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3 Abstract

Abstract

This thesis deals with the development and application of a two-way coupling procedure

between a fully nonlinear potential flow model and a Navier-Stokes solver to study wave-

structure interaction applied to offshore wind turbines.

The coupling strategy relies on a domain decomposition method, in which the wave field

close to the structure of interest is simulated with the Navier-Stokes solver Code Saturne,

an open-source Finite Volume code capturing the free surface with a Volume of Fluid

method. Away from the structure, where viscous and turbulent effects may be neglected,

the potential code, solving the Laplace equation for the velocity potential with a boundary

integral formulation, is applied to model the large scale wave field.

Generation and absorption of waves in this three-dimensional hybrid numerical wave tank

take place in the outer potential domain. The potential and Navier-Stokes codes exchange

data in the region around their common boundaries. The coupling may thus be referred

to as “two-way”, enabling one to propagate waves in and out of the viscous subdomain,

and making the hybrid algorithm suitable to study wave diffraction on fixed offshore wind

turbines, while keeping the viscous subdomain as small as possible. Each code uses its own

mesh and time step. Subdomains are overlapping, therefore a velocity continuity condition

and a free surface continuity condition have to be verified on two distinct coupling surfaces

at any time.

Parallel implementation of the coupling strategy with communications between the models

relying on the Message Passing Interface (MPI) library allows calculations to be run on

large spatial and temporal scales on distributed memory clusters. The coupling algorithm

is tested for various incident wave conditions, including solitary waves and regular nonlin-

ear waves. It is then applied to the simulation of wave loads exerted on a vertical monopile

and numerical results are compared with experimental measurements performed in a wave

flume considering various values of the period and steepness of incident waves. Attention

is paid to the analysis of high-order components of the nonlinear horizontal force.

Keywords:

Wave-structure interaction; offshore wind turbines; fully nonlinear potential flow; compu-

tational fluid dynamics; two-way coupling
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5 Résumé

Résumé

Cette thèse traite de la conception, du développement et de l’application d’une stratégie

de couplage entre un code de vagues potentiel complètement non-linéaire et un modèle

résolvant les équations de Navier-Stokes, dans le but d’étudier les interactions vagues-

structure à l’oeuvre sur les fondations d’éoliennes en mer.

La stratégie de couplage suppose une décomposition du domaine de calcul suivant laquelle

le champ de vagues proche de la structure étudiée est simulé à l’aide du solveur Navier-

Stokes Code Saturne, code open source à Volumes Finis mettant en oeuvre une méthode de

capture de la surface libre de type Volume Of Fluid (VOF). A l’écart de la structure, là où

les effets visqueux et turbulents peuvent être négligés, le code potentiel résout l’équation

de Laplace pour le potentiel des vitesses, par le biais d’une formulation intégrale aux

frontières et permet ainsi la simulation du champ de vagues lointain.

La génération et l’absorption de vagues sont effectuées dans le sous-domaine potentiel

extérieur de ce canal à houle numérique hybride en trois dimensions. Les codes visqueux et

potentiel échangent des informations liées au calcul couplé à proximité de leurs frontières

communes. La procédure de couplage peut donc être qualifiée de bidirectionnelle, en

ce qu’elle autorise la propagation de vagues du sous-domaine potentiel au sous-domaine

visqueux, et réciproquement. Il devient ainsi possible d’étudier la diffraction de houles

sur des fondations fixes d’éoliennes en mer, tout en réduisant au minimum l’étendue du

sous-domaine visqueux, de même que les coûts de calcul associés. Chacun des codes utilise

un pas de temps qui lui est propre. Le recouvrement partiel des sous-domaines impose de

s’assurer que des conditions de continuité de la vitesse et de la position de surface libre

sont vérifiées à tout instant sur les deux frontières couplées distinctes.

Cette méthodologie de calcul hybride, et les communications entre codes qu’elle implique,

sont rendues parallèles par le recours à la bibliothèque Message Passing Interface (MPI).

De ce fait, des simulations à de grandes échelles spatiales et temporelles sont permises par

l’emploi d’une grappe de serveurs à mémoire distribuée.

La méthodologie de couplage est expérimentée pour divers types de vagues incidentes,

incluant des ondes solitaires et des houles régulières non-linéaires. Elle est par la suite

appliquée à la simulation des efforts s’exerçant sur un monopieu. Les résultats, dans le

cas de la houle régulière, sont comparés à des données expérimentales obtenues dans un

canal à houle. Différentes périodes et cambrures de vagues sont étudiées. Une attention

particulière est portée aux composantes d’ordre élevés de la force horizontale non-linéaire.

Mots-clé:

Interactions vague-structure; éolien offshore; écoulement potentiel complètement non-

linéaire; dynamique des fluides numérique; couplage bidirectionnel
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à Chatou et à Marseille. Merci aux permanents, ainsi qu’aux nombreux stagiaires, doc-

torants et post-doctorants rencontrés : Daniel, Teddy, Thomas, Hannah, Rem Sophia,

Roberto, Florent, Florian, Athanasios, Konstantin, Lydia, Rajae, Elie, Sarah, Suzanne,

Jie, Paul, Romain,... et toutes mes excuses à ceux dont j’aurais oublié le prénom. Merci à
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Chapter 1

Introduction

Dans ce premier chapitre, on présente de manière globale le contexte indus-

triel de la thèse : la génération d’électricité par extraction et conversion de

l’énergie cinétique du vent, permise par le recours à des éoliennes en mer. Les

principaux défis techniques, solutions et outils d’ingénierie disponibles sont

brièvement abordés. Dans un second temps, une revue de la littérature scien-

tifique consacrée à l’hydrodynamique numérique à surface libre est réalisée.

Différents types de modèles mathématiques et codes de calculs associés sont

évoqués, leur principales caractéristiques rappelées. On distingue également

diverses stratégies de couplage combinant certains de ces codes. En particulier,

les travaux antérieurs portant sur des méthodes de couplage bidirectionnel po-

tentiel/visqueux reposant sur une approche par décomposition de domaine sont

passés en revue et analysés. Enfin, on présente les objectifs de ce travail de

thèse, et la structure retenue pour la suite du manuscrit.

21
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1.1 General introduction and industrial context

To meet the requirements of the United Nations’s Paris Agreement (United Nations, 2015)

on mitigating global warming to 2° and possibly 1.5° above pre-industrial levels, the Eu-

ropean Union (EU) has pledged to decrease the global greenhouse gas emissions of its

member states by 55% by 2030 and to reach carbon neutrality by 2050 (European Com-

mission, 2019). To that end, lowering the mean carbon dioxide equivalent (CO2eq) content

of the European electricity production is necessary, with low-carbon facilities expected to

take over power plants relying on the combustion of fossil fuels. Among these decarbonized

power sources, long-established hydro power and nuclear power facilities are being supple-

mented by rapidly growing solar power and wind power. Focusing on the latter, it appears

that it accounts for 194GW of installed capacity as of 2020, among which 25GW (12.9%)

come from Offshore Wind Turbines (OWT) (Wind Europe, 2021). Due to the intrinsic

qualities of offshore wind technology, and to the rising opposition encountered to new

onshore wind farms, the EU Commission plans the massive development of the former,

with total capacities reaching 60GW in 2030, and 300GW in 2050 (European Commission,

2020).

Deploying wind farms in the coastal area rather than onshore indeed has numerous ad-

vantages. The wind resource to be harvested is on average more powerful and stable, with

reduced turbulence levels, due to lower surface roughness and a more stable atmospheric

boundary layer over the sea. For illustration purposes, the upper panel of figure 1.1 shows

the mean Wind Power Density (WPD) levels over Europe, including the whole Baltic

and North Seas, as well as in areas extending up to 100km offshore from any coastline.

WPD represents the mean energy flux available at a given altitude, here taken to be 100m

over ground or sea levels, to match hub-heights attained by new large wind turbines. It

can be noticed that wind resource density in most coastal areas is nearly twice as high

as compared to land. Such discrepancies in wind resource should definitely rule in favor

of offshore wind farms. As generated power is proportional to the square of the turbine

diameter, increasingly larger machines are installed both on land and at sea, making social

acceptance even more difficult, and further pushing for OWTs. It should nevertheless be

noted that offshore wind turbines, as well as onshore ones, might represent a threat for

certain bird species. At the same time, fish sheltering capacities are expected to improve

from OWT parks (Lindeboom et al., 2011).

Major limiting factors reside in the technical difficulties related to operating wind turbines

at sea. Very harsh environmental conditions are indeed experienced, and the design of

OWTs benefits from the fact that ships and oil & gas production platforms provide decades

of records and engineering knowledge related to surviving extreme storms and sea states,

as well as dealing with rapid marine corrosion and bio-fouling growth, among others.

Besides this, installation, maintenance and decommission challenges should be dealt with,

alongside with the electrical grid connection. For safety and production reasons, it is

then necessary to ensure that the foundation of an offshore wind turbine delivers sufficient
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Figure 1.1: Wind Power Density (WPD) close to hub-height, i.e. 100m above ground
and sea levels (a) and bathymetry (b) in Europe. WPD obtained from 10 years (2009 -
2018) mesoscale simulations with the Weather & Research Forecasting (WRF) model in
the context of the New European Wind Atlas project (NEWA, Hahmann et al. (2020)).
Bathymetry data from European Marine Observation and Data Network (EMODnet) Dig-
ital Terrain Model (Schmitt et al., 2019). Note that color scale for bathymetry is not linear.
Figures from online mapping tools available at https://map.neweuropeanwindatlas.eu/
and https://www.emodnet-bathymetry.eu/data-products, respectively.

https://map.neweuropeanwindatlas.eu/
https://www.emodnet-bathymetry.eu/data-products
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Figure 1.2: Five different OWT fixed foundation concepts (Oh et al., 2018)

restoring forces and moments to oppose aerodynamic and hydrodynamic loads.

To that end, the most straightforward solution resides in the use of bottom-fixed founda-

tions, either stuck in or laid on the ground, as displayed in figure 1.2. These are however

limited to water depths around 60m (Musial et al., 2007). From the lower panel of figure

1.1, it thus appears that the North Sea does not only features great wind resources, but

due to shallow areas extending far offshore, it is also quite convenient for OWT deploy-

ment. However, in other windy places, such as in the Gulf of Lion in the Mediterranean

Sea, with the Mistral and Tramontane strong wind regimes, high water depths require

floating solution. These imply additional technical challenges related to stability or moor-

ing. Although the development of floating OWTs is increasing very rapidly in recent

years (Global Wind Energy Council (GWEC), 2021), the present work is dedicated to the

hydrodynamics of bottom-fixed foundations and does not discuss moving body in waves.

It is applied to the most common bottom-fixed foundations type used in Europe : the

monopile. Whatever the retained solution, OWT structures should withstand various me-

chanical loads, originating from wind, waves or ocean currents, in production or in worst

case (storm) scenarios. In the latter case, due to the strong winds, the OWTs is parked,

and the hydrodynamic loads dominate. Among these, the wave loads are the most promi-

nent ones. For that purpose, analytical, experimental and numerical investigations are

conducted in the design phase of OWT units. Due to the diversity and complexity of the

physical phenomena related to wave-structure interaction, analytical, or semi-analytical

approaches such as the Morison equation (Morison et al., 1950), albeit widely used in the

industry, are limited to small wave steepness.

Model-scale experiments, on the other hand, account for the full physics and remain an

important point for the validation of numerical models used in the design process, in par-

ticular for floating foundations or in case of specific nonlinear wave loads, like breaking

loads. They are however time-consuming and costly, and do not always allow for an accu-

rate assessment of certain wave-induced flow properties, such as complex three dimensional
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(3D) velocity fields or hydrodynamic pressure levels on a structure. Furthermore, scale

effects might deteriorate the quality of results, in particular regarding damping.

Numerical methods of OWT design provide access to any variable of interest in the whole

computational domain at prototype scale, and are less expensive than experimental cam-

paigns. However, as the most widely used engineering tools rely on the Morison equation

for the hydrodynamic part, which only takes incident wave kinematics into account, not

all physical phenomena can be simulated and various approximations are made. This way,

low computational costs are obtained. Indeed, the drag force exerted on the structure is

estimated from a drag coefficient, the wave diffraction is modeled by a single coefficient,

and the wetted area is approximated. One should ensure that such numerical results are

relevant and capture the main physical processes, like drag and inertia forces for hydro-

dynamics, thrust and wake description for aerodynamics.

This might make necessary the development and use of higher fidelity models, able to

account for almost all the physical processes, in order to identify the domain of validity

of design models. As very different time and space scales are involved, this might call for

the use of very fine time and space discretizations, and lead to unrealistic computational

costs. Numerical methods allowing for a reduced computational burden are then sought

that also keep a sufficient accuracy.

Hence, coupling a potential model accurately describing large scale wave propagation in

the absence of a structure, and a viscous solver simulating the main physical phenomena

related to wave-structure interaction at the local scale is an interesting option. This is

the major motivation of this work. In the following section, a literature review is thus

presented that deals with numerical methods applied to the simulation of wave-induced

flows and emphasizes the main aspects of potential/viscous hybrid strategies.
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1.2 Review of coupled approaches to free surface problems

1.2.1 General considerations justifying the use of a hybrid approach

Here, we focus our attention to hybrid numerical methods previously applied to the simula-

tion of free surface problems, that combine heterogeneous physical models solving different

sets of equations. Fields of applications of these methods span from the simulation of wave

propagation over constant or uneven water depths, to the description of wave flows around

fixed or moving structures, possibly piercing the free surface. All of them intend to take

advantage of the discrepancies in terms of free surface shape and wave kinematics observed

between the close vicinity of a structure or a region of rapidly changing bathymetry and

an outer, often larger, region where the wave field is less complex. Indeed, rotational,

viscous and turbulent effects, as well as wave breaking and subsequent air entrapment, are

limited to the former (local) area. This distinction between near-field and far-field free

surface flows calls for the use of different physical hypotheses and mathematical models

in their simulation.

1.2.2 3D wave models suited for far field simulation

Wave propagation, wave-wave interactions, or wave transformation on a slowly varying

bottom over large distances in finite depth, among other problems, are efficiently handled

by mathematical models devoted to the description of incompressible and irrotational

(hence kinematically inviscid) flows, namely potential free surface models. In these models,

a Laplace equation on the velocity potential for mass conservation is solved in a domain in

which free surface position is not known a priori. Indeed, nonlinear kinematic and dynamic

boundary conditions govern the time-evolution of the free surface shape and potential at

the free surface. Other linear conditions complete the set of boundary equations to yield a

Boundary Value Problem (BVP) to be resolved at every considered time instant. Certain

numerical strategies consider linearized versions of these free surface boundary conditions,

in which nonlinear terms are neglected. Combined for example with a Boundary Element

Method (BEM) formalism, fast computations are made possible in the frequency domain,

such as with the codes AQUAPLUS (Delhommeau, 1993), WAMIT (Lee, 1995) or NEMOH

(Fàbregas Flavià et al., 2016) aiming at the resolution of diffraction-radiation problems.

However, only waves with small steepness can be rigorously handled with these methods.

Another solution is to expand the free surface boundary equations from the still water

level following a perturbation approach. A Taylor expansion is used in which different

orders of a small parameter appear, namely the wave steepness. Such weakly nonlinear

resolution method was applied by Belibassakis and Athanassoulis (2002) to simulate reg-

ular second-order Stokes waves in a nonperiodic domain with rapidly varying bathymetry.

Leroy et al. (2021) make use of the weak-scatterer (WS) perturbation approach introduced

by Pawlowski (1992) to solve an hydroelastic coupling problem on a flexible monopile-

supported OWT, submitted to regular nonlinear waves. In the hydrodynamic problem,
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the velocity potential and the free surface elevation are decomposed into incident and

perturbed (scattered by the structure) fields, where it is assumed that the latter is small

as compared to the former. This way the free surface boundary conditions are linearized

around the incident free surface elevation. Zhang and Teng (2021) investigated high-

frequency wave loads on a fixed vertical cylinder, as well as the rigid body motion of a

bottom-hinged pitching monopile, both in regular nonlinear waves, with a WS model.

1.2.2.1 3D volume field methods

To fully overcome the limitation in wave steepness and deal with highly nonlinear waves,

it is necessary to account for the complete nonlinear terms in the free surface boundary

conditions. This makes the resolution of the Laplace problem far more complex and

computationally demanding. Several strategies have been considered to deal with fully-

nonlinear 3D free surface flows. Some of them rely on the resolution of the flow kinematics

in the whole volume field. This is the case of the Finite Difference Method (FDM), which

has been used, for example, by Engsig-Karup et al. (2009) in the code OceanWave3D.

Finite Element Method (FEM), implemented by Ma and Yan (2006) in the QALE-FEM,

also solves Laplace equation in a 3D domain. Finite Volume Method (FVM) might also be

used for this purpose, as done in Mehmood et al. (2015) in 2D. The Harmonic Polynomial

Cell (HPC) method, (Shao and Faltinsen (2014), Robaux and Benoit (2021)), is yet another

method of this type. These numerical strategies share in common the need to build large

sparse matrices to solve free surface problems, for which efficient inversion algorithms are

available. They have also been successfully applied to the simulation of wave-structure

interactions, to describe nonlinear flows close to fixed or moving bodies.

1.2.2.2 Reduced dimensionality approaches

Apart from the field solvers, other families of models exist in which the straightforward

resolution of the 3D Laplace equation on the velocity potential is replaced by the knowl-

edge of relevant physical quantities over certain domain boundaries. A preliminary step

prior to applying reduced dimensionality approaches might be to write the free surface

boundary conditions following the formalism of Zakharov (1968). The free surface bound-

ary conditions are expressed at the vertical position of the free surface and involve free

surface position, free surface velocity potential and vertical velocity at the free surface.

Therefore the knowledge of these three variables suffices to describe the wave flow.

Spectral methods make use of such formalism to reduce the dimensionality of the problem

by one. A spectral method’s crux lies in the determination of the vertical velocity at the

free surface, also referred to as “Dirichlet-to-Neumann” (DtN) problem. The High-Order

Spectral (HOS) method, used by West et al. (1987) and Dommermuth and Yue (1987)

or Ducrozet et al. (2012), is one of them. It relies on a perturbation description of the

velocity potential in a power series expansion based on wave steepness. This perturbation
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series is truncated at an arbitrary approximation order, namely the HOS order. Another

approximation level lies in the fact that the potential is further expressed as a Taylor series

expansion of the vertical coordinate around the resting free surface level. This is an accu-

rate and computationally efficient method, however there exists constraints on the basis

functions used to account for the domain geometry, and wave-structure interactions can

not be dealt with. Also, only single-valued free surfaces are handled, thus this technique

can not be used to simulate the development of overturning waves. Another approach was

developed by Tian and Sato (2008), Raoult et al. (2016) and Zhang and Benoit (2021).

In these works, the velocity potential is approximated from a linear combination of ver-

tical base functions built from Chebyshev polynomials. Varying bottoms are considered

in nonlinear and dispersive wave propagation simulations. This model was compared to a

Finite Difference one close to that developed by Engsig-Karup et al. (2009) in Yates and

Benoit (2015). In Belibassakis and Athanassoulis (2011) and Papoutsellis et al. (2018),

the system of equations established by Zakharov (1968) is solved in a non-perturbative

way through the Hamiltonian Coupled Mode Theory (HCMT) to simulate nonlinear free

surface waves, again over non-uniform bathymetry.

Another way to reduce the dimensionality of the problem, and therefore the number of

unknowns, is to make use of Green’s second identity to express the velocity potential

anywhere inside the water volume as a function of the potential and its normal deriva-

tive on the fluid domain boundaries, in the form of Boundary Integral Equations (BIE).

Physical assumptions made to characterize the flow on every domain boundary trans-

late into Dirichlet and Neumann conditions on the velocity potential, and possibly on its

time derivative. The above-mentioned fully-nonlinear kinematic and dynamic free surface

boundary conditions yield, through a time-stepping procedure, a Dirichlet condition for

the potential (and its time derivative), whereas Neumann conditions are imposed on all

other boundaries. A BEM approach is used to solve this set of integral equations at each

time-step, in which boundaries are discretized into elements over which variables are in-

terpolated. BEM methods have been implemented with various interpolation orders, the

lowest one reducing to the constant panel method.

Grilli et al. (2001) proposed one such high-order method (HOBEM) for 3D computations,

relying on cubic Mid-Interval Interpolation (MII) elements built from a structured grid.

It was successfully applied to the modeling of a solitary wave shoaling and overturning

on a sloping ridge, to the study of landslide-generated tsunamis or to investigate the

occurrence of freak waves. Simulation of overturning waves was made possible by the

fact that free surface does not rely on a single-valued description. Fully nonlinear wave-

structure interaction problems were investigated using HOBEM Numerical Wave Tanks

(NWT) having wave generation and absorption capabilities, extending the seminal work

of Grilli et al. (2002). Guerber et al. (2012) indeed enabled the physical description of 2D

fixed or moving submerged structures, in the context of Wave Energy Converter (WEC)

simulation. Dombre et al. (2015) enabled the 3D simulation of floating rigid bodies of

complex shapes, enabled by the use of unstructured grids. The original 3D HOBEM
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NWT of Grilli et al. (2002) was also recently enriched with the possibility to employ cubic

B-spline elements on structured meshes to describe fluid domain boundaries, as reported

in Harris et al. (2017). It allowed to reach even higher accuracy level than those obtained

with MII. A number of other high-order BEM models were proposed to treat various 3D

free surface wave problems, as the ones of Romate (1990), Fochesato and Dias (2006), Bai

and Eatock Taylor (2006) or Maestre et al. (2016).

3D BEM applications suffer from the inherently high computational complexity of the

method. Indeed, the influence matrix accounting for the contribution of all boundary

nodes in the calculation of the potential at each point is dense. Its cost, in terms of

storage memory requirements, amounts to O(N2) with N the number of boundary nodes.

Inverting it with direct methods like the Gaussian elimination or Lower-Upper (LU) de-

composition leads to a computing complexity greater than O(N2), making the resolution

of large 3D problems very computationally demanding. Iterative solvers might as well be

used, like the Gauss-Seidel method or the GMRES method (Generalized Minimal Resid-

ual) that decrease the number of operations, and thus the computational time needed, to

follow a O(N2) rule. Further progress have been made towards a O(N) complexity with

the use of the Fast Multipole Method, introduced by Greengard and Rokhlin (1987). A

parallel version of such method was implemented in a HOBEM model derived from that

of Grilli et al. (2002), as described in Harris et al. (2022).

However, even with fully-nonlinear models, the potential flow assumption inherently pre-

vents from describing rotational, viscous, and turbulent effects experienced near the struc-

tures of interest. It should be noticed at last that although all the previously mentioned

potential methods only handle the deformation of a body of water with time, it is possible

to solve potential problems involving two phases separated by a moving interface, such as

air and water, as done in Colicchio et al. (2006). This is made possible by assuming a high

density ratio between phases, and no influence of the light phase on the heavy one.

1.2.3 Highly-accurate 3D models allowing to describe complex flow fea-

tures close to a structure in waves

As already stated, a precise description of wave-induced flows in the neighborhood of a

fixed or moving structure requires to solve the full Navier-Stokes (NS) equations to ac-

count for rotational, viscous, and possible turbulent effects. Relying on NS equations to

model free surface flows opens a wider scope of possibilities, through Computational Fluid

Dynamics (CFD) computations, at the cost of dealing with more unknowns than in the

potential case. However, the description of such problems relies on sparse matrices, en-

abling lower resolution time for a given problem size, as compared to the above-mentioned

models featuring full matrices. Two-phase simulations might be conducted, representing

air and water in our case, as well as ones featuring only the liquid phase. As finding an

approximate solution to NS equations requires establishing and solving a BVP, the number

of handled phases is in close relation with the choice of boundary conditions.
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1.2.3.1 Front-capturing methods

Considering two-phase incompressible flows solved in an Eulerian manner, a numerical

domain of constant shape is used in which mass conservation should be ensured for each

phase. Boundary conditions, possibly heterogeneous, are applied to predetermined sets of

boundary cells and faces belonging to a fixed mesh. Time evolution of interface geometry

might be obtained by front-capturing methods, such as the Level-Set (LS) method em-

ployed by Yue et al. (2003), Colicchio et al. (2005) and Bihs et al. (2016) or the Volume

Of Fluid (VOF) method (Abadie et al. (2010), Xie (2012), Higuera et al. (2013)) following

the pioneering work of Hirt and Nichols (1981). In these approaches, the extent of each

phase is computed by integrating the transport equation of a discrete variable accounting

for the local distribution of phases in a cell (VOF) or a continuous signed distance to the

air-water interface (LS). Free surface shapes of high complexity might be simulated, in-

cluding free surface large deformation, breaking and merging. Level-set methods have also

been extensively been applied to one-phase simulations (Di Mascio et al., 2007; Reliquet

et al., 2013).

1.2.3.2 Front-tracking techniques

Among front-tracking approaches, Lagrangian methods occupy a special place as they do

not necessarily require the use of any computational mesh. Fluid particles are followed in

their trajectory and discretize the fluid continuum. The Smoothed Particle Hydrodynamic

(SPH) method (Gingold and Monaghan, 1977) is one of them. It allows for the computa-

tion of highly complex free surface flows, for a high computational cost however, as done

by Dalrymple et al. (2011) and Altomare et al. (2020). Again, one-phase and two-phase

versions of the method exist.

Certain interface tracking methodologies, on the opposite, require a fixed grid, like the

Marker-and-Cell (MAC) method of Harlow and Welch (1965), in which a Lagrangian

description of the free surface is used. It was applied for example by Wang et al. (2007)

for the computation of 3D waves. The related Particle-in-Cell (PIC) method should also

be mentioned, that differs from MAC in the treatment of advection terms (Chen et al.,

2018).

Other free surface tracking techniques make use of the Arbitrary Lagrangian-Eulerian

(ALE) formalism. Contrary to previous approaches, a moving mesh is used that follows

the movement of the interface. An implementation of the ALE method in the CFD code

Code Saturne (CS) is described in Ferrand and Harris (2021), and 2D and 3D applications

including a vertical cylinder in regular waves are considered.

The use of these high-fidelity CFD models to simulate free surface flows over large temporal

and spatial scales is limited, as already stated, by the large associated computational costs.

These methods also suffer from possibly excessive numerical diffusion levels, hence they are

not as accurate as the potential models to simulate wave propagation over large distances.
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This explains why hybrid or coupled methods, either based on functional decomposition

or domain decomposition, have been used to solve large scale wave-induced flows.

1.2.4 A review of coupling methods

1.2.4.1 Taxonomy of hybrid techniques

Among hybrid techniques previously applied to water waves propagation and wave-

structure interaction simulation, that rely on the near-field/far-field distinction, different

global approaches can be distinguished.

Physical assumptions made in both near-field and far-field models may differ: although

in the majority of far-field models a potential flow is considered, in certain cases Euler

equations are solved instead, allowing to represent rotational effects (Di Paolo et al.,

2021). The scope of the current review is limited to studies involving the resolution of

NS equations in near-field domain, although investigations have been reported that use

potential methods of uneven accuracy levels and CPU costs to describe flows in both

regions (Ferrant (1998), Bai and Eatock Taylor (2007)). When it comes to solving the

near-field wave problem then, the diversity of NS numerical methods described above is

reproduced in hybrid approaches.

Discrepancies are also related to the extent of numerical domains where the respective sets

of equations are solved. Indeed, the use of a domain-decomposition (DD) method, as its

name suggests, involves that in most of the global simulation domain the description of the

flow is provided by only one model. Solvers thus exchange information at their coupled

boundaries. On the other hand, in functional decomposition (FD) approaches, where

variables of interest (namely velocity, pressure, free surface position or phase function) are

decomposed into a part related to the incident (as well as, possibly, diffracted) wave field,

and a complementary one taking into account the remaining wave-structure interaction

phenomena, potential and NS equations are solved over fully overlapped domains. Nested

domain-decomposition techniques are singular in that the small CFD domain of limited

extent is enclosed in a wider far-field domain, thus it implies that the corresponding part

of the far-field domain is not taken into account in the simulation. If near-field to far-field

feedback is made possible, near-field variables should be imposed to the outer solver in

the interior of its numerical domain.

A last criteria enabling to sort coupling strategies is whether simulation data are only

transmitted from the far-field to the near-field model (one-way coupling), or if the opposite

is also true (two-way coupling). A one-way coupling methodology enables a preliminary

computation of the outer wave field, as near-field feedback is not provided during the

simulation. In two-way coupling techniques, reflected, diffracted or radiated waves might

be dealt with in the far-field model. Therefore it formally allows for a reduction of the

near-field domain’s size, as compared to one-way hybrid methods where wave scattered by

a structure can only be simulated in the inner region. This also comes at the cost of extra
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implementation choices and challenges, and possible stability issues. In the following, a

literature review is conducted on the basis of this classification.

1.2.4.2 Functional decomposition based couplings

FD methods have been successfully applied to a number of wave-body interaction cases.

The Spectral Wave Explicit Navier Stokes Equation (SWENSE) is one of the most promi-

nent FD, also called perturbation, approach. Among numerous other works, it enabled

the simulation of a bottom-mounted circular cylinder in regular nonlinear waves (Gentaz

et al., 2004) as well as that of a captive buoy with a heaving skirt subject to plane regular

and irregular multidirectional waves (Monroy et al., 2010). It consists of a combination

of a fully nonlinear potential spectral model with a one-phase or two-phase (Li et al.,

2021; Vukčević, 2016) Reynolds Averaged Navier-Stokes Equations (RANSE) solver (sev-

eral models have been used). It should be noted that the far-field model only accounts

for the incident wave field, due to the spectral formalism, in which only symmetrical or

periodic domains can be represented. Hence, far-field potential calculation can be run

prior to the viscous near-field one.

General considerations about FD methods, as well as an implementation with Ocean-

Wave3D as the comprehensive model to treat wave-body interactions are reported in

Ducrozet et al. (2014). It should be mentioned that this technique permits all physical

phenomena related to wave-body interactions, as well as nonlinear wave-wave and wave-

bottom interactions. Therefore, it belongs to the class of ”strong” couplings that can

simulate large scattered wave fields away from the body. Nonlinear interactions between

waves and uneven bottom, if not accounted for by the far-field solver, as well as nonlinear

interactions between incident and scattered waves, are indeed described by the viscous

CFD model without any restrictive hypothesis. In the SWENSE formalism, this means

that the refined part of the RANSE mesh, in which the latter effects operate, should have

its size adapted to their expected spatial extent. It is therefore very well adapted, in

the context of wave-structure interaction, to the description of problems involving small

bodies, in which incident flow is not disturbed much and viscous effects are predominant,

while occurrence of diffraction and radiation phenomena are limited to the body’s vicinity.

Small body problems are characterized by large Keulegan-Carpenter numbers (KC = 2πA
D ,

where A is the incident wave amplitude and D the characteristic size of the structure).

The larger the structure, the smaller the KC, and the larger the diffraction/radiation ef-

fects. To deal with this latter case in the SWENSE framework or with related methods,

it is necessary to increase the size of the refined part of the RANSE grid to allow for

physically accurate computations. This leads to growing mesh sizes and CPU time re-

quirements, minimizing the gains brought about by the coupling. If the refined part of the

RANSE grid is too small, waves are damped in an unphysical manner while traveling on

coarser parts of the mesh. It would be interesting to compare the relative performances

of FD methods and two-way DD ones on such cases, as in the latter nonlinear wave-wave
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interactions are dealt with in the computationally less demanding far-field model.

A perturbation approach is used in Harris and Grilli (2012) to simulate wave-induced

boundary layer flows, where a 2D FNPF-BEM solver is coupled to a 3D NS-LS model.

