
�>���G �A�/�, �T���b�i�2�H�@�y�y�3�y�d�9�e�3

�?�i�i�T�b�,�f�f�T���b�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�T���b�i�2�H�@�y�y�3�y�d�9�e�3

�a�m�#�K�B�i�i�2�/ �Q�M �j ���T�` �k�y�R�j

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J�m�H�i�B�b�+���H�2 �/���i�� ���b�b�B�K�B�H���i�B�Q�M ���T�T�`�Q���+�?�2�b ���M�/ �2�`�`�Q�`
�+�?���`���+�i�2�`�B�b���i�B�Q�M ���T�T�H�B�2�/ �i�Q �i�?�2 �B�M�p�2�`�b�2 �K�Q�/�2�H�H�B�M�;

�Q�7���i�K�Q�b�T�?�2�`�B�+ �+�Q�M�b�i�B�i�m�2�M�i �2�K�B�b�b�B�Q�M �}�2�H�/�b
�J�Q�?���K�K���/ �_�2�x�� �E�Q�Q�?�F���M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�J�Q�?���K�K���/ �_�2�x�� �E�Q�Q�?�F���M�X �J�m�H�i�B�b�+���H�2 �/���i�� ���b�b�B�K�B�H���i�B�Q�M ���T�T�`�Q���+�?�2�b ���M�/ �2�`�`�Q�` �+�?���`���+�i�2�`�B�b���i�B�Q�M ���T�T�H�B�2�/
�i�Q �i�?�2 �B�M�p�2�`�b�2 �K�Q�/�2�H�H�B�M�; �Q�7���i�K�Q�b�T�?�2�`�B�+ �+�Q�M�b�i�B�i�m�2�M�i �2�K�B�b�b�B�Q�M �}�2�H�/�b�X �1���`�i�? �a�+�B�2�M�+�2�b�X �l�M�B�p�2�`�b�B�i�û �S���`�B�b�@
�1�b�i�- �k�y�R�k�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�k�S�1�a�h�R�R�9�y���X ���T���b�i�2�H�@�y�y�3�y�d�9�e�3��



Thèse présentée pour obtenir le grade de

Docteur de l'Université Paris-Est

Spécialité: Sciences et Techniques de l'Environnement

par

Mohammad Reza Koohkan

École Doctorale : SCIENCES, INGÉNIERIE ETENVIRONNEMENT

Multiscale data assimilation approaches and error
characterisation applied to the inverse modelling of

atmospheric constituent emission �elds.

Thèse soutenue le 20 décembre 2012 devant le jury composé de:

Dr Olivier Talagrand CNRS/LMD Président

Dr Slimane Bekki CNRS/LATMOS Rapporteur

Dr Frédéric Chevallier CEA/LSCE Rapporteur

Dr Gilles Forêt UPEC/LISA Examinateur

Dr Sébastien Massart ECMWF Examinateur

Dr Marc Bocquet École des Ponts ParisTech/CEREA Directeur de thèse





"with all the affection, devotion and love that
a son can ever express to his dear mum".

À ma petite maman





Acknowledgment

This Ph.D. thesis was made possible through an École des Ponts ParisTech scholarship with
the help of the Agence Nationale de la Recherche (MSDAG project), the INSU/LEFE coun-
cil (ADOMOCA-2 project) and �nally the French Ministry of Ecology and ADEME (CAR-
BOSOR project, Primequal research program). Many thanks to all these institutions.

Though only my name appears on the cover of this dissertation, a great many people have
contributed to its production. First and foremost, I would like to express my sincere gratitude
to my supervisor Marc Bocquet for his patience, motivation, enthusiasm and immense knowl-
edge. His guidance helped me in all the time of research and writing of this thesis. I could not
have imagined having a better mentor.

Besides my supervisor, I am truly indebted to Christian Signieur and Yelva Roustan for the
long discussions that helped me sorting out the technical details of my work.

I am also deeply grateful to my thesis committee, Dr Slimane Bekki, Dr Frédéric Cheval-
lier, Dr Sébastien Massart, Dr Gilles Forêt and Dr Olivier Talagrand, for their encouragement.

I would like to thank sincerely my fellow lab-mates of École des Pont ParisTech, Lin Wu,
Victor Winiarek, Kim Younsoub and my of�ce-mate, Nora Duhanyan for her moral support
throughout these three years. Many thanks also to Monika Krysta and Stéphane Sauvage and
everyone who helped me writing my dissertation.

Finally, I would like to dedicate this entire work to the one and unique person who, wher-
ever I could be, guides me through life: my Mother.





7

Abstract

Data assimilation in geophysical sciences aims at optimally estimating the state of the system
or some parameters of the system's physical model. To do so, data assimilation needs three
types of information: observations and background information, a physical/numerical model,
and some statistical description that prescribes uncertainties to each componenent of the sys-
tem.

In my dissertation, new methodologies of data assimilation are used in atmospheric chem-
istry and physics: the joint use of a 4D-Var with a subgrid statistical model to consistently
account for representativeness errors, accounting for multiple scale in the BLUE estimation
principle, and a better estimation of prior errors using objective estimation of hyperparameters.
These three approaches will be speci�cally applied to inverse modelling problems focussing
on the emission �elds of tracers or pollutants.

First, in order to estimate the emission inventories of carbon monoxide over France, in-situ
stations which are impacted by the representativeness errors are used. A subgrid model is in-
troduced and coupled with a 4D-Var to reduce therepresentativeness error. Indeed, the results
of inverse modelling showed that the 4D-Var routine was not �t to handle the representative-
ness issues. The coupled data assimilation system led to a much better representation of the
CO concentration variability, with a signi�cant improvement of statistical indicators, and more
consistent estimation of the CO emission inventory.

Second, the evaluation of the potential of the IMS (International Monitoring System) ra-
dionuclide network is performed for the inversion of an accidental source. In order to assess
the performance of the global network, a multiscale adaptive grid is optimised using a criterion
based ondegrees of freedom for the signal(DFS). The results show that several speci�c regions
remain poorly observed by the IMS network.

Finally, the inversion of the surface �uxes of Volatile Organic Compounds (VOC) are car-
ried out over Western Europe using EMEP stations. The uncertainties of the background values
of the emissions, as well as the covariance matrix of the observation errors, are estimated ac-
cording to themaximum likelihood principle. The prior probability density function of the con-
trol parameters is chosen to be Gaussian or truncated Gaussian distributed. Grid-size emission
inventories are inverted under these two statistical assumptions. The two kinds of approaches
are compared. With the Gaussian assumption, the departure between the posterior and the
prior emission inventories is higher than when using the truncated Gaussian assumption, but
that method does not provide better scores than the truncated Gaussian in a forecast experiment.

Keywords: Data assimilation, inverse modelling, 4D-Var, multiscale, representativeness
errors, maximum likelihood principle.
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Résumé

Dans les études géophysiques, l'assimilation de données a pour but d'estimer l'état d'un
système ou les paramètres d'un modèle physique de façon optimale. Pour ce faire, l'assimila-
tion de données a besoin de trois types d'informations : des observations, un modèle physique/-
numérique et une description statistique de l'incertitude associée aux paramètres du système.

Dans ma thèse, de nouvelles méthodes d'assimilation de données sont utilisées pour l'étude
de la physico-chimie de l'atmosphère : (i) On y utilise de manière conjointe la méthode 4D-Var
avec un modèle sous-maille statistique pour tenir compte des erreurs de représentativité. (ii)
Des échelles multiples sont prises en compte dans la méthode d'estimation BLUE. (iii) En�n,
la méthode du maximum de vraisemblance est appliquée pour estimer des hyper-paramètres
qui paramètrisent les erreurs à priori. Ces trois approches sont appliquées de manière spéci-
�que à des problèmes de modélisation inverse des sources de polluant atmosphérique.

Dans une première partie, la modélisation inverse est utilisée a�n d'estimer les émissions
de monoxyde de carbone sur un domaine représentant la France. Les stations du réseau d'ob-
servation considérées sont impactées par les erreurs de représentativité. Un modèle statistique
sous-maille est introduit. Il est couplé au système 4D-Var a�n de réduire les erreurs de représen-
tativité. En particulier, les résultats de la modélisation inverse montrent que la méthode 4D-Var
seule n'est pas adaptée pour gérer le problème de représentativité. Le système d'assimilation
des données couplé conduit à une meilleure représentation de la variabilité de la concentration
de CO avec une amélioration très signi�catives des indicateurs statistiques.

Dans une deuxième partie, on évalue le potentiel du réseau IMS (International Monitoring
System) du CTBTO (preparatory commission for the Comprehensive nuclear-Test-Ban Treaty
Organization) pour l'inversion d'une source accidentelle de radionucléides. Pour évaluer la
performance du réseau, une grille multi-échelle adaptative de l'espace de contrôle est optimi-
sée selon un critère basé sur les degrés de liberté du signal (DFS). Les résultats montrent que
plusieurs régions restent sous-observées par le réseau IMS.

Dans la troisième et dernière partie, sont estimés les émissions de Composés Organiques
Volatils (COVs) sur l'Europe de l'ouest. Cette étude d'inversion est faite sur la base des obser-
vations de 14 COVs extraites du réseau EMEP. L'évaluation des incertitudes des valeurs des
inventaires d'émission et des erreurs d'observation sont faites selon le principe du maximum de
vraisemblance. La distribution des inventaires d'émission a été supposée tantôt gaussienne et
tantôt gaussienne tronquée. Ces deux hypothèses sont appliquées pour inverser le champs des
inventaires d'émission. Les résultats de ces deux approches sont comparés. Bien que la cor-
rection apportée sur les inventaires est plus forte avec l'hypothèse gaussienne que gaussienne
tronquée, les indicateurs statistiques montrent que l'hypothèse de la distribution gaussienne
tronquée donne de meilleurs résultats de concentrations que celle gaussienne.

Mots-clés: assimilation de données, modélisation inverse, 4D-Var, multi-échelle, erreurs
de représentativité, principe du maximum de vraisemblance.
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In the present study, data assimilation methods are used to estimate the sources of pollu-
tants which are part of the input data in a model of atmospheric physics. Such methods are very
useful because they provide reliable information on some physical parameters which would be
dif�cult or impossible to access otherwise (for instance experimentally) and help to calibrate
the numerical models to predict the future. These methods are not only in need of a physical
model, but also of observations and of some knowledge of the statistics on the errors related to
the model and to the observations.

During the two last decades, many studies have been published on the assimilation of in-situ
and satellite observations of pollutant concentrations. In particular, the present study focuses
on the assimilation of the in-situ observations of concentrations. The objective pursued is to
estimate the emission �uxes of carbon monoxide (CO) and the ability of the IMS (International
Monitoring System) of Comprehensive Nuclear-Test-Ban Treaty (CTBTO) to reconstruct ra-
dionuclide sources. A �nal purpose is to correct the emission inventories of Volatile Organic
Compounds (VOCs) with the help of the hyper-parameters (the errors related to the parameters
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and related to the observations) computed via the maximum likelihood method.

This chapter aims at introducing the necessary elements of data assimilation. Section 1.1
presents the different physical models of the atmosphere, as well as, the sources of uncertainty
related to them. In Section 1.2, the observations and their importance are discussed. The dif-
ferent kinds of errors between the observations and the simulations (modelling errors) will also
be explained. Section 1.3 gives a detailed description of inverse modelling, of the estimation of
the hyper-parameters of the objective function for data assimilation and �nally, of the method
of multiscale data assimilation. The outline of the study will be presented in Section 1.4.

1.1 Chemistry-transport models

The assessment of the pollutant concentrations in the atmospheric boundary layer is essential
to improve air quality and prevent harmful impacts on human health. For many years, numer-
ical codes have been developed to compute the spatio-temporal concentrations of atmospheric
species. Most of them use Eulerian, Lagrangian and Gaussian numerical models. As will be
explained below, each have their strengths and weaknesses and are used in different, though
complementary, simulation contexts.

� The Eulerian models- are deterministic models. The pollutant motion is studied at spe-
ci�c locations in space (control volumes), through which air �ows as time passes. In
these models each physical quantity such as velocity and acceleration of the �uid is
expressed as a function depending on space and time. As the Eulerian models are not
focused directly on each particle, the computed concentrations are continuous quantities.

� The Lagrangian models- are stochastic models which follow the particle (the pollutants)
trajectories in time. Each particle is labelled with a number. The concentration of a
pollutant is computed with the help of the number and mass of the particle in a speci�c
area. The computed concentrations that are discrete quantities are accurate near the
sources. The computational load increases linearly with the number of sources. Thus, in
an air quality context, Lagrangian models are suitable for accidental case studies.

� The Gaussian models- are based on analytical approximate solutions of the advection-
diffusion equation. The latter is not solved and the physical and chemical processes are
taken into account through parametrisations. They are suitable for operational studies
as the computing time required is short. However, they cannot easily handle complex
physical and chemical processes.

In this study the Eulerian code POLAIR3D of the POLYPHEMUS platform [Boutahar et al.,
2004; Quélo et al., 2007] and the Lagrangian code FLEXPART [Stohl et al., 2005] will be used.

1.1.1 Eulerian models

An Eulerian model is based on the spatial and temporal resolution of the equations describing
a physical system. In atmospheric studies, the equations are solved under the assumption of
incompressible �ow and for diluted species (neglecting the pollutant actions on the �uid �ow).
The concentration of the studied species is computed taking the �ux, the production and the
loss of the species in the cell into account according to the following equation:
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@c(x; t)
@t

= � div ( u(x; t)c(x; t)) + r �
�

� K (x; t)r
c(x; t)

�

�

� �( x ; t)c(x; t) + � (c(x; t); x ; t) + � (x ; t) : (1.1)

In this equation,c(x; t) is the average concentration of the species at coordinatex and time
t andu their average velocity.K is the turbulent diffusion matrix.� is the density of the �uid.
� is the scavenging coef�cient. Finally,� and� are the chemical reaction and the emission
terms, respectively. The different terms in Eq. (1.1) are:

� the transport term following two principles:

– the advection (div ( u(x; t)c(x; t)) ) which accounts for the transport of the species
with the average �uid motion.

– the turbulent diffusion (r �
�

� K (x; t)r c(x ;t )
�

�
) which accounts for the transport of

the species with the �uctuating �uid motion assuming a �rst order closure model.
The molecular diffusion of the species is neglected compared to their turbulent
diffusion.

� the wet scavenging term (�( x ; t)c(x; t)) models the loss of species by absorption in
hydrometeors. The pollutants incorporated, for instance, in raindrops are transferred
from the atmosphere to the ground. The scavenging term is a sink term in the mass
transport equation.

� the chemistry term (� (c(x; t); x ; t)) accounts for the chemical reactions the species un-
dergo. It is a source term when the species are produced or a sink term when they are
consumed, however, it is zero for the inert pollutants.

� the volume emission term (� (x ; t)); it is a source of species in the mentioned equation.
It includes the emissions of pollutants due to human activities (anthropogenic sources),
e.g., traf�c and industries, and due to natural (biogenic) sources, e.g., vegetation emission
and uplake biomass burning and volcanic eruptions.

One can show the existence and the uniqueness of the solution for the above evolutionary
equation (Eq. (1.1)) under the following conditions:

� The initial conditions are the concentrations at time t=0,

c(x; 0) = c0(x) ; (1.2)

and show the state of the atmosphere at the beginning of the modelling process.

� The boundary conditions are the concentrations at the borders of the numerical domain:

– Boundary conditions at the ground level (z = 0 ):

K (xz=0 ; t)r c(xz=0 ; t) � n = vdc(xz=0 ; t) � E (xz=0 ; t) ; (1.3)

where,n is the unity vector normal to the surfacez = 0 and directed towards
the outside of the domain.vd is the dry deposition velocity. The left side of Eq.
(1.3) displays the variation of the concentration at the ground with respect to time.
E(xz=0 ; t) is the surface emission.
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– The concentrations at the borders of the numerical domain, where the wind is in-
coming,@
 in , are depicted by:

c(x; t) = c@
 in (x ; t) (x ; t) 2 @
 in : (1.4)

@
 in =
S

t @D t
in andD t

in is the border of the spatial domain when the wind is incoming at
time t.

In POLAIR3D of the POLYPHEMUS, three numerical schemes, advection-diffusion-chemistry,
are integrated using the splitting principle. The suitable order for the set of operator is advec-
tion, diffusion and then chemistry. A Third-order Direct Space and Time (DST-3) scheme is
used to compute the advection term with �ux limiter. The Rosenbrock method (second order) is
used to integrate the turbulent diffusion and the chemistry schemes. The positivity of solution
is guaranteed by the clipping condition.

1.1.2 Lagrangian models

A Lagrangian model is based on the computation in time of the labelled particle positions and
trajectory. The motion of particles is described by the following equation,

x(t + � t) = x(t) + v (x(t)) � t ; (1.5)

where,x(t) is the position of the particle at timet andv is its velocity. The latter is the addition
of the wind vector averaged over the entire grid cell,�v , and of the turbulent wind �uctuation,
v t . The variation of the turbulent wind �uctuations in thei th direction is given by the Langevin
equation,

� v ti (t) = ai (x ; v t ; t)� t + bij (x ; v t ; t)� w j : (1.6)

In the above equation,w j , is the incremental component of the Wiener's stochastic process.
The mean value ofw j is zero and its variance is� t. ai andbij are the drift and diffusion terms,
respectively (see Stohl et al. [2005]).

The radioactive decay, the wet and dry depositions are taken into account while describing
the mass of particles. Therefore, the mass of the particlek at timet, mk (t), can be written as
follows,

mk (t + � t) = mk (t)exp(� r � t) : (1.7)

The coef�cientr is de�ned as:

� for radioactive decay

r =
ln(2)
T1=2

; (1.8)

where,T1=2 is the half life of the particles.

� For wet scavenging
r = � : (1.9)

� For dry deposition

r =
vd(href )

2href
; (1.10)

where,vd is the dry deposition velocity andhref is a height of reference (usually 15
metres, see Stohl et al. [2005]).
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The sources of emission are also taken into account with the mass of particles in a grid cell
at each instant.

