On the evaluation of dislocation densities in pure tantalum from EBSD orientation data

Abstract : We analyze measurements of dislocation densities carried out independently by several teams using three different methods on orientation maps obtained by Electron Back Scattered Diffraction on commercially pure tantalum samples in three different microstructural states. The characteristic aspects of these three methods: the Kernel average method, the Dillamore method and the determination of the lattice curvature-induced Nye’s tensor component fields are reviewed and their results are compared. One of the main features of the uncovered dislocation density distributions is their strong heterogeneity over the analyzed samples. Fluctuations in the dislocation densities, amounting to several times their base level and scaling as power-laws of their spatial frequency are observed along grain boundaries, and to a lesser degree along sub-grain boundaries. As a result of such scale invariance, defining an average dislocation density over a representative volume element is hardly possible, which leads to questioning the pertinence of such a notion. Field methods allowing to map the dislocation density distributions over the samples therefore appear to be mandatory.
Document type :
Journal articles
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02064622
Contributor : Nathalie Bozzolo <>
Submitted on : Wednesday, March 13, 2019 - 9:21:47 AM
Last modification on : Tuesday, May 28, 2019 - 3:40:17 PM

File

2019_On the evaluation of disl...
Publisher files allowed on an open archive

Identifiers

Citation

Claude Fressengeas, Benoit Beausir, Christophe Kerisit, Anne-Laure Helbert, Thierry Baudin, et al.. On the evaluation of dislocation densities in pure tantalum from EBSD orientation data. Matériaux & Techniques, EDP Sciences, 2019, Métaux et alliages, 106 (604), pp.14. ⟨10.1051/mattech/2018058⟩. ⟨hal-02064622⟩

Share

Metrics

Record views

42

Files downloads

42