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Abstract

The number of microwave inte-
grated circuits (IC) has increased
in recent years following the trend
towards higher carrier frequen-
cies. This kind of IC is commonly
used in telecommunications
where they can be found in cellu-
lar phone equipment or in devices
for satellite communications. The
possession of simulation software
and probing tools is vital for fur-
ther development of such ICs.
These tools can localize the criti-
cal points in the IC and so the de-
sign can be improved.
Considering that an IC has a limit-
ed number of input and output
ports, it is rather difficult to char-
acterize the electrical signal inside
an IC. Several different probing
techniques based on different ap-
proaches were proposed and de-
veloped recently.

In this thesis we focus on the prob-
ing of Microwave Monolithic In-
tegrated Circuits (MMIC) made of
Gallium Arsenide (GaAs). The
basic idea is to exploit the electro-
optic properties of the semicon-
ductor. We focus a laser beam
onto the Device Under Test
(DUT). Considering that GaAs is
“transparent” for the chosen
wavelength, a part of the laser
beam will enter the substrate and
will be reflected from the back
face of the device. The reflected
laser beam will be modulated in

Résumé

Pendant les dernières années le
nombre de Circuits Intégrés (CIs)
micro-ondes a fortement aug-
menté suite à l’utilisation de fré-
quences porteuses de plus en plus
élevées. Ces types de CI sont très
fréquemment utilisés dans les
télécommunications, dans l’équi-
pement pour des téléphones porta-
bles ou pour la communication
satellite. Pour le développement et
l’amélioration des CIs, il est
important d’avoir à disposition
des outils de mesure et de simula-
tion. Avec ces outils, on peut loca-
liser les points critiques et la con-
ception peut être améliorée.
Considérant que le nombre
d’entrées et de sorties d’un CI est
limité, la mesure des signaux élec-
triques dans un CI est une tâche
délicate. Plusieurs techniques de
mesure ont donc été proposées ces
derniers temps ou sont en cours de
développement.

Cette thèse est centrée sur le son-
dage des circuits Microwave
Monolithic Integrated Circuits
(MMIC) à base d’Arséniure de
Gallium (AsGa). L’idée princi-
pale est d’exploiter les propriétés
électro-optiques du semiconduc-
teur. Un faisceau laser est focalisé
sur le circuit testé. Considérant
que le AsGa est “transparent”
pour la longueur d’onde choisie,
le faisceau entre dans le compo-
sant et il se réfléchit sur la face
arrière. Le faisceau réfléchi est
modulé en fonction du signal
micro-onde recherché car les pro-

Zusammenfassung

Als Folge der immer höheren Trä-
gerfrequenzen hat die Anzahl von
Integrierten Schaltungen (IS) bei
Mikrowellenanwendungen in letz-
ter Zeit stark zugenommen. Häufig
werden solche IS in der Telekom-
munikation eingesetzt, zum Bei-
spiel in Mobilfunktelefone oder für
Satellitenkommunikation. Für die
Weiterentwicklung solcher Schalt-
kreise ist es wichtig über geeignete
Simulations- und Meßinstrumente
zu ver fügen. So können d ie
Schwachstellen der Schaltungen lo-
kalisiert und behoben werden. Da
IS nur über eine beschränkte An-
zahl von Ein- und Ausgänge verfü-
gen, ist es eine schwierige Aufgabe,
die elektrischen Signale in den IS
zu messen. Mehrere verschieden
Meßmethoden für das charaktersie-
ren von IS basierend auf unter-
schiedlichen Ansätzen existieren
oder sind in Entwicklung.

In dieser Doktorarbeit konzentrie-
ren wir uns auf das Ausmessen von
“Microwave Monolithic Integrated
Circuits” (MMIC) auf der Basis
von Galliumarsenid (GaAs). Die
Grundidee ist, die elektro-optische
Eigenschaft des Halbleitermaterials
GaAs auszunutzen. Dazu wird ein
Laserstrahl auf die auszumessende
Schaltung fokussiert. Da GaAs für
diese Wellenlänge “durchsichtig”
ist, wird ein Teil des Laserstrahls
erst an der Rückseite des Halblei-
ters reflektiert. Der reflektierte La-
serstrahl wird in Funktion des
gesuchten Mikrowellensignals mo-
duliert, da die optischen Eigen-
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function of the microwave signal
sought after as the optical proper-
ties of the GaAs substrate depend
on this parameter. We can measure
this modulation and hence we can
determine the microwave electric
field inside the device.

The goal of this thesis is the con-
struction of a prototype of a probing
tool based on previous work in our
laboratory. The aim is a simple set-
up with low material costs. As a
consequence we use only standard
equipment. The essential improve-
ment of the presented work is the
use of new and more powerful
equipment. Explicitly we use polar-
ization maintaining fibers, we avoid
all free space setups and we review
the acquisition software. Further-
more we have a look at some theo-
retical problems neglected in the
previous thesis e.g. we calculate the
influence of the electric field direc-
tion on the probing results.

In this thesis, we describe the devel-
opment of the probing tool as well
as the obtained results. We demon-
strate the agreement between the
experimental measurements and the
theoretical description. We show
that we can probe the microwave
signal with a sensitivity of about

and that the opera-
tional frequency of the probing tool
is only limited by the characteristics
of the photodiode and the corre-
sponding amplifier. On the other
hand, we analyze the major techni-
cal problems. Therefore we men-
tion the variation in power and
polarization of the laser source used
for probing and we analyze the
problems of adequately focusing
the laser beam onto the IC.

2 mV Hz⁄[ ]

priétés optiques de l’AsGa dépen-
dent de ce paramètre. Nous pou-
vons mesurer cette modulation et
nous pouvons en déduire le champ
électrique dans le CI.

L’objectif de cette thèse est la cons-
truction d’un prototype basé sur des
travaux précédents réalisés dans
notre laboratoire. Le but principal
est une conception simple avec des
coûts de matériel faibles. Par consé-
quent on n’utilise que des compo-
sants standards. Le progrès de la
thèse présentée est l’utilisation
d’équipements nouveaux nettement
plus performants. En particulier on
utilise des fibres à maintien de pola-
risation, on évite toutes les manipu-
lations du faisceau laser en espace
libre et on renouvelle les logiciels
d’acquisition. De plus on traite
quelques problèmes théoriques
négligés dans les travaux précé-
dents: par exemple, on vérifie la
validité de nos résultats de sondage
si la direction du champ électrique
n’est pas connue exactement.

Dans cette thèse nous décrivons le
développement de l’outil et les
résultats correspondants. Nous
démontrons que les résultats mesu-
rés correspondent avec la descrip-
tion théorique. Nous illustrons que
nous pouvons mesurer un signal
micro-onde avec une sensibilité
d’environ et que la
fréquence opérationnelle de l’outil
de sondage est seulement limitée
par les caractéristiques de la photo-
diode. Un autre objectif de ce tra-
vail fut de trouver les limites tech-
niques et leurs origines. Dans ce
contexte nous avons dû constater la
dépendance de la polarisation et de
la puissance de la source laser en
fonction de la longueur d’onde.
Nous analysons le problème de la
focalisation adéquate du faisceau
laser sur le CI.

2 mV Hz⁄[ ]

schaften von GaAs von diesem
Parameter abhängen. Diese Modu-
lation kann ausgemessen werden
und so kann das elektrische Signal
bestimmt werden.

Das Ziel dieser Doktorarbeit ist die
Realisierung eines Prototypen eines
Meßgeräte basierend auf vorherge-
henden Arbeiten. Da das Meßgerät
möglichst einfacher sein soll, und
die Materialkosten niedrig gehalten
werden müssen, werden nur Stan-
dardkomponenten eingesetzt. Die
Neuerungen bei dieser Arbeit sind
der Einsatz von aktueller, leistungs-
fähigerer Ausrüstung: Es werden
polarisationserhaltende Glasfasern
eingesetzt, die Laserstrahlmanipu-
lationen im freien Raum werden
vermieden und die Computerpro-
grammierung der Instrumente wird
verbessert. Zusätzlich schließen wir
noch einige Lücken in der Theorie:
Wir berechnen den Einfluß auf die
Meßresultate, wenn die Richtung
des zu messenden elektrischen Fel-
des nicht genau bekannt ist.

In der vorliegenden Arbeit be-
schreiben wir die Entwicklung des
Meßgerätes und die erzielten Er-
gebnisse. Wir zeigen, daß die expe-
rimentellen Resultate weitgehend
mit der theoretischen Beschreibung
übereinstimmen. Wir demonstrie-
ren, daß wir ein Signal mit einer
Sensitivität von aus-
messen können und daß die maxi-
male Arbeitsfrequenz nur durch die
Eigenschaften der Photodiode und
dem dazugehörigen Verstärker be-
grenzt werden. Wir erörtern die we-
sentlichen technischen Probleme
und ihr Ursprünge: Dazu zählen die
Charakteristik der Laser-Quelle
(Variation der Leistung als auch der
Polarisation). Eine weitere Schwie-
rigkeit war das adäquate Fokussie-
ren des Laserst rah ls auf d ie
Schaltung.

2 mV Hz⁄[ ]
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Introduction

In the last few years, the use of electronic equipment increased constantly following the rapid de-
velopment of computer technology, mobile phones and satellite communication. The steady trend
towards faster and more powerful equipment as well as the limitation of frequency forced a devel-
opment toward higher and higher frequencies. Hence numerous new electronic applications ap-
peared and the part of microwave devices grew quickly.

For the development, design and production of new integrated electronic devices, it is important to
have powerful design and probing tools to characterize your new device. There are several possibil-
ities to determine the characteristics of an Integrated Circuit (IC). First you can connect your Device
Under Test (DUT) to electronic measurement equipment like a network analyzer or similar. Unfor-
tunately modern integrated devices consist of a large number of integrated elements and provide a
rather small number of output and input pins for external connections. So there are a lot of functions
you cannot verify this way. Another method to analyze the characteristics of a DUT is to use a com-
puter to simulate the operation of the device. Apart the fact that your device might be too compli-
cated or not suitable for a simulation, you have to consider that the software will fail to find a
problem if the simulator does not take into account the corresponding (known or unknown) physical
effect. The third approach of characterizing an IC°is to measure the electric signal inside the semi-
conductor. This sounds simpler than it is in reality because integrated devices are so complex that
you have to have sophisticated probing techniques to find and acquire your signal.

Parallel with the development of new semiconductors devices, new probing techniques appeared.
These new techniques can probe the electric signal inside the IC. Hence they allow improving the
actual design. They can also provide the data to improve the electrical models of the simulation soft-
ware.

By probing a semiconductor device, you are looking for some specific information or signal data.
In this chapter we will first have a look at the different kind of information, you can acquire by prob-
ing. We will indicate the general condition for the data acquisition. Afterwards we will investigate
several “state of the art” probing techniques.

1 Requirements for Probing

1.1 Requested Information

Before we discuss the different measurement techniques, we should think what kind of information
we want to acquire with our measurements. Depending on our goal we might have different interests
in different information.
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One goal might be to probe the electric or magnetic field distribution inside integrated devices. In
the case of a “perfect” probing, it would be possible to measure all field components (x, y or z) of
the electric ( ) or magnetic field ( ) including their phase shift (ϕ andζ respectively) for any
possible position r (Equation (1)).

 or (1)

If you have the distribution of your electric field inside your device, you can determine almost all
other parameters. For example you can use the field distribution to detect cross talking between par-
allel wave guides, you can use it to approve an electrical model of a transistor or you can determine
the characteristics of antennas.

If you are debugging or designing an IC°for Radio Frequency (RF) applications your basic interest
is not the electric field distribution all over your device. You are much more interested in the behav-
ior of parts of your device. This can be described by the two-port matrix (Figure 1) under the condi-
tion that the output and input impedance are well known. So you can analyze what each IC-part is
doing and so you are able to locate possible malfunctions. With some probing techniques, you cannot
measure all sxx-parameter but only the forward transfer function (s21).

For some digital application, it is interesting to observe the propagation of the signal e.g. the clock
signal through an IC. So you want to know when a signal impulse is reaching the transistor at the far
end of your device.

In some cases it might be interesting to measure several defined parameters of your ICs just after the
production of your wafer as quality control before a possible bonding and packaging of your device.
In this case you are not interested in the electric field or the transfer function. You just want the re-
producibility of the measurements.

1.2 General qualities for probing

We list below the qualities for a ‘good’ probing technique:

i) The measurement technique should be ‘non destructive’ and not require to modify the
DUT. It would be a disadvantage if you have to remove passivation layers or if you

Figure1 S-parameters of two ports are used to describe micro-
wave devices.

E(r) H(r)
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would have to establish supplementary connections to probe your signal.

ii) Your measurement techniques should not have any or only very small influence on the
signals in the ICs. In some cases the probe itself introduces a supplementary resistor,
capacitor or inductance in the setup and so it influences the signal on the chip and the
measurements will be systematically wrong.

iii) The frequency bandwidth of the measurement techniques should be so that you can op-
erate your device at any requested frequency. This implies that your system has to op-
erate at 40 [GHz] or even at higher frequencies.

iv) The cost for the probing tool should be ‘reasonable’.

v) If your are interested in mapping the electric field in an IC, you will have to acquire a
big number of data points. So you have to make sure that one acquisition does not take
a prohibitive long time.

vi) The required signal to noise ratio of the measurement system, which defines the small-
est detectable signal, should be as high as possible.
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2 Several methods for chip characterizations

There are several measurement techniques for integrated devices based on different physical effects
and metrological setups. Each approach operates in a slightly different way and leads to different re-
sults. There are also very specific advantages and disadvantages for each type of measurement tech-
nique. For the understanding of the advantages of a specific method, it is interesting to understand
the weak points of other setups. So we will have a look at some “state of the art” probing techniques.

2.1 Probing with a mechanical tip

The probing with a mechanical tip consists in placing a metal tip in contact with the metal layer
(Figure 2). A travel translation stage is used to place the mechanical tip on the surface of the semi-
conductor and an optical microscope monitors the actual tip position. The other end of the metal tip
is connected to an instrument for the signal analysis of the microwave signal. The metal probing
technique is common and several commercial solutions are available.

The mechanical probing with a tip is one of the simplest methods for debugging ICs. There are no
semiconductor material or layout properties required. You can even use the mechanical probe to
force an electrical signal into any point of the IC by connecting the probe to a signal generator.

On the other hand there are several weak points for the probing with a metal tip apart the fact that it
is potentially destructive. First there has to be no passivation layer to provide direct access to the met-
al layer. Also your probing point should not be hidden by another metal structure or other vital part
of the IC. If you want to probe an already protected chip you need some facilities for removing its
passivation layers. But the passivation is not the only problem. Some other problems arise if you try
to probe highly ICs at microwave frequencies.

Putting a mechanical probe connected to an instrument onto a metal layer induces another capaci-
tance into your IC. Depending on the length of your tip and the signal frequency, you even risk hav-
ing an emitting antenna just in front of your DUT. Another inconvenience is the fact that most
microwave instruments have an input impedance of 50[Ω] to avoid introducing reflections. So by
analyzing the signal you risk to add a supplementary impedance to your device.

Another drawback with this probing technique is the decreasing size of the metal structure of IC to
a size below the wavelength of visible light (about 0.3[µm]). So it is not possible anymore to use
standard optical microscopes. Hence you have to look for other possibilities to adjust the position of

Figure2 Probing with a mechanical tip.
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your metal tip on your IC.

The drawbacks of the mechanical probing caused the research for other more sophisticated probing
techniques.

2.2 Probing with an antenna

Another technique of probing a device is to use small antennas to measure the electric field just
above the surface of the circuits as proposed in [ 47 ]. By using a unipolar antenna made of a coaxial
cable, it is possible to probe the electric field normal to the surface as shown in Figure 3. With a
bipolar antenna it is possible to sense the electric field parallel to the surface. By calibrating the an-
tennas with a known electric field, it is possible to investigate the x, y and z component of the elec-
tric field above the circuit.

The problem of this technique is its coarse spatial resolution. Hence it is generally used for the char-
acterization of “large” devices like patch antennas.

2.3 Optical probing of Silicon CMOS integrated circuits

Considering that Complementary Metal-Oxide Semiconductors (CMOS) made of silicon substrate
is the most widely used type of IC, we present a short overview of two non-destructive CMOS based
probing techniques.

2.3.1 Hot luminescence technique

With hot luminescence technique ([ 13 ], [ 14 ] and [ 15 ]), we can probe field effect transistors
(FET) which are standard elements of a CMOS device. When a FET is conducting an electric
current, there are free electric charges (electrons for a n-type FET and holes for a p-type FET)
moving in the transistor channel. The free carriers are accelerated by the strong electric field inside
the transistor until they scatter with lattice vibrations, impurities or other carriers. Then the cycle of
acceleration and scattering restarts. During this acceleration, the energy of the mobile carrier is
increased. So some carriers can acquire a kinetic energy of up to 1[eV] due to the electric field of
up to 103 [V/cm]. These interactions heat up the mobile carrier as well as the lattice and so the
energy distribution of the mobile carrier is changing. The energy distribution can be described by

Figure3 Probing of the electric field above the surface of a cir-
cuit [ 47 ].
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the Boltzmann distribution (Equation (2)),

(2)

where P is the probability that a carrier has a given kinetic energy, k is the Boltzmann constant, U
the kinetic energy level and TE represents the effective temperature. Typical values for TE for elec-
trons in FET transistors are as high as 2000-3000[K]. So these electrons are called ‘hot carriers’.

In a conducting transistor, energy states in the conduction band can become occupied which would
rest unoccupied in the absence of an electric field. These include also states directly (same wavevec-
tor) above the lowest conduction band. These new occupied states introduce the slight possibility of
a light emitting transition down to the lowest level of the conduction band and hence the generation
of photon.

In a silicon n-type FET there are only a few photons generated per second and the generation is even
weaker in the case of p-type transistor. But the emission is strong enough to be detected by sophis-
ticated photo multiplier systems or to be converted into an electric signal by sensitive avalanche pho-
todiode. Considering that the emission is proportional to the current or the electric field in the
transistor, we can determine if a device is switching or not (Figure 4).

One possible application of the hot luminescence technique is the observation of the propagation of
the clock signal in an IC (Figure 5). When the clock arrives to a logical gate, it causes a switching or
no switching of the logical gate. If the gate is switching, there will be a current in the transistor and
this current causes the generation of some “hot luminescence” photons which can be detected. By
monitoring the entire chip with a sensitive camera, triggering the acquisition with a delay to the clock
signal and by averaging the data acquisition over several hours you can monitor the propagation of
the signal.

The advantage of the hot luminescence technique is that it can be used for almost all modern CMOS
devices assembled in flip-chip packages. The disadvantages are the fact that you need very sensitive
equipment to monitor the luminescence and so you can only approximate the voltage or current in-
side a transistor. Also the transistor under test has to be visible and should not be hidden by another
element of the IC.

Figure4 Basic idea of hot luminescence technique: The
switching current in logic gates (e.g. inverter) causes the
generation of some photons [ 13 ].

Figure5 One possible application of hot luminescence
technique: The “hot spots” indicate the location of the
switching transistors. So we can observe the propagation
of the clock inside an IC.
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2.3.2 Laser Voltage Probing

For the Laser Voltage Probing (LVP) ([ 13 ], [ 15 ] and [ 16 ]) a laser beam of a well specified wave-
lengthλ is focused on a p-n junction in the silicon CMOS DUT. The principle is that the reflection
of the laser beam will change in function of the strong electric field inside the p-n junctions
(Figure 6) due to the variations of optical absorption in the semiconductor.

The absorption coefficient of undoped silicon changes in function of the wavelength of the incident
laser beam. If the energy of the photons is larger than the band gap of silicon (typically higher than
1.12[eV]=1.80*10-19 [J] or shorter than 1.06[µm] for the wavelength of the laser beam) the pho-
tons will be absorbed and causes the generation of a hole/electron pair. If the energy of the incident
photon is smaller (wavelength longer than 1.06[µm]) it will not interact with the semiconductor lat-
tice. Hence the silicon is transparent. In a p-n junction the silicon is heavily doped and there might
be also a strong electric field (~105 [V/cm]). The band gap and so the optical properties or the ab-
sorption of silicon will change with these two parameters.

There are several physical effects having an influence on the optical properties of a p-n junction.
The most important in the case of LVP is the electro-absorption or photon-assisted tunneling. The
presence of a strong electric field in a p-n junction causes the generation of tunneling states in the
forbidden energy gap near the edges of the conduction and the valance bands. These tunneling states
induced by the electric field reduce the size of the band gap of the substrate. This phenomenon is
called the Franz-Keldysh effect. It changes the absorption coefficient if the energy of the incident
photons are about the same value as the band gap of silicon (Figure 7) as the energy gap of the semi-
conductor is changing slightly in function of the applied electric field.

The measurement setup in (Figure 6) shows a pulsed mode locked laser with a wavelength of
1.064[µm] which is focused from the backside of a flip-chip mounted IC onto a p-n junction. The
reflection is recollected by the same lens and is transported to a photo detector where the laser beam
is converted into an electric signal. Considering that the absorption variation is rather weak, a stro-
boscopic detection technique is used to recover the waveform of the signal (Figure 8).

Figure6 Basic idea of LVP: A laser beam is focus on a

junction and its reflections change in function of the
electric field in the junction [ 16 ].

Figure7 Measured electro-absorption in heavily doped
p+ silicon substrate as a function of the laser wave-
length [ 16 ].
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The advantages of the LVP technique are its high bandwidth and the fact that it can test flip-chip
devices in its packages except for devices with an absorbing substrate. There you would have to re-
move a little bit of the substrate to decrease the absorption. The disadvantages is that the spatial res-
olution is limited by the spot size of the laser beam and the fact that you can only probe in doped
regions (e.g. transistors) of your integrated device.

2.4 Electron Beam Probing

For Electron Beam Probing ([ 17 ], [ 18 ], [ 19 ] and [ 20 ]) the DUT is placed in vacuum and a
pulsed electron beam is focused on the DUT. The impact of the electron beam on the surface of the
device causes the generation of so-called ‘secondary electrons’. The number of ‘secondary elec-
trons’ depends on electric potential of the surface around the impact spot. The collection of this ‘sec-
ondary electrons’ allows the detection of the local electric field.

The setup of an electron beam probing system consists of several parts (Figure 9). An electron source
and an accelerating anode are providing and electron beam with a typical energy of 500-2500[eV]
for the electrons. The electron beam passes then a blanker system that can generate short pulse of a
pulse width of down to 5[ps] [ 19 ]. In the next stage, the electron beam is focused on the chip by a
system of electric lenses to a spot size of about 50[pm]. On the IC the primary electrons of the inci-
dent electron beam interact with the atoms of the surface. The interaction causes the generation of
secondary electrons with energy ranging from 0[eV] up to 20[eV] [ 20 ]. The number and energy
of secondary electrons depend on the electric potential of the surface around the impact of the elec-
tron beam. The secondary electrons are collected by an electric or a magnetic extractor system and
they are guided to a detector system and converted into an ‘electric’ signal.

For the probing of microwave signal, a stroboscopic setup up is used (Figure 8). So with a pulse
width of down to 5[ps], you can probe signals with a frequency up to about 80[GHz]. If we are in-
terested in a microwave signal, you do not even have to remove the passivation layer of the DUT.
The alternating electric potential is passing the passivation like a capacitance. By having some losses
you can even probe electrical signal which are buried by several non-conducting layers. Only if you

Figure8 Schematic diagram showing the principles of strobo-
scopic sampling. In such setup the bandwidth is normally limited
to about 0.36/δt, whereδt is the pulse width of the laser pulse. In
the case of a laser pulse width of 35[ps] you can sample signals
up to 10[GHz] [ 16 ].
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are interested in the continuous electric potential (DC offset), you have to have direct access to the
metal structure. Hence you have to ‘drill’ holes into the passivation layer.

The advantages of the electron beam probing are its excellent spatial resolution (about 50[pm]) and
the fact that it is a rather experienced method and that commercial tools are available. On the other
side there are problems with measurement at high frequencies. In this case you have to have a care-
ful design for your blanker and extraction system to avoid influence to the electric signal in the cir-
cuit under test.

2.5 Sampling Force Probing

A recent and commercially available method of probing the microwave signal inside an IC is the
Sampling Force Probing techniques ([ 21 ], [ 22 ] and [ 23 ]). It is based on the fact that the small
metal tip of a micro-machined cantilever probe and the metal structure form a capacitance
(Figure 10). If the voltage applied to the capacitance is changing there is an electrostatic Fz force
induced to the probe.

(3)

In Equation (3) vProbeis the voltage of the probe, vic is the seeked signal and Cp(x,y,z) is the value
of the capacitance at the given position x, y and z. By sensing the deflection of the probe and by
knowing its spring constant, it is possible to calculate the electrostatic force and so to measure the
voltage between the tip and the chip.

The problem of this approach is that above a certain frequency, typically about 100[kHz], the re-
sponse of the probe becomes very small and it is not possible to execute a data acquisition anymore.
But there is a simple way to overcome this limitation. According to Equation (3) the response of the
probe is proportional to the square of the applied voltage. So we can use this non-linearity to down
convert the signal frequency to a range where the probe is able to response to it.

Figure9 Electron Beam Probing in a vacuum tube [ 20 ].
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There are several possible setups for the down-converting of the signal frequency. We will have a
look at a common configuration displayed in Figure 11 [ 22 ]. The basic idea is to apply a modulated
voltage to the probe. A, K andφP are free parame-
ters, ωRF is the signal frequency of your IC andωr is the resonance frequency of the micro-machined
cantilever probe.

(4)

In Equation (4) we model the spring force Fz, where is the displacement of the probe, k is its
spring constant and Q the quality factor. Hence we can deduce the displacement of the probe
(Equation (5)).

(5)

If we control the three free parameters A, K andφP in a way that the displacement becomes zero we
can calculate the signal amplitude vic and its phaseφic. Hence we do not even have to know the pa-
rameters Cp, Q and k to determine the voltage between the probe and the metal layer.

The other advantages of the sampling force probe technique are its high spatial resolution (the size
of the tip is about 50[nm]), the high dynamic range of about 20[dB] [ 21 ] and the fact that the mea-
surement technique is independent of the semiconductor material. Compared to other measurement
techniques, it is also an advantage that you measure the voltage between one point of the metal struc-
ture on your IC and ground and not like in other techniques the electric field outside your integrated
chip under test.

On the other side you need special equipment to suppress interfering vibrations and it requires a com-
plicated setup to down convert the frequency to the resonance frequency of the probe. Also it is not
possible to measure beside the metal structure to map the entire electric field distribution.