Recently, Robaux (2020) and Robaux and Benoit (2022-submitted, in revision) proposed

a FD model coupling a 2D in-house HPC potential model with a RANSE VOF solver of

OpenFoam. The HPC formalism represents interactions of waves with possibly moving

and surface-piercing structures in the potential flow model. In the mentioned work, only

cases involving fixed 2D fully-submerged bodies were investigated. Therefore, it enables

simulating incident, as well as the fully-nonlinear potential diffracted wave field. Thus,

larger values of KC might be considered without an excessive penalty on computational

cost, as long as viscous and turbulent effects on the scattered wave field are restricted to

the vicinity of the body.

1.2.4.3 One-way coupling domain decomposition approaches

One-way DD coupling techniques, as they only require transfer of information from the far-

field to the near-field model, are a lot easier to implement than two-way DD methods. For

this reason, a large number of authors have applied them to wave-induced flows occurring

in ocean or coastal engineering. Therefore, we do not intend to be exhaustive here, and

only a few works related to wave-body interactions are presented.

Guignard et al. (1999) computed the shoaling of solitary waves on a mild slope through a

BEM/VOF hybrid one-way 2D approach. Hildebrandt and Sriram (2014) studied pressure

distribution on and vortex shedding behind a bottom-mounted vertical circular cylinder

impacted by steep focused waves combining a FEM potential model and a commercial

RANSE solver. Numerical results were compared to experimental ones. Similarly, Paulsen

et al. (2014) used OceanWave3D and a VOF solver from OpenFoam to study wave loads

on a surface-piercing cylinder standing for an offshore wind turbine foundation, under

different wave conditions and bottom configurations. Using the same tool, Veic and Sulisz

(2018) investigated pressure distribution from irregular breaking waves on a monopile with

the same setup. A 3-hour storm was simulated in the potential model and the impact of

the highest breaking wave was then numerically reproduced.

Note also that Robaux (2020) and Robaux and Benoit (2022-submitted, in revision) im-

plemented both FD and one-way DD methods, and compared them on the case of waves

diffracted by a submerged fixed body.

1.2.4.4 Two-way coupled methods

As not so many two-way coupled models have been reported so far, in this section the

scope of considered applications is widened beyond wave-body interactions in finite water

depth. Some of the earliest two-way hybrid approaches were reported for steady free

surface problems. Campana et al. (1995) and Chen and Lee (1999) studied the flow past a
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ship advancing at a constant speed using overlapping domain decomposition methods, with

linear and nonlinear assumptions for the free surface boundary conditions, respectively.

Guillerm and Alessandrini (2003) used a similar approach in the same context.

Iafrati and Campana (2003) computed wave-breaking 2D flows with a two-way coupled

method, in which free surface is enclosed in the viscous top domain, while a Laplace

equation on the potential is solved in a region underneath the latter. In this paper, a

further distinction is established among two-way coupling methods, that we endorse and

employ to describe and sort other two-way hybrid studies. For the sake of simplicity,

we restrict the description to the case a single coupling region. Iafrati and Campana

(2003) state that, depending on whether near-field and far-field numerical domains are

overlapped or not, different sets of coupling transmission conditions should be specified

on their common boundary(ies). In both situations, continuity of the velocity should be

ensured on the near-field or common matching surface, therefore all components of the

potential far-field velocity vector are sent to the near-field NS model to be used as Dirichlet

boundary condition on the viscous velocity. If both domains overlap, a kinematic condition

imposing the continuity of the normal velocity on the far-field boundary should be set. This

amounts to a heterogeneous Neumann boundary condition on the velocity potential, thus

the overlapping domain decomposition coupling is called “Neumann type” (NT) coupling.

If, alternatively, a common coupling boundary is used, the velocity continuity condition

already mentioned is complemented by a normal stress continuity condition, through which

pressure from the RANSE solver is imposed to the outer potential model. By integrating

Bernoulli’s equation, a Dirichlet condition on the velocity potential is obtained on the

unique coupling boundary (“Dirichlet type” coupling (DT)). Note that nothing is said

about the free surface, as it is totally enclosed in the viscous domain. Whatever the

coupling type, an iterative time-stepping procedure is followed in Iafrati and Campana

(2003) to enforce the continuity requirements.

Lachaume et al. (2003) briefly discuss two-way coupled simulations of a solitary wave

shoaling over a plane slope, in which the free surface is described in both models. The

BEM model of Grilli et al. (2001) is combined with a VOF instance, but very few re-

sults are displayed, and for the considered case a one-way coupling approach seems to be

sufficient. Greco et al. (2002) applied a DT coupling between BEM and VOF models to

dam-breaking and water loading on deck structure 2D problems involving complex free

surface geometries. Again, and as for all the remaining studies addressed in this section,

free surface is split between near-field and far-field wave models. Alongside with experi-

mental results, a comparison of DT and NT coupling VOF-based techniques is realized in

Greco (2002) in the same context. The NT coupling, albeit less computationally efficient

than the DT coupling, is found to successfully simulate a wave-induced flow oriented to-

wards the outer region, whereas the DT coupling fails. A NT strategy is thus retained and

described in detail in Colicchio et al. (2006), involving two-phase BEM and NS-LS models.

Further explanations are given as to the advantages of the NT technique over the DT one,

in terms of allowed flexibility of spatial discretizations in each model. It should be noted
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that the NT coupling procedure differs from the one presented in Iafrati and Campana

(2003) as information on free surface position and orientation, but also pressure values

are exchanged between coupled models. This way a Neumann boundary condition on the

time derivative of the potential in the BEM model is available. An intrinsic algorithm is

used for time integration, in which time stepping schemes of BEM and NS-LS models are

linked. At several instants per time step, both sub-domains successively exchange coupling

variables. This is made possible by the fact that they share the same time-step size. Sid-

diqui et al. (2018), from the same research group, used a HPC-VOF DT coupling method

to simulate the 2D behavior of a damaged ship section in forced heave motion. Coupled

models still share the same time step size, but time marching is done separately and cou-

pling information is exchanged only once per time step through the matching boundary.

Following the work of Colicchio et al. (2006), a NT coupling involving HPC and single

phase NS-LS models is presented in Hanssen (2019) and applied to the 2D propagation of

regular waves.

A 2D BEM-VOF NT hybrid model is presented in Kim et al. (2010), and successfully

applied to nonlinear regular and irregular wave propagation problems. It features several

noteworthy characteristics. Indeed, both models use different spatial and temporal reso-

lutions, such that the BEM time step equals an integer multiple N of the NS-VOF one.

Hence, exchange of coupling data at both ends of the overlapping region occurs once every

N VOF time steps, and the coupling procedure is not iterative. Moreover, the BEM free

surface in the latter part of the domain is relaxed towards the VOF solution to ensure

continuity. Changes made to the velocity potential at the free surface account for this

modification of the free surface shape. Hybrid simulation results are compared to those of

VOF-only computations and equivalent accuracy levels are observed, for a fraction of the

computational time.

Another 2D BEM-VOF model similar to that of Kim et al. (2010) is proposed by Guo

et al. (2012). As in Kim et al. (2010), a low-order in space fully nonlinear potential

model is coupled with a NS-VOF solver. Verification of the coupled model is done with

regular wave propagation and full reflection cases, prior to its application to the simulation

of regular nonlinear wave impacts on a fixed horizontal plate. A non-overlapping DT

coupling is implemented by Zhang et al. (2013) and tested on 2D dam-break and solitary

wave propagation over constant depth cases. Lu et al. (2017) is one of the few reported 3D

two-way couplings. It is of Neumann type, combines potential and viscous solvers both

based on Finite Volume formalism and relies heavily on the OpenFoam toolbox. 2D cases of

solitary wave propagation, regular waves forces on a fixed partly-submerged barge, regular

shallow-water waves shoaling and breaking on a slope are investigated, whose results are

compared to theoretical and experimental references. At last, a qualitative study of the

motion and subsequent radiated wave field of a freely falling 3D object is presented. This

last article might well be the one with which the present study is the most closely related.

Choi (2019) implemented a version of the SWENSE method in which the scattered wave

field is simulated using a domain-decomposition method, to study diffraction-radiation
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problems.

Two-way hybrid models involving shallow-water models and more comprehensive RANS

models have been developed and successfully applied to 2D shallow-water wave flows by

Sitanggang and Lynett (2010) and Pringle et al. (2016). Mintgen and Manhart (2018)

used a Shallow-Water Equations (SWE) 2D solver combined with a VOF module for

surface capturing in 3D in OpenFoam to simulate wave propagation and wave-structure

interactions. It should be noted that in this work, the direction of the transfer of coupling

information depends on the instantaneous nature of the flow.

Several authors have investigated hybrid methods combining a potential model and a

meshless Lagrangian NS solver. Sueyoshi et al. (2007) simulated 2D wave-body inter-

actions with a BEM model and a Moving Particle Semi-Implicit (MPS) method, with a

top-bottom domain decomposition approach inspired from that of Iafrati and Campana

(2003). A novel moving overlapping zone is implemented in Sriram et al. (2014) to build

a NT hybrid method between a FEM potential model and an Improved Meshless Local

Petrov Galerkin method with Rankine source solution (IMLPG R) to simulate propaga-

tion and breaking of 2D waves. Similarly, Yan and Ma (2017) simulate 2D non-breaking

focused waves. Verbrugghe et al. (2018) built a two-way coupling strategy in which the

numerical domain of OceanWave3D, the large scale fully-nonlinear potential model, en-

closes a small SPH (DualSPHysics) domain. Horizontal velocity is transmitted to SPH

boundaries. The two-way coupling is however not complete, as only free surface position

is transmitted to the potential model from the SPH instance. The method is verified with

regular wave propagation cases, then applied in 2D to the simulation of a fixed oscillating

water column and a floating box in waves. 3D simulations of a heaving cylinder in waves

presented in Verbrugghe et al. (2019) are realized with a one-way coupling approach only.

Hamilton and Yeung (2011) simulated diffraction of linear plane waves by a vertical cylin-

der with a singular two-way coupling method that could be considered of Dirichlet type.

Shell functions in a polar coordinate system are used to characterize a linear outer wave-

induced potential flow coupled with an inner one-phase viscous solution, through a vertical

cylinder matching boundary. It should be noticed that the NS solver also makes use of

linearized free surface boundary conditions. Kemper et al. (2019) developed a DD method

in which a small OpenFoam NS-VOF domain is nested in a larger FDM OceanWave3D

domain. It was applied to 2D wave propagation over a submerged bar. Recently, a some-

what different 2D-3D coupling strategy involving OpenFoam instances was reported by

Di Paolo et al. (2021). Plane wave generation and propagation is done in a NS-VOF two-

dimensional vertical (2DV) domain while interaction with structures is dealt with using

the same solver, but accounting for 3D effects.
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1.3 Objectives of the present work

From the literature review, it appears that although 3D one-way DD methods and FD

methods combining potential and NS solvers have been successfully applied to a number

of different wave-body interaction problems, the same can not be said of two-way DD

techniques. The vast majority of investigations indeed involve 2DV domains, and to the

author’s knowledge, the only 3D case reported - the sinking semi-submersible platform in

the study of Lu et al. (2017) - was not compared to reference results. Hence, there seems

to be room for improvements and validated applications to 3D cases.

In the current work, a 3D two-way coupled model is developed, with the goal of applying it

to wave-interaction problems of large spatial and temporal scales involving fixed structures.

To that end, attention is paid to flexibility of the designed hybrid strategy and suitability

for the simulation of various wave-induced flows. Accuracy and stability properties of the

simulated cases are investigated in detail, as well as several related numerical challenges.

Parallelisation of the hybrid procedure is ensured, so that the method can be applied to

3D cases of potential interest for the engineer. Complex model layouts are considered,

involving more than one instance of each code.

1.4 Structure of the PhD report

The remaining of this PhD report is organized as follows:

• In chapter 2, the coupling procedure developed during the PhD is presented, which

combines the fully-nonlinear potential flow solver seine3d with the all-purpose CFD

code CS. Short summaries of the main characteristics of these codes are provided.

The hybrid method itself is then described in detail, and different possible implemen-

tations are distinguished on certain of its aspects. The main coupling parameters

are listed.

• In chapter 3, a verification study dealing with the propagation of a plane 2D solitary

wave through several coupled code instances is reported. It allows a first investi-

gation of the hybrid model’s behavior, and also enables to arbitrate, for part, the

previously-mentioned implementation choices. The solitary wave simulations are as-

sessed in terms of conservation of the wave properties. Two relative wave heights

are considered.

• In chapter 4, results of regular nonlinear waves 2DV simulations with the hybrid

method are presented and compared to computations involving one model at a time.

Performances of each model, in terms of accuracy, are assessed and a partial sen-

sitivity analysis is realized to select values for certain numerical parameters of the

coupled simulations. Two values of the wave steepness are investigated, and the

challenges related to highly nonlinear waves are highlighted.
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• A first 3D wave-structure interaction application is described in chapter 5, where

the diffraction by a vertical bottom-mounted cylinder of an initially plane solitary

wave of moderate relative height is investigated. Possible issues exclusively related

to 3D simulations are discussed.

• Finally, in chapter 6, diffraction of nonlinear regular waves by a vertical cylinder is

studied. Results are compared, in terms of spectral analysis of the free surface eleva-

tion and the normalized horizontal force on the cylinder, to those of an experimental

measurement campaign, the Wave loads and soil support for extra large monopiles

(WAS-XL, Dadmarzi et al. (2019)).

• Concluding remarks and perspectives are reported in chapter 7.



Chapter 2

Description of BEM-VOF coupling

strategy

Après une brève description de chacun des deux codes de calcul, ce chapitre

met en œuvre une description détaillée de la stratégie retenue pour le couplage

du solveur potentiel complètement non-linéaire seine3d avec CS, qui résout les

équations de Navier-Stokes. L’extraction de variables physiques d’intérêt -

vitesse, position de la surface libre - dans chacun des deux types de domaines

numériques est présentée, de même que le traitement des champs de données

extraits et leur utilisation dans le modèle auquel ils sont destinés. Dans chacun

des codes en effet, la connaissance du champ de vitesse à proximité de la

surface libre requiert certaines précautions. De plus, l’approche de capture de

la surface libre mise en œuvre dans le module Volume of Fluid utilisé dans

CS ne permet qu’un accès indirect à la position de la surface libre, suivant

une méthode décrite dans ce chapitre. Les différences existant entre modèles

en termes de phases fluides simulées, de discrétisation spatiale mais aussi

temporelle contraignent par ailleurs les choix opérés pour le couplage. Deux

valeurs de pas de temps sont en effet utilisées dans le couplage, ce qui implique

une nécessaire interpolation des conditions limites transmises par seine3d à CS
entre deux instants simulés dans seine3d. La cöıncidence des surfaces libres

dans la zone de recouvrement des domaines numériques, qui conditionne la

stabilité des calculs, est également abordée. Enfin, des notions relatives à la

parallélisation des calculs sont introduites.

39
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2.1 Description of the fully-nonlinear potential flow solver

seine3d

Here we intend to give a brief description of the main physical, mathematical, and nu-

merical features of the fully-nonlinear potential flow solver seine3d, whose name stands for

Simple Efficient Inviscid Numerical Environment. It relies on the higher-order BEM reso-

lution of a boundary integral problem. It serves as the far-field flow solver in the two-way

hybrid strategy implemented in the current work. For a more in-depth presentation of

this model, the reader is referred to the already mentioned articles of Grilli et al. (2001)

and Harris et al. (2022), which this section heavily relies on.

2.1.1 Governing equations and boundary integral formulation

As stated above, we consider the irrotational flow of an icompressible and inviscid fluid as

a physical model for wave-induced water flows. Mass conservation in the fluid domain Ω

yields the following Laplace equation:

∇2φ = 0 in Ω (2.1)

u = ∇φ in Ω (2.2)

with φ the velocity potential and u the flow velocity in Ω. From Green’s second identity, it

comes that equation 2.1 is changed into a Boundary Integral Equation (BIE) to be verified

on the domain boundary Γ, at a collection of collocation points xi (i = 1, . . . , NΓ),

α(xi)φ(xi) =

∫
Γ

[
∂φ

∂n
(x)G(x− xi)− φ(x)

∂G

∂n
(x− xi)

]
dΓ, (2.3)

where α is the interior solid angle made by the boundary at xi, that equals 2π if the surface

is smooth, n the outwards normal vector to the boundary at point x and G the 3D free

space Green’s function of Laplace’s equation, based on the distance ri = ‖x − xi‖ from

point xi to point x on the boundary. Green’s function satisfies the following relations:

G(x− xi) =
1

4π ri
(2.4)

∂G

∂n
(x− xi) = −(x− xi) · n

4π r3
i

(2.5)

Under the same set of assumptions, the integrated form of the momentum conservation

equation reduces to the generalized unsteady Bernoulli equation, which reads, at all times:
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∂φ

∂t
= −gz − 1

2
∇φ · ∇φ− p

ρ
in Ω (2.6)

with g the gravitational acceleration, z the vertical coordinate, p the fluid pressure assumed

to be constant on the free surface, and ρ the fluid density. Equation 2.6, yields the dynamic

free surface boundary condition prescribed on the air-water interface, alongside with a

kinematic free surface boundary condition expressing that free surface Γf is advected with

the flow,

δr

δ‘t
=
∂r

∂t
+ u · ∇r = u = ∇φ on Γf (2.7)

where
δr

δt
is the material derivative of a point r located on and thus staying on the free

surface.

The nonlinear equation 2.6, once integrated in time, yields a Dirichlet condition on φ on

the free surface whose geometry is computed by integrating equation 2.7. Other boundary

conditions include homogeneous Neumann conditions on φ on the vertical lateral faces and

bottom region enclosing Ω, expressing the impermeability of these walls. In certain cases,

these are complemented by a heterogeneous Neumann condition on a part of the domain

dedicated to wave generation, either vertically fixed or moving. Wave kinematics from

various waves theories might indeed be enforced on a vertical boundary, or alternately a

realistic wavemaker motion might be reproduced. See Grilli and Horrillo (1997) for details

about wave generation. As only far-field waves are investigated in seine3d in the current

work, there is no need of representing submerged or surface-piercing, fixed or floating

bodies in Ω, thus we have a complete set of boundary conditions available, ensuring the

well-posedness of the problem. Given that suitable initial conditions are provided, as

well as spatial discretization of the boundaries and a time-stepping strategy, simulation of

potential wave flow through time is made possible.

2.1.2 Time integration scheme

The resolution of the BIE at any time instant t yields both φ and its normal derivative φn

at every node xi of the free surface. Time integration of free surface boundary conditions

2.6 and 2.7 is then needed to advance the solution (geometry alongside with boundary

conditions) in time. This is done following a Mixed Eulerian-Lagrangian (MEL) method,

originally introduced by Longuet-Higgins and Cokelet (1976). Here another hypothesis is

made as to the nature of the flow and the geometry of the free surface. The latter is indeed

assumed to be single-valued. Again as the most complex interface shapes are expected in

the near-field domain treated with CS, this should have a negligible influence on the range

of application of the hybrid method. Thus we opt for a semi-Lagrangian time updating
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scheme for Γ, for which free surface nodes are only allowed to move vertically. This makes

mesh handling easier. The material derivative then becomes:

δ

δt
= δt =

∂

∂t
+
∂η

∂t

∂

∂z
(2.8)

where η = r ·k denotes the vertical free surface elevation, k being the vertical unit vector.

Making use of this formalism in equations 2.6 and 2.7 leads to:

δη

δt
=
∂φ

∂z
− ∂φ

∂x

∂η

∂x
− ∂φ

∂y

∂η

∂y
at z = η (2.9)

δφ

δt
= −gη − 1

2
∇φ · ∇φ+

∂η

∂t

∂φ

∂z
at z = η (2.10)

It should be noted that (∂η/∂x, ∂η/∂y) might be rewritten using components of the out-

ward normal vector on Γf , n = (nx, ny, nz), yielding (−nx/nz,−ny/nz).

A third-order explicit Runge-Kutta scheme, inspired from that of Gottlieb (2005), is chosen

to integrate equations 2.9 and 2.10 in time. With f standing for either η or φ, the following

relations are established:

f (1) = f (n) + ∆t
(
δtf

(n)
)

f (2) =
3

4
f (n) +

1

4

(
f (1) + ∆t(δtf

(1))
)

f (n+1) =
1

3
f (n) +

2

3

(
f (2) + ∆t(δtf

(2))
) (2.11)

where ∆t is the time step. Alongside with φ and φn, their respective time derivatives might

also be needed if one wants to use another time-stepping scheme, such as an explicit Taylor

series expansion (again, see Grilli et al. (2001) for example). Besides this, computation of

forces and moments exerted on structures is realized through pressure integration on the

body’s surface (obtained from Bernoulli’s equation), therefore wave-structure interaction

studies also require the resolution of a second Laplace equation for φt. As only third-order

Runge-Kutta scheme is considered in the present work, and no structure is considered in

the potential region, this is not needed.

Additionally, it should be noted that a careful computation of the tangential derivatives

of φ is needed on Γf to express certain terms of 2.9 and 2.10. For brevity reasons, the

discretized equations are not presented here.

2.1.2.1 Discretization of boundaries and solver type

Spatial discretization of the numerical domain boundaries relies on B-spline elements,

described in depth in Harris et al. (2022). As for the considered cases the number of grid
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nodes NΓ remains lower than 2000, the use of a direct LU solver was preferred for the

resolution of the algebraic system of BIEs. In Grilli et al. (2001), it is indicated that

this solver is more efficient than an iterative one like the Generalized Minimal Residual

(GMRES) for such grid sizes, as a good part of the computational burden is related to

the assembling of the system matrix.
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2.2 Description of the NS solver Code Saturne

In this section, we describe the main characteristics of the NS solver Code Saturne used

to describe complex near-field wave-induced flows in coupled problems. In the rest of this

document, it will be referred to as CS. CS is an open-source, multi-purpose CFD code

aimed at solving the full NS equations, for either incompressible or weakly compressible

flows, through a Finite Volume approach with co-located variables. Equations are inte-

grated in time according to a predictor/corrector method. The code deals with structured

as well as unstructured meshes and was recently enriched with an algebraic VOF module

for interface capturing purposes in multiphase simulations. Several turbulence models are

available to be used with RANS or LES formalisms, although in this work, due to the high

Reynolds number at stake, no turbulence model is used so that turbulence is neglected.

Also, as will be detailed later, structured grids are used exclusively. The VOF module was

recently added to CS alongside with the release of version 5.0.0 in 2017. All CS-based

developments reported in this document rely on the stable version 6.0.0.

2.2.1 The Navier-Stokes model

If the gravity is the only external force at work, the NS equations for continuity and

momentum respectively write:

∂ρ

∂t
+∇ · (ρu) = 0 (2.12)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · T + ρg (2.13)

with ρ the fluid density, u the velocity, ρu the volume momentum quantity, and T the de-

viatoric stress tensor while ⊗ is the tensor product. Note that surface tension is neglected.

For simplicity, possible additional source terms are not taken into account. Assuming a

Newtonian fluid, T can be written as follows:

T = µ
[
∇u +∇uT

]
− 2

3
µ∇ · u 1 (2.14)

where µ is the dynamic viscosity and 1 the identity tensor.

2.2.2 VOF model description

The VOF method enables to simulate multiphase flows with a one-fluid formalism, by

describing the phase content of any fluid region from volume fractions of the different

phases. In the context of wave-induced free surface flows, only two immiscible phases are

considered, namely air and water. Hence, α is defined as the volume fraction of air, or
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void fraction.

α =
air volume in a domain Ω

volume of the domain Ω
(2.15)

Using equation 2.15, linear mixture properties laws are established so that ρ and µ are

continuously defined throughout the fluid. Subscripts water and air designate respective

phases.

ρ = αρair + (1− α) ρwater (2.16)

µ = αµair + (1− α)µwater (2.17)

Unless otherwise stated, the density values are set to ρwater = 1025 kg m−3 and ρair = 1

kg m−3 for the whole study, while the dynamic viscosity values are µwater = 1× 10−3 Pa s

and µair = 1× 10−5 Pa s. Assuming that both ρwater and ρair are constant, equation 2.12

for mass conservation writes:

∂
(
αρair + (1− α)ρwater

)
∂t

+∇ ·
(

[αρair + (1− α)ρwater] u
)

= 0

thus
(
ρair − ρwater

) [∂α
∂t

+∇ · (αu)

]
+ ρwater∇ · u = 0

(2.18)

The incompressible flow constraint of ∇ · u = 0, once injected in equation 2.18, leads to

the following system, which includes the transport equation of α:

∇ · u = 0 (2.19)

∂α

∂t
+∇ · (αu) = 0 (2.20)

For an easier definition of boundary conditions, the relative pressure p∗ = p−ρairg ·x−p0

is introduced, where p0 is the reference pressure at a fixed arbitrary location. However for

the sake of clarity, p∗ is denoted p hereafter.

Finally the VOF model comes down to the three following equations:

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (T) + (ρ− ρair)g (2.21a)

∇ · u = 0 (2.21b)

∂α

∂t
+∇ · (αu) = 0 (2.21c)

Note that expanding the instationary term
∂ρu

∂t
as well as the stress tensor T in equation

2.21a leads to:

ρ
∂u

∂t
+∇ · (ρu⊗ u)− u∇ · (ρu) =−∇p− (ρ− ρair)g

+∇ ·
(
µ
[
∇u +∇uT

]
− 2

3
µ∇ · u 1

) (2.22)
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2.2.3 Time stepping scheme

Here a brief overview of the time-stepping method employed to advance the VOF solution

in time is given. It is based on the fractional step scheme of Chorin (1968) and can be

associated to the SIMPLEC scheme (Versteeg and Malalasekera, 2007). More details on

this topic can be found in Archambeau et al. (2004). This last reference, alongside with

CS’s theory guide (Code Saturne development team, 2019), should also be used for an

in-depth description of spatial discretization strategies, and the discretized equations are

not recalled here for brevity.

2.2.3.1 Prediction step

A prediction step is conducted to integrate the momentum balance equation 2.22 with an

explicit pressure gradient. Mass fluxes are also treated explicity, while an implicit form of

the viscous diffusive term is used. This first step allows computing a predicted velocity

field u∗ for which mass conservation is not necessary realized, following:

ρ
u∗ − u(n)

∆t
−∇ ·

(
(ρu)(n) ⊗ u∗

)
− u∗∇ ·

(
(ρu)(n)

)
= −∇p(n) − (ρ− ρair)g

+∇ ·
(
µ
[
∇u∗ +∇(u∗)T

]
− 2

3
µ∇ · u∗ 1

) (2.23)

where ∆t is the fixed or varying time step size, () stands for the considered time step,

while (n) denotes the previous one. Note that ρ and µ are known at time (n) and will only

be updated at the end of the time scheme loop, after the resolution of equation 2.21c.

2.2.3.2 Correction step

In this step, the pressure increment δp = p(n+1) − p(n) is computed to enforce mass

conservation and thus correct u∗ to yield the final field u(n+1). (n+1) represents the current

computed time step. Considering a form of equation 2.22 in which non-pressure right

hand-side terms are neglected, it becomes:

u(n+1) − u∗

∆t
= −1

ρ
∇δp (2.24)

∇ · u(n+1) = 0 (2.25)

Taking the divergence of equation 2.25 leads to the following Poisson equation:
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∇ · u∗ = ∇ ·
(

∆t

ρ
∇δp

)
(2.26)

from which p(n+1) then u(n+1) are deduced.

2.2.3.3 Time integration of the scalar transport equation

The last step in the time-stepping procedure consists in the time integration of the scalar

transport equation on α. To that end, an Implicit Euler scheme is selected.

α(n+1) − α(n)

∆t
+∇ · (αu)(n+1) = 0 (2.27)

With α(n+1) available, it is then possible to get updated fluid properties ρ(n+1) and µ(n+1)

as well as mass fluxes (ρu)(n+1) that are ready to be used in the next time step.

To compute the advection term of equation 2.27, various schemes might be selected in

CS, namely the Switching Technique for Advection and Capturing of Surfaces (STACS,

Darwish and Moukalled (2006)), the modified-High Resolution Interface Capturing scheme

(M-HRIC, Muzaferija (1999)) and the modified-Compressive Interface Capturing Scheme

for Arbitrary Meshes (M-CICSAM, Zhang et al. (2014)).

All of them rely on the principle of blending a very compressive scheme and a high-

resolution diffusive scheme, on the basis of a weighting factor that is a function of the

Courant number and other local conditions. The idea is to keep α from taking unphysical

values outside of the range [0; 1] while also limiting interface diffusion.

In the current study, a version of the M-CICSAM scheme of Zhang et al. (2014) is used.

Boundary conditions needed to fulfill time integration are described in detail in Archam-

beau et al. (2004).
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2.3 General strategy for a two-way coupling based on over-

lapping subdomains

2.3.1 General considerations

For the sake of clarity, we restrict the description of the coupling methodology to the

simplest case of one instance of seine3d being associated with one instance of CS. Applica-

tions featuring several instances of one or either models, which are an available feature of

the present coupling implementation, are treated in chapter 3 and beyond. For the same

reason, figures illustrating the coupling procedure for two-dimensional (2D) situations will

be preferred, keeping in mind that extension to three dimensions (3D) is most of the time

straightforward.

Potential and viscous domains are coupled through the mutual exchange of computational

variables at their coupled boundaries. Certain CS computational fields (void fraction

and/or velocity) may also optionally be modified in the computational volume as well,

through source terms added to the corresponding governing equations 2.21a, 2.21b, and

2.21c, based on values extracted in the interior of the seine3d domain. These optional

source terms were nevertheless found not necessary to the accuracy and stability of hybrid

computations, therefore they are not further mentioned in the description of the coupling

strategy. However, as they are needed for wave generation and damping in CS-only sim-

ulations, a description is done is section 4.4.1 in this context. Velocity and free surface

position are the exchanged physical variables, but it should be noted that the latter is not

a direct outcome of a NS-VOF simulation, where a free surface capturing scheme is used.

By contrast, free surface geometry is explicitly known in the potential code. Raw cou-

pling information extracted from one model should thus be processed and adapted to the

other model’s requirements prior to being used in the coupling procedure, as both models

employ different spatial and temporal discretizations, as well as different representations

of the free surface.

2.3.2 Selected type of two-way coupling

As stated above, Iafrati and Campana (2003) make a distinction between two different

types of two-way coupling: Dirichlet-type coupling and Neumann-type coupling, depend-

ing on whether viscous and potential domains partially overlap or not. Whereas in both

methods velocity is specified on the coupled boundary of CS through a Dirichlet boundary

condition on the water phase, coupling strategies differ in the type of coupling boundary

condition used in seine3d, as their names suggest.

In this work we chose to implement a NT coupling, given that resolving the Bernoulli

equation for the velocity potential on seine3d’s coupled boundary is not needed, hence

making implementation easier at first sight. Besides, higher stability of the NT coupling

as compared to DT was reported by Colicchio et al. (2006).
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2.3.3 Overlapping subdomains

Loverlap

Ωseine3d

Ωcs

xcs xseine3d

Γd
c,cs

Γn
c,seine3d

Γfc,seine3d

Ωoverlap

Figure 2.1: Coupled domains and related boundaries. Blue CS cells are cells filled with
water, while red cells are full of air. Pale blue and pale red cells contain a mix of the two
phases.

