can be computed fol-
lowing the basic elements of Extreme Value Theory (EVT).  

EVT is a specific branch of statistics that was introduced at the beginning of the 20th century by 
Frechet (1927) and Fisher and Tippett (1928). This is later developed by the studies of 

Gnedenko (1943), Weibull (1951), Gumbel (1958), Picklands (1975), Coles (2001) and Beirlant 
et al (2004). EVT provides a set of probability distributions for extremes that enables the esti-
mation of the occurrence probability of extreme events through the use of the concept of return 
period. An event associated to a return period of T years corresponds to the event that has a 
probability 1/T to be exceeded every year over a period of T years or, in other words, it is the 
event that is exceeded on average once in T years.  

Statistical approaches associated to the basic elements of EVT are used in order to estimate sea 
levels linked to high return periods. In particular, the two most common statistical approaches 
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for practical extreme value analysis rely respectively on Block Maxima (or Annual Maxima) 
data and on Peaks Over Threshold data (Coles, 2001). BM data typically converges in a Gen-
eralised Extreme Value distribution while POT data classically converges in a Generalised Pa-
reto Distribution. 

Moreover, direct or indirect estimation of extreme sea levels can be computed depending on 
which variable is analysed. Direct estimations are calculated by statistical analyses applied di-
rectly on sea level without considering its deterministic and stochastic parts. In fact, sea level 
can be schematically represented as the overlap of the predicted astronomical tide and the surge 
(respectively its deterministic and its stochastic part, Fig. 8). Indirect approaches consider sep-
arately these two components of sea level assuming extreme value analyses of surges as more 

convenient. Astronomical tides and surges are successively recombined in order to estimate 
extreme sea levels. In particular, convolution methods might be used to define the probability 
distribution of sea levels in indirect approaches (Kergadallan, 2013). Indirect approaches are 
preferred for sites in which tidal range between high and low tides are significant (Weiss, 2014). 

Regardless of the maritime variable considered, efficient statistical methods and a sufficient 
number of data are required in order to get reliable estimations of extremes. In the past, data 
originated from a single tide gauge was used to fit statistical distributions for a particular site 
and extreme estimations produced were usually full of uncertainties. This may be explained by 
the fact that the duration of recordings could not be too long to estimate reliable extreme varia-

bles. This is the case of sea levels where usually recordings last from 30 to 50 years. For this 
reason, estimations of extreme sea levels (associated to a return period of up to 1000 years) 
achieved by local analysis are in the most part not suitable to be used for engineering applica-
tions.  

Nowadays, innovative statistical methods are used to enlarge the sample of extreme data. Re-
gional analysis and the use of historical data are two relevant approaches that can applied to 
improve extreme estimations.  

Regional analysis is able to exploit the wide availability of data in different locations. Creating 
larger samples of regional data typically results in reduced uncertainties of the extreme estima-
tions. 

Historical data are generally used to extend local samples considering very strong events oc-
curred in the past. In this way, statistical analyses are applied to a bigger sample of extreme 
data.  
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The combination of these two methodologies and therefore a regional analysis with historical 
data allows the extension of extreme data samples, and in effect exploiting all the spatial and 
historical information available. The creation of a regional sample that includes historical data 
further improves the estimations of extreme events. 

1.2 State of art 
In this section, methods developed and currently used for environmental applications by differ-
ent authors on the use of historical data and on the regional analysis are presented. 

1.2.1 Regional Analysis 

Regional Analysis is a statistical methodology that is able to exploit all the data available in a 
region to reduce uncertainties on the extreme estimations. The main idea of Regional Analysis 
is to pool similar sites into a homogeneous region, to create an extended regional data sample 
and, in this way, to estimate a regional distribution.  

Regional methods are widely used to improve statistical estimations of extreme events linked 

to environmental applications since 1960. Dalrymple (1960), Stedinger (1983), Cunnane 
(1988), Madsen and Rosbjerg (1997), Ouarda et al. (1999), De Michele and Rosso (2001), Jav-
elle et al. (2002), Kjeldsen et al. (2002), Merz and Bloschl (2003), Viglione et al. (2007) and 
Saf (2009) use Regional Analysis to compute extreme river discharges, Schaefer (1990), Hosk-
ing and Wallis (1997), Alila (1999) and Borga et al. (2005) to estimate extreme rainfalls and 
Goel et al. (2004), Sotillo et al. (2006) and Escalante-Sandoval (2008) to calculate extreme 
winds.  

Regional Analysis for several maritime variables is more recent. In order to improve estimations 
of extreme significant wave heights, Goda et al. (2010) and Goda (2011) use the regional 
method for 11 sites located in the Japanese east coasts and, in the same way, Val Gelder et al., 

2000 applied a regional methodology to 9 locations of the North Sea. In addition, Regional 
Analysis is applied also to improve extreme estimations of the tsunamis run-up for 114 sites of 
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the Pacific Ocean by Hosking (2012) and of the sea levels for 13 sites located in North Sea by 
Val Gelder and Neykov, 1998. 

Moreover, several applications for skew surges has been achieved mainly in last years. Ber-

nardara et al. (2011) and Bardet et al. (2011) estimate extreme skew surges by a regional anal-
ysis applied to respectively 18 and 21 sites located in French coasts of the Atlantic Ocean and 
the English Channel. 

Last recent regional methodology is proposed and used for skew surges by Weiss et al. (2013) 
and Weiss (2014). This Regional Frequency Analysis approach is based on the index-flood 
method proposed by Dalrymple (1960) permitting to estimate a regional probability distribution 
that is common to all extreme observations up to a local index representing the local specificities 
of a site. Extreme events collected from different sites of a same homogeneous region follow 
the same regional probability (Hosking and Wallis, 1997; Weiss, 2014). Regional probability 

distribution must be computed for independent regional observations to estimate correctly ex-
treme events. For this reason, Weiss (2014) proposes a model to cluster different storms and to 
treat statistically independent regional data in order to avoid a likely redondance of regional 
events. 

Results of the RFA application shown as the regional analysis is able to reduce the uncertainties 
on the estimations of return levels. In particular, results obtained by Weiss (2014) shows that 
return levels computed by a classical local analysis contains 55% more of uncertainties on av-
erage in each site for return levels linked to 100 years of return period compared to the same 
local return levels computed by regional analysis. In addition, local outliers have typically a 
less extraordinary and unique nature in the regional analysis. 

Nevertheless, the RFA approach can be applied only for continuous time series of gauged 
coastal events. Further details of this methodology are set out in Chapter 3. 

1.2.2 Historical data in extreme value analyses 

The use of historical data in the estimation of extreme events represents another method to 
improve the reliability of return levels. Historical data enables typically the extension of ex-
treme data samples in which statistical analyses are applied. Moreover, they permit the consid-
eration of all the extraordinary events that are happened in the past. 



Chapter 1 : INTRODUCTION 8 
The extension of an extreme data sample using historical data is possible only after their col-
lection and their validation. The collection and the validation of historical data is required before 
any statistical analysis that allows the use of them. In addition, the knowledge of the period in 
which historical data are the biggest ones observed is important for the statistical analysis of the 
extreme events (Leese, 1973; Prosdocimi, 2017). For these reasons, the collection and recon-
struction of exceptional historical coastal events (Parent et al., 2007; Pouvreau, 2008; Garnier 
and Surville, 2010; Brehil, 2014; Brehil et al.,2014; Peret and Sauzeau, 2014; Giloy et al., 2017) 

and the reconstruction of local time series during the past period have been performed for sites 
located in the French Atlantic coasts (Ferret, 2016).       

When historical data are collected and validated, they can be used to improve the estimations 

of extreme events. In the past, historical data have been used to get better estimations of extreme 
events by Benson (1950), Condie and Lee (1982), Cohn (1984), Hosking and Wallis (1986a), 
Hosking and Wallis (1986b), Stedinger and Cohn (1986), Stedinger and Baker (1987), Ouarda 
et al. (1998) and Benito et al. (2004). 

Miquel (1981) and Lang et al. (1997) modelled statistically systematic POT data above a thresh-
old and historical POT data above a perception threshold (Renewal Method). This formulation 
enables the use of different types of historical data in a local statistical analysis and it can be 
used only after the verification of the hypothesis of exhaustiveness of the historical data above 
the perception threshold. For coastal events, no local or regional information on the historical 
period is frequently available. 

Some statistical studies enabling the use of historical data in local statistical analysis have been 
developed in hydrology. These studies (Gaume et al., 2010; Payrastre al., 2011; Payrastre et al., 

2013) are based on the concept of the perception threshold and they are performed to estimate 
Bayesian return levels linked to high return period. 

In coastal engineering, the use of historical data was being less developed in the past due to the 
weak availability of historical data. Currently, scientific studies that use coastal historical data 
are increasingly performed to improve estimations of extreme coastal events.  

In particular, Baart et al. (2011) estimate return levels of storm surges using three reconstructed 
historical surges occurred in Dutch coasts in the 18th century.  Hamdi et al. (2015) propose two 
different approaches to consider different types of historical information in statistical analysis. 
The first approach is block maxima method (BMH) and it can be performed for the three typical 
types of historical data. The second approach (the peaks-over-threshold method POTH) allow 
the use of two different types of historical data: historical maxima (HMax) data and over-a-
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threshold supplementary (OTS) data. These methodologies based on the perception threshold 
concept are applied for historical skew surges recovered in the site of La Rochelle (France). 
Bulteau et al. (2015) proposes the HIBEVA method to treat historical data in the Bayesian anal-
ysis of extreme sea levels. This method is elaborate for POT data. Using 8 historical sea levels, 
they show by the use of the historical threshold the value of the historical events in a statistical 
analysis of extreme events.  

All of these studies applied to coastal variables are developed for local analysis.  

1.2.3 Historical data in regional analyses 

More complex and difficult is to find scientific studies that use historical data to get better re-
gional return levels. The combination of these two methodologies has been recently used in 

hydrology by Nguyen et al. (2014) and Sabourin and Renard (2015). In particular, a multivariate 
peaks-over-threshold model is proposed by this last study. This model is applied to four French 
catchments in which historical data are available. Nguyen et al. (2014) propose a regional 
method that allows the use of historical data. This method is based on the regional method 
proposed by Hosking and Wallis (1997) and on the Bayesian approach formulated by Gaume 
et al. (2010) to introduce historical data in a local analysis. The application of this method pro-
vides regional Bayesian estimations adjusted with its credibility intervals. This method is ap-
plied for BM data obtained to two French catchments. 

In coastal engineering, the combination of regional analysis and historical data is actually un-
explored. 

1.3 Main objectives 
A scientific challenge currently exists to define a new methodology that combines two different 
approaches in the statistical estimations of extreme coastal events: regional analysis and the use 

of historical data. This thesis focusses on the development of this new methodology as well as 
its application on a skew surge database. 
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Many scientific studies have highlighted the importance of using historical data in the estima-
tions of extreme coastal events. Exceptional events of the past have to be considered in statisti-
cal analyses of extreme coastal events in order to get reliable estimations. The addition of these 
data in local statistical analysis allows the estimations of extreme events associated to reduced 
uncertainties. In particular, the majority of these studies introduce historical data by the use of 
the concept of “perception threshold”. This concept is based on the exhaustiveness hypothesis 
of the observation period of historical events. Proving this hypothesis is currently challenging 
for the majority of coastal events of the past.  

On the other hand, regional approaches permit the definition of larger extreme data samples 
considering all the extreme events impacting sites within a region. This allows the estimation 

of regional and local return levels associated to reduced uncertainties compared with return 
levels computed through local analyses. Many regional methodologies had been proposed in 
several scientific studies, but the RFA approach (Weiss, 2014) can be considered as one of the 
most complete and flexible regional methodologies for the estimations of extreme coastal 
events.  

However, this approach can only be carried out with a database composed of systematic events. 
In particular, local continuous time series enables the computation of the period of observation 
of the regional events in the RFA approach. This effective regional duration is an essential 
element to estimate regional and local extreme events. On the contrary, historical data repre-

sents typically isolated events of past periods or periods without systematic measurements and 
no further observations are locally available for these periods. In addition, a historical event is 
not always described by an exact data value. Different types of historical data are often available 
and the RFA approach enables the use of exact data values.  

The RFA method is developed for POT data. For this reason, the definition of the sampling 
threshold is important to achieve the best performance of the statistical method. No approaches 
for the identification of the local sampling thresholds are proposed in the RFA method. Another 
limit of the RFA approach is the impossibility to estimate return levels in a statistical Bayesian 
framework. In fact, the RFA approach was only developed to obtain frequentist estimations of 
extreme events. For these reasons, a new methodology, called FAB method, that preserves all 
the basic elements of the RFA approach is proposed in this manuscript.  

The FAB method overcomes all of these issues caused by the addition of historical data in a 

regional analysis. This method is based on the new concept of “credible duration” that allows 
the estimation of the period of observation of the regional extreme data sample. 
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The FAB method permits the use of all most common types of historical data through the for-
mulation of a new regional likelihood. Moreover, a weighting approach based on the definition 
of primary and secondary parameters is proposed to identify optimal local sampling thresholds 
for regional extreme data samples composed by POT data. Finally, frequentist or Bayesian es-
timations can be indifferently computed through the FAB method. The option to get frequentist 
or Bayesian estimations of regional and local return levels is user defined. This method is de-
tailed in Chapter 3. 

An application of the FAB method to a skew surge database composed by systematic and his-
torical data is performed in Chapter 4. Frequentist and Bayesian return levels are estimated and 
appropriately compared. 

Nevertheless, the discovery of valid historical data is a complicated process. Chapter 2 of this 
manuscript discusses in detail the difficulties faced during the collection and the validation of 
historical data, and an example procedure is proposed. 

  





 

 Chapter 2 

HISTORICAL DATA 

Ce chapitre vise à définir la donnée historique, sa nature et les problématiques 
associées à sa collection et validation.  

Dans ce manuscrit, les données historiques sont des données ponctuelles qui 
représentent des évènements remarquables survenus pendant des périodes dans 
lesquelles les instruments de mesure n’ont pas enregistré la variable considérée. 
Les trois types les plus communs de données historiques seront considérés dans 
cette étude : la donnée exacte, un intervalle de valeurs et une borne inférieure 
dépassée par la valeur historique lors de l’événement.  

La connaissance d’une ou plusieurs événements historiques est un sujet difficile 
à traiter. En effet, les données historiques sont liées à différentes types d’infor-
mations et de sources qui ne sont pas le plus souvent facilement interprétables 
et accessibles. Par conséquent, la collecte des données historiques est une pro-
cédure compliquée. Toute l’information historique repérée doit être exploitée et, 
dans la mesure du possible, convertie en données historiques que pourraient être 
ensuite utilisée pour des applications statistiques d’estimation des événements 
extrêmes. Pour ces raisons, une approche de collecte et de validation des don-
nées historiques suivie d’un exemple d’application est présentée dans ce cha-
pitre. La collecte doit être démarrée à partir des bases des données historiques 
déjà existantes et étendue à des sources accessibles. Ensuite, une validation de 
toutes les données collectées doit être réalisée grâce à l’apport essentiel d’un 
historien compétant sur la période examinée. 
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2.1 Historical data 
Historical data are typically quantitative or qualitative isolated data values representing an ex-
ceptional event of the past. In this manuscript, historical data are defined as all quantitative 

isolated data values representing an extraordinary event which has occurred in a period in which 
the considered variable was not recorded by a measuring device. For this reason, historical data 
represent not only events of the past but also exceptional events in which, for whatever reason, 
the measuring device was not working. 

The discovery of historical coastal events that can potentially provoke coastal flooding is a 
major challenge for an engineer dealing with estimations of extreme coastal events. Finding 
quantitative data values of historical events is a complex procedure. Information of a particular 
past event can be used to detect or reconstruct a quantitative data associated to that event. After 
a wide investigation of different sources, this is also possible by means of a good knowledge of 
the period of the event that only a qualified historian may have. An approach to collect and 
validate historical data is proposed in the following chapter.  

Over the last twenty years, there have been a number of extraordinary storms such as Xynthia 

(February 2010) and Lothar and Martin (December 1999) storms, which impacted the European 
Atlantic coasts. These storms caused several disasters and loss of human life. These have been 
sometimes defined in the media as exceptional events that have never previously occurred on 
French coasts until now, however this is incorrect. A wide investigation of all the historical 
storms which impacted a particular site is required to define the rarity of an extreme event. In 
particular, Garnier and Surville (2010) identify several catastrophic flood events on the French 
Atlantic coasts during the last 500 years with a similar vulnerability to the Xynthia storm. For 

this reason, also if a recent exceptional storm can be perceived by people as the strongest event 
ever happened in a particular location, it may have previously occurred because history often 
repeats itself.  

Furthermore, Bulteau et al. (2015) conclude that, considering historical traces in La Rochelle, 
the Xynthia storm is linked to a shorter return period. For this reason, considering all the traces 
of the past in the statistical analysis of extreme events could help to reduce the impact of natural 
calamities along the coasts.  
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Several studies on past coastal floods impacting French coasts (Peret, 2004; Lambert and 
Garcin, 2013; Lang and Coeur, 2014; Peret and Sauzeau, 2014) show the difficulties faced re-
searching useful information to retrace the history. 

Any type of information is useful to retrace the past and to collect, reconstruct or validate a 
historical data. For example, a painting, a newspaper of the time, a preserved manuscript, a 
document from municipal archives, an ecclesiastical text, some private letters sent to ask for 
help from friends and family, a water mark left in an ancient church or building are only a few 
sources containing useful information of the past which can be used to retrace a historical event. 
In addition, the vulnerability evaluation of the society of the period is required in order to un-
derstand the relevance of a particular past event. This can be used to reply to the ever more 
frequently asked question regarding the occurrence of a remarkable flood.  

Although finding the occurrence of an exceptional past event is challenging, the quantification 

of a historical event can be considered more complex. In fact, only a small portion of the iden-
tified historical events may be expressed with some quantitative data, for instance, the case of 
water marks or overflows of sea levels in a coastal town. In these and other cases, many attempts 
have to be performed to retrace and rebuild the numerical value of the considered variable that 
represents the historical event.  

Numerical values of historical events, more simply denominated historical data, can be used in 
the statistical analysis for extreme events. The use of historical data in the statistical analysis 
improves significantly the estimations of extreme coastal events (Bulteau et al., 2015; Hamdi 
et al., 2015). In particular, Hamdi et al. (2015) show as the use of historical data are considered 
at La Rochelle decreases the uncertainties linked to the estimations of extreme skew surges. For 

this reason, the use of past events in the extremes’ statistical analysis is required to get estima-
tions of extreme events as reliable as possible.  

Historical data can be regrouped in three major data types depending on the type of historical 
information found: 

 

• Type I or exact data; 

• Type II or data range; 

• Type III or lower limit value of data. 

 



Chapter 2 : HISTORICAL DATA 16 
Type I is a data point, which can be considered as the most precise type of historical data.  

Type II is a numerical data range that contains the extreme data representing the historical event. 
In this case, two numerical values define the past event: the lower bound and the upper bound. 

This type of data may be considered, for instance, when different historical sources describe the 
same historical event with different quantitative values (Fig. 2). 

Type III represents the minimum value that the extreme data has attained during the historical 
event. In this case, no more information is provided by the sources. This type of data is used 
when, for instance, a flooding of a port or a road is widely documented. In this case, the event 
has at least attained the port/road level. This kind of data, even though it is not very precise, can 
be used in extreme analysis. 

The three different types of historical data can be seen as the result of the wide investigation on 
a multiplicity of sources. By the definition of this three types of most common historical data, 
many documentations of the past that may seem worthless are useful to reconstruct historical 
data exploitable in statistical analysis.  

In any case, the analysis of different sources is complex due to their variety and to their degree 
of reliability. In particular, the reliability of each source depends on many factors. For instance, 
a historical data found in a newspaper tends to be overestimated in order to permit to the journal 
editor of the period to sell as many copies as possible.   

In addition, all types of historical data are often associated to significant uncertainties related to 

the data value. These uncertainties can depend on the accuracy of the source and on the period 
of the event. In fact, when an extreme event of the past is documented, the period of the event 
must be analysed in order to understand, for instance, which measuring instruments were used, 
or the vulnerability of the society of that period to that particular event.  

For these reasons, only a few quantitative information is currently available for coastal variables 
(in particular for skew surges). 
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2.2 Collection and validation ap-
proach 

In the past, several attempts to collect information on historical floods have been made in France 
(Roche et al., 2014; Daubord et al., 2015; Lang et al., 2016) and in UK (Haigh et al., 2015; 
Haigh et al., 2017). 

Nevertheless, the creation of a historical database of coastal events is needed in order to use 
historical data in statistical analyses of extreme events. An approach that enables the collection, 
the reconstruction and the validation of historical events is proposed.  

2.2.1 Historical data collection 

The collection of historical data is a complex task. Historical data can be available, for instance, 
in private, ecclesiastical or municipal archives or in many digitalised newspapers of the time 

and not ever you are aware of the availability of every single source containing important in-
formation on a past event. Besides, many sources refer to the original documents that are not 
readily accessible. If accessible, a supplementary work of reading and interpretation is neces-
sary to extrapolate useful and quantitative data concerning a particular historical event.   

Several phases are required to collect historical data. First, a deep analysis of previous studies 
that have already reviewed some past floods is suggested. This step allows the definition of a 
first basis of most documented extreme events occurred in the past. Then, all available sources 
as newspapers of the time or meteorological bulletins must be analysed in order to find past 
events or other useful quantitative information on events already known. The credibility of 
sources has to be checked. In fact, not all sources can be considered as accurate and valid. 

Fig. 2 shows the difficulties faced on the interpretation and the credibility of sources describing 
historical sea levels. These three different newspapers (from the left Météo Paris, Le Petit Jour-

nal and Ouest-Éclair) provide different quantitative information for the same historical coastal 
flood occurred the 11th of September 1903 at Le Havre. The first one states that the sea level 
flooded roads and buildings by 35-40 centimetres, the second one said that the underground 
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was flooded by 25 centimetres and the last one that the houses was submerged to 25 centimetres 
of water.  

 

 

Fig. 2 – The flood occurred during the day of 11th September 1903 at Le Havre described by three different newspapers: 
Météo Paris, Le Petit Journal and Ouest-Éclair 

 

Three different measurements for a same event are available. For this reason, a critical analysis 
on the source has to be properly performed. This analysis can be achieved by a historian that 
gives a degree of credibility to all types of sources discovered. 

Sources provide not ever a direct quantitative information on the particular event of the past. 
Sometimes other quantitative data are available. This additional information can enable the re-
construction of a particular variable investigated. 

For this reason, an approach to reconstruct historical skew surges is defined thanks to the stage 
performed by Florian Regnier at EDF R&D LNHE (2017). In particular, sea levels, astronomi-
cal tides, street or pier levels of the time are some quantitative data that can be used to recon-
struct historical skew surges. 
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Fig. 3 shows the scheme that enables the retracing of a historical skew surge value neglecting 
the subsidence. In particular, knowing that the sea level exceeded the dock by the measure of h 
centimetres and we are able to know the dock level of the time H, we can compute the skew 
surge value as the difference between H+h and the astronomical tide level in the day of the 
event (for French ports they can be provided by the SHOM).   

 

 
Fig. 3 - Scheme used to reconstruct 11 historical skew surges 

 

Obviously, other factors have to be considered in this reconstruction. For instance, also if it is 
not difficult to know an actual dock level, it is less easy to know that level in a particular day 
of the past. Battles, world wars, reconstructions and restorations were made in every location 
and it is very hard to discover the exact level of a street or a building in the past. In addition, 
municipal archives are not always easily accessible to find this type of past information. This is 
a promising way to retrace historical skew surge but it is very challenging to realise. A similar 
approach can be formulated for other types of coastal variables. 

In any case, the collection and reconstruction processes lead to identify some historical events 
that have to be validated. The use of invalid historical events could provide erroneous statistical 
estimations of extreme event. For this reason, historical events need a validation. 
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2.2.2 Historical data validation  

The positive feedback of the historical expert on past event concerned allows the validation of 
historical data. In fact, knowing perfectly the period in which historical event is occurred, the 

historian can evaluate if that event is effectively happened. In addition, the historical expert can 
provide the degree of a credibility of a source and, in particular, if exaggerations have been 
written. 

For instance, many deaths recorded in some archives after a storm can be also caused by other 
factors as plague or other diseases that impacted the society in the same time of the extreme 
event. These factors linked to the society have to be clearly considered when we validate an 
extreme event of the past. 

The validation of one historical event by the expert is a long process. For this reason, some 
alternative ways to pre-validate a historical data can be considered.  

