Etude expérimentale et théorique de l’injection d’une suspension dans un milieu granulaire. Application aux coulis de ciment

Zied Saada

To cite this version:

HAL Id: pastel-00000823
https://pastel.archives-ouvertes.fr/pastel-00000823
Submitted on 3 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THESE DE DOCTORAT

présentée par

Zied SAADA

pour l'obtention du grade de

DOCTEUR

DE

L’ECOLE NATIONALE DES PONTS ET CHAUSSEES

Spécialité : Géotechnique

intitulée :

Etude expérimentale et théorique de l'injection d’une suspension dans des milieux granulaires.
Application aux coulis de ciment.

Centre d'Enseignement et de Recherche en Mécanique des Sols
(CERMES, ENPC - LCPC)

soutenue, devant le jury composé de :
Remerciements

Je tiens à remercier très vivement monsieur Luc Dormieux, professeur à l’Ecole Polytechnique, d’avoir dirigé mes travaux de recherche. Ses compétences et ses bonnes directives m’ont aidé à boucler rapidement la préparation de la thèse.

Je tiens à remercier aussi mes conseillers d’étude messieurs Jean Canou et Jean Claude Dupla, chercheurs au CERMES, d’avoir supervisé mon travail expérimental.

Je remercie messieurs Roger Frank et Pierre Delage, professeurs à l’Ecole Nationale des Ponts et Chaussées, respectivement ancien et nouveau directeurs du CERMES de m’avoir accueilli au sein de leur laboratoire en vue de préparer ma thèse de doctorat.

Je tiens à remercier tous les chercheurs qui m’ont orienté et m’ont conseillé. Je cite monsieur Behrouz Gatmiri, chercheur au CERMES, monsieur Duilio Marcial, enseignant chercheur à l’Universidad Central de Venezuela et monsieur Samir Maghous, Chercheur au LMSGC.

Je remercie également monsieur Emmanuel De Laure, ingénieur au CERMES et monsieur Xavier Boulay, technicien au CERMES, de m’avoir aidé à surmonter les problèmes techniques liés à la partie expérimentale de la thèse.

J’exprime mes remerciements à monsieur Vatement, ingénieur à la société Solétanche Bachy, monsieur Giletta, ingénieur à la société Ciments d’Origny, et monsieur Chandelier ingénieur à la société Fosroc d’avoir offert gratuitement les fluidifiants et le ciment utilisés dans le cadre de la thèse.

Je tiens également à remercier mes collègues au CERMES, messieurs Nouredine Frih, Altin Mantho et Paul Lazar, d’avoir préparé mon pot de soutenance de thèse.

Je remercie aussi les secrétaires du CERMES mesdames Josette Fayol, Armelle Fayol et Dominique barriere de m’avoir aidé dans les formalités administratives.

Enfin, je remercie tous mes collègues du CERMES pour l’ambiance conviviale de travail.
Titre : Etude expérimentale et théorique de l'injection d'une suspension dans un milieu granulaire. Application aux coulis de ciment.

Mots clés : écoulement, suspension, ciment, filtration, perméabilité, milieu poreux, éléments finis, coulis, sable.

Title : Experimental and theoretical study of suspension injection in a granular medium. Application to cement grouts.

Abstract : This work deals with the problem of suspension flow in a porous medium in presence of filtration, with application to the injectability of a cement grout in a sand matrix. A theoretical model has first been developped to describe the flow of the suspension within the porous medium. The model is of the macroscopic type, based on the mass conservation equations, Darcy’s law and on the definition of evolution laws for the intrinsic permeability of the porous medium and for the volume filtration rate. The flow problem is then numerically solved based on finite elements method, for the one-dimensional case as well as for the radial case. In order to propose pertinent laws for the evolution of permeability and filtration rate, a specific experimental device was developped allowing the injection of small thickness samples. In particular, this device has allowed to study the influence of significant parameters on the injection process. Furthermore, some tests have been carried out on other experimental devices (short columns and long columns devices) in order to better understand the injection mechanisms. The results obtained have allowed to show the pertinence of a linear evolution law for the filtration rate and of a hyperbolic evolution law for the intrinsic permeability of the porous medium. Finally, a first validation of the proposed model has been done based on complementary results obtained on long columns.

Keys words : flow, suspension, cement, filtration, permeability, porous medium, finite element, grout, sand.
Sommaire

Introduction générale

Chapitre 1 Etude bibliographique

1.1 Généralités sur l’injection des sols

1.1.1 Définition du procédé

1.1.2 Historique

1.1.3 Les milieux naturels injectables

1.1.4 Les techniques d’injection

1.1.4.1 Injection dans les milieux fissurés

1.1.4.2 Injection des milieux pulvérulents

1.1.5 Les types de coulis

1.1.5.1 Les coulis newtoniens

1.1.5.2 Les coulis binghamiens

1.1.6 Les domaines d’application

1.1.7 Phénomènes caractéristiques de l’injection

1.1.7.1 Les claquages du sol

1.1.7.2 La filtration

1.1.8 Aspects théoriques et pratiques de l’injection des sols

1.2 Généralités sur l’étude de la filtration en profondeur de suspensions en écoulement dans un milieu poreux granulaire

1.2.1 Différents types de filtration

1.2.1.1 Filtration moyenne

1.2.1.2 Filtration à écoulement transverse

1.2.1.3 Filtration avec formation de cake

1.2.1.4 Filtration en profondeur

1.2.2 Forces en présence et mécanismes de filtration en profondeur

1.2.2.1 Forces en présence

1.2.2.2 Mécanismes de capture

1.2.2.3 Les sites de rétention

1.2.3 Types de filtration en profondeur

1.2.3.1 Filtration mécanique
1.2.3.2 Filtration physico-chimique
1.2.4 Processus de décolmatage
 1.2.4.1 Le décolmatage spontané
 1.2.4.2 Le décolmatage provoqué
1.2.5 Expériences de filtration en profondeur
1.2.6 Modélisation de l’écoulement de suspensions dans des milieux poreux
 1.2.6.1 Les modèles phénoménologiques
 1.2.6.2 Les modèles d’analyse de trajectoire
 1.2.6.3 Les modèles stochastiques
 1.2.6.4 Les modèles réseaux
1.3 Étude de l’injection de coulis de ciment dans les sols granulaires en présence de filtration
 1.3.1 Travaux expérimentaux
 1.3.2 Travaux de modélisation

Chapitre 2 Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules
 2.1 Le problème étudié
 2.2 Le choix du modèle
 2.3 Les hypothèses et les équations générales du modèle
 2.4 Formulation du problème d’écoulement unidimensionnel
 2.4.1 Définition du problème étudié
 2.4.1.1 La géométrie du problème
 2.4.1.2 La condition à la limite
 2.4.1.3 Les conditions initiales
 2.4.2 Simplifications et manipulations algébriques des équations mises en jeu
 2.4.3 Méthode de résolution
 2.5 Résolution du problème d’écoulement unidimensionnel
 2.5.1 Résolution du système d’équations en utilisant un schéma numérique semi-explicite
 2.5.2 Résolution du système d’équations en utilisant un schéma numérique implicite
2.5.3 Comparaison des résultats numériques obtenus à l’aide des schémas semi-explicite et implicite 62
2.5.4 Régime asymptotique de la fonction δ 64

2.6 Simplification du modèle pour l’écoulement unidimensionnel 65
2.6.1 Le problème à résoudre 65
2.6.2 La solution analytique 66
2.6.3 La solution numérique 67
2.6.4 Comparaison entre les solutions analytique et numérique 67

2.7 Solution analytique du problème d’écoulement unidimensionnel 68

2.8 Formulation du problème d’écoulement radial 70
2.8.1 Définition du problème étudié 70
2.8.1.1 La géométrie du problème 70
2.8.1.2 La condition à la limite 71
2.8.1.3 Les conditions initiales 72
2.8.2 Simplifications et manipulations algébriques des équations mises en jeu 72
2.8.3 Méthode de résolution 74

2.9 Résolution du problème d’écoulement radial 74
2.9.1 Résolution du système d’équations en utilisant un schéma numérique semi-explicite 74
2.9.2 Résultat d’une simulation numérique 77

2.10 Validation numérique du modèle pour l’écoulement radial 80
2.10.1 Résolution du problème d’écoulement du coulis en l’absence de filtration 80
2.10.1.1 La solution analytique 80
2.10.1.2 La solution numérique 81
2.10.1.3 Comparaison entre la solution analytique et la solution numérique 82
2.10.2 Résolution du problème d’écoulement du coulis en présence de filtration de particules, et en supposant que la porosité reste constante 82
2.10.2.1 La solution analytique 82
2.10.2.2 La solution numérique 84
2.10.2.3 Comparaison entre la solution analytique et la solution numérique du problème simplifié 84

2.11 Solution analytique du problème d’écoulement radial 85

2.12 Lois à déterminer en vue de compléter la modélisation 87
Sommaire

Chapitre 3 Dispositifs expérimentaux et procédures d’essais

3.1 Matériel de fabrication, d’injection et de caractérisation des coulis 89
3.2 Dispositif d’injection pour éprouvettes centimétriques 92
 3.2.1 Présentation du dispositif 92
 3.2.2 Procédure expérimentale 95
 3.2.2.1 Préparation de l’éprouvette à injecter 95
 3.2.2.2 Saturation à l’eau de l’éprouvette 95
 3.2.2.3 Préparation et injection du coulis 96
 3.2.2.4 Démontage du dispositif et nettoyage des pièces 97
3.3 Dispositif d’injection pour colonnes courtes 97
 3.3.1 Présentation du dispositif 97
 3.3.2 Procédure expérimentale 100
 3.3.2.1 Préparation de l’éprouvette 100
 3.3.2.2 Saturation à l’eau de l’éprouvette 101
 3.3.2.3 Préparation et injection du coulis 101
 3.3.2.4 Démontage du dispositif et nettoyage des pièces 101
3.4 Dispositif d’injection des colonnes longues 102
 3.4.1 Présentation du dispositif 102
 3.4.1.1 Description des colonnes 105
 3.4.1.2 Description du bâti d’essai 106
 3.4.1.3 Le dispositif de pluviation 106
 3.4.1.4 Dispositifs de mesure des pressions de fluide et des masses 108
 3.4.1.5 Acquisition des données et éléments de contrôle de l’essai 108
 3.4.2 Procédure expérimentale 110
 3.4.2.1 Préparation de la colonne et mise en place du matériau à injecter 110
 3.4.2.2 Saturation de la colonne et mesure de perméabilité 111
 3.4.2.3 Préparation et injection du coulis 111
 3.4.2.4 Démontage du dispositif et nettoyage des pièces 112
3.5 Cellule de mesure de variation de volume 112
Chapitre 4 Présentation des résultats expérimentaux

4.1 Les matériaux étudiés
 4.1.1 Matrices utilisées
 4.1.1.1 Le sable de Fontainebleau
 4.1.1.2 Le matériau modèle (billes de verre)
 4.1.2 Coulis étudiés
 4.1.2.1 Ciment
 4.1.2.2 Adjuvant

4.2 Essais d'injection sur éprouvettes centimétriques
 4.2.1 Programme expérimental
 4.2.2 Résultats typiques
 4.2.2.1 Saturation de l’éprouvette en eau
 4.2.2.2 Phase d’injection du coulis
 4.2.3 Répétabilité des essais
 4.2.4 Influence de l’indice de densité \(I_D \)
 4.2.4.1 Résultats obtenus pour les faibles débits
 4.2.4.2 Résultats obtenus pour les débits plus élevés
 4.2.5 Influence de la contrainte de consolidation
 4.2.5.1 Essais de compression isotrope
 4.2.5.2 Influence de la contrainte de consolidation lors de l’injection à faible débit
 4.2.5.3 Influence de la contrainte de consolidation lors de l’injection avec des débits plus élevés
 4.2.6 Influence de la concentration du coulis en ciment
 4.2.7 Influence du débit d’injection
 4.2.8 Influence de la forme des grains

4.3 Essais d’injection sur colonnes courtes
 4.3.1 Programme expérimental
 4.3.2 Résultats typiques
 4.3.3 Répétabilité
 4.3.4 Influence du débit d’injection

4.4 Essais d’injection sur colonnes longues
 4.4.1 Programme expérimental
4.4.2 Résultats typiques 150
 4.4.2.1 Phase de saturation 150
 4.4.2.2 Phase d’injection 152
4.4.3 Répétabilité des essais 153
4.4.4 Influence du débit d’injection 155

4.5 Comparaison des résultats obtenus sur les différents appareillages 159
 4.5.1 Comparaison en terme de prise de masse 159
 4.5.2 Comparaison en termes de pressions et de blocage de l’injection 160

Chapitre 5 Evaluation du modèle dans le cas unidimensionnel.

Détermination de l’abscisse et du rayon critiques 164

5.1 Lois phénoménologiques et théoriques retenues pour la modélisation 164
 5.1.1 Loi d’évolution de la masse filtrée par unités de volume et de temps 164
 5.1.2 Loi d’évolution de la perméabilité intrinsèque du milieu poreux 167
 5.1.3 Loi d’évolution de la viscosité du coulis 168
 5.1.4 Utilité des essais d’injection d’éprouvettes de 4 cm de haut 168

5.2 Calcul de la masse et des pressions au sein de la colonne longue 168
 5.2.1 Calcul de la variation de masse de la colonne 168
 5.2.2 Calcul des pressions au sein de la colonne 170

5.3 Simulation de quelques essais et première validation du modèle dans le cas
 unidimensionnel 170
 5.3.1 Les objectifs et les essais simulés 170
 5.3.2 Résultats obtenus lorsque le paramètre a est déterminé pour retrouver
 numériquement la masse de la colonne à l’instant $t=2L.\phi_0/\nu$ 172
 5.3.3 Résultats obtenus lorsque le paramètre a est déterminé afin de minimiser
 la fonction F_a 177
 5.3.4 Commentaires et modélisation de l’évolution du paramètre a en fonction
 du débit 182

5.4 Evaluation de l’abscisse critique pour l’écoulement unidimensionnel 182

5.5 Effet du débit sur l’écoulement radial 185

5.6 Evaluation du rayon critique pour l’écoulement radial 187

5.7 Conclusions 190
Sommaire

Conclusion générale et perspectives 192

Notations 196

Références bibliographiques 201
Introduction générale

L’injection est un procédé assez largement utilisé dans le domaine du génie civil pour améliorer les caractéristiques mécaniques et hydrauliques des sols en vue d’implantation d’ouvrages de génie civil (barrages, tunnels, ouvrages d’art, etc.). Le procédé consiste à injecter dans le sol à l’aide d’une technique appropriée (pompe d’injection), en général à partir de forages, un coulis de caractéristiques données, suffisamment fluide pour pénétrer dans le réseau poreux du sol, et dont le rôle va être de « faire prise » avec celui-ci, formant ainsi un matériau « composite » de caractéristiques améliorées.

Malgré une utilisation de plus en plus large du procédé pour des applications très diverses, de nombreux aspects reliés au processus d’injection restent à éclaircir et nécessitent le développement de recherches expérimentales et théoriques dans ce domaine. Les techniques utilisées en injection sont en effet très variées, mettant en œuvre des processus et des mécanismes complexes associés à la variété des coulis et à la diversité des matériaux à injecter. Le domaine de l’injection est donc source d’activités de recherches importantes, que ce soit dans le domaine des coulis, de l’interaction entre le sol et le coulis en cours d’injection, de la caractérisation des matériaux injectés après prise ou du contrôle a posteriori de la qualité des injections.

Dans ce contexte, les travaux de recherche présentés dans ce mémoire, ont pour objectif de proposer et de valider expérimentalement un modèle d’écoulement de coulis de ciment dans des matrices granulaires, en présence de filtration des particules de ciment dans le milieu poreux.

Les travaux présentés comportent à la fois un volet théorique et un volet expérimental développés en lien étroit.

Sur le plan expérimental, l’évolution du colmatage et de la perméabilité du milieu poreux sera étudiée à l’aide des essais. De plus, sur le plan théorique, on essayera de proposer un modèle réaliste d’écoulement de suspensions à travers un milieu poreux en présence de filtration de particules. On tentera de résoudre les équations du modèle aussi bien dans le cas unidimensionnel que dans le cas plus proche de la réalité du chantier, de l’injection radiale (cas de l’injection réalisée à partir d’un forage).
Introduction générale

Le présent mémoire se compose de cinq chapitres brièvement décrits ci-dessous :
- Le premier chapitre est consacré à une synthèse bibliographique des principaux travaux trouvés dans la littérature et intéressant la recherche entreprise dans le cadre de cette thèse.
- Le deuxième chapitre présente le modèle développé pour l’écoulement des suspensions dans des milieux poreux en présence de filtration et identifie les lois phénoménologiques à déterminer expérimentalement.
- Le troisième chapitre est consacré à la présentation des dispositifs expérimentaux développés et utilisés ainsi qu’aux procédures expérimentales suivies lors des essais.
- Le quatrième chapitre présente les matériaux étudiés, les résultats expérimentaux obtenus, ainsi que les interprétations et commentaires relatifs à ces essais.
- Enfin, le cinquième chapitre présente les lois phénoménologiques retenues pour la modélisation, une validation expérimentale du modèle dans le cas unidimensionnel ainsi que l’évaluation de l’abscisse et du rayon critiques.
Chapitre 1

Etude bibliographique

1.1. Généralités sur l'injection des sols

1.1.1. Définition du procédé

Poupelloz (1979) définit l'injection comme un procédé qui consiste à faire pénétrer dans un milieu naturel (roches fissurées ou karstifiées, sols...) ou artificiel (maçonnerie, béton fissuré...), un liquide appelé coulis susceptible de se solidifier dans le temps. Le but recherché est de réduire la perméabilité et/ou d’améliorer les caractéristiques mécaniques du milieu.

1.1.2. Historique

L’injection a été inventée par l’ingénieur français Charles Berigny en 1802. Celui-ci a injecté avec succès des mortiers de ciment, parfois additionnés de pouzzolanes.
La technique s’est développée en France au milieu du XIXème siècle pour réparer les ouvrages se trouvant sous le niveau de la nappe phréatique (Azzar (1997)).
Par ailleurs, Knipple a introduit l’injection en Angleterre vers 1856. Par la suite, celui-ci a réalisé des travaux à St-Hélier (Jersey) en 1884 qui l’ont rendu célèbre. A partir de 1896, il a poursuivi ses travaux en Égypte où il a appliqué le procédé aux grands barrages sur le Nil (Bouchelaghem A. (1994)).
Entre 1900 et 1920, un développement de la technique d’injection a pu être réalisé grâce à l’amélioration du matériel d’injection. Les pompes d’injection étaient initialement en bois et ont été fabriquées en métal (Kutzner (1996)).
L’emploi de l’injection s’est développé de manière significative dans les années 1920-1930 grâce à la construction des grands barrages. En utilisant cette technique, il était possible de supprimer les circulations d’eau qui contournent le barrage, d’une façon très économique.
A cette époque, le professeur Lugeon a fixé certaines règles qui ont amélioré l’efficacité de l’injection et ont réglementé l’injection du rocher une fois pour toutes.
Chapitre 1 - Etude bibliographique

De nos jours, les coulis chimiques sont de moins en moins utilisés, au moins en Europe, à cause des risques liés à l’environnement (pollution de la nappe phréatique). Parmi les solutions de remplacement, il y a les coulis de ciment très fin et l’utilisation de la technique du jet grouting.

1.1.3. Les milieux naturels injectables

L’injection est effectuée afin de remplir les vides dans les sols et les roches.
On distingue en gros deux catégories principales de vides :
- les fissures dans les roches ;
- les vides dans les sols pulvérulents.

Les fissures des roches ont généralement des ouvertures sensiblement constantes. C’est pourquoi leur injection est relativement simple. Lorsque ces fissures apparaissent en surface, elles sont injectées sans qu’il soit nécessaire de réaliser des forages. En effet, il suffit d’introduire un tuyau qui amène le coulis.

Par contre, l’injection des vides dans les sols pulvérulents est plus complexe que celle des roches fissurées. Ceci est dû à la complexité de la structure poreuse des sols pulvérulents : l’hétérogénéité de taille des pores qui sont successivement grands et petits.

Dans tous les cas, il est nécessaire de faire la reconnaissance du milieu à injecter afin d’optimiser le processus d’injection (Cambefort (1967)).

1.1.4. Les techniques d’injection

Les techniques d’injection varient selon les conditions du site, les contraintes d’environnement et le champ d’application (étanchement ou renforcement, traitement provisoire ou définitif).

Diverses techniques peuvent être utilisées selon les caractéristiques du terrain à injecter : milieu fissuré ou milieu pulvérulent.

Afin de réaliser l’injection, des forages sont effectués et le coulis est injecté grâce à des pompes ou presses.
1.1.4.1. Injection dans les milieux fissurés

D’après Poupelloz (1979), trois méthodes sont utilisées :
- Branchement en tête de forage
Il s’agit d’une méthode utilisée pour les traitements peu profonds comme les injections de consolidation à moins de 10 m de profondeur, de remplissage, de collage et de serrage.
- Injection par tranches remontantes (figure 1-1)
Cette méthode consiste à effectuer le forage jusqu’à la profondeur voulue. Par la suite, on injecte le rocher par tranches successives en remontant à l’aide d’un obturateur simple. La longueur des tranches varie de 3 m à 10 m suivant le cas.
Il s’agit d’une méthode économique mais qui présente certains inconvénients. En effet, elle est inapplicable lorsque le rocher est très fissuré ou si la qualité ne permet pas la bonne tenue de l’obturateur.