A coupling strategy requiring BEM and VOF domains to partially overlap is employed

in this study, as illustrated in figure 2.1. The associated overlapping region Ωoverlap is

bounded by coupling boundaries Γd
c,cs and Γn

c,seine3d withD standing for a Dirichlet bound-

ary condition on water velocity on CS side and N for a Neumann boundary condition on

the velocity potential on seine3d side. Γfc,seine3d is the part of Γf,seine3d that receives a

free surface position signal from CS during the coupling process. As stated above, void

fraction and velocity fields may also be modified in CS in the volume of Ωoverlap through

source terms. Coupling boundary conditions for this type of coupling are recalled in the

following system and are described in detail in the next sections.

ucs = useine3d at x = xcs

ucs · nseine3d =
∂φ

∂n
at x = xseine3d

(2.28)

xcs and xseine3d designate the location of both ends of the overlapping region, as shown

in figure 2.1. In this 2D representation, x axis stands for horizontal axis, z axis for the

vertical one.
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2.4 Velocity matching at coupled boundaries

2.4.1 Wave generation in the VOF model through boundary conditions

In the collocated Finite Volume formulation of CS, boundary conditions are needed at

the centers of boundary faces. Let Γd
c,cs represent the set of boundary faces involved

in the coupling. CS mesh being fixed, boundary face center coordinates are extracted

once at the beginning of a calculation and sent to the coupled seine3d instance. Elements

involved in the construction of this boundary condition are recalled in figure 2.2. At each

CS iteration, water velocity and void fraction boundary conditions on Γd
c,cs are generated

from the variables useine3d and ηseine3d sent by seine3d. Γd
c,cs boundary surface is then split

in two parts, each one corresponding to a given phase of the fluid and receiving its own set

of boundary conditions. A Dirichlet boundary condition on the void fraction is employed

in both phases to set the free surface vertical position. A rather rough way of specifying

the void fraction field for a given boundary face is to set the void fraction value to 0.0 if

its center, or the center of the boundary cell to which it belongs, is located below ηseine3d,

and to 1.0 otherwise. This leads to an artificially sharp free surface field for CS in Ωoverlap

near Γd
c,cs, contrasting with its diffuse nature elsewhere in the numerical domain, and it

induces a loss of accuracy in free surface definition. Therefore, void fraction Dirichlet

condition is set with a basic geometrical free surface reconstruction strategy. Free surface

in the cell is, to a first approximation, horizontal, hence the volume of water in the cell

and thus the void fraction value can be deduced from the distance from the cell floor to

ηseine3d if the latter is above the cell center in the case of a cell mostly filled with air or

from the ceiling if the cell is mostly filled with water. A Dirichlet boundary condition on

all velocity components in the water phase is used to generate waves in this study, as in a

number of other VOF models. Several options are available for velocity in the air phase

that are described later. The boundary value problem would not be complete without a

condition on pressure. A homogeneous Neumann boundary condition on pressure is used

in either part of Γd
c,cs, i.e. a zero normal pressure gradient is imposed which is the default

behavior for pressure as implemented in the Inlet and Symmetry boundary conditions of

CS.

The process is summarized for coupled variables in the following algorithm, where i stands

for the CS coupled boundary face of interest, for which ηseine3d,i is the vertical position of

the free surface. zi,cen. is the adjacent cell center’s vertical coordinate.

The boundary condition for velocity in the part of Γd
c,cs that lies in the air phase can be

imposed in different ways. Among the standard boundary conditions implemented in CS,

the aforementioned Inlet and Symmetry are suitable for this task. One may also assign

an arbitrary vertical velocity profile as Dirichlet condition on a Inlet type boundary. As

explained in section 2.1, influence of air phase on the water phase outside of the vicinity of

the simulated structures can be modeled by a constant atmospheric pressure imposed on

the free surface. This assumption holds in the overlapping area belonging to both CS and
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Algorithm 1 Dirichlet velocity and void fraction boundary condition on Γd
c,cs

1: for i = 1 to card
(
Γd
c,cs

)
do

2: if zi,cen. ≤ ηseine3d then
3: if zi,cen. ≥ ηseine3d − dz

2 then

4: αi ←
η
zi,cen.+

dz
2 −seine3d,i

dz
5: else
6: αi ← 0.0
7: end if
8: ui ← useine3d(z = zi,cen.)
9: else

10: Set velocity and void fraction boundary conditions for air phase
11: end if
12: end for

Ωseine3d

Ωcs

Γd
c,cs

ηseine3d

Figure 2.2: Dirichlet velocity boundary condition on the CS side of the overlapping area.
Crosses mark the centers of the boundary faces belonging to Γd

c,cs. Yellow arrows represent
the vertical profile of horizontal velocity useine3d.

seine3d, if the latter is kept sufficiently far away from the bodies that may be placed in the

water. Dynamic pressure effects and shear stresses applied by the air on the free surface

may then be neglected as long as the velocity remains in a realistic range. The velocity

field in the air phase is thus not of direct interest, at least in the outer region of the CS
domain. It is therefore not mandatory to impose a lifelike vertical velocity profile at the

edge of the domain but if this is to be done, we may think of an air velocity distribution

verifying a no-slip condition on the free surface. Using a Symmetry boundary condition

assigns a zero Dirichlet condition on the velocity component normal to the face and a

homogeneous Neumann condition on its tangential components.
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2.4.2 Processing of velocity extracted from the interior of the NWT

domain

Velocity computation in the interior of the NWT domain is described in Fochesato et al.

(2005). Such calculation can be prone to instabilities since singular integrals might have

to be dealt with. If free surface boundary Γf,seine3d comes too close to a CS boundary face

center belonging to ΓDc,cs where seine3d interior velocity is sought, erroneous value is sent

to CS as boundary condition in the current iteration of the coupling, and the simulation

may diverge and fail. Future improvements based on the PART method of Hayami and

Matsumoto (1994) could solve this problem. As CS boundary face centers are supposed

to be aligned along vertical lines in a dense pattern - typically 20 cells or more per wave

height - compared to the number of seine3d elements in a vertical, this situation happens

frequently in the course of the simulation. It is then necessary to set a threshold value

in seine3d for one or for all of the components of the internal velocity vector above which

velocity is recalculated by an extrapolation from values at underlying CS face centers. A

corrected velocity value is then sent to CS.

To extrapolate a value along the vertical, a polynomial is established for which the user

can choose the order and the number of basis points. Using a least-squares estimation,

a polynomial best fitted to the velocity values at underlying internal basis points is gen-

erated, that is latter used for extrapolation. Such extrapolation is done on all velocity

components. seine3d vertical velocity profiles employed for coupling are stored in a log file

so that it is possible to check their coherence and thus the validity of the extrapolation

parameters while post processing the calculations results. It is to be noted that this one

dimensional extrapolation strategy is valid only in the case of a CS mesh whose face cen-

ters are aligned along verticals. In the most general 3D case, such a mesh could be built

from the (possibly non-uniform) vertical extrusion of an arbitrary conformal horizontal

2D mesh. CS meshes used for coupling should therefore comply with the latter rules. Fig-

ure 2.3 illustrates this upwards extrapolation process in the case of an horizontal internal

velocity field featuring spurious values close to the free surface.

The same type of error occurs for a CS boundary face center from ΓDc,cs located too close to

seine3d domain’s bottom, in which case a similar but downwards extrapolation strategy is

employed. If these precautions are sufficient for 2D vertical coupled simulations this is no

longer true in 3D. Indeed, it appeared that in this latter case some coupled CS boundary

face centers may lie too close to seine3d lateral vertical boundaries, leading to the same

type of errors. It was then decided in this case to employ a simpler “nearest neighbor”

extrapolation method for which the replacement velocity value is chosen from the closest

interior point of seine3d with a velocity norm lower than the above mentioned threshold

value.

Singularity errors related to velocity extraction in the interior of seine3d may also partially

be treated from the tuning of some numerical parameters of seine3d. This model can indeed

solve certain singularity problems thanks to subdivisions of boundary elements allowing
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adaptive integration of the BIE kernel. The higher the number of subdivisions allowed

to handle singularities, the closer to seine3d boundaries the coupled CS boundary face

centers may lie without any divergence of the extracted coupling velocity values. This

reduces the needed for the aforementioned extrapolation schemes, some of them having a

low order convergence rate in space and therefore diminishes extrapolation errors. This

comes at the cost of increased simulation times for seine3d and therefore for the coupled

simulations as adaptive integration is time-consuming. A trade-off between accuracy and

speed should then be sought so that subdivisions are used with parsimony.

Ωseine3d

Singularity error

(a) Spurious horizontal internal velocity gen-
erated under free surface

Ωseine3d

Basis points for
extrapolation

Extrapolated
velocity

(b) Velocity correction through extrapola-
tion

Figure 2.3: Calculation of horizontal internal velocity close to free surface in seine3d do-
main. Crosses mark the centers of boundary faces belonging to Γd

c,cs where CS velocity
is sought. Red arrows with full lines represent the partially unphysical vertical velocity
profile of useine3d while dashed ones illustrate the corrected velocity profile (by local ex-
trapolation).
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2.4.3 Velocity extraction in CS domain

Γn
c,seine3d

Ωseine3d

Ωcs

Figure 2.4: Neumann boundary condition on the velocity potential on seine3d side of
the overlapping region. Crosses mark the centers of CS cells in the vicinity of a given
seine3d node. CS cells too close to free surface to yield a correct velocity value bear red
crosses. Rectangle stands for the selection box centered on the seine3d node. Yellow arrows
represent the vertical profile of normal velocity useine3d · n.

In this Neumann-type coupling methodology, CS produces a value for the normal derivative

of the velocity potential ∂φ
∂n on the lateral coupling boundary Γn

c,seine3d. As the physical

assumptions made in seine3d are more stringent than those applying in CS, one should

make sure that seine3d constraints of irrotational flow, negligible viscous effects and single-

valued free surface are valid in the overlapping region. This predicament governs the

location and horizontal extension of Ωoverlap. Assuming these requirements are met, we

can admit that CS velocity known at the location of a seine3d boundary node is that of a

potential flow. Its projection along the normal direction to the local BEM panel produces

a Neumann boundary condition on the potential.

seine3d’s surface mesh moves with the fluid in a semi-Lagrangian fashion. Thus, contrary

to CS boundary face centers belonging to Γn
c,cs where seine3d velocity is calculated and

whose position is fixed and known at the beginning of the simulation, velocity extraction

in CS is done in locations varying with time. This poses serious efficiency issues to the

coupling algorithm if not implemented adequately.

Thankfully, cell selection based on geometrical criteria is easily realized in CS and is

described in figure 2.4. An array containing the coordinates of all the coupled seine3d
nodes is sent to CS at every iteration of the coupling. A box of constant dimensions is built

in CS domain around each seine3d node, the latter coinciding with the box’s geometrical

center. Cells whose center is included in the box are selected, and the associated velocity

ucs values, stored at cells centers, are saved, along with cell center coordinates. There

may be several selected cells for each seine3d node, and multiple seine3d nodes associated
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to the same CS cell in the case of 2D vertical simulations. Indeed, we shall place multiple

nodes in the width of a seine3d domain even for two-dimensional calculations, whereas one

cell occupying the entire width is sufficient for CS in that case.

Because of the absence of bijection between seine3d nodes and CS cells, and because

CS cell extraction functions do not preserve cell order, arrays containing CS cell center

coordinates and corresponding velocity values are sent back to seine3d in arbitrary order

of the cells. It is to be noted that in the current state of the coupling methodology, no

gradient calculation is conducted for coupled velocity extracted from CS. Then for every

coupled seine3d node, the distance to every extracted CS cell center is computed, and

ucs is taken as the value at the closest cell center. This sorting operation is realized in

a single MPI process of seine3d (the one with root rank), so it is a blocking step for the

simulation and its cost is therefore not negligible. Selecting the lowest possible number of

CS cells using the smallest selection box is then of central interest. In practice, the choice

of selection box size is left to the user, and it is straightforward in the case of a uniform

Cartesian grid, for which the box should be slightly larger than a cell so that CS cells are

always located.

VOF models are also known to suffer from the occurrence of spurious velocities close to

the free surface. Therefore, if a coupled seine3d node lies in the area of mixed phases in

CS domain, as illustrated by the red crosses on 2.4, the velocity extracted near its location

may be unphysical. If it is the case, this will surely lead to the failure of the simulation.

To avoid such issue, velocity is, by a way of precaution, not extracted in the region of

mixed phases, but a large dummy value is rather sent to seine3d. The width of the region

of mixed phases should be approximated by the user, in the form of an assumption on the

vertical distance (or the number of cells) below the calculated free surface position within

which the large dummy value is sent. This distance strongly depends on the selected void

fraction advection scheme. In turn, when seine3d receives such dummy value, a vertical

extrapolation procedure similar to that used for the internal velocity transmitted to CS is

conducted. Basis points then needed for polynomial regression are seine3d nodes belonging

to Γn
c,seine3d and located beneath the current node. Algorithm 2 summarizes the procedure.

threshold value is only used to detect large dummy values requiring local extrapolation.

Once ucs is known at all nodes located on Γn
c,seine3d, it is projected on the local normal

vector to generate a Neumann boundary condition on the potential.
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Algorithm 2 Neumann boundary condition on Γn
c,seine3d.

1: for i = 1 to card
(

Γn
c,seine3d

)
do

2: Calculate distances from current node to every extracted CS cell center
3: Get closest CS cell center and associated uCS,i
4: if uCS,i > threshold then
5: Extrapolate velocity from underlying nodes
6: end if
7:

(
∂φ
∂n

)
i
← ucs,i · ni

8: end for



57 Chapter 2. Description of BEM-VOF coupling strategy

2.5 Free surface matching in the overlapping region

2.5.1 A need for matching free surfaces in Ωoverlap

The velocity exchange procedure described above does not guarantee the matching of free

surfaces in Ωoverlap. On the CS side of the overlapping region, free surface information

on Γd
c,cs is received from seine3d along with velocity data as the velocity profile imposed

to the water phase on the boundary is of limited vertical extent. On the opposite, ve-

locity extraction in CS cells located near Γn
c,seine3d nodes does not incorporate any free

surface position information, and velocity values are sought in the CS domain without any

restriction on the phase in which extraction is realized. An additional operation on the

free surface of seine3d is then needed to ensure interface continuity between the viscous

and potential domains, which was found to be a necessary condition for the accuracy and

stability of coupled simulations.

If free surface positions ηcs(xcs) and ηseine3d(xcs) differ on the CS side of Ωoverlap, the

seine3d vertical velocity profile specified on ΓDc,cs does not match with the geometry of

the water phase in the interior of CS domain. As the imposition of this velocity profile

comes along with that of a Dirichlet boundary condition on the void fraction on Γd
c,cs as

described in 2.4.1, free surface mismatching leads to an artificial jump in the void fraction

field, either positive or negative, causing a spurious free surface flow. Such a void fraction

jump and subsequent gravity-driven flow deteriorate the accuracy of simulations, but were

found seldom problematic for their stability in preliminary tests.

Ωseine3d

Ωcs

Γd
c,cs

∆η

Figure 2.5: Non-physical void fraction jump on CS side of overlapping area caused by
non-matching free surfaces. ∆η stands for difference in vertical position of free surfaces in
both models. Vertical velocity profile is drawn in yellow, only its horizontal component is
represented.

Conversely, a free surface mismatch on seine3d side of the overlapping region quickly

produces a growing instability in seine3d. Indeed, coupled nodes belonging to Γn
c,seine3d
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may happen to be located in the air phase of the viscous domain, or at least in the area

of mixed phases. Because of the incompressible nature of the flow simulated with the

VOF method, and due to the high density ratio between phases, the velocity in the air

phase may be several orders of magnitude higher than in the dense phase. If a seine3d
node where normal velocity is needed is located in the air phase, the velocity value it gets

from CS can largely exceed velocity values in the rest of the potential domain, leading

to a divergence in the resolution of the Laplace equation and consequently to the failure

of the calculation in seine3d. If the same node lies in the region of mixed phases near

the free surface, the velocity may still take spurious values - which are inherent to VOF

simulations - triggering the same type of instability.

Ωseine3d

Ωcs

∆η

Figure 2.6: Consequences of a mismatch in free surfaces on seine3d side of the overlapping
region. ∆η stands for difference in vertical position of free surfaces in both models. Aber-
rant vertical profile of normal velocity is drawn in yellow.

One thus has to make sure that the free surface position in seine3d and the void fraction

field in CS remain consistent in the overlapping region, with a special focus near the

endpoint of each domain. It appears that no special treatment is necessary on the CS side

of Ωoverlap, and that the void fraction jump can be avoided with a cautious selection of the

coupling parameters that will be presented in the coming sections. Interface position in

seine3d, on the contrary, has to be relaxed towards the estimated location of the interface

in CS over the whole extent of the overlapping region.

2.5.2 Capturing free surface in CS

As already written, free surface position is not explicitly known in simulations conducted

with the algebraic VOF module of CS. Region of mixed phases around free surface is

smeared over a few cells even though interface recompression methods are employed. Tak-

ing advantage of the fact that free surface topology in the overlapping area satisfies as-

sumptions made in seine3d, in particular it has to be single-valued, a method to estimate

the vertical position of the free surface in CS is devised.
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To that end, for every coupled seine3d node where free surface vertical position is sought

in CS, we consider the complete fluid column extending vertically from the position of the

associated CS cell, whose center is the closest to the seine3d node of interest. Free surface

vertical location zfc,cs is approximated by the ratio of water volume in the column to the

total volume of the column. Computing volumes with vertical integrations gives:

ηcs =

∫ hc
−h(1− α)dΩ∫ hc
−h dΩ

(2.29)

where α is the void fraction, h is the depth, hc the height of CS domain above the resting

free surface (up to the ceiling) and dΩ is an infinitesimal volume. As the meshes used

for coupled simulations in CS are structured in the vertical direction, i.e. they can be

obtained from the vertical extrusion of an arbitrary horizontal 2D conformal mesh, a

column of cells is also a fluid column. Calculation of water volume and total column

volume is then straightforward and equation 2.29 becomes:

ηcs =

∑
j∈Ci

(1− αj)|Ωj |∑
j∈Ci

|Ωj |
(2.30)

for every cell j of volume |Ωj | in the fluid column Ci centered on cell i. This way ηcs can

take any value within the continuous range [−h;hc].

2.5.3 Free surface relaxation in seine3d

2.5.3.1 Principle of free surface relaxation

Γfc,seine3d is modified to conform with the free surface solution ηcs in Ωoverlap built in

CS as described in section 2.5.2 (see figure 2.1). Time stepping in seine3d follows a semi-

Lagrangian rule, thus only the vertical coordinate of seine3d nodes belonging to Ωoverlap

is modified, as it is the only direction along which they are free to translate. Relaxation

refers to the fact that pure potential free surface solution which has just been computed in

seine3d is combined with a free surface signal extracted from CS void fraction field at the

same new time instant to produce a relaxed solution. This ensures free surface matching

at seine3d side of the overlapping region at any time. Following the time stepping stage in

seine3d, the vertical position of each node i belonging to Γfc,seine3d is indeed replaced by

the weighted sum of seine3d free surface position and CS free surface solution ηcs, following

equation 2.31:

z ← (1− ω)z + ωηcs on Γfc,seine3d (2.31)

z is the current vertical coordinate while ω is the relaxation weight, varying between 0 at

xcs and 1 at xseine3d over the length of Ωoverlap. Different spatial functions may be used

for ω to allow a smooth relaxation. Relaxation strategy is illustrated in figure 2.7, where
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Ωseine3d

Ωcs

Figure 2.7: Free surface relaxation in seine3d. The yellow line represents the position of
seine3d free surface after correction.

a yellow line marks the corrected position of the free surface.

Mass conservation is thus no longer ensured in the coupled seine3d domain, as an extra mass

flux originates from the changes made to the interface geometry in Ωoverlap. Its magnitude

grows with the gap between the target value ηcs and the geometry of Γfc,seine3d prior to

relaxation. Hence, the kinematic free surface boundary condition (2.9) established for the

potential flow, stating that no mass flux goes through the free surface, is no longer satisfied,

as the free surface is not rigorously advected with the flow anymore. Such mass imbalance

goes along with momentum imbalance in the dynamic free surface boundary condition

(2.10). Through the time stepping procedure used in seine3d and the time integation

of equations 2.9 and 2.10, these mass and momentum discrepancies yield erroneous free

surface shape and velocity potential at subsequent time instants, thus calling for stronger

free surface relaxation in return. The cumulated errors might lead to the failure of the

coupled simulation. To avoid this and to make sure that free surface boundary conditions

are still satisfied after the interface relaxation step, the velocity potential on Γfc,seine3d

should be modified accordingly, as described in sections 2.5.3.3 and 2.6.4.

2.5.3.2 Relaxation weight

Different spatially varying functions, or blending functions, can be used for ω in equation

2.31, such as linear, exponential or third order polynomial. The associated weights are

given hereafter, setting b = x−xcs
Loverlap

with x the current horizontal coordinate. Three

functions were tested:

ωlin. = b (2.32a)

ωexpo. =
eb

2 − 1

e1 − 1
(2.32b)

ωherm. = b2(3− 2b) (2.32c)

Figure 2.8 shows the graphs of these relaxation functions or weights. Relaxation weights
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Figure 2.8: Plots of different free surface blending functions

based on the third order cubic polynomial and weights featuring exponential variation

where both used in this work, and no significant impact on the simulation results was

detected. Thorough comparison of the performance of blending functions was nevertheless

not considered in this study.

2.5.3.3 Relaxation of velocity potential on the free surface

As already mentioned, as the position of free surface nodes is modified, so should be the

value of the velocity potential φ at these nodes, as follows:

φ← (1− ω)φ+ ωφrlx on Γfc,seine3d (2.33)

The potential has no physical meaning in the NS simulation, thus its corrected value

φrlx should be built from other seine3d and CS variables. Prior to explaining how φrlx is

obtained, we should introduce the time stepping strategy used for coupled simulations.

This is the subject of the next section, in which φrlx is eventually described.
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2.6 Advancing coupled simulations in time

The extraction and processing of coupling variables as well as the imposition of coupling

boundary conditions having been detailed in previous sections, we now explain how time

stepping is done in coupled BEM-VOF simulations.

2.6.1 Using different time step sizes for each code

The time step size in each code is governed by physical and numerical considerations, for

which the Courant-Friedrichs-Lewy (CFL) number offers a synthesis. It indeed quantifies

the balance between temporal and spatial discretizations. Spatial discretization differs a

lot between CS and seine3d. While in the former a target number of 20 cells along the

vertical direction is employed to cover the height of the reference wave, the latter only

requires a smaller number (typically 4 or slightly more) of boundary elements to occupy

the whole water column under the wave. The need for limited aspect ratios of CS cells

as well as seine3d boundary elements further sets constraints on the number of cells or

boundary elements per reference wavelength in each code. Such differences in spatial

discretization call for the use of different time step sizes, so that there is flexibility to set

CFL number in each code independently. Using CS and seine3d with respective sets of

parameters close to optimal values is indeed a necessary condition for the global efficiency

of the coupling strategy. To that end, the CS time step size ∆tcs has to be kept smaller

than its potential counterpart ∆tseine3d. We define the time step ratio N∆t as:

N∆t =
∆tseine3d

∆tcs
(2.34)

Both models are synchronized when the coupled computation time reaches an integer

multiple of ∆tseine3d, that is to say that physical variables of interest are exchanged through

MPI communications every ∆tseine3d seconds. seine3d is thus waiting for CS calculations

over sub time steps (of size ∆tcs) to end during most of the computational time, as the

coupling is done in serial mode.

2.6.2 Interpolation of CS coupling boundary conditions between seine3d
time steps

CS boundary conditions are needed at time t(ncs) to advance the NS solution up to t(ncs+1)

where ncs enumerates the CS time stepping sub-stages between successive synchronization

time instants t(n) and t(n+1).

t(ncs) = t(n) + ncs∆tcs ∀ ncs ∈ {0, N∆t − 1}
t(ncs) = t(n+1) if ncs = N∆t

(2.35)

Inlet Dirichlet boundary conditions on velocity and void fraction on Γd
c,cs are obtained
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from interpolations of useine3d and ηseine3d between t(n) and t(n+1). u
(ncs)
seine3d and η

(ncs)
seine3d

stand for values interpolated at time t(ncs). As described below, interpolation schemes of

various orders may be employed, using values of ηseine3d and useine3d at different seine3d
time instants.

2.6.2.1 Linear time interpolation

Requiring values of ηseine3d and useine3d only at current (n) and following (n + 1) time

instants, one may build a linear interpolation scheme as follows, setting β = ncs
N∆t

as a new

variable. As ncs belongs to {0, N∆t}, β evolves in [0, 1].

u
(ncs)
seine3d = (1− β)u

(n)
seine3d + βu

(n+1)
seine3d

η
(ncs)
seine3d = (1− β)η

(n)
seine3d + βη

(n+1)
seine3d

∀ β ∈ [0, 1]

(2.36)

2.6.2.2 Higher order polynomial time interpolation

If values of ηseine3d and useine3d are stored at additional time instants (n− 1) and (n− 2),

a higher order interpolation procedure is established, permitting a better rendering of

the nonlinear nature of the time evolution of wave kinematics. Such a scheme is more

accurate than the linear one for a given time step size under certain assumptions, but

it may lead to greater interpolation errors in the case of large time steps. It also uses a

larger amount of computer memory as physical variables are saved at 4 time instants, as

opposed to 2 in the linear case. As constant time steps sizes are used exclusively in the

coupling procedure, the Lagrange polynomial of the 3rd degree is retained that is easily

implemented and expressed here in terms of the same variable β:

u
(ncs)
seine3d = − 1

6
(β + 1)β(β − 1)u

(n−2)
seine3d +

1

2
(β + 2)β(β − 1)u

(n−1)
seine3d

− 1

2
(β + 2)(β + 1)(β − 1)u

(n)
seine3d +

1

6
(β + 2)(β + 1)βu

(n+1)
seine3d

η
(ncs)
seine3d = − 1

6
(β + 1)β(β − 1)η

(n−2)
seine3d +

1

2
(β + 2)β(β − 1)η

(n−2)
seine3d

− 1

2
(β + 2)(β + 1)(β − 1)η

(n)
seine3d +

1

6
(β + 2)(β + 1)βη

(n+1)
seine3d

∀ β ∈ [0, 1]

(2.37)

The number of coupling seine3d nodes being limited to relatively small values, storing

seine3d coupling velocity profile and free surface function at 4 time instants is not very

memory-consuming. Besides, ∆tseine3d values were found to remain in a range where

high-order polynomial interpolation is more accurate than the linear one. It is to be noted

that the choice of N∆t is the result of a balance between accuracy (limited interpolation

errors) and efficiency (sufficiently high CFL number in seine3d), and as such is a crucial
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parameter of the coupling strategy. Its influence on the coupled simulations is studied in

chapters 3 and 4.

u
(n+1)
seine3d, η

(n+1)
seine3d η

(n+1)
cs u

(n+1)
cs

I

II

III

IV

V

VI

tcs

tseine3d

t(n) t(n+1)

Figure 2.9: Main steps and information fluxes of coupling time stepping scheme. Red lines
illustrate time stepping operations while blue ones show MPI communications between
coupled programs. Top axis stands for seine3d while bottom axis represents operations
conducted in CS.

2.6.3 Detailed description of the time stepping procedure

The time stepping procedure is summarized in figure 2.9, with roman figures enumerating

the different stages.

I: seine3d free surface conditions are advanced in time from t(n) to t(n+1) following

an explicit 3rd order Runge-Kutta scheme. Geometry of seine3d domain is updated

and so are Γ
n,(n+1)
c,seine3d and Γ

(n+1)
fc,seine3d. The boundary integral problem is solved once

boundary conditions are established. To that end, a Neumann boundary condition

on the velocity potential on Γ
n,(n+1)
c,seine3d is built from a CS vertical velocity profile

extracted at current time step (n) as in equation 2.38. u
(n)
cs is indeed obtained as an

output of the previous coupling iteration.

∂φ

∂n

(n+1)

= u
(n)
cs · nseine3d on Γ

n,(n+1)
c,seine3d (2.38)

It should be noted that u
(n)
cs velocity profile has been extracted and is therefore

known at the previous location of coupled seine3d nodes, i.e. on Γ
n,(n)
c,seine3d. We

assume that this holds on Γ
n,(n+1)
c,seine3d.
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II: internal velocity u
(n+1)
seine3d is extracted in seine3d domain. Spurious velocity values

are replaced with extrapolated ones as explained in section 2.4.2. u
(n+1)
seine3d and η

(n+1)
seine3d

are sent to CS in an MPI communication operation.

III: CS solution is advanced in time through N∆t sub time steps with the inlet

boundary conditions described in equation 2.37.

IV: CS free surface data η
(n+1)
seine3d at cells close to free surface nodes belonging to

Γfc,seine3d is sent to seine3d.

V: free surface position in seine3d is relaxed towards CS solution such that free

surfaces matching is ensured at xseine3d. Γ
n,(n+1)
c,seine3d becomes Γ

n,(n+1),rlx
c,seine3d and accord-

ingly Γ
(n+1)
fc,seine3d is now Γ

(n+1),rlx
fc,seine3d. Velocity potential can be relaxed accordingly.

Relaxation procedure is explained in section 2.5.3.

VI: coordinates of seine3d boundary nodes on Γ
n,(n+1),rlx
c,seine3d are sent to CS and velocity

ucs(n+1) close to those nodes is sent back to seine3d to generate Neumann condition

at t(n+1) as follows:

∂φ

∂n

(n+1)

= u
(n+1)
cs · nseine3d on Γ

n,(n+1),rlx
c,seine3d (2.39)

VII: in seine3d, the boundary integral problem at time t(n+1) is solved for the second

time.

This two-way coupling strategy is similar to the one described in Kim et al. (2010) and

theoretically enables wave propagation in any direction.

2.6.4 Calculation of φrlx

The time stepping procedure has been described in detail and every notion needed to

explain how the relaxation of free surface velocity potential may be done in seine3d has

been introduced. With the newly introduced time stepping exponents, equation 2.31

writes:

z(n+1) ← (1− ω)z(n+1) + ωη
(n+1)
cs on Γ

(n+1)
fc,seine3d (2.40)

as Γ
(n+1)
fc,seine3d is turned into Γ

(n+1),rlx
fc,seine3d.

As stated in section 2.5.3.3, potential relaxation through φ
(n+1)
rlx is needed so that free

surface relaxation influence on potential distribution on seine3d boundaries can be applied.

φrlx is sought at time t(n+1) and equation 2.33 becomes:

φ(n+1) ← (1− ω)φ(n+1) + ωφ
(n+1)
rlx on Γ

(n+1),rlx
fc,seine3d (2.41)

At stage V of the above coupling procedure, the dynamic free surface boundary condition
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is integrated again, this time in a single step and following a centered scheme:

δφ

δt

(n)

=
φ

(n+1)
rlx − φ(n−1)

2∆t
= −gη(n) − 1

2

(
∇φ(n)

rlx

)2
+
∂η

∂t

(n)

rlx

∂φ

∂z

(n)

rlx
(2.42)

thus

φ
(n+1)
rlx = φ(n−1) + 2∆t

(
−gη(n) − 1

2

(
∇φ(n)

rlx

)2
+
∂η

∂t

(n)

rlx

∂φ

∂z

(n)

rlx

)
where z = η

(
x, y, t(n)

) (2.43)

Free surface velocity is rewritten as follows:

∇φ(n)
rlx = ∇hφ(n) +

∂φ

∂z

(n)

rlx
ez (2.44)

where ∇h stands for horizontal gradient and ez is the vertical unit vector.

Every right hand side term in equation 2.43 is known explicitly except ∂η
∂t

(n)

rlx
and ∂φ

∂z

(n)

rlx
.

Using another centered scheme to solve the kinematic free surface boundary condition and

obtain ∂η
∂t

(n)

rlx
, it becomes:

∂η

∂t

(n)

rlx
=
δη

δt

(n)

rlx
=
η

(n+1)
cs − η(n−1)

2∆t

=
∂φ

∂z

(n)

rlx
− ∂φ

∂x

(n) ∂η

∂x

(n)

− ∂φ

∂y

(n)∂η

∂y

(n)
(2.45)

from which the value of ∂φ
∂z

(n)

rlx
is also deduced.