In particular, for coastal historical events, many meteorological reanalyses and numerical mod-
els are currently available. Meteorological analyses help to know if it might be possible that a 
past event is occurred or not and if an exceptional coastal variable was feasible that day. Mete-
orological reanalyses contribute then to pre-validate historical events and they cannot replace 
the historical expert in any way. In particular, wind and pressure data are useful to validate 

physically the occurrence of a likely historical skew surge. In particular, a surge is principally 
generated to two factors: a low pressure and a high wind speed (and wind direction) at the sea 
surface (Heaps, 1983; Cariolet et al., 2011; Regnier et al., 2017). For this reason, if wind and 
pressure data or reanalyses are available, we can realise if an extreme skew surge can be hap-
pened during the day of the past event.  

In fact, a validation of historical events based on reanalysis is not enough. Historical elements 
come from sources and period have to be taken in account in the validation process. Only the 
historical expert can definitively validate a historical event.  

The approach proposed to validate historical events is composed by two phases. The first one 
is the pre-validation process that must be carried out through the support of physical factors 
extracted from proper reanalysis. The second and last phase is the final validation of a historical 
event. This must be performed by an historian after a wide investigation on sources of the pe-

riod. The historian can focus on some elements (as the society, the epoch, the source etc.) that 
reanalyses cannot consider but that could be important to validate a historical event. 
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2.2.3 Numerical models and their role for historical 
events 

Numerical models are another very promising approach that might be used in the future to pre-
validate some particular extreme events of the past. In any case, this approach could be used 
only after a robust validation of the numerical model for well-known recorded extreme events, 
namely systematic events. The main idea is to compare historical data with the extreme values 
obtained by a numerical model.  

Differently from meteorological models, this approach might also allow the pre-validation of a 

historical quantitative value in some special cases. In particular, an event of the past impacted 
the site A and the site B. The site A is provided by systematic data and the site B by historical 
data. Assuming that the site A is well modelled and, for another more recent event in which 
systematic data are available for the sites A and B, the numerical model provides good estima-
tions, the historical data founded in the site B can be pre-validate by the numerical model. 

This possible type of pre-validation of historical events can be allowed only after a robust val-
idation of the numerical model for systematic extreme events. When the model is considered 
valid for extremes, the pre-validation of historical skew surge values by the numerical model 
can be achieved. An application for skew surges has been performed by Cécile Lalanne during 
her stage at EDF R&D LNHE (2018). 

In particular, a numerical model of skew surges based on TELEMAC-2D is used. The validation 
of this model for extremes and some implementations to make it utilisable for extreme compar-

ison is carried out. This work will be object to a talk that it will held during the XXVth TE-
LEMAC-MASCARET User Conference (TUC) 2018 from 9th to 11th October in Norwich (UK). 
For more details, the conference paper is shown in Annexe D. 

2.2.4 An example of historical skew surge collection 

A preliminary collection of historical skew surges was performed through an event-by-event 
approach, gathering together skew surges of a same past event recorded in different locations. 
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Fourteen extreme events associated to 14 historical skew surges (further details on these histor-
ical data are available in Chapter 4) were collected during the first part of this PhD study for 3 
French sites (La Rochelle, Dieppe and Dunkirk).  

This collection was successively completed by Florian Regnier during his internship at EDF 
R&D LNHE in 2017. His work has contributed to review a total of 74 additional historical 
events occurred between 1705 and 1953 located in French side of English Channel and in 
French Atlantic coasts. Depending on types of numerical elements available, we focused espe-
cially on 5 of these 74 reviewed historical events that allowed the reconstruction of 11 skew 
surges: the event of the 1st January 1877 that impacted especially the Brittany and the Pays de 
la Loire regions, the event happened between the 4th and the 6th of December 1896 in Brittany 

and in the south of England, the storms occurred during the 11th September 1903 and during the 
3rd February 1904 in the English Channel and the event of the 13th-14th March 1937 that im-
pacted the French Atlantic coasts. In addition, other 6 historical skew surges were identified 
during this internship, for a total of 17 historical skew surges. All of these data collected must 
be after validated and, for this reason, an example of the pre-validation of historical events by 
meteorological reanalysis is shown in the following. 

The collection and reconstruction performed have been the subject of an oral talk at the Con-
ference EVAN 2017 (Advances in Extreme Value Analysis and application to Natural Hazard) 
held in Southampton (UK) between 5th and 7th September 2017 (Annexe D). 

However, the collection of historical data, and in particular historical skew surges, is a common 
need for the scientific community dealing with the statistical estimations of extreme coastal 
events. For this reason, a Working Group is formed in France. The main aim of this group is to 

create a database of all historical events that are susceptible to cause a coastal flood (Giloy et 
al., 2018). For the moment, this French Working Group leaded by the IRSN is composed of 
EDF R&D, SHOM, Artelia, BRGM and the University of Poitiers. Each partner provides its 
knowledge on past events. Every historical event and their numerical values associated (as skew 
surges or sea levels) must be checked and validated by all members of the group including the 
historian.  

The pre-validation approach is detailed in the following of this section with a practical example 
on the historical skew surges.  
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2.2.4.1 Pre-validation of historical skew surges by reanalysis  

An application of pre-validation is performed for skew surges. Based on wind and pressure 
reanalysis of the 20th century, this analysis checks if an important skew surge is physically pos-
sible the day of the past event.  

Many daily weather reports of the 20th century are available in France (Météo France) and in 
UK (Met Office). Fig. 4 shows the pressure chart and the daily weather report of Météo France 

for the 1st January 1877. French daily weather reports are available since 1857 and they contain 
pressure and wind data of the time. 

Historical reports are sometimes inaccurate and wind intensities, that not always refer to the 
right phenomenon, are computed by the Beaufort scale. Beaufort wind force scale is an empir-
ical measure that relates wind speed to observed conditions inshore and offshore. Accurate wind 
speeds and detailed wind directions is hardly interpretable from this scale. 

 

Fig. 4 – Daily weather report on the left and Pressure chart on the right for the 1st January 1877 (source Météo 
France) 

 

Wind and pressure reanalysis of 20th century are available and more easily exploitable. The 
reanalysis 20CRV2C of the pressure at the sea surface (hPa) and of wind direction and wind 
speed (m/s) have been used to pre-validate some historical skew surges recovered. An example 
of pre-validation by reanalysis of the historical event of 1st January 1877 impacted Le Havre, 
Saint Nazaire and Les Moutiers-en-Retz is showed above.  
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Meteorological reanalysis 20CRV2C are available every 6 hours and the pressure sea surface, 
direction and speed of the wind for the areas affected are analysed before, during and after the 
storm. 

In this way, synoptic charts of sea surface pressure and wind speed/direction are generated (Fig. 
5 and Fig. 6). As you can see in Fig. 5, a strong depression impacted the Europe during the 1st 
January 1877. In the same moment, very fast winds impacted French coasts (Fig. 6) and, in 
particular, the black points (Le Havre, Saint Nazaire and Les Moutiers-en-Retz). Focusing on 
Fig. 5 and Fig. 6, an extreme skew surge was physically possible that day. 

Finally, meteorological reanalysis can be a useful tool to better assess and know if a remarkable 
skew surge could be happened. In any case, in order to fully validate a past skew surge, the 
opinion of the expert on that period is needed. 
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Fig. 5 – Synoptic charts generated by reanalysis 20CRV2C of the pressure on sea surface (hPa) every 6 hours between 
the 31st December 1876 and the 1st January 1877 
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Fig. 6 - Synoptic charts generated by reanalysis 20CRV2C of wind direction and wind speed (m/s) every 6 hours be-
tween the 31st December 1876 and the 1st January 1877 

 

2.2.4.2 Final validation by the historical expert 

Even though the pre-validation based on physical considerations could provide good results, 

the historical data need a final validation of the historical expert. These validation is a long 
process and actually it has not been yet performed. For this reason, these collected and pre-
validated historical skew surges cannot be still used for statistical applications of extreme 
events’ estimations. 

  



 

 Chapter 3 

FAB METHOD 

Une méthodologie statistique appelée FAB est proposée dans ce manuscrit pour uti-
liser tous les trois types les plus communs de données historiques dans une analyse 

régionale des aléas maritimes extrêmes.  

Cette méthode est fondée sur les principaux éléments de l’approche AFR proposée 
par Weiss (2014) pour les données systématiques et sur la notion de durée crédible. 
Ce nouveau concept est basé sur l’hypothèse crédible d’absence de tendance sur 
l’occurrence des tempêtes sur la période de collecte des données en Europe. La 
période d’observation locale et régionale des données historiques (appelée respec-

tivement durée crédible locale et durée crédible régionale) peut être ainsi évaluée.  

La méthode FAB permet l’utilisation des trois différents types des données histo-
riques grâce à la définition d’une nouvelle fonction de vraisemblance pénalisée. 
Cinq différents types de sous-fonctions sont considérés dans cette fonction de vrai-
semblance : la vraisemblance des données systématiques, les trois vraisemblances 
pour chaque type de donnée historique et la fonction de pénalisation. Cette nouvelle 
fonction permet d’estimer les deux paramètres de la loi statistique régionale. 

Par ailleurs, une approche de pondération réalisée sur des paramètres liés à l’ana-
lyse statistique est présentée par la méthode FAB. Cette approche permet d’identi-
fier les seuils optimaux d’échantillonnage.  

Enfin, des estimations fréquentistes ou bayésiennes peuvent être obtenues par l’ap-
plication de la méthode FAB. 
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3.1 Introduction 
Statistical estimations of extreme coastal variables and, in particular of extreme sea levels and 
extreme skew surges, are necessary to protect coastal nuclear fleets from the risk of flooding. 

Several statistical methodologies applied to a sample of extreme observations allows the com-
putation of return levels linked to high return periods.  

For sea levels and skew surges, local analysis does not permit generally to get reliable estima-
tions of extreme values due to the limited recording period of observations (in our case of study, 
40-50 years gauged on average). More extreme data are needed to extend extreme data samples 
and to reduce uncertainties on the extremes’ estimations. For this reason, Regional Analysis is 
currently one of the most used statistical approach that take advantage of the wide spatial avail-
ability of tide gauges’ records to extend extreme data samples. 

Weiss (2014) proposes a detailed Regional Frequency Analysis approach (hereinafter its ap-
proach is mentioned as RFA) for coastal hazards. The RFA method enables the pooling of dif-
ferent sites considered as physically and statistically similar in a homogeneous region. In this 
way, extended regional extreme data samples in which a frequentist statistical analysis is ap-

plied are created. Being regional extreme data sample biggest than local extreme data sample, 
regional extreme estimations are generally linked to lower uncertainties than local extreme es-
timations.  

More recently, several studies on the use of historical data in a local statistical analysis of ex-
treme sea levels (Bulteau et al., 2015) and extreme skew surges (Hamdi et al., 2015) show that 
these past observations can improve extremes’ estimations. In fact, representing typically very 
strong events not recorded by a gauge, historical data cannot be neglect in a statistical analysis 
of extreme events. 

Unfortunately, the RFA approach can be applied only to time series of gauged data (hereinafter 
called as systematic data) and not to historical data. In order to be correctly applied, RFA 
method requires the knowledge of the observation period linked to the extreme data sample. 
Past observations are frequently linked with any period of observation because they do not come 

from continuous time series of data. No information in what happened before and after a his-
torical event is usually available. In addition, they might be found in different types of data (for 
more details see Chapter 2) that cannot be used in a RFA application. 
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Facing these issues, a method called hereinafter FAB (from the name of the authors Frau, An-
dreevsky and Bernardara) is developed in this manuscript. Preserving the main concepts of the 
RFA approach, it allows the use historical data in the statistical analysis by the new definition 
of the local and the regional credible duration. This concept enables the estimation of the cred-
ible period of the past observations. Moreover, all of the three types of historical data can be 
used in the FAB application through the definition of two different likelihoods for systematic 
and historical data. Frequentist or Bayesian estimations can be computed through the applica-
tion of this method.  

After a short recall on the concepts of the RFA approach, the FAB method is afterwards illus-
trated in this chapter. 

3.1.1 The RFA approach (Weiss, 2014)  

The RFA approach is a statistical method proposed by Weiss (2014) for coastal hazards that 
enables the extension of extreme data samples. This is possible through the pooling in a regional 
extreme data sample of extreme data observed in sites considered physically and statistically 
similar. RFA method is based on the laws of regionalisation illustrated by Hosking & Wallis 
(1997). The formation of regions, the creation of regional samples with a defined duration and 
the computation of regional and local return levels are the key points of the RFA approach. All 
of these elements are summarised in next paragraphs.  

3.1.1.1 Formation of regions 

Before the definition of regional extreme data samples on which the statistical analysis is per-
formed, the formation of homogeneous regions is required. In the RFA method, physical con-

siderations are firstly used to form physical regions. Nevertheless, the statistical homogeneity 
of these physical regions must be successively verified (Hosking and Wallis, 1993). 

The formation of physical homogeneous regions is based on the identification of storm clusters. 
A storm is defined by Weiss et al. (2014a) as an extreme physical event that impacts at least 
one site in a particular area. A cluster for each storm is created considering the spatiotemporal 
propagation of an extreme event. In fact, extreme values that are spatiotemporal neighbours are 
supposed to belong to the same storm.  
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Observations are considered as extremes when they are higher than a local physical threshold 
defined by a p-value. In addition to the p-value, a storm cluster is defined by other two param-
eters depending on spatiotemporal considerations. When an extreme data is detected in a par-
ticular site, we have to check if during Δ hours extreme data are detected in the η-nearest sites. 
In this way, all of these extreme data founded in the η-nearest sites during Δ hours are merged 
together and they belong to a same storm. Then, three parameters (p, Δ, η) representing the 
spatiotemporal propagation of a physical extreme event are used to define a storm cluster in the 
RFA method. 

This definition of storm clusters enables the formation of physical regions. In fact, they are 
identified as the most typical storm footprints. Computing the probability pi,j that a site i is 

impacted by the same storm of a site j, the dissimilarity index di,j=1- pi,j can be evaluated. The 
dissimilarity index di,j can be employed in the hierarchical clustering method of Ward (1963) 
that enables the pooling of sites in a defined number of regions. The most typical configuration 
of storms footprints or, the best number of regions, is evaluated through the significant jump of 
dendrogram heights (Mojena, 1977) in the RFA method. Physically homogeneous regions rep-
resent therefore the most typical impact area of storms.  

The statistical homogeneity of each physical homogeneous region founded must be verified in 
order to apply statistical methods to regional extreme data sample. Hosking and Wallis (1993) 
propose a test to check this homogeneity by the computation of a measure H representing the 

degree of statistical homogeneity. This procedure is widely detailed in the study of Weiss et al. 
(2014a).  

Nevertheless, this statistical homogeneity test proposed by Hosking and Wallis (1993) and used 

in the RFA method cannot be directly applied to storm clusters got by previous physical thresh-
olds (corresponding to a particular p-value). In particular, when dealing with physical or statis-
tical parameters, Bernardara et al. (2014) recommend to use different sampling thresholds (dou-
ble threshold approach). If a physical threshold is used to detect storms and to reproduce their 
spatiotemporal dynamics, another threshold, called statistical threshold, has to be defined to 
consider all the different statistical aspects. Performing a statistical analysis of extreme events, 
statistical threshold is considered as higher than physical threshold. For this reason, the test that 

checks the statistical homogeneity is performed on a reduced physical storm clusters occurred 
in every region. In fact, the number of extreme observations considered in each physical storm 
cluster is decreased due to the new higher statistical thresholds selected. Finally, statistical 
thresholds allow the check of the statistical homogeneity of physical regions. Regions are then 
considered as physically and statistically homogeneous. Obviously, if statistical homogeneity 
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hypothesis is satisfied, data coming from different sites of a homogeneous physical region fit 
the same regional probability distribution. This enables the estimation of regional return levels.  

In the RFA approach, local statistical thresholds correspond to a common value of λ that repre-

sents the number of local exceedances per year. Specifically, local extreme data exceed statis-
tical threshold on average λ times per year 

3.1.1.2 Regional data samples and return levels 

A regional pooling method is used in RFA approach to create regional extreme data sample. A 
regional statistical distribution can be defined only for a regional extreme data sample filtered 
from intersite dependence. 

The pooling of extreme data observed in different locations of the region is allowed only after 
a normalisation of these data by a local index (Dalrymple, 1960). Local index preserves local 
features of the observations allowing the use of extreme events in a regional sample. In partic-

ular, local extreme data sample Xi can be normalized through a local index µi. Normalised data 

Yi= Xi/µi are then supposed independent from the site i. Roth et al. (2012) recommend the use 

of a local index proportional to the statistical threshold for a sample of POT data. For this rea-

son, RFA method consider the local index equal to the local statistical threshold µi=ui.  

Nevertheless, a regional extreme data sample must be constituted by independent events. For 

this reason, only the maximum normalized observation of every regional storm Ms is considered 
for the creation of the regional sample.   

The regional distribution can be defined only after verifying that normalised observations Yi
s of 

each site i follow the same distribution of Ms. For this reason, the two-sample Anderson-Darling 
test (Scholz and Stephens, 1987) is proposed by the RFA method. Anyway, alternative tests can 
be carried out to verify this assumption. If this assumption is verified, the regional statistical 
distribution can be evaluated for a regional sample composed by independent extreme normal-
ised data Ms. 

Picklands (1975) suggests to fit the Generalised Pareto Distribution (GPD) to extreme data 
when dealing with POT exceedances. The GPD is the regional distribution used in the RFA 
method. 
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In particular, for a site i, the local extreme data sample Xi formed by data over the statistical 
threshold ui can be fitted by a GPD as follows: !"	~	%&'	()", +", ,"). The scale parameter is 

αi>0, the shape parameter is ki (positive values of ki to an unbounded GPD) and the generic p-
quantile of the local extreme data sample !" is defined in Eq. 3.1 as: 

 ./
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 (3.1) 

Furthermore, RFA approach requires local statistical thresholds corresponding to a fixed value 

of λ of exceedances per year. For this reason, the T-year return level of the local extreme data 

sample !" can be defined as .<4</>?
"  (Rosbjerg, 1985).  

These concepts can be extended to a regional context through the use of the local indexes. The 

regional GPD distribution can be fit to the regional extreme data sample Yr as formulated in 
Eq.3.2: 

 @A	~	%&'	
)"

B"
,
+"

B"
, ," = %&'	 1, C, , 	 (3.2) 

The regional scale parameter γ and the shape parameter k are estimated through the application 

of Penalized maximum likelihood estimation (PMLE) to the regional extreme data sample. 
Coles and Dixon (1999) recommend the use of this method that allows to combine the efficiency 

of maximum likelihood estimators for large sample sizes and the reliability of the probability 
weighted moment estimators for small sample sizes penalizing high values of shape parameter.  

Moreover, RFA approach permit the consideration of seasonal effects during the estimation 

process of regional distribution. In fact, Jonathan et al. (2008) and Jonathan and Ewans (2013) 
pointed out the relevance catching covariate effects on statistical estimations of extreme ocean 
events. These seasonal effects are taken into account through a mix of regional GPD (1, γr,c, kr) 
in which the scale parameter varies according with the season considered. The number of sea-
sons (4 seasons proposed for the skew surge application) is considered equal to the number of 
co-variables C. In this way, 8 sub models are defined in accordance to parameter values of 
distribution (γr

0, γr
1, γr

2, kr). The easier model is the exponential distribution (γr
1=γr

2=kr=0) and 

the most complicated is the mixed GPD computed with cosine and sine terms (γr
0, γr

1, γr
2, kr ∈ 
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R4). The best sub model is chosen by the AIC criterion (Di Baldassarre et al., 2009; Laio et al., 
2009; Mendez et al., 2008). 

Defining the regional T-year return level as D<4</>?A , the local T-year return level is computed 

in Eq.3.3 as: 

 )" ∙ D<4</>?
A = .<4</>?

" 	 (3.3) 

RFA method allows the computation of local return levels calculated through the estimation of 

regional return levels and the computation of the local index ui. These estimations are also af-
fected by the λ value considered as the same in every site of the region. 

Finally, some particular regional elements are detailed in this last part of the paragraph in order 
to understand the issues faced by introducing historical data in the RFA. The application of 
regional pooling method provides an effective duration of the regional extreme data sample Deff 
in years. The quantification of the effective duration enables the knowledge of the gain that the 
application of a regional analysis brings rather a local one (Weiss et al., 2014b). This variable 
measures the period in years in which the regional extreme data sample is observed. Regional 

effective duration Deff is calculated as the product between the mean of site durations F belong-

ing to the region and the degree of regional dependence ϕ. This degree of regional dependence 

ϕ corresponds to a value that ranges between 1 and N sites of regions. It represents the propen-

sity of all regional sites to have the same behavior during a storm. More ϕ is close to 1 and more 

the dependency of regional sites is strong. On the contrary, more ϕ is close to N and more the 

regional sites behave in an independent way during a storm. The degree of regional dependence 

can be computed as ϕ= λr/λ where λr is the mean annual number of storms in the region (λr= 

nr/F) considering that each regional storm impact every site of the region.  

3.2 FAB Method 
FAB method is the regional approach proposed in this manuscript that enables the estimations 
of extreme coastal events using historical data. This methodology is developed starting from 
the principal elements of the RFA approach. RFA method is exclusively developed for time 
series of gauged data with a known period of observation. The use of different types of historical 
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data linked to an unknown period of observation in the RFA approach is not allowed. For these 
reasons, although the FAB method preserves and employs a similar procedure to that used for 
a RFA application (formation of regions, regional pooling method and estimations of local and 
return levels), the revision of existing regional elements and the creation of new regional con-
cepts are required in order to use historical data in a regional analysis.   

The main challenge in the extreme events’ statistical analysis using historical events concerns 
the knowledge of the observation period of the whole extreme data sample and, in particular, 
of the historical data. The observation period of the extreme data sample, hereinafter called 
duration, represents the time period in which all extreme data are observed. This duration is 
known for extreme systematic data obtained from time series of gauged observations but it is 

unknown for the historical data. In fact, historical observations are frequently data points that 
are not linked with any time series. Only specific investigations at a local scale on past events 
or credible hypotheses can provide the time period of historical data. 

For the most of French sites in which time series of sea levels and skew surges are available, 
additional information about the duration of the historical data is not available. Then, in order 
to use historical data in the statistical analysis of extreme events, credible hypotheses on the 
observation period of historical events have to be realised.  

Some studies (Gaume et al., 2010; Payrastre et al., 2011; Bulteau et al., 2015, Hamdi et al., 
2015) use a perception threshold to consider historical information in the statistical analysis. 
The perception threshold is based on the hypothesis of exhaustiveness of the historical period. 
For this reason, the perception threshold can be used only a wide investigation in a particular 
location in which historical data are available. In particular, the use of this element in a statistical 

analysis means that historical data above a high threshold (the perception threshold) are consid-
ered as the only extreme events occurred during the day of the first historical data and the day 
of the first systematic data. At the moment, this hypothesis is really strong for the most of sites 
in which gauged observations of sea levels and skew surges are available. In particular, no 
information about historical periods of extreme skew surges of the past is currently available. 
This does not enable to suppose a likely exhaustiveness of historical skew surges.  

When exhaustiveness hypotheses of the perception threshold can not be satisfied, other credible 
hypotheses have to be formulated in order to use historical data in the statistical analysis of 
extreme events. 

For these reasons, the FAB method introduces the new concept of credible duration firstly at 
local scale. This concept enables the estimation of a credible period for the past observations. 
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Historical data are so observed during a credible historical period. This period is based on cred-
ible hypothesis that extreme data with a known period of observations (systematic data) has the 
same frequency of occurrence than the extreme historical observations. By the formulation of 
this hypothesis, the credible historical duration can be estimated and the whole credible duration 
of an extreme data sample composed by systematic and historical data can be known. Further-
more, the FAB method extends the concept of credible duration at regional scale through its use 
in the regional pooling method already employed in the RFA approach. In particular, the new 

local credible duration is considered when pooling data of different sites of the region. For this 
reason, the duration of the regional extreme data sample is not longer effective but it becomes 
as well credible. 

Another challenge for the regional analysis of extreme events is the use of most traditional types 
of historical events available (Chapter 2). For a statistical analysis of POT data, the three types 
of historical events can be considered during the process of the parameters’ estimation of the 
considered statistical distribution. FAB method uses a Penalised Maximum Likelihood Estima-
tion (PMLE) approach to estimate the parameters of the statistical distribution of the regional 
extreme data sample. The likelihood is formulated separately for systematic and historical data. 
This likelihood composed by the systematic and historical formulation and by the penalisation 

of the shape parameter of the statistical distribution is successively maximised in order to esti-
mate the parameters of the Generalised Pareto Distribution (GPD). 

