A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France - Archive ouverte HAL Access content directly
Journal Articles Computers and Electronics in Agriculture Year : 2022

A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France

(1) , (2) , (1) , (1) , (1, 3) , (1)
1
2
3

Abstract

Empirical and process-based models are currently used to predict crop yield at field and regional levels. A mechanistic model named STICS (Multidisciplinary Simulator for Standard Crops) has been used to simulate soybean grain yield in several environments, including southern France. STICS simulates at a daily step the effects of climate, soil and management practices on plant growth, development and production. In spite of good performances to predict total aboveground biomass, poor results were obtained for final grain yield. In order to improve yield prediction, a surrogate model was developed from STICS dynamic simulations, feature selection techniques and regression learners. STICS was used to simulate functional variables at given growth stages and over selected phenological phases. The most representative variables were selected through feature selection techniques (filter, wrapper and embedded), and a subset of variables were used to train the regression learners Linear regression (LR), Support vector regression (SVR), Back propagation neural network (BPNN), Random forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO) and M5 decision tree. The subset of variables selected by wrapper method combined with regression models SVR (R2 = 0. 7102; subset of variables = 6) and LR (R2 = 0. 6912; subset of variables = 14) provided the best results. SVR and LR models improved significantly the soybean yield predictions in southern France in comparison to STICS simulations (R2 = 0.040).
Fichier principal
Vignette du fichier
Last Submitted Manuscript-YieldPredictionModel-v0.8.pdf (1.86 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03454504 , version 1 (29-11-2021)

Identifiers

Cite

David Camilo Corrales, Céline Schoving, Hélène Raynal, P Debaeke, Etienne-Pascal Journet, et al.. A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France. Computers and Electronics in Agriculture, 2022, 192, pp.106578. ⟨10.1016/j.compag.2021.106578⟩. ⟨hal-03454504⟩
44 View
105 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More