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Directeurs de thèse: Pierre Rouchon et Philippe Martin

Jury
M. François Auger, Professeur, IREENA et CRTT Président
M. Jan MELKEBEEK, Professeur, Gent University Rapporteur
M. Alain GLUMINEAU, Professeur, IRCCYN et Ecole Centrale de Nantes Rapporteur
M. Romeo ORTEGA, Directeur de recherche, CNRS, LSS Examinateur
M. François MALRAIT, Docteur, Schneider Electric Examinateur
M. Pierre Rouchon, Professeur, MINES ParisTech Examinateur
M. Philippe Martin, Maı̂tre de Recherche, MINES ParisTech Examinateur

MINES ParisTech
Centre Automatique et Systèmes
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Résumé

Cette thèse étudie la problématique du fonctionnement sans capteur et à basse vitesse des moteurs syn-
chrones à aimants permanents (MSAP) par l’injection de signaux (nous nous focalisons sur les effets
de la saturation magnétique car leur compensation est primordiale pour résoudre cette problématique).
Nous proposons une méthode originale pour modéliser la saturation magnétique en utilisant une ap-
proche énergétique (les formulations Lagrangienne et Hamiltonienne), où les symétries physiques
sont exploitées pour simplifier l’expression de l’énergie magnétique. Les données expérimentales
montrent qu’un polynôme de degré 4 est suffisant pour décrire avec précision les effets de la satura-
tion. Ensuite, nous proposons une analyse claire et originale basée sur la moyennisation de second
ordre et qui explique comment obtenir l’information de position à partir de l’injection des signaux (en
utilisant le modèle proposé). Nous donnons une relation explicite entre les oscillations des courants
statoriques et la position du rotor; cette relation est utilisée en temps réel. Ce modèle de saturation
magnétique ainsi que la procédure d’estimation de position ont été testés et validés sur deux types
de moteurs à aimants permanents: à l’intérieur ou en surface du rotor. Les résultats expérimentaux
obtenus sur un banc de test montrent que l’erreur d’estimation de la position du rotor n’excède pas
quelques degrés électriques dans la zone d’opération à basse vitesse.

Abstract

This thesis addresses the problematic of sensorless low speed operation of permanent magnet syn-
chronous motors (PMSM) by signal injection (we focus on the effects of magnetic and cross satu-
rations because their compensation is paramount to solve this problematic). We propose an original
way of modeling magnetic saturation using an energy approach (Lagrangian and Hamiltonian formu-
lations), where the physical symmetries are exploited to simplify the expression of the magnetic en-
ergy. Experimental data show that a simple polynomial of degree 4 is sufficient to describe accurately
magnetic saturation effects. Then we propose a clear and original analysis based on second-order av-
eraging of how to recover the position information from signal injection (using the proposed model).
We give an explicit relation between stator current ripples and rotor position; this relation is used in
real time operation. Such magnetic saturation model and the resulting position estimates were tested
and validated on two types of motors: with interior and surface permanent magnets (IPM and SPM).
Experimental results obtained on a test bench show that estimation errors of the rotor position do not
exceed few electrical degrees in the low speed operating domain.
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Symbols and abbreviations

In the sequel, ν can be a, b, c, α, β, 0, d or q.

uν : Voltage across winding ν.

vν : Electric potential of the point ν.

vν′ : Electric potential of the point ν
′
.

vN : Potential of the star point N

Ψν : Total flux linkage of winding ν.

t : Time.

iν : Current of winding ν.

R : Motor resistance per phase.

J : Motor inertia.

n : Number of the motor pole pair.

τe : Electromagnetic torque.

τL : Load torque.

θ : Rotor electric position.

θm : Rotor mechanical position.

λabc : Magnitude of the magnet flux.

λ : Permanent magnet flux amplitude in dq0 and αβ0 frame.

L : Self inductance per phase in the abc frame.

M : mutual inductance in the abc frame.

L∆ : Maximum inductance variation in abc frame.

Labc : Matrix of inductance in abc frame.

L : Lagrangian.

Labc : Lagrangian in abc frame.

Lαβ0 : Lagrangian in αβ0 frame.

φmν : Permanent flux linkage of winding ν.

Φm
abc = (φma , φ

m
b , φ

m
c )T : Vector of permanent magnet flux in abc frame.
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Φm
αβ0 = (φmα , φ

m
β , φ

m
0 )T : Vector of permanent magnet flux in αβ0 frame.

Φm
αβ = (φmα , φ

m
β )T : Vector of permanent magnet flux in αβ frame.

Φm = (φmd , φ
m
q )T : Vector of permanent magnet flux in dq frame.

φν : ν- axis flux linkage due to the current excitation.

Φdq = (φd, φq)
T : Vector of electric flux linkage due to the current excitation flux in dq frame.

Ld : d- axis inductance.

Lq : q- axis inductance.

Lαβ : Matrix of inductance in αβ frame.

Pθ : Park transformation matrix.

L̃dq0 : Co-energy in dq0 frame.

L0 : 0- axis inductance.

ω : Electric motor speed.

pθ : Moment of inertia.

Habc : Hamiltonian in abc frame.

Hαβ0 : Hamiltonian in αβ0 frame.

H̃dq0 : Total energy in dq0 frame.

Lαβ : Lagrangian in αβ frame with star connection of stator windings.

Hαβ : Hamiltonian in αβ frame with star connection of stator windings.

L̃dq : Co-energy in dq frame with star connection of stator windings.

H̃dq : Energy in dq frame with star connection of stator windings.

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
: Unitary rotation matrix of angle θ. We note thatR−1

θ = RTθ = R−θ.

C =




0 1 0
0 0 1
1 0 0


 : Circular permutation matrix.

J =

(
0 −1
1 0

)
: J verifies dRθ

dθ = JRθ = RθJ .

U =




√
2√
3
− 1√

6
− 1√

6

0 1√
2
− 1√

2
1√
3

1√
3

1√
3


 : Clarke transformation matrix.
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Notations

We denote by:

• xijk = (xi, xj , xk)
T the vector made from the real numbers xi, xj , and xk, where ijk can be

dq0, αβ0 or abc; x is bold face.

• xij = (xi, xj)
T the vector made from the real numbers xi, xj , where ij can be dq or αβ; x is

bold face.

• ∂X
∂xijk

= ( ∂X∂xi ,
∂X
∂xj

, ∂X∂xk )T by the vector made from the partial derivatives ∂X
∂xi

, ∂X
∂xj

, and ∂X
∂xk

,
where X is a real function of the real numbers xi, xj , and xk; ijk can be dq0, αβ0 or abc.

• ∂X
∂xij

= ( ∂X∂xi ,
∂X
∂xj

)T by the vector made from the partial derivatives ∂X
∂xi

and ∂X
∂xj

, where X is a
real function of the real numbers xi and xj ; ij can be dq or αβ.

• All matrices and vectors are bold face or italic.
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1.3 Contrôle sans capteur à basse vitesse . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Contrôle scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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1.1 Préambule

Ce travail de thèse a été réalisé en collaboration avec Schneider Electric pour l’entité Drives basé
à Pacy-sur-Eure. La mission de cette entité est de devenir le spécialiste mondial des solutions de
commande de moteurs pour une utilisation sûre, fiable, productive et efficace de l’énergie grâce à
l’innovation, la simplicité et l’excellence opérationnelle. Dans ce contexte, ce travail porte sur la
problématique de l’opération à basse vitesse et sans capteur de moteurs synchrones à aimants perma-
nents par injection de signaux.

Les offres industrielles existantes dans le domaine de la variation de vitesse proposent déjà un haut
niveau de performance mais ces offres sont limitées à basse vitesse en fonction des paramètres du vari-
ateur de vitesse, la connaissance du moteur, l’environnement d’opération et l’application. L’approche
traditionnelle pour assurer un haut niveau de performance quelles que soient les conditions de fonc-
tionnement consiste à installer des capteurs mécaniques sur l’application. Mais l’ajout d’un élément
supplémentaire dans la solution complète a un impact négatif sur la fiabilité et la robustesse globale
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d’une part et augmente le coût de production du système d’autre part. Dans ce travail, nous adressons
à la fois les deux problématiques existantes:

• assurer un fonctionnement stable et robuste du moteur dans la région d’opération à basse vitesse
sans l’utilisation d’un capteur mécanique;

• atteindre un niveau de performance qui soit comparable pour un fonctionnement avec capteur
en particulier à basse vitesse.

Aujourd’hui, l’approche de commande sans capteur par injection de signaux commence à être
présente dans les offres industrielles. Cependant, il y a toujours un besoin pour optimiser la con-
sommation d’énergie et pour renforcer la robustesse et la stabilité du fonctionnement du moteur à
basse vitesse et sans capteur mécanique. Il est également important de simplifier l’interface homme
machine (IHM)au client en simplifiant la configuration du variateur de vitesse. Pour ces raisons, cette
approche reste un domaine de recherche très actif dans le cadre industriel ainsi que dans le cadre
académique.

Les travaux menant aux résultats présentés ont été financés par Schneider Toshiba Inverter Eu-
rope (STIE). Tous les essais et les expériences ont été réalisés dans le laboratoire de recherche et
développement de cette entreprise, à Pacy-sur-Eure.

1.2 Le moteur MSAP

Un moteur synchrone à aimants permanents (MSAP) est un système électromécanique qui transforme
l’énergie électrique en énergie mécanique par l’intermédiaire des champs magnétiques. Cette énergie
mécanique produit un mouvement de rotation et un couple mécanique.

Un MSAP triphasé est composé de deux parties principales. Une partie fixe qui s’appelle stator
et qui est composé de trois enroulements (bobines). Une partie tournante qui s’appelle rotor et qui
est composé d’un aimant permanent. Le stator et le rotor ont une forme cylindrique où le rotor est
recouvert par le stator. Ils sont séparés par un petit entrefer.

Le principe de fonctionnement du MSAP est décrit dans [1, 2]- [3, p.261]. Les bobines (phases)
du stator sont reliées à une source triphasée de tensions sinusoı̈dales. La superposition des trois flux
magnétiques créés par les trois bobines du stator produit un flux magnétique sinusoı̈dal tournant à la
fréquence de la source de tension. Ce flux magnétique tournant interagit avec le flux de rotor dans
l’entrefer qui sépare le stator du rotor et crée ainsi une force électromagnétique. Cette force se traduit
par la rotation du rotor. La vitesse de rotation du rotor est proportionnelle à la fréquence de la source
de tension.

Il existe deux grandes catégories de MSAP selon le type du rotor : 1- moteur synchrone avec
aimants en surface (MSAS) où les aimants permanents sont fixés à la surface du rotor ; 2- moteur
synchrone avec aimants à l’intérieur (MSAI) où les aimants permanents sont montés à l’intérieur
du rotor. Un MSAI a une plus forte résistance mécanique qu’un MSAS, car les aimants de MSAS
ont besoin d’être fixés sur la surface du rotor. Par rapport au comportement magnétique, le rotor du
MSAS est symétrique tandis que le rotor du MSAI est asymétrique. Ainsi, les inductances statoriques
du MSAS ne varient pas avec la position du rotor [4]. Par contre, les inductances du MSAI varient en
fonction de la position du rotor [5] ce qui crée une saillance géométrique du rotor. Cette saillance est
très utile pour le contrôle du moteur à basse vitesse.
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1.2.1 Applications

Actuellement, les moteurs électriques sont largement utilisés. Selon [6], plus de 60% de l’énergie
électrique est consommée par les moteurs électriques. Le MSAP est l’un des types les plus utilisés
des moteurs électriques surtout pendant les dernières années. Le MSAP est caractérisé par une den-
sité élevée de puissance et de couple, une faible consommation d’énergie (facteur de puissance proche
de 1) et un très bon comportement dynamique. Ainsi, les MSAPs commencent à remplacer les mo-
teurs asynchrones dans des nombreuses applications. En plus, le développement des composants de
l’électronique de puissance et l’augmentation de la vitesse de traitement du signal sont également à
l’origine de la hausse de l’utilisation de ce type des moteurs.

Les MSAPs sont utilisés dans plusieurs applications citons par exemple les véhicules électriques
et les machines à laver (qui nécessitent une densité élevée de puissance). Ils sont également utilisés
dans les appareils de haute précision comme les imprimantes électriques, les outils de fabrication, les
équipements médicaux (pompes, ventilateurs et compresseurs) ...

1.2.2 Variateur de vitesse

Un variateur de vitesse électrique est utilisé pour commander les moteurs électriques et en particulier
les MSAPs. Il s’agit d’un dispositif d’électronique de puissance qui génère une tension ayant une
fréquence et une amplitude variables à partir d’une source de tension à fréquence et amplitude fixes.
L’utilisation d’un variateur de vitesse (plutôt que brancher le moteur directement au réseau électrique)
présente plusieurs avantages. En effet, un variateur de vitesse permet typiquement (comme son nom
l’indique) de varier la vitesse du moteur et de réduire de 50% l’énergie consommée par le moteur.

Plusieurs entreprises industrielles proposent des variateurs de vitesse des MSAPs. Il s’agit d’un
marché important où les ventes mondiales atteignent plusieurs milliards d’euros par an. Schnei-
der Electric est un leader mondial dans ce domaine, les autres entreprises les plus importantes sont
Toshiba, ABB, Danfoss, Mitsubishi, Yaskawa, Fuji, GE, Siemens, ...

1.3 Contrôle sans capteur à basse vitesse

Il existe plusieurs méthodes de contrôle de la vitesse du MSAP par un variateur. Ils se distinguent
par:

• le type de la loi de commande de vitesse: contrôle scalaire [7] ou commande basée sur le
modèle du moteur [8];

• le mode de fonctionnement: boucle fermée [9] (avec un capteur d’angle) ou sans capteur [10]
(sans capteur de position);

• la plage de vitesse de fonctionnement: basse vitesse [11] ou moyenne à grande vitesse [12].

Aujourd’hui, le fonctionnement du MSAP sans capteur et à basse vitesse représente un enjeu in-
dustriel majeur ; il peut faire la différence entre les différentes entreprises concurrentes qui travaillent
dans ce domaine. En plus, c’est un sujet de recherche scientifique très intéressant car il existe un
problème d’observabilité théorique à zéro de vitesse.
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Dans la suite, nous présentons brièvement les différentes lois existantes de contrôle de vitesse du
MSAP. Ensuite, nous détaillons le contrôle sans capteur par l’injection de signaux à basse vitesse.
Enfin, nous nous focalisons sur l’impact de la saturation magnétique dans ce cas et la compensation
de ces effets (qui constitue la partie majeure de notre travail).

1.3.1 Contrôle scalaire

Ce type de contrôle est caractérisé par un rapport constant entre l’amplitude et la fréquence de la
tension fournie au moteur (V/f) [7]. Ce rapport est égal à la valeur du flux magnétique de l’aimant
permanent. Ce type de contrôle a les avantages de simplicité et de faible coût, ainsi il n’a pas besoin
de la position du rotor. Par contre, la loi V/f ne prend pas en compte la dynamique du moteur.
Ainsi, cette loi n’est pas adaptée pour les applications qui nécessitent une réponse dynamique rapide.
D’autre part, elle ne peut pas être utilisée à basse vitesse. En plus, cette méthode conduit à une grande
perte d’énergie.

1.3.2 Commande basée sur le modèle

Pour obtenir de meilleures performances dynamiques avec moins de consommation d’énergie, nous
devons prendre en compte le modèle dynamique du moteur composé des équations électriques (ten-
sions) et mécaniques. Ainsi, l’algorithme de commande sera adapté au modèle du moteur. Nous trou-
vons dans la littérature plusieurs lois de commande de ce type: contrôle direct du couple (DTC) [13];
contrôle en mode glissant [14, 15] et contrôle vectoriel [6, p.230]. Toutes ces méthodes nécessitent
l’information de position du rotor pour devenir opérationnelles. La valeur de position du rotor peut
être obtenue par l’une des deux méthodes suivantes:

• en utilisant un capteur de position mécanique comme un encodeur incrémental ou un capteur à
effet Hall, il s’agit dans ce cas du mode de fonctionnement en boucle fermée;

• en estimant la position à partir des courants mesurés, ce qui est le mode de fonctionnement sans
capteur.

1.3.2.1 Contrôle en boucle fermée

La technique de commande en boucle fermée a l’avantage d’une simple mise en œuvre, car l’angle du
rotor est directement obtenu à partir du capteur de position sans avoir besoin de calcul supplémentaire
pour estimer cet angle. Par contre, pour plusieurs applications, la présence d’un tel capteur de position
a beaucoup d’inconvénients:

• le capteur de position est soumis à de fortes sollicitations mécaniques, car il est monté directe-
ment sur l’arbre du moteur. En effet, il tourne à la vitesse mécanique du moteur qui peut être
très élevée. De plus, il est parfois soumis à des fortes accélérations. D’autre part, les vibra-
tions mécaniques de l’arbre du moteur perturbent le fonctionnement du capteur. Tous ces effets
réduisent la durée de vie du capteur et peuvent même causer son endommagement;

• le capteur est situé dans l’environnement hostile du moteur (pour cet élément de mesure) à
cause des températures élevées du moteur et d’autres effets indésirables liés à l’application;
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• un câble est nécessaire pour connecter le capteur au variateur de vitesse, ce câble génère des
bruits de mesure qui se superposent à l’information de position donnée par le capteur, en parti-
culier lorsque le moteur est loin du variateur. En plus, la présence de ce câble nécessite un es-
pace supplémentaire ce qui n’est pas possible pour certaines applications (véhicule électrique).
Lorsque ces bruits de perturbation sont importants, l’information de position pourrait être per-
due ce qui réduit la fiabilité du système de contrôle;

• le capteur génère un signal numérique à haute fréquence (atteignant quelques KHz), ce signal
numérique nécessite un traitement spécial et un matériel de conditionnement (carte codeur) qui
doit être intégré au variateur de vitesse;

• le capteur de position et la carte de conditionnement ont un coût très élevé par rapport à des
nombreuses applications.

Pour éviter les inconvénients du capteur de position, on privilégie le mode de fonctionnement sans
capteur. Dans la suite, l’algorithme de contrôle vectoriel est utilisé. Il consiste à réguler la vitesse du
moteur en contrôlant la position instantanée du vecteur de flux statorique [6, p.230].

1.3.2.2 Contrôle vectoriel sans capteur à moyenne et grande vitesse

En commande vectorielle sans capteur, le capteur de position est remplacé par un observateur de
position à partir des mesures des courants électriques. L’algorithme de contrôle vectoriel sans capteur
le plus simple consiste à estimer la position du rotor à partir de la tension générée par la force contre
électromotrice notée tension (FCEM) [10,16–18]. En effet, la rotation du flux de l’aimant permanent
du rotor crée un vecteur de tension FCEM orthogonale à ce vecteur de flux magnétique. Ainsi, la
position du rotor est obtenue directement par l’estimation de ce vecteur de tension.

En temps réel, l’estimation de la position à partir de la tension FCEM est faite en utilisant
un observateur-contrôleur de la vitesse du moteur. Cette stratégie de contrôle est basée sur les
courants fondamentaux (utilisés pour contrôler le moteur) et elle ne nécessite pas l’ajout de signaux
supplémentaires. Il existe dans la littérature plusieurs algorithmes de contrôle du MSAP en utilisant
cette méthode:

• la méthode standard consiste à contrôler le courant du moteur en utilisant un contrôleur de type
proportionnel intégral (PI) où la tension FCEM est estimée à partir de la sortie de l’intégrateur
de ce PI. Ensuite, la position est estimée à partir de la tension FCEM à l’aide d’un estimateur
de type boucle à verrouillage de phase [10, 17].

• la seconde méthode consiste à utiliser un filtre de Kalman étendu pour estimer la position du
rotor à partie de la tension FCEM [16, 18].

Ces méthodes assurent de bonnes performances dans la plage de fonctionnement de moyenne
jusqu’à grande vitesse. On trouve dans le marché plusieurs types de variateur de vitesse basés sur ces
méthodes et qui assurent un bon fonctionnement des MSAPs.

En revanche, l’amplitude de la tension FCEM est proportionnelle à la vitesse du moteur. Ainsi,
à basse vitesse (inférieure à 5% de la vitesse nominale) l’amplitude de tension FCEM est très faible
et elle est nulle lorsque la vitesse est nulle. Dans ce cas, cette tension est de même ordre de grandeur
que les bruits de mesure et elle est très sensible aux incertitudes paramétriques. Par conséquent, les
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signaux fondamentaux deviennent pratiquement inutilisables autour de la vitesse nulle. Ceci peut être
expliqué par le problème bien connu d’observabilité à zéro de vitesse lorsque les courants statoriques
sont les seules variables mesurées [19–21].

1.3.3 Injection de signaux

Pour résoudre le problème d’observabilité à basse vitesse, il faut ajouter une excitation persistante à
la tension fondamentale du moteur. Ceci doit être fait indépendamment de la technique du contrôle
de la vitesse: DTC [22]; commande par mode glissant [23] et commande vectorielle [24].

Pendant ces vingt dernières années, le contrôle sans capteur et à basse vitesse des MSAPs par
l’injection de signaux est un domaine de recherche actif. Plusieurs techniques ont été proposées.
Ces techniques consistent à injecter une tension à haute fréquence (HF) à la tension fondamentale du
moteur [8, 11, 24–36]. La position du rotor est ensuite estimée à partir du courant à haute fréquence
(HF) grâce à la saillance du rotor. Cette saillance est sous forme géométrique pour les moteurs MSAI,
tandis qu’elle est de forme magnétique pour les moteurs MSAS. On trouve une présentation détaillée
de l’état de l’art de la méthode de contrôle par injection de signaux dans la section 5.1 du chapitre 5.

Il est important de noter qu’il existe une autre méthode d’estimation de la position en utilisant
le courant HF généré par la tension MLI (modulation de largeur d’impulsion) [37]. Cette technique
ne nécessite pas l’injection d’une tension supplémentaire. Par contre, elle n’est pas adaptée pour
une utilisation industrielle car elle a besoin d’une fréquence d’échantillonnage de courant très élevée
(dizaines de KHz).

A basse vitesse et autour de zéro de vitesse, la méthode d’estimation de la position par injection
de signaux remplace les méthodes basées sur le modèle fondamental du MSAP. Cette méthode est
d’ailleurs considérée comme un bloc de contrôle standard (à basse vitesse) dans les variateurs de
vitesse hybrides couvrant la plage complète de fonctionnement de zéro jusqu’à grande vitesse [38–
42].

Pour conclure, durant ces dernières années, des variateurs de vitesse des MSAPs qui utilisent
l’injection de signaux à basse vitesse pour le contrôle sans capteur ont été proposés par certaines
entreprises. Par contre, les applications couvertes par ces variateurs sont limitées. Cette limitation
est due aux effets importants de la saturation magnétique. Ainsi, la compensation de ces effets est
primordiale pour un bon fonctionnement du MSAP à basse vitesse par l’injection de signaux.

1.3.4 Saturation magnétique

Les effets non linéaires de la saturation magnétique introduisent une grande erreur à la valeur de
position estimée à fort couple de charge. Cette erreur cause des pertes énergétiques importantes
et réduit la valeur maximale du couple électromagnétique produit par le moteur. En plus, si cette
erreur est très élevée, le système du contrôle du moteur peut devenir instable. Ainsi, un algorithme
de contrôle sans capteur par injection de signaux n’est ni fiable ni robuste sauf si les effets de la
saturation magnétique du MSAP sont modélisés et compensés.

Récemment, la saturation magnétique a été largement étudiée pour les deux principaux types des
MSAP (MSAS et MSAI). Plusieurs modèles de saturation ainsi que plusieurs méthodes de compen-
sation de l’erreur de position due à cette saturation ont été proposés dans la littérature [28, 43–63].
Nous proposons une étude bibliographique détaillée de la saturation magnétique du MSAP dans la
section 4.3.2 du chapitre 4 et la section 5.1 du chapitre 5.
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Les méthodes de compensation de la saturation proposées dans la littérature permettent un bon
fonctionnement des MSAPs à basse vitesse. En revanche, ces méthodes nécessitent un processus com-
plexe de calibration et d’implémentation qui n’est pas adapté à une utilisation industrielle. D’autre
part, ces méthodes sont heuristiques et ne sont pas toujours basées sur une modélisation physique
du moteur. Certaines méthodes ne conviennent que pour un seul type de MSAP, nous n’avons pas
trouvé dans la littérature une procédure générale qui peut être utilisé pour tous les types des MSAPs.
En plus, ces méthodes ne sont pas basées sur un modèle mathématique général de MSAP; elles sont
basées seulement sur des simulations et des tests expérimentaux.

1.4 Contributions

Les contributions de mon travail se résument en ces trois points principaux.

1. Nous proposons une structure originale de modélisation de la saturation magnétique en util-
isant une approche énergétique. La formulation d’Euler-Lagrange a été utilisée pour obtenir
les équations mathématiques du moteur synchrone à aimants permanents (MSAP) à partir de
l’énergie magnétique totale. Nous proposons un modèle paramétrique du MSAP où l’énergie
magnétique totale est égale à l’énergie quadratique standard plus des petits termes polynomi-
aux de troisième et quatrième degré (petites perturbations). Ces termes supplémentaires sont
obtenus par développement en série de Taylor de l’énergie du moteur tout en tenant compte des
symétries présentes par construction dans le moteur. Ces termes représentent les effets de la
saturation magnétique.

Ce modèle est adapté pour le contrôle car il est assez riche pour représenter la saturation
magnétique, et suffisamment simple pour être utilisé en temps réel avec une procédure sim-
ple de calibration et d’implémentation pratique. En plus, ce modèle est adapté a tous les types
de MSAP (MSAI et MSAS).

2. Nous proposons une analyse claire et originale basée sur la moyennisation de second ordre
qui explique comment estimer la position du rotor par l’injection de signaux. Cette analyse est
adaptée à toutes les formes de signaux injectés au moteur, et elle convient bien à n’importe quel
modèle de saturation magnétique. Cette méthode prend en compte les effets de la saturation
magnétique et permet ainsi de réduire les erreurs d’estimation à quelques degrés électriques
seulement.

3. Nous démontrons expérimentalement la pertinence de notre approche sur deux types de mo-
teurs: un MSAI et un MSAS qui a un très faible niveau de saillance. Nous montrons la nécessité
de considérer la saturation afin d’estimer correctement la position pour bien contrôler ensuite
le moteur par injection de signaux.

1.5 Plan de la thèse

Le rapport de thèse est organisé comme suivant.

Chapitre 3 Le but de ce chapitre est de montrer les problèmes d’implémentation pratiques à basse
vitesse, et d’expliquer le dispositif expérimental utilisé pour valider le modèle de saturation
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magnétique proposé et la procédure d’estimation de la position du rotor. Dans la première
section, nous décrivons le fonctionnement du variateur de vitesse du MSAP. Dans les deuxième
et troisième sections, nous présentons les problèmes expérimentaux et les contraintes liés au
temps réel concernant la génération de la tension du moteur et la mesure du courant. Dans la
quatrième section, nous présentons la procédure d’implémentation du banc d’essai.

Chapitre 4 Dans ce chapitre, nous expliquons la formulation énergétique utilisée pour obtenir le
modèle de saturation. Dans la première section, nous décrivons la formulation Lagrangienne
et Hamiltonienne du MSAP. Ensuite, dans la deuxième section, nous nous concentrons sur le
moteur avec connexion en étoile des bobines statoriques et nous considérons les symétries du
moteur afin de simplifier l’expression de l’énergie. Dans la troisième section, nous proposons
une expression polynomiale paramétrique et simple de l’énergie magnétique du MSAP saturé.
Cette énergie est exprimée en terme du flux statorique dans le repère tournant dq. En plus, nous
donnons les expressions du courant et du couple électromagnétique. Enfin, dans la quatrième
section, nous présentons une analyse de l’observabilité du MSAP à zéro de vitesse.

Chapitre 5 Dans ce chapitre, nous expliquons la procédure proposée d’estimation de la position du
MSAP à faible vitesse par l’injection de tensions HF en utilisant le modèle de saturation pro-
posé dans le chapitre 4. Dans la première section, nous résumons l’état de l’art du contrôle de
MSAP par injection de signaux où nous nous concentrons sur l’importance de la compensation
des effets de la saturation pour bien estimer la position du rotor. Ensuite, dans la deuxième sec-
tion, nous présentons la séparation des échelles de temps par la moyennisation au second ordre
du système du MSAP avec l’injection de signaux. Dans la troisième section, nous proposons
une procédure d’estimation de la position du rotor par moindres carrés non linéaires. Finale-
ment, dans la quatrième section, nous proposons un algorithme de commande sans capteur du
MSAP basé sur cette méthode d’estimation de position.

Chapitre 6 Dans ce chapitre, nous présentons les résultats de validation expérimentaux. Nous
proposons également une méthode simple d’estimation des paramètres de saturation. Cette
méthode est basée sur les moindres carrés linéaires. Dans la première section, la procédure
d’estimation des paramètres de saturation est détaillée et appliquée à un moteur MSAI et
un moteur MSAS. Ensuite, dans la deuxième section, les résultats de tests de validation
expérimentaux du modèle proposé du MSAP sont présentés. Dans la troisième section, la
procédure d’estimation de la position du rotor est testée et validée sur les deux moteurs MSAI
et MSAS. Finalement, dans la quatrième section, la loi de contrôle vectoriel sans capteur pro-
posée au chapitre 5 est appliquée avec succès à ces deux moteurs.

8



Chapter 2

Introduction

Contents
2.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 PMSM motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Electric drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Sensorless low speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Model based control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Signal injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Magnetic saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Preamble

This thesis work has been done in collaboration with Schneider Electric - Drives entity in Pacy-sur-
Eure. The mission statement of this entity is to become the leading global specialist in motor control
solutions for a safe, reliable, productive and efficient usage of energy through innovation, simplicity
and operational excellence. In this context, this work addresses the problematic of sensorless low
speed operation of permanent magnet synchronous motors by signal injection.

The existing industrial offers in the domain of variable speed drive already provide a high level
of performance with limitation at low speed depending on drive settings, motor knowledge, operation
environment and application. The traditional approach to ensure high performance whatever the
operation conditions is to install mechanical sensors on application in particular at low speed. But
adding elements in the solution impacts the global robustness and increases the system cost. Herein,
we address both existing problematic:

• ensure stable and robust motor operation in the low speed area without a mechanical sensor;
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• reach comparable level of performance between operation with sensor and without sensor at
low and zero speed.

Today, the challenging approach of sensorless control by signal injection begins to be present in
industrial offers. However, there is still a need to optimize the energy consumption and to reinforce
the robustness and stability of the motor operation at low speed without a mechanical sensor. It is
also important to simplify the customer interface by simplifying the drive configuration. For these
reasons, this approach remains a very active field of industrial and academic research area.

The research leading to the presented results has received funding also from Schneider Electric.
All the tests and experiences were performed in the research and development laboratory of this
company, in Pacy-sur-Eure.

2.2 PMSM motor

A permanent magnet synchronous motor (PMSM) is an electromechanical device which transforms
electrical energy into mechanical energy by using electromagnetic fields. This mechanical energy
produces a rotational motion and a mechanical torque.

A three phase PMSM is composed of two main parts. A fixed part called stator and composed of
three phase windings. A rotating part called rotor and formed by a permanent magnet. The stator and
rotor have cylindrical shape where the rotor is covered by the stator. They are separated by a small
air gap.

The principle of operation of PMSM is described in [1,2]- [3, p.261]. Briefly, the stator phases are
connected to a sinusoidal three phase voltage source. The superposition of the three magnetic fluxes
created by the three phase windings of the stator produces a sinusoidal flux rotating at the frequency
of the voltage source. This rotating magnetic flux interacts with the rotor flux in the air gap separating
the stator from the rotor and creates an electromagnetic force leading to the rotation of the rotor. The
value of the motor speed corresponds then to the frequency of the motor voltage.

There are two main types of PMSMs: the surface mounted permanent magnet motor also called
SPM which has attached magnets to the surface of the rotor; the interior permanent magnet motor
also called IPM which has buried magnets inside the rotor. An IPM motor has stronger mechanical
strength than SPM because the magnets of SPM need to be fixed on the surface of the rotor. From
magnetic point of view, the SPM rotor is symmetric while the IPM rotor is asymmetric. Hence,
the SPM stator inductances do not vary with the rotor position [4]. By contrast, the IPM inductances
values change according to the rotor position [5] and create a geometric saliency which is an important
feature for low speed control.

2.2.1 Applications

Nowadays, electric motors are widely used. According to [6], more than 60% of the electricity is
used to run electric machines. The PMSM is an important type of electric motor which is increas-
ingly used in the recent years. The main features of a PMSM motor are its high power and torque
density, low energy consumption (high power factor) and good dynamic behavior. Thus, PMSM are
replacing asynchronous motors in many types of applications. Besides, the fast development of power
electronics components and the fast increasing of signal processing speed are also behind the increase
use of these motors.
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PMSMs are used in multiple applications as electric vehicles and washing machines (which need
high power density). They are also used for high precision devices as electric printer, manufacture
tools, high precision medical equipment (medical pumps, blowers and compressors) and many other
domains.

2.2.2 Electric drive

In general, an electric drive is used to control electric motors and in particular PMSMs. It is a power
electronic device which generates a variable frequency and variable amplitude voltage using a voltage
source with fixed frequency and amplitude. There are many advantages of using an electric drive
rather than plugging the motor directly into a fixed frequency and amplitude voltage source. Indeed,
an electric drive is used to vary the motor speed and to save the electric energy where 50% of the
energy consumed by the motor can be reduced.

Many industrial companies offer variable speed drive to control the PMSM speed. This is an
important and very profitable market where the worldwide sales reach up to several billions of euros
per year. Schneider Electric is one of the worldwide market leader in this domain, the most important
other companies are Toshiba, ABB, Danfoss, Mitsubishi, Yaskawa, Fuji, GE, Siemens, ...

2.3 Sensorless low speed control

There are several methods of PMSM speed control by an electric drive. They are distinguished by:

• the type of the speed control law: scalar control [7] law or model based control law [8];

• the mode of operation: closed loop mode [9] (with an angle sensor) or sensorless mode [10]
(without a rotor position sensor);

• the operation speed range: low speed range [11] or medium to high speed range [12].

Nowadays, the challenge is the sensorless PMSM drive operation at low speed. This is an im-
portant industrial concern and it can make the difference between industrial competitor companies.
In addition, this is an interesting scientific research topic where we have a theoretical problem of
observability at low speed.

In the sequel, we present briefly the existing speed control laws. Then, we detail the sensorless
low speed control by signal injection. Finally, we focus on magnetic and cross coupling saturation
compensation which is the main concern of our work.

2.3.1 Scalar control

This type is also called constant volt per hertz control (V/f) which is a fully open loop [7]. The
ratio of the input motor voltage to the input frequency is chosen constant and equal to the value of
the magnetic flux. The scalar control has the advantages of simplicity and low cost and it does not
require the rotor position information. By contrast, this method does not take into account the motor
dynamics. Thus, it is not suitable for applications needing fast dynamic operation and it cannot be
used at low speed. In addition, this method leads to high energy losses.
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2.3.2 Model based control

To get better performances in dynamic operation and less energy consumption, we must take into
account the motor dynamic model which is composed from voltage and speed differential equations.
In this case, the motor control algorithm is based on the motor equations (model based control). We
find in the literature multiple types of model based control: direct torque control (DTC) [13]; sliding
mode control [14, 15]; and vector control [6, p.230]. All these methods require the rotor position
information in order to be operational.