Finally, the average concentration of pollutants at timet and positionx is given by the
following Lagrangian formula,

c(x; t) =
1

j� V (x)j

NX

k=1

� k (x)mk (t) : (1.11)

Eq. (1.11)j� V (x)j, is the volume of the grid cell to which the vectorx is pointing.� k (x)
is the Dirac distribution that is unity if the particlek is located inside the grid cell to which x is
pointing and zero otherwise.N is the total number of particles.mk is the mass of the species
which are produced inside the mentioned grid cell. This is the source/sink term for the particle
k. Eq. (1.11) shows that the concentration is a discrete quantity in the Lagrangian model.

Instead of Eqs. (1.5) and (1.6), one can also use the following Fokker-Planck equation in
which the turbulent diffusion matrix,K (described in Sec. 1.1.1) appears:

x i (t + � t) = x i (t) +
�

v i (t) +
@K i

@x i

�
� t +

p
2K i � w i ; (1.12)

where,i is the vector component index.

1.1.3 Uncertainty of the parameters of the model

The accuracy of any of the previously presented models depends strongly on the uncertainty
of the parameters [Mallet and Sportisse, 2006] and the sensitivity of the models to them. As it
is dif�cult to correct each source of uncertainty, it is important to identify those of them which
have the strongest effect on the results.

Here are listed the sources of uncertainty that can be met in the numerical simulations of
air quality:

� Input data: boundary and initial conditions, dry deposition velocity, emission inven-
tories, meteorological �elds (temperature, pressure, wind, etc). These parameters are
closely dependent on the spatial and temporal domain which is chosen for the computa-
tion.

� Sub-grid parameterisations: mesoscale meteorological parameterisations, mesoscale
emission �elds, etc.

� The accuracy in the description of the physical phenomena: the lack of understanding
of some phenomena can lead to a non comprehensive and incorrect theoretical represen-
tation of the reality.

� The numerical errors: errors due to the methods of discretisation and to the solvers.

It is important to know the sensitivity of the model to each of the above mentioned points in
order to get numerical results as close to reality as possible.

1.2 Observations

1.2.1 Air pollution observations

Measurements are necessary to quantify the state and quality of the atmosphere. They are
useful to estimate the needed parameters to run the numerical simulations and also to validate
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their results. The measurements can be performed by ground based stations, marine monitor-
ing buoy networks, airplanes, radiosondes, LIDARs and satellites. The in-situ stations provide
measurements at one single place and a network of several of them is needed to have wider spa-
tial sight of the air quality. The other instruments (airplane, Lidar, radiosonde and satellites)
can provide a spatial (vertical and horizontal) picture of the state of the atmosphere [Lahoz
et al., 2010]. The �xed measurement stations usually provide information with a greater ac-
curacy. Furthermore, at a given place, they can describe the evolution in time of the collected
information. They remain necessary in boundary layer studies.

1.2.2 Measurement stations: strengths and weaknesses

Stations provide in-situ measurements (observations) of a given pollutant in air at a given lo-
cation. The pollutant concentrations can be monitored in real time or samples of air can be
collected and analysed in laboratories. The relevance of the measurements depends on the
instruments which are used and also on the spatial representativity of the stations for the moni-
tored pollutant. The stations are organised into networks which enables regular, if not continu-
ous, temporal information for a whole surface area. The spatial relevance of the measurements
is increased with the density of the stations in the network.

To perform a numerical simulation and check its results with the help of the in-situ mea-
surements, the following points should be investigated:

� Assessment of the instrumental error.

� Spatial and temporal representativeness of the observations for the selected numerical
spatio-temporal domain.

� Observability or the ability of the measurement network, to provide as much information
as possible useful for the numerical model.

1.2.2.1 Instrumental error

The errors of measurement can arise from the data-recording facilities, the methods or pro-
cesses carried out and even from the interference of inexpert operators.

If � true is a vector of physical parameters (for instance, concentrations) dependent on some
continuous �eldsx true (for instance in the frame work of air quality studies, emission invento-
ries and meteorological data ), the following relation can be written,

� true = H (x true ) ; (1.13)

whereH is a continuous operator linking� true to the continuous true statex true . The instru-
mental error (� meas) is the departure of the measured value of� from its true value.

� = � true + � meas : (1.14)

1.2.2.2 Representativeness error

Errors of representativeness arises of shifting from a continuous space to a discrete one. For
numerical modelling purposes, the continuous operatorH is replaced by the discrete operator
H and the continuous true statex true by the discrete onex t . In that purpose, the restriction
operator� s enables to shift from the continuous to the discrete spaces with a resolutions,

x true
� s�! x t : (1.15)
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The discrete operatorH can be formalised as follows:

H = H � ?
s ; (1.16)

where� ?
s is the prolognation operator (see section 1.3.4).

While writing the vector of physical parameters,� true , this time in the discrete space, an
additional error is brought into the theoretical relation, where� rep is called the representative-
ness error:

� true = Hx t + � rep : (1.17)

The summation of� meas and� rep gives:

� = Hx t + � meas + � rep : (1.18)

Note that in data assimilation textbooks, the above equation is written as:

� = Hx t + � t ; (1.19)

where, the modelling error,� t , does not only include the measurement and representativeness
errors but also the error,� model, due to the physical modelH (x true ).

Let us specify that the loss of information arises from the discretisation ofx true only, and
not from the operatorH . In other words, the error of representativeness is generated by the
restriction operation.

As long as the results of the discrete model (at the available measurement points) remain
unaffected by the grid resolution (� s), the representativeness error (� rep) can be assumed to be
small. Therefore, in the frame of air quality modelling, two categories of measurement stations
can be identi�ed :

� The background stations- are located far from the pollution sources (for instance, re-
gional and rural stations). These stations help to measure the average quality of ambient
air and are not affected by the immediate impact of pollution sources. These are good
stations to ful�l the statement just above.

� The proximity stations- are located close to the pollution sources (for instance, urban,
traf�c and industrial stations). The discrete model results at these stations are strongly
dependent on the grid resolution.

The proximity stations cannot be used for regional and global scale modelling as they
can not provide relevant information at low grid resolution. To use the proximity stations,
the resolution needs to be higher, which at global scale modelling this would challenge the
performances of the computer. Furthermore, at large scale, there won't be enough available
meteorological and emission related data.

1.2.2.3 Observability

The observability of a network of stations for a given study is its ability to provide relevant
measurements for that particular study.

The observability of a network depends on the climatology of the area covered by the
network [Mason and Bohlin, 1995]. It also depends on the location of the sources of pollution
and their distance from the measurement stations. For instance, for pollutants with a small life
time, the network should be dense enough to be able to detect the pollution plume.
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The observability of the networks is an essential issue in inverse modelling to reconstruct
the sources of pollution from the observations. Furthermore, inverse modelling can help to
check the observability of the network and improve the network design. For instance, com-
bination of optimisation studies can be performed in order to design the spread of a network
[Abida and Bocquet, 2009]. Geostatistical methods, such as Kriging, are among the simplest
methods used for network design. Data assimilation can also be used at a higher level of com-
plexity.

1.3 Inverse modelling

Inverse modelling is a way to use the available information (e.g. measurements) in order to
determine some speci�c parameters of the model (e.g. emissions �elds, initial conditions,
vertical diffusion, etc). The space of these parameters is called control space. Inverse modelling
is not only applied to estimate the parameters of the model, but also it is used to increase
the ability of the model of predicting a physical phenomena. For instance, in atmospheric
chemistry, inversion studies are focused on the estimation of the parameters that impact the
species concentration �elds. The parameters of the model which should be estimated are the
initial state for short time simulations, or the emission �elds, boundary conditions or diffusion
�elds in long simulations.

In geophysical literature, data assimilation is the word commonly used for the methods
that help to �nd the true state of the parameters describing a phenomenon. Data assimilation
is a technique of inverse modelling for very large scale systems which are ill-posed. Although,
inverse modelling focuses on the parameters, data assimilation focuses on the outputs of the
model. The main problem in inverse modelling is the lack of data or the lack of observability of
the computed parameters. Therefore, having an initial idea about the background information
is essential. The latter are used to regulate (or adjust) the model parameters.

1.3.1 General description

In order to estimate the vectorx 2 Rn , n being the number of model parameters, from a set of
m observations represented by a vector� 2 Rm , the linear mapH 2 Rm� n (which depicts a
linear physical model) is used to link the model parameters to the observation vector,

� = Hx + � : (1.20)

In Eq.(1.20),� 2 Rm is themodelling error. The latter represents the mismatch between the
observations and the model results. The information arising from the observations is the key
to get reliable results from the model. However, the extraction of information using inverse
modelling in atmospheric studies is dif�cult for several reasons.

As it is often question in geophysical data assimilations, the system under study is often
largely underdetermined: i.e.m � n. One of the techniques commonly used is to aggregate
the control parametersx into coarser variables to reduce the number of effective parameters.
One can assume a mapg : Rn ! Rl , where: x = g(� ). The dimension of� 2 Rl is a
nip-and-tuck of the dimension of the observations vector,� . Although this methodology helps
to reduce the control parameters, it may lead to a loss in the resolution of the results.

Moreover, the results of the model (H ) are not always sensitive enough with respect to all
the model parameters. In that case, the extraction of signi�cant information in order to adjust
the parameters from the observations is dif�cult. For instance, in atmospheric studies, while
assimilating the source emission parameters, the model does not always retrieve the informa-
tion far from the observation. In atmospheric transport models, this is a common problem due
to the effective diffusion term generated by the turbulent mixing.
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Furthermore, the errors coming from the estimations of the model make it still more com-
plicated to �nd a reliable solution forx.

For all these reasons, the inverse problem is oftenill-posedin atmospheric studies. There-
fore, it is mandatory that the a priori information (background or �rst guess) should be ac-
counted for, in order to resolve the inverse problem. The Bayesian approach (based on the
Bayes formalism) allows to consistantly include the statistics of the errors and the model pa-
rameters in the inversion system [Bennett, 1992; Kaipio and Somersalo, 2010; Rodgers, 2000].

1.3.2 Bayesian approach

1.3.2.1 Bayesian inference and maximum likelihood

The Bayesian inference is based on two antecedents, the probability of the a priori model pa-
rameters, denotedpb(x), and the modelling error probability, denotedpe(� ). The approach
leads to compute the posterior probability following the Bayes' rule. The dif�culties encoun-
tered by this approach are the estimations of the distribution, the uncertainties involved in the
background of the parameters and the statistical parameters of the modelling error. The prob-
ability density function (pdf) of the modelling error (or observation mismatch) is called the
likelihood function. The latter can be interpreted as the probability of the observations, given a
vector of parameters evidence,pe(� jx ) = pe(� � Hx ). According to the Bayes' rule

p(x j� ) =
pe(� jx )pb(x)

p(� )

=
pe(� � Hx )pb(x)

p(� )
:

(1.21)

The denominator term in Eq. (1.21),p(� ), is disconnected from the models and the control
parameters. This is the so-called marginal-likelihood or model evidence.

Different methods can be used to compute a reliable value for the vectorx. One of them,
stands on maximising the probability of the variablex. The maximum a posteriori estimator
(MAP) speci�es the solution of the parameters of the model according to

xa = argmin x p(x j� ) : (1.22)

Often, the log-likelihood method is used for that purpose. Therefore, one can de�ne the objec-
tive cost function as follows:

J (x) = � ln (pe(� � Hx )) � ln (pb(x)) : (1.23)

The marginal log-likelihood term appears as a constant term in the cost function which can be
eliminated. Eq. (1.23) is a simple form of the cost function, normally used in the three dimen-
sional and four dimensional variational data assimilation (3D-Var and 4D-Var, respectively)
approaches [Sasaki, 1958; Lorenc, 1986; Le Dimet and Talagrand, 1986].

1.3.2.2 Gaussian statistics

The argument of the minimum of Eq. (1.23), is closely dependent on the statistical assump-
tions for the likelihood function pdf,pe, and the pdf of the prior model parameters,pb. The
assumption is commonly used for the modelling error in curve �tting method, such as the least
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squares. Let us assume thatE(� ) = 0 and the model error covariance matrix isR = E[� t � T
t ].

As a result, the pdfpe is

pe(� jx ) =
e� 1

2 � T R � 1 �
p

(2� )m jR j
: (1.24)

The pdf of the a priori control variables can be chosen following different distributions.
Speci�cally, the selection of the distribution depends on the nature of the parameters. In most
data assimilation textbooks, this pdf is chosen to be Gaussian. Assume thatxb is the vector
of a �rst guess of the control parameters such thatE

�
xb � x t

�
= 0. Let's also assume that

B = E
�
(xb � x t )(xb � x t )T

�
is the background error covariance matrix which represents the

information about the uncertainty of the �rst guess. Therefore

pb(x) =
e� 1

2 (x � x b)T B � 1 (x � x b)
p

(2� )n jB j
: (1.25)

Using these two pdf, the cost function, Eq.(1.23), can be rewritten as:

J (x) =
1
2

(� � Hx )T R � 1(� � Hx ) +
1
2

(x � xb)T B � 1(x � xb) +
1
2

ln
�
(2� )m+ n jR jjB j

�
:

(1.26)
The very last term in Eq. (1.26) is independent fromx, and the cost function can be reformu-
lated as

J (x) =
1
2

(� � Hx )T R � 1(� � Hx ) +
1
2

(x � xb)T B � 1(x � xb) : (1.27)

The argument of the minimum of Eq. (1.27) is equivalent to the solution of the maximum
likelihood method. The Gaussian assumption on the pdf of the a priori control variables leads
to the creation of a regulation term of theTikhonovkind [Tikhonov and Arsenin, 1977]. That
regulation term guarantees the existence of a unique solution for the problem, even though the
inverse problem is ill-de�ned. This solution can be written as

xa = xb + BH T �
R + HBH T � � 1

(� � Hx b) ; (1.28)

where,

K = BH T �
R + HBH T � � 1

: (1.29)

K is the so-calledgainmatrix. This solution (Eq. (1.28)) is known as theBest Linear Unbiased
Estimator(BLUE).

1.3.2.3 The posterior distribution

If x and� are two independent normal random vectors, then the posterior distributionp(x j� )
follows the same distribution. According to Eq. (1.28),

xa � x t = ( I � KH )(xb � x t ) + K � t : (1.30)

The above equation is the key to estimate the statistical parameters of the posterior distribution
p(x j� ). Using Eq. (1.29), one can easily deduce that

E
�
xa � x t � = 0 ; (1.31)
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and,

Pa = E
�
(xa � x t )(xa � x t )T �

= ( I � KH )B

= B � BH T (R + HBH T ) � 1HB :

(1.32)

The a posteriori pdf, which constitutes the probabilistic Bayes' interference result reads

p(x j� ) =
e� 1

2 (x � x a )T P � 1
a (x � x a )

p
(2� )n jPaj

: (1.33)

1.3.2.4 The marginal likelihood

The likelihood of the observation set,p(� ), is a key to estimate of the uncertainty matrix,B
andR [Desroziers and Ivanov, 2001]. That's why its computation is important. According to
the law of total probability:

p(� ) =
Z

Rn � Rm
� (� � Hx )pe(� )pb(x)dxd� =

Z

Rn
pe(� jx )pb(x)dx ; (1.34)

where� is Dirac delta function. Replacing Eq. (1.24) and Eq. (1.25) in the above formula gives

p(� ) =
1

p
(2� )m+ n jR jjB j

Z

Rn
e� 1

2 ((� � Hx )T R � 1 (� � Hx )+( x � x b)T B � 1 (x � x b))dx : (1.35)

The above equation (Eq. 1.24) can be reformulated as below (see Appendix A)

p(� ) =
1

p
(2� )m+ n jR jjB j

Z

Rn
e� 1

2 ((� � Hx b)T (R + HBH T ) � 1 (� � Hx b)+( x � x a )T P � 1
a (x � x a ))dx :

(1.36)
Finally:

p(� ) =
e� 1

2 (� � Hx b)T (R + HBH T ) � 1 (� � Hx b)
p

(2� )m jR + HBH T j

Z

Rn

e� 1
2 (x � x a )T P � 1

a (x � x a )
p

(2� )n jPaj
dx : (1.37)

The term presented in the integral denotes the a posteriori pdf,p(x j� ). The integral in the
above formulation (Eq. (1.37)) is equal to unity. Then the pdf of the observation reads

p(� ) =
e� 1

2 (� � Hx b)T (R + HBH T ) � 1 (� � Hx b)
p

(2� )m jR + HBH T j
: (1.38)

1.3.2.5 Degrees of freedom for the signal

The goal of inverse modelling is to estimate the model parameters as reliably as possible.
That means the posterior uncertainty of the model parameters, compacted in the termPa, is
smaller for a given prior uncertaintyB . According to Eq. (1.32), if the termKH is close to
the identity matrix, the posterior value of the model parameters becomes more certain. The
symmetric matrix,A = KH , is the so-calledaveraging kernel. Thedegrees of freedom for the
signal(DFS) is a quantity closed to the a posteriori uncertainty of the model parameters. This
value extracts the fraction of the observations used in the data assimilation system to retrieve
the solution. It reads,

DFS = E
�
(xa � xb)T B � 1(xa � xb)

�
= Tr( A ) = Tr( HK ) = Tr( KH ) : (1.39)
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The singular vector decomposition of the averaging kernel gives:

DFS =
mX

l=1

wl : (1.40)

wherewl is thel th eigenvalue ofA .
When the observations are representative enough, the value of the DFS shows the quality of

the analysis. The higher is the DFS, the higher is the information recovered from the observa-
tions. The computation of the DFS is inconsistent under the non-Gaussian assumption for the
a priori pdf of the control parameters. However, under the positivity enforcing, in the presence
of the positive background of the control parameters and when the uncertainty of the control
parameters is not very high, that can be also applied. Note that, in a non-Gaussian context, the
computation of relative entropy can be used in order to understand the quality of assimilation
[Bocquet, 2008].

1.3.3 Prior error estimation

The results of the inverse system depend not only on the model and on the observations but
also on the prior error estimations. One of the dif�culties for inverse modelling studies is the
assessment of the error covariance matrix,R andB . This section introduces the maximum
likelihood method in order to estimate the prior errors.