In addition, when dealing with POT data, a main point in the statistical analysis is the choice of 
a good sampling threshold. For local or regional analysis, a bad sampling threshold can gener-
ally impact the estimations of the extreme events. In addition, in the FAB context, the sampling 
threshold (or statistical threshold) depends directly on credible duration. For these reasons, a 
procedure to select the optimal sampling threshold is proposed and suggested for FAB applica-
tions.  

Finally, FAB method permits to compute Frequentist or Bayesian regional and local estimations 
of extreme coastal events. 

All of the challenges explained in this introduction to the FAB method and the approaches in 
which FAB method deals with them are exposed one-by-one in this Chapter. 
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3.2.1 Addition of historical data  

The application of the FAB methodology to local extreme data samples is achieved following 
the main steps of the RFA approach. In fact, the addition of historical data to the FAB method 

does not modify the global regional framework used in the RFA approach. The formation of 
regions, the definition of regional samples of independent extreme data and the estimation of 
regional and local return levels are the major phases used to perform the FAB method. Anyway, 
a wide review of each of these methodological steps and the definition of new conceptual ele-
ments are achieved to use the historical data in the regional approach. The FAB method based 
on the new concept of credible duration can be then applied to local extreme data samples con-
taining historical data.   

In particular, originated from different sources, historical data is an extreme data value repre-
senting a storm that impacted a particular site in the past or during a dysfunction period of the 
tidal gauge located in the same particular site. The fact that historical events are isolated does 

not allow the knowledge of what it happened before and after a particular past event in terms 
of storm occurrence.  

The knowledge of the storm occurrence on average per year λ is essential for the application of 
a generic statistical analysis on POT extreme data. This occurrence per year λ above a sampling 
threshold might be computed through the observation period in years of historical events. 

The FAB method provides credible hypothesis based on the frequency of gauged data to remedy 
to the absence of information on past period. The addition of historical data in a local sample 

modifies the number of extreme events per year λ exceeding a particular statistical threshold. 
When only systematic data are available, the generic occurrence λ of gauged data can be com-
puted as: 

where n is number of data above the sampling threshold and d is the duration in years of the 
time series of the gauged observations. Below, Fig. 7 shows that for systematic records of skew 
surges the duration d (in blue) is well-known. Fixing a sampling threshold (in red in the image 

below), only few skew surges are considered as extreme (the green crosses) and the number of 
extreme events per year λ exceeding this threshold is calculated by the formulation given in 
Eq.3.4. 

 G =
H

F
 (3.4) 
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Fig. 7 – Scheme for λ computation on systematic time series 

Therefore, fixing a sampling threshold for an extreme data sample composed by historical and 

systematic events, the number of n values exceeding the fixed threshold is known. This is not 
enough to calculate the duration of the whole extreme data sample. In fact, the computation of 
the observation period d of this sample can be provided by the knowledge of the storm occur-
rence λ.  

Furthermore, the duration d can be defined as the sum of the duration dsyst of systematic data 
and the duration dhist of historical data. The observation period of systematic data dsyst for the 
systematic part of the extreme data sample is is equal to the period of the gauged observations. 
On the other hand, the observation period of systematic data dhsst for the historical part of the 
extreme data sample is unknown and the duration d cannot be calculated. 

In the FAB framework, the local duration d permits the computation of the local storm occur-

rence λ, the degree of regional dependence ϕ and the regional credible duration Dcr. For this 

reasons, the historical duration dhist is needed to apply the FAB method to a regional extreme 

data sample of systematic and historical events. In addition, the relevance of the regional cred-
ible duration Dcr in the FAB method is also underlined in the estimation of local and return 
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levels process. Regional T-year return level D<4</>?A  and the local T-year return level .<4</>?
"   

depend on the λ value through which Dcr is estimated. 

3.2.2 Local and Regional Credible duration 

The main new concepts in which the FAB method is based are the local and regional credible 

durations. These elements allow the use of historical data in a regional analysis of extreme 
events.  

If historical data are available in a particular site, its local duration contain an additional period 

given by historical events. Splitting in two parts the duration of a whole extreme data sample at 
this particular site, the historical period in which historical data exceed a threshold is unknown. 
The computation of this observation period is enabled by the formulation of credible hypothesis.  

After the examination of storm frequency on several scientific studies (Barriendos et al., 2003; 
Hanna et al., 2008; Matulla et al., 2008; Allan et al., 2009; Barring and Fortuniak, 2009; Ferreira 
et al., 2009; Wang et al., 2009; Wang et al., 2011; Hartmann et al., 2013), the lack of a trend on 
storm frequency during the 20th century is assumed as the credible hypothesis. This hypothesis 
allows the estimation of the credible duration.  

In particular, for skew surges (the specific coastal variable analysed by this method in Chapter 
4) a supplementary test on the longest skew surge series is performed (Annexe F). Anyway, this 
hypothesis must be verified before the application of the FAB method for any coastal variables. 
For non-stationary datasets, this methodology can be adapted through the adjustment of hypoth-
esis formulated. 

With this credible hypothesis, the number of systematic data per year λsyst above a statistical 

threshold ui is equal to the number of historical data per year λhist above the same statistical 

threshold ui for a particular site i. Recalling that dhist=nhist/λhist and stating that λ=λsyst=λhist, the 

formulation of the local credible duration dcr,i for a site i composed by systematic and historical 
data as follows:  

 FIA," = FJKJL," + FN"JL," =
HJKJL

GJKJL
+
HN"JL

GN"JL
=
HJKJL

G
+
HN"JL

G
 (3.5) 
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The local credible duration based on credible hypothesis is now defined. Recalling that the cor-

rect value of λ is known, the additional part of local duration provided by the availability of 

historical data is then calculated as dhist=nhist/λ. The knowledge of this observation period allows 

the use of historical data in regional analysis.  

Moreover, the use of historical data also provides an additional of the observation period of the 
regional extreme data sample. Recalling that the regional duration is defined as the mean of 
local durations filtered by any intersite dependence, the availability of historical events in one 
or more sites of the region provides an additional local duration and consequently an additional 
regional duration.  

Regional duration was in RFA approach computed by effective local durations. With historical 
data, a regional credible duration Dcr,r can be computed for a particular region r. The regional 
credible duration Dcr,r depending on the mean of local credible durations of the N sites belonging 
to the region r and it is formulated as follows: 

 'IA,A = O	×	FIA = 	
GA

G
	×

FIA,"

Q

R

"S<

 (3.6) 

Obviously, if no historical data are available in any sites, local duration is effective in every site 
of the region and regional duration is computed as for the RFA approach. 

The regional credible duration represents the duration of the regional extreme data sample after 

filtering from any intersite dependence. This filtration is achieved through the use of the degree 

of regional dependence ϕ and it enables to compute a correct duration of the regional sample of 

extreme data. The degree of regional dependence ϕ depends not only on the λ but also on the 

mean annual number of storms λr in the region r. 

The mean annual number of storms λr is defined as the ratio between the number of regional 

data Nr and the mean of local credible durations. In this way, the factor λr is computed without 

taking into account the different behaviour that sites can have when a storm impacts the region. 
Forming regional extreme data sample, it is important to underline that not all storms impacting 

the region are observed in each site of the region. For this reason, the computation of a degree 

of regional dependence ϕ is necessary to know the real duration of a regional sample of extreme 

data. After this further formulations, regional credible duration Dcr,r can be expressed as fol-
lows: 
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 'IA,A =
GA

G
	×	FIA = 	

QA

FIA
	×
FIA

G
=
QA

G
 (3.7) 

More the regional duration is high and more extreme estimations can be properly calculated. 

The introduction of historical data increases the regional duration and then they improve the 
reliability on the extreme estimations. In addition, the regional credible duration can be sepa-
rated in two parts depending on systematic and historical data as follows: 

 'IA,A = 'IA,A,JKJL + 'IA,A,N"JL =
QA,JKJL + QA,N"JL

G
 (3.8) 

Dividing historical data in the three most common types of historical data, Eq.3.8 can be refor-
mulated as follows: 

 'IA,A,N"JL = 'IA,A,N"JL,T + 'IA,A,N"JL,TT + 'IA,A,N"JL,TTT =
QA,N"JL,T + QA,N"JL,TT + QA,N"JL,TTT

G
 (3.9) 

Eq.3.9 is useful for next formulations of likelihood functions for systematic and historical data. 

3.2.3 The use of different types of historical data 

The use of the three different types of historical data impacts all methodological phases used in 
FAB method. In particular, the formation of regions and the creation of regional extreme data 
sample processes are formulated in the RFA approach to use extreme exact data. Then, only 

type I of historical data (exact historical data) can be considered in these phases of the regional 
statistical analysis.  

FAB method permits to consider all the three types of historical data in these two phases using 

the mean value of the range for the historical data type II and the lower limit value for the 
historical data of type III.  

In particular, considering the case in which a historical data of type III xhist III,i is available in the 
site i and it is higher than the physical threshold pi and (or) the statistical threshold ui, xhist III,i is 
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the data value used to form the regions and (or) to evaluate the maximum normalized value Ms 
of the storm s during the definition process of the regional extreme data sample.  

Considering another case in which a historical data of type II [xhigher II,i, xlower II,i] is available in 

the site i and xlower II,i is higher than the physical threshold pi and (or) the statistical threshold ui, 
the mean between  is the data value used to form the regions and (or) to evaluate the maximum 
normalized value Ms of the storm s during the definition process of the regional extreme data 
sample.   

In addition, the particular case in which a historical data of type II [xhigher II,i, xlower II,i] is available 
in the site i and xlower II,i is lower than the physical threshold pi and (or) the statistical threshold 
ui but the xhigher II,i is higher than the physical threshold pi and (or) the statistical threshold ui has 
to be examined. The means between xhigher II,i and the threshold pi or ui are used respectively for 
the two considered regional phases. 

Type II or type III of historical data can belong to a regional extreme data sample through the 
approach exposed above. In this case, they recover their original nature before the estimation 
of the regional distribution. Specifically, normalized data ranges are considered when historical 

data of type II is the maximum normalized data Ms of the storm s impacted the region 
(Yr

s=[xhigher II,i/µi, xlower II,i/µi]). In the particular case in which historical data of type II is a Ms 
that belongs to a regional extreme data sample with a xlower II,i < ui, these normalized data ranges 
are considered (Yr

s=[xhigher II,i/µi, ui/µi]). On the other hand, all possible normalized data above 
its normalized lower limit are considered when historical data of type III is a maximum normal-
ized data Ms belonging to a regional extreme data sample (Yr

s= xhist III,i/µi). 

Anyway, a more structured approach to consider the three different types of historical data is 
used during the estimation of the regional distribution. In fact, all types of historical data can be 
considered in the statistical analysis by the formulation of separately likelihood for systematic 

and historical data. This enables the estimation of the regional distribution’s parameters consid-
ering correctly all types of historical information available.     

3.2.4 Penalised maximum likelihood 

The regional extreme data sample Yr = {Yr
1 ,…, Yr

h} composed by a number h of independent 
storms is fitted by a GPD distribution (Eq.3.2). The estimation of the regional GPD parameters 
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is performed by the Penalized Maximum Likelihood Estimator (PMLE). In general, the penal-
ization of the likelihood enables the use of additional information into the inference compared 
with that supplied by the extreme data sample (Coles and Dixon, 1999). As suggested by Coles 
and Dixon (1999) and by Weiss (2014), a likelihood penalization is used to penalise positive 
values (< 1) of the shape parameter k as follows: 

 & , = exp	(−X
1

1 − ,
− 1

Y

						Z[	0 < , < 1 (3.10) 

where the parameters m and d are recommended to be set to unity by Coles and Dixon (1999) 

after some experimentations on their performances. In addition, if k>1 the penalty is null P(k)=0 
and, in the contrary, if k<0 the penalty is equal to 1.  

This penalty function permits the exploitation of the efficiency of maximum likelihood for big 
extreme sample and, at the same time, of the accuracy of the probability weighted moment for 
small extreme sample. The penalized likelihood function and the penalized log-likelihood func-
tion used in FAB method is defined by the Eq.3.11 and Eq.3.12 as follows:  

 ℒ/^_ @
A|λ, θ = 	ℒ @A|λ, θ 	∗ 	& ,  (3.11) 

 ℓ/^_ @
A|λ, θ = 	ℓ @A|λ, θ + 	ln	(& , ) (3.12) 

where the vector of parameters f contains the scale γ and shape k parameters of the regional 

GPD. The likelihood function ℒ and the log-likelihood function ℓ are defined for different types 
of data in next paragraphs.   

3.2.5 Likelihood formulation with historical data 

The likelihood function ℒ for the regional extreme data sample Yr = {Yr
syst , Yr

hist} composed by 

systematic and historical data can be calculated considering two different likelihood functions 
for systematic and for historical data (Miquel, 1981; Cohn and Stedinger, 1987; Lang et al., 

1997). The likelihood function ℒ and the log-likelihood function ℓ for the regional sample Yr is 
then formulated as follows:  
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 ℒ @A|λ, θ = 	ℒ @AJKJL|λ, θ 	∗ 	ℒ @AN"JL|λ, θ  (3.13) 

   

 ℓ @A|λ, θ = 	ℓ @AJKJL|λ, θ + 	ℓ @AN"JL|λ, θ  (3.14) 

These likelihood and log-likelihood expressions define two different likelihood functions for 
systematic and historical data. The formulation of these two likelihood (ℓ @AJKJL|λ, θ  and 

ℓ @AN"JL|λ, θ ) is necessary to identify the penalised likelihood used to estimate the parameters of 
the regional distribution of the whole regional extreme data sample Yr. 

3.2.5.1 Likelihood for a sample of systematic and historical 
data 

The likelihood for a generic POT data sample Y composed of h systematic extreme data ob-
served in d years is formulated as follows (Miquel, 1981): 

 ℒ @|λ, θ = 	& H< ∗ … ∗ & HY ∗ 	 [ @"|θ

N

"S<

 (3.15) 

The term of the left part of Eq.3.15 represents the Poisson process of occurrence of the observed 

data assuming the independence of observations. In particular, P(nd) is the probability to ob-
serve nd peaks in the year d. It can be formulated as:  

 & HY = 	 h4i
λ_j

HY!
 (3.16) 

The second term of the Eq.3.15 corresponds to the product of the density functions of the sta-
tistical distribution for each observed data. Eq.3.15 can be reformulated as follows:  
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 ℒ @|λ, θ = h4i
λ_l

H<!
∗ … ∗ h4i

λ_j

HY!
∗ [ @"|λ, θ

N

"S<

= &(H")

Y

"S<

∗ [ @"|θ

N

"S<

 (3.17) 

From Eq.3.17, the log-likelihood can be defined as: 

 ℓ @|λ, θ = mH &(H")

Y

"S<

+ mH [ @"|θ

N

"S<

= (−λ + H" ln λ

Y

"S<

− ln	(H"!)) + mH [ @"|θ

N

"S<

 (3.18) 

The maximisation of likelihood must be performed for the λ and for the parameters f of the 

statistical distribution. The maximisation of the likelihood for the λ concerns only the first term 

of the Eq. 3.17 and corresponds to the λ value computed until now in Eq.3.4. For this reason, 

this first term of the likelihood that not depends on the parameters f can be neglected in the 

maximisation process.  

For a stationary process in which the λ value is considered constant for a whole extreme data 

sample (the case of credible duration) observed in Dcr years as formulated in Eq.3.8, the formu-
lations of likelihood and log-likelihood for a regional extreme data sample composed of hsyst 
systematic data observed in Dcr,syst and hhist historical data observed in Dcr,hist data are exposed 
are described as follows: 

 ℒ @A|λ, θ = 	 &(H")

nop

"S<

∗ [ @A",JKJL|θ

Nqrqs

"S<

	∗ 	 [ @A",N"JL|θ

Nt6qs

"S<

 (3.19) 

   

 ℓ @A|λ, θ = 	 mH &(H")

nop

"S<

+ mH [ @A",JKJL|θ

Nqrqs

"S<

+ mH [ @A",N"JL|θ

Nt6qs

"S<

 (3.20) 

As for Eq.3.17 and Eq.3.18, only the first terms of the Eq. 3.19 and Eq.3.20 are concerned to 

the maximisation of the likelihood for the λ. The likelihood maximisation corresponds to the λ 

value computed in Eq.3.7. For this reason, this first terms of the likelihood and log-likelihood 

that not depends on the parameters f are neglected hereinafter in the definitions of the particular 

likelihood functions for systematic and historical data.  
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3.2.5.2 Likelihood formulation for systematic data 

The definition of the likelihood functions for the systematic part of the regional extreme data 
sample composed of hsyst number of data observed in Dcr,syst as follows: 

 ℒ @AJKJL|λ, θ = [ @A",JKJL|θ

Nqrqs

"S<

 (3.21) 

   

 ℓ @AJKJL|λ, θ = 	 mH [ @A",JKJL|θ

Nqrqs

Z=1

 (3.22) 

In particular, replacing the density function of the GPD for the parameters expressed in Eq.3.2, 
the log-likelihood of Eq.3.22 can be reformulated as follows (Grimshaw, 1993): 

 ℓ @AJKJL|λ, θ = 	−ℎJKJL ∗ ln C +
1

,
− 1 ln 1 −

,vZ,wDwx

C

Nqrqs

Z=1

 (3.23) 

where the v",JKJL = (@",JKJL − 1) C for the regional analysis case in which the regional location param-

eter is equal to 1. 

3.2.5.3 Likelihood formulation for historical data 

The likelihood function for the historical part of the regional extreme data sample composed of 
hhist=hhist,I+hhist,II+hhist,III number of data observed (the three different types of historical data de-
fined in Chapter 2) in Dcr,hist=Dcr,hist,I+Dcr,hist,II+Dcr,hist,III years can be formulated as follows: 

 ℒ @AN"JL|λ, θ = ℒ @AN"JL,T|λ, θ ∗ ℒ @AN"JL,TT|λ, θ ∗ ℒ @AN"JL,TTT|λ, θ  (3.24) 
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 ℓ @AN"JL|λ, θ = 	ℓ @AN"JL,T|λ, θ + ℓ @AN"JL,TT|λ, θ + ℓ @AN"JL,TTT|λ, θ  (3.25) 

The likelihood and log-likelihood for the type I of historical data (exact data) corresponds to 
the likelihood function of systematic data (Eq.3.21 and Eq.3.22): 

 ℒ @AN"JL,T|λ, θ = [ @A",N"JL,T|θ

Nt6qs,y

"S<

 (3.26) 

   

 ℓ @AN"JL,T|λ, θ = 	 mH [ @A",N"JL,T|θ

Nt6qs,y

Z=1

 (3.27) 

Type II and type III of historical data represent respectively a data range (Yr
higher,hist,II, Yr

lower,hist,II) 

and a lower limit value of the historical data (Yr
lower,hist,III). For these reasons, the likelihoods and 

log-likelihoods of these two particular types of historical data can be defined as follows: 

 ℒ @AN"JL,TT|λ, θ = z @A",N"{N^A,N"JL,TT|θ − z @A",|}~^A,N"JL,TT|θ

Nt6qs,yy

"S<

 (3.28) 

   

 ℓ @AN"JL,TT|λ, θ = 	 mH z @A",N"{N^A,N"JL,TT|θ − z @A",|}~^A,N"JL,TT|θ

Nt6qs,yy

"S<

 (3.29) 

   

 ℒ @AN"JL,TTT|λ, θ = 1 − z @A",|}~^A,N"JL,TTT|θ

Nt6qs,yyy

"S<

 (3.30) 
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 ℓ @AN"JL,TTT|λ, θ = 	 mH 1 − z @A",|}~^A,N"JL,TTT|θ

Nt6qs,yyy

Z=1

 (3.31) 

where F is the cumulative function of the statistical distribution used. For a GPD of parameters 
equal to those expressed in Eq.3, the log-likelihoods functions for each type of historical data 
can be reformulated as follows: 

 ℓ @AN"JL,T|λ, θ = 	−ℎN"JL,T ∗ ln C +
1

,
− 1 ln 1 −

,vZ,ℎZwx,�

C

Nt6qs,y

Z=1

 (3.32) 

   

 					ℓ @AN"JL,TT|λ, θ = 	 mH ,v",N"{N^A,N"JL,TT − 1
<
5 − ,v",|}~^A,N"JL,TT − 1

<
5

Nt6qs,yy

"S<

 (3.33) 

   

 ℓ @AN"JL,TTT|λ, θ = 	
1

,
mH ,vZ,mÄÅhÇ,ℎZwx,��� − 1

ℎℎZwx,���

Z=1

 (3.34) 

where the v",N"JL,T = (@",N"JL,T − 1) C , v",N"{N^A,N"JL,TT = (@",N"{N^A,N"JL,TT − 1) C ,  v",|}~^A,N"JL,TT = (@",|}~^A,N"JL,TT − 1) C and 

v",|}~^A,N"JL,TTT = (@",|}~^A,N"JL,TTT − 1) C for a regional location parameter is equal to 1. 

The formulations of Eq.3.23, Eq.3.32, Eq.3.33 and Eq.3.34 enable the definition of each ele-
ment of the penalized log-likelihood of Eq.3.12: 

 						ℓ/^_ @
A|λ, θ = ℓ @AJKJL|λ, θ + ℓ @AN"JL,T|λ, θ + ℓ @AN"JL,TT|λ, θ + ℓ @AN"JL,TTT|λ, θ + ln(& , ) (3.35) 

Eq.3.9 can be now maximised (PMLE) and the regional parameters are estimated.   
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3.2.6 Choice of statistical threshold 

The regional analysis based on a POT approach requires the definition of local sampling thresh-
olds for each site. In this way, extreme events can be detected in each site and regional extreme 
data samples can be defined.  

A double threshold approach (Bernardara et al., 2014) is used in the RFA method. For this 

reason, the “physical” thresholds that is equal to the 0.995 p-value computed in each site do not 
correspond to the higher “statistical” or “sampling” threshold. Sampling threshold represents 
the extreme bound above which all data can be considered as independent extreme events. 

Every sampling threshold can be represented by the value of number of occurred storms λ on 

average per year above this threshold. In the RFA, the value of λ storms per year is considered 

identic for each site of the same region. 

Varying the λ value, the value of the sampling threshold changes in each site and consequently 

every local extreme data sample is different. In particular, a too low λ value leads the perfor-

mance of a statistical analysis with the biggest extreme events available in each site. In this 
case, the more usual inconvenient is that the number of data is not enough to compute proper 

estimations. On the contrary, a too high λ value leads the computation of a statistical distribution 

with many events that obviously they cannot considered as extremes. For these reasons, FAB 

method proposes an appropriate approach to find an optimal λ value, and consequently optimal 

sampling thresholds. This approach enables the performance of an efficient statistical analysis.  

The definition of optimal sampling thresholds is a complex subject and no univocal methods 
exist currently in literature. FAB method proposes the selection of the optimal sampling thresh-
old through the use of several indicators or parameters depending on this threshold. Both down-
stream parameters and upstream parameters of the statistical process can be considered. The 
sensitivity analysis on these parameters is conducted by a weighting calculation in order to 

compute the best value of λ that corresponds consequently to optimal values of statistical thresh-

olds.  

FAB method performs a sensitivity analysis for a total of twelve parameters depending on λ 

value. Although twelve parameters are chosen for the FAB method, the scientific expert can 
consider other parameters in according to the statistical analysis performed in the application of 
this approach. 
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In any case, five primary parameters and seven secondary parameters are considered in order 

to simplify the individuation of the optimal λ value.  

Primary parameters represent all tests necessary to perform the statistical analysis. Without the 
verification of these tests, the statistical analysis cannot perform. Primary parameters enable the 

removing of all possible λ values in which tests are not verified. The five primary tests are 

applied to the regional sample of extreme values for a range of λ values between 0,25 and 2 by 

a step of 0.01. This range is defined between these two values in order to consider values of λ 

neither too low nor too high. In particular, under the value of 0.25 storms per year only few 

extreme data are considered to get a valid statistical distribution and over 2 storms per year the 
statistical analysis starts to be performed not only considering extreme events.  

Secondary parameters are not essential variables for the statistical process but they can be con-

sidered by the expert as equally important for the performance of the statistical analysis. Both 
types of factors are used in the sensitivity analysis. The seven secondary indicators of the sen-

sitivity analysis are evaluated as the primary parameters for each possible λ value.  

The best regional sample in which primary and secondary parameters are globally the best ones 

corresponds to the selection of the optimal λ. In order to find an univocal optimal λ, a weighting 

computation is proposed. The weighting analysis is applied to all secondary parameters corre-

sponding to λ-cases in which primary parameters are verified. In particular, if extreme samples 

are not suitable for a regional analysis, it is useless to calculate a weighting for secondary pa-

rameters. This enables the simplification of the process of identification of the optimal λ value. 

The optimal λ corresponds to the possible λ-cases in which the sum of each secondary param-

eter’s weighting is the highest. In fact, if all parameters are analysed only visually, many com-
binations appear to be appropriate and it is not easy to find the best one. 