The rotor position value can be obtained by one of the following two methods:

• by using a mechanical position sensor as incremental encoder or hall sensor; this is the closed
loop operation mode;

• by estimating the rotor angle information from the measured currents; this is the sensorless
operation mode.

2.3.2.1 Closed loop control

The closed loop control technique has the advantage of simple implementation because the rotor
position is directly obtained from the position sensor without the need of additional computation to
estimate the rotor angle. By contrast, for multiple applications, the presence of a position sensor has
multiple disadvantages:

• the sensor is subjected to high mechanical solicitations because it is mounted at the shaft of
the motor. For example, it turns at the mechanical speed of the motor which can be very high;
in addition it must run under high accelerations and torques. Furthermore, the mechanical
vibrations of the motor shaft disturb the operation of the sensor. All these effects reduce the
lifetime of the sensor and can even cause its damage;

• the position sensor is located in the motor environment which can be hostile to the sensor
because of high motor temperature and other undesired effects related to the application;

• a cable is needed to connect the sensor to the motor drive, this cable can introduce noises to
the measured position signal in particular when the motor is located far from the drive. In
addition, the presence of the cable can require additional space which it is not suitable for some
applications. When the cable disturbance noises are important, the position information can be
lost which reduces the reliability of the control system;

• the sensor generates high frequency digital signal (with frequency reaching several thousands
of the motor speed); this digital signal needs special processing and conditioning hardware
(encoder board) which must be connected to the drive;

• the position sensor and the conditioning board are expensive for several applications.

To avoid these drawbacks of position sensors, the sensorless operation mode is used. In the sequel,
the vector control algorithm is used. It consists of regulating the motor speed by controlling the
instantaneous position of the stator flux vector [6, p.230].
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2.3.2.2 Sensorless vector control at medium and high speed

In sensorless vector control, the position sensor is replaced by a position observer using electric vari-
ables measurements. The simplest sensorless vector control algorithm is the estimation of the position
by estimating the induced back electromotive force voltage denoted BEMF [10, 16–18]. Indeed, the
rotation of the permanent magnet flux of the rotor creates an induced BEMF vector orthogonal to
this magnet flux vector. Hence, the rotor position can be obtained directly by estimating this BEMF
vector.

In real time operation, the estimation of the position from the BEMF is done using a state observer
combined with a speed controller. This control strategy is called fundamental excitation method
because it does not require any additional signal. We find in the literature several methods of PMSM
fundamental excitation control:

• the standard method consists of controlling the motor current using a proportional integral (PI)
kind controller where the BEMF voltages are estimated from the outputs of the PI integrators.
Then, the position is estimated from the BEMF using a Phase Looked Loop (PLL) estima-
tor [10, 17].

• the second method consists of using Extended Kalman Filer (EKF) to estimate the rotor position
from the BEMF [16, 18].

These methods have good performances in medium to high speed range; many industrial inverters
based on the fundamental excitation methods give satisfactory results.

However, the magnitude of BEMF voltage is proportional to the rotor speed. Thus, at very low
speed operation (below 5% of the rated speed) and near the standstill position (zero speed), the BEMF
voltage magnitude is very small and it is zero when the speed is zero. Hence, the fundamental ex-
citation techniques are not suitable for low and zero speed operation. This can be explained to the
well known lack of observability at zero speed when the stator currents are the only measured vari-
ables [19–21].

2.3.3 Signal injection

To solve the observability problem at low speed, we must add a persistent excitation signal to the
motor voltage. This is independent from the type of the speed control method: DTC [22]; sliding
mode control [23]; and vector control [24].

During the last two decades, the sensorless PMSM control at low speed by signal injection was an
active field of research. Several techniques were proposed. They consist of superposing a persistent
excitation to the motor fundamental voltage by injecting a high frequency (HF) signal [8, 11, 24–36].
The rotor position is estimated from the HF current using the rotor saliency, whether geometric for
IPM motors or induced by main flux saturation for SPM motors. A more detailed state of the art about
signal injection is presented in section 5.1 of chapter 5.

We note that there is an alternative method of position estimation from the HF current generated
by the pulse width modulation (PWM) motor voltage [37]. This technique does not require the injec-
tion of an additional voltage. But it is not suitable for industrial use because it needs a high current
sampling frequency (in order of tenth of KHz).
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At low and zero speed, position estimation by signal injection substitutes the fundamental model
based strategy for sensorless PMSM control. It is moreover considered as a standard building block
in hybrid control schemes for complete drives operating from zero to full speed [38–42].

To conclude, PMSM electric drives with signal injection for low speed sensorless control was
proposed by some industrial companies in the last years. But for instance the applications covered
by these drives are limited. The reason of this limitation is the important effects of magnetic and
cross saturations. The compensation of these effects is paramount for low speed operation by signal
injection of PMSM.

2.3.4 Magnetic saturation

Due to magnetic saturation, a position error is added to the estimated rotor position at high load
torque. This error causes important energy losses and reduces the maximum electromagnetic torque
that can be produced by the motor. Besides, if this error is high then the system may be unstable.
Therefore, if we want a reliable and robust sensorless control algorithm with high energy efficiency
at low speed, then the magnetic and cross saturation of PMSM must be modeled and compensated.

Recently, magnetic saturation have been widely studied for the two main types of PMSM motors
IPM and SPM. Many PMSM saturation models and position error compensation methods based on
these models were proposed [28,43–63]. For more information about saturation, a more detailed liter-
ature study of the PMSM magnetic saturation is proposed in section 4.3.2 of chapter 4 and section 5.1
of chapter 5.

The compensation strategies of saturation proposed in the literature lead to good motor operation
performances when used for sensorless position estimation and low speed control. By contrast, they
need a complicated commissioning process which is not suitable for industrial use. Furthermore,
these methods are heuristic and they are not always based on a physical modeling of the motor.
Some methods are suitable only for one type of PMSM, we do not find in the literature a general
procedure which can be used for all PMSM types. In addition, these methods are not based on a
general mathematical model of PMSM but they are based only on simulations or experimental tests.

2.4 Contributions

The contributions of this work can be summarized by three main points.

1. We propose an original way of modeling magnetic saturation using an energy approach. The
Euler-Lagrange formulation was used to derive the mathematical equations of the PMSM from
the total magnetic energy. We propose a parametric perturbation model of PMSM where the
total magnetic energy is the sum of the standard quadratic energy and small polynomial pertur-
bation terms of third and fourth degree. These additional terms are obtained by finite expansion
of the motor energy and by considering the motor construction symmetries. They represent the
magnetic saturation effects.

This model is adapted to control purposes where it is rich enough to capture magnetic and
cross-saturation but also simple enough to be used in real-time and to be easily identified in
practice. In addition, this model can be used for any type of PMSM motors (IPM and SPM
motors).
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2. We propose a clear and original analysis based on second-order averaging of how to recover
the position information from signal injection. This analysis can accommodate to any form of
injected signals, and blends well with any magnetic saturation model. This method takes into
account the effects of magnetic and cross saturations and reduces the estimation errors to few
electrical degree only.

3. We demonstrate experimentally the relevance of our approach on two kinds of motors: an IPM
motor and a SPM having a very small level of saliency. We show the necessity of considering
saturation to correctly estimate the position and to control the motor with signal injection.

2.5 Outline

The thesis report is organized as follows.

Chapter 3: Experimental protocols and issues The goal of this chapter is to show the practical
implementation issues at low speed operation, and to explain the experimental setup used to
validate the proposed saturation model and the position estimation procedure. In the first sec-
tion we describe the operation of the PMSM electric drive. In the second and third sections we
present experimental issues and real time constraints related to motor voltage generation and
stator current measurement mainly at low speed operation. In the fourth section, we present the
implementation procedure of the experimental test bench.

Chapter 4: Energy-based modeling of the PMSM In this chapter we explain the energy formula-
tion used to get the saturation model. In the first section we describe Euler-Lagrange and
Hamiltonian energy formulation of PMSM. In the second section we focus on PMSM with star
connection type and we consider motor symmetries to simplify the energy expression. In the
third section we propose a simple parametric polynomial expression of magnetic energy of the
saturated PMSM in terms of the stator fluxes in the rotating dq frame. In addition, we derive
the expressions of the currents and electromagnetic torque. Finally, in the fourth section we
present an observability analysis of the PMSM at zero speed.

Chapter 5: Position estimation by signal injection and averaging In this chapter we explain the
proposed position estimation procedure of PMSM at low speed by HF voltage injection using
the saturation model proposed in chapter 4. In the first section we give an overview of the
state of the art of PMSM control by signal injection where we focus on the importance of the
compensation of saturation effects to correctly estimate the rotor position. In the second section
we present time scale separation by second order averaging of PMSM with signal injection. In
the third section we propose a rotor position estimation procedure of PMSM using nonlinear
least square. In the fourth section we propose a sensorless control scheme based on this position
estimation method.

Chapter 6: Parameter identification and experimental validation In this chapter we present ex-
perimental validation results. We propose also a simple method of saturation parameters esti-
mation based on linear least square. In the first section, the procedure of saturation parameters
estimation is detailed and applied to an IPM motor and a SPM motor. In the second section,
some experimental validation tests of the proposed PMSM model are presented. In the third
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section the position estimation procedure is tested and validated using the IPM and SPM mo-
tors. In the fourth section the proposed sensorless control law of chapter 5 is successfully
applied to these motors.
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Experimental protocols and issues
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Introduction

Dans ce chapitre, nous décrivons en détail le fonctionnement du variateur de vitesse du MSAP ainsi
que les procédures utilisées pour implémenter expérimentalement les lois de contrôle de ce moteur.
Nous discutons également les problématiques expérimentales de génération de la tension et de mesure
du courant ainsi que les contraintes du contrôle en temps réel.

Un variateur de vitesse est composé de deux parties principales: un étage de puissance et un
contrôleur qui se compose essentiellement d’un processeur. La fig. 3.1 illustre la composition d’un
variateur de vitesse. Le principe de fonctionnement se résume par : en utilisant la vitesse de référence
fournie par l’utilisateur et les courants statoriques mesurés, le processeur commande l’étage de puis-
sance afin de produire la tension nécessaire pour contrôler le moteur à la vitesse de référence désirée.
Les tensions physiques du moteur sont ensuite générées par l’étage de puissance en utilisant la tech-
nique de modulation de largeur d’impulsion (MLI).

Dans la première section, nous expliquons la procédure de génération de la tension en utilisant
les signaux MLI. Ensuite, dans la deuxième section, nous discutons les problématiques pratiques de
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génération des tensions comme le temps mort et les chutes de pont au niveau des semi-conducteurs.
Dans la troisième section, nous expliquons les procédures utilisées pour la mesure et le filtrage
du courant. Enfin, dans la quatrième section, nous expliquons l’implémentation pratique du
contrôleur numérique et nous décrivons les logiciels et le matériel utilisés pour générer les signaux
de commande du moteur.

In this chapter we describe in details the operation of the PMSM drive and the procedures used
herein for experimental motor control law implementation. We discuss also experimental issues of
voltage generation and current measurement and controller real time constraints.

An electric drive is composed of two main parts: a power stage and a control stage which is
composed mainly of a processor. Fig. 3.1 illustrates the composition of a drive. The principle of op-
eration is as follows. Using the reference speed provided by the user and the measured stator currents,
the processor commands the power stage to generate the voltage needed to control the PMSM at the
desired speed. The motor voltages are generated by the power stage using pulse width modulation
technique (PWM).

In the first section we explain the voltage generation procedure using PWM signals. Then, in the
second section we discuss practical issues of voltage generation as the inverter dead time and the volt-
age drop across the semiconductor devices. In the third section we explain the current measurement
and filtering procedures. Finally, in the fourth section we discuss the digital implementation of the
controller; and we describe the software and hardware used to generate control signals.

3.1 Voltage generation

The motor voltage is the output of the power stage. The power stage is a power electronic device
connected to a three phase electric line voltage source. It is an electric power conversion system and
it is composed of three distinct sub-systems:

• an AC/DC converter which transforms the AC line voltage to a DC voltage. It is composed

Current 
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Motor 
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Figure 3.1: Illustration of motor and drive operation.
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from passive or active components. The main types of AC/DC converters are diode bridge
rectifier (passive); mixed bridge rectifier (passive); bridge inverter (active);

• a DC/DC link which provides the inverter by the DC voltage of the AC/DC converter. The main
types of DC/DC are DC capacitor (passive); DC choke (also passive) and electronic smooth
inductance (active);

• a DC/AC inverter which transforms the DC voltage into a three phase voltage having variable
frequency and variable amplitude.

Fig. 3.2 illustrates the power stage of a drive.
In this work, we focus on the operation of the inverter because it generates the motor voltage. We

suppose that the input DC voltage of the inverter is constant.

3.1.1 Inverter operation

The bridge inverter is built of three IGBT transistors legs. Each leg is composed from two transistors
with a freewheeling diode each, and drives one of the three phases of the motor. The freewheeling
diode is necessary to pass the current in a phase which has been turned off but whose winding still

AC/DC 
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DC/AC

Inverter
Motor

3 phase

Voltage source

Power stage

Figure 3.2: Power stage of a drive.
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Figure 3.3: A three phase bridge inverter.
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contains a magnetic field. The diode will conduct as long as there is a current flowing. Fig. 3.3
illustrates a three phase bridge inverter connected to a PMSM stator.

The controller board enables one transistor and blocks the other in each leg of the inverter. The
two transistors in one leg cannot be enabled simultaneously in order to prevent short circuit. The
controller board modulates the state of the transistors in function of the desired voltage. It is important
to note that the motor star point N is not accessible, hence we apply electric potentials to the motor
instead of voltages.

The general expressions of the fundamental potentials applied to the motor are

va(t) = Vm(t) cos θc(t)

vb(t) = Vm(t) cos

(
θc(t) +

2π

3

)

vc(t) = Vm(t) cos

(
θc(t) +

4π

3

)

with
d

dt
θc(t) = 2πfc(t)

where va(t), vb(t) and vc(t) are the input motor electric potentials; Vm(t) is the instantaneous poten-
tial amplitude; fc(t) is the instantaneous voltage frequency and θc(t) is the instantaneous potential
phase. Each electric potential is generated by one inverter leg; see fig. 3.3.

This is a two level inverter where we have only two possible values of electric potentials: +Vbus
2

when the upper leg transistor is on and −Vbus
2 when the lower transistor is on (for simplification we
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suppose that the potential of the inverter midpoint O is zero vO = 0). The potential of each motor
phase is generated using only these two levels. This can be done using a high frequency modulation
technique.

3.1.2 Three phase PWM

The PWM signals are used to generate the motor potentials. Each electric potential is modulated by
the width of a rectangular pulse. The PWM modulation technique is used because it involves much
less power losses than other modulation techniques. In addition, the frequency of the PWM signal is
much higher than the instantaneous frequency fc of the sinusoidal stator potentials. The PWM signal
can be used also to generate any type of stator potentials having a frequency smaller than the half of
the PWM frequency.

The sampled symmetric low centered PMW modulation type is used here [3, p.494]. The desired
potential for each phase is sampled at a constant frequency fs called PWM frequency. Then, at each
time period Ts = 1

fs
an electric potential pulse is generated and applied to the motor; the average of

this pulse over the time period Ts is equal to the value of the sampled potential in this period. The
three pulses corresponding to va, vb and vc are generated simultaneously.

Fig. 3.4 shows the shape of a pulse corresponding to one period of time Ts of the electric potential
va where 0 ≤ da ≤ 1 is called the duty cycle; TOff = 1

2daTs is the switching instant when the upper
transistor is turned off and TOn = 1

2(2 − da)Ts is the switching instant when the upper transistor is
turned on. The duty cycle da is the fraction of the period Ts where the upper transistor is on and the
output potential is Vbus

2 ; during the remaining 1− da fraction of Ts the output potential is −Vbus
2 . The

value of da is set such that the average value of the output potential va over one period Ts is equal to
the desired potential.

Fig. 3.6 illustrates the principle of operation of one inverter leg which corresponds to the electric
potential generated in the figure 3.4. Fig. 3.6 (left) shows the configuration of the first inverter leg
when the upper transistor is conducting; in this case the motor voltage is +Vbus

2 and the motor current
flows through the upper branch of this leg. In opposite, fig. 3.6 (right) shows the configuration of the
first inverter leg when the lower transistor is conducting; in this case the motor voltage is −Vbus

2 and
the motor current flows through the lower branch of this leg. The variables T1 and T4 are boolean
complementary variables where T4 = T 1; these variables are generated by the digital controller
board. The variables T3, T4, T5 and T6 are also boolean variables generated by the controller board
where T6 = T 3 and T2 = T 5.

The potential expression for one phase during a time [0, Ts[ period can be written as follows

va(t) =





+
Vbus

2
if 0 ≤ t < TOff

−Vbus
2

if TOff ≤ t < TOn

+
Vbus

2
if TOn ≤ t < Ts

The electric potential pulse is centered around the middle of the period Ts
2 . The average value of va is

1

Ts

∫ Ts

0
va(τ)dτ =

1

2

(
2da − 1

)
Vbus, (3.1)
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hence the average of va is proportional to the duty cycle da. Therefore, by varying da from 0 (the
upper transistor is turned off during a complete period) to 1 (the upper transistor is turned on during
a complete period), the electric potential can be varied from −Vbus

2 to +Vbus
2 .

The frequency of the PWM signal is much higher than the motor bandwidth. The motor induc-
tances act like a filter, where the high frequency components of the PWM signal are filtered and only
the fundamental frequency components which correspond to the modulated signal are seen by the
motor. Thus, va can be approximated by its average over one period Ts, hence (3.1) leads to

va =
1

2

(
2da − 1

)
Vbus

and

da =
1

2
+

va
Vbus

, (3.2)

therefore the duty cycle is obtained from the desired voltage using (3.2). We note that da = 1
2

corresponds to va = 0 which mean that the electric potential is equal to +Vbus
2 over one a half period

and it is equal to −Vbus
2 over the other half period. The electric potentials vb and vc are generated in

the same way as va using two duty cycles defined by

db =
1

2
+

vb
Vbus

, dc =
1

2
+

vc
Vbus

.
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The electric potentials va, vb and vc are the potentials of the points a, b and c with respect to bus
voltage midpoint O. The winding voltages (difference of potentials) across the three motor windings
read

(ua = va − vN , ub = vb − vN , uc = vc − vN ).

For symmetric PMSM with linear magnetics and star connection, the sum of the winding voltages
is zero. Thus the star point potential is

vN =
1

3
(va + vb + vc),

and the motor voltages can be written as



ua
ub
uc


 =

1

3




2 −1 −1
−1 2 −1
−1 −1 2





va
vb
vc


 .

By contrast, in the case of PMSM with magnetic saturation, the sum of the three winding voltages is
not zero due to saturation effects. In section 4.2.1 of chapter 5, we show that the homopolar voltage
(ua + ub + uc) does not have an impact on the motor operation. For simplification, we replace the
voltages (ua,ub,uc) by (uas,ubs,ucs) such that uas + ubs + ucs = 0. The voltages uas, ubs and ucs
are obtained by the projection of the three dimensional vector (ua,ub,uc) on the plane defined by
uas + ubs + ucs = 0 as follows



uas
ubs
ucs


 =

1

3




2 −1 −1
−1 2 −1
−1 −1 2





ua
ub
uc


 =

1

3




2 −1 −1
−1 2 −1
−1 −1 2





va
vb
vc


 .

Fig. 3.5 shows the potentials (va, vb ,vc) (left) and the stator voltages (uas, ubs, ucs) (right) corre-
sponding to a three phase PWM modulation.

3.1.2.1 PWM generation

The generation of a PWM signal is not an easy task. Indeed, as explained before the period of a PWM
signal is very small with respect to the motor bandwidth; a typical value of Ts is 250 µs. The state
of a transistor changes twice during one PWM period Ts. The switching instants are proportional
to the desired voltage value which can take any possible value between zero and Ts. To get accept-
able performances, the switching time precision must be in the order of 1 µs which mean that the
computation frequency must be in the order of one megahertz.

To reach this precision at real time, the desired duty cycle is compared at real time to a triangular
signal which increases from zero to one at the first half of the PWM period and decreases from one to
zero at the second half of the PWM period. If the duty cycle is greater than the triangular signal then
the upper transistor is turned on otherwise it is turned off. This type of signal modulation is called
sine-triangle modulation. Fig. 3.7 illustrates the generation procedure of the PWM signal. Fig. 3.8
shows a PWM signal of frequency 500 Hz used to generate a sinusoidal voltage with frequency
50 Hz.
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Figure 3.7: Generation of a PWM pulse by comparing the desired electric potential to a triangular
signal.
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Figure 3.8: Modulation of a 50 Hz sinusoidal signal using PWM signals.
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Figure 3.9: Dead time principle.

3.2 Drive nonlinear effects

3.2.1 Dead time

In the previous subsection, we explained the generation of a PWM signal. For each phase, either
the upper transistor is conducting or the lower transistor is conducting. We supposed before that the
switching between the two states of the transistor is instantaneous. However, in practice there is a
small switching time which must be considered. Indeed, the upper and lower transistor must not be
conducting at the same time to avoid the short circuit of the DC converter output.

Thus, at every commutation of a transistor, a small switching time (dead time) is added in order
to secure the system; during this time the two transistors of one inverter leg are not conducting.
This dead time introduces errors on the mean value of the voltage. In addition, after the transistor
switching, the output transistor voltage needs a settling time to reach the input voltage (either the bus
voltage when the transistor is switched on or zero voltage when the transistor is switched off). This
settling time also introduces errors on the average output voltage. These errors caused by the dead
time must be compensated [68, 69] to apply the desired voltage to the motor.

Fig.3.9 illustrates the principle of introducing a dead time when the two transistors of one inverter
leg are switching simultaneously. Fig. 3.10 shows the transistor command signals T1 and T4 of the
first inverter leg over a complete PWM period when a dead time is added.

The dead time introduces errors to the motor voltage and it must be compensated to get acceptable
performances mainly at low speed operation where the motor voltage are small comparing to the dead
time voltage errors. The compensation of these voltage errors is not easy; it can be done by software
or hardware ways. In the drive used in the experimental test bench, these errors were compensated
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Figure 3.10: Transistor command signals taking into account a small dead time.

using a special hardware compensation procedure of dead time.

3.2.2 Voltage drop

We supposed that the voltage drop across a semiconductor device is zero. But in practice a small
voltage drop of the semiconductor device occurs depending on the current. This voltage drop can
reach up to 3 V and it has nonlinear characteristics. In practice, this voltage drop is the difference
between the instantaneous desired electric potential and the actual applied potential to the motor [70,
71].

To clarify this effect, we consider all possible configurations of voltages and currents of one in-
verter leg. The upper and lower transistors of one leg are commanded to ON or OFF state. Depending
on the current direction, we have four possible configurations as follows:

• the upper transistor is on and the current is positive, in this case the current flows into the upper
transistor and the voltage drop is −vp where vp is the voltage loss across the transistor. Hence,
the output potential is va = vas − vp where vas is the input potential of the semiconductor
device; see fig. 3.11-(a).

• the upper transistor is on and the current is negative; in this case the current flows into the
upper freewheeling diode and the voltage drop is +vp where vp is also the voltage loss across
the diode (for simplification reasons we consider that the voltage drop across a transistor and a
diode are the same). Hence, the output potential is va = vas + vp; see fig. 3.11-(b).

• the lower transistor is on and the current is negative; in this case the current flows into the
lower transistor and the voltage drop is +vp. Hence, the output potential is va = vas + vp; see
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Figure 3.11: Voltage drop across the semiconductor device: (a) vas > 0 and ia > 0; (b) vas > 0 and
ia < 0; (c) vas < 0 and ia < 0; (d) vas < 0 and ia > 0.

fig. 3.11-(c).

• the lower transistor is on and the current is positive; in this case the current flows into the lower
freewheeling diode and the voltage drop is −vp. Hence, the output potential is va = vas − vp;
see fig. 3.11-(d).

Therefore, the potential va can be written as

va = vas − vpsign(ia)

where vas is the desired input value and sign is the sign function. The expressions of voltages vb and
vc are similar to va; they can be written as follows

vb = vbs − vpsign(ib)

vc = vcs − vpsign(ic)

where vbs and vcs are the desired values of the potentials va and vb respectively.
The voltage vp is not constant but it varies in terms of the current value and the semiconductor

type and temperature. In the most of cases vp is between 0.7 V and 3 V . Thus, this voltage must be
compensated in real time to get the desired electric potentials. To compensate this voltage drop, vp is
taken constant such vp = 1.8 V and the voltage drop is anticipated by adding to the motor reference
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potentials the voltage drop vp multiplied by the sign of the measured currents as follows



vas
vbs
vcs


 =



vrefa

vrefb

vrefc


+ vp



sign(ia)
sign(ib)
sign(ic)




where vrefa , vrefb and vrefc are the desired reference motor potentials; vp = 1.8 V . If a phase current
is small and near zero value, then it is difficult to estimate its sign. In this case, we use the following
approximation of the sign function

sign(x) =





+1 if x > xt
x

xt
if |x| < xt

−1 if x < −xt

where xt is a small threshold current value; typically xt = 100 mA.
Finally, even if the semiconductor voltage drops are small, their compensation is crucial at low

speed to generate small potentials in the order of some volts where the voltage drop can be up to 3 V .
For example, consider a motor with a resistance R = 1.5 Ω and rated current of In = 4.5 A, at zero
speed and steady state the current is the ratio of the voltage to the resistance. Thus, a non compensated
voltage drop of vp = 3 V can generate an undesired current of 2 A which represents 44% of the rated
current In. Even if the voltage drop is compensated, it difficult to know its real value because it varies
according to the working point; this makes the motor control at zero speed a very difficult task.

In this section we discussed the nonlinear behavior of the voltage generated by the motor drive.
We focused on dead time and voltage drop, but there are other effects as zero current clamping and
semiconductor capacitance which make it difficult to generate the exact desired voltage. These effects
can be neglected at high speed where the motor voltage is high; but at low speed they must be con-
sidered and sometime they are inevitable. This motivates our work to find a robust control strategy of
the PMSM. As we discussed in chapter 2, the controller is based on high frequency voltage injection
where the nonlinear inverter effects have a small impact on this type of voltage.

3.3 Current measurement

In this section we describe the measurement procedure of the current generated by the PWM voltage
and the extraction of the current fundamental component. The motor current is measured to be used in
speed control and position estimation of PMSM. Three sensors are used to measure the PMSM three
phase current. These sensors are calibrated offline. Each sensor generates an analog output voltage
signal proportional to the measured current value.

Then, the analog current information (the output signal of the current sensor) is converted to a
digital signal by an Analog to Digital Converter ADC. After that, the digital current information is
sampled and it is used as an input to the digital discrete controller.

The measured current contains high frequency components caused by the PWM modulation and
transistor switching current. These HF components must be filtered to get the actual motor current.
For this reason, the current sampling frequency is equal to the PWM frequency. In addition, the
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sampling time of the current is synchronized with the end of the PWM period. Indeed, at this time
the three voltages across the motor phases are zero and the transistors are not in the switching phase;
see fig 3.5–3.12. Therefore, the current HF components are not present and hence they are filtered
automatically.

Another reason for synchronizing sampling of current is to get the actual current response to the
applied voltage. In fact, at the end of the PWM pulse, the mean value of the voltage applied to the
motor during this pulse is equal to the desired voltage value.

Fig. 3.12 shows the measured values of the PWM voltages uas, ubs and ucs, and the measured
current ia. The PWM frequency is fs = 4 KHz and the PWM period is Ts = 1

fs
= 250µs; the

current and voltage are measured using an oscilloscope with a high sampling frequency of 10 MHz
(2500 measurement points per PWM period). This figure shows that the motor voltages are zero at
the beginning, in the middle and at the end of the PWM pulse where there is no transistor switching.
At these moments, the current is stabilized and it does not contain high frequency components. High
frequency current components occur only near the switching time of the transistors. The current
value increases from ia = −6.973 A at t = 0.1µs (beginning of the PWM pulse) to ia = −6.8 A at
t = 125 µs (middle of the PWM pulse) to ia = −6.698 A at t = 250 µs (end of the PWM pulse).
We note that if the current is not correctly sampled, then we get an aliasing problem and the sampled
current will be different from the fundamental motor current.

Fig. 3.13 illustrates an experimental example of the generation of a symmetric sinusoidal three
phase voltages using PWM modulation with carrier frequency fs = 4 KHz. The sinusoidal voltage
frequency is 5 Hz and its amplitude is 50 V . Fig. 3.13-(c) shows the measured current ia with-
out synchronized sampling, in this figure the high frequency current components are not filtered.
Fig. 3.13-(d) shows the measured current with synchronized sampling; it is clear in this figure that the
high frequency components are eliminated thanks to the sampling procedure.

Pulsating high frequency current

As explained in the previous chapter, a high frequency signal must be added to the motor voltage
for low speed control. This voltage is generated also using PWM modulation. Fig. 3.14 shows an
example of the PWM signal used to generate a sinusoidal voltage of frequency 5Hz plus a rectangular
pulsating voltage of frequency 500Hz using a PWM carrier of 4 kHz. This figure shows the shape of
the current which is the sum of a sinusoidal current plus a triangular component of frequency 500Hz.

Fig 3.15 shows one period (2ms) of the rectangular signal. Fig 3.15-(c) and fig 3.15-(d) illustrate
the synchronized current sampling procedure where we clearly see that the PWM high frequency
components are filtered by synchronizing the sampling time to the end of the PWM pulse. It is clear
in this figure that there is only 8 point per period of the injected signal. Due to the limited number of
samples per period, we add a rectangular signal instead of sinusoidal signal because the rectangular
signal is constant during the half of its period while the sinusoidal signal varies at each time step and
8 points are insufficient to generate it.

The motor mechanical variables are also measured. The electromagnetic torque is measured by
a torquemeter and it is transmitted to the controller by an ADC converter. The position is measured
using an incremental encoder which generates 1024 digital pulses per mechanical motor revolution.
This digital signal needs a high processing frequency; thus a FPGA unit is used to count these pulses
at real time. Then, the FPGA transmits the position information to the controller. The speed is
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Figure 3.12: Experimental measurements: three phase motor voltages uas, ubs and ucs for one PWM
pulse (top); motor current ia with sampling frequency of 10 MHz (bottom) .

calculated by numerical integration of the measured position.
In sensorless control (without mechanical sensor), only the measured values of the three phase

currents are used. The torque, speed and position are measured to monitor the motor operation and to
validate the control law by comparing the measured and estimated mechanical variables.

3.4 Practical implementation

In the previous section we explained the motor input voltage generation and the current measurement
procedure. In this section we present the software and hardware setup used to concept and implement
the motor digital controller. This is not an easy task due to real time requirements and constraints and
to the small sampling time.

The inputs of the control system are the measured motor currents and the reference speed. The
control system outputs are the PWM switching signals (T1 to T6) which commands the inverter to get
the desired voltage; see fig. 3.1. In the sequel we describe the controller implementation.

3.4.1 Control hardware

The dSPACE AC Motor Control Solution is used to perform PMSM control. This solution is com-
posed of three boards: a processor board; a FPGA board and an I/O board. They are connected
together via a special data connection bus called PHS bus. Fig. 3.16 illustrates the connection of
these three boards with a PMSM and a bridge inverter.
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Figure 3.13: Experimental measurements of symmetric sinusoidal three phase PWM voltages; the
voltage frequency is 5Hz and the voltage amplitude is 50 V : (a) Three phase PWM voltages uas, ubs
and ucs with high frequency components; (b) Fundamental component of uas, ubs and ucs; (c) Phase
a current ia with PWM high frequency components; (d) Fundamental component of ia obtained by
synchronized sampling time with the end of the PWM pulse.
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Figure 3.14: Experimental measurements of a rectangular signal of frequency 500 Hz plus a sinu-
soidal signal of 5 Hz modulated by a PWM signal of frequency 4 KHz: (a) PWM voltage uas; (b)
Fundamental component of uas; (c) Phase a current ia with PWM high frequency components; (d)
Fundamental component of ia obtained by synchronized sampling time with the end of the PWM
pulse.
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Figure 3.15: Experimental measurements of one period 2 ms of the signal shown in fig. 3.14: (a)
PWM voltage uas; (b) Fundamental component of uas; (c) Phase a current ia with PWM high fre-
quency components; (d) Fundamental component of ia obtained by synchronized sampling time with
the end of the PWM pulse.
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Figure 3.16: Processor, FPGA and input and output boards with a motor and a bridge inverter. This
figure is get from dSpace 2011 catalog.

The control program is executed at real time is the processor DS1005 board. This board includes
a PowerPC (PPC) 750GX processor running at 1 GHz. The FPGA DS5202 board performs the
following tasks

• processing and counting of the incremental encoder pulses used to measure the motor position;

• generation of the three digital PWM command signals (T1 to T6) of the transistors gates;

• processing and sampling of the measured currents and torque; this include the synchronization
of the current sampling time with the end of the PWM pulse.

The FPGA unit communicates with the processor via the data bus. It transmits to the processor the
measured signals and receives from the processor the duty cycles needed to generate the PWM sig-
nals. The FPGA unit is a programmable electronic device which allows fast processing and generation
of signals with high sampling and PWM frequencies up to 80 kHz. It reduces the processor computa-
tions load and allows fast execution of the control program. Furthermore, the digital signal processing
and PWM generation in FPGA hardware guarantee an efficient implementation with extremely low
latency. It is important to note that the FPGA is independent from the processor and it has its own
digital clock.

The I/O EV1048 board is the interface between the FPGA board and the motor and the sensors.
All the controller input signals (currents, incremental encoder, torque) and the controller output sig-
nals (digital PWM signals) are conditioned by this board. It contains also the ADC converters needed
for analog signals measurement.
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Figure 3.17: Simulink model of the control program.

3.4.2 Control program

The control program is designed using the Simulink software. Control executable code is generated
using Matlab Real-Time Workshop (RTW). Then, this code is downloaded to the dSpace proces-
sor using the dSpace Real-Time Interface (RTI). The control program is developed using a standard
computer with the standard operating system Windows XP. The user computer is connected to the pro-
cessor via an optical fiber which allows fast data transmission between them. The optical fiber links
a PCI card denoted DS817 (plugged into the user computer) to a connection card denoted DS814
(connected to the processor via the data PHS bus).

The control program is designed using standard Simulink blocks and a special library provided
by dSpace called ACMC library which contains virtual blocks representing the link between the
controller and I/O hardware. Fig. 3.17 shows the general Simulink model of the control program.
This model is composed of four main blocks or subsystems:

• input subsystem (Input) : it contains all digital values of measured data; at real time program
execution, this part of the model transmits these values from the FPGA unit to the processor
unit where the program is executed (data acquisition); these data are needed to solve controller
equations;

• reference data subsystem (Reference): it contains reference data provided by the user via a
Human Machine Interface installed on the user computer called dSapce ControlDesk; these data
are communicated to the processor during real time operation via the optical fiber connection;
the reference data are composed of the desired speed reference and the controller parameters;

• control function (Control function): the controller equations are implemented in this subsys-
tem; these equations are discretized using Euler discretization scheme. This subsystem calcu-
lates the values of the three PWM duty cycles at real time operation in terms of the input and
reference data and internal controller states. This is the main part of the motor control program
and it is executed inside the processor;
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• PWM generator block (PWM commutation): it calculates the three PWM duty cycles from
the command voltages.

In addition, the data capture bloc is used to read the motor data at real time and the trigger bloc is
used for synchronization sampling.

Fig. 3.18 shows the architecture of the control function implemented in the ”Control function”
block which is the most important part of the control program.