1.3.3.1 Gaussian assumption

Let us assume that the two error covariance matrix,B andR , are as follows

R = r 2R 0 ; B = � 2B 0 : (1.41)

whereR 0 andB 0 are the �rst estimation of the information about the prior parameters.r and� ,
called hyper-parameters, are the parameters used to �x these two covariance matrices. In order
to obtain the more likely values forr and� , one has to maximise the pdf of the observations,
Eq. (1.38), with respect tor and� . The log-likelihood can be written as

lnp(� jr; � ) = �
1
2

(� � Hx b)T (R + HBH T ) � 1(� � Hx b) � lnjR + HBH T j + C ; (1.42)

whereC is a constant parameter. The optimisation of the above log-likelihood function, Eq.
(1.42), with respect to the hyper-parameters, gives

r 2 =
(� � Hx a)T R � 1

0 (� � Hx a)
Tr( I m � HK )

; (1.43)

and,

� 2 =
(xa � xb)T B � 1

0 (xa � xb)
Tr( KH )

: (1.44)

The above two equations (1.43 and 1.43) can be used in an iterative system which converges
to a �xed point. At each iteration,xa andK are obtained from equations (1.28 and 1.29). This
method was �rst presented by Desroziers and Ivanov [2001]. They also show that the method
is equivalent to the maximum likelihood.

The� 2 method (see Ménard et al. [2000]; Tarantola [2005]) can be derived from Deroziers
method (see Chapnik et al. [2006]) and when one of the hyper-parameters is assumed to be
�xed. The method is useful in the variational data assimilation method [Koohkan and Bocquet,
2012; Michalak et al., 2005].



Section 1.3 – Inverse modelling 31

1.3.3.2 Semi-normal assumption

When the model parameters that should be retrieved are all positive, the Gaussian pdf is not
appropriate. In that case, we assume the following Gaussian truncated pdf for the a priori model
parameters, is assumed:

pb(x) =
e� 1

2 (x � x b)T B � 1 (x � x b)
p

(2� )n jB j (1 � �( B ; xb; 0))
I x � 0 : (1.45)

In Eq. (1.45),�( B ; xb; 0) is the cumulative distribution function (cdf), N(xb; B ), computed
over the integral from minus in�nity to zero.I x � 0 is a function with the value zero ifx i < 0 for
eachi = 0 ; ::; n and with the value unity elsewise. According to the semi-normal assumption,
the marginal probability function can be written as

p(� jr; � ) =
e� 1

2 (� � Hx b)T (R + HBH T ) � 1 (� � Hx b)

(1 � �( B ; xb; 0))
p

(2� )m jR + HBH T j

Z
e� 1

2 (x � x a )T P � 1
a (x � x a )

p
(2� )n jPaj

I x � 0dx :

(1.46)
The analytical computation of the hyper-parameters is dif�cult from Eq. (1.46). However, the
latter can be used by choosing the input values from within an allowed set of hyper-parameters
and computing the value of the function (Winiarek et al. [2011]; also in chapter 5). This method
is expensive for very large systems, but it can be used for a few thousand variables.

1.3.4 Multiscale data assimilation

1.3.4.1 Scaling operators

For a given domain, a regular grid,
 , can be de�ned by a discretisation in space and time.
For instance, in a surface space and time discretisation (2D+T),Nx denotes the number of
grid cells along the longitude,Ny denotes the number of grid cells along the latitudes axis,
andN t is the number of time step. Let us assume thatN fg = Nx � Ny � N t is the �nest
grid resolution of the spatio-temporal domain.x 2 RN fg is the vector which gives the control
parameters for the �nest resolution. Now, let us assume thatR(
 ) is the dictionary of all
of the adaptative grids representing the domain. Arepresentation! is a member ofR(
 ),
which gives a spatio-temporal discretisation of the domain, such that,x ! 2 RN , N � N fg

(see Bocquet et al. [2011]; Bocquet [2009]). A restriction operator,� ! : RN ! RN fg denotes
how the vector of control parametersx is coarse-grained into the vectorx ! . Vice-versa, the
prolongation operator,� ?

! : RN fg ! RN , re�nes the vectorx ! into ex 2 RN fg , where

x ! = � ! x ; ex = � ?
! x ! : (1.47)

SinceN � N fg, the loss of information occurs during the restriction operation. The com-
position of the prolongation and the restriction operator is the identity� ! � ?

! = I N . The
operator� ?

! is ambiguous since additional information is needed to reconstruct the vectorx
from ex. A simplest choice for that operator is to set� ?

! = � T
! . The best choice to determine

this operator is the use of the Bayes' rule. The method is based on maximising the probability
of x, for a given representationx ! . As mentioned before (Eq. (1.25)), the random variablex
can be assumed to be Gaussian:x � N(xb; B ). From Bayes' rule, one can write

p(x jx ! ) =
p(x)� (x ! � � ! x)

p! (x ! )
; (1.48)
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where� is the Dirac distribution. For a linear operator� ! , the pdf ofx in a representation! ,
p! (x ! ) remains Gaussian:xw � N(x !

b ; B ! ),

x !
b = � ! xb ; B ! = � ! B� T

! : (1.49)

The optimum solution of Eq. (1.48) can be computed with the help of the BLUE analysis

x? = xb + � ?
! (x ! � � ! xb) ; (1.50)

where
� ?

! = B� T
! (� ! B� T

! ) � 1 : (1.51)

Moreover, the projection operator is de�ned as,

� ! = � ?
! � ! ; (1.52)

so that, we can choose the prolongation operator to be:

� ?
! : x ! ! (I N fg � � ! )xb + � ?

! x ! : (1.53)

The composition of the restriction and the prolongation operator gives

� ?
! � ! : x ! (I N fg � � ! )xb + � ! x : (1.54)

Whenxb = 0, the projection operator� ! is equal to� ?
! � ! . This operator satis�es the follow-

ing equations:

� 2
! = � ! ; � ! B = B� T

! (1.55)

If the representation! is coarse,Tr( � ! ) � N fg. For a representation! close to the �nest
grid Ncg � Tr( � ! ) (Ncg is the number of cells in the coarsest grid resolution). The higher
Tr( � ! ), the better the recovered information. However, this operator cannot be the identity
because the coarse-graining implies a loss of information.

1.3.4.2 Multiscale source receptor model

The source receptor model, Eq. (1.20), can be written in any representation! . The Jacobian
matrixH in the representation! changes toH ! = H� ?

! . The scale-dependent source-receptor
model is de�ned as:

� = Hx + �

= H� ?
! � ! x + H (I N fg � � ?

! � ! )x + �

= H ! x ! + � ! :

(1.56)

Where, the� ! is a scale-made dependent error:

� ! = H (I N fg � � ?
! � ! )x + � = H (I N fg � � ! )(x � xb) + � (1.57)

Using Eq. (1.54), the source receptor model can be reformulated as

� = Hx b + H� ! (x � xb) + � ! : (1.58)

The observation covariance matrix in a representation! is different from that one in the
�nest grid

R ! = R + H (I N fg � � ! )BH T : (1.59)

The termH (I N fg � � ! )BH T , in the above equation, Eq. (1.59), leads to an increase of the
observation covariance matrix term. The termH (I N fg � � ! )(x � xb) is identi�ed as the
aggregation error.
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1.3.4.3 Design criteria

DFS criterion

The degrees of freedom for the signal quantify the quality of the analysis. As presented in
Section 1.3.2.5, the DFS value is computed by the trace of the averaging kernel (Tr( KH )). In
a multi-scale context, one hopes to �nd a representation! , which maximises the DFS. This
criterion is expressed as:

J! = Tr( I N � B � 1
! P !

a ) = Tr
�
� ! BH T (R + HBH T ) � 1H

�
(1.60)

Fisher criterion

This criterion measures the reduction of uncertainty granted by the observations. This criterion
can be computed in the �nest grid,
 , according to

J = Tr
�
BP � 1

a

�
= Tr

�
BH T R � 1H

�
: (1.61)

For a given representation! , the criterion reads

J! = Tr
�
B ! H T

! R � 1
! H !

�
= Tr

�
� ! BH T R � 1H

�
: (1.62)

The aggregation error is related to the representation. The two equations above (1.61-1.62) give
an assessment of that error. The following equation (1.63), presents the normalised aggregation
error for a given representation! [Koohkan et al., 2012; Wu et al., 2011]:

Tr
�
R � 1(R ! � R )

�
= Tr

�
BH T R � 1H

�
� Tr( � ! BH T R � 1H ) : (1.63)

Note that the Fisher criterion is the limiting case of the DFS criterion whenR is in�ating or B
is vanishing.

1.3.4.4 Adaptive tiling

To apply the multiscale extension in 2D+T, the dictionary of representations,R(
 ) should be
handled mathematically. Let us assume thatNx , Ny andN t are multiples of2nx , 2ny and
2n t , respectively. For each scalel = ( lx ; ly ; l t ), such that0 � lx � nx , 0 � ly � ny and
0 � l t � nt , the domain is presented withN fg � 2� ( lx + ly + l t ) coarser cells. The latter are called
thetiles. In all directions, a coarser grid is made when two adjacent grids in each direction are
gathered into one. The physical quantities of the coarser cell are the average of those from the
�nest grid cells.

A physical quantity in each cell of the �nest grid, indexed byk is attached to a base vector
u i;j;h 2 RN fg with 1 � i � Nx , 1 � j � Ny and 1 � h � N t . At a coarser scale
l , this quantity in the �nest grid, which is enumerated byk, attaches to the vector:v l ;k =
P 2l x � 1

� i =0
P 2l y � 1

� j =0
P 2l t � 1

� h =0 u i k + � i ;j k + � j ;hk + � h , where(i k ; j k ; hk ) denotes the index of cellk in
the coarser representation. For a representation! of 
 , the projection operator de�nes:

� ! =
X

l

n lX

k=1

� !
l ;k

v l ;kv T
l ;k

v T
l ;kv l ;k

; (1.64)

where� !
l ;k are the coef�cients which de�ne the representation! . To obtain anadmissible

representation! , each parameter� !
l ;k is set to0 or 1. Each cell of the �nest grid cell should be

attached in the representation! . Therefore,

X

l

n lX

k=1

� !
l ;kv l ;k = (1 ; :::; 1)T : (1.65)
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The number of multiscale grid cellsN should be imposed

N fg � 2� (nx + ny + n t ) �
n lX

k=1

� !
l ;k = N � N fg : (1.66)

1.3.4.5 Optimisation

In order to optimise the cost function,J! , in a �xed number of tiles, the following Lagrangian
function is de�ned:

L (! ) =
X

l

n lX

k=1

� !
l ;k

v l ;kQv T
l ;k

v T
l ;kv l ;k

+
N fgX

k=1

� k

 
X

l

� !
l ;k � 1

!

+ �

 
X

l

n lX

k=1

� !
l ;k � N

!

: (1.67)

The �rst term on the right hand side of this equation stands forJ! . Q is the average kernel
matrix for the DFS criterion and is equal toBH T R � 1H for the Fisher criterion. Since the
value of� !

l ;k should be 0 or 1, a second term is added to the right hand side of Eq. (1.67). The
vector� is the Lagrangian multiplier. The very last term of the above equation aims to satisfy
the condition of Eq. (1.66).� is a scalar and is called the Lagrange multiplier. The Lagrangian
objective function can be also written as follows:

L (! ) =
X

l

n lX

k=1

 
v l ;kQv T

l ;k

v T
l ;kv l ;k

+ v T
l ;k � + �

!

� !
l ;k �

N fgX

k=1

� k � �N (1.68)

The optimisation of the representation! can be done by minimising the dual function of
L . Therefore, it comes:

L̂ (� ; � ) =
X

l

n lX

k=1

max

 

0;
v l ;kQv T

l ;k

v T
l ;kv l ;k

+ v T
l ;k � + �

!

� !
l ;k �

N fgX

k=1

� k � �N (1.69)

The above introduced cost function,L̂ (� ; � ), cannot be optimised directly using a gradient-
based minimisation algorithm. Besides, the uniqueness of the solution is not guaranteed.
To overcome that dif�culty, a regularisation method for the cost function is used in Bocquet
[2009].

1.4 Outline

New methodologies of data assimilation are presented in the following chapters:

� In chapter2 are detailed the adjoint of the Eulerian Chemistry Transport Model and the
4D-Var method.

� In chapter 3, the 4D-Var model is used to invert the emission inventories of carbon
monoxide provided by the EMEP (European Monitoring and Evaluation Program). The
observations used for the inversion are impacted with the representativeness error. As
the 4D-Var routine is not �t to handle the representativeness error, a subgrid model is
developed and coupled to the 4D-Var algorithm.

� chapter4- introduces the observations to be retrieved from the International Monitoring
System (IMS) radionuclide network. The compatibility of the observation network with
data assimilation, in other words, the ability of the network to observe the radionuclide
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pollutants, is discussed. In order to build the Jacobian matrix of the atmospheric transport
model, the Lagrangian FLEXPART model and also the adjoint of the Eulerian POLAIR3D
model of POLYPHEMUSare used.

� In chapter5 is shown the application which can be made of the maximum likelihood
method in order to estimate the uncertainty of the model parameters, as well as, the
covariance matrix of the model errors. A fast version of POLAIR3D CTM and its adjoint
are developed. The emission inventories of the Volatile Organic Compounds (VOCs) are
inverted. The observations extracted from the EMEP database are assimilated.

� Chapter6 concludes on the achievements of this work and presents some interesting
points to investigate.

The points dealt with in chapter 2 and 3 are presented in Koohkan and Bocquet [2012].
The contents of chapter 4 was published in Koohkan et al. [2012]. Chapter 5 was submitted to
Atmospheric Chemistry and Physics.
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Chapter 2

Four-Dimensional Variational Data
Assimilation

Summary

The present chapter describes the 4D-Var method that we have used. First of all, an approxi-
mate adjoint model of the chemistry transport model is introduced and developed. The adjoint
solution is validated via a duality test. Then, the way this adjoint is taken into account in the
4D-Var algorithm is described. The latter algorithm is also checked through two gradient tests.
The duality test shows that the concentrations computed with the help of the adjoint solution
are in good agreement with the concentrations computed using the CTM, directly. The Pearson
correlation between the solutions of the two models for a tracer species is of99:8%. The gradi-
ent of the cost function obtained with the adjoint model is compared with the one obtained with
the �nite difference method. The results show that the gradient of the cost function obtained
via the adjoint solution is correct enough to be used in the optimisation algorithm.
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2.1 Introduction

Five decades after the appearance of data assimilation [Cressman, 1959; Gandin, 1963], Four-
Dimensional Variational method (4D-Var) has become one of the most important tools to esti-
mate the parameters of a physical model. Data assimilation combines experimental data, infor-
mation coming from models (chemistry and transport model in our case) and statistics of the
errors in order to �nd the optimum values of the parameters which minimise the observations
mismatch.

Variational data assimilation is a powerful method when it comes to constraining dynamical
systems by numerous observations. In variational data assimilation, all types of information
mentioned above are accounted for altogether in a two-term objective cost functionJ = Jo +
Jb. The �rst term Jo is a measure of the discrepancy between the observed and simulated
concentrations. The second termJb evaluates the departure of the control parameters from
their �rst guess (background). By minimising the sum of these two terms, 4D-Var makes in
our case an optimal compromise while enforcing the fact that the simulated concentrations are
obtained from a given numerical transport model.

One way to minimise the cost function,J, is to use an analytical method, granted that the
function in question is continuous and derivable. That way supposes to solve the algebraic
equations equal to zero of the gradient function. The solution obtained is a minimum point if
the function is locally convex. This analytical method includes a system ofn equations, where
n is the number of control parameters. It leads to �nd an analytical solution for the optimal
control parameters and actually performs well when the dimension of the problem is small.
Another way to minimise the cost function consists in using an iterative descent algorithm,
such as, the conjugate gradient or the quasi-Newton algorithm. In the descent algorithm, an
initial value for the control parameters is chosen and the local gradient of the cost function is
computed. The latter gradient shows the direction of decrease of the cost function. Therefore,
the optimal point (control parameters) for the cost function in that direction can be found by the
line search method. Using the updated parameters, the above described procedure is repeated
until the cost function is minimised.

In order to �nd the gradient of the cost function with respect to the control parameters, an
adjoint of the numerical model is needed. To compute that adjoint, besides hand calculation
which is almost impossible in air quality context, two methods can be used: the automatic
differentiation and the approximated adjoint [Krysta and Bocquet, 2007]. The former is used to
evaluate the derivative of a function speci�ed by a computer program. The latter is an analytical
method which gives the adjoint solution of the chemistry transport model. The adjoint of a
dynamical model was �rst used by Kontarev [1980] and Hall and Cacuci [1983] for sensitivity
studies. Le Dimet and Talagrand [1986] proposed an algorithm for minimising the 4D-Var cost
function with the help of the adjoint dynamical equation in the framework of meteorology.

The adjoint model is described in Section 2.2. In Section 2.3, a continuous expansion of
the control optimal problem is introduced and control variables space are de�ned. Then, the
numerical discretisation of the 4D-Var system is presented. Finally, the optimisation algorithm
is described. The adjoint model, as well as, the descent algorithm are validated in Section 2.4.
A short conclusion follows in section 2.5.
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2.2 The adjoint model

In air quality modelling, the concentrations of pollutants at each time and location can be
obtained by a chemistry transport model (CTM). For the species with a linear chemistry and
physics, the Jacobian of the CTM can be computed either using the solution generated by the
CTM, or the one generated by the adjoint CTM model. For instance, in the studies of accidental
cases, when the source is pointwise, the Jacobian matrix of the model is easier to compute
using the solution of the CTM. In case the number of sources is higher than the number of
measurements, the Jacobian is easier to build via the adjoint model. Furtheremore, the adjoint
model can be used in the 4D-Var algorithm to compute the gradient of the cost function. That
is why, a particular attention has to be paid to the adjoint model when assimilating atmospheric
observations.

We can assume thatc(x; t) is continuously differentiable on the space-time domain
 =
D � [0; T] (D denotes the spatial domain) and the chemical reaction operator� is linear (which
is not always the case). Then Eq. (1.1) is multiplied by a suf�ciently smooth function� (x ; t)
and integrated. The “weak” form of the CTM is:

Z



�

�
@c
@t

+ r � (uc) � r � (K r c) + � c � � (c) � �
�

dxdt = 0 (2.1)

Note that the density of air is assumed to be constant. The above equation can be trans-
formed into (see Roustan and Bocquet [2006a]):

Z



c

�
�

@�
@t

� r � (u� ) � r � (K r � ) + � � � � y(� )
�

dxdt =

�
Z

D
� (T)c(T) � � (0)c(0)dx �

Z

@D bc � [0;T ]
(�c u) � dSdt

�
Z

@D b� [0;T ]
(cK r � � � K r c) � dSdt +

Z



��d xdt

(2.2)

where� y denotes the adjoint operator of the chemical reactions term,� . @Db stands for the
ground surface boundary of the domain.@Dbc are the boundaries of the domain with the
exception of the ground surface. Note also thatdS = dSn.