Finally, this procedure based on a weighting analysis allows the definition of the optimal λ for 

each physical and statistical region. In particular, the statistical verification of physical regions 
is one of the five primary tests in the proposed approach and, for this reason, the weighting 

computation is evaluated only -λ-cases corresponding to physical and statistical homogeneous 

regions. In particular cases in which only a little percentage of λ values between the all possible 

values of λ are selected due to the computation of this particular primary test for a considered 

region, a further division in two physical homogeneous regions is suggested. In this case, a new 
analysis on primary and secondary parameters has to be performed for the new two regions 
defined.     
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The other four primary tests proposed by the FAB method concern the stationarity test, the chi-
squared test χ2, the Kolmogorov-Smirnov test and the test to detect outliers in regional extreme 
data samples.  

The seven secondary parameters considered concern the data number of regional sample, the 
regional duration, the value of χ2, the scale parameter of the regional GPD, the shape parameter 
of the regional GPD, the adimensional degree of regional dependence É and the estimated re-

gional return level associated to a return period T of 1000 years. 

All details of primary and secondary tests mentioned here are exposed in the following. In any 
case, it is recommended by this study to give a quick look on regional return level plots that 

correspond to the optimal λ value selected by the approach here proposed.  

The sensitivity analysis proposed by the FAB method is flexible and enables the addition or 

removing of other tests that can be considered as significant for the statistical analysis per-
formed. In addition, if parameters are considered more significant than others, a double or a 
multiple weighting value can be computed for the relevant parameter or a manual check can be 
performed by the expert in order to verify if that variable assumes or not an acceptable value 
for the considered statistical analysis.  

3.2.6.1 Primary parameters 

Primary parameters represent basic statistical tests that must be satisfied for the performance of 
a statistical analysis. These tests are applied to a regional extreme data sample corresponding 

to a particular λ value. Five primary tests are considered in the FAB method.  

 

Stationarity test 

The stationarity on the intensity of regional extremes is required to perform the considered sta-
tistical analysis. 

This stationarity can be checked by stationarity test applied to the storm intensities of regional 
sample (Hosking and Wallis, 1993). This test verifies if the difference between the mean of two 
determined regional sub-samples is significant for a level of risk. In particular, the regional 
sample is stationary if the difference of the previous two means is lower than the admissible 
difference linked to the risk level. In this study, the risk level considered is 10%. 



3.2 FAB Method  51 

Homogeneity test 

A basic hypothesis on a regional analysis of extreme values is the statistical homogeneity of the 
region. Without this homogeneity the regional analysis cannot be performed (Hosking and Wal-
lis, 1997; Weiss, 2014).  

The statistical homogeneity of a physical region is tested through the homogeneity test proposed 

by Hosking and Wallis (1997). This test evaluates the heterogeneity value H. If the value of H 
is higher than 2, the region is considered as heterogeneous and the regional analysis cannot be 
performed. However, as Weiss (2014) states in his study, the heterogeneity of a regional ex-
treme data sample can be generated by discordant sites. In this case, the value of the heteroge-
neity H has to be computed without considering discordant sites. 

 

Pearson’s chi-squared test χ2 

The chi-squared test is used to know the goodness of a fit (Cochran, 1952; Chernoff and Leh-
mann, 1954). Applied to the regional GPD distribution, this test provides the dispersion value 
S-χ2 between the observed frequency distribution of the regional sample and the theoretical 
distribution. If this value is lower than a limit value Slim linked to a significance level and to the 
degree of freedom, no indications are provided the statistical distribution is good for the regional 
extreme data sample. For this type of test, the degree of freedom has to be equal to a considered 
number of classes minus one reduced by the number of the estimated parameters of the distri-

bution and by one. In our case, a significance level (p-value) of 5% and a number of 10 classes 
corresponding to seven degrees of freedom are used. With the considered parameters, the S-χ2 
may not exceed a Slim-0.05 of 14.067. 

 

Kolmogorov-Smirnov test 

The regional analysis assumes that the distribution of the maximum of regional storms Ms is the 
same as the normalised values Yi observed in every site of the region. This assumption is 
checked by the two-sample Kolmogorov-Smirnov test (Smirnov, 1939) applied for each site of 

the region. This test is based on the formulation of null hypothesis that Ms and Ys have the same 
distribution. Without the verification of this assumption, the regional distribution cannot be 
performed. The test computes p-values between the Ms sample and each sample of Yi. This p-
value has to be higher than a limit p-value corresponding in this study to 0.01.   
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Test to detect outliers 

The absence of outliers in the extreme data sample is required for engineering applications 
linked to the coastal protections’ design of Nuclear Power Plants (ASN, 2013). In according to 

the definition of outlier (Barnett and Lewis, 1994), a test to detect outliers in a sample of ex-
tremes is used (Hubert and Van der Veeken, 2008; Weiss, 2014). This test verifies that the 
considered regional extreme data sample does not contain outliers. 

 

3.2.6.2 Secondary parameters 

Secondary parameters are factors considered as significant for the statistical analysis performed. 
In the process to choose the optimal statistical threshold, only secondary parameters calculated 

for λ-cases in which all of the primary tests are satisfied, are used to perform the weighting 

analysis. 

Seven secondary parameters are chosen for FAB application. These parameters are described 
in the following.  

 

Number of regional extreme data 

A sufficient number of extreme data is required to get reliable estimations of extreme events. 

In fact, extreme events’ estimations of a sample of few extreme data are typically linked to high 
uncertainties. For this reason, a sufficient number of extreme data is required to define accurate 
statistical distributions. In the FAB method, the number of extreme events contained in the 

regional sample depends on the λ value and, consequently, on local sampling thresholds 

(Eq.3.4). In particular, more the value of λ is high and more events are contained in the regional 

extreme data sample.  

 

Regional credible duration  

Extreme data samples observed for a long period provide frequently estimations of extreme 
events linked to low uncertainties. In the FAB method, the period of observation of the regional 

extreme data sample (the regional credible duration) depends on the value of λ. High values of 
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regional duration around the optimal λ value are preferred. In addition, it is preferred to define 

a statistical distribution stable around the optimal λ value. Being the regional credible duration 

a parameter of the statistical distribution, stable value of this parameters are preferred.  

 

Adimensional degree of regional dependence 

The adimensional degree É of regional dependence is a statistical factor depending on the de-

gree ϕ of regional dependence (recalling that it is a value between 1 and N sites of the region) 

as follows: 

 Φ =
Q − O

Q − 1
 (3.36) 

This parameter assumes values between 0 and 1 representing a weak or a strong regional de-

pendence. Being ϕ function of the value of λ, the value of É depends consequently on the same 

λ value. For the same reasons exposed for the regional credible duration, a stability on the pa-

rameter É is needed for each λ-case. 

 

Value of S-χ2 

Results of the primary Pearson’s chi-squared test can be used as a secondary parameter. In 
particular, more the dispersion value S-χ2 is low and more the considered statistical distribution 
is suitable for the extreme data sample. A low value of S-χ2 is preferred to a highest one.  

 

Scale parameter of regional GPD 

The stability of parameters of the statistical distribution around the optimal value of λ is sug-

gested to perform a statistical analysis. In the FAB method, the regional GPD’ scale parameters 
for the four seasons are estimated for the regional extreme data sample by the Penalised Maxi-
mum Likelihood Estimation (PMLE). For this reason, the stability of all four scale parameters 

is required for each value of λ.  
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Shape parameter of regional GPD 

As for the scale parameters, the stability of regional GPD’ shape parameter is looked around 

the optimal λ.  

 

Regional return level for a return period T of 1000 year 

The stability of return levels linked to high return period is preferred around the optimal value 

of λ. In the FAB method, regional return levels are computed for each value of λ. A stability 

coefficient is computed for every corresponding to the regional return level linked to a return 
period of 1000 years. 

In addition, return level linked to other return periods or also a particular confidence interval 
can be considered as a secondary parameter instead of the parameter proposed here. 

 

3.2.6.3 Weighting analysis on secondary parameters 

A weighting analysis is only performed for all the chosen secondary parameters corresponding 

to λ-cases in which primary tests are satisfied. This analysis is based on the computation of a 

weighting for each secondary parameter. The measure of weighting has to be based on criteria 
provided by the expert for each of these parameters in order to get better estimation of extreme 

events. In particular, the stability of the regional duration, the adimensional degree of regional 
dependence, the scale and shape parameters of regional GPD and the regional return level, the 
small value of the S-χ2 and high value of the number of regional data and the regional duration 
are required for the application of the FAB method. A different measure of weighting is esti-
mated for the criteria defined for each of seven secondary parameters. The stability, the mini-
misation and the maximisation are the three different types of criteria considered in this analy-
sis. Eight values of single weighting (both stability and maximisation criteria are assumed for 

the regional duration) are summed for each possible λ-case. More details of this weighting cal-

culation for the three types of criteria are provided in the following. 
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Weighting computation for the stability of parameters  

A measure of stability M has to be first computed for the parameters t that require the stability. 

For every parameter t, this measure M is calculated only for the N possible λ-cases in which 

primary parameters are verified: 

 

 Ö"Ü,L
=

x G" − x(G"Ü)

G" − G"Ü

á

"S<,6à6Ü

 (3.37) 

the parameter t is evaluated for the particular λi0 and also for the λi-cases around the λi0. An 

interval of R=40 values (R/2 before and R/2 after the considered value of λi0) is considered in 

this study. The measure of stability Mi0,t is computed for each of the N λ-cases. More the meas-

ure of stability Mi0,t of the parameter t for the considered λi0 is higher and more the values of 

t(λi) vary around the considered value of t(λi0). In addition, this measure Mi0,t provides more 

relevance to the values of t(λi) nearest to the considered λi0.  

Now, after the computation of MN,t measures of stability Mi0,t, the weighting measure Wi0,t can 

be formulated for each of the N possible λ-case as follows:   

 

 â"Ü,L
= 1 + Q − 1

max ÖR,L − Ö"Ü,L

max ÖR,L − min ÖR,L

 (3.38) 

where the value of the weighting measure Wi0,t varies between 1 and N. In for two different N 

cases in which the measure Mi0,t is similar then, their weightings Wi0,t have likewise similar 

values. More the value of the weighting Wi0,t is high and more the parameter t computed for λi0 

is stable.  

This type of weighting measure is calculated to evaluate the stability of the five parameters 

mentioned above. For the particular case of the four scale parameters of the regional GPD, a 
weighting measure is estimated for every season and a simple average of these four weighting 
values is considered in the analysis.         
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Weighting computation for the minimisation of parameters  

The weighting measure Wi0,t that allows the minimisation of a parameter t is estimated as fol-
lows: 

 â"Ü,L
= 1 + Q − 1

max xR − x(G"Ü)

max xR − min xR
 (3.39) 

the value of this weighting measure varies between 1 and N. More the value of the weighting 

Wi0,t for the parameter t is high and more the parameter t computed for λi0 is small. In the FAB 

method, this type of weighting is calculated only for the value of S-χ2. 

 

Weighting computation for the maximisation of parameters 

This measure of weighting enables the maximisation of the parameters t as follows: 

 â"Ü,L
= 1 + Q − 1

x G"Ü − min xR

max xR − min xR
	 (3.40) 

where the value of the weighting measure Wi0,t varies between 1 and N. This weighting formu-

lation is similar to the last one but not identical. In fact, more the value of the weighting Wi0,t of 

the parameter t is high and more the parameter t computed for λi0 is big. This last type of 

weighting criteria is used for the number of regional data and for the regional duration. 

The sum of the eight weighting measures is performed for each possible value of λi0. The value 

λi0 with the highest total weighting is defined as the optimal λ.  

Moreover, this approach that permits the computation of the optimal value of λ is enough flex-

ible. In fact, further primary or secondary parameters can be added or removed from the analysis 
depending on the aim of the study. For instance, higher return levels can be preferred when 
dealing with nuclear safety. In this case, an additional weighting measure that maximise the 
return level parameter has to be considered. 
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3.2.7 Frequentist return levels 

Regional extreme data samples are fitted to a GPD (1, γ, k) created by the unitary parameter of 
location and the estimated scale γ and shape k parameters. Seasonal effects are considered in 

the estimation of the regional GPD parameters (performed by the PMLE) through the use of 
four seasons. Differently to the RFA approach, FAB method considers only mixed GPD with 

k≠0. In fact, particular exponential cases (k=0) provide frequently return levels linked to high 

return periods lower compared to that computed by a GPD with k≠0. The model that fits better 

regional observations can be chosen only between the remaining four possible models proposed 
in the RFA approach (GPD, GPDcos, GPDsin and GPDcos sin) with a no-zero value of shape pa-
rameter k. The best seasonal GPD model used to fit our regional sample is defined by the Akaike 
Information Criterion (Di Baldassarre et al., 2009; Laio et al., 2009; Mendez et al., 2008).      

Now, the p-quantile yr
p of the regional cumulative distribution function Fr corresponding to    

yr
1-1/λT (Rosbjerg, 1985) can be computed as follows: 

 D/
A = D

<4
<
>?

A = 1 −
C

,
(1 − 1 − 3 5) (3.41) 

The regional quantile associated to a return level T is equal to: 

 yé
è = Fè

4< 	 1 −
1

λT
 (3.42) 

Similarly, the return level linked to a return level of T for a site i can be calculated by the use 
of the local index: 

 .?
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A  (3.43) 

Eq.3.41, Eq.3.42 and Eq.3.43 are used to compute regional and local return levels that can be 
illustrated in the regional return level plots.  

Uncertainties on regional and local return levels are computed by the parametric bootstrap 
method proposed in the RFA approach. The bootstrap allows the simulation of new regional 
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samples M’r starting from the estimated distribution of the original regional observations 
(Efron, 1979; Weiss, 2014). New regional GPD parameters are then estimated as before by a 
PMLE. These new parameters enable the estimation of the statistical distribution F’r of the new 
regional extreme data sample. This bootstrap process is replicated for U times. The particular 
quantile of the new regional distributions generated corresponds to the investigated confidence 
intervals. Regional confidence intervals linked to particular return levels are estimated. 

In addition, a similar bootstrap procedure is applied to local estimations in order to compute 
their confidence intervals. Being local return levels related to regional estimations by the cor-
responding local index, the bootstrap has to consider in this case the variability of the regional 
return level and the local index. Local confidence intervals are computed as for regional confi-

dence intervals through a bootstrap replicated for U times. Further details of this procedure are 
provided by Weiss (2014). 

In particular cases, the bootstrap method can provide upper confidence intervals that for small 
return period they result bounded and for high return period they become unbounded. This var-
iation on the curve behaviour may occur when high confidence levels (typically over 90%) are 
computed for regional extreme data samples generated by very high sampling thresholds. In 
particular, this is frequently caused by the variability of the regional GPD shape parameter k 
estimated by the PMLE as a value close to 0. In fact, resampling only few very extreme data, 
the new shape parameter k’ of the new regional extreme data sample Fr’ generated by bootstrap 
could be estimated for a value of opposite sign. 

3.2.8 Bayesian return levels 

The FAB method can be also used to estimate Bayesian return levels. This is useful for experts 
that would like to introduce in the statistical analysis priori information on the observations or 
that would like simply estimate return levels in a Bayesian framework. In fact, most of the 
authors that deal with historical data prefer to use a Bayesian inference to estimate the extreme 
events.  

Bayesian estimations can be computed for a regional extreme data sample. This analysis leads 
the computation of predictive return levels y*

R, standard estimative return levels yR and their 
associated Credibility Intervals. Further details about the Bayesian inference are provided in the 
Annexe B. 
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Regional GPD parameters’ vector θ composed by the regional scale γ and regional shape k 
parameters is defined by its posterior distribution (Eq.B.2.1). It is computed considering a non-

informative prior probability distribution f(θ)�1 (Payrastre et al., 2011; Bulteau et al., 2015) 

and the penalised likelihood formulation for systematic and historical data (Eq.3.35).  

In particular, the non informative-prior distribution is enough common in literature when his-
torical data are used. It supposes that no knowledge a priori on the parameters of the statistical 
distribution is available. The possible formulation of a priori distribution is a difficult topic. As 
stated by Coles (1999), improper priors cause some problems in Bayesian estimations mainly 
during the resolution of the Markov Chain Monte Carlo. 

The posterior distribution of the regional GPD parameters’ vector θ can be computed through a 
MCMC algorithm. Several chains containing a number U of vectors θ of the two regional GPD 
parameters are calculated by the Metropolis-Hastings algorithm (Metropolis et al., 1953; Has-
tings, 1970). Convergence between chains and in chains are verified by the Gelman and Rubin 

test (Gelman and Rubin, 1992) and the most recent Brooks and Gelman correction of the pre-
vious test (Brooks and Gelman, 1998).  

Contrary to the estimations of regional GPD parameters for frequentist return levels, the poste-

rior distribution does not take into account the seasonality on the estimation of the regional GPD 
scale parameter γ. For this reason, a number U of vectors θ with a unique value of regional GPD 
scale parameter γ is sampled. The location parameter is equal to 1 for each of the U iterations. 

The knowledge of the posterior distribution of the regional GPD parameters’ vector θ allows 
the computation of the predictive distribution, standard estimative return levels and credibility 
intervals.  

The predictive distribution is estimated calculating the mean of the different regional GPD dis-
tributions created for each value of θ. In addition, a burn-in of U’ iterations of posterior distri-
bution is suggested to estimate reliable predictive return levels.  

Return levels obtained computing the regional GPD distribution with the mode of the vectors 
θU of parameters correspond to return levels computed in the frequentist framework. These 
quantiles can be defined as standard estimative return levels. Uncertainties associated to this 
return levels are defined by the credibility intervals. They are identified as the regional GPD 
distribution computed by the corresponding quantile of the vectors θU of regional parameters.  
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Return level plot of each of the three variables can be figured out recalling the relationship 

between quantiles xT and return periods T equal to: P(X>xT)=1/λT. 

Finally, the three different regional quantiles yR,T associated to a return period T enable to know 
local quantiles through the local index. Local quantiles xi,T of the predictive distribution, credi-
bility intervals and standard estimative return levels are computed for a particular return period 
T as: xi,T=yR,T/ui. 

Further considerations are needed for the local computation of the credibility intervals. In fact, 
the variability of local return levels xi,T considers only the variability of xR,T (the variability of 
ui is not considered in this approach). 

  



 

 Chapter 4 

FAB APPLICATION 

Une application de la méthode FAB à une base des données des surcotes de 
pleine mer, c’est à dire la partie considérée comme aléatoire du niveau marin, 
est développée dans ce chapitre.  

La base de données est constituée par des sériés temporelles de surcotes de 
pleine mer systématiques provenant de 74 ports situés dans l’Atlantique, dans la 
Manche, dans la Mer d’Irlande et dans la Mer du Nord, et par 14 surcotes de 
pleine mer historiques.  

La première étape de la FAB méthode consiste à former des régions physiques 
par la méthode de clustering des tempêtes définie dans l’approche AFR. Cette 
méthode de clustering est fondée sur la définition de trois paramètres physiques 
(p, Δ, η). Pour des séries temporelles avec une différente durée, une analyse de 
sensibilité de ces paramètres est conseillée. La formation des régions physiques 
est recommandée pour une fenêtre temporelle dans laquelle la plupart des ma-
régraphes sont en fonction. 

Les autres étapes de la méthode FAB sont réalisées exclusivement pour les ré-
gions comprenant des sites avec des données historiques disponibles (Région 1 
et Région 2). Les seuils optimaux sont évalués pour ces deux régions qui sont 
ensuite statistiquement vérifiées. Des niveaux de retour fréquentistes et 
bayésiens sont estimés et une comparaison préliminaire des résultats est mon-
trée. Enfin, la méthode FAB est appliquée sur la même base de données sans 
surcotes historiques. Cette analyse supplémentaire permet d’indiquer le rôle des 
données historiques dans l’analyse régionale des événements extrêmes. 
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4.1 Introduction 
FAB method is applied to a database of systematic and historical skew surges illustrated in the 
following. This application permits the practical steps of the FAB methodology. Starting from 

a database of systematic and historical variables, this method enables the estimations of regional 
and local return levels.  

After the collection of systematic and historical data from different locations, FAB method re-
quires to pool sites in homogeneous regions in order to form regional samples and to treat them 
with a statistical analysis. In particular, physical homogeneous regions are formed through the 
definition of three parameters p, Δ and η. These parameters leading the formation of storm clus-
ters have to be calibrated for time series with different periods of observation. For this reason, 
a sensitivity analysis of these three parameters is performed in this application. This sensitivity 
analysis is recommended when the FAB method is applied to a database of time series with 
different recording periods. Moreover, it is important to recall that in the FAB application case 

of the paper illustrated in Annexe A, the three parameters to form physical homogeneous re-
gions were not calibrated. In that case, the parameters used were the same proposed in the RFA 
approach. 

Now, physical homogeneous regions can be statistically verified. A double threshold approach 
is used and so a statistical threshold has to be defined in every site of the region. The statistical 

threshold chosen corresponds to a number of storms λ per year above this threshold. This λ 

value is common for every site in the region. The optimal value of λopt,r has to be found for each 

physical region r in order to get the best performances of this methodology on the extreme 

estimations. The identification of the λopt,r based on a weighting analysis of sensitivity indicators 

is performed for the skew surge database. 

The regional extreme data sample is then formed and the degree of dependence as the local and 

regional credible durations are computed. The GPD distribution is estimated for the sample of 
regional storms considering the seasonality of skew surges in the frequentist framework. No 
seasonality on skew surges is considered in the estimations of Bayesian return levels. Fre-
quentist and Bayesian regional return levels and frequentist and Bayesian local return levels of 
each site by the use of the local indexes are estimated. This can allow the comparison between 
frequentist and Bayesian estimations always recalling the different concept of probabilities that 
the two statistical inferences have (Annexe B). 
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In such way, FAB method is applied to a database of 74 skew surge time series composed by 
systematic and historical data. In particular, the process of formation of physical and statistical 
regions states that sites in which historical skew surges are available belong to the Region 1 and 
the Region 2. For this reason, the FAB method is only focused on the frequentist and Bayesian 
estimations of return levels of these two regions.  

4.2 Skew surge database 
In this application, the maritime variable analysed is the skew surge. A skew surge database 
composed of systematic and historical skew surges is used to perform the FAB method.  

Systematic skew surges are generated from time series recorded by tide gauges in different sites 
located along the coasts of Atlantic Ocean, the North Sea and the English Channel. Conversely, 
historical skew surges are collected in some French sites of Atlantic Ocean and the English 
Channel.  

For this reason, the database of skew surges used in this application is formed by a systematic 
skew surge database in which historical skew surges are successively added. 

4.2.1 Definition of skew surge 

The sea level can be schematically shown as the overlap of two contributions: the predicted 

astronomical tide (deterministic part of sea level) and the instantaneous surge or residual (sto-
chastic part of water level provoked by the meteorological variables).  

As Fig. 8 shown, skew surge is defined as the difference between the maximum water level 
measured by a tide gauge and the maximum predicted astronomical tide computed during the 
same tidal cycle (Simon, 2007; Kerdagallan, 2013; Weiss, 2014).  



Chapter 4 : FAB APPLICATION 64 
 

 

Fig. 8 – Definition of skew surge. Source:  SurgeWatch Glossary (University Southampton) 

 

Skew surges are preferred to instantaneous surges when dealing with extreme sea level. In fact, 
notwithstanding it is complicate get accurate and continuous time series of instantaneous surges, 
they are not influenced by a possible time lag between astronomical tides and sea levels. In 
addition, astronomical tides and residuals can have a possible dependence in the instant of max-
imum sea level and this has to be considerate in the computation of extreme sea levels (Weiss, 
2014).  

Finally, the knowledge of predicted astronomical tides and sea levels enables the calculation of 
time series of systematic skew surges and historical skew surge values. 
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4.2.2  Systematic skew surge database 

The database of systematic skew surges is generated through sea levels data recorded by tide 
gauges. The quality of these water level measurements is checked by different national ocean 

data centers that provided these data. A big effort has been done during the acquisition of tidal 
gauge measurements in order to create a database of systematic skew surges as biggest as pos-
sible.  

In addition, astronomical tides or residuals must be available to compute time series of system-
atic skew surges.  

Data recorded by 74 tidal gauges located in French, Spanish, British and Belgian coasts of At-
lantic Ocean, English Channel, Irish Sea and North Sea are considered in this study. The loca-
tion of the 74 sites in which measurements of water levels are available is shown in Fig. 9. Time 
series of skew surges are successively computed for each of the 74 sites. 