This method is inspired from that described in Kim et al. (2010) to relax velocity potential

on Γfc,seine3d. Other methods include not relaxing the free surface velocity potential, or

using free surface velocity extracted in the viscous model to set the value of ∇φ(n)
rlx, or

that of its vertical component ∂φ
∂z

(n)

rlx
only, as in Kemper et al. (2019). In this latter work,

in which the potential model relies on the formalism of Zakharov (1968), the vertical

velocity close to interface extracted in the viscous code is used as vertical velocity at the

free surface in the potential model. From time integration of the dynamic free surface

boundary condition, a corrected value for free surface potential is obtained. Free surface

horizontal velocity in the VOF calculation is however not transmitted to the potential

calculation. It is to be noted that extracting valid values for vertical water velocity at free

surface is not an easy task. It has been tested in the current coupled model but was found

to be less accurate and stable than the above-described method.
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2.7 Parallelization of coupled simulations

2.7.1 Building a MPI communicator where coupling takes place

Both potential and viscous numerical codes that are coupled in this work allow parallel

simulations when used alone. They are adapted to high performance computing on large

computers with distributed memory, and coupled simulations should exhibit the same be-

havior. Message Passing Interface (MPI) protocol is used with this goal in mind. Each

application operates in a MPI communicator, or intracommunicator, allowing point-to-

point and collective communications between processes owned by the application. As

in the previous sections of this chapter, we will restrict the description of the coupling

communications to the simplest case of a calculation coupling one instance of each code.

Therefore, in this case, allowing the exchange of variables between CS and seine3d amounts

to building a new global communicator or extra-communicator from the union of both ap-

plication’s communicators. This is done conveniently thanks to ad-hoc MPI functions from

the Parallel Location and Exchange (PLE) library (Fournier, 2020) coming with CS that

had to be adapted in seine3d. Exchanges of coupling variables are exclusively realized with

point-to-point MPI communications in the newly built coupling (global) communicator.

Such communications may be sequential, if only root processes are involved, or parallel.

Communicators and communications are illustrated in figure 2.10.

2.7.2 Sequential or parallel coupling communications

The choice between sequential or parallel coupling communications mostly depends on

the characteristics of CS and seine3d and on the location of the variables of interest in the

applications.

2.7.2.1 seine3d → CS communications

In CS, a domain decomposition approach is used to split the computational domain be-

tween MPI processes. Each process owns a part of the field variables arrays. Besides that,

as the CS grid is fixed, the location of cells centers on Γd
c,cs, where values of useine3d and

ηseine3d are sought, are known from the start of the simulation. Therefore, CS processes

that will receive these values from seine3d are identified at the initialization stage of the

coupled calculation. Point-to-point communications are established between those CS pro-

cesses and selected seine3d processes. Indeed velocity at any internal point in Ωseine3d and

position of any boundary free surface node belonging to Γfc,seine3d may be respectively

accessed or computed from any seine3d process. Coordinates of the above-listed coupled

CS cell centers are then gathered at CS’s root process once and sent to seine3d’s root pro-

cess, from where they are equally scattered to an arbitrary selection of seine3d processes

and stored as internal points or used to create free surface gauges, allowing point-to-point

MPI communications in parallel.
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2.7.2.2 seine3d ← CS communications

As seine3d grid is moving, it is not possible to send the location of nodes where ucs

and ηcs should be extracted to CS only once at the beginning of the simulation, because

it changes with time. This information is to be sent at every synchronization seine3d
time step, after the free surface relaxation stage and before the second resolution of the

boundary integral problem. CS cells extraction is explained in section 2.4.3. Coupled

seine3d nodes’ coordinates xΓn
c,seine3d

and xΓfc,seine3d are therefore gathered in seine3d’s

root process and sent to CS’s root process, where they will be broadcast to every process.

This is a sequential procedure, as only the root processes of coupled applications are

involved in MPI communications.

global communicator

1

2

3

4

NWT communicator

1

2

3

4

5

6

CS communicator

xΓn
c,seine3d

,xΓfc,seine3d

ucs, ηcs

useine3d, ηseine3d

useine3d, ηseine3d

useine3d, ηseine3d

Figure 2.10: MPI communicators and communications realized at each synchronized
(seine3d) time step. Red boxes stand for seine3d processes while blue ones stand for
CS processes. Hatched boxes represent root processes. Only processes with MPI ranks
ranging from 1 to 3 are directly involved in the coupling. MPI communications at initial-
ization are not shown for the sake of clarity.
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2.8 Coupling several instances of each code

So far, emphasis has been put on the most simple coupling case of one instance of CS
and one instance of seine3d, in the context of 2D vertical applications. One of the goals

of this study is to develop a flexible tool, adapted to a wide spectrum of wave simulation

applications. To that end, it was decided to allow the coupling of several instances of the

applications. One CS application may indeed exchange simulation variables with several

instances of seine3d, and the other way around. Coupling interfaces Γd
c,cs and Γn

c,seine3d as

well as volumes Ωc,cs may be multiplied at will thus their topology could remain simple,

avoiding the use of discontinuous objects, i.e. calculation surfaces and volumes made of

several distinct parts. Currently accepted topologies include vertical lines, for 2D vertical

couplings and vertical planes for 3D simulations. In future developments, possibly all

surfaces described by a system of equations might be adapted for coupling, where an

analytical function can be defined to calculate the distance from the center of a CS cell

or a seine3d node to the vertical coupling boundaries. This is indeed needed to get the

spatial blending functions from which relaxation weights are built.

Couplings are built as instances of C++ classes of seine3d and C structures of CS. It

was intended to make the most of the object-oriented nature of seine3d to allow future

improvements of the coupled model. In the following work and applications, we make

extensive use of the coupling configuration seine3d-CS-seine3d, where the CS model is

applied at a local scale around a marine structure.
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Chapter 3

Coupled simulation of the

propagation of a solitary wave

over a constant depth

Dans ce chapitre, la stratégie de couplage précédemment décrite est appliquée

au cas de la propagation d’une onde solitaire à la surface d’une étendue d’eau

de profondeur uniforme. Deux hauteurs relatives de vagues sont successive-

ment étudiées : 0.3 et 0.5. Une formulation 2D verticale est retenue, dans

laquelle deux instances de seine3d sont chacune couplées à une instance de

CS par le biais de deux zones de recouvrement de leurs domaines de calcul.

De cette manière, la transmission bidirectionnelle de vague peut être testée.

L’onde solitaire se propage théoriquement à vitesse constante tout en con-

servant sa forme. Le profil ainsi que la position de la crête de la solution

numérique sont donc comparés respectivement au cours du temps au profil

de vague initial ainsi qu’à l’abscisse théorique de son sommet. Des arte-

facts numériques récurrents liés à la présence des couplages sont identifiés

et décrits. Les limites de stabilité des calculs sont partiellement testées. On

attend également de la résolution de ce problème physique fondamental des

connaissances quant au comportement du couplage qui puissent être mises à

profit dans de futures études. Ainsi, la pertinence de la relaxation du potentiel

des vitesses à la surface libre, dans les zones de couplage, vers une solution

tenant compte de la modification de la géométrie de surface libre dans seine3d
est évaluée. Les conclusions tirées à cette occasion sont appliquées dans le

reste de ce travail. On traite enfin plus brièvement de la propagation d’une

onde solitaire de hauteur relative égale à 0.5.

71
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3.1 Solitary wave of moderate relative height over constant

depth

3.1.1 Description of the case

As a first test case for the two-way coupling strategy, the propagation of a solitary wave

over a constant depth is a good candidate. This is a two-dimensional vertical (2DV) prob-

lem for which a numerical approximation of a solitary wave solution of the irrotational

Euler equations is computed thanks to the algorithm of Tanaka (1986). Conservation of

wave shape, celerity, volume and energy is theoretically ensured during the propagation

of any exact solitary wave over uniform water depth. Therefore, computing this propaga-

tion problem in our coupled model and tracking errors in the conservation of these wave

parameters gives insight into the performances of this hybrid numerical method. These

relatively light (in terms of computer resources requirements) coupled simulations test the

relevance of the coupling strategy and assess the individual impact on the simulations of

certain elements of this strategy. As an example, the benefits in accuracy and stability

of the relaxation of seine3d free surface velocity potential in the overlapping region, as

dealt with in section 2.6.4, are assessed in this chapter. These calculations also give an

idea of the impact on stability, efficiency and accuracy of certain coupling parameters. In

particular the sensitivity to time step ratio N∆t and overlapping length Loverlap is studied.

It should be noted that the solitary wave solution is relevant in seine3d as potential flow

equations admit a solitary wave solution. At the same time, no such solution exists

for the NS equations due to the presence of the viscous diffusive term (remember that

surface tension effects are not taken into account in the current study). In CS, where

the flow is considered laminar and therefore viscosity is limited to molecular viscosity, it

is assumed that physical diffusion due to viscosity is small compared to the numerical

diffusion inherent to the solution procedure. Hence, even if NS equations do not admit

a solitary wave solution, we can make the assumption that changes to any of the above-

mentioned solitary wave invariants (wave shape, celerity, mass and energy) in the duration

of the simulation are mostly related to numerical aspects of the coupled model and to the

associated numerical errors. This amounts to neglecting dissipation of wave energy taking

place in the bottom boundary layer and at the interface between both phases, as a free-slip

boundary condition is assumed at the bottom.

For the conservation study to be relevant, the initial wave profile should be as close to

the theoretical one as possible. The initialization of the solitary wave is done is a seine3d
domain, through the imposition of the free surface geometry η(x, t = 0), and the velocity

potential φ(x, z = η, t = 0) as well as the normal velocity ∂φ
∂n(x, z = η, t = 0) on the

free surface. To that end, we use Tanaka’s algorithm that is already available for use

in seine3d. The solitary wave crest is initially located at the abscissa x = 0. The wave

then propagates towards a CS domain through a first coupling region and later enters a

second seine3d domain. As already stated, we make use of the capability to define several
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Ωseine3d,1 Ωseine3d,2

Ωcs
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−1
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g

Figure 3.1: Coupled domains and related boundaries. Blue CS cells are cells filled with
water, while red cells are full of air. Pale blue and pale red cells contain a mix of the two
phases.

couplings comprising a CS instance and a seine3d instance in a single simulation of the

current hybrid model. This way, it is possible to verify that the latter enables two-way

wave transmission between the two models. Figure 3.1 illustrates the layout of the different

computational domains.

In this chapter, the problem is solved in dimensionless form using Froude scaling. The

uniform water depth at rest h is selected to make all distances dimensionless, e.g. x′ = x
h .

In particular, the non-dimensional water depth is then h′ = 1. The time scale is chosen

as t0 =
√

h
g to make time non-dimensional as t′ = t

t0
= t
√

g
h . Other variables used in this

chapter are then scaled by one of these characteristic quantities, or a combination of them.

With this choice, the acceleration due to gravity becomes g′ = g
t20
h = 1 in the dimensionless

form of the equations of motion. For the sake of simplicity, primes are omitted hereafter

for all non-dimensional variables.

The whole numerical domain thus extends from x = −12 to x = 48 and has a width

of 1. As its name might suggest, seine3d is a 3D code, its domain should be discretized

with several boundary elements in the transverse direction (at least 4). A moderate wave

height of H = 0.3 is chosen for which stability of computations is ensured with a sufficient

leeway on the values of the major coupling parameters. This way we are able to conduct

a sensitivity analysis of the influence of these parameters.
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Figure 3.2: Close-up view of the meshes around the left coupling region at t = 6. Void
fraction field α(x) in CS domain is shown with corresponding colorbar. seine3d mesh is
displayed in orange.

3.1.2 Description of reference case and first results

3.1.2.1 Case setting

A reference case is built with arbitrary values of the coupling parameters. This serves as

a basis for the sensitivity analysis to come. In both seine3d domains, boundary elements

have an aspect ratio tending to one - whatever the face orientation - as the local free

surface gets close to the resting position. The water column is discretized with 4 elements

in its height. As a consequence of the aspect ratio, 4 elements are used in the width of

the seine3d domains, as well as 96 elements in their length. Overlapping length Loverlap

is set to 4, with as many as 17 seine3d free surface nodes involved in each coupling. The

CS domain, of constant shape, extends from z = −1 to z = 1.5. CS mesh is a uniform

Cartesian grid with 400 cells occupying its length and 100 cells its height, amounting to 12

cells in the height of the solitary wave with an aspect ratio ∆xcs
∆zcs

of 2. Hence, longitudinal

cell sizes are ∆xcs = 0.05 and ∆xseine3d = 0.25. N∆t is set to 10 with ∆tseine3d = 0.1

and consequently ∆tcs = 0.01. In terms of theoretical longitudinal CFL numbers, one can

roughly estimate them as:

CFLseine3d =
∆tseine3d

√
gh

∆xseine3d
= 0.4

CFLcs =
∆tcs

√
gh

∆xcs
= 0.2

(3.1)

Meshes used in each model are presented in figure 3.2 at time t = 6 when the wave enters

CS domain. It indeed shows meshes layout for the first (left) coupling region, given that

both overlapping areas are discretized identically. Void fraction field in CS domain is also

displayed, and it should be noted that free surface smearing due void fraction diffusion is

small, as expected with the selected advection scheme. It is to be noted that relaxation

of free surface potential is disabled in the reference case. Its influence on the simulation
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results is assessed later. This case runs for around 60 time units in 2 hours on a single

HPC node, with 8 cores allocated to each seine3d instance and 2 to CS.

3.1.2.2 Free surface profiles in the reference case

Solitary wave propagation through time and the different coupled domains is depicted for

the reference case in figure 3.3. seine3d free surface profiles are based on raw geometry

results as only the position of free surface boundary nodes is drawn. CS free surface

signal is obtain after post-processing through the subsequent use of Paraview filters Cell

Data to Point Data and Contour, defining a void fraction isosurface from points verifying

α(x) = 0.5. Results look satisfactory: free surface signals are continuous, indicating that

free surface matching is achieved and enabling sufficiently stable calculations. Besides, the

wave profile globally seems to retain its shape through time. Small unexpected secondary

peaks may be observed on the back of the wave, mostly after it leaves the CS domain,

starting from t = 33. The same is seen when the water hump enters the CS domain,

starting from t = 18. A close-up view at these two time instants is shown in figure 3.4,

with an appropriate vertical scale. On this view again, it appears that free surfaces closely

match. It also illustrates the fact that the wave is slightly distorted when transmitted from

a model to another, thus the implemented couplings are not fully transparent. We can

reasonably assume that this phenomenon is mostly numerical as the appearance of spurious

small waves and wiggles is localized in time and space and corresponds to wave passing from

one model to the other, whereas the wave profile seems constant during its propagation in

the CS domain. As already said, the NS equations do not admit a solitary wave solution,

therefore the solitary wave might also suffer from physical diffusion when travelling through

the CS domain. A more detailed study of wave shape conservation is presented in section

3.1.4. It allows a estimate of undesired wave reflection and distortion inherent to the

coupling method. It also finely keeps track of the evolution of wave characteristics, such

as height or width. A simulation identical to the reference one with molecular viscosity

set to zero was then run to assess the amount of physical diffusion. Detailed simulation

results were found indistinguishable from the reference ones, indicating that the influence

of physical diffusion is negligible. We might thus conclude that all spurious phenomena

observed during the travel of the solitary wave through coupled domains and described

above are purely numerical.

3.1.2.3 Overlapping area velocity fields in the reference case

As explained in chapter 1, the current two-way coupling strategy relies on the fulfillment

of two velocity continuity conditions on both sides of every overlapping region.

To check that velocity continuity is ensured, we might look at the velocity fields in both

models for each overlapping area, as shown in figure 3.5. In this figure, three time instants

are used to describe the velocity under the crest of the solitary wave in each overlapping
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Figure 3.3: Time history of free surface profiles for the reference case of a solitary wave
with H = 0.3. Dashed lines represent seine3d free surface nodes.
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Figure 3.4: Close-up view of free surface profiles comprising overlapping regions at time
instants t = 18 (a) and t = 33 (b) where spurious peaks and wiggles are observed.

region. For the sake of clarity, velocity vectors are drawn at every seine3d node located

on one of the vertical lateral faces. CS velocity is then linearly interpolated at these

locations, yielding superimposed velocity fields. These fields match well at most time

instants, whatever the coupling region, with very few discrepancies excepted close to the

free surface when the wave crest leaves the first seine3d domain. At t = 10 indeed,

seine3d free surface velocity near the right side of the seine3d 1/CS 1 coupling region (left

overlapping region in figure 3.1) exhibits a non-physical behaviour, with a diverging value

on the top right corner node. Nevertheless, such instability in the potential domain does

not affect the stability of the simulation too much, as the travel of the hump of water

continues without any major shift: no significant impact is seen on the wave profile at the

corresponding time instant.

To get a better insight into this velocity discrepancy, we can study the velocity component

fields displayed in figure 3.6. If transverse invariance in longitudinal velocity (ux) is almost

respected with only a moderate non-symmetrical peak at one corner, it is not the case for

lateral (uy) and vertical (uz) components. uy is theoretically zero in the whole domain at

any time, and this condition is not verified. uy and uz suffer from singularities at corners

and edges between the coupled face of seine3d (i.e. the one receiving Neumann boundary

condition on φ from CS 1) and the free surface, and between vertical walls and the free

surface. Fortunately in this case it does not lead to the failure of the simulation and does
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Figure 3.5: CS and seine3d velocity fields in Ωoverlap for each coupling in the reference case
of solitary wave propagation with H = 0.3. Due to overlapping results, red and yellow
vectors are not always visible.

not affect the accuracy of the results significantly.

Figure 3.7 shows the fields of the velocity potential and its normal derivative. No singu-

larity on the potential is visible, whereas it is the case for free surface values of φn close

to coupling face Γn
c,seine3d.

All these aspects are similar to the edge/corner instability patterns frequently encountered

on the free surface close to the wavemaker face in simulations with seine3d alone. Grilli

and Svendsen (1990) proposed a nomenclature for such corner issues in fully nonlinear

potential models. See also the PhD work of Mivehchi (2018) for improved treatment

of the 3D corner compatibility conditions in the current potential flow model. seine3d
coupling face is indeed quite close to a vertical wavemaking face in its design. A Neumann

boundary condition on φ is enforced on Γn
c,seine3d. In the meantime, the face vertical

extent is specified through a prior seine3d free surface relaxation step. Therefore is it not

surprising to notice the same instability issues as for the wavemaker side.
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Figure 3.6: Velocity components in the leftmost potential domain (seine3d 1) at the time
t = 10 when free surface instability is detected. It appears that velocity continuity is not
realized at edges and corners related to the face receiving coupling Neumann condition
from CS 1.
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3.1.3 Relevance of free surface potential relaxation

0.63

0.64

0.65
t = 3

φ

0

1

2
·10−2

η

0.4

0.5

0.6 t = 6

0

0.1

0.2

−0.5

0

0.5
t = 9

0.15

0.2

0.25

0.3

8 9 10 11 12

−0.6

−0.5

−0.4
t = 12

x
8 9 10 11 12

0

5 · 10−2

0.1

0.15

0.2

x

φ φrlx η ηcs

Figure 3.8: seine3d free surface geometry and free surface velocity potential in the left
overlapping region in the reference case where computed free surface potential φ is not
relaxed towards reconstructed solution φrlx. Left column : comparison of φ and φrlx.
Right column : comparison of free surface position η computed in seine3d, before free
surface relaxation and CS solution ηcs.

In section 2.6.4, a description is made of the velocity potential relaxation strategy at the

free surface of overlapping regions. As written in section 3.1.2.1, potential relaxation is

deactivated in the reference case. It was indeed found that to compute the propagation of

a solitary wave through coupled domains, adapting the free surface potential to comply

with seine3d free surface changes is not necessary nor beneficial to the simulation.

In this section, we present computational results that illustrate the effect of potential

relaxation and justify this assertion. Nevertheless, it should be noted that in general,

relaxation of seine3d free surface towards CS solution is necessary for both stability and

accuracy in coupled simulations. Figure 3.8 shows free surface geometry and free surface

potential at four time instants when the solitary wave crosses the left overlapping region

common to seine3d 1 and CS 1. φ corresponds to the velocity potential in seine3d 1, as

computed after the first resolution of the boundary value problem, prior to free surface

relaxation. The reader can refer to section 2.6.3 for a reminder of the coupled time stepping

procedure. φrlx is the potential solution built from CS ηcs free surface signal.

It might be seen in this figure that seine3d free surface signal η differs only slightly from

ηcs over the length of the overlapping region. ηcs serves as a reference for free surface
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Figure 3.9: seine3d free surface geometry and free surface velocity potential in the left
overlapping region up to the failure of the simulation when velocity potential relaxation
is used, and comparison with and ηcs and φrlx, respectively.

relaxation. η is indeed forced towards ηcs thanks to a spatially-varying coefficient (see

equation 2.31), so that both profiles exactly match at the right (CS) end of this coupling

region. This explains why a small discrepancy exists between η and ηcs at the left side of

the displayed area at t = 3, that vanishes afterwards. At t = 6, both profiles match over

the full length of the domain, thus the need for and the effect of free surface relaxation

are negligible.

Hence, it is interesting to compare values of φ and φrlx at the same time instant. As the

relaxation of free surface is insignificant, φrlx that is based on ηcs should also be close to

φ. It happens to be the case in most of the coupling area, therefore suggesting that the

potential reconstruction procedure described in section 2.6.4 is relevant.

The same type of conclusions might be drawn from the next time instants, at which one

should also note that free surface positions differ at the very right end of the coupling

region. As only the seine3d corner node is concerned, we link this event to the above-

mentioned corner instability .

Hence, from figure 3.8, the free surface potential reconstruction method seems valid but

potential relaxation does not appear to be necessary to obtain accurate and sufficiently

stable results. Let us now study the effect of the relaxation of φ towards φrlx on the same

solitary wave in figure 3.9. In this figure, simulation results are displayed up to t = 8.4

when the computation fails. From t = 6 to t = 8, φ and φrlx are close to each other, in a
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fashion similar to the reference case. During the same time interval however, free surface

signals do not match as well as before, as the CS profile loses height on the left side of the

coupling region. At t = 8, a strong discrepancy is seen at the corner node on the other

end. This divergence in free surface position worsens up to t = 8.4, when the instability

of seine3d 1 computation is manifest. Corner position error also leads to the computation

of an erroneous value of φrlx at the same time instant.

It appears that the relaxation of free surface potential towards φrlx yields a divergence in

free surface positions between seine3d and CS instances, with the CS profile deviating from

the theoretical solution. The CS wave profile is indeed indirectly modified by the potential

relaxation. A striking finding is that φrlx nevertheless remains close to φ, thus indicating

that φrlx does not depend much on ηcs, at least in this case. A stronger corner instability

than in the reference case in seine3d leads to the failure of the simulation anyway.

3.1.4 Time evolution of errors on wave shape and wave celerity

3.1.4.1 Building a common free surface signal

To compute errors relative to wave shape and wave celerity, it is necessary at first to build

a global free surface signal from the geometry of potential domains seine3d 1 and seine3d
2 as well as from CS void fraction field. For the current 2DV application, results are

saved for every instance of both models at each seine3d time instant, corresponding to a

synchronization step in the coupling strategy. Hence, time interpolation is not needed to

post process results.

As in seine3d results files contain information about domain geometry that is limited to

boundary nodes coordinates and the associated connectivity list, the high-order nature

of the boundary elements might be lost. Bi-cubic B-spline elements are indeed employed

to discretize the boundaries of the potential domains in all the simulations presented in

this thesis. Hence, boundary elements are rendered as planar facets in visualization tools

such as Paraview (Ahrens et al., 2005), causing errors in the representation of the free

surface geometry between nodes. To recover reliable free surface spatial profiles in poten-

tial domains when post-processing 2DV simulations, an interpolation method associating

piece-wise cubic splines to seine3d free surface nodes at every time instant is implemented

in a Python script.

As already stated, in the CS domain, the free surface geometry is not explicitly known

but should be deduced from the void fraction field. The reconstruction of the free surface

in the coupling region taking place during the coupling procedure, as described in sec-

tion 2.5.2, is only valid to get a loosely discretized free surface signal near certain seine3d
boundary nodes. Integrating void fraction field along the vertical in every CS water col-

umn, i.e. at every unique horizontal cell center position, as done in the coupling would

thus prove computationally intensive and not as efficient as available post-processing tools.

Paraview provides the appropriate Contour numerical filter based on linear interpolation



Chapter 3. Solitary wave 2DV 84

that allows to compute void fraction isosurfaces quickly enough for the considered post-

processing task. This tool is used in a Python script, alongside with the above-mentioned

cubic B-spline interpolation method for seine3d free surface, as it is possible to call Par-

aview functions in a Python shell thanks to the Paraview Simple library. Free surface is

then defined in CS in the Contour filter as the set of points verifying α(x) = 0.5. Such

cloud of points is in general sufficiently dense to provide a reliable free surface profile for

visualization purposes.

Furthermore, the overlaying of numerical domains in the two coupling regions requires

specifying how free surface profiles are calculated in these areas. The following and partly

arbitrary choice was made: free surface signal in the overlapping areas reduces to seine3d
free surface signal. This was motivated by the observation that the potential profile is in

general smoother than its NS counterpart, due to the fact that is it explicitly known and

its high-order nature.

From this post-processed global free surface signal comes the ability to compute the wave

height H as the highest position reached by the free surface and the wave crest position

xc as the associated abscissa.

3.1.4.2 Computing errors

Following a rather qualitative description of the simulation results for the reference case

of solitary wave propagation, a study quantifying conservation of wave characteristics is

conducted. To that end, relative errors on wave height (εh), wave crest location (εxc) and

wave width at half height (ε∆x 1
2

) are computed as functions of time:

εh(t) =
H(t)−H0

H0
(3.2a)

εxc(t) =
xc(t)− Ct

h
(3.2b)

ε∆x 1
2

(t) =
∆x 1

2
(t)−∆x 1

2 0

∆x 1
2 0

(3.2c)

H0 stands for the reference wave height, C for the reference wave velocity, and ∆x 1
2

is the

width at half wave height while ∆x 1
2 0

is its initial value.

3.1.4.3 Time history of conservation errors

Time history of errors on wave height, wave crest location and wave width are displayed

in figure 3.10. Wave crest passing in the middle of successive coupling regions are shown

under the form of colored vertical lines. These events match most major curve inflections

quite well.

We see that wave height error is negligible for most of its travelling time in the initial
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potential domain seine3d 1, corresponding to the first 5 time units when the influence of

CS on wave propagation in the potential domain is still small. From approximately t = 5

to t = 10, wave crest crosses the leftmost coupling region. Approximations on height

computation lead to a noisy height signal but a general trend is seen in which wave height

decreases, with the associated relative error εh reaching −0.01. Starting from t = 10,

seine3d 1 domain is close to recovering its resting position as the water hump travels in

the CS domain while regularly losing height until around t = 23 when the wave crest

crosses the middle of the second coupling zone. Then, in domain seine3d 2, wave height

increases again and later stabilises around an error of −0.014. This graph clearly indicates

the distinct behaviours of the solitary wave in the different domains. Resolution of the NS

equations with VOF capture of the free surface is known to suffer from spurious numerical

diffusion, and it seems that this phenomenon can be observed here. It should be noted

that the fully nonlinear potential flow model has proved able to propagate waves over long

time and distance with very good conservation properties. The height signal in the left

overlapping region features many more disturbances and a higher global height variation

than in the right one. The existence of couplings is globally detrimental to the simulation

accuracy, even if such effect remains limited. The lowest wave height is not reached at the

end of the simulation as wave grows while entering domain seine3d 2. This phenomenon

is more annoying than excessive diffusion because it means that numerical errors lead to

an increase in wave energy.

Crest location error plot shows higher error levels, with a strong peak exactly matching

the passing of the wave crest in the middle of the first coupling region. The noise level of

the signal is also globally higher than for the previous signal. Crest location stays close

to the calculated theoretical value while the solitary wave propagates in seine3d 1 domain.

The subsequent series of high amplitude wiggles around t = 9 during wave transmission

from seine3d to CS could be caused by errors in the computation of wave crest position.

εxc and therefore wave celerity in the CS domain gradually increases as simulated wave

slightly overtakes its theoretical counterpart. This advance steeply grows around t = 22 as

the crest enters seine3d 2, then wave slows down continuously, down to a celerity inferior

to the theoretical value.

The last curve, showing the variations of wave width calculated at half wave height displays

the most pronounced coupling artifacts. Similar to previous error measures, ε∆x 1
2

remains

very close to its initial value up to the moment when wave crest passes in the CS domain.

Starting from around t = 9, the wave widens up to t = 23, when wave width diminishes

and stabilises with a relative error under 0.01.

Observations about solitary wave propagation through the different coupled domains might

be summarized in the following way: at first, the solitary wave propagates while globally

retaining its characteristics. As the wave crest enters the CS domain, the wave starts

vertically shrinking and widening while it also accelerates. After its reentry in a potential

domain, the solitary wave regains a part of the height it has lost, while its width slightly

diminishes and it decelerates.
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Figure 3.10: Time evolution of errors on wave height, crest position and width at half
wave height for the solitary wave with H = 0.3. Time instants when wave crest passes in
the middle of a coupling region are marked with vertical colored lines.
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3.1.5 Influence of the principal coupling parameters

According to each code’s behaviour when run alone, the quality of coupled simulations

is strongly influenced by spatial and temporal discretizations in both models. An in-

depth study of the sensitivity of coupling results to spatial and temporal discretization

levels is nevertheless out of the scope of the current section. Hence, we focus on the

influence of two major coupling parameters on the results. The need for the models

to synchronize at certain time instants implies that temporal discretizations can not be

established independently. Assessing the sensitivity of the results to time step values

∆tcs and ∆tseine3d in each model thus implies that the influence of the time step ratio

N∆t = ∆tseine3d
∆tCS

is addressed. As N∆t increases and for given spatial and temporal CS
discretizations, seine3d iterations and MPI coupling transmissions become less frequent,

hence lowering the computational burden. N∆t is therefore a key parameter of the coupling

strategy. The overlapping region length Loverlap is of central interest too. Keeping it the

smallest possible reduces the size of numerical domains and thus limits the computational

cost associated to the execution of each model alone. Besides, as the overlapping region

grows, and for a given size of seine3d boundary elements, the number of seine3d free surface

nodes where CS free surface position is calculated gets larger. The computational costs of

free surface extraction and consecutive free surface transmission to seine3d thus increase.

However, diminishing Loverlap also diminishes the length over which seine3d free surface

geometry and potential are relaxed towards CS solution, potentially triggering instabilities.

It should then be possible to find trade-offs concerning the value of these two coupling

parameters from the results presented below. Hence, we study the impact of variations

of N∆t and Loverlap on the coupled simulation of the propagation of a solitary wave with

H = 0.3 over a uniform depth. As in the reference case, free surface potential relaxation is

deactivated. seine3d instances are attributed 8 central processing unit cores (CPU cores)

each while CS instance uses 2.

3.1.5.1 Influence of time step ratio

Fixed temporal and spatial discretization are used for CS, with ∆tcs = 0.01 and ∆xcs =

2∆zcs = 0.05. As a consequence, the CFL number for CS is set to:

CFLcs =
∆tcs

√
gh

∆xcs
= 0.2. (3.3)

seine3d boundary elements are such that ∆xseine3d = 1
4 and ∆xseine3d = ∆yseine3d. To

modify N∆t while CS time step is fixed, ∆tseine3d varies according to table 3.1.