Before further developping Eq. (2.2), let us assume the following equation:

@�(x; � )
@�

= div ( u(x; � )� (x ; � )) + r �
�

� K (x; � )r
� (x ; � )

�

�

� �( x ; � )� (x ; � ) + � y(� (x ; � ); x ; � ) + � (x ; � ) : (2.3)

� i (x ; � ) is a continuous sampling function de�ned over the time-space domain and� is the
reverse time variable:� = T � t. Eq.(2.3) can be seen as a CTM, backward in time with
a reversed wind direction. One can set the following conditions for the above equation (Eq.
(2.3):

� �nal conditions:

� (x ; T) = 0 x 2 D (2.4)
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� border conditions (top, left, right, front and back sides):

� (x ; � ) = 0 8(x; � ) 2 @
 out (2.5)

@
 out =
S

t @D t
out denotes the border when the wind is outgoing.D t

out is the border of
the spatial domain when the wind is outgoing at instancet.

� Boundary conditions at ground level (z = 0 ):

K (xz=0 ; � )r � (xz=0 ; � ) � n = vd� (xz=0 ; � ) (2.6)

Using Eqs. (2.3 to 2.6), Eq. (2.2) can be rewritten as follows:

Z



c�d xdt =
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D
� (0)c(0)dx �

Z

@
 in

(�c u) � dSdt

+
Z

@D b� [0;T ]
� E � dSdt +

Z



��d xdt ;

(2.7)

where,E = � E � n is the surface emission vector. Note that in the above equation, the term
K r c andK r � are assumed to be zero at the top and around the domain.

2.3 The 4D-Var model

Four dimensional variational data assimilation (4D-Var) is used to invert the surface �uxes of
non-reactive species (tracers). The analysis of the emissions is achieved by computing the
minimum value of the following Lagrangian cost function:

J =
1
2

Z

D � 

(� (x ; t) � � b(x ; t))B � 1

� (x ; x̂ ; t)( � (x̂ ; t) � � b(x̂ ; t))dxdx̂dt

+
1
2

Z

D b� 
 b

(E (xp; t) � E b(xp; t))B � 1
E (xp; x̂p; t)(E (x̂p; t) � E b(x̂p; t))dxpdx̂pdt

+
1
2

Z T

0
(y (t) � H t; x [c]) R � 1(t) (y (t) � H t; x [c]) dt

+
Z



�

�
@c
@t

+ r � (uc) � r � (K r c) + � c � �
�

dxdt :

(2.8)

The �rst and the second terms on the right hand-side of the equation above are represen-
tative of the cost of the background emissions.� (x ; t) is the volume emission inventories at
time t and coordinatex. � b(x ; t) denotes its �rst guess.B � (x ; x̂ ; t) is called the background
covariance of the volume emissions.E(xp; t) andE b(xp; t) are the surface emission func-
tion and the background surface emission function at timet and at the surface coordinatexp.
BE (xp; x̂p; t) is called the background covariance of the surface emissions.
 b denotes the
surface-time domainDb � [0; T]. The third term represents the cost of the observation mis-
match.y (t) is the vector of observations at timet andH t; x denotes the observation operator.
R (t) is the application related to the observations error covariance. The integral in the very last
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term is the model constraint.� is the Lagrange multiplicatier. One can assume that� belongs
to the following set:

� 2
�

w 2 H 2(
) jK r w = vdw; w(T) = 0
	

(2.9)

In the above set,H 2(
) is a Sobolev space [Nikodym, 1933]. According to Sec. 2.2, the
equation (2.10) can be transformed into:
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+
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Z T

0
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+
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(�c u) � dSdt �

Z
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��d xdt :

(2.10)

The optimisation of Eq. (2.10) with respect to the concentrations at timet and pointx,
gives:

� J
�c (x; t)

= � H y
x ;t R (t) � 1 (y (t) � H t; x [c])

� @�
@̂t

� r � (u� ) � r � (K r � ) + � � = 0 :
(2.11)

The positivity of the operatorH y
x ;t R (t) � 1H t; x shows that the extrema function,c(x; t), is

a minimiser solution for the cost function. Setting

� (x ; t) = H y
t;x R (t) � 1 (y (t) � H x ;t [c]) ; (2.12)

Eq. (2.11) can be seen as the adjoint of the CTM (Eq. (2.3)) and� is the solution of the adjoint
model. The gradient of the cost function, Eq. (2.10), with respect to the initial conditions, to
the surface and to the volume emissions, can be obtained with the following set of equations:

@J
@c0

= �
Z



� 0dx (2.13)

and,

� J
�� (t; x)

= �
Z



�d x +

Z



B � 1

� (x ; x̂ ; t)( � (x̂ ; t) � � b(x̂ ; t))dx̂ (2.14)

� J
�E (t; xp)

= �
Z

@
 b

�d xp +
Z


 b

B � 1
E (xp; x̂p; t)(E (x̂p; t) � E b(x̂p; t))dx̂p : (2.15)

2.3.1 The control space

The dimension of the observation space is often smaller than that of the control space. The
system of equations is then under-determined. The background term of the cost function guar-
anties the uniqueness of the optimum solution for control parameters. Now, even though that
solution is found, the high uncertainty on the model parameters which should be optimised,
impacts on its reliability. Therefore, an alternate way for estimating it is to aggregate some of
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the parameters (of the same nature) together with the help of a secondary and coarser parameter
called ascaling factor. This choice leads to parameters which are less uncertain and decrease
the number of unknown parameters in the system. Besides, this methodology helps to estimate
the parameters through an extrapolation, even though there is a lack of observability at a spe-
ci�c moment and location. When estimating the emission inventories, one can assume that the
emission �elds at a speci�c location depend on time and change periodically. Therefore, the
following changes are brought to the expression of� andE.

� (t; x) = � (t; xp)� b(t; x) ; (2.16)

E(t; xp) = � (t; xp)Eb(t; xp) : (2.17)

In the equations above,xp is the image of the pointx on the ground surface.� (t; xp) is
a time-periodic function (with the periodT� ). The scale factor function,� (t; xp), is the new
state vector which will be optimised instead of� andE.

2.3.1.1 Numerical discretisation

The analysis and equations introduced in section 2.3 are based on a continuous model. To build
a numerical model, a discretisation of the equations is needed. First of all, a 3D grid is built to
discretise the continuous geometric space. Let's consider a continuous functionf (t; x). The
vectorfk includes the discrete values of the functionf at timetk all over the grid cells. The
observation operator at timetk can then be written as follows :

yk = H kck + � k (2.18)

H k is the linear observation operator that maps the concentrations from the state space to the
observation space. In Eq. (2.18),yk 2 Rmk is the vector of the observed concentrations (mk

observations at timetk ), � k is the vector of the observation errors at timetk , andck is the vector
of the concentrations. The discrete form of the CTM equation, Eq. (1.1), can be written as:

ck = M kck� 1 + � tek ; (2.19)

whereM k denotes the dynamical operator of the model fromtk� 1 to tk and� t is the model
integration time step. When there is no observation at the intermediate timetk , mk = 0 . Vector
ek is representative of both the volume sources� k and of the �uxesEk . Assumingeb

k is the
�rst guess of the emissions, one has:

eb
k;l = � b

k;l + � l;1 Eb
k

�
; (2.20)

where,� is the height of the surface layer andl is the layer number.� is the Kronecker's delta:

� i;j =

(
0; if i 6= j

1; if i = j
(2.21)

According to Eq. (2.16) and Eq. (2.16):

ek =
X

i 2 @D b

� (k� Nh [k=Nh ]) ;i e
b
k;i (2.22)

whereNh is the number of time steps included in the time discretisation of� .
The 4D-Var data assimilation is used to invert the non-dimensional control variable vector
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� . Setting the same uncertainty for the surface and for the volume emissions, the �rst two
terms of equation (2.10) can be included in a term dependent on� . The cost function to be
minimised over the time-window[t0; tN ] becomes:

J(� ) =
1
2

Nh � 1X

h=0

(� h � 1)T B � 1
� h

(� h � 1)

+
1
2

NX

k=0

(yk � H kck )T R � 1
k (yk � H kck )

+
NX

k=1

� T
k (ck � M kck� 1 � � tek ) : (2.23)

R k = E
�
� k (� k )T

�
is the observation error covariance matrix,B � h = E

�
� b

h(� b
h)T

�
is the

background error covariance matrix, and1 is the vector with entries1. The vector� h is a
set of [� ]i;j;h for which 0 � i � Nx � 1, 0 � j � Ny � 1, and0 � h � Nh � 1. In
addition,� b

h = � t
h � 1 is the background error, where� t

h is the unknown true state of the scale
factors at a givenh. In order to minimise the cost functionJ with respect to� , with an iterative
gradient-based minimiser, the gradient of the cost function can be computed as follows:

r � J =
@J
@�

+
N � 1X

k=0

�
@ek

@�

�
@J
@ek

= B � 1
� (� � 1) �

N � 1X

k=0

� t
�

@ek

@�

�
� k : (2.24)

@ek

@�
is a matrix which describes the dependence of the source� and emissionE on the control

variable vector� . Its entries can be read out from Eq. (2.16) and Eq. (2.17), and depend oneb
k .

The optimisation of Eq. (2.23) with respect to the concentrations �eld at timetk gives:

� k = M T
k+1 � k+1 + � k ; (2.25)

where the normalised innovation� k is:

� k = H T
k R � 1

k (yk � H kck ) : (2.26)

Equation (2.25) is the adjoint model equation.

2.3.2 The optimisation algorithm

The limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is an ef�cient quasi-Newton
optimisation method which can used in 4D-Var. The optimisation procedure uses a limited
memory variation update to approximate the inverse of the Hessian matrix. L-BFGS stores
only a few vectors that represent the approximation of the Hessian matrix, implicitly, by keep-
ing a history of the pastm updates of the input variables and never explicitly forming it.

Let us assume that� k is the position at thekth iteration andgk = r J(� k ). Updating
� � k = � k+1 � � k and � gk = gk+1 � gk , one can de�ne� k = 1

(� gk )T � k
. The initial

approximate of the inverse Hessian at iterationk is set toH 0
k . The algorithm starts with

� setq = gk
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� for i = k � 1; k � 2; : : : ; k � m repeat:
r i = � i (� � i )T q
q = q � r i � gi

� put z = H 0
k q

� for i = k � m; k � 2; : : : ; k � 1 repeat:
� i = � i (� gi )T z
z = z + � � k (r i � � i )

� setHkgk = z

� obtain� ? = argmin ( J(� k + �H kgk )) , using the line search minimisation.

� � k+1 = � k + � ?Hkgk .

� repeat the algorithm for the next iteration,k + 1 , until the convergence of the solution
� k .

2.4 The veri�cation of the 4D-Var routine

2.4.1 Validation of the approximate adjoint model

Following Bocquet [2012], an approximate but fast POLAIR3D adjoint model of the platform
POLYPHEMUS can be built. That adjoint model is the discretisation of the continuous adjoint.
This allows to use the CTM model, but propagating the concentrations backward in time with
reversed wind �elds.

A simulated observationyi can be computed with both the forward model and the adjoint
model. When the numerical adjoint is correct, the results from the two method should coincide
to the numerical round-off errors. Hence, the discrepancy between the two can be viewed as a
measure of the quality of the adjoint. This is the so-called duality test [Davoine and Bocquet,
2007]. The duality test was generalised following Roustan and Bocquet [2006a]. The simulated
observation can be computed according to the two following equations:

yi =
X

j 2 D ;k

ck;j � i
k;j � vj � t ; (2.27)

yi =
X

j 2 D

� i
0;j c0;j � vj +

X

j 2 @D in ;k

� i
k;j ck;j uk;j � � Sj � t

+
X

j 2 @D b ;k

� i
k;j Ek;j � � Sj � t +

X

j 2 D ;k

� i
k;j � k;j � vj � t : (2.28)

In Eq. (2.27),� i is the sampling function of the measurementi . It describes the measurement
process.� vj is the volume of the grid-cellj . ck;j is the concentration in cellj at timetk .
Hence, Eq. (2.27) connects the observationyi to the simulated concentration �eld. The second
equality Eq. (2.28) describes the same observation but using the adjoint model.� i

k;j is the value
of the solution of the adjoint model forced with the sampling� k = � i

k in cell j and timetk .
In Eq. (2.28), the �rst term of the right-hand side describes the contribution of the initial

conditions toyi . D is the space domain. The second, the third and the fourth terms represent the
contributions of the boundary conditions, of the surface emissions and of the volume emissions
respectively, to the measurementyi . @D in is the boundary where the wind �eld is incoming.
@Db represents the ground.
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The validation of the adjoint model is done, considering each term separately and setting
the other terms to zero. Figure 2.1 compares the measurements obtained with the forward
model and via the adjoint model for carbon monoxide. The latter model do not account for
chemistry reactions. For the present test of validation, the domain extends between [41.75N,
5.25W] (the left bottom corner) and [52.75N;12.25E] (the right top corner). The model is
run at a resolution of0:5� � 0:5� . Nine vertical levels are considered from the surface up to
an altitude of 2780 m. The intermediary levels are30, 150, 350, 630, 975, 1360, 1800and
2270m agl. The meteorological �elds are provided by the European Centre for Medium Range
Weather Forecasts (ECMWF). The Pearson correlation coef�cient between the CTM-based
concentrations and the adjoint-based concentrations is99:8%in the surface emissions case (a),
99:8% in the volume emissions case (b),99:7% in the initial conditions case (c), and93%in
the boundary conditions case (d).
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Figure 2.1: The computed concentrations via the adjoint model due to (a) the surface emis-
sions, (b) the volume emissions, (c) the initial conditions and (d) the boundary conditions,
versus the measured concentrations.
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2.4.2 Veri�cation of the gradient

In addition to the duality test, two kinds of gradient tests were carried out. In the �rst one,
based on random perturbations, the following ratio� was computed:

� =
J (e + � he; c0 + � h0) � J (e; c0)

�
�

(r eJ)T he + ( r c0 J)T h0

� : (2.29)

In Eq. (2.29), the cost function is seen as a function of bothe andc0. he andh0 are the
perturbation vectors of the emissions and initial conditions.� is the perturbation coef�cient.
When� tends towards zero, the ratio� must tend towards1. In Fig. 2.2,� is plot as a function
of � . The instability which is observed for very low values of� is due to the round-off errors
[Zou et al., 1997].
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Figure 2.2: The perturbation test: Variation of the gradient ratio� with respect to the pertur-
bation coef�cient� .

A second test focuses on the cost functionJ(� ). In particular, the derivative ofJ(� 1) with
respect to� is computed with a� varying between0 and6. It is obtained either using the
gradient via the adjoint model or using the �nite difference method. The results presented in
Fig. 2.3, show that the gradient computed via the adjoint model is well approximated [Chao
and Chang, 1992].

2.5 Conclusion

The adjoint solution of the CTM is essential to build the Jacobian matrix in the case that
the sources of pollutant are wide-spread (unlike the pointwise sources, for which the Jaco-
bian matrix is easy to build from the CTM). An approximate adjoint model of POLAIR3D (of
POLYPHEMUS) is developed and validated for a tracer species. The concentrations computed
with the help of the adjoint solution (see Eq. 2.28) are compared to the CTM concentra-
tions. The statistical indicators show that the two set of simulated concentrations are consistent
enough. The adjoint model in question is used in the 4D-Var algorithm to compute the gradient
of the cost function. The 4D-Var algorithm is checked with two grandient tests. When it is
question of inverse modelling with high frequency observations and there are no fast enough
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Figure 2.3: Scale factor test: Variation of the gradient and cost function with respect to the
scale factor� .

models available, the 4D-Var appears to be a convenient tool. These newly developed tools
will be used in the following chapters.

.
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Chapter 3

Inversion of regional carbon monoxide
�uxes: Coupling 4D-Var with a simple
subgrid statistical model

Summary

A four-dimensional variational data assimilation system (4D-Var) is employed to retrieve car-
bon monoxide (CO) �uxes at regional scale, using an air quality network. The air quality
stations that monitor CO are proximity stations located close to industrial, urban or traf�c
sources. The mismatch between the coarsely discretized Eulerian transport model and the ob-
servations, inferred to be mainly due to representativeness errors in this context, lead to a bias
(average simulated concentrations minus observed concentrations) of the same order of mag-
nitude as the concentrations. 4D-Var leads to a mild improvement in the bias because it does
not adequately handle the representativeness issue. For this reason, a simple statistical sub-
grid model is introduced and is coupled to 4D-Var. In addition to CO �uxes, the optimisation
seeks to jointly retrievein�uence coef�cients, which quantify each station's representativeness.
The method leads to a much better representation of the CO concentration variability, with a
signi�cant improvement of statistical indicators. The resulting increase in the total inventory
estimate is close to the one obtained from remote sensing data assimilation. This methodology
and experiments suggest that information useful at coarse scales can be better extracted from
atmospheric constituent observations strongly impacted by representativeness errors.
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3.1 Introduction

In tracer transport studies, observations are infrequent in time and, for ground-measurements,
sparse in space. Furthermore, they do not intrinsically carry any information about the future.
That is why, complementarity, numerical models are used to assess the meteorological and
chemical state of the atmosphere. In air quality modelling, input data, such as initial and
boundary conditions, emission �uxes, and vertical diffusion coef�cients are necessary to run
proper simulations. The uncertainties of these input data and perhaps the lack of understanding
of the underlying physical processes induce model errors in the simulations. To minimise
them, data assimilation (DA) methods can be used. They combine observational data, and
information coming from chemistry and transport models and their related error statistics in
order to �nd the optimal values of the parameters which minimise the errors.

Introducing optimal control theory ideas in geophysics, Le Dimet and Talagrand [1986]
used 4D-Var to assimilate meteorological observations. Fisher and Leny [1995] used 4D-Var
for the analysis of some chemically active tracer species. Lately, variational data assimilation
studies have focused on the inverse modelling of pollutant emission �elds (e.g. Elbern et al.
[2007] and other references within Zhang et al. [2012]).