Sea level measurements of the 23 tidal gauges placed in French coasts are provided by the 
SHOM (Service Hydrographique et Océanographique de la Marine) and REFMAR (Réseaux 
de référence des observations marégraphiques) every hour. Time series of skew surges for 
French sites are created by the astronomical tides generated through the official software 
PREDIT provided by the SHOM.  

Sea level measurements of 46 tidal gauges placed in British coasts are provided by the BODC 
(British Oceanographic Data Center) every hour until 1992 and every 15 minutes after 1993. In 
addition, the BODC supplies also residuals. This allows the computation of astronomical tides 
and consequently of the skew surges for each tidal cycle.  

Only 2 Spanish sites in which water levels are provided by IEO (Instituto Español de Oceano-

grafía) every hour are considered. Skew surges are calculated for the 2 Spanish sites by astro-
nomical tides computed through the software SHOMAR (provided by the SHOM). 

MVB (Meetnet Vlaamse Banken) has kindly provided the water levels for 3 Belgian sites (Nieu-

wpoort, Oostende et Zeebrugge) and the astronomical tides associated every 5 minutes. Skew 
surges are then calculated for these 3 Belgian ports.   
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Fig. 9 - Location of 74 tide gauges considered in this study. Source of the map: Google Maps. 

This database can be considered as an update of the skew surge database used by Weiss (2014) 
for the application of the RFA approach. In particular, French and British data are available 
until 2017, data from sites like Dielette (France), Port Ellen (UK), Portbury (UK) and Bourne-

mouth (UK) are exploitable, Belgian tide gauge measurements are considered and an important 
restoration of the time series at Saint-Nazaire had been done by the SHOM (Ferret, 2016) and 
these data are now available since 1821 (this time series’ reconstruction has been used in this 
study even though the SHOM had recently retired these data to definitively validate them). 

Before the computation of systematic skew surges for all sites, the sea levels measured in each 
site must be corrected by a likely significant eustatism. The eustatism is the modification of 
mean sea level caused mainly by ocean floor motion and ice sheet melting. Not ever the eustat-
ism gives a remarkable contribution in sea levels and so not ever it has to be taken into account 
in sea level corrections. Eustatism is considered significant when the regression curve slop of 
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annual mean of sea levels can be practically considered void (p-value of T-Student test lower 
than 5% (Watson, 2016)). The eustatism for 67 of 74 sites was already calculated by Weiss 
(2014) until the year 2010. In cases in which eustatism is considered as significant, sea levels 
(recorded before 2010) are corrected by the same eustatism computed by Weiss (2014) apart 
from the site of Saint-Nazaire in which the eustatism has been entirely recalculated. For sea 
levels between 2011 and 2017, eustatism is considered irrelevant (only 6-7 years more of water 
level measurements).    

Sea levels recorded by tide gauge at Saint-Nazaire has been corrected by an eustatism of 1,76 
mm/year until the year 1893. Before this period, the regression curve slop is broken and not 
more tendency on sea levels are detected. For the 7 additional sites used in this study (3 British 

sites, 3 Belgian sites and 1 French site), no eustatism is detected and sea levels have no need to 
be corrected.    

Every site has its own period of tidal recordings that depends on many factors. For instance, 
this could depend on the time in which tidal gauge is put into operation or damage on measure-
ments during a big storm. The longest period of sea levels measurements is available for the 
tide gauge located at Brest: 156.57 years of recordings since 1846 (Fig. 10). 

 

Fig. 10 - The longest time series of skew surge database (measurements recorded by Brest tidal  gauge) 
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4.2.3 Historical skew surges 

Historical skew surges are collected through a deep investigation on several sources. Historical 
skew surges are punctual numerical values of skew surges that are not associated to any time 
series of water levels recorded by the tidal gauge. 

In this application, only the 14 historical data recovered in 3 different sites (La Rochelle, Dieppe 

and Dunkirk) during the first part of this PhD are considered. The additional 17 historical skew 
surges founded by Florian Regnier during his internship at EDF R&D LNHE in 2017 are not 
taken into account. This allows a correct comparison between results of this application and 
results of previous studies (e.g. the study presented in the Annexe A). In addition, the most of 
these 17 historical skew surges are recovered in locations in which any time series of systematic 
skew surges is available and, for this reason, not all of them could have been exploitable in this 
study.  

However, although the 14 historical data considered may not seem a large number of additional 
data, their contribution in statistical analysis of extreme events can be considerable. When his-
torical data are available, it is unusual to get directly the skew surge value from documentations. 

For this reason, maximum sea level and the associated maximum astronomical tide have to be 
known in order to compute the skew surge corresponding to the event of the past period. 

In particular, the studies of Garnier and Surville (2010), Gouriou (2012) and Brehil (2014), 
performed on the collection or on the modelling of historical events at the site of La Rochelle, 
allow the recovering of 9 historical skew surges (Tab. 1) that are added to the time series of 
systematic skew surges (Fig. 11). 

Gouriou (2012) recovered in archives of the tidal gauge at La Rochelle the 4 oldest historical 
skew surges (1866, 1867, 1869 and 1872). The historical skew surges of 1924 and 1940 are 
instead computed through the study of Garnier and Surville (2010). In fact, this study provides 
the maximum water level and the maximum astronomical tide for the two events of the past.  

The three most recent historical events recovered at La Rochelle (1941, 1957, 1999) are calcu-
lated by numerical simulations (Brehil, 2014). Fig. 11 and Tab. 1 illustrate the historical skew 
surge happened on 27th December 1999 (Martin storm) that is computed by the difference be-
tween maximum water level and predicted max tidal level provided by Brehil, 2014. This is the 

biggest skew surge never seen at La Rochelle. Unfortunately, the tidal gauge located in La 
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Rochelle has not operated in that day. Despite several questions are asked on the truthfulness 
of this large value, the historical skew surge of 2.17 meters is considered in this application. 

Fig. 11 shows these 9 historical skew surges (the green crosses) in the time series of systematic 

skew surges at La Rochelle. Historical skew surges are isolated data points and, for this reason, 
the historical period of observations, or better said, what it is happened before or after these 
historical events is unknown.  

Historical skew surges – La Rochelle 

11 Jan. 
1866 

27 Jul. 
1867 

20 Jan. 
1869 

10 Dec. 
1872 

9 Jan. 
1924 

16 Nov. 
1940 

16 Feb. 
1941 

15 Feb. 
1957 

27 Dec. 
1999 

1.11 m 0.8 m 0.87 m 0.96 m 1.27 m 1.49 m 1.37 m 1.11 m 2.17 m 

Tab. 1 – Historical skew surges recovered at the site of La Rochelle 

         
Fig. 11 – Systematic skew surge  recorded by the tide gauge at La Rochelle (in black)and historical skew surges (in 

green) recovered for La Rochelle 

The technical report of the project NIVEXT (Daubord et al., 2015) provides the only one his-
torical value of skew surge recovered at the site of Dieppe (Tab. 2). As done before for La 
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Rochelle, this historical skew surge is added to the time series of systematic skew surges rec-
orded by Dieppe’s tidal gauge (Fig. 12). 

Historical skew surges 

Dieppe Dunkirk 

17 Dec. 
2004 

29 Nov. 
1897 

1 Mar. 
1949 

1 Feb. 
1953 

2 Jan. 
1995 

1.3 m 1.75 m 1.56 m 2.22 m 1.18 m 

Tab. 2 - Historical skew surges recovered at the site of Dieppe and Dunkirk 

 
Fig. 12 - Systematic skew surge recorded by the tide gauge at Dieppe (in black) and historical skew surges (in green) recovered for 

Dieppe 

On the contrary, several documents are available for the site of Dunkirk. Four additional histor-
ical events, are taken into account in this application (Tab. 2). In particular, Dunkirk was im-
pacted by storms in 1897, 1949, 1953 and 1995 that provoked significant skew surges. All of 
these skews surges are collected by different sources.  



4.2 Skew surge database  71 

Le Cornec and Peeters (2009) state that the maximum water level reached 7.36 meters at Dun-
kirk on the 29th November 1897 (the municipal archives of Dunkirk is the primary source). The 
SHOM provides astronomical tide values for many locations by the website “maree.shom.fr”. 
Astronomical tides calculated at Dunkirk by the SHOM for that day are equal to 5.71 and 5.78 
meters. Making the assumption that the eustatism is the same computed by Weiss (2014) for 
the period 1956-2010 (1.5 mm/year), the historical skew surge of 1.75 meters is considered.  

Le Gorgeu and Guitonneau (1954) state that the maximum sea level of 7.3 meters was reached 
on the 1st March 1949 at Dunkirk. The associated astronomical tides of 5.77 and 5.83 meters is 
provided by the SHOM website. Taking into account the eustatism of 1,5 mm/year at Dunkirk 
(Weiss, 2014), the historical skew surge of 1.56 meters has been computed. 

The historical skew surge of 2.22 meters (including the eustatism) has been founded at Dunkirk 
on the 1st February 1953 by an internal study performed in the past at EDF R&D. This value 

was already used as systematic skew surge by Weiss (2014). However, a different value of skew 
surge (2.13 meters) has been used by Bardet et al. (2011) for this event. 

Maspataud (2011) evaluates a skew surge of 1.15 meters at Dunkirk on 2nd January 1995 (pri-

mary source is Service Maritime de Nordn-S.I.L.E.-Les Dunes de Flandres). Considering the 
same eustatism of Weiss (2014), the historical skew surge of 1.18 meters is considered. 

 
Fig. 13 - Systematic skew surge recorded by the tide gauge at Dunkirk (in black) and historical skew surges (in green) recovered for 

Dunkirk 
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The historical skew surges recovered at Dunkirk are merged with time series of systematic skew 
surges recorded by tidal gauge located at Dunkirk (Fig. 13). 

Even if for historical skew surges computed at Dunkirk the eustatism calculated for the period 

1956-2010 is taken into account, historical skew surges calculated at La Rochelle are not cor-
rected by a likely eustatism. In fact, no information is known about a possible correction already 
done (mainly for the 3 historical skew surges originated by numerical models). The considera-
tion of an eustatism calculated between 1941-2010 (Weiss, 2014) for many events of the past 
(exactly 4 of 9 events founded) happened in 19th century could not be proper. For these reasons, 
historical skew surges recovered at La Rochelle have not been corrected by any eustatism.  

The eustatism is not taken into account for the historical skew surge at Dieppe because, being 
a skew surge quite recent, the eustatism is considered as negligible. 

Notwithstanding a complete documentation of past events is provided by authors of scientific 
studies, historical numerical values must be constantly criticized because the value recovered 
not always is the correct one. In particular, historical skew surges of the 19th century precise to 
the centimeter could called into question. In addition, some historical skew surges recovered at 

Immingham and Portsmouth by other sources for some events happened after the year 2010 had 
different numerical values compared to the new systematic skew surges computed at these sites 
(the difference is of few centimeters). 

For these reasons, these 14 historical skew surges recovered have been validated as proposed 
in Chapter 2. For the moment, any validation has been performed for these events. 
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4.3 Physical homogeneous regions 
Physical homogeneous regions are formed in FAB method by a process based on the computa-
tion of probabilities pij that storms occurred in a site i might impact also the site j and vice versa.  

This method to form homogeneous regions is the same proposed in the RFA approach. In this 
approach, the process to form regions was principally developed for continuous time series of 

modelled significant wave heights in which data are observed for a common period in every 
site. When data come from different tide gauges, the recording period can be not the same in 
each location.  

For this reason, the probabilities pi,j that a storm impacts the site i and the site j for a same storm 
have to be computed for a period in which the most part of tide gauges are operating. A partic-
ular period has to be defined to form homogeneous regions. This allows the optimisation of 
formation of physical homogeneous regions. In addition, a sensitivity analysis on the three pa-
rameters that lead the formation of physical region is recommended. Further details are illus-
trated in the following. 

All the probabilities pij should be ideally computed from data approximately recorded for a 
same period of time at each site in order to form accurate typical storms footprints and conse-
quently precise physical regions. More time periods of tide gauge recordings from different 

sites are common, more the probabilities pij are less impacted by mutual time periods of data 
and they could be properly hierarchically compared and clustered. In fact, hierarchical cluster-
ing method provides better typical storm footprints if applied to probabilities pij that are com-
puted for approximately the same period of time. Computing probabilities pij for a same time 
period at each site is possible only when dealing with modelled time series that are generated 
for a same time period.  

In this application, skew surges are available in 74 tide gauges that start and finish to operate in 
different periods. In addition, they have different periods of failure on gauging. For this reason, 
a time window in which most of tide gauges operate has to be chosen in order to estimate proper 
values of pij and to get accurate physical homogeneous regions. 

Fig. 14 illustrates the number of working tide gauges during every year. Tide gauges never work 
at the same time.  
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Fig. 14 – Number of operating tide gauges per year 

A clear breaking point on the number of working tide gauges is marked between the beginning 
and the end of the year 1950. In fact, the most part of the 74 tide gauges available in this database 
starts to operate and to measure water levels from the beginning of the year 1950. For this 
reason, the time window in which the probabilities pij are considered to form physical homoge-

neous regions lasts 67 years (from 1951 to 2017). In this time window approximately 35 of 74 
tide gauge are operating on average. 

Another shortest time window with more tide gauges operating on average could be chosen but 
it is important to specify that more the time window is reduced and more the probabilities pij 
might be inaccurate. On the contrary, the extension of the time window before 1951 would 
mean that the probabilities pij are computed also for time periods in which only 2 tide gauges 
work on average. 

In this application, typical storm footprints are computed only for storms occurred after the 31st 
December 1950. 

A generic site i must typically have a computing occurrence probability between all other in-
terested sites in order to use a hierarchical method. In fact, if a site i has not common period 
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with a site j, the probability pij cannot be computed. Unfortunately, 5 of our 74 sites face with 
this problem. These 5 sites are removed when hierarchical clustering method is applied. 

After the formation of physical regions, they can be reintroduced in the region in which they 

evidently belong. In this study, the sites removed are Saint-Servan, Dielette, Le Crouesty, Port 
Bury and Moray Firth. A particular case arises for the site of Le Crouesty. Removing the other 
4 sites, the site of Le Crouesty have any common period with the site of Le Verdon. A choice 
of which site had to be removed is carried out depending on length of time series. Tide gauge 
at Le Verdon operates for the most part of the years between 1951-2000 and until to November 
2000 while the tide gauge at Le Crouesty starts the recordings from the end of the year 2000.  

A test removing the site of Le Crouesty instead of the site of Verdon is performed at the end of 
this analysis. Using the parameters for storm clusters chosen in the following, the physical ho-
mogeneous regions are precisely the same of that founded in this application (Fig. 21). 

4.3.1.1 Parameters to detect storms 

The formation of physical homogeneous regions is applied only to storms occurred after the 
year 1950. Notwithstanding, storm clusters have to be created for all the available events. In 
fact, the determination of clusters for all the events is necessary to define the regional extreme 
data samples composed by all extreme events occurred in the considered region. 

Physical storms are detected by a spatiotemporal declustering and they are defined by three 

parameters (p, Δ, η). Extremes happened in neighbour sites η during a temporal interval Δ are 
generated by the same storm. In particular, two or more extreme values that exceed the local 
physical threshold (represented by the p-value) belong to the same storm if they occur in η-
nearest sites during an interval of Δ hours.  

The value of 0.995 is widely used in literature of extreme events (Mendez et al., 2008; Di Bal-
dassarre et al., 2009; Laio et al., 2009; Weiss, 2014) for the parameter p and, for this reason, a 
sensitivity analysis on the other two parameters Δ and η is performed.  

The variation of these two parameters could generate significant differences in the formation of 
storm clusters. This would impact the formation of physical and statistical homogeneous re-
gions and successively regional and local estimations of extreme events. In fact, storm clusters 
are physical element that represent an effective storm. The goodness of representation of its 



Chapter 4 : FAB APPLICATION 76 
physical process depends on the parameters used to form clusters. For this reason, a sensitivity 
analysis on these parameters that generate storm clusters have to be performed.  

The same sensitivity analysis is recommended for each application of the FAB method to data-
bases of variables recorded in different locations. 

 

Sensitivity analysis for the temporal parameter Δ 

Before to perform the analysis performed for the temporal parameter Δ, it is important to recall 
that the identification of a valid temporal parameter Δ is necessary to get a satisfactory repre-
sentation of storms. In particular, a single storm can be identified like two or more different 
storms if the value of Δ hours is too little and, on the contrary, if the value of Δ hours is exces-
sively high, two or more different storms can be identified as a single one.  

For this reason, three different values of temporal parameter Δ hours are considered to detect 

storms in this application. This analysis is performed separately for storms happened before the 
year 1951 that are not used on the process of formations of physical regions and for storms 
occurred after the year 1950. In fact, as a result of the previous study (Fig.3), the duration of a 
storm propagation Δ has to be higher when only few tide gauges operate. More time is needed 
to a storm moving to another operating location that it should ideally be more far. For this 
reason, storms happened before the year 1951 and after the year 1950 are independently ana-
lysed. 

In particular, the duration of a storm, or better the difference in time between the first and the 
last extreme event of a storm cluster, is examined for the three different values of Δ hours: 25 
hours, 48 hours and 72 hours. A value of 25 hours instead of 24 hours is considered to allow 

the realisation of a time of at least two tidal cycles in a same location. Histograms of number of 
storms for 12 hours’ progressive intervals of storm durations are produced to interpret easily 
the results of this sensitivity analysis.  

The results of this analysis are illustrated below for a spatial parameter of η=16. In any case, 
analyses with other spatial parameters have been performed. Behaviours of histograms with 
other spatial parameters are similar to these of Fig. 15 and Fig. 16.  
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A Δ of 25 hours is selected as the most satisfactory value by the analysis performed for storms 
happened after the year 1950. In fact, as the histograms of Fig. 15 and Fig. 16 shown, more the 
value of Δ hours is higher and more the storms have a longer duration. The histogram for a Δ of 
72 hours (on the right side of Fig. 16) illustrates that more than 50 storms of the 1036 storms 
detected in total last more than 6 days and two storms last approximately 25 days. The detection 
of a storm that lasts 25 days has not any physical sense. Similar considerations can be pointed 
out for the case of a Δ of 48 hours in which 1189 storms are detected. This case is illustrated in 
the histogram on the left side of Fig. 16.  

 

 

Fig. 15 – Histogram of the number of storm clusters created by a Δ=25 hours and a η=16 in function of their storm du-
ration (in hours) for storms happened after the year 1950 
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Fig. 16 - Histograms of the number of storm clusters created by a Δ=48 hours (on the left) or a Δ=72 hours (on the 
right) and a η=16 in function of their storm duration (in hours) for storms happened after the year 1950 

Conversely, for a Δ of 25 hours, only 9 storms of the 1410 detected last more than 6 days and, 
in addition, the biggest one lasts 9 days. A temporal parameter Δ of 25 hours can be considered 
satisfactory for this application and it is used to detect storms happened after the year 1950.   

The same analysis is performed for storms occurred before the year 1951 (Fig. 17 and Fig. 18).  

 

Fig. 17 - Histogram of the number of storm clusters created by a Δ=72 hours and a η=16 in function of their storm du-
ration (in hours) for storms happened before the year 1951 
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Fig. 18 - Histograms of the number of storm clusters created by a Δ=25 hours (on the left) or a Δ=48 hours (on the 
right) and a η=16 in function of their storm duration (in hours) for storms happened before the year 1951 

During the years before the 1951, only few tide gauges operate. The sensitivity analysis of the 
temporal parameter Δ is performed for values of 25 hours, 48 hours and 72 hours. The histogram 
for a Δ of 25 hours (on the left side of Fig. 18) shows that 381 storms of 448 detected last less 
than 1 day. In addition, only a few number of storms has a duration higher than 48 hours. On 
the contrary, the histogram created for a Δ of 48 hours (on the right side of Fig. 18) and 72 hours 
(Fig. 17) shown as the storm duration is more uniform. A shorter percentage of storms for these 
two cases last more than 1 day and only few storms last more than 6 days (the biggest one lasts 

approximately 10 days). Notwithstanding both cases give satisfactory results, a Δ of 72 hours 
is considered for storms occurred before the 1951 to give a sufficient time to a storm to be 
detected to a farther operating location. Finally, storms happened before 1951 are created for a 
Δ of 72 hours. 

These results obtained by this sensitivity analysis confirm that the division performed for ex-
treme storms before the year 1951 and after the year 1950 had to be performed. In periods of 
time with less working tide gauges, the Δ value is higher than in time periods in which several 
tide gauges work.  

 

Sensitivity analysis for the spatial parameter η 

The choice of a valid temporal parameter Δ of 25 hours for the storms occurred after the year 
1950 allows the performance of the sensitivity analysis for several values of the spatial param-
eter η. In particular, a stability on the composition of physical regions is investigated. A valid η 
value is important to detect correctly a storm. 
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A same storm can be detected as two or more different storms if the spatial parameter η is a 
little value. On the contrary, two or more storms can be detected as a single storm if the spatial 
parameter η is assumed as a high value.  

   

   

Fig. 19 – Physical regions formed for different values of the spatial parameter η (10,11,12,13,14,15,17,18) around the 
value parameter of η=16 selected and using the selected temporal parameter Δ of 25 hours. Source of the map: Google 

Maps 
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Several compositions of physical regions are obtained varying the spatial parameter η between 
10 and 18. These 9 cases are considered in this analysis. The η value has to be a value neither 
too big and nor too small compared with the total number of available locations.  

Fig. 19 figures out the compositions of the physical regions for these different values of η. For 
a spatial value between 12 and 16, the composition of physical regions is the same. The higher 
parameter η between 12 and 16 is considered for this study as the valid spatial parameter that 
provides more extended clusters.  

The spatial parameter η of 16 nearest sites is used for the formation of storm clusters happened 
before and after the year 1950. Storm clusters are formed in this study for the following param-
eters: p=0.995, η=16 and Δ=72 hours or Δ=25 hours depending respectively on the period of 
the event: the first value of the parameter Δ is used for storms before the year 1951 and the 
second value of the parameter Δ for storms after the year 1950. 

4.3.1.1 Physical homogeneous regions 

The formation of storm clusters of skew surges enables the formation of physical homogeneous 
regions. The method to form physical regions is the same used in the RFA approach.  

 

Fig. 20 – The graph of the Mojena’s stopping rule (on the left) and the cluster dendrogram (on the right)  
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The probabilities pij are computed for storms occurred after the year 1950. The resulting dis-
similarity indexes dij can be now estimated. The hierarchical clustering method proposed by 
Ward (1963) is performed in order to select the most typical configuration of storms’ footprints 
through the most significant jump of the dendrogram heights (Mojena, 1977). For this applica-
tion, the most significant jump of the Mojena’s stopping rule is obtained for 4 regions (Fig. 20).  

 

 

Fig. 21 – The 4 physical homogeneous regions founded by the typical storm footprints for events happened after the 
year 1950. Source of the map: Google Maps 

Four physical homogeneous regions are thus formed for the 74 sites of the skew surges’ 
database (Fig. 21). The composition of the physical regions is similar to that calculated by 
Weiss (2014) of Fig. 22 and to the typical storms’ footprints obtained by Haigh et al. (2016) 
for the extreme events of the SurgeWatch database.  
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Fig. 22 – The five physical and statistical regions founded in the PhD thesis of Weiss 2014 

In particular, Weiss (2014) obtained in his study 5 physically and statistically homogeneous 
regions (Fig. 22) selecting p=0.995, Δ=24h and η=14 as valid parameters. These values are 
founded by Weiss (2014) after an analysis on the biggest storms well-known as, for instance, 
the Lothar and Martin storms that impact principally coasts of the Bay of Biscay between 26th 
and 28th December 1999.  

However, the statistical threshold of a particular site is higher compared with its physical thresh-
old. Statistical thresholds have to be chosen in such a way to get a λ extreme values on average 

each year in every site. For this reason, local statistical thresholds are computed fixing a com-
mon λ value for all sites of the region. A value of λ=1 has been used in the RFA application for 
skew surges by Weiss (2014) in all the five regions. 

The slight differences in the composition of physical regions obtained in the FAB application 
and the RFA application performed by Weiss (2014) impact especially the sites located in the 
English Channel. Different borders between the Region 1 and the Region 2 are caused by the 
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introduction of the three Belgian sites that extend the Region 2 and by the correction of the R 
function “hclust” used previously by Weiss (2014) to apply the hierarchical clustering method 
of Ward (1963). In particular, Murtagh and Legendre (2014) affirm that the R function ‘hclust’ 
must be used with squared Euclidean distances dij to implement correctly the Ward method. In 
this application, squared distances dij are properly used. 

 

4.4 Computation of optimal sampling 
threshold 

In the FAB method’s application, the optimal λ is the results of the analysis of all the more 

important parameters of the regional analysis. In particular, it is selected through a weighting 

analysis as the best λ case between 176 different λ-cases. The optimal λ case corresponds to a 

regional extreme data sample that satisfies all the primary tests and has obtained the best global 
weighting value on secondary parameters. 