It is to be noted that seine3d alone is able to simulate the propagation of the same solitary

wave with these values of ∆tseine3d and CFLseine3d. Computations are considered stable,

and their results are displayed in coming figures, if the wave reaches the right potential

domain (seine3d 2) without major trouble. Otherwise, the results and associated errors on
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Figure 3.11: Influence of time step ratio N∆t on the characteristics of a solitary wave with
H = 0.3 propagating over a constant depth. Only results from stable simulations are
shown.
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Table 3.1: N∆t and associated seine3d time and space discretizations.

N∆t ∆tseine3d CFLseine3d

1 0.01 0.04
5 0.05 0.2
10 0.1 0.4
15 0.15 0.6
20 0.2 0.8
30 0.3 1.2
50 0.5 2

wave height, crest position and width are not shown. Results are presented in figure 3.11,

showing that computations with N∆t taking values of 1, 5 and 50 failed. In all these three

cases, the hump of water did not manage to pass from seine3d 1 to CS 1, and simulations

respectively stopped at time instants t = 8.3, t = 11.4 and t = 11 due to a failure in the

execution of seine3d 1. Determining the exact phenomenon causing these failures exceeds

the scope of the current section.

Errors on H, xc, and ∆x 1
2

with N∆t = 10, corresponding to the above-mentioned reference

case, are drawn in black. Looking at the whole network or curves, we note that only the

case with N∆t = 30 differs noticeably from the reference, nevertheless in this latter case

absolute error levels remain reasonably low. The observations made in the analysis of

the reference computational results globally hold for the four displayed cases. It seems

therefore that the time interpolation method used to provide coupling boundary conditions

to CS between seine3d time instants is accurate enough for time step ratio values ranging

at least from 10 to 30.

As already written, the computational effort theoretically diminishes as N∆t increases.

Computational resources employed are kept constant throughout the simulations, thus

we can expect a speed-up in calculation time with growing time step ratio. Figure 3.12

gives an idea of the dependence of computational speed, defined as the ratio of physical

time over computing time, on N∆t. It is found to evolve linearly with a slope of around

0.0005. Besides, it should also be noted that computational speed can be considered

constant throughout a given simulation. As an example, running a coupled simulation

with N∆t = 20, thus with 50% less seine3d iterations than in the reference case but the

same number of CS time steps, is not twice as fast but approximately 66% faster. In

other words, in the current 2DV solitary wave case, a computational bottleneck exists in

seine3d instances, as global computing time can be greatly reduced without diminishing the

number of computed CS instants. seine3d computational burden mostly divides into the

computation of the potential Laplace problem on one side, and the extraction of internal

velocity values aimed at CS on the other. As stated in section 2.7.2 and illustrated in

figure 2.10, the same number of MPI processes is employed in seine3d and CS for a given
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Figure 3.12: Computational speed, expressed as the ratio of physical time over computing
time, for different values of N∆t.

coupling, to deal with velocity extraction and exchange. CS 1 uses 2 MPI processes which

run on 2 CPU cores, hence each established coupling ({seine3d 1, CS 1} and {CS 1, seine3d
2}) is associated with a single CS processor. If the boundary integral problem itself is

the bottleneck of the coupled simulation, increasing the number of CPU cores for seine3d
instances should speed-up the simulation. At the same time, if the limiting operation is the

extraction of coupling velocity values, such increase will not accelerate the computation

much.

Another simulation is then run for the reference solitary wave case (N∆t = 10) with 16

processors per seine3d instance instead of 8. We measure a speed-up of around 53%. It is

thus clear that the resolution of the Laplace problem in time is the limiting operation for

the presented 2DV solitary wave cases. One may find surprising that potential computa-

tions end up needing that much computational resources as compared to the NS one, but

it should be recalled that CS is 2D whereas seine3d is 3D with several boundary elements

placed in the width of its domain.

3.1.5.2 Impact of overlapping region’s length

The other parameter that emerges when seine3d and CS are coupled is the geometry of

the overlapping region, thus its length Loverlap in 2D. In the simulations whose results

are displayed in figure 3.13, Loverlap takes the values 4, 2 and 1 where 4 is used in the

reference case. A case with Loverlap = 1
2 was launched and failed. As ∆xcs = 1

4 , such a

short overlapping length only allows to place 3 seine3d nodes on the free surface of the

coupling region. Obviously this value is too small, and should be taken as strict lower

bound for further simulations.

Case with Loverlap = 2 behaves similarly to the reference, with globally acceptable error

levels. However it locally features high absolute levels of εxc around t = 8 when the wave

passes from seine3d1 to CS 1. Case with Loverlap = 1 shows a better time profile of εxc but
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Figure 3.13: Influence of the width of overlapping regions on characteristics of a solitary
wave with H = 0.3. Only results from stable simulations are shown.
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also a concerning patterns when it comes to εh, with strongly re-increasing wave height

when the crest arrives in seine3d 2.

A value of 4 then seems to be a correct trade-off for 2DV solitary wave simulations,

as Loverlap has little influence on the computational speed. Indeed as explained in the

previous sub-section, the main computational bottleneck for this case is the boundary

integral problem, therefore greater free surface position extraction and transmission cost

in CS related to a longer overlapping region are negligible. Furthermore, reducing Loverlap

from 4 to 2 for example only slightly reduces the number of seine3d nodes, and thus the

size of the potential problem’s matrix.

3.2 Solitary wave of high relative height over constant depth

In this section, we present the results of simulations of solitary wave propagation with

H = 0.5. A first try is made with the exact same setup as used in the reference case with

smaller wave amplitude: N∆t is set to 10 and Loverlap to 4. Meshes are kept identical.

This combination of numerical parameters does not prevent the simulation from diverging

around t = 9 when the wave crest leaves seine3d 1 domain to enter CS 1. Again, seine3d 1 is

the failing model instance. A view of its mesh, along with CS 1 void fraction field, is shown

in figure 3.14. Note that the x axis is reversed, as the free surface saw-tooth instability

is at first limited to the side with equation y = 1. This time, no corner instability is

detected, as opposed to what happens in the reference solitary wave case.
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Figure 3.14: Close-up view of the meshes in the left coupling region at t = 8.9 just before
the solitary wave simulation with H = 0.5 fails. The void fraction field α(x) in the CS
domain is shown with corresponding colorbar. Note x-axis is inverted. seine3d mesh is
displayed in orange.

Other trials were made with different values of N∆t, Loverlap, as well as time and space

discretization levels in seine3d and CS. None of these changes allowed satisfying simulations

of the high amplitude solitary wave propagation, as most of them stopped at approximately
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the same time instant.

In a rather counterintuitive but efficient manner, changing the length of seine3d 1 domain

and leaving the overlapping region unmodified yielded substantial improvements. The left

potential domain, spanning from x = −12 to x = 12 with x = 0 as the initial crest abscissa

in all previous simulation setups, was shortened to [−8; 12].

The associated free surface profiles are presented in figure 3.15. Wave propagation is

satisfactory. Spurious small waves are seen on the back of the wave, illustrating again the

fact that the two couplings are not fully transparent.

The time history of errors on wave height, wave crest position and wave width is shown in

figure 3.16. The time profiles are clipped after t = 30 as the solitary wave starts interacting

with the fully reflective vertical wall at the right end of the seine3d 2 domain afterwards.

On average, error levels are higher than in the case with H = 0.3. Indeed, the solitary

wave loses up to 4% of its height. As previously observed, it accelerates while passing

from seine3d 1 to CS 1 and decelerates while entering seine3d 2 domain. This constant

decrease in speed might be due for part to the existence of the wall, at the position of

which the wave speed should drop to 0. Guillou et al. (2000), using an analytical solution

formulated by Laitone (1960), established that the interaction of a solitary wave with a

vertical wall might be neglected if the distance d from its crest to the wall verifies:

d ≥ 6.9

2

√
1

H
(3.4)

It should be recalled that d is normalized by the unitary water depth h, as is H. With

H = 0.5, we find that d should be greater than 10, therefore xc should stay below 38. A

look at the free surface profiles tells us that xc = 38 when t = 31.3. Therefore continuous

wave slow-down seems quite independent from wave reflection at the wall. Besides, the

moving hump of water tends to widen during its travel, as the evolution of ε∆x 1
2

tells.

While it is possible to recreate and propagate highly nonlinear waves in the present coupled

model, it comes at the cost of constraining choices relating to the geometry of seine3d 1

domain. For that reason, this solitary wave study is not pushed further, as the coupled

model has shown satisfactory behavior with moderately high solitary waves.
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Figure 3.15: Time history of free surface profiles for a solitary wave with H = 0.5.
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Figure 3.16: Time evolution of errors on wave height, crest position, and width at half
wave height for the solitary wave with H = 0.5. Time instants when wave crest passes in
the middle of a coupling region are marked with vertical colored lines.
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3.3 Conclusion

In this chapter, it has been demonstrated that the hybrid strategy succeeds at simulating

the propagation of a solitary wave over constant water depth through multiple coupled

model instances. Indeed, the traveling solitary wave manages to cross successive and

heterogeneous numerical domains and overlapping regions without excessive changes of its

characteristics. Such observation, made for moderate as well as important relative wave

heights, allows to verify that the implemented coupling procedure is bidirectional.

The developed model shows a relative flexibility, as various combinations of coupling pa-

rameters, as well as time and space discretizations, enable quite accurate computations.

However, limits of the hybrid procedure were also highlighted, especially in terms of sta-

bility. Stability issues appear to systematically stem from a seine3d instance, and appear

to be correlated to certain values of the major coupling parameters. General rules aiming

at setting the values of the latter were thus stated. These should be confirmed or reversed

by further studies.

Hence, the BEM-VOF coupling is not fully transparent and is a source for numerical

instability and errors, but satisfactory simulation results were obtained without too much

trial and error iterations in the search for working settings. This is an auspicious finding

when it comes to simulating other 2DV and 3D wave problems. It should be noticed that

a similar case of solitary wave propagation, but with a smaller relative wave height of

H = 0.20 was investigated with an overlapping 3D two-way coupling model in the already

mentioned article of Lu et al. (2017). In the reported simulation, the wave only travels

from an initial potential domain to a viscous domain, hence a unique coupling region is

considered. It appears that in this case, errors on wave height and velocity are greater than

in the current study. Zhang et al. (2013) also report on a solitary wave propagation with

relative height close to H = 0.6, to which results presented in section 3.2 could be related.

Their non-overlapping domain decomposition strategy succeeds at propagating such a

solitary wave through domains of both types. Discrepancies are noticed, as compared

to some numerical reference results, in term of wave height and local higher order free

surface elevation derivatives when the wave crest crosses the common boundary. The

results presented in the current work for H = 0.5 in figure 3.16 (b) seem smoother and

more accurate.

Investigations were also conducted about the relevance of relaxing the free surface velocity

potential in seine3d, in overlapping regions, towards a value accounting for changes made

to the free surface position. It seems that it is of no interest, and even detrimental, to

either stability or accuracy of the coupled computations, at least in the way it is currently

implemented. Therefore, potential relaxation is disabled in coming simulations. Again,

this calls for further investigations, as relaxing the free surface potential could help increase

the quality of hybrid results as well as it could widen the method’s range of application.



Chapter 4

2DV regular waves simulations in

the hybrid model

La méthodologie de couplage est mise en œuvre dans ce chapitre pour simuler

la propagation d’une houle régulière non-linéaire en profondeur constante,

en deux dimensions. La géométrie du domaine d’étude, ainsi que les ca-

ractéristiques de la houle incidente sont issues des expériences menées dans le

cadre du projet WAS-XL. La houle retenue présente une période de 15s et une

cambrure égale à 1
40 . Comme préalable à la réalisation de calculs couplés, la

génération, la propagation et l’absorption de houle sont reproduites séparément

dans des simulations n’impliquant qu’un seul code de calcul à la fois. De cette

manière, les performances de chacun d’eux sont évaluées, et des combinaisons

concluantes de paramètres numériques, portant notamment sur les niveaux

de résolution spatiale et temporelle, sont proposées. A la suite de cela, une

simulation couplée est conduite dont les résultats sont présentés de manière

détaillée. Il est attendu que les choix de paramètres adimensionels retenus

pour cette dernière puissent être directement appliqués à d’autres simulations

en partageant le même domaine d’étude bidimensionnel, sur toute une gamme

de périodes de houle notamment. On suppose également que la succession

d’étapes décrite dans ce chapitre a valeur de guide pour de futures simulations

couplées portant sur des problèmes d’interactions vagues-structures différents.

Il est également espéré que l’essentiel des choix numériques opérés puisse être

reproduit à l’identique avec succès dans des simulations en trois dimensions.

97
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4.1 General considerations about 2DV regular waves cou-

pled simulations

When looking for a second test-case for the developed coupled model, the simulation

of 2DV nonlinear regular waves naturally comes to mind. Indeed it is a necessary step

towards the calculation of 3D wave-structure interaction in periodic waves that is the final

aim of this work. The experimental outputs of the WAS-XL (Wave loads and soil support

for extra large monopiles) campaign Dadmarzi et al. (2019) are used as reference results

for the computation of regular wave forces on a vertical cylinder representing a monopile

OWT foundation. To set-up the 2DV study detailed in the current section, we then choose

to use WAS-XL incoming waves parameters and domain geometry, in order to validate

the generation, propagation, transmission from one coupled domain to the other, and

absorption of periodic waves. Such preliminary work therefore enables choices to be made

in terms of spatial and temporal discretizations in both models, as well as those related

to the coupling parameters Loverlap (length of overlapping region) and N∆t (time step

ratio), with the intention of reusing most of them for later 3D studies. Better knowledge

of the coupled model’s behavior is also expected. As generation and absorption of regular

waves are conducted in potential domains exclusively, correct absorption parameters in

seine3d should be found prior to further tests. A quick analysis is realized and presented

with this aim in mind. The nonlinear wave theory applied to generate waves is the so-

called streamfunction method, or more precisely the Fourier series approximation of the

streamfunction theory of Dean (1965), already implemented in seine3d. A depth-uniform

horizontal current is added to the incident wave kinematics so that the net mass flux,

averaged over a wave period, is zero, following Grilli and Horrillo (1997). This is equivalent

to cancelling the Stokes’ drift. Most coupled simulation results presented in this chapter

are conducted with the lowest wave steepness ε = H
λ = 1

40 encountered in Dadmarzi et al.

(2019), where H and λ are wave height and length respectively. Nevertheless, this 2DV

study also serves the goal of determining the hybrid model limits, in particular in terms

of wave steepness. Thus, some results with the highest steepness used in Dadmarzi et al.

(2019) (ε = 1
22) are also presented.

4.2 Global simulation setup

4.2.1 Design waves from WAS-XL campaign

The wave steepness, period, and water depth to be tested in the coupled model are se-

lected among WAS-XL experimental values. Contrary to the solitary wave case, here

dimensional versions of spatial and temporal variables are used to make the comparison

of the simulation outputs with WAS-XL results straightforward. Numerical results are

obtained at full scale, while a 1:50 Froude scaling is selected for the models used in wave

basin tests. Three wave periods of 9, 12, and 15 s are chosen that cover most of the span
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of the experimental wave periods, ranging from 6 to 16.5s in Dadmarzi et al. (2019). To

begin with, numerical simulations are set with the lowest depth value of 27 m and the

smallest steepness ε = H
λ = 1

40 where H is the wave height.

Such a definition of wave steepness slightly differs from the one used in Dadmarzi et al.

(2019). In the WAS-XL campaign indeed, steepness is defined as first order wave height

divided by wavelength. It seems that the use of such definition involving the first order

wave height and not the total wave height has to do with constraints related to the wave-

making device employed in the wave basin. The motion of such piston-type wavemaker

appears to be sometimes set according to linear wave theory, whatever the target wave

steepness. Hence it calls for the use of the first order wave height in the calculation of

the steepness. For strongly nonlinear waves, the wavemaker thus fails in that case at

reproducing the target wave height and generates waves whose amplitude is lower than

the desired value. In Dadmarzi et al. (2019) however, it is stated that a second-order

correction of the piston motion is applied, to better account for the nonlinearity of the

generated wave. In the current coupled methodology, fully-nonlinear wave kinematics

are imposed at the inlet boundary of the seine3d upstream domain to generate waves,

therefore steepness is computed as ε = H
λ with H the total wave height. Wave height

and length are specified following the above-mentioned streamfunction algorithm of Dean

(1965), in which no closed-form relation exists to link these two parameters. We then try

a few subsequent combinations of wave height and length to roughly converge towards the

desired steepness value, following a trial-and-error approach.

Characteristics of the waves with ε = 1
40 used in this 2DV study are summarized in table

4.1. It appears that the simulated waves all belong to the intermediate depth regime, as

Table 4.1: Characteristics of simulated waves with steepness ε = 1
40 and h = 27 m.

T (s) λ (m) H (m) h
λ

9 114.446 2.86 0.236
12 171.366 4.28 0.158
15 226.673 5.75 0.119

for all three wave setups the relative water depth satisfies: 1
20 <

h
λ <

1
2 .

4.2.2 Numerical domains

The hybrid numerical domain employed for coupled simulation is depicted in figure 4.1.

It should be thought of as a projection of the 3D domain featuring the monopile on a

vertical plane. In the WAS-XL experimental setup the distance between the monopile,

located at x = 0 m and the wave generation side is specified as the abscissa of the latter

is set to x = −763 m. Thus this fixed-length upstream generation and propagation region

represents a variable number of wavelengths, depending on the wave period considered.
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Ωseine3d,1 Ωseine3d,2
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Damping
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Figure 4.1: Coupled domains for periodic waves simulations. Blue CS cells are cells filled
with water, while red cells are full of air. Pale blue and pale red cells contain a mix of the
two phases. CS mesh and seine3d boundary elements are drawn for illustrative purposes
only. Horizontal proportions are realistic and correspond to the case of T = 15 s. The
area in shaded grey represents the damping region in Ωseine3d,2, long of one wavelength
(reported in table 4.1).

For the largest wave with a period of T = 15 s (illustrated in figure 4.1), it still amounts

to more than 3 wavelengths. This should be sufficient to accurately generate waves in

potential domain seine3d 1. As can also be seen in the figure, the upstream region is

mainly occupied by seine3d 1 domain, CS domain being restricted to one wavelength

centered on x = 0 m.

On the contrary, the distance in the experimental wave basin from the monopile to the

beginning of the absorbing beach is not specified. It is therefore arbitrarily set to 3

wavelengths. Again, we make the assumption that such distance will be large enough

to propagate and absorb waves - mainly in potential domain seine3d 2 - with limited

spurious interactions in 3D simulations between wave diffraction by the vertical cylinder

and possible wave reflections on the downstream boundary of domain seine3d 2. As stated

below, a one wavelength-long region at the downstream tip of seine3d 2 domain is used

to absorb waves going out of the domain. Hence, a distance of 3λ is dedicated to wave

propagation downstream of the virtual position of the bottom mounted cylinder.

4.3 Choosing the right parameters and discretization levels

in seine3d

Prior to applying the coupling methodology to simulate regular waves, it is necessary to

ensure that seine3d alone is able to generate, propagate, and absorb travelling waves. As

already mentioned, generation and damping of waves are realized in potential domains

during the hybrid computations, thus we should first make sure that they are mastered in
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seine3d. The latter code should also prove capable of providing correct vertical profiles of

velocity, thus anticipating their transmission to a CS instance.

4.3.1 Wave damping in seine3d

The major aspects of the wave damping strategy are described in this section. Calculation

of damping region’s reflection rate is then explained, and an attempt is made to minimize

it.

4.3.1.1 Numerical damping strategy

The damping device made of a parabolic absorbing beach associated with wave dampers

in the tank facility is numerically recreated in the downstream potential domain seine3d
2 with the help of a damping region. It is based on ad-hoc terms Dη and Dφ added to

the right hand side of equations 2.9 and 2.10, respectively describing kinematic and dy-

namic free surface boundary conditions, as presented in section 2.1. As the time-marching

strategy selected in seine3d is explicit, the damping terms are built from geometrical and

kinematic values at current (n) time instant. Damping terms write:

Dη = − γabs(z − ηref (x))

(
x− xabs
Labs

)2

if x > xabs

Dφ = − γabs(w − wref (x))

(
x− xabs
Labs

)2

if x > xabs

(4.1)

where x and z are coordinates of any seine3d free surface node whose position vector is x

and whose vertical velocity is w. ηref (x) and wref (x) stand for reference values towards

which the vertical position and velocity of free surface nodes are forced. In the case of a

damping region, these values are those of the hydrostatic solution for the undisturbed free

surface:
ηref = 0

wref = 0
(4.2)

xabs and Labs are the starting abscissa and horizontal extent of the damping region respec-

tively. A quadratic progression of Dη and Dφ on x is used. γabs is the damping strength,

or damping intensity. If the same numerical value is used for γabs in both damping terms,

physical dimensions differ. Rigorously speaking, two different variables should be em-

ployed, namely γabs,η and γabs,φ, with s−1 and s−1m−1 as respective units. To simplify the

sensitivity analysis presented later, as already mentioned, it was quite arbitrarily decided

to test the influence of a unique numerical value attributed to both γabs,η and γabs,φ. For

this reason, and for the sake of brevity, damping intensity is simply referred to as γabs,

without any specification of units nor distinction between associated free surface boundary

equations.

γabs and Labs should be tuned by the user, as to the author’s knowledge, no generic
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rule is available to choose their values beforehand. It is also expected that their values

are somewhat related, as the damping intensity needed to absorb a given wave may not

be independent from the distance over which absorption is realized. As in many wave

simulation studies conducted with different physical assumptions and numerical solvers

a length of Labs = λ is often used, this choice is repeated in the current work, bearing

in mind that it is mostly arbitrary. Indeed, although it seems to be a suitable value, no

sensitivity analysis related to Labs and assessing the quality of the wave damping was made

due to time constraints. For an in-depth description of the wave absorbtion strategy, the

reader is referred to Grilli and Horrillo (1997).

The same cannot be said of γabs, whose value is modified in order to minimize wave

reflection on the absorbing region. A quick and non exhaustive study on the influence of

γabs on the reflection coefficient R associated to the damping region is thus realized. The

method used to compute this coefficient is that of Goda and Suzuki (1976). It is described

in detail in Appendix A.

4.3.1.2 Application to the wave with T = 15 s

0 5 10 15 20 25 30 35 40 45 50

−2

0

2

t
T

η
(m

)

Streamfunction

Computed

Figure 4.2: Comparison of the streamfunction and computed free surface signals at up-
stream wave gauge (x1 = 3λ) used for the calculation of reflection coefficient.

A seine3d domain long of 5 wavelengths is used to find a value of γabs minimizing the

reflection induced by the damping layer, in the case of a wave with T = 15 s and H = 5.75

m. The depth value of h = 27 m is retained. As already stated Labs = λ. Wave gauges

are respectively located at x1 = 3λ and x2 = 3.25λ. The selected spatial and temporal

discretization parameters are known to be suited to the simulation of wave propagation

in seine3d alone and will serve as a basis for the coupled simulations to come. seine3d
boundary elements are given longitudinal and vertical dimensions of ∆x = λ

16 and ∆z = h
4 .
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Time step is set to ∆t = T
100 . The CFL is therefore estimated as:

CFL =
√
gh

∆t

∆x
= 0.172 (4.3)

The duration of the simulation is set to 50T . Between 5 and 6 wave periods are computed

in an hour with 16 CPU cores on the HPC cluster Gaia.

Figure 4.2 shows the streamfunction and simulated free surface position time histories

in the most advantageous case with γabs = 1 and R = 1.2%. Such a reflection rate is

satisfactory and even though lower values may be attainable, they are not sought in this

work. It should interestingly be noticed that the simulation takes approximately 20T to

stabilize, with the occurrence of a few overshoots. Hence making such simulations last

for 50T seems a reasonable choice, allowing to use 20T or 30T for the spectral analysis

of the signals. Reflection rate R is also assessed for a few other values of γabs. Results

0 1 2 3 4 5

100

101

102

γabs

R
(%

)

Figure 4.3: Influence of damping intensity on reflection coefficient measured upstream of
the damping region.

are depicted in figure 4.3. It can be seen that the influence of damping intensity on wave

absorption in seine3d conforms with what is intuitively expected. Indeed R reaches a

minimum for a given value of γabs. As γabs increases, the damping region behaves more

and more like a solid vertical wall. Thus if γabs is too high, strong wave reflection occurs,

limited to the upstream part of the damping region. Conversely as γabs decreases, the

absorbing layer tends to full transparency. For too small values of damping intensity, the

waves are able to go through it without being sufficiently attenuated. Reflection then

occurs on the downstream boundary of the numerical domain, that acts as a vertical wall

imposing the nullity of the normal component of the velocity.

Some further tests were conducted on the same setup with different values of ∆x and ∆t.

Very few changes to the previous results were noticed. Even if such sensitivity analyses

were not designed to be exhaustive, it might reasonably be assumed that the optimal value

of γabs does not depend on the spatial and temporal discretization levels.
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This damping behavior still holds in the case of the other design waves considered in this

study. Indeed, the same value of γabs = 1 also yields very low reflection rates for waves

with T = 12 s and T = 9 s.

This is very interesting, as it implies that using Labs = λ and γabs = 1 should suffice to

allow for efficient wave absorption in every regular wave coupled simulation of the present

test conditions. On the contrary, wave damping in NS computations using damping layers

built on source terms added to the momentum conservation equations and/or void fraction

transport equation was found heavily dependent on incident waves characteristics as well

as spatial and temporal resolutions. This way important time and efforts are saved in the

selection of well-suited numerical parameters for the hybrid computations.
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4.3.2 Choosing appropriate parameters for seine3d simulations

In the previous section, basis values of ∆x, ∆z and ∆t have been introduced and employed

in 2DV regular waves simulations with seine3d alone. Here, to evaluate more precisely the

quality of such simulations, errors on wave height and phase shift are computed and tracked

for the whole duration of the calculations.

4.3.2.1 Errors on wave height and phase

Wave height error and phase shift calculations are realized in a post-processing stage.

They both rely on automatic detection of local maxima in the simulated free surface signal,

thanks to the Numpy function already used in section A to establish FFT windows. Once

abscissa and ordinate of each local maximum are known, they are compared to those of

the nearest (in time) streamfunction local maximum, as predicted by the streamfunction

theory. Normalized wave height error εh and phase shift εφ in degree are then defined as:

εh =
ηmaxsim. − ηmaxan.

H

εφ =
360 (tmaxsim. − tmaxan. )

T

(4.4)

where ηmaxsim. and ηmaxan. are local free surface maxima of the simulated and streamfunction

signal respectively. tmaxsim. and tmaxan. are the corresponding time instants.

4.3.2.2 Influence of spatial and temporal resolution levels on wave height and

phase errors

To test the values of ∆z and ∆t used so far, a series of seine3d simulations is run with

two values of ∆t (∆t = T
100 and T

200) as well as two different values of ∆z. The latter is

replaced with Nz, with the following relation:

Nz =
h

∆z
(4.5)

It should be noted that the influence of ∆x is not treated here, for the sake of brevity.

As very few discrepancies were noticed between cases using ∆x = λ
16 and ∆x = λ

32 , only

results with the largest value of ∆x are displayed. Again as exhaustiveness is not sought,

time evolution of εh and εφ are presented in figure 4.4 with three combinations of ∆t and

Nz. Time values are restricted to [20T, 50T ] in accordance with what was observed for

the free surface signal. It appears that the wave height error is almost uninfluenced by

changes made in the time step size and number of elements in the height of the water

column. εh fluctuates between 2% −2.5% approximately, with a sensible peak at t = 30T .

Normalized wave height error then stabilizes around −2% for the rest of the simulation.

This peak is correlated to a phase shift extremum below 5°. Values of εφ seem slightly
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Figure 4.4: Phase shift (b) and relative error on wave height (a) at x = 0 m for seine3d
alone. Longitudinal dimension of seine3d boundary elements is set to ∆x = λ

16 .

more sensitive to Nz, as compared to εh. Again, influence of ∆t is found negligible and

the fluctuation of phase shift values diminishes after t = 30T .

From these curves and figure 4.2, it also appears that almost 30 wave periods are necessary

to reach a relative steadiness of the wave characteristics in this seine3d simulation.

Global error levels remain satisfactory, but prior to validating a set of seine3d numerical

parameters for future coupled simulations, it is useful to check the accuracy of wave kine-

matics. This way we get a last insight into the capabilities of seine3d alone at simulating

2DV regular waves.

4.3.2.3 Checking the vertical profiles of velocity in seine3d

It has been established that the simulated and streamfunction free surface time profiles

match quite well, even with the default seine3d numerical parameters : ∆x = λ
16 , Nz = 6

and ∆t = T
100 . We now make sure that vertical profiles of velocity components obtained by

seine3d comply with the streamfunction ones built from the streamfunction algorithm. It is

of central interest, as the coupling methodology relies on the exchange of vertical profiles

of velocity between seine3d and CS. Correct kinematics under the wave are required in
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seine3d domains for the hybrid simulations to be accurate. Such a comparison is displayed

in figure 4.5 at 10 time instants between t = 49T and t = 50T . Simulated velocity profiles

are interpolated from the values at mesh nodes thanks to the Slice filter of Paraview. Nz

points still make up the vertical profile after the filtering operation.

Overall, velocity profiles match quite well, and as in the case of wave height and phase

errors, it is difficult to distinguish solutions corresponding to the various combinations of

parameters tested. Noticeable discrepancies take place between t = 49.6T and t = 49.8T

for horizontal velocity and at t = 49T for vertical velocity, at the very end of the simulation

time.

We might therefore conclude that spatial and temporal discretizations employed as default

values in seine3d calculations, namely ∆x = λ
16 , Nz = 4 and ∆t = T

100 , leading to a CFL

of 0.172 are adapted for further use in coupled simulations with ε = 1
40 and T = 15 s. It is

also assumed that the same normalized parameters are also fitted for seine3d computations

with wave periods T = 12 s and T = 9 s and the same wave steepness. Hence the above

study is not repeated for these two other setups, for which only results of final 3D hybrid

simulations will be presented. These spatial and temporal discretization levels thus serve

as a basis to model the propagation of regular waves in coupled potential domains, but are

adapted to suit constraints inherent to the couplings with CS instances. This is explained

in following sections.
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Figure 4.5: Vertical profiles of seine3d velocity at the virtual abscissa of the monopile
(x = 0.0 m) during the 50th wave period for several values of ∆t and Nz. ∆x is set to λ

16 .
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4.4 Improving CS simulation results

Similarly to what has been done with simulations involving only seine3d, a correct combi-

nation of time step and computational cells size is sought for CS, for a wave steepness of
1
40 .

4.4.1 Simulation setup for tests in CS

A numerical domain long of 4 wavelengths is used. One wavelength is dedicated to wave

generation at one end of the domain, whereas a wave damping region of the same length

occupies the other end. Appart from the coupled boundaries, the vertical walls and the

domain bottom are attributed Symmetry boundary conditions in CS, equivalent to a slip

condition for the velocity, consistent with the fact the wall boundary layers are neglected.

Homogeneous Neumann conditions are imposed to void fraction and pressure. A Imposed

Pressure Outlet boundary condition consisting of a Dirichlet boundary condition on pres-

sure alongside with homogeneous Neumann conditions on the velocity components and

void fraction is set at the top of the domain. A detailed description of the different types

of boundary conditions in CS may be found in the theory guide (Code Saturne develop-

ment team, 2019).

To reduce the number of cells in the associated computational mesh, the vertical dimension

of the cells is not uniformly distributed. Indeed, and as a default choice, ∆z is set to H
20

around the free surface, and it gradually increases up to H
4 near the floor and ceiling of the

CS domain. With the same goal in mind, a longitudinal cell aspect ratio of 4 is chosen in

the vicinity of the free surface, with ∆x = H
5 . A first value for the CS time step size was

selected based on two previous results, namely the fact that ∆tseine3d = T
100 was found

to be a correct value for seine3d regular wave simulations, and that time steps ratios in

the order of 10 or 15 proved relevant in coupled simulation of solitary wave propagation.