3.4.2.1 HMI interface

The communication between the controller and the user is performed using a Human Machine In-
terface (HMI) program called dSpace ControlDesk. This program allows the interaction with the
processor at real time using the optical fiber link. Using ControlDesk, the control parameters can
be modified during real time operation and the evolution of the motor variables can be visualized at
real time also. Fig. 3.19 shows a screen shot of this program during motor operation. At the end
of each motor test, all data logs recorded during this test are transferred to the user computer using
ControlDesk.

3.4.2.2 Test bench

Fig. 3.20 illustrates the test bench used for experimental tests which is composed of the user computer,
the dSpace boards, the inverter, the load machine, the PMSM, the current sensors, the torque sensor
and the incremental position encoder sensor. Fig. 3.21 shows a zoom on the motor and the 4 kW
DC load machine used to generate a mechanical load torque. Fig. 3.22 shows a zoom on the electric
inverter used in the experimental tests.

3.4.3 Real time synchronization

The control program runs inside the processor using the processor clock. The PWM signals are
generated using the FPGA clock. During the operation time, a small drift between the two clocks
(two independent clock are never identical) will be accumulated leading to the loss of synchronism.
Though, the duty cycles calculated by the processor must be communicated to the FPGA unit before
the end of the PWM pulse. Otherwise, the desired voltage will not be applied to the motor and the
controller and the PWM signals will be no more synchronized. This problem can be solved by using
a hardware interrupt. A trigger signal is generated at the end of each PWM signal to synchronize the
control program and the PWM pulse.

Fig. 3.23 shows the principle of the PWM synchronization. In fact, at the end of a PWM pulse,
a trigger signal is generated by the FPGA board to activate the control program which guarantees
the synchronization between them. The composition the subsystem ”Speed controller” are shown in
fig 3.17. Another advantage of this hardware trigger signal is that it allows the synchronized current
sampling with the PWM interrupt as described in section 3.3.
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Figure 3.18: Block diagram of the control function.
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Figure 3.19: IHM Interface between the motor and the user.
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Figure 3.20: Experimental test bench.
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Figure 3.21: PMSM and load machine.

Figure 3.22: Electric inverter.
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Figure 3.23: PWM synchronization.

Conclusion

We described in this chapter the operation of an electric motor drive. We presented also the experi-
mental procedure which will be used in the next chapters to test the proposed PMSM speed control
algorithms. We exposed the main practical implementation issues.

The use of an electric drive add important noises to the command voltage at very low speed.
In fact, at low speed the motor voltages are small and the nonlinear inverter effects are important
comparing to the motor voltages values. Thus, besides the PMSM observability issue, the inverter
nonlinear effects complicate the PMSM control at low speed. This makes the sensorless low speed
motor control a challenging problem. In the next chapters, this problem is addressed in details and a
robust position observer and speed controller are proposed.
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Chapter 4

Energy-based modeling of the PMSM

Contents
4.1 General PMSM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Energy and co-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Lagrangian model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 Hamiltonian model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Star connection and symmetry considerations . . . . . . . . . . . . . . . . . . 59
4.2.1 Star connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Symmetry considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Non sinusoidal motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Proposed model with magnetic saturation . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 The case of standard linear magnetic model . . . . . . . . . . . . . . . . . 73
4.3.2 Existing saturation models . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Proposed Parametric model . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Model with id, iq as state variables . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Observability issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 First-order observability . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Nonlinear observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Introduction

La modélisation énergétique est omniprésente dans la physique [3, 72–75] puisque la plupart des
phénomènes physiques sont modélisés par des échanges d’énergie. L’un des avantages de cette
modélisation est d’encoder une grande partie des informations d’un système physique dans une seule
fonction d’énergie, ce qui simplifie la formulation théorique.

Dans ce chapitre, nous proposons un modèle du MSAP basé sur une formulation énergétique. Ce
modèle tient compte des effets non linéaires dus à la saturation magnétique. Dans la section 4.1,
nous proposons un modèle général du MSAP basé sur les principes variationnels et sur la formula-
tion dynamique d’Euler-Lagrange. Les courants électriques, les flux magnétiques ainsi que le couple
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électromagnétique du moteur sont d’abord obtenus en utilisant une fonction de co-énergie appelée
(Lagrangien), ensuite ils sont obtenus à partir d’une fonction d’énergie (Hamiltonien). Cette formu-
lation est basée sur la conservation de l’énergie totale du moteur. Les expressions explicites de la
co-énergie et de l’énergie du MSAP avec un modèle magnétique linéaire sont données dans plusieurs
repères.

Ensuite, dans la section 4.2, nous considérons le cas du MSAP avec connexion étoile et nous
modifions ainsi le modèle du moteur. Nous réduisons de trois à deux la dimension des variables
électriques en utilisant le fait que la somme des courants est nulle dans cette configuration. En
plus, nous prenons en compte les symétries géométriques du moteur afin de simplifier l’expression de
l’énergie. Nous considérons également le cas d’un moteur non sinusoı̈dal avec un modèle magnétique
linéaire, où nous montrons que le premier terme harmonique par rapport à la position dans les
variables du moteur est le sixième harmonique.

Dans la section 4.3, nous présentons d’abord les modèles de saturation existants dans la
littérature. Ensuite nous proposons un modèle paramétrique de saturation magnétique du MSAP
sinusoı̈dale, ce modèle est basé sur la formulation énergétique présentée au début de ce chapitre.
Dans ce cas, l’expression de l’énergie est obtenue en ajoutant des petits termes d’ordre supérieur
à l’énergie du modèle linéaire. Ainsi, ce modèle est basé sur une simple fonction polynomiale
dépendant seulement de 5 paramètres de saturation. Ce modèle est utilisé dans les chapitres suivants
pour estimer la position du moteur afin de l’utiliser dans un schéma de contrôle sans capteur.

Enfin, dans la section 4.4, nous étudions l’observabilité linéaire et non linéaire du MSAP à
vitesse nulle sans capteur de position ou de vitesse et en utilisant uniquement la mesure du courant.
Nous démontrons que, indépendamment du modèle utilisé, le système du moteur n’est pas observable
à vitesse nulle en considèrant seulement la linéarisation au premier ordre (observabilité linéaire).
Par contre, en utilisant l’observabilité non linéaire, nous montrons que le système du moteur devient
observable quand on ajoute une excitation persistante périodique à la tension du moteur comme un
signal HF. Nous proposons également une condition suffisante d’observabilité non linéaire basée sur
le modèle de saturation proposé dans ce chapitre.

Energy-based modeling is ubiquitous in physics [3,72–75] since most physical phenomena consist
of energy exchanges. One of its main interests is to encode most of the information in a single energy
function, yielding a simple theoretic formulation.

In this chapter we propose a PMSM model based on an energy formulation. This model takes into
account nonlinear effects caused by cross coupling and magnetic saturation. In the section 4.1 we pro-
pose a general model of the PMSM based on variational principles and Euler-Lagrange formulation
of the dynamics. The electric currents and fluxes and the electromagnetic torque are firstly derived
from a co-energy function called Lagrangian then from an energy function called Hamiltonian. This
formulation is based on the conservation of the total energy of the motor. The explicit expressions
of the co-energy and the energy of the PMSM with linear magnetics are given in several reference
frames.

Then, in section 4.2 we consider the case of the PMSM with star connection type and we modify
the motor model consequently by reducing the electric variable dimensions from three to two using
a redundant relation between the currents generated by the star connection. In addition we take into
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account the motor symmetries in order to simplify the energy expressions. We also consider the case
of non sinusoidal motor (as trapezoidal PMSM) with linear magnetics where we show that the first
harmonic term in the motor variables with respect to the rotor position is the sixth harmonic.

In section 4.3 we give an overview of the existing saturation model in the literature, then we
propose a parametric model based on the energy formulation of sinusoidal PMSM with magnetic
saturation, this model is obtained using a higher order expansion of the linear model. The proposed
model is based on simple polynomial functions and uses only 5 saturation parameters. This saturation
model will be used in the next chapters to estimate the motor position for sensorless control purpose.

Finally, in section 4.4 we study the linear and nonlinear observability of the PMSM around zero
speed without using a position or speed sensor and using the current measurement only. We show
that, independently from the motor model, the motor states are not observable at zero speed when we
consider only the first order system (linear observability). By contrast, using nonlinear observability,
we show that the motor states are observable if we add a periodic persistent excitation to the motor
such a HF signal. We propose also a sufficient condition for nonlinear observability based on the
saturation model.

4.1 General PMSM model

In this section we propose a general PMSM energy based model independent from the stator windings
connection type.

A three-phase PMSM is composed of a fixed part, the stator, and a rotating part, the rotor, fig. 4.1.
The stator consists of three identical windings geometrically shifted by 2π

3 ; the rotor carries permanent
magnets which create a constant magnetic field. The electrical vector equation across the stator
windings is

dΨabc

dt
= −Riabc + uabc, (4.1)

while the mechanical equation is
J

n

d2θ

dt2
= τe − τL, (4.2)

with

• Ψabc vector of fluxes linked by the windings (due to currents and permanent magnets)

• iabc vector of currents in the windings

• uabc := vabc − va′b′c′ vector of voltage drop across the windings

• R resistance of a winding

• θ electrical rotor position

• τe electromagnetic torque produced by the motor

• τL load torque

• J inertia of motor and load
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Figure 4.1: Sketch of a PMSM (notice the three windings are not connected yet)

• n number of pole pair.

To complete the model we must express the torque τe in function of the flux linkages Ψabc, the
current iabc and the position θ; we must also write the relations between Ψabc, iabc and θ. A convenient
way to do that is to use an energy function, which has two main benefits:

• only one energy function encodes the all necessary information. The electromagnetic torque
expression and the fluxes-currents relations are obtained from partial derivatives of this energy
function. The structural constraints between torque, fluxes and currents are then automatically
satisfied.

• the magnetic saturation effects, which conserve energy, can easily be accounted for in the en-
ergy function without any modification of the dynamic equations. By contrast nonconservative
effects such as hysteresis and iron losses cannot be encoded only in the energy function; since
their effects on motor operation and control are limited they will not be considered in the sequel.

The energy formulation is based on the energy conservation principle [3, 75]. The PMSM is an
electromechanical system comprised of an electrical subsystem and a mechanical subsystem. The
interaction between these two systems takes place through the coupling electromagnetic field. The
energy is supplied to the system by an electrical power source and a mechanical power source; the
magnetic energy of the coupling field permits the exchange between these two energies. The elec-
tromechanical PMSM system is depicted in the fig. 4.2.
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Figure 4.2: Block diagram of the PMSM electromechanical system

4.1.1 Energy and co-energy

The energy is written in function of the states of the PMSM system: the current, the flux and the
position. The current and flux are not independent variables, hence we need either the current or
the flux to express the system energy. In the literature [3, 48, 75], two types of energy are used to
calculate the electromagnetic torque of an AC motor. The first type is the physical energy of the
motor when the flux is considered as state variable, this energy represents the actual energy of the
motor system. The second type is called co-energy when the current is considered as state variable;
this co-energy does not have a physical interpretation but it is used to calculate the physical energy
and the electromagnetic torque.

For example, according to [3, p.11] and [75, p.393], the co-energy Wc of a three phase PMSM is
defined by the integrand of (Ψadia + Ψbdib + Ψcdic) as follows

Wc(ia, ib, ic, θm) =

∫
(Ψadia + Ψbdib + Ψcdic), (4.3)

where θm := θ
n is the mechanical rotor position and Ψabc = Ψabc(iabc, θm). The torque is derived

from the co-energy as follows

τe =
∂Wc

∂θm
. (4.4)

The relation between the physical energy and the co-energy is

Wf (Ψa,Ψb,Ψc, θm) = iaΨa + ibΨb + icΨc −Wc(ia, ib, ic, θm) (4.5)

where iabc = iabc(Ψabc, θm). The equation (4.3) is often used to calculate the co-energy and hence
the energy and the torque of a PMSM with magnetic saturation [48] where the flux Ψabc is a nonlinear
function of the currents iabc.

The energy formulation of the PMSM in the literature is not based on a standard mathematical
or physical formulation but it is based in general on heuristic considerations. Comparing to existing
PMSM models, the contribution of the proposed model is the use of a standard mathematical formu-
lation called Euler-Lagrange formulation which is widely used to model physical systems [72–74].
By using this formulation we have to deal only with one mathematical function to model the mo-
tor where we can include all conservative physical effects such as magnetic saturations and spatial
harmonics; this can be done by modifying the expression of this function or adding additional terms
corresponding to the desired effects. The electric current and flux, and the electromagnetic torque are
obtained directly from this mathematical function.

At first, we introduce the Lagrangian formulation of the PMSM which is based on [21]. The
Lagrangian is equivalent to the co-energy defined in (4.3) and it is written in terms of the motor
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current and position. The motor flux is equal to the partial derivative of the Lagrangian with respect
to the current; and the motor electromagnetic torque is equal to the partial derivative of the Lagrangian
with respect to the position as in (4.4).

Then, we introduce the Hamiltonian formulation which is based on [67]. The Hamiltonian is the
total physical energy of the PMSM written in terms of the flux and the position; it is obtained from
the Lagrangian using a mathematical transformation called Legendre transformation which is similar
to (4.5). The current is equal to the partial derivative of the Hamiltonian with respect to the flux and
the motor electromagnetic torque is equal to the partial derivative of the Hamiltonian with respect to
the position.

4.1.2 Lagrangian model

4.1.2.1 abc frame

The equations of the PMSM (4.1)-(4.2) derive from a variational principle and thus can be written as
Euler-Lagrange equations with source terms corresponding to the energy exchange with the environ-
ment. Consider the additional variable

qabc = (qa, qb, qc)
T , q̇abc =

d

dt
qabc = iabc

where qabc corresponds to the electrical charges. We take the lagrangian L(q, q̇) as a function of the
generalized coordinates q = (θm,qabc) and the generalized velocities q̇ = (θ̇m, q̇abc) with θ̇m :=
d
dtθm. The Euler-Lagrange differential equation is

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= Fw (4.6)

where

• Fw = (−τL, ua −Ria, ub −Rib, uc −Ric)T corresponds to the energy exchange through the
mechanical and the electrical system

• ∂L
∂q̇ = ( ∂L

∂θ̇m
, ∂L∂q̇a ,

∂L
∂q̇b
, ∂L∂q̇c )T and ∂L

∂q = ( ∂L
∂θm

, ∂L∂qa ,
∂L
∂qb
, ∂L∂qc )T .

The equation (4.6) can be separated into an electrical equation and a mechanical one. The electri-
cal equation reads

d

dt

(
∂L
∂iabc

)
= uabc −Riabc (4.7)

where iabc = q̇abc and ∂L
∂qabc

= 0 because the PMSM equations does not depend on the electrical
charges qabc (no capacitor). The energy exchanges in (4.7) are due to the power supply through the
voltage uabc and also to dissipation and irreversible phenomena due to stator resistance represented
by the Ohm law −Riabc. The equations (4.7) corresponds to (4.1) where the flux Ψabc can be written
as

Ψabc =
∂L
∂iabc

. (4.8)

The mechanical equation reads
d

dt

(
∂L
∂θ̇m

)
=

∂L
∂θm

− τL (4.9)
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where τL corresponds to the energy exchange through the mechanical load torque. The equations (4.9)
corresponds to (4.2) where the electromagnetic torque can be written as

τe =
∂L
∂θm

, (4.10)

and
d

dt

(
∂L
∂θ̇m

)
= J

d

dt
θ̇m (4.11)

where J is the motor inertia.
We take Labc(θ, θ̇, iabc) the Lagrangian equal to L(q, q̇) and written in terms of the electrical

rotor position θ and the current iabc. Using the co-energy Labc and the equations (4.7)–(4.11), hence
the motor equations can be written as follows

d

dt

(
∂Labc
∂iabc

)
= −Riabc + uabc (4.12)

J

n

d2θ

dt2
= n

∂Labc
∂θ

− τL (4.13)

with

Ψabc(θ, θ̇, iabc) =
∂Labc
∂iabc

(θ, θ̇, iabc) (4.14)

τe(θ, θ̇, iabc) = n
∂Labc
∂θ

(θ, θ̇, iabc). (4.15)

The equations (4.12)–(4.15) are the Lagrangian formulation of the PMSM in the abc frame. Thanks
to the co-energy function Labc, we get the expression of the motor electromagnetic torque and the
flux in terms of the current and the rotor position, see (4.14)-(4.15). Therefore, we get a complete
PMSM model using only Labc.

To clarify the idea of the Lagrangian, consider a sinusoidal PMSM with linear magnetic model;
its Lagrangian can be written as follows:

Labc(θ, θ̇, iabc) =
J

2n2
θ̇2 +

1

2
iTabcL

abc(θ)iabc + iTabcΦ
m
abc(θ) (4.16)

with

Φm
abc(θ) = λabc




cos θ
cos (θ − 2π

3 )
cos (θ − 4π

3 )




and

Labc(θ) =
1

2




2L −M −M
−M 2L −M
−M −M 2L


+ L∆




cos 2θ cos (2θ − 2π
3 ) cos (2θ − 4π

3 )
cos (2θ − 2π

3 ) cos (2θ − 4π
3 ) cos 2θ

cos (2θ − 4π
3 ) cos 2θ cos (2θ − 2π

3 )




where Labc is the matrix of motor inductance in abc frame; Φm
abc is the vector of permanent flux; L is

the self inductance per phase; M is the mutual inductance between two phases; L∆ is the maximum
inductance variation due to the geometric saliency; λabc is the magnitude of the magnet flux.

51



CHAPTER 4. ENERGY-BASED MODELING OF THE PMSM

The expression of the flux can be obtained from (4.16) by using (4.14), hence we get :

Ψabc = Labc(θ)iabc + Φm
abc(θ). (4.17)

Expanding (4.17) leads to

Ψa = Lia − M
2 ib − M

2 ic + L∆

(
cos 2θia + cos (2θ − 2π

3 )ib + cos (2θ − 4π
3 )ic

)
+ λabc cos θ

Ψb = −M
2 ia + Lib − M

2 ic + L∆

(
cos (2θ − 2π

3 )ia + cos (2θ − 4π
3 )ib + cos 2θic

)
+ λabc cos (θ − 2π

3 )

Ψc = −M
2 ia − M

2 ib + Lic + L∆

(
cos (2θ − 4π

3 )ia + cos 2θib + cos (2θ − 2π
3 )ic

)
+ λabc cos (θ − 4π

3 ).

The expression of the torque can be obtained from (4.16) by using (4.15), hence we get :

τe =
n

2
iTabc

∂Labc(θ)

∂θ
iabc + niTabc

∂Φm
abc(θ)

∂θ

= −nL∆

(
(
i2a − 1

2 i
2
b − 1

2 i
2
c − iaib − iaic + 2ibic

)
sin 2θ +

√
3

2

(
i2b − i2c − 2iaib + 2iaic

)
cos 2θ

)

+ nλabc

(√
3

2
(ib − ic) cos θ −

(
ia − 1

2 ib − 1
2 ic
)

sin θ

)
. (4.18)

In (4.17)-(4.18) we recover the standard expressions of fluxes and torque [3, p.263].

4.1.2.2 αβ0 frame

The Lagrangian expression in abc frame can be simplified by a simple algebraic transformation de-
noted Clarke transformation. It is a unitary rotation in a three dimensional space, it transforms the abc
frame to an orthogonal αβ0 frame. We use the transformation that conserve the energy (the energy in
abc frame and αβ0 frame is the same), it is defined as follows:

xαβ0 = Uxabc, xabc = UTxαβ0 (4.19)

where U is a unitary matrix defined by

U =




√
2√
3
− 1√

6
− 1√

6

0 1√
2
− 1√

2
1√
3

1√
3

1√
3


 .

Set the Lagrangian expression in αβ0 as

Lαβ0(θ, θ̇, iαβ0) = Labc
(
θ, θ̇,UT iαβ0

)
.

Thus, the Lagrangian formulation (4.12)–(4.15) can be written in αβ0 frame as follows

d

dt

(
∂Lαβ0

∂iαβ0

)
= −Riαβ0 + uαβ0 (4.20)

J

n

d2θ

dt2
= n

∂Lαβ0

∂θ
− τL, (4.21)
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with

Ψαβ0(θ, θ̇, iαβ0) =
∂Lαβ0

∂iαβ0
(θ, θ̇, iαβ0) (4.22)

τe(θ, θ̇, iαβ0) = n
∂Lαβ0

∂θ
(θ, θ̇, iαβ0), (4.23)

we note that the Lagrangian formulation is similar in the abc and αβ0 frames.
In the case of a sinusoidal PMSM with linear magnetic model, the Lagrangian in the αβ0 frame

can be written as

Lαβ0(θ, θ̇, iαβ, i0) = J
2n2 θ̇

2 + 1
2 iTαβL

αβ(θ)iαβ + 1
2L0i

2
0 + iTαβΦ

m
αβ(θ), (4.24)

with

Lαβ =
1

2

(
Ld + Lq + (Ld − Lq) cos 2θ (Ld − Lq) sin 2θ

(Ld − Lq) sin 2θ Ld + Lq − (Ld − Lq) cos 2θ

)

and

Φm
αβ = λ

(
cos θ
sin θ

)

where Ld = 2
3L + 1

3M + L∆; Lq = 2
3L + 1

3M − L∆; L0 = 2
3(L −M); λ =

√
3
2λabc. The fluxes

can be written in terms of the currents thanks to the equation (4.22) as follows:

Ψαβ = Lαβiαβ + Φm
αβ

Ψ0 = L0i0.

Using (4.23), the torque expression reads

τe =
n

2
(Ld − Lq)

(
(−i2α + i2β) sin 2θ + 2iαiβ cos 2θ

)
+ nλ(−iα sin θ + iβ cos θ),

hence we recover the standard expressions of the flux and the torque [3].

4.1.2.3 dq0 frame

To get an energy formulation with less dependence on the rotor position θ, we do a unitary rotation
(Park transformation) of an angle θ, it transforms the αβ0 frame to a rotating dq0 frame where the d
axis coincides with the magnet flux axis and the 0- axis remains unchanged. The Park transformation
can be written as follows

xαβ0 = Pθxdq0 (4.25)

where

Pθ =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

In dq0 frame we do not have a standard Lagrangian formulation because the Park transformation
does not preserve the Lagrangian shape of the dynamic model equations. In fact, this transformation
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depends on θ which is a position variable not a speed variable. As the energy is conserved by a unitary
rotation, hence we get a co-energy formulation which replaces here the Lagrangian formulation.

Set the co-energy expression in dq0 as

L̃dq0(θ, θ̇, idq0) = Lαβ0
(
θ, θ̇,Pθidq0

)
. (4.26)

Thus, the Lagrangian formulation of the system (4.20)–(4.23) leads to the following co-energy for-
mulation in dq0 frame

d

dt

(
∂L̃dq0
∂idq

)
= −Ridq + udq − θ̇J

∂L̃dq0
∂idq

(4.27)

d

dt

(
∂L̃dq0
∂i0

)
= −Ri0 + u0 (4.28)

J

n

d2θ

dt2
= n

∂L̃dq0
∂θ

+ niTdqJ
∂L̃dq0
∂idq

− τL, (4.29)

with

Ψdq0(θ, θ̇, idq0) =
∂L̃dq0
∂idq0

(θ, θ̇, idq0) (4.30)

τe(θ, θ̇, idq, i0) = n
∂L̃dq0
∂θ

+ niTdqJ
∂L̃dq0
∂idq

(4.31)

where

J =

(
0 −1
1 0

)
.

In the case of a sinusoidal PMSM with linear magnetic model, the co-energy in the dq0 frame
reads

L̃dq0(θ, θ̇, id, iq, i0) = J
2n2 θ̇

2 + 1
2Ldi

2
d + 1

2Lqi
2
q + 1

2L0i
2
0 + λid. (4.32)

The fluxes can be written in terms of the currents in the dq0 frame using (4.30):

Ψd = Ldid + λ, Ψq = Ldiq, Ψ0 = L0i0. (4.33)

Using (4.31), the torque can be expressed as

τe = niq

(
λ+ (Ld − Lq)id

)
, (4.34)

hence, we obtain the standard expressions of the fluxes and the torque in dq frame [3, p.265].
The complete model of the PMSM in dq0 frame is obtained by replacing L̃dq0 in (4.27)–(4.31)

by its value in (4.32), hence we get:

Ld
did
dt

= −Rid + ud + Lq θ̇iq

Lq
diq
dt

= −Riq + uq − Ldθ̇id − λω

L0
di0
dt

= −Ri0 + u0

J

n

d2θ

dt2
= niq

(
λ+ (Ld − Lq)id

)
− τL
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In the sequel we will establish the Hamiltonian formulation. The Hamiltonian is obtained from
the Lagrangian by the Legendre transformation. The Hamiltonian formulation is needed for two main
reasons:

• the Lagrangian is the co-energy of the PMSM and it does not have a physical meaning but the
Hamiltonian energy is the total electromechanical energy of the motor, i.e. the Hamiltonian is
the sum of the mechanical energy and the magnetic energy of the motor.

• the Lagrangian is written in terms of the current, but in some cases it is necessary to express the
energy in terms of the flux mainly for HF signal calculations as we will see in the next sections.

4.1.3 Hamiltonian model

4.1.3.1 abc frame

The Hamiltonian in abc frame is obtained from the Lagrangian in abc frame by the following Legendre
transformation [74, p.490]

Habc = θ̇
∂Labc
∂θ̇

+ ia
∂Labc
∂ia

+ ib
∂Labc
∂ib

+ ic
∂Labc
∂ic

− Labc. (4.35)

This transformation is similar to the relation between the physical energy and the co-energy given
by (4.3). Notice that from (4.14) we have Ψabc = ∂Labc

∂iabc
and from (4.11) we have ∂Labc

∂θ̇
= J

n2 θ̇,
hence (4.35) leads to

Habc(θ, pθ,Ψabc) =
1

Jn2
p2
θ + iTabcΨabc − Labc (4.36)

where pθ = Jθ̇ is the moment of inertia of the motor. The Hamiltonian is the energy of the motor
expressed in terms of the motor moment of inertia, the motor position and the flux. In this case the
current iabc = iabc(θ, pθ,Ψabc) is a function of the flux and the position. In the sequel, all the motor
variables will be expressed in terms of the flux and the position.

The total derivative ofHabc with respect to the time is equal to the total power exchange between
the motor and the environment. Indeed, d

dtHabc reads

d

dt
Habc = − θ̇

n
τL + uTabciabc −RiTabciabc (4.37)

where − 1
n θ̇τL is the mechanical power exchange between the motor and the load; uTabciabc is the

electric power supplied by an electrical power source to the motor; −RiTabciabc is the thermic power
loss due to the motor resistance. If the motor is not connected to an electrical power supply nor
to a mechanical load and the stator resistance is zero, then the total derivative of the Hamiltonian
with respect to the time is zero d

dtHabc = 0 and therefore the total energy Habc is conserved. The
equation (4.37) justifies the designation of the hamiltonian as the total energy of the motor.
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The partial derivatives of (4.36) with respect to Ψabc leads to

∂Habc
∂Ψabc

= iabc + ΨT
abc

∂iabc
∂Ψabc

− ∂Labc
∂Ψabc

= iabc + ΨT
abc

∂iabc
∂Ψabc

−
(
∂Labc
∂iabc

)T
∂iabc
∂Ψabc

= iabc + ΨT
abc

∂iabc
∂Ψabc

−ΨT
abc

∂iabc
∂Ψabc

= iabc

hence

iabc(θ, pθ,Ψabc) =
∂Habc
∂Ψabc

(θ, pθ,Ψabc). (4.38)

The derivative of (4.36) with respect to θ yields

∂Habc
∂θ

=

(
∂iabc
∂θ

)T
Ψabc −

∂

∂θ
Labc

(
θ, θ̇, iabc(θ, pθ,Ψabc)

)

=

(
∂iabc
∂θ

)T
Ψabc −

∂Labc
∂θ

−
(
∂iabc
∂θ

)T ∂Labc
∂iabc

=

(
∂iabc
∂θ

)T
Ψabc −

∂Labc
∂θ

−
(
∂iabc
∂θ

)T
Ψabc

= −∂L
abc

∂θ
,

hence

τe = n
∂Labc
∂θ

= −n∂H
abc

∂θ
,

finally we get

τe(θ, pθ,Ψabc) = −n∂H
abc

∂θ
(θ, pθ,Ψabc). (4.39)

In (4.38)-(4.39) the flux and the torque are expressed in terms of the Hamiltonian and hence in terms
of the flux and the position. Replacing Ψabc and τe in (4.1)-(4.2) by their values in (4.38)-(4.39),
hence we get the following Hamiltonian formulation in the abc frame

d

dt
Ψabc = −R∂H

abc

∂Ψabc
+ uabc, (4.40)

J

n

d2θ

dt2
= −n∂H

abc

∂θ
− τL. (4.41)

In the case of a sinusoidal PMSM with linear magnetic model, the Hamiltonian expression in abc
frame is

Habc(θ, pθ,Ψabc) =
1

2Jn2
p2
θ +

1

2

(
Ψabc −Φm

abc(θ)
)T [

Labc(θ)
]−1 (

Ψabc −Φm
abc(θ)

)
. (4.42)
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We note that the Hamiltonian energy expression is different from the Lagrangian in the case of a
linear magnetic model. Indeed, if we replace the current in (4.16) by its value in terms of the flux,
then the obtained Lagrangian (in terms of the flux) is different from the Hamiltonian, we get:

Labc −Habc = iTabcΦ
m
abc.

This difference exists because the Legendre transformation cancels the linear term iTabcΦ
m
abc in the

Lagrangian.

4.1.3.2 αβ0 frame

As for the Lagrangian, we can simplify the Hamiltonian using the Clarke transformation to pass from
abc frame to αβ0 frame. To do that, we apply the Legendre transformation to the Lagrangian Lαβ0,
hence we get

Hαβ0 = θ̇
∂Lαβ0

∂θ̇
+ iTαβ0

∂Lαβ0

∂iαβ0
− Lαβ0. (4.43)

Using Ψαβ0 = ∂Lαβ0
∂iαβ0

and ∂Lαβ0
∂θ̇

= J
n2 θ̇, hence (4.43) leads to

Hαβ0(θ, pθ,Ψαβ0) =
1

Jn2
p2
θ + iTαβ0Ψαβ0 − Lαβ0. (4.44)

The total derivative of Hαβ0 in (4.44) with respect to the time is equal to the total power exchange
between the motor and the environment. Indeed, d

dtHαβ0 reads

d

dt
Hαβ0 = − θ̇

n
τL + uTαβ0iαβ0 −RiTαβ0iαβ0. (4.45)

The partial derivatives of (4.44) with respect to Ψαβ0 and θ leads to

iabc(θ, pθ,Ψαβ0) =
∂Hαβ0

∂Ψαβ0
(θ, pθ,Ψαβ0) (4.46)

τe(θ, pθ,Ψαβ0) = n
∂Hαβ0

∂θ
(θ, pθ,Ψαβ0). (4.47)

Finally the equations (4.20)–(4.23) and (4.46)-(4.47) lead to the following Hamiltonian formulation
in the αβ0 frame

d

dt
Ψαβ0 = −R∂H

αβ0

∂Ψαβ0
+ uαβ0, (4.48)

J

n

d2θ

dt2
= −n∂H

αβ0

∂θ
− τL. (4.49)

In the case of a sinusoidal PMSM with linear magnetic model, the Hamiltonian expression in αβ0
frame is

Hαβ0(θ, pθ,Ψαβ,Ψ0) =
1

2Jn2
p2
θ +

1

2

(
Ψαβ −Φm

αβ(θ)
)T [

Lαβ(θ)
]−1 (

Ψαβ −Φm
αβ(θ)

)
+

1

2L0
Ψ2

0

(4.50)
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4.1.3.3 dq0 frame

As for the Lagrangian formulation, in dq0 frame we do not have a Hamiltonian formulation. We
derive an energy formulation using the Hamiltonian in αβ0 frame and the Park transformation from
αβ0 frame to dq0 frame. Indeed, we define the energy function H̃dq0 as follows

H̃dq0(θ, pθ,Ψdq0) = Hαβ0(θ, pθ,PθΨdq0). (4.51)

By using (4.26)-(4.43), hence (4.51) leads to

H̃dq0(θ, pθ,Ψdq0) = θ̇
∂L̃dq0
∂θ̇

+ iTdq0
∂L̃dq0
∂idq0

− L̃dq0. (4.52)

Thus, in dq0 frame the energy H̃dq0 can be obtained from the co-energy L̃dq0 by the Legendre trans-
formation. Thus, despite the energy and the co-energy in dq0 frame are not in the Hamiltonian and
the Lagrangian form, the Legendre transformation between them remains valid.

To verify that H̃dq0 is an energy function, we calculate its total derivative with respect to the time
using (4.27)–(4.31) and (4.52), we get:

d

dt
H̃dq0 = − θ̇

n
τL + uTdq0idq0 −RiTdq0idq0, (4.53)

hence, the total derivative of H̃dq0 with respect to the time is equal to the total power exchange
between the motor and the environment. Thus, H̃dq0 can be considered as an energy function. We
can interpret this result by the fact that the energy is conserved by rotation.

Using (4.46)–(4.49) and (4.51), hence the energy formulation in the dq0 frame can be written as
follows

dΨdq

dt
= −R∂H̃

dq0

∂Ψdq
+ udq − θ̇JΨdq (4.54)

dΨ0

dt
= −R∂H̃

dq0

∂Ψ0
+ u0 (4.55)

J

n

d2θ

dt2
= −n∂H̃

dq0

∂θ
+ n

(
∂H̃dq0
∂Ψdq

)T
JΨdq − τL, (4.56)

with

idq0(θ, pθ,Ψdq0) =
∂H̃dq0
∂Ψdq0

(θ, pθ,Ψdq0) (4.57)

τe(θ, pθ,Ψdq0) = −n∂H̃
dq0

∂θ
(θ, pθ,Ψdq0) + n

(
∂H̃dq0
∂Ψdq

(θ, pθ,Ψdq0)

)T
JΨdq (4.58)

In the case of a sinusoidal PMSM with linear magnetic model, the energy expression in dq0 frame is

H̃dq0(θ, pθ,Ψd,Ψq,Ψ0) =
1

2Jn2
p2
θ +

1

2Ld
(Ψd − λ)2 +

1

2Lq
Ψ2
q +

1

2L0
Ψ2

0 (4.59)
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In this section, we proposed a PMSM model based on an energy formulation. Lagrangian and
co-energy formulations were used when the current is the electrical state variable; Hamiltonian and
energy formulations were used when the flux is the electrical state variable. In addition, the dynamic
equations of the PMSM were presented in the three reference frames: abc, αβ0, and dq0 where the
motor torque, current and flux were expressed in terms of the co-energy and energy functions. The
proposed formulation is general and independent of the connection of the stator windings. In the
sequel, we consider the case of a PMSM with star connection type.

4.2 Star connection and symmetry considerations

The PMSM models proposed in the previous section are independent of the connection of the stator
windings. In this section we apply this formulation to the PMSM with star connection type and
we modify the motor equations consequently where we show that only two axis are needed to write
the motor equations. In addition, we simplify the motor energy expressions by using the geometric
symmetries presented in the motor by construction.