![Diagramme de l'injection par tranches remontantes]

Figure 1-1 Injection par tranches remontantes

- Injection par tranches descendantes (figure 1-2)
Il s’agit d’une méthode qui consiste à forer une tranche et à injecter à l’aide d’un obturateur. Par la suite deux procédures peuvent être suivies :
 - laver la tranche injectée et forer la tranche suivante ;
- reforer la tranche déjà injectée, après prise du coulis, forer la tranche suivante et l’injecter. Cette méthode présente l’avantage de créer un toit protecteur pour les tranches les plus profondes ce qui permet leur injection sous haute pression. Par contre, elle présente certains inconvénients d’ordre technique : nécessité d’imbriquer des opérations de perforation et d’injection, reforage du coulis de la tranche précédente, etc.

\[\text{Figure 1-2 Injection par tranches descendantes}\]

1.1.4.2. Injection des milieux pulvéruents

Les trois méthodes utilisées pour l’injection du rocher peuvent aussi être utilisées dans certains cas particuliers pour les milieux pulvéruents. Mais la méthode la plus utilisée est la méthode des tubes à clapets ou à manchettes.

- Injection par tubes à manchettes (figure 1-3).

Il s’agit de la méthode la plus sûre pour l’injection des terrains pulvéruents. Après l’exécution du forage, un tube disposant d’orifices protégés par des manchettes (distants entre eux de 0,25 m à 0,5 m) est mis en place. Le tube est scellé au terrain par un coulis appelé « coulis de gaine ». Ce coulis de gaine a un rôle important dans l’injection. Il doit être bien choisi pour ne pas être trop plastique afin d’éviter les circulations préférentielles du coulis le long du tube et il ne doit pas être trop résistant afin de permettre son claquage au droit des manchettes.
La mise en place de ce coulis se fait au cours du forage ou à partir du fond du forage au fur et à mesure de la remontée du tubage de soutènement.
Il est à noter que l’injection ne peut se faire que grâce au claquage de la gaine au droit des manchettes. Les pressions de claquage peuvent varier de quelques dixièmes de MPa à 6 MPa. Bien que nécessitant une préparation importante (perforation du tube et mise en place des manchettes), cette méthode d’injection n’est pas plus onéreuse que les autres. De plus, c’est la seule qui garantit la qualité du travail.
L’injection est faite de la manière suivante (Biarez et al. (1998)). Le coulis est envoyé sous pression dans le tube à manchette afin d’injecter une manchette bien déterminée (l’injection de chaque manchette peut être faite à part (Kutzner (1996)). Le coulis soulève la manchette (manchette cylindrique en caoutchouc) choisie afin de s’échapper vers l’extérieur. La pression d’injection du coulis permet de claquer la gaine en ciment dans laquelle est scellé le train de tube à manchette. Il faut noter que sans cette gaine, le coulis remonterait le long du tube vers la surface sans imprégner le sol. Après avoir claqué la gaine, le coulis imprègne le sol. En fait, il va remplir les pores du sol en chassant l’eau interstitielle initialement présente.

![Diagram](image_url)

Figure 1-3 Injection avec tube à manchette (d’après Cambefort (1967))

7
1.1.5. Les types de coulis

Les coulis injectés peuvent être classés en deux catégories principales : les coulis newtoniens et les coulis binghamiens. Les coulis binghamiens peuvent être classés, à leur tour, en coulis de suspensions stables, coulis de suspensions instables et coulis spéciaux.

D’après Poupelloz (1979), ces coulis sont caractérisés par diverses propriétés :
- le pouvoir de pénétrabilité qui est fonction de la taille des particules hydratées et de la viscosité du liquide ;
- le temps de prise ;
- les caractéristiques mécaniques après prise (résistance, adhérence au terrain, stabilité dans le temps, etc.) ;
- la facilité d’utilisation (toxicité, inflammabilité, etc.).

1.1.5.1. Les coulis newtoniens

Il s’agit des coulis qui ne contiennent aucune particule de dimension facilement mesurable.
La viscosité de ces coulis est indépendante de la vitesse d’écoulement.
En régime laminaire, l’écoulement de ces liquides est régi par la loi de Newton.

\[\eta = \frac{\tau}{\frac{dV}{dn}} \quad (1.1) \]

où \(\frac{dV}{dn} \) est le gradient de la vitesse normalement aux lignes de courant, \(\eta \) est la viscosité dynamique et \(\tau \) est la contrainte de cisaillement.
Afin d’être injectés, les coulis chimiques (newtoniens) doivent avoir certaines caractéristiques : viscosité initiale faible (viscosité lors de l’injection), augmentation très rapide de la viscosité lors de la prise, faible toxicité et bonne résistance au délavage.
Poupelloz (1979) distingue trois types de coulis liquides :
- les solutions pures (résines) ;
- les solutions colloïdales (gels de silice) ;
- les émulsions.
1.1.5.2. Les coulis binghamiens

Il s’agit des coulis qui contiennent des particules de dimensions mesurables telles que les particules de ciment ou d’argile.
Ces coulis présentent une viscosité plastique donnée par la relation de Bingham :
\[\eta_{pl} = \frac{\tau - \tau_f}{dV/dn} \]
(1.2)
Où \(\eta_{pl} \) est la viscosité plastique et \(\tau_f \) est le seuil de cisaillement.
Les coulis binghamiens peuvent être classés en trois catégories : les coulis instables à base de ciment, les coulis stables argile ou bentonite ciment et les coulis spéciaux.

Les coulis instables à base de ciment
Il s’agit de suspensions de grains de ciment dans l’eau. Dès que l’agitation cesse, la sédimentation commence.
Ces coulis sont caractérisés par le rapport \[\frac{C}{E} = \frac{\text{masse du ciment}}{\text{masse de l'eau}} \] qui peut varier entre 0,1 et 3.
Ces coulis ont une bonne résistance mécanique ainsi qu’une bonne résistance dans les milieux agressifs.

Les coulis stables argile ou bentonite ciment
La stabilisation du coulis à base de ciment s’effectue en ajoutant de l’argile ou de la bentonite (le ciment est mélangé avec le mélange bentonite-eau ou argile-eau). Les proportions de chaque constituant du coulis (eau, argile ou bentonite, ciment) sont choisies afin de faciliter l’injection et d’améliorer les caractéristiques du terrain injecté.

Les coulis spéciaux
Il s’agit des gels de bentonite, des mortiers et des coulis expansés ou expansifs.
1.1.6. Les domaines d’application

Grâce à la diversification des coulis et des matériels utilisés pour l’injection, les domaines d’application de cette méthode se sont élargis considérablement.
D’après Poupelloz (1979), ce procédé peut être utilisé dans diverses situations :

- les écrans d’étanchéité (voile d’étanchéité au pied d’un barrage, fonds injectés raccordés à des parois moulées, etc) ;
- le renforcement des sols (amélioration de la stabilité du terrain lors de la construction d’un tunnel, amélioration de la qualité du terrain afin de faire des travaux miniers, stockages souterrains, etc) ;
- le comblement des cavités souterraines (mines, carrières, cavités karstiques, etc).
- la consolidation des sols situés sous des fondations (en phase de construction ou en reprise en sous œuvre) ;
- les injections de scellement (tirants d’ancrage, micropieux, etc).

1.1.7. Phénomènes caractéristiques de l’injection

1.1.7.1. Les claquages du sol

Le claquage du sol est une fissuration qui apparaît dans ce dernier à cause des fortes pressions exercées par le coulis lors de l’injection. On peut assimiler ces fissures à des plans, horizontaux, verticaux ou inclinés qui coupent le forage d’injection.
D’après Cambefort (1967), les claquages se font toujours perpendiculairement à la plus petite contrainte principale sollicitant le sol (figure 1-4).
Figure 1-4 : Orientations des clauchages : toujours perpendiculaires à la plus petite contrainte principale (d’après Cambefort (1967))

Lorsque le coefficient des terres au repos K_0 est inférieur à 1, les clauchages se font d’abord verticalement. Ensuite, si l’on continue à augmenter la pression dans le forage, des clauchages horizontaux peuvent apparaître. Ces derniers peuvent être très dangereux pour les constructions fondées à la surface du sol. En général, on essaye, dans la mesure du possible, de faire une injection par imprégnation (sans clauchage).

Théoriquement, il est possible de faire une injection sans clauchage. Il suffit d’avoir des coulis très fluides et des débits d’injection très faibles pour que la pression d’injection n’atteigne pas la pression de clauchage.

Cependant, il faut noter que l’injection sans clauchage est pratiquement impossible à réaliser à cause de l’hétérogénéité des terrains traités.

1.1.7.2. La filtration

La filtration est un phénomène que l’on observe parfois lors de l’injection, pour les coulis à suspensions. Le sol filtre le coulis lorsque certaines des particules en écoulement ne parviennent pas à passer à travers l’espace poreux du sol. La filtration entraîne un colmatage progressif des pores du sol et peut finalement bloquer l’injection.

Ce phénomène est étroitement lié aux caractéristiques granulométriques des suspensions présentes dans le coulis et celles constituant le sol à injecter.
En effet, les plus grosses particules de ciment vont colmater, petit à petit, les pores du sol et empêcher le coulis de pénétrer dans le sol.
On essaye généralement d’éviter la filtration lors de l’injection en choisissant judicieusement la granulométrie des suspensions présentes au sein du coulis.
Une meilleure description du phénomène de filtration sera détaillée dans la suite.

1.1.8. Aspects théoriques et pratiques de l’injection des sols

1.2. Généralités sur l’étude de la filtration en profondeur de suspensions en écoulement dans un milieu poreux granulaire

1.2.1. Différents types de filtration

La filtration de suspensions de particules à travers un filtre composé par un milieu granulaire est un procédé qui permet de retenir les particules présentes dans un fluide.
L’efficacité du procédé dépend de plusieurs paramètres : le filtre (la porosité, le diamètre des pores, la taille et la forme des grains), les particules présentes dans la suspension (la concentration, la taille, la forme et la densité), les caractéristiques du fluide d’écoulement (la viscosité et la densité) et les caractéristiques de l’écoulement (le débit et le nombre de Reynolds).
1.2.1.1. Filtration moyenne

Il s’agit d’un procédé qui permet de filtrer des particules de dimensions supérieures à une taille donnée (figure 1-5). Dans ce procédé, les pores sont plus petits que les particules de la suspension à filtrer, ce qui conduit à une obturation rapide du filtre. Pour les particules de dimensions supérieures à 50 μm, le filtre est utilisé comme tamis. Pour les petites particules, on utilise des membranes à tailles de pores bien déterminées. Cette méthode de filtration conduit à une obturation rapide du filtre ce qui nécessite des arrêts réguliers du processus de filtration pour nettoyer le filtre.

1.2.1.2. Filtration à écoulement transverse

Pour ce procédé, la direction de l’écoulement de la suspension est parallèle à la surface du milieu filtrant (figure 1-5). Le taux de cisaillement induit par l’écoulement est choisi de façon à éviter le dépôt de particules dans les pores du filtre. Ce fait assure la continuité du procédé de filtration. La continuité du procédé permet d’éviter l’arrêt du processus de filtration dans le but de nettoyer le filtre lorsque celui-ci est colmaté.

1.2.1.3. Filtration avec formation de cake

Ce type de filtration est utilisé pour les suspensions fortement concentrées. Ce procédé comporte deux étapes : d’abord les particules solides s’accumulent sur la surface poreuse, puis il y a filtration à travers le paquet de particules solides (figure 1-5). Dans ce cas le dépôt de particules est important et le filtre est colmaté rapidement.

1.2.1.4. Filtration en profondeur

La filtration en profondeur est un procédé généralement utilisé pour clarifier des suspensions diluées, de concentration inférieure à 0,5 g/l, constituées de particules de dimensions inférieures à 30 μm (figure 1-5). L’application la plus courante concerne le traitement des eaux. Les particules en suspension de tailles inférieures à la taille des pores pénètrent dans le milieu poreux et y circulent. Certaines de ces particules se déposent à différentes profondeurs du milieu filtrant d’où le nom de filtration en profondeur.
1.2.2. Forces en présence et mécanismes de filtration en profondeur

Le procédé de filtration de suspensions dans un milieu poreux est un phénomène complexe à cause des divers mécanismes mis en jeu et des forces agissant sur les particules (Herzig et al. (1970)).

On distingue essentiellement deux types de forces : les forces hydrodynamiques et mécaniques et les forces physico-chimiques (Ghidaglia (1994) et Nadji (1998)).

Par ailleurs, on distingue essentiellement trois types de filtration en profondeur :
- la filtration mécanique pour les grosses particules (diamètre ≥ 30 μm). Pour ce type de filtration, ce sont plutôt les forces mécaniques et hydrodynamiques qui dominent ;
- la filtration physico-chimique pour les petites particules (diamètre ≤ 1 μm). Pour ce type de filtration, ce sont les forces physico-chimiques qui dominent ;
- la filtration des particules vérifiant (1 μm ≤ diamètre ≤ 30 μm). Les deux types de forces interviennent pour ces particules : les forces mécaniques et hydrodynamiques et les forces physico-chimiques.
1.2.2.1. Forces en présence

Les forces hydrodynamiques et mécaniques

Parmi les forces hydrodynamiques et mécaniques, on compte :
- La force gravitationnelle
- La force de trainée
Dans le cas d'un fluide newtonien et d'un écoulement à faible nombre de Reynolds, la force de trainée est donnée par l'équation (1.3) :

\[F_h = K \mu U \]

(1.3)

\(\mu \) est la viscosité dynamique du fluide, \(U \) est la vitesse du fluide et \(K \) est un coefficient qui dépend de la taille et de la forme des particules (\(K = 6 \pi a \) dans le cas des particules sphériques de rayon \(a \)).
- La force de lubrification

Elle est due à la résistance visqueuse du film de fluide qui glisse entre la particule et la surface solide du milieu poreux. Elle est donnée par l'équation (1.4) :

\[F_v = 6 \pi \mu \left(1 + \frac{a}{h} \right) aU \]

(1.4)

\(h \) est la distance entre les deux surfaces solides et \(a \) est le rayon de la particule.
- Les forces d'inertie

Ces forces sont données par l'équation (1.5) :

\[F_i = \frac{4}{3} \pi a^3 \rho_p \frac{dU}{dt} \]

(1.5)

Les forces physico-chimiques

- Les forces de Van der Waals.

Ce sont des forces d'attraction de courte distance (de l'ordre de quelques centaines d'Angströms) entre les particules et la surface poreuse.
Dans le cas où on approxime la particule par une sphère et la surface poreuse par un plan, la force de Van der Waals peut être donnée par la formule (1.6) :

\[F_{vdw} = \frac{H a}{6 \delta^2} \]

(1.6)
Chapitre 1 - Etude bibliographique

\(a \) est le rayon de la sphère, \(H \) est la constante de Hamaker caractéristique des surfaces (elle est de l’ordre de \(10^{19} \) J pour toutes les phases condensées) et \(\delta \) est la distance séparant la particule de la surface du milieu poreux.
- Les forces électrostatiques

Ghidaglia (1994) distingue plusieurs types d’interaction caractérisés par les forces électrostatiques.

a) Lorsque la particule et le collecteur sont simultanément chargés, ce sont les forces coulombiennes d’attraction ou de répulsion qui interviennent.

b) Si le collecteur ou la particule est uniquement chargé(e), il se crée une charge électrostatique sur les surfaces non chargées.

c) Dans le cas des électrolytes, les particules chargées immergées dans le fluide adsorbent des ions, et, par compensation, une seconde couche plus riche en ions de charge opposée se forme. La différence de potentiel entre l’électrolyte et la couche liée au solide est appelée potentiel zêta. Ce potentiel caractérise les effets électrocinétique entre particules et lit filtrant, et entre particules. Le potentiel zêta dépend du pH, de la force ionique de la solution et de la nature des particules et des ions.

- Les forces chimiques

Des liens chimiques peuvent se former, par exemple, entre particules colloïdales et autres particules.

- Les forces dues aux mouvements browniens

Les particules de taille inférieure au micron, pour lesquelles le nombre de Péclet \(\left(\frac{P_e}{6. \pi . \mu . a^2}{k.T} \right) \) est suffisamment faible (\(k \) est la constante de Boltzman et \(T \) est la température), sont soumises à la diffusion brownienne. Cette diffusion superpose à leur mouvement orienté dans l’écoulement un mouvement d’agitation thermique.

1.2.2.2. Mécanismes de capture

Blocage d’une particule dans un volume mort

Il s’agit d’un type de capture qui concerne les particules de diamètre supérieur à 1 µm. Loin d’un obstacle, les trajectoires des particules sont confondues avec les lignes de courant. Près d’un obstacle, les lignes de courant changent de direction pour le contourner. A cause de leur inertie, les trajectoires des particules deviennent des lignes de courant, ces particules pouvant alors être interceptées par un collecteur puis se bloquer dans un volume mort (figure 1-6).

![Diagramme de blocage d’une particule dans un volume mort](image)

Figure 1-6 Blocage d’une particule dans un volume mort (Tien (1989))

Interception d’une particule sur un collecteur

Du fait de sa taille, une particule peut rencontrer un grain de la matrice appelée «collecteur » même si elle suit les lignes de courant qui contournent le collecteur (figure 1-7).
Figure 1-7 Interception d’une particule sur un collecteur (Tien (1989))

Interception d’une particule par sédimentation

Lorsque la densité d’une particule est différente de celle du fluide, celle-ci va être déviée des lignes de courant dans le sens de la force de gravité (figure 1-8). La vitesse de sédimentation d’une particule, de diamètre d_p, en suspension est exprimée par la loi de Stokes :

$$V_s = \frac{g}{18 \mu} \left(\rho_p - \rho \right) d_p^2$$

(1.7)

ρ et ρ_p sont respectivement les masses volumiques du fluide et de la particule en suspension.

Diffusion brownienne

La diffusion brownienne peut emmener les particules à des sites de rétention qui ne sont pas desservis par l’écoulement (Herzig *et al.* (1970)). Cette diffusion peut aussi entraîner la capture des particules en mouvement dans d’autres sites desservis par l’écoulement (figure 1-8).

Le coefficient de diffusion peut être donné par la formule (1.8) :

$$D = \frac{kT}{3 \pi \mu d_p}$$

(1.8)
k est la constante de Boltzman et T est la température absolue.

Figure 1-8 Mécanismes de capture des particules en suspension par sédimentation, interception directe ou mouvement brownien (McDowell-Boyer et al. (1986))

Déposition due aux forces électrostatiques

Parfois, le filtre et les particules sont chargés électriquement. Ces charges peuvent influer sur la rétention des particules en suspension.

Constriction

Ce type de capture concerne les particules de taille inférieure à la taille de certains pores. Ces particules peuvent être captées car leurs tailles ne leur permettent pas de passer à travers certains pores.

1.2.2.3. Les sites de rétention

Delachambre (1966) décrit les différents sites de rétention des particules en milieu poreux. Ces sites peuvent être associés aux différents modes de capture cités antérieurement.
On distingue quatre types de sites de rétention (figure 1-9) :
- les sites de surface : la particule est retenue à la surface du milieu poreux ;
- les sites de crevasse : la particule peut être coincée dans la crevasse qui se trouve au voisinage de deux surfaces convexes ;
- les sites de conformation : il s’agit de sites qui sont placés en amont de rétrécissements de pores dont les dimensions sont inférieures à celles des particules de la suspension ;
- les sites de caverne : il s’agit de sites de forme concave qui se trouvent généralement dans des coudes de pores.

Figure 1-9 Différents sites de rétention

1.2.3. Types de filtration en profondeur

On distingue essentiellement deux grands types de filtration en profondeur : la filtration mécanique et la filtration physico-chimique (Nadjı́ (1998)).

1.2.3.1. Filtration mécanique

La filtration des particules de dimensions supérieures à 30 µm est dominée par les effets mécaniques. Pour les particules de dimensions comprises entre 1 µm et 30 µm, la filtration mécanique joue toujours un rôle important (Herzig et al. (1970)).

Il est important d’étudier la rétention des particules en fonction du rapport des dimensions entre les grains du milieu poreux et les particules en suspensions. Dans le cas où les grains du
milieu poreux ainsi que les particules en suspension sont monodisperses, le rapport \(\frac{d}{d_g} \) (diamètre des particules en suspension divisé par le diamètre des grains du milieu poreux) détermine à lui seul s’il y a blocage ou passage de la particule. Ghidaglia \textit{et al.} (1996) montrent, en s’appuyant sur des résultats expérimentaux, qu’il y a un seuil de 0,155 pour \(\frac{d}{d_g} \) à partir duquel les particules en suspension sont systématiquement bloquées dans le milieu poreux. La valeur numérique du seuil est valable pour un milieu poreux dense et constitué par des particules monodisperses.

La figure 1-10 présente le seuil de \(\frac{d}{d_g} \) pour différentes configurations de blocage (en fonction du nombre de particules qui bloquent simultanément dans un pore). Ce résultat a été indiqué par Delachambre (1966) et Herzig \textit{et al.} (1970).

\[
\left(\frac{d}{d_g} \right)_{\text{limite}} = 0,154 \quad \left(\frac{d}{d_g} \right)_{\text{limite}} = 0,10 \quad \left(\frac{d}{d_g} \right)_{\text{limite}} = 0,082
\]

\textit{Figure 1-10 Différentes configurations de blocage et seuils associés du rapport} \(\frac{d}{d_g} \)

Par ailleurs, Herzig \textit{et al.} (1970) indiquent que lorsque \(\frac{d}{d_g} > 0,15 \), il y a blocage irréversible et formation de cake. Par contre, lorsque \(\frac{d}{d_g} < 0,065 \), la rétention est négligeable et les
particules parviennent à traverser le milieu poreux. Enfin lorsque \(0,065 < \frac{d}{d_g} < 0,15 \), un blocage partiel du milieu poreux peut se produire. Cela dépend de la forme des particules constituant le lit filtrant et la forme des grains en suspension.