In this application, physical homogeneous regions containing sites with available historical data 
are considered. Historical skew surges are available for three sites: La Rochelle located in the 
Region 1 and Dieppe and Dunkirk in the Region 2.  

For this reason, the primary tests are performed in the regional extreme data sample of Region 

1 and Region 2 for every λ value between 0.25 to 2 by steps of 0.01. The 176 λ-cases for each 

region are analysed. Only λ-cases verified are successively used for the weighting analysis of 

secondary parameters.  

Depending on the λ value, these parameters are computed in the frequentist analysis’ case for 

the Region 1 (Fig. 23) and for the Region 2 (Fig. 24). 
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Fig. 23 – Sensitivity analysis of secondary parameters used for the Region 1 
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Fig. 24 – Sensitivity analysis of secondary parameters used for the Region 2 
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Furthermore, secondary parameters are computed for the Bayesian analysis’ case for the Region 
1 and for the Region 2 through the use of the “nsRFA” R package. This package enables the 
solving of the MCMC algorithm and the computation of the posterior distribution of the regional 
GPD parameters. 

In the Bayesian case, same types of primary and secondary parameters are used. All the five 
primary parameters proposed do not depend on the framework of the statistical analysis. On the 
contrary, three of the seven secondary parameters are differently estimated in the two statistical 
framework of analysis: the two regional GPD parameters and the regional return levels linked 
to a return period T of 1000 years. In particular, the mode of the U=100000 iterations of regional 

GPD parameters’ vectors θ is computed for each value of λ between 0.25 and 2 (Fig. 25 and 

Fig. 26). Standard estimative regional return levels linked to a return period T of 1000 years can 

be now computed for each value of λ.  

These return levels could correspond to that computed in frequentist context for a PMLE with-
out considering the seasonality of skew surges. In fact, in the particular case in which the sea-
sonality of skew surges is not considered in frequentist estimations, results of primary and sec-

ondary parameters are identical for the frequentist and for the Bayesian analysis�cases. 

 

 

Fig. 25 – Sensitivity analysis of regional Bayesian scale parameter for Region 1 and Region 2 
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Fig. 26 – Sensitivity analysis of regional Bayesian shape parameter for Region 1 and Region 2 

The weighting analysis of the secondary parameters provides the same optimal λ value for the 

frequentist and Bayesian cases. In particular, the optimal λ value for the Region 1 corresponds 

to a value of 0.84 storms on average per year and to a value of 1.79 for the Region 2.  

A further test is performed for the frequentist case. Using the weighting of the upper value of 
the regional confidence interval for a return period T of 1000 years instead of the regional return 

level linked to a return period T of 1000 years. Same optimal λ values are identified through 

this alternative test in both regions. 

In any case, a particular clarification has to be provided for the application performed in the 
scientific publication for NHESS (Annexe A). In that case, the sampling threshold of Region 1 

was identified for a λ value of 0.36. This λ value had been defined after a visual look on a total 

of twelve parameters for each possible value of λ. In that case, sensitivity analysis’ results had 

been translated in an optimal value of threshold without the application of an unequivocal ap-

proach of computation. In particular, several other values of λ can be considered as optimal in 

that application. That choice was considered the better one to illustrate the benefit of the use of 
historical data on the regional analysis. Moreover, in the study of Annexe A, the regional anal-
ysis was applied to a database of skew surges not yet updated with the three Belgian sites. 
Physical homogeneous regions were calculated without performing a sensitivity analysis on 
parameters used to identify the storm clusters. 
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4.5 Physical and statistical regions 
The statistical homogeneity of physical regions is verified only for the particular region consid-

ered. A physical homogeneous region linked to the optimal λ value has already been statistically 

verified. In fact, the statistical homogeneity test is a primary test and it is already verified for 

optimal λ values. Furthermore, , the statistical homogeneity of all physical homogeneous re-

gions for the optimal values of λ obtained by in the previous analysis has to be tested in order 

to show the definitive map of the physical and statistical homogeneous regions. 

For the two optimal λ, regions except the Region 4 of Fig. 21 are statistically homogeneous. 

For this reason, a further division into two different sub-regions has to be performed for Region 
4. The new sub-regions are retested by the homogeneity test and now they appear as statistically 
homogeneous. Finally, five physical and statistical homogeneous regions are founded in this 

study for the both optimal λ identified for the Region 1 and the Region 2. The five physical and 

statistical homogeneous regions are shown by the map of Fig. 27. 

 

Fig. 27 – Physical and statistical regions for lambda=0.84 and lambda=1.79. Source of map: Google Maps 
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4.6 Frequentist estimations of return 

levels  

The statistical analysis is performed for the two regional extreme data samples defined for the 
Region 1 and the Region 2. Estimations of the frequentist return levels are computed for several 
return periods T.  

Tab. 3 and Tab. 5 illustrate all the main elements of the regional analysis obtained by the appli-
cation of the FAB method in a framework of frequentist estimation.  

Tab. 4 and Tab. 6 show the results of the regional statistical analysis for the Region 1 and the 

Region 2. In particular, regional return levels associated to a return period of 1000 years, their 
upper bounds of the 90% confidence intervals and the percentage of the relative width of these 
intervals are figure out.  

These results are displayed in the return level plots of Fig. 28 and Fig. 29. Confidence intervals 
are calculated by a bootstrap of U=105 new regional extreme data samples.  

In addition, empirical regional extreme data are positioned in return levels by the use of a 
Weibull position (Weibull, 1951) in Fig. 28 and Fig. 29. Historical data are displayed by red 
dots in order to recognise the significance of historical data compared with systematic data. 
Grey dotted lines are used to illustrate the 90% confidence intervals. 

 

Regional parameters of the Region 1 

Optimal 
λ 

Scale param. 
of regional GPD 

(season DJF) 

Shape 
parameter 
of regional 

GPD 

Regional 
credible 
duration 
(years) 

Adimensional de-
gree of regional 
dependence É 

0.84 0.197 0.112 517.86 0.544 

Tab. 3 – Regional parameters computed by the FAB method applied to the Region 1 
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Results for the Region 1 

Regional 
quantiles for 

T=1000ys 

Regional up-
per CI 90% 

for T=1000ys 

ΔCI90 / 
yR,T=1000ys 

(%) 

2.89 3.39 34 

Tab. 4 - Regional return levels computed by the FAB method applied to the Region 1 

 

Fig. 28 – Regional return level plot for the Region 1 

 

Fig. 28 show the return level plot of the Region 1. The biggest event is represented by an his-
torical data. In particular, it corresponds to the storm that impacts La Rochelle in the year 1999. 

Notwithstanding this event seems very far from the others, no outliers are detected in this re-
gional extreme data sample. 

 

 



Chapter 4 : FAB APPLICATION 92 

Regional parameters of the Region 2 

Optimal 
λ 

Scale param. 
of regional GPD 

(season DJF) 

Shape 
parameter 

of regional GPD 

Regional 
credible 
duration 
(years) 

Adimensional de-
gree of regional 
dependence  

1.79 0.238 0.082 238.55 0.675 

Tab. 5 - Regional parameters computed by the FAB method applied to the Region 2 

Results for the Region 2   

Regional 
quantiles for 

T=1000ys 

Regional up-
per CI 90% 

for T=1000ys 

ΔCI90 / 
yR,T=1000ys 

(%) 

3.30 3.99 40 

Tab. 6 - Regional return levels computed by the FAB method applied to the Region 2 

 

Fig. 29 – Regional return level plot for the Region 2 
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Fig. 29 displays the return level plot of the Region 2 in which the biggest event corresponds to 
an historical data. In this case, this historical event is located within the 90% confidence inter-
vals.  

The use of historical data in the regional analysis could impact differently the local estimations. 
In fact, sites of a region preserve their local features by local indexes that assume different value 
in each site. For this reason, two sites (randomly chosen) belonging to the Region 1 (La Ro-
chelle) and to the Region 2 (Calais) are examined in the same way as the regional estimations. 
Tab. 7 shows their local return levels associated to a return period of 1000 years. 

The relative width of the 90% confidence intervals for the site of La Rochelle is little higher 
than the Region 1. This means that the uncertainties linked to the return levels associated to a 
return period of 1000 years are bigger at La Rochelle than in this region.  

On the contrary, the site of Calais has the same relative width of the 90% confidence intervals 
of the Region 2.  

Local return level plots for these two sites are illustrated in Fig. 30. Empirical regional extreme 
data are locally calculated by the local index and illustrated in these return levels. 

 

La Rochelle Calais 

Quantiles for 
T=1000ys 
(meters) 

Upper CI 
90% for 

T=1000ys 
(meters) 

ΔCI90 / 
xT=1000ys 

(%) 

Quantiles for 
T=1000ys 
(meters) 

Upper CI 
90% for 

T=1000ys 
(meters) 

ΔCI90 / 
xT=1000ys 

(%) 

1.82 2.15 36 1.78 2.14 40 

Tab. 7 - Results for the sites of La Rochelle (Region 1) and Calais (Region 2) 
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Fig. 30 – Local return levels plots for the sites of La Rochelle (on the left) and Calais (on the right) 

4.7 Estimations without historical 
data 

The same frequentist analysis has been performed using the same database without considering 
historical data in order to realise the influence of the historical data in the regional analysis. A 
comparison between the results obtained through the FAB method performed for the skew surge 
database with and without historical data is displayed.  

In the case in which a database is composed by only systematic data, the regional duration is 
considered effective like for the RFA approach.  

Using only systematic skew surges, the performance of weighting analysis to compute the op-

timal value of λ has to be repeated. In fact, the optimal λ can be identified as an another λ value 

between all the 176 λ-cases when a different database is used to generate the regional extreme 

data sample.  

This frequentist analysis is performed for the Region 1 and the Region 2 as in the previous case. 

The optimal value of λ is 0.84 for the Region 1 (the same λ value identified through the 

weighting analysis for a database with historical data) and 1.7 for Region 2.  
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Frequentist regional estimations are computed for Region 1 and the Region 2 and they are 
shown in Tab. 8 and Tab. 9.  

Regional return levels associated to a return period of 1000 years and their upper bounds of 

90% confidence intervals are shown in Tab. 10 and Tab. 11 for the Region 1 and the Region 2. 
In addition, the relative widths of 90% confidence intervals are computed. 

Regional return level plots for the Region 1 and the Region 2 are illustrated in Fig. 31 and Fig. 
32.  

 

Regional parameters of the Region 1 (without the use of historical data)  

Optimal 
λ  

Scale param. 
of regional GPD 

 (season DJF) 

Shape 
parameter 

of regional GPD 

Regional 
effective 
duration 
(years) 

Adimensional de-
gree of regional 
dependence  

0.84 0.199 0.052 514.28 0.543 

Tab. 8 - Regional parameters computed by the FAB method applied to the Region 1 without historical data 

 

Regional parameters of the Region 2 (without the use of historical data)  

Opti-
mal 
λ  

Scale param. 
of regional GPD 

 (season DJF) 

Shape 
parameter 

of regional GPD 

Regional 
effective 
duration 
(years) 

Adimensional de-
gree of regional 
dependence  

1.7 0.243 0.036 235.88 0.677 

Tab. 9 - Regional parameters computed by the FAB method applied to the Region 2 without historical data 

 

Results of Tab. 8 and Tab. 9 are compared with these obtained by the use of historical data in 
the regional analysis in Tab. 3 and Tab. 5.  
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The application of FAB method with historical skew surges enables the estimation of a higher 
regional GPD shape parameter and of a bit higher regional duration for the Region 1. Other 
values figured out in Tab. 8 and in Tab. 3 are very close.  

Also for the Region 2, the regional GPD shape parameter and the regional duration decrease 
without the use of historical data. 

Results for these regions point out a common rise of the GPD scale parameter using historical 
data. In addition, a little growth of the period of observed regional extreme events has to be 
identified when historical data are used. 

 

Results for the Region 1 (without the use of historical data) 

Regional quan-
tiles for 

T=1000ys 

Regional  
upper CI 90%  
for T=1000ys 

ΔCI90 /  
yR,T=1000ys 

(%) 

2.55 2.90 28 

Tab. 10 - Regional return levels computed by the FAB method applied to the Region 1 without historical data 

 

Results for the Region 2 (without the use of historical data) 

Regional quan-
tiles for 

T=1000ys 

Regional  
upper CI 90%  
for T=1000ys 

ΔCI90 / 
 yR,T=1000ys 

(%) 

2.94 3.45 34 

Tab. 11 - Regional return levels computed by the FAB method applied to the Region 2 without historical data 

 

Results of Tab. 10 and Tab. 11 are compared with these obtained in Tab. 4 and Tab. 6.  

For both the regions, the introduction of the extraordinary historical events tends to increase the 
value of return levels. In addition, the relative width of the confidence intervals is a bit lower 

(5-6 %) when historical data are not used. This trend is due to the exceptionality of the extreme 
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past events. In fact, the higher skew surges of the both regional extreme data samples are his-
torical data. In any case, this value is acceptable for a statistical analysis.  

Moreover, the use of historical data has increased the regional durations of the both regional 

extreme data samples. In particular, historical data allows the detection of three additional 
storms in the Region 1 and of five additional storms in the Region 2. In addition, other historical 
data are the biggest normalised data of five storms detected in the Region 1. 

 

 

Fig. 31 – Regional return level plot for the Region 1 without the use of historical data 

 

Fig. 31 shows graphically the decrease of high return levels when historical data are not con-
sidered in the statistical analysis. 
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Fig. 32 – Regional return level plot for the Region 2 without the use of historical data 

 

Fig. 32 illustrates the return level plot of the Region 2 without the five historical data used in 
the previous analysis.  

However, regional return levels are normalised values and, for this reason, it is appropriate to 
compare also local return levels in order to provide global conclusions on this analysis of com-
parison.  

Results at La Rochelle and at Calais are shown in Tab. 12 and Fig. 33 and they are compared 
respectively with Tab. 7 and Fig. 30. Same considerations on return levels can be pointed out 
for the local cases. In fact, return levels linked to a T of 1000 years for the two sites of La 

Rochelle and Calais are lower than these obtained with historical data. The difference for these 
estimations is of 21 centimetres for the site of La Rochelle and of 16 centimetres for the site of 
Calais. 
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La Rochelle Calais 

Quantiles for 
T=1000ys 
(meters) 

Upper CI 
90% for 

T=1000ys 
(meters) 

ΔCI90 / 
xT=1000ys 

(%) 

Quantiles for 
T=1000ys 
(meters) 

Upper CI 
90% for 

T=1000ys 
(meters) 

ΔCI90 / 
xT=1000ys 

(%) 

1.61 1.84 29 1.62 1.90 35 

Tab. 12 - Results for the sites of La Rochelle (Region 1) and Calais (Region 2) without historical data 

 

 

Fig. 33 – Local return level plots for the sites of La Rochelle (on the left) and Calais (on the right)  without the use of 
historical data 

In conclusion, for this particular application, historical data does not reduce the uncertainties on 
estimations of regional and local extreme events. This reduction could be obtained with the use 
of a big number of historical events.  

On the contrary, the consideration of the extraordinary historical events has permitted the ex-
tension of the period of observation of the regional extreme data sample and the computation 

of more reliable extreme events. In particular, additional exceptional storms are detected and 
they have been used to perform this statistical analysis.  
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4.8 Bayesian estimations of return 

levels  

Bayesian estimations of regional and local return levels associated to several return periods T 
are computed through the application of the FAB method. In particular, Region 1 and Region 2 
are analysed in the following. Predictive return levels y*

R, standard estimative return levels yR 
and their Credibility Intervals are estimated and figured out in a same return level plot.  

In any case, the Bayesian statistical framework requires the definition of a posterior distribution 
of the vector of parameters of the statistical distribution considered in order to estimate return 
levels. 

In this analysis, the posterior distribution of the regional GPD parameters’ vector θ is computed 
through the generation of three chains of one million of iterations U. The convergence of the 
MCMC process for these vectors θ must be achieved in every chain and between all the chains. 

The Gelman and Rubin test (Gelman and Rubin, 1992) is performed to test this convergence. 
This test allows the computation of a degree of convergence called Potential Scale Reduction 
Factor. A value close to 1 for the PSRF has to be computed in order to verify the convergence 
(it is suggested to get at least a PSFR smaller than 1.05).  

The PSRF is estimate for a total of one million of iterations. Fig. 34 shows how this factor 
assumes a value very close to 1 for each regional GPD parameter of the Region 1 and Region 
2.  

In addition, the convergence is also verified by the test of Brooks (Brooks and Gelman, 1998). 
This test is an implementation of Gelman and Rubin test and allows the estimation of another 
degree of convergence called Multivariate PSFR. This factor considers the likely variability that 
the sample could have.  

The MPSFR must assume lower values than 1.2 to verify the convergence of MCMC iterations. 
MPSFR is considerably smaller than 1.2 for the Region 1 and the Region 2. 
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Fig. 34 – Progressive PSFR values of tests of Gelman and Rubin for Region 1 and Region 2 

Values of the scale and the shape parameters obtained for every MCMC iteration and for each 
chain is shown in Fig. 35 and Fig. 36. 

 

 

 

Fig. 35 – Values of regional GPD scale and shape parameters of each iteration for the 3 chains of Region 1 
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Fig. 36 - Values of regional GPD scale and shape parameters of each iteration for the 3 chains of Region 2 

The verification of the convergence of the MCMC process enables the use of the posterior dis-

tribution of the regional GPD parameters’ vector θ in the Bayesian estimation process of return 
levels.  

The Bayesian estimation of regional return levels can be now performed for the Region 1 and 

the Region 2. The results of this statistical analysis are are shown in Tab. 13 and Tab. 14. In 
particular, the predictive return levels are computed after a burn-in of U’=105 iterations. 

 

Parameters and results for the Region 1   

Op-
timal 
λ 

Scale param. 
of estimative 

regional 
GPD 

Shape 
param. 

of estimative 
regional 

GPD 

Regional 
estimative 
quantiles 

for 
T=1000ys 

Regional 
predictive 

for 
T=1000ys 

Regional 
upper CI 
90% for 

T=1000ys 

ΔCI90 / 
yR,T=1000ys 

(%) 

0.84 0.175 0.144 2.99 3.14 3.91 44 

Tab. 13 - Useful parameters and results computed by the Bayesian analysis on the Region 1  
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Parameters and results for the Region 2   

Op-
ti-

mal 
λ 

Scale param. 
of estimative 

regional 
GPD 

Shape 
param. 

of estimative 
regional 

GPD 

Regional 
estimative 
quantiles  

for 
T=1000ys 

Regional 
predictive 

for 
T=1000ys 

Regional 
upper CI 
90% for 

T=1000ys 

ΔCI90 / 
yR,T=1000ys 

(%) 

1.79 0.216 0.089 3.30 3.51 4.56 53 

Tab. 14 - Useful parameters and results computed by the Bayesian analysis on the Region 2 

Tab. 13 and Tab. 14 display the regional results of the Bayesian analysis performed through the 

FAB method. Regional factors as the regional credible duration or the adimensional degree of 
regional dependence É are not figured because they are identic to that shown in Tab. 3 and Tab. 

5. In fact, the Bayesian framework of estimation does not modify the computation of the main 
elements of the regional analysis. On the contrary, estimations of the statistical distribution’s 
parameters and return levels can assume different values. 

 

Fig. 37 – Regional return level plot of Bayesian estimations for Region 1 
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Fig. 38 - Regional return level plot of Bayesian estimations for Region 2 

 

Fig. 37 and Fig. 38 display return level plots of Region 1 and Region 2. They highlight how the 
predictive return levels (in black) linked to a generic return period T are bigger than the estima-
tive return levels (in grey) associated to the same generic return period T. In addition, Credibility 
Intervals are illustrated by the grey dotted lines. In these figures, historical data are represented 
as red dots in order to point out their relevance compared with the systematic events. All the 
empirical events are located in the return level plot by a Weibull position (Weibull, 1951).  

However, these results can be locally evaluated in order to know the effective impact of these 
estimations. Local return levels are then computed from regional return levels by the use of 

local indexes. Same sites of the frequentist analysis are considered: La Rochelle for the Region 
1 and Calais for the Region 2. 
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La Rochelle Calais 

Estimative 
quantiles 

for 
T=1000ys 
(meters) 

Predictive 
quantiles 

for 
T=1000ys 
(meters) 

Upper CI 
90% for 

T=1000ys 
(meters) 

Estimative 
quantiles 

for 
T=1000ys 
(meters) 

Predictive 
quantiles 

for 
T=1000ys 
(meters) 

Upper CI 
90% for 

T=1000ys 
(meters) 

1.88 1.97 2.47 1.78 1.89 2.46 

Tab. 15 – Bayesian estimations for the sites of La Rochelle (Region 1) and Calais (Region 2) 

 

 

Fig. 39 - Return level plots of Bayesian estimations for La Rochelle (site belonging to Region 1) and Calais (site belong-
ing to Region 2) 

 

Same conclusions supplied for the regional Bayesian estimations can be provided for the local 
Bayesian estimations. Predictive return levels linked to a particular return period T are higher 
than standard estimative return levels estimated for the same particular return period.  

Further clarifications have to be provided for the computation of the relative width of the Cred-
ibility Intervals. Regional and local CI have the same relative width in this analysis. In fact, the 
computation of regional and local CI considers in a Bayesian application of the FAB method 
only the variation of the return levels and not of the local indexes (as performed in frequentist 
by the bootstrap methodology). 
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4.9 Frequentist and Bayesian estima-
tions 

The comparison of the results of the frequentist and Bayesian statistical frameworks is not to-
tally correct due to two different concepts of probability. Nevertheless, a preliminary compari-
son is performed in order to realise the differences obtained computing frequentist and Bayesian 
estimations with the FAB method. 

In the Bayesian context, FAB method is performed considering the seasonal effects of the skew 
surges in the estimation process of the regional GPD parameters. For this reason, a particular 
case of frequentist estimations that not consider the seasonality of the skew surges has to be 
achieved. This case enables the preliminary comparison of these two statistical frameworks of 
estimation.  

The value of optimal λ is the same for Region 1 and for Region 2 (respectively 0.84 and 1.79) 

for this frequentist case. Results and regional return levels are displayed in Tab. 16 and Fig. 40.  

The comparison between the 90% Confidence Intervals of Tab. 16 with the previous 90% Cred-
ibility Intervals computed in the previous Bayesian analysis has to be carefully performed. In 
fact, in the frequentist framework the Confidence Intervals are calculated through a bootstrap 

method while in the Bayesian framework the Credibility Intervals are computed by the defini-
tion of the posterior distribution.  

 

Frequentist estimations for the Region 1 and Region 2 

                         Region 1                             Region 2  

Optimal 
λ 

Regional up-
per CI 

90% for 
T=1000ys 

ΔCI90 / 
yR,T=1000ys 

(%) 

Optimal 
λ 

Regional 
upper CI 
90% for 

T=1000ys 

ΔCI90 / 
yR,T=1000ys 

(%) 

0.84 3.59 37 1.79 4.01 40 

Tab. 16 - Useful parameters and results computed by the Bayesian analysis on the Region 1 without seasonality 
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Fig. 40 – Regional return level plot of frequentist estimations for Region1 and Region 2 without seasonality 

 

Comparing regional results obtained in Tab. 16 and those illustrated in Tab. 13 and Tab. 14, 
Credibility Intervals tend to be more unbounded than Confidence Intervals in this application. 
This is pointed out by the relative widths of the Credibility Intervals that assume higher values 
of percentage for a return period T of 1000 years compared with Confidence Intervals linked to 
the same return period T. 

Same considerations can be provided for the local estimations of Tab. 17 and Fig. 41 compared 
with Bayesian local estimations of Tab. 15 and Fig. 39. 

 

La Rochelle Calais 

Upper CI 90% 
for 

T=1000ys (me-
ters) 

ΔCI90 / 
yR,T=1000ys 

(%) 

Upper CI 90% for 
T=1000ys 
(meters) 

ΔCI90 / 
yR,T=1000ys 

(%) 

2.28 39 2.15 40 

Tab. 17 - Frequentist estimations for the sites of La Rochelle (Region 1) and Calais (Region 2) without seasonality 
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Fig. 41 - Return level plots of frequentist estimations for La Rochelle (site belonging to Region 1) and Calais (site be-
longing to Region 2) without seasonality 

As for Bayesian estimations, results and local return levels are figured out for the site of La 
Rochelle (Region 1) and for the site of Calais (Region 2).   

Significant differences are identified between the upper 90% Confidence Interval for a return 
period T of 1000 years computed by this particular frequentist analysis (Tab. 17) and the upper 
90% Credibility Interval for the same return period T (Tab. 15). For the site of La Rochelle, this 
difference is of 18 centimetres and for Calais is of 30 centimetres. 