4.2.1 Star connection

vb

ib

vc

i c

Φ
m

abc

Stator Rotor

va

ia

vN

N

Figure 4.3: Star connection configuration

In the case of the star connection of the stator windings, the points a’, b’ and c’ are connected
together and form the star point N having an electrical potential va′ = vb′ = vc′ = vN as shown in
fig. 4.3. A potential vabc = (va, vb, vc)

T is applied to the motor three phases by an external power
generator (inverter). For this type of connection the sum of the currents is zero:

ia + ib + ic = 0. (4.60)

In the sequel, we will simplify the Lagrangian and the Hamiltonian formulation according to (4.60).
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4.2.1.1 Modified Lagrangian formulation

The motor equations in αβ0 frame can be simplified in the case of the star connection. Using the
Clarke transformation (4.19), the voltage in αβ0 can be written as follows



uα
uβ
u0


 =




√
2√
3
− 1√

6
− 1√

6

0 1√
2
− 1√

2
1√
3

1√
3

1√
3






va − vN
vb − vN
vc − vN




=




vα
vβ

v0 −
√

3vN




where vαβ0 = Uvabc, and the current i0 is

i0 = 1√
3
(ia + ib + ic) = 0.

Thus, in the αβ0 frame (4.20) leads to

d

dt

(
∂Lαβ0

∂iαβ

)
= −Riαβ + vαβ, (4.61)

d

dt

(
∂Lαβ0

∂i0

)
= v0 −

√
3vN (4.62)

i0 = 0

Let
Lαβ(θ, θ̇, iαβ) = Lαβ0(θ, θ̇, iαβ, 0) (4.63)

hence (4.61)-(4.62) lead to
d

dt

(
∂Lαβ

∂iαβ

)
= −Riαβ + vαβ (4.64)

and
d

dt

(
∂Lαβ0

∂i0
(θ, θ̇, iαβ, i0)

∣∣∣
i0=0

)
= v0 −

√
3vN . (4.65)

This result shows that the electrical system can be separated into two parts. The first part is represented
by (4.64) and it is independent of the 0- axis components. The second part is represented by (4.65), it
gives the mathematical expression of the star point voltage vN .

In dq0 frame, we take
L̃dq(θ, θ̇, idq) = Lαβ(θ, θ̇,Rθidq) (4.66)

where

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
,
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hence (4.64) leads to the following co-energy formulation

d

dt

(
∂L̃dq

∂idq

)
= −Ridq + vdq − θ̇J

∂L̃dq

∂idq
(4.67)

J

n

d2θ

dt2
= n

∂L̃dq

∂θ
+ niTdqJ

∂L̃dq

∂idq
− τL (4.68)

with

Ψdq(θ, θ̇, idq) =
∂L̃dq

∂idq
(θ, θ̇, idq) (4.69)

τe(θ, θ̇, idq) = n
∂L̃dq

∂θ
(θ, θ̇, idq) + niTdqJ

∂L̃dq

∂idq
(θ, θ̇, idq) (4.70)

where vdq = Rθvαβ . The star point voltage vN does not appear explicitly in the motor dynamic
equations (4.67)–(4.70). It is obtained directly from the general energy expression in dq0 frame
(without star connection) as follows

d

dt

(
∂Ldq0
∂i0

∣∣∣
i0=0

)
= v0 −

√
3vN . (4.71)

4.2.1.2 Modified Hamiltonian formulation

In the case of a star connection (4.60), the Hamiltonian formulation in αβ0 frame can be written as

d

dt
Ψαβ = −R∂H

αβ0

∂Ψαβ
+ vαβ (4.72)

d

dt
Ψ0 = −R∂H

αβ0

∂Ψ0
+ v0 −

√
3vN . (4.73)

The relation i0 = 0 leads to
∂Hαβ0

∂Ψ0
(θ, pθ,Ψαβ,Ψ0) = 0. (4.74)

The equation (4.74) represents a mathematical relation between the motor fluxes. Thus, the flux Ψ0

can be written as a function of Ψαβ and θ in order to satisfy (4.74), hence we get

Ψ0 = ψ0(θ, pθ,Ψαβ), (4.75)

where ψ0 verifies
∂Hαβ0

∂Ψ0

(
θ, pθ,Ψαβ, ψ0(θ, pθ,Ψαβ)

)
= 0. (4.76)

We take
Hαβ(θ, pθ,Ψαβ) = Hαβ0

(
θ, pθ,Ψαβ, ψ0(θ, pθ,Ψαβ)

)
,

hence (4.72)-(4.73) yield
d

dt
Ψαβ = −R∂H

αβ

∂Ψαβ
+ vαβ (4.77)
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and
d

dt

(
ψ0(θ, pθ,Ψαβ)

)
= v0 −

√
3vN . (4.78)

The justification of deriving (4.77) from (4.72) is as follows:

∂Hαβ

∂Ψαβ
=

∂

∂Ψαβ

(
Hαβ0

(
θ, pθ,Ψαβ, ψ0(θ, pθ,Ψαβ)

))

=
∂Hαβ0

∂Ψαβ
+
∂Hαβ0

∂Ψ0

(
θ, pθ,Ψαβ, ψ0(θ, pθ,Ψαβ)

) ∂Ψ0

∂Ψαβ

=
∂Hαβ0

∂Ψαβ

where ∂Hαβ0
∂Ψ0

(
θ, pθ,Ψαβ, ψ0(θ, pθ,Ψαβ)

)
= 0, see (4.76).

This result shows that the electrical system can be separated into two parts in the case of the star
connection. The first part is represented by (4.77) and it is independent from the 0- axis components.
The second part is represented by (4.78), it gives the mathematical expression of the star point voltage
vN .

Finally in dq0 frame we take

H̃dq(θ, pθ,Ψdq) = Hαβ(θ, pθ,RθΨdq), (4.79)

hence the energy formulation in dq0 with star connection type reads

dΨdq

dt
= −R∂H̃

dq

∂Ψdq
+ vdq − θ̇JΨdq (4.80)

J

n

d2θ

dt2
= −n∂H̃

dq

∂θ
+ n

(
∂H̃dq

∂Ψdq

)T
JΨdq − τL (4.81)

(4.82)

with

idq(θ, pθ,Ψdq) =
∂H̃dq

∂Ψdq
(θ, pθ,Ψdq) (4.83)

τe(θ, pθ,Ψdq) = −n∂H̃
dq

∂θ
(θ, pθ,Ψdq) + n

(
∂H̃dq

∂Ψdq
(θ, pθ,Ψdq)

)T
JΨdq (4.84)

Similarly to the co-energy, the star point voltage vN does not appear explicitly in the motor dynamic
equations (4.80)–(4.81). It is obtained directly from the general energy expression in dq0 frame
(without star connection) as follows

d

dt

(
ψ0(θ, pθ,RθΨdq)

)
= v0 −

√
3vN . (4.85)

In this section we addressed the PMSM motors with star connection type; this type of motor
will be used in the sequel. In addition we will use only the motor model in dq frame because this

62



CHAPTER 4. ENERGY-BASED MODELING OF THE PMSM

frame is more suitable for position estimation and sensorless control which are the main objectives
of this work. Thanks to the star connection, the motor dynamical system can be separated into two
main parts. The first part is a scalar equation which gives the expression of the star point voltage
vN (4.71)-(4.85). This voltage does not affect the motor operation and does not appear in the motor
equations, hence it is not important to be considered unless when it is measured, because in this case
it can provide important information about the motor variables, but in the sequel we do not use this
voltage for control purpose.

The second part which is more important is a dynamical system having two electrical state vari-
ables instead of three. The dynamical system equations are (4.67)–(4.70) when we use the co-energy
or (4.80)–(4.84) when we use the energy. These systems are simple to be used because we need only
the expression of L̃dq or H̃dq to describe the dynamic behavior of the motor. In the next section, we
study the symmetries presented by construction in the motor in order to simplify the expression of the
energy functions.

4.2.2 Symmetry considerations

We use geometric symmetries presented by construction in the motor in order to simplify the motor
energy expression. A standard symmetric three phase PMSM has three geometric symmetries which
are independent from the motor operation and are due only to the motor construction. We denote
these symmetries by permutation symmetry; orientation symmetry and reflection symmetry.

Permutation symmetry: a PMSM have three identical phase windings. Each phase winding is
shifted by 2π

3 with respect to the other phases. Thus, in abc frame the co-energy and the energy are
not modified by a circular permutation of the current variables iabc 7→ Ciabc and the flux variables
Ψabc 7→ CΨabc where

C =




0 1 0
0 0 1
1 0 0


 ,

hence we get

Labc(θ, θ̇, iabc) = Labc(θ − 2π
3 , θ̇,Ciabc); (4.86)

Habc(θ, pθ,Ψabc) = Habc(θ − 2π
3 , pθ,CΨabc). (4.87)

Orientation symmetry: the energy does not vary if we replace the position θ by −θ and we
interchange the phase b and the phase c such that the current variables iabc 7→ Oiabc and the fluxes
variables Ψabc 7→ OΨabc where

O =




1 0 0
0 0 1
0 1 0


 .

Indeed, the energy does not change when the motor rotates in clockwise direction or counterclockwise
direction. Thus, we have

Labc(θ, θ̇, iabc) = Labc(−θ,−θ̇,Oiabc); (4.88)

Habc(θ, pθ,Ψabc) = Habc(−θ,−pθ,OΨabc). (4.89)
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In this case we consider that the rotor flux is aligned with the phase a when the electrical position
θ = 0.

Reflection symmetry: the energy remains unchanged if we invert the current direction and the
flux direction iabc 7→ −iabc, Ψabc 7→ −Ψabc and we add a half cycle to the position θ 7→ π + θ.
Indeed, the motor windings have a periodicity of π electrical radian, hence if we invert the direction
of the current and the flux and we rotate the rotor magnet by a π electrical radian then we will get the
same configuration of the motor and the energy will remain unchanged. Thus we get

Labc(θ, θ̇, iabc) = Labc(θ + π, θ̇,−iabc); (4.90)

Habc(θ, pθ,Ψabc) = Habc(θ + π, pθ,−Ψabc). (4.91)

Using the Clarke transformation (4.19), hence in αβ0 the symmetries (4.86)–(4.91) lead to

Lαβ0(θ, θ̇, iαβ0) = Lαβ0(θ − 2π
3 , θ̇,UCUT iαβ0) (4.92)

Lαβ0(θ, θ̇, iαβ0) = Lαβ0(−θ,−θ̇,UOUT iαβ0) (4.93)

Lαβ0(θ, θ̇, iαβ0) = Lαβ0(θ + π, θ̇,−iαβ0) (4.94)

and

Hαβ0(θ, pθ,Ψαβ0) = Hαβ0(θ − 2π
3 , pθ,UCUTΨαβ0) (4.95)

Hαβ0(θ, pθ,Ψαβ0) = Hαβ0(−θ,−pθ,UOUTΨαβ0) (4.96)

Hαβ0(θ, pθ,Ψαβ0) = Lαβ0(θ + π, pθ,−Ψαβ0) (4.97)

where

UCUT =



−1

2

√
3

2 0

−
√

3
2 −1

2 0
0 0 1




and

UOUT =




1 0 0
0 −1 0
0 0 1


 .

In dq0 frame, using the Park transformation (4.25), hence (4.92)–(4.94) lead to

L̃dq0(θ, θ̇, id, iq, i0) = L̃dq0(θ − 2π
3 , θ̇, id, iq, i0) (4.98)

L̃dq0(θ, θ̇, id, iq, i0) = L̃dq0(θ + π, θ̇, id, iq,−i0) (4.99)

L̃dq0(θ, θ̇, id, iq, i0) = L̃dq0(−θ,−θ̇, id,−iq, i0). (4.100)

and

H̃dq0(θ, pθ,Ψd,Ψq,Ψ0) = H̃dq0(θ − 2π
3 , pθ,Ψd,Ψq,Ψ0) (4.101)

H̃dq0(θ, pθ,Ψd,Ψq,Ψ0) = H̃dq0(θ + π, pθ,Ψd,Ψq,−Ψ0) (4.102)

H̃dq0(θ, pθ,Ψd,Ψq,Ψ0) = H̃dq0(−θ,−pθ,Ψd,−Ψq,Ψ0). (4.103)
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It is obvious that the symmetry relations (4.86)–(4.103) are verified in the case of a sinusoidal
PMSM with linear magnetic model.

In the case of a star connection, using (4.63)-(4.66) and (4.92)–(4.94), hence the co-energy L̃dq
verifies

L̃dq(θ, θ̇, id, iq) = L̃dq(θ + π
3 , θ̇, id, iq), (4.104)

L̃dq(θ, θ̇, id, iq) = L̃dq(−θ,−θ̇, id,−iq). (4.105)

and the energy H̃dq verifies

H̃dq(θ, pθ,Ψd,Ψq) = H̃dq(θ + π
3 , pθ,Ψd,Ψq), (4.106)

H̃dq(θ, pθ,Ψd,Ψq) = H̃dq(−θ,−pθ,Ψd,−Ψq) (4.107)

We presented in this section the geometric symmetries of the PMSM and their impact on the
energy functions. These symmetry considerations help to simplify the energy and co-energy expres-
sions. For example, the equations (4.104)–(4.107) show that in dq frame, if the energy depends on θ
then it must be π

3 -periodic function which simplify consequently the energy expression. In the sequel,
we propose an explicit expression of the energy of the non sinusoidal PMSM with star connection type
using the geometric symmetries. In addition, we propose an energy expression of sinusoidal PMSM
taking into account cross coupling and magnetic saturation effects.

4.2.3 Non sinusoidal motor

In this part, we consider the non sinusoidal PMSM in order to explain the non sinusoidal shape of
the back electromotive force voltage (BEMF), and the current harmonics in dq0 frame and the torque
oscillations (cogging torque). In addition, we give an interpretation of the shape of the star point
voltage. The motor equations will be written only in dq0 frame.

In general the stator windings of a PMSM are not sinusoidal. For example, in the case of trape-
zoidal permanent magnet motor, the stator windings are distributed in a trapezoidal shape. In this
case, the BEMF voltage is not sinusoidal and the electromagnetic torque is not constant but it de-
pends on the rotor position. This can be explained by the dependence of the energy function in dq0
on the rotor position θ.

The relation between the energy and the position must respect the symmetry considerations estab-
lished in the previous subsection. According to (4.104) and (4.106) L̃dq and H̃dq are π

3 periodic versus
θ. Therefore, the co-energy L̃dq (resp. the energy H̃dq) can be decomposed into an independent term
of θ : L̃dq0 (resp. H̃dq

0 ) and a dependent term of θ that can be expressed as a π
3 periodic function of θ:

L̃dq6 (resp. H̃dq
6 ) as follows

L̃dq(θ, θ̇, idq) = L̃dq0 (θ̇, idq) + L̃dq6 (6θ, θ̇, idq) (4.108)

H̃dq(θ, pθ,Ψdq) = H̃dq
0 (pθ,Ψdq) + H̃dq

6 (6θ, pθ,Ψdq) (4.109)

where L̃dq6 and H̃dq
6 contain all sinusoidal harmonics of θ of order 6k where k in a nonzero positive

integer. The independent terms of θ in (4.108) and (4.109) are in general the dominant terms when the
motor windings are close to sinusoidal windings, in this case the energy is supposed to be independent
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of θ in dq frame. Otherwise, the dependent terms of θ in (4.108) and (4.109) have an important
impact on the motor behavior and they cannot be neglected when the motor has strong non sinusoidal
windings as trapezoidal motors; it is important to note that in this case the oscillating terms in the
energy contain only the harmonics of 6θ.

Using (4.83)–(4.84) and (4.109) hence the motor current and torque in dq frame can be written as

idq(θ, θ̇,Ψdq) =
∂H̃dq

0

∂Ψdq
(θ̇,Ψdq) +

∂H̃dq
6

∂Ψdq
(θ, θ̇,Ψdq)

τe(θ, θ̇,Ψdq) = n

(
−∂H̃

dq
6

∂θ
(θ, θ̇,Ψdq) + iTdq(θ, θ̇,Ψdq)JΨdq

)

hence the oscillating terms of the current idq and the torque τe contain only the harmonics of 6θ. The
position dependent term of τe is called cogging torque. This dependence is well known and observed
experimentally [76–78]. Fig. 4.4 shows the experimental shape of the current iq and the torque τe
in terms of θ for the IPM and SPM motors whose parameters are listed in table 6.1. We used small
values of q- axis current and load torque to highlight the position dependent components. It is clear in
this figure that for one period of rotor electrical position θ we have 6 oscillations of τe and iq. These
oscillations have small amplitudes (about 6% of rated values), they don’t modify the normal behavior
of the motor. For these reasons we neglect H̃dq

6 for PMSM used in this work and we suppose that the
energy does not depend explicitly on the rotor position in dq frame (sinusoidal approximation). The
term H̃dq

6 can be considered in future work to get a more precise model of PMSM.
It remains to characterize the shape of the star point voltage vN in the case of a non sinusoidal

motor. This voltage does not appear explicitly in the motor dynamic equations, it can be obtained
from the energy function using (4.71) and (4.85). As for the current and torque, vN depends on θ in
the case of a non sinusoidal motor. According to (4.92)-(4.95) L̃dq0 and H̃dq0 and ψ0 are 2π

3 periodic
versus θ (the period is not π3 due to the dependence on the 0- axis component). The equations (4.71)
and (4.85) lead to

√
3vN (θ) = v0 −

d

dt

(
ψ0(θ, pθ,RθΨdq)

)
= v0 −

(
∂L̃dq0
∂i0

(θ, θ̇, idq, 0)

)
, (4.110)

hence vN is 2π
3 periodic versus θ. Therefore, using Fourier series, we show that vN contains only

the 3kθ harmonics of where k is a positive integer. To verify this result, we measure the voltage vN
experimentally. We used a different PMSM in order to have access to the stator star point because
this point is not accessible for the other two motors; the parameter of this motor are listed in table 4.1.
Fig. 4.5 shows the shape of vN in terms of θ. It is clear in this figure that vN contains exclusively the
harmonics components multiple of 3θ and it is 2π

3 -periodic function versus θ.
Fig 4.6 shows the voltage across the stator windings ua = va−vN , ub = vb−vN and uc = vc−vN

of the motor 4.1 when the stator currents are zero such ia = ib = ic = 0. In this case the measured
voltages are the the back electromotive voltages (BEMF). This figure shows that the voltages ua, ub
and uc are not sinusoidal and the main harmonics components of the voltages are the 3kθ harmonics
caused mainly by the star point voltage vN .

In this section we investigated the dependence of the PMSM energy on on the rotor position in
dq0 frame. To get an idea of this dependence, we consider the case of a PMSM with linear magnet in
the next section.
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Figure 4.4: Current iq and electromagnetic torque τe in terms of θ
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Table 4.1: Rated parameters of the PMSM with star point access

Motor SPM2 IPM2
Rated power 4 kW 200 W
Rated current In (peak) 7 A 1.2 A
Rated voltage (peak per phase) 110 V 136 V
Rated speed 1500 rpm 180 rpm
Rated torque 20 Nm 1.06 N.m
n 2 2
R 1.52 Ω 12.15 Ω

λ (peak) 196 mWb 150 mWb
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Figure 4.5: Star point voltage vN in terms of θ
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Figure 4.6: BEMF voltages: (a) first harmonics of the voltages ua, ub and uc and their common third
harmonic versus θ; (b) measured ua, ub and uc vs. the sum of their first and third harmonics
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4.2.3.1 Linear magnetic model

In this section, we study the case of the star connection configuration considering linear magnetics
i.e. when the flux is a linear function of the current. In this case, the relation between the flux and the
current in dq frame can be written as follows

Ψdq = Ldq(θ)idq + Φm(θ), (4.111)

with

Ldq(θ) =

(
ldd(θ) ldq(θ)
ldq(θ) lqq(θ)

)

and

Φm(θ) =

(
φmd (θ)
φmq (θ)

)

where ldd is the d- axis self inductance; lqq is the q- axis self inductance, ldq is the mutual inductance
between d- and q- axis; φmd is the d- axis permanent magnet component and φmq is the q- axis perma-
nent magnet component; Ldq is the symmetric inductance matrix in dq frame; Φm is the permanent
magnet flux vector; for instance we suppose that all these variables depend on θ. We don’t consider
the 0-axis components and the voltage vN because in the case of star connection, these components
are decoupled from the dq motor components. Using (4.69) and (4.111), hence the expression of the
co-energy L̃dq can be written as follows

L̃dq(θ, θ̇, idq) =
J

2n2
θ̇2 +

1

2
iTdqL

dq(θ)idq + Φm(θ)T idq. (4.112)

The symmetry conditions (4.104)-(4.105) leads to

ldd(θ) = ldd(−θ), ldd(θ + π
3 ) = ldd(θ)

lqq(θ) = lqq(−θ), lqq(θ + π
3 ) = lqq(θ)

ldq(θ) = −ldq(−θ), ldq(θ + π
3 ) = ldq(θ)

φmd (θ) = φmd (−θ), φmd (θ + π
3 ) = φmd (θ)

φmq (θ) = −φmq (−θ), φmq (θ + π
3 ) = φmq (θ).

(4.113)
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The fourier expansion with respect to θ of the motor parameter yields

ldd(θ) = ldd0 +
+∞∑

k=1

lddk cos 6kθ

lqq(θ) = lqq0 +

+∞∑

k=1

lqqk cos 6kθ

ldq(θ) = 0 +
+∞∑

k=1

ldqk sin 6kθ

φmd (θ) = φmd0 +
+∞∑

k=1

φmdk cos 6kθ

φmq (θ) = 0 +

+∞∑

k=1

φmqk sin 6kθ

where ldd0 and lqq0 are dominant motor inductances; φmd0 is the dominant permanent magnet flux com-
ponent. For k ≥ 1 the parameters lddk , lqqk , ldqk , φmdk and, φmqk are small and they are due to the non
sinusoidal windings effects of the motor. In the case of sinusoidal motors, the position dependent
terms in the inductances and magnetic flux are zero, hence we recover the standard sinusoidal PMSM
model with linear magnet

ldd(θ) = ldd0 = Ld, lqq(θ) = lqq0 = Lq, ldq(θ) = φmq (θ) = 0 φmd (θ) = λ.

In this section we presented the non sinusoidal PMSM model and particularly in the case of
PMSM with linear magnets. When the motor windings are close to sinusoidal windings the oscillating
terms in the energy and in the motor variables in dq frame are small and can be neglected. In the sequel
we consider sinusoidal PMSM such that the energy in dq does not depend on the rotor position θ and
we propose an expression of the motor energy taking into account nonlinear effects of magnetic and
cross coupling saturation. We will use only the energy formulation in dq with star connection given
by (4.80)–(4.84) and we propose an explicit expression of the energy H̃dq.

In the next parts, we need from all the previous work only the energy model in dq frame and the
orientation symmetry which are as follows

dΨdq

dt
= −Ridq + vdq − θ̇JΨdq

J

n

d2θ

dt2
= τe − τL

idq(θ, pθ,Ψdq) =
∂H̃dq

∂Ψdq
(θ, pθ,Ψdq)

τe(θ, pθ,Ψdq) = −n∂H̃
dq

∂θ
(θ, pθ,Ψdq) + n

(
∂H̃dq

∂Ψdq
(θ, pθ,Ψdq)

)T
JΨdq

H̃dq(θ, pθ,Ψd,Ψq) = H̃dq(−θ,−pθ,Ψd,−Ψq)

H̃dq(θ, pθ,Ψd,Ψq) = H̃dq(θ + π
3 , pθ,Ψd,Ψq)





(4.114)
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4.3 Proposed model with magnetic saturation

In this section we propose a saturation model of sinusoidal PMSM motors, this model takes into
account cross coupling and magnetic saturation effects. It is based on the energy approach developed
in the previous sections (4.114). To get the energy expression of the saturated PMSM, we modify
the energy of the PMSM with linear magnetics where we add additional higher order terms to the
linear energy expression. The added terms have a simple polynomial shape and contain only five
additional parameters which can be estimated by simple linear least square. The energy is expressed
in terms of fluxes; the expressions of currents in terms of fluxes are equal to the partial derivatives of
the energy with respect to the fluxes. The important feature of this model is that we need only one
simple polynomial energy function to describe the saturation effects and to get the current and torque
expressions.

We consider here only the sinusoidal PMSM where the stator windings are sinusoidal and the
energy in dq frame does not depend on θ. We suppose also that the total flux Ψdq = (Ψd,Ψq)

T is the
sum of an electric flux Φdq = (φd, φq)

T and a constant flux (permanent magnet flux) Φm = (λ, 0)T

where φmd = λ and φmq = 0 such that

Ψdq = Φdq + Φm,

hence

φd = Ψd − λ
φq = Ψq

where λ is the amplitude of the magnet flux in dq frame. Indeed, for standard sinusoidal PMSM
motors, the magnetic flux amplitude is much higher than the electrical flux amplitude, hence we
suppose that the variation of the electric fluxes do not impact the constant magnet flux and therefore
these two fluxes can be decoupled.

We consider the case of a sinusoidal PMSM with star connection type and we use the motor
energy H̃dq defined by (4.79). The PMSM energy H̃dq is the sum of a mechanical energy equal to

1
2Jn2 p

2
θ and a magnetic energy denoted H which depend only on electric fluxes and is independent

from the position θ and the moment pθ; H is equal to the difference between the total energy and the
mechanical energy as follows

H(φd, φq) = H̃dq(θ, pθ, φd + λ, φq)−
1

2Jn2
p2
θ. (4.115)

H(φd, φq) is the total magnetic energy of the PMSM and it is expressed in terms of the electric fluxes
φd and φq. In general, this magnetic energy does not depend on the rotor speed θ̇ because the magnetic
energy of a motor is the same whatever the level of its speed; only the mechanical energy depends of
the rotor speed θ̇. In the sequel we suppose that the magnetic energy of the PMSM depends only on
the electric fluxes φd and φq and we propose an explicit expression of this energy.
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The dynamic PMSM model in (4.114) and (4.115) leads to

dΦdq

dt
= vdq −Ridq − ωJ (Φdq + Φm) (4.116)

J

n2

dω

dt
= iTdqJ (Φdq + Φm)− τL

n
(4.117)

dθ

dt
= ω (4.118)

with

id =
∂H
∂φd

(φd, φq) (4.119)

iq =
∂H
∂φq

(φd, φq) (4.120)

and
τe = niTdqJ (Φdq + Φm) (4.121)

where ω = θ̇ = dθ
dt is the motor speed. The symmetry relation (4.107) leads to

H(φd,−φq) = H(φd, φq), (4.122)

this relation means that the expression forH should respect the symmetry of the PMSM with respect
to the direct axis.

The PMSM dynamic model given by (4.116)–(4.122) is the model which will be used in the
sequel and in the next chapters.

4.3.1 The case of standard linear magnetic model

For a PMSM with linear magnetics, the magnetic energy is the sum of the square of the flux divided
by twice of the inductance of each axis. Using (4.59), this energy function reads

Hl(φd, φq) =
1

2Ld
φ2
d +

1

2Lq
φ2
q (4.123)

where Ld and Lq are the motor self-inductances. Using (4.119)–(4.120), we recover the usual linear
relations

id =
∂Hl
∂φd

(φd, φq) =
φd
Ld

(4.124)

iq =
∂Hl
∂φq

(φd, φq) =
φq
Lq
. (4.125)

It is obvious that Hl respects the symmetry relation (4.122). Indeed (4.116)–(4.118) and (4.123)
are left unchanged by the transformation

(vd, vq, φd, φq, id, iq, ω, θ, τL)→ (vd,−vq, φd,−φq, id,−iq,−ω,−θ,−τL).
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4.3.2 Existing saturation models

In the last fifteen years, the modeling of PMSM with magnetic saturation was widely investigated in
the literature [79–92]. Many models of saturated PMSM were proposed for several purposes. More-
over, we find in the literature various saturation models of PMSM dedicated for sensorless position
estimation which is the main concern of our work [28,43–63]. In fact, the saturation compensation is
important for sensorless position estimation at low speed; this will be detailed in chapter 5.

In general, the magnetic saturation is represented by two relations between currents and fluxes in
dq frame. In this case, the d- axis flux depends on the q- axis current and vice versa [55, 61, 84, 85].
The standard relations (4.124)–(4.125) are substituted by

φd = Ldid + lmiq (4.126)

φq = lmid + Lqiq (4.127)

where Ld and Lq are the standard d- axis and q- axis inductances; lm is a mutual inductance between
d- axis and q- axis. The inductances Ld, Lq and lm are no more constant; but they depend on the load
torque and the current level i.e. the motor operation point.

Thus, the saturation modeling consists of finding the relations betweenLd, Lq, lm and the currents
id and iq. They are obtained form the fluxes φd and φq as follows

Ld(id, iq) =
∂φd
∂id

(id, iq) (4.128)

Lq(id, iq) =
∂φq
∂iq

(id, iq) (4.129)

lm(id, iq) =
∂φd
∂iq

(id, iq) =
∂φq
∂id

(id, iq). (4.130)

These inductances are the incremental motor inductances.
There are multiple ways used to model the relation between the fluxes and currents, they can be

summarized as follows:

• by using finite element models [56, 58, 60, 63, 93]. The fluxes and inductances are obtained at
each operation point by numerical finite element calculations. This modeling method requires
the knowledge of the stator and rotor construction dimensions and parameters and it needs a
heavily offline computations;

• by experimental measurement [43, 49, 84, 85] of the fluxes using the integration of the motor
voltage equations at locked rotor position (ω = 0):

Φdq =

∫
(udq −Ridq) dt;

• analysis of the equivalent magnetic circuit of PMSM [28, 79, 82, 86];

• modeling of the stator inductances by fourier series expansion [91];

• measurement of the stator inductances by HF voltage injection [94];
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• by finding an explicit parametric expressions of inductances in terms of currents using trigono-
metric, fractional or power functions [80, 81, 83, 88, 92].

The method of saturation modeling listed below provide a good representation of saturation ef-
fects in PMSM motors. Although, they have the following drawbacks:

• they require commissioning process, in which the effects of saturation must be measured and
stored for each operation point;

• they are based on heuristic considerations without a clear physical and mathematical formula-
tion;

• they need heavy calculations and they are not always suitable for industrial use;

• the inductances are obtained using look up tables or complicated mathematical expressions
with a large number of parameters.

For these reasons, we propose in the sequel a simple parametric saturation model based on the
energy modeling described in the previous sections. This model is easy to use and it is based only on a
fourth order polynomial energy function depending on five linear parameters. All the motor variables
are obtained from this function.

4.3.3 Proposed Parametric model

Fig. 4.7 (resp. Fig. 4.8) shows the shape of the current id (resp. iq) in terms of the flux φd (resp. φq)
for multiple values of iq (resp. id) for two PMSM motors with magnetic saturation. It is clear in these
figures that the saturated currents id and iq remain close to the linear currents. In addition, the shape
of the current-flux curves is close to a quadratic or cubic polynomial functions of fluxes. Thus, we
choose to write the currents as the sum of a linear term plus polynomial quadratic and cubic terms as
follows

id =
φd
Ld

+ higher order quadratic and cubic terms

iq =
φq
Lq

+ higher order quadratic and cubic terms.

It is important to note that the currents id and iq are not independent, hence the added higher order
terms cannot be chosen arbitrarily. The best way to find the expressions of id and iq is by using
an energy function where the currents are are equal to the partial derivatives of this function with
respect to the fluxes φd and φq. Thus, magnetic saturation can be accounted for by considering
a more complicated magnetic energy function H, having Hl for quadratic part but including also
higher-order terms up to fourth order.

The saturation effects are well captured by considering only third- and fourth-order terms. Indeed,
the currents, which are the derivatives of the energy, contain quadratic and cubic terms; therefore the
energy must contain cubic and fourth order terms as follows

H(φd, φq) = Hl(φd, φq) +
3∑

i=0

α3−i,iφ
3−i
d φiq +

4∑

i=0

α4−i,iφ
4−i
d φiq.
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Figure 4.7: d- axis current id versus d- axis flux φd for multiple values of the current iq: (a) IPM2
motor with rated parameters listed in 4.1; (b) IPM motor with rated parameters listed in 6.1.
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Figure 4.8: q- axis current iq versus q- axis flux φq for multiple values of the current id: (a) IPM2
motor with rated parameters listed in 4.1; (b) IPM motor with rated parameters listed in 6.1.
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This is a perturbative model [64] where the higher-order terms appear as corrections of the dominant
term Hl. The higher-order terms are small with respect to the dominant linear terms because the
saturated currents are close to the linear currents. These results are also confirmed by experiments
as we will see later. The nine coefficients (α3,1, α2,1, α1,2, α0,3, α4,0, α3,1, α2,2, α1,3, α0,4), together
with Ld, Lq are motor dependent. But the symmetry relation (4.122) implies α2,1 = α0,3 = α3,1 =
α1,3 = 0, so that the energy function eventually reads

H(φd, φq) = Hl(φd, φq) + α3,0φ
3
d + α1,2φdφ

2
q + α4,0φ

4
d + α2,2φ

2
dφ

2
q + α0,4φ

4
q . (4.131)

From (4.119)-(4.120) and (4.131) the currents are then explicitly given by

id =
∂H
∂φd

(φd, φq) = Id (φd, φq) =
φd
Ld

+ 3α3,0φ
2
d + α1,2φ

2
q + 4α4,0φ

3
d + 2α2,2φdφ

2
q (4.132)

iq =
∂H
∂φd

(φd, φq) = Id (φd, φq) =
φq
Lq

+ 2α1,2φdφq + 2α2,2φ
2
dφq + 4α0,4φ

3
q , (4.133)

which are the so-called flux-current magnetization curves. These expressions correspond to the curves
given in 4.7 and 4.8.