Focusing on carbon monoxide (CO), several modelling studies pointed out to the discrep-
ancy between the observations and the simulated concentrations. Using the Emission Database
for Global Atmospheric Research 3 (EDGAR3) inventory, before any correction, the model
global run of Fortems-Cheiney et al. [2011] underestimates the CO concentrations of about
5 to 10% with respect to the satellite observations for January, February and March 2005.
Emmons et al. [2010] compared the satellite observations to simulations of the the Model for
OZone And Related chemical Tracers, version 4 (MOZART-4), using the EDGAR3 inventory.
Displaying a similar trend, their results exhibit an underestimation of the CO concentrations
over Europe of about10 to 20%for the same period.

That is why inverse modelling experiments have been carried out to update the CO �ux
inventories. For instance, Mulholland and Seinfeld [1995]; Saide et al. [2011] focused on
urban scale. Yumimotoa and Uno [2006]; Kopacz et al. [2009] used 4D-Var or analytical
methods to invert the emissions at regional scale. Other studies have also been performed on
global scale: e.g. Pétron et al. [2002]; Stavrakou and Müller [2006]; Arellano and Hess [2006];
Fortems-Cheiney et al. [2009]; Kopacz et al. [2010]. These studies make use of ground-based
instruments that measure concentrations, or they make use of satellite instruments to infer
satellite-derived retrieval of CO. The former instruments are mostly used in conjunction with
regional scale models whereas the latter instruments are mostly used with global scale models.

In the case of an assimilation of observations over a short period (i.e. a few hours to
a few days), the parameters to be optimised are usually the initial conditions. With larger
data assimilation windows (i.e. a few days to a few months), the model is more sensitive to
other parameters, such as the emissions inventory, the meteorological �elds and the boundary
conditions.
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In most top-down (i.e. inverse modelling) studies related to the global scale, the CO emis-
sions �uxes were found to be underestimated in the Northern hemisphere whereas they are
quite consistent with the measurements in the Southern hemisphere (e.g. Müller and Stavrakou
[2005]), or slightly overestimated (e.g. Arellano and Hess [2006]). This underestimation in the
Northern hemisphere is also found in the modelling studies (e.g. Emmons et al. [2010]).

Satellite and in-situ measurements require speci�c care when compared to transport mod-
els. The discrepancy between the observations and the model forecast of these observations
are known to be due to instrumental errors, de�ciencies of the model and of the forcing �elds
(model error), and therepresentativeness error. The assessment of this representativeness error
becomes a key issue when assimilating in-situ observations, which are the focus of this study.
Indeed, the model is operative at coarser scale and by construction cannot simulate subgrid
events. The in-situ observations do capture both the coarser scale pollutant plumes, but also
subgrid plumes that are not accounted for by the model. Therefore, there is a residual mismatch
due to unresolved scales known as the representativeness error. In data assimilation, it is often
considered part of model error, but formally ascribed to the observation error.

Due to the complexity of its estimation, an experience-based value is usually assumed for
that error. This value is often chosen to be the same for all measurements. Yet that is certainly
not true, because the nature of the measurements can be different (urban, rural, etc.). The
maximum possible representativeness error is often chosen for all observations. Alternatively
a � 2 criterion (used by Ménard et al. [2000] in tracer studies) can be implemented to estimate
the proper magnitude of the observational errors.

In this chapter, our goal is to estimate carbon monoxide surface emissions with inverse
modelling, using in-situ measurements from an air quality network. This network operates in
France and we wish to retrieve the emissions over France. Hence, as opposed to most of the
studies mentioned earlier, the focus is on mesoscale and lower troposphere modelling. These
measurements are abundant, but strongly impacted by representativeness errors since many
of them are in�uenced by nearby industrial, traf�c or urban sources. Most of them aim at
measuring (some of) those in�uential sources. To perform emission inverse modelling in this
context, this lack of representativeness must be accounted for. One needs to demonstrate that
observations obtained at �ne scale, and strongly impacted by representativeness errors, can be
assimilated with the aim of correcting a pollutant inventory de�ned at larger scale.

In Section 4.2, the atmospheric transport model (ATM) is introduced, as well as, a detailed
description of the observational data. The speci�cations of the control space are presented. An
investigation of the modelling of errors and of the uncertainties of the control parameters is
also reported. In Section 3.4, 4D-Var is used to optimise the spatio-temporal parameters of the
inventories with unsatisfactory results. Since there is a dramatic lack of representativeness of
the measurements, a simple subgrid statistical model is built in order to improve the 4D-Var
numerical results. The statistical model aims at taking into account the impact of close-by
sources on monitoring stations. Section 3.5 introduced and justi�es this statistical model and
its tight coupling to 4D-Var. In Section 4.3, the inverse modelling experiment is performed with
the combination of 4D-Var and the subgrid statistical model, which will be called 4D-Var-� .
The analysis produced by the retrieval is studied. Validations with independent observations are
performed, notably using cross-validation and a long-term forecast of the CO concentrations.
In Section 5.5, the �ndings of this study are summarised. The potential and limitation of the
approach are discussed.
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3.2 Inverse modelling setup

First, details are given about the necessary ingredients of the inverse modelling study: the
transport model setup, the observations, the control variables (which are the scale factors of the
emission inventories) and the �rst guess provided by the initial inventory. How to incorporate
them in a 4D-Var-� system is then described, as well as the necessary statistical assumptions
on the errors present in the system.

3.3 Experiment setup

All runs of the model will be performed over France. The domain extends between [41.75N,
5.25W] (the left bottom corner) and [52.75N;12.25E] (the right top corner). The grid has
the resolution of0:25� � 0:25� . Nine vertical levels are considered from the surface up to
an altitude of 2780 m. The intermediary levels are30, 150, 350, 630, 975, 1360, 1800and
2270m. The meteorological �elds are provided by the European Centre for Medium Range
Weather Forecasts (ECMWF). These �elds have a resolution of0:36� � 0:36� and60 vertical
levels. The time step is 3 hours. Concentrations from the global chemistry-transport model
MOZART, version 2 [Horowitz et al., 2003] are used to provide boundary conditions, and the
initial condition. A calibration factor of1:2 is used to correct a global underestimation of
incoming carbon monoxide, following the global estimations of Emmons et al. [2010].

It has initially been examined that within our regional, lower troposphere setup, and for our
timescale, carbon monoxide is barely reactive. To do so, we have compared the photochemical
version of POLAIR3D to the tracer version (validated in Quélo et al. [2007]). A small bias of
5:8 � g m� 3 is observed between the CO concentrations with or without reactions, i.e. about
2%of the average measurements. As a consequence, neglecting the reactions, we chose to use
the faster tracer version of the model.

3.3.1 Observations

The BDQA (Base de Données de la Qualité de l'Air1) is a database listing the concentrations
of several air quality pollutants over France. The (mostly hourly) collected observations are
provided by 600 monitoring stations distributed all over France. For carbon monoxide,89
stations provide hourly measurements at ground level (with an average of75 observations per
hour for the year 2005). These stations belong to one of the four different categories: industrial,
traf�c, urban and suburban. This gives an indication of their environment but not necessarily of
their representativeness in an ATM. Larssen et al. [1999] de�ne an area of representativeness
for a station as being an area in which the concentrations do not differ from the ones measured
at the station by more than a speci�ed amount. This amount can be set to the total uncertainty
of the measurement or to a value not to be exceeded in order to ful�l data quality objectives.
Nappo et al. [1982] further precise that more than 90% of the concentrations measured in that
area should satisfy that de�nition. When these conditions cannot be satis�ed for a station, the
latter is not deemed representative of its area.

In the case of carbon monoxide, the stations belonging to the BDQA network are far from
representative as it is very dif�cult to determine an area of representativeness for most of them.
These receptors are likely to be in�uenced by nearby surface �uxes [Henne et al., 2010]. Back-
ground stations, far from pollution sources, are missing.

For the experiments performed in this study, 8 weeks of BDQA observations will be assim-
ilated from January the1st 2005 to February the26th 2005, for a total of107; 914observations,

1details available at http://www.atmonet.org
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while up to more than 10 months of observations (548; 964), corresponding to the rest of the
year, will be used for validation. In another experiment, about55%of the107; 914observations
will be assimilated and the rest of the107; 914observations will be used for validation.

The locations of the BDQA network CO monitoring stations, are shown in Fig. 3.1.
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Figure 3.1: The carbon monoxide monitoring stations of the BDQA network, sorted out by
their of�cial type.

3.3.2 Inventory and control variables

The �rst guess (background information) on the �uxes needed to perform the model runs and
the inversions is provided by the anthropogenic emission from the European Monitoring and
Evaluation Programme (EMEP, details can be found at http://www.ceip.at) inventory, and the
biogenic emissions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN)
model [Guenther et al., 2006]. The EMEP inventory is modulated using hourly, weekly and
monthly distribution coef�cients. These coef�cients are provided by the GENEMIS project
[GENEMIS, 1994]. The EMEP inventory has a resolution of0:50� and the MEGAN inventory
has a resolution of0:04� . We have checked that the vegetation �re emissions over the domain
de�ned earlier and time window of this study can be neglected.

The aim of the present study is to determine the hourly grid-size optimal sources of carbon
monoxide, for both the volume source� in Eq. (1.1), and the emission �uxesE of Eq. (1.3).
An estimation of the number of independent control variables over a data assimilation window
of 8 weeks, a domain of58 � 43 grid-cells (0:25� � 0:25� resolution), and six levels for the
volume source, yield about2 � 107 independent variables to retrieve. That is why we have
chosen to constrain the number of degrees of freedom of control space in the following way.

The year is divided into weeks, indexed byw = 0 ; : : : ; Nw � 1 whereNw = 52. Each
week is divided intoNh = 56 3-hour periods, indexed byh = 0 ; : : : ; Nh � 1. Each 3-
hour period is divided intoNs = 3 hours, indexed bys = 0 ; : : : ; Ns � 1. A grid-cell has
space coordinatesi; j; l (indices related to longitude, latitude and altitude respectively) and
time coordinatesh; w; s (or using the global time indexk = s + Ns(h + Nhw)). In order
to reduce the number of control variables to deal with, the discrete hourly grid-size volume



54 Chapter 3 – Coupled model

sources� and emissionsE are parameterised according to

[� ]i;j;l;h;w;s = [ � ]i;j;h [� b]i;j;l;h;w;s ; (3.1)

[E]i;j;h;w;s = [ � ]i;j;h [Eb]i;j;h;w;s ; (3.2)

where[� ]i;j;h are the non-dimensional effective control variables corresponding to the residual
degrees of freedom. They represent58 � 43 � 56 = 139; 664 scalars. The �rst guesses� b

andEb are the background sources stemming from the inventory. Let us make a remark on
the temporal cycles of the inventory, that are for instance due to vehicles traf�c, urban heating,
industry, etc. Because the control variables[� ]i;j;h are indexed byh, the intra-week temporal
cycles will be solved for in the inverse modelling experiments. However the longer cycles
will not be solved for, but are determined by the built-in cycles of the inventory:[� b]i;j;l;h;w;s

depends on the indexesw ands. For instance, seasonal cycles of urban heating are prescribed
by [� b]i;j;l;h;w;s .

The surfaceE and volume emission� variables have a similar local signature and would
have a similar impact on a distant observation site, so that they would appear as ill-determined
variables in an inverse problem. That is the reason why they were parameterised in Eq. (3.1)
and Eq. (3.2) in terms of the same control vector� . It is convenient to introduce a composite
emission vectore, de�ned in the surface layer by

el=0 = � l=0 +
E
�

; (3.3)

where� is the height of the surface layer. Note that this equality assumes a well-mixed surface
layer. In the upper layersl � 1, it is de�ned by

el = � l : (3.4)

In the following, the �rst guess aboute (background) will be denotedeb. Correspondingly, one
has:

[eb]i;j;l =0 ;h;w;s = [ � b]i;j;l =0 ;h;w;s +
[Eb]i;j;h;w;s

�
and [eb]i;j;l 6=0 ;h;w;s = [ � b]i;j;l 6=0 ;h;w;s :

(3.5)
As a result, Eq. (3.1) and Eq. (3.2) can be synthesised into

[e]i;j;l;h;w;s = [ � ]i;j;h [eb]i;j;l;h;w;s : (3.6)

3.3.3 4D-Var

In spite of the quasi-linear physics of carbon monoxide (at these space and time scales), the
computation of the Jacobian matrix is dif�cult to afford because of the very large set of data and
control variables we intend to use. 4D-Var is meant to handle such a computational problem
[Chevallier et al., 2005]. The details of the 4D-Var are reported in chapter 2.

3.3.4 Error modelling

In this section, we describe how the background and observation errors are statistically mod-
eled. The background errors on the independent variables� are �rst related to the traditional
background errors one (hence� andE). While the background error variances will be chosen
a priori, the observation errors will be determined through a� 2 diagnosis.
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3.3.4.1 Background error covariance matrix

The background error covariance matrixB � de�nes the variances-covariances between the
different components of the departure of the scale factors� from � b = 1. In the inventory,
anthropogenic emissions signi�cantly dominates the biogenic emissions (1:8% of the total in-
ventory over France). Assuming the anthropogenic sources (such as the individual industrial
sources, or urban heating sources) have errors that are barely spatially correlated, the error cor-
relation between grid-cells are taken as negligible, so that the covariance terms of that matrix
are set to zero. Note that other sources of anthropogenic sources, such as traf�c might have ex-
tended correlated errors. We also neglect temporal correlations, which is a weaker assumption
even though the emission are mostly anthropogenic. As a consequence of our assumptions,
the prior errors are essentially represented by the variances of the prior emissions (diagonal
assumption forB � ).

Assuming that the emission errors are not time dependent, the variance of control variable
[� ]i;j;h is:

[B � ]i;j;h =

Nw � 1X

w=0

N s � 1X

s=0

N l � 1X

l=0

[B e]i;j;l;h;w;s

 
Nw � 1X

w=0

N s � 1X

s=0

N l � 1X

l=0

[eb]i;j;l;h;w;s

! 2 ; (3.7)

where

[B e]i;j;l;h;w;s = E
� �

[e]i;j;l;h;w;s � [eb]i;j;l;h;w;s

� 2
�

(3.8)

is the background error variance of the emission �uxes in the grid-cell of coordinatesi; j; l at
timeh; w; s. Since the data assimilation window of the experiments ahead is 8-week long,Nw

is now set to8.

3.3.4.2 Observation error covariance matrix

In Eq. (2.18),� k includes the instrumental error and representativeness error of the observa-
tions. It is assumed that they are independent from site to site, and from observation time to
observation time. At this stage the variances are assumed to be the same for all observations,
which is crude since the representativeness error is expected to signi�cantly vary between sta-
tions. Accordingly,R k is modeled as a diagonal matrix:

R k = r 2I mk ; (3.9)

whereI mk is the identity matrix in observation space at timetk , and

r 2 = "2
repr + "2

meas : (3.10)

"meas is the standard deviation of instrumental error, and" repr is the standard deviation of the
representativeness errors, which depends on the species, the station type, and the grid size
[Elbern et al., 2007].

To estimate the standard deviation parameterr , we resort to a� 2 diagnosis ([Ménard et al.,
2000; Elbern et al., 2007] for instance in the context of atmospheric chemistry). When the
statistics of the errors are consistent with the innovations, then one should expect that the
average value of the cost function is equal to half of the number of assimilated observations.
Accordinglyr should be chosen such that:

n
min

�
J(� )

o
(r ) '

m
2

(3.11)
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wherem =
P k= N

k=0 mk is the number of observations. Based on this diagnosis, an iterative
process can be used to estimater . The algorithm begins by assuming an initial value,r0, for r .
At each iteration,r i +1 is computed by

r 2
i +1 =

di
n

m � di
s
r 2

i (3.12)

wheredi
s anddi

n are twice the background partJb of the cost function, and twice the observation
departure partJo of the cost function respectively at thei th step. They respectively converge
to ds the number of degrees of freedom for the signal (hence the s), and todn the number
of degrees of freedom for the noise (hence the n). The value ofr is thus obtained when the
sequence ofr i has converged. The method needs iterating because the minimum of the cost
function does not linearly depend onr .

We note that this iterative scheme is equivalent to that of Desroziers and Ivanov [2001]:
Eq. (3.12) coincides with Eq. (4) of Desroziers and Ivanov [2001] when the background term
is �xed. Since the method of Desroziers and Ivanov [2001] converges to one maximum of a
parameter likelihood, we conclude that so does our� 2 approach.

3.4 Application of 4D-Var

Following these assumptions, we perform the 4D-Var inversion of the� parameters. The as-
similation window of the experiment is in the winter period, from January 1 2005 to February
26 2005. For comparison, a free simulation is �rst performed using the inventories and bound-
ary conditions described earlier. Then, the� variables of Section 3.3.2 are inverted using
4D-Var.

At each grid-cell, the standard deviation of the prior error in the emission is set to50%of
the prior emission. This value is consistent with Pétron et al. [2002] and Kopacz et al. [2010].
In Yumimotoa and Uno [2006], Pétron et al. [2004] and Fortems-Cheiney et al. [2009], the stan-
dard deviations are set to100%of the prior emissions in each grid-cell, but using the EDGAR3
inventory and not over the Western Europe where the inventories are more ascertained.

An iterative test (� 2 criterion) for the same period is applied to estimate the observational
error variance. We found a standard deviation ofr ' 652:5 � g m� 3 for the observational error
using the� 2 method. It is very signi�cant since it is of the order as the average observation
(662� g m� 3).

A comparison of the observations with the results of the model free run, as well as a com-
parison to the results of the data assimilation experiment (optimisation of� ) are presented in
Tab. 3.1. The scores of this DA run show that the consistency between the analysed concentra-
tions and the observations is low, in spite of a Pearson correlation coef�cient increasing from
0:16 to 0:36. Furthermore, the reduction of the biasO � C is unsatisfyingly small.