Thus the step size verifies ∆t = T
1500 . The CFL value becomes:

CFL =
√
gh

∆t

∆x
= 0.14 (4.6)

Note that some of these choices are somewhat challenged in a coming section 4.4.4. It

was also decided to keep using conforming hexahedral meshes in simulations involving CS
only, at the cost of using rather high cell aspect ratios. Indeed, it should be recalled that

only conforming grids are dealt with in the coupling strategy, or at least meshes with

conforming parts in the overlapping regions associated to coupling instances.

Wave generation is ensured by a Dirichlet condition on velocity and void fraction at the

upstream (inlet) boundary face associated to an additional source term in the void fraction

transport equation. Vertical position reached by the free surface at the inlet face, as well

as vertical profiles of both velocity components ux and uz, needed to set the Dirichlet

condition, are provided by a program implementing the semi-analytical streamfunction
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wave algorithm of Fenton (1999). A negative homogeneous horizontal current is added

to ux to ensure that Stokes’s drift is cancelled. To absorb waves, similar source terms

affecting a damping region located at the other end of the tank are added to the same

equations.

Here a brief overview of these source terms is given. Generalizing equations 2.12 and 2.13

with modified pressure to the case where a non-zero mass source term S and a user defined

momentum source term Su exist, one gets:

∂ρ

∂t
+∇ · (ρu) = S (4.7)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · T + (ρ− ρvoid)g + Su (4.8)

Making use of the conservation equation to develop the instationary term
∂ρu

∂t
in the

momentum equation, one obtains:

ρ
∂u

∂t
+∇ · (ρu⊗ u)− u∇ · (ρu) = −∇p+∇ · T + (ρ− ρvoid)g + Su − uS (4.9)

The VOF system of equations under the incompressible flow assumption might then be

recalled.

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (T) + (ρ− ρvoid)g (4.10a)

∇ · u = 0 (4.10b)

∂α

∂t
+∇ · (αu) = 0 (4.10c)

Mass conservation in the VOF model is therefore:[
∂α

∂t
+∇ · (αu)

]
+

ρwater
ρvoid − ρwater

∇ · u = 0 (4.11)

A forcing source term Sα can be added to the void fraction transport equation 4.10c,

following:

Sα = Γfrcα (αref − α) (4.12)

with αref a reference void fraction field towards which the computed field is forced and

Γfrcα a forcing coefficient having the dimension s−1. Hence, a corresponding source term

S∗α has to account for changes in the volume conservation equation 4.10b

S∗α = −ρvoid − ρwater
ρwater

Γfrcα (αref − α) (4.13)

so that equation 4.11 still holds.

Similarly, considering a momentum source term injected in equation 4.10a with uref a
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target velocity field, it comes:

Su = Γfrcu ρ(uref − u) (4.14)

These source terms have an implicit part, involving the relevant scalar or vector field α or

u, and an explicit one to take into account the reference solution. It should also be noted

that Su operates in both phases.

The VOF system of equation then becomes:

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ · (T) + (ρ− ρvoid)g + Su − uS∗α (4.15a)

∇ · u = S∗α (4.15b)

∂α

∂t
+∇ · (αu) = Sα (4.15c)

In the wave generation region, αref is based on the free surface profile provided by the

streamfunction wave algorithm, i.e. it is set to 0 if the vertical coordinate of the considered

computational cell’s center is lower than the streamfunction value, and to 1 otherwise.

Accordingly, uref is built using streamfunction velocity field. In the damping region, the

same strategy is implemented for αref on the basis of the resting free surface level, while

uref is simply set to zero.

Forcing coefficients Γfrcf where f stands for α or u are modulated by a spatially varying

blending function ω(x) chosen among those displayed in figure 2.8.

Γfrcf = ω(x)γfrcf (4.16)

with γfrcf the forcing intensity.

As described in section 2.5.3.2, the selected blending function takes the value 1 at the

inlet boundary and exponentially decreases down to 0 at the end of the generation region.

The opposite is true for the absorbing layer. For wave generation, a suitable value of

γfrc is found following a trial-and-error approach in which simulated free surface profiles

at the beginning of the simulation - as long as waves have not started to interact with

the downstream damping layer - are compared to their streamfunction counterparts. To

absorb waves, forcing intensity is selected after a series of tests in which, as in section

4.3.1.2, the smallest possible reflection rate R is sought.

By successive improvements, a working setup was found for the wave case investigated in

this section. In the damping layer, γfrcα is identical to γfrcu while γfrcu equals zero in the

generation area. Values of γfrcα differ by nearly two orders of magnitude in both regions.

Optimal values were found to depend on the wave conditions. As we do not make use

of wave generation and absorption capabilities of CS in the coupled simulations, a more

exhaustive study of the related parameters’ influence was not considered relevant and is

therefore not shown here.
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At last, it should be mentioned that simulating waves propagation during 100T takes

around 24 hours on 4 cores of the HPC cluster Gaia.

4.4.2 Analysis of free surface elevation signal
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Figure 4.6: Streamfunction and computed free surface time history at x = 2λ, in a test
simulation involving only CS.

Indeed it is sufficient to notice that wave generation, propagation, and absorption in this

short CS domain are very satisfactory. Simulated free surface time history matches the

streamfunction solution quite well, as shown in figure 4.6 at x = 2λ, for the case with

T = 15 s. A small discrepancy appears at the wave trough in the course of the simulation

but remains limited. It should also be noted that all the results displayed in this section

were obtained using a design wave with T = 15 s and H = 5.75 m, see also table 4.1.

Values of wave height error εh and phase shift εφ presented in figure 4.7 are globally

lower than those recorded for seine3d alone in section 4.3.2, figure 4.4. The first 10 wave

periods are not displayed in order to focus on the rather small error values. εh indeed

stabilizes between 0.6% and 0.7% after slightly more than 20T . As a reminder, the wave

height error is close to 2% in the seine3d simulation with optimal wave absorption. εφ

gradually decreases with time, but barely exceeds 2% in absolute value after almost 100

wave periods. It is also to be noticed that in CS error curves are globally less chaotic than

in seine3d, and also that it takes fewer periods to reach low error levels in CS, with εh

and εφ stabilizing no later than 10T after the beginning of the simulation. By contrast,

strong error peaks are still seen in seine3d after more than 30T . Still, the drift in time of

εφ observed with CS is not seen in seine3d.

We also consider the free surface spatial profiles in the whole CS domain at two different

time instants (t = 5T and 50T ) in figure 4.8. t = 5T is deemed a sufficient initialization

delay, after which waves are assumed to have fully developed in the domain. Recall that
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Figure 4.7: Phase shift (b) and relative error on wave height (a) at x = 2λ. Simulation
using only CS.

free surface profile is smoothed thanks to the Contour filter of Paraview, as the isosurface

with α = 0.5 is sought. This results in a rather chaotic free surface signal in the damping

layer, as well as in a portion of the domain directly upstream of this region at t = 50T .

It illustrates the important free surface smearing occurring in the absorbing region, due

to the forcing brought by the additional source terms. Free surface smearing gradually

extends upstream as the computation advances, as can be noticed by comparing both

colored curves. Away from the damping zone and its close vicinity, simulated free surface

profiles agree well with the streamfunction one. Hence, to avoid disturbances in the free

surface profile it seems reasonable not to consider results farther than x = 2.5λ. Such

hypothesis should nevertheless be confirmed or rebutted by means of a study of wave

kinematics.

4.4.3 Assessment of wave kinematics

The free surface shape remaining satisfactory on most of the domain through time, we

should now assess the quality of the simulated kinematics beneath the wave. Indeed, a

correct simulation of the velocity field near the structure of interest is necessary for the

accuracy of force calculations in wave-structure interactions.
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Figure 4.8: Comparison of the streamfunction and computed free surface profiles at time
instants t = 5T and t = 50T in a test simulation involving only CS.

To that end, the fields of ux and uz in the water phase are shown at time instants t = 5T

and t = 50T , in figures 4.9 and 4.10 respectively. The water domain shape is obtained

applying Paraview Threshold filter, selecting cells of α < 0.5. This was preferred to the

alternative method of displaying the fields of αui, where ui is any velocity component

with i ∈ {1, 2, 3}, to conform with the way air/water interface position has been post-

processed so far. Some mesh cells containing a mixture of both phases are thus included

in the water domain. This, combined with the free surface smearing inherent to VOF

computations, surely has an impact on the nonphysical water velocity values observed close

to the free surface, as studied further below. Velocity component fields are the outcome of

subsequent Delaunay triangulation and linear interpolation of raw CS simulation results.

The corresponding streamfunction free surface position is also pictured as a reference, and

we may once again notice that the simulated free surface solution looks well for x < 2.5λ

at least.

The same cannot be said of the velocities in the water phase. If the periodicity of the

velocity fields is correctly reproduced for the first 3 wavelengths at the earlier simulations

stage, spurious velocity patterns appear slightly upstream of x = 2.5λ at t = 50T . Their

horizontal extent seems correlated to that of the chaotic free surface area, that expands

from 3λ to 4λ. Away from this region, however, velocity components seem to agree with

what is expected, except close to the wave generation boundary.

Therefore, a quite conservative choice is made to restrict the working length of the CS
domain to the area enclosed between x = λ and x = 2.25λ, for the whole duration of the

simulation. x = 2λ is thus chosen to extract and compare the vertical profiles of velocity.

Figure 4.11 depicts vertical profiles of horizontal velocity at different time instants when

the theoretical wave crest passes x = 2λ. A continuous worsening of the horizontal velocity

profile is observed through time, as velocity is overestimated close to the free surface and

underestimated near the bottom. Vertical profile of vertical velocity is not shown here,

as it matched the reference solution a lot better. The phase error that is approximately
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Figure 4.9: Scalar fields of horizontal (a) and vertical (b) velocity components at t = 5T .
Black line represents the streamfunctionl free surface profile.

kept below 2° in absolute value can not explain these discrepancies alone. Spurious ve-

locity has been extensively reported in VOF simulations including the effects of surface

tension forces, but in the present case surface tension is not taken into account. These

results rather remind those obtained by Larsen et al. (2019) and references therein with

Interfoam, considering the propagation of a streamfunction wave under periodic boundary

conditions. The increase in time of the vertical gradient of horizontal velocity observed

here is similar to what these authors notice. In Larsen et al. (2019), it is assumed that

the existence of nonphysical water velocities close to the free surface is caused by an im-

balance in the momentum equation in nearby cells, originating from discretization errors

in the force terms of NS equations. Due to the high density ratio between water and air,

any spurious transfer of momentum from the dense phase to the light one then leads to

large overestimation of air velocity near the free surface. Unrealistic air velocities are then

inevitably diffused back to the superficial part of the water phase, as the VOF advec-

tion schemes cannot maintain arbitrary high shearing values at the interface between the

phases. As Interfoam is comparable to CS in its conception, these conclusions should also

apply to the current study.

Results in figure 4.11 are complemented by those shown in figure 4.12, where error εux
between ux and the reference solutions is computed over one wavelength between x = 1.25λ

and 2.25λ at t = 5T and t = 50T . Normalization is realized with the maximum horizontal
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Figure 4.10: Scalar fields of horizontal (a) and vertical (b) velocity components at t = 50T .
Black line represents the streamfunction free surface profile.

velocity value computed by streamfunction theory:

εux =
ux − ux,ref
max(ux,ref )

(4.17)

Error on the vertical velocity is not shown as it is one order of magnitude lower that its

horizontal counterpart. It clearly appears that velocity overestimation close to the free

surface not only occurs near the wave crest. It is stronger on the quarter of wavelength

extending in front of the wave though. Large values of εux concentrate in a layer located

just beneath the interface whose thickness increases with time. Velocity underestimation

close to the bottom, although smaller, grows by an order of magnitude throughout the

simulation.

As a last illustration of the distortion of vertical profiles of horizontal velocity, the time

average of ux along a vertical line located x = 2λ is computed. The latter extends from

the bottom up to slightly under the wave trough. This maximal ordinate is taken as

z = −H
2 . Results are displayed in figure 4.13. The computed mean profiles indicate that

a clockwise circulation builds up in the bulk of the domain. A vertical gradient of mean

horizontal velocity appears and grows in time, as opposed to what the streamfunction

theory predicts. Mean vertical velocity is negligible as compared to horizontal mean, and

is not shown here.
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Figure 4.11: Vertical profiles of horizontal velocity beneath the wave crest at x = 2λ.

So far, the assumption that given the high density ratio between the two fluids, the

influence of the light phase on the dense phase is negligible was supposed to hold. Hence

velocity field in the air has been of little interest. It might nevertheless cause, for part, the

overprediction of horizontal velocities close to free surface. Recent studies conducted with

CS indeed suggest that the Imposed Pressure Outlet condition imposed on the ceiling of the

domain yields chaotic velocity fields in the air phase. Such boundary condition consists of

an outlet boundary condition with a Dirichlet condition on pressure corresponding to the

atmospheric pressure. Other computational variables receive a homogeneous Neumann

boundary condition. As indicated in CS’s theory manual, if a sign change occurs for the

outgoing mass-flux at this boundary, fluxes are clipped. It results in unrealistic behavior

of the air phase. A look a the velocity field in the whole CS domain at t = 50T , as

shown in figure 4.14, indicates that velocity in the air is far more chaotic that one can

expect. Numerous vortices are observed, and velocity amplitude above free surface reaches

important peaks. As already stated, high air velocities may be diffused towards the water

phase, generating the above-mentioned overspeeds in water.

The poor quality of the velocity field in the air phase, caused by a top boundary condition

that is still to be improved, may well be responsible for the overestimation of horizon-

tal water velocity close to the free surface. Such phenomenon could be associated to

the clockwise circulation highlighted in figure 4.13, that the downstream damping region

fails to prevent. This would yield a mean return current close to the bottom, growing

progressively with time.

At last, the potential influence of the damping region on the generation of this spurious

circulation should be addressed. Although the findings of Larsen et al. (2019) with Inter-

foam involve a periodic domain in which no absorbing layer is implemented, we cannot

exclude the possibility that velocity forcing at the downstream end of the CS domain has

something to do with the worsening of the vertical profile of ux, observed at least one

wavelength upstream from the beginning of the damping region.

Hence, three possible explanations have been provided to describe the occurrence of over-



Chapter 4. 2DV regular waves simulations in the hybrid model 118

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

−20

−10

0

x
λ

z
(m

)

(a)

0

5

10

·10−2

ε u
x

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

−20

−10

0

x
λ

z
(m

)

(a)

0

0.1

0.2

ε u
x

Figure 4.12: Normalized error on vertical velocity over one wavelength, at time instants
t = 5T (a) and t = 50T (b). Domain ranges from x = 1.25λ to x = 2.25λ.

speeds just beneath the air/water interface: imbalance in the momentum conservation

equations close to the free surface, as described by Larsen et al. (2019), inappropriate

velocity boundary condition at the top and upstream influence of the damping region. It

should be recalled that this goes along with satisfactory free surface profiles in the major

part of the domain. Unfortunately there was not enough time to test these hypotheses

and to implement a more appropriate version of the top boundary condition.
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around the interface. Black lines illustrate the position of the free surface.
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4.4.4 Influence of certain numerical parameters on the velocity field

Without questioning decisions made while establishing the previous setup for CS-only

simulations, such as boundary conditions or void fraction advection scheme choices, we

describe here some attempts to improve the velocity field beneath the waves. Indeed,

issues concerning the agreement of vertical profile of horizontal velocity with the reference

solution have been raised in the previous section. At the same time, other wave simulation

aspects like free surface spatial profiles and time history where found to live up to our

expectations.

A direct way of improving CS velocity results is to increase spatial and temporal resolution

of the simulations. The wave period and steepness and the domain setup are kept the same.

Without exhaustiveness in mind, 3 different values of the cell aspect ratio (AR) close to

free surface at rest were tested (AR ∈ {1, 2, 4}) while 4 is the default value previously

used. The definition given for the aspect ratio is AR = ∆x
∆z . Similarly the performances

of 3 time step sizes are assessed, namely ∆t = T
750 , T

1500 , and T
3000 , T

1500 being the default

setting. So far, cell height close to free surface has been set to ∆x = H
20 . It should indeed

be recalled that the CS mesh is vertically stretched away from the free surface resting

position. Simulations were run with additional values of H
10 , H

15 , and H
50 .

To save computational time, results, shown in figure 4.15, are compared with the reference

at time t = 5T . As the velocity overestimation was already observed at this time instant

in previous simulations, it was deemed suitable and it allowed for quick computations.

Analysis of simulation outcomes is quite straightforward: of the 3 parameters of interest,

the only one for which noticeable improvements are made as compared to the results with

the default value is the time step size. Increasing time resolution from T
1500 to T

3000 leads

to a decrease in the overprediction of horizontal velocity close to free surface. Conversely,

the vertical profiles of ux worsen when a value of ∆t = T
750 is used.

On the opposite, the influence of the cell aspect ratio, at least in the range considered

here, is negligible.

Small spurious wiggles close to free surface are observed in the velocity profiles obtained

using cells with a height lower than H
20 excluded. Increasing vertical resolution in the free

surface region up to ∆z = H
50 proved pointless.

AR = 4, ∆t = T
3000 and ∆z = H

20 thus form a set of basis parameters that are used in CS
in coupled simulations with a wave steepness of 1

40 . This yields a CFL of 0.07, as defined

in equation 4.3.

It should also be noted that considering the positive influence of reducing the time step

size, computations have been made with even lower values of ∆t = T
6000 and ∆t = T

12000

and the remaining basis parameters, but they proved unstable and/or they failed.
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Figure 4.15: Comparison of streamfunction and computed vertical profiles of velocity
components at t = 5T . Simulations using only CS with the same setup as before. (a)
simulation with varying cell aspect ratio, other parameters are set to ∆z = H

20 and ∆t =
T

1500 . (b) simulation with varying time step, other parameters are set to AR = 1 and ∆z =
H
20 . (c) simulation with varying cell height, other parameters are set to AR = 1, ∆t = T

1500 .
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To get a last insight on the quality of the wave kinematics computed using only CS,

vertical profiles of velocity over a whole wave period are shown in figure 4.16 at 3 stages

of the simulation. This way one visually gets confirmation that vertical velocity matches

the reference a lot better than horizontal velocity. ux vertical profiles exhibit behaviors

coherent with what has been previously observed for the horizontal velocity under the

crest. Not long after the beginning of the simulation, between t = 4T and t = 5T , ux

remains close to the streamfunction solution for the first half of the wave period. During

the other half, an almost constant offset affects the horizontal velocity, that disappears

later in the simulation. ux overestimations increase in time, mostly during the first half

of the simulation, up to t = 50T . In general, it is hard to distinguish between curves with

t0 = 49T and later t0 = 99T . This indicates that the gap between computed velocity and

reference does not continuously and monotonically drift with time, but rather seems to

reach a steady value. Noticeably, agreement with the reference profile is better beneath

the crest than under the trough of the wave.

As we lack time for improvements, no further modification to the wave simulation setup in

CS is conducted. 3D computations addressed in chapter 6 allow to assess in what extent

the accuracy of the horizontal velocity field influences the precision of cylinder inline force

calculation.
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Figure 4.16: Vertical profiles of velocity at x = 2λ during one wave period just before
t = 5T , t = 50T and t = 100T . Simulation using CS only.
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4.5 Coupled simulation of regular wave propagation in 2D

Now that suitable numerical settings have been established to simulate the generation,

propagation, and absorption of regular waves with T = 15 s and a steepness of 1
40 in

both models separately, we return to the setup presented in figure 4.1 and run a coupled

simulation. By the way, the previously used method of trying to optimize wave computa-

tions in seine3d and in CS independently seems justified. It is indeed believed to be the

proper way of preparing a novel hybrid simulation case, as the current coupling procedure

theoretically enables independent selection of spatial and temporal discretization levels in

both programs.

4.5.1 Coupling parameters

As already mentioned, specific numerical strategies and discretization levels used in seine3d
and CS instances, which have been set in previous computations involving only one model,

are left unchanged as much as possible. For this 2DV wave case, the only coupling pa-

rameter that is yet to be set is the length of the two overlapping regions seine3d 1/CS
and CS/seine3d 2. Time step ratio N∆t is fully constrained by the choices made in model

instances seine3d 1 and CS. Besides, the time step size employed in seine3d 1 is enforced

in seine3d 2. Thus, from the previous section of the current chapter,

N∆t =
∆tseine3d

∆tcs
= 30 (4.18)

as ∆tseine3d was set to T
100 and ∆tcs = T

3000 .

Loverlap is the same in both overlapping regions, and it is determined quite arbitrarily.

This takes into account the fact that at least 4 seine3d boundary elements in the length

of the overlapping region seem necessary, as turned out from solitary wave propagation

simulations. As ∆xseine3d was set to λ
16 beforehand, Loverlap is thus set to λ

4 .

Based on preliminary estimations and general guidelines concerning both models behavior,

19 and 15 CPU cores are attributed to seine3d 1 and seine3d 2 respectively, while CS uses 2

cores. This way the computation requests one 36-cores node from the HPC cluster. Such

breakdown of computing power is somewhat not intuitive, as seine3d is supposed to be

less computationally expensive than CS, but here requires more cores per wavelength. As

its name suggests though, seine3d is a 3D code and 4 boundary elements fit the potential

domain’s width. On the opposite, there is only one the cell in the width of CS domain.

Therefore computational efficiency is of no interest here, but is addressed while discussing

3D simulations in chapter 6. We might however indicate that it takes about 10 hours to

reach a physical time equivalent to 50T .
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Figure 4.17: Instantaneous free surface profiles from coupled models instances at t = 50T .
Circles mark the position of seine3d free surface nodes.

4.5.2 Simulation results

Figure 4.17 shows the global free surface profile after 50 wave periods. Agreement with

the streamfunction reference solution is satisfactory. In particular, free surface matching

is ensured in the two overlapping regions. It is interesting to note that at this time instant

at least, the wave height is slightly lower in CS than in the neighboring potential domains.

To shed light on this aspect of the simulation, time history of the free surface elevation at

x = 0, corresponding to the abscissa of the monopile in the WAS-XL experiments, is shown

in figure 4.19. Again results match the reference reasonably well. Patterns are observed

in the transition phase towards fully-developed waves, up to t = 30T , that are similar

to the ones depicted in figure 4.2 for a simulation involving only seine3d. After t = 30T ,

the signal progressively acquires constant characteristics, but a small modulation of the

amplitude is however seen, getting stronger in the last wave periods of the simulation.

These remarks may also be made while looking at figure 4.19 displaying the relative errors

on amplitude and phase of the simulated waves through time. The amplitude error levels,

amounting to around 3%, are closer to the ones reported for seine3d only in figure 4.4

than to those recorded in figure 4.7 using only CS. The relative phase errors share the

same order of magnitude in the three cases, close to 2° on average. The peaks in results

occurring at t = 30T remind the ones observed with seine3d only. This is in line with

what could be expected, as generation and absorption of waves are realized in potential

domains. It also indicates that both couplings are quite transparent, as the overall free

surface geometry prediction performance of the hybrid simulation does not differ much

from seine3d standards. In particular, almost no wave reflection is experienced from the

presence of overlapping regions.

To further assess the relevance of the coupling methodology applied to regular wave sim-

ulation, velocity fields are compared around t = 50T in both overlapping regions in figure

4.20. Good overall agreement is seen. Discrepancies are observed close to the free surface,
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Figure 4.18: Comparison of the streamfunction and computed free surface signals at the
virtual position of the monopile (x = 0 m).

the largest ones on the upstream boundary of seine3d 2 domain. They should be linked to

edge/corner singularities in seine3d reported and described in more detail while addressing

the propagation of a 2D solitary wave. Other discrepancies seem to originate from the vis-

cous domain, as CS velocities quite systematically slightly exceed, algebraically speaking,

seine3d velocity close to the free surface.

At last, vertical profiles of velocity extracted from the central CS domain are juxtaposed

to the ones predicted by the streamfunction solution. To let enough time for the waves

to build, the wave period considered is the 20th. Results resemble those depicted in figure

4.16, thus they are not further described.

The coupling procedure clearly reproduces the behaviors experienced in each model alone.
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Figure 4.19: Phase shift (b) and relative error on wave height (a) at the virtual location
of the monopile in the case of a coupled simulation. The first 20 wave periods are not
displayed.



Chapter 4. 2DV regular waves simulations in the hybrid model 128

−20

0

t = 49T

−20

0

t = 49.2T

−20

0

t = 49.4T

z
(m

)

−20

0

t = 49.6T

−120 −110 −100 −90 −80 −70 −60

−20

0

t = 49.8T

x (m)

60 70 80 90 100 110 120

x (m)

seine3d 1 CS seine3d 2
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4.5.3 Testing coupled model limits in terms of wave steepness

As stated in the current chapter’s introduction, a couple of hybrid simulations involving

steep non-linear regular waves with a steepness of 1
22 are run, again with the domain shown

in figure 4.1. Such value of ε corresponds to the highest non-linear wave considered in the

study of Dadmarzi et al. (2019) for which results of force on the monopile are reported.

To reach it, a target wave height of H = 10.5 m is associated to a wavelength of λ = 231.7

m using the streamfunction algorithm of Dean (1965) implemented in seine3d. This time,

and for the sake of time saving, we do not follow the above-mentioned guideline including

independent computations with CS and seine3d to carefully select numerical simulation

parameters. Thus, this study is mainly exploratory.

Normalized spatial and temporal resolutions levels used in the case of the mildly nonlinear

wave with ε = 1
40 are retained in a first attempt. In seine3d instances, boundary elements

dimensions at rest are ∆xseine3d = λ
16 and ∆zseine3d = h

4 , with ∆yseine3d = ∆xseine3d.

The CS mesh is built with the same rules in mind as before, namely ∆zcs = H
20 close

to free surface, progressively stretched to H
4 near the floor and ceiling. ∆xcs = H

5 : this

corresponds to a longitudinal aspect ratio of 4 near the interface. Time step sizes are set to
T

100 and T
1500 for seine3d and CS respectively, yielding a time step ratio of 15. Theoretical

CFL in potential domains can be established as:

CFLseine3d =
√
gh

∆tseine3d
∆x,seine3d

= 0.169 (4.19)

In CS, it is approximated as:

CFLcs =
√
gh

∆tcs
∆xcs

= 0.077 (4.20)

A first simulation is launched with these settings but fails after approximately 20T . The

numerical solution indeed diverges in one of the seine3d instances. After a few trials, it

was found that lowering the CFLseine3d through an increase of the time step size allows

to stabilize the computation. Hence, ∆tseine3d is set to T
30 , yielding CFL value of 0.562.

CS parameters are not modified. Therefore, time step ratio verifies N∆t = 50.

Free surface time history is shown in figure 4.22 at x = 0 for comparison with the stream-

function solution. Albeit stable, the free surface signal differs significantly from the refer-

ence. This observation is confirmed by the errors levels reached on amplitude and phase,

whose time evolution is displayed in figure 4.23. It appears that the simulated wave am-

plitude is approximately 13% lower than the reference value, while phase error settles at

around -10°. Absolute error levels are thus nearly an order of magnitude higher than in the

case involving a wave steepness of 1
40 . This does not seem to be related to wave reflection

on the coupling or absorbing region. It rather seems to have to do with the intrinsic wave

generation and propagation properties of seine3d. However, it was reported in a recent

work involving seine3d in its current state, using the same boundary surface description
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Figure 4.22: Comparison of the streamfunction and computed free surface signals at the
virtual position of the monopile (x = 0 m) in the case of a wave steepness of 1

22 .

method and time stepping procedure, that generation and propagation of streamfunction

waves were ensured in seine3d up to a steepness of ε = 0.092. As it is equivalent to more

than twice the wave steepness used here, it implies that the case of ε = 1
22 should not

raise issues in seine3d. However, despite our efforts and due to time constraints, it was not

possible to get a better wave field generation within seine3d for this wave steepness during

this Ph.D work.
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Figure 4.23: Relative error on wave height (a) and phase shift (b) at the virtual location
of the monopile in the case of a coupled simulation with ε = 1

40 . The first 20 wave periods
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4.6 Conclusions

In this chapter, a test setup aiming at the validation of the generation, propagation, and

absorption of 2D regular waves over constant depth withing the frame of the coupled

methodology was described. A unique design wave with T = 15 and a steepness of 1
40 is

considered. It implies the use of one instance of CS sharing parts of its domain with coupled

seine3d instances. This way it was intended to reproduce in 2D most of the characteristics

of the wave basin used in the WAS-XL experiments Dadmarzi et al. (2019), with the idea

of reusing most of the numerical parameters for later 3D computations with the same

incident wave.

It is also believed that the normalized parameters selected in this study involving one

wave case still hold for other wave cases, at least those sharing the same steepness. This

assertion is evaluated in chapter 6.

It was therefore necessary beforehand to select appropriate numerical settings for seine3d
and CS. Wave simulations involving each model independently were run and their results

were analyzed in detail. Wave generation and absorption techniques, already implemented

in seine3d were tested, yielding satisfactory results. Fine-tuning of the wave damping

routine was required, again with the hope that the choices made for its parameters will

prove efficient in future simulations with different incident waves. Free surface time history

and profiles, as well as velocity field under waves were displayed and commented.

A similar work was conducted with CS. Wave generation and absorption strategies, though

not used in coupled simulations, proved efficient. Free surface spatial profiles and time

histories agreed very well with the reference solutions in the central working region of

the CS domain. The occurrence of spurious horizontal velocity close to free surface was

highlighted and studied in detail. Hypotheses were proposed to explain this phenomenon,

as well as countermeasures. It indeed served as a basis for restricted sensitivity analyses

that help choosing optimal time and space discretizations.

Selected CS and seine3d parameters were then applied to a first coupled regular waves

simulation, along with numerical settings inherent to the coupling procedure itself. Results

were detailed and found to be satisfactory and coherent with what had been seen of the

behavior of each model alone.

The whole work presented in this chapter is thus considered as a guideline to the conception

of later hybrid simulations.
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Chapter 5

Coupled simulation of the

diffraction of a solitary wave on a

vertical cylinder

De premières simulations couplées en trois dimensions sont présentées dans

ce chapitre. Une onde solitaire plane de hauteur relative modérée (Hh = 0.3)

est diffractée par un cylindre vertical de diamètre D
h = 1. L’agencement des

domaines couplés est similaire à celui employé en deux dimensions dans le

chapitre 3. Ainsi, deux domaines seine3d encadrent un domaine CS, dans

lequel le monopieu est inclus, par le biais d’une approche de maillage adapté.

Un problème de stabilité se fait jour au cours de la simulation dans l’un

des deux domaines seine3d. Un rapprochement est fait avec le comportement

du solveur potentiel, tel qu’il a déjà été observé en deux dimensions. Si la

réduction de la hauteur relative de l’onde à 0.2 permet certes de limiter le

développement de l’instabilité, le déraffinement des maillages seine3d dans le

plan horizonal parvient au même résultat sans modifier la teneur du problème à

résoudre. Un champ de vagues secondaire issu de la diffraction de l’onde soli-

taire sur le monopieu, puis de réflexions sur les parois du domaine est observé,

se propageant en partie vers l’amont. Il est transmis sans modification notable

au domaine potentiel amont, ce qui semble indiquer que la résolution horizon-

tale finalement retenue pour seine3d est à même de décrire l’évolution d’une

surface libre complexe. Cela concourt à valider le caractère bi-directionnel

de la procédure de couplage. L’idée n’étant pas, dans ce chapitre, de con-

fronter rigoureusement les résultats obtenus à des références expérimentales

ou numériques, nous nous limitons à des considérations générales quant à

l’allure de la surface libre. Une comparaison à des résultats expérimentaux est

présentée au chapitre 6.
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5.1 General considerations

So far 2DV simulations have been realized based on two distinct setups with constant

depth. They respectively aimed at describing the propagation of a solitary wave (chapter

3) and that of regular nonlinear waves (chapter 4). In the context of this PhD work,

the constant depth choice is not questioned, but 3D numerical domains involving a fixed

surface-piercing vertical cylinder of constant circular cross-section are considered.