4.3.4 Model with id, iq as state variables

The model of the PMSM is usually expressed with currents as state variables. This can be achieved
here by time differentiating idq = Idq(Φdq),

didq
dt

= DIdq(Φdq)
dΦdq

dt
,

where

DIdq =

(
∂Id
∂φd

∂Id
∂φq

∂Iq
∂φd

∂Iq
∂φq

)

is the jacobian of Idq and dΦdq

dt is given by (4.116). Fluxes are then expressed as Φdq = I−1
dq (idq)

by inverting the nonlinear relations (4.132)-(4.133); rather than performing the exact inversion, we
can take advantage of the fact the coefficients αi,j are experimentally small; the interpretation of this
hypothesis is given in using experimental data. At first order with respect to the αi,j we have

φd = Ldid +O(|αi,j |) (4.134)

φq = Lqiq +O(|αi,j |). (4.135)

In addition, (4.132) and (4.133) can be rearranged as follows

φd = Ld
(
id − 3α3,0φ

2
d − α1,2φ

2
q − 4α4,0φ

3
d − 2α2,2φdφ

2
q

)
(4.136)

φq = Lq
(
iq − 2α1,2φdφq − 2α2,2φ

2
dφq − 4α0,4φ

3
q

)
. (4.137)

Plugging (4.134)-(4.135) into the right side part of (4.136)-(4.137) and neglecting O(|αi,j |2) terms,
we easily find

φd = I−1
d (id, iq) = Ld

(
id − 3α3,0L

2
di

2
d − α1,2L

2
qi

2
q − 4α4,0L

3
di

3
d − 2α2,2LdL

2
qidi

2
q

)
(4.138)

φq = I−1
q (id, iq) = Lq

(
iq − 2α1,2LdLqidiq − 2α2,2L

2
dLqi

2
diq − 4α0,4L

3
qi

3
q

)
. (4.139)
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Notice the matrix

Y(idq) :=

(
Y dd(idq) Y dq(idq)
Y dq(idq) Y qq(idq)

)
:= DIdq

(
I−1
dq (idq)

)
, (4.140)

with coefficients easily found to be

Y dd(idq) =
1

Ld
+ 6α3,0Ldid + 12α4,0L

2
di

2
d + 2α2,2L

2
qi

2
q (4.141)

Y dq(idq) = 2α1,2Lqiq + 4α2,2LdidLqiq (4.142)

Y qq(idq) =
1

Lq
+ 2α1,2Ldid + 2α2,2L

2
di

2
d + 12α0,4L

2
qi

2
q , (4.143)

is by construction symmetric; indeed

DIdq(Φdq) =

(
∂2H
∂φd

2 (Φdq)
∂2H

∂φd∂φq
(Φdq)

∂2H
∂φq∂φd

(Φdq)
∂2H
∂φq

2 (Φdq)

)
(4.144)

and ∂2H
∂φd∂φq

= ∂2H
∂φq∂φd

. Therefore the inductance matrix

Ldqi =

(
lddi (idq) ldqi (idq)

ldqi (idq) lqqi (idq)

)
:=

(
Y dd(idq) Y dq(idq)
Y dq(idq) Y qq(idq)

)−1

(4.145)

is also symmetric. The explicit expressions of the motor inductances are obtained using the approxi-
mation (4.134)-(4.135), hence we get

lddi (idq) = Ld
(
1− 6α3,0L

2
did − 12α4,0L

3
di

2
d − 2α2,2LdL

2
qi

2
q

)
(4.146)

ldqi (idq) = LdLq
(
−2α1,2Lqiq − 4α2,2LdLqidiq

)
(4.147)

lqqi (idq) = Lq
(
1− 2α1,2LdLqid − 2α2,2L

2
dLqi

2
d − 12α0,4L

3
qi

2
q

)
. (4.148)

To conclude, the model of the saturated PMSM is given by (4.116)–(4.118) and (4.132)-(4.133),
with φd, φq, ω, θ as state variables. The magnetic saturation effects are represented by the five pa-
rameters α3,0, α1,2, α4,0, α2,2, α0,4 which can be estimated easily by linear least square as we will see
in chapter 6. This is a simple and explicit model based on polynomial functions. This model will
be used in the sequel to study the observability of the PMSM at zero speed operation. In the next
chapters, this model will be used also to find a sensorless rotor position estimation procedure and a
sensorless control scheme which take into account cross coupling and magnetic saturation.

4.4 Observability issue

In the previous section, we proposed a PMSM model with magnetic saturation based on an energy
approach. In this section, we will study the observability of the PMSM using this saturation model.
We show that the PMSM is observable everywhere if ω 6= 0 where the observability rank increases
from 2 to 4 and to 5 using the stator current and their first order and second order derivatives. If
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ω = 0, we show that the first order linear approximation [66] of the PMSM equations around ω = 0
is not observable, in this case the observability rank increases from 2 to 3 and to 4 and it does not
increase even using higher order derivatives of the measured currents. This is a well known property
of PMSM, it makes the observability around zero speed of this type of motor a difficult task.

Using the nonlinear observability we show that the PMSM is observable around ω = 0 when a
persistent excitation is added to the motor voltage and a saliency condition is satisfied. By contrast,
without persistent excitation, the rank of the nonlinear observability matrix at zero speed remains
the same as the observability rank of the first order PMSM model whatever the order of the current
derivative. We established a sufficient saliency condition to ensure nonlinear observability with per-
sistent excitation. In this case, the observability rank increases from 2 to 4 and to 5 using the stator
current and their first order and second order derivatives which is similar to the case when ω 6= 0.

4.4.1 First-order observability

To emphasize that position estimation is not easy at low speed, we study the observability of (4.116)–
(4.118), augmented by dτL

dt = 0 (unknown constant load):

dΦdq

dt
= vdq −Ridq − ωJ (Φdq + Φm)

J

n2

dω

dt
= iTdqJ (Φdq + Φm)− τL

n
dθ

dt
= ω

dτL
dt

= 0.





(4.149)

This system has 5 state variables. The state variable vector is (ΦT
dq, ω, θ, τL)T . It is important to note

that the physically impressed voltages to the motor are vαβ = Rθvdq while the physically measurable
currents are iαβ = Rθidq. Thus, the input variables are vαβ and the output variables are iαβ .

The observability of (4.149) is studied around a permanent trajectory defined by

0 = vdq −Ridq − ωJ (Φdq + Φm) (4.150)

0 = iTdqJ (Φdq + Φm)− τL
n

(4.151)

dθ

dt
= ω. (4.152)

Notice such a permanent trajectory is not a steady state point unless ω := 0 since θ hence vαβ and iαβ
are time-varying (Φdq, idq,vdq, ω, τL are on the other hand constant). Also the reason for augmenting
the model with a constant torque is that it is usually also desired to estimate an unknown load torque.

The system (4.149) is linearized around (Φdq, ω, θ, τL). Set

∆Φdq = Φdq −Φdq, ∆θ = θ − θ, ∆ω = ω − ω ∆τL = τL − τL,

a function X(Φdq, ω, θ, τL) can be linearized as follows

∆X =
∂X

∂Φdq
∆Φdq +

∂X

∂θ
∆θ +

∂X

∂ω
∆ω +

∂X

∂τL
∆τL. (4.153)
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Using (4.153) and iαβ = Rθidq we then get

∆iαβ = ∆Rθidq +Rθ∆idq

= RθJ idq∆θ +Rθ∆idq

= Rθ(J idq∆θ + ∆idq), (4.154)

and similarly for vαβ we have

∆vαβ = Rθ(J vdq∆θ + ∆vdq). (4.155)

The linearization of (4.149) around the permanent trajectory (4.150)–(4.152) is then

d

dt
∆Φdq = RTθ (∆vαβ −R∆iαβ)− J

(
Φdq + Φm

)
∆ω + ω

((
Φdq + Φm

)
∆θ − J∆Φdq

)

J

n2

d

dt
∆ω = ∆iαβ

TRθJ
(
Φdq + Φm

)
− iTdq

((
Φdq + Φm

)
∆θ − J∆Φdq

)
− ∆τL

n
d

dt
∆θ = ∆ω

d

dt
∆τL = 0,

where we have used vdq −Ridq = ωJ
(
Φdq + Φm

)
.

On the other hand time differentiating ∆iαβ yields

d

dt
∆iαβ =

dRθ
dt

(J idq∆θ + ∆idq) +Rθ
(
J idq

d

dt
∆θ +

d

dt
∆idq

)

= ωJ∆iαβ +Rθ
(
J idq∆ω +DIdq

(
Φdq

) d
dt

∆Φdq

)

where we have used ∆idq = DIdq
(
Φdq

)
∆Φdq. Therefore

[DIdq
(
Φdq

)
]−1RTθ

d

dt
∆iαβ = [DIdq

(
Φdq

)
]−1J idq∆ω +

d

dt
∆Φdq + LC(∆iαβ,∆vαβ)

= JΦ
(
Φdq

)
∆ω + ωΦ

(
Φdq

)
∆θ + LC(∆iαβ,∆vαβ) (4.156)

where
Φ
(
Φdq

)
:= Φm + Φdq + J [DIdq

(
Φdq

)
]−1J Idq(Φdq)

and LC(∆iαβ,∆vαβ) is some matrix linear combination of ∆iαβ and ∆vαβ . Similarly

J

n2

d

dt
∆ω = −Φ

(
Φdq

)
∆θ − ∆τL

n
+ LC(∆iαβ,∆vαβ). (4.157)

Now Φ
(
Φdq

)
is non-zero in any reasonable situation, indeed

Φ =

(
λ+ φd − Lqqid + Ldqiq
φq + Ldqid − Lddiq

)
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where we have used

[DIdq
(
Φdq

)
]−1 =

(
Ldd Ldq

Ldq Lqq

)
.

Using the approximation (4.134)-(4.135) leads to

λ+ φd − Lqqid + Ldqiq = λ+ (Ld − Lq)id +O(|αi,j |)

where λ � −(Ld − Lq)id + O(|αi,j |), therefore Φ is different from zero. Hence Φ and JΦ are
independent vectors. Indeed

det
(
Φ JΦ

)
= ‖Φ‖2 6= 0.

From (4.156), if ω 6= 0 it is thus clear that ∆θ and ∆ω can be expressed in function of iαβ,
d
dt∆iαβ

and vαβ; as a consequence ∆τL is a function of iαβ,
d
dt∆iαβ,

d2

dt2
∆iαβ and vαβ,

d
dt∆vαβ by (4.157);

finally using
∆Φdq = [DIdq(Φdq)]

−1∆idq

hence ∆Φdq is by (4.154) a function of ∆iαβ . In other words the linearized system is observable
by ∆iαβ .

If ω = 0 only ∆ω can be recovered from iαβ,
d
dt∆iαβ and vαβ; as a consequence only

Φ
(
Φdq

)
∆θ + ∆τL

n can be recovered from (4.157), and nothing new is gained by further differ-
entiation. In other words the linearized system is not observable as pointed out in [21].

The first order observability can be summarized as follows

• case ω 6= 0: the five motor states are observable. The observability rank is 2 using the measured
current iαβ; it increases to 4 with the first order derivative of the measured current diαβdt ; then it

increases to 5 with the second order derivative of the measured current d
2iαβ
dt2

.

• case ω = 0: the five motor states are not all observable. Indeed, the observability rank is only 4
even if we use the current and all their derivatives. In this case the observability rank increases
from 2 to 3 to 4 and remains 4 with higher order derivatives of the current.

Estimating the rotor position at low speed is thus inherently difficult. Yet it is doable when the
motor exhibits some saliency, geometric or saturation-induced, with the help of permanent excitation
such as signal injection. In the following subsection we study the nonlinear observability [19, 20]
where we show that in some cases the PMSM system is observable in the nonlinear sense provide the
motor exhibits some saliency.

4.4.2 Nonlinear observability

In this part we give the definition of the nonlinear observability of a nonlinear system. Then, we study
the nonlinear observability of the PMSM where the current is the only measured signal.

A nonlinear system can be written as follows

ẋ = fx(x,u)

y = h(x)

}
(4.158)
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where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and y ∈ Rp is the output vector. fx and
h are smooth functions defined in Rn+m and Rp respectively.

To define the nonlinear observability, we give firstly the definition of the indistinguishability. All
the following definitions are given in [95].

Definition 1 (Indistinguishability). Two initial states x1 and x2 of (4.158) are indistinguishable
(denoted x1Ix2) if for every time t ≥ 0, the outputs y1(t) and y2(t) are identical for every admissible
input u(t) where y1(t) (resp. y2(t)) is the output of (4.158) that corresponds to the input u(t) and
to the initial state x1 (resp. x2). x1 and x2 are distinguishable elsewhere.

The indistinguishability is an equivalence relation. Notice I(x) the equivalence class of x. Hence,
the observability is defined as follows

Definition 2 (Global observability). The system (4.158) is said to be observable at x if I(x) = {x}
and it is observable if I(x) = {x} for every x.

Notice that observability is a global concept; it might be necessary to travel a considerable dis-
tance or for a long time to distinguish between two initial states. Therefore we introduce a local
concept which is stronger than observability:

Definition 3 (Locally weak observability). The system (4.158) is locally weakly observable at x if
there exists an open neighborhood U of x such that for every open neighborhood V of x contained in
U , I(x) = {x} and (4.158) is locally weakly observable if it is so at every x.

Intuitively (4.158) is locally weakly observable if one can instantaneously distinguish each point
from its neighbors by an appropriate input choice.

Criteria for locally weak observability: The system (4.158) is locally weakly observable if there
exists an integer l such that the matrix

LAl =
(
LT0 LT1 . . . LTl

)T (4.159)

has the same rank of x i.e. rank(LAl) = n with

Lk = Dx[hk(x,u)], hk(x,u) =
dk

dtk
h(x)

where Dx[hk(x,u)] is the jacobian of the vector hk with respect to the vector x.
We will now investigate the nonlinear observability of the nonlinear system (4.149). For this

system, we take:

• the state vector x = (iTαβ, ω, θ, τL)T

• the output vector y = h(x) = iαβ

• the input vector u = vαβ .
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In the sequel, we calculate the expressions ofLA0, LA1, andLA2. To do that, we need the expression
of the current and their first and second order derivatives which are as follows

iαβ = RθIdq(Φdq) (4.160)
d

dt
iαβ = ωJ iαβ + S(θ, iαβ)

(
vαβ −Riαβ − ωJ (Φαβ +RθΦm)

)
(4.161)

d2iαβ
dt2

= −np
J
SRθJΦ(Φdq)τL + NF(iαβ, ω, θ) (4.162)

where

S(θ, iαβ) := RθDIdq
(
I−1
dq (RTθ iαβ)

)
RTθ ; (4.163)

and NF is a nonlinear combination of iαβ , ω and θ.
We will now calculate the expressions of LA0, LA1, and LA2. For l = 0 the observability matrix

LA0 reads

LA0 = L0 =

(
1 0 0 0 0
0 1 0 0 0

)
.

Using (4.161), the expression of L1 can be written as follows

L1 =
(

∂
∂iα

( ddt iαβ) ∂
∂iβ

( ddt iαβ) −SRθJΦ(Φdq)
∂S
∂θRθ

dΦdq

dt + ωSRθΦ(Φdq) 0
)

where we have used

Rθ
dΦdq

dt
= vαβ −Riαβ − ωJ (Φαβ +RθΦm).

Thus, the matrix LA1 reads

LA1 =




1 0 0 0 0
0 1 0 0 0

∂
∂iα

(
d
dt iαβ

)
∂
∂iβ

(
d
dt iαβ

)
−SRθJΦ(Φdq)

∂S
∂θRθ

dΦdq

dt + ωSRθΦ(Φdq) 0


 .

Using (4.162), hence the expression of L2 is

L2 =
(

∂
∂iα

(
d2iαβ
dt2

)
∂
∂iβ

(
d2iαβ
dt2

)
∂
∂ω

(
d2iαβ
dt2

)
∂
∂θ

(
d2iαβ
dt2

)
−np

J SRθJΦ(Φdq)
)
.

Thus, the expression of the observability matrix LA2 reads

LA2 =




1 0 0 0 0
0 1 0 0 0

∂
∂iα

( ddt iαβ) ∂
∂iβ

( ddt iαβ) −SRθJΦ(Φdq)
∂S
∂θRθ

dΦdq

dt + ωSRθΦ(Φdq) (0, 0)T

∂
∂iα

(
d2iαβ
dt2

)
∂
∂iβ

(
d2iαβ
dt2

)
∂
∂ω

(
d2iαβ
dt2

)
∂
∂iθ

(
d2iαβ
dt2

)
−np

J SRθJΦ(Φdq)



.
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4.4.2.1 Observability when ω 6= 0 and dΦdq

dt = 0 (steady state flux in dq frame)

It is obvious that the rank of LA0 is equal to two. In addition, the first and second column of the
matrix LA1 are independent for all possible trajectory. The final column is zero, hence the rank of
LA1 is equal to 2 plus the rank of the following square matrix

LAs1 =
(
−SRθJΦ(Φdq)

∂S
∂θRθ

dΦdq

dt + ωSRθΦ(Φdq)
)
.

As ω 6= 0 then det(LAs1) 6= 0 for normal operation conditions because the two vectors
−SRθJΦ(Φdq) and ωSRθΦ(Φdq) are independent when ω 6= 0 (the matrix SRθ is always differ-
ent from zero and the two vectors JΦ(Φdq) and Φ(Φdq) are independent as established previously),
hence rank(LA1) = 4.

It is clear that the rank of LA2 is equal to the rank ofLA1 plus the rank of the last column of LA2.
For normal operation condition, SRθJΦ(Φdq) is different from zero (Φ(Φdq) 6= 0 and SRθJ is an
invertible non zero matrix), hence the final column of LA2 has a rank 1. Thus, as the matrix LA1

has a rank 4, then the observability matrix LA2 has the full rank 5 and therefore all the system states
including speed ω, position θ and torque τL are observable when ω 6= 0.

4.4.2.2 Observability when ω ≡ 0

In this case we take ω ≡ 0 which mean that ω and all their derivatives with respect to time are
identically equal to zero. The rank of LAs1 is 1 because the vector ∂S∂θRθ

dΦdq

dt + ωSRθΦ(Φdq) = 0

(dΦdq

dt = 0 as ω ≡ 0). Hence the rank of LA1 is equal to 3 in this case and therefore the rank of LA2

is equal to 4. If we use higher order derivatives of the current LAl with l > 2 the rank of LAl remains
equal to 4. Hence, if the speed is identically equal to zero, then the PMSM system is not observable
using nonlinear observability.

4.4.2.3 Observability when ω ≈ 0

In this case, a sufficient condition to ensure the observability of the PMSM system is dΦdq

dt 6= 0 and
∂S
∂θ 6= 0, hence det (LAs1) 6= 0 and the rank(LA2) = 5.

To verify the condition dΦdq

dt 6= 0, the fluxes in dq frame cannot be constant, but they must
oscillate around the constant desired value. Thus Φdq will be the sum of a constant value and a
periodic zero mean oscillating function. This is possible by adding a HF voltage to the command
voltage. We choose a HF with respect to the motor bandwidth to do not disturb the operation of the
motor. Recalling the electrical motor equation

dΦdq

dt
= vdq −Ridq − ωJ (Φdq + Φm), (4.164)

we apply a HF voltage
vdq = vdq + ṽdqf(Ωt)

where vdq is constant and ṽdq is a low frequency signal and f is a 2π periodic function of amplitude 1
and Ω is a large pulsation. We can show that the corresponding periodic trajectory (see (5.49)–(5.51))
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is as follows

Φdq = Φdq +
ṽdq
Ω
F (Ωt) +O(

1

Ω2
) (4.165)

ω = ω +O(
1

Ω2
) (4.166)

θ = θ +O(
1

Ω2
) (4.167)

where ω = 0; θ and Φdq are constant; F is the integral of f having zero mean. The speed ω =
0 + O( 1

Ω2 ) oscillates around zero with a very small and negligible amplitude O( 1
Ω2 ) and thus it is

practically zero. The equation (4.165) yields

d

dt
Φdq = ṽdqf(Ωt) +O(

1

Ω
) (4.168)

hence d
dtΦdq 6= 0 almost everywhere. It remains to verify the saliency condition

∂S
∂θ

(θ, iαβ) 6= 0. (4.169)

Finally, thanks to the HF signal injection and the motor saliency, the rank of the observability matrix
LA2 is equal to 5 and we recover the nonlinear observability of the PMSM system.

Let’s see the case of a PMSM with a linear magnetic model. In this case we have

idq = Idq(Φdq) =

(
1
Ld

0

0 1
Lq

)
Φdq (4.170)

where Ld and Lq are the motor inductances. According to (4.163), the saliency matrix can be written
as follows

S(θ, iαβ) =

(
cos θ − sin θ
sin θ cos θ

)( 1
Ld

0

0 1
Lq

)(
cos θ sin θ
− sin θ cos θ

)

=
Ld + Lq
2LdLq

(
1 +

Ld−Lq
Ld+Lq

cos 2θ
Ld−Lq
Ld+Lq

sin 2θ
Ld−Lq
Ld+Lq

sin 2θ 1− Ld−Lq
Ld+Lq

cos 2θ

)

with
∂S
∂θ

=
Ld − Lq
LdLq

(
− sin 2θ cos 2θ
cos 2θ sin 2θ

)

hence, if Ld 6= Lq (salient) we get ∂S
∂θ 6= 0 and then the position is observable. If Ld = Lq (non

salient motor) the observability matrix LA1 is of rank 3 and the position is not observable.

Conclusion

We proposed in this chapter a simple parametric magnetic saturation model for the PMSM motors.
This model is based on an energy approach and on Euler-Lagrange formulation. Such formulations
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are particularly efficient to preserve the physical insight while maintaining a synthetic view on the
physical system i.e. PMSM. Symmetry considerations and the stator connection type were used
to simplify the motor energy expression and to reduce the number of parameters needed to model
magnetic saturations. At the end; the model depends only on five saturation parameters and is based
on simple polynomial functions. Finally, we pointed out the observability problem at low speed
using linear and nonlinear observability. Without using persistent excitation, we established that the
observability degenerates at zero speed. By contrast, we show that if a persistent excitation is added
to the motor voltage then the nonlinear observability is recovered if a saliency condition is verified.

The proposed model is used in the next chapter to solve the observability issue at zero speed.
Using this model, we propose in the sequel a rotor position estimation procedure based on HF voltage
injection. The position estimation remains possible while the saliency condition is verified.
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Chapter 5

Position estimation by signal injection
and averaging
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Introduction

Le moteur MSAP a un problème d’observabilité à vitesse nulle lorsque les courants sont les seules
grandeurs mesurées, voir section 4.4. Pour résoudre ce problème, un signal de haute fréquence (HF)
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est ajouté à la tension du moteur à basse vitesse. Ainsi, la position peut être estimée à partir des
oscillations du courant grâce aux saillances géométrique et magnétique du rotor.

Dans ce chapitre, nous proposons une méthode originale pour estimer la position du rotor du
MSAP par l’injection de signaux et la moyennisation. D’abord, L’état de l’art de l’estimation de
position par injection de tension HF est détaillé dans la section 5.1. A la fin de cette section, nous
focalisons sur les effets du couplage et de la saturation magnétique sur l’estimation de position.
Ensuite, nous présentons les méthodes existantes de compensation de ces effets et nous discutons
leurs limites.

Nous proposons dans la section 5.2 une analyse mathématique claire et originale de la séparation
des échelles de temps entre les sous systèmes basse fréquence et haute fréquence du MSAP quand
une loi générale de contrôle de vitesse est appliquée au moteur avec l’injection des signaux HF.
Cette séparation n’est pas toujours claire dans la littérature. En effet, nous proposons une preuve
mathématique que les signaux HF ajoutés à la tension du moteur n’ont pas d’impact visible sur le
fonctionnement du moteur. La tension HF ajoutée peut être considérée comme un capteur logiciel de
position.

Ensuite, dans la section 5.3, nous proposons une analyse détaillée qui explique comment on peut
récupérer les informations de position à partir de l’injection de signaux; cette analyse est adaptée
à n’importe quel type ou forme de signaux injectés. Cette procédure d’estimation est basée sur
le modèle de saturation magnétique (4.132)–(4.133) proposé dans la section 4.3. La position est
estimée à partir des amplitudes du courant HF par moindres carrés non linéaire récursifs. Cette
procédure d’estimation est utilisable en temps réel. Enfin, dans la section 5.4, nous proposons une
loi de commande du MSAP à basse vitesse et sans capteur de position. Cette loi est basée sur la
procédure d’estimation de position proposée dans la section précédente.

The PMSM has an observability problem at zero speed when the currents are the only measured
variables, see section 4.4. To overcome this problem, a high frequency (HF) signal is injected to
the motor voltage at low speed. Hence, the position can be estimated using the rotor geometric and
magnetic saliency.

In this chapter we propose an original way of recovering the PMSM rotor position using signal
injection and averging. The state of the art of position estimation by HF voltage injection is detailed
in section 5.1. At the end of this section, we focus on the effects of magnetic and cross coupling
saturation on the position estimation. Then, we present the existing methods of compensation of
these effects and we discuss their limitations.

We propose in section 5.2 a clear and original mathematical analysis of the time scale separation
between low frequency and HF motor subsystems when a general speed control law is applied to the
motor with HF signal injection. This separation is not always clear in the literature. We propose a
mathematical proof that the added HF signal does not have an impact on the motor operation. The
injected signal acts as a software sensor to estimate the rotor position.

Then, in section 5.3 we propose an analysis of how to recover the position information from signal
injection; this analysis can accommodate to any form of injected signals. This estimation procedure
relies on the magnetic saturation model (4.132)–(4.133) proposed in section 4.3. The position is
estimated from HF current amplitudes by recursive nonlinear least square which can be done at real
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time operation. Finally, in section 5.4 we propose a low speed sensorless control law of PMSM based
on the proposed position estimation procedure.

5.1 State of the art

Several methods of signal injection are proposed in the literature [6, 8, 11, 23–27, 29, 30, 32–36, 38,
39, 41, 47, 56, 61, 62, 93, 94, 96–105]. In this section we present these methods and we focus on the
impact of magnetic saturation and cross coupling on the rotor position estimation [28,43,45–63]. We
present also the different methods used to compensate the saturation effects [82, 84–87, 89–91].

5.1.1 Motor model

d

b

a

q

q

g

d

qc

fm

Figure 5.1: αβ, γδ, and dq reference frames

HF voltages are added to the motor voltage in an arbitrary rotating frame denoted γδ reference
frame and defined by

xγδ := RTθcxαβ (5.1)

where θc is chosen by design. Using (5.1), the motor system equations (4.116)–(4.118) can be written
in γδ frame as follows

dΦγδ

dt
= vγδ −Riγδ − ωcJΦγδ − ωJRθ−θcΦm (5.2)

J

n2

dω

dt
= iTγδJ (Φγδ +Rθ−θcΦm)− τL

n
(5.3)

dθ

dt
= ω. (5.4)

The reason for using the γδ frame instead of dq frame is that the position θ of the rotor is not
measured, hence the voltage vdq = RTθ vαβ and the current idq = RTθ iαβ are unknown variables.
Indeed, only the physically impressed voltage vαβ and the physically measurable current iαβ are
accessible. Thus, the voltage vγδ = RTθcvαβ and the current iγδ = RTθciαβ are known since θc is a
known angle. The γδ frame is called estimated rotor frame when the position θc is the estimated rotor
position. In the sequel, the HF signal calculations are performed in γδ frame.
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5.1.2 HF voltages and currents

The principle of HF injection is as follows. A periodic HF signal with zero mean is added to the
motor voltage: (

vγ
vδ

)
=

(
vγ + ṽγf(Ωt)
vδ + ṽδg(Ωt)

)
(5.5)

where f and g are zero mean 2π- periodic functions of amplitude 1; Ω is a pulsation higher than the
motor bandwidth; ṽγ and ṽδ are the amplitude of the injected signal.

Now, we give the expression of the HF flux as reported in the literature. The equations (5.2)
and (5.5) lead to

dΦγδ

dt
= vγδ + Ṽγδ −Riγδ − ωcJΦγδ − ωJRθ−θcΦm (5.6)

where Ṽγδ := (ṽγf, ṽδg)T is the HF voltage vector in γδ frame. According to [24, 32], the stator
resistive voltage drop (Riγδ) and the speed dependent voltages (ωcJΦγδ +ωJRθ−θcΦm) are small
compared to the induced voltage Ṽγδ at the injected frequency Ω

2π . Therefore, the relation between
the HF components of (5.6) can be simplified as follows

dΦ̃γδ

dt
= Ṽγδ (5.7)

where Φ̃γδ is the HF flux component in γδ frame. The time integration of (5.7) yields

φ̃γ =
ṽγ
Ω
F (Ωt)

φ̃δ =
ṽδ
Ω
G(Ωt)





(5.8)

where F and G are the primitive with zero mean of f and g respectively.
We will now find the relation between the HF current and the rotor position in the case of a motor

with linear relation between fluxes and currents. In this case, we have

Φdq = Ldqidq (5.9)

where Ldq is the matrix of inductance in dq frame. According to [24,32], the flux-current relation (5.9)
leads to

Φ̃dq = LdqĨdq (5.10)

where Ĩdq is the HF current component in dq frame. Using (5.9) and (5.10), hence the relation
between HF flux and HF current in γδ frame reads

Φ̃γδ = Rθ−θcΦ̃dq

= Rθ−θcLdqĨdq
= Rθ−θcLdqRTθ−θc Ĩγδ

where Φ̃dq is the HF flux component in dq frame; Ĩγδ is the HF current component in γδ frame. Thus
we get

Φ̃γδ = Lγδ(θ − θc)Ĩγδ (5.11)
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with
Lγδ(θ − θc) = Rθ−θcLdqRTθ−θc . (5.12)

From (5.8) and (5.11), it is clear that the HF current can be expressed in terms of the rotor position if
the inductance Lγδ(θ − θc) depends on the rotor position (saliency condition).

If d- and q- axis fluxes are magnetically decoupled, then the matrix Ldq is diagonal:

Ldq =

(
Ld 0
0 Lq

)
,

hence the inductance Lγδ in (5.12) can be written as follows

Lγδ(µ) =
1

2

(
Ld + Lq + (Ld − Lq) cos 2µ (Ld − Lq) sin 2µ

(Ld − Lq) sin 2µ Ld + Lq − (Ld − Lq) cos 2µ

)
. (5.13)

where µ = θ − θc. Therefore, the HF current is

Ĩγδ =
1

Ω

(
Lγδ(θ − θc)

)−1
(
ṽγF (Ωt)
ṽδG(Ωt)

)
(5.14)

where

(
Lγδ(µ)

)−1
=

1

2LdLq

(
Ld + Lq − (Ld − Lq) cos 2µ −(Ld − Lq) sin 2µ

−(Ld − Lq) sin 2µ Ld + Lq + (Ld − Lq) cos 2µ

)

The equation (5.14) gives the expression of the HF current in terms of the rotor angle in the case
of a linear and decoupled magnetic model. The result obtained in (5.14) is general and can be used
for any HF voltage injection method.

5.1.3 Signal injection types

The types of the HF voltage vary according to the choice of the functions f , g and the voltages ṽγ and
ṽδ in (5.5). We find in the literature three main signal injection techniques:

1. Sinusoidal circular injection method [8, 11, 25–28, 97, 106, 107]: injection of a sinusoidal
rotating carrier where f(t) = cos t and g(t) = sin t and ṽγ = ṽδ;

2. Sinusoidal pulsating injection method [31–34,94,103,105]: injection of a sinusoidal pulsating
carrier where f(t) = g(t) = cos t;

3. Sinusoidal elliptic injection method [24, 29, 30, 38, 39, 104]: injection of a sinusoidal elliptic
carrier where f(t) = cos t and g(t) = sin t and ṽγ 6= ṽδ.

5.1.3.1 Sinusoidal circular injection-based method

This method was introduced firstly by Jansen and Lorenz in 1995 [8] for sensorless control of AC
machines at low and zero speed. It is based on adding a rotating carrier voltage which scan all the
anisotropy of the motor in order to estimate the rotor position. This method was successfully tested
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on a PMSM by Wang and Lorenz in 2000 [25] and by Consoli et al [11, 97]. In recent years, this
method was widely used for sensorless control of PMSM [25–28, 106].

Using this type of signal injection, the expression of the HF voltage is obtained from (5.5) with
f(t) = cos t and g(t) = sin t and ṽγ = ṽδ = ṽ:

Ṽγδ = ṽ

(
cos Ωt
sin Ωt

)

where ṽ is the amplitude of the injected voltage. In this case (5.14) leads to

Ĩγ =
ṽ

2ΩLdLq

(
(Ld + Lq) sin (Ωt) + (Ld − Lq) sin (2θ − 2θc − Ωt)

)

Ĩδ = − ṽ

2ΩLdLq

(
(Ld + Lq) cos (Ωt) + (Ld − Lq) cos (2θ − 2θc − Ωt)

)
.

The computation of the sum of Ĩγ and Ĩδ yields

Ĩγ + Ĩδ = ĩpe
Ωt + ĩne

−Ωt,

where  is the complex imaginary number and

ĩp = − ṽ(Ld + Lq)

2ΩLdLq
, ĩn = − ṽ(Ld − Lq)

2ΩLdLq
e(2θ−2θc), (5.15)

ĩp is the positive rotating component of the current which rotates at speed +Ω and it is independent
from the position information; ĩn is the negative rotating component of the current which rotates at
speed −Ω and it contains the rotor position information. The current ĩn is obtained by multiplying
the current by eΩt (heterodyning) and by using a low pass filter as follows:

ĩn ≈ LPF
(

(Ĩγ + Ĩδ)eΩt
)

= LPF
(
ĩn + ĩpe

2Ωt
)

where LPF is the abbreviation of “low pass filter”.
The current ĩn can be written as

ĩn =
ṽ(Ld − Lq)

2ΩLdLq

(
sin (2θ − 2θc)−  cos (2θ − 2θc)

)
.

The separation of ĩn = ĩrn + ĩjn into a real part ĩrn and an imaginary part ĩjn leads to

ĩrn =
ṽ(Ld − Lq)

2ΩLdLq
sin (2θ − 2θc) (5.16)

ĩjn = − ṽ(Ld − Lq)
2ΩLdLq

cos (2θ − 2θc). (5.17)

It is important to note that if Ld = Lq then the currents ĩrn = ĩjn = 0 and the position information
is lost, hence Ld 6= Lq is a necessary condition to get the position information; this is the saliency
condition in the case of a linear and decoupled motor model. Using (5.16)-(5.17) we get

tan (2θ − 2θc) = − ĩ
r
n

ĩjn
, (5.18)
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hence the rotor position can be estimated as follows

θ = θc −
1

2

(
arctan

ĩrn

ĩjn

)
+ kπ, (5.19)

where k is an integer. The position is obtained with a π ambiguity, this can be resolved by the using
of an appropriate initial position estimation algorithm.

If we use θc as an estimated value of the rotor position, then the current ĩn gives an estimation
of the rotor position estimation error θ − θc between the actual rotor position θ and the estimated
position θc. Thus ĩn can be used to calculate an error signal for a rotor position tracking observer. In
this case, the position error θ − θc is considered to be small, hence ĩjn is constant in this case:

ĩjn = − ṽ(Ld − Lq)
2ΩLdLq

cos (2θ − 2θc) ≈ −
ṽ(Ld − Lq)

2ΩLdLq
,

and (5.18) yields

θ − θc ≈
ΩLdLq

ṽ(Ld − Lq)
ĩrn. (5.20)

In (5.20) we get an error signal proportional to ĩrn. The rotor position error is zero when ĩrn is zero,
hence by controlling ĩrn to be zero then θc will be the good estimation of the rotor position θ.

5.1.3.2 Injection of an pulsating sinusoidal carrier

The injection of an pulsating sinusoidal carrier was introduced by Ha et Sul in 1999 [31]. This method
is based on the injection of a pulsating carrier in a fixed direction in the rotating γδ frame. This
direction is selected to locate a specific motor anisotropy which is, for linear model, aligned with the
d- axis (minimum inductance Ld) or the q- axis (maximum inductance Lq). This is a standard method
of position estimation [31–34,94,103,105] for sensorless PMSM control at low speed including zero
speed operation.

In [32,93,94] a pulsating HF carrier voltage is injected on the γ- axis of the estimated rotor frame
γδ. The HF current on the δ- frame is used to estimate the rotor position. The expression of the
injected voltage in γδ frame is obtained from (5.5) with f(t) = g(t) = cos t and ṽγ = ṽ and ṽδ = 0:

Ṽγδ =

(
ṽ cos Ωt

0

)
(5.21)

where ṽ is constant. In this case F (t) = sin t. Thus (5.14) leads to

Ĩγ =
ṽ

2ΩLdLq

(
(Ld + Lq)− (Ld − Lq) cos (2θ − 2θc)

)
sin (Ωt) (5.22)

Ĩδ = − ṽ(Ld − Lq)
2ΩLdLq

sin (2θ − 2θc) sin (Ωt). (5.23)

The δ-axis component Ĩδ of the HF current is a sinusoidal signal with respect to the time. It can be
written in the form:

Ĩδ = ĩδ sin (Ωt),
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where

ĩδ = − ṽ(Ld − Lq)
2ΩLdLq

sin (2θ − 2θc), (5.24)

therefore the HF current amplitude ĩδ is a function of the rotor position error θ − θc. It is important
to note that if Ld = Lq in (5.22)-(5.23) then the position information is lost, hence Ld 6= Lq is also
a necessary condition to have the position information, this is the saliency condition in the case of a
linear and decoupled motor model. Using (5.24) we get

θ = θc −
1

2
arcsin

(
2ΩLdLq
ṽ(Ld − Lq)

ĩδ

)
+ kπ (5.25)

where k is an integer. The position is obtained with a π ambiguity, this can be resolved by the using
of an appropriate initial position estimation algorithm.

If we use θc as an estimated value of the rotor position, then the current ĩδ gives an estimation
of the rotor position error θ − θc between the actual rotor position θ and the estimated position θc.
Thus ĩδ can be used to calculate an error signal for a rotor position tracking observer. In this case, the
position error θ − θc is considered to be small, hence (5.24) yields

θ − θc ≈ −
ΩLdLq

ṽ(Ld − Lq)
ĩδ (5.26)

In (5.26) we get an error signal proportional to ĩδ. Thus, the rotor position error is zero when ĩδ is
zero, hence by controlling ĩδ to be zero then θc will be the good estimation of the rotor position θ.

Recently, Yoon et al proposed an new signal injection method based on pulsating rectangular car-
rier injection [35, 36, 108]. In this case, the sinusoidal signal is replaced by a rectangular signal i.e.
the function f is a periodic rectangular function with zero mean and the function F is a triangular
function. This method is similar to the sinusoidal pulsating injection-based method, the only differ-
ence is that cos Ωt is replaced by f(Ωt) and sin Ωt is replaced by F (Ωt). The motivation of this type
of signal injection is that it is easier to implement a rectangular function than a sinusoidal function
using an industrial electric drive.

5.1.3.3 Sinusoidal elliptical injection-based method

This method was introduced by Corley et Lorenz in 1998 [24]. It is based on adding an elliptic HF
carrier voltage. The major axis carrier voltage is used to track a fixed anisotropy of the rotor while
the minor axis voltage is used to compensate the effect of the motor speed. This method can be used
up to the nominal speed of the motor. It is also widely used in the literature [29, 30, 38, 39, 104] for
sensorless rotor position estimation.

In this case, an elliptical HF sinusoidal voltage rotating at a speed Ω is added to the motor voltage
in the estimated γδ frame as follows

Ṽγδ = ṽ

(
cos Ωt
ωc
Ω sin Ωt

)

where ωc = dθc
dt . The position θc is considered here as the estimated rotor position and the speed ωc

is considered as the estimated rotor speed. The induced HF voltage by the electrical fluxes and the
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motor speed is not neglected here [24], hence (5.6) yields

dΦ̃γδ

dt
= Ṽγδ − ωcJ Φ̃γδ, (5.27)

at steady state, according to [24] the equation (5.27) leads to

φ̃γ =
ṽ

Ω
sin Ωt

φ̃δ = 0



 (5.28)

Using (5.11), (5.13) and (5.28) hence we get

Ĩγ =
ṽ

2ΩLdLq

(
Ld + Lq − (Ld − Lq) cos (2θ − 2θc)

)
sin (Ωt)

Ĩδ = − ṽ(Ld − Lq)
2ΩLdLq

sin (2θ − 2θc) sin (Ωt),

the expressions of Ĩγ and Ĩδ in this case are the same as their expressions in (5.22) and (5.23).
Therefore the rotor position can be estimated by the same way as when a pulsating sinusoidal voltage
is injected (5.24)–(5.26).

To conclude, we note that the signal injection techniques presented below are similar because in
all cases the position is estimated by demodulating the HF current. These techniques are distinguished
by the shape of the added voltage and by the demodulation procedure of the HF current. In the sequel,
the pulsating HF signal injection method is only used.

5.1.4 Impact of cross coupling and saturation

The decoupled linear model of PMSM was used previously. But it is well known that this model is not
sufficient to get good estimation of rotor position due to cross coupling and to the nonlinear effects
of magnetic saturation. These effects introduce an error to the estimated position depending on the
load torque and on the current level. Thus, the modeling of cross coupling is important to correctly
estimate the rotor position and guarantee the stability of the position observer.

The effects of cross coupling on sensorless position estimation of PMSM have been widely stud-
ied in the past 10 years [28, 43–63]. According to chapter 4 section 4.3.2, the saturation effects are
represented in the literature by a mutual inductance between the d- and q- axis in the rotor dq frame.
Thus, the inductance matrix Ldq defined in (5.9) is no more diagonal and it contains non diagonal
terms as follows

Ldq =

(
Ld lm
lm Lq

)
. (5.29)

In the case of HF voltage injection, the presence of this cross inductance lm modifies the HF cur-
rent expression and leads to position estimation errors. Indeed using (5.29) and (5.12), the expression
of the inductance Lγδ with cross coupling reads

Lγδ(µ) = 1
2

(
Ld + Lq + 2Le cos (2µ+ θe) 2Le sin (2µ+ θe)

2Le sin (2µ+ θe) Ld + Lq − 2Le cos (2µ+ θe)

)
(5.30)
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with

θe = arctan

(
2lm

Ld − Lq

)
(5.31)

where Le = 1
2

√
(Ld − Lq)2 + 4l2m.

We consider here the case of pulsating carrier injection (the impact of cross saturation is similar
for the other types of signal injection). Using (5.14) with F = G (pulsating signal) and ṽγ = ṽ and
ṽδ = 0, hence the expression of the HF current reads

Ĩγδ =
ṽ

Ω

(
Lγδ(θ − θc)

)−1
(
F
0

)

where
(
Lγδ
)−1

(µ) = 1
2(LdLq−l2m)

(
Ld + Lq − 2Le cos (2µ+ θe) −2Le sin (2µ+ θe)

−2Le sin (2µ+ θe) Ld + Lq + 2Le cos (2µ+ θe)

)
.

Finally we get

Ĩγ =
ṽ

2Ω(LdLq − l2m)

(
(Ld + Lq)− (Ld − Lq) cos (2θ − 2θc + θe)

)
F (Ωt) (5.32)

Ĩδ = − ṽ(Ld − Lq)
2Ω(LdLq − l2m)

sin (2θ − 2θc + θe)F (Ωt). (5.33)

The HF current (5.33) can be written as

Ĩδ = ĩδF (Ωt)

where ĩδ = − ṽ(Ld−Lq)
2Ω(LdLq−l2m)

sin (2θ − 2θc + θe). Thus, the rotor position can be written as follows:

θ = θc −
θe
2
− 1

2
arcsin

(
2Ω(LdLq − l2m)

ṽ(Ld − Lq)
ĩδ

)
+ kπ. (5.34)

In the case of small angle approximation we get:

θ − θc ≈ −
Ω(LdLq − l2m)

ṽ(Ld − Lq)
ĩδ −

θe
2
. (5.35)

The position expressions obtained in (5.34)-(5.35) by considering the mutual inductance contain
the additional term − θe

2 . This term does not appear in the position expressions (5.25)-(5.26) when
the cross coupling is not considered. This term leads to a position estimation error and must be
compensated to get an acceptable estimation accuracy and to guarantee the stability of the motor
when the estimated position is used in a sensorless control scheme. The position error − θe

2 caused
by the cross coupling is a function of the mutual inductance lm and the difference between d- and q-
axis inductances Ld − Lq (see (5.31)).

We used here a linear model of PMSM where all the inductances are considered constant. How-
ever, according to (4.128)–(4.130), (Ld,Lq,lm) depend on the currents. Thus, the position error intro-
duced by the cross coupling effects is no more constant but it depends on the currents also. Hence,

98



CHAPTER 5. POSITION ESTIMATION BY SIGNAL INJECTION AND AVERAGING

the compensation procedure must depend on the operation point i.e. in the γ- axis and δ- axis currents
which are the measured currents.

We find in the literature several methods to compensate the error caused by the cross coupling.
Most of these methods are based on finding relations between the three inductances (Ld, Lq, lm) and
the currents id and iq or by finding directly a relation between θe and these currents. This compensa-
tion is done during the real time operation of the motor where the saturation information is obtained
in function of the operation point by one of the following methods:

• using look up table where the saturation information is stored in a look up table [50]

• using explicit parametric relation between position error and current measurements [56]

• using neural network where the saturation information is stored in a set of neural networks [55].

The existing modeling methods of cross saturation present in the literature permit the compen-
sation of the rotor position error at high load torque and lead to good motor operation performances
when used in sensorless position estimation. By contrast, each method presented above is suitable
only for one type of PMSM; there is no general procedure which can be used for all PMSM types.
In addition, These methods are not based on a clear mathematical interpretation of the separation
between the fundamental frequency model and the HF model of PMSM. Finally, we do not have an
explicit condition for the feasibility of the sensorless position estimation by HF injection at low speed,
they give only some conditions obtained experimentally.

In the sequel, we propose an analysis based on second order averaging of how to recover the
position information from signal injection. A clear mathematical condition for sensorless position
estimation is given also, this condition is an extension of the saliency condition Ld 6= Lq when
the linear PMSM model is used. This method is based on the simple parametric saturation model
proposed in the previous chapter (4.132)-(4.133). In this case, we need only 5 saturation parameters
which are simple to be estimated as we will see in the next chapter. It can be applied to any type of
PMSM i.e. interior magnet and surface mounted PMSM. The cross saturation is well compensated
even at 200% of the rated torque.

The saturation model explains the variation of the motor inductances according to the different
operation points, in particular, the high dependence of the mutual inductance lm on the load torque
and current levels. Thanks to second order averaging, we give a mathematical interpretation of the
separation between the HF motor model and the fundamental frequency motor model where we show
that the rotor speed and position are not affected by the voltage injection.

5.2 Signal injection and averaging

In this section we propose an original way for time scale separation between HF signals and low
frequency signals of PMSM when voltage injection is used [64–66]. This separation is based on
second order periodic averaging. It consists on solving a perturbation problem where the HF voltage
is considered as a periodic perturbation of the motor fundamental voltage. This method will be used
in the next section to find a relation between the HF current and the rotor position.
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5.2.1 General system equations

In this part, we will show that the injection of a HF voltage with a general speed control law (closed
loop or sensorless) does not have an impact on the operation of the motor.

We use here the motor dynamic equations (5.2)-(5.4) in γδ frame. Using the saturation
model (4.132)-(4.133), the current in γδ frame can be written in terms of flux and position as fol-
lows

iγδ = Rθ−θcidq
= Rθ−θcIdq(Φdq)

= Rθ−θcIdq(RTθ−θcΦγδ), (5.36)

where Idq = (Id, Iq)T .
In (5.2)–(5.4) and (5.36) we get a nonlinear dynamic model of PMSM with magnetic saturation

in γδ frame where Φγδ, ω and θ are the state variables; the impressed voltage vαβ = Rθcvγδ is the
input variable; the measured current iαβ = Rθciγδ is the output variable. Using this model, a general
control law can be expressed in γδ frame as follows

vαβ = Rθcvγδ (5.37)

iγδ = RTθciαβ (5.38)
dθc
dt

= ωc (5.39)

dη

dt
= a

(
iγδ, θ, θc, η, t

)
(5.40)

ωc = Ωc

(
iγδ, θ, θc, η, t

)
(5.41)

vγδ = Vγδ
(
iγδ, θ, θc, η, t

)
(5.42)

where η is the internal (vector) variable of the controller. The three functions a, Ωc and Vγδ define
the evolution of the controller in terms of the measured current iαβ; the internal variables η; the rotor
position θ and the time t. These functions are chosen in a way to guarantee the stability of the control
law and to define the motor operation at steady state.

A fast-varying pulsating voltage is superimposed to the desirable control voltage (5.42) as follows

vγδ = Vγδ
(
iγδ, θ, θc, η, t

)
+ ṽγδf(Ωt) (5.43)

where

• Vγδ is the fundamental voltage applied to the motor in γδ frame, this voltage is used to control
and stabilize the motor.

• ṽγδf(Ωt) is a HF voltage;

• f is here a 2π-periodic function with zero mean and ṽγδ could like Vγδ depend on iγδ, θc, η, t
(though it is always taken constant in the sequel);

• The constant pulsation Ω is chosen “large”, so that f(Ωt) can be seen as a “fast” oscillation;
typically Ω := 2π × 500 rad/s.
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Using the motor model (5.2)–(5.4) and (5.36) with the modified control law (5.37)–(5.41)
and (5.43), hence the closed loop motor system equations read

dΦγδ

dt
= ṽγδf(Ωt) + Vγδ −Riγδ − ΩcJΦγδ − ωJRθ−θcΦm (5.44)

J

n2

dω

dt
= iTγδJ (Φγδ +Rθ−θcΦm)− τL

n
(5.45)

dθ

dt
= ω (5.46)

dθc
dt

= Ωc

(
iγδ, θ, θc, η, t

)
(5.47)

dη

dt
= a

(
iγδ, θ, θc, η, t

)
(5.48)

with

iγδ = Rθ−θcIdq(RTθ−θcΦγδ).

The motor system (5.44)–(5.48) has two time scales. It has a slow time scale (low or fundamental
frequency) which corresponds to the variation of the motor electrical and mechanical variables, the
time constant in this case is the electrical time constant of the motor. In addition, this system has
a fast time scale introduced by the periodic function f(Ωt) which has a small period 2π

Ω and a high
pulsation Ω compared to the motor bandwidth.

5.2.2 Time scale separation by second order averaging

Applying the periodic second order averaging to (5.44)–(5.48), each state variable x can be written
as the sum of a low frequency (slow varying) component x and a HF component x̃ (fast varying) as
follows

x = x+ x̃+O(
1

Ω2
)

where x can be φγ , φδ, ω, θ, θc, η. A fast varying component x̃ = O( 1
Ω) is periodic with the same

period as f and it is small (on order of 1
Ω ). The order termO( 1

Ω2 ) is very small, this term is neglected
in the sequel. It can be shown (the proof is given later see section 5.2.3.2) that

Φ̃γδ =
ṽγδ
Ω
F (Ωt)

ω̃ = θ̃ = θ̃c = η̃ = 0

with

F (t) =

∫ t

0
f(τ)dτ − 1

2π

∫ 2π

0

∫ t

0
f(τ)dτdt

where F is the integral of f ; it is clear that F is 2π- periodic zero mean function; τ is an integration
variable.
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Thus, the solution of the closed loop system (5.44)–(5.48) is

Φγδ = Φγδ +
ṽγδ
Ω
F (Ωt) +O(

1

Ω2
) (5.49)

ω = ω +O(
1

Ω2
) (5.50)

θ = θ +O(
1

Ω2
) (5.51)

θc = θc +O(
1

Ω2
) (5.52)

η = η +O(
1

Ω2
), (5.53)

(Φγδ, ω, θ, θc, η) is the “slowly-varying” component of (Φγδ, ω, θ, θc, η), i.e. satisfies

dΦγδ

dt
= vγδ −Riγδ − ωcJΦγδ − ωJRθ−θcΦm (5.54)

J

n2

dω

dt
= i

T
γδJ (Φγδ +Rθ−θcΦm)− τL

n
(5.55)

dθ

dt
= ω (5.56)

dθc
dt

= ωc (5.57)

dη

dt
= a

(
iγδ, θ, θc, η, t

)
, (5.58)

where

iγδ = Rθ−θcIdq(R
T
θ−θc

Φγδ) (5.59)

ωc = Ωc

(
iγδ, θ, θc, η, t

)

vγδ = Vγδ
(
iγδ, θ, θc, η, t

)
.

This system represents the fundamental operation of the motor and is used to design the motor con-
troller. The motor is stable only if this system is stable.

Notice this slowly-varying system defined below is exactly the same as (5.2)–(5.2) and (5.36)
acted upon by the unmodified control law (5.37)–(5.42). In other words adding signal injection:

• has a very small effect of order O( 1
Ω2 ) on the mechanical variables θ, ω and the controller

variables θc, η;

• has a small effect of order O( 1
Ω) on the flux Φγδ; this effect will be used in the next section to

extract the position information from the measured currents.

5.2.3 Mathematical interpretation

In this part we provides the proof of (5.49)–(5.53) using periodic second order averaging. At first, we
present the second order averaging. Then, we apply averaging to the motor control system (5.44)–
(5.48).
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5.2.3.1 Periodic second order averaging

This part relies on the reference [109] section 2.9.1 and section 3.3. Periodic second order averaging
with slow-time dependence consists of solving a perturbation problem in the standard form

dx

dσ
= εf1(x, εσ, σ) (5.60)

where

• x ∈ Rn;

• σ is a time variable;

• ε is a small constant parameter;

• f1 is a function from Rn+2 to Rn;

• f1 is periodic with respect to its third variable such

f1(x, εσ, σ + Tσ) = f1(x, εσ, σ)

where Tσ is a constant period.

The solution of (5.60) can be approximated as

x(σ) = z(σ) + εu1

(
z(σ), εσ, σ

)
+O(ε2), (5.61)

The function z(σ) is the solution of

dz

dσ
= εg1(z, εσ) + ε2g2(z, εσ). (5.62)

with

g1(z, εσ) :=
1

Tσ

∫ Tσ

0
f1(z, εσ, s)ds (5.63)

and

g2(z, εσ) :=
1

Tσ

∫ Tσ

0
K2(z, εσ, s)ds (5.64)

where

K2(z, εσ, σ) :=
∂f1

∂z
(z, εσ, σ)u1(z, εσ, σ)− ∂u1

∂z
(z, εσ, σ)g1(z, εσ); (5.65)

u1(z, εσ, σ) := v1(z, εσ, σ)− 1

Tσ

∫ Tσ

0
v1(z, εσ, s)ds; (5.66)

and

v1(z, εσ, σ) :=

∫ σ

0

(
f1(z, εσ, s)− g1(z, εσ)

)
ds. (5.67)
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5.2.3.2 Proof of (5.49)–(5.53)

The proof relies on a direct application of periodic second-order averaging of differential equations
presented in 5.2.3.1. We must write the system equations with the modified control law (5.44)–(5.48)
in the so-called standard form for averaging (with slow-time dependence); see (5.60). This can be
done by setting

ε :=
1

Ω
, x := (ΦT

γδ, ω, θ, θc, η
T )T , σ :=

t

ε
= Ωt. (5.68)

Thus the system (5.44)–(5.48) leads to

dx

dσ
= εf1(x, εσ, σ) := ε

(
f1(x, εσ) + f̃1(x, εσ)f(σ)

)
. (5.69)

From (5.44)–(5.48) and the variable change (5.68) we get

f1(x, εσ, σ) =




ṽγδf(σ) + Vγδ
(
iγδ, θ, θc, η, εσ

)
−Riγδ − Ωc

(
iγδ, θ, θc, η, εσ

)
JΦγδ − ωJRθ−θcΦm

iTγδJ (Φγδ +Rθ−θcΦm)− τL
n

ω
Ωc

(
iγδ, θ, θc, η, εσ

)

a
(
iγδ, θ, θc, η, εσ

)




with

f1(x, εσ) =




Vγδ
(
iγδ, θ, θc, η, εσ

)
−Riγδ − Ωc

(
iγδ, θ, θc, η, εσ

)
JΦγδ − ωJRθ−θcΦm

iTγδJ (Φγδ +Rθ−θcΦm)− τL
n

ω
Ωc

(
iγδ, θ, θc, η, εσ

)

a
(
iγδ, θ, θc, η, εσ

)




and
f̃1(x, εσ) =

(
ṽTγδ 0 0 0 0

)T
.

It is clear that f1 is 2π-periodic with respect to its third variable because f is 2π-periodic, hence

f1(x, εσ, σ + 2π) = f1(x, εσ, σ),

and ε is a small parameter because Ω is supposed to be large.
Therefore, according to (5.61) the solution of (5.69) can be approximated as

x(σ) = z(σ) + εu1

(
z(σ), εσ, σ

)
+O(ε2),

where z(σ) is the solution of

dz

dσ
= εg1(z, εσ) + ε2g2(z, εσ).

The expressions of x and z depend on the three functions u1, g1 and g2 as explained in 5.2.3.1.
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The function g1 represents the low frequency part of the system (5.44)–(5.48) (first order averag-
ing). It is equal to the average of the function f1 over one period 2π. According to (5.63), g1 can be
written as follows

g1(z, εσ) : =
1

2π

∫ 2π

0
f1(z, εσ, s)ds

=
1

2π
f1(z, εσ)

∫ 2π

0
ds+

1

2π
f̃1(z, εσ)

∫ 2π

0
f(s)ds

= f1(z, εσ) (5.70)

where we have used
∫ 2π

0 f(s)ds = 0 because f has a zero mean over one period 2π. We note that
g1(z, εσ) = f1 does not contain HF components.

The function u1 represents the HF part of the system (5.44)–(5.48) (second order averaging). It
is obtained from the difference between the function f1 and the average function g1. To find the
expression of u1 we need a function denoted v1 given by (5.67):

v1(z, εσ, σ) : =

∫ σ

0

(
f1(z, εσ, s)− g1(z, εσ)

)
ds

=

∫ σ

0

(
f1(z, εσ, s)− f1(z, εσ)

)
ds

= f̃1(z, εσ)

∫ σ

0
f(s)ds.

The value of u1 is equal to v1 minus the average value of v1 over one period 2π. According
to (5.66) the expression of u1 reads

u1(z, εσ, σ) := v1(z, εσ, σ)− 1

2π

∫ 2π

0
v1(z, εσ, s)ds

= f̃1(z, εσ)F (σ) (5.71)

where

F (σ) :=

∫ σ

0
f(s)ds− 1

2π

∫ 2π

0

∫ σ

0
f(s)dsdσ, (5.72)

i.e. F is the (of course 2π-periodic) primitive of f with zero mean.
Finally, to find the expression of g2 we need a function denoted K2 given by (5.65):

K2(z, εσ, σ) :=
∂f1

∂z
(z, εσ, σ)u1(z, εσ, σ)− ∂u1

∂z
(z, εσ, σ)g1(z, εσ)

= [f1, f̃1](z, εσ)F (σ) +
1

2

∂ f̃1

∂z
(z, εσ)f̃1(z, εσ)

dF 2(σ)

dσ

where

[f1, f̃1](z, εσ) :=
∂f1

∂z
(z, εσ)f̃1(z, εσ)− ∂ f̃1

∂z
(z, εσ)f1(z, εσ).
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According to (5.64), the expression of g2 reads

g2(z, εσ) :=
1

2π

∫ 2π

0
K2(z, εσ, s)ds

=
1

2π
[f1, f̃1](z, εσ)

∫ 2π

0
F (s)ds+

1

22π

∂ f̃1

∂z
(z, εσ)f̃1(z, εσ)

∫ 2π

0

dF 2(s)

ds
ds

= 0,

where
∫ 2π

0 F (s)ds = 0 because F has a zero mean and
∫ 2π

0
dF 2(s)
ds ds = F 2(2π)−F 2(0) = 0 because

F is 2π-periodic and continuous.
Replacing in (5.61) and (5.62) g1 and u1 by their values respectively in (5.70) and (5.71), we get

x(σ) = z(σ) + εf̃1(z, εσ)F (σ) +O(ε2), (5.73)

and
dz

dσ
= εf1(z, εσ). (5.74)

Translating back to the original variables using (5.68), hence (5.73) yields the desired re-
sult (5.49)–(5.53) and (5.74) leads to the average system (5.54)–(5.58) where z is the slow varying
variable and it is replaced by

z = (Φ
T
γδ, ω, θ, θc, η

T )T .

5.2.3.3 Simulation example

To clarify the separation between slow and fast varying signals, we will show a simulation example
of HF voltage injection using the SPM motor parameters 6.1. The control parameters used in this
simulation are as follows:

• the reference speed is constant: ωc = Ωc = 10π rad.s−1;

• the simulation is done with open loop operation such that η = a = 0;

• the fundamental reference voltage is constant: Vγδ = (15.3, 0)T V ;

• the HF voltage amplitude is constant: ṽγδ = (8, 8)T V ;

• the pulsation is high: Ω = 1000π rad.s−1;

• the HF function f is a 2π- periodic rectangular function; see fig. 5.2; it is defined on [0, 2π[ by

f(σ) =

{
1 if 0 ≤ σ < π

−1 if π ≤ σ < 2π
(5.75)

• the HF function F is a 2π- periodic triangular function; see fig. 5.2; it is defined on [0, 2π[ by

F (σ) =





σ − π

2
if 0 ≤ σ < π

−σ +
3π

2
if π ≤ σ < 2π

(5.76)
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• the load torque is constant: τL = 3Nm.

Fig. 5.3 shows the shape of the HF motor voltage applied to the motor. The simulation results
are presented in fig. 5.4. It is clear in this figure that the fluxes φγ and φδ contain periodic triangular
HF components with the same shape as F . These triangular components have zero mean over one
period of the injected signal and they do not perturb (in mean) the fundamental fluxes. In addition,
the speed and the position are not affected by the injected voltage, where we see that the speed ω and
the position θ do not contain HF components and we have ω ≈ ω and θ ≈ θ. This simulation result
confirms the theoretical result of the second order averaging given in (5.49)–(5.53).

Fig. 5.5 shows the difference between the simulated speed ω and the low frequency speed ω which
corresponds to the term O( 1

Ω2 ) in (5.49)–(5.53): ω − ω = O( 1
Ω2 ). It is clear in this figure that the

HF component is very small and has an amplitude of 0.2 rad.s−1 comparing to ω which is about
25 rad.s−1. In addition, this figure shows the difference between the simulated position θ and the
low frequency speed θ which corresponds to the term O( 1

Ω2 ) in (5.49)–(5.53): θ − θ = O( 1
Ω2 ). In

this case the difference is also very small and it is around 0.2 deg comparing to the position which is
comprised between −180 and 180 deg.

Finally, fig. 5.6 compare the position and the speed obtained with signal injection and the position
and the speed obtained without signal injection using the same simulation parameters. This figure
shows clearly that the injection of a HF signal does not modify the rotor position and has a very small
effect (0.8%) on the speed.

These simulation results are confirmed in the sequel by experimental tests. They validate the
separation between HF components and low frequency components of the motor states. In addition,
these results validate the approximation used in (5.49)–(5.53). In the sequel, this separation is used
to find a relation between HF currents and the rotor position.

5.3 Rotor position and speed estimation

5.3.1 HF current expression

The rotor position is estimated from the HF current. We now express the effect of signal injection on
the currents: plugging (5.49) into (5.36) we have

iγδ = R
θ−θc+O(

1
Ω2 )
Idq
(
RT
θ−θc+O(

1
Ω2 )

(
Φγδ +

ṽγδ
Ω
F (Ωt) +O( 1

Ω2 )
))
. (5.77)

We perform a first order Taylor expansion of the current expression in (5.77) according to the
powers of 1

Ω . In this case we have

Idq
(
RT
θ−θc+O(

1
Ω2 )

(
Φγδ +

ṽγδ
Ω
F (Ωt) +O( 1

Ω2 )
))

=Idq
(
RT
θ−θc+O(

1
Ω2 )

Φγδ +
1

Ω
RT
θ−θc+O(

1
Ω2 )

ṽγδF (Ωt) +O( 1
Ω2 )

)

=Idq
(
RT
θ−θc

Φγδ

)
+DIdq

(
RT
θ−θc

Φγδ

)
RT
θ−θc

ṽγδ
Ω
F (Ωt) +O( 1

Ω2 ).
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Figure 5.2: HF functions: (a) rectangular function f(σ); (b) triangular function F (σ).
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where DIdq
(
RT
θ−θc

Φγδ

)
is the Jacobian of Idq calculated atRT

θ−θc
Φγδ. Hence, the current expres-
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sion (5.77) can be written as follows

iγδ = Rθ−θcIdq
(
RT
θ−θc

Φγδ

)
+Rθ−θcDIdq

(
RT
θ−θc

Φγδ

)
RT
θ−θc

ṽγδ
Ω
F (Ωt) +O( 1

Ω2 )

= iγδ + ĩγδF (Ωt) +O( 1
Ω2 ) (5.78)

where

ĩγδ = Rθ−θcDIdq
(
RT
θ−θc

Φγδ

)
RT
θ−θc

ṽγδ
Ω

; (5.79)

and iγδ is given by (5.59).
In addition, inverting the expression (5.59) yields

Φγδ = Rθ−θcI
−1
dq

(
RT
θ−θc

iγδ

)
.

Thus (5.79) leads to

ĩγδ = Rθ−θcDIdq
(
I−1
dq

(
RT
θ−θc

iγδ

))
RT
θ−θc

ṽγδ
Ω
. (5.80)

Fig 5.7 shows the shape of the currents iγ and iδ obtained in the previous simulation example. It
is clear in this figure that the current is the sum of a fundamental low frequency part and a HF part
having the same triangular shape of the HF flux.

We will see in the next subsection how to recover ĩγδ and iγδ from the measured currents iγδ. The
equation (5.80) can be written as

ĩγδ = S(θ − θc, iγδ)
ṽγδ
Ω

(5.81)

where
S(µ, iγδ) = RµDIdq

(
I−1
dq

(
RTµ iγδ

))
RTµ .

We note that the matrix S is the same saliency matrix defined in (4.163). The equation (5.81) gives two
(redundant) relations relating the unknown angle θ to the known variables θc, ĩγδ, iγδ, ṽdq, provided
the matrix S(µ, iγδ) effectively depends on its first argument µ such that

∂S
∂µ

(µ, iγδ) 6= 0.

This “saliency condition” is identical to the observability condition derived in the previous chapter
in (4.169) to ensure nonlinear observability. This results shows that if the sufficient observability
condition (4.169) is verified, then the rotor position can be recovered using HF voltage injection.

The explicit expression for S(µ, iγδ) is obtained thanks to (4.140) and (4.145). Indeed, S can be
written in terms of the matrix Y and Ldqi as follows

S(µ, iγδ) = RµY
(
RTµ iγδ

)
RTµ

= Rµ
[
Ldqi

]−1
RTµ ,
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hence the matrix S reads

S = 1
2

(
lddi + lqqi + 2lei cos (2µ+ θei ) 2lei sin (2µ+ θei )

2lei sin (2µ+ θei ) lddi + lqqi − 2lei cos (2µ+ θei )

)
(5.82)

with

θei (µ, iγδ) = arctan

(
2ldqi

(
RTµ iγδ

)

lddi
(
RTµ iγδ

)
− lqqi

(
RTµ iγδ

)
)

(5.83)

and

lei (µ, iγδ) = 1
2

√(
lddi
(
RTµ iγδ

)
− lqqi

(
RTµ iγδ

))2
+ 4
(
ldqi
(
RTµ iγδ

))2
.

The expressions of lddi and ldqi and lqqi are given in (4.146)–(4.148).
We note that the expression of the saliency matrix S in (5.82) is similar to the expression of the

γδ- inductance Lγδ in (5.30) which is used in the literature. The major point here, is that we give an
expression of the saliency matrix in terms of the currents and saturation parameters. We also give an
expression of the rotor position estimation error used in the literature θei (µ, iγδ) which is equivalent to
the error introduced by cross saturation in (5.31). The inductance ldqi is equivalent to the inductance
lm used in (5.31).

In general the values of θe and lm in (5.31) are based on measurements and finite elements anal-
ysis in the literature. We propose in (5.82) and (5.83) a mathematical modeling of these important
parameters used to compensate the error due to magnetic saturation and cross coupling:

θe = θei (µ, iγδ)

lm = ldqi
(
RTµ iγδ

)
.

In the case of an unsaturated magnetic circuit i.e. αi,j = 0 we have according to (4.146)–(4.148)
lddi = Ld, lqqi = Lq and ldqi = 0. Hence (5.82) yields

S(µ, iγδ) =
Ld+Lq
2LdLq

(
1 +

Ld−Lq
Ld+Lq

cos 2µ
Ld−Lq
Ld+Lq

sin 2µ
Ld−Lq
Ld+Lq

sin 2µ 1− Ld−Lq
Ld+Lq

cos 2µ

)

and does not depend on iγδ; notice this matrix does not depend on µ for an unsaturated machine with
no geometric saliency i.e. Ld = Lq. Notice also (5.81) defines in that case two solutions on ]− π, π]
for the angle θ since S(µ, iγδ) is actually a function of 2µ; in the saturated case there is generically
only one solution, except for some particular values of iγδ. In the sequel we take θ ≈ θ and θc ≈ θc
because the HF position component is very small and it is hence neglected.

In the next subsection we propose a rotor position estimation procedure which takes into account
magnetic and cross coupling saturations.

5.3.2 Nonlinear least square estimation

There are several ways to extract the rotor angle information from (5.81), especially for real-time
use inside a feedback law. Firstly, we just want to demonstrate the validity of (5.81) and we will be
content with directly solving it through a nonlinear least square problem. Let

M(µ, iγδ, ĩγδ) =

∥∥∥∥̃iγδ − S(µ, iγδ)
ṽγδ
Ω

∥∥∥∥
2

,
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by using (5.81) it is clear thatM = 0 when µ = θ − θc. Thus, the estimation of the rotor position
can be done by minimizing the functionM as follows

θ̂ = θc + arg min
µ∈]−π,π]

[
M(µ, iγδ, ĩγδ)

]
(5.84)

where θ̂ is the estimated rotor position.

5.3.2.1 Example

To clarify this method, we give an example with experimental data. We take the case when the
values of the electrical and mechanical variables are: ĩγ = 510 mA, ĩδ = −153 mA, iγ = 8.72 A,
iδ = −2.3 A, τL = 5.53 N.m, ω = 30.73 rad.s−1, θ = −39 deg, θc = 38.5 deg. These data are
obtained using IPM motor with rated parameters listed in 6.1 and saturation parameters listed in 6.2
(the estimation procedure of saturation parameters will be detailed in chapter 6).

Fig. 5.8(a) shows M(µ, iγδ, ĩγδ) versus µ when magnetic saturation is considered, in this case
M has two local minima and one global minimum at −81.45 deg, this gives θ̂ = −42.95 deg. The
estimation error is

∣∣∣θ − θ̂
∣∣∣ = 3.95 deg only. It is important to note that the functionM(µ) has two

local minima, hence the nonlinear least square method must be well initialized to converge to the
correct position value.

Fig. 5.8(b) showsM(µ, iγδ, ĩγδ) versus µ when magnetic saturation is not considered i.e. αi,j =
0. In this case, there is no global minimum but we have two local minima at−31.03 deg and 149.5 deg
which are far from the actual value of µ = −77.5 deg. Thus, taking into account the saturation model
leads to only one global minimum ofM and permits to estimate the rotor position without the 180 deg
redundancy. But, this is not a general case, because for small values of iγδ (the saturation is small)
we still have two local minima ofM.

5.3.3 Nonlinear recursive estimation

In the previous subsection, we proposed a method for position estimation by nonlinear least square.
This method gives good estimation of rotor position for validation purpose, but it must be done of-
fline and it needs a large computation time because the nonlinear optimization problem is solved
at each time step. We propose here a recursive algorithm for nonlinear least squares which reduce
significantly the computation time.

To solve (5.84) we need to find the value of µ ∈]− π, π] which minimizesM(µ, iγδ, ĩγδ) where
ĩγδ and iγδ are slowly varying functions of time; ṽγδ and Ω are constant. The value of

arg min
µ∈]−π,π]

M(µ, iγδ, ĩγδ)

can be approximated by µ̂ which verifies

dµ̂

dt
= −Λ

∂M
∂µ

(µ̂, iγδ, ĩγδ) (5.85)

with

Λ = ρ

∂2M
∂µ2(

∂2M
∂µ2

)2
+ ε

(5.86)
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where ρ and ε are two positive real numbers.
The computation time is considerably reduced because we need only to solve (5.85) in terms of

time, which can be done at real time by simple recursive Euler integration; rather than solving the
optimization problem (5.84) at each time t which requires a huge amount of computations and must
be done offline. In practice, the time t = nTs is discrete where n is a positive integer and Ts is a
constant sampling period. The value of arg minµ∈]−π,π]M(µ, iγδ, ĩγδ) can be approximated at time
nTs by µ̂n = µ̂(nTs) using (5.85) as follows

µ̂n = µ̂n−1 − ΛTs
∂M
∂µ

(µ̂n−1, iγδ, ĩγδ). (5.87)

The equation (5.87) represents a gradient descent algorithm which is usually used to solve min-
imization problem. The solution of this problem is time dependent but it varies slowly with time
because the currents iγδ, ĩγδ vary slowly with time. The period Ts is chosen small enough such that
the variation of the position is very small between two time steps. Hence, at each time step we need
only one iteration to estimate the new position as we see in (5.87). The computation time is then
reduced because only one iteration is used rather than solving the optimization problem at each time
step which require a large number of iterations.

In (5.86), the parameter ε is very small, it is used to avoid the division by zero. If we neglect

ε, hence Λ is proportional to
(
∂2M
∂µ2

)−1
which is the Newton optimization coefficient, it is used to

enhance the convergence of the optimization problem. The first and second derivative ofM according
to µ are needed to solve (5.85), they are as follows

∂M
∂µ

= −2

(
ĩγδ − S(µ, iγδ)

ṽγδ
Ω

)T ∂S(µ, iγδ)

∂µ

ṽγδ
Ω

∂2M
∂µ2

= 2

∥∥∥∥∥
∂S(µ, iγδ)

∂µ

ṽγδ
Ω

∥∥∥∥∥

2

− 2

(
ĩγδ − S(µ, iγδ)

ṽγδ
Ω

)T ∂2S(µ, iγδ)

∂µ2

ṽγδ
Ω

with

S(µ, iγδ) = RµY(RTµ iγδ)RTµ
∂S(µ, iγδ)

∂µ
= Rµ

(
JY(RTµ iγδ)−Y(RTµ iγδ)J +

∂

∂µ

(
Y(RTµ iγδ)

))
RTµ

∂2S(µ, iγδ)

∂µ2
= Rµ

[
−2Y(RTµ iγδ)− 2JY(RTµ iγδ)J + 2J ∂

∂µ

(
Y(RTµ iγδ)

)

− 2
∂

∂µ

(
Y(RTµ iγδ)

)
J +

∂2

∂µ2

(
Y(RTµ iγδ)

)]
RTµ ,

the explicit expression of Y is given by (4.140) and (4.141)–(4.143).

5.3.4 Small angle case

In general, the difference between θ and θc is supposed to be small when θc is considered as the
estimated rotor position. In this case θ − θc is small, hence we consider that the angle µ in S(µ, iγδ)
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is small. Therefore, at first order position approximation, the matrix S can be written as

S(µ, iγδ) =

(
Y γγ(iγδ) + µY γγ

µ (iγδ) Y γδ(iγδ) + µY γδ
µ (iγδ)

Y γδ(iγδ) + µY γδ
µ (iγδ) Y δδ(iγδ) + µY δδ

µ (iγδ)

)
+O(µ2) (5.88)

with

Y γγ(iγ , iδ) =
1

Ld
+ 6α3,0Ldiγ + 12α4,0L

2
di

2
γ + 2α2,2L

2
qi

2
δ

Y γγ
µ (iγ , iδ) = 6α3,0Ldiδ + 24α4,0L

2
diγiδ − 4α1,2Lqiδ − 4α2,2Lq(2Ld + Lq)iγiδ

Y γδ(iγ , iδ) = 2α1,2Lqiδ + 4α2,2LdLqiγiδ

Y γδ
µ (iγ , iδ) =

1

Ld
− 1

Lq
+ 6α3,0Ldiγ + 12α4,0L

2
di

2
γ − 12α0,4L

2
qi

2
δ

+ 2α2,2

(
L2
qi

2
δ − L2

di
2
γ − 2LdLq(i

2
γ − i

2
δ)
)
− 2α1,2(Ld + Lq)iγ

Y δδ(iγ , iδ) =
1

Lq
+ 2α1,2Ldiγ + 2α2,2L

2
di

2
γ + 12α0,4L

2
qi

2
δ

Y δδ
µ (iγ , iδ) = 2α1,2(Ld + 2Lq)iδ + 4α2,2Ld(Ld + 2Lq)iγiδ − 24α0,4L

2
diγiδ

Using (5.79), the relation between ĩγδ and the position reads

ĩγδ = S(θ − θc, iγδ)
ṽγδ
Ω

=
1

Ω


Y

γγ(iγδ)ṽγ + Y γδ(iγδ)ṽδ +
(
Y γγ
µ (iγδ)ṽγ + Y γδ

µ (iγδ)ṽδ

)
(θ − θc)

Y γδ(iγδ)ṽγ + Y δδ(iγδ)ṽδ +
(
Y γδ
µ (iγδ)ṽγ + Y δδ

µ (iγδ)ṽδ

)
(θ − θc)


 . (5.89)

The equation (5.89) gives two explicit and redundant linear relations between the amplitudes of the
HF currents and the rotor position when θ − θc is small. These relations can be used to estimate the
rotor position error when θc is the estimated position. This error can be used as an input of a phase
locked loop (PLL) kind position estimator.

For example, it is common to add a HF voltage on the γ axis and to estimate the position from the
current δ- axis component. In this case, the equation (5.89) leads to

ĩδ = 2α1,2Lqiδ + 4α2,2LdLqiγiδ +

(
1

Ld
− 1

Lq
+ 6α3,0Ldiγ + 12α4,0L

2
di

2
γ − 12α0,4L

2
qi

2
δ

+2α2,2

(
L2
qi

2
δ − L2

di
2
γ − 2LdLq(i

2
γ − i

2
δ)
)
− 2α1,2(Ld + Lq)iγ

)
(θ − θc). (5.90)

If the magnetic saturation is neglected i.e. αi,j = 0 then (5.90) yields

ĩδ =

(
1

Ld
− 1

Lq

)
(θ − θc). (5.91)

In (5.90) the current ĩδ is proportional to the position error θ − θc if Ld 6= Lq. By contrast, in (5.90)
an offset value independent of µ is added to the expression of ĩδ due to the cross coupling and mag-
netic saturation. This offset term (2α1,2Lqiδ + 4α2,2LdLqiγiδ) is added to the position information,

117



CHAPTER 5. POSITION ESTIMATION BY SIGNAL INJECTION AND AVERAGING

This term causes a position estimation error if the saturation is not compensated. Furthermore, the
condition to estimate the position in this case is

1

Ld
− 1

Lq
+

[
6α3,0Ld − 2α1,2(Ld + Lq) +

(
12α4,0L

2
d − 2α2,2L

2
d − 4α2,2LdLq

)
iγ

]
iγ

+

[
2α2,2L

2
q − 12α0,4L

2
q + 4α2,2LdLq

]
iδ > 0 (5.92)

because when this expression changes sign, the controller becomes instable. For some values of iγ
and iδ the observability can be lost mainly when 1

Ld
− 1

Lq
is small. But, in other cases the choice of iγ

and iδ can enhance the observability. For example, for must motor type, adding a positive iγ current
(boost current) increases the value of the expression (5.92) and reinforce the motor stability. This can
be explained by the positive term 6α3,0Ld (α3,0 is always positive) which is multiplied by iγ .

5.3.5 Current demodulation

To estimate the position information using e.g. (5.84) it is necessary to extract the low- and HF
components iγδ and ĩγδ from the measured current iγδ. Using (5.78) we have

iγδ(t) ≈ iγδ(t) + ĩγδ(t)F (Ωt)

where iγδ and ĩγδ are by construction nearly constant in one period T := 2π
Ω of F . Under this

hypothesis, the low frequency current iγδ can be approximated at time t by moving average which is
the average of the measured current iγδ over the last period of the HF signal [t−T, t]. Indeed, the HF
signal has a zero mean over one period T , hence by taking its average over one period we eliminate
HF components. Thus, we may write

iγδ(t) ≈
1

T

∫ t

t−T
iγδ(s)ds. (5.93)

The mathematical interpretation of (5.93) is as follows
∫ t

t−T
iγδ(s)ds ≈ iγδ(t)

∫ t

t−T
ds

= T iγδ(t)

where we have used
∫ t
t−T F (Ωs)ds = 0 because F has a zero mean over a period T .

The HF current amplitude ĩγδ is obtained by heterodyning. The current iγδ(t) is multiplied by
F (Ωt) such that

iγδ(t)F (Ωt) ≈ iγδ(t)F (Ωt)︸ ︷︷ ︸
zero mean on [t− T, t]

+ ĩγδ(t)F
2(Ωt)︸ ︷︷ ︸

constant mean on [t− T, t]

,
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hence integrating the previous relation over the time interval [t− T, t] leads to
∫ t

t−T
iγδ(s)F (Ωs)ds ≈ iγδ(t)

∫ t

t−T
F (Ωs)ds

+ ĩγδ(t)

∫ t

t−T
F 2(Ωs)ds

= ĩγδ(t)

∫ T

0
F 2(Ωs)ds

= ĩγδ(t)‖F‖2.

where ‖F‖2 =
∫ T

0 F 2(Ωs)ds. Finally we get

ĩγδ(t) ≈
1

‖F‖2
∫ t

t−T
iγδ(s)F (Ωs)ds. (5.94)

Differentiating (5.93) with respect to time, hence the derivative of the low frequency current can
be approximated as

diγδ(t)

dt
=

1

T

(
iγδ(t)− iγδ(t− T )

)
, (5.95)

and differentiating (5.94) with respect to time, hence the derivative of the HF current amplitude can
be approximated as

d̃iγδ(t)

dt
=

1

‖F‖2

(
iγδ(t)F (Ωt)− iγδ(t− T )F

(
Ωt− 2π

)
)
. (5.96)

The two equations (5.95) and (5.96) are used in the sequel to estimate the low and HF currents at real
time operation.

5.4 Low speed control

In the previous section, we proposed a rotor position estimation method at low speed for PMSM
motors using HF voltage injection. In this section, we propose a low speed sensorless control scheme
based on this estimation procedure. The sensorless controller is obtained from a closed loop speed
controller where the position sensor is replaced by a position estimator based on signal injection.

At first, we present the closed loop controller where the rotor position is measured using a position
sensor. Then, in a second time we propose a real time position estimation procedure using a recursive
nonlinear least square estimator based on (5.85). Finally, we incorporate this position estimator into
the closed loop controller.

5.4.1 Closed loop controller

The proposed closed loop speed controller is composed of a current proportional integral (PI) con-
troller in cascade with a speed PI controller. The motor speed is estimated from the measured position
using a phase looked loop estimator. Fig 5.9 shows a bloc diagram of this controller where ωref is
the speed reference and irδ is the δ- axis current reference. The three main parts of this controller are:
the speed controller; the speed estimator and the current controller. They are described in the sequel.
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Figure 5.9: Bloc diagram of the closed loop controller.

5.4.1.1 Current controller

The current controller commands the electrical system of the motor and generates the voltage com-
mands. It has the fastest dynamics and converges rapidly. It is composed of a PI regulator. The
command voltage expression is

vγδ = Rirγδ + kip(i
r
γδ − ifγδ) + eγδ (5.97)

with the integrator equation
deγδ
dt

= kiI(i
r
γδ − ifγδ) (5.98)

and the measured current filter
difγδ
dt

= kfi (iγδ − ifγδ) (5.99)

where

• irγδ = (irγ , i
r
δ) is the reference current;

• ifγδ = (ifγ , i
f
δ ) is the filtered value of the measured currents iγδ;

• eγδ = (eγ , eδ) is the integrator state of the current PI controller;

• kip = 2ξiLdωi and kiI = Ldω
2
i are the proportional and integral gains of the current PI con-

troller; with ωi = 2πfi where fi is the current controller bandwidth and ξi is its damping
factor;

• kfi = 2πffi where ffi is the current filter cutoff frequency.

In (5.97) the voltageRirγδ is used to compensate for the voltage drop at the resistance of the motor.
This controller requires the values of the reference currents irγ and irδ. The value of irγ is constant, it
is in general set to zero. The δ- axis current reference irδ is the output of the speed controller which is
described in the following. Fig. 5.10 shows the bloc diagram of the current controller.
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Figure 5.10: Bloc diagram of the current controller.

5.4.1.2 Speed estimator

The motor speed is estimated from the position. Instead of using the time derivative of the mea-
sured position which may be noisy, we use a PLL to estimate the frequency of the position. The
mathematical equations of this PI speed estimator can be written as follows

ωc = kθp(θ − θc) + ωθI (5.100)

dωθI
dt

= kθI (θ − θc) (5.101)

dθc
dt

= ωc (5.102)

where

• ωc is the estimated speed; and θc is the estimated position (the integral of the estimated speed);

• ωθI is the PLL integrator state;

• kθp = 2ξθωθ and kθI = ω2
θ are the proportional and integral gains of the position estimator; with

ωθ = 2πfθ and fθ is the position estimator bandwidth and ξθ is its damping factor.

Fig. 5.11 shows the bloc diagram of the speed estimator.

5.4.1.3 Speed controller

The motor speed is commanded by a PI controller. This controller generates δ- axis current reference
irδ. The inputs of this controller are the speed reference ωref and the estimated speed ωc. The speed
controller has the slowest dynamics, but this is sufficient because the mechanical bandwidth the motor
is small comparing to the electrical one. The estimated speed ωc is filtered as follows

dωfc
dt

= kfω(ωc − ωfc ), (5.103)
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Figure 5.11: Bloc diagram of the speed estimator.

where ωfc is the filtered estimated speed; kfω = 2πffω is the filter gain and ffω is the speed filter cut off
frequency. The equations of the speed controller read

τr = kωp (ωref − ωfc ) + τI (5.104)
dτI
dt

= kωI (ωref − ωfc ) (5.105)

where

• ωref is the speed reference;

• τr is the electromagnetic torque reference;

• τI is the speed loop integrator state;

• kωp = 2J
n ξωωω and kωI = 2J

n ω
2
ω are the proportional and integral gains of the PI speed controller;

with ωω = 2πfω and fω is the speed loop bandwidth and ξω is its damping factor.

The current reference is

isetδ =
τr
λn
, (5.106)

this current is filtered as follows
dirδ
dt

= kri (i
set
δ − irδ) (5.107)

where irδ is the filtered δ- axis current reference and kri = 2πf ri with f ri is the filter cut off frequency.
Fig. 5.12 shows the bloc diagram of the speed controller.
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Figure 5.12: Bloc diagram of the speed controller.

5.4.1.4 Closed loop controller equations

The controller equations can be written in the general form given by (5.37)–(5.42). Indeed, us-
ing (5.97)–(5.107) the controller equation (5.40) reads

dη

dt
=

d

dt




ifγδ

eγδ

irδ

ωθI

ωfc

τI




= a
(
iγδ, θ, θc, η, t

)
=




kfi (iγδ − ifγδ)

kiI(i
r
γδ − ifγδ)

kri

(
kωp (ωref−ωfc )+τI

λn − irδ
)

kθI (θ − θc)

kfω
(
kθp(θ − θc) + ωθI − ω

f
c

)

kωI (ωref − ωfc )




(5.108)

where ωref and irγ are input signals; in general irγ is set to zero. The estimated speed is

ωc = Ωc

(
iγδ, θ, θc, η, t

)
= kθp(θ − θc) + ωθI , (5.109)

the command voltage is

Vγδ
(
iγδ, θ, θc, η, t

)
= Rirγδ + kip(i

r
γδ − ifγδ) + eγδ. (5.110)

To simplify the comprehension of this control law, we summarize the description of the controller
state variables and the controller parameters in tables 5.1 and 5.2 respectively.

It is important to note that a relation between current and speed controller bandwidths must be
respected to ensure the controller stability, this condition reads

fi � fω. (5.111)

5.4.2 Sensorless controller

We propose here a sensorless speed controller. It has the same structure as the closed loop speed
controller (5.108)–(5.110) where the measured position θ is substituted by the estimated position θc.
The value of θc is obtained by signal injection.
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Table 5.1: States of the speed controller

Parameter Description

ifγ filtered value of measured γ- axis current

ifδ filtered value of measured δ- axis current

eγ integral state of γ- axis current PI controller

eδ integral state of δ- axis current PI controller

irδ reference δ- axis current

ωfc filtered estimated speed

τI integral state of the speed PI controller

Table 5.2: Parameters of the speed controller

Parameter Description Dependent parameters

fi, ξi bandwidth and damping factor of the current controller ωi = 2πfi,

kip = 2ξiLdωi, kiI = Ldω
2
i

fθ, ξθ bandwidth and damping factor of the position estimator ωθ = 2πfθ,

kθp = 2ξθωθ, kθI = ω2
θ

fω, ξω bandwidth and damping factor of the speed controller ωω = 2πfω,

kωp = 2J
n ξωωω, kωi = 2J

n ω
2
ω

ffi cutoff frequency of the current filter kfi = 2πffi

ffω cutoff frequency of the speed filter kfω = 2πffω

f ri cutoff frequency of the reference current filter kri = 2πf ri

A HF signal is added to the motor voltage (5.110) as described in (5.43) with

ṽγδ =

(
ṽ
0

)

where ṽ is constant. Thus, we can use the result of second order averaging of section 5.3 where the
rotor position is estimated from the low frequency and HF current components iγδ and ĩγδ. Fig. 5.13
shows the bloc diagram of the proposed sensorless controller.

5.4.2.1 Sensorless position estimator

The solution of (5.84) provides an estimation of the error between the actual position θ and the
estimated position θc. The estimator proposed here is based on the PLL equations (5.100)–(5.102)
where the value of θ − θc is replaced by the estimated position error obtained from iγδ and ĩγδ. This
PLL regulates ωc such that the estimated position error converges to zero.
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Figure 5.13: Bloc diagram of the sensorless controller.
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Figure 5.14: Bloc diagram of the sensorless position and speed estimator.
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The rotor position estimation is composed of two phases. At a first time, the position error is
estimated by recursive nonlinear least square using (5.85) as follows

dµ̂f

dt
= −Λ

∂M
∂µ

(µ̂f , i
f
γδ, ĩ

f
γδ) (5.112)

di
f
γδ

dt
= k̃i(iγδ − i

f
γδ) (5.113)

d̃ifγδ
dt

= k̃i(̃iγδ − ĩfγδ), (5.114)

where

• µ̂f is an estimation of the position error;

• i
f
γδ and ĩfγδ are the filtered values of iγδ and ĩγδ respectively; the filtered values are used to

reduce noises and oscillation caused by the HF voltage and measurement noises;

• k̃i = 2πf̃i where f̃i is a cutoff frequency;

• Λ is taken constant here because ∂2M
∂µ2

is almost constant in practice when µ is near zero;

• the expression of ∂M∂µ is as follows

∂M
∂µ

(µ̂f , i
f
γδ, ĩ

f
γδ) = −2

(
ĩfγδ − S(µ̂f , i

f
γδ)

ṽγδ
Ω

)T ∂S(µ̂f , i
f
γδ)

∂µ

ṽγδ
Ω
. (5.115)

In (5.112), we propose a simple gradient descent algorithm to find the position error such that

µ̂f ≈ arg min
µ∈]−π,π]

[
M(µ, i

f
γδ, ĩ

f
γδ)
]
≈ arg min

µ∈]−π,π]

[
M(µ, iγδ, ĩγδ)

]
= θ − θc

at real time operation. At t = 0, µ̂f is initialized by zero because the initial position is obtained using
an algorithm of initial rotor position detection.

Then, we replace the term θ − θc in (5.100)–(5.102) by µ̂f . Hence we get

ωc = kθpµ̂
f + ωθI (5.116)

dωθI
dt

= kθI µ̂
f (5.117)

dθc
dt

= ωc. (5.118)

The equations (5.116)–(5.118) are used to estimate the rotor position at real time operation. Fig. 5.14
shows the bloc diagram of the sensorless position and speed estimator.
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Table 5.3: States of the sensorless position observer

State Description

iγδ low frequency current

ĩγδ high frequency current amplitude

i
f
γδ filtered value of low frequency current

ĩfγδ filtered value of high frequency current amplitude

µ̂f estimated rotor position error

Finally, the dynamic equations of the sensorless position observer can be written as follows

d

dt




iγδ

ĩγδ

i
f
γδ

ĩfγδ

µ̂f

ωθI

θc




=




1
T

(
iγδ(t)− iγδ(t− T )

)

1
‖F‖2

(
iγδ(t)F (Ωt)− iγδ(t− T )F

(
Ωt− 2π

)
)

k̃i(iγδ − i
f
γδ)

k̃i(̃iγδ − ĩfγδ)

2Λ
(
ĩfγδ − S(µ̂f , i

f
γδ)

ṽγδ
Ω

)T ∂S(µ̂f ,i
f
γδ)

∂µ
ṽγδ
Ω

kθI µ̂
f

kθpµ̂
f + ωθI .




And the estimated speed is

ωc = kθpµ̂
f + ωθI .

Table. 5.3 provides the description of the observer states.
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5.4.2.2 Sensorless controller equations

The equations of the sensorless controller can be written as follows

d

dt




ifγδ

eγδ

irδ

ωfc

τI




=




kfi (iγδ − ifγδ)

kiI(i
r
γδ − ifγδ)

kri

(
kωp (ωref−ωfc )+τI

λn − irδ
)

kfω
(
kθpµ̂

f + ωθI − ω
f
c

)

kωI (ωref − ωfc )




The command voltage is

vγδ = Rirγδ + kip(i
r
γδ − ifγδ) + eγδ + (ṽ, 0)T f(Ωt).

The stability of this sensorless observer-controller is verified and validated by experimental tests
in the chapter 6.

Conclusion

We proposed in this chapter a rotor position estimation procedure based on the saturation
model (4.132)–(4.133). This method takes into account magnetic and cross coupling saturation to
compensate the offset errors caused by load torque and magnetizing current. This method is general
in the sense it can accommodate virtually any PMSM type, control law, saturation model, and form of
injected signal. Experimental validation results of this position estimation method and the sensorless
control law are presented in chapter 6 where we see that the estimation error is less than 5 electrical
degree even at high load torque. The saturation parameters needed for this method can be estimated
by a simple linear least square; this procedure is detailed in chapter 6 and it is easy to use for industrial
purpose.
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Parameter identification and
experimental validation
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Introduction

Dans le chapitre 4, nous avons proposé un modèle de saturation paramétrique du MSAP basé sur cinq
paramètres de saturation (α3,0, α1,2, α4,0, α2,2, α0,4) en plus des paramètres magnétiques standards
Ld et Lq. Ce modèle a été utilisé dans le chapitre 4 pour trouver une méthode d’estimation de la
position du rotor du MSAP et pour élaborer une loi de commande sans capteur et à basse vitesse du
MSAP.

Dans ce chapitre, nous proposons une validation expérimentale du modèle de saturation du MSAP
ainsi qu’une procédure d’identification des paramètres de ce modèle. Cette procédure est basée
encore sur l’injection de signaux et la moyennisation de second ordre où les paramètres de saturation
sont estimés simplement par moindres carrés linéaires. Les courants HF obtenus expérimentalement
sont comparés aux courants HF obtenus par moyennisation à partir du modèle de saturation dans le
but de valider le modèle et d’estimer les paramètres de saturation. En plus, nous utilisons une rampe
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de tension pour valider le modèle. Ensuite, en utilisant ces paramètres, la procédure d’estimation
de position et la loi de commande sans capteur sont validées expérimentalement sur deux moteurs
MSAP.

Les résultats expérimentaux montrent que, grâce au modèle de saturation, l’erreur d’estimation
de position est réduite à moins de 5 degrés électriques pour le moteur MSAI et que cette erreur est
réduite à moins de 10 degrés pour le moteur MSAS qui a un niveau de saillance très faible. En plus,
nous constatons que, grâce au modèle de saturation, la commande sans capteur du moteur MSAS à
basse vitesse et à un couple de charge élevé est maintenant possible, ce qui n’était pas le cas si on
considère le modèle linéaire seulement.

Dans la section 6.1, nous proposons une méthode simple d’estimation des paramètres de satu-
ration par moindres carrés linéaires, cette méthode est appliquée et validée expérimentalement sur
les moteurs MSAI et MSAS. Dans la section 6.2, nous présentons plusieurs méthodes de validation
expérimentale du modèle de saturation à rotor bloqué. Ensuite, dans la section 6.3, nous démontrons
expérimentalement sur les deux moteurs MSAI et MSAS la pertinence de la méthode d’estimation
de position proposée dans le chapitre 5, où nous montrons la nécessité de considérer la saturation
afin d’estimer correctement la position. Enfin, dans la section 6.4, nous présentons la validation
expérimentale de la loi de commande du MSAP à basse vitesse et sans capteur proposée dans le
chapitre 5.

In chapter 4 we proposed a parametric saturation model based on five saturation parameters (α3,0,
α1,2, α4,0, α2,2, α0,4) in addition to the standard magnetic parameters Ld and Lq. This model was
used in chapter 5 to find a rotor position estimation method of the PMSM and to design a sensorless
control law of PMSM at low speed.

In this chapter, we propose an experimental validation of the PMSM saturation model and an
identification procedure of the saturation parameters for this model. This procedure is also relying
on signal injection and averaging where simple linear least square method is used to estimate the
saturation parameters. Experimental high frequency currents are compared to high frequency currents
obtained by averaging from the saturation model in order to validate the model and to estimate the
saturation parameters. In addition, we use step voltage excitation to validate the model. Then, using
these parameters, the position estimation procedure and the sensorless control law are applied on two
PMSM motors and validated by experimental tests. Experimental results show that, thanks to the
saturation model, the position estimation error is reduced to less than 5 electrical degree for IPM
motor and this error is reduced to less than 10 electrical degree for the SPM motor with a very low
saliency level. In addition, we see that thanks to the saturation model, the sensorless control of the
SPM motor at low speed and high load torque is now possible which was not the case with the linear
magnetic model.

In section 6.1, we propose a simple method for the saturation parameter estimation by linear
least squares; this method is applied and validated experimentally on the IPM and SPM motors. In
section 6.2, we present multiple ways of experimental validation of the saturation model at locked
rotor position. In section 6.3, we experimentally demonstrate on the two motors IPM and SPM the
relevance of the position estimation approach proposed in chapter 5 where we show the necessity of
considering saturation to correctly estimate the position. Finally, in section 6.4 we present experi-
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mental validation results of the low speed sensorless control law proposed in chapter 5.

6.1 Parameter identification

It is necessary to estimate the saturation parameters to make this saturation model (4.132)–(4.133)
useful. The estimation method of these parameters must be simple of use and applicable to all motor
types. In this section we propose a procedure for estimating the magnetic parameters presented in the
PMSM model (4.132)-(4.133):

(
Ld Lq α3,0 α1,2 α4,0 α2,2 α0,4

)
.

The estimation procedure is done by simple linear least squares and using high frequency voltage
injection at locked rotor position.

6.1.1 Principle

Figure 6.1: Experimental time response of id in (6.1)-(6.2)

A high frequency voltage is added to the motor fundamental voltage; the parameters are estimated
by comparing the high frequency current obtained experimentally and from the PMSM model. The
actual dq frame is used here and the motor is locked at the position θ = 0 and ω = 0 which mean
that the dq frame and the αβ frame are confounded. Therefore, the physically measured currents are
idq and the physically impressed voltages are vdq. Thanks to this configuration, the motor variables
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in the rotor dq frame are accessible and the rotor will not move because the motor is locked at zero
position using an external mechanical brake. In the sequel, all the variables are expressed in dq frame.

At locked rotor position, the motor electrical equations (4.116) and (4.132)-(4.133) can be written
as

dΦdq

dt
= vdq −Ridq. (6.1)

with idq = Idq(Φdq). The equation (6.1) describes the PMSM at a fixed position where it is similar
to a series RL (resistance-inductance) circuit.

As in section 5.2, but now working directly in the dq frame, we inject a fast-varying pulsating
voltage

vdq = vdq + ṽdqf(Ωt) (6.2)

where vdq is a low frequency voltage in dq frame and ṽdq is the amplitude of the added high frequency
voltage in dq frame. vdq and ṽdq are taken constant. From (6.1)-(6.2), the electrical system equation
reads

dΦdq

dt
= vdq + ṽdqf(Ωt)−Ridq, (6.3)

this equation is a particular case of (5.44) where ω = Ωc = θ = θc = 0; d ≡ γ and q ≡ δ and
Vγδ = vdq. The solution of (6.3) is obtained from (5.49), hence the flux reads

Φdq = Φdq +
ṽdq
Ω
F (Ωt) +O(

1

Ω2
)

where Φdq is the low frequency “slowly-varying” component of Φdq, using (5.54) hence Φdq satisfies

dΦdq

dt
= vdq −Ridq, (6.4)

with idq = Idq(Φdq).
Using (5.78) the current in dq frame can be written as

idq = idq + ĩdqF (Ωt) +O( 1
Ω2 )

where ĩdq is obtained using (5.80):

ĩdq = DIdq
(
I−1
dq (idq)

) ṽdq
Ω
. (6.5)

Since vdq is constant (6.4) implies Ridq tends to vdq, hence after an initial transient idq is constant
such that:

idq →
vdq
R
. (6.6)

As a consequence ĩdq is by (6.5) also constant. Fig. 6.1 shows for instance the time response of id for
the SPM motor of 6.1 starting from id(0) = 0 and using a square function f ; notice the current ripples
seen on the scope are maxτ∈[0,2π] F (τ) = π

2 (since f is square with period 2π) smaller than ĩdq. The
magnetic parameters can then be estimated repeatedly using (6.5) with various values of vdq and ṽdq.
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Using (4.140) we get

DIdq
(
I−1
dq (id, iq)

)

=

(
1
Ld

+ 6α3,0Ldid + 12α4,0L
2
di

2
d + 2α2,2L

2
qi

2
q 2α1,2Lqiq + 4α2,2LdidLqiq

2α1,2Lqiq + 4α2,2LdidLqiq
1
Lq

+ 2α1,2Ldid + 2α2,2L
2
di

2
d + 12α0,4L

2
qi

2
q

)
.

Thus, from (6.5) we get the explicit expressions of the amplitudes of the high frequency currents as
follows

ĩd = 1
Ω

( ṽd
Ld

+ 6α3,0Ldidṽd + 2α1,2Lqiqṽq + 12α4,0L
2
di

2
dṽd + 2α2,2Lqiq(2Ldidṽq + Lqiqṽd)

)

(6.7)

ĩq = 1
Ω

( ṽq
Lq

+ 2α1,2(Ldidṽq + Lqiqṽd) + 2α2,2Ldid(2Lqiqṽd + Ldidṽq) + 12α0,4L
2
qi

2
q ṽq

)
. (6.8)

The equations (6.7)-(6.8) represent the relation between the amplitudes of the high frequency currents
and the magnetic parameters, they are used to estimate the saturation parameters and to validate the
proposed saturation model.

Indeed, in (6.7)-(6.8) the voltages ṽd and ṽq and the pulsation Ω are known variables; in addition
the values of ĩd, ĩq, id and iq are extracted from the measured currents id and iq as explained in 5.3.5.
Thus, the only unknown variables in (6.7)-(6.8) are the seven magnetic parameters (Ld, Lq, α3,0, α1,2,
α4,0, α2,2, α0,4). The inductances Ld and Lq are estimated at zero current id = iq = 0 as we will
see in the sequel. The five magnetic saturation parameters (α3,0, α1,2, α4,0, α2,2, α0,4) are estimated
from (6.7)-(6.8) by simple linear least squares.

6.1.2 Estimation of the parameters

The estimation of the saturation parameters is based on (6.6)–(6.8). We begin by estimating the
motor inductances. This is done by adding a high frequency voltage at zero low frequency currents
id = iq = 0. Thus (6.7)-(6.8) lead to

Ld =
1

Ω

ṽd

ĩd
(6.9)

Lq =
1

Ω

ṽq

ĩq
. (6.10)

The expressions of Ld and Lq are proportional to the ratio of the high frequency voltage amplitude
to the high frequency current amplitude. According to (6.6) the low frequency currents id and id are
set to zero using vd = vq = 0. In the sequel we consider that the inductances Ld and Lq are known
variables.

Since combinations of the magnetic parameters always enter linearly (6.7)-(6.8), they can be
estimated by simple linear least squares. Moreover by suitably choosing vdq and ṽdq, the whole least
squares problem for the five saturation parameters (α3,0, α1,2, α4,0, α2,2, α0,4) can be split into several
subproblems involving fewer parameters:
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Table 6.1: Rated parameters of test motors

Motor IPM SPM
Rated power 750 W 1500 W
Rated current In (peak) 4.51 A 5.19 A
Rated voltage (peak per phase) 110 V 245 V
Rated speed 1800 rpm 3000 rpm
Rated torque 3.98 Nm 6.06 Nm
n 3 5
R 1.52 Ω 2.1 Ω

λ (peak) 196 mWb 155 mWb
Inertia moment J 5.5 gm2 5.3 gm2

• with the total low frequency current along the d- axis and the high frequency voltage along the
d- axis also: vq = 0, hence iq := 0, and ṽq = 0 (6.7) reads

ĩd =
ṽd
Ω

(
1

Ld
+ 6α3,0Ldid + 12α4,0L

2
di

2
d

)
(6.11)

• with the total low frequency current along the q- axis and the high frequency voltage along the
d- axis: vd = 0, hence id := 0, and ṽq = 0 (6.7)-(6.8) lead to

ĩd =
ṽd
Ω

( 1

Ld
+ 2α2,2L

2
qi

2
q

)
(6.12)

ĩq =
2ṽd
Ω
α1,2Lqiq (6.13)

• with the total low frequency current along the q- axis and the high frequency voltage along the
q- axis: vd = 0, hence id := 0, and ṽd = 0 (6.8) lead to

ĩq =
ṽq
Ω

( 1

Lq
+ 12α0,4L

2
qi

2
q

)
. (6.14)

To estimate the saturation parameters, several runs are performed with various vd (resp. vq) such
that id (resp. iq) ranges from−200% to +200% of the rated current according to (6.6). The parameters
α3,0 and α4,0 are jointly estimated by linear least squares from (6.11) where ĩd is a linear function
of α3,0 and α4,0. The parameters α2,2, α1,2 and α0,4 are separately estimated by linear least squares
from respectively (6.12), (6.13) and (6.14).

6.1.3 Experimental results and discussions

The parameter estimation procedure developed in this chapter was tested on two types of motors, an
Interior Magnet PMSM (IPM) and a Surface-Mounted PMSM (SPM), with rated parameters listed in
table 6.1.
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ĩq Estimated
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Figure 6.2: IPM motor: fitted values vs measurements for (6.11) in (a); (6.12) in (b); (6.13) in (c);
(6.14) in (d); in (e) estimation error corresponding to (a)-(b)-(c)-(d).
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Figure 6.3: SPM motor: fitted values vs measurements for (6.11) in (a); (6.12) in (b); (6.13) in (c);
(6.14) in (d); in (e) estimation error corresponding to (a)-(b)-(c)-(d).
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Table 6.2: Estimated magnetic parameters of test motors

Motor IPM SPM
Ld 9.15± 0.26 mH 7.86± 0.21 mH
Lq 13.58± 0.58 mH 8.18± 0.23 mH
α3,0 (A.Wb−2) 102.3± 0.9 176± 1.6

α1,2 (A.Wb−2) 93.3± 1.2 165.6± 2.6

α4,0 (A.Wb−3) 329.1± 8.1 1254± 18

α2,2 (A.Wb−3) 497.3± 10.4 1907.5± 43.4

α0,4 (A.Wb−3) 118.6± 3 453.5± 9.9

Table 6.3: RMSE between measured and fitted data
Motor IPM SPM
RMSE for (6.11) 1.5% 0.87%

RMSE for (6.12) 1.58% 1.07%

RMSE for (6.13) 5.8% 3.1%

RMSE for (6.14) 1.1% 1.8%

Table 6.4: Dimensionless saturation parameters of test motors

Motor IPM SPM
α3,0L

2
dIn 0.039 0.056

α1,2LdLqIn 0.053 0.055

α4,0L
3
dI

2
n 0.0051 0.0164

α2,2LdL
2
qI

2
n 0.0171 0.027

α0,4L
3
qI

2
n 0.0060 0.0067
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With the rotor locked in the position θ := 0, a square wave voltage with pulsation Ω := 2π ×
500 rad/s and constant amplitude ṽd or ṽq (15 V for the IPM, 14 V for the SPM) is applied to the
motor. Several runs are performed with various vd (resp. vq) such that id (resp. iq) ranges inside the
interval−200% to +200% of the rated current. The current is slowly incremented in order to scan the
whole possible working area (the length of the current interval varies according to test conditions).
The magnetic parameters are then estimated as explained in the section 6.1.2, yielding the values in
the table 6.2. The uncertainty in the estimation stems from a ±15 mA uncertainty in the current
measurements.