The total emission of the background inventory between January 1 to February 26 is1:06
Tg. From the computation of the analysed �uxes using inverse modelling, we obtain1:44
Tg, 36% higher than the total a priori emission. However, Fortems-Cheiney et al. [2011],
estimated that value to be17%for Western Europe, during 2005, with the reference being the
EDGAR3 inventory, using biomass and anthropogenic emissions, and a spatial resolution of
2:5� � 3:5� . Kopacz et al. [2010] estimated it between16 � 24% from May 2004 to April
2005. This indicates a possible over-estimation of the emission by the 4D-Var analysis. In
Fig. 3.8 on page 68 are plotted300hours of the simulation and 4D-Var runs in the DA window,
for four stations. The four corresponding pro�les are too smooth to represent the peaks of the
observation pro�le. This supports our assumption on the impact of representativeness error.
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Table 3.1: Comparison of the observations and the simulated or analysed concentrations.C
is the mean concentration,O is the mean observation, and NB= 2( C � O)=(C + O) is the
normalised bias. RMSE stands for root-mean square error. R is the Pearson correlation. FAx

is the fraction of the simulated concentrations that are within a factorx of the corresponding
observations.C, O, and the RMSE are given in� g m� 3.

C O NB RMSE R FA2 FA5

Simulation (01/01–02/26 2005) 303 662 -0.74 701 0.16 0.52 0.90

Optimisation of� (4D-Var) 396 662 -0.50 633 0.36 0.59 0.92

Optimisation of� 615 662 -0.07 503 0.57 0.73 0.96

Coupled optimisation of� , � (4D-Var-� ) 671 662 0.01 418 0.73 0.79 0.97

The BDQA CO network is mostly composed of proximity stations, whose observations are
likely to be in�uenced by local sources. Therefore, the lack of consistency between the model
and the observations could be explained by the direct impact of nearby pollution sources on
observations. The 4D-Var analysis cannot account for the local peaks of CO concentrations
since it uses a model that cannot resolve those subgrid-scale processes. However, we believe
that there is some useful signal to extract from these observations. To do so, one needs to
account for the subgrid processes. At least two state-of-the-art options are possible. The de-
terministic route consists in using explicit representations of partial information that one may
have about the subgrid processes, emissions, etc. These representations are incorporated into
the coarser model. This is what typically does a plume-in-grid model that uses some additional
information about short-range dispersion (e.g. Karamchandani et al. [2009] for an application
to CO subgrid traf�c emission). A second route is of statistical nature. The aim is to make a
statistical regression between the observations and the coarse resolution model output, which
results in a �tted linear correspondence between the model to the observations. In geosciences,
downscaling techniques have taken this path (e.g. Guillas et al. [2008] for an application to
ozone concentrations). In this study, a statistical approach is chosen to represent the subgrid
effects. A deterministic modelling approach of the subgrid processes would theoretically be
desirable, but it requires additional subgrid information that we do not have here, and it would
be computationally more expensive.

3.5 Coupling 4D-Var with a subgrid statistical model

3.5.1 A simple subgrid statistical model

Assume thats is a continuous source �eld: it describes the emission at any spatial scale. Recall
that e is the discrete coarse-grained source that we use to drive the model. Ideally,s ande
should be related through a restriction, coarse-graining operator� , which acts as a low-pass
�lter, �ltering out the �ne details of the source:

e = � s : (3.13)

Following Bocquet et al. [2011], we can consider a prolongation operator� ?, which re�nes a
coarse emission �elde to a continuous �elds?:

s? = � ?e : (3.14)

There is freedom in choosing� ?. It could be a basic subgrid spatial interpolation operator, or it
could rely on additional subgrid information, or it could be obtained from a Bayesian inference



58 Chapter 3 – Coupled model

[Bocquet et al., 2011]. For the purpose of this derivation, we do not have to specify a precise
form for � ?. However, it is reasonable to assume�� ? = I . Besides,� ?� is a projection
operator, not the identity, because of some details of the real �ne scale emission �eld are lost
in the restriction process� .

If H is the Jacobian of a continuous multiscale hypothetical carbon monoxide model that
relatess to the measurementsy , the vector collecting all measurements, then

y = H s + �

= H � ?� s + H (I � � ?� ) s + �

= ( H � ?) e + H (I � � ?� ) s + � : (3.15)

Assume� operates the coarse-graining at the �nest scale accessible by the model. Therefore
H � ? could be identi�ed with the Jacobian of our Eulerian ATM. SinceI � � ?� is a high-
pass projector (it retains the short-scale �uctuations of the real emission �eld),H (I � � ?� )s
theoretically stands for the representativeness error [Wu et al., 2011].

Unfortunately, we do not have access tos or a multiscale modelH , and one needs a simple
subgrid scale model to approximateH (I � � ?� )s and close the equation. We assume this rep-
resentativeness error is mostly due to subgrid/nearby sources that have a strong impact on the
measurements which are not representative of the background carbon monoxide concentration
level. Another possibly signi�cant source of error is the weakness of current vertical turbu-
lent diffusion parameterisations. Notice that part of it may be categorised as representativeness
errors when for instance the boundary layer height varies signi�cantly within grid-cells.

Guided by the structure ofH (I � � ?� )s, we choose to model this nearby source in�uence
by the term

� i � i;k e (3.16)

where� i is a positive scalar attached to a station indexed byi . Similarly to H (I � � ?� )s,
� i � i;k e has a linear explicit dependence on the emissione. Thein�uence coef�cient� i quan-
ti�es the in�uence of local nearby sources onto the station. It can be interpreted as the time
(given in hours in the following) required to reach a CO concentration level equivalent to the
subgrid part of the measurement[y � Hc ]i;k , by emitting� i;k e which is based on the coarse-
grained inventory. This in�uence factor is assumed constant in time and it is a priori unknown.
� i;k is an operator that linearly interpolatese at the station location and at timetk . If � i is
vanishing, then the representativeness of the station is deemed good. Otherwise, a signi�cant
� i (a few hours and beyond) indicates a possible signi�cant impact of nearby sources. Figure
3.2 illustrates this rationale.

This term is enforced in the observation model Eq. (2.18), which becomes, at any given
time:

y = Hc + � � �e + b� ; (3.17)

where� � �e is the vector of entries[� � �e ]i;k = � i � i;k e. The residual errorb� should statis-
tically be smaller than� of Eq. (2.18) since part of the representativeness error should now be

accounted for by the subgrid term. We denote its covariance matrix withbR = E
h
b� b� T

i
. Under

independence assumptions, the two are connected by

R = E
�
�� T �

= � � � E
�
eeT �

� T � � T + bR : (3.18)
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A

B

Figure 3.2: Possible physical interpretation of the subgrid model. This mesh represents the
CO inventory of a spatial domain. The darker the blue shade, the bigger the emission in the
grid-cell. Notice the high emission zone in the south-east corner. A zoom is performed on
one of the central grid-cell (see in the magni�er). Inside this grid-cell is represented a �ner
scale inventory inaccessible to the modeller that may represent the true multiscale inventory.
Two CO monitoring stations are considered. Station A is under the direct in�uence of a nearby
active emission zone that represents a signi�cant contribution to the grid-cell �ux. The model,
operating at coarser scales cannot scale the in�uence of this active zone onto station A, even
though it has an estimation of its total contribution through the grid-cell total emission. Differ-
ently, station B which is located in the same grid-cell, does not feel the active zone as much as
station A. Our subgrid statistical model assumes that the in�uence of the active subgrid zone
onto A or B has a magnitude quanti�ed by the in�uence factors� A and� B . Obviously, in this
case, one has� A � � B . Notice that both station A and station B are under the in�uence of the
south-east corner of the whole domain. But this in�uence is meant to be represented through
the Eulerian coarser ATM.
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3.5.2 Coupling to the 4D-Var system

Taking into account the statistical subgrid model, the 4D-Var cost function becomes:

J(� ; � ) =
1
2

Nh � 1X

h=0

(� h � 1)T B � 1
� h

(� h � 1)

+
1
2

NX

k=0

(yk � H kck � � � �e k )T bR � 1
k (yk � H kck � � � �e k )

+
NX

k=1

� T
k (ck � M kck� 1 � � tek ) : (3.19)

As mentioned in the previous section, if the subgrid model does account for a signi�cant part
of the representativeness error, the error covariance matrixbR k should differ fromR k since it
accounts for the residual errors. Its magnitude will be determined by the� 2 method.

A joint iterative optimisation of the scale factors� and the in�uence factor vector� is used
to minimise the cost function. Within each iteration,� is obtained by a minimisation of the cost
function under the constraint of positivity of the� i . To perform the minimisation, one needs
the gradient with respect to�

r � J(� ; � ) =
NX

k=0

eT
k � T bR � 1

k (yk � H kck � � � �e k ) ; (3.20)

and the innovation vector of Eq. (2.26) becomes

� k = H T
k

bR � 1
k (yk � H kck � � � �e k ) : (3.21)

After the � i are optimised, the� 2 method is used to rescale the new observational error
covariance matricesbR k = br I mk . It is used iteratively until convergence ofbr . For each cycle
within this loop, the� are �rst optimised using 4D-Var for the current value of� and of the
bR k . Then thebR k are updated. Figure 3.3 summarises the minimisation procedure for the
coupled DA system (in short 4D-Var-� ). Note that the �rst step of the minimisation can begin
by optimising either the in�uence factors� or the scale factor vector� . Our tests show that
the �nal results of both minimisations are consistent. However, the former approach shows a
faster convergence.

3.6 Application of 4D-Var-�

In this section, the 4D-Var-� system is �rst applied to the same setup as the 4D-Var analysis
of Section 3.4. The resulting analysis is discussed both in terms of retrieved emission and
in terms of analysed CO concentrations. Then, the system is validated with a comparison, a
cross-validation and a forecast experiments.

3.6.1 Analysis

3.6.1.1 Minimisation of the cost function

Figure 3.4 shows the minimisation of the cost functionJ in the two following cases: the op-
timisation of the scale factor vector� (4D-Var alone), and the optimisation of� and� with
4D-Var-� . In the latter case, several cycles of 9 iterations each are run. In each cycle, the in-
�uence factors are �rst optimised and 8 other iterations are used to optimise the scale factors.
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Figure 3.3: Schematic of the minimisation algorithm for the 4D-Var-� system.

This cycle is repeated 9 times, beyond which convergence is reached. For the �rst iteration of
a cycle, the diagonal elements (br ) of the observational covariance matrix are diagnosed with
� 2. This may lead to a temporary increase of the cost function value as seen in Fig. 3.4. In
both cases the cost functionJ consistently converges to half of the observation numbers (that
is m=2 = 53; 957). The values of the observation and background terms of the cost function,
Jo andJb respectively, have also been plotted (cf. Fig. 3.4).

The Jo of 4D-Var-� convergences to a higher value than theJo of 4D-Var because the
coupled scheme is able to identify a higher fraction of the degrees of freedom as noise (repre-
sentativeness errors). TheJb of 4D-Var-� convergences to a smaller value than theJb of 4D-Var
because the coupled scheme recognises that the degrees of freedom for the signal present in
the observations are signi�cantly less important than what 4D-Var would assume. Speci�cally
the number of degrees of freedom for the signal isds = 6 ; 316 with 4D-Var, whereas it is
ds = 2 ; 367 with 4D-Var-� . They stand for about2% of the information load of the in-situ
observations. This shows that ignoring the representativeness issue leads to a severe over-
estimation of the information content of the dataset. The standard deviation of the residual
diagnosed observation error that wasr ' 652:5 � g m� 3 without the implementation of the
subgrid scheme is nowbr ' 422� g m� 3.

3.6.1.2 Results: Scores

Statistical indicators are computed for the output of an 8-week experiment using the 4D-Var-�
scheme. They are reported in Tab. 3.1 (joint optimisation of� and� ). A signi�cantly better
agreement is obtained between the analysis and the observations. The large underestimation
of the CO concentrations (see the means in Tab. 3.1), is signi�cantly reduced: the normalised
bias is as small as1:4%. The total emission is diagnosed to be1:16 Tg. This is an inventory
increase of about9%, which is rather consistent with studies performed over Western Europe
using remote sensing. In addition to the bias reduction, it also leads to an increase of the
Pearson correlation coef�cient up to0:73. The optimisation of the in�uence coef�cients, using
the a priori �uxes, leads to decrease the root mean square error (RMSE) from701� g m� 3 to
503 � g m� 3. The emission optimisation decreases this number down to418 � g m� 3. The
impact of the subgrid model on the RMSE is consistent with the predominance of the local
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Figure 3.4: Iterative decrease of the full cost function (black lines), of the background term
of the cost functionJb (blue lines), and of the observation departure term of the cost function
Jo (red lines). For the sake of clarity, theJb values are to be read on the right y-axis. Two
optimisations are considered: with 4D-Var (dashed lines), and joint 4D-Var and� optimisation
(full lines), within the assimilation window of the �rst 8 weeks of 2005.

sources on the observations.

3.6.1.3 Results: Total stations scores

The scores for the simulations at each station are presented in Appendix B.1. The value of
the bias between the observations and the simulations lies between 10�g=m 3 and 1922�g=m 3.
The RMSE spreads from 195.5�g=m 3 to 2500�g=m 3. The Pearson coef�cient changes from
-0.12 to 0.51. The FA2 coef�cient varies between 0.05 and 0.86.

The same statistical indicators are displayed in Appendix B.2, as regards the results of the
4D-Var simulation. In this case, the bias between the simulated results and the corresponding
observations is between 0.8�g=m 3 and 1852�g=m 3. The RMSE changes from 183.7�g=m 3

to 2422�g=m 3. The correlation between the simulated results and the measurements varies
between -0.07 and 0.73. FA2 is changed from 0.07 to 0.93.

The third set of indicators coresponds to the 4D-Var-� results (see Appendix B.3). The
bias is decreased. It is now between 1�g=m 3 and 301.3�g=m 3. The RMSE ranges between
181.2�g=m 3 and 1176�g=m 3. The correlation is also increased and ranges between -0.01 and
0.78. In this case, FA2 varies between 0.31 and 0.98.

3.6.1.4 Results: Spatial distribution of the retrieval

The values of the scale factors� of the 4D-Var-� system range between0:01 and19:5, with
an average value of1, showing that some important correction can be made to the inventory.
Figure 3.5 displays the carbon monoxide EMEP+MEGAN inventory (the �rst guess) integrated
over the �rst 8 weeks of 2005, for each grid-cell. Figure 3.6 displays the ratio of time-integrated
retrievals to the time-integrated EMEP+MEGAN inventory, for each grid-cell. Figure 3.6a dis-
plays the retrieval obtained using 4D-Var, whereas Fig. 3.6b displays the retrieval obtained
using 4D-Var-� . 4D-Var-� shows a much less pronounced correction than the 4D-Var retrieval,
which is consistent with the �ndings from the statistics discussed in the previous section. The
joint inverse modelling retrieval suggests an increase of the emissions in the South of Paris



Section 3.6 – Application of 4D-Var-� 63

area, Lyons, La Rochelle, Lille and in the Mediterranean coast of France, pointing to an under-
estimation of the inventory. It suggests a decrease of the emissions in the area of Dunkerque, in
the area of Metz, and in the North of Paris area, pointing to an overestimation of the inventory.
The values of the scale factors (� ) of the 4D-Var-� system range
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Figure 3.5: Time-integrated spatial distribution of the carbon monoxide EMEP+MEGAN in-
ventory over the �rst 8 weeks of 2005.

3.6.1.5 Results: scatterplots

In Fig. 3.7a, a scatterplot compares the observations to the concentrations simulated by the
model using the a priori emissions. It is clearly impacted by the representativeness errors,
since the variability of the observations is much stronger than that of the simulated concentra-
tions. In Fig. 3.7b, a second scatterplot compares the observations to the ATM concentrations
using the a posteriori emissions from 4D-Var. Even though 4D-Var corrects the shape of the
scatterplot, it is still highly impacted by representativeness errors. Figure 3.7c is a scatterplot of
the observations versus the concentrations diagnosed by the 4D-Var-� system. The representa-
tiveness errors have been signi�cantly reduced. However, there is still a residual impact for the
smallest observations. This may be due to situations where carbon monoxide emitted locally is
not advected nearby monitoring stationi , whereas� i may be signi�cant because of the impact
of the local source when the winds are blowing in the direction of the instrument. Indeed, our
simple statistical model cannot account for the changes in the local micro-meteorology, only
for its indirect impact.

3.6.1.6 Results: On-site pro�les

Here, the focus is on the analysis at individual stations. The values of the station-dependent
in�uence factors� i range between0 and97:5 h, with a median value of5:9 h, and a mean value
of 11:3 h (Table 3.2 presents the value of the in�uence factor for each of the station).
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(a)

(b)

0.50 1.00 2.00

Figure 3.6: Ratio of the time-integrated CO �ux retrieval to the EMEP+MEGAN time-
integrated CO �ux for each grid-cell, in the 4D-Var case (a) and in the joint 4D-Var and subgrid
model case (b).