2.6 External Electro-Optic sampling

A crystal consists of nucleus and electrons with positive and negative electric charges ([ 27 ], [ 28 ],
[ 29 ], [ 30 ], [ 31 ], [ 32 ] and [ 33 ]). An applied electric field changes the equilibrium position of
the charges. Depending on the material, this process is nonlinear. Under this condition the applied

Figure10 Basic idea of Sampling Force Probing: A

metal tip and the structure form acapacitance.
Figure11 Schematics for a heterodyne setup [ 22 ].
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electric field causes very small variation of the refractive indices. Equation (6) is a typical descrip-
tion of the relation between the electric field E and the refractive index n(E) for an electro-optic
crystal.

(6)

no is the refractive index in the absence of an electric field and rxx is the electro-optic coefficient
that depends on the material and its orientation. For certain crystals e.g. Gallium Arsenide this effect
is quasi instantaneous and so very interesting for the probing of fast microwave devices. The basic
idea of sensing the electric field in an IC is to place an electro-optic crystal just above the surface of
the DUT. A laser beam is focused into the electro-optic crystal as displayed in Figure 12. The re-
fractive indices change in function of the electric field just above the IC and so modulates the am-
plitude, the polarization or the phase of the laser beam. This kind of probing technique is called
“external electro-optic sampling” as you use an external electro-optic crystal to probe the electric
field.

Different ways are possible to exploit the electro-optic effect. The resulting modulation depends on
the polarization of the laser beam, the lattice of the crystal and the vector of the electric field. In a
common setup, the electro-optic crystal changes the orientation of the laser beam polarization. Af-
terwards the laser beam passes through an analyzer and the intensity of the laser beam becomes pro-
portional to the amplitude of the electric field. This effect is hardly limited in frequency but it has
the inconvenience that it is very weak. The electro-optic coefficients rxx have typically a magnitude
between and depending on the material. So sophisticated mea-
surement techniques are required to probe the electric field.

Figure 13 shows a common setup for external electro-optic probing [ 32 ]. It uses a phase-stabilized
Ti:Sapphire laser, which provides pulses of 100[fs] at an 80[MHz] repetition rate as a probing
beam. The laser beam passes aλ/4 wave plate and is then focused into the electro-optic crystal. The
reflected beam is analyzed in an analyzer to determine the changes of its polarization state. Harmon-
ic mixing of the seeked microwave signal frequency and an integer harmonic of the 80[MHz] rep-
etition rate are use to down convert the frequency. So the output signal can be analyzed with a RF-
Lockin amplifier to obtain the amplitude and the phase of the microwave signal.

The advantages of the external electro-optic probing are its independence of the substrate material.
You can probe all different kind of IC with it without having any trouble with the substrate or its

Figure12 Common setup for external probing: An elec-
tro-optic crystal is put close to the surface and a laser
beam is sensing the changes of the refractive index.

Figure13 Possible approach for the measurement setup
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passivation. It is also possible to measure all three components of the electric field including its
phase shift by using different electro-optic crystals and by changing their orientation [ 28 ]. One of
the most recent developments are commercial probes that can be connected to a standard oscillo-
scopes [ 30 ].

The disadvantages of the external electro-optic probing is the fact, that you are not measuring the
field in the chip but the electric field above your integrated device. Considering that the electric field
decreases exponentially (Figure 14) with the distance above the substrate, the result depends on the
position of the external probe. So it is not possible to measure the electric field inside a device but
you can characterize the emission of an integrated antenna [ 31 ]. The size of the external electro-
optic crystal (typically 50[µm] x 50 [µm]) and the diameter of the probing beam inside the crystal
(around 10 [µm]) limit the spatial resolution. Hence the resulting spatial resolution is rather coarse.
Another inconvenience is the capacitive effect of the probe.

2.7 Internal Electro-Optic Sampling

The approach of internal electro-optic sampling is very similar to the external electro-optic sampling
([ 34 ], [ 35 ], [ 36 ] and [ 37 ]). A focused laser beam is modulated by the electro-optic effect and
the modulated laser beam is analyzed afterwards. The difference is the absence of an external elec-
tro-optic crystal. The laser beam is modulated by the electro-optic properties of the substrate itself.
The inconvenience of internal electro-optic sampling is that it is only possible for devices with elec-
tro-optic substrates like Gallium Arsenide (GaAs) or other III-V semiconductors.

2.7.1 GaAs based devices and MMIC (Microwave Monolithic Integrated Circuits)

There are several applications for GaAs based IC. Most are linked to the recent boom of cellular
phones and the fiber optical communications networks. So GaAs chips became a common used
semiconductor. Hence the sales of GaAs chips reached a marked of about $3’750 millions in 2000
[ 40 ].

Figure14Simulation of the electric field around a microwave guide on a GaAs sub-
strate at 1[GHz] executed with a commercial simulation tool (CST Microwave Stu-
dio). The arrows indicate the direction of the field: its length is proportional to the
amplitude of electric field. The isometric lines (-3[dB] per line) illustrate the exponen-
tial decrease of the magnitude.
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The main application of GaAs circuits is the amplification and filtering of the microwave signal.
There is one reason to choose the III-V semiconductor GaAs as a material for this kind of circuit
even if it is much more difficult to handle and more expensive to produce than the ‘standard’ semi-
conductor silicon (Si): The electron mobility of GaAs (0.85[m2/Vs]) is higher than the electron mo-
bility of Si (0.135[m2/Vs]). There are several alternative semiconductors for microwave ICs like
Silicon Germanium (SiGe) or Indium Phosphide (InP) but GaAs is still a good choice in terms of
linearity and efficiency at power above about 0.5[W] [ 40 ]. There are also recent attempts to com-
bine GaAs and Si monolithically to explore the advantages of both materials.

One type of GaAs based IC are Microwave Monolithic Integrated Circuits (MMIC). They are used
for new communications applications with frequencies in the microwave range. The difficult and
expensive GaAs technology and the high frequency bandwidth cause the common GaAs MMIC
technology to be rather simple. The circuit consists of a single layer of the GaAs substrate. The
backside of the substrate is covert with a layer of gold and serves as ground for the entire circuit. On
the front side is the layout of the circuits with transistors, resistors, inductances, capacitances and
microwave guides (Figure 15 and Figure 16). The size of these guides is rather wide (wave guides
for analogical applications are typical 10[µm] wide) compared to recent digital silicon IC with
structures as small as 170[nm].

2.7.2 Internal probing

In the internal electro-optic probing of a GaAs chip the laser beam is focused onto the chip as dis-
played in Figure 17. Considering that GaAs is transparent for infrared light, the infrared laser beam
enters the chip, is modulated in the substrate and is reflected backwards.

The laser beam has to have certain properties in terms of wavelength, power and beam waist to make
sure that the internal electro-optic sampling works well without systematic errors. A common setup
for internal electro-optic probing is described in Figure 18. A continuous laser beam of a pigtailed
Distributed FeedBack (DFB) laser is used as a laser source. First it passes a pigtailed optical circu-
lator and it is focused on the chip with a system of lenses. An addition infrared camera displays the
location and size of the laser beam spot on the chip. The reflected beam is recollected by the lens,
reinjected into the optical fiber and passes again the optical circulator. After leaving the circulator
by the port 3, the signal is optically amplified by an Erbium Doped Fiber Amplifier (EDFA) and
filtered optically. Afterwards a fast photo detector converts the laser beam into an electric signal and
a network analyzer is analyzing it.

There are several advantages of internal electro-optic probing. One is the fact, that an external elec-
tro-optic crystal is not needed. So you do not have to place it just above the surface of your die and

Figure15 Setup of a GaAs MMIC. Figure16 Example of a standard MMIC.
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also there is no feedback from this crystal to your MMIC. Also the spatial resolution is better than
with an external approach considering that the spot size of the laser beam is typically between
15 [µm] and 30[µm]. The internal electro-optic probing is also the only approach where you can
measure the electric field inside the substrate. Another advantage is that the passivation of the chip
does not have to be removed as the 0.15[µm] thick Si3N4 passivation layer [ 39 ] is transparent for
the laser beam.

On the other hand there are several disadvantages. You can only sample integrated devices based on
a GaAs substrate. As the electro-optic effect of GaAs is rather weak the resulting signal is very small
and as the laser beam has to enter the substrate, you cannot probe places hidden by wave guides.

2.8 Project for the thesis

The project of this Ph. D. thesis is to realize an internal probing tool for GaAs MMIC as well as to
determine its theoretical and technical limits. The probing tool should be based on standard fiber
equipment and standard microwave equipment. Hence the setup should be simple and “inexpensive”
and should avoid the use of expensive and specially designed tools.

This thesis will continue previous work done in our laboratory. It is based on the results of the thesis
of Quang-Dai Le [ 7 ] and Philipp Olivier Müller [ 8 ]. We will exploit the “basic ideas” of probing
a Fabry Perot cavity with a continuous laser beam proposed in [ 7 ]. This approach has the advantage
that we do not need a pulsed laser and we can avoid the difficulties with the synchronization between
the microwave signal and the pulses of the probing beam. We will also use the proposition made in
[ 8 ] regarding the use of standard fiber equipment and the calibration method for the probing of the
absolute value of the electric field.

The original results of the presented work are the following parts: The previous works did always
the assumption that the direction of the probed electric field is known e.g. parallel to the z-axis. As
this assumption is not always true, we analyze the general case. We calculate the optical axis and
refractive indices in function of the applied electric field and we determine the resulting modulation.
The work presents the first electro-optic probing tool for MMIC using a pigtailed focuser. So we cal-
culated the laser beam diameter and the divergence using the formalism of the Gaussian beam. An-
other important part is the use of new equipment. As fiber optics did a lot a progress in the last time,
this had a major impact on our probing tool. We start using Polarization Maintaining (PM) fibers, a
pigtailed focuser and a powerful, tunable DFB laser.

Figure17 Basic idea of internal electro-optic sam-
pling.

Figure18Setup proposed by [ 8 ] for internal elec-
tro-optic probing.
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Theory

This chapter will explain the theory of electro-optic sampling using a Fabry Perot cavity. First we
will have a look at the electro-optic effect in a crystal like Gallium Arsenide (GaAs). We will con-
tinue with the calculation about the behavior of light in a Fabry Perot cavity. Afterwards we will
combine both effects for the calculation of the modulation. At the end of the chapter, we will do some
auxiliary considerations and comparisons.

Most of the following theory is based on the standard description of the electro-optic effect and the
Fabry Perot cavity. The important part of the presented work is the description of our special con-
figuration and its complete deduction. So we can find the origins of problems and explain them. Con-
sidering that some of the mathematical calculations are rather long and complicated, the detailed
deductions are placed in the appendix. So the reader can find the missing parts of the calculations.

3 Electro-Optic Effect

In vacuum or other isotropic materials, the propagation of an electro-magnetic wave does not depend
on the direction of propagation or on its polarization. In such isotropic materials, the electro-mag-
netic wave will always behave the same way. In crystals with periodic structures, the electro-mag-
netic wave propagation will depend on the direction of the propagation as well as on the polarization
of the wave. The properties of certain crystals can be changed by applying an external electric field.
As these changes affect also a laser beam propagating inside the crystal, this type of crystal is called
“electro-optic”.

3.1 General description of the problem

3.1.1 Isotropic and Anisotropic Material

In isotropic material the electric polarization of the material is always parallel to the applied elec-
tric field . So the dielectric susceptibilityχe is a scalar (Equation (7)).

(7)

By using and the relative dielectric constant we can show that the elec-
tric displacement  is also parallel to the applied electric field (Equation (8)).

P
E

Px

Py

Pz

ε0 χ⋅ e

Ex

Ey

Ez

⋅=

D εoE P+= εr 1 χe+( )=
D
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(8)

Under the condition that the crystal is not magnetic (µr=1) and that it is not absorbing (εr real), it is
easy to calculate the refractive index (Equation (9)) and hence the corresponding propagation veloc-
ity of electro-magnetic waves.

(9)

For anisotropic material Equation (7) and (8) are not valid anymore because the material properties
of crystals depend on the crystal axis. So we have to replaceχe by a [3x3] matrix called the electric
susceptibility tensor  (Equation (10)).

(10)

By applying  we get the corresponding dielectric tensor  (Equation (11)).

(11)

For the further calculations we assume that our crystal is homogenous (material properties are iden-
tical for all points in the crystal), nonabsorbent (there is no energy loss in the crystal and soεxx are
real numbers) and that the material is not magnetic (µr=1). By using the Maxwell equation [ 11 ] we
can show that the dielectric tensor is symmetrical (Equation (12)) for these conditions.

(12)

For the following calculations, it is useful to define the impermeability tensor  (Equation (13)).

 or (13)

Sinceε is symmetrical its inverse matrixη is also.

3.1.2 Electro-Optic properties of Materials

In certain types of crystals, the application of an electric field causes a displacement of parts of the
lattice and its charges. According to the quantum theory, the impermeability tensor depends on the
distribution of the charges in the crystal. Mathematically we can describe this modification of the
impermeability tensor  by a Taylor series in function of the applied electric field (Equation (14))

(14)

where is the impermeability tensor in the absence of an electric field,ri,j,k (a [3x3x3] matrix)
are the linear or Pockels1 electro-optic coefficient.si,j,k,l ([3x3x3x3] matrix) are the quadratic or

1. Effect discovered by the German physicist Friedrich Pockels around 1890.
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Kerr1 electro-optic coefficients. The magnitude of the electro-optic coefficient depends on the ma-
terial as well as on its lattice. The higher order terms of Equation (14) are rather small so they can
be neglected.

In our case we are interested in the electro-optic properties of GaAs. So we will examine its imper-
meability tensor and the according material constant for this specific material. For GaAs is
represented by Equation (15). We can see that Equation (15) satisfies the condition of Equation (12).
Hence in the absence of an applied electric field, GaAs is isotropic because the electric field vector
and the electric displacement vector are always parallel.

(15)

In Equation (16) we have the linear electro-optic coefficient of GaAs written as a[3x3x3] matrix as
well as the applied electric field given in Cartesian coordinates.

 and (16)

The symmetry in Equation (16) imposed by the condition of Equation (12), limits the number of in-
dependent coefficients in the impermeability tensor ([3x3] matrix) to six. Very often this fact is used
to reduce Equation (16) into a [6x3] matrix like Equation (17), easier to represent on a two-dimen-
sional sheet of paper. So each of the six independent coefficient depends on Ex, Ey as well as Ez.

(17)

By using Table 1, you can convert the [3x3x3] matrix of Equation (16) into the [6x3] matrix of
Equation (17).

1. Effect discovered by the english physicist John Kerr around 1875.

η 0( )

η 0( )
1 n0

2⁄ 0 0

0 1 n0
2⁄ 0

0 0 1 n0
2⁄

=

ri j k, ,

0 0 0

0 0 r41

0 r41 0

0 0 r41

0 0 0

r41 0 0

0 r41 0

r41 0 0

0 0 0

, ,= E
Ex

Ey

Ez

=

rI k,

0 0 0

0 0 0

0 0 0

r41 0 0

0 r41 0

0 0 r41

=

Table 1 Lockup table for the index I that represents the pair of indices (i,j) [ 1 ].
So for the element r(i=3,j=2,k=1) you will have to take element rI,k(4,1)=r41.

i = 1 i = 2 i = 3

j = 1 1 6 5

j = 2 6 2 4

j = 3 5 4 3
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In GaAs the Kerr effect is very weak or with other words, we can neglect the quadratic electro-optic
coefficients. So we can describe the impermeability tensor of GaAs for an applied electric field
by Equation (18).

(18)

It is important to notice that this tensor defines the propagation of an electro-magnetic wave in the
crystal. So this mechanism affects the laser beam as well as a microwave signal traveling across the
crystal.

In the further deductions, we are interested in the propagation of laser beam with a frequency of
1. So for the refractive index no, we have to take according

to [ 3 ].

For the electro-optic coefficient r41 the choice becomes more delicate as the coefficient depends on
νLaseras well as on the frequency of the applied electric field . In our case the frequency

is in the range of 0.1 to 20[GHz]. Hence we can use the electro-optic coefficient
 as proposed in [ 8 ].

We have to point out that for much higher frequencies thanνMicrowave, the electro-optic coefficient
r41(ν) becomes negligible. The basic physical concepts of this behavior are understood [ 12 ], but
there are no reliable publications on the cut-off frequency of the electro-optic coefficient for GaAs.
This “phenomenon” forbids the influence of the electric field of the laser beam on and so the
laser beam is modulated by the microwave signal and not vice versa.

3.1.3 Principle of the Ellipsoid

In the previous paragraph we discussed the electro-optic effect and the modification of the imperme-
ability tensor by an applied microwave signal. For the ‘every day calculations’ the use of the imper-
meability tensor or the dielectric tensor is too complicated.

The method to simplify the application of the impermeability tensor is to use the eigenvectors and
the eigenvalues of the tensor in Equation (18). The resulting vector of the multiplication of the ma-
trix with its eigenvector is parallel to the original eigenvector as explained in Equation (19). The ab-
solute value of the eigenvector has to be multiplied with its eigenvalue to get the absolute value of
resulting vector.

(19)

A symmetrical [3x3] matrix has three eigenvalues and three according eigenvectors. With linear al-
gebra, we can prove that the three eigenvectors for a symmetrical matrix are three orthogonal vec-
tors. Also we can demonstrate that the eigenvectors of a matrix and the eigenvectors of its inverse
matrix are identical.

So the eigenvectors of the impermeability tensor are identical with the eigenvectors of the dielectric

1. Corresponds to a wavelength of 1550[nm] or a photon energy of 0.80[eV].

E

η E( )
1 n0

2⁄ r41Ez r41Ey

r41Ez 1 n0
2⁄ r41Ex

r41Ey r41Ex 1 n0
2⁄

=

νLaser 193 THz[ ]≈ no νLaser( ) 3.374=

νMicrowave E
νMicrowave

r41 νMicrowave( ) 1.4 10 12– m V⁄[ ]⋅=

η E( )

M11 M12 M13

M21 M22 M23

M31 M32 M33

Eigenvectorx
Eigenvectory
Eigenvectorz

⋅ Eigenvalue
Eigenvectorx
Eigenvectory
Eigenvectorz

⋅=



Thesis Stefan Lauffenburger

19

tensor. Hence for the direction of the eigenvectors, the electric field is parallel to the electric dis-
placement and the corresponding electric polarization. So for this direction of the electric field, the
electro-magnetic wave is propagating like in isotropic material with a dielectric constant correspond-
ing to the eigenvalues of the dielectric tensor. For optical applications the direction of the eigenvec-
tors are called the ‘optical axes’ of the material.

The Maxwell’s equations are linear so long as the wave power is not strong enough to significantly
perturb the material. So the propagation for the other orientation of the electric field can be described
by projecting the electric field vector on the three eigenvectors and by calculating the propagation
for each component separately (Figure 19).

By using the results of Appendix E.1. on page 115, we find the eigenvaluesξ1,2,3 given in
Equation (20) to (22) for the impermeability tensor of Equation (18).

(20)

(21)

(22)

In these equations Ex, Ey and Ez are the x, y and z component of the applied electric field,
is the magnitude of the electric field, r41 is the electro-optic coefficient of

GaAs and no is the refractive index in the absence of an (microwave) electric field.

By using the results of Appendix E.2. on page 116 the corresponding non-normalized eigenvectors
are given by Equation (23) to (25). So we can see that the eigenvalues of the impermeability tensor
depend on the electro-optic coefficient r41 as well as on the amplitude of the applied electric field
and its direction. As the refractive index of the material is a function of the eigenvalues, it will also
depend on these parameters. On the other hand the eigenvectors (which are parallel with the optical
axis of the material) depend only on the directions of the electric field.

Figure19 Projection of the electric field vector on the eigen-
vectors of the material.
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 with

(23)

 with

(24)

 with

(25)

3.1.4 Representation as an ellipsoid

For the visualization and for the application of the results, we use an ellipsoid. The three eigenvectors
define the direction of three axis of the ellipsoid and the eigenvalues indicate the magnitudes of the
axes (Figure 20).
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For the following deductions, we are interested in the propagation of a laser beam in a given direction
with different states of polarization. This kind of propagation can also be referred to the propagation
of a plane wave. For this analysis, we are only interested in the electric field direction normal to the
propagation direction of the laser beam. Thus we have a look at the intersection of the ellipsoid and
the plane normal to the direction of propagation passing through the origin. We will find an ellipse
like in Figure 21. This ellipse allows us to analyze and calculate the light propagation in this given
direction. So if the polarization is parallel to the axis 1 we have to take into account the refractive
index nAxis1 and the according propagation velocity. If the polarization is parallel to axis 2 we have
to take nAxis2. For all other polarization, we have to separate our vector into the axis 1 and axis 2
component.

3.1.5 Classification of different Anisotropic Materials

Material can be classified in function of the resulting ellipsoid. If the ellipsoid is a sphere or with
other words if all three axes have the same absolute value, the material is called an isotropic material
(Figure 22). Most materials and vacuum are isotropic. If only one axis of the three is different, the
material is called a uniaxial material (Figure 24). If all three absolute values are different, the mate-
rial is called a biaxial material (Figure 23).

If there is no electric field applied to a piece of bulk GaAs, it will show an isotropic behavior. In the
next section we will see that under an applied electric field the absolute values of two axis will
change. So with an applied electric field, GaAs becomes biaxial.

Figure20 An ellipsoid with its axis.

Figure21 Intersection of the plan through the origin
and the ellipsoid.
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3.2 Refractive index for different direction of the electric field in GaAs

In the general case, the calculations are still too complicated for further analysis. Equation (20) to
(25) are easier to handle if one or two elements of the electric field vanish.

3.2.1 Ex

Under the condition that we have an electric field parallel to the x-direction, Ey and Ez vanish and
Equation (18) can be rewritten as Equation (26).

(26)

The eigenvalues become Equation (27), (28) and (29).

(27)

(28)

(29)

The eigenvalues of the impermeability tensor do not correspond to the refractive indices of the ma-
terial but by using Equation (9) and Equation (13), we can extract the requested information. So we
will get the refractive indices for the different optical axes (Equation (30), (31) and (32)).

(30)

(31)

Figure22 Refractive index in func-
tion of the angle of light polarization
for isotropic material.

Figure23 Refractive index in func-
tion of the angle of light polarization
for biaxial material.

Figure24 Refractive index in func-
tion of the angle of light polarization
for uniaxial material.
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(32)

We can use for as well as the fact that the parameter for
a further simplification of Equation (31) and (32). So finally we get the commonly used values for
the different refractive indices (Equation (33), (34) and (35)).

(33)

(34)

(35)

For the eigenvectors, we get the following directions (Equation (36), (37) and (38)) expressed in the
x, y and z-coordinate system defined in Figure 25.

(36)

(37)

(38)

3.2.2 Ey

In the case of an applied electric field parallel to the y-axis, we find for similar reasons the following
refractive indices (Equation (39), (40) and (41)).

Figure25 Configuration of the optical axis for an applied electric field
parallel to the x-axis.
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(39)

(40)

(41)

In this case the directions of the eigenvectors are given by Equation (42), (43) and (44).

(42)

(43)

(44)

3.2.3 Ez

We execute the same deductions for the case of an applied electric field parallel to the z-axis and so
we get Equation (45), (46) and (47).

(45)

(46)

(47)

In this case the directions of the eigenvectors are given by Equation (48), (49) and (50).

(48)

(49)

(50)

The ‘similar’ results for all three axis are caused by the fact that the GaAs crystal cut normal to the
[1 0 0] Miller plane is symmetric in the x, y and z-axis (Figure 26).
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3.2.4 Ex + Ez

In the next chapter, we will determine the modulation caused by the electro-optic property of GaAs.
In most parts of these deductions, we assume that the applied electric field is parallel to z-axis. Un-
fortunately this assumption ( ) will not be valid in the “real world”. In this paragraph
we calculate the ellipsoid for an applied electric field vector given by with
and . In paragraph 5.3 we will use the following results to estimate the error caused by this
assumption.

For the refractive indices, we get Equation (51), (52) and (53).

(51)

(52)

(53)

By defining and by using again for , we find
Equation (54), (55) and (56).

(54)

(55)

(56)

The eigenvectors are directed according to Equation (57), (58) and (59). Again we can remark that
the direction of the eigenvectors depend on the direction of the applied electric field.

Figure26 GaAs lattice with a face-centered cubic lattice. In this lattice
the Arsenide represents the positive ion and Gallium is the negative one.

As

As

Ga

Ga

Ga

Ga

As

As As

As

As

As

As

As

AsAs

As

As

yx

z

Ex Ey 0= =
E Ex 0 Ez,,[ ]= Ex 0≠

Ez 0≠

n1 no=

n2

no

1 no
2r41 Ex

2 Ez
2+–

--------------------------------------------------=

n3

no

1 no
2r41 Ex

2 Ez
2++

--------------------------------------------------=

EAmplitude Ex
2 Ez

2+= 1 1 ∆+ 1 1 2⁄–≈⁄ ∆ ∆ 1«

n1 no=

n2 no
1
2
---no

3r41EAmplitude+≈

n3 no
1
2
---– no

3r41EAmplitude≈



Theory

26

(57)

(58)

(59)

If the ratio Ez / Ex increases infinitely but this does not cause any problems because the
eigenvectors are not normalized. By using the relations of Equation (60) we can show that this results
are consistent with Equation (48) to Equation (50).

 and (60)

For the other cases with  or  we can find similar results.

3.3 Comment

In the previous paragraph, we explained the standard representation of the electro-optic effect in the
GaAs crystal. We performed the calculation in general and for several special cases. We showed that
the ellipsoid and hence the refractive index of the material changes in function of the applied electric
field. We proved that the direction of the optical axes depend on the direction of the electric field
which is unfavorable for our application. The variation of the refractive index depends on the mag-
nitude of the applied electric field as well as on its direction. As the modifications of the refractive
index are extremely weak, the resulting modulation will be small as well.
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4 Electro-optic crystals in a Fabry Perot Cavity

In our measurement setup, we will focus the laser beam onto an IC and we will analyze its reflec-
tions. The air / GaAs interface and the golden back face of the substrate frame a Fabry Perot cavity.
So will have a look at the mathematical response of the cavity by taking into account that there is
electro-optic material inside the cavity.

For the initial calculations we do several assumption to simplify the deductions. We assume that the
incident laser beam is perfectly parallel or with other words that the wave front is a plane wave. The
incident laser beam should also have a well-defined linear polarization. Also we assume that the
spectral linewidth of the laser is narrow enough so that the corresponding coherence length is much
longer than the cavity length.

4.1 Response of a Fabry Perot Cavity

Before we start the calculation of the Fabry Perot response, we should recall one principle. For the
calculation of the reflections, we use the electric field of the laser beam. So at the end of all our de-
duction we have to convert the amplitude of the electric field into the laser beam intensity by using
Equation (61)1. So we find a value proportional to the power sensed by the photo detectors.

(61)

In Equation (61) ILaserbeamis the intensity or the power of the laser beam, ELaserbeamis the corre-
sponding electric field and ZMaterial is the wave impedance of the material in this case the wave im-
pedance of the surrounding air.

For the deduction of the Fabry Perot response, we know that at the first air / GaAs interface one part
of the laser beam is reflected and the other part passes through (Figure 27). We can describe this
mathematically by Equation (62),

 and (62)

where EIncident, EReflectedand ETransmittedare the electric field amplitudes of the incident, reflected
and transmitted laser beam and rInterfaceand tInterfaceare the reflection and transmission coefficients
respectively.

We assume that there is no loss or gain of energy in the air / GaAs interface. By using the energy
conservation law and the boundary conditions, we can calculate the transmission and reflection co-
efficient for a plane wave with normal incidence (Appendix E.3. on page 119) in function of the ma-
terial properties. In our case these coefficients are given by Equation (63) and Equation (64), where
nGaAs and nAir  are the refractive indices of GaAs and of the surrounding air.2

 and (63)

1. The intensity represents a power per surface or [Watt/Meter2]. In our case the “surface” of the laser beam will always
remain constant. Hence the intensity is directly proportional to the power of the laser beam.

2. With nGaAs=3.374 and nAir=1 we find rAir-GaAs=-rGaAs-Air=0.54 and tAir-GaAs=tGaAs-Air=0.83.
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 and (64)

Afterwards the laser beam passes through the semiconductor substrate and is reflected at the golden
backside. This propagation in the semiconductor causes a phase shiftφ described by Equation (65),

(65)

where d is the thickness of the GaAs layer,λο is the wavelength of the laser beam in vacuum,ν is
the corresponding frequency and no is the refractive index of GaAs in the absence of an applied elec-
tric field. For the purpose of our work the undoped GaAs substrate can be considered as transparent.
However there will be a slight absorption of the laser beam as given by Equation (66).

(66)

2d represents the distance andα is the absorption coefficient of the material. For infrared laser light
around 1550 nmα is about 0.006[cm-1] [ 1 ]. There are still some losses caused by the reflection at
the golden back face which can be represented by R’1. So we can “add” the attenuations during a
round trip in the cavity (Equation (67)).

(67)

By taking into account the phase shift ofπ at the golden back face of the cavity due to the boundary
conditions at the interface between a dielectric and a metal material, we can execute the summation
of the different reflection according to Figure 27.

By defining as well as we can calculate the
sum in Equation (68).

(68)

Per definition and so we can use the results of Appendix E.4. on page 121 to simplify the
summation of EReflectedas given in Equation (69).

1. According to [ 4 ] the reflectance coefficient of opaque gold film is 0.986 for a laser beam with a wavelength of 1000[nm]
and 0.994 at 5000[nm]. So theoretically R’ should be close to unity but in reality we have to calculate with loss of at least
2 [dB]. The supplementary losses are probably due to an uneven surface.

Figure27 Summation of EReflected.
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(69)

As mentioned above, our principle interest is the reflected intensity and not the magnitude of there-
flected electric field. So by using Equation (61) we can calculate the intensity of the reflected laser
beam as given Equation (70).

(70)

Figure 28 shows the response of a cavity for common values of r, R with a typical range for the wave-
lengthλo.

4.2 Minima and Maxima of the Cavity Response

It might be of some interest to know the position of the maximal and minimal values of the cavity
response. By using the results of Appendix E.6. on page 123 we find that the maximum and the min-
imum are atφ=0 respective atφ=π (Equation (71) and (72)).

(71)

(72)

By using these results we can show that reflected intensity is equal to incident intensity, if r =1 or
R=1 or if both reflection coefficients represent a perfect mirror (R=r=1). For all other values, the
maximum reflected power is smaller than the incident power. Equation (72) indicates that the mini-
ma become zero only in the case when the term (r-R) vanishes. In this case both reflection coefficient
have to be equal.

Though we do not need the reflection coefficient r and R for the further calculations, it is interesting

Figure28 The response (reflected power) of the cavity with r=0.54, R=0.63
( ), d=500[µm] and PIncident=1 [mW]..
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to calculate their values. Considering that it is very simple to determine IMaximum, IMinimum and IIn-

cident, we try to express r and R in function of these parameters.

 and (73)

By using the definitions for A and B given in Equation (73), we can resolve the system of equations
given by Equation (71) and (72). According to Appendix E.7. on page 124, we find for the reflection
coefficient R and r Equation (74) and (75) respectively.

(74)

(75)

4.3 Comment

In the previous paragraph, we reformulated the derivation of the Fabry Perot response. This “stan-
dard” description is simple and easy to use. The only inconvenience is the impreciseness of the re-
flection coefficient R as we cannot determine it properly.

We could determine the maximal and minimal reflected intensities in function of the incident inten-
sity and the reflection coefficients r and R respectively. As we managed to inverse these relations,
we could express the reflection coefficients r and R in function of the incident, maximal reflected
and minimal reflected intensity. This is interesting as the three parameters are measurable with our
experimental setup. Hence we can measure the reflection coefficients r and R.

A I Maximum I Incident⁄= B IMinimum I Incident⁄=

R 1 A– B 1 A– 2( ) 1 B2–( )–
A B–

------------------------------------------------------------------=

r 1 1 B2–( ) 1 A2–( )⁄–

B A 1 B2–( ) 1 A2–( )⁄–
---------------------------------------------------------------=
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5 Amplitude Modulation

5.1 Modulation caused by the electro-optic crystal

In this paragraph we will investigate the modulation caused by the electric field parallel to the z-axis
as displayed in Figure 29 and Figure 30. For this calculations we assume that and
and hence we put Ex=0 and Ey=0.

In this case the refractive indices of the GaAs crystal are given by Equation (45), (46) and (47). For
a polarization parallel to the optical axis of the crystal, the phase shiftφ due to the propagation in the
semiconductor is given by Equation (76).

(76)

Ez is the applied electric field parallel to the z-direction. So the response of the cavity Fabry Perot
becomes Equation (77).

(77)

In GaAs the electro-optic coefficients are very weak. Hence the electro-optic effect is rather weak
and so the modulation will be small. The weak modulation allows us to linearize IReflectedin function
of  or more practical in function of Ez (Equation (78)).

(78)

By changing the partial derivative according to Appendix E.5. on page 122, we get Equation (79).
So we can replace the unknown function by the determinable function

. If we know or if we can measure the response of the cavity IReflected(λο), we can
determine the parameter .

Figure29 Configuration to measure the electric field Ez
inside the MMIC.

Figure30 Principal idea of the amplitude modulation in
a Fabry Perot cavity.
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(79)

The amplitude of the intensity modulation can be described in this case by Equation (80). This signal
is called the electro-optic signal.

(80)

By knowing the wavelength of the laser beamλo, the refractive index no as well as the electro-optic
coefficient r41 and by measuring the electro-optic signal IElectroOpticand the response of the cavity
IReflected(λο), we can calculate the electric field applied Ez across the cavity. So we have the ability
to determine the voltage applied between the microwave structure and the back face of the substrate.

Last but not least we must have a look at the signs of Equation (80). The refractive index no, the
wavelengthλo and the electro-optic coefficient r41are ‘per definition’ positive and so we do not have
to care about their signs. The electric field Ez can be positive or negative in function of its direction.
The derivative can be either positive or negative depending on the wavelengthλo.
On the other side optical intensities are always positive. In Equation (78) the intensity of a laser beam
is always positive but in Equation (80) we are looking at the variation of the reflected intensity to a
given reference level ( ) and so IElectroOptic might have a negative sign.

In Equation (81) Ez is the electric field of a microwave signal, where EMircrowave is the ‘per defini-
tion’ positive amplitude and f is the corresponding frequency. EOffset is the continuous part of our
microwave signal. In some cases an offset is used to set a working point of a microwave device. Un-
fortunately a high offset can also polarize the electro-optic modulator. For all further calculations
and examples we assume that EOffset does not affect the electro-optic modulation and therefore we
neglect EOffset.

(81)

So in Equation (82) IElectroOpticis the amplitude of the optical intensity modulation. This amplitude
is defined as the difference between the maximal and average intensity of the laser beam and so ‘per
definition’ positive. So according to this all parts in Equation (82) are positive except the derivative

 which might become negative.

(82)

Considering that IElectroOptichas to be positive we can introduce a phase shift ofπ in the left part of
Equation (82) to match or if you prefer patch the signs. We have to take into account a last “optical
specialty”: Up to now we treated the intensity of the modulation as it would be an amplitude. Unfor-
tunately optical modulations are often expressed in “peak to peak” values. So we have to multiply
IElectrooptic with two. So we display the “peak to peak” modulation of Equation (83) in Figure 31.

(83)
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5.2 Modulation for a laser polarization not parallel to optical axis

For technical reasons, it is difficult to align the polarization of the incident laser beam perfectly with
the optical axis of the GaAs crystal. So in this paragraph we will calculate the influence of the po-
larization deviations.

We still assume that the incident laser beam has got a linear polarization and it is propagating as a
plane wave in direction of the z-axis. But the polarization of the incident laser beam is off the optical
axis of the crystal by the angleϕ as defined in Figure 32.

So in this case we will have to calculate the cavity response twice. We project the electric field of
the laser onto the two optical axes of the crystal and we calculate the Fabry Perot response for both
of them as given in Equation (84).

Figure31 Amplitude and phase shift of the electro-optic signal. For this figure we used
the following parameters: no=3.374, r41=1.42 10-12 [m/V], r=0.54, R=0.63 (-2 [dB]),
d=500[µm], EMicrowave=1 [V]/d [m] and PIncident=1 [mW].

Figure32Situation if the polarization of the laser beam
is not aligned with the optical axis.
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(84)

with  and

Following the deduction in Appendix E.8. on page 126, we can linearize both terms of Equation (84)
in function of the applied electric field Ez. By reasoning the same way as in the previous paragraph,
we can describe the modulation in function of the angleϕ (Equation (85)).

(85)

So the magnitude of the modulation decreases with cos(2ϕ°)and vanish whenϕ reachesπ/4 respec-
tively 45°˚.So for this setup, we should not find any modulation at all if we align the polarization
along the bisector of the two optical axes. So an accidental deviation of the polarization of∆ϕ off
the optical axis will decrease the modulation with a factor proportional to .

5.3 Modulation for an electric field Ex+Ez

In the previous paragraph we analyzed the case with well-defined optical axis (
and ) imposed by the direction of the applied electric field parallel to the z-axis
( ). We assumed that the polarization of the incident laser was not perfectly aligned with the
optical axis.

In this paragraph we will analyze the inverse case. We assume that the polarization of the laser beam
is adjusted parallel to which allows the probing of an applied electric fields par-
allel to the z-axis. It might be that the electric field is changing its direction after the adjustment of
the polarization or that the laser beam will be displaced to another location on the DUT with a dif-
ferent electric field vector. With the direction of the electric field, the optical axes of the crystal will
change. The polarization of the incident laser beam is not aligned anymore with the optical axis and
hence the modulation will change. Under real conditions it is very likely that the electric field has a
component normal to the z-axis. So we will analyze the configuration displayed in Figure 33.

Figure33The laser beam is focused on the GaAs crystal with a polarization paral-
lel to the vector . The direction of the applied electric field is
given by .
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In Figure 33 the applied electric field has the direction given in Equation (86), where EAmplitude in-
dicates the magnitude of the microwave electric field andθ is the angle between the x-axes and the
electric field vector.

(86)

By using Equation (57) to (59) we can determine the orientations of the threes optical axis in func-
tion of the angleθ. These vectors are normalized to simplify the further calculations. So we have got
Vector1, Vector2 and Vector3 for the three directions of the optical axes.

(87)

For the further calculations we project the electric field vector defined in Equation (86) on the optical
axes defined inEquation (87). For each of the three optical axes, we calculate the response of the Fab-
ry Perot cavity. For following calculation, we assume that the reflection coefficients R as well as r
are identical for all three optical axis. By inserting the result of Appendix E.9. on page 127, we get
for the reflected intensity a sum of the three terms corresponding each with an optical axis
(Equation (88)).

(88)

with ,  and

We linearize the three independent terms of Equation (88) in function of the applied electric field
EAmplitude. By reasoning the same way as in the previous paragraphs, we can describe the modulation
in function of the angleθ by Equation (89).

(89)

We have to make some comments about this result. If the applied electric field is parallel to z-axis,
θ becomesπ/2 and thus we find again the result of Equation (83). On the other hand if the electric
field vector is parallel to the x-axis, the modulation decrease to a half but it will not vanish. Hence
the modulation is not proportional to projection of the electric field vector on the z-axis or propor-
tional to sin(θ)2. So our probing setup is also sensible to the electric field normal to the z-axis as men-
tioned in [ 24 ] and [ 25 ].
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5.4 Comment

The mathematical description of the amplitude modulation is straight forward compared to the other
modulation techniques described in the following paragraphs. It is valuable to have a simple relation
between the applied electric field and the probed intensity. Hence we can calculate the searched elec-
tric field. The only theoretical inconvenience is the fact that the results are wrong if the applied field
is not parallel to the z-axis.
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6 Polarization modulation

In most publications about electro-optic sampling systems, a slightly different configuration is used.
The polarization is aligned between the two optical axes. So the state of polarization is modulated in
function of the applied electric field. As proposed in [ 24 ] and [ 25 ], we analyze this configuration
for the same conditions as the amplitude modulation.

6.1 Setup

The continuous wave (CW) laser beam is focused beside a microwave guide as shown in Figure 34.
The alignment of the polarization is between the two optical axes of the crystal. The polarization
state of the reflected laser beam is modulated in function of the applied field Ez of the microwave
signal. A beam splitter is used as an analyzer. This analyzer is aligned rectangular to the incident
polarization and so converts the polarization modulation into an amplitude modulation which can be
detected by a photodiode.

6.2 Modulation

By using the result of Appendix E.10. on page 130, we can estimate the intensity at the output of the
analyzer. Thus the polarization state modulation is given by Equation (90). We assume that the re-
flection coefficient r and R, the refractive index no and electro-optic coefficient r41of GaAs as well
as the substrate thickness d are constant parameters. For the examination of the modulation the am-
plitude of the electric field EMicrowaveis also fixed. The wavelengthλο is changing in a given range
as well as the angle between the angleϕ does.

(90)

Figure34Configuration using the polarization shift to measure the microwave sig-
nal.
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Before we will print out the modulation caused by Equation (90), we discuss the influence of the dif-
ferent variables. First we have a look at the microwave signal Ez. If Ez is zero, there will be no bire-
fringence and hence no light will pass the analyzer. If Ez is not zero, the output intensity is
proportional to and hence the frequency of the modulated laser beam is twice the frequen-
cy of the microwave signal. This effect is due to the fact that the laser beam intensity cannot become
negative.

The term sin(2ϕ)2 becomes maximal ifϕ is equal toπ/4. Hence we have a maximal modulation if
we align the laser beam polarization along the bisector of the optical axes of the crystal. The polar-
ization before the analyzer and hence the intensity at the output wont change at all if the polarization
of the incident laser beam is parallel to one of the optical axis of the GaAs substrate as

.

As we can see in Equation (90), the resulting modulation is also a function of the wavelengthλο. For
an ‘efficient’ modulation we chose the wavelengthλο in a way that . Hence
the denominator becomes minimal. The wavelengthλο also appears in the numerator but there the
modulation increases with the decreasing wavelength. So we should chose the shortest technical pos-
sible wavelength so that denominator is minimal.

The polarization state of the reflected laser beam is changing in function of the microwave signal
that causes the modulation. For further analysis, it is of some interest to estimate the maximal vari-
ation as this effect can also appear accidentally.

We want to investigate if there are major changes (e.g. turning of 45 degrees or circular polarization)
or if it remains unchanged. As a general analysis would be too complicated, we just try to estimate
it numerically. We do this by comparing the components parallel and normal to analyzer. As we can
see in Figure 35, the maximal component parallel to the analyzer is about IParallel=50[pW]. By using
the Fabry Perot response of Figure 28, the minimal component normal to the direction of the analyz-
er is about INormal=20[µW]. In the worst case we have normal component of 20[µW] and a parallel
one of 50[pW]. By assuming that the reflected laser beam is polarized linearly, we can calculate the
angle∆ϕ between the polarization of the incident beam and the reflected one. So with this configu-
ration, the polarization state is slightly modified by the microwave signal as we can see in
Equation (91).

Figure35Amplitude at the output of the analyzer. For this figure we used
the following parameters: no=3.374, r41=1.42 10-12 [m/V], r=0.54, R=0.63
(-2 [dB]), d=500[µm], EMicrowave=1 [V]/d [m] and PIncident=1 [mW].
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(91)

6.2.1 Polarization modulation with a wave plate

In most applications using the polarization modulation, the configuration is slightly different. In
Equation (90), the magnitude of the modulation is proportional to , which
is unfavorable for the modulation because of the vanishing derivative of and asρ remains
very small. The proportionality causes also the doubling of the modulated signal frequency.
In most application aλ/4 wave plate is introduced to overcome this problem. In our probing tool, we
would have to introduce aλ/8 wave plate which would be passed twice. The optical axis of the wave
plate would have the same directions as the optical axis of the GaAs crystal. The intensity at the out-
put of the analyzer is given by Equation (92) according to Appendix E.11. on page 132.

(92)

with ,

 and

The introducedπ/2 phase shift changes the working point and hence the modulations. As the inten-
sity at the output does not vanish in the absence of Ez, we have to use Equation (93) to compute the
peak to peak modulation as plotted in Figure 36. An analytical solution would be too complicated.

(93)

Figure36 “Peak to peak” modulation and the reflected intensity at the output of the ana-
lyzer. The delay ofλ/4 is caused by the two pass of theλ/8 wave plat. For this example we
used the same parameters as in the previous example: no=3.374, r41=1.42 10-12 [m/V],
r=0.54, R=0.63 (-2 [dB]), d=500[µm], EMicrowave=1 [V] / d [m] and PIncident=1 [mW].
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Different measurement techniques use other possibilities to boost the polarization modulation. One
possibility is to increase the path length through the electro-optic crystal. So the polarization has
“more time” to “turn more”. Also crystals with higher electro-optic coefficients than the GaAs one
can be used to probe the electric signal. Another option is the use of a pulsed laser with very high
output power. So by adjusting all this parameter, it should not be a problem to obtain a decent signal
level.

6.3 Comment

There are several reasons, why we do not use a probing technique based on polarization modulation.
Without introducing a wave plate, the magnitude of the calculated signal is much weaker than the
results obtained in chapter 5 and the modulation frequency is twice the frequency of the microwave
signal. Hence we would have to use aλ/8 wave plat (difficult to obtain). Theλ/8 wave plat compli-
cates the mathematical description. We cannot find an exploitable relation between the electric field
EMicrowave and the intensity of the modulation IModulation comparable to Equation (83).

The technical disadvantage of the polarization modulation is the difficulty to handle the state of po-
larization in standard optical fibers or in polarization maintaining fiber used in our setup. Very often
the polarization is turning very slowly in standard optical fibers and polarization maintaining fibers
insert another unknown birefringence.
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7 Phase modulation

The phase modulation is another possible configuration for the probing of the electric field. Though
this technique is used very often in pigtailed fiber optical modulators, it is rarely used in electro-optic
probing. We just have a look at it to complete the comparison.

7.1 Setup

For the phase modulation, we split the incident laser beam into two CW beams of equal power as
shown in Figure 37. The first one is injected into the DUT with the polarization parallel with the op-
tical axis of the crystal. The second part is delayed and it is used as reference beam. Afterwards both
parts are recombined and the interferences caused by the phase shift are used to obtain an amplitude
modulation.

The principle of phase modulation can be described by Equation (94), where ELaser,Outputis the re-
sulting electric field of the recombined beam in function of the electric field Ez of the microwave
signal and the wavelength of the laserλo.

(94)

The further parameters are the field of the incident laser beam ELaser,Input, the attenuation and phase
shift of the reference beam given by AReferenceandϑReferenceand the same parameters for the beam
passing through the DUT defined by AProbeandϑProbe.

For an optimal phase modulation, the difference between the phase shiftϑProbeandϑReferenceshould
beπ/2. So we obtain a linear response in function of electric field. In our setup, the situation is more
complicated asϑProbedepends also on the wavelengthλo and not only on the electric field Ez. So for
the further mathematical analysis of the phase modulation, we define the reference phase shift as

. For AReferencewe have a similar problem. For an efficient
phase modulation, AProbeand AReferenceshould be equal to obtain a good contrast. Unfortunately
AProbeis changing in function ofλo. In this case we set AReferenceto one. So with Appendix E.12.

Figure37Configuration using the phase shift between the reflected and a
reference beam to measure the signal.
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on page 134 we can express the intensity of the modulated beam IResponse by Equation (95).

(95)

with , , and

For illustration, we compute the response for the same parameters as in the previous paragraphs. For
the calculations of the modulation we use an approach similar to Equation (93). In Figure 38 we can
see that the results of the phase modulation is similar to the magnitudes of the other modulations.

In Equation (95) the modulation is not only caused by the phase shift between the reference and the
probe beam. The term AProbeis also changing in function due to the amplitude modulation. So the
obtained modulation is caused by the amplitude modulation as well as by the phase modulation.

7.2 Comment

There are several reasons why we do not use a probing technique base on the phase modulation. As
for the polarization modulation, the mathematical description is complicated. Again we cannot pro-
vide an exploitable relation between the electric field Ez and the intensity of the modulation IModu-

lation comparable to Equation (83).

There are also some technical inconveniences with the phase modulation. For an optimal modula-
tion, we have to adjust the wavelengthλo of the incident laser beam according to Figure 38. In func-
tion of this wavelength we would have to introduce a delay ofλ/4 into the reference branch to cause
theπ/2 phase shift.

Figure38Amplitude of the output of the phase modulations. For this figure we used the following param-
eters: no=3.374, r41=1.42 10-12 [m/V], r=0.54, R=0.63 (-2 [dB]), d=500[µm], EMicrowave=1 [V] / d [m]
and with PIncident=1 [mW]. You have to notice that AProbeis changing in function of the applied electric
field Ez. So we computed a graph where AProbeis constant and another one where AProbeis changing.
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8 Other considerations & Problems

In this chapter we will do some further theoretical analysis. We will take into account that a “real”
laser beam is not a plane wave and so it diverges during propagation. This will cause further loss and
it will limit the spatial resolution. At the end we will do some auxiliary considerations.

8.1 Gaussian beam

At the beginning of chapter 4, we did several assumptions to simplify the calculations. One of the
assumption was that the incident laser beam is perfectly parallel. With other words the wave front
should be a plane wave of a given width as displayed in Figure 39 and Figure 40. Unfortunately this
simplification is rather coarse as the plane wave of Figure 39 does not even satisfy the Maxwell
equations for electro-magnetic waves. As we assumed that the laser beam is a TEM (Transverse
Electro Magnetic) wave, it cannot take into account the focus onto a small spot. One possibility to
describe mathematically a laser beam is the formalism of a Gaussian beam.

.

We can solve the Maxwell equation under the condition that the laser beam is propagating in a given
direction ([ 5 ],[ 12 ]). One possible solution is the Gaussian beam. The solution is called the Gaus-
sian beam because the spatial distribution of the beam intensity is proportional to the Gaussian or
normal distribution. In Equation (96) r2=x2+y2 indicates the distance from the center of the laser
beam as defined in Figure 41. W(z) is called the beam waist given in function of the position z, Wo
is W(z=0) and Io represents the intensity of the Gaussian beam.

 with (96)

Figure39 In this figure we plot the magnitude of the
electric field as a function of the Z-axis (direction of
propagation) and the X-axis (distance from the center of
the beam). In this case we have at the output of the fiber a
10 [µm] wide plane wave.

Figure40 The isometric lines of the wavevector k for the
beam of Figure 39.
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As indicated in the second part of Equation (96), the integral of the Gaussian distribution is always
constant and does not dependent on the parameter W(z). So the energy in the laser beam is preserved
but the distribution is changing with the position.

For the following deduction, we use the distribution of the electric field instead of the distribution of
the intensity. So we can compute the electric field distribution for a given position with
Equation (97).

(97)

It is important to notice that the parameter q(z) defines the entire electric field distribution of a laser
beam. For the further deductions we will call q(z) the complex beam parameter. By using [ 5 ] we
can define this parameter by Equation (98). The parameterλο is the wavelength of the laser beam in
vacuum and R(z) is the wave front curvature. The beam waist W(z) indicates the distance where the
beam intensity drops to 1/e2 or to 0.135 of the maximal value in the center of the beam. Further Wo
is defined as the minimal radius (usually at z=0), zo is an auxiliary variable called the Rayleigh length
and nMaterial is the refractive index of material as defined in Figure 42.

 with (98)

,  and

By passing through a lens or a dielectric or by propagating through free space the Gaussian beam
will change and so the complex beam parameter q(z) will be modified. For some simple cases, the

Figure41The direction of propagation z and the distance from the
center of the laser beam normal to z.

Figure42Definition of the parameters of a Gaussian beam.
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modifications of q(z) can be expressed by Equation (99),

(99)

where A, B, C and D are elements of the ray transformation matrix. Table 2 gives several transfor-
mation matrices for common laser beam manipulations.

.

Table 2Transformation matrices for some standard operations [ 12 ].

So by knowing the complex beam parameter q(z) at a given position we can compute the spatial dis-
tribution of the electric field by using Equation (100) [ 5 ], where k=2πnMaterial/λο is the wavevector
of the beam.

(100)

With the Gaussian formalism, we can also estimate the beam divergence. The angular divergence
θBeam of the beam is therefore defined by Equation (101).

(101)

For our probing technique, we will use a pigtailed injector. So our probing beam will leave an optical
fiber, will spread out and a lens will focus it onto a spot. For illustration we computed the electric
field distribution of such a laser beam in Figure 43 and Figure 44.
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.

The disadvantage of the Gaussian beam formalism is that analytic calculations are only possible for
very simple configuration e.g. the passing of a laser beam through a lens or the reflection on a mirror.
There is hardly any possibility to analyze the reflection or transmission of a Gaussian beam at the
interface between two dielectric materials. The reason is the angle of incidence which is not the same
for the entire beam. So we could not use this formalism to improve the calculation of the cavity but
we could apply it to estimate the spot size of the incident laser beam and the losses due to an improp-
er reinjection into the optical fiber.

8.2 Spot Size and spatial resolution

The spatial resolution is a measure for the size of the probe. If the spatial resolution is coarse, the
size of the probe is big and hence a big region will influence the probing result. A small probe size
and hence a good spatial resolution is required for the probing of integrated devices.

The spatial resolution of our probing tool is given by the beam waist of the laser beam. A small beam
waist will improve the spatial resolution. But by decreasing the beam wait, we will increase the di-
vergence or Numeral Aperture (NA) of the laser beam. By using the formalism of the Gaussian
beam, we will adapt the calculation made by [ 7 ] to our configuration and try to find the best trade
off.

.

We have a look at the value of 2wSurfaceINand 2wSurfaceOUTgiven in Figure 45. For symmetry rea-

Figure43 In this figure we plot the magnitude of the elec-
tric field in function of the Z-axis (direction of propaga-
tion) and the X-axis (distance from the center of the
beam) for a Gaussian beam. As well as in Figure 39 we
have a wo=10 [µm] wide beam at the output of a fiber.

Figure44The isometric lines of the wavevector k for the
beam of Figure 43.

Figure45Calculation of the minimal spot size [ 7 ].
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sons, we get the smallest spatial resolution when wSurfaceIN=wSurfaceOUT. Hence the Gaussian beam
has its smallest diameter on the golden back face of the cavity or with other words the focus of the
laser beam is on this point. In our further deduction we will see that this choice minimize also the
losses of power in the cavity. Hence the spatial resolution is defined by the beam waist wSurfaceat
the air / GaAs interface.

8.2.1 Spot size without cavity

As introduction to the Gaussian formalisms, we calculate the characteristics of our laser beam in free
space without the cavity. For the analysis of the setup given in Figure 46, we use the formalism ex-
plained in paragraph 8.1. The laser beam is leaving the end of the optical fiber as a plane wave and
so its wave front curvature R is infinite respectively the real part of complex beam parameter qFiber
is zero. Its beam waist is wFiber or half the Mode Field Diameter (MFD). Afterwards the beam is
propagating a distance A, is focused by a lens with a focal distance f and propagates again another
distance B. In the focal point the wave front curvature has to be infinite again.

In this setup, the given parameters are the wavelengthλo of the laser, the beam waist at the output
of the optical fiber wFiberas well as the refractive index of the surrounding air nAir . Also known are
the focal distance of the lens f and the distance A between the lens and fiber output. The wanted pa-
rameters are the distance B and the beam waist wspotin the spot.

With the given information there is no problem to calculate the complex beam parameter for the laser
beam at the output of the fiber. By defining we can rewrite qFiber as
Equation (102).

(102)

By using Table 2 on page 45, it is easy to find the transformation matrix of the setup. It is the product
of the two propagation transformation matrices and the transformation matrix of the lens. With the
transformation matrix we can get the complex beam parameter qSpotin function of the unknown vari-
able B. In the focal point the wave front curvature has to be infinite or with other words the real part
of the complex parameter qSpothas to be zero. By exploiting this condition we can find a solution
for B. By using the results of Appendix E.13. on page 135 we can express the distance B as
Equation (103).

 with (103)

At the first sight the result is unexpected because it is not identical with the known result from ray
optics. If we assume that the beam waist at the fiber output becomes very small ( ) the
parameter zo also vanishes ( ). In this case we get the expected result given in Equation (104).

(104)
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Considering that B is not unknown anymore, we can determine the complex beam parameter qSpot.
According to Appendix E.13. on page 135 it is given by Equation (105).

(105)

By using the definition of complex beam parameter we can resolve the previous equation in function
of the beam waist. So we get Equation (106).

(106)

There are several points to discuss about this result. First we will consider the case where the distance
A is equal to B. In this case the magnification factor is one. The magnification factor is defined as
the factor B / A. With some additional calculations you can prove that in this situation A becomes

. If we put this into Equation (106) we will see that both beam waists are equal.

It is also interesting to compare the theoretical values with the specification of some real pigtailed
focuser with a magnification factor of one. By using the data of Table A.2.3 on page 106 we can de-
termine the mode field diameter of a monomode fiber. Hence the theoretical spot size of a pig-tailed
focuser using standard monomode fiber is given by Equation (107).

(107)

This value agrees with the specifications of commercial injectors used in our laboratory (Table A.2.5
on page 108) especially for the focuser with the shortest working distance. The differences for the
focuser with longer working distances can be explained by the increasing influence of the spherical
aberration. This is caused by the fact that the beam waist on the lens will increase with the working
distance and so the aberrations as well.

8.2.2 Spot Size on the device

In this paragraph we will have a look at the different beam parameters if we focus the laser beam
onto the back face of a GaAs substrate. Considering that we have to take into account an interface
between air and a dielectric materials, the calculations become a little bit more complicated.

Figure46Calculation of the spot size and the focal distance with a lens
at the fiber output.
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So we start with the description of the given parameters, as defined in Figure 47. Again we assume
that the Gaussian beam is leaving the optical fiber as a plane wave with the beam waist wFiberequal
to the half of the mode field diameter. We know the focal distance of the lens f and the distance A
between the fiber output and the lens. Further we have the refractive indices of the surrounding air
nAir  and of the GaAs substrate nGaAs as well as the thickness of the substrate d.

.

On the other hand we are interested in the beam waist in the focal point at the back face of the sub-
strate wGold as well as in the beam waist on the front side of the GaAs wSurface. Also we want to
know the distance between the lens and the substrate surface C as well as the distance x. The param-
eter x indicates the distance between the surface of the substrate and the focal point of the reflections
on the air / GaAs interface.

Apart that the calculations are more complicated than the one of the previous paragraph, there is no
difference. We determine the complex beam parameter at the output of the fiber qFiber, then we cal-
culate the transfer matrix of the setup and so the complex beam parameter in the focal point qGold.
At the end we put the condition that the real part of qGoldvanishs and so we determine the parameter
C.

By using the conclusion of Appendix E.14. on page 138 we get for the distance C Equation (108).

(108)

For the beam waists we get Equation (109) and (110).

(109)

(110)

At the end we can calculate x by subtracting B from C.

(111)

As we defined 2wSurfaceas the spatial resolution, we can evaluate this parameter for several common

Figure47 Calculation of the beam parameters if the laser is focused into a
GaAs substrate.
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setups. Considering that all focusers used during the thesis had a magnification factor 1
(Appendix A.2.5. on page 108), we calculate the according beam waists given in Table 3. The real
values will be larger due to spherical aberration and due to production flaws.

.

8.2.3 Modified Calculation for the Fabry Perot Cavity

In the previous calculations of the Fabry Perot response in paragraph 4.1, we assumed that the entire
reflected beam is reinjected into the optical fiber. So we could express the reflection coefficients at
the air / GaAs interface by the value defined by the Maxwell equations. For the reflection coefficient
at the back face of the substrate we specified a loss of -2 [dB] to model the absorption losses and to
avoid a reflection without loss.

If we reconsider the calculation by using the Gaussian formalism, we have to introduce supplemen-
tary losses coefficients due the beam divergence. In Figure 48 we can see that all reflections (except
the first one from the gold back face) are not properly reinjected into the optical fiber. The problem
is that the reinjection is different for each reflection and so we have to calculate different loss coef-
ficients.

For the estimation of the supplementary attenuation coefficients, we calculate the complex beam pa-
rameter at the fiber output for the different reflections caused by the Fabry Perot Cavity. So we could
deduce the beam waist of the beam (wInjected) reinjected into the fiber. As this diameter is greater
thanthemode field diameter of the fiber we calculate the attenuation coefficient in function of this
parameter. For the calculation of this attenuation coefficient RAttenuation, we assume that both Gaus-
sian beam are approximately plane waves. In this case we can use the equation which describes the

wFiber
a

a. The value of wFiber is half of theMode Field Diameter (MFD).

A dSubstrate Focal Distance f wGold wSurface
Spatial

Resolution

5.4 [µm] 500 [µm] 5 [mm] 5.4 [µm] 16.4 [µm] 32.8 [µm]

5.4 [µm] 100 [µm] 5 [mm] 5.4 [µm] 6.3 [µm] 12.6 [µm]

Table 3Theoretical spatial resolutions.

Figure48Supplementary losses caused by the improper reinjection into
the fiber.
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losses due to mode field diameter mismatch between two single mode fibers as given in
Equation (112).

(112)

For the calculations of the Fabry Perot cavity, we use the electric field and not the intensity of the
beam. Hence we use the root of LossMisMatch as proposed in Equation (113).

(113)

In Appendix E.15.2. we calculated the beam waist of the reinjected beam in function of the magni-
fication factor and for the different reflections. The Figure 49 shows the additional attenuation coef-
ficient for the reflection on the air / GaAs interface for several substrates with different thicknesses.
The losses are negligible for the case A / Focal Length ~1 as the laser beam is parallel and does not
diverge. The losses decay also with the thickness of the substrate. In Figure 50 we plot the additional
attenuation coefficient for the reflection on the back face. We calculated the attenuation for a sub-
strate with a given thickness (500 [µm]). We start with the first reflection on the golden back face in
function of A / Focal Length (1 as this reflection is well reinjected into the fiber). Afterwards we cal-
culate the attenuation coefficient for the higher order reflections. As we can see the loss increase with
the order.

As we will see during the measurements, the imprecise reinjection into the fiber causes an unpredict-
able problem. The divergence of the Gaussian beam induces an additional phase shift into system,
similar to the problem exposed in [ 46 ]. It is difficult to say which reflection is shifted and so we
choose to introduce the phase shift in the first reflection. So we can redefine the parameters of
Equation (68). r+ (Equation (114)) is the new reflection coefficient of the air / GaAs interface where
RFront is the addition attenuation due to the beam divergence and e-iΛ represents the additional phase
shift. R+ (Equation (115)) is the modified reflection coefficient for the golden back face where RBack
specifies the additional loss. For simplification we assumed that RBack is similar for all reflection
from the back face.

(114)

Figure49Additional attenuation coefficient for the
reflection from the air / GaAs interface due to the diver-
gence of the laser beam.

Figure50Additional attenuation coefficient for the
reflections from the golden back face due to the diver-
gence of the laser beam.
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(115)

So we can recalculate the response of the Fabry Perot cavity as defined in Equation (116). In
Figure 48 we plotted the corresponding response and the according derivative.

(116)

The deduction of Equation (116) is doubtful, as we had to do several assumptions. Especially we
have no justification for the phase shift. In the following chapters we will measure the Fabry Perot
response and we will process the acquired data. We will try to fit the cavity response into the data
and thereby we will see that we obtain much better results with Equation (116) than with
Equation (70).

8.3 Magnitude of the electric fields

For information we have a look at typical values for the magnitude of the involved electro-magnetic
fields. We will estimate the amplitude of the electric field of the microwave signal as well as the elec-
tric field of the photons.

For a microwave signal, a common amplitude is VMicrowave=1 [V] and the crystal has thickness of
d=100[µm]. So according to Equation (117), the electric field EMicrowave has a magnitude of
10 [kV/m] .

(117)

For the laser beam we suppose that we have a infrared laser beam with a power PLaserbeam=1 [mW]
and that its diameter matches the spot size of the focuser described in A.2.5. We
assume that the power distribution in the spot is uniform. So we can deduce the power density as

Figure51Fabry Perot response with addition loss. The used parameters are
r+=0.37, R+=0.29, d=500 [µm], PIncident=1 [mW], nGaAs=3.374, a phase
shift of Λ=π/4 and PIncident=1 [mW]..
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calculated in Equation (118). By using the Pointing vector, we can determine the magnitude of the
electric field (Equation (119)).

(118)

(119)

with

We can see that the electric field of the laser beam is at least three times stronger than the electric
field of the microwave signal.

8.4 Choice of the wavelength of the laser beam

The wavelength of the incident laser beam has to be chosen carefully for several reasons. GaAs
should be “transparent” at the chosen wavelength, the material should not absorb the photons of the
beam and the photons should not cause the generation of new electron-hole pairs in the semiconduc-
tor.

None of these problems will occur or they are negligible if the photon energy is smaller than the en-
ergy band gap of the GaAs. So we can calculate the shortest possible wavelength by using

. So the vacuum wavelength of the laser beam has to be longer than
0.86[µm]. In Equation (120) EPhotonis the energy of the photons, EEnergyGap(GaAs)is the energy gap
of GaAs, e is the charge of an electron, h is the Planck constant, co is the speed of light in vacuum
andλο is the seeked minimum vacuum wavelength of the laser.

(120)

On the other hand a longer wavelength is harmful because of the increasing spot size and so it would
be not possible to focus on the 10[µm] wide microwave guide. A wavelength of 1550[nm] is slight-
ly too long but it has the advantage that we can use a standard communication laser as the optical
source.
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8.5 Comment

In this chapter we used the Gaussian beam formalism to improve the mathematical description of the
Fabry Perot cavity. We could calculate the exact spatial resolution of the beam and hence the spatial
resolution of the probing tool. The spatial resolution is proportional to the mode field diameter of the
fiber and it depends on the lens configuration of the focuser as well. As the mode field diameter is
typically about 10[µm] for standard monomode fibers at 1550 [nm], it is difficult to get spatial res-
olution better than this value. We also tried to introduce addition attenuation coefficient into the
mathematical description of the cavity. Unfortunately the results were rather complex and it does ex-
plain all the phenomenons observed during the probing of the devices.
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9 Conclusion of the Theory

In this chapter we analyzed several probing configurations for a laser beam being modulated inside
a Fabry Perot cavity. We compared setups based on an “amplitude”, “polarization” and “phase mod-
ulation” and calculated theoretically the resulting modulation.

For our probing technique we choose the “amplitude modulation” describe in chapter 5. This con-
figuration has two main advantages: Technically it is easy to realize as we do not have to add wave
plates (as for the polarization modulation) and we do not have to deal with a reference branch (as for
the phase modulation). The second advantage is its mathematical description. The mathematical de-
scription of the “amplitude modulation” is not only much simpler than the other ones but it allows
us to calculate directly the electric field. As we know the magnitude of the modulation IModulation,
the derivative of the Fabry Perot response as well as the refractive index no and the
electro-optic coefficient r41 we can use Equation (83) to calculated the electric field. For this calcu-
lation, we will divide magnitude of the modulation by the derivative of the Fabry Perot response.
Hence all attenuations in the optical path are irrelevant as they are fall out of the equation.

The drawback of this approach is that it works only properly under the condition that the electric field
is parallel with the z-axis. For other orientation of the electric field, the probed values will be sys-
tematically wrong.

Another drawback is that, the configuration using an “amplitude modulation” does not always pro-
vide the strongest modulation compared with the other configurations. The magnitudes of the mod-
ulation for all configurations depend strongly on the reflection coefficients and the thickness of the
substrate. Hence it is difficult to provide an accurate comparison for this point.

In the last part of this chapter, we did some calculations about the shape of the laser beam at the out-
put of the optical fiber. As the diameter of the beam defines the spatial resolution and its divergence
limits the sensibility, we could observe a trade off between these two parameters. We also had to
notice that the resulting spatial resolution is rather coarse.

In the next part of the thesis, we will realize this setup with standard fiber equipment and we will
compare the obtained results with the theoretical description.

IReflected∂ λo∂⁄
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Measurements

In this chapter we will expose the results of our experimental measurements. We will start with some
basic characterizations of our equipment. Afterwards we will continue with the verification of the
Fabry Perot response and at the end of the chapter, we will have a closer look at different kinds of
electro-optic signals.

10 Characterization of the Components

Apart the DUT we use four optical components for the probing setup. A Distributed FeedBack
(DFB) laser serves as a laser source, an optical circulator makes the optical connections and a pig-
tailed focuser injects the laser beam into the DUT. Afterwards a fast photo detector converts the op-
tical modulation into an electrical signal. In this chapter we will have a closer look at the
characteristics of the laser, the circulator and the focuser and we will try to estimate their influences
on the probing results. Further we will use this chapter to point out some common problems with the
probing setup described in Figure 52. In this chapter we will only look at the problematical parts of
the setup. These parts limit the performance of the probing tool. We assume that all other compo-
nents satisfies ”perfectly” the manufacture specifications and do not cause any inconveniences.

Figure52General measurement setup used during the development of the probing tool.
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10.1 Characteristics of the laser

10.1.1 Measurement setup

As a laser source we use a pigtailed Alcatel 1905 LMP laser. This laser is mounted into a butterfly
package with an internal thermo-electric cooler element and an internal photodiode for monitoring
the laser beam (Figure 53). The “fiber output” of the laser is a Polarization Maintaining (PM) fiber
with a Fiber Channel Angled Physical Contact (FC/APC) connector. The polarization is aligned
parallel to the slow axis of the fiber. The main feature of Alcatel 1905 LMP is that it can provide
an output power up to 40 [mW].

We noticed in the previous chapter, that it is necessary to adjust the wavelength of the laser as the
modulation changes in function of the wavelength. Considering that the periodicity of the DFB
structure changes with the ambient temperature, we can use the internal thermo-electric cooler el-
ement to tune the wavelength. So we connect the laser with a temperature controller to adjust the
laser temperature and hence its wavelength. The drawback of this solution is the fact that the tuning
of the temperature changes also the energy levels in the semiconductor of the laser. Therefore the
output power of the laser is varying in function of the temperature. Considering that a constant out-
put power is required for the probing, we connect the internal photodiode to the current source of
the laser. As displayed in Figure 55 the current source controls the laser current in a way that the
current in the monitor photodiode is always constant. Hence the output power is supposed to be
constant as well.

Figure53Picture of the Alcatel 1905 LMP.

Figure54Characterization of the output power and the
polarization of the DFB laser.

Figure55Connection of the current source and the tem-
perature controller.
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For the verification of the laser characteristics we measure the output power in function of the ad-
justed temperature. We connect the laser to a power meter (Figure 54) and we trace the output power.
With a simple analyzer (polarizer), we determine the optical power in the fast and the slow axis of
the PM fiber. Afterwards we measure the wavelength of laser with an optical spectrum analyzer and
we plot it in function of the temperature.

10.1.2 Results

In Figure 56 we plot the output power of the laser for the case of a constant current as well as with
a controlled laser current. For the case with the constant current we can see that the output power
decreases with the laser temperature. In the other case the output power is more stable but there is
still a variation probably due to an unintentional internal cavity between the laser output and the end
of the fiber or the internal optical isolator.

In Figure 57 we display the wavelength of the laser in function of the temperature. By computing a
data fit, we could express the relation between these two parameters by Equation (121),

(121)

whereλο indicates the wavelength and T is the temperature in degree Celsius. So the wavelength is
changing of about 0.1 [nm] per degree Celsius. As we can tune the temperature between 10 [˚C] and
55 [˚C], we have a wavelength range of about 4.5 [nm].

In Figure 58 we plot the power in the slow as well as the power in the fast axis of thePolarization
maintaining AND Absorption reducing (PANDA)fiber. As we could expect almost all the power is con-
fined in the slow axis but there remains still some optical power in the fast axis. Considering that this
part is changing in function of the wavelength, we have to assume that the orientation of polarization
at the laser output is changing. Thus the axes of the polarization ellipse are slightly turning. As we
used only a simple analyzer, we could not determine the polarization properties properly. To get a
better impression of the situation we define the angleΦ. The angleΦ is defined in Equation (122)
and it represents the turning of the polarization under the condition that the beam is always polarized
linearly.

Figure56Output power of the DFB laser with a con-
trolled laser current and a constant laser current.

Figure57Relation between the laser temperature and
the according laser wavelength.
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(122)

Figure 59 shows the spectrum of the DFB laser taken with an optical spectrum analyzer. We can
notice the high signal to noise ratio of over 40 [dB].

10.2 Characteristics of the circulator

10.2.1 Measurement setup

The circulator (Figure 60) is used to connect the laser, the focuser and the photo detector as shown
in Figure 52. The fibers connected to port 1 and port 2 are PM fibers with a FC-APC connector at
each end. With the angled connector we can avoid most harmful reflections caused by the interface
between fibers. The polarization should be well defined at the output of the focuser. The fiber at
the port 3 is a standard mono mode fiber with a Fiber Channel Physical Contact (FC-PC) connector.

For the determination of the circulator properties, we inject the laser beam into port 1 to port 3 par-
allel to the slow and the fast axis of the PM fiber and we have a look at the output of the other ports.
So we can deduce the different attenuations caused by the circulator.

In a second time we have a look at the polarization isolation at the output of the circulator. For this
measurement we connect the DFB laser with port 1 and we tune its wavelength over the entire
range. Afterwards we check the power at port 2 for the slow and the fast axis with an analyzer
(Figure 61).

Figure58Output power of the fast and the slow axis of
the PM fiber. It seems that the polarization isolation (dif-
ference between ISlow and IFast) is maximal for the recom-

mended or typical operation point with a laser current of
250 [mA] and an ambient temperature around 25 [˚C].

Figure59Spectrum of the DFB laser: The laser is
operated at 25 [˚C] and the laser current is 173 [mA].
The optical spectrum analyzer was set to a resolution
of 10 [pm].
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10.2.2 Results

In Table 4 we can see the attenuations between the different input and output ports. If we inject the
laser beam into the slow axis of the PM fiber the attenuation between port 1 and port 2 is 2.5 [dB]
and it includes the losses due to both FC/APC connectors (typically 0.2-0.4 [dB] for each one). If we
align the incident polarization parallel to the fast axis of the PM fiber, the output power is attenuated
by 1.25 [dB]. The path between port 2 (slow) and port 3 introduces a much higher loss (6.8 [dB])
probably caused by a displacement of the fiber inside the circulator. All attenuations are higher than
indicated by the specification of the producer.

In Figure 62 we show the attenuation between port 1 (slow) and port 2 in function of the wavelength.
We can see that the attenuation is coarsely constant but we have to notice that the slow axis is inject-
ed into the fast axis and vice versa. We can also observe that the polarization isolation changes with
the wavelength.

With a similar setup we check the attenuation between port 2 and port 3 which is displayed in
Figure 63. In this case we can observe the harmful influence of an internal cavity. This cavity is prob-
ably caused by the reflections from the FC/PC connector at the end the fiber.

Figure60Picture of a pigtailed circulator used
in the measurement setup.

Figure61Circulator and connectors used in our setup. The laser
is connected to the port 1, the focuser to port 2 and the photo
detector is linked to port 3.

Input Output Attenuation

port 1(slow)

port 1(fast)

port 2
port 3
port 2
port 3

2.5 [dB]
> 60 [dB]
1.25 [dB]
> 60 [dB]

port 2(slow)

port 2(fast)

port 3
port 1
port 3
port 1

6.8 [dB]
32 [dB]
2.5 [dB]
33 [dB]

port 3 port 1
port 2

> 60 [dB]
33 [dB]

Table 4 Characteristics of the circulator used for the setup forλo=1550 [nm].

The indicated values may change slightly after redoing the connections or by
bending the fibers.
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10.3 Characteristics of the focuser

10.3.1 Measurement setup

There are several unknown characteristics of the focuser. First we want to know the attenuation in-
troduced by the focuser and its fiber connector. In the previous paragraphs, we saw that the polar-
ization of the laser beam changes slightly in function of the wavelength. Considering that the output
of the focuser is the incident laser beam on the electro-optic crystal, we are also interested in its
state of polarization in function of the wavelength.

The determination of the polarization is a little bit more complicated as the second output of the
focuser is a lens for the focusing of the beam. Hence we cannot analyze the polarization with the
pigtailed analyzer used in the previous setups. Considering that the focal distance is about 10[mm],
we have to insert another lens to obtain a parallel laser beam. This beam passes a polarization beam
splitter and is picked up by a power meter as described in Figure 64.

10.3.2 Results

As we can see in Figure 65, the attenuation of the focuser including the FC-APC connector is about

Figure62Attenuation between port 1 (slow) and port 2
(slow respectively fast). We can observe that all the power
went into the fast axis. At the output of port 2 the turning
of the polarization in function of the wavelength
increased.

Figure63Attenuation between port 2 (slow) and
port 3. The value of the attenuation is a little bit higher
than expected and we can see the effect of a harmful
cavity probably due to the flat FC/PC connector.

Figure64Measurement setup for the characterization of the focuser.
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0.15[dB] or with other words there is almost no loss.

We also display the intensity at the output for two different directions. The first direction was chosen
in a way that the output was maximal and the second one was orthogonal to the first one. As we can
see in Figure 65 the power in both axis are still changing in function of the wavelength. We can use
the data to estimate the turning of the polarization as we already did it in Equation (122).1

(123)

10.4 Comment

The conclusion of the different verifications is that the polarization as well as the power at the output
of the focuser are less stable than we expected. The polarization properties degrade during the prop-
agation through the signal path. The degradation is probably due to the birefringence of the PM fiber
in combination with a not perfectly aligned polarization at the output of the laser source. Also the
two connections might introduce a further degradation of the polarization properties. The variation
of the output power is caused by the laser. Both problems will affect the quality of the probing.

We have to add that we did not have spare equipment for the entire setup. So we could not compare
if flaws of the equipment cause the mentioned problems or if we deal with a general technical or the-
oretical problem. Probably the difficulties are caused by both origins.

1. Normalized Intensity.

Figure65We adjust the analyzer for two orthogonal axis and we trace the
output power for the whole wavelength range.
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11 Measurement of the Fabry Perot Cavity Response

In this paragraph we will measure the response of the Fabry Perot cavity. We will compare the re-
sults with theory and we will analyze the factors influencing the probing results.

11.1 Measurement for different magnification factors

11.1.1 Measurement setup

For the verification of the description of the cavity, we trace the Fabry Perot cavity response with
the measurement setup of Figure 66 for the sample displayed in Figure 67. The wavelength of the
laser is tuned in the range between 1551[nm] and 1556[nm]. The laser beam passes the circulator
and is focused on the GaAs substrate through a lens. As the magnification factors of the pigtailed
focusers cannot be changed (it is fixed to the factor 1), we do a series of data acquisitions with a
single anti-reflection treated lens with a focal distance of 1.25[cm]. The lens is placed in front of
the FC-APC connector. Its position and hence the magnification factor can be manipulated by a mi-
cro controller. At the output of the circulator, a power meter picks up the power of the reflected laser
beam.

11.1.2 Results

The results of Figure 68 correspond with the description of Figure 28 respectively of Equation (70).
In Figure 69 we have several measurements for different values of A and B respectively for differ-
ent magnification factors. We can see that the reflected power decreases with the magnification fac-
tor as plotted in Figure 69. So we have a trade off between the spot size (proportional to the
magnification factor) and the reflected power. The spot size determines the spatial resolution and
the reflected power governs the sensitivity of the probing tools.

Figure66Setup for the measurement of the cavity
response. The DFB laser provides the laser beam and
the circulator guides the beam to the lens. The same
lens picks up the reflection and the circulator guides
them to an optical power meter.

Figure67Picture of the microwave guide used for the
probing. The GaAs substrate (in the middle) is 500[µm]
thick and has 5 golden 330[µm] wide microwave guides
on it. This device is bigger than standard MMIC (typically
100[µm] thick and 10[µm] wide guides). It is easier to
handle and the focus is much easier to adjust. On the left
side is a 50[Ω] impedance and on the right side is a SMA-
connector for the input of the microwave signal.
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For configurations with small magnification factors we can observe another effect (Figure 68). The
response of the Fabry Perot cavity becomes asymmetric. Here we define the asymmetry as difference
between the intensity for a wavelength and the intensity for as given in
Equation (124). The parameterλMax indicates the wavelength where the reflected intensity becomes
maximal and the∆λ represents a small difference in the wavelength.

(124)

This effect may be caused by a supplementary phase shift introduced by the focused Gaussian beam
as explained in 8.2.3 on page 50.

The periodicity of the Fabry Perot response depends on the refractive index and the thickness of the
substrate. So by taking the wavelengthλMax of a maximum as well as the wavelength of the next
minimumλMin and by using Equation (125) we can recalculate the size d of the cavity.

(125)

Figure68 Normalized (The unity is equal to 100% reflection) cavity response for different values of A and B
for the substrate displayed in Figure 67. We can observe that the loss increases with the magnification factor
M=B/A. By using Equation (74) and Equation (75) we can calculate the reflection coefficient r and R. For the
case with A=1.6[cm] and Β=16.3 [cm] we get r=0.57 (theoretical 0.54) and R=0.49 (assumed 0.63 or -2[dB]).

Figure69The maximal reflected intensity in function of the factor where
Focal Distance describes the characteristics of the lens. The magnitudes are normalized as in Figure 68.
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11.2 Measurement of the different reflections with a optical reflecto-
meter

11.2.1 Measurement Setup

As we have an Optical Low Coherence Reflecto-meter (OLCR) in the laboratory, we are able to
analyze the different reflections of the Fabry Perot cavity with this probing tool. With the setup of
Figure 70 we have the possibility to look at the different reflections separately and so we can illus-
trate the summation of Equation (68) on page 28. The basic idea behind the reflecto-meter is to split
the laser beam of a white source in two parts ([ 42 ], [ 43 ]). The first is injected into the DUT and
its reflections are recollected. The second part is injected into a reference branch with a variable
length. At the output the reflections from the DUT and the output of the reference branch are re-
combined. As the spectrum of the white laser source is broad, the coherence length of the laser
beam is very short. In this setup it is about 3.5[µm] [ 43 ]. Thus only the reflection from a very
specific location (depending on the length of the reference branch) will cause constructive interfer-
ences and hence will be picked up. All other reflection will vanish due to destructive interferences.

11.2.2 Results

In Figure 71 we can see the results of an optical low coherence reflecto-meter measurement. On the
x-axis we have the delay induced by the reference branch expressed in a distance in air and hence
the position of the reflection in the DUT. On the y-axis we have a value proportional to the intensity
of the reflections. So the first peak represents the reflection on the air / GaAs interface. The second
peak is delayed by a distance . Here d is the thickness of the
substrate (500[µm]) and no is the refractive index of GaAs (3.374). This peak is due to the first re-
flection on the golden back face of GaAs substrate. The other peaks are caused by the further re-
flections on the golden back face. Hence we can observe the attenuation of the signal in the cavity.
We have to notice that the higher order reflections decay more than expected.

Figure70Setup for the measurements with the reflecto-meter. At the bottom
you can see the Fabry Perot cavity as DUT. The other parts belong to the reflec-
tometer.
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For a second series of measurement we displace the lens position. Thus we change the parameters A
and B and hence we can analyze the reflections for different magnification factors as displayed in
Figure 72. We can see that the higher order reflections are weaker for a setup with a lower magnifi-
cation factor. In this case the laser beam diverge more and therefore the losses are higher.

Figure71Results of the measurements with the optical low coherence reflecto-meter. Here we
have the reflection for a setup with a high magnification factor M=B/A as A=1.6[cm] and
B=16 [cm]. The distance between the reflections is DRetard=1.7[mm]. By looking at the width of

the reflections, we have to assume that the surface causing the reflections is uneven.

Figure72We measure the reflections for different magnification factors M=B/A.
We observe that the magnitude of the different reflections depend on the factor M.
Hence the reflection coefficient r and R change in function of M.
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11.3 Comment

The response of the Fabry Perot cavity corresponds well to the mathematical description especially
its periodicity. The magnitude of the reflected intensity differs slightly from the theoretical values,
as we had to guess the reflection coefficient of the golden back face. It seems that the golden back
face is more uneven than expected. The other drawback is the asymmetry of the response.
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12 The electro-optic signal

In the previous paragraph, we focused the laser beam onto the GaAs substrate and we traced the in-
tensities of the different reflections in function of the wavelength. In this chapter we will apply a mi-
crowave signal to the substrate of Figure 67 and we will analyze the resulting modulation for
different conditions.

12.1 The Electro-Optic Signal

12.1.1 Measurement Setup

For the following measurements we will apply a microwave signal with amplitude of
and a frequency of 1.5[GHz] to the microwave guide. This signal is generated

by the output of a network analyzer. At the other end of the microwave guide, we connect a resistor
of 50 [Ω] to avoid disturbing reflections. Hence the magnitude of the voltage applied across the
50 [Ω] resistor will be about 58[mVrms] or 82[mVAmplitude]. We assume that the electric field just
beside the microwave guide caused by this voltage satisfies the condition of Equation (126). We will
probe this field with our probing setup.

(126)

The probing setup of Figure 73 is very similar to the setup used for the acquisition of the cavity re-
sponse in the previous paragraph. The only modification is the exchange of the detection unit and
the use of the pigtailed focuser instead of the single lens. The power meter is replaced by a fast pho-
todiode and a bias tee separates the DC and the RF-part of the photodiode signal. The DC-part of the
signal is measured with a computer controlled voltmeter and is used to determine the power of the
laser beam and hence the response of the cavity. The RF-part of the signal is amplified and connected
to the input of the network analyzer. In this way the network analyzer can measure the amplitude and
phase shift of the modulation.

12.1.2 Results

In Figure 74 we plot the response of the Fabry Perot cavity. For further data analysis we will have
to compute the derivative of the response. As it is difficult to use the discrete data

Figure73Setup for the acquisition of the electro-optic signal.
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points for this calculation, we put a data fit into the graph and we used the data of the fitted curve
for calculation of the derivative. For all of the following data fits, we use Equation (116) as we
achieve better results than with the “standard” description of the Fabry Perot cavity.

During the same measurement we also acquired the magnitude and phase shift of the modulation.
The magnitude of the modulation is displayed in Figure 75 as well as the derivative of the data fit.
As we can see the modulation is proportional to the derivative as indicated by
Equation (83) on page 32.

By knowing the wavelengthλo and the refractive index no as well as the electro-optic coefficient
r41,we have all parameters of Equation (83). Thus we can calculate the electric field caused by the
microwave signal in function of the derivative and the electro-optic signal as displayed in
Equation (127). For the calculation we use the point where the electro-optic signal becomes maxi-
mal as displayed in Figure 75.

(127)

By knowing or by measuring the thickness of the substrate we can calculate the voltage of the mi-
crowave signal. The magnitude of the probed voltage calculated in Equation (128) represents the
amplitude of the microwave signal. The probed value should be around 82[mVAmplitude] but we

Figure74Response of the cavity. As we
have to calculate the derivative of the
response, we display a data fit calculated on
the basis of Equation (116) through the plot
and we use the fit to compute the derivative.

Figure75Modulation picked up by the net-
work analyzer in function of the wavelength.
The derivative of the data fit of Figure 74 is
proportional to the modulation magnitude.
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find only 51[mVAmplitude]. One possible explanation for the difference between the applied voltage
and the sensed value is the position of the probing beam. This location is about 30[µm] beside the
microwave guide. We will have a closer look at this problem in chapter 13.1. Another possible ex-
planation is the inaccuracy of the electro-optic coefficient r41.

(128)

The network analyzer also displays the phase shift. The absolute value of the phase shift is of no in-
terest as it depends on the length of the cables and fibers and the phase shift induced by the photo-
diode and amplifier. But by tracing the phase shift for all data points we can analyze the variation of
the phase shift. According to Equation (83) respectively Figure 31 on page 33 there should be a
phase shift of 180˚°°between these regions with a positive derivative and those with a
negative one. In Figure 76 we plot the phase shift acquired by the spectrum analyzer. We can observe
that the measurements match well the theoretical description.

12.2 The electro-optic signal for different directions of the polarization

12.2.1 Measurement Setup

For the measurements in the previous paragraph, we aligned the polarization of incident laser beam
with the optical axis caused by an electric field parallel to the z-axis. In this setup we will turn the
polarization around the z-axis to illustrate the theoretical results of chapter 5.2 and to estimate the
influence of a misalignment.

For this data acquisition we use the same probing setup as for the previous measurements. We just
turn the focuser as displayed in Figure 77. As the polarization is known at the output of the focuser,
we also change the alignment of the polarization and hence the angle between the optical axes of the
crystal and the polarization of the laser beam which is defined asϕ. Unfortunately we change also
the position of the laser beam as the output of the fiber is not perfectly in the middle of the turning
axis. So we had to readjust the position each time and hence the results are slightly different for each
angle.

So we execute several data acquisition for different values betweenϕ=0˚ andϕ=90˚°.We plot the

Figure76The phase shift measured by the network analyzer. The “lowest”
phase shift was set to 0° .̊
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resulting modulation and the according phase shift.

12.2.2 Results

In Figure 78 we display the modulation for different orientation of the incident polarization. We
can observe that the magnitude of the modulation is maximal if the polarization is aligned parallel
with the optical axis of the GaAs crystal (ϕ=0˚). The modulation becomes minimal aroundϕ=45˚.
Thus the magnitude of the modulation is roughly proportional to . We have to add that
these measurements are rather difficult to execute as we have to adjust the position for each mea-
surement and as the polarization of the incident laser beam is turning slightly.

In Figure 79 and Figure 80 we display the modulation forϕ=0˚ and forϕ=90˚ or with other words
we aligned the polarization parallel with the first and the second optical axis of the crystal. In the
first plot we can see that the magnitudes of the modulation are slightly different as the position are
not identical. As the thickness of the substrate also changes slightly with the position, the periodic-
ity of the Fabry Perot cavity is slightly different. Hence the “shape” of the electro-optic signal is
not identical. In the second plot we display the phase shift of the modulation. In the previous para-

Figure77Setup for the verification of the influence of the polarization of the laser
beam.

Figure78Optical modulation for different values ofϕ.
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graph, we saw that the derivative for the “higher peak” is always positive. By looking
at Figure 79 and Figure 80 we can see that there is a phase shift of180˚ between the “high peak” of
ϕ=0˚ and forϕ=90˚. The reason for this phase shift is the different sign in Equation (129).

(129)

So we can observe that .

12.3 Linearity and the Signal to Noise Ratio

12.3.1 Measurement Setup

In this paragraph we want to verify two other important probing parameters. First we will have a look
at the linearity of the probing and hence the reliability of the measuring technique. Afterwards we
determine the Signal to Noise Ration (SNR) and so we try to estimate the smallest detectable signal.

For these measurements we do some modification in the measurement configuration. Instead of the
network analyzer, we use a spectrum analyzer with an integrated photodiode as shown in Figure 81.
As the spectrum analyzer has an integrated photo detector including an option to measure the laser

Figure79Magnitude of the
modulation forϕ=0˚ andϕ=90˚.

Figure80Phase shift of the
modulation forϕ=0˚ andϕ=90˚.
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beam intensity, we can discard of the external photodiode, the RF-amplifier and the voltmeter. On
the other hand we insert a function generator for the microwave signal generation. The function
generator allows us to have a microwave signal with a well-defined magnitude and frequency at the
input of the microwave chip.

For the verification of the linearity, we apply different signal levels at the input of the DUT. We
assume that the electric field due to the microwave signal inside the substrate is proportional to the
magnitude of the input signal. So we will acquire the Fabry Perot response and the magnitude of
the modulation with the spectrum analyzer. Afterwards we will calculate the electric field and the
applied voltage.

For the measurement of the SNR we adjust the wavelength of the laser beam so that the electro-
optic modulation becomes maximal. We adjusted the parameters of the spectrum analyzer and we
store the display of the spectrum analyzer. Afterwards we use these plots to calculate the ratio
between the peak amplitude or signal and the noise as well as the smallest detectable signal
VSensibility.

12.3.2 Results

In Figure 82 we display the measured magnitude of the electric field for different applied signals.
The intensity of the applied microwave signal is changing in the range between +23[dBmElectric]
and -40[dBmElectric] at a carrier frequency of 1.5[GHz]. This signal generates an applied voltage
between 3.1585[V] and 22[mV] over the50 [Ω] impedance at the end of the microwave guide. On
the y-axis we plot the probed voltage. We can observe the linear relation ship between the applied
voltage and the sensed magnitude.

Figure81Setup to determine the linearity and the signal to noise ratio. The network ana-
lyzer is replaced by a spectrum analyzer signal with an integrated photo detector (for the
signal analysis) and a function generator (for the signal generation).
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In the following figures we illustrate the SNR as well as the acquired electro-optic signal in function
of the wavelength. In Figure 83 we can see that the SNR increases with the increasing applied mi-
crowave signal. A stronger microwave signal will cause an electro-optic probing signal with a higher
SNR. For a typical microwave signal with a power of 8[dBmElectric] we get a SNR around
22.4[dBOptic].

For the determination of the smallest detectable signal called VSensibility, we use a special approach.
We always measure the response of the cavity to calculate its derivative. According to Equation (83)
the derivative is proportional to the magnitude of the modulation. By calculating the cross correla-
tion r2 between the measured modulation and the normalized derivative, we can quantify the quality
of the data acquisition. By requiring that for a valid acquisition and by considering the filter
bandwidth (10[Hz]) of the spectrum analyzer, we can estimate VSensibility as given in
Equation (130).

(130)

Figure82The x-axis corresponds with the voltage of the applied microwave signal
and the y-axis is the probed tension.
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Figure83Signal to noise ration for different signal levels (left) and the according acquired electro-optic signal
(right). The reference level of the spectrum analyzer is set to -35[dBOptic] or 316 [nW] and the resolution band-

width to 10[Hz]. For the signal to noise ratio the frequency span is 2 [kHz] and for the acquisition of the electro-
optic signal to 15 [Hz]. The sweep time is automatically chosen in function of the other parameters.

We have to add that the SNR and especially the VSensitivitydepend strongly on the parameters of
the probing setup like the sweep time, resolution bandwidth and reference level of the spectrum an-
alyzer, output power and SNR of laser as well on the amplifier of the photo detector. VSensitivityde-
pends also on r and R as the reflected intensity changes with these parameters. Hence the presented
values indicate only the order of magnitude.
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12.4 Comment

In this paragraph we analyzed the behavior of the amplitude modulation for the realized setups. In
our setup, we used polarization maintaining fibers and pigtailed focusers for the first time. Hence we
could align properly the polarization of the incident laser beam. In general the probing tool worked
well and the results matched the theory.

The interesting points of the probing setup are its linearity over a wide range of applied voltages
( ) and its good sensibility . Another important point is the
repeatability of the probing tools. There was no problem to reproduce similar results another day un-
der the condition that we did not change the positioning or orientation of the laser beam.

It was valuable that for the calculation of the electric field you have to divide the magnitude of the
optical modulation IModulationby the derivative of the Fabry Perot response. Hence
all attenuations in the optical path are irrelevant as both terms are affected in the same way. Another
interesting point of the relation between the derivative and the electro-optic signal was the detection
of crosstalk between the function generator and the laser current. As the probing beam has to be con-
stant even a small unintentional modulation of the laser beam can decay the probing result. We were
able to overcome the problem by placing RF-absorbing material around the laser and other sensitive
devices. We could easily detect this cross talk by looking at the cross correlation between the mod-
ulation and the normalized derivative. The better the correlation is the lower is the cross talk. If both
plots looks totally different, the modulation is caused by cross talk.

On the other hand we discovered several inconveniences. As the output power and polarization of
the laser beam are not stable in the entire wavelength range, the resulting modulation could change
in function of the wavelength. For probing near the microwave guide additional (harmful) reflections
appeared and decayed the probing quality.

0.01 Volt[ ]upto 1 Volt[ ] 1.878 mV Hz⁄[ ]

IReflected∂ λo∂⁄
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13 Mapping of the electric field in a MMIC

In the previous chapters, we probed the electric field only for one point. In this chapter we will mea-
sure the magnitude of the electric field for several different positions. Hence we can show the elec-
tric field distribution in a device.

13.1 Measurement of the electric field beside a microwave guide

For the following measurements, we use the GaAs circuits with a microwave guide described in
Figure 67. We will probe the voltage and phase shift for different positions beside the microwave
guide. As the setup of the GaAs is rather simple, we could simulate the electric field distribution
with a professional computer program. So we are able to compare both results.

13.1.1 Measurement Setup

The probing setup displayed in Figure 84 is identical with the setup used in chapter 12.1. We just
changed the acquisition software in a way that it could change the position of the probing beam. It
uses the acquired data to calculate automatically the wanted voltage.

13.1.2 Results

In Figure 85 and Figure 86 we display the voltage respectively the phase shift for different posi-
tions beside the microwave guide. The distance between the different probing points is 10 [µm] and
hence about a third of the diameter of the probing beam given in Table 3 on page 50. By taking into
account the aberration of the focuser, the distance between the microwave guide and the first prob-
ing point is about 30 [µm]. Again we apply a microwave signal of -11.2 [dBmElectric] over the
50 [Ω] terminated DUT. Thus the measured voltage is lower than the applied microwave signal of
58 [mVrms] or 82[mVAmplitude]. The frequency of the microwave signal is 1.5[GHz].

Figure84Equipment used for the probing. At the bottom of the schema is the DUT with sev-
eral SMA connectors for the input signal. Just above the DUT is the focuser at the end of the
PM-Fiber. Two step-motors are used to change the position of the incident laser beam and sev-
eral micro-manipulators are used to adjust the focus and the orientation of the polarization.

FocuserDUT Connector

Step Motors

Panda−Fiber

Micro−Manipulators
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13.1.3 Simulation

As the structure of the microwave guide is rather simple, there is no problem to create a computer
model (Figure 87) and to calculate the electric field distribution with a commercial simulation tool
for microwave applications (CST Microwave Studio).

The software calculates the complex electric field vector as displayed in Figure 14 on page 12. With
this database we can calculate the voltage between the air / GaAs interface and the golden back face
and its phase shift. We calculate the voltage and phase shift by doing the integration for the real and
the imaginary part of the z-component of the electric field vector over the entire distance between
the air / GaAs interface and the golden back face. Afterwards we can deduce the absolute value
(Figure 88) and the phase shift (Figure 89). In both figures we put also the results of the experimental
measurements.

Figure85Voltage between the air / GaAs interface and
the golden back face for different position beside the
microwave guide. If the probing failed, we set the volt-
age to zero. This was the case when the laser beam was
partially or entirely focused onto the golden microwave
guide.

Figure86Phase shift of the electro-optic signal for dif-
ferent position beside the microwave guide. If the prob-
ing failed, we set the according phase shift to zero.

Figure87Model of the microwave guide used for the computer simulation. We set up
the simulation in a way that we compute the electric field distribution in the middle of
the sample.
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13.2 Mapping of the electric field on a chip

13.2.1 Measurement Setup

In the previous paragraphs, we used a “test device” with a single very wide microwave structure
and 500 [µm] thick substrate. In this paragraph we will use a “real MMIC”. The microwave struc-
tures are much smaller and more complicated as displayed in Figure 94. Also the substrate is only
100 [µm] thick.

For the mapping of the microwave signal, we use the setup of Figure 81. We apply a microwave
signal with a magnitude of 6 [dBmElectric] at carrier frequency of 1 [GHz]. We terminated all out-
puts with 50 [Ω] impedances. We probe the field at the intersection described in Figure 90.

13.2.2 Results

Figure88Normalized voltage between the air / GaAs
interface and the golden back face as well as the probed
voltage.

Figure89Calculated and probed phase shift. Even if we
take into account that the probed phase shift is only rela-
tive to arbitrary reference, it does not match the simula-
tion. The origins for this mismatch might be the problem
explained in Figure 92.

Figure90Reflection from the surface of the DUT. Such
plots are used to get to a wanted position on the device.

Figure91Magnitude of the voltage probed in the
MMIC.
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One of the biggest problems of the probing is finding the desired positions on the ICs under test. The
difficulty of finding the position is managed by scanning the reflection from the surface and by plot-
ting them. In Figure 90 we can see the result of such a scan. Hence there is no problem to direct the
laser beam to a specific position. In Figure 91 we probe the voltage around an intersection of two
microwave guides. The acquisition of each point take between 30 [sec] and 1 [min] depending on
the probing parameters and the position of the point. So it takes a long time to probe the electric field
distribution for a large map.

13.3 Comment

In this chapter we saw that we can use our equipment to map the electric field distribution in a
MMIC. The results are coherent and reproducible. On the other hand there are several theoretical and
technical inconvenience. As we discussed in chapter 5.3, the optical axes move in function of the
vector of the microwave signal. So the measurements are only correct under the condition

. Near the microwave structure the electric field is roughly parallel to the z-
axis and hence the condition is satisfied. Further away from the microwave guide this assumption is
not valid anymore and hence the polarization of the laser beam and the optical axes are misaligned.
Hence we will have a systematic error for these measurements. Also the definition of the probed
voltage and its phase shift becomes doubtful as the distribution of the electric field inside the sub-
strate varies strongly in function of z as displayed in Figure 92.

The major technical inconvenience is that it takes a long time to probe an entire device.

Figure92For our measurements we define the voltage as
. We will probe the same voltage even if the electric field

distribution is not identical as displayed in i), ii) and iii).
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14 Measurement of the S-parameters

In the previous measurements, we always used a sinusoidal input signal with a constant carrier fre-
quency. During the entire probing process, we did not change this carrier frequency. In our probing
configuration, the two basic elements are the continuous probing beam and the fast photo detector
which analyzes the modulation. The continuous probing beam does not depend on the microwave
signal and the characteristics of the photo detector should only change slightly in function of fre-
quency. Hence we can change the carrier frequency of the input signal. So we can determine the
microwave signal in function of the carrier frequency. This kind of measurements are difficult to
perform with probing techniques using pulsed probing beams as the probing beam as well as the
detection unit depend on the carrier frequency.

By placing the probing beam just beside a wave guide, we can calculate the voltage of the micro-
wave signal for an entire frequency range. If we perform the same acquisition for two different lo-
cations inside the integrated device, we can calculate the attenuation between these points in
function of the carrier frequency. Hence we can determine parts of the s-parameter by using the
electro-optic probing tool. Thus we can measure the transfer function of parts of the MMIC which
are not connected with the inputs or outputs of the device.

14.1 Measurement Setup

For the probing of the s-parameters, we make only some minor changes in the setup described in
Figure 73. There are no “hardware-modifications” apart an additional electric amplifier. But there
are several changes in the acquisition procedure and hence in the acquisition software.

For the acquisition we execute first a data acquisition like in paragraph 12.1.2. Hence we know the
function and the wavelengthλModulationMaxwhere the electro-optic signal becomes
maximal. We perform this measurement for a single (constant) carrier frequency. Now we fix the
wavelength of the incident laser beam toλModulationMaxand we sweep the frequency of the micro-
wave signal over the requested frequency range and we calculate the voltage and the phase shift of
the microwave signal.

By doing the same procedure at the input and the output of structure under test, we can deduce the
s21parameter (Figure 93) under the condition that the input and output impedance are well defined.
By switching the input and the output we can also find the s12 parameter. On the other hand our
probing technique can only probe the s11 parameter respectively the s22 parameter under special

Figure93Setup for the probing of the S-Parameter.
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conditions (microwave signal with wavelength about the same length as the wave guide).

14.2 Results

As an example we analyze the GaAs MMIC displayed in Figure 94. We used the port “DP3” as input
and “DP4” as output. The device is not supposed to operate this way but this setup allows use to ver-
ify the propagation of the microwave signal along the signal path and to apply our probing technique.

We begin by measuring the s21 parameter ‘classically’ by connecting a calibrated network analyzer.
Thus we measured the attenuation between the SMA connector of the input port and the SMA con-
nector of the output port as displayed in Figure 95. In Figure 96 we have the attenuation in function
of the frequency and in Figure 97 we have the corresponding phase shift. The measured parameters
are different from the parameters between the bonding pads as the additional wave guides between
the SMA connector and the bonding pad will influence the results. The measurement of the attenu-
ation is only slightly affected but the probed phase shift will be wrong. Hence the s-parameter probed
with the electro-optic probing tool will not match exactly these measurements.

For this measurement we use a frequency range starting at 800[Mhz] and stopping at 2250[MHz].
There are two reasons for this choice: First the MMIC under test is designed for signals around

Figure94Layout of the GaAs MMIC used for the
probing of the s-parameter.

Figure95Wiring of the MMIC with the corresponding
SMA connectors.

Figure96S21 Attenuation. Figure97S21 Phase Shift.
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1500[MHz]. The other reason is that we use several bandwidth critical instruments (amplifiers and
photodiode) for the electro-optic probing.

For the electro-optic probing of the s21 parameter, we measured the electric field just beside the
input and the output gate respectively. For identical settings we calculated the voltage and phase
shift in the range between 800[Mhz] and 2250[MHz]. In Figure 98 is plotted the voltage and the
phase shift probed beside the input port. This measurement is strongly affected by the frequency
dependent gain of the photo detector and the transmission parameters of the microwave cables. This
error is not critical as the probing at the output port (Figure 99) is affected in the same way. When
we calculate the attenuation and the phase shift between Figure 98 and Figure 99, this error will fall
out of the calculation. The calculated attenuation of Figure 100 is similar with the results of
Figure 96. On the other hand the results of the phase shift does not match with the parameter of
Figure 97 as we could not take into account the phase shift caused the additional wave guides and
the bonding wires.

14.3 Comment

In this chapter we displayed that we can probe parts of the s-parameter under the condition that the
input and output impedances are well defined. Hence we are able to analyze the functioning of parts
of the design layout. The difference between the electro-optic probed attenuation and the electric
acquired attenuation is caused by different configuration for the electro-optic probing at the input
and output port. As the distance between the microwave guide and the probing point is not identical
for both probing, there is a slight difference in amplitude. The two measurements of the phase shift
do not match as the “lengths” of the microwave guides are different.

Figure98Voltage and Phase shift
probed beside the input port.

Figure99Voltage and phase shift
probed beside the output port.

Figure100aAttenuation and differ-
ence in phase shift between the input
and output signal.

a. In this figure, we display the attenuation of the signal voltage. In Figure 96 we have the attenua-
tion of the signal power. As dBPower=2dBAmplitude, both plots match.
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15 Signal processing with Stimulated Brillouin Scatter-
ing

As we could observe in the previous paragraphs, the magnitude of the electro-optic modulation is
extremely weak. On the other hand the average power is several orders of magnitudes stronger. We
illustrate a typical optical spectrum in Figure 101. The carrier represents the optical average power
and the modulation corresponds with the electro-optic signal. This situation is disadvantageous for
the further signal processing. Common commercial fast photo detectors have a “Maximum Operat-
ing Input Optical Power” (specifies the limits of its linearity) between 1 [mW] and 2 [mW]. Even
without an optical amplifier, we risk to saturate or even damage the photo detector.

So we are looking for an optical device that attenuates the power of the carrier and amplifies the
modulation. Ideally such a device would not decay the signal to noise ratio or with other words
would not generate additional noise. The attenuation of the carrier should be independent of the input
power as well as the gain of the modulation.

The work presented in the following paragraph is the result of the thesis (Diplôme d’Études Appro-
fondis) of Petra Schmitt. We realized the corresponding experimental setups together in the labora-
tory in winter 2001. The aim of this thesis was to investigate if we could use the proposition of [ 45 ]
using Stimulated Brillouin Scattering (SBS) to enhance the modulation depth.

As nonlinear fiber optics is not the topic of this thesis, we will only indicate the basic ideas of Bril-
louin scattering. More detailed description of SBS can be found in [ 2 ], [ 9 ] or [ 10 ]. After an in-
troduction of Brillouin scattering we will present the experimental results.

Figure101Optical spectrum of the probing signal. The average power of the car-
rier is 1[mW] and the amplitude of the modulation 100[nW]. The noise level is
supposed to be around 300[pW].
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15.1 Principles of Stimulated Brillouin Scattering

In a “real” transparent material e.g. an optical fiber not the entire laser beam is passing through. A
part of the injected laser beam is scattered backwards. One possible origin for the back-scattering
is the local variations of the refractive index.

15.1.1 Spontaneous Brillouin Scattering

Acoustic waves are a possible source for inhomogeneities in optical fibers. According to [ 9 ]
acoustical vibrations are already excited at normal temperatures due to thermal movement of the
lattice. These waves propagate either in the forward or in the backward direction of the fiber. The
acoustic wave induces region with different stress and hence generates an index grating inside the
material. A laser beam can be reflected from this grating depending on the periodicity of the grat-
ing. As the acoustic wave propagates inside the optical fiber, the according grating is moving as
well. An incident lightwave will be scatter backwards from this grating. As the grating is moving,
the frequency of the reflected laser beam will be shifted due to the Doppler effect. If the acoustic
wave co-propagates with the lightwave, the frequency of the back-scattered wave (called Stokes)
will be downshifted. The frequency of the back-scattered laser beam will be shifted upwards (Anti-
Stokes) if the acoustic wave moves in the opposite direction.

The quantum theoretical explanation of this process is illustrated in Figure 102. On the left side is
the incident photon with energy EPhoton. On the right hand we have an acoustic phonon with energy
of EAcoustic. The back-scattered Stokes photon has an energy of EStokes. The generation of the Anti-
Stokes wave with an upwards shifted frequency is displayed in Figure 103.

15.1.2 Stimulated Brillouin Scattering

Now we will investigate the case of SBS. The difference between SBS and Spontaneous Brillouin
Scattering is the generation of the acoustic wave. For SBS the acoustic wave is generated by the
involved lightwaves themselves. Hence the SBS is not based on the acoustic phonons generated by
thermal movements.

The main physical process behind the “optical” generation of acoustic phonons is the electrostric-
tion in optical fibers. Dielectric materials like the silicon of optical fibers have the tendency to com-
press in the presence of an electric field. As the electric field of a laser beam inside a fiber can reach
very high values, the electrostriction can trigger the generation of acoustic waves.

In Figure 104 we can see two contra propagating laser beams inside a glass fiber. The frequency
and hence the wavelength of the two laser beams are slightly different. The electric field of the for-

Figure102Generation of the Stokes wave: A photon
with an energy EPhoton and a Frequency ofνPhoton is
scattered backwards by an acoustic phonon.

Figure103Generation of the Anti-Stokes wave: A pho-
ton with an energy EPhotonand a Frequency ofνPhotonis
scattered backwards by an acoustic phonon.
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ward and backward respectively traveling lightwave can be described by the wave equations given
in Equation (131).

(131)

EAmplitude is the magnitude of the electric field at the input. As we neglect for the moment all losses
this parameter remains constant for the entire fiber.νForwardandνBackwardrespectively are the fre-
quencies of the laser beams and kForwardand kBackwardthe corresponding wavevectors. The propa-
gation direction is given by the signs of the wavevector kForward and kBackward. x represents the
position in the fiber, t the time andφ is a phase shift between the two waves. Thus the sum of both
electric fields is given by Equation (132).

(132)

The resulting distribution is illustrated in Figure 104. As we could expected the superposition of the
two waves leads to interferences and hence to regions with very high electric field magnitudes and
regions with weaker ones. Due to electrostriction, periodical compression patterns are induced in the
material. The propagation velocity and periodicity of this pattern are given by the difference of the
optical frequenciesνForwardandνBackward. If this propagation velocity matches the speed of sound
in silicon (typically around 5’960 [m/s] [ 2 ]) a new acoustic wave is created.

When we inject only one laser beam (often called the pump) into an optical fiber, there will be no
generation of an acoustic wave at the beginning. As there is always some Spontaneous Brillouin
Scattering, there will be a weak Stokes and Anti-Stokes wave traveling backwards. Hence we have

Figure104Pattern generated by the interferences of the two lightwaves in function
of the position (time is constant). The condition for the generation of a Stokes wave
is that the periodicity of the pattern satisfies . The parameter
λStokesis the wavelength of the Stokes wave, nFiber the refractive index of the fiber
andΛ is the periodicity of the pattern.
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two (with the Anti-Stokes three) contra-propagating lightwaves in the glass fiber. These contra-
propagating waves will cause the generation of new acoustic phonons and hence amplify the acous-
tic wave as well as the back-scattered laser beam. Thus we ignite a process that amplifies itself. This
process is called the SBS.1

We have to add some comments about the Anti-Stokes wave. According to [ 9 ] the Stokes and the
Anti-Stokes wave have similar intensities for the case of Spontaneous Brillouin Scattering. For
SBS the Anti-Stokes wave becomes negligible. We can explain this by using the quantum theoret-
ical explanation. The energy and the moment of the photons and the phonons have to be preserved
during the “optical” generation of an acoustic phonon. Thus we can establish the relation of
Equation (133) between the wavevectors and frequencies of the implied photons and phonons. By
following [ 2 ] we can demonstrate that these conditions are not satisfied for the Anti-Stokes wave.

(133)

Now there remains one important point to investigate. How will the SBS behave in function of the
pump power? We are especially interested in the intensity of the Stokes wave in function of the
pump power. We know that the SBS amplifies the scattered Stokes wave. This gain depends on the
power of the pump wave as well as on the fiber properties and the linewidth of the injected pump.
As long as this gain is smaller than the losses or attenuation in the optical fiber, the Stokes wave
due to the SBS will not appear and we will find only Spontaneous Brillouin Scattering. If the gain
becomes much stronger than the losses, the SBS will increase with the pump power. The mathe-
matical description of this behavior can be found in [ 2 ] or [ 9 ]. The interesting point for our ex-
periment is that we find a kind of threshold or nonlinearity. Below the threshold there is practically
no back-scattering. The lightwave propagation in the forward direction is only affected by the ab-
sorption of the optical fiber. Above the threshold a big part of the incident laser beam is scattered
backwards and hence the attenuation of the forward propagation wave becomes much higher.

So the basic idea behind the following experiment is to deplete the carrier with SBS as its magni-
tude is well above the threshold. The modulation should not be attenuated in the same manner, as
it is below the threshold.

15.2 Verification of the threshold and spectrum of the lightwave

15.2.1 Measurement Setup

In this chapter we realize an experimental setup for the modulation depth enhancement following
the proposition of [ 45 ]. In this proposition the optical signal to process is injected in a 10 [Km]
long fiber. The Stokes wave generated in this fiber is recovered by an optical circulator and is re-
injected at the other end of the fiber as illustrated in Figure 105. The reinjection of the Stokes wave
enhances the Brillouin process as there is always a “significant” Stokes wave in the fiber even at
its end. Hence the threshold is significantly lower and the depletion of the carrier is stronger.

In this paragraph we try to reproduce the results of [ 45 ] with the equipment of our laboratory. The
goal of this measurement is to determine the Brillouin threshold and the optical spectra of the scat-
tered and transmitted laser beams. For the moment we neglect the behavior of the modulation.

1. Another possibility is to inject a weak optic signal with a carrier frequency ofνStokesinto the fiber. This signal propagat-
ing in the opposite direction as the pump will be amplifier by the Brillouin Scattering. This effect can be used to make
amplifiers with narrow bandwidth.

νPhoton ν Anti-( )Stokes νPhonon Acoustic–
kPhoton k Anti-( )Stokes kPhonon Acoustic–+=
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As a signal source we use a DFB laser (Alcatel 1905LMP). We control its current and temperature
so that the output power is about 43 [mW]. With an optical attenuator we adjust the power of the
laser beam injected into the circulator between 0 [mW] and 28.8 [mW]. This laser beam is injected
into the loop as displayed in Figure 105. In our setup we use an 11 [Km] long dispersion shifted fib-
er1 for the generation of the Stokes wave. The end of this fiber is connected to port 1 of a 90:10 cou-
pler. Port 2 of this coupler is connected to the output of a tunable attenuator linked to port 3 of the
circulator. Port 3 and port 4 of the 90:10 coupler are used to monitor the transmitted signal and the
back-scattered Stokes wave. The tunable attenuator has a special function. As the intensity of the
Stokes waves increases with the injected power, there will be a point where the re-injected Stokes at
the other end of the fiber will create a new Stokes wave itself. This would be very harmful, as this
additional Stokes wave would scatter directly on the detection system. Hence we have an interest
that the intensity of the re-injected Stokes remains below its Brillouin threshold. With the tunable
attenuator and by observing the optical spectrum, we adjust the intensity of the re-injected Stokes
wave so that it is just below this threshold.

With a power meter we trace the intensity of the back-scattered Stokes wave and the transmitted sig-
nal in function of the injected power. In this way we can determine the threshold for the Brillouin
scattering. By opening the loop we can demonstrate that the SBS is much stronger and more stable
with the reinjection of the Stokes wave. We open the loop by undoing the connection on port 1 of
the coupler and on port 2 respectively.

After determining the Brillouin threshold, we will measure the optical spectrum. With an optical
spectrum analyzer we measure the spectrum of the transmitted signal as well as the characteristics
of the back-scattered beam. We execute this acquisition twice: Once for the injected laser beam pow-
er well above the threshold and another one for the power below it.

1. Dispersion null point=1560 [nm] and AEffective=50 [µm2].

Figure105Configuration used to verify the Brillouin threshold in function of the incident laser beam.
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15.2.2 Results

In Figure 106 we display the intensity of the back-scattered Stokes wave in function of the injected
power. As we can see there is hardly any power scattered backwards for low injected intensities. If
the injected laser beam exceeds the threshold, the intensity of the back scatted Stokes waves in-
creases linearly with the injected power. In Figure 107 we can see that transmitted power increases
linearly up-to the threshold as no nonlinear effect affects its propagation. Above the threshold the
transmitted power decreases even that injected power keeps increasing. For the maximal injected
power, the transmitted signal is attenuated by about 20 [dB]. The dashed data indicates the same
measurements without a re-injection of the Stokes wave. For this case the threshold is about four
times higher.

Now we investigate the spectra of the different signals. For all measurement we used the same spec-
trum analyzer with the same configuration (resolution of 10 [pm] etc.). We begin with the measure-
ments below the threshold. Thus we set the attenuator in Figure 105 to -12 [dB]. In Figure 108 we
can see the optical spectrum of the transmitted laser beam. The spectral characteristics of the light-
wave are hardly affected. The lightwave is only attenuated by -15.2 [dB] due to the losses in the
circulator (-1.8 [dB]), the dispersion shifted fiber (-3.2 [dB]) and the 10:90 coupler (-10.2 [dB]).

Figure106Power of the back scattered Stokes wave in
function of the injected power.

Figure107Power of the transmitted wave in function of
the injected power.

Figure108 Spectrum of the transmitted laser beam for
an injected power below the threshold.

Figure109 Spectrum of the back-scattered waves. In
this plot we can observe that the Stokes and the Anti-
Stokes have about the same intensity.
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In Figure 109 the back-scattered Stokes as well as the Anti-Stokes wave are very weak. Both have
similar intensities. The reflected peak at the laser beam frequency is due to an unintentional reflection
from a fiber connector.

Now we repeat the same measurement for the maximal injected power. These results are displayed
in Figure 110 (transmission) and Figure 111 (reflections). We can observe that the transmitted beam
is strongly attenuated by the depletion of the carrier. If we compare Figure 110 and Figure 111, we
can see that the Stokes wave is now stronger than the transmitted signal.

In Equation (134) we determine the frequency shift∆ν between the injected beam and the back scat-
ted Stokes wave.νInjectedBeamandλInjectedBeamis the frequency and the wavelength respectively of
the injected laser beam.νStokesandλStokesrepresent the same parameters for the Stokes wave. co is
the speed of light in vacuum.

(134)

15.3 Modulation depth enhancement and the Signal to Noise Ratio

15.3.1 Measurement Setup

In the last chapter we analyzed the behavior of an unmodulated laser beam. In this chapter we will
use a very weak modulation as described in Figure 101. The goal of this chapter is to verify if we
can improve the modulation depth similar to [ 44 ] or [ 45 ]. Afterwards we will do some further in-
vestigation missing in these references. We will have a look at the signal to noise ratio at the input
and the output. So we can verify if the Brillouin scattering induces additional noise.

As a signal source we use the same DFB laser. We modulate the laser current slightly by connecting

Figure110Spectrum of the transmitted laser beam for
the maximal injected power. The laser peak is attenu-
ated. There is also a small Stokes wave due to an unin-
tentional reflection from a connector. We can also
observe an additional Stokes wave generated by the re-
injected beam.

Figure111Spectrum of the back scatted lightwaves for
the maximal injected power (means attenuator set to

). We can see the spectrum of the back-scattered
Stokes wave.
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a signal generator to the RF-input of the laser. We adjust the magnitude of the microwave signal in
a way that the carrier is 40 [dB] stronger than the modulation. The modulation frequency is
1 [GHz]. The rest of the experimental setup is similar to the configuration of the previous para-
graph. The only difference is that we use an electrical spectrum analyzer with an integrated photo
detector to measure the modulation, the noise level as well as the average power of the transmitted
signal. With these data we can calculate the modulation depth and the signal to noise ratio. For the
further deductions we define the modulation depth as the relation between the carrier power and
the magnitude of the modulation according to Equation (135).

(135)

15.3.2 Results

In Figure 113 we measure the power of the carrier as well as the magnitude of the modulation. The
intensity differs slightly from the results in Figure 107 as another FC/PC connector induces some
additional loss. In the discussion of theory we supposed that the weak modulation is not affected
by the nonlinear effect. Following the setup of Figure 112, the modulation should only change in
function of the attenuation induced by the attenuator. Hence it should decrease linearly with the in-
jected power as the modulation is affected in the same way as this parameter.

Figure 113 shows the magnitude of the modulation. It increases linearly only for injected intensities
below the threshold. Above the Brillouin threshold, it does not follow this relation anymore. Hence
we have to assume that the modulation is affected by the scattering as well. On possible reason
might be the “low” modulation frequency of 1 [GHz] as the modulation is only separated by 8 [pm]
from the carrier. On the right hand of Figure 113, we see the modulation depth enhancement cal-
culated following Equation (135). Below the Brillouin threshold, the modulation depth remains
constant. Above the threshold it starts to increase with the injected intensity.

Figure112Configuration used to measure the processing of the modulation.
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Now we have a look at the noise level. We do this by looking at the spectrum of the modulation
around 1 [GHz]. In Figure 114 we display the spectrum of the modulation of the injected signal (in-
put) and of the transmitted signal (output). At the input we have a signal to noise ratio of about
22 [dBOptic]. The output signal is attenuated and hence the signal and noise level are lower. But also
the signal to noise ratio decreased to 14 [dBOptic]. Thus the Brillouin scattering generates some ad-
ditional noise. We can observe this effect in Figure 115. Here we plot the noise level in function of
the injected power. We can see that the noise level remains constant as long as the input power does
not exceed the Brillouin threshold. As the SBS becomes stronger, the noise level is significantly
higher.

.

Figure113On the left top side is the transmitted average power.
At the bottom is the magnitude of the modulation. On the right side
is the modulation depth.

Figure114Spectrum of modulation at the input and the
output. The spectrum analyzer is set to a frequency span
of 6 [KHz] and the resolution and video bandwidth are
61.9 [Hz] and 10 [Hz] respectively.

Figure115Noise level in function of the injected power.
The configuration of the spectrum analyzer is identical as
in Figure 114.
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15.4 Application of the Brillouin scattering in the probing setup

15.4.1 Measurement Setup

In the previous paragraphs, we used the signal of a modulated DFB laser. This had the advantage
that we had a stable (relating to its intensity, modulation depth and wavelength) and simple signal
source. In this experiment we will use the signal from the electro-optic probing tool.

The corresponding setup is displayed in Figure 116. We make an acquisition like in paragraph 12.1
and we investigate if we can still use the proposed calibration method. The output signal of the
probing tool is rather weak (typically below 1 [mW]) and hence inferior to the threshold of Bril-
louin scattering. Hence we have to amplify the input signal. We do this by inserting an additional
Erbium Doped Fiber Amplifier (EDFA) after the output of the electro-optic probing tool. As we
have to tune the wavelength of the probing beam, we cannot use an optical filter to remove the
spontaneous emission of the amplifier.

15.4.2 Results

We begin by measuring the response of the Fabry Perot cavity similar to the acquisition of
Figure 74. This signal is used as an input for the signal processing. In Figure 117 we can see the
reflected intensity as the input as well as the processed signal at the output of the fiber loop. Ideally
the Brillouin scattering would attenuate the input signal by a constant factor. This attenuation factor
should be independent of the injected intensity. In this case the processed signal would show a si-
nusoidal behavior in function of the wavelength similar to the input signal. As we can observe, the
attenuation factor is not constant at all. The origin of the problem is the spontaneous emission of
the EDFA for very weak input signals. The Brillouin scattering does not attenuate this broadband
spontaneous emission. Hence the average power at the output is very high for this case.

Figure116Configuration used for the signal processing of the electro-optic probing signal.
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The variable attenuation of the average power makes it impossible to calculate the derivative
necessary for our probing technique. We could overcome this problem by adding an

additional coupler before the input of the EDFA and measuring IReflected(λo) at this point.

In Figure 118 we can see the magnitude of the unprocessed electro-optic probing signal. This signal
is equivalent to the signal of Figure 75. In Figure 119 we have the same modulation after signal pro-
cessing with the Brillouin scattering. The modulation is also affected by the spontaneous emission
of the EDFA. Hence the modulation depth enhancement is not linear in function of the injected pow-
er nor in function of the input modulation.

Figure117Response of the Fabry-Perot response with and without signal
processing by Brillouin scattering.

Figure118Magnitude of the modulation before pro-
cessing by Brillouin scattering.

Figure119Magnitude of the modulation after process-
ing by Brillouin scattering.
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15.5 Comments

With the experiments presented in this paragraph, we could deplete the carrier with SBS. It was
interesting to see that the increase in optical input power can cause a decrease of the output inten-
sity. With this effect we could enhance the modulation depth of about 16 [dB] or about 40 times.
This result is a little bit better than the results obtained in [ 45 ] (about 20 times). In our setup we
attenuated intentionally the carrier but unfortunately also the modulation. For a decent signal pro-
cessing the signal to noise ration should remain constant. As we could observe during our investi-
gation, the Brillouin scattering generates some additional noise.

The noise generated by the Brillouin scattering is not the only problem. For the signal processing
of the electro-optic probing tool, we have to amplify the signal. This additional amplifier adds even
more noise and spontaneous emission.

The combination of problems makes the use of the signal processing very difficult. It would take
all lot of work to analyze and solve these inconveniences (origin of the noise, relation between
modulation depth enhancement and injected power and modulation at the input). We stopped the
research on this topic at the end of the trainee-ship.
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16 Conclusions of the Measurements

We realized a probing tool using only standard optical fiber and standard microwave equipment. By
using polarization maintaining fibers, a pigtailed focuser and a powerful DFB laser we could im-
prove the probing tool and simplify its configuration. The obtained results match well the theoretical
calculations and thus we were able to calculate the electrical field caused by the microwave signal.
With our probing setup we could measure the magnitude and phase shift with a sensitivity of about
2 [mV/Hz]. There was no problem to reproduce the measurements. By using this setup we could
even determine parts of the s-parameter of a given structure. The bandwidth of the probing tool was
limited only by the bandwidth of the photodiode and its amplifiers as well as by the bandwidth of
the network analyzer.

On the other hand we had to handle a number of major principal and technical problems:

- The magnitude as well as the polarization of the probing beam changes in function of the
wavelength. The origin of this problem is the DFB laser, as it is not designed for such an
application.

- The divergence at the output of the glass fibers decays the spatial resolution and it causes
additional loss. Ideally we should have a “perfectly” parallel laser beam (very small numer-
ical aperture) with a beam diameter between 5 [µm] and 10 [µm]. We might improve the
performance by using a laser with a shorter wavelength than 1550 [nm].

- We changed the wavelength of the laser by changing its operating temperature. As it takes
some time to heat up or cool down the laser with the thermo-electric element, the probing
of the voltage for one position can take between 30 [sec] and 1 [min]. So it is very time con-
suming to map the electric field distribution of an entire chip. The solution might be a tun-
able external cavity laser (ECL°)with a high output power. As there was no adequate ECL
available at the beginning of the thesis we could not check this option.

As “post scriptum” we want to mention that the entire measurement setup is computer controlled.
The network analyzer, the voltmeter, the controller of the step motors as well as the temperature con-
troller of the laser are linked to the computer through General Purpose Interface Bus (GPIB) cables.
So we could launch all the data acquisition automatically which saved a lot of time (Figure 120). But
on the other hand, I spent most of my Ph.D. thesis writing and correctingLabVIEW routines for our
equipment (Until the end of my work I could not explain the origins of some crashes in the acquisi-
tion programs).

Figure120Screen shot of a LabVIEW program acquiring the response of a cavity and the according modulation.
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Conclusion

In this thesis, we developed an electro-optic probing system for GaAs MMIC and we examined the
technical and theoretical limits of a setup using standard optical fiber and microwave equipment. We
used recent equipment like PM fibers, pigtailed focuser and a powerful DFB laser to improve previ-
ous measurement done in our laboratory.

As the GaAs crystal is electro-optic, we exploited this material property to probe the electric field
caused by the microwave signal. We focused a laser beam into the DUT and we analyzed the mod-
ulated reflection. Hence we could probe the electric microwave signal inside the device and not out-
side as other probing techniques do. Different types of modulations are possible for the probing. We
used an “amplitude modulation setup”, as this configuration is the simplest one for a continuous
wave probing beam. This probing technique has also the advantage that for the calculation of the
electric field and thus the applied voltage we have to divide the magnitude of the modulation IMod-

ulationby the derivative of the Fabry Perot response. Hence all attenuations in the op-
tical path are irrelevant as both terms are affected in the same way. Thus the only important point is
to measure correctly the laser beam power and the magnitude of modulation of the reflected beam.
An inconvenience is that this configuration allows us to measure only one component of the electric
field vector. This is not a problem as long as the electric field is approximately parallel to the z-axis.
Our assumption is satisfied as long as we probe the electric field near a microwave guide. For other
probing positions the electric field vector could have other orientations. This effect causes a draw-
back as the optical axis of GaAs crystal depends on the electric field vector. Thus the measurements
are systematically wrong for this condition.

During the realization of the probing setup, we faced several technical problems. One main problem
is the shape of the laser beam. As the GaAs substrate is 100 [µm]-500 [µm] thick and as the micro-
wave guides are typically 10 [µm] wide we should have a “perfectly” parallel laser beam (very small
numerical aperture) with a beam diameter between 5 [µm] and 10 [µm]. Technically and also theo-
retically the output of standard fiber at 1550 [nm] cannot provide such a beam. We might enhance
the system by using a laser with a shorter wavelength than 1550 [nm]. Another inconvenience is
caused by the DFB laser source. For the probing of the electric field we have to sweep the wave-
length over a certain range. We expected that the incident laser beam would have a well-defined po-
larization and a constant magnitude at the output of the PM fiber. In reality the output power as well
as the polarization change in function of the wavelength. Though these problems decayed seriously
the probing quality, we could sense the microwave signal inside the DUT. We are able to probe the
amplitude and phase shift of a microwave signal with a sensitivity of and we can re-
produce the measurements without any problem.

As a perspective we want to add that we might overcome most technical problems described in this
thesis. But the necessary modifications and investments would harm the main goal of the presented
work: The design of a simple and inexpensive tool for probing the electric field inside a GaAs
MMIC. For the moment the market and hence the interest for such tools is rather small and so such
an effort would not make any sense.

IReflected∂ λo∂⁄

2 mV Hz⁄[ ]
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Appendix

A. Constants

A.1. General Constants in Vacuum

Speed of light in vacuum

Permeability in vacuum

Permittivity in vacuum

Charge of electron

Planck constant  [ 6 ]

A.2. Material Constants

A.2.1. Electro-Optic constants

Material Group ([ 8 ]) Electro-optic coeffi-
cients in contracted

notation ([ 5 ])

refraction
indices n

GaAs
(isotropic)

Cubic
43m

[ 1 ]
[ 3 ]

11.38
[ 3 ]

KDP (KH2PO4)

(anisotropic)

Tetragonal
42m

co 2.99792458 10
8 m

s
----⋅=

µo 4 π 10
7– Vs

Am
---------⋅ ⋅ ⋅ 1.25663 10

6– Vs
Am
--------⋅= =

εo 8.85418782 10
12– As

Vm
--------⋅=

e 1.6021773 10
19–

As[ ]⋅=

h 6.626075560= 10
34–

J[ ]⋅

rxx ε εo⁄

r41 1.4 10
12– m

V
----⋅= 0 0 0

0 0 0

0 0 0

r41 0 0

0 r41 0

0 0 r41

no 3.374=

r41 1.4 10
12– m

V
----⋅=

r63 35 10
12– m

V
----⋅=

0 0 0

0 0 0

0 0 0

r41 0 0

0 r41 0

0 0 r63

n 1.86=
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A.2.2. Semiconductor Constants at room temperature (300K)

A.2.3. Typical dimensions and properties of Single Mode Silica Fiber

LiNbO3

(anisotropic)

Trigonal
3m

Property Si [ 11 ] Ge [ 11 ] GaAs [ 11 ]

Atomic (molecular) weight 28.09 72.60 144.6

Energy gap 1.12[eV] 0.67[eV] 1.43[eV]

Intrinsic carrier concentration

Electron mobility

Hole mobility

Relative permittivity 11.8 16.0 10.9a

a. The range of values of relative permittivity of GaAs quoted in the literature is from about 10.7 to 13.6 [ 11 ].

Recombination constant B

r33 30.8 10
12– m

V
----⋅=

r13 8.6 10
12– m

V
----⋅=

r22 3.4 10
12– m

V
----⋅=

r51 28 10
12– m

V
----⋅=

0 r22– r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

r22– 0 0

no 2.29=

ne 2.20=

Eg

ni 1.5 10
16 1

m
3

-------⋅ 2.4 10
19 1

m
3

-------⋅ 1 10
13 1

m
3

-------⋅

µe
0.135

m
2

Vs
------- 0.39

m
2

Vs
------- 0.85

m
2

Vs
-------

µh
0.048

m
2

Vs
------- 0.19

m
2

Vs
------- 0.045

m
2

Vs
-------

εr

1.79 10
21– m

3

s
-------⋅ 5.25 10

20– m
3

s
-------⋅ 7.21 10

16– m
3

s
-------⋅

Coating

Cladding

d Core ddd
Core Cladding CoatingMFD
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A.2.4. Typical dimensions and properties of Panda Silica Fiber

Properties Corning SMF-28 at 1550 nm
Alcatel [ 48 ]

Alcatel Cable Fiber 6900 Sin-
gle Mode at 1550 nm [ 49 ]

Attenuation

Core Diameter

Cladding Diameter

Coating Diameter

Mode Field Diameter

Numerical Aperture /

Zero Dispersion Wavelength

Effective Group Index of Refraction

Refractive Index Profile /

Properties Fujikura Panda at 1550 nm [ 50 ]

Attenuation

Core Diameter

Cladding Diameter

Coating Diameter

Mode Field Diameter

Numerical Aperture

Beat Length (Maximum)

 0.4≤ dB
km
-------  0.25≤ dB

km
-------

8.2 µm[ ] 8.8 µm[ ]

125 1 µm[ ]± 125 1 µm[ ]±

245 5 µm[ ]± 242 7 µm[ ]±

10.4 0.8µm[ ]± 10.2 1.0µm[ ]±

0.14

1313 nm[ ] 1310 10nm[ ]±

1.4682 1.47

0.36 %

Slow Axis

d dddMFD Core Cladding Coating

Fast Axis

Core

Stressing core

Coating

Connector
Key of FC

 0.5
dB
km
-------

7 µm[ ]

125 µm[ ]

900 µm[ ]

10.5 µm[ ]

0.12 0.13–

5 mm[ ]
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A.2.5. Characteristics of pig tailed injectors

Focusera

a. Specifications according manufacturer.

“A” “B” “C”

Working distance 3[mm] 4.5 [mm] 10.1[mm]

Fiber Core / Cladding Diameter 8[µm] / 125[µm] 8 [µm] / 125[µm] 8 [µm] / 125[µm]

Fiber Numerical Aperture 0.11 0.11 0.11

1/e2 Spot Width (x-axis/y-axis) 12.8[µm] / 13.3[µm] 16.2[µm] / 17.2[µm] 21.5[µm] / 22.3[µm]

Lens Diameter 2[mm] 3 [mm] 5 [mm]

Lens Diameter

Spot

Working Distance Working Distance

Cladding

Core



109

B. Acronyms

AM Amplitude Modulation
APC Angled Physical Contact
BNC Bayonet Nut Connector
CW Continuous Wave
CMOS Complementary Metal-Oxide Semiconductor
CNR Carrier to Noise Ratio
dB Decibel
dBm Decibels above/below one milliwatt
DC Direct Current
DFB Distributed FeedBack
DUT Device Under Test
ECL External Cavity Laser
EDFA Erbium Doped Fiber Amplifier
EO Electro-Optic
FWHM Full Width Half Maximum
FC Fibre Channel
FP Fabry Perot
GaAs Gallium Arsenide
GPIB General Purpose Interface Bus
IC Integrated Circuit
LASER Light Amplification by the Stimulated Emission of Radiation
LabVIEW LABoratory Virtual Instrument Engineering Workbench
MFD Mode Field Diameter
MMIC Microwave Monolithic Integrated Circuits
NA Numerical Aperture
PANDA Polarization maintaining AND Absorption reducing
PM Polarization Maintaining
PC Physical Contact
QED Quod Erat Demonstandum
SMF Single Mode Fiber
RF Radio Frequency
SM Single Mode
SiGe Silicon Germanium
Si Silicon
SNR Signal to Noise Ratio
SOA Semiconductor Optical Amplifier
SMA/B/C SMall connector type A/B/C
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C. Symbols

c Speed of light in material [Meter/Second]
co Speed of light in vacuum [Meter/Second]
d Thickness of the substrate [Meter]
D Electric Displacement [Ampère Second/Meter2]
E Electric Field [Volt/Meter]
f Frequency of a microwave signal [Hertz]
I Intensity [Watt/Meter2]
n Refractive Index [ ]
no Refractive Index in the absence of an electric field[ ]
P Dielectric Polarization [ ]
r, R Reflection coefficient [ ]
r41 Electro-Optic coefficient [Meter/Volt]
r2 Cross correlation [ ]
t Time [Second]
V Voltage [Volt]
ZMaterial Wave Impendance of a given Material [Ohm]
ε Permittivity [Ampère Second/ Volt Meter]
εo Permittivity of free space [Ampère Second/ Volt Meter]
εr Relative Permittivity [ ]
η Impermeability Tensor [ ]
ξ Eigenvectors of a matrix [ ]
λ Wavelength [Meter]
λo Wavelength in vacuum [Meter]
µ Permeability [Volt Second/Ampère Meter]
µo Permeability of vacuum [Volt Second/Ampère Meter]
µr Relative Permeability [ ]
φ Phase Shift [Radiant]
ν Frequency of a laser beam [Hertz]
ωo Beam waist of Gaussian Beam [Meter]
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D. Units

There are several possibilities to characterize the power of laser beam or the amplitude of a micro-
wave signal. This is a list of the most common units and the corresponding conversions.

D.1. Optical Units

Units: Watt or W Power of the laser beam in Watt.
Milliwatt or mW Power of the laser beam in Milliwatt.
dBmoptic Logarithmic unit based on Milliwatt.
dBoptic Difference between the input and output optical power in

dBmoptic of a device to characterize its gain or loss.
Conversions and relations:

- Conversion Watt into Milliwatt (D.1):

(D.1)

- Milliwatt into dBmoptic (D.2):

(D.2)

- dBmoptic into Milliwatt (D.3):

(D.3)

- Relation between input and output (D.4)

(D.4)

- Relation between input and output in per cent (D.5)

(D.5)

D.2. Electrical Units

Units: VoltPeaktoPeak or Vpp Peak to peak value of the voltage.
Volt or Vamp Amplitude of the voltage.
Volt RMS or Vrms Root mean square value of the voltage.
Milliwatt Power of the electric signal in Milliwatt absorbed in a resistor

(for micro wave signal typically 50Ω).
dBV Logarithmic unit based on the rms voltage of the signal.
dBmelectric Logarithmic unit based on the power of a microwave signal.
dBelectric Difference between the input and output electric power in

dBelectric of a device to characterize its gain or loss.

y mW[ ] 1000 W[ ]=

y dBmoptic[ ] 10 log10
x mW[ ]
1 mW[ ]
------------------ 

 ⋅=

y mW[ ] 1 mW[ ] 10

x dBmoptic[ ]
10

-----------------------------
⋅=

y dB[ ] Input dBmoptic[ ] Output dBmoptic[ ]–=

y %[ ] 100 %[ ] 10

x dBoptic[ ]
10 dBoptic[ ]
---------------------------

⋅=
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Conversions and relations:

- Vpp into Vamp and Vamp into Vpp (Figure D.1):

(D.6)

- Vrms into Vamp and Vrms into Vamp (Figure D.1):

(D.7)

- Vrms into dBVolt (D.8)1:

(D.8)

- dBVolt into Vrms(D.9):

(D.9)

- Vrms into dBmelectric (in the case of a 50 [Ω] terminated connection) (D.10):

(D.10)

- dBmelectric into Vrms(in the case of a 50 [Ω] terminated connection) (D.11):

(D.11)

Figure D.1 Different expressions for the voltage.

1. For the conversion from linear into logarithmic units you have to multiply the normalize loga-
rithms by a factor 20 if the unit is an amplitude (e.g. electric field, voltage, current etc.) and by 10
if the unit represents power or energy (e.g. electric power, laser beam intensity etc.). So you take
into account that the power or energy is in general proportional to the square of its amplitude.

y Vamp[ ] 1
2
--- Vpp[ ]

y Vpp[ ] 2 Vamp[ ]=

=

0

+

−

Peak to Peak Root mean square

Amplitude

V
ol

ta
ge

y Vamp[ ] 2 Vrms[ ]

y Vrms[ ] 1

2
------- Vamp[ ]=

=

y dBVolt[ ] 20 log10

x Vrms[ ]
1 Vrms[ ]
---------------------

 
 
 

⋅=

y Vrms[ ] 1 Vrms[ ] 10

x dBVolt[ ]
20

-----------------------
⋅=

y dBmelectric[ ] 10 log10
Power W[ ]

1 mW[ ]
--------------------------- 

 ⋅ 10 log10
x

2
V

2
rms[ ] 50 Ω[ ]⁄
1 mW[ ]

-----------------------------------------------
 
 
 

⋅= =

y Vrms[ ] 50 Ω[ ] 0.001 W[ ] 10

x dBmelectric[ ]
10 dBmelectric[ ]
------------------------------------

⋅ ⋅=
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D.3. Relation of Electrical and Optical Units

If a modulated laser beam is converted into an electric microwave signal by a 50[Ω] terminated con-
nection, we have to take into account that the current of the photodiode is proportional to the power
of the incident laser beam ILaserbeam(Figure D.1). Considering that the electric power PElectricalof
the signal is proportional to the square of the current, we have to convert the optical units of the mod-
ulation (mWoptic or dBmoptic) into electrical units (Volt, mWelectric or dBmelectric).

(D.12)

For linear units (like watt) there is a quadratic relation between the electrical and the optical units
(Equation (D.12)). For logarithmic units (like dBm) the relation between electrical and optical units
are expressed by Equation (D.13).

(D.13)

For consideration of gain or loss in a device, the constants of Equation (D.13) will strike out and so
we find Equation (D.14).

(D.14)

Figure D.1 Conversion of a laser beam into a microwave signal with
iPhotodiode=α ILaserbeam.

Photodiode Microwave Equipement
(e.g. Spectrum Analyser)

 Modulated Laser Photodiode Current i
Beam with Power P In

Ω
50

 

Microwave Signal
with Power POut

PElectrical iPhotoDiode
2

R50Ω⋅ α2
R50Ω ILaserbeam

2⋅ ⋅

PElectrical Cons ttan Linear ILaserbeam
2⋅=

= =

y dBmelectric[ ] 10 log10

Cons ttan Linear ILaserbeam
2

Watt
2[ ]⋅

1 mW[ ]
----------------------------------------------------------------------------------------------

 
 
 
 

10 log10

Cons ttan Linear
1 mW[ ]

--------------------------------------- 
  20 log10

ILaserbeamWatt[ ]
1 mW[ ]

---------------------------------------------- 
 ⋅+⋅

2 dBmoptic[ ] Cons ttan Logarithmic+⋅

=

=

⋅=

y dBelectric[ ] 2 dBoptic[ ]⋅=
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E. Calculations

E.1. Calculation of the eigenvalues

We want an analytic solution for the eigenvalues of Equation E.1.

E.1

So we have to calculate the roots of the determinant of Equation E.2 whereξ represents the eigen-
value.

E.2

By changing the variables we can rewrite Equation E.2 to simplify the calculations with ,

E.3

For simplification we define , , , and,
 and hence we get for the determinat Equation E.4.

E.4

By using the fact that and by putting , we get the cubic of Equation E.5.

E.5

By putting  and  we can calculate the discriminant of Equation E.5.

E.6

If the discriminant is smaller than 0 there will be three real solutions. Considering that the eigenval-
ues of a symmetric matrix are real, and that the product becomes maximal if

we can show that we have three different real solutions. If x=y=z, the discrim-
inate becomes 0 and hence we have only two solutions.

So by putting and we get the following solution for the eigenval-
ues as given in Equation E.7, E.8 and E.9.

η E( )
1 no

2⁄ r41Ez r41Ey

r41Ez 1 no
2⁄ r41Ex

r41Ey r41Ex 1 no
2⁄

=

η E( )
1 no

2 ξ–⁄ r41Ez r41Ey

r41Ez 1 no
2⁄ ξ– r41Ex

r41Ey r41Ex 1 no
2⁄ ξ–

=

η 1 no
2⁄=

η E( )
η ξ– αz αy

αz η ξ– αx

αy αx η ξ–

=

α r41 E= x Ex E⁄= y Ey E⁄= z Ez E⁄=
E Ex

2 Ey
2 Ez

2+ +=

Determinant η ξ–( )3 2α3xyz η ξ–( )α2 x2 y2 z2+ +( )–+=

x2 y2 z2+ + 1= s η ξ–=

s3 s α2 2α3xyz+⋅– 0=

p α2 3⁄–= q α3xyz=

Discriminant q2 p3+ α6 x2y2z2 1
27
------– 

 = =

x y z⋅ ⋅
x y z 1 3⁄= = =

r 1 3( )⁄ α–= ϕ( )cos q r3⁄=
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E.7

E.8

E.9

Considering that , we get for all values of x, y and z a valid solution. So by re-
setting the previous definitions, we get Equation E.10, E.11 and E.12 for the seeked eigenvalues.

E.10

E.11

E.12

E.2. Calculation of the eigenvectors

In this paragraph we are calculating the corresponding eigenvectors. So we are looking for the non-
trivial solution of Equation E.13.

E.13

If there is a non trivial solution for Equation E.13, we can find another valid solution just by mul-
tiplying the solution with a constant factor ( ). In some case it is advantageous to nor-
malize the result so that .

By multiplying the first row by respectively and by
subtracting the first row from the second and from the third row respectively, we can simplify
Equation E.13 into Equation E.14.

s1
2

3
-------α arc 3 3xyz–( )cos

3
--------------------------------------------- 

 cos⋅–=

s2
2

3
-------α π

3
--- arc 3 3xyz–( )cos

3
---------------------------------------------– 

 cos⋅=

s3
2

3
-------α π

3
--- arc 3 3xyz–( )cos

3
---------------------------------------------+ 

 cos⋅=

xyz Max 1 3 3⁄=

ξ1
1

no
2

-------
2

3
------- E

arc 3 3
ExEyEz

E 3
------------------– 

 cos

3
-------------------------------------------------------

 
 
 
 
 

cos r41⋅ ⋅+=

ξ2
1

no
2

-------
2

3
------- E π

3
---

arc 3 3
ExEyEz

E 3
------------------– 

 cos

3
-------------------------------------------------------–

 
 
 
 
 

r41⋅cos⋅–=

ξ3
1

no
2

-------
2

3
------- E π

3
---

arc 3 3
ExEyEz

E 3
------------------– 

 cos

3
-------------------------------------------------------+

 
 
 
 
 

r41⋅cos⋅–=

1 no
2 ξ1 2 3, ,–⁄ r41Ez r41Ey

r41Ez 1 no
2⁄ ξ1 2 3, ,– r41Ex

r41Ey r41Ex 1 no
2⁄ ξ1 2 3, ,–

x

y

z

⋅
0

0

0

=

X
Cons ttan X⋅

X 1≡

r41Ez 1 no
2 ξ1 2 3, ,–⁄( )⁄ r41Ey 1 no

2 ξ1 2 3, ,–⁄( )⁄
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E.14

So by using the second row of Equation E.14 we find Equation E.15.

E.15

By putting the result of Equation E.15 into the first row Equation E.14, we get the Equation E.16

for x.

E.16

So now we can use the results of Equation E.15 and Equation E.16 to assemble the eigenvector in
function of the eigenvaluesξ1,2,3. The vector of Equation E.17 is not normalized.

E.17

We replaceξ1,2,3by the first eigenvalueξ1 to find the according eigenvector “Eigenvector1”. Ac-
cording to Equation E.10 the first eigenvalue is . So for the
first eigenvector we get Equation E.18.

1 no
2 ξ1 2 3, ,–⁄ r41Ez r41Ey

0
1 no

2 ξ1 2 3, ,–⁄( )
2

r41Ez( )2–

1 no
2 ξ1 2 3, ,–⁄

------------------------------------------------------------------
r41Ex 1 no

2 ξ1 2 3, ,–⁄( ) r41
2 EyEz–

1 no
2 ξ1 2 3, ,–⁄

-------------------------------------------------------------------------

0
r41Ex 1 no

2 ξ1 2 3, ,–⁄( ) r41
2 EyEz–

1 no
2 ξ1 2 3, ,–⁄

-------------------------------------------------------------------------
1 no

2 ξ1 2 3, ,–⁄( )
2

r41Ey( )2–

1 no
2 ξ1 2 3, ,–⁄

------------------------------------------------------------------

x

y

z

⋅
0

0

0

=

y
1 no

2 ξ1 2 3, ,–⁄( )
2

r41Ez( )2–

1 no
2 ξ1 2 3, ,–⁄

------------------------------------------------------------------ z
r41Ex 1 no

2 ξ1 2 3, ,–⁄( ) r41
2 EyEz–

1 no
2 ξ1 2 3, ,–⁄

-------------------------------------------------------------------------⋅+⋅ 0

y z
r41

2 EyEz r41Ex 1 no
2 ξ1 2 3, ,–⁄( )–

1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–

---------------------------------------------------------------------------
 
 
 

⋅=

=

x 1 no
2 ξ1 2 3, ,–⁄( ) y r41Ez z r41Ey⋅+⋅+⋅ 0

x 1 no
2 ξ1 2 3, ,–⁄( ) z

r41
2 EyEz r41Ex 1 no

2 ξ1 2 3, ,–⁄( )–

1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–

--------------------------------------------------------------------------- r41Ez z r41Ey⋅+⋅ ⋅+⋅ 0

x 1 no
2 ξ1 2 3, ,–⁄( )⋅ z

r41Ex 1 no
2 ξ1 2 3, ,–⁄( ) r41

2 EyEz–

1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–

--------------------------------------------------------------------------- r41Ez⋅ r41Ey–
 
 
 

x z
r41

2 ExEz 1 no
2 ξ1 2 3, ,–⁄( ) r41

3 EyEz
2– r41Ey 1 no

2 ξ1 2 3, ,–⁄( )
2

r41Ez( )2–( )–

1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–( ) 1 no

2 ξ1 2 3, ,–⁄( )⋅
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------⋅=

⋅=

=

=

Eigenvector

r41
2 ExEz 1 no

2 ξ1 2 3, ,–⁄( ) r41
3 EyEz

2– r41Ey 1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–( )–

1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–( ) 1 no

2 ξ1 2 3, ,–⁄( )⋅
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

r41
2 EyEz r41Ex 1 no

2 ξ1 2 3, ,–⁄( )–

1 no
2 ξ1 2 3, ,–⁄( )

2
r41Ez( )2–

---------------------------------------------------------------------------

1

=

ξ1 1 no
2⁄ 2 3⁄ E …( )cos r41⋅ ⋅+=
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E.18

After further simplifications we get Equation E.19 for the “Eigenvector1”.

 where

E.19

With similar deductions, we get for the other eigenvectors the following vectors (Equation E.20 and
E.21).

 where

Eigenvector1

r41
2 ExEz

1

no
2

------- 1

no
2

-------
2 E

3
--------- …( )cos r41–– 

  r41
3 EyEz

2– r41Ey
1

no
2

------- 1

no
2

-------
2 E

3
--------- …( )cos r41–– 

  2
r41Ez( )2– 

 –

1

no
2

------- 1

no
2

-------
2 E

3
--------- …( )cos r41–– 

  2
r41Ez( )2– 

  1

no
2

------- 1

no
2

-------
2 E

3
--------- …( )cos r41–– 

 ⋅
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

r41
2 EyEz r41Ex

1

no
2

------- 1

no
2

-------
2 E

3
--------- …( )cos r41–– 

 –

1

no
2

------- 1

no
2

-------
2 E

3
--------- …( )cos r41–– 

  2
r41Ez( )2–

-----------------------------------------------------------------------------------------------------------

1

=

Eigenvector1

ExEz
2 E

3
---------– …( )cos 

  EyEz
2– Ey

2 E

3
--------- …( )cos 

  2
Ez

2– 
 – 

  r41
3⋅

2 E

3
--------- …( )cos 

  2
Ez

2– 
  2 E

3
---------– …( )cos 

  r41
3⋅ ⋅

-----------------------------------------------------------------------------------------------------------------------------------------------------------

EyEz Ex
2 E

3
--------- …( )cos+ 

  r41
2⋅

2 E

3
--------- …( )cos 

  2
Ez

2– 
  r41

2⋅
-----------------------------------------------------------------------

1

=

Eigenvector1

E– xEz
2 E

3
--------- …( )cos EyEz

2– Ey
2 E

3
--------- …( )cos 

  2
Ez

2– 
 –

2 E

3
--------- …( )cos 

  2
Ez

2– 
  2 E

3
---------– …( )cos 

 ⋅
-------------------------------------------------------------------------------------------------------------------------------------

EyEz Ex
2 E

3
--------- …( )cos+

2 E

3
--------- …( )cos 

  2
Ez

2–
------------------------------------------------------

1

=

…( )cos

arc 3 3
ExEyEz

E 3
------------------– 

 cos

3
-------------------------------------------------------

 
 
 
 
 

cos=

Eigenvector2

ExEz
2 E

3
--------- …( )cos EyEz

2– Ey
2 E

3
--------- …( )cos 

  2
Ez

2– 
 –

2 E

3
--------- …( )cos 

  2
Ez

2– 
  2 E

3
--------- …( )cos 

 ⋅
----------------------------------------------------------------------------------------------------------------------------------

EyEz Ex–
2 E

3
--------- …( )cos

2 E

3
--------- …( )cos 

  2
Ez

2–
----------------------------------------------------

1

=
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E.20

 where

E.21

E.3. Calculation of reflection and transmission coefficients

The air / GaAs interface will reflect a part of the laser beam and the rest will enter the GaAs crystal.
The reflection and transmission coefficient for the intensity (Uppercase letters RIntensity, TIntensity)
as well as for the magnitude of the electric field (Lowercase letter r, t) can be calculated with the
Maxwell equations under the condition of power conservation (Figure E.1).

The boundary condition for a plane wave impose that the summation of the addition of the electric
fields on both sides has to be equal to avoid discontinuity (Equation E.22).

E.22

We assume that there is no loss of power at/in the interface and that the materials show no magnetic
properties (µr=1). So the energy conservation has to be satisfied as imposed by Equation E.23

Figure E.1 Electric field of the incident, the reflected
and the transmitted laser beam.

…( )cos π
3
---

arc 3 3
ExEyEz

E 3
------------------– 

 cos

3
-------------------------------------------------------–

 
 
 
 
 

cos=

Eigenvector3

ExEz
2 E

3
--------- …( )cos EyEz

2– Ey
2 E

3
--------- …( )cos 

  2
Ez

2– 
 –

2 E

3
--------- …( )cos 

  2
Ez

2– 
  2 E

3
--------- …( )cos 

 ⋅
----------------------------------------------------------------------------------------------------------------------------------

EyEz Ex–
2 E

3
--------- …( )cos

2 E

3
--------- …( )cos 

  2
Ez

2–
----------------------------------------------------

1

=

…( )cos π
3
---

arc 3 3
ExEyEz

E 3
------------------– 

 cos

3
-------------------------------------------------------+

 
 
 
 
 

cos=

E

E

E

Transmitted

Incident

Reflected

Material 1 Material 2

EIncident EReflected+ ETransmitted=
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 with E.23

 and

where ZMaterial1 and ZMaterial2 are the wave impedances of the different materials. By using
Equation E.22 and Equation E.23, we get a quadratic equation for EReflected in function of EIncident.

E.24

We can solve Equation E.24 and thus we get the reflection coefficient of the air GaAs interface as
defined in Equation E.25.

 or

E.25

For the transmission we can proceed in the same way (Equation E.26).

E.26

So for the transmission coefficient we get Equation E.27.

E.27

So for the air GaAs interface we get the transmission and reflection coefficients of Equation E.28
and Equation E.29. The coefficients are defined by Figure E.1.

EIncident EIncident
∗⋅

2ZMaterial1
---------------------------------------------

ETransmitted ETransmitted
∗⋅

2ZMaterial2
------------------------------------------------------------

EReflected EReflected
∗⋅

2ZMaterial2
--------------------------------------------------+=

ZMaterial1

Zo

nMaterial1
---------------------= ZMaterial2

Zo

nMaterial2
---------------------=

EIncident
2 EReflected

2–
2ZMaterial1

----------------------------------------------
ETransmitted

2

2ZMaterial2
--------------------------

EIncident
2 EReflected

2–
2ZMaterial1

----------------------------------------------
EIncident EReflected+( )2

2ZMaterial2
------------------------------------------------------

nMaterial1 EIncident
2 EReflected

2–( )⋅ nMaterial2 EIncident EReflected+( )⋅ 2

0 EReflected
2 nMaterial2 nMaterial1+( )⋅ EReflected 2EIncidentnMaterial2 EIncident

2 nMaterial2 nMaterial1–( )+⋅+=

=

=

=

EReflected

2EIncidentnMaterial2 2EIncidentnMaterial1±–
2 nMaterial1 nMaterial2+( )⋅

------------------------------------------------------------------------------------------------- EIncident

nMaterial1 nMaterial2–±
nMaterial1 nMaterial2+
----------------------------------------------------⋅= =

rMaterial1 Material2–

nMaterial1 nMaterial2–
nMaterial1 nMaterial2+
------------------------------------------------=

EIncident
2 ETransmitted EIncident–( )2–

2ZMaterial1
-----------------------------------------------------------------------------------

ETransmitted
2

2ZMaterial2
--------------------------

nMaterial1 ETransmitted
2– 2ETransmittedEIncident+( )⋅ nMaterial2 ETransmitted

2

0 ETransmitted ETransmitted nMaterial2 nMaterial1+( ) 2EIncidentnMaterial1–( )⋅=

⋅=

=

tMaterial1 Material2–

2nMaterial1

nMaterial1 nMaterial2+
------------------------------------------------=
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 and E.28

 and E.29

The reflection and transmission coefficient for the intensity can be calculated using Equation E.30.

 and E.30

E.4. Calculation of the Cavity response

According to Figure 27 on page 28, the sum of the reflections is Equation E.31.

E.31

By defining and we can rewrite Equation E.31
as Equation E.32.

E.32

By putting as well as we can describe the sum of by Equation E.33.

E.33

Under the condition that (always satisfied as r as well as R are smaller than one) and by
considering Equation E.34, we get for EReflected Equation E.35 also called the Airy Equation.

E.34

FigureE.2 Definition of the transmission and reflection
coefficient at the Air GaAs interface.

Air GaAs

r

r

Air−GaAs tAir−GaAs

t
GaAs−Air GaAs−Air

rAir GaAs–

nAir nGaAs–
nAir nGaAs+
----------------------------= tAir GaAs–

2nAir

nAir nGaAs+
----------------------------=

rGaAs Air–

nGaAs nAir–
nAir nGaAs+
----------------------------= tGaAs Air–

2nGaAs

nAir nGaAs+
----------------------------=

RIntensity rMaterialX MaterialY–
2= TIntensity

ZMaterial1

ZMaterial2
--------------------- tMaterial1 Material2–

2 nMaterial2

nMaterial1
--------------------- tMaterial1 Material2–

2⋅=⋅=

EReflected EIncident

rAir GaAs– tAir GaAs– tGaAs Air– Re i π– e
i φ–

tAir GaAs– tGaAs Air– Re iπ–( )
2
rGaAs Air– e i2φ– …+ + +( )

=

t2 tAir GaAs– tGaAs Air–= r rGaAs Air– rAir GaAs––= =

EReflected EIncident r– t2Re i π– e
i φ–

t2 Re i π–( )
2
re i2φ– t2 Re iπ–( )

3
r2e i2φ– …+ + + +( )=

e i2π– 1= e i π– 1–= EReflected

EReflected EIncident r– t2– Re i φ– 1 R– re i φ– Rre i φ–( )
2

Rre i φ–( )
3

– …+ +( )( )=

Rre i φ– 1<

r2 t2+
nGaAs nAir–
nAir nGaAs+
---------------------------- 

  2 2nAir

nAir nGaAs+
----------------------------

2nGaAs

nAir nGaAs+
----------------------------⋅+ 1= =
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E.35

The problem is, that in our setup we are not measuring the electric field but the intensity of the Laser
beam or with other words the power of the reflected beam. So we have to calculate the intensity by
using Equation E.36 which describes the intensity of a electromagnetic wave in a given material. In
our case this material is the surrounding air. Hence we get the intensity of the reflected laser beam
Equation E.37.

E.36

E.37

By replacing  we get for the reflected beam Equation E.38.

E.38

E.5. Calculation of the partial derivative

When we apply an electric field across the cavity, the refractive index of the material and hence the
response will change as indicated by Equation E.39.

E.39

If we linearize Equation E.39 in function of the Ez, we get Equation E.40.

E.40

We have an interest to replace the unknown derivative by an “known” function.

By using Equation E.41 and E.42 we find the relation of Equation E.43.

and E.41

EReflected EIncident r– t2– Re i φ– 1

1 Rre i φ–+
------------------------ 

  EIncident
r– R– r2e

i φ–
Rt2e

i φ–
–

1 Rre i φ–+
-------------------------------------------------

 
 
 

EIncident
r– R– e i φ– r2 t2+( )

1 Rre i φ–+
----------------------------------------- 

  E– Incident
r Re i φ–+

1 Rre i φ–+
------------------------ 

 

= =

= =

ILaserbeam
1

2ZMaterial
---------------------- ELaserbeam ELaserbeam

*⋅=

IReflected
1

2ZMaterial
---------------------- EReflected EReflected

∗⋅=
EIncident

2

2ZMaterial
---------------------- r Re i φ–+

1 Rre i φ–+
------------------------ 

  r Re i φ–+

1 Rre i φ–+
------------------------ 

 
∗

⋅

EIncident
2

2ZMaterial
---------------------- r R φcos+ i– R φsin

1 Rr φcos i– Rr φsin+
--------------------------------------------------- 

  r R φcos iR φsin+ +
1 Rr φcos iRr φsin+ +
------------------------------------------------------ 

 ⋅⋅

EIncident
2

2ZMaterial
---------------------- r2 2R φcos R2 φcos( )2 R2 φsin( )2+ + +

1 2Rr φcos R2r2 φcos( )2 R2r2 φsin( )2+ ++
--------------------------------------------------------------------------------------------------------⋅

EIncident
2

2ZMaterial
---------------------- r2 R2 2Rr φcos+ +

1 r2R2 2Rr φcos+ +
------------------------------------------------⋅

= =

=

=

EIncident
2 2ZMaterial⁄ I Incident=

IRefelcted I Incident
r2 R2 2Rr φcos+ +

1 r2R2 2Rr φcos+ +
------------------------------------------------=

IReflected I Incident

r2 R2 2Rr
4πd
λo

---------- no
1
2
---no

3r41Ez+ 
 

 
 cos+ +

1 R2r2 2Rr
4πd
λo

---------- no
1
2
---no

3r41Ez+ 
 

 
 cos+ +

----------------------------------------------------------------------------------------------------=

IReflected λo Ez,( ) IReflectedEz 0=

IRef lected∂
Ez∂-----------------------

Ez 0=

Ez⋅+≈

I∂ Reflected E∂ Ez
⁄

Ez 0=

IReflected∂
Ez∂

-----------------------
IReflected∂

φ∂
----------------------- φ∂

Ez∂
--------⋅=

IReflected∂
φ∂

-----------------------
IReflected∂

λo∂
-----------------------

λo∂
φ∂

--------⋅=
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 and E.42

E.43

E.6. Calculation of the Minimum and Maximum of the Fabry-Perot Cav-
ity response

We can find the maximum and minimum by setting the derivation of Equation E.44 equal to zero.

E.44

By looking only at the denominator of Equation E.44 we find the product of two terms as displayed
in Equation E.45.

E.45

The first one does not indicate any solution because it is independent ofφ. So with the second term
we find the solution indicated in Equation E.46.

E.46

So now we have to verify which on is the maximum and minimum. We do this by putting both result
into Equation E.44 and by comparing them.

E.47

E.48

When we compare Equation E.47 and Equation E.48, we have to take into account that 0 < r, R < 1
and that  and  are positive per definition.

φ∂
Ez∂

--------
2πdno

3r41

λo
----------------------≈ φ∂

λ∂
------ 4πd–

λo
2

------------- no
1
2
---no

3r41Ez+ 
 ⋅≈

IReflected∂
Ez∂

-----------------------
Ez∂
φ∂

--------⋅
IReflected∂

λo∂
-----------------------

λo∂
φ∂

--------

IReflected∂
Ez∂

-----------------------
λo

2πdno
3r41

----------------------⋅
IReflected∂

λo∂
-----------------------

λo
2

4πd– no
1
2
---no

3r41Ez+ 
 ⋅

--------------------------------------------------------

IReflected∂
Ez∂

-----------------------
Ez 0=

⋅

IReflected∂
λo∂

-----------------------
no

2r41λo–
2

--------------------⋅

≈

≈

⋅=

IReflected I Incident
r2 R2 2Rr φ( )cos+ +

1 R2r2 2Rr φ( )cos+ +
-----------------------------------------------------=

φd

dIReflected I Incident φd
d r2 R2 2Rr φcos+ +

1 r2R2 2Rr φcos+ +
------------------------------------------------= 0

1 r2R2 2Rr φcos+ +( ) 2Rr φsin–( ) r2 R2 2Rr φcos+ +( ) 2Rr φsin–( )–

1 r2R2 2Rr φcos+ +( )
2

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 0=

=

r2 R2 2Rr φcos+ +( ) 1 r2R2 2Rr φcos+ +( )–( ) 2Rr φsin–( ) 0
r2 R2+ 1 r2– R2–( ) 2Rr φsin–( ) 0=

=

2Rr φsin–( ) 0 φA→ 0 φB, π= = =

IA 0( ) I Incident
r2 R2 2Rr+ +

1 r2R2 2Rr+ +
------------------------------------= I Incident

r R+( )2

1 rR+( )2
----------------------=

IB π( ) I Incident
r2 R2 2– Rr+

1 r2R2 2– Rr+
---------------------------------= I Incident

r R–( )2

1 rR–( )2
----------------------=

IA IB
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E.49

So our assumption was right and we get the maximum forφ=0 (Equation E.50) and forφ=π the min-
ima (Equation E.51).

E.50

E.51

E.7. Calculation of the relation between the reflection and R and r

With equation E.50 and E.51 we can calculate r and R in function of , and .
It is interesting to know this coefficient even if we do not need them for the calculation of the electric
field.

E.52

E.53

By defining the parameter A (Equation E.52) and B (Equation E.53) we get the equation system giv-
en in the Equation E.54.

E.54

By putting into the second part of Equation E.54 we find a quadratic Equation E.55 for R.

E.55

I Incident
r R+( )2

1 rR+( )2
---------------------- I Incident

r R–( )2

1 rR–( )2
----------------------

r R+( )
1 rR+( )

-------------------- r R–( )
1 rR–( )

--------------------

r R+( ) 1 rR–( ) r R–( ) 1 rR+( )

r r2R– R rR2 r r2R R– rR2–+>–+

2R 2r2R

1 r2>

>

>

>

>

IMaximum I Incident
r R+( )2

1 rR+( )2
----------------------=

IMinimum I Incident
r R–( )2

1 r– R( )2
--------------------=

IMaximum IMinimum I Incident

A
IMaximum

I Incident
--------------------= r R+

1 rR+
---------------=

B
IMinimum

I Incident
--------------------= r R–

1 r– R
------------=

A 1 rR+( ) r R
B 1 r– R( ) r R–=

+=

r R A–
AR 1–
-----------------=

B 1
R A–

AR 1–
-----------------R– 

  R A–
AR 1–
----------------- R

B
AR 1–( ) R A–( )R–

AR 1–
---------------------------------------------------- 

  R A–( ) R AR 1–( )–
AR 1–

----------------------------------------------------

ABR B– BR2 ABR+– R A– AR2 R

R2 A B–( ) R2 AB 1–( ) A B–( )+ + 0=

+–=

=

–=
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So we calculate the discriminant to determine the number of solutions (Equation E.56).

E.56

With the conditions 0 < A < 1 and 0 < B < 1 we find that D is positive and hence we have two pos-
sible solutions for R.

E.57

So we have to verify if both solutions satisfy the condition 0<R1,2<1 to make sure that we do not get
negative values for R (would introduce another phase shift) or values bigger than 1 (generation of
energy during reflection).

R1>0

With 1-AB > 0, D > 0, and A-B > 0 all terms of Equation E.58 are positive, and so R1 is pos-
itive as well.

E.58

R1<1

With , and (1-A)(1+B) > 0, we can show that R1is bigger than 1.

E.59

Considering that Equation E.59 is wrong R1 is not a valid solution. So we have to check the second
possibility.

R2>0

With A-B > 0, 1+A2B2=1+A2B2, (A-B)2 > 0 and A-B > 0 we can show that the denominator
(Equation E.60) as well as the nominator of R2 are positive.

E.60

R2<1

With 1+A2B2=1+A2B2, A-B > 0 or B-A < 0 and 1-A+AB+B > 0 we can demonstrate

D 4 AB 1–( )2 4 A B–( )2– 4 A2B2 2AB– 1 A2– 2AB B2–+ +( ) 4 A2B2 1 A2– B2–+( )
4 1 A– 2( ) 1 B2–( ) 0>=

= = =

R1 2,
1 A– B 1 A– 2( ) 1 B2–( )±

A B–
------------------------------------------------------------------=

1 A– B 1 A– 2( ) 1 B2–( )+
A B–

------------------------------------------------------------------ 0>

1 A2–( ) 1 B2–( ) 0>

1 A–( ) 1 B+( ) 1 A2–( ) 1 B2–( ) 0

1 AB– 1 A2–( ) 1 B2–( ) A B

1 A– B 1 A– 2( ) 1 B2–( )+
A B–

------------------------------------------------------------------ 1>

–>+

>+

A2 2AB– B2 1 A2B2+ + + 1 A2B2

1 2AB A2B2 1 A2B2 A2 B2

1 AB–( )2 1 A2–( ) 1 B2–( )
1 AB 1 A2–( ) 1 B2–( )

1 AB– 1 A2–( ) 1 B2–( ) 0>–

>–

>
––+>+–

+>
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(Equation E.61) that R2 is a valid solution.

E.61

So we get for r and R equation E.62 and E.63.

E.62

E.63

E.8. Calculation of the modulation for a polarization between the optical
axis

If the applied electric field Ez is parallel to the z-axis and the optical axis are parallel to the x respec-
tive y axis, the ellipsoid of the refraction index is given by Equation E.64.

E.64

In Figure E.3ϕ is the angle between the x axis and the polarization given by the direction of the elec-
tric field of the laser beam. For the further analysis, we will project the electric field of the laser beam

Figure E.3 The axis of an ellipsoid.

with 1+A2B2 1 A2B2, A-B>0 or (B-A)<0 and (1-A+AB+B)>0

2 B A–( ) 1 A– AB B+ +( ) 0

2B 2AB– 2AB2 2B2 2A– 2A2 2AB2– 2AB–+ + + 0

1 A2B2 2B– 4AB– 2AB2 2B2 2A– 2A2 2AB2 1 A2B2

1 A2B2 2B– 4AB– 2AB2 B2 2A– A2 2AB2– 1 A2B2 A2– B2

A B 1– AB+–( ) A B– 1– AB+( ) 1 A2–( ) 1 B2–( )

A B– 1– AB+( ) 1 A2–( ) 1 B2–( )

A B 1 AB– 1 A2–( ) 1 B2–( )

1 1 AB– 1 A2–( ) 1 B2–( )–( ) A B–( )⁄<

–<–

<

<

–+<

+

+ + + +

<–+ + + +

<

<

+=

R 1 A– B 1 A– 2( ) 1 B2–( )–
A B–

------------------------------------------------------------------=

r 1 1 B2–( ) 1 A2–( )⁄–

B A 1 B2–( ) 1 A2–( )⁄–
---------------------------------------------------------------=

n

n

ϕ

x

y

y

x

nx Ez( ) no
1
2
---no

3r41Ez

ny Ez( ) no
1
2
---– no

3r41Ez

nz Ez( ) no=

≈

+≈
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onto the x and the y axis and execute the calculation for both axis separately (Equation E.65).

E.65

So for the response of the cavity we get Equation E.66.

E.66

For the output intensity we get Equation E.67.

E.67

For the estimation of the modulation, we can linearize both terms separately. So by using
Equation E.42. and by adapting the signs of the partial derivative we get find Equation E.68.

E.68

By doing the same consideration as in paragraph 5.1 and by taking the absolute value of cos(ϕ) we
find Equation E.69.

E.69

E.9. Calculation of the modulation for E=Ex+Ez

In this section we will try to estimate the systematic error introduced by an electric field not parallel
to the z-axis. The electric field is given by Equation E.70 whereθ is the angle between the electric

Ex Laser, ϕ( ) EAmplitude Laser,
Ey Laser, ϕ( )sin EAmplitude Laser,⋅=

⋅cos=

Ex Reflected, ϕ( ) EAmplitude Laser,
r Re

i
4πd
λo

---------- no
1
2
---no

3
r41Ez+ 

 –

+

1 rRe
i
4πd
λo

---------- no
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field and the x-axis as defined in Figure E.4.

E.70

By using the Equation (57) to (59) we get for the (normalized) optical axes the vectors given in
Equation E.71:

E.71

The according eigenvalues respectively the refractive indices are given by Equation E.72.

E.72

The incident laser beam is aligned parallel to the vector PolarizationLaseras given in Equation E.73.

E.73

So for the projection of the laser beam on the different optical axis we get Equation E.74

Figure E.4 Configuration using the polarization shift to measure the signal.
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,  and

E.74

By defining the three phase shifts , and
and by using Equation E.35, we get for the response of the cavity

Equation E.75.

E.75

By using the norm as definition for the intensity, we get for the reflected intensity
Equation E.76.

E.76

If or with other words if EAmplitude,Microwave= 0 we find again Equation E.36. For the
analysis of the modulation, we will use the same approach as in chapter 5.1 but we will linearize each
term of Equation E.76 separately. So we get for the electro-optic signal Equation E.77.

E.77

By using Equation E.43 we get the electro-optic signal for this setup Equation E.78.
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E.78

Finally we get for the resulting modulation Equation E.79.

E.79

E.10. Calculation of the Polarization Modulation

By projecting the vector of the electric field onto the optical axis of the crystal (Figure E.5), we get
Equation E.80,

E.80

whereϕ is the angle between the optical axis ‘x’. So now will study the propagation of laser beam
for both optical axis separately. We assume that the direction of the applied microwave signal is par-
allel to the z-axis. By using the result of Equation E.35, we get for the reflected laser beam
Equation E.81.

 with E.81

The reflected laser beam will pass a analyzer which is aligned perpendicular to the polarization of
the incident laser beam. So after projecting Ex,Reflectedand Ey,Reflectedonto the axe of the analyzer
the laser beam is given by Equation E.82.

Figure E.5 Configuration using the polarization shift to measure the signal.
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E.82

According to Figure E.5 we have to subtract Ey,Reflectedfrom Ex,Reflectedto get the resulting electric
field.

E.83

For the calculation of the laser beam intensity we use again Equation E.36 on page 122.

E.84

By using Equation E.85 and Equation E.86 we can simplify Equation E.84.
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E.86
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By putting together the previous results, we get for the output intensity given in Equation E.87.

E.87

Considering that the electro-optic coefficient is very small (for GaAs r41=1.41 10-12 m/V), we can
neglect its influence in the denominator (Equation E.88).

E.88

E.11. Calculation of the Polarization Modulation with twoλ/8 wave plate

The modulation is not effective for the setup discussed in the previous paragraph. It is very weak
because of a bad choice of the working point. We can see that by considering that Equation E.89 be-
comes zero.

E.89

In the most configurations, the working point is changed by introducing a quarter wave plate. In our
case we introduce aλ/8 wave plate, because the laser beam will pass it twice. The optical axis of the
λ/8 wave plate have the same directions as the optical axis of the GaAs crystal as displayed in Figure
E.5.

So Equation E.81 becomes Equation E.90 where e+iπ/4 and e-iπ/4 respectively e+i0 and e-iπ/2 are the
phase shifts caused by the wave plate.

Figure E.6 Configuration using the polarization shift to measure the signal and
λ/8 wave plat.
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 with E.90

So for the electric field at the output of the analyzer becomes Equation E.91.

E.91

So for the reflected intensity at the output of the analyzer we get Equation E.92.

E.92

By using Equation E.93 we can simplify the expression for the intensity at the output.

,  and E.93

So finally we get for the intensity at the output Equation E.94.
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E.94

with ,

 and

So the expressions is more complicated than the response ( ) of a ‘standard’ polar-
ization modulation cell (the beam just passes through the crystal without any reflections) with aλ/4
wave plate.

E.12. Calculation of the phase shift modulation

In the setup for the phase modulation, we split the incident laser beam (EInput,Laser) into two equal
parts, one part for probing and one part as a reference. At the output we recombine the sensed
( ) and the reference beam ( ). Ax indicates an attenuation andυ in-
dicates a phase shift cause by the propagation of a laser beam or caused by the ‘modulation’.

E.95

In the following deductions we assume that there are no further loss or gain in the system, and hence
 and . For the intensity of the laser beam we get Equation E.96.

E.96

By calculation the real and imaginary part of Equation E.35 on page 122 in Equation E.97 and by
exploiting Equation E.37, we can calculate the attenuation Aprobe (Equation E.98) and the phase
shift υProbe (Equation E.99) caused by the cavity.

E.97
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 with E.98

 with E.99

So now we have to choose AReferenceandυReferencein a way that we get a “good” modulation. Con-
sidering that we are interested in “strong” variations, we are looking for the working point where
Equation E.100 gets maximal or minimal.

E.100

So the optimal choice forυReference will be equation Equation E.101.

E.101

Finally we choose AReference=1 to simplify the calculations and hence get Equation E.102 for the re-
sponse of the phase modulation.

E.102

E.13. Calculation of the Gaussian beam in free space

We start with the calculation of the spot size in free space. The laser beam leaves the optical fiber,
passes through a lens and is focuses to a spot (Figure E.7). The distance output fiber / lens is called
A. For the first example this distance should match the distance B between lens and spot or with other
words the magnification factor B/A should be one.

For this calculation the given parameters are the wavelength of the laser beamλο, the refraction in-
dices of the air nAir , the beam waist at the output of the fiber wFiberas well as the focal distance f of

Figure E.7 Calculation of the spot size and the focal distance with a
lens at the fiber output.
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the lens. We assume that at the output of the fiber the laser beam is a plane wave. Also we do the
assumption that the beam waist has the same size as the Mode Field Diameter and so according to
Appendix A.2.3. on page 106 we do our calculations with a value of wFiber=wAirOutputFiber=5 [µm].
The seeked parameters are the focal distance A and the spot size in free space wspot.

As the output of the fiber is a plane wave, the complex Gaussian beam parameter can be describe by
Equation E.103.

E.103

If we redefine  we can rewrite qAir  as Equation E.104.

E.104

By using Table 2 on page 45 we can determine the characteristics of the beam propagation by
Equation E.105.

E.105

So the complex beam parameter after the fiber is given by Equation E.106.

E.106

To determine the position of the focus, we have to find the point where the Gaussian beam is a plane
wave. So the real part of qSpot has to vanish and for this value we can calculate the beam radius
(Equation E.107).

E.107

In Equation E.107 we get three solution but only one is the wanted one. The first solution A=f indi-
cates the case with the fiber output in the focus of the lens. So at the output of the lens the Gaussian
beam becomes (exceptionally) a plane wave. The second solution ( ) indicates the triv-
ial solution when the output of the fiber is about in the center of lens. So the searched solution is
Equation E.108.

E.108
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In most case zo is much smaller than the focal distance f and in this case we get for .

By putting the solution of Equation E.108 into Equation E.106 we get the complex Gaussian beam
parameter for the focal point. It is not surprising that this parameter is identical with the parameter
at the output of the fiber and hence the beam waist of the spot is identical with the beam waist at the
output of the fiber.

E.109

and hence

E.110

E.13.1. Magnification factor

In the previous section, we assumed that the lens is exactly in the middle between the fiber output
and the focal spot. We will modify the calculation so that we can analyze the common case where

(Figure E.8). A as well as B have to be bigger than the focal distance f to guarantee the gen-
eration of an image. In this setup A is given and B is the searched variable.

So for the ray matrix of our setup we get Equation E.111.

E.111

So for the complex Gaussian beam parameter we get Equation E.112.

E.112

Figure E.8 Calculation of the spot size and the focal dis-
tance with a lens at the fiber output.
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So by requiring that the real part of Equation E.112 is zero, we get for B Equation E.113.

E.113

So for qSpot we get Equation E.114.

E.114

So we can calculate the beam waist in the spot Equation E.115.

E.115

So the beam waist depends on the parameter A or on the magnification factor A/B. It becomes max-
imal if A=f.

E.14. Spot Size of our probing device

In this paragraph we will have a look at a Gaussian beam focused on the back side of a GaAs sub-
strate (Figure E.9). The laser beam propagates a distance A (with A>f) and is focused by a lens with
a focal distance f. Afterwards the beam propagates again distance C where it hits the Air / GaAs in-
terface. After the interface the beam goes through the substrate of a given thickness d and the focal
point should be at the end of it.

The given parameters are the beam waist at the output of the fiber wAir , the distance A, the focal dis-
tance of the lens f, the thickness of the substrate, the refraction indices of Air nAir and GaAs nGaAs
as well as the laser beam wavelengthλο in free space. The unknown values are the beam waists
wLens, wSurfaceand wGold and the distances C and x. All parameters are defined according to Figure
E.9. As in the previous sections we assume that the Gaussian beam is a plan wave at the output of
the fiber as well as in the spot.
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So for the ray matrix of our setup we get Equation E.116.

E.116

So for the complex Gaussian beam parameter we get Equation E.117

E.117

By using some software to simplify Equation E.117 we get the following term:

E.118

By requiring that the real part of qSpotis zero we get the following value for the parameter C as given
in Equation E.119. If we assume that A=2f and that the beam waist at the fiber output becomes very
small ( ), the solution becomes C=2f-dnAir /nGaAs.

E.119

So for the complex beam parameter in the focal point, we get Equation E.120 as well as the corre-
sponding beam waist. If the magnification factor is one, and so we find that wGold is
equal to wAir .

 and so E.120

With the previous result it is easy to deduce to other unknown parameters.

FigureE.9 Calculation of the spot sizes and the focal distances with a
lens at the fiber output.
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E.121

E.122

By subtracting the result of Equation E.119 to the value of Equation E.113, we find the according
value for x.

E.123

E.15. Recalculation of the cavity response

In the previous calculation we neglected the fact, that the incident beam is an Gaussian beam with
finite dimensions. So we did not take into account that the beam waist spreads considerably while
the beam is propagating is the GaAs substrate and that the reflection of the Air / GaAs interface will
not be re-injected properly into the fiber because the focus will be slightly off. Considering that the
beam has to be re-injected into the fiber output, this will cause supplementary losses for the second,
third and further reflections.

E.15.1. The first reflection

Another neglected problem is the location of the focus of the Air / GaAs interface. The reflection
will not be focused properly into the output of the fiber (Figure E.10). We will calculate the beam
waist of the reflected beam at the output of fiber. Afterwards we use Equation E.125 to determine
the supplementary attenuation.

For the calculation of this attenuation coefficient RAttenuation, we assume that both Gaussian beam
are approximately plane waves. In this case we can use the equation which describes the losses due
to MFD mismatch between two single mode fibers. For this calculation we use the scalar product
between the two Gaussian modes and we normalize it as indicated in Equation E.124.

Figure E.10 The reflection from the interface Air / GaAs are not re-
injected properly into the fiber.
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E.124

For the calculations of the Fabry Perot Cavity, we use the electric field and not the intensity of the
beam. Hence by replacing and by using the root of LossMisMatch we find
Equation E.125.

E.125

For wFiber=wInput we find Equation E.126.

E.126

According to Figure E.10 we can calculate the complex beam parameter qInput.

E.127

with ,  and

A and f are the given distance between the fiber output an the lens respectively the focal distance of
the lens. By using Equation E.115 as the beam waist in the reflected spot we get for the complex
beam parameter of the reflected beam at the position of the fiber output Equation E.128.

E.128

with

As the reflected beam is not focused on this point . By using the definition of the
complex beam parameter we can calculate the beam waist by using equation Equation E.129.

E.129

So we calculate .
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E.130

Hence we can calculate the beam waist of the re-injected laser beam (Equation E.131) and the ac-
cording attenuation.

E.131

E.132

E.15.2.Calculation for the loss in the substrate

Also the higher order reflections from the golden back face will not be reinjected properly. For the
calculations of this attenuation coefficient, we proceed as in the previous paragraph.

E.133

With , , , and N

(0,1,2..) indicating the order of reflection, we get for the imaginary part of the complex beam parameter of the

reinjected beam Equation E.134.
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E.134

Hence we can calculate the beam waist of the re-injected laser beam (Equation E.131) and the ac-
cording attenuation.

E.135

E.136

E.15.3. Re-calculation of the Fabry Perot cavity response

As we could see in the previous paragraphs, there are additional losses due to the divergence of the
laser beam. Hence we have to modify our calculation a little bit.

E.137

E.138

According to Equation E.137 and Equation E.138 we modify the reflection coefficient. For the re-
flection coefficient r we introduce a supplementary phase shift.

E.139
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