As stated above, both solvers involved in the developed coupling methodology require 3D

numerical domains. Hence no further extension of the hybrid procedure in the transverse

direction is needed, as it already takes three-dimensionality into account, at least for the

most simple geometries and configurations of the coupled 3D domains. As a first test case,

similarly to the previous 2DV studies, the propagation of an initially plane solitary wave,

followed by its diffraction by a monopile, are considered.

The results of such coupled simulations are not intended to be rigorously compared to a

reference solution, either experimental, analytical or numerical. The idea is merely to make

sure that the coupling procedure enables the reproduction of 3D problems that are not

restricted to the propagation of a plane wave through coupled domains. The combination

of wave diffraction on the cylinder and reflection on the lateral boundaries of the global

domain is indeed expected to yield a complex upstream-propagating secondary wave field.

The coupled methodology is deemed transparent enough if such wave field is not noticeably

distorted by the presence of the overlapping regions. For the same reason, computational

efficiency and cost associated to these exploratory simulations are not addressed in this

chapter. The reader is referred to 6 for CPU time comparison.

Note however that the obtained results could be related to the ones of the experimental

work of Yates and Wang (1994), the more recent one of Yang et al. (2021), or the numerical

studies of Mo (2010) and Chen (2017); Chen et al. (2018).

5.2 Case description

Computations take place in a hybrid numerical domain built from the union of two equally

long potential domains (namely seine3d 1 and seine3d 2) surrounding a CS domain contain-

ing the vertical cylinder. The global setup is pictured in figure 5.1, with the corresponding

axes. The same conventions on normalization of space and time variables as used in

chapter 3 are employed here. All variables cited thereafter are thus non-dimensional (e.g.

physical distances have been normalized by the water depth at rest h, and time variables

by t0 =
√

h
g ). A solitary wave with H = 0.3 is generated with its crest initially located in

seine3d 1, as explained in chapter 3 in section 3.1.1. seine3d meshes extend from x = −12

to x = 12, and x = 28 to x = 52 respectively. Coupled boundaries in CS and seine3d are

vertical and parallel planes, thus overlapping regions are rectangular boxes. Overlapping

length Loverlap is set to 2, as it was found to be an appropriate and sufficient value in
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Figure 5.1: Computational domains used in the successful simulation of the diffraction of
a solitary wave with H = 0.3, see section 5.4.

section 3.1.5. Hence, the CS domain corresponds to abscissa in the range [10, 30], and

extends from z = −1 to z = 1.5. All domains share the same width, equal to 10.

More complex shapes could theoretically be given to the overlapping regions in the coupling

methodology, such as square or circular rings, as long as their geometry can be described

analytically. It requires adapting the routines implemented to compute the distance from

a given CS cell center to the set of associated coupling seine3d nodes, and conversely from

a seine3d node to the associated CS coupling boundary. It is described in detail in chapter

2. However, such generalization is not considered in this work.

The monopile has a diameter D equal to the depth, and is included in the structured CS
mesh through a body-fitted approach. Its center is located at x = 0 and y = 20. Figure

5.2 shows a close-up view of the corresponding mesh region. It may be noticed that cells

height is uniformly distributed in the CS domain. Mesh is cylindrical on the structure,

and is forced to a Cartesian grid in a rectangular box enclosing the cylinder. Elsewhere, it

reduces to a Cartesian grid. In most of the domain, cells are hexahedra with 2 horizontal

square faces, for which ∆zseine3d is close to 1
4 of a side of the square. ∆zseine3d = H

20 for

the solitary wave with H = 0.3. The cylindrical layout of mesh elements allows obtaining

almost square-shaped boundary faces on the monopile.

The seine3d meshes are built based on the ones used for the corresponding 2DV study,

for which a value of 4 elements in the height of a water column was retained, alongside

with the restriction that boundary elements should be as close to squares as possible, for

computational efficiency purposes. Therefore a first couple of meshes for potential domains

seine3d 1 and seine3d 2 is designed with square elements on their boundaries, with a side

length of 1
4 . This amounts to placing 40 elements in the width of both domains, as well
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Figure 5.2: Detail of CS mesh near the monopile.

as 96 in their length. Boundary elements height is set to η(x,t)+1
4 where η(x, t) is the

instantaneous normalized local free surface elevation, measured from the resting level. For

the sake of visibility, they are not shown in figure 5.1, where coarser seine3d meshes are

displayed.

CS and seine3d time steps values are identical to the ones used as reference in the 2DV

study led in chapter 3, with ∆tseine3d = 0.1 and ∆tcs = 0.01, thus N∆t = 10.
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5.3 First 3D results and limitations
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Figure 5.3: Detail corner instability occuring at the downstream boundary of the seine3d
2 domain, t = 32.4.

The simulation whose numerical parameters are listed in the previous section fails because

of a corner instability, occurring on the coupling boundary of the downstream potential

domain. This situation is illustrated in figure 5.3 at one of the last simulated time instants.

It resembles the stability issues encountered in section 3.1.2.3, as velocity diverges at one

corner, albeit fatal this time. Causes for such behavior have already been discussed in the

same section, at least in part.

Another simulation is run using the same setup and numerical parameters, except that

relative wave height is reduced to 0.2. This time the simulation succeeds, and lasts ap-

proximately 50 time units, giving the wave enough time to start interacting and reflecting

on the vertical wall closing the seine3d 2 domain at x = 52. A decrease in initial wave

steepness, as expected, enables getting over stability issues in seine3d.

Figure 5.4 shows contour plots of free surface elevation at successive time instants in the

simulation. Here, the focus should be put less on the fate of the main wave, that keeps

on travelling in the incident direction after it has passed the monopile, and more on the

diffracted and reflected wave fields propagating upstream, as already mentioned.

As no quantitative comparison is made with reference results, one may only assess the

quality of diffracted and reflected fields from an analogy with wave patterns based on

experimental or numerical references.
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Figure 5.4: Snapshots of free surface elevation contours during the propagation and inter-
action with a vertical surface piercing cylinder of a solitary wave with H = 0.2. Dashed
lines indicate limits of potential domains.
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5.4 Overcoming stability limitations

Aiming to succeed at simulating the scattering of an initially plane solitary wave with H =

0.3 with the monopile, we choose to run a new simulation using coarser meshes to discretize

the potential domains. Indeed, it has been experienced in previous seine3d simulations that

lowering the CFL by increasing horizontal dimensions of boundary elements can help to

stabilize the calculations.

Meshes are displayed in figure 5.1 in wireframe representation for these coarser meshes.

Boundary elements height is kept the same (1+η
4 ). Length and width, at the same time,

are doubled. Hence, element aspect ratio is over 1, theoretically leading to a reduced

efficiency of the BIE integral problem resolution, due to the need to use adaptive integrals

for quasi-singular terms. However, this is more than outbalanced in computational time

and cost by the decrease in complexity associated to the use of meshes with fewer elements.

With these changes in horizontal resolution in seine3d, simulating the propagation of a

solitary wave with H = 0.3 and its interaction with the vertical cylinder is possible. As in

the previous case with H = 0.2, the calculation is stopped when the wave starts reflecting

on the far-right vertical boundary of seine3d 2, around t = 42.

Contour plots of non-dimensional free surface elevation are drawn in figure 5.5. Again a

satisfactory behavior of the coupled model is observed, as a small amplitude diffracted field

appears soon after the solitary wave hits the structure. This field propagates in accordance

with expected diffraction patterns. It then reaches the upstream seine3d domain with

negligible distortion, between t = 30 and t = 36. Again coupling transparency seems

ensured. The diffracted field then starts reflecting on the horizontal wall located at y = 0,

yielding a crossing wave field. These steps are pictured in more detail in figure 5.6, with

adapted colorbar extrema.

It thus appears that even with rather coarse meshes in potential domains, featuring el-

ements with a width of 1
2 , bi-didirectionally and transparency of the coupling procedure

is ensured in 3D simulations. Even small amplitude (CS subgrid scale) wave trains can

be transmitted from CS to seine3d without significant modification. It should allow for a

reduction of the spatial extent of 3D CS domains, hence further confirming the two-way

hybrid strategy’s relevance, at least in the case of solitary waves.

Figure 5.7 displays the smooth interface geometry at the close vicinity of the vertical

cylinder in CS. As already mentioned, it is shown mainly for illustrative purposes. We may

at least notice that the free surface looks complex enough for the expected highly-nonlinear

phenomena to be sufficiently well rendered in future calculations involving similar spatial

resolutions. Indeed, an upstream-propagating wave is observed, starting from t = 21.

Partly owing to the smoothing post-processing stage, no numerical artifact related to

cell non-orthogonality is seen at the junction between the cylindrical mesh around the

monopile and the Cartesian grid elsewhere in the domain. Thus the CS meshing strategy

seems relevant.
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Figure 5.5: Snapshots of free surface elevation contours during the propagation and inter-
action with a vertical surface piercing cylinder of a solitary wave with H = 0.3. Dashed
lines indicate limits of potential domains.
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5.5 Conclusions

From the case of a solitary wave of moderate relative height diffracted by a vertical cylinder,

it seems that the coupling procedure is suitable for 3D applications, at the cost of a cautious

selection of certain numerical parameters. Indeed, the horizontal resolution used in seine3d
as a default value to compute the propagation of the same plane wave in 2D turned out not

to be adapted to the 3D case. Reducing the level of nonlinearity, by selecting a lower wave

height value was an option to avoid instabilities appearing at a corner of the downstream

potential coupling boundary. However, choosing an appropriate value of ∆yseine3d has

proved necessary and sufficient to enable stable calculations with H = 0.3.

No reference solution being sought, the accuracy of the comptuted solution was not rig-

orously assessed. This could be adressed in the future by considering for instance the

experiments done by Yang et al. (2021); Yates and Wang (1994). Simulating the in-

teraction of regular waves with a monopile, as presented in the next chapter, for which

experimental reference results are considered, should allow for filling this void.
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Chapter 6

Coupled simulations of the

diffraction of regular nonlinear

waves on a vertical cylinder

Dans ce dernier chapitre, on présente les résultats de simulations en trois di-

mensions décrivant la diffraction de houles régulières de diverses cambrures

sur un cylindre vertical représentant une fondation d’éolienne offshore, en pro-

fondeur constante. Trois houles de cambrure H
λ = 1

40 et de périodes différentes

(9s, 12s et 15s) sont reproduites numériquement, ainsi qu’un cas de plus forte

cambrure (Hλ = 1
22). Des constatations qualitatives sont effectuées, relatives

à la géométrie de la surface libre à proximité du monopieu, et des compara-

isons sont établies avec des résultats numériques de référence. Les résultats

de simulation sont comparés à la solution de vague semi-analytique imposée

en entrée du domaine, en terme d’élévation de surface libre à l’abscisse du

cylindre, ainsi qu’aux données expérimentales issues de la campagne d’essais

WAS-XL, par l’analyse du contenu fréquentiel du signal de force horizontale

adimensionnée s’exerçant sur le cylindre. Le coût de calcul de chaque sim-

ulation est précisé, estimé par le rapport du nombre d’heures-processeurs au

temps physique simulé. L’un des cas de simulation est également reproduit

uniquement avec Code Saturne, ce qui permet de quantifier le gain de perfor-

mance permis par le recours à des sous-domaines couplés.
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6.1 Case presentation and numerical settings

In this chapter, 3D coupled simulations of nonlinear regular waves interacting with a

surface-piercing vertical cylinder representing a large offshore wind turbine foundation are

presented. Similarly to 3D simulations of the interaction of a solitary wave with a vertical

cylinder over constant depth, these 3D cases are based on previous 2DV computations

described in chapter 4. The shift to 3D could be pictured as an horizontal extrusion of

all 2DV subdomains, with the addition of a semi-circular structure on one side of the

central CS domain. Hence, global domain geometry matches as much as possible that of

the experimental basin used for WAS-XL measurement campaign (Dadmarzi et al., 2019).

Intrinsic symmetry of the problem is taken into account to halve the numerical domain

size. A Symmetry boundary condition is enforced on the cylinder surface, as well as on

all vertical walls and bottom, where the velocity vector verifies ∂u
∂n = 0.

In the experimental study of Dadmarzi et al. (2019), two water depths are considered

in the basin, namely 27 m and 33 m at prototype scale, in which two monopile models

are placed whose respective diameters are 9 m and 11 m. As already mentioned, only

the smallest depth is considered in the current work. Also, D = 9 m is selected. It is

indeed believed that the coupling procedure will be equally capable of simulating other

wave conditions. It should also be noted that, as already discussed in chapter 4, the wave

steepness is defined as the first order wave height divided by the wavelength.

6.1.1 Numerical settings

Figure 6.1: Experimental domain layout. Reproduced from Dadmarzi et al. (2019).

Time discretization as well as vertical and longitudinal spatial resolutions, normalized by

wave characteristics, are kept the same in code instances seine3d 1 and seine3d 2, as well
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as all other parameters and options, such as solver or time-stepping scheme choices. The

reader might refer to figure 4.1 for an overview of the longitudinal layout of domains.

Views of the numerically reproduced experimental domain are shown in figure 6.1.

To match the characteristics of the experimental wave basin, the width of the domain is set

to 62.5 m. The novelty here resides in the choice of the transverse dimension of boundary

elements, which is not trivial, as seen in chapter 5. Thus ∆xseine3d is kept equal to λ
16 ,

while ∆yseine3d is given the value of ∆xseine3d in both seine3d instances. A target value

of ∆zseine3d = h
4 where the free surface is at rest is retained. In accordance with the 2DV

coupled wave simulations, ∆tseine3d = T
100 .
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Figure 6.2: Close-up view of the CS mesh in the vicinity of the monopile in the case of
T = 15 s and ε = 1

40 .

Similarly, most CS numerical parameters are left unchanged and follow the dimensioning

laws established in chapter 4. A computational mesh with a body-fitted description of

the monopile surface is built (see figure 6.2), similar to the one employed for chapter 5

simulations. Most meshing specifications elaborated in 2DV cases are met, i.e., ∆xcs

and ∆ycs equal H
5 in most of the domain, away from the close vicinity of the monopile.

∆zcs = H
20 is verified in a layer comprised between z = −H

2 and z = H. Following the

conclusions of the sensitivity analysis conducted in section 4.4.4, ∆tcs is set to T
3000 , thus

setting the value of the time step ratio to N∆t = 30.

The length of the overlapping regions between CS and seine3d domains equals λ
4 , as es-

tablished in 2DV studies. The general layout of numerical domains is partly described in

figure 6.3.

We aim at assessing the coupling methodology as a tool potentially suited for engineering

applications. With this idea in mind, 3D simulations should be straightforwardly conceived
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Figure 6.3: View of the computational domains in the case of T = 15 s and ε = 1
40 .

from preliminary 2DV computations or general rules based on experience. Therefore only

one set of computational results is presented for a given wave condition, the latter being

defined by a combination of a wave period and a wave height, or steepness. Four different

wave conditions are reproduced from the WAS-XL campaign, with two values of the wave

steepness H
λ : 1

40 and 1
22 . For the lower wave steepness, wave conditions are summarized

in table 4.1. Three wave periods are considered with h = 27 m and D = 9 m: 9 s, 12 s,

and 15 s, the latter corresponding to the case extensively studied in 2D in chapter 4. For

the more exploratory case of 1
22 steepness, only a period of 15 s is investigated, associated

to a wave height of H = 10.5m.

6.1.2 Spectral analysis of the horizontal force exerted on the monopile

Agreement of coupled simulations with experimental results is assessed through the com-

parison of the frequency contents of the time signals recorded for the depth-integrated

inline force on the cylinder. In Dadmarzi et al. (2019), amplitudes of the first three har-

monics of the normalized horizontal load on the monopile are provided for wave periods

in the time range [6 s, 16.5 s]. It is also briefly explained that harmonics amplitudes are

extracted thanks to a narrow-banded filter based on the Fast Fourier Transform (FFT).

In the current study, and similarly to the linear reflection coefficient calculation described

in Appendix A, a short-time Discrete Fourier Transform (DFT) is applied to the wave

elevation and inline force time signals, with a one-wave period sliding window. The DFT

is computed thanks to the FFT algorithm of the Numpy Python library.

The amplitude of the ith harmonic of the depth-integrated inline force is normalized as
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follows:

F (iω)
x =

F
(iω),dim
x

ρga2A1
(6.1)

where F
(iω),dim
x is the horizontal force of the 1st harmonic of the wave frequency ω = 2π

T ,

ρ is the water density, g the gravitational acceleration, a the monopile radius, and A1 the

amplitude of the first harmonic of free surface elevation, recorded next to the monopile.
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6.2 Coupled results for the smallest wave steepness

In this section, hybrid results are compared with the experimental reference in the case of

the 1
40 wave steepness, with h = 27 m and D = 2a = 9 m.

6.2.1 15 s wave period

For this wave condition, on which we dwelled in 2DV in chapter 4, it is reminded that the

target wave height equals H = 5.75 m.

A physical duration of approximately 57T is simulated. The CS mesh comprises 652 859

numerical cells. seine3d 1 mesh has 1181 nodes while seine3d 2 has 1401. The computation

runs for 3 days on 2 nodes of the HPC cluster, comprising 27 cores each. CS instances

uses 20 processors, while seine3d 1 employs 15 and seine3d 2 19. The number of CPU

cores assigned to the CS instance is calculated based on a recommendation issued for

computations involving only CS, stating that 30 000 cells should be attributed to each

processor. The number of processors used by the different seine3d instances was determined

based on our small experience of coupled simulations. Therefore, there should be room for

improvement, and the computational speed of hybrid computations may well be increased.

Scalability analysis of 3D coupled large simulations was nevertheless considered out of the

scope of the current work.

It takes around 1.22h of computation with this setup to simulate one wave period. Hence,

the ratio of computational time in core-hours (ch) to simulated time expressed in seconds

is:

Ncpl. =
1.22× 27× 2

15
= 4.4 ch.s-1

This quantity might be used for a comparison with a CS-only computation of the same

wave condition involving a large numerical domain built from the union of seine3d 1, CS
and seine3d2 coupled subdomains.

6.2.1.1 Free surface time signals

At first, free surface elevation time history extracted at a wave gauge next to the cylinder,

of coordinates x = 0 m and y = 31.25 m is compared to the streamfunction wave signal. In

the description of the experimental setup, no indication is given as to the lateral position,

i.e. the y-coordinate, of the wave probe of interest. Therefore, in the numerical study it

was quite arbitrarily put halfway between the monopile centerline and the opposite lateral

wall.

It should be noted that for such comparison to hold, wave interaction with the vertical

cylinder should remain negligible at the position of the wave gauge, so that free surface

elevation there does not differ much from that of the incident plane wave. This assumption



153 Chapter 6. Diffraction of nonlinear regular waves

is tested in Dadmarzi et al. (2019). Indeed, wave calibration tests are conducted with a

wave steepness of 1
30 . There, few discrepancies are noticed for the first three harmonics

of free surface elevation between the theoretical solution and the basin results, with and

without the monopile. Such observation applies for the whole range of wave periods

considered. Therefore, it seems reasonable to assume that the output of the selected

wave probe can be compared to the streamfunction wave solution evaluated at the same

abscissa.
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Figure 6.4: Comparison of streamfunction and computed free surface signals at the wave
gauge next to the monopile, of coordinates (x = 0 m, y = 31.25 m).

Simulated free surface elevation time history is displayed in figure 6.4. 3D results are

similar to the 2DV ones pictured in figure 4.18, in terms of the time needed for the waves

to fully develop (around 20T ).

Wave amplitude and phase errors are shown in figure 6.5. They should be related to results

displayed in figure 4.19. Error on amplitude reaches higher levels in the simulation of waves

interactions with the monopile (between 4% and 5%), as compared to 2DV (around 3%).

Similarly, phase shift slightly increases between 2DV and 3D, amounting to approximately

4° when stabilized, as compared to 3° in the 2DV case.

Hence, we observe discrepancies between 2DV and 3D coupled results when studying time

evolution of the free surface elevation at the abscissa of the monopile. These could either

originate from wave diffraction by the monopile and subsequent reflections on the lateral

walls or unphysical effects introduced by the couplings, that worsen when shifting from

2DV to 3DV. Nonetheless, errors remain limited: accuracy of the hybrid computation in

terms of free surface position seems sufficient to justify its use in the simulation of 3D

problems. A last insight into wave height error is given below, where the first order wave

amplitude is compared to its streamfunction counterpart.

This study serves as a first validation of 3D coupled results. A qualitative assessment of

the free surface shape in the CS domain, close to the cylinder, is also conducted.
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Figure 6.5: Relative error on wave height (a) and Phase shift (b) recorded by a wave gauge
located at x = 0 m, y = 31.25 m. The first 20T are excluded from the analysis.
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6.2.1.2 Free surface shape close to the cylinder

A series of snapshots of the free surface next to the monopile is presented in figure 6.6,

over a time interval of T
5 (from 30T to 30.2T ), after the wave crest hits the structure.

As already mentioned, smooth free surface shape is defined as the void fraction contour

surface where α = 0.5. A moderate wave run-up is noticed on the upstream side of the

cylinder, around t = 30T . As the wave is diffracted by the cylinder then reflected on the

symmetry plane, an upstream propagating wave appears. This seems to be in line with

other numerical results of wave diffraction by a slender circular cylinder, such as those

obtained by Paulsen (Paulsen, 2013; Paulsen et al., 2014). The level of accuracy reached

in the description of the free surface thus seems sufficient for the considered purposes of

the hybrid simulations.
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Figure 6.6: Snapshots of the free surface in the CS domain near the monopile, as a wave
crest passes. Incident waves are coming from the left.
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6.2.1.3 First order wave amplitude

Extracting the first order wave amplitude from simulation results is necessary to normalize

the horizontal force signal, as described in equation 6.1. It also allows for a measure of the

simulated wave steepness, as we have seen that in Dadmarzi et al. (2019) wave steepness

is calculated with the first order wave height.
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Figure 6.7: First order wave amplitude in the coupled simulation for T = 15 s. The
spectral analysis of the numerical results is realized over one wave period (red nodes). A
dashed red line illustrates the average amplitude over the whole displayed time interval.
The free surface signal is recorded by the same wave gauge as in figure 6.4, while the first
20T are excluded from the analysis and therefore not shown.

In figure 6.7, the simulation results are compared to the semi-analytical streamfunction

solution used for wave generation. As already mentioned, the simulated first order wave

amplitude is computed with a FFT applied over successive wave periods, after a sufficient

time delay has elapsed. Here this delay is taken as 20T . The mean value of A1 in time

is also computed, and compared to the streamfunction value. In the current case, it

is found that the simulated first order wave amplitude, A1,sim. is 3.9% lower than the

streamfunction value, A1,str.. This conforms with the findings related to global wave

amplitude reported in the previous subsection .

Thus the wave steepness, as defined in the reference experimental work and based on the

first order wave height, is 3.9% lower in the coupled simulation as compared to the value

used for wave generation. Indeed, the streamfunction and simulated wave steepnesses are:

εstr. =
2A1,str.

λ
= 0.0246

εsim. =
2A1,sim.

λ
= 0.0236

(6.2)

where it is assumed that the simulated wave length equals the streamfunction value.

It is reminded that 0.025 = 1
40 is the target wave steepness for the current study. Hence,

εsim. is 5.6% lower than the desired value, while εstr. is 1.6% lower. The latter only
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originates from divergences in wave steepness definition, as mentioned in chapter 4.

These error levels are deemed acceptable, especially when compared to the results of wave

calibration tests reported with ε = 1
30 in Dadmarzi et al. (2019). Relative errors on A1

with a magnitude of up to around 5% are indeed recorded between basin measurements

including the monopile model and the wave theory used to control the wave-maker.

6.2.1.4 Inline force time signal

The time history of the normalized horizontal force is partly shown in figure 6.8 after 40

wave periods. Even with a moderate wave steepness of 1
40 , nonlinearities are noticeable. As

will be further investigated through a spectral analysis, time signal is also not rigorously

periodic.
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Figure 6.8: Normalized horizontal force time signal between t = 40T and t = 45T for
T = 15 s and ε = 1

40 .

6.2.2 Amplitude of harmonics of normalized horizontal force

As we now have a time-average simulated value of A1 available, it is possible to compute

the normalized amplitude of the first three harmonics of the horizontal force exerted on

the monopile. As before, the fact that the force signal is not perfectly periodic calls for a

spectral analysis conducted on a sliding time window. Results are presented in figure 6.9.

Again, the first 22T are not accounted for in the frequency analysis. The time evolution of

the normalized amplitudes of harmonics of Fx is shown, with one point per wave period,

as well as their time averages. Experimental results are also drawn for comparison. It

can be noticed that amplitudes of harmonics fluctuate with time, therefore the calculated

mean values should be taken with some caution.

Comparison with results from wave basin tests is summarized in table 6.1. Relative errors

increase approximately by one order of magnitude for each order of the harmonics. Sim-

ulated results match the reference quite well for the first and second orders of the inline
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Harmonic order F
(iω)
x

ρga2A1
/ exp. F

(iω)
x

ρga2A1
/ sim. Relative error (%)

1 4.21 4.22 0.2
2 1.29 1.36 5.4
3 0.19 0.22 15.8

Table 6.1: Normalized amplitude of the first three harmonics of the depth-integrated inline
force on the cylinder, in the case of T = 15 s and ε = 1

40 .

force. Error on third harmonic’s amplitude is larger, but the corresponding absolute value

is low. The reader should keep in mind that normalization of Fx involves the simulated

value of A1 and not the streamfunction one.

Hence, the coupling procedure appears to enable quite accurate global horizontal force

computations for the largest considered wave period. The following sections address the

cases of T = 12 s and T = 9 s.
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Figure 6.9: Amplitudes of the first three harmonics of horizontal force applying on the
monopile, obtained from the WAS-XL experimental campaign and the coupled simulation
for T = 15 s and wave steepness ε = 1

40 . Spectral analysis of numerical results is realized
over one sliding wave period (red nodes). Time-averaged values are illustrated by dashed
red lines. The first 22T are excluded from the analysis.
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6.3 12 s wave period

The previous study is reiterated, this time with T = 12 s. Incident streamfunction wave

characteristics verify H = 4.28 m and λ = 171.366 m. Global setup of subdomains

and meshes follow the same rules as for T = 15 s. CS computational mesh comprises

1 144 443 cells. seine3d 1 mesh has 1701 nodes, while seine3d 2 mesh has 1533. The

computation runs for 3 days on two 36-cores nodes of the HPC cluster. CS instance gets

38 processors, seine3d 1 gets 26 and seine3d 2 24. Almost 44T are simulated. It takes

around 1.54h of computation with this setup to simulate one wave period. Hence, the

ratio of computational time to simulated time expressed is:

Ncpl. =
1.54× 36× 2

12
= 9.2 ch.s-1

Ncpl. is lower than in the previous case with T = 15 s. It indicates that the increase in

complexity of the coupled problem, originating from larger computational meshes and sub-

sequent higher extraction and transmission costs of coupled physical fields, is not compen-

sated by the increase in computational power. This would deserve further investigations

dealing with hybrid model setup and scalability.

Contrary to the case with T = 15 s, no preliminary 2DV study has been conducted with

the current wave condition. Therefore, the analysis of 3D coupled results is also less

exhaustive.

6.3.1 Free surface time signals

The free surface time histories at the already mentioned wave gauge of abscissa x = 0 m

and ordinate y = 31.25 m are presented in figure 6.10. It is considered that after 12T ,

waves have fully developed in the numerical basin. Agreement with the streamfunction

results seems to be better than for T = 15 s, as is illustrated next with A1.

6.3.2 First order wave amplitude

Time evolution of the amplitude of the first harmonic of the free surface elevation signal

is shown in figure 6.11, alongside with average and streamfunction values. Mean A1,sim.

value is closer to A1,str. than for T = 15 s, as it amounts to 99% of it. However, it should

be noted that the amplitude signal is less stable than with the previous wave condition.

The reason for such improvement of the results is unclear: this could be due to a better

performance of the wave generation routine of seine3d 1 for this wave condition, or to a

better transparency of the couplings.

It should be noted that the cylinder radius to wavelength ratio a
λ is greater than in the

case with T = 15 s, thus first-order diffraction effects are expected to be stronger, but they

do not seem to disturb the free signal much in the current case. However, the distance
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Figure 6.10: Comparison of streamfunction and computed free surface signals at the wave
gauge closest to the monopile for T = 12 s and ε = 1

40 .
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Figure 6.11: First order wave amplitude signal obtained from coupled simulation for T =
12 s and ε = 1

40 . The first 12T are excluded from the analysis and therefore not shown.

from the monopile’s centerline to the wave gauge of interest represents a larger fraction

of λ here. Hence, although ygauge = 31.25 m seems to be a rather relevant value, it is

not sufficient to conclude that wave diffraction does not play any role on the free surface

discrepancies illustrated in figure 6.5 for T = 15 s.
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6.3.3 Amplitude of harmonics of normalized horizontal force

Figure 6.12 displays the amplitudes of the first three harmonics of inline force. It appears

that the curves do not fully stabilize with time, in particular that of the second harmonic,

which grows steadily and in a unexpected manner, starting from t = 32T approximately.

For that reason, it was decided to exclude any results past t = 33T from the computation of

mean force harmonics values. Grey areas in figure 6.12 illustrate this choice. Nevertheless,

our understanding of this behavior may have benefited from a longer-lasting computation.

Harmonic order F
(iω)
x

ρga2A1
/ exp. F

(iω)
x

ρga2A1
/ sim. Relative error (%)

1 4.78 4.832 1.1
2 0.72 0.7357 2.2
3 0.014 0.0779 4.56× 102

Table 6.2: Normalized amplitude of the first three harmonics of the depth-integrated inline
force on the cylinder, in the case of T = 12 s and ε = 1

40 . Computation of the mean values
is realized over a restricted time window (12T − 33T ).

Results are summarized in table 6.2. Again, relative error levels as compared to experi-

mental values increase by an order of magnitude for each order of the harmonic. Under

the above-mentioned time restrictions, agreement is found to be good for the first order

normalized horizontal force and reasonable for the second. Computed third harmonic

strongly differs from its experimental counterpart, but the absolute normalized values are

very low.
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Figure 6.12: Amplitudes of the first three harmonics of horizontal force applying on the
monopile, obtained from the WAS-XL experimental campaign and the coupled simulation
for T = 12 s. Gray areas illustrate the time window excluded from the computation of

harmonics mean values starting at t = 33T , due to non-convergent behavior of F
(2ω)
x

ρga2A1
,

and F
(3ω)
x

ρga2A1
to a lesser extent. The first 12T are excluded from the analysis and therefore

not shown.
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6.4 9 s wave period

Last in the series of wave conditions with ε = 1
40 is the case of T = 9 s. It corresponds to

an incident wave height of H = 2.86 m and a wavelength of 114.446 m. The CS mesh is

the largest used so far in a coupled simulation, with 2 400 293 computational cells.

seine3d 1 has 3219 nodes in its mesh, while seine3d 2 has 1929. The computation runs

for 3 days on four 36-cores nodes of the HPC cluster, with 80 processors being attributed

to the CS instance, while 35 are reserved for seine3d 1 and seine3d 2. Again distribution

of computational resources to the different code instances was not questioned, and it is

very likely not optimal. A deeper analysis of the influence of processors allocation on the

performances of the coupling procedure would be useful here. 338.22 s were computed,

corresponding to 37.58T . With this setup, simulating one wave period takes 1.75h. The

ratio of computational time to simulated time expressed becomes:

Ncpl. =
1.75× 36× 4

9
= 28.0 ch.s-1

For this wave condition, a comparison is made with a computation involving only CS
on the basis of Ncpl., to quantify the savings in computational resources allowed by the

coupling methodology. Conclusions are presented below.