Fig. 6.2 (IPM motor) and fig 6.3 (SPM motor) show the fitted values of ĩd and ĩq in terms of id
and iq obtained according to (6.11)–(6.14) and using the estimated saturation parameters listed in the
table 6.2; these fitted values are compared to the experimental measured values of ĩd and ĩq. Fig. 6.2-
(a) and fig. 6.3-(a) compare the measured and the fitted values of ĩd which corresponds to (6.11); it
is clear in this figure that the model fits well the measurements. This result is similar for fig. 6.2-(b)
and 6.3-(b) which correspond to (6.12) and fig. 6.2-(c) and 6.3-(c) which correspond to (6.13) and
fig. 6.2-(d) and 6.3-(d) which correspond to (6.14); they demonstrate the good agreement between
the fitted curves and the measurements. Notice (6.11) corresponds to saturation on a single axis
while (6.13) corresponds to cross-saturation.

The figures 6.2-(b)-(c)-(d) and 6.3-(b)-(c)-(d) show also that the high frequency current ampli-
tudes are always symmetric with respect to iq (they are even functions with respect to iq). This results
validates the symmetry condition used in (4.122).

Fig. 6.2(e)-6.3(e) show the estimation error between the measured and the fitted values of ĩd
and ĩq corresponding to figures 6.2(a)-(b)-(c)-(d) and figures 6.3(a)-(b)-(c)-(d) respectively. These
figures show clearly that the estimation errors are less than 15 mA in a large majority of cases,
hence these estimation errors are in order of the current measurement uncertainty. To test the quality
of interpolation, we calculate the root mean square error RMSE for each cases of (6.11)–(6.14).
Table 6.3 shows the RMSE between measured and fitted data; it is always less than 5.8% and it is in
most of the cases less than 2%.

We verify the robustness of the model by evaluating the parameter errors caused by measurement
uncertainty. Using linear least squares and supposing that we have a measurement uncertainty of
15 mA, we get the parameter uncertainties listed in table 6.2. It is clear that these uncertainties
are very small comparing to the parameter values; they are less than 4.3%. This result shows that
the magnetic parameters are not sensitive to measurement errors; hence they represent the magnetic
behavior of the PMSM.

In (4.134) and (4.135) we assumed that the saturation parameters are small. To verify this assump-
tion, we must use dimensionless parameters. Table 6.4 shows the dimensionless saturation parameters
where the rated current In and the inductances Ld and Lq are used for parameters normalization. This
table shows that the dimensionless parameters are very small comparing to one, which validates the
small parameters assumption in (4.134) and (4.135).

Finally, the figures 6.2–6.3 provide an important experimental interpretation of the choice of a
quartic function (polynomial of degree four) to express the magnetic energy H proposed in (4.131).
Indeed, these figures show that the measured high frequency current amplitudes ĩdq are quadratic
functions of

idq ≈
[
Ldq
]−1

Φdq,
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hence
ĩdq ≈ Q

(
Φdq

)

where Q is a quadratic function of Φdq. In addition, using (6.5) we get

ĩdq = DIdq
(
Φdq

) ṽdq
Ω

Thus, the two previous expressions of ĩdq yield

DIdq
(
Φdq

) ṽdq
Ω

= Q
(
Φdq

)
.

Replacing DIdq by its expression in (4.144) leads to
(

∂2H
∂φd

2 (Φdq)
∂2H

∂φd∂φq
(Φdq)

∂2H
∂φq∂φd

(Φdq)
∂2H
∂φq

2 (Φdq)

)
ṽdq
Ω

= Q
(
Φdq

)
.

Hence, all the second order partial derivatives ofH(Φdq) are quadratic functions of Φdq and therefore
the energyH is a quartic (polynomial of degree four) function of the fluxes. Hence, it is not necessary
to use terms with degree higher than four in the energy expression, the terms of degree less or equal
to four are sufficient to explain the current response when a high frequency voltage is injected to the
motor. This result is an experimental validation of the choice of the total magnetic energy expression
proposed in (4.131).

The experimental results of parameters estimation discussed in this section validate the proposed
saturation model using the interpolation of the experimental data by linear least square. Indeed, they
show that the measured high frequency current amplitudes are well explained by the proposed model
and the estimation errors are small. To check the validity of the model with non interpolated data,
we use in the sequel other combinations of id, iq, ṽd and ṽq in (6.7)-(6.8). In addition, we use a step
voltage to test the model with another type of input voltage signal.

6.2 Model validation and verification

In the previous section, we proposed a method for estimating the magnetic parameters of the proposed
saturation model (4.132)-(4.133). This estimation procedure relies on (6.11)–(6.14), using three spe-
cial combinations of id, iq, ṽd and ṽq as described in section 6.1.2. This method was applied to an IPM
motor and a SPM motor where the parameters were estimated from the measured high frequency cur-
rents by fitting the values predicted by the model. In this section we verify that the model gives good
prediction for the data not used to estimate the saturation parameters, i.e. using other combinations
of id, iq, ṽd and ṽq than those used to estimate the saturation parameters.

For example, fig. 6.4 shows the experimental and estimated values of ĩd in terms of iq when the
total low frequency current is along the q- axis and the high frequency voltage is along the q- axis
(id := 0, ṽd = 0). This case is similar to (6.14), but the measured high frequency current is ĩd
(instead of ĩq) which were not used to estimate the saturation parameters. The estimated values of ĩd
are obtained using (4.132) where id := 0 and ṽd = 0:

ĩd =
2ṽq
Ω
α1,2Lqiq. (6.15)
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ĩd Estimated

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

% of rated current iq
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Figure 6.4: Estimated values vs measurements values of ĩd corresponding to (6.15): (a) IPM motor;
(b) SPM motor.

This figure shows good accordance between the measured and predicted values of ĩd. Thus, the
saturation model can predict the values of ĩd in this case. We note that the expression (obtained using
the saturation model) of ĩq in (6.13) is the same as the expression (also obtained using the saturation
model) of ĩd in (6.15). This result is confirmed experimentally by comparing fig (6.2)-(c) to fig. (6.4)-
(a) and fig. (6.3)-(c) to fig. (6.4)-(a).

In addition, to check the validity of the model, tests were conducted with multiple combinations
of id and iq using current vectors with various angles and magnitudes on the whole operating ranges.
The current amplitude |i| is ranging from 0 to 200% of the rated current with a small increment and
the current angle arg (i) varies from −90 deg to 90 deg (90 deg is sufficient because the motor is
symmetric according to q- axis) where |i| and arg (i) are given by

|i| =
√
i
2
d + i

2
q , arg (i) = arctan

(
iq

id

)
.

Fig. 6.5 shows for instance the estimated and measured values of high frequency current ampli-
tudes ĩd and ĩq in terms of the total low frequency current |i| × sign(arg(i)) for the current angles
arg (i) = ±30 deg, ±45 deg, ±60 deg, ±75 deg for the SPM motor (the results of the IPM motor
are similar but they are not shown here) with the injection of high frequency voltage along the d- axis
i.e. ṽd = 15 V and ṽq = 0. This figure shows a good agreement between the measured values of
high frequency currents and those predicted by the model over a wide operation range. This result
validates the saturation model at a large number of possible working points.
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(e) ĩd with arg (i) = ±60 deg

 

 

−100 −50 0 50 100
−0.05

0

0.05

0.1

0.15

ĩq
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(h) ĩq with arg (i) = ±75 deg

 

 

Measured
Estimated

Measured
Estimated

Measured
Estimated

Measured
Estimated

Measured
Estimated

Measured
Estimated

Measured
Estimated

Measured
Estimated

Figure 6.5: Measured values compared to model-predicted (estimated) values of ĩd and ĩq for multiple
current angles arg (i) with the SPM motor.
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Figure 6.6: Measured values compared to model-predicted (estimated) values of ĩγ and ĩδ for the
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Figure 6.7: Saturation curve φd − id; measured φd (dashed line), estimated φd with saturation model
(solid line), estimated φd without saturation (dash-dot line): (a) IPM motor; (b) SPM motor.
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We verify now if the model predicts the dependence of the high frequency current amplitude on
the rotor position and if it explains the impact of cross coupling saturation on the motor saliency. To
do that, a high frequency voltage is injected on the γδ reference frame where the angle θc is varied
from 0 to 360 electrical degree. The rotation of the high frequency voltage permits to scan the saliency
of the motor for each possible electrical position. At the same time, constant low frequency currents
id (magnetizing current) and iq (torque current) are applied to the motor in dq frame for setting the
saturation level of the motor.

Fig. 6.6 shows the the estimated and measured values of high frequency current amplitudes in γδ
frame ĩγ and ĩδ in terms of θc when a high frequency voltage is added along the γ axis (ṽγ = 15 and
ṽδ = 0. The results correspond to the SPM motor (the results of the IPM motor are similar but they
are not shown here) where iq = 0, 3, 6, 9 A (torque current) and id = 0. Firstly, this figure shows a
good accordance between model predicted and estimated values of ĩγ and ĩδ for various values of iq
which means that the model predicts well the variation of ĩγ and ĩδ with the rotor position.

Secondly, fig. 6.6 illustrates clearly the effect of cross saturation. Indeed, ĩγ and ĩδ are sinusoidal
functions of θc with period 180 deg; the amplitudes and phases of these sinusoidal functions vary with
the intensity of the current iq (which is nearly proportional to the motor load torque). The figures 6.6-
(a)-(c)-(e)-(g) show the variation of ĩγ with iq; we see in these figures that the maximum and minimum
of ĩγ (which define the saliency position) are shifted with iq. Furthermore, the figures 6.6-(b)-(d)-(f)-
(h) show the variation of ĩδ with iq; we see in these figures that the zeros of ĩδ (which define also the
saliency position) are shifted with iq. Thus, the saliency position is shifted due to cross saturation; and
therefore the saturation effects must be compensated to get a good estimation of the rotor position.

As a kind of cross-validation we also examined the current time responses to a large voltage step.
At locked rotor, a large voltage step is applied to the motor d- axis voltage as follows

vd(t) =

{
vstep if t ≥ 0

0 if t < 0

where vstep is a constant voltage. In this case, the flux expression can be written as

φd(t) =

∫ t

0

(
vstep −Rid(τ)

)
dτ.

Fig. 6.7 shows the good agreement also between the “measured” values of φd and values obtained
by simulation of φd for the IPM motor and SPM motor. This is an interesting cross validation result
because the step voltage contain low and high frequency components. Thus, the saturation model can
explain the motor behavior also using general signals.

In this first part, the saturation model was validated via various type of voltage signal and using
different scenarios. The impact of the saturation on the relation between the high frequency signals
and the rotor position is pointed out where it is clear that saturation effects must be considered to
estimate the rotor position. In the sequel we propose a validation procedure of the position estimation
method proposed in the previous chapter. Firstly, we focus on the position estimation method without
using a speed controller i.e. by using only a V/f law. Secondly, we test and validate the sensorless
control low speed law proposed in the previous chapter.
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Figure 6.8: Bloc diagram of the proposed V/f control scheme.

6.3 Experimental validation of position estimation procedure

After the experimental validation of the saturation model, we present in this section experimental test
and validation of the position estimation procedure proposed in the section 5.3.2 of the chapter 5.

The relevance of the position estimation methodology developed in the section 5.3.2 was tested
on two types of motors, an Interior Magnet PMSM (IPM) and a Surface-Mounted PMSM (SPM),
with rated parameters and saturation parameters listed in the tables 6.1 and 6.2 . Since the goal in this
section is only to test the validity of the angle estimation procedure, a very simple V/f fully open-
loop is used; the test with complete sensorless speed control law is presented in the next section. The
control law proposed in (5.37)–(5.42) is used where Ωc and Uγδ do not depend on iγδ; a fast-varying
square voltage with pulsation Ω := 2π×500 rad/s and with constant amplitude is added in accordance
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with (5.43), resulting in

dθc
dt

= ωc(t)

vγδ = urdγδ(t) + ωc(t)Φm + ṽγδf(Ωt).

where

• ωc(t) is the motor speed reference

• urdγδ(t) is a filtered piece-wise constant vector compensating the resistive voltage drop in order
to maintain the torque level and the motor stability

• the high frequency voltage is added only to the γ- axis voltage such that ṽγδ := (ṽ, 0)T with
ṽ := 15 V.

Fig. 6.8 shows the bloc diagram of he proposed V/f control scheme.

6.3.1 Test benchmark

During the experimental tests, the speed and the load torque of the motor are changed over a period
of 210 seconds; the speed remains between ±5% of the rated speed and the torque varies from 0% to
180% of the rated torque. More precisely, the sequence of speed reference and torque load used in
the experimental tests are described as follows

• Initialization phase: at first, the rotor position is initialized at θ = 0 where the torque and speed
are set to zero during this phase.

• Speed step at zero torque: after few seconds of initialization, the speed is increased suddenly
from 0 to a low speed value at zero load torque; then the motor is running at this constant low
speed. This phase is used to test the dynamic behavior of the position estimator with respect to
a fast speed variation.

• Torque step at low speed: the load torque is increased rapidly from 0 to a high level (greater
than rated torque), this is done at the constant low speed settled in the previous phase. This
phase is used to test the dynamic behavior of the position estimator with respect to a fast torque
variation.

• Slow speed reversal at high load torque: the motor speed is slowly reversed at high load torque;
the motor speed remains close to zero a large period of time (about 10 sec or 20 sec). After
this phase, the motor speed is negative and motor torque has a high positive value, hence the
machine switches from the motor mode to the generator mode at low speed and a high torque.
The static behavior of the estimator is tested in this case; the motor states remain close to the
region defined by ω = 0 where the position is difficult to estimate.

• Speed variation from negative low value to zero at high load torque: the speed is changed from
its previous negative low value to zero at the previous high load torque. This is a dynamic test
where the speed is changed at a high load torque.
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• Torque step from a high value to zero at zero speed: this is a dynamic test where the torque is
decreased rapidly from its previous high level to zero at zero speed.

• Torque step from zero to a high value at zero speed: this is also a dynamic test where the torque
is increased rapidly from zero to a high level at zero speed.

• Speed variation from zero to a low value at high load torque: the speed is changed from zero
to a low value at the previous high load torque. This is also a dynamic test where the speed is
changed at a high load torque.

• Sequential torque steps: In this phase, the speed is maintained constant at its previous low value
and the load torque is changed using multiple sequential steps.

The phases described previously represent a benchmark which is used is the sequel to test the position
estimator and the sensorless speed control law. This benchmark represents typical operation condi-
tions at low speed and at high load torque. Fig. 6.9 shows an example of speed and torque profiles
used to realize this benchmark.

6.3.2 Results

The rotor position θ̂ is estimated according to (5.84) where the value of

arg min
µ∈]−π,π]

[
M(µ, iγδ, ĩγδ)

]

is calculated using a nonlinear recursive estimation algorithm as described in (5.85)–(5.87). As ex-
plained in the section 5.3.3, the position θ̂n = θ̂(nTs) is estimated at each discrete time t = nTs as
follows

θ̂n = θc(nTs) + µ̂n. (6.16)

To solve (5.87), µ̂n is initialized at n = 0 by µ̂0 = µ̂(0) = 0 and the rotor position θ is initialized by
θ = 0 also. In addition we take the sampling time equal to Ts = T = 2π

Ω = 2 ms (one period of the
high frequency voltage), ρ = 450 Hz and ε = 10−6 A4.rad−4.

Fig. 6.10 and 6.11 show experimental results when the load and speed sequences of the benchmark
described previously are applied to the IPM and SPM motors respectively. Fig. 6.10-(a) and 6.11-
(a) compare the measured position µ = θ − θc (blue line) to the estimated position µ̂ = θ̂ − θc
obtained using (5.87) with saturation model (green line) and without saturation model (red line). It
is clear from these two figures that when the saturation model is used the agreement between the
estimated position and the measured position is very good, with an error always smaller than a few
(electrical) degrees. By contrast, the estimation error without using the saturation model (i.e. with
all the magnetic saturation parameters αij taken to zero) can reach up to 40◦ for the IPM and 70◦

the SPM in particular at high load torque level. This demonstrates the importance of considering an
adequate saturation model including in particular cross-saturation. Thanks to the saturation model,
we note that the position θ− θc is estimated even at large angle values (up to hundred degrees) which
is not possible using a linear saturation model.
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Figure 6.9: Experimental tests: (a) reference speed ωc; (b) applied load torque τL.

Slow speed reversal: to test the proposed position estimation method near zero speed, the motor
speed is slowly inverted between 35 s and 55 s (of the benchmark test) at approximatively 150% of the
rated torque. This is a very demanding test since the motor always remains in the poor observability
region, moreover under high load. Once again the estimated angle closely agrees with the measured
angle.

Load steps: the load is suddenly changed from 0% to approximatively 100% of the rated torque (in
the benchmark test) while the motor is at rest (around t = 125 s) or is running at low speed (around
t = 185 s). Fig. 6.14–6.17 illustrate the quality of the estimation under the high dynamic torque
conditions. They show that the estimated rotor position follow the measured position when a high
dynamic torque variation occurs at a very short time (between 40 ms and 80 ms only).

In this section we presented experimental results which validates the estimation of the rotor po-
sition at low speed by recursive nonlinear least squares. The magnetic saturation model proposed
in (4.132)–(4.133) was used to compensate nonlinear magnetic and cross coupling effects. This val-
idation was done using a V/f fully open loop control law where the focus was on the position esti-
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mation and not on the speed control. In the next section, we propose a complete low speed sensorless
control law of PMSM where this procedure is used at real time in a speed and position estimator in-
side a global sensorless control law. The values of the controller parameters for each motor are listed
in the table 6.5. These parameters are adjusted by simulations and experimentally where the essential
condition of time scale separation (5.111) is respected. The values of the remaining parameters of the
controller are obtained from 5.2.

6.4 Validation of the sensorless law

In the previous section we validated the rotor position estimation procedure even when the difference
is large between the position θc of γδ frame and the position θ of dq frame. In this section, we present
an experimental validation of the sensorless control law proposed in section 5.4 of chapter 5. The tests
are carried out on the IPM and SPM motors used in previous section having parameters listed in the
tables 6.1 and 6.2. The current measurements are sampled at the frequency fs = 1

Ts = 4 kHz. The
controller sampling frequency is also 4 kHz. The pulsation of the injected high frequency voltage
is Ω = 2π × 500 rad.s−1. The gradient descent gain Λ is chosen equal to the controller sampling
frequency fs divided by the mean value of ∂2M

∂µ2
which is equal to 1

5 for IPM motor and 1
8 for SPM

motor.

Table 6.5: Parameter values of the sensorless low speed controller for the IPM and SPM motors

Description IPM motor SPM motor

Bandwidth (Hz) of the current controller fi = 100 fi = 80

Damping factor of the current controller ξi = 0.75 ξi = 0.8

Bandwidth (Hz) of the position estimator fθ = 20 fθ = 11

Damping factor of the position estimator ξθ = 0.75 ξθ = 0.8

Bandwidth (Hz) of the speed controller fω = 4 fω = 3

Damping factor of the speed controller ξω = 0.75 ξω = 0.8

Cutoff frequency (Hz) of the current filter ffi = 180 ffi = 140

Cutoff frequency (Hz) of the high frequency current filter f̃i = 300 f̃i = 300

Cutoff frequency (Hz) of the speed filter ffω = 50 ffω = 50

Cutoff frequency (Hz) of the reference current filter f ri = 50 f ri = 50

Amplitude (V) of the injected high frequency voltage ṽ = 15 ṽ = 15

Gradient descent gain (rad2.A−2.s−1) Λ = 5fs Λ = 8fs
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6.4.1 IPM motor case

The IPM motor has a high level of geometric saliency where the difference between the inductances
Ld and Lq is relatively high; according to the table 6.2, for IPM motor we have

Ld = 9.15 mH, Lq = 13.58 mH, |Ld − Lq| = 4.43 mH = 48.41% of Ld.

The high saliency level of this motor facilitates the low speed control by high frequency voltage
injection. Indeed, in this case current measurement noises and power stage voltage losses have small
effects on the estimated rotor position. However, at high load torque, the saturation and cross coupling
effects must be compensated to get acceptable performances of speed control.

Fig. 6.18 shows the experimental results when the speed and torque reference of the test bench-
mark defined previously are applied to the IPM motor. The blue curve in fig. 6.18-(a) illustrates the
position error obtained when the saturation model is used to estimate the rotor position as explained
in (5.112); and the green curve in fig. 6.18-(a) illustrates the position error obtained when the standard
method is used to estimate the rotor position as explained in (5.26). It is clear in this figure that the
compensation of the saturation effects reduce significatively the rotor position estimation error mainly
at high load torque where the error is reduced from nearly 35 electrical degree (without saturation
compensation) to less than 5 electrical degree with saturation compensation. This result validates the
proposed sensorless control law for IPM with the proposed position estimation procedure.

6.4.2 SPM motor case

The SPM motor has a low level of geometric saliency where the difference between the inductances
Ld and Lq is relatively low; according to the table 6.2, for SPM motor we have

Ld = 7.86 mH, Lq = 8.18 mH, |Ld − Lq| = 0.32 mH = 4% of Ld.

The low saliency level of this motor complicates the low speed control by high frequency voltage
injection. Indeed, at high load torque or at high magnetizing current the saturation and cross cou-
pling effects introduce large errors on the estimated rotor position when the linear model is used.
Furthermore; these effects reduce the saliency level and can even destroy it. In addition, in this case,
current measurement noises and power stage voltage losses introduce large noises on the estimated
high frequency currents which highly disturb the estimated position. Therefore, the saturation effects
must inevitably be compensated to control the SPM motor at low speed using high frequency voltage
injection.

Fig. 6.19 shows experimental results of the SPM motor when the saturation effects are not com-
pensated i.e. the equation (5.26) instead of (5.112) is used to estimate the rotor position. The speed
and torque reference used in this test are the first three phases of the benchmark proposed in 6.3:
initialization phase; speed step at zero torque; torque step at low speed. It is clear in this figure that
the controller and motor loose the stability when the load is increased (at t = 10.17 s). Even when the
load is slowly increased, the controller does not stabilize the motor. The reason is that at t = 10.17 the
position estimation error increases up to −37 deg and the rotor saliency becomes very small. Thus,
for this SPM motor, the standard sensorless controller can not be used when is load torque is greater
than 54% of the rated torque. The solution is to use the sensorless control law with compensation of
the saturation effects using (5.112).
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Fig. 6.20 shows the experimental results when the speed and torque reference of the test bench-
mark defined previously are applied to the SPM motor. It is clear in this figure that the compensation
of the saturation effects reduce significatively the rotor position estimation error mainly at high load
torque to less than 10 electrical degree. This is an important result: the compensation of the satura-
tion makes it possible to control the SPM motor and reduce the position estimation error to less than
10 electrical degree; which was not possible with standard method of sensorless control as shown in
fig. 6.19.

The results presented in this section validate the proposed low speed sensorless control law for
the SPM and IPM motors. The position estimation error is reduced to 5 electrical degree in the case
of the IPM motor and to 10 electrical degree in the case of the SPM motor.

Conclusion

A simple identification procedure based on high frequency voltage injection of the magnetic satura-
tion model (4.132)-(4.133) parameters has been proposed in this chapter. Experimental tests on two
kinds of PMSM (IPM and SPM) demonstrate the relevance of this method. In addition, the posi-
tion estimation procedure was validated and the sensorless control law based on it was successfully
applied to the IPM motor and the SPM motor having little geometric saliency.

The experimental results show that by using the proposed saturation model, the position estima-
tion errors drop to less than 5 electrical degree for the IPM motor and to less than 10 electrical degree
for the SPM motor. We show that the last motor cannot be controlled at low speed and high torque
without compensating the saturation effects. In this chapter, we presented important experimental
results which validate the energy based modeling of PMSM proposed in the chapter 4 and the PMSM
position estimation procedure based on second order averaging proposed in chapter 5.
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Figure 6.10: Benchmark test for IPM: (a) measured θ−θc (blue line), estimated θ̂−θc with saturation
compensation (green line) and without saturation compensation using linear model (red line); (b)
measured speed ω (blue line), reference speed ωc (green line) (c) load torque τL; (d) voltages urdγδ
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Figure 6.11: Benchmark test for SPM: (a) measured θ−θc (blue line), estimated θ̂−θc with saturation
compensation (green line) and without saturation compensation using linear model (red line); (b)
measured speed ω (blue line), reference speed ωc (green line) (c) load torque τL; (d) voltages urdγδ
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Figure 6.12: Slow speed reversal for IPM: (a) measured θ (blue line), estimated θ̂ (green line); (b)
measured speed ω (blue line), reference speed ωc (green line); (c) load torque τL; (d) voltages urdγδ
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Figure 6.13: Slow speed reversal for SPM: (a) measured θ (blue line), estimated θ̂ (green line); (b)
measured speed ω (blue line), reference speed ωc (green line); (c) load torque τL; (d) voltages urdγδ
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Figure 6.14: Load step at zero speed for IPM: (a) measured θ (blue line), estimated θ̂ (green line); (b)
measured speed ω (blue line), reference speed ωc (green line); (c) load torque τL; (d) voltages urdγδ
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Figure 6.15: Load step at zero speed for SPM: (a) measured θ (blue line), estimated θ̂ (green line);
(b) measured speed ω (blue line), reference speed ωc (green line); (c) load torque τL; (d) voltages urdγδ
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Figure 6.16: Load step at low speed for IPM: (a) measured θ (blue line), estimated θ̂ (green line); (b)
measured speed ω (blue line), reference speed ωc (green line); (c) load torque τL; (d) voltages urdγδ
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Figure 6.17: Load step at low speed for SPM: (a) measured θ (blue line), estimated θ̂ (green line); (b)
measured speed ω (blue line), reference speed ωc (green line); (c) load torque τL; (d) voltages urdγδ
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Figure 6.18: Benchmark test for IPM with sensorless control law: (a) position error θ − θ̂ with
saturation compensation (blue line), position error θ − θ̂ without saturation compensation (green
line); (b) measured speed ω (blue line), reference speed ωref (green line); (c) load torque τL.
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Figure 6.19: Experimental result for SPM with sensorless control law and without saturation com-
pensation: (a) position error θ− θ̂ without saturation compensation; (b) measured speed ω (blue line),
reference speed ωref (green line); (c) load torque τL.
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Figure 6.20: Benchmark test for SPM with sensorless control law and with saturation compensation:
(a) position error θ − θ̂ with saturation compensation; (b) measured speed ω (blue line), reference
speed ωref (green line); (c) load torque τL.
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Chapter 7

Conclusion

Dans ce travail, nous avons proposé un modèle de saturation magnétique du moteur MSAP ainsi
qu’un observateur de position à basse vitesse et sans capteur par l’injection de signaux en utilisant
ce modèle. Cet observateur est basé sur l’injection de tension à haute fréquence. Les effets de la satu-
ration sont compensés pour obtenir des estimations précises de position en temps réel pour contrôler
la vitesse du moteur. Le concept de modélisation par l’énergie a été utilisé pour la modélisation
du MSAP saturé. Les dynamiques du système, y compris les effets non linéaires de la saturation
magnétique, ont été représentées simplement par une énergie polynomiale de degré quatre qui ne
dépend que de cinq paramètres de saturation (grâce aux symétries géométriques du moteur). Ensuite,
les équations de moteur sont obtenues à partir de cette fonction d’énergie en utilisant la formulation
Hamiltonienne. Les paramètres de saturation sont estimés par moindres carrés linéaires.

Ensuite, une méthode d’estimation de position est proposée et validée en utilisant ce modèle de
saturation et l’injection de signaux. Nous avons proposé une analyse originale basée sur la moyenni-
sation de second ordre du système du moteur avec injection de signaux hautes fréquences (HF). Nous
avons présenté une interprétation mathématique claire, basée sur la moyennisation, de la séparation
entre le système basse fréquence et le système haute fréquence du moteur. En utilisant la moyen-
nisation, nous avons donné une relation explicite entre la position du rotor et le courant HF. Cette
relation n’est pas linéaire et elle dépend des paramètres de saturation. Enfin, la position est estimée
par moindres carrés non linéaires récursives à partir du courant HF.

Le modèle proposé du MSAP ainsi que l’estimateur de position ont été testés et validés sur deux
moteurs (MSAI et MSAS). Les tests expérimentaux montrent une bonne performance de cet estimateur.
Les erreurs d’estimation sont petites (quelques degrés électriques). Cette méthode peut être utilisée
avec n’importe quel type du MSAP même avec des moteurs ayant une très faible saillance comme le
moteur MSAS utilisé dans ce travail.

Pour la suite de ces travaux, certaines améliorations seront possibles:

• le but de ce travail était seulement de montrer la validité de la procédure proposée d’estimation
de position. Mais, pour une utilisation simple et une mise en œuvre pratique, l’estimateur de
position par moindres carrés non-linéaires récursifs peut être amélioré et remplacé par un
simple observateur (basé sur la relation entre le courant HF et la position) avec moins de
calculs. Par exemple, il existe dans la literature d’autres types d’observateurs [110, 111]

• le rotor a été bloqué (par un frein) pour estimer les paramètres de saturation du moteur.
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Mais, pour un usage industriel pratique, il est important de trouver une autre méthode pour
l’estimation des paramètres sans l’utilisation d’un tel frein mécanique.

Enfin, cette modélisation énergétique du moteur électrique et la moyennisation du second ordre
peuvent être également utilisées pour les moteurs asynchrones où la saillance géométrique est très
faible et quasi inexistante. Pour ce type de moteur, la prise en compte de la saturation magnétique
est inévitable pour élaborer un contrôleur sans capteur à basse vitesse où la saillance magnétique
est incontournable pour estimer la position et l’amplitude du flux magnétique du rotor.

In this work, we proposed a magnetic saturation model of PMSM and a low speed sensorless
position observer based on this model. This observer is based on high frequency voltage injection.
The saturation effects are compensated to get accurate position estimations in real time that can be
used for speed control.

The energy modeling concept was used for saturated PMSM modeling. The system dynamics
including nonlinear saturation effects were represented by a simple polynomial energy function of
fourth degree depending on five saturation parameters thanks to construction symmetries. Then,
the motor equations are obtained from this energy using Hamiltonian formulation. The saturation
parameters are estimated by simple linear least square.

Then, a position estimation method is proposed and validated using this saturation model and
signal injection. We proposed an original analysis of the motor system with HF signal injection
based on second order averaging. A mathematical interpretation based on averaging of the separation
between low frequency motor system and HF system was given. And, an explicit relation between
the motor position and HF currents is obtained by averaging also. This relation is nonlinear and it
depends on the saturation parameters. Finally, the position is estimated by recursive nonlinear least
squares using this relation.

The PMSM model and position observer were tested and validated on two types of PMSM (IPM
and SPM). Experimental tests show good performance. The estimation errors are small (few electrical
degrees). This method can be used with any type of PMSM even with motors having extremely low
geometric saliency as the SPM motor considered here.

In the future, some improvements are possible:

• the goal here was to show the effectiveness of the proposed estimation procedure only. But,
for easier use and implementation, the nonlinear least square position observer used here can
be improved and substituted by a simpler observer with less computations. For example, other
types of observers exist in the literature [110, 111]

• the rotor was locked to estimate the motor saturation parameters. But, for industrial use, it is
important to find a method for saturation parameter estimations without using a brake.

Finally, such energy based modeling of electric motor and the second order averaging may be used
also for asynchronous motors where the geometric saliency is very small and almost nonexistent. For
this type of motor, the consideration of magnetic saturation is crucial to design a sensorless low speed
controller where the magnetic saliency is essential to track the rotor flux position and amplitude.
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Titre: Commande sans capteur des moteurs synchrones à aimants permanents par
injection de signaux

Résumé: Cette thèse étudie la problématique du fonctionnement sans capteur et à basse vitesse
des moteurs synchrones à aimants permanents (MSAP) par l’injection de signaux (nous nous
focalisons sur les effets de la saturation magnétique car leur compensation est primordiale pour
résoudre cette problématique). Nous proposons une méthode originale pour modéliser la saturation
magnétique en utilisant une approche énergétique (les formulations Lagrangienne et Hamiltonienne),
où les symétries physiques sont exploitées pour simplifier l’expression de l’énergie magnétique.
Les données expérimentales montrent qu’un polynôme de degré 4 est suffisant pour décrire avec
précision les effets de la saturation. Ensuite, nous proposons une analyse claire et originale basée sur
la moyennisation de second ordre et qui explique comment obtenir l’information de position à partir
de l’injection des signaux (en utilisant le modèle proposé). Nous donnons une relation explicite entre
les oscillations des courants statoriques et la position du rotor; cette relation est utilisée en temps réel.
Ce modèle de saturation magnétique ainsi que la procédure d’estimation de position ont été testés et
validés sur deux types de moteurs à aimants permanents: à l’intérieur ou en surface du rotor. Les
résultats expérimentaux obtenus sur un banc de test montrent que l’erreur d’estimation de la position
du rotor n’excède pas quelques degrés électriques dans la zone d’opération à basse vitesse.

Mots clés: Saturation, Contrôle sans capteur, Moteurs électriques, Moteur synchrone à aimants
permanents, Tension haute fréquence, Moyennisation, Modèle Hamiltonien.

Title: Sensorless control of synchronous permanent magnet motors by signal injection

Abstract: This thesis addresses the problematic of sensorless low speed operation of permanent
magnet synchronous motors (PMSM) by signal injection. We focus on the effects of magnetic
and cross saturations because their compensation is paramount to solve this problematic. We
propose an original way of modeling magnetic saturation using an energy approach (Lagrangian and
Hamiltonian formulations), where the physical symmetries are exploited to simplify the expression
of the magnetic energy. Experimental data show that a simple polynomial of degree 4 is sufficient to
describe accurately magnetic saturation effects. Then we propose a clear and original analysis based
on second-order averaging of how to recover the position information from signal injection (using
the proposed model). We give an explicit relation between stator current ripples and rotor position;
this relation is used in real time operation. Such magnetic saturation model and the resulting position
estimates were tested and validated on two types of motors: with interior and surface permanent
magnets (IPM and SPM). Experimental results obtained on a test bench show that estimation errors
of the rotor position do not exceed few electrical degrees in the low speed operating domain.

Keywords: Saturation, Sensorless control, Electric motors, Permanent magnet synchronous mo-
tor PMSM, High frequency voltage, Averaging, Hamiltonian model.
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