Finally, for this case of study, Bayesian estimations obtained by the application of the FAB 
method provide higher uncertainties linked to very high return period T than the frequentist 

estimations linked to the same return period T. On the other hand, the use of the Bayesian 
framework allows the utilisation of a prior information that the expert could know and the com-
putation of the predictive distribution of the extreme data sample. 

All frequentist and Bayesian estimations of this study obtained with and without the use of 
historical data are synthetized in the summary table displayed in the Annexe E. 

  



 

 Chapter 5 

CONCLUSIONS 

La méthode FAB est une approche statistique qui permet l’utilisation des don-
nées historiques dans un contexte régional d’estimation des événements mari-
times extrêmes. Cette méthode vise à répondre à plusieurs questions sur l’utili-
sation des données historiques en régionale. En particulier, les questions liées à 
la période d’observation de ces événements ainsi que les différents types de don-
nées disponibles sont traitées à travers le nouveau concept de durée crédible et 
une nouvelle définition de la fonction de vraisemblance régionale. 

Une application de la méthode FAB à une base des données des surcotes de 
pleine mer avec et sans données historiques est réalisé pour comprendre l’im-
portance des événements du passé. En fait, pour les deux régions analysées, les 
événements historiques sont les données extrêmes les plus grandes dans l’échan-
tillon régional. Le petit nombre de données historiques disponibles ne permet 
pas d’avoir des améliorations en termes d’incertitudes liées aux niveaux de re-
tour. 

Plusieurs améliorations peuvent être apportées à cette méthode comme, par 
exemple, l’introduction des seuils de perception pour les sites dans lequel l’ex-
haustivité pourrait être vérifiée dans le futur. Par ailleurs, la méthode de forma-
tion des régions pourra être améliorée avec la considération d’autres variables 
ou ré-analyses. L’analyse régionale centrée est considérée aussi comme une 
autre piste d’amélioration. 
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5.1 Conclusions 
Adequate coastal protections are needed to protect all infrastructures located on coastlines from 
floods. The design of these protections requires the statistical estimations of extreme coastal 

events and, in particular, of extreme sea levels and skew surges. Nevertheless, huge uncertain-
ties are frequently associated to the estimation of extreme events when local analyses are per-
formed. This is typically due to the short time series of sea levels measured by tide gauges. In 
order to improve extreme estimations, two approaches are often employed in literature: the re-
gional analysis and the use of historical data. 

The use of historical data enables the extensions of local extreme data samples considering 
exceptional events of the past. The regional analysis allows the extension of extreme data sam-
ples considering extreme events occurred in a defined region. A regional analysis approach, 
called RFA, has previously been developed for coastal events. The combination of these two 
different approaches can further improve the estimations of extreme coastal events.  

The FAB method aims to improve the reliability of statistical estimations of extreme coastal 
events using regional analysis and historical events together. In particular, the combination of 

these two approaches enables the performance of a statistical analysis on a larger regional ex-
treme data sample also composed of the exceptional past events available.  

Several issues are linked to the discovery and the use of historical data. In particular, historical 
data are not easily available and therefore their collection is complex. For this reason, Chapter 
2 exposes all the issues linked to the discovery of a historical event. Historical information is 
available in several sources that are sometimes difficult to access. When information on a his-
torical event is available, this has to be translated to numerical data in order to be used in a 
statistical process. In fact, historical information does not always contain the exact historical 
data that represents the event considered. For this reason, three most common types of historical 
data that depend on the historical information available are defined: exact data, data range and 
lower limit value of data.  

Issues linked to the discovery of historical information lead to the definition of a simplified 

collection and validation approach. This approach recommends to firstly analyse all the already 
existing historical databases in order to detect the most known historical events that happened 
in the past. The next step is to research all the sources accessible in order to collect the highest 
number of historical data. All of these historical data collected must be successively validated. 
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A preliminary validation can be performed by meteorological reanalyses but the final validation 
is achieved through specific knowledge from a historian on the period of the event. For this 
reason, a historical event can be validated by a historian. A functional example of this approach 
is performed for skew surges in the end of Chapter 2. 

When historical data are validated, they have to be used in the statistical analysis in order to get 
reliable estimations of extreme events. Statistical analyses for POT data require the knowledge 
of the period of observation of the considered extreme events’ sample. Historical data are typi-
cally discovered as isolated exceptional events and, for this reason, no period of observation 
can be associated to these types of data. Regional analyses and, in particular, the RFA approach 
need the knowledge of the period of observation of the whole regional extreme data sample in 

order to estimate regional and local return levels. When systematic and historical events are 
available, the observation period of the regional extreme data sample has to be estimated. Based 
on the main elements of the RFA approach, the FAB method proposes the use of the credible 
hypothesis in which no trends on storm frequency exist during the 20th century in the period of 
data observation. This hypothesis enables the definition of the new concepts of local and re-
gional credible durations. These durations represent the period of observation of a specific ex-
treme data sample. 

In any case, different types of historical data can be available. For this reason, a particular pe-
nalised likelihood has to be defined in order to estimate appropriate parameters of the regional 

statistical distribution. Different likelihood functions are formulated for systematic and each of 
the three types of historical data. The FAB method enables the estimation of the regional GPD 
parameters through the maximisation of the whole penalised likelihood composed of systematic 
and historical likelihood functions.  

The composition of a regional sample of independent extreme events is performed by the defi-
nition of local sampling thresholds in each site of a particular region. In Chapter 3, an approach 
to define an optimal sampling threshold in each site of a particular region is proposed. This 
approach is used in the FAB method and it is based on a weighting process. In particular, pri-
mary and secondary parameters have to be chosen in order to perform this analysis. Primary 
parameters are statistical tests necessary to perform the considered statistical analysis. Second-

ary parameters are elements considered by the expert as important for the statistical process. 
The weighting analysis is achieved for several local thresholds and is performed only on sec-
ondary parameters for threshold cases in which primary parameters are verified. This approach 
allows the definition of optimal local sampling thresholds through the detection of the optimal 
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λ value (number of occurred local storms per year). Finally, the selection of the optimal thresh-

old is important to reach good performance of the FAB method in computing estimations of 
extreme events. 

In addition, the FAB method allows the calculation of return levels in the frequentist and Bayes-
ian statistical frameworks. Several experts consider the Bayesian context as the most adequate 
to statistically treat historical data. For this reason, the FAB method permits the choice of the 
statistical framework of estimation. Frequentist or Bayesian return levels can both be estimated 
by the application of the FAB method. 

An application of the FAB method to a skew surge database is performed in Chapter 4. The 
skew surge database is composed of time series of systematic skew surges gauged in 74 sites of 
the Atlantic Ocean, English Channel, Irish Sea and North Sea and of 14 historical skew surges 
available in three of the 74 sites. Physical homogeneous regions are created by the use of the 

same approach used in the RFA method. These regions are based on the definition of storm 
clusters. Storm clusters are created by the use of three parameters (p, Δ, η). Data exceeding a 
physical threshold defined by the local p-value that occur in neighbour sites η during a temporal 
interval Δ are generated by the same storm. These parameters are calibrated by a sensitivity 
analysis recommended for time series linked to a different gauging period. The next steps of 
the FAB methodology are performed only for the regions in which historical data are available 

(Region 1 and Region 2). For these regions, an optimal λ value is computed and physical regions 

are statistically verified. Frequentist and Bayesian return levels are then estimated for Region 1 
and Region 2. 

In addition, FAB method is performed for the same database composed only of systematic data. 
Results indicate that the use of exceptional historical data can enrich the regional extreme data 
sample. In fact, the use of additional extreme events that occurred in the past increases the 
length of the extreme data sample. However, relative widths of 90% Confidence Intervals for 
return levels associated to T=1000 years do not show improvements on the uncertainties linked 
to the estimations for these two regions. This is probably due to the reduced number of available 
historical data. For this reason, the formation of a database of historical events can further im-
prove estimations of extreme events. 

Finally, a preliminary comparison between frequentist and Bayesian estimations of return levels 
is performed. In this analysis, frequentist return levels are associated to lower uncertainties than 

return levels computed by the Bayesian statistical analysis. This could be due to the two differ-
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ent methods of computation of the Confidence and Credibility Intervals. In any case, the Bayes-
ian framework allows the computation of predictive return levels and the introduction of priori 
information in the estimation process. 

Lastly, the FAB method is a regional statistical approach that enables the estimations of extreme 
coastal events using both systematic and historical data. 

5.2 Future works and perspectives 
The FAB method developed in this study allows the estimation of the period of observation of 
the historical data in a particular location and, then, in the region. In fact, information on the 
period of observation is frequently unavailable for coastal events of the past.  

In any case, wide investigation of past events occurring in a particular site could provide some 
supplementary information that allows the knowledge of their period of observation above a 
perception threshold. For this reason, future studies on the occurrence of the most exceptional 
storms of the past are required. 

Currently, the FAB method cannot take into account this particular information that could im-
prove estimations of extreme events extending local and regional durations. For this reason, the 
development of the FAB method v2.0 is planned in the near future.  

The main idea of this upgrade is to compute an effective duration for sites in which historical 
data with perception thresholds are available and a credible duration for sites in which no addi-
tional information of the historical period is available. In particular, a new definition of the 
regional credible duration and a new formulation of the penalised maximum likelihood are re-

quired when the concept of perception threshold is introduced in a regional analysis. Upgrading 
the FAB method will allow the use of any type of information on the period of observation of 
a particular event of the past which will further improve the estimation of extreme events. 

This upgrade can obviously be used in cases in which the exhaustiveness of a historical event 
above a perception threshold is widely guaranteed by an expert of the period. This exhaustive-
ness can be assured only in some areas in which satisfactory documentations are available. For 
this reason, the concept of the credible duration still has an important role in the FAB method. 
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In fact, it enables the estimation of the observation’s period of the historical events in sites in 
which the collection of supplementary information is challenging. 

The collection and the validation of a larger number of historical data is another way to improve 

estimations of extreme coastal events using the FAB methodology. In fact, the extension of the 
historical part of the database would allow the use of more exceptional events in the regional 
analysis. In particular, more storms are detected in the region and, then, a larger regional ex-
treme data sample observed in a higher regional period is created. The use of a regional data 
sample composed by a higher number of extraordinary events could improve the statistical es-
timations of return levels.  

Furthermore, in the FAB method, the regions are based on the definition of storm clusters 
formed by the use of three parameters. These parameters would assume different values for 
each storm. In fact, they depend on physical spatio-temporal processes that are singular for 

every exceptional event. For this reason, the clustering method used in this study could, in par-
ticular cases, produce two storm clusters for a single storm or a single storm cluster for two 
different storms. Different solutions can be performed to create more precise storm clusters and, 
then, more accurate physical regions: 

• the use of additional physical variables such as wind speeds or sea level-pressures; 

• the use of meteorological reanalyses of wind speeds and sea level-pressures; 

• the definition of different parameters to detect storm clusters that depend on a particular 
season considered. 

In addition, regional extreme data samples could also be formed through the use of the spatial 
extremogram. In this case, the region is formed around a defined target-site (Hamdi et al., 2016). 

This specific statistical tool enables the computation of the extremal dependence value between 
a target-site and its neighbour sites. Consequently, the region can be defined as the influence 
area of the target-site.  

Finally, the FAB method can only be applied for a single coastal variable. Nevertheless, more 
than one variable can provoke extreme meteorological conditions. For this reason, the simulta-
neous consideration of two or more variables could provide a better characterisation of the ex-
treme events. In particular, a bivariate or multivariate statistical analysis can be performed by 
the definition of a model of dependence between the different variables considered. 
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1.1 Historical data in regional analy-
sis (2018) 
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1.2 Regional analysis and historical 
data 

The new concept of credible duration and the application of the Regional Analysis including 
historical data was presented in advance by a talk at the “Natural Hazards and climate change 
impacts in coastal areas” session at the EGU 2017 (European Geosciences Union General As-
sembly) in Wien (Austria). 
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The occurrence of rare (up to 10
�4

annual probability of occurrence) and extreme oceano-meteorological con-

ditions is required to design effective coastal protections and to protect coastal areas from flooding. Statistical

methods based on the extreme value theory are widely used for the characterisation of such events. Unfortunately,

this was often performed from very short observations series (usually 30 years to 50 years long) and the uncer-

tainties associated to the extrapolation are too wide to be used in a design approach. Nowadays, larger dataset are

available, in particular when looking at the regional scale. Moreover, in several disciplines the historical evidence

of extreme events observed before the systematic observation periods, has been provided by specific studies. In

the framework, the combination between these two sources of information is shown to dramatically increase the

reliability of the statistical extrapolation. Merge the two approaches is however challenging because of the need to

define homogenous regions and to consider the fact that historical data are not continuous and exhaustive. Here,

an overall methodology is presented which allows a robust estimation, including a selection an optimal sampling

threshold and a definition a “regional credible duration”, which describe the amount of information available,

taking into account the unknown period of observation associated with historical events. The Regional Historical

Analysis is applied on a database of extreme skew storm surges and on a several extreme historical storm surges

collected from different sources.
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2.1 The Bayesian inference 
The Bayesian inference is an approach to identify the statistical inference of a sample. The 
Bayesian context provides a posterior probability linked to the Bayes’ theorem on which the 
expert could able to give a state of knowledge on the particular phenomenon analysed.   

Dealing with frequentist probabilities, the parameters of a statistical distribution are considered 

as fixed notwithstanding they are effectively unknown. In fact, they have to be estimated using 
a defined number of observations of a particular phenomenon and there is no way to consider 
them as a random variable. Conversely, the Bayesian probability allows the definition of distri-
butions of these unknown parameters. 

As stated above, Bayesian probability is associated to the formulation of Bayes’ theorem 
(Bayes, 1763) for the posterior distribution of parameters’ vector θ: 

 & f ' =
& f 	&('|f)

&(')
 (B2.1) 

the posterior distribution P(θ|D) of parameters’ vector θ shows as the Bayesian inference con-

siders the parameters of the statistical distribution not fixed but variable. The Eq.B2.1 shows 
the posterior distribution of parameters. It depends on the likelihood formulation P(D|θ), on the 
marginal likelihood P(D) and on the prior distribution P(θ). This last contribution represents 
the belief that the expert has on the events without considering observations of the same event. 

The posterior distribution enables the computation of the predictive distribution of a new event 
X based on the past estimations. In addition, credible intervals can be estimated through the 

range of vector θ of parameters. These variables can be associated to return periods and a return 
level plot can be produced.  

Bayesian framework is widely used in scientific literature especially when historical data are 
considered in the statistical analysis (Gaume et al., 2010; Payrastre et al., 2011; Nguyen et al., 
2014; Bulteau et al., 2015). Some authors assume that this statistical context is the most suitable 
to treat the various uncertainties linked to historical data (Reis and Stedinger, 2005; Coles and 
Tawn, 2005; Bulteau et al., 2015). In addition, if a priori information on historical events is 
known by the expert, this can be used in the analysis to improve the statistical estimations. 
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Bayesian probabilities are compared to frequentist estimations always paying particular atten-
tion to the different meanings of both probabilities. A proper comparison between the two sta-
tistical frameworks is a difficult topic because the concept of probability is differently inter-
preted. In particular, frequentist probability is considered as an aleatory probability that pro-
vides the occurrence’s relative frequency of an event by the knowledge of repetitions of the 
same process performed under similar conditions. In this study, frequentist probabilities refer 
to the occurrence’s frequencies of extreme events. On the contrary, Bayesian probability is 

linked to a degree of belief that you can have on the occurrence of a particular event. For this 
reason, Bayesian probabilities refer to the knowledge that the expert has on the event. 

Finally, frequentist and Bayesian context reply to different questions about probabilities and, 

for this reason, they estimate extreme values that are associated to different concepts of proba-
bility.     

The choice to estimate extreme values by frequentist or Bayesian approaches has to be per-
formed by the expert depending on the type of probabilities required. 

2.1.1 Basic elements for Bayesian estimations 

The meaning and the computation of basic Bayesian elements are detailed in the following. 

 

Prior distribution 

The prior distribution is a key element of a Bayesian statistical analysis. It represents the un-
conditional probability that an event might occur without considering any evidence originated 
from its observation. It is the prior knowledge that the expert has on the analysed phenomenon. 

Prior distributions can be generated by different methods (Carlin and Louis, 2008) for any type 

of prior knowledge as, for instance, regional knowledge or knowledge on past events. The def-
inition of a prior distribution is not tricky and, as Coles (1999) stated, inapt priors lead to several 
problems on estimations.  

In addition, not ever a prior information is available. In this study, a type of prior called as non-
informative has to be used in order to get Bayesian estimations also when no prior information 
is available. 
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Posterior distribution 

The distribution of the vector θ of parameters of the statistical distribution is the posterior dis-
tribution. The posterior distribution is calculated by the formulation of Bayes’ theorem (Eq. 

B2.1). This distribution is another important element of the Bayesian approach. In fact, the 
Bayesian probability considers the unknown parameters of the statistical distribution as a ran-
dom variable. For this reason, their distribution has to be computed in the analysis. 

The posterior distribution P(θ|D) represents the probability of the vector θ of parameters given 
the observed events D. This distribution is computed through the formulation of a prior distri-
bution P(θ). The prior only depends on the prior knowledge of the analysed phenomenon and 
not depends on the observed data D. Lastly, the posterior distribution depends on the likelihood 
formulation P(D|θ) and on the marginal factor P(D). The posterior distribution part formed by 
P(D|θ)/P(D) represent the impact that the observed data D has on the probability distribution 
of the vector θ of parameters. 

Likelihood formulation P(D|θ) is the probability to observe the data D knowing the vector θ of 
parameters. When historical data are used in the analysis, the likelihood formulation can be 
defined as that of Eq.3.35. 

Marginal likelihood P(D) is a normalisation factor that is identic for each vector θ of parameters. 

Finally, posterior distribution can be reformulated as follows:    

 & f ' ∝ & ' f 	& f  (B2.2) 

The computation of a posterior distribution can be performed by the use of Markov Chain 

Monte Carlo methods. The use of a MCMC algorithm allows the sampling of the posterior 
probability distribution without computing the marginal likelihood. A sufficient number of vec-
tors θ can be estimated for some a particular number of chains. The convergence of the MCMC 
results has to be verified inside every chain and for different chains.  

Finally, the posterior probability is affected by the variability of observed events. The 
knowledge of its uncertainties can be computed by the concepts of the Credibility Intervals. 
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Credibility Intervals 

The Credibility Intervals are ranges of values that delineate a credible region in which exists a 
probability (corresponding to a p-value) to find the true value of the vector θ. Being posterior 

distribution derived from the prior distribution, also the Credibility Intervals consider within 
them the knowledge of the expert. They can be computed by the posterior distribution. In fact, 
a particular Credibility Interval is equal to the corresponding p-quantile of the vector θ of pa-
rameters. 

The Credibility intervals are different to confidence intervals. In particular, Confidence Inter-
vals are computed considering fixed the estimated parameters but varying the extreme data 
sample.  

In this study, the Credibility Intervals are displayed in return level plots through the calculation 
of the corresponding regional quantiles xTr for each return period T. 

 

Predictive distribution 

The predictive distribution is generated by the vector θ of parameters and provides a single 

statistical distribution in which all the possible uncertainties are integrated. This distribution 
can be considered as the distribution of a new future event X* that it is not yet observed. The 
probability to observe a new event X* is computed as follows: 

 & !∗|' = & !∗, f|' Ff = & !∗ f, ' 	&(f|' Ff (B2.3) 

This distribution is estimated through the mean of the considered distribution created for each 
vector θ of parameters. 

In this study, the predictive distribution is figured out in return level plots through the compu-
tation of the probability P(X*>xT

*) that a future event X* will be higher than the predictive return 

level xT
* linked to a predictive return period T* as follows: P(X*>xT

*)=1/λT*  
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3.1 Regional Bayesian analysis 
A preliminary version of the FAB method for Bayesian estimations was presented by a talk in 
the Extreme Value Analysis and application to Natural Hazard (EVAN) conference held in 
Southampton (UK) between the 5th and the 7th September 2017. 
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Application	to	Natural	Hazard	(EVAN),	5	to	7	September	2017,	Southampton,	UK	

																					 	 								

 
The use of archaeological data in the Regional Bayesian 

Analysis of extreme skew storm surges  
 
 Roberto Frau1,2, Marc Andreewsky1, Pietro Bernardara3  
 
1EDF R&D LNHE, 6 Quai Watier, 78401 Chatou, France. E-mail: roberto.frau@edf.fr 
 
2Laboratoire d’Hydraulique Saint-Venant, 6 Quai Watier, 78401 Chatou, France. 
 
3EDF R&D UK Centre, 81-85 Station Rd, Croydon CR0 2AJ, UK. 
 
 
The characterization of extreme sea levels and skew storm surges is a basic need to 
protect coastal Nuclear Fleets from flooding. Statistical methods linked to extreme 
value theory allow to estimate extreme events. The extreme events are associated to 
very high return periods (up to 103 years) and the estimation methodologies in the 
past were applied to a short time series (usually 30 years to 50 years long) at a given 
site. The uncertainties associated to these extreme event estimations are obviously 
huge and the scientific community has started to explore alternative ways to get 
robust quantiles. 
 
A way to get reliable estimations is to look at the regional scale. In the era of big 
data, a lot of datasets, reanalysis and new earth observations are available and it’s 
very important to exploit them. The idea of regional analysis is to put together data 
from different locations and to fit a regional distribution of a biggest data sample of 
extremes. This allows to increase the reliability estimation of the extreme variables 
probability occurrence. A Regional Frequency Analysis methodology had been 
already performed and applied for skew storm surges.  
 
The use of archaeological data is another way to increase the amount of extremes 
available. A methodology to introduce archaeological skew storm surges in a 
Regional Frequency Analysis of digitalized data has been developed in a frequentist 
framework. Usually, the nature of the archaeological data is different and sometimes 
they are linked to measurement uncertainties that we can’t ignore in a statistical 
analysis of extremes. The Bayesian framework is a suitable way to treat 
archaeological data. 
 
The regional bayesian analysis is applied on a database of skew storm surges and 
on a several archaeological skew storm surges collected from different sources.  
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4.1 Collection of historical skew 
surges 
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The knowledge of archaeological extreme events is important to estimate reliable 
extreme sea levels and skew storm surges. These estimations are associated to high 
return periods (up to 103 years) and usually they are computed only using tide gauge 
data. This leads to marked uncertainties in statistical estimation of extreme values. A 
good way to reduce these uncertainties is the use of archaeological data. In order to 
introduce archaeological data in an extreme analysis of digitalized marine variables, 
several statistical methods have already been developed by the scientific community. 
The application of these methodologies has to be performed using the maximum 
amount of data available. For this reason, the collection of archaeological extreme data 
is an important need.  
 
However, gathering archaeological marine information is not an easy task. Historical 
sea levels or skew surges can be found in several sources such as historical archives 
and old newspapers and their quality has to be checked. Nevertheless, for some 
events, the archaeological skew storm surge values can be quantified at a single site, 
in particular, when the maximum sea level is available.  
    
A collection of archaeological events connected to stronger storms of the past has 
been done for the French and British coasts and a preliminary database has been 
created. Mainly, these events have generated widespread coastal flooding due to the 
combination of high astronomical tide and extreme skew storm surge. The biggest 
skew storm surges are linked to specific meteorological conditions that are available 
through historical meteorological observations and modern reanalysis datasets. This 
allows us also to carry out a meteorological analysis for every archaeological event 
detected. These analyses will be applied to an outstanding event impacted Brittany 
and Bay of Biscay roughly one century ago. 
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4.2 Simulations of extreme skew 
surges 
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Abstract—The coastal flood risk assessment is an overriding 
priority for EDF to ensure the nuclear safety. For this reason, 
statistical methods linked to Extreme Value Theory (EVT) are 
carried out to evaluate extreme events associated to high return 
periods (up to 103 years). Usually, these evaluations are applied 
to time series from 30 to 50 years and extreme estimations are 
not very accurate. A potential way to improve statistical 
estimations of extreme events is the use of historical data ([6], 
[7], [4]). Before to properly use them in a statistical analysis, the 
validation of historical records is needed. 

Numerical models may be complementary to historical values 
and they may even validate historical values recovered and 
reconstructed from several sources. Firstly, it is necessary to 
achieve a deep examination of the numerical models during 
several well-known extreme events in order to be able to validate 
historical events. In this study, extreme sea levels and, in 
particular, extreme skew surges simulated by a TELEMAC-2D 
model are considered. 
 
TELEMAC-2D allows to simulate free-surface flows in two 
dimensions and to compute sea levels taking into account 
meteorological conditions during a storm. Unfortunately, not 
considering waves’ contributions in simulations ([15], [14]) leads 
to non-accurate results. Waves’ contributions can represent a 
significant part of skew surge [21]. In the present work, waves’ 
contributions are taken into account in the computation of the 
surface drag coefficient CD, using the Charnock relation, and the 
consideration of wave stresses. A sensitivity analysis of the 
Charnock coefficient is studied to find an optimal value.   
Extreme skew surges are computed from simulations and these 
values are compared to measurements. Better results are 
obtained considering waves’ contributions. 
The model is tested for three of the well-known storms that 
impacted French coasts in 1987, 1999 and 2010, respectively The 
Great Storm of 1987, Lothar-Martin storms and Xynthia storm. 

I. INTRODUCTION 
The safety of nuclear power plants located along the coasts 

is one of the main priorities for EDF. Indeed, due to their 
proximity to the sea, coastal nuclear stations are subjected to 
the aggressions of extreme meteo-oceanic conditions such as 

sea levels, surges and waves. It is crucial to provide an 
accurate coastal risk assessment in order to be able to design 
effective protections. As part of the prevention of risks, 
numerical models allow to simulate storm events to study the 
different physical variables and processes involved. In this 
context, a lot of effort has been spent to improve simulations 
of extreme sea levels. The model has to be suitable for extreme 
events and effective at representing skew surges and in 
particular the maximum skew surge, our variable of interest in 
this study. The skew surge is the difference between the 
maximum observed sea level and the maximum predicted 
astronomical tide level during a tidal cycle ([22], [23], [6]). 
The risk of coastal flooding is bigger at high water conditions 
and justifies working with the maximum skew surge. Skew 
surge time series at several locations along French and British 
coasts can be obtained with the model. 

At the Saint-Venant Hydraulics Laboratory (LHSV), a surge 
numerical model based on TELEMAC-2D software was built 
a few years ago [15] and then globally validated with 
additional tests [14]. The model showed relatively bad 
performances for the estimation of maximum skew surges 
along some regions such as Pays de la Loire or Nouvelle-
Aquitaine. Waves’ contributions had not been taken into 
account yet in [14] and at least for this reason, skew surges 
may have been underestimated for most of the study sites 
along the French coastline. Storm surges are generated by the 
meteorological forcing, in particular wind and pressure [8], 
and also by the waves. Waves’ contributions can be divided 
into three components [17]: sea surface drag coefficient 
modification with the nature of waves, bottom friction and 
wave set-up. The positive relevance to use wave set-up and 
atmospheric effects in simulations, for instance, through a 
better surface drag parameterization, has been shown as part 
of the Previmer-Surcotes project [13]. 

The aim of this study is to improve the performances of the 
TELEMAC-2D model in South of the North Sea, English sea, 
and Biscay Bay and to provide the best simulated skew surge 
during an extreme event. As a first step, satisfactory results for 
maximum skew surges for some recent and well-known 
storms are expected. For this reason, a comparison between 
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observed skew surges recorded by tide gauges and simulated 
skew surges has to be done in order to verify the numerical 
model. Finally, the model may be used to validate historical 
skew surges. Since historical data can be associated with 
considerable uncertainties, simulations generated by a reliable 
model can help us to determine if these skew surges likely 
happened in the past and so if they should be taken into 
account in the statistical of extreme events or not. 

This paper presents the implementation of the waves’ 
contributions in the TELEMAC-2D surge model through 
Charnock formulation and wave stresses. In addition, a 
validation part with three well-known storms The Great storm 
of 1987, Lothar-Martin (1999) and Xynthia (2010) is carried 
out. All the physical processes involved and their modelling 
are fully described in Sect.2. Sect.3 presents the results for the 
estimation of the maximum skew surges for each storm in 
different sites along the French coasts. 

II. NUMERICAL MODEL AND SIMULATIONS 
In this study, TELEMAC-2D (T2D) solves the Shallow 

Water Equations and some user FORTRAN sub-routines (for 
instance, prosou.f) are adapted to simulate skew storm surges. 
The numerical model is based on the one of [14] but a sub-
routine has been changed and some input data have been 
added in order to consider waves’ contributions. The 
TELEMAC-2D model extends from 10°W to 14°E and from 
42°N to 64°N and includes French and British coasts (Fig. 2). 
The mesh (called mesh 2 in Fig. 3) is unstructured: it is 
particularly refined near the coastline, with one node per 
kilometer. Off the French coasts, the greatest distance between 
two nodes is around 40 km. The bathymetry “North East 
Atlantic Europe” (NEA) provided by the LEGOS is used. The 
data base for the harmonic constants is provided by the 
LEGOS [11] atlas to be consistent with the bathymetry. Initial 
water level and tidal currents are computed from the Atlantic 
Ocean solution of TPXO [12] database by OSU. The bottom 
friction is parametrized by the Chézy formulation with a 
constant coefficient of 70 m1/2/s. 

The meteorological forcing is provided by The National 
Centers for Environmental Prediction (NCEP) Climate 
Forecast System Reanalysis (CFSR) [20]. In our study, mean 
level atmospheric pressure at the sea level and horizontal 
components of wind (at 10 m) are used. Selected hourly time-
series variables are available from January 1979 to December 
2010. Besides a great temporal resolution, the fine spatial 
resolution (0.301°×0.301°) is necessary to represent 
precisely the atmospheric phenomena. Using a Python 
program, CFSR data are interpolated and a single SELAFIN 
file containing pressures and wind velocities data is obtained. 
To compute simulated skew surges, two simulations are 
achieved (Fig. 3): the first with meteorological forcing, the 
second one without (only tide propagation is used). Tidal 
simulations have been validated previously for several French 
harbours [14]. However, for some sites, an error up to 30 cm 
has been found during high tide. In our study, skew surges are 
considered and particularly the maximum skew surge as 
extreme values are sought. Substracting maximum predicted 
astronomical tide level to maximum observed water levels, 
potentially occurring with a time lag, leads to skew surge 

levels. The results are compared to those observed by the 
French Navy Hydrographic and Oceanographic (SHOM). For 
each storm event, a simulation, beginning seven days before 
the date of the storm and ending four days after, is run. The 
simulation time step is 30 s, according to [15].  

III. IMPROVEMENT ON EXTREME EVENTS 
SIMULATIONS 

The quality of a storm surge model depends on the 
accuracy of the input data, being the meteorological forcing, 
the spatial and temporal resolution and also the physical 
processes modelled. Storm surges were not properly modelled 
so far because at least waves’ contributions were not taken into 
account: only the tide and the surge induced by the 
atmospheric forcing were integrated in the model. In order to 
improve skew surges estimations using waves’ contributions 
in our model, the parametrization of the sea surface drag 
coefficient has to be firstly modified. This allows to describe 
more precisely the air-sea interaction. Secondly, wave stresses 
have to be considered during the simulations. 

A. Sea surface drag coefficient 
The wind influence is represented by a dimensionless sea 
surface drag coefficient CD. This coefficient can be calculated 
with several formulations and most of them depend on the 
wind magnitude velocity at 10 m, UN. CD models complex 
phenomena. In fact, the wind influence depends on UN but also 
on the roughness of the sea surface, which is itself dependent 
on the wind and the distance over which it is applied (fetch) 
[10].  

In TELEMAC-2D, the wind influence is represented by the 
following formulation of Flather (Fig. 1):  

'( = 0.565×10,-./01 ⩽ 53 4 

'( = −0.12 + 0.13701 ×10,-./53 4 ⩽ 01
⩽ 19.223 4 

'( = 2.513×10,-./01 ⩾ 19.223 4 

 

With this formulation the coefficient only depends on UN, 
whereas the wind influence may also depends on the 
roughness of the sea surface induced by the waves 
(characterized by the sea state). Charnock formulation 
suggests that the roughness length z0 of the wind profile 
depends on the kinematic viscosity ν in the case of weak wind 
or on the Charnock relation (1) in the case of strong wind 
(above 20 m/s), for instance during a storm [9]: 

;< = =>?0@ABC
D E    (1) 

 

where αCH is the dimensionless Charnock coefficient; USTAR, 
defined by UN/25 [9], is the friction velocity (m/s) and g is the 
gravitational acceleration (m/s²). z0 is linked to the sea surface 
drag coefficient CD according to the following relation (2): 

'( = FDGHE ; ;<
,D    (2) 

κ=0.4 is the Von Karman constant and z is the altitude (m).  
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The Charnock coefficient models the surface roughness of the 
ocean and varies in time and space. αCH (usually between 0.01 
and 0.04, 0.018 is a typical value) depends on the sea state and 
on the wage age [24]. A wave model should be used to obtain 
a Charnock coefficient which takes into account the sea state. 
For example, WaveWatchIII gives αCH from 1990 to 2018, 
based on CFSR or ECMWF reanalysis, and those data can be 
read in TELEMAC-2D. The consideration of waves’ 
contributions through this database allows to improve the 
estimation of surges [18]. For the purpose of studying 
historical storms, a database for the Charnock coefficient that 
goes back further in the past is needed. The spectral wave 
model used at the LNHE, TOMAWAC, does not allow the 
computation of αCH for the moment. It would require some 
developments that is why, as a first step, the formulation of 
Charnock has been implemented in TELEMAC-2D with a αCH 
as a parameter fixed by the user and thus constant in time and 
space. The Charnock formulation gives more flexibility for the 
range of value of the drag coefficient. Higher values can be 
reached for the higher wind speed (increasing αCH) in 
comparison with the formulation of Flather (Fig. 1). Thus, the 
Charnock coefficient can be used to strengthen, or not, the 
wind influence, depending on the value of αCH. However, 
recent studies ([19], [5]) have shown that for winds greater 
than 33 m/s, the drag coefficient starts to decrease (Fig. 1). 
Hence, the Charnock formulation is not correct anymore and 
other formulations like Makin [16] should be used instead. In 
this paper, the maximum wind measured during the three 
considered storms is below 33 m/s so Charnock formulation 
has been kept. 

Figure 1. Comparison between various formulations for the sea drag 
coefficient CD and analysis of the influence of the Charnock parameter on 

this coefficient. 

 

Given that the performances of TELEMAC-2D were not 
homogeneous along the French coastline [14], a regional 

division (only determined by the latitude) based on French 
geographical areas is carried out. It is a first approach which 
has to be improved. Thus, four regions have been defined (Fig. 
2): Hauts-de-France/Normandy, Brittany, Pays de la Loire and 
Nouvelle-Aquitaine. For each area, a different αCH is applied, 
more appropriate locally, waiting to be able to calculate αCH 
for each point of the mesh considering the sea state. The values 
for the Charnock coefficient have been chosen after several 
tests, depending on the results of our TELEMAC-2D model 
with the Flather formulation (if the maximum skew surge 
simulated by [14] was under the SHOM maximum skew 
surge, a high coefficient is fixed and conversely). In Sect. 3, 
details will be given about the αCH used for each storm. 

Figure 2. Regional division for the adaptation of αCH. 
 
 

B. Wave stresses 
As TELEMAC-2D is used to simulate skew surges, waves are 
not taken into account. However, waves induce currents which 
may impact the surge and this effect can represent a significant 
part of the surge [21]. Those wave driven currents are 
calculated in TOMAWAC in the form of two forces Fu and Fv, 
called the wave stresses. The TOMAWAC software models 
wave propagation in coastal areas and estimates the mean 
characteristics of waves (water depth, direction, frequency). 
TELEMAC-2D is designed to be coupled with TOMAWAC 
but this requires to build a wave model on the same mesh as 
the one used for TELEMAC-2D (called mesh 2 in Fig. 3) with 
the determination of boundary conditions. Thus, for a first test 
of using wave stresses in the model, the data were taken from 
another project where a wave model is run with varying water 
level and currents due to tide (steps 1, 2 and 3 in Fig. 3). The 
same forcing conditions are used, but the computational 
domain is smaller and limited to close to the coast (called mesh 
1 in Fig. 3). If the results are promising, a "real" 2-way-
coupling will be implemented. With Fu and Fv as input data in 
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TELEMAC-2D, simulations with the contributions of wave 
induced currents are realized (step 4 in Fig. 3). 

Figure 3. Diagram of the chaining methodology to simulate surges. 
 

 

IV. RESULTS 

 

A. Xynthia 

Xynthia is a recent well-known storm for which the SHOM 
collected data in plenty of ports. This case study served to 
calibrate our TELEMAC-2D surge model and also to estimate 
the contributions linked to the Charnock formulation or the 
wave stresses. 
 

Xynthia was a violent storm which crossed rapidly Western 
Europe between the 27th of February and the 1st of March 
2010. The trajectory of the storm was quite unusual, from 
South-West to North-East and created a particular sea state in 
the Bay of Biscay [1]. The waves were really short and arched. 
This induced the effect of increasing the sea roughness and so 
the drag coefficient [2]. To model this phenomenon, a 
Charnock coefficient of 0.04 is applied in the region of Pays 
de la Loire and 0.018, the typical value, everywhere else. Nine 
harbours are concerned: Dunkerque, Dieppe, Le Havre, Saint-
Malo, Roscoff, Saint-Nazaire, La Rochelle, Port-Bloc and 
Boucau. The results of the TELEMAC-2D model with or 
without waves’ contributions are compared to the SHOM 
observations. For all the study sites, the maximum skew surge 
was underestimated by the model. Nevertheless, using the 
Charnock formulation rather than the Flather one (Fig. 1) 
permitted to reduce the error between the peak of the simulated 
skew surge and the peak of the observed skew surge (Table 1). 

  

The wave stresses do not have positive influences on our 
results, except for Le Havre. The performances of the 
TELEMAC-2D model are still not homogenous between all 
harbours: for instance, at Port-Bloc, the correct numerical 
value for the peak of skew surge is simulated, whereas at 
Saint-Nazaire, it is clearly overestimated (Fig. 4). Further tests 
should be conducted with a lower value of αCH in Pays de la 
Loire to approach the maximum skew surge recorded by the 
SHOM.  At Boucau, regardless of the modifications of the 
model, the same result is obtained. We will see with the other 
storms that the region of Nouvelle-Aquitaine shows low 
sensitivity to the model parameters in general. The regional 
division should be modified: working with smaller regions 
could help to describe local effects. 
 

TABLE 1: RESULTS OF ABSOLUTE RELATIVE ERROR FOR THE 9 SITES FOR 
THE MAXIMUM SKEW SURGES DURING XYNTHIA 

Harbour 

Absolute relative error for the peak between the 
TELEMAC-2D model and the SHOM observations 

(%) 
 Without 

waves’ contri-
butions 

With 
Charnock 

formulation 
only 

With wave 
stresses 

only 

With waves’ 
contri-
butions 

Dunkerque 16.05 1.23 17.28 1.23 

Dieppe 12.63 2.11 14.74 1.05 

Le Havre 35.64 25.74 7.92 1.98 

Saint-Malo 16.47 4.71 17.65 4.71 

Roscoff 31.67 28.33 33.33 30.0 
Saint-
Nazaire 19.81 26.42 33.96 24.52 

La Rochelle 47.06 12.42 44.44 13.07 

Port-Bloc 23.15 0.00 24.07 0.93 

Boucau 43.90 39.04 46.34 41.46 
 
 

In conclusion, taking into account the wind influence, through 
Charnock formulation, and the wave stresses helps to improve 
the estimation of the maximum skew surge for all sites for the 
Xynthia storm. To improve the results, the change of 
bathymetry database and the mesh refinement are prominent 
possibilities to take into account for future improvements. Of 
course, those promising results will lead to a complete 
coupling between TOMAWAC and TELEMAC-2D. The 
calibration of αCH has to be refined eventually with a 
calculation directly in TOMAWAC. 
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Figure 4.  Comparison between simulated skew surge (SPM) with (in green) 
or without (in red) the waves ‘contributions with data recorded from tide 

gauge station (in black) during Xynthia storm. 

 

B. Lothar-Martin 
Storm Lothar crossed Europe following a West-East track and 
peaked during the high tide of a moderate tidal range. It 
occurred on the December 26th, 1999. Less than 36 hours later, 
a second storm, called Martin, crossed France, a little further 
south, and affected almost of the same sites. This is quite 
unusual and during the tests of [15], the 1999 events were not 
correctly represented by the TELEMAC-2D model. Five tide 
gauges recorded the water level during both Lothar and 
Martin: Boucau, Cherbourg, Le Havre, Roscoff and Saint-
Nazaire. La Rochelle tide gauge was not operating during 
those storms because of a general power failure. [3] simulated 
a skew surge value of 2.17 m for December 27th for storm 
Martin at La Rochelle so our results are compared with it (Fig. 
5).  

After some tests, the following values for the Charnock 
coefficient were chosen: 

• 0.001 for Hauts-de-France/Normandy and Brittany, 

• 0.04 for Pays de la Loire and Nouvelle-Aquitaine. 

Indeed, the model used in [14] overestimated the peak of the 
skew surge in northern France, so a very small αCH is used to 
reduce the wind influence and conversely for the South of 
France. For Cherbourg, Le Havre, Saint-Nazaire and Boucau, 
we manage to improve the results of the TELEMAC-2D 
model through waves’ contributions (Fig. 5) but the numerical 
value of the maximum skew surge cannot be validated, except 
at Cherbourg. Finally, for La Rochelle, the waves’ 
contributions lead to two skew surge peaks rather than three 
(Fig. 5). It could be more coherent as there is two really close 

storms but the simulated values are still far from 
measurements and the temporal occurrence is not quite exact. 

To conclude, in this case, the implementation of the waves’ 
contributions does not allow our model to describe correctly 
the 1999 events in all harbours. Results have been enhanced 
for some sites which encourages us to continue our work. As 
for storm Xynthia, a bathymetry and a mesh with a better 
resolution should have a benefit on our skew surge estimations 
as a precision of the geographical regions. 

Figure 5.   Comparison between simulated skew surge (SPM) with (in green) 
or without (in red) the waves ‘contributions with data recorded from tide 

gauge station (in black) during Lothar-Martin storms. Comparison with [3] 
(in blue) for La Rochelle. 

 

C. The Great Storm of 1987 
This storm occurred in the middle of October 1987: a 
depression originated on the Bay of Biscay on the 15th and 
moved North-East. The Great Storm of 1987 impacted 
Brittany and then England. Eight French tide gauges recorded 
the sea level during this event: Dieppe, Le Havre, Cherbourg, 
Roscoff, Le Conquet, Port-Tudy, Verdon and Saint-Jean-de-
Luz. For this study, we choose αCH = 0.04 for Hauts-de-
France/Normandy, αCH = 0.35 for Brittany and αCH= 0.018 for 
the other regions as the storm mainly affected the North of 
France. 

Estimations of the maximum skew surge are improved only 
for six harbours. In fact, this storm does not strongly impact 
the sites of Le Verdon and Saint-Jean-de-Luz in which time 
series of skew surges are available. In addition, the Nouvelle 
Aquitaine region, to which these two sites belong, is poorly 
sensitive to the parameters of the TELEMAC-2D model. 
Results at Cherbourg and Roscoff (Fig. 6) allow us to get few 
ameliorations for the maximum skew surge. On the contrary, 
for Le Havre and for Port-Tudy (Fig. 6), the waves’ 
contributions have a clear positive influence. 
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This case study needs a careful work especially for the regions 
of Hauts-de-France/Normandy and Brittany where the storm 
had the strongest impact. As the Great Storm of 1987 affected 
the English coasts too, skew surges simulations should be 
done for British harbours. As for the 2010 and 1999 storm 
events, the TELEMAC-2D model should be enhanced with 
more refined bathymetry and mesh. In addition, a coupling 
with TOMAWAC could be considered, rather than a chaining.  

Figure 6.   Comparison between simulated skew surge (SPM) with (in green) 
or without (in red) the waves ‘contributions with data recorded from tide 

gauge station (in black) during The Great Storm of 1987. 

 

CONCLUSIONS AND PERSPECTIVES 
The storm surges model based on TELEMAC-2D built 

and validated a few years ago ([15], [14]) has been improved 
through the implementation of the waves’ contributions. The 
formulation for the sea surface drag coefficient which 
translates the wind influence has been modified with the 
Charnock formulation. A regional division has been settled to 
affect a particular Charnock coefficient for each area. In 
addition, the wave stresses are now taken into account in our 
simulation thanks to a chaining with TOMAWAC. For the 
three storms studied, an improvement, nevertheless sometime 
small, of our estimations of the maximum skew surge is 
observed in most of the sites. The examination of the 
TELEMAC-2D model for several well-known storms is 
essential to be able to study extreme historical events later and 
thus validate historical values.  

Work is still in progress at the LNHE. A new bathymetry 
from the SHOM with a resolution of 100 m should be tested 
and a new mesh will be soon developed. Indeed, all tide 
gauges are located in ports so there are influenced by local 
effects. A coupling between TOMAWAC and TELEMAC-2D 
could be considered as a promising way to still improve 
results. The Charnock formulation is valid for winds below 33 

m/s, we may change for the Makin formulation [16] for other 
storms. Moreover, the geographic division has to be precise 
and the Charnock coefficient needs to be calculated for each 
node of the mesh, updated at each time step. This could be 
possible with the calculation of the coefficient directly in 
TOMAWAC. One advantage will be that our model would not 
be dependent anymore on a database such IOWAGA from 
WaveWatchIII and therefore it will ensure coherence between 
all the data used in our storm surges simulations. In addition, 
British ports should be studied to complete this work, 
especially for The Great Storm of 1987. 
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5.1 Summary table of the FAB appli-
cation 

Numerical results of the FAB application (Chapter 4) are here summed up as follows: 

 Region 1 La Rochelle Region 2 Calais 

Quantiles for T=1000ys with 
Historical Data (Frequentist 

Estimations) 
2.89 1.82m 3.30 1.78m 

Quantiles for T=1000ys 
without HD (FE) 

2.55 1.61m 2.94 1.62m 

Predictive quantiles for 
T=1000ys with HD (Bayes-

ian Estimations) 
3.14 1.97m 3.51 1.89m 

Upper CI 90% for T=1000ys 
with HD (FE) 

3.39 2.15m 3.99 2.14m 

Upper CI 90% for T=1000ys 
without HD (FE) 

2.90 1.84m 3.45 1.90m 

Upper CI 90% for T=1000ys 
with HD and without season-

ality (FE) 
3.59 2.28m 4.01 2.15m 

Upper CI 90% for T=1000ys 
with HD (BE) 

3.91 2.47m 4.56 2.46m 

ΔCI/xT =1000ys with HD 
(FE) 

34% 36% 40% 40% 

ΔCI/xT =1000ys without HD 
(FE) 

28% 29% 34% 35% 

ΔCI/xT =1000ys with HD 
and without seasonality (FE) 

37% 39% 40% 40% 

ΔCI/xT =1000ys with HD 
(BE) 

44% 44% 53% 53% 

Tab. 18 – Summary table of the FAB application’s results 
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This summary table allows an easier numerical comparison of the two different statistical 
frameworks analysed as well as the statistical analyses performed using or not historical data.
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6.1 Storm frequency on the longest 
time series 

The hypothesis of the lack of a trend on storm frequency during the 20th century, and in which 
the definition of the credible duration is based (Chapter 3), has been verified for skew surges 
through an additional test on the longest skew surge series. In fact, the availability of long skew 
surge time series allows the estimation of the lambda value for different periods of the 20th 
century. This computation can indicate if a trend on the storm frequency is present or not.  

In particular, for every year yt of recordings, a mean of lambda values is calculated considering 
a period of 15 years before the year yt and 15 years after the same year yt. The computation of 
lambda has been performed for different thresholds corresponding to the quantiles of 0.997, 
0.998, 0.9985 and 0.999 of the considered skew surge serie. In addition, the 95% confidence 
intervals and a mean of lambda on the whole skew surge serie are computed. 

This analysis has been performed on the longest French skew surge serie that has been recorded 

since the year 1846 at Brest for a total of 156.57 years and on the longest British skew surge 
serie that has been recorded since the year 1915 at Newlyn for a total of 87.32 years. The results 
of these two analyses are figured out below in Fig.42 and Fig.43. 
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Fig. 42 – Variability of storm frequency for different thresholds corresponding to quantiles of 0.997, 0.998, 0.9985 and 
0.999 at Brest tide gauge 

 

Fig. 43 - Variability of storm frequency for different thresholds corresponding to quantiles of 0.997, 0.998, 0.9985 and 
0.999 at Newlyn tide gauge 
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The lambda values calculated for different periods of 31 years (the black line of Fig. 42 and 
Fig. 43) varies around the lambda mean both in Brest and in Newlyn. In addition, the lambda 
mean is most of the time inside the 95% confidence intervals.  

These analyses in Brest and in Newlyn consolidate the credible hypothesis of the lack of a trend 
on storm frequency during the 20th century. 
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