6.4.1 Free surface time signals
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Figure 6.13: Comparison of streamfunction and computed free surface signals at the wave
gauge closest to the monopile for T = 9 s and ε = 1

40 .

Free surface time signals at the reference wave gauge are shown in figure 6.13. Around

20T are needed from the initial stage of the computation to reach a quite stabilized wave

regime. Contrary to previous wave conditions, this time the coupled simulation tends to

slightly overpredict the free surface elevation. Again, hybrid results would certainly have
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benefited from a longer simulated time. Free surface overshoots may be due to spurious

wave reflection taking place in the damping region, implemented at the downstream end

of the seine3d 2 domain.

6.4.2 First order wave amplitude

The study of first order wave amplitude allows one to quantify the free surface elevation

error. Results are presented in figure 6.14. Although vertical scale is largely stretched,

an increasing trend is observed for A1,sim.. This is in line with the previous observations.

Nevertheless, overprediction of the time-averaged value of A1,sim. computed over the dis-

played time domain amounts to less than 1% as compared to the streamfunction solution.
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Figure 6.14: First harmonic amplitude of the free surface elevation signal in the coupled
simulation for T = 9 s and ε = 1

40 . The first 21T are excluded from the analysis and
therefore not shown.

6.4.3 Amplitude of harmonics of normalized horizontal force

Figure 6.15 gathers results related to the amplitude of the first three harmonics of normal-

ized inline force on the monopile. Second and third order normalized amplitudes amount

on average to even lower fractions of F
(ω)
x

ρga2A1
than observed in previous wave conditions.

Due to the limited simulated physical time, the working time domain over which spectral

analysis is conducted is not as large as before, but it is sufficient to get a reasonable insight

into the coupled model’s behavior. Again, a growing trend is seen for first order inline

force, that could be related to the increase of A1,sim. with time. Signals for F
(2ω)
x

ρga2A1
and

F
(3ω)
x

ρga2A1
are more stable.

Table 6.3 presents a summary of the time-averaged results. Agreement between experi-

mental and simulated first order results is satisfactory. Discrepancies are larger for second

and third orders, but absolute normalized amplitudes of Fx are 1 to 2 orders of magnitude
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Harmonic order F
(iω)
x

ρga2A1
/ exp. F

(iω)
x

ρga2A1
/ sim. Relative error (%)

1 5.75 5.835 1.5
2 0.32 0.27 −15.6
3 0.056 0.03 −46.4

Table 6.3: Normalized amplitude of the first three harmonics of the depth-integrated inline
force on the cylinder, in the case of T = 9 s and ε = 1

40

lower.

Hence, the implemented coupling procedure allows for simulating wave diffraction by a

vertical cylinder for a moderate wave steepness, for various values of relative water depth

and relative monopile radius. Assessments have been made of the accuracy and speed of

computations. To conclude on the relevance of the BEM-VOF coupling procedure, it is

necessary to have at least one comparison point available with a CS-only simulation. This

is the subject of the next section.
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Figure 6.15: Amplitudes of the first three harmonics of horizontal force applying on the
monopile, obtained from the WAS-XL experimental campaign and the coupled simulation
for T = 9 s and ε = 1

40 . The first 23T are excluded from the analysis and therefore not
shown.
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6.4.4 CS-only simulation of the same problem with 9 s wave period

As mentioned before, the coupled simulation with ε = 1
40 featuring the smallest values of

T and λ is also the one for which the meshes of the different models instances contain the

greatest numbers of elements. It is thus considered a good candidate for a comparison

with the computationally expensive results obtained using only CS.

A CS-only computation is set up with the same numerical parameters as used in the CS
instance for the coupled simulation with T = 9 s. A mesh describing the whole domain

is built with 29 181 137 cells. The part of it encompassing the monopile is the same as in

the associated coupled simulation. Wave generation and absorption are realized thanks

to damping regions involving source terms added to the void fraction and momentum

conservation equations, as described in section 4.4. Each region is one wavelength long,

thus the CS-only numerical domain is one wavelength longer than the global hybrid one,

as wave generation is limited to the upstream boundary only in seine3d 1 domain, in

the hybrid case. Damping intensity, whose optimal value is not independent of the wave

conditions, is selected in both regions after a brief sensitivity analysis conducted on 2DV

wave simulations.

27 36-cores nodes of the HPC cluster are used for a 3-days-long computation. 79.3T are

simulated. Simulating one wave period takes 0.76h. Computational time to simulated

time ratio is:

Ncs =
0.76× 36× 27

9
= 82.1 ch.s-1

Ncs is thus 2.93 higher than the previously computed Ncpl.. This result may be seen

as conservative, as we also have specified that computational resources allocation is per-

fectible in the case of coupled simulations. It is also close to the gain obtained using the

SWENSE method for a similar problem reported by Li et al. (2021). Besides, no study of

the influence of CS numerical domain size has been conducted: it might be even smaller.

The same might be said of Loverlap.

Still, we should ensure that the accuracy of CS-only computational results matches or

outperforms that of the hybrid method, in terms of free surface elevation and depth-

integrated inline force, for the comparison to hold.

6.4.4.1 Free surface time signals

Streamfunction and computed free surface signals at the wave gauge next to the vertical

cylinder are compared in figure 6.16. Overall agreement is good, and similar to the one

obtained with the hybrid simulation, pictured in figure 6.13. A moderate but growing

with time overestimation of free surface elevation is noticed, as well as a slight beating.

Perfectible wave damping could be responsible for this.
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Figure 6.16: Comparison of streamfunction and computed free surface signals at the wave
gauge closest to the monopile for a CS-only computation with T = 9 s.

6.4.4.2 First order wave amplitude
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Figure 6.17: First harmonic amplitude of the free surface elevation signal from the CS-only
simulation for T = 9 s and ε = 1

40 . Spectral analysis of numerical results is realized over
one sliding wave period (red nodes). The first 24T are excluded from the analysis and
therefore not shown. Coupled results are drawn in yellow for comparison.

The above-mentioned beating is more easily observed in figure 6.17, picturing the time

evolution of the first order wave amplitude. A good level of accuracy is reached, as the

time-averaged value of A1,sim. amounts to nearly 99% of A1,th..
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6.4.5 Amplitude of harmonics of normalized horizontal force

The spectral analysis of the depth-integrated inline force on the cylinder is presented in

figure 6.18. F
(2ω)
x

ρga2A1
and F

(3ω)
x

ρga2A1
are quite stable in time, whereas F

(ω)
x

ρga2A1
features larger

fluctuations and is globally underpredicted. At the same time, a value greater than the

experimental one was found for the same force harmonic in the coupled simulation.

Harmonic order F
(iω)
x

ρga2A1
/ exp. F

(iω)
x

ρga2A1
/ sim. Relative error (%)

1 5.75 5.55 −3.5 (1.5)
2 0.32 0.288 −10.0 (−15.6)
3 0.056 0.034 −39.3 (−46.4)

Table 6.4: Normalized amplitude of the first three harmonics of the depth-integrated inline
force on the cylinder, in the case of T = 9 s and ε = 1

40 for a simulation involving only CS.
Algebraic error levels obtained with the corresponding coupled simulation are recalled in
parentheses.

Table 6.4 summarizes the time-averaged results. From a comparison with table 6.3, it

appears that global error levels are similar to those found in the coupled simulation, albeit

first order agreement is not quite as good. Also, higher order results match the reference

better than the hybrid solution.

CS-only and coupled simulation thus reach similar accuracy levels, in terms of free surface

elevation and inline force on the cylinder. Comparing their respective computational costs

is thus relevant.
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Figure 6.18: Amplitudes of the first three harmonics of horizontal force applying on the
monopile, obtained from the WAS-XL experimental campaign and the CS-only simulation
for T = 9 s and ε = 1

40 . The first 23T are excluded from the analysis and therefore not
shown. Coupled results are drawn in yellow for comparison.
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6.5 A coupled simulation featuring waves with higher non-

linearity

In this section, we report on the simulation of interactions of steep regular nonlinear

waves with a vertical cylinder, following the coupling methodology. Wave steepness is set

to 1
22 , and the case of T = 15 s is investigated. Incident streamfunction wave height is

H = 10.5 m while λ = 231.7 m. This 3D case refers to the 2DV one described in section

4.5.3, and numerical parameters that enabled a stable 2DV computation are reemployed.

In particular, ∆tseine3d is set to T
30 and ∆tcs takes the value T

1500 , yielding N∆t = 50.

Rules governing the geometry of the different 3D subdomains are kept the same, and wave

damping parameters are left untouched.

As CS mesh cell dimensions are based on fixed fractions of H, the body-fitted mesh used

in the current case is the smallest ever built for a 3D coupled simulation, with 121 783

elements. Hence, a single 36-cores HPC node is required to run the simulation, as 4 CPU

cores are attributed to CS, while seine3d 1 and seine3d 2 are given 15 and 17 respectively.

100 wave periods are simulated in little more than one day with this setup.

6.5.1 Free surface shape close to the cylinder

Close-up views of the free surface shape are displayed in figure 6.19, at 6 time instants

after a wave crest has passed the monopile. An important upstream propagating wave

can be seen, as well as strong wave run-ups on the cylinder walls. Results conform rather

well, qualitatively speaking, with the free surface snapshots describing the interaction

of highly nonlinear non-breaking unidirectional waves with a bottom-mounted circular

cylinder reported by Paulsen (2013); Paulsen et al. (2014).
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Figure 6.19: Snapshots of the free surface in the CS domain near the monopile, as a wave
crest passes, with T = 15 s and ε = 1

22 . Incident waves come from the left.
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6.5.2 Free surface time signals

Free surface time histories recorded by a wave-gauge at the abscissa of the monopile are

reported in figure 6.20. Here, it should be reminded that numerical stability was the main

concern when 2DV tests with the same wave condition were realized, as stated in section

4.5.3.

The computed free surface elevation signal appears to be quite stable, especially in the

second half of the simulation. Again, it calls for longer computational times, in order

to yield the most accurate and relevant spectral analysis possible. However, the free

surface vertical position is strongly underpredicted at wave crests. Wave troughs are

better rendered.
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Figure 6.20: Comparison of the streamfunction and computed free surface signals at the
wave gauge closest to the monopile for a coupled computation with T = 15 s and ε = 1

22 .
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6.5.3 First order wave amplitude

First order amplitude analysis enables to quantify inaccuracy in incident wave height,

and is shown in figure 6.21. It should be noticed that oscillations of A1,sim. around its

time-averaged value decrease with time. This value is also 11% lower than A1,th..
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Figure 6.21: First harmonic amplitude of the free surface elevation signal obtained from
the coupled simulation for T = 15 s for ε = 1

22 . The first 22T are excluded from the
analysis and therefore not shown.

6.5.4 Inline force time signal

Time history of the normalized horizontal force is partly shown in figure 6.22 after 40 wave

periods. As expected, nonlinearities in the signal are higher than for the case with ε = 1
40 ,

as pictured in figure 6.8.
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Figure 6.22: Normalized horizontal force time signal between t = 40T and t = 45T for
T = 15 s and ε = 1

22 .
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6.5.5 Amplitude of harmonics of normalized horizontal force

Figure 6.23 shows the time history of the first three harmonics of the normalized horizontal

force on the cylinder. As already written, frequency analysis outputs are more trustworthy

than in previous 3D cases that lasted shorter. In accordance with discrepancies reported

for total wave height and first order wave amplitude, normalized horizontal force is over-

predicted by the simulations at first and second orders. The opposite is true for the third

force harmonic.

Results are summed up in table 6.5. First order relative error, as expected, is close to

being one order of magnitude higher than in previous cases with ε = 1
40 . Second and third

order error amplitudes are similar, if not smaller.

Thus, it appears that 3D simulations of highly nonlinear wave diffraction by a vertical

cylinder are feasible with the coupling strategy, even at a low computational cost. Limits

experienced in 2DV about free surface elevation accuracy explain most of the shortcomings

reported in 3D. Therefore, emphasis should be put on 2DV highly nonlinear simulations,

in the hope that improvements can later be applied to 3D computations.

Harmonic order F
(iω)
x

ρga2A1
/ exp. F

(iω)
x

ρga2A1
/ sim. Relative error (%)

1 4.21 4.57 8.55
2 1.89 2.0 5.82
3 0.4 0.32 −20.0

Table 6.5: Normalized amplitude of the first three harmonics of the depth-integrated inline
force on the cylinder, in the case of T = 15 s and ε = 1

22 .
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Figure 6.23: Amplitudes of the first three harmonics of horizontal force applying on the
monopile, obtained from the WAS-XL experimental campaign and the coupled simulation
for T = 15 s and ε = 1

22 . The first 20T are excluded from the analysis.
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6.6 Conclusions

In this chapter, it has been established that the coupling procedure developed in this

work is suitable for simulating the interaction nonlinear regular waves with a cylindrical

monopile in constant depth. Simulations were realized in realistic full scale numerical

domains, built in accordance with the domain-decomposition approach implemented in

the coupling strategy. Comparison of total wave height and first order wave amplitude

with the incident plane streamfunction solution showed limited discrepancies for mildly

nonlinear cases with ε = 1
40 . The extensively studied 2DV case with T = 15 s served as a

reference for the treatment of free surface elevation results. Wave height error, recorded

close to the monopile, appeared to be slightly larger in 3D than in 2D. Which phenomenon

is responsible for this remains unclear, as it could be attributed to the wave diffraction

caused by the monopile, to the negative influence of the couplings on wave propagation, to

shortcomings of the wave generation routine in seine3d or to imperfect absorption of waves

at the downstream end of the hybrid domain. Errors in the numerical reproduction of the

target wave height also lead to discrepancies in depth-integrated inline force exerting on

the cylinder. A deeper study of the coupled model’s behavior in 3D problems could partly

solve this issue.

When comparing simulation results with experimental ones in terms of horizontal effort,

another source of error lies in the fact that wave steepness definitions used in Dadmarzi

et al. (2019) and in the wave generation routine of seine3d used in the current work differ

somewhat. Indeed, it is based on the first order wave amplitude in the former study, while

in the latter it relies on total wave amplitude. We found that the relative error amounts

to around 1.5% in the case of T = 15 s with ε = 1
40 . It is also expected to have a smaller

impact on computations with T = 12 s and T = 9 s, in which higher-order components

account for a smaller part of total wave amplitude, due to higher relative water depth. On

the opposite, discrepancy is even larger for the case of T = 15 s and ε = 1
22 . Getting rid

of this particular error would not require important developments.

In general, differences between simulated and streamfunction first order wave amplitudes

remained below or close to 1%, in absolute value, for the mildly nonlinear waves. They

are approximately one order of magnitude higher for the more exploratory case of ε = 1
22 .

Besides, in calibration tests conducted in the physical wave basin, error levels of up to 5%

for the first order wave amplitude were experienced, for certain wave periods. Therefore,

it seems that the hybrid method enables sufficiently accurate reproduction of the target

wave height, at least for moderate wave steepness, to be further used for the calculation

of hydrodynamic efforts on the monopile.

A spectral analysis of the normalized horizontal force signal was conducted for each sim-

ulation result. For moderately steep waves, a very good agreement between simulation

and experiments is observed for first order force amplitude, for all wave periods. The

agreement worsens as the order increases, but remains correct for the second harmonic,

especially in the case of T = 15 s, for which experience from 2DV calculations is available.
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Very high error levels might be found for the third harmonic, but they are reached when

the experimental force coefficient is also very low.

In the unique simulation case featuring a larger wave steepness of 1
22 , a higher error level

exists for first order amplitude of the normalized force, but it does not increase for second

order. This is fortunate, as in this more non-linear case, greater higher-order amplitudes

of the force coefficient are observed.

Hence, it appears that the coupling strategy allows for quite accurate 3D simulations of

wave interactions with fixed surface-piercing structures. These computations also come at

a reduced cost. Indeed, it was proven, in the case of T = 9 s and ε = 1
40 , that a hybrid

simulation in which the computational resources breakdown between models instances is

not optimized has a computational cost amounting to only one third of that of a CS-only

simulation, with comparable accuracy. Indeed, the simulation involving only CS seems

harder to set-up, with wave generation and damping regions that are very sensitive to the

design wave characteristics. This all the more bolsters the relevance of a hybrid strategy. It

should also be reminded that wave conditions with T = 9 s and T = 12 s were reproduced

in 3D without any preliminary 2DV study, thus the coupled model seems versatile enough

to be used as an engineering tool.
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Conclusions and future work

Cette partie conclusive synthétise les avancées obtenues au cours de ce travail

de thèse quant au développement et à l’application d’un couplage bidirectionnel

entre un code Navier-Stokes et un code de vagues potentiel complètement non-

linéaire. Les principaux résultats obtenus y sont résumés, qu’ils portent sur la

vérification de la stratégie de couplage implémentée, ou sur sa validation vis-à-

vis d’un problème d’interactions vagues-structure d’intérêt pour l’ingénieur. Le

gain en coût de calcul permis par le couplage est rappelé. De nombreuses pistes

d’amélioration de la méthode sont avancées. Les plus évidentes et immédiates

concernent la capacité du couplage à gagner en précision dans la description

de certains phénomènes, tels que les interactions d’ordres élevés entre struc-

tures et houles régulières non-linéaires. Une meilleure connaissance des per-

formances de l’outil en terme de temps de calcul et de ressources nécessaire est

également attendue, afin de mieux répartir les ressources informatiques entre

instances des codes couplés et abaisser encore le coût de calcul global. D’autres

perspectives plus lointaines sont abordées, qui visent notamment à rendre pos-

sible la simulation de l’interaction de vagues avec des structures flottantes.

181
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7.1 Summary of main outcomes and discussion

In this work, the definition, implementation, verification and validation through com-

parison to analytical solutions and experimental results of a two-way coupling strategy

involving fully nonlinear potential BEM and viscous VOF models have been described.

This coupling methodology relies on the mutual exchange of fluid velocities between codes,

at the boundaries located at both ends of an overlapping region. It enables the simulation

of 3D wave-structure interactions on large spatial and temporal scales, making the most of

each code’s intrinsic performances and ranges of application. Savings in the computational

cost of the simulations were obtained (by a factor of about 3 with reference to a CS-only

simulation on a domain of the same dimensions). Multiple couplings may be set through

the pairing of different instances of seine3d and CS, thanks to an appropriate division of

the global domain of interest into several overlapping subdomains. The designed hybrid

procedure is intended to introduce the lowest possible number of additional simulation

parameters. After choices have been made in each code about temporal and spatial dis-

cretization levels, as well as physical assumptions and solution procedure, theoretically

only the length(s) of the overlapping region(s) remains to be set. Stability issues of the

hybrid computations with certain values of CFL numbers in the models were however

experienced, indicating that respective temporal and spatial resolutions affect the appli-

cability of the coupling strategy. The possibility to run massively parallel computations,

available in seine3d and CS, has also been retained.

The developed computational tool is verified at first by a 2DV study of the propagation

of a solitary wave over a constant depth. Conservation of the wave shape and celerity is

assessed for moderate (Hh = 0.3) as well as high (Hh = 0.5) relative wave height. Results

are rather satisfactory in the first case, as for example the maximum error recorded on

wave height is close to 2%, while the solitary wave travels over more than 40h. As already

mentioned, simulations were not successful with every investigated combination of spatial

and temporal discretizations in seine3d and CS instances. However, sensitivity to these

parameters remains reasonable, and little influence on results quality is experienced with

moderate variations of time and space resolutions around a reference working setup. This

wave case indeed sheds light on stability issues encountered in seine3d instances during the

hybrid simulations, located on certain edges and corners of the coupled boundaries. Besides

this, choices related to the treatment of seine3d free surface variables in the coupling regions

are tested, and the subsequent conclusions serve as a basis for following computations.

Next, 2DV coupled simulations featuring nonlinear regular waves over constant water

depth are presented. The idea is to reproduce most of the characteristics of a reference

experimental campaign focusing on wave interactions with a vertical bottom-mounted cir-

cular cylinder. In particular, a given wave condition is simulated using each code alone

at first, then with the hybrid algorithm. It allows for an assessment of wave generation

and absorption techniques in seine3d and CS. Results are compared with semi-analytical

streamfunction wave solutions used for wave generation, in terms of wave elevation time
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history, as well as velocity fields underneath the waves. When looking at the vertical

structure of fluid velocity, significant differences with the expected streamfunction pro-

files were observed, increasing with time, calling for a brief sensitivity analysis of various

parameters, aiming at reducing error levels. Finally, coupled simulations are run for two

values of the wave steepness, namely ε = H
λ = 1

40 = 2.5% and ε = 1
22 = 4.5%, with the

more nonlinear wave case being more exploratory. It is believed that rules used to set

spatial and temporal discretization levels as well as various other numerical parameters in

2DV still hold for more complex 3D cases.

The first 3D simulations are conducted to describe the diffraction of a solitary wave by a

vertical circular cylinder. It allows one to check, in a qualitative way, whether the coupling

methodology is able to reproduce complex 3D free surface flows, with waves crossing

overlapping regions in both directions. Most numerical settings come from previous 2DV

solitary wave simulations, therefore transverse resolution of the seine3d meshes is the only

parameter remaining to be set. It is found to be critical for the stability of computations,

but relevant horizontal mesh resolutions do not lead to unreasonable mesh sizes.

At last, hybrid 3D simulations are validated through comparison with experiments (WAS-

XL campaign, Dadmarzi et al. (2019)) about regular wave diffraction by a vertical cylinder.

Three wave conditions with a moderate wave steepness of 1
40 are tested, while monopile

radius and water depth are constant. For two of them, no preliminary 2DV investigation

has been conducted. Satisfactory agreement between simulated and experimental results

is found in terms of wave elevation close to the vertical cylinder and depth-integrated

inline force on the same cylinder. Computed higher-order force components match the

experimental ones reasonably well up to third order. For one wave condition, a CS-only

simulation is realized that reaches accuracy levels similar to those of its hybrid counterpart,

but at a greater computational cost (3 times higher). A more exploratory case featuring

highly nonlinear waves is run with ε = 1
22 , showing that coupled simulations of steep

regular waves are feasible within the coupled framework, with higher error levels with

respect to experimental measurements in comparison with the case ε = 1
22 however. Thus

the relevance of the coupling strategy in the simulation of regular waves forces exerting

on the foundation of a fixed offshore wind turbine is established.

7.2 Research and application perspectives

The developed coupling strategy has proven to be quite straightforwardly applicable to

problems of interest for the engineer. Reasonable computational costs are achieved even

for large computational meshes, made possible by the parallel nature of the hybrid solver.

As an example, a 3D wave-structure simulation with T = 15 s, ε = 1
40 , where the CS mesh

has approximately 650 000 elements while seine3d instances meshes respectively have 1181

and 1401 nodes requires 1.22 hour to simulate one wave period on 2 HPC nodes featuring

27 CPUs. These costs appear to amount for only a fraction – one third, in the only 3D
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case investigated – of that of NS-only similar computations. Thus, this work could enable

a more frequent use of CFD tools in the engineering practice. However, additional effort is

needed to gain more insight into the behavior and capabilities of the coupling methodology

in its current state. Developments could also be expected to further improve efficiency

and expand the range of handled problems.

1. Better knowledge of the performances of the hybrid solver in its current

state

Additional studies related to the use of seine3d in its current state, in this hybrid

strategy, are needed. The instabilities reported in coupled seine3d instances should be

further investigated in order to understand their origin and to possibly avoid them.

Deeper convergence studies could be conducted for coupled simulations, to further

validate the method and allow for a finer selection of numerical parameters, as well as

more accurate results, for example in terms of higher order wave forces. In particular,

the respective impacts of the time step ratio and the overlapping length should be

better documented. The influence of variations in the characteristics of incident

waves, especially their length and period, over the coupled simulations and the choice

of the above-mentioned coupled parameters, should be studied. Investigations about

the distribution of CPU cores over the different coupled code instances and scalability

analysis would be valuable improvements made to the hybrid computations.

2. Improvements to the viscous model employed in the coupling strategy

Investigations related to the performance of the VOF module of CS as a tool to

model free surface waves, that was conducted in the beginning of this PhD, should

be extended. In particular, a better knowledge of the influence of advection schemes

available in CS, used in the void fraction conservation equation, as well as that of

other settings, should be sought. The set of boundary conditions applied in CS
instances is perfectible: it appears that the currently used top boundary condition

can be improved quite straightforwardly. In this work, a slip condition is imposed

on the surface of the monopile in CS, as well as on all the vertical walls. Even

though agreement with experimental results appears to be good, a possible step for-

ward would be to include effects of boundary layer in simulations. As a number of

turbulence models are already available in CS, this would only require to work on

specific boundary conditions for turbulent quantities at the coupled boundaries of CS
instances. This way, local shear forces applying on partially submerged structures

would be accounted for. Increasing the order of the interpolation schemes used in CS
to extract the values of fluid velocity and free surface elevation needed by a coupled

seine3d instance is yet another source of improvement. This requires conveniently

accessing void fraction and velocity gradient fields in CS’s user routines. Another

area of improvement is the generalization of the coupling strategy to unstructured

CS meshes. Currently, it is only possible to use meshes in which overlapping re-

gions are described with Cartesian grids. This would require implementation of a
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new method for computing free surface positions in CS. This would allow for easier

simulation of wave forces on structures of complex shape, with body-fitted meshes.

It is also possible to replace CS by Neptune-CFD, which uses a multi-fluid approach

(as opposed to VOF), developed by EDF R&D, that shares most of its components

with CS. It has been recently successfully applied to solve regular wave diffraction

problems investigated in the WAS-XL experimental campaign in engineering studies,

similarly to what was done with the coupled solver in chapter 6. It features a porous

media approach that allows for a straightforward description of any structure placed

in waves, without the need for a complex meshing stage. Note that this feature is

also planned for a future release of CS.

3. Improvements to the potential model employed in the coupling strategy

For the sake of time saving in the implementation stage of the coupling strategy,

not all latest improvements conducted in seine3d have been made available for use in

the coupled seine3d instances. One of these is the use of the Fast Multipole Method

that allows for accelerated solution procedure, see Harris et al. (2022) for details.

In addition, it might be interesting to evaluate the sensitivity of the coupling pro-

cedure to changes made to the time-stepping scheme selected in seine3d, as different

schemes are already implemented. As discussed above for the viscous CFD code,

alternative potential flow solvers could also be considered using the same coupling

strategy developed here. This would allow exploring options to overcome stability

issues encountered in several cases here with seine3d, and/or possibly reducing the

total computational cost of the coupled simulations. In this direction, the recently

developed FNPF solvers based on the HPC technique (Robaux and Benoit, 2021) or

on a spectral approach in the vertical (Zhang and Benoit, 2021) could be considered,

among other options.

4. Using the coupled solver to simulate other applications

In this work, only the propagation of unidirectional regular waves over constant depth

has been numerically reproduced. Simulation of irregular and/or multidirectional

waves, possibly traveling over variable bathymetry could be conducted following the

coupling strategy. Phase-focused wave impacts with possible wave breaking could

also be investigated. Making the most of the versatile nature of the hybrid solver, one

might also use more complex overlapping regions geometry. Indeed, coupling regions

having the form of rectangular or circular rings could quite easily be defined, enabling

3D simulations of waves interacting with multiple structures. Last but not least, the

potential-CFD coupling procedure could be used alongside with a fluid/structure

coupling approach, so that interactions of waves with moving structures could be

handled. This is of particular interest for the study of floating offshore wind turbines,

that is a promising solution for harvesting wind energy in greater water depths.
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Appendix A

Calculation of linear reflection

coefficient

To evaluate the amount of reflection attributed to a numerical damping layer submitted to

regular monochromatic waves, either in CS or in seine3d, the method of Goda and Suzuki

(1976) is used. It enables the computation a linear reflection coefficient, from the free

surface time histories recorded at two wave gauges located upstream of the damping layer.

The reflection coefficient is defined as:

R =
ar
ai

(A.1)

where ai and ar are incident and reflected linear wave amplitudes respectively.

Wave gauges should be far enough from each other so that a sufficient phase difference

exists between their respective recorded signals. However, it is also assumed in this method

that the frequency content of the incoming wave is kept constant as the waves travel

between both locations. Energy transfers between wave components are thus considered

negligible, and global wave energy is presumed constant. Therefore, wave gauges should

not be placed too far away from each other either. Besides, if both gauges are at a distance

of λ2 , a singularity occurs in the calculation of R. In this work, a value of ∆l = x2−x1 = λ
4

for the distance between gauges 1 and 2 is used. x1 and x2 designates the gauges respective

longitudinal positions. It is to be noted that in the case of a linear monochromatic wave

impinging on a fully-reflective damping region - i.e a vertical wall - a standing wave

pattern appears in which successive nodes and antinodes are separated by a distance of
λ
4 . A short-time Discrete Fourier Transform (DFT) is applied to the wave signals, with a

sliding window of one wave period. The DFT is computed with the Fast Fourier Transform

(FFT) algorithm implemented in the Numpy Python library. Extraction of free surface

signals relative maxima is also done thanks to a Python function implemented in the Scipy

library. This way the DFT window is automatically set, and spectral analysis is repeated

for the entire duration of the signals.
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Free surface position measured from resting level at time instant t and abscissa x is denoted

η(x, t). It is split into two terms, one describing the incident wave train ηi and the other

the reflected wave train ηr.

η(x, t) = ηi(x, t) + ηr(x, t)

= ai cos(kx− ωt+ εi)

+ ar cos(kx+ ωt+ εr) +HOT (A.2)

where ai and ar are the components amplitudes, assumed to be constant during the wave

period over which DFT is applied. k is the wave number and ω is the angular frequency

of the simulated regular wave. For the sake of simplicity, their theoretical values are

used, without any significant loss in accuracy. εi and εr are the initial phase angles for

incident and reflected components and HOT stands for the neglected nonlinear Higher-

Order Terms. At any wave gauge i, free surface position becomes:

η(x = xi, t) = ai(cosψi cosωt+ sinψi sinωt)

+ ar(cosψr cosωt− sinψr sinωt) +HOT

= Ai cos(ωt) +Bi sin(ωt) +HOT (A.3)

where

ψi = kxi + εi

ψr = kxi + εr (A.4)

Coefficients Ai andBi are obtained as outcomes of the Fourier decomposition of η(xi, t). As

already stated, frequency contents at both wave probes are presumed identical, therefore

ai and ar are the the same at x1 and x2. The following system thus holds :

A1 = ai cosψi + ar cosψr

B1 = ai sinψi − ar sinψr

A2 = ai cos(ψi + k∆l) + ar cos(ψr + k∆l)

B2 = ai sin(ψi + k∆l)− ar sin(ψr + k∆l)

(A.5)

It should also be noted that:

A2 = A1 cos k∆l +B1 sin k∆l − 2aI sin k∆l sinψI

= A1 cos k∆l −B1 sin k∆l − 2aR sin k∆l sinψR

B2 = −A1 sin k∆l +B1 cos k∆l + 2aI sin k∆l cosψI

= A1 sin k∆l +B1 cos k∆l − 2aR sin k∆l cosψR (A.6)
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ai and ar may then be expressed as:

ai =
1

2|sin k∆l|
(
(A2 −A1 cos k∆l −B1 sin k∆l)2 + (B2 +A1 sin k∆l −B1 cos k∆l)2

)1/2
ar =

1

2|sin k∆l|
(
(A2 −A1 cos k∆l +B1 sin k∆l)2 + (B2 −A1 sin k∆l −B1 cos k∆l)2

)1/2
(A.7)

The reflection coefficient is then defined as a ratio of wave amplitudes:

R =
aR
ai

(A.8)
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