Section 3.6 – Application of 4D-Var-� 65

10
1

10
2

10
3

10
4

Concentration via simulation ( �  g/m
3

)

10
1

10
2

10
3

10
4

O
bs

er
va

tio
n 

(

�

 g
/m

3
)

(a)

0 1

10
1

10
2

10
3

10
4

Concentration via simulation ( �  g/m
3

)

10
1

10
2

10
3

10
4

O
bs

er
va

tio
n 

(

�

 g
/m

3
)

(b)

0 1

10
1

10
2

10
3

10
4

Concentration via simulation ( �  g/m
3

)

10
1

10
2

10
3

10
4

O
bs

er
va

tio
n 

(

�

 g
/m

3
)

(c)

0 1

Figure 3.7: Scatterplot during 8-week: (a) comparison between the concentrations via the
model and the observations, (b) comparison between the concentrations via the model using
the a posteriori emissions retrieved from 4D-Var and the observations, (c) comparison between
the concentrations diagnosed by the 4D-Var-� system and the observations. The colour bars
show the correspondence between the blue shade and the density of points of the scatterplot.
This density has been normalised so that its maximum is1. Dashed lines are the FA5 dividing
lines, and dashed-dotted lines are the FA2 dividing lines.
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Table 3.2: The values of the in�uence factors� i for the stations.
Station � Station � Station �

HAYANGE 3.06 Liane Boulogne Sud 11.91 DAIX 0.56

Marignane Ville 8.00 LIBERTE 1.34 Station MARSANNAY 4.54

Port de Bouc EDF 0.99 PASTEUR 0.59 BETHUNE PROX AUTO 5.66

PLOMBIERES 45.62 LA BASSEE/CENTRE 1.13 COUBERTIN 3.04

AIX CENTRE 5.21 Roubaix/Serres 1.01 ST ETIENNE ROND PT 15.84

TOULON FOCH 97.52 Hotel de ville 7.15 RIVE DE GIER 3.70

AVIGNON ROCADE 2.34 Rue de la Tour 7.62 Hotel Districal 11.56

Place Victor Basch 2.98 Grenoble Foch 24.75 Epinal 11.96

AUBERVILLIERS 0.00 Le Rondeau 16.29 Bar-le-Duc 20.27

Avenue des Champs Elysees 1.19 Strasbourg Clemenceau 8.07 Luneville 16.75

Boulevard peripherique Auteuil 2.67 Muhl.ASPA 3.33 BORDEAUX-BASTIDE 1.26

PARIS 1er Les Halles 0.00 CTRE VILLE MEGEVAND 11.19 MERIGNAC 4.56

Autoroute A1 - Saint-Denis 1.67 Amiens Saint Leu 2.89 SAMONZET 20.47

Rue Bonaparte 0.89 LAENNEC 2.84 ANGLET 9.26

Quai des Celestins 1.99 Halles centralles 5.86 Chalon centre ville 19.30

LeHavre Republique 23.11 PUITS GAILLOT 5.96 Champforgeuil 1.34

ESQUERCHIN A DOUAI 3.33 BERTHELOT 8.54 Hilaire Chardonnet 5.17

Jardin Lecoq CF 4.07 GARIBALDI 13.65 Montceau-les-Mines 9.87

Aurillac Centre 61.46 LA MULATIERE 6.84 Macon Paul Bert 10.31

Le Puy Fayolle 58.74 VAUCELLES 10.35 Le Creusot Molette 9.35

Rousillon 14.51 Cherbourg Paul Doume 8.03 Gambeta 11.92

Saint Denis 10.64 Batiment ELF-ATO 0.00 Mirabeau 14.96

Pres Arenes 5.20 Forbach(12) 1.51 Valence Tra�c 10.71

Planas 9.52 GENERAL DE GAULLE 25.57 GONESSE 0.16

rue de la GRILLE 73.93 LA ROE 20.55 VICTOR HUGO 3.70

Place du Marche 13.30 Nice Pellos 45.84 METZ-BORNY 0.00

Mairie MALO 0.40 ANTIBES GUYNEMER 26.80 Brest 3 CDM 34.12

FORT-MARDYCK 0.04 ALEXIS CARREL ROUENG 1.16 Ecole Jules Ferry 5.23

Petite Synthe 0.09 Rouen Le Conquerant 3.88 place de VERDUN 2.59

Calais Centre 0.44 Pasteur 8.21
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In Fig. 3.8, four different time series of concentrations are displayed for four different
stations: the observations, the concentrations simulated with the a priori emissions, the con-
centrations obtained from 4D-Var, and 4D-Var-� concentrations. The traf�c station of Lille
Pasteur, can be cited as an example of small in�uence factor value with� i = 0 :6 h. In that
station, the simulation concentrations are in quite good agreement with the observations. The
correlation between the observations and the simulated concentrations reaches0:49. It is 0:74
for the 4D-Var-� results. At the station Paris, boulevard périphérique Auteuil (suburban), for
which � i is of 2.7 h, the correlation increases from0:29 up to0:77. Orléans Gambetta (traf�c
zone) station can be cited as an example with a moderate in�uence factor value of� i = 11:9 h.
At this station, the Pearson correlation coef�cient increases from0:11 to 0:67 when using the
4D-Var-� system. The dependence of the observations and the local emissions is clearly shown
in Fig. 3.8c. The model simulation gives a smooth curve, whereas the observations are highly
�uctuating. The 4D-Var system is able to anticipate the trend of the concentrations, but cannot
predict the peaks. Furthermore, it over-estimates the inventory by trying to adjust to the peaks.

Figure 3.8d shows the concentrations in Nice Pellos (urban station) with a high in�uence
factor value of� = 45:8 h. The results of 4D-Var-� are in good agreement with the observations
whereas neither the simulation, nor 4D-Var are able to match the observations. The correlation
value is signi�cantly increased from0:32to 0:68. It is also clear that although 4D-Var-� is able
to account for a substantial part of the peaks, it underestimates their maxima and overestimates
the minima, which may be due to residual representativeness error.

3.6.1.7 Results: sensitivity to the background standard deviation

The whole inverse modelling study using a background standard deviation is performed for the
carbon monoxide of100%, instead of50%. The results are qualitatively unchanged. They are
barely quantitatively changed. For instance, one retrieves a total of1:18 Tg instead of1:16 Tg
over the 8-week winter period. This relative insensitivity is mostly due to the use of the� 2

criterion.

3.6.2 Validation

A direct and reliable validation of a spatial emission inventory is currently out of reach for most
pollutants (see the in-depth discussion of Vestreng et al. [2007] about SO2). It is only possible
to compare with another independent estimation (top-down or bottom-up), which, as a relative
comparison approach, may not be as satisfying as a straight comparison to observations. Local
�ux measurements are possible (e.g. for CO2) in some media but these are sparse and cannot
fully validate a spatial inventory. Therefore, a CO emission inventory can only be indirectly
validated. For instance one can compare the CO concentrations simulated with the inventory
to real measurements.

We shall �rst compare the total emitted carbon monoxide to an independent bottom-up
inventory over France. We will then compare simulated concentrations obtained with an in-
ventory retrieved from a training network, on a distinct validation network. Finally, after an
assimilation period of 8 weeks, we shall make a 10-month CO concentration forecast. The
forecasted concentrations will be compared to independent observations (that have not been
assimilated).
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Figure 3.8: Time series of CO concentrations for the �rst300hours of 2005, at four stations:
observations (blue), simulation using the prior emissions (red), simulation using the posterior
emissions of data assimilation (green) and simulation using the posterior emissions of 4D-Var-�
(black) with adjusted observations using the statistical subgrid model.
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3.6.2.1 Global comparison with the CITEPA inventory

The total retrieved CO emitted mass from 4D-Var-� is compared to the inventory of the Centre
Interprofessionnel Technique d'Études de la Pollution Atmosphérique (CITEPA2). According
to CITEPA, the total French inventory for 2005 is5:3 Tg. We have inferred the total emitted
mass for the �rst 8 weeks of 2005 using the weekly and the monthly coef�cients of GENEMIS
for each of the11 sectors of the SNAP nomenclature of emitting activities. The contribution
of each SNAP sector to the total emission is estimated following EMEP distribution for this
year. Following this rationale, the total CO emitted mass of the CITEPA inventory is found to
be1:15Tg between January 1st, and February 26. This value is very close to1:16Tg obtained
with 4D-Var-� .

3.6.2.2 Cross-validation experiment

49 BDQA stations have been randomly selected as a training network. Inverse modelling will
be performed using the CO observations of this subnetwork for the �rst 8 weeks of 2005.
The rest of the stations of the BDQA network forms a40-station validation network. The
observations of these stations will be compared to the simulated CO concentrations obtained
using the retrieved emission �eld inferred from the training set. The partition between the
BDQA stations is displayed in Fig. 3.9.
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Figure 3.9: The training (triangle) and validation (circle) subnetworks that partition the BDQA
stations measuring carbon monoxide. This partition is randomly generated for the cross-
validation experiment.

Three simulations for validation are performed: a simulation using the EMEP+MEGAN
background inventory; a simulation using the emissions retrieved with 4D-Var; and a simu-
lation using the emissions retrieved with 4D-Var-� . In addition to these three simulations, we
shall use the in�uence coef�cients� i attached to the stations of the validation network to correct
the concentrations, using the background emissions, the 4D-Var retrieved emissions, and the
4D-Var-� retrieved emissions. Even though these40factors have been inferred (in the previous

2http://www.citepa.org/emissions/nationale/Aep/aep_co.htm
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section) using observations of the full network, we believe they are intrinsic to the stations. In-
ferring them from a different (suf�ciently large) observation set would yield close values. We
have checked this by comparing the� i of the training network obtained from a 89-station (full
network) optimisation, with the� i of the training network obtained from a 49-station (training
network) optimisation. The results, that are reported in a scatterplot Fig. 3.10, con�rm that the
values are close, and support that they are intrinsic to each station.
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Figure 3.10: Scatterplot of the 49� i of the training network inferred from either the training
network or the full network (89 stations). Four� i = 0 crosses are missing. In the four cases,
they were concordantly diagnosed to be0 by the two inferences.

The statistical scores, as well as the total emitted mass, for these six validation experiments
are reported in table 3.3.

Table 3.3: Comparison of the observations and the forecasted concentrations on the validation
network for the �rst 8 weeks of 2005. The statistical indicators are described in Tab.3.1. Ad-
ditionally, the total retrieved emitted mass is given (in Tg). The corresponding value for the
retrieved mass using the full network is recalled in parenthesis.

Used inventory C O NB RMSE R FA2 FA5 Total mass

Background 296 697 -0.81 771 0.16 0.51 0.88 1.06 (1.06)

4D-Var 357 697 -0.65 726 0.28 0.57 0.89 1.25 (1.44)

4D-Var-� 310 697 -0.77 758 0.22 0.52 0.89 1.14 (1.16)

Background + climatological� 644 697 -0.08 538 0.60 0.73 0.96 1.06 (1.06)

4D-Var + climatological� 968 697 0.33 1216 0.40 0.67 0.94 1.25 (1.44)

4D-Var-� + climatological� 674 697 -0.03 514 0.64 0.75 0.96 1.14 (1.16)

Firstly 4D-Var-� without correction at the validation stations performs poorly, with scores
of the same order as 4D-Var. This is to be expected since 4D-Var-� is meant to be used in
conjunction with the� coef�cients, which is not the case for this experiment. Secondly, 4D-Var
yields sensibly better scores than 4D-Var-� . This is due to the excessive correction of 4D-Var
that wrongly takes the CO peaks as a systematic bias. As should be, this bias correction equally
applies to the validation set, leading to slightly better scores than 4D-Var-� , but for the wrong
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reasons.
Applying the� i coef�cients of the validation stations to the concentrations obtained with

the �rst guess emissions considerably reduces the bias and improves all the other statistical
indicators as compared to the reference simulation. Applying the� i coef�cients of the vali-
dation stations to the concentrations obtained with the 4D-Var retrieved emissions leads to a
very large positive bias. Even though the approach is by construction inconsistent, it yields
signi�cantly better scores as compared to using the 4D-Var retrieval without corrections on the
validation stations. Lastly, the� i coef�cients of the validation stations are used in conjunction
with the 4D-Var-� retrieved emission �eld. This leads to much higher scores than the other
experiments. These indicators are consistent with the scores obtained using the full network
data (in Tab. 3.1).

It is remarkable that the total retrieved mass of this last experiment,1:14 Tg, is consistent
with that obtained by 4D-Var-� using all stations, that is1:16 Tg. A convincing validation of
such a retrieval methodology would require such a consistency. The same is not true for 4D-Var
with 1:25Tg obtained using the training subnetwork and1:44Tg using the full network, point-
ing to the inconsistency of the method that does not properly account for the representativeness
errors.

3.6.2.3 Forecast experiments

A validation forecast is performed over the year 2005. This second indirect validation is de-
manding since no new observation are assimilated over a ten-month period. That is why in
atmospheric chemistry/air quality a forecast is often considered a more stringent validation test
[Zhang et al., 2012]. However, our validation by a forecast has a limitation due to the statis-
tical subgrid model. It is meant to ef�ciently apply to the observational network employed in
the initial assimilation time-window. Notice that this limitation is inherent to any forecasting
system making use of some form of statistical adaptation.

Four runs are considered. They all use the ECMWF meteorological �elds and the MOZART,
version 2, output for the initial and boundary conditions. The �rst run is a direct simulation
over 2005 that is driven by the EMEP+MEGAN inventory. The second one is a direct run from
February 26 to December 31, but using the optimal� obtained from the 4D-Var analysis from
January 1 to February 25, and Eq. (3.6) to generate the inventory. The third one is a direct run
from February 26 to December 31, using the EMEP+MEGAN inventory but using the optimal
� obtained from an optimisation over� of the total cost function from January 1 to February
25. The fourth one is a direct run from February 26 to December 31, but using the optimal
� and� parameters obtained from the 4D-Var-� analysis from January 1 to February 25, and
Eq. (3.6) to generate the inventory. None of the observations from February 26 to December
31 are assimilated. They are exclusively used for validation.

Such forecast requires a forecast of the emissions. The parameterisation of the emission by
the� allow us to do so. In particular some of the temporal (but not spatial) seasonal variability
is implicitly accounted for thanks to the GENEMIS temporal modulation present in the �rst
guesseb.

Firstly, we have focused on the �rst month forecast, from February 26 to March 26, where
one can assume that the winter emission trend endures. The results are in very good agree-
ment with the observations. For the forecast period, the correlation coef�cient between the
observations and 4D-Var-� increases from0:13 to 0:68. The RMSE is improved by about40%
during the analysis period. Almost68%of that improvement is due to the optimisation of the
in�uence factors� i .

Secondly, we have extended the forecast period, from February 26 to December 31 across
seasons. The monthly results for the RMSE and the correlation coef�cients, over the year 2005
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are presented in Fig. 3.11. Using 4D-Var-� , the RMSE decreases decreases by 282� g m� 3

within the analysis period, January 1 to February 26 (left side of the vertical dashed line). It
decreases by 172� g m� 3 during the forecast period, from February 26 to December 31 (right
side of the vertical dashed line). The improvement is remarkably persistent during the whole
10-month forecast period. It shows that choosing� and� as control vectors has a good prog-
nostic value. In spring and summer, the RMSE decreases for all four experiments. This can
be due to the decrease of urban heating during that period which is accounted for in the cycles
of the inventory but which reduces a source of uncertainty. It can also be seen that the RMSE
gain in the spring and summer is essentially due to the subgrid model identi�cation, and not
the emission estimation, since 4D-Var-� and the optimal-� forecast yield the same RMSE. Un-
surprisingly, this means that the emission retrieval carried out over two winter months are not
optimal for the spring and summer months. Another possible explanation is the emergence of
new source of errors in the spring-summer time, such as the higher OH concentration that leads
to a higher reactivity of CO, or a stronger turbulent mixing in the boundary layer. However,
this should be balanced by a persistent gain in the spring-summer period of the correlation due
to the emission retrieval.

3.7 Conclusion

In this article, a 4D-Var data assimilation system was developed to estimate carbon monoxide
�uxes at regional scale. An approximate adjoint of the POLAIR3D model has been built and
validated for this 4D-Var system. A study over France, at a resolution of0:25� � 0:25� is
conducted. We used the in-situ observations of the BDQA database that includes the observa-
tions from industrial, traf�c, urban and suburban stations. They are strongly impacted by local
sources that the stations are meant to monitor. Hence, although the number of observations
is very signi�cant, their information load is impacted by large representativeness errors. The
Pearson correlation coef�cient between the simulated concentrations and the observations is
computed to be0:16. A �rst 4D-Var inversion of the CO �uxes leads to a mild improvement
of the skill. The Pearson correlation climbs to0:36. However looking at stations pro�le, it is
clear that the representativeness errors are not accounted for, since the analysis from 4D-Var
cannot reproduce the intense CO peaks. Besides, it leads to an arti�cially large increase of the
retrieved emissions.

Therefore, a simple model is developed to statistically represent the subgrid effects of
nearby sources. A coef�cient attached to each station is used to estimate this in�uence. The
4D-Var system is coupled to this subgrid model and the �uxes are determined altogether with
the in�uence coef�cients. The correlation coef�cient reaches0:73, while the bias between
the observations and the analysed concentrations is considerably reduced. The net increase
of the CO inventory is estimated to be9%, consistent with other top-down approaches using
satellite data. Cross-validation experiments using a training subnetwork and a validation sub-
network demonstrates the consistency of the inventory estimation, whereas, in this context, the
traditional 4D-Var does not deliver consistent estimations with different training subnetworks.
Forecast experiments with the analysed coef�cients and �uxes over10 months, after an as-
similation window of8 weeks, show remarkably persistent scores throughout the year. This
emphasises the relevance of the choice of� and � as joint control parameter vectors of the
4D-Var-� analysis.

We believe that this methodology and experiment show that, in this context, it is possible to
extract relevant information from observations strongly impacted by representativeness errors.
One limitation which is inherent to the statistical adaptation component of the system is that it
is meant to be used on a given monitoring network. A validation forecast can safely be made
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Figure 3.11: Monthly RMSE (left panel) and Pearson correlation (right panel) of four runs: a
pure forecast, a ten-month forecast initialised by an 8-week 4D-Var assimilation, a ten-month
forecast initialised by an 8-week window where the� are optimised and a ten-month forecast
initialised with an 8-week joint 4D-Var and� optimisation. The vertical dashed line indicates
the end of the assimilation window and the start of the forecasts.
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to additional stations, but statistical adaptation cannot be performed to these stations, if the
related in�uence factor� i were not previously estimated.

To improve the present statistical subgrid model, which uses the in�uence factors to esti-
mate the immediate impact of the emissions on the observations, a more comprehensive sta-
tistical subgrid model could be used. For instance, that model could include the effects of the
wind direction, deposition parameters, etc, that are used or diagnosed in the coarse resolution
model. Computationally, it would not be as cheap as the subgrid model used here.

Beyond the carbon monoxide context of this study, it is believed that the integration of the
simple statistical subgrid scale into a 4D-Var can be generalised to pollutants whose observa-
tions could highly be impacted by representativeness errors.



Chapter 4

Potential of the International
Monitoring System radionuclide
network for inverse modelling

Summary

The International Monitoring System (IMS) radionuclide network enforces the Comprehensive
Nuclear-Test-Ban Treaty which bans nuclear explosions. We have evaluated the potential of the
IMS radionuclide network for inverse modelling of the source, whereas it is usually assessed by
its detection capability. To do so, we have chosen thedegrees of freedom for the signal(DFS),
a well established criterion in remote sensing, in order to assess the performance of an inverse
modelling system. Using a recent multiscale data assimilation technique, we have computed
optimal adaptive grids of the source parameter space by maximising the DFS. This optimisa-
tion takes into account the monitoring network, the meteorology over one year (2009) and the
relationship between the source parameters and the observations derived from the FLEXPART
Lagrangian transport model. Areas of the domain where the grid-cells of the optimal adaptive
grid are large emphasise zones where the retrieval is more uncertain, whereas areas where the
grid-cells are smaller and denser stress regions where more source variables can be resolved.

The observability of the globe through inverse modelling is studied in strong, realistic and
small model error cases. The strong error and realistic error cases yield heterogeneous adaptive
grids, indicating that information does not propagate far from the monitoring stations, whereas
in the small error case, the grid is much more homogeneous. In all cases, several speci�c
continental regions remain poorly observed such as Africa as well as the tropics, because of
the trade winds. The northern hemisphere is better observed through inverse modelling (more
than 60% of the total DFS) mostly because it contains more IMS stations. This unbalance
leads to a better performance of inverse modelling in the northern hemisphere winter. The
methodology is also applied to the subnetwork composed of the stations of the IMS network
which measure noble gases.
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4.1 Introduction

4.1.1 The IMS network and the CTBT enforcement

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) signed by 182 states bans nuclear ex-
plosions [United Nations, 1996]. The monitoring of the treaty is implemented by the United
Nations CTBT Organisation (CTBTO), based in Vienna, Austria. It operates an International
Monitoring System (IMS) and collects seismic, infrasound, hydroacoustic data as well as ra-
dionuclide (particulate matter and noble gases) activity concentrations. This article focuses on
the latter. Upon completion of the installation, the radionuclide IMS network will have 80 sta-
tions. As of June 2011, 60 stations are certi�ed and operational. The instruments are radionu-
clide gamma detectors coupled to particle �lters. They allow to deliver 24 hour-averaged activ-
ity concentrations for several particulate/aerosol species: caesium-137, caesium-134, iodine-
131 (aerosol form), etc. In the long term, 40 of those stations will also be able to measure noble
gases (xenon-131m, xenon-133, xenon-133m, xenon-135), among which 24 are operating as
of June 2011.

The locations of 79 (among 80) stations are detailed in the treaty, even though the actual lo-
cations could slightly differ (seehttp://www.ctbto.org/map ). The design of the network
has been validated using dispersion modelling. For instance, using a global atmospheric trans-
port model (ATM), one can compute the ability of the monitoring network to detect a release
stemming from any location on Earth [Ringbom and Miley, 2009]. Recently, the radionuclide
IMS network has measured the Fukushima Dai-ichi plume throughout the world, although only
part of the observations has been disclosed.
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The observations of the IMS network can be used to detect a nuclear tests, and to discrim-
inate nuclear test among underground explosions. They could also help to characterise a test
(location, signature and intensity) using inverse modelling techniques. The objective of this ar-
ticle is to determine the potential of the IMS radionuclide network for inverse modelling of the
source term, using rigorous mathematical tools in conjunction with global or regional ATMs.

4.1.2 Inverse modelling of tracers

The application of inverse modelling techniques to the reconstruction of the source term is re-
cent in atmospheric dispersion. The European Tracer Experiment (ETEX, Nodop et al. [1998]),
initially triggered by the Chernobyl accident, served as a playground to test inverse methodolo-
gies [Robertson and Langner, 1998; Pudykiewicz, 1998; Seibert and Stohl, 2000; Issartel and
Baverel, 2003; Bocquet, 2005a, b]. Full reconstructions using real data with results close to the
known characteristics of the source have been obtained [Bocquet, 2007; Krysta et al., 2008].
These authors used methodologies inspired by geophysical data assimilation techniques: the
�eld to retrieve is discretised into a spatially organised large set of source variables/parameters.
Alternatively, the so-calledparametricmethods rely on the optimisation of a restricted set of
variables that parametrise the source term. In the speci�c case of accidental dispersion, the
lat-lon coordinates and the emission rate parametrise the source [Delle Monache et al., 2008;
Yee et al., 2008].

As far as real radionuclide dispersion events are concerned, these methodologies have been
tested on the Algeciras dispersion event [Krysta and Bocquet, 2007; Delle Monache et al.,
2008], with about hundred caesium-137 integrated activity concentration measurements. The
results are satisfying but mostly because of the very simple shape of the source (a single peak).
The inverse modelling approach was also applied to the atmospheric source term of Cher-
nobyl (caesium-137, caesium-134, and iodine-131) by Davoine and Bocquet [2007]; Bocquet
[2012] with an estimation of the source terms consistent with the of�cialUNSCEARsource term
[United Nations, 2000]. Reconstruction of the source term was also performed for a North Ko-
rea nuclear test measured by the IMS radionuclide network [Becker et al., 2010], although the
reconstruction was not strictly based on inverse modelling.

In this context, the inverse modelling approach remains a dif�cult one, because:

� the observations are ground-based and local. Activity concentration measurements are
sparse, infrequent or integrated, as opposed to gamma dose measurements. Moreover,
point-wise observations may lead to representativeness errors, depending on whether the
dispersion model is Eulerian or Lagrangian.

� The dispersion models remain imprecise. They are driven by meteorological �elds of in-
creasing precision and reliability at a given resolution, but the planetary boundary layer
remains dif�cult to model, and the vertical turbulent diffusion is still uncertain. With only
a few documented �eld experiments, the microphysical properties of the radionuclides in
the atmosphere, are still dif�cult to grasp. Therefore the physical parametrisations imple-
mented in the ATMs (dry deposition, wet scavenging, aerosol modelling, granulometry
of particles) remain gross.

Beyond its own interest, inverse modelling of the source term is also thesine qua non
condition for a proper forecasting of the resulting plume, as was illustrated by Politis and
Robertson [2004]; Bocquet [2007]; Abida and Bocquet [2009].
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4.1.3 Objectives and outline

Detectability has been used to assess the performance of the IMS radionuclide network [Hour-
din and Issartel, 2000; Wotawa et al., 2003; Ringbom and Miley, 2009]. A more complex
criterion is a measure of the ability to interpolate activity concentrations in between the sta-
tions of the network, using geostatistical techniques (Wu and Bocquet [2011] and references
therein). It has been used to assess and even design a radionuclide monitoring network [Abida
et al., 2008]. One step further in complexity, our goal is to evaluate the potential of the IMS ra-
dionuclide network for inverse modelling, using an objective quantitative criterion: the degrees
of freedom for the signal.

In Section 4.2, we de�ne the typical inverse modelling experiment that could serve the
CTBT enforcement. The average quality of an inversion is rigorously de�ned by the the de-
grees of freedom for the signal. We do not focus on the particular results of speci�c inverse
modelling experiments. This was done for instance by Winiarek et al. [2011] in the same
context. Instead, we focus on the average ability of inverse modelling to extract information
from the measurements. A multiscale formalism is used to rigorously diagnose how the in-
formation contained in the observations should optimally be spread in regions of the world.
In Section 4.3, the formalism is applied to the IMS radionuclide network using all in�uence
functions of year 2009 computed by the CTBTO. Adaptive grids that maximise the degrees of
freedom for the signal are computed. By construction, they are optimal for the assimilation of
observations. For a given number of grid-cells, they are numerically more ef�cient, and bear
less aggregation errors than regular grids with the same number of grid-cells. They rigorously
determine the ability of the monitoring network to resolve source variables through data assim-
ilation. Consequently, they allow to pinpoint well observed (from inverse modelling) as well as
poorly observed regions of the world. They have indirect implications on the way to optimise
the design of the network. The technique is also applied to the subnetwork of the stations that
monitor noble gases. The difference between an Eulerian and a Lagrangian model in the design
of those adaptive grids is examined, using a speci�c region of the globe. Conclusions are given
in Section 5.5.

4.2 Methodology of data assimilation

4.2.1 Inverse modelling with Gaussian statistical assumptions

The source parameters are the unknown variables. Each one of them is attached to a grid-cell
in a domain
 , and to a time interval. At �rst,
 will be the globe. At the end of Section 4.3,

 will be a limited area of the globe. We assume that the domain
 is discretised. We shall
use unprojected (lat-lon) coordinates in the following, withNx meridians andNy � 1 parallels.
The source vector� is de�ned on this grid. It has an extension in time ofN t time-steps, so that
� is a vector of dimensionNxNyN t . The radionuclide plume is observed by the monitoring
network. The observations yield a measurement vector� in Rd.

The physics of dispersion is assumed linear. This is the case for most transport and physical
processes: advection, diffusion, radioactive decay, dry deposition, and wet scavenging. This
assumption is true for noble gases or particulate matter, but could be breached for aged parcels
of radionuclides which can lead to the formation of aerosols, whose modelling implies complex
nonlinear equations.

With this assumption of linearity, and in the absence of boundary conditions, or using clean
air boundary conditions which are suitable for accidental release, a source-receptor relationship
between the observation vector� and the source� is established. It is formalised by the
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Jacobian matrixH
� = H � + � ; (4.1)

where the vector� represents errors of all kinds: instrumental error, representativeness error,
and model errors.

The simplest approach for non-parametric inverse modelling is to minimise the discrepancy

L (� ) =
1
2

(� � H � )T R � 1 (� � H � ) ; (4.2)

whereR = E
�
�� T

�
is the observation error covariance matrix, which, in this ground obser-

vation context, is almost always assumed diagonal, even though transport model errors could
induce some cross-correlations. Following the Bayesian paradigm of geophysical data assim-
ilation, a background term (also called regularisation term in this inverse modelling context)
should be added to the cost function Eq. (4.2). This term is obviously unavoidable when the
number of variables to retrieve is greater than the number of observations. However, even with
a larger set of observations, a regularisation may be needed because of the errors that impov-
erish the information content of the observations, and because of the lack of observability of
some regions of the source space. It is often said that these inverse problems are ill-posed.

It was shown in Winiarek et al. [2011], that even when the location of the source is well
known (anticipated in the case of Fukushima Dai-ichi, or with delay in the case of the Cher-
nobyl) so that only a temporal rate pro�le should be retrieved, and even when the observations
are abundant, a background term is still necessary in a signi�cant fraction of the cases. In the
case of Chernobyl, where the location is supposed to be known in re-analysis, Bocquet [2012]
has demonstrated that a problem without a properly de�ned background but with much more
observations than source parameters can lead to aberrant total retrieved activity for the source
term.

Therefore, it is often safer to use the objective function with a regularisation term:

L (� ) =
1
2

(� � H � )T R � 1 (� � H � )

+
1
2

(� � � b)
T B � 1 (� � � b) ; (4.3)

where� b is the �rst guess (or background), an estimation of the source before the observations
are assimilated, andB is the background error covariance matrix. In the context of an acciden-
tal release, it is reasonable to assume� b = 0 for the accidental source, since so little is known
about it. In the case of noble gases, there could be signi�cant diffuse natural (radon) or anthro-
pogenic (xenon) emissions, that would have to be taken into account through an offset term
in Eq. (4.1), or incorporated into the inverse modelling scheme. In that latter case, a non-zero
diffuse background� b would be de�ned from their emission inventories.

Matrix B is a rather well studied object in meteorological and oceanographical data assim-
ilation, even though its modelling is complex. In our context,B is very poorly known, since it
is meant to measure our ignorance on the source term before the accident or the nuclear test,
which is dif�cult to quantify. TheB matrix related to noble gas with an estimated background
which measures the errors in the inventory, may be better known. In the following, we are
not considering such non-trivial background, and we will focus on the accidental release part.
However the formalism used in this article can cope with more complex situations.

A posteriori parameter estimation techniques, such as L-curve, maximum-likelihood, gen-
eralised cross-validation [Vogel, 2002; Hansen, 2010], can ef�ciently help to assess the back-
ground term in an accidental context [Davoine and Bocquet, 2007; Krysta et al., 2008; Saide
et al., 2011], where a single realisation of the set of observations is available (as opposed to
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routine pollution). However it should be clear that the errors represented byR andB are very
dif�cult to assess in this context.

In the absence of any constraint such as the positivity of� , the best linear unbiased esti-
mator of the source is given by the argument of the minimum of Eq. (4.3)

� a = � b + BH T �
R + HBH T � � 1

(� � H � b) : (4.4)

The uncertainty of this estimator is given by the analysis error covariance matrix

Pa =
�
B � 1 + H T R � 1H

� � 1
: (4.5)

which is obtained as the inverse matrix of the Hessian of Eq. (4.3), which represents the preci-
sion matrix of the estimator. It is often equivalently rewritten as

Pa = B � BH T �
R + HBH T � � 1

HB ; (4.6)

which is to be used later.
More advanced methodologies that are able to handle the non-Gaussianity of errors, can

lead to more sophisticated estimators of the a posteriori errors (see Bocquet et al. [2010] and
references therein). However, second-order moments of the error distribution still provide an
approximation of the posterior error statistics. In this case,Pa is approximately obtained as
the inverse of the Hessian of the cost function,

4.2.2 Information content and DFS

After the analysis, a scalar residual posterior uncertainty is given byTr( Pa). The reduction of
uncertainty in the data assimilation process can be measured by a related quantity:Tr( I N �
PaB � 1), which identi�es with thedegrees of freedom for the signal, abbreviated DFS in the
following [Rodgers, 2000]. The DFS are often used in the inversion of satelite-based instrument
radiances. In our context, it measures the fractional number of observations that are effectively
used in the inversion to retrieve the source. Explicitly, one has

JDFS = Tr
�
I N � PaB � 1�

= Tr
�

BH T �
R + HBH T � � 1

H
�

: (4.7)

It is always lower or equal to the total number of observationsd: 0 � JDFS � d.
As explained earlier, it is dif�cult to specifyR andB , especially in the retrieval of sources

in atmospheric dispersion. Besides these matrices are context-dependent. In the absence of
signi�cant correlations in-between observation errors, and in-between background errors, they
can be both chosen proportional to the identity matrix:R = � 2I d andB = m2I N . Yet, �
and especiallym still need to be estimated. However, in this article, we are not interested in
the precise values of� andm. We are more interested in the degrees of freedom for the signal
available for the inversion. They depend on the ratio�=m as can be checked on Eq. (4.7). To
some extent, reasoning in terms of DFS circumvents the necessity to reason onR andB .

Using the results of inverse modelling of actual dispersion problems: ETEX, Chernobyl,
Algeciras, or from the results of carbon dioxide inverse modelling [Krysta and Bocquet, 2007;
Krysta et al., 2008; Wu et al., 2011], we have found that the DFS usually represents5%to 15%
for the total number of observation, for this kind of dispersion problem. In the following of
this study, rather than specifying� , m, or the ratio�=m , we shall assume that when dealing
with real observations, one should expect to reach a DFS of about10% of the total number
of observations. In the future, with the reduction of model errors, this fraction of the DFS
may increase. However a strong reduction of the model or representativeness errors may not
necessarily lead to a strong increase of the ratio� = DFS =d, because of the ill-posed nature of
dispersion.
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4.2.3 Multiscale data assimilation

One usually considers a regular mesh, with grid-cells of constant size in one system of coordi-
nates, to discretise the source� . However, adaptive grids can also be considered to model the
transport of pollutant [Constantinescu et al., 2008], or to perform source inversion [Bocquet,
2009; Bocquet et al., 2011; Bocquet and Wu, 2011]. Such grids are relevant to atmospheric
chemistry modelling because of the high heterogeneity of the emission �elds. They are espe-
cially relevant in data assimilation for atmospheric dispersion when the observations are sparse,
because the (adjoint) model can carry information from the observations in a very heteroge-
neous manner. We shall adopt such an adaptive grid formalism following the methodology
developed in [Bocquet, 2009; Bocquet et al., 2011]. Details can be found in these references,
and we shall focus here on what is necessary to interpret the results.

The activity concentrations of the numerical transport model are de�ned on, or interpolated
to, a regular grid, which is the �nest available grid in the rest of this article. In the case of the
CTBT problematic, the �nest grid will be lat-lon, withNx = 512 andNy = 256. In particular
the JacobianH computed with the numerical model, or possibly its adjoint, is de�ned in this
grid. The background error covariance matrixB is de�ned in this grid too.

One can de�ne a restriction operator that coarse-grains a source� de�ned in the �nest grid
into a coarser� ! de�ned in an adaptive grid! with grid-cells of various sizes but all assembled
from grid-cells of the �nest regular grid. A prolongation operator re�nes a coarse� ! de�ned in
the adaptive grid! into a source� de�ned in the �nest regular grid. Coarse-graining a vector
� de�ned in the �nest grid, then re�ning the result to project back to the �nest grid does not
give � back, because information is lost in the coarse-graining. Rather, it gives

� �! (I N fg � � ! )� b + � ! � (4.8)

where� ! is a projection operator that can be de�ned from the action of the restriction and
the prolongation operators.N fg is the number of grid-cells in the �nest grid, so thatI N fg

is the identify operator de�ned in the corresponding vector space. A Bayesian construction
of the prolongation operator leads to a� ! which is B � symmetric: � ! B = B� T

! . In the
accidental context, the assumption� b = 0 sets the constant term in Eq. (4.8) to zero. A
schematic representation of the action of� ! is drawn in Fig. 4.1. The errors caused only by
the aggregation of grid-cells can be formally computed [Bocquet et al., 2011]

� ! = H
�
I N fg � � !

�
(� � � b) : (4.9)

Performing inverse modelling in the �nest regular grid yields the DFS given by Eq. (4.7).
Bocquet et al. [2011] have shown that performing inverse modelling in the adaptive grid!
yields the DFS

J!
DFS = Tr

�
� ! BH T �

R + HBH T � � 1
H

�
: (4.10)

This result assumes that representativeness errors, such as Eq. (4.9), are taken into account
when changing resolution. The DFS can be used as a criterion to �nd the optimal adaptive
grid given a �xed total number of grid-cellsN . The algorithm to perform this optimisation is
described in Bocquet [2009]; Bocquet et al. [2011]. In the context of atmospheric dispersion
with ground-based point-wise observations, an optimal adaptive grid can deliver much more
DFS than a regular grid with about the same number of grid-cells. The grid is usually re�ned
close to the observation sites. It also depends on the dispersion itself and the meteorology. The
size of a grid-cell offers a rigorous measure of theresolutionde�ned by Rodgers [2000], that is
to say the capacity to resolve a variable from the observations. As opposed to using the inverse
of the diagonal entries ofPa, this measure does not rely on any approximation. In practice,
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