Ghidaglia (1994) montre théoriquement et expérimentalement que lorsque \(\frac{d}{d_g} > 0,155 \), un blocage irréversible de la particule en suspension se produit.

1.2.3.2. Filtration physico-chimique

La filtration physico-chimique se produit dans le cas ou l’on a \(\frac{d}{d_g} < 10^{-3} \) (Nadjii (1998)).

Dans ce cas, la rétention est dominée par les forces physico-chimiques. Cette filtration est caractéristique, entre autre, pour les particules colloïdales qui parviennent à coller aux parois du milieu poreux malgré leurs faibles dimensions par rapport aux diamètres des pores du milieu poreux.

1.2.4. Processus de décolmatage

Le ré entraînement des particules capturées peut se produire spontanément, sans modification des variables opératoires (débit, pression). Il peut se produire aussi d’une manière provoquée lorsque l’on modifie le débit ou la pression d’injection des suspensions (Delachambre (1966)). La différence entre les deux types de décolmatage est que le décolmatage spontané agit localement au niveau du pore alors que le décolmatage provoqué se produit partout dans le milieu poreux (Herzig et al. (1970)).

1.2.4.1. Le décolmatage spontané

On distingue deux raisons principales du ré entraînement spontané d’une particule capturée :
- les fluctuations locales de la pression ou du débit. Ces fluctuations modifient la pression statique exercée par le fluide sur la particule capturée et peut entraîner le décolmatage ;
- les chocs des particules en mouvement sur les particules capturées. Un tel décolmatage dépend, bien sûr, du type de site de rétention de la particule capturée. Il est évident qu’il
est beaucoup plus facile de réentraîner une particule capturée dans un site de surface ou de crevasse qu’une autre capturée dans un site de caverne ou de constriction.

Le décolmatage spontané des particules de diamètre \(d > 30 \, \mu m \) est improbable, alors que pour les particules de diamètre \(d < 30 \, \mu m \), les résultats expérimentaux semblent contradictoires (Nadj (1998)).

1.2.4.2. Le décolmatage provoqué

Le ré entraînement d’une particule initialement bloquée peut être fait suite à l’un des événements suivant :
- augmentation de la pression ou du débit de la suspension. (Delachambre (1966), Darby et al. (1991) et Nadji (1998)) ;
- inversion du sens d’écoulement (Delachambre (1966) et Leclerc (1988)) ;
- lors des impulsions liées aux variations rapides de la pression ou du débit (Herzig et al. (1970) et Ghidaglia (1994)).

1.2.5. Expériences de filtration en profondeur

Afin d’étudier expérimenteralement la filtration en profondeur de suspensions en écoulement dans un milieu poreux, plusieurs dispositifs ont été développés pour mesurer la rétention des particules et la perte de charge associée. La plupart des auteurs ont étudié la filtration à travers des couches minces ou des lits filtrants épais.

Delachambre (1966) a étudié la filtration des suspensions dans des milieux poreux constitués par des cylindres ou des billes en verre. Il a reconstitué des milieux poreux modèles qui permettent d’étudier la filtration effectuée par chaque type de site de rétention (surface, crevasse, caverne et constriction). Il a développé deux cellules contenant des milieux poreux modèles. L’une est un milieu modèle cubique de 5 cm de coté, contenant des cylindres en verre ; et l’autre est un milieu modèle cylindrique de 4,6 cm de diamètre et 7 cm de haut, contenant des sphères de verre.

Les particules à filtrer sont en suspension dans un mélange de benzène et de tétrachloréthylène qui a sensiblement le même indice de réfraction (\(n = 1,502 \)) que les sphères ou les cylindres en verre (\(n = 1,52 \)) qui constituent le milieu poreux. Les particules en
suspension sont des microsphères (60 μm < d < 320 μm) en polystyrène sulfoné, brunes et opaques à la lumière. En l’absence de particules, le milieu poreux saturé est transparent. Lorsqu’il filtre les particules en suspension, il devient plus ou moins opaque à la lumière. Grâce à la mesure de la lumière transmise, et moyennant un étalement préalable, l’auteur arrive à mesurer durant l’essai la concentration du milieu poreux en suspensions.

La mesure photométrique se fait de la manière suivante. Un faisceau lumineux cylindrique est produit par un projecteur de diapositives d’une puissance de 300 watts. Le diamètre du faisceau est suffisamment grand pour obtenir la concentration moyenne des microsphères dans tout le milieu poreux. Une série de filtres permet d’obtenir un faisceau lumineux plus ou moins intense. Le faisceau émergent de la cellule de filtration est recueilli par une lentille au foyer de laquelle se trouve une cellule photoélectrique, reliée à un galvanomètre. La concentration volumique \(X \) en microsphères est évaluée à la fin de l’expérience en utilisant la loi de Beer-Lambert :

\[
\ln \left(\frac{i}{i_0} \right) = K'X,
\]

\(K' \) est une constante que l’on peut déterminer lors de l’étalement.

Ghidaglia (1994) a développé une cellule de filtration de particules en suspension. La cellule contient un milieu poreux dense constitué par des billes de verre monodisperses, et les particules injectées étaient aussi monodisperses. L’objectif du travail était d’évaluer la rétention des particules injectées en fonction du rapport des tailles des particules constituant le milieu poreux et des particules en écoulement. Les ordres de grandeur des particules du milieu poreux et de la suspension ont été choisis afin que les forces hydrodynamiques et de gravité soient les seules à prendre en compte.

Les dimensions du milieu poreux étudié sont les suivantes : largeur 100 mm, épaisseur 39 mm et hauteur 500 mm. L’écoulement a été homogénéisé au sein de la cellule grâce à deux couches constituées par des mousse en céramique placées au-dessus et en dessous d’une couche en forme d’un nid d’abeille.

Le fluide en écoulement a été choisi de manière à avoir le même indice de réfraction que les billes de verre \((n=1,52 \text{ à } 25^\circ\text{C}) \). C’est un mélange de 60 % en volume de dibutylphthalate et de 40 % de santicizer (phthalate de butylbenzyl).

L’expérience consiste à injecter une ou plusieurs particules dans le milieu poreux et à noter si elle arrive à traverser le milieu poreux ou pas. Lorsque la particule est retenue, les coordonnées du point de rétention sont notées. De plus, des enregistrements vidéo des
Trajectoires de particules sont faits et permettent d’analyser le mode de propagation de la particule dans le milieu poreux.

L’auteur montre l’existence d’un seuil pour le rapport des particules en suspension par les particules du milieu poreux, à partir duquel la rétention des particules a lieu. La valeur numérique du seuil est de 0,155. Cette valeur peut être retrouvée théoriquement en considérant un pore délimité par trois particules sphériques identiques, colmaté par une particule sphérique.

D’autre part, Darby et Lawler (1990), ont développé un dispositif expérimental permettant d’étudier la filtration de suspensions en écoulement dans un milieu poreux, dans des conditions expérimentales bien contrôlées. L’appareil décrit est presque identique à celui décrit par Darby et al. (1991). Le dispositif permet la mesure de la pression interstitielle ainsi que la granulométrie de la suspension en écoulement, à différents niveaux du milieu poreux. Le milieu poreux, d’une hauteur de 14 cm, était constitué par des billes de verre de diamètres compris entre 0,5 et 0,6 mm. Les pressions étaient mesurées par des capteurs de pression et les courbes granulométriques des suspensions étaient déterminées par un appareil produit par Coulter Electronics (Hialeah, Florida). Les auteurs soulignent que la perte de charge la plus importante est enregistrée au niveau de l’entrée du filtre et qu’il y a un minimum de filtration pour les particules ayant un diamètre compris entre 1 et 2 μm.
Chapitre 1 - Étude bibliographique

Lin et Miller (2000) ont présenté un dispositif expérimental permettant d’analyser la géométrie tridimensionnelle de l’espace poreux. La technique d’analyse à l’aide des rayons X (X-rays microtomographic techniques) a été utilisée afin de reconstituer le réseau poreux. Des simulations numériques ont été faites par la suite afin d’étudier la filtration en profondeur.

1.2.6. Modélisation de l’écoulement de suspensions dans des milieux poreux

Ces modèles ont été développés en général afin de simuler la filtration en profondeur de suspensions diluées de concentrations de l’ordre de 0,5 g/l (Ghidaglia, Nadji (1998) et Herzig et al. (1970)). De plus, il faut noter que les filtres utilisés pour purifier l’eau n’ont pas été conçus pour être colmatés totalement. En effet, les pores des filtres ont des sections de passage beaucoup plus grandes que les dimensions des particules à retenir. Ainsi, on évite la formation d’un dépôt sur la surface d’entrée du filtre et les particules à filtrer sont fixées à l’intérieur du filtre. Lorsque le filtre est saturé en suspension, la concentration de l’effluent en suspensions devient élevée. À ce moment là, on lave le filtre avec de l’eau propre à contre courant afin de le décolmater (Leclerc (1988)).
1.2.6.1. Les modèles phénoménologiques

Les modèles phénoménologiques (Herzig et al. (1970) et Leclerc (1988)) consistent à considérer les équations de conservation de masse, une équation cinétique qui décrit le taux de rétention des particules et une équation caractérisant l’évolution des pressions.

Ces modèles ne se basent pas sur une modélisation physique des mécanismes de dépositions des particules. Ils se contentent de déterminer des lois phénoménologiques de rétention et d’évolution des pressions, qui sont conformes avec les résultats expérimentaux. Les paramètres des modèles n’ont pas nécessairement une signification physique bien définie. Par contre, les résultats fournis par ce type de modèles sont généralement en bon accord avec les résultats expérimentaux.

L’équation de conservation de masse s’écrit en général ainsi (en négligeant le volume des particules en suspension devant le volume des particules capturées, et en négligeant la diffusion des particules) :

$$\frac{\partial \sigma}{\partial t} + u \frac{\partial c}{\partial x} = 0$$

(1.9)

c étant la concentration des particules en suspension, u leur vitesse et σ la rétention des particules, c’est à dire le volume des particules capturées par unité de volume du filtre.

L’hypothèse retenue est souvent valable car l’application la plus importante de la filtration en profondeur est la purification de l’eau. Les concentrations des particules en suspensions sont très souvent faibles (concentrations de 0,1% d’après Herzig et al. (1970), concentrations inférieures à 0,5 g/l d’après Ghidaglia (1994) et Nadji (1998)). Une équation, plus exacte que (1.9), qui ne tient pas compte des hypothèses simplificatrices est présentée par Herzig et al. (1970).

Afin de résoudre l’équation (1.9), la loi d’évolution de σ doit être déterminée. Herzig et al. (1970) démontrent la loi proposée par Iwasaki (1937) :

$$\frac{\partial \sigma}{\partial t} = \lambda \cdot u \cdot c$$

(1.10)
Chapitre 1 - Étude bibliographique

Le paramètre λ est appelé coefficient du filtre (Rege et Fogler (1988)). Il est fonction des différents paramètres du filtre et des suspensions, et évolue avec le colmatage. L’équation (1.10) est appelée équation cinétique par analogie aux réactions du premier ordre en cinétique chimique.

Enfin, il reste à modéliser l’évolution des pressions au sein du milieu poreux. Rege et Fogler (1988), Herzig et al. (1970) et Leclerc (1988) indiquent que la majorité des lois proposées dans la bibliographie afin de modéliser les pertes de charge dans le filtre, peuvent être exprimées sous la forme suivante :

$$\frac{\partial p}{\partial x} = \frac{1}{\left(1 - jn\right)^{m}}$$ \hspace{1cm} (1.11)

j et m sont des constantes phénoménologiques.

L’évolution de la perméabilité est donnée par la formule (1.12) :

$$k = \frac{1}{C_{f} \left(\Sigma_{sf}\right)^{2} \cdot \frac{\phi}{\left(1 - \phi\right)^{2}}}$$ \hspace{1cm} (1.12)

C_{f} est un coefficient de proportionnalité, Σ_{sf} est la surface spécifique et ϕ est la porosité.

Les pressions sont calculées à l’aide d’une équation de Darcy avec une perméabilité qui évolue en fonction du colmatage selon l’équation (1.12).

Les modèles précédents sont valables pour des écoulements unidimensionnels.
Vigneswaran et al. (1985) ont modifié le modèle de filtration en profondeur d’O’Melia et Ali (1978) afin de l’adapter à un écoulement radial. La modification a concerné la valeur de la vitesse d’écoulement, constante pour un écoulement unidimensionnel, qui devient linéaire en fonction de l’inverse du rayon \(v = \frac{Q}{2\pi r H}\), \(Q\) est le débit, \(H\) est l’épaisseur du milieu poreux injecté. A noter que le modèle est valable pour les faibles concentrations (comprises entre 0,025 g/L et 0,1 g/L).

Afin de pouvoir déterminer les profils de concentrations, une équation de conservation de masse est résolue numériquement à l’aide de la méthode des différences finies. L’équation résolue possède des paramètres ajustés empiriquement à l’aide des résultats expérimentaux.

D’autre part, la perte de charge est évaluée à l’aide de la loi de Darcy et d’une équation de Kozeny qui décrit l’évolution de la perméabilité.

Des essais d’injection radiale ont été réalisés afin de déterminer les paramètres du modèle. Une suspension d’argile \((d_\text{so} = 4 \ \mu\text{m})\) a été injectée dans un milieu poreux constitué par du sable. A noter que le filtre utilisé lors des expérimentations a un diamètre intérieur de 3 cm et un diamètre extérieur de 12 cm.

Enfin, à noter que les auteurs ne retrouvent pas les mêmes paramètres empiriques que ceux trouvés pour l’injection unidimensionnelle par O’Melia et Ali (1978), pour les mêmes conditions opératoires.

1.2.6.2. Les modèles d’analyse de trajectoire

Rege et Fogler (1988) indiquent que ces modèles représentent le milieu poreux par des éléments collecteurs de certaines formes géométriques (sphériques, cylindriques et autres). Le calcul des champs de vitesse autour de chaque collecteur est effectué. Par la suite, le mouvement des particules est étudié en tenant compte des forces agissant sur elles. Ces modèles ont amélioré la compréhension des mécanismes de rétention au niveau des pores mais présentent certains inconvénients. Tout d’abord, ils ne prédissent pas précisément l’évolution de la perméabilité, probablement à cause de l’utilisation de l’équation de Kozeny-Carman qui considère une représentation trop simplifiée des milieux poreux. Ensuite, la modélisation de la rétention n’est pas bien faite, à cause d’une transition brusque d’un colmatage faible à un colmatage accentué. Finalement, les suspensions sont supposées monodisperses ce qui n’est pas le cas généralement. Des travaux plus récents essayent de
remédier à ces inconvénients. Par exemple, Mackie (1989) tient compte de la dispersion des tailles des particules au sein de la suspension dans son modèle d’analyse de trajectoire.

1.2.6.3. Les modèles stochastiques

Les modèles stochastiques consistent à utiliser une approche probabiliste de la filtration en profondeur des suspensions. Parfois, la filtration est considérée comme un processus de naissance et de mort (Rege et Fogler (1988)). L’événement naissance représente le blocage d’un pore initialement ouvert et l’événement mort représente le déblocage d’un pore initialement bloqué.

Tarafdar et al. (1992) ont présenté un modèle stochastique pour la filtration en profondeur, qui indique l’état de colmatage du filtre et prévoit les variations de pression. Il s’agit d’un modèle probabiliste qui suppose que le filtre a n états distincts en fonction de son colmatage. Il est plus simple que les modèles stochastiques de naissance et de mort qui sont présentés dans la littérature.

1.2.6.4. Les modèles réseaux

Pour les modèles réseaux, l’espace des pores est modélisé par un réseau de conduites de tailles aléatoires et de formes cylindriques en général. Les débits sont calculés en se basant sur les équations de conservation de masse à chaque nœud du réseau. La probabilité d’une particule d’être entraînée dans une conduite est proportionnelle au débit de la conduite (Ghidaglia (1994)).

Bouchelaghem A. (1994) propose un modèle de l’espace poreux ayant une distribution aléatoire des diamètres d’accès aux pores. La porosité est décrite par la donnée de n diamètres, chacun permettant d’accéder à une fraction $\frac{1}{n}$ du volume total. Ces diamètres
peuvent être déterminés en analysant la courbe porosimétrique du milieu poreux étudié. Les échantillons de milieu poreux sont générés d’une manière aléatoire. Chaque échantillon de milieu poreux est constitué par un nombre L de rangées élémentaires comprenant NP pores de volumes égaux dont les accès sont distribués uniformément parmi les n diamètres déjà définis. Par ailleurs, la conductivité de chaque accès est calculée à partir de la loi de Poiseuille. Un processus stochastique permet de traduire la progression des grains dans le milieu poreux. La distribution des diamètres des grains est donnée par la courbe granulométrique du ciment utilisé.

Ghidaglia (1994) a modélisé le milieu poreux par un réseau carré incliné de 45° par rapport à la direction de l’écoulement. Les pores sont modélisés par des cylindres de plusieurs tailles. Le débit d’écoulement dans chaque pore est calculé en utilisant la loi de Poiseuille. La conservation du débit d’entrée et de sortie est écrite à chaque nœud. Le modèle probabiliste développé prévoit le colmatage ou le passage d’une particule (ou de plusieurs particules) lors de son passage dans le milieu poreux. Il n’est pas destiné à calculer des profils de concentrations ou la chute de perméabilité due au colmatage.

Leclerc et Dodds (1993) modélisent le milieu poreux à l’aide d’un réseau constitué par un ensemble de tubes capillaires arrangés en réseau carré incliné de 45° par rapport à la direction de l’écoulement. Afin de rendre compte de la distribution des tailles des pores, la taille de chaque tube dans le réseau est fixée aléatoirement à partir d’une distribution gaussienne. Les débits sont calculés dans chaque tube grâce à la loi de Poiseuille et dans tout le réseau à l’aide des règles de Kirchoff.

Enfin, Lee et Koplik (2001) présentent 2 modèles réseaux simples (cellular automata models) ainsi qu’un modèle réseau plus élaboré à l’étude de la filtration en profondeur. Les géométries des 3 modèles sont identiques. Il s’agit d’un réseau carré incliné de 45° par rapport à la direction de l’écoulement, ayant des nœuds et des canaux. Les dimensions des canaux sont variables. Les modèles réseaux simples sont basés sur l’étude de l’écoulement d’une particule en écoulement dans le réseau, ayant une probabilité de blocage à chaque fois qu’elle traverse un canal. Ils présentent l’avantage d’étudier des réseaux de dimensions importantes (jusqu’à 400*400 nœuds). Ils fournissent des résultats qualitatifs concernant les probabilité de blocage en fonction des profondeurs de pénétration et l’efficacité du filtre en fonction du nombre de particules injectées. Le modèle réseau élaboré est basé sur la résolution des équations de Navier-Stokes dans les canaux des réseaux. Il a des hypothèses plus réalistes que ceux des modèles précédemment présentés mais présente l’inconvénient de n’être pratique que pour des réseaux de dimensions relativement faibles (40*40 nœuds). Ce modèle permet d’évaluer, en plus des résultats que peuvent fournir les modèles simples, l’évolution de la perméabilité du milieu poreux en fonction du nombre de particules injectées.

1.3. Etude de l’injection de coulis de ciment dans les sols granulaires en présence de filtration

Peu de travaux ont été réalisés en liaison directe avec l’injection de coulis de ciment dans les milieux granulaires en présence de filtration. Dans ce qui suit, on va synthétiser l’essentiel des recherches effectuées dans ce domaine.

1.3.1. Travaux expérimentaux

Arenzana (1987) a étudié l’injectabilité d’un microciment (MC-500), fabriqué par Onada Cement Corporation au Japon, dans des milieux poreux granulaires. Il s’agit d’un ciment n’ayant pas de grains de dimensions supérieures à 15 µm. Six types de sables différents (d_{10} variant de 0,3 mm à 0,045 mm), ainsi que trois types de billes de verre ont été caractérisés en terme de surface spécifique, rayon hydraulique et perméabilité intrinsèque. La viscosité, sédimentation et floculation du coulis de ciment ont été
étudiées pour plusieurs valeurs du rapport massique entre l’eau et le ciment au sein du coulis. L’auteur affirme que la viscosité d’un coulis en agitation, reste constante pendant au moins 4 heures. D’autre part, le taux de sédimentation des grains de ciment en suspension augmente quand la concentration du coulis en ciment diminue, ce qui paraît raisonnable. La vitesse de malaxage s’avère sans effet sur le taux de sédimentation.

Par ailleurs, une expression simple a été proposée par l’auteur afin de relier la perméabilité intrinsèque au rayon hydraulique moyen d’un sable fin. Elle s’écrit sous la forme suivante :

\[K = \zeta R_{ij}^{2.8} \]

\(\zeta \) étant une constante qui varie d’un sable à l’autre et dépend plutôt de la forme, rugosité et orientations des grains.

Des coulis de ciment de différentes concentrations ont été injectés dans des colonnes de sable ou de billes de verre. Les coulis ont été injectés à une pression constante de 10 psi (69 kPa). Plusieurs échantillons de coulis ont été recueillis à différents instants et à plusieurs niveaux de la colonne afin de mesurer leurs concentrations en ciment.

L’auteur a montré l’intérêt d’ajouter un agent défloculant au coulis de ciment. Un tel agent permet de réduire la floculation des grains de ciment en suspension et de diminuer le taux de filtration du ciment dans le milieu poreux. Il affirme, de plus, que la profondeur de pénétration d’une suspension peut être augmentée soit en augmentant la pression d’injection, soit en diminuant la concentration du coulis en ciment.

Afin d’améliorer l’injectabilité des sables fins, l’auteur a injecté des colonnes de sable fin par un coulis de ciment dilué ayant un rapport massique de 12 entre l’eau et le ciment. Il a constaté l’existence de deux phases lors de filtration en profondeur des particules de ciment. Durant la première phase, il y a une filtration intense dans les constrictions. Par contre, durant la deuxième phase, la filtration des particules se fait essentiellement dans des sites de surface. Dans ce cas, la vitesse d’écoulement des particules au sein du milieu poreux augmente et le taux de filtration diminue. Les profils donnant le taux de filtration en fonction de la profondeur de pénétration, pour différents instants, ont été déterminés expérimentalement. Il montre que la section du milieu poreux, ayant le maximum de taux de filtration, avance dans le sens de l’écoulement lorsque le temps avance. En fait, au début de l’injection, le taux de filtration est maximal au niveau du point d’injection. Avec le temps, les pores qui sont susceptibles de se bloquer, près du point d’injection, se bloquent et le taux de filtration au niveau du point d’injection diminue. A ce moment là, la section ayant le maximum de taux de filtration avance dans le sens de l’écoulement.
Bien sûr, l’existence d’un tel mécanisme dépend de la granulométrie du ciment et du milieu poreux car on peut toujours imaginer un blocage de l’injection suite à une filtration avec formation de cake.

Enfin, l’auteur montre qu’à chaque instant, les profils de filtration des particules en suspension en fonction de la profondeur, peuvent être ajustés sur les courbes donnant la densité de probabilité de la loi du χ^2 et que le degré de liberté de cette fonction dépend de l’instant de réalisation de la mesure.

Zebovitz et al. (1989) ont étudié l’injectabilité du même ciment : MC-500. Ces auteurs ont injecté des colonnes de sable d’une hauteur de 1,4 m et d’un diamètre de 0,1 m. Des capteurs de pression ont été placés à 5 niveaux de la colonne afin de mesurer les profils de pression. Les auteurs montrent qu’une faible proportion de particules fines (2% à 5% de masse de particules ayant un diamètre inférieur à 0,074 mm) peut rendre des sables (initialement injectables par des ciments très fins) imperméables aux ciments très fins. Pour les sables ayant une proportion de particules fines comprise entre 2% et 5%, le critère d’injectabilité de Johnson (1958) ne s’applique pas ($\frac{D_{15, sol}}{d_{85, coulis}} > I$; $I=25$).

Le premier critère est celui de Johnson (1958) :

$$\frac{D_{15, sol}}{d_{85, coulis}} > I ; \quad I=25$$

(1.14)

$D_{15, sol}$ est le plus grand diamètre de 15% des particules du sol ayant les diamètres les plus petits.

$d_{85, coulis}$ est le plus grand diamètre de 85% des particules de ciment ayant les diamètres les plus petits.

D’autres auteurs présentent d’autres valeurs pour I variant entre 9 et 25.

L’auteur propose la valeur suivante pour le paramètre I : $I=20$.

Le deuxième critère présenté est celui de Cambefort (1967) :

$$d_{50, coulis} < C \sqrt{K}$$

(1.15)

C est une constante variant entre 600 et 800 et K est la perméabilité du sol.
Par ailleurs, Bouchelaghem A. (1994) a injecté des colonnes de sable à l’aide d’un coulis de ciment fin (granulométrie comprise entre 0 et 10 µm) caractérisé par un rapport massique de ciment par rapport à l'eau de 0,2. Il a analysé la granulométrie du coulis sortant et l'a comparé avec celle du coulis entrant. Le coulis sortant avait une granulométrie moins fine que celle du coulis entrant. L’explication du phénomène observé est la suivante : le coulis floctule légèrement en traversant la colonne. Une cause possible serait que le défloculant peut se fixer sur le sable. Une autre cause possible serait liée aux interactions électriques lors de la percolation du coulis à travers le sable, susceptibles de rapprocher les grains. La résistance mécanique des colonnes de sable injecté, a été étudiée. L’auteur constate que la résistance mécanique au sein de la colonne, diminue lorsqu’on s’éloigne du niveau du point d’injection. Cela est dû à la filtration des grains de ciment par le sable, qui induit le fait que la masse de ciment filtré au niveau de l’injection est supérieure à celle obtenue loin du niveau de l’injection.

Par ailleurs, l’auteur a injecté des fûts de 200 litres et 1 modèle cylindrique de 1,2 m de diamètre. Les injections des fûts et du modèle cylindrique sont réalisées grâce à un tube à manchette. Le drainage se fait vers le bas et vers le haut du fût et le confinement est assuré par une plaque de béton coulée et armée. Pour le modèle cylindrique, une à deux manchettes peuvent être mises en place et le drainage se fait à la périphérie du modèle grâce à un géotextile drainant.

Par ailleurs, grâce aux essais réalisés, l’auteur a pu constater que le premier critère d’injectabilité
\[
\frac{D_{15,\text{sol}}}{d_{85,\text{coulis}}} < 1
\]
n’est pas valable pour les sables fins (de perméabilités inférieures à 10⁻⁵ m/s). Il propose une autre forme de ce critère pour les sables fins :

\[
\left(\frac{D_{\alpha,\text{sol}}}{d_{85,\text{coulis}}} < 1 \right); \quad \alpha < 1
\]
(1.16)

Azzar (1997) a mis en évidence, dans le cadre de sa thèse, le phénomène de filtration des grains de ciment par les colonnes de sable. Il constate que, lors d’une injection à débit constant, la pression d’injection continue d’augmenter après la saturation de la colonne par le coulis. Cela rend compte d’une filtration de certains grains de ciment, qui tend à augmenter la pression d’injection même après la sortie du coulis. Très peu de résultats expérimentaux ont été présentés. L’auteur n’a pas présenté de courbes de variation de masse ou de profils de
rétention. Il est à noter de plus qu’il présente une méthode d’évaluation de la saturation de la colonne de sable injecté par le coulis, en utilisant les rayons gamma.

Par ailleurs, cet auteur indique que la filtration du coulis de ciment dans les sables comprend quatre étapes (figure 1-11) :
1. Les particules sont déposées sur la surface des grains formant le squelette du milieu poreux, ce qui diminue la perméabilité.
2. La déposition des particules réduit les dimensions de certains pores pour devenir inférieure à la taille des grains injectés. Les nouvelles particules qui arrivent vont former un pont. Les particules qui arrivent par la suite vont s’accumuler sur ce pont.
3. Lorsque le pourcentage des pores pontés dépasse une valeur de 70% à 80%, les particules qui arrivent à l’entrée des pores sont retenues et forment ce qu’on appelle un cake interne.
4. Lorsque le cake interne est complet, le cake externe se forme.

![étape 1](image1)
![étape 2](image2)
![étape 3](image3)

Figure 1-11 Les étapes de rétention à l’échelle des pores (d’après Azzar (1997))

D’autre part, Bolton et Mckinley (1997) présentent un résultat intéressant : pendant la première phase qui succède le mouillage du ciment, les grains de ciment ne changent presque pas de taille. La durée de cette phase dépend de la température ainsi que du ciment et varie entre 30 minutes et 3 heures.
Schwarz (1997) a étudié la viscosité des coulis. Il indique que les coulis préparés à l’aide d’une énergie de malaxage élevée ont des viscosités relativement faibles. Ce fait est plus remarquable pour les coulis dilués.

L’auteur a utilisé un superplastifiant NS-200 (produit par Geochemical Corporation in Ridgewood, New Jersey) qui est un sel polymère de formaldéhyde naphtalène sulfonaté. De plus, il utilise un granulomètre laser (Coulter LS-130) pour mesurer la granulométrie du ciment en poudre et du coulis. La mesure est réalisée en envoyant un rayon laser sur les particules à étudier. La dispersion ou diffraction du rayon est transformée en courbe granulométrique grâce aux lentilles de Fourier.

L’auteur a injecté des colonnes courtes \((h = 0,152 \text{ m}) \) et des colonnes longues \((h = 2,44 \text{ m}) \). Les colonnes de sable ont été reconstituées par compactage à sec. L’auteur a réalisé l’injection à partir d’un réservoir sous pression contenant du coulis. La pression d’injection a été ajustée manuellement afin d’obtenir un débit constant en observant le débit du coulis sortant de la colonne. Les colonnes longues ont été tronçonnées en 9 parties à la fin de chaque essai. Les tronçons 2, 4, 6 et 8 ont été stockés et leur perméabilité a été analysée après cure du ciment. Les tronçons 1, 3, 5, 7 et 9 ont été utilisés afin d’analyser leurs concentrations en ciment en tamisant les particules de ciment présentes avant le début du processus d’hydratation du ciment.

L’auteur montre l’existence d’écoulements préférentiels lors de l’injection des colonnes de sable par le coulis de ciment. En effet, il constate que les perméabilités des éprouvettes de sable injecté après prise sont supérieures à celles d’éprouvettes mélangées à la main malgré le fait que les concentrations en ciment des éprouvettes injectées sont supérieures à celles des éprouvettes de mortier fabriquées en mélangeant à la main du coulis et du sable (tableau 1-1). Le tableau 1-1 montre bien que les perméabilités des mortiers mélangés à la main (coulis + sable), après prise, sont toujours inférieures à \(10^{-7} \text{ cm/s} \), de plus, ces perméabilités sont inférieures à celles des échantillons de sable injecté quelque soit la distance de l’échantillon considéré par rapport au point d’injection.

Les écoulements préférentiels sont accentués dans les cas suivants : floculation du coulis, concentration élevée du coulis en ciment, pression d’injection élevée et volume important de coulis injecté.
Tableau 1-1 Coefficient de perméabilité (* 10^{-5} cm/s) pour échantillons de mortier préparé à la main (sable + coulis) et les échantillons de sable injectés (d’après Schwarz et Krizek (1994))

<table>
<thead>
<tr>
<th>Grout/Sand Mixtures</th>
<th>Water : Cement Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 : 1</td>
</tr>
<tr>
<td>Percentage of Grout-Filled Voids</td>
<td><0.01</td>
</tr>
<tr>
<td>100</td>
<td><0.01</td>
</tr>
<tr>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>Grout Injected Sand</td>
<td></td>
</tr>
<tr>
<td>Average Distance from Injection Point (cm)</td>
<td></td>
</tr>
<tr>
<td>12,7</td>
<td>0,01</td>
</tr>
<tr>
<td>25,4</td>
<td>0,90</td>
</tr>
<tr>
<td>38,1</td>
<td>*</td>
</tr>
<tr>
<td>50,8</td>
<td>*</td>
</tr>
</tbody>
</table>

* Unpermeated

Par ailleurs, les conclusions suivantes ont été tirées : les particules ayant un diamètre compris entre 0,4 et 2 μm ont été filtrées chimiquement. La filtration des plus grosses particules (D>2μm) est plutôt contrôlée par la combinaison des mécanismes mécaniques et chimiques. Le dépôt des petites particules de ciment est dû à l’existence d’un potentiel entre les particules, son amplitude est estimée par les théories de la science des colloïdes. L’injectabilité des coulis est meilleure pour les coulis ayant un potentiel zêta élevé et une faible force ionique (ionic strength), car ces caractéristiques électrochimiques améliorent la dispersion des grains de ciment dans le coulis.
D’après l’auteur, on constate que certains coulis de microciment ne sont pas injectables dans un sol donné bien que le critère d’injectabilité prévoie la possibilité d’injection. Cela est dû à la filtration chimique, qui n’est pas prise en compte dans le critère d’injectabilité.

Schwarz et Krizek (1994) présentent certains résultats indiqués par Schwarz (1997) avec parfois plus de détails. Une meilleure description du dispositif d’injection de colonne est présentée (figure 1-12). Le schéma indiqué montre que la colonne injectée est composée de plusieurs parties, ce qui rend facile sa découpe en plusieurs échantillons en vue de son analyse (évaluation de la concentration en ciment de chaque échantillon après injection). La méthode d’évaluation de la concentration de chaque échantillon en ciment est décrite. Elle est basée sur un processus de filtration. L’échantillon de sable injecté est mélangé avec de l’eau et agité pendant 2 minutes. Quand l’agitation est interrompue, les grains de sable se déposent rapidement et les grains de ciment restent en suspension dans l’eau. L’eau contenant les grains de sable est filtrée à travers un tamis retenant les particules de dimensions supérieures à 1,2μm, ce qui correspond à 98 % des grains de ciment utilisés pour l’injection.

Figure 1-12 Schéma de principe du dispositif d’injection de colonne (d’après Schwarz et Krizek (1994))
Par ailleurs, Dupla et al. (1998), Dupla et al. (1999), Dupla et al. (2000) et Dupla et Canou (2001) présentent des résultats d’études expérimentales réalisées au CERMES. Le but des travaux était d’étudier l’injectabilité de différents coulis typiques dans des colonnes de sables de référence avec, en particulier, l’étude de l’influence de la compacité d’un sable donné sur son injectabilité par un coulis de caractéristiques données. De plus, la caractérisation mécanique des matériaux injectés après prise ainsi que l’étude de la porosité des matériaux injectés, ont été effectués.

La figure 1-13 présente une vue du dispositif d’injection de colonne.

![Figure 1-13 Vue du dispositif d’injection de colonne développé au CERMES](image)

Les essais réalisés ont montré l’influence déterminante du type de coulis sur son injectabilité, en termes de granulométrie du ciment utilisé et du rapport C/E (rapport de la masse de ciment divisée par la masse de l’eau au sein du coulis). De plus, l’influence de l’état de compacité
d’un sable sur son injectabilité a été montrée. La caractérisation mécanique du matériau injecté après prise a confirmé la présence du phénomène de filtration. Les résultats obtenus sont logiques : la résistance mécanique décroît dans le sens de l’écoulement, depuis le « point » d’injection (correspondant à un fort niveau de filtration) jusqu’au « point » de sortie du coulis (correspondant à un niveau de filtration plus faible).

Ces auteurs ont aussi réalisé des recherches sur l’injection de colonnes multicouches. Il a été montré que la présence d’une fine couche de sable fin (1 cm par exemple) peut bloquer l’injection. La présence d’une faible proportion de particules fines (2% par exemple) peut aussi bloquer l’injection, ce qui confirme les résultats de Zebovitz et al. (1989).

Par ailleurs, un dispositif d’injection de colonne courte \((h = 16 \) cm), mise sous contrainte dans une cellule d’essai par application d’une pression, a été développé. Celui-ci permet de simuler l’injection d’un échantillon situé à une profondeur donnée dans le sol. Les premiers résultats montrent une influence de la contrainte de consolidation appliquée sur l’échantillon aussi bien pour les taux de filtration que pour les pressions maximales que l’on peut obtenir avant l’apparition d’instabilités.

Les dispositifs expérimentaux développés au CERMES seront décrit dans le troisième chapitre de la thèse.

Enfin, pour ce qui concerne les travaux expérimentaux recensés, Bouchelaghem F. (2001) a présenté deux dispositifs d’injection. L’un permet d’injecter des colonnes de sable et l’autre permet d’injecter un massif tridimensionnel de sable (figure 1-14).

Les colonnes injectées étaient en plexiglas, de 0,07 m de diamètre intérieur et de 0,82 m de longueur. Cinq capteurs de pression sont insérés le long de la colonne et permettent de mesurer les évolutions des pressions au sein de la colonne à différents niveaux. Une balance numérique sert à l’acquisition de la masse effluent. L’injection est réalisée à débit constant à l’aide d’une pompe à diaphragme \((Q = 1,5 \text{ à } 8 \text{ g/s})\). Au cours de l’injection, une caméra permet de filmer l’injection. Par la suite, on peut évaluer la constante de dispersion par analyse d’image du front de coulis.

Un modèle d’injection cylindrique tridimensionnel a été développé. Il consiste en une cuve cylindrique de 1,5 m de diamètre intérieur et de 1,2 m de hauteur. Un tube d’injection est positionné de manière à coïncider avec l’axe de révolution du cylindre. Le coulis est injecté dans le massif grâce à 40 trous régulièrement espacés le long du tube d’injection de longueur 1,2 m percé sur une longueur de 0,4 m. Les parois supérieure et inférieure sont imperméables.
Autour de la circonférence du modèle, un géotextile est disposé et permet d’assurer la distribution de pression hydrostatique.

L’instrumentation comprend les dispositifs suivants : deux capteurs de pression au niveau du tube d’injection, deux balances d’acquisition des débits entrant et sortant (sensibilités supérieures à 20 g), deux extensomètres mesurant le déplacement radial, deux capteurs pour mesurer le déplacement vertical, quatre capteurs pour mesurer les pressions interstitielles au sein du massif, deux capteurs mesurant le tassement induit par le chargement mécanique et enfin sept électrodes sont insérées le long d’une section droite du massif permettent de détecter la position du front de coulis au cours de sa propagation par des mesures de conductivité.

Figure 1-14 Schéma d’ensemble de l’essai en cuve (d’après Bouchelaghem F. (2001))

1.3.2. Travaux de modélisation

Bouchelaghem A. (1994) présente un modèle permettant de simuler l’injection de coulis de ciment dans un milieu poreux. La progression des grains de ciment dans le milieu est simulée à l’aide d’un processus stochastique. Le milieu poreux est modélisé par un réseau bidimensionnel. Il présente les résultats de simulations numériques mais ne compare pas les résultats expérimentaux et numériques afin de valider son modèle.
Eriksson et al. (2000) modélisent l’injection de coulis de ciment dans les roches fissurées à l’aide d’un modèle réseau. Le coulis est supposé avoir le comportement d’un fluide de Bingham. La filtration est supposée être due à des phénomènes mécaniques, mais les mécanismes réels de filtration peuvent aussi bien être mécaniques que physico-chimiques. Les auteurs introduisent deux dimensions caractéristiques : \(b_{\text{critical}} \) et \(b_{\text{min}} \). Si l’épaisseur d’une fissure est supérieure à \(b_{\text{critical}} \), la filtration n’a pas lieu. Si l’épaisseur d’une fissure est inférieure à \(b_{\text{min}} \), le coulis ne peut pas pénétrer. Pour les fissures ayant une épaisseur comprise entre \(b_{\text{critical}} \) et \(b_{\text{min}} \), une filtration du coulis a lieu. De plus, les auteurs présentent une loi linéaire simple entre la masse volumique du coulis, filtré dans une fissure d’épaisseur \(b \) vérifiant \(b_{\text{min}} < b < b_{\text{critical}} \), et l’épaisseur \(b \). Cette loi est valable pour \(\rho_{\text{min}} < \rho_{\text{coulis}} < \rho_{\text{max}} \), \(\rho_{\text{coulis}} \) étant la masse volumique du coulis de ciment. En tenant compte de la pression d’injection, le calcul des pertes de charge au sein du milieu poreux, à l’aide de la loi de Bingham, permet de calculer l’étendue de l’injection du coulis dans les fissures.

Des essais ont été réalisés sur des réseaux de fissures simples afin de vérifier la validité des hypothèses retenues et de déterminer les paramètres du modèle. La figure 1-15 présente le dispositif expérimental utilisé et qui consiste en un réseau de tuyaux.

Enfin, des simulations numériques sur des réseaux bidimensionnels de fissures ont été réalisées afin d’étudier la propagation du coulis en fonction de sa concentration initiale en ciment.
Chapitre 1 - Étude bibliographique

Figure 1-15 Schéma du dispositif expérimental constitué par le réseau de tuyaux injectés d’après (Eriksson et al (2000))

La perméabilité de la fracture a été mesurée. A partir de cette mesure de perméabilité, l’ouverture de la fissure a été modélisée soit par une fissure d’ouverture constante, soit par une fissure d’ouverture variable ayant une moyenne et un écart type bien déterminés.

Les résultats obtenus dépendaient de l’hypothèse retenue pour l’ouverture de la fissure, mais les résultats expérimentaux étaient dans l’étendue des prévisions.

Afin d’obtenir des prévisions plus précises, il est nécessaire de mieux étudier la géométrie de la fissure.

Bouchelaghem F. (2001) a simulé l’injection d’un fluide miscible avec l’eau à travers un milieu poreux saturé déformable. Elle a proposé un modèle mathématique général qui tient
Chapitre 1 - Etude bibliographique

compte des couplages existants entre l’écoulement fluide, le transport de masse du coulis, et la déformation du squelette solide.

Dans son rapport de thèse, l’auteur a mis l’accent sur la partie modélisation numérique. Par ailleurs, dans son modèle, elle considère une phase fluide à deux constituants : l’eau et le coulis. Le constituant coulis, supposé homogène, est filtré à travers le milieu poreux.

En vue d’applications pratiques, un terme de filtration linéaire en fonction de la masse volumique du coulis a été retenu pour exprimer le terme de dépôt, alors que le calcul de la réduction de perméabilité a été effectué à l’aide d’une généralisation de la loi de Kozeny-Carman. Deux types d’essais ont été réalisés. Des essais d’injection de colonne unidimensionnelle ont été réalisés pour déterminer le taux de filtration et la dispersion longitudinale du fluide injecté. Par la suite, la validation du modèle a été réalisée grâce à des essais d’injection tridimensionnels de massifs de sable.

Les résultats des essais expérimentaux sur colonne, concernant les taux de filtration, étaient dispersés. La figure 1-16 indique la valeur du taux de filtration mesuré expérimentalement pour un essai en fonction du temps.

L’auteur indique que les résultats dispersés obtenus doivent être manipulés à l’aide de fonctions statistiques pour faire ressortir les valeurs prépondérantes.
Figure 1-16 Evolution du taux de filtration en fonction du temps pour un essai d’injection représentatif sur colonne (d’après Bouchelaghem F. (2001))

Des comparaisons de valeurs numériques et expérimentales ont été réalisées afin de valider le modèle développé. La figure 1-17 compare les résultats obtenus pour les pressions interstitielles à plusieurs niveaux pour un essai d’injection de colonne et la figure 1-18 compares les résultats obtenus pour les déplacements lors de l’injection d’un massif tridimensionnel. Ces deux figures montrent un bon accord entre les résultats expérimentaux et les résultats du modèle développé. A noter que l’auteur ne présente pas les variations de masses théorique et expérimentale dans le cas de l’injection de colonnes.
Figure 1-17 Evolution des pressions interstitielles à différents niveaux au sein de la colonne, comparaison des résultats expérimentaux et numériques (d’après Bouchelaghem F. (2001))

Figure 1-18 Distributions des déplacements expérimentaux et numériques dans le massif tridimensionnel (d’après Bouchelaghem F. (2001))
Enfin, Bortal-Nafaa (2002) a proposé un nouveau critère d’injectabilité qui tient compte de la taille représentative du ciment de la suspension, la taille représentative des granulats constituant le milieu poreux ainsi que l’indice des vides. Ce critère est donné par la relation suivante :

\[d_{95,\text{ciment}} \leq \frac{1}{1,55} \left(-1,183e^2 - 1,1274e + 0,4293 \right) D_{15,\text{sol}} \]

(1.17)

\(e \) étant l’indice des vides du sol.

Des simulations numériques d’échantillons numériques élémentaires (ENE) de 100 particules ont été réalisées. L’écoulement des particules de ciment monodisperses à travers l’ENE a été étudié. Les forces prises en compte pour les particules de ciment sont les forces de trainée dues à l’écoulement du fluide et les forces de contact entre les particules.

Par ailleurs, une méthode de diminution du temps de calcul a été développée, elle est basée sur le principe des lois de similitudes qui ont permis d’effectuer des changements d’échelle et d’agrandir le pas de temps.

Le modèle numérique discret a été validé qualitativement. Par la suite, une étude paramétrique a été réalisée. Elle a permis d’étudier les influences des différents paramètres sur les résultats numériques.
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Chapitre 2

Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

2.1. Le problème étudié
Dans ce chapitre, on se propose de modéliser l’écoulement d’un coulis de ciment à travers un milieu poreux pulvéruent en présence de filtration de particules de ciment.
L’objectif est de déterminer les profils de concentrations des différents constituants au sein du milieu poreux ainsi que les profils des pressions de fluide pendant l’écoulement.
Ce problème sera étudié dans le cas d’un écoulement unidimensionnel et dans le cas d’un écoulement bidimensionnel à symétrie de révolution.

2.2. Le choix du modèle
Afin de modéliser l’écoulement du coulis de ciment dans un milieu poreux, un modèle de type macroscopique a été retenu.
Pour ce modèle, la phase fluide est constituée par le coulis en écoulement. Cette phase fluide comporte deux constituants : l’eau (constituant liquide) et le ciment (constituant solide). De plus, au sein du milieu poreux il existe une phase solide constituée par les grains de sable qui forment le squelette solide.
Le modèle retenu est basé en partie sur les équations de conservation de masse des constituants eau et ciment et de la phase squelette.
De plus, un terme de filtration par unités de volume et de temps, linéaire par rapport à la fraction volumique du ciment dans le coulis a été retenu. Il s’agit d’un développement limité linéaire au premier ordre de la masse filtrée par rapport à la fraction volumique du ciment dans le coulis. Cette approche peut être retenue en première approximation.
Dans le cas unidimensionnel, les profils des pressions seront évalués grâce à la loi de Darcy, une loi phénoménologique d’évolution de la perméabilité intrinsèque et une loi d’évolution de la viscosité du coulis. La loi phénoménologique d’évolution de la perméabilité intrinsèque sera évaluée à l’aide d’essais expérimentaux.
2.3. Les hypothèses et les équations générales du modèle

Le problème étudié est celui de l’écoulement d’un fluide à deux constituants (l’eau et le ciment) à travers un milieu poreux constitué par du sable. Dans ce qui suit, on présente les hypothèses et les principales équations du modèle.

Les hypothèses suivantes ont été retenues pour la modélisation :

1. Le milieu poreux est homogène, isotrope et saturé par le coulis.
2. Les effets de la diffusion et de la dispersion du ciment dans le coulis sont négligeables.
3. En conséquence, au sein du coulis, l’eau et les grains de ciment ont la même vitesse.
4. La matrice granulaire est supposée rigide.
5. Le squelette solide est constitué de la matrice granulaire initiale augmentée des grains de ciment filtrés par cette dernière.
6. Le coulis est injecté à débit constant.

Par ailleurs, les principales équations du modèle sont les suivantes :

1. Conservation de masse pour le constituant eau

\[
\frac{\partial (\rho \phi_e)}{\partial t} + \text{div}(\rho \phi_e \mathbf{v}) = 0
\] \hspace{1cm} (2.1)

2. Conservation de masse pour le constituant ciment

\[
\frac{\partial (\rho \phi_c)}{\partial t} + \text{div}(\rho \phi_c \mathbf{v}) = \mu = -a \rho_c \delta
\] \hspace{1cm} (2.2)

3. Conservation de masse pour la phase squelette

\[
\frac{\partial (\rho \phi_s)}{\partial t} = -\mu = a \rho_c \delta
\] \hspace{1cm} (2.3)

4. Équation de Darcy

\[
\phi \mathbf{v} = -\frac{1}{\mu_{coulis}} k_{int}.\text{grad}(p + \rho_{coulis} g z)
\] \hspace{1cm} (2.4)

\(\rho_e\) et \(\rho_c\) sont respectivement les masses volumiques intrinsèques de l’eau et du ciment. \(\rho_s\) et \(\rho_{coulis}\) désignent les masses volumiques du squelette et du coulis. \(\phi_e, \phi_c\) et \(\phi_s\) sont respectivement les fractions volumiques de l’eau, du ciment et du squelette. \(\phi\) est la porosité.
du milieu. \(\mu \) est la masse de ciment filtrée par unités de temps et de volume. \(\nu \) est la vitesse
d’écoulement du coulis. \(k_{\text{int}} \) est le tenseur de perméabilité intrinsèque du milieu poreux, qui
devient un scalaire dans le cas unidimensionnel. \(\mu_{\text{coulis}} \) est la viscosité du coulis. \(p \) est la
pression de fluide. \(g \) est l’accélération de la gravité. \(z \) est l’abscisse orientée dans le sens
vertical ascendant. \(a \) est une constante. \(t \) est le temps.
\(\delta \) est la fraction volumique du ciment dans le coulis. Ce paramètre est donné par l’équation
(2.5):
\[
\delta = \frac{\phi_x}{\phi}
\]

2.4. Formulation du problème d’écoulement unidimensionnel

2.4.1. Définition du problème étudié

On se propose d’étudier l’écoulement de coulis de ciment dans une colonne de sable contenue
dans un tube de plexiglas, en présence de filtration de grains de ciment par le sable. La
colonne est placée verticalement et l’injection se fait du bas vers le haut dans le sens opposé à
celui de l’accélération de la gravité.

2.4.1.1. La géométric du problème

Le domaine d’étude considéré est \(\Omega_z = [0, L] \) où \(L \) est la hauteur de la colonne de sable,
\(L=1,04 \) m pour les applications numériques. La figure 2-1 présente une schématisation du
problème étudié.
2.4.1.2. La condition à la limite
Les conservations de masse des constituants eau et ciment au niveau de l’interface tuyau d’injection – milieu poreux s’écrivent ainsi :

\[f \cdot v^- = \phi_c(z = 0, t) \cdot v(z = 0, t) \quad (2.6) \]
\[(1 - f) \cdot v^- = \phi_c(z = 0, t) \cdot v(z = 0, t) \quad (2.7) \]

\(f \) est la fraction volumique du ciment dans le coulis au sein du réservoir contenant le coulis à injecter et \(v^- \) est la vitesse d’écoulement du coulis dans le tuyau d’injection.

Par ailleurs, la relation entre les différentes fractions volumiques dans le milieu poreux s’écrit :

\[\phi = \phi_c + \phi_e = 1 - \phi_s \quad (2.8) \]

En sommant les équations (2.6) et (2.7), et tenant compte de (2.8), on obtient :

\[v^- = \phi(z = 0, t) \cdot v(z = 0, t) \quad (2.9) \]
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Les équations (2.5), (2.6) et (2.9) impliquent :

\[\delta(z = 0, t \geq 0) = \phi_s(z = 0, t \geq 0) = \frac{\phi_s(z = 0, t \geq 0)}{\phi(z = 0, t \geq 0)} = f \]

(2.10)

L’équation (2.10) exprime la condition à la limite pour la fraction volumique de ciment dans le coulis, à l’interface tuyau d’injection – milieu poreux. Cette équation sera utilisée dans la suite pour la résolution du problème étudié.

2.4.1.3. Les conditions initiales

Initialement, la porosité est homogène au sein du milieu poreux. De plus, le milieu poreux est saturé en eau. Ces conditions initiales s’écrivent ainsi :

\[\phi(0 \leq z \leq L, t = 0) = \phi_0 \]

(2.11)

\[\delta(0 < z \leq L, t = 0) = 0 \]

(2.12)

\(\phi_0 \) est la porosité initiale du milieu poreux.

2.4.2. Simplifications et manipulations algébriques des équations mises en jeu

Dans un premier temps, les équations (2.1), (2.2) et (2.3) seront simplifiées pour faciliter la résolution numérique du problème.

L’équation (2.3) implique :

\[\rho_s \frac{\partial \phi_s}{\partial t} + \phi_s \frac{\partial \rho_s}{\partial t} = a \rho_c \delta \]

(2.13)

Afin de simplifier l’équation (2.13), démontrons que le terme \(\phi_s \frac{\partial \rho_s}{\partial t} \) est négligeable devant le terme \(\rho_s \frac{\partial \phi_s}{\partial t} \).

On a :

\[\phi_s = \phi_{sa} + \phi_{cs} \]

(2.14)

\[\rho_s = (\rho_{sa} - \rho_c) \frac{\phi_{sa}}{\phi_s} + \rho_c \]

(2.15)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\(\phi_{sa} \) et \(\phi_{sa} \) sont respectivement les fractions volumiques du sable et du ciment en phase solide.

\(\rho_{sa} \) est la masse volumique intrinsèque du sable.

A noter que \(\rho_{c} = 2940 \text{ kg/m}^3 \) pour le ciment Spinor A12 et \(\rho_{sa} = 2650 \text{ kg/m}^3 \) pour le sable de Fontainebleau.

L’équation (2.15) implique :

\[
\frac{\partial \rho_s}{\partial t} = -\left(\rho_{sa} - \rho_{c}\right) \frac{\phi_{sa}}{\phi_s} \cdot \frac{\partial \phi_s}{\partial t}
\]

(2.16)

Donc :

\[
\left(\phi_s \frac{\partial \rho_s}{\partial t}\right) = \left(\frac{\rho_{c} - \rho_{sa}}{\rho_s} \cdot \frac{\phi_{sa}}{\phi_s}\right) \left(\rho_s \frac{\partial \phi_s}{\partial t}\right)
\]

(2.17)

Compte tenu des équations (2.14) et (2.15) et des valeurs numériques pour \(\rho_{c} \) et \(\rho_{sa} \),

\(\rho_{c} = 2940 \text{ kg/m}^3 \) pour le ciment Spinor A12 et \(\rho_{sa} = 2650 \text{ kg/m}^3 \) pour le sable de Fontainebleau),

on déduit que :

\[
0 < \frac{\rho_{c} - \rho_{sa}}{\rho_s} \frac{\phi_{sa}}{\phi_s} \approx 0,11 << 1
\]

(2.18)

Les formules (2.17) et (2.18) impliquent :

\[
\phi_s \frac{\partial \rho_s}{\partial t} \ll \rho_s \frac{\partial \phi_s}{\partial t}
\]

(2.19)

Les équations (2.13) et (2.19) impliquent :

\[
\rho_s \frac{\partial \phi_s}{\partial t} \approx a \cdot \rho_c \cdot \delta
\]

(2.20)

Puisque le ciment et le sable ont des masses volumiques très proches (\(\rho_{c} = 2940 \text{ kg/m}^3 \) pour le ciment Spinor A12 et \(\rho_{sa} = 2650 \text{ kg/m}^3 \) pour le sable de Fontainebleau), on déduit à partir de l’équation (2.20) :

\[
\frac{\partial \phi_s}{\partial t} \approx a \cdot \frac{\rho_c}{\rho_s} \cdot \delta \approx a \cdot \delta
\]

(2.21)

Les équations (2.8) et (2.21) impliquent :

54
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[\frac{\partial \phi}{\partial t} = -a \delta \] (2.22)

Par ailleurs, puisque les masses volumiques intrinsèques de l’eau et du ciment sont constantes, on déduit à partir des équations (2.1) et (2.2) :

\[\frac{\partial \phi_{e}}{\partial t} + \text{div} \left(\phi_{e} \cdot v \right) = -a \delta \] (2.23)

\[\frac{\partial \phi_{v}}{\partial t} + \text{div} \left(\phi_{v} \cdot v \right) = 0 \] (2.24)

En sommant les équations (2.23) et (2.24), et compte tenu de (2.8), on obtient :

\[\frac{\partial \phi}{\partial t} + \text{div} \left(\phi \cdot v \right) = -a \delta \] (2.25)

Par ailleurs, les équations (2.22) et (2.25) impliquent :

\[\text{div} \left(\phi \cdot v \right) = 0 \] (2.26)

L’équation (2.26) implique :

\[\phi (0 \leq z \leq L, t \geq 0) \cdot v (0 \leq z \leq L, t \geq 0) \cdot e_{z} = \phi_{0} \cdot v^{+} \cdot e_{z} = v^{+} \cdot e_{z} \] (2.27)

\(v^{+} \) est la vitesse initiale d’écoulement du coulis dans le milieu poreux à l’abscisse \(z=0^{+} \) et à l’instant \(t=0 \).

\[v^{+} = v (z = 0^{+}, t = 0) \] (2.28)

Par ailleurs, les équations (2.5) et (2.23) impliquent :

\[\frac{\partial (\phi \delta)}{\partial t} + \frac{\partial (\phi \delta \cdot v)}{\partial z} = -a \delta \] (2.29)

Les équations (2.27) et (2.29) impliquent :

\[\frac{\partial (\phi \delta)}{\partial t} + v^{+} \cdot \frac{\partial \delta}{\partial z} = -a \delta \] (2.30)

Le développement de l’équation (2.30) implique :

55
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[
\delta . \frac{\partial \phi}{\partial t} + \phi . \frac{\partial \delta}{\partial t} + v^-. \frac{\partial \delta}{\partial z} = -a \delta
\]

(2.31)

Les équations (2.22) et (2.31) donnent :

\[
\phi . \frac{\partial \delta}{\partial t} + v^- . \frac{\partial \delta}{\partial z} = -a \delta . (1 - \delta)
\]

(2.32)

Pour déterminer les fractions volumiques des différents constituants et phases présents dans le milieu poreux, le système de 2 équations aux dérivées partielles à résoudre par rapport aux deux inconnues \(\phi \) et \(\delta \) est le suivant :

\[
\frac{\partial \phi}{\partial t} = -a \delta
\]

(2.22)

\[
\phi . \frac{\partial \delta}{\partial t} + v^- . \frac{\partial \delta}{\partial z} = -a \delta . (1 - \delta)
\]

(2.32)

Il est complété par les conditions initiales et à la limite (2.11), (2.12) et (2.10).

2.4.3. Méthode de résolution

Le système d’équations (2.22) et (2.32) sera résolu numériquement en utilisant la méthode des éléments finis. Les différentes fractions volumiques pourront par la suite être évaluées en utilisant les équations (2.5) et (2.8).

Soit l’élément \([-1, +1]\) considéré comme élément de référence. Il a deux nœuds aux extrémités, d’abscisses \(-1\) et \(+1\), et un nœud au milieu d’abscisse 0. Les fonctions d’interpolation retenues sont les fonctions d’interpolation quadratiques classiques. Elles sont présentées sur la figure 2-2.

Le nombre d’éléments \(N_e\) sera choisi suffisamment grand : \(N_e=200\).

Les résultats obtenus seront présentés en fonction du temps normalisé \(t_n\). En l’absence de filtration, à l’instant \(t_n=1\), le front du coulis injecté aura atteint l’abscisse \(z = L\). Le temps \(t_n\) vérifie l’équation suivante :

\[
t_n = \frac{v^-}{\phi_0 . L} . t
\]

(2.33)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Il faut rappeler que pour valider le modèle, on utilisera des essais de colonne de longueur L, d’où le choix du domaine d’étude $\Omega_z = [0, L]$. De plus, ce choix de temps normalisé pour la représentation des résultats facilite leur compréhension.

![Graphique](image.png)

Figure 2-2 Fonctions d’interpolation sur l’élément de référence

2.5. Résolution du problème d’écoulement unidimensionnel

Afin de déterminer les fractions des différents constituants et phases présents au sein du milieu poreux, il suffit de résoudre le système d’équations (2.22) et (2.32). Les différentes fractions seront par la suite déterminées très facilement à l’aide des équations (2.5) et (2.8).

Le système d’équations (2.22) et (2.32) sera résolu en utilisant deux schémas numériques, l’un étant semi-explicite et l’autre est implicite.

2.5.1. Résolution du système d’équations en utilisant un schéma numérique semi-explicite

La discrétisation temporelle des équations (2.22) et (2.32), en utilisant un schéma numérique semi-explicite, donne :

\[
\frac{\phi^{n+1} - \phi^n}{\Delta t} = -a\delta^n
\]

(2.34)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[
\phi^{n+1} \frac{\delta^{n+1} - \delta^n}{\Delta t} + v^z \frac{\partial \delta^{n+1}}{\partial z} = -a \delta^n \left(1 - \delta^n\right) \tag{2.35}
\]

A noter que pour un schéma totalement explicite, la discrétisation de l’équation (2.32) implique :

\[
\phi^n \frac{\delta^{n+1} - \delta^n}{\Delta t} + v^z \frac{\partial \delta^n}{\partial z} = -a \delta^n \left(1 - \delta^n\right).
\]

L’équation (2.34) implique :

\[
\phi^{n+1} = \phi^n - a.\Delta t \delta^n \tag{2.36}
\]

Les équations (2.35) et (2.36) donnent :

\[
\Delta t.v^z.\frac{\partial \delta^{n+1}}{\partial z} + \left(\phi^n - a.\Delta t \delta^n\right)\delta^{n+1} = \left(\phi^n - a.\Delta t \delta^n\right)\delta^n - a.\Delta t \delta^n \left(1 - \delta^n\right) \tag{2.37}
\]

L’équation (2.37) sera résolue en utilisant la méthode des éléments finis.

D’abord la formulation variationnelle de l’équation (2.37) est réalisée.

En multipliant l’équation (2.37) par une fonction test \(w(z) \) et en intégrant par rapport au domaine d’étude \(\Omega_z = [0, L] \), on obtient :

\[
\Delta t.v^z.\left[\int_{\Omega_z} \frac{\partial \delta^{n+1}}{\partial z} \cdot w \cdot dz\right] + \left[\phi^n - a.\Delta t \delta^n\right]\delta^{n+1}.w \cdot dz = \left[\left[\phi^n - a.\Delta t \delta^n\right]\delta^n - a.\Delta t \delta^n \left(1 - \delta^n\right)\right]w \cdot dz \tag{2.38}
\]

L’intervalle \([0,L] \) est par suite divisé en \(N_e \) éléments à 3 nœuds (figure 2-3), ce qui donne un nombre total de nœuds \(N_e=2.N_e+1 \). On considère les fonctions d’interpolation quadratiques classiques.
Figure 2-3 Discretisation du domaine d'étude Ω_z

On considère les vecteurs N et B contenant respectivement les fonctions d’interpolation et leurs dérivées par rapport à z.

Par ailleurs, pour un élément i donné, on considère le vecteur U_i^{n+1} qui contient les valeurs nodales de la fonction $\delta^{n+1}(z)$ dans Ω_i.

On obtient donc les approximations suivantes pour les fonctions $\delta^{n+1}(z)$ et $\frac{\partial \delta^{n+1}}{\partial z}(z)$:

\begin{align*}
\delta^{n+1}(z) &= T N(z) U_i^{n+1} ; \quad z \in \Omega_i ; \quad 1 \leq i \leq N_e \\
\frac{\partial \delta^{n+1}}{\partial z}(z) &= T B(z) U_i^{n+1} ; \quad z \in \Omega_i ; \quad 1 \leq i \leq N_e
\end{align*}

(2.39) (2.40)

La discrétisation spatiale de l’équation (2.38) aboutit au système linéaire suivant :

\[K^n U^{n+1} = F^n \]

(2.41)

U^{n+1} est le vecteur contenant les valeurs nodales de la fonction $\delta^{n+1}(z)$. Il est donné par l’équation (2.42) :
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[U_{n+1} = \left(\delta_{n+1} \right)_{i \in \mathcal{N}_i} \]

(2.42)

La matrice de rigidité globale \(K^n \) est donnée par les équations (2.43) et (2.44) :

\[K^n = \sum_{i=1}^{N_e} K_i^n \]

(2.43)

\[K_i^n = \Delta t \nu^i \int_{\Omega_i} N_i^T B \, dz + \Delta t \int_{\Omega_i} \left(\phi_i^n - a \Delta t \delta_i^n \right) N_i^T N_i \, dz \quad ; \quad 1 \leq i \leq N_e \]

(2.44)

Le vecteur des forces nodales \(F^n \) est donné par les équations (2.45) et (2.46) :

\[F^n = \sum_{i=1}^{N_e} F_i^n \]

(2.45)

\[F_i^n = \int_{\Omega_i} \left[\left(\phi_i^n - a \Delta t \delta_i^n \right) \delta_i^n - a \Delta t \delta_i^n \left(1 - \delta_i^n \right) \right] N_i \, dz \quad ; \quad 1 \leq i \leq N_e \]

(2.46)

La méthode de résolution adoptée est donc la suivante :

On commence d’abord par déterminer les vecteurs \(\left(\phi_j^0 \right)_{i \in j \in \mathcal{N}_i} \) et \(\left(\delta_j^0 \right)_{i \in j \in \mathcal{N}_i} \) en utilisant les conditions initiales (2.11) et (2.12) et la condition à la limite (2.10). Par la suite, à chaque pas de temps, on résoud d’abord l’équation (2.36) :

\[\phi_{n+1}^i = \phi^n_i - a \Delta t \delta^n_i \]

(2.36)

Cela nous permet de déterminer le vecteur \(\left(\phi_j^{n+1} \right)_{i \in j \in \mathcal{N}_i} \).

Par la suite on résoud le système linéaire d’équations (2.41) en tenant compte de la condition à la limite donnée par l’équation (2.10) :

\[K^n U^{n+1} = F^n \]

(2.41)

Cela nous permet de déterminer le vecteur \(\left(\delta_j^{n+1} \right)_{i \in j \in \mathcal{N}_i} \).

2.5.2. Résolution du système d’équations en utilisant un schéma numérique implicite

En discrétisant les équations (2.22) et (2.32) par rapport au temps, en utilisant un schéma numérique implicite, on obtient :

\[\frac{\phi_{n+1}^i - \phi^n_i}{\Delta t} = -a \delta^{n+1}_i \]

(2.47)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[
\phi^{n+1} \cdot \frac{\delta^{n+1} - \delta^n}{\Delta t} + v^* \cdot \frac{\partial \delta^{n+1}}{\partial z} = -a \cdot \delta^{n+1} \left(1 - \delta^{n+1}\right) \tag{2.48}
\]

Les équations (2.47) et (2.48) impliquent :

\[
\phi^{n+1} = \phi^n - a \cdot \Delta t \cdot \delta^{n+1} \tag{2.49}
\]

\[
\Delta t \cdot v^* \frac{\partial \delta^{n+1}}{\partial z} + \left(\phi^n + a \cdot \Delta t \left(1 + \delta^n\right)\right) \delta^{n+1} - 2 \cdot a \cdot \Delta t \left(\delta^{n+1}\right)^2 = \phi^n \cdot \delta^n \tag{2.50}
\]

La résolution de l’équation (2.50) en utilisant la méthode des éléments finis et une démarche analogue à celle adoptée pour la résolution du système d’équations (2.22) et (2.32) en utilisant le schéma numérique semi-explicite, conduit à la résolution du système non linéaire d’équations (2.51):

\[
K^{r,n+1} \left(U^{n+1}\right) U^{n+1} = F^{r,n} \tag{2.51}
\]

La matrice de rigidité globale \(K^{r,n+1} \) est donnée par les équations (2.52) et (2.53) :

\[
K^{r,n+1} = \sum_{i=1}^{N_e} K^{r,n+1}_i \tag{2.52}
\]

\[
K^{r,n+1}_i = \Delta t \cdot v^* \cdot \int_{\Omega_i} N^T B \cdot dz + \int_{\Omega_i} \left[\phi^n + a \cdot \Delta t \left(1 + \delta^n\right)\right] N^T N \cdot dz - 2 \cdot a \cdot \Delta t \cdot \int_{\Omega_i} \left(N^T U^{n+1}_i\right) N^T N \cdot dz \quad ; \quad 1 \leq i \leq N_e \tag{2.53}
\]

Le vecteur des forces nodales \(F^{r,n} \) est donné par les équations (2.54) et (2.55) :

\[
F^{r,n} = \sum_{i=1}^{N_e} F^{r,n}_i \tag{2.54}
\]

\[
F^{r,n}_i = \int_{\Omega_i} \phi^n \cdot \delta^n \cdot N \cdot dz \quad ; \quad 1 \leq i \leq N_e \tag{2.55}
\]

La méthode de résolution adoptée est donc la suivante :

On commence d’abord par déterminer les vecteurs \(\left(\phi^0\right)_{j \leq j \leq N_e} \) et \(\left(\delta^0\right)_{j \leq j \leq N_e} \), en utilisant les conditions initiales (2.11) et (2.12) et la condition à la limite (2.10).
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Par la suite, à chaque pas de temps, on résoud le système non linéaire (2.51), en tenant compte de la condition à la limite donnée par l’équation (2.10).

\[K' n+1 \left(U^{n+1}\right) U^{n+1} = F' n \]
(2.51)

A chaque pas de temps, le système non linéaire d’équations (2.51) sera résolu par la méthode de Newton - Raphson, en tenant compte de la condition à la limite donnée par l’équation (2.10). Cela nous permet de déterminer le vecteur \(\left(\delta_{j}^{n+1} \right)_{j \in S,j \in N} \).

Par la suite, on résoud l’équation (2.49).

\[\phi^{n+1} = \phi^{n} - a \Delta t \delta^{n+1} \]
(2.49)

Cela nous permet de déterminer le vecteur \(\left(\phi_{j}^{n+1} \right)_{j \in S,j \in N} \).

2.5.3. Comparaison des résultats numériques obtenus à l’aide des schémas semi-explicite et implicite

Les résultats obtenus à l’aide des deux schémas numériques seront comparés. Afin de faire des simulations réalistes, un taux de filtration enregistré durant un essai d’injection de colonne (IC1) a été utilisé. Cet essai sera présenté ultérieurement.

Les valeurs numériques des paramètres retenus pour les simulations numériques sont les suivantes : \(L=1,04 \) m ; \(f=0,064 \) ; \(\alpha=1,1.10^{-3} \) s\(^{-1} \) ; \(\phi_{0}=0,36 \) ; \(N_{e}=200 \) ; \(\Delta t = \frac{L \phi_{0}}{2N_{e} \nu} \approx 0,839s \) ; \(\nu^{-} = 1,116.10^{-3} \) m/s .

Les figures 2-4, 2-5 et 2-6 présentent les résultats obtenus à différents instants. Ces figures montrent un bon accord entre les résultats obtenus à l’aide des deux méthodes.
Figure 2-4 Profils de ϕ et δ à l’instant $t = 0.5 L \phi_0 / v^- = 168$ s

Figure 2-5 Profils de ϕ et δ à l’instant $t = L \phi_0 / v^- = 335$ s
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

2.5.4. Régime asymptotique de la fonction δ

Lors des simulations numériques, il a été constaté l’existence d’un régime stationnaire pour la fonction $\delta(z,t)$. Ce régime peut être identifié analytiquement.

On suppose l’existence d’un régime stationnaire pour la fonction $\delta(z,t)$. Cela implique que :

$$\frac{\partial \delta}{\partial t} = 0$$ \hspace{1cm} (2.56)

Les équations (2.32) et (2.56) impliquent :

$$\nu^{-}\frac{\partial \delta}{\partial z} = -a\delta(1-\delta)$$ \hspace{1cm} (2.57)

L’intégration de l’équation (2.57), en tenant compte de la condition à la limite donnée par l’équation (2.10), entraîne :

$$\delta(z) = \frac{1}{1 + \left(\frac{1}{f} - 1\right)e^{\frac{az}{\nu}}}$$ \hspace{1cm} (2.58)

Afin de comparer les solutions numérique et analytique, les paramètres utilisés dans les simulations numériques du paragraphe 2.5.3. ont été retenus.
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

La figure 2-7 compare les résultats numériques obtenus à l’aide du schéma numérique semi-explicite avec la solution analytique donnée par l’équation (2.58). Cette figure montre la superposition des solutions analytique et numérique.

![Graphique de la figure 2-7](image)

Figure 2-7 Comparaison des résultats analytiques et numériques pour δ à l’instant

\[t = 2L\phi_0/v^- = 671 \text{ s} \]

2.6. Simplification du modèle pour l’écoulement unidimensionnel

2.6.1. Le problème à résoudre

Afin de valider le modèle numérique développé, on se propose de résoudre un problème simplifié de propagation de coulis, en présence de filtration. On suppose à cet effet que la porosité reste constante. Les conditions initiales et à la limite sont identiques à celles du problème étudié d’écoulement de suspensions de ciment dans les milieux poreux.

Le problème sera résolu analytiquement et numériquement et les deux solutions seront comparées.

En supposant que la porosité reste constante, les équations (2.27) et (2.32) donnent :

\[\phi_0 \cdot \frac{\partial \delta}{\partial t} + v^- \cdot \phi_0 \cdot \frac{\partial \delta}{\partial z} = -a\delta \cdot (1-\delta) \]

(2.59)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Ce qui revient à résoudre l’équation suivante :

\[
\frac{\partial \delta}{\partial t} + v^* \frac{\partial \delta}{\partial z} = -\frac{a}{\phi_0} \delta (1-\delta)
\]
(2.60)

2.6.2. La solution analytique

La solution analytique de l’équation (2.60) est donnée par l’équation (2.61) :

\[
\delta (z,t) = \frac{1}{1 + e^{\left[\frac{a}{\phi_0 \nu^*}\right] F_{z,3} \left(\frac{t - z}{\nu^*} \right)}}
\]
(2.61)

Où \(F_{z,3} \) est fonction de la variable \(\left(\frac{t - z}{\nu^*} \right) \).

L’équation (2.61) et la condition à la limite (équation (2.10)) impliquent :

\[
F_{z,3} (y) = \frac{1}{f} - 1 \quad \forall \ y \geq 0
\]
(2.62)

L’équation (2.61) et la condition initiale (équation (2.12)) impliquent :

\[
\frac{1}{1 + e^{\left[\frac{a}{\phi_0 \nu^*}\right] F_{z,3} \left(\frac{z}{\nu^*} \right)}} = 0 \quad \text{si} \quad 0 < z \leq L
\]
(2.63)

Donc :

\[
F_{z,3} (y) = \infty \quad \text{si} \quad -\frac{L}{\nu^*} \leq y < 0
\]
(2.64)

Les équations (2.61), (2.62) et (2.64) impliquent :

\[
\delta (z,t) = \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^{\left[\frac{a}{\phi_0 \nu^*}\right] F_{z,3} \left(\frac{z}{\nu^*} \right)}} \quad \text{si} \quad t - \frac{z}{\nu^*} \geq 0
\]
(2.65)

\[
\delta (z,t) = 0 \quad \text{si} \quad -\frac{L}{\nu^*} \leq t - \frac{z}{\nu^*} < 0
\]
(2.66)
Puisque l’on étudie le problème dans le domaine \(\Omega_z = [0, L] \), les équations (2.65) et (2.66) impliquent :

\[
\delta(z,t) = \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^{\left(\frac{a_z}{\phi_0 v^+} \right)}} \quad \text{si} \quad z \leq v^+ t
\]

\((2.67) \)

\[
\delta(z,t) = 0 \quad \text{si} \quad v^+ t < z \leq L
\]

\((2.68) \)

2.6.3. La solution numérique

La solution numérique de l’équation (2.60) est obtenue en faisant des modifications dans le programme qui résoud le système d’équations (2.22) et (2.32) à l’aide du schéma numérique semi-explicite.

2.6.4. Comparaison entre les solutions analytique et numérique

Afin de comparer les solutions numérique et analytique du problème approché \(\phi = \phi_0 \), les paramètres utilisés lors des simulations numériques du paragraphe 2.5.3. ont été retenus.

La figure 2-8 présente les résultats numériques et analytiques. On constate un excellent accord entre la solution numérique et la solution analytique du problème étudié, sauf évidemment au niveau de la discontinuité de \(\delta \) que la méthode numérique utilisée ne permet pas de prendre en compte.
Figure 2-8 Variations de δ en fonction du temps, à plusieurs instants, pour le problème approché ($\phi = \phi_o$). Comparaison entre les résultats analytiques et numériques.

2.7. Solution analytique du problème d’écoulement unidimensionnel

A présent, on va tenter de déterminer une solution analytique approchée du système d’équations (2.22) et (2.32).

La solution analytique en δ a été déterminée directement à l’aide de la solution analytique de l’équation (2.60). Cette solution est donnée par les équations (2.67) et (2.68). Par la suite, la solution analytique en ϕ est évaluée par simple intégration de l’équation (2.22) en tenant compte de la solution analytique en δ donnée par les équations (2.67) et (2.68) et en tenant compte de la condition initiale pour ϕ donnée par l’équation (2.11).

Une solution analytique approchée du système d’équations (2.22) et (2.32) est donc donnée par les équations (2.69), (2.70), (2.71) et (2.72).
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[\delta(z,t) = \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^{\left(\frac{zt}{\phi_0 \nu^+} \right)}} \quad si \ z \leq \nu^+ t \quad (2.69) \]

\[\delta(z,t) = 0 \quad si \ z > \nu^+ t \quad (2.70) \]

\[\phi(z,t) = \phi_0 - a \left(t - \frac{z}{\nu^+} \right) \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^{\left(\frac{zt}{\phi_0 \nu^+} \right)}} \quad si \ z \leq \nu^+ t \quad (2.71) \]

\[\phi(z,t) = \phi_0 \quad si \ z > \nu^+ t \quad (2.72) \]

En injectant la solution analytique donnée par les équations (2.69), (2.70), (2.71) et (2.72) dans le système d’équations (2.22) et (2.32), on vérifie qu’il s’agit d’une solution exacte. On vérifie aussi que la solution analytique proposée est conforme à la condition à la limite (2.10) et aux conditions initiales (2.11) et (2.12).

Par ailleurs, la figure 2-9 compare les résultats obtenus numériquement (sans approximation \(\phi = \phi_0 \)) et analytiquement pour les paramètres \(\delta \) et \(\phi \) à l’instant \(t = 2.7 \frac{L}{\nu^+} = 671 \) s. Les valeurs des paramètres retenus pour la simulation sont identiques à ceux utilisés dans le paragraphe 2.5.3.

On constate que les résultats analytiques et numériques sont très proches.
Figure 2-9 Comparaison de la solution analytique exacte et de la solution numérique des équations (2.22) et (2.32) pour δ et φ à l’instant t = 2.Δφ₀ / ν₋ = 671 s

2.8. Formulation du problème d’écoulement radial

2.8.1. Définition du problème étudié

On se propose d’étudier l’injection radiale de coulis de ciment dans un sol granulaire, en présence de filtration des grains de ciment par le sol.

Certaines hypothèses simplificatrices propres au problème d’écoulement radial seront retenues afin de faciliter la résolution du problème étudié.

Le problème traité est celui de l’injection de coulis de ciment dans un sol granulaire à une profondeur z₀ et sur une épaisseur H de sol. Le forage réalisé a un rayon r₀. Le problème étudié est supposé avoir une symétrie de révolution par rapport à l’axe vertical. Pour simplifier, en d’autres termes, on suppose que le coulis s’écoule horizontalement. C’est évidemment une approximation d’un écoulement radial.

2.8.1.1. La géométrie du problème

Le domaine d’étude considéré est le suivant : Ωₚ = [r₀, r₀ + R]. r₀ est le rayon du forage et R est l’étendue de la zone de sol étudiée. La figure 2-10 montre la schématisation du problème étudié.
2.8.1.2. La condition à la limite

En transposant (2.6), (2.7) et (2.9) on obtient :

\[f.v^-=\phi_e(r=r_0,t)v(r=r_0,t) \quad (2.73) \]
\[(1-f)v^- = \phi_p(r=r_0,t)v(r=r_0,t) \quad (2.74) \]
\[v^- = \phi(r=r_0,t)v(r=r_0,t) \quad (2.75) \]

\(v^- \) est la vitesse d’écoulement du coulis dans le tuyau d’injection.
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Les équations (2.5), (2.73) et (2.75) impliquent :

$$\delta (r = r_0, t \geq 0) = \frac{\phi_e (r = r_0, t \geq 0)}{\phi (r = r_0, t \geq 0)} = f$$ \hspace{1cm} (2.76)$$

2.8.1.3. Les conditions initiales

Initialement, la porosité est homogène au sein du milieu poreux. De plus, le milieu poreux est saturé en eau. Ces conditions initiales s’écritent ainsi :

$$\phi (r_0 \leq r \leq r_0 + R, t = 0) = \phi_0$$ \hspace{1cm} (2.77)$$

$$\delta (r_0 < r \leq r_0 + R, t = 0) = 0$$ \hspace{1cm} (2.78)$$

2.8.2. Simplifications et manipulations algébriques des équations mises en jeu

En transposant les calculs de la section 2.4.2., on obtient à nouveau les équations (2.79) et (2.80) :

$$\frac{\delta \phi}{\delta t} = -a \delta$$ \hspace{1cm} (2.79)$$

$$\text{div}(\phi \cdot \nu) = 0$$ \hspace{1cm} (2.80)$$

Compte tenu de la symétrie de révolution du problème étudié, on déduit que :

$$\phi \cdot \nu = \phi (r, t) v(r, t) e_r$$ \hspace{1cm} (2.81)$$

Les équations (2.80) et (2.81) donnent :

$$\text{div}(\phi \cdot \nu) = \frac{\partial (\phi (r, t) v(r, t))}{\partial r} + \frac{\phi (r, t) v(r, t)}{r} = 0$$ \hspace{1cm} (2.82)$$

Donc :

$$\frac{\partial (\phi (r, t) v(r, t))}{\partial r} = -\frac{\phi (r, t) v(r, t)}{r}$$ \hspace{1cm} (2.83)$$

Dont la solution s’écrit :

$$\text{Ln} \left(\frac{\phi (r, t) v(r, t)}{\phi (r_0, t) v(r_0, t)} \right) = \text{Ln} \left(\frac{r_0}{r} \right)$$ \hspace{1cm} (2.84)$$
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Les équations (2.75) et (2.84) impliquent :

\[\phi(r,t) \nu(r,t) = \frac{r_0}{r} \phi_0 \nu^+ = \frac{r_0}{r} \nu(r_0^r, t) = \frac{r_0}{r} \nu^- \]

(2.85)

\(\nu^+ \) est la vitesse initiale d’écoulement du coulis dans le milieu poreux au rayon \(r = r_0^+ \) et à l’instant \(t=0 \).

\[\nu^+ = \nu(r = r_0^+, t = 0) \]

(2.86)

Avec les mêmes manipulations qu’à la section 2.4.2., on obtient :

\[\phi \frac{\partial \delta}{\partial t} + \text{div}(\phi \nu \delta) = -a \delta (1 - \delta) \]

(2.87)

Les équations (2.81), (2.85) et (2.87) impliquent :

\[\phi \frac{\partial \delta}{\partial t} + r_0 \nu^r \text{div} \left(\frac{\delta}{r} \cdot e_r \right) = -a \delta (1 - \delta) \]

(2.88)

Après calcul, il vient :

\[\phi \frac{\partial \delta}{\partial t} + \nu^r \frac{r_0}{r} \frac{\partial \delta}{\partial r} = -a \delta (1 - \delta) \]

(2.89)

Pour déterminer les fractions volumiques des différents constituants et phases présents dans le milieu poreux, le système de 2 équations aux dérivées partielles à résoudre par rapport aux deux inconnues \(\phi \) et \(\delta \) est le suivant :

\[\frac{\partial \phi}{\partial t} = -a \delta \]

(2.79)

\[\phi \frac{\partial \delta}{\partial t} + \nu^r \frac{r_0}{r} \frac{\partial \delta}{\partial r} = -a \delta (1 - \delta) \]

(2.89)

Il est complété par les conditions initiales et à la limite (2.77), (2.78) et (2.76).

Rappelons que \(\phi \) est la porosité actuelle donnée par l’équation (2.8).
2.8.3. Méthode de résolution

Le système d’équations (2.79) et (2.89) sera résolu numériquement en utilisant la méthode des éléments finis. Les différentes fractions volumiques pourront par la suite être évaluées en utilisant les équations (2.5) et (2.8).

Le maillage retenu sera uniforme et le nombre d’éléments \(N_e \) sera choisi suffisamment grand : \(N_e = 200 \).

2.9. Résolution du problème d’écoulement radial

Le système d’équations (2.79) et (2.89) sera résolu en utilisant un schéma numérique semi-explicit, et en tenant compte de la condition à la limite (2.76) et des conditions initiales (2.77) et (2.78). Cela va nous permettre de déterminer les inconnus \(\phi \) et \(\delta \). Par la suite, les différentes fractions peuvent être évaluées en utilisant les équations (2.5) et (2.8).

2.9.1. Résolution du système d’équations en utilisant un schéma numérique semi-explicit

La discrétisation temporelle des équations (2.79) et (2.89), en utilisant un schéma numérique semi-explicit, donne :

\[
\frac{\phi^{n+1} - \phi^n}{\Delta t} = -a \delta^n
\]
\[
\phi^n \cdot \delta^{n+1} - \delta^n + \frac{r_0}{r} v^- \frac{\partial \delta^{n+1}}{\partial r} = -a \delta^n (1 - \delta^n)
\]

Les équations (2.90) et (2.91) impliquent :

\[
\phi^{n+1} = \phi^n - a \Delta t \delta^n
\]
\[
\phi^{n+1} \left(\delta^{n+1} - \delta^n \right) + \frac{r_0}{r} v^- \Delta t \frac{\partial \delta^{n+1}}{\partial r} = -a \Delta t \delta^n (1 - \delta^n)
\]

En remplaçant la valeur de \(\phi^{n+1} \) donnée par l’équation (2.92) dans l’équation (2.93), on obtient :

\[
\frac{r_0}{r} v^- \Delta t \frac{\partial \delta^{n+1}}{\partial r} + \left(\phi^n - a \Delta t \delta^n \right) \delta^{n+1} = \left(\phi^n - a \Delta t \delta^n \right) \delta^n - a \Delta t \delta^n (1 - \delta^n)
\]
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

En multipliant l’équation (2.94) par une fonction test \(w \) et en intégrant par rapport au domaine d’étude \(\Omega_r \), on obtient :

\[
\begin{align*}
\int_0^{2\pi} \int_0^{r_0} \frac{r_0^{-\Delta_t}}{r_0} \frac{\partial \delta^{n+1}}{\partial r} \cdot w \cdot r \cdot dr \cdot d\theta + \int_0^{2\pi} \int_0^{r_0} \left(\phi^n - a\Delta t \delta^n \right) \delta^{n+1} \cdot w \cdot r \cdot dr \cdot d\theta \\
= \int_0^{2\pi} \int_0^{r_0} \left(\phi^n - a\Delta t \delta^n \right) \delta^n \cdot w \cdot r \cdot dr \cdot d\theta + \int_0^{2\pi} \int_0^{r_0} \delta^n \left(1 - \delta^n \right) \cdot w \cdot r \cdot dr \cdot d\theta
\end{align*}
\]

(2.95)

Puisque le problème a une symétrie de révolution, les grandeurs étudiées sont indépendantes de \(\theta \). L’équation (2.95) devient donc :

\[
\begin{align*}
\left(\nu^{-\Delta_t} r_0 \right) \int_0^{r_0} \frac{\partial \delta^{n+1}}{\partial r} \cdot w \cdot r \cdot dr + \int_0^{r_0} \left(\phi^n - a\Delta t \delta^n \right) \delta^{n+1} \cdot w \cdot r \cdot dr \\
= \int_0^{r_0} \left(\phi^n - a\Delta t \delta^n \right) \delta^n \cdot w \cdot r \cdot dr - a\Delta t \int_0^{r_0} \delta^n \left(1 - \delta^n \right) \cdot w \cdot r \cdot dr
\end{align*}
\]

(2.96)

L’intervalle \([r_0, r_0 + R] \) est par suite divisé en \(N_e \) éléments à 3 nœuds (figure 2-11), ce qui donne un nombre total de nœuds \(N_f = 2N_e + 1 \). On considère les fonctions d’interpolation quadratiques classiques.

\[
\begin{align*}
r &= r_0 \\
1 & \quad 2 \quad 2.i-1 \quad 2.i \quad 2.i+1 \quad N_i \\
\text{élément } \Omega_i
\end{align*}
\]

\textit{Figure 2-11 Discrétisation du domaine d’étude } \(\Omega_r \).
Par ailleurs, on considère les vecteurs N et B contenant respectivement les fonctions d’interpolation et leurs dérivées par rapport à r.

D’autre part, pour un élément i donné, on considère le vecteur U^+_i qui contient les valeurs nodales de la fonction $\delta^+(r)$ dans Ω_i.

On obtient donc les approximations suivantes pour les fonctions $\delta^+(r)$ et $\frac{\partial \delta^+(r)}{\partial r}$:

\[
\delta^+(r) = r^T N(r) U^+_i ; \quad r \in \Omega_i ; \quad 1 \leq i \leq N_e
\]

\[
\frac{\partial \delta^+(r)}{\partial r} = r^T B(r) U^+_i ; \quad r \in \Omega_i ; \quad 1 \leq i \leq N_e
\]

La discrétisation spatiale de l’équation (2.96) aboutit au système linéaire suivant :

\[
Kr^n . U^+_i = Fr^n
\]

U^+_i est le vecteur contenant les valeurs nodales de la fonction $\delta^+(r)$. Il est donné par l’équation (2.100) :

\[
U^+_i = \left(\delta^+_i \right)_{1 \leq i \leq N_e}
\]

La matrice de rigidité globale Kr^n est donnée par les équations (2.101) et (2.102) :

\[
Kr^n = \sum_{i=1,N_e} Kr^n_i
\]

\[
Kr^n_i = \left(\Delta t. v^{-} \cdot r \right) \int_{\Omega_i} N^T B dr + \int_{\Omega_i} \left(\phi^n - a. \Delta t. \delta^n \right) N^T N r dr ; \quad 1 \leq i \leq N_e
\]

Le vecteur des forces nodales Fr^n est donné par les équations (2.103) et (2.104) :

\[
Fr^n = \sum_{i=1,N_e} Fr^n_i
\]

\[
Fr^n_i = \int_{\Omega_i} \left[\left(\phi^n - a. \Delta t. \delta^n \right) \delta^n - a. \Delta t. \delta^n \left(1 - \delta^n \right) \right] N r dr ; \quad 1 \leq i \leq N_e
\]
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

La méthode de résolution adoptée est donc la suivante :

On commence d’abord par déterminer les vecteurs \((\phi^0_j)_{Ii\in N_i}\) et \((\delta^0_j)_{Ii\in N_i}\), en utilisant les conditions initiales (2.77) et (2.78) et la condition à la limite (2.76).

Par la suite, à chaque pas de temps, on résoud d’abord l’équation (2.92) :

\[
\phi^{n+1} = \phi^n - a \Delta t \delta^n
\]

(2.92)

Cela nous permet de déterminer le vecteur \((\phi^{n+1}_j)_{Ii\in N_i}\).

Par la suite, on résoud le système linéaire d’équations (2.99) en tenant compte de la condition à la limite donnée par l’équation (2.76) :

\[
K r^n U r^{n+1} = Fr^n
\]

(2.99)

Cela nous permet de déterminer le vecteur \((\delta^{n+1}_j)_{Ii\in N_i}\).

2.9.2. Résultat d’une simulation numérique

Afin de simuler numériquement un essai d’injection radiale de sable de Fontainebleau, un taux de filtration enregistré lors d’un essai de colonne (essai IC1) a été retenu. Les paramètres retenus pour la simulation numérique sont les suivants : \(r_0 = 0,1\ m\) ; \(R = 1\ m\) ; \(f = 0,064\) ; \(a = 1,1.10^{-3}\ s^{-1}\) ; \(\nu = 1,116.10^{-3}\ m/s\) ; \(N_e = 200\) ; \(\phi_0 = 0,36\) ; \(\Delta t = 0,806\ s\).

Les figures 2-12 et 2-13 présentent les résultats obtenus.
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Figure 2-12 Variations de δ en fonction du rayon, à différents instants, correspondant à la simulation numérique d’un essai d’injection radiale dans le sable de Fontainebleau
Figure 2-13 Variations de ϕ en fonction du rayon, à différents instants, correspondant à la simulation numérique d’un essai d’injection radiale dans le sable de Fontainebleau

Commentaires

La figure 2-12 présente les profils de fraction volumique du ciment dans le coulis à plusieurs instants. Cette figure montre l’évolution du front de coulis qui se propage en fonction du temps. De plus, la vitesse de propagation diminue en fonction du temps et du rayon ce qui est normal puisque le volume injecté augmente au fur et à mesure que l’on s’éloigne de la source d’injection. De plus, on constate qu’à chaque instant, la fraction volumique du ciment dans le coulis est une fonction décroissante du rayon. Cela est normal car au fur et à mesure que le
coulis avance dans le milieu poreux, ses grains de ciment sont filtrés par ce milieu poreux ce qui fait diminuer leur concentration dans le coulis.
Par ailleurs, la figure 2-13 présente les profils de porosité à plusieurs instants. On constate que cette porosité diminue en fonction du temps. De plus, on remarque bien la propagation du front du coulis en fonction du temps.

2.10. Validation numérique du modèle pour l’écoulement radial

On se propose de résoudre numériquement deux problèmes dont on connaît les solutions analytiques afin de valider la méthode numérique développée. Les paramètres retenus pour les applications numériques sont ceux utilisés dans le paragraphe 2.9.2.

Les conditions initiales et à la limite de ces deux problèmes sont identiques à celles du problème étudié d’écoulement radial de suspensions de ciment dans les milieux poreux en présence de filtration, problème formulé dans le paragraphe 2.8.

Les problèmes seront résolus analytiquement et numériquement et les deux solutions seront comparées.

2.10.1. Résolution du problème d’écoulement du coulis en l’absence de filtration

2.10.1.1. La solution analytique

En l’absence de filtration, les équations (2.79) et (2.89) impliquent :

\[\phi_0 \frac{\partial \delta}{\partial t} + \phi_0 v^+ \frac{r_0}{r} \frac{\partial \delta}{\partial r} = 0 \]

(2.105)

Ce qui revient à résoudre l’équation suivante :

\[\frac{\partial \delta}{\partial t} + \frac{v^+ r_0}{r} \frac{\partial \delta}{\partial r} = 0 \]

(2.106)

La solution de l’équation (2.106) est donnée par l’équation (2.107) :

\[\delta (r, t) = F_{r,t} \left(t - \frac{1}{2(v^+ r_0)} r^2 \right) \]

(2.107)

\(F_{r,t} \) est fonction de la variable \(\left(t - \frac{1}{2(v^+ r_0)} r^2 \right) \)

L’équation (2.107) et la condition initiale (équation (2.78)) impliquent :

80
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

\[F_{r,i} \left(-\frac{r^2}{2(v^+ r_0)} \right) = 0 \quad \text{si} \quad r_0 < r \leq r_0 + R \]

(2.108)

L’équation (2.108) implique :

\[F_{r,i}(x) = 0 \quad \text{si} \quad -\frac{(r_0 + R)^2}{2(v^+ r_0)} \leq x < -\frac{r_0^2}{2(v^+ r_0)} \]

(2.109)

L’équation (2.107), et la condition à la limite (équation (2.76)) impliquent :

\[F_{r,z} \left(t - \frac{r_0^2}{2(v^+ r_0)} \right) = f \quad \forall \ t \geq 0 \]

(2.110)

Donc :

\[F_{r,z}(x) = f \quad \text{si} \quad x \geq -\frac{r_0^2}{2(v^+ r_0)} \]

(2.111)

Les équations (2.107), (2.109) et (2.111) impliquent :

\[\delta (r,t) = f \quad \text{si} \quad t - \frac{r^2}{2(v^+ r_0)} \geq -\frac{r_0^2}{2(v^+ r_0)} \]

(2.112)

\[\delta (r,t) = 0 \quad \text{si} \quad -\frac{(r_0 + R)^2}{2(v^+ r_0)} \leq t - \frac{r_0^2}{2(v^+ r_0)} < -\frac{r_0^2}{2(v^+ r_0)} \]

(2.113)

Compte tenu de la géométrie du problème étudié, on déduit à partir des équations (2.112) et (2.113) :

\[\delta (r,t) = f \quad \text{si} \quad r_0 \leq r \leq \sqrt{r_0^2 + 2(v^+ r_0)t} \]

(2.114)

\[\delta (r,t) = 0 \quad \text{si} \quad \sqrt{r_0^2 + 2(v^+ r_0)t} < r \leq r_0 + R \]

(2.115)

2.10.1.2. La solution numérique

La solution numérique est obtenue en affectant la valeur 0 au paramètre \(a \) dans le programme de simulation de l’injection radiale.
2.10.1.3. Comparaison entre la solution analytique et la solution numérique

La figure 2-14 présente les résultats numériques et analytiques obtenus à plusieurs instants. On constate un bon accord entre la solution numérique et la solution analytique.

![Figure 2-14 Variations de δ en fonction du rayon, à plusieurs instants, pour un taux de filtration nul. Comparaison entre les résultats analytiques et numériques](image_url)

2.10.2. Résolution du problème d’écoulement du coulis en présence de filtration de particules, et en supposant que la porosité reste constante

2.10.2.1. La solution analytique

En supposant que la porosité reste constante, les équations (2.79), (2.85) et (2.89) impliquent :

\[
\phi_0 \frac{\partial \delta}{\partial t} + \phi_0 \dot{v} \cdot \frac{r_0}{r} \frac{\partial \delta}{\partial r} = -a \delta (1 - \delta)
\]

(2.116)

Ce qui revient à résoudre l’équation suivante :

\[
\frac{\partial \delta}{\partial t} + \frac{\dot{v} \cdot r_0}{r} \frac{\partial \delta}{\partial r} = -\frac{a}{\phi_0} \delta (1 - \delta)
\]

(2.117)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

La solution de l’équation (2.117) est donnée par l’équation (2.118) :

\[\delta (r, t) = \frac{1}{1 + e^{\frac{a \cdot r^2}{2 \cdot D \cdot v \cdot r_0}}} \cdot F_{r, 2} \left(t - \frac{r^2}{2 \cdot v \cdot r_0} \right) \] \hspace{1cm} (2.118)

\(F_{r, 2} \) est fonction de la variable \(\left(t - \frac{1}{2 \cdot v \cdot r_0} \right) \).

La condition initiale (équation (2.78)) et l’équation (2.118) impliquent :

\[\frac{1}{1 + e^{\frac{a \cdot r^2}{2 \cdot D \cdot v \cdot r_0}}} \cdot F_{r, 2} \left(- \frac{r^2}{2 \cdot v \cdot r_0} \right) = 0 \quad \text{si} \quad r_0 < r \leq r_0 + R \] \hspace{1cm} (2.119)

L’équation (2.119) implique :

\[F_{r, 2} (x) = \infty \quad \text{si} \quad -\frac{(r_0 + R)^2}{2 \cdot v \cdot r_0} \leq x < -\frac{r_0^2}{2 \cdot v \cdot r_0} \] \hspace{1cm} (2.120)

La condition à la limite (équation (2.76)) et l’équation (2.118) impliquent :

\[\frac{1}{1 + e^{\frac{a \cdot r^2}{2 \cdot D \cdot v \cdot r_0}}} \cdot F_{r, 2} \left(t - \frac{r_0^2}{2 \cdot v \cdot r_0} \right) = f \quad \text{si} \quad t \geq 0 \] \hspace{1cm} (2.121)

L’équation (2.121) implique :

\[F_{r, 2} (x) = \left(\frac{1}{f} - 1 \right) e^{\frac{-a \cdot r^2}{2 \cdot D \cdot v \cdot r_0}} \quad \text{si} \quad x \geq -\frac{r_0^2}{2 \cdot v \cdot r_0} \] \hspace{1cm} (2.122)

Les équations (2.118), (2.120) et (2.122) impliquent :

\[\delta (r, t) = \frac{1}{1 + e^{\frac{a \cdot r^2}{2 \cdot D \cdot v \cdot r_0}}} \cdot \left(\frac{1}{f} - 1 \right) e^{\frac{-a \cdot r^2}{2 \cdot D \cdot v \cdot r_0}} \quad \text{si} \quad t - \frac{r^2}{2 \cdot v \cdot r_0} \geq -\frac{r_0^2}{2 \cdot v \cdot r_0} \] \hspace{1cm} (2.123)

\[\delta (r, t) = 0 \quad \text{si} \quad \frac{(r_0 + R)^2}{2 \cdot v \cdot r_0} \leq t - \frac{r^2}{2 \cdot v \cdot r_0} < -\frac{r_0^2}{2 \cdot v \cdot r_0} \] \hspace{1cm} (2.124)
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

Compte tenu de la géométrie du problème étudié, les équations (2.123) et (2.124) impliquent :

\[
\delta (r,t) = \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^\left(\frac{1}{\sqrt{2} \beta_0 v^0} \right)} \quad \text{si} \quad r_0 \leq r \leq \sqrt{r_0^2 + 2(v^0 v_0^0) t} \tag{2.125}
\]

\[
\delta (r,t) = 0 \quad \text{si} \quad \sqrt{r_0^2 + 2(v^0 v_0^0) t} < r \leq r_0 + R \tag{2.126}
\]

2.10.2.2. La solution numérique

La solution numérique est obtenue en faisant des modifications dans le programme qui résoud le problème de propagation du coulis de ciment dans le milieu poreux, en présence de filtration (le problème non simplifié, la porosité est variable).

2.10.2.3. Comparaison entre la solution analytique et la solution numérique du problème simplifié

Afin d’effectuer des simulations numériques, les paramètres utilisés dans le paragraphe 2.9.2. ont été retenus. Les valeurs numériques de ces paramètres sont les suivantes : \(R = 1 \) m ; \(r_0 = 0,1 \) m ; \(f=0,064 \) ; \(a = 1,1.10^{-3} \) s\(^{-1} \) ; \(v^0 = 1,116.10^{-3} \) m/s ; \(N_e = 200 \) ; \(\phi_0 = 0,36 \) ; \(\Delta t = 0,806 \) s.

La figure 2-15 présente les résultats numériques et analytiques obtenus à plusieurs instants. On constate un bon accord entre la solution numérique et la solution analytique du problème étudié.
2.11. Solution analytique du problème d’écoulement radial

On propose à présent de déterminer une solution analytique approchée du système d’équations (2.79) et (2.89).

La solution analytique en δ est déterminée directement à l’aide de la solution de l’équation (2.117) et qui est donnée par les équations (2.125) et (2.126). La solution analytique en φ est
évaluée par simple intégration de l’équation (2.79) en tenant compte de la solution analytique en \(\delta \) donnée par les équations (2.125) et (2.126) et en tenant compte de la condition initiale pour \(\phi \) qui est exprimée par l’équation (2.77).

Une solution analytique approchée du système d’équations (2.79) et (2.89) est donc donnée par les équations (2.127), (2.128), (2.129) et (2.130).

\[
\delta (r,t) = \begin{cases}
1 & \text{si} \quad r_0 \leq r \leq \sqrt{r_0^2 + 2(v^+ r_0) t} \\
1 + \left(\frac{1}{f} - 1 \right) e^{\frac{2r_0}{2\lambda_0 (v^+ r_0)}} & \text{si} \quad r > \sqrt{r_0^2 + 2(v^+ r_0) t}
\end{cases}
\]
(2.127)

\[
\delta (r,t) = 0
\]
(2.128)

\[
\phi (r,t) = \phi_0 - a \left(t - \frac{r^2 - r_0^2}{2(v^+ r_0)} \right) \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^{\frac{2r_0}{2\lambda_0 (v^+ r_0)}}}
\]
\[
\phi (r,t) = \phi_0
\]
(2.129)

En injectant la solution analytique donnée par les équations (2.127), (2.128), (2.129) et (2.130) dans le système d’équations (2.79) et (2.89), on vérifie qu’il s’agit d’une solution exacte. On vérifie aussi que la solution analytique proposée est conforme à la condition à la limite (2.76) et aux conditions initiales (2.79) et (2.89).

Par ailleurs, une simulation numérique a été réalisée afin de comparer les résultats de la solution analytique exacte avec ceux de la solution numérique. Les valeurs des paramètres retenus pour la simulation sont identiques à ceux utilisés dans le paragraphe 2.9.2., ils sont les suivants : \(r_0 = 0,1 \text{ m} ; R = 1 \text{ m} ; f = 0,064 ; a = 1,1.10^{-3} \text{ s}^{-1} ; v^- = 1,116.10^{-3} \text{ m/s} ; N_e = 200 ; \phi_0 = 0,36 ; \Delta t = 0,806 \text{ s} \).

La figure 2-16 compare les résultats obtenus numériquement et analytiquement pour les paramètres \(\delta \) et \(\phi \) à l’instant \(t = 2579 \text{ s} \).

On constate un bon accord entre les résultats numériques et analytiques.
Chapitre 2 – Modélisation de l’écoulement d’une suspension dans un milieu poreux en présence de filtration de particules

![Graphique](image)

Figure 2-16 Comparaison de la solution analytique exacte et de la solution numérique des équations (2.79) et (2.89) pour δ et ϕ à l’instant t=2579 s

2.12. Lois à déterminer en vue de compléter la modélisation

Afin de modéliser complètement l’écoulement de suspensions dans un milieu poreux en présence de filtration de particule, il reste à identifier certaines lois. Il s’agit de la loi d’évolution de la viscosité du coulis, la loi d’évolution de la perméabilité intrinsèque du milieu poreux et la loi d’évolution de l’échange de masse par unités de volume et de temps entre le coulis en écoulement et le squelette du milieu poreux. Ces lois doivent normalement être identifiées à l’aide d’essais appropriés.

Concernant les lois d’évolution de l’échange de masse et de la perméabilité, des essais d’injection d’échantillons de sable de faible hauteur doivent être réalisés. Ces essais doivent permettre d’identifier les lois phénoménologiques recherchées. En effet, il est raisonnable de penser qu’un échantillon de sable de faible hauteur filtre les grains de ciment en écoulement de manière homogène. La mesure de la masse de cet échantillon au cours d’un essai d’injection doit permettre d’identifier la loi d’évolution de l’échange de masse par unités de volume et de temps. Ce terme d’échange de masse est exprimé par le terme μ dans les équations (2.2) et (2.3).

Par ailleurs, pour des essais d’injection d’échantillons de faible hauteur, on imagine que la perte de charge est homogène au sein de l’échantillon. La mesure de la pression d’injection
doit donc permettre d’identifier la loi d’évolution de la perméabilité intrinsèque compte tenu de la loi de Darcy et de la loi d’évolution de la viscosité du coulis. La modélisation de l’évolution de la perméabilité doit nous permettre de calculer les pressions à l’aide du modèle développé. Par ailleurs, des essais d’injection de colonnes longues doivent être réalisés afin de valider expérimentalement le modèle théorique développé.
Chapitre 3

Dispositifs expérimentaux et procédures d’essais

On présente dans ce chapitre les dispositifs expérimentaux développés et utilisés dans le cadre de ce travail, ainsi que les procédures d’essais correspondantes.

3.1. Matériel de fabrication, d’injection et de caractérisation des coulis

Le matériel nécessaire à la réalisation et à l’injection des coulis comprend les éléments suivants :
- un malaxeur du type Turbotest 33/750 (Rayneri) à vitesse de rotation maximale de 3300 tours/mn équipé d’une turbine défloculeuse (figure 3-1). Il permet de préparer jusqu’à 10 litres de coulis ;
- une pompe à membrane de type Dosapro D34K1 (figure 3-2), à débit réglable entre 0 et 10 cm³/s et à pression de refoulement maximale de 1 MPa. Cette pompe permet d’assurer une injection à débit constant ;
- un agitateur magnétique qui permet de maintenir le coulis en agitation dans le bêcher réservoir lors de la phase d’injection ;
- un densimètre Baroïd qui permet de mesurer la densité du coulis ;
- un granulomètre laser Horiba permet de caractériser la granulométrie du coulis de ciment à injecter (figure 3-3).
Figure 3-1 Vue du malaxeur
Chapitre 3 - Dispositifs expérimentaux et procédures d’essais

Figure 3-2 Vue de la pompe à membrane

Figure 3-3 Vue du granulomètre laser
3.2. Dispositif d’injection pour éprouvettes centimétriques

3.2.1. Présentation du dispositif

La cellule d’injection pour éprouvettes de 4 cm de haut a été développée dans le cadre de la thèse afin d’étudier l’évolution de prise de masse d’éprouvettes de faible épaisseur supposées homogènes, ainsi que d’étudier la loi d’évolution de la perméabilité en fonction de la masse filtrée par l’échantillon.

La cellule développée ressemble un peu à une cellule triaxiale classique. Elle permet d’injecter des éprouvettes de sable, soumises à une contrainte de consolidation ajustable, de bas en haut.

Les figures 3-4 et 3-5 montrent respectivement un schéma de principe et une vue de la cellule. L’éprouvette est soumise à une contrainte de consolidation isotrope p'_c, égale à la pression de cellule appliquée. Les embases inférieure et supérieure ont des réservoirs de forme conique de 45° d’angle au sommet. Cette forme permet d’avoir un écoulement vertical ascendant au sein de l’échantillon.

Chaque embase est équipée avec un disque poreux spécial (figure 3-6) qui, lors de l’injection du coulis, permet de retenir les grains de sable et laisse passer les grains de ciment. Chaque disque est constitué d’une grille perforée sur laquelle a été collé un tamis. La grille a une épaisseur de 0,5 cm et a des perçages régulièrement espacés et ayant la forme d’un disque de 3 mm de diamètre. Cette grille a une porosité de 0,5. Elle possède une rigidité suffisante lui permettant de résister aux sollicitations de l’échantillon de sable qui est soumis à la contrainte de consolidation p'_c appliquée. Sur la grille est collé un tamis de 0,15 mm d’épaisseur, ayant un diamètre de mailles de 80 μm. Il permet de retenir les grains de sable constituant l’échantillon injecté. Par contre, il laisse passer les grains de ciment qui ont des dimensions beaucoup plus petites que l’ouverture de maille du tamis.

La cellule est placée sur une balance Sartorius de type LP8200P de haute précision (0,01 g) et de 8,2 kg de capacité qui permet de mesurer la masse de la cellule. De plus, une balance de type SR32000 d’une capacité de 32,1 kg et d’une précision de 1 g est placée sous le bêcher réservoir contenant le coulis à injecter. Elle permet de mesurer la masse de fluide aspiré par la pompe et d’en déduire la valeur exacte du débit d’injection.

Par ailleurs, le tuyau de connexion de la contrainte de consolidation et le tuyau connecté à l’embase inférieure de la cellule sont connectés à des capteurs de pression mesurant les
pressions appliquées. Il s’agit de capteurs de type P9081-0002, enregistrant des pressions variant entre 0 et 1,5 MPa et d’une bonne précision de l’ordre du kPa.

Les capteurs de pression et les deux balances sont connectés à un micro-ordinateur via des cartes d’acquisition et un multimètre (HP34970A). Un programme développé sous un logiciel d’acquisition (HP VEE) permet d’enregistrer les données relatives aux pressions (pression d’injection et pression de consolidation) et masses (la masse de la cellule et la masse du bécher contenant le coulis à injecter) et de les visualiser en temps réel.

Figure 3-4 Schéma de principe de la cellule d’injection d’échantillons de 4 cm de haut
Figure 3-5 Vue de la cellule d’injection pour éprouvettes de 4 cm de haut

Figure 3-6 Vue des deux faces des disques poreux
3.2.2. Procédure expérimentale

La procédure expérimentale à suivre pour la réalisation d’un essai d’injection d’une éprouvette comporte les étapes suivantes :
1. Préparation de l’éprouvette à injecter.
2. Saturation à l’eau de l’éprouvette.

3.2.2.1. Préparation de l'éprouvette à injecter

Au début de chaque essai, on commence par monter les différentes connexions, les deux capteurs, les disques porceux et l’embase inférieure. Par la suite, on ajuste une membrane en latex d’épaisseur 0,3 mm qu’on fixe avec un joint torique sur l’embase inférieure. Puis, on positionne le moule cylindrique sur lequel on rabat la membrane. Ensuite, on applique un vide entre la paroi du moule et la membrane afin de plaquer cette dernière contre le moule. Après cela, on procède à la mise en place du sable par compactage à sec de quatre couches de 1 cm d’épaisseur chacune.

Lorsque le moule est rempli, on met en place l’embase supérieure sur laquelle on vient rabattre la membrane qui sera fixée à l’aide d’un joint torique. Le démoulage est effectué en appliquant un vide de –90 kPa. Après cela, on vérifie l’absence de fuite au sein de l’échantillon. Par la suite, on procède au montage de la cellule et à son remplissage à l’eau. Suite à cette étape, on transfère la pression de maintien de l’échantillon de l’intérieur vers l’extérieur. Enfin, on applique la contrainte de consolidation voulu.

3.2.2.2. Saturation à l’eau de l’éprouvette

La saturation comporte deux étapes. La première consiste à faire circuler à travers l’échantillon du dioxyde de carbone (CO₂) sous une faible pression (15 kPa) pendant 15 mn. Cette étape permet de chasser l’air contenu dans les vides et de le remplacer par du CO₂ qui est très soluble dans l’eau. La deuxième étape consiste à faire percoler par gravitation de l’eau désaérée. On fait circuler environ 5 litres d’eau ce qui représente un volume nettement supérieur à celui de l’échantillon. On vérifie durant cette étape les stabilisations de la pression d’injection et de la masse de l’échantillon une fois rempli d’eau.
3.2.2.3. Préparation et injection du coulis

Préparation du coulis

On commence par préparer les quantités d’eau et de ciment nécessaires à la préparation du coulis.

La masse d’eau utilisée pour préparer le coulis est généralement prise égale à 8 kg (8 litres). La masse de ciment est déterminée en fonction du rapport massique C/E visé (C est la masse de ciment et E est la masse de l’eau).

La masse de fluidifiant préparée étant généralement déterminée afin d’avoir un rapport massique $F/C=0,05$ (F est la masse de fluidifiant).

Le bêcher contenant l’eau est tout d’abord positionné sous le malaxeur. La turbine est placée à environ 1 cm du fond et excentrée. L’eau est agitée à une vitesse de 900 tours/mn. Le ciment est ensuite ajouté progressivement. La vitesse de rotation de la turbine est augmentée à 1500 tours/mn pendant 3 minutes. Ensuite, la vitesse est abaissée à 900 tours/mn et le fluidifiant est ajouté. De nouveau, on augmente la vitesse de rotation de la turbine à 1500 tours/mn pendant 3 minutes. Enfin, la vitesse de rotation est abaissée à nouveau à 900 tours/mn et on procède à l’analyse granulométrique d’échantillons de coulis à l’aide du granulomètre laser. La bonne courbe granulométrique du coulis doit être obtenue au maximum 15 minutes après la baisse de la vitesse de rotation de la turbine à 900 tours/mn. Cela nous permet d’avoir une répétabilité au niveau de la procédure de préparation du coulis. Cette répétabilité est nécessaire pour assurer une bonne qualité des résultats obtenus. En effet, la granulométrie du coulis commence à changer légèrement environ 1 heure après la mise en place du fluidifiant.

Injection du coulis

Le bêcher contenant le coulis (bêcher - réservoir) est placé au-dessus d’un agitateur magnétique placé à son tour sur la balance de 32,1 kg. Le coulis est maintenu en agitation en continu grâce à l’agitateur magnétique, la vitesse de rotation du barreau magnétique étant de 250 tours/mn. Les tuyaux de la pompe sont ensuite saturés et le tuyau de sortie est connecté à l’embase inférieure de la cellule. Ensuite, l’acquisition de données et l’injection sont lancées.

Un programme d’acquisition spécifique aux essais d’injection des échantillons permet d’enregistrer et de visualiser en temps réel la pression de consolidation, la pression d’injection, la masse de la cellule et la masse du bêcher contenant le coulis à injecter.

Lorsque le coulis commence à sortir du tuyau de sortie de la cellule, la variation de masse de la cellule sera égale à la variation de masse de l’échantillon. Cette variation de masse est due à
la filtration du ciment par l’échantillon injecté. La précision de la balance (0,01 g) est parfaitement adaptée à la mesure des variations de masse dues à la filtration, de l’ordre de quelques grammes au minimum.

A la fin de l’essai, la granulométrie du coulis restant dans le bêcher réservoir est déterminée afin de voir s’il a eu ou non de flocculation des grains de ciment contenus dans le coulis. On a constaté l’absence de flocculation pour pratiquement tous les essais.

En fin d’essai, l’acquisition de données est arrêtée.

3.2.2.4. Démontage du dispositif et nettoyage des pièces

A la fin de l’essai, on procède au démontage et au nettoyage des différentes pièces et tuyaux qui sont salis par le ciment. En ce qui concerne les disques poreux, si on arrive à nettoyer les tamis par jet d’eau uniquement ou en utilisant de plus de l’acide chlorhydrique, ce sera suffisant. Si non, on change les tamis par des nouveaux et on jette les tamis colmatés. Ces tamis peuvent être colmatés non pas parce qu’ils filtrent les grains de ciment mais plutôt lorsque l’essai dure longtemps et le processus d’hydratation de ciment commence avant leur nettoyage.

3.3. **Dispositif d’injection pour colonnes courtes**

3.3.1. **Présentation du dispositif**

Le dispositif d’injection pour colonnes courtes a été développé afin d’injecter des colonnes courtes de 16 cm de haut placées sous une contrainte de consolidation. La contrainte de consolidation doit simuler l’état des contraintes du sol avant l’injection.

Une vue du dispositif et un schéma de principe sont donnés sur les figures 3-7 et 3-8.
Figure 3-7 Vue du dispositif d’injection de colonnes courtes (d’après Dupla et Canou (2001))
Figure 3-8 Schéma de principe du dispositif d’injection de colonnes courtes (d’après Dupla et Canou (2001))
La cellule est conçue de manière analogue à une cellule triaxiale classique. Chaque colonne courte a une hauteur totale de 24 cm y compris deux couches de 4 cm d’épaisseur, placées en bas et en haut de la colonne, formées de gravier, afin d’homogénéiser l’écoulement au sein de l’échantillon. La colonne de sable proprement dite a donc une hauteur de 16 cm.
La cellule est placée sur une rehausse, elle même placée sur une balance de type KB60.2 ayant une capacité de 60 kg et une précision de 1 g. Deux capteurs de pression permettent de mesurer la pression de consolidation et la pression d’injection.
Les capteurs de pression et les deux balances (60 kg et 32,1 kg de capacités) sont connectés à un micro-ordinateur via des cartes d’acquisition et un multimètre. Un logiciel permet de faire l’acquisition et le traitement des données relatives aux pressions et masses (la masse de la cellule et la masse du bêcher contenant le coulis à injecter) et de les visualiser en temps réel.

3.3.2. Procédure expérimentale

La procédure expérimentale suivie pour la réalisation d’un essai d’injection de colonne courte comporte les étapes suivantes :

1. Préparation de l’éprouvette à injecter.
2. Saturation à l’eau de l’éprouvette.

3.3.2.1. Préparation de l’éprouvette

D’abord, on commence par monter les différentes connexions, les deux capteurs et l’embase inférieure. On ajuste ensuite une membrane en latex d’épaisseur 0,3 mm qu’on fixe avec un joint torique sur l’embase inférieure. Puis, on place le moule cylindrique sur lequel on rabat la membrane. Ensuite, afin de plaquer la membrane contre le moule, on applique un vide entre celle-ci et la paroi du moule. On place ensuite une toile en nylon sur l’embase inférieure, et sur cette toile, on vient mettre une couche de 4 cm de gravier. Il s’agit d’une couche qui permet l’homogénéisation de l’écoulement au sein de l’échantillon. Après cela, la mise en place du sable est réalisée par compactage à sec de 8 couches de 2 cm d’épaisseur chacune. Il est à noter que la mise en place de l’échantillon peut être effectuée par pluviation. Suite à cela, on place une couche de gravier de 4 cm d’épaisseur, et sur laquelle on met une toile en nylon.
Lorsque le moule est rempli par le matériau granulaire, on place l’embase supérieure. Par la suite, on vient rabattre la membrane sur cette embase et on fixe les deux à l’aide d’un joint torique. On procède ensuite au démoulage en appliquant un vide de −90 kPa, et on vérifie l’absence de fuite au sein de l’échantillon. Par la suite, on fait monter la cellule et on la remplit par l’eau. Enfin, on procède au transfert de la pression de maintien de l’échantillon de l’intérieur vers l’extérieur et on applique la contrainte de consolidation voulu.

3.3.2.2. Saturation à l’eau de l’éprouvette

Cette étape est analogue à celle suivie pour les échantillons de 4 cm de haut, et qui est décrite dans la section 3.2.2.2.

3.3.2.3. Préparation et injection du coulis

Cette étape ressemble à celle suivie pour les échantillons de 4 cm de haut. Un programme d’acquisition spécifique aux essais d’injection des colonnes courtes permet d’enregistrer et de visualiser en temps réel la pression de consolidation, la pression d’injection, la masse de la colonne courte et la masse du bécher contenant le coulis à injecter.

Une fois que le coulis commence à sortir du tuyau de sortie de la cellule, la variation de masse de la cellule correspond à la variation de masse de l’échantillon. Cette variation de masse est due à la filtration de certains grains de ciment par l’éprouvette. La précision de la balance (1g) est adaptée aux valeurs de variations de masses dues à la filtration, de l’ordre de quelques dizaines de grammes.

3.3.2.4. Démontage du dispositif et nettoyage des pièces

À la fin de l’essai, on procède au démontage et au nettoyage des différentes pièces et tuyaux en prenant soin de bien les débarrasser des traces de ciment.
3.4. Dispositif d’injection des colonnes longues

3.4.1. Présentation du dispositif

Les colonnes de sable sont reconstituées en utilisant la technique de pluviation qui présente l’avantage d’obtenir une structure homogène ne présentant pas de singularité de densité. Cette technique permet aussi de sélectionner a priori un état de compacité donné en fonction du débit massique de sable et de la hauteur de pluviation. Elle constitue une des originalités du dispositif expérimental développé au CERMES pour l’injection des colonnes de sable. La figure 3-9 présente un schéma du dispositif d’injection des colonnes et la figure 3-10 présente les différentes phases de la pluviation.

Un bâti d’essai permet de réaliser la pluviation du sable et de supporter le réservoir à sable. De plus, il permet de bien maintenir la colonne à sable durant la phase de pluviation.

La colonne est maintenue sur le bâti pendant toute l’expérience. Son déplacement pourrait modifier l’état de densité de la colonne à cause d’éventuels chocs qui peuvent produire des densifications locales. Le bâti est conçu de manière à dégager le réservoir à sable positionné sur la traverse supérieure à la fin de la pluviation.
Figure 3-9 Schéma du dispositif d’injection de colonnes (d’après Dupla et al. (2000))
Figure 3-10 Vues des différentes phases de la pluviation : (a) ensemble du dispositif avant pluviation ; (b) phase de pluviation en cours de déroulement ; (c) colonne remplie en fin de pluviation ; (d) dégagement de la partie haute du dispositif et arrasage du sable. (d’après Dupla et al. (2000))
3.4.1.1. Description des colonnes

Les tubes utilisés pour la réalisation des colonnes sont des tubes en plexiglas, d’un diamètre intérieur de 8 cm, d’une épaisseur de 1 cm et d’une hauteur de 113 cm. Ces tubes ont cinq perçages espacés de 20 cm qui permettent de réaliser les mesures de pression de fluide (figure 3-11). Le tube est équipé à ses extrémités d’embases qui se serrent sur celui-ci grâce à trois tiges filetées. Ces embases possèdent des joints toriques qui assurent l’étanchéité avec le tube. De plus, elles sont équipées de robinets qui sont connectés avec les tuyaux d’entrée et de sortie du coulis.

A noter que 0,5 cm en haut et en bas de la colonne sont prévus pour ajuster les embases inférieure et supérieure par serrage des tiges filetées (figure 3-11).

[Diagramme de la colonne en plexiglas]

Figure 3-11 Emplacement des capteurs de mesure de pression de fluide sur la colonne en plexiglas
3.4.1.2. Description du bâti d’essai

Le bâti d’essai est constitué d’un plateau inférieur équipé de deux colonnes et d’une traverse en partie haute, réglable en hauteur, qui permet de supporter le réservoir de sable. Cette traverse peut se déplacer en rotation, après mise en place du sable, pour dégager la partie supérieure de la colonne de sable.

Le plateau inférieur est équipé d’une balance de 60 kg de capacité et de 1 g de précision, sur laquelle est positionnée la colonne, sur un support adapté.

La figure 3-9 présente un schéma d’ensemble du dispositif d’essai.

3.4.1.3. Le dispositif de pluviation

La pluviation est une technique de mise en place de matériaux granulaires qui permet d’obtenir des structures homogènes du matériau ne présentant pas de litage ni de singularité de densité.

L’état de compacité de la colonne reconstituée est contrôlé grâce aux paramètres débit et hauteur de pluviation qui caractérisent le processus de pluviation. Le dispositif de pluviation est constitué par un réservoir contenant le matériau à mettre en place, équipé d’une grille à débit réglable qui peut être ouverte ou fermée et d’un diffuseur formé de deux tamis.

Le diffuseur peut monter dans la colonne à vitesse contrôlée afin de maintenir une hauteur de pluviation constante pour les grains de sable. La figure 3-12 montre un schéma de principe du diffuseur.

Le dispositif de relevage du diffuseur est constitué d’un moteur électrique à vitesse réglable, fixé sur le bâti et sur lequel vient s’enrouler le câble de relevage du diffuseur grâce à un système de poulies. La maille du tamis est choisie en fonction des sables à mettre en place. La figure 3-10 présente les différentes phases de la pluviation et la figure 3-13 présente un schéma de principe du processus de pluviation avec diffuseur.
Figure 3-12 Schéma de principe du diffuseur

Figure 3-13 Schéma de principe du processus de pluviation avec diffuseur
3.4.1.4. Dispositifs de mesure des pressions de fluide et des masses

La colonne est équipée de dispositifs permettant de mesurer la pression de fluide à cinq niveaux différents sur la colonne durant tout l’essai. Un sixième capteur permet de mesurer la pression à la sortie de la pompe d’injection. Les mesures des pressions doivent permettre une meilleure compréhension du processus d’injection (phénomène de colmatage).

Chaque dispositif de mesure de pression interstitielle est formé d’une couronne en deux parties qui vient se serrer sur le tube en plexiglas au niveau des perçages du tube et qui comporte une pastille venant se loger dans le perçage. Cette pastille permet d’avoir une étanchéité avec la couronne et assure la connexion avec la chambre de mesure de pression de fluide qui est située à l’intérieur de la couronne et connectée au capteur de pression. La chambre est équipée à sa partie supérieure d’une vis de purge qui permet de réaliser la saturation de la chambre de mesure.

En ce qui concerne les mesures des masses, les mêmes balances utilisées lors des essais d’injection de colonnes courtes sont aussi utilisées pour réaliser les essais d’injection de colonne. Elles ont des capacités de 60 kg et 32,1 kg et une précision de 1 g.

3.4.1.5. Acquisition des données et éléments de contrôle de l’essai

L’instrumentation complète de l’essai comporte deux balances, un capteur de pression en sortie de la pompe ainsi que cinq capteurs de pression positionnés le long de la colonne d’injection. L’acquisition des données est réalisée grâce à des cartes d’acquisition (pour les mesures des masses) et un multimètre HP connecté à un micro-ordinateur. Un logiciel d’acquisition et de traitement de données (HP VEE) permet d’afficher en temps réel à l’écran les différents paramètres mesurés en fonction du temps au cours de l’essai.

La figure 3-14 indique un schéma fonctionnel de l’expérimentation d’injection de colonne.
Figure 3-14 Schéma fonctionnel de l’expérimentation d’injection de colonne
3.4.2. Procédure expérimentale

La procédure expérimentale à suivre pour la réalisation d’un essai d’injection de colonne comporte les étapes suivantes :
1. Préparation de la colonne et mise en place du matériau à injecter.
2. Saturation à l’eau de la colonne et mesure de la perméabilité.

3.4.2.1. Préparation de la colonne et mise en place du matériau à injecter

On commence par positionner et serrer les couronnes, auxquelles sont vissés les capteurs de pression permettant de réaliser les mesures des pressions de fluide à différents niveaux sur la colonne. L’embase inférieure et trois tiges filetées sont ensuite fixées sur la colonne. L’ensemble est placé sur l’enceinte placée en bas du bâti et au-dessus de la balance de 60 kg.
De plus, les connexions des capteurs sont réalisées afin de permettre l’acquisition des données relatives aux pressions.
Un tamis en toile nylon est placé sur l’embase inférieure au niveau de l’orifice et vient protéger celui-ci pour qu’il ne soit pas bouché par les grains de sable.
Par la suite, une couche de 4 cm de gravier est mise sur la toile. Elle sert de répartiteur pour le coulis et empêche les grains les plus fins du sable de venir boucher l’orifice d’arrivée du coulis. La balance de 60 kg est par la suite tarée afin de mesurer la masse du matériau constituant la colonne de sable.
La mise en place du sable est réalisée grâce à la technique de pluviation. Le réservoir à sable est rempli d’une quantité supérieure à celle qui doit remplir la colonne. Il est placé au-dessus de la colonne en plexiglas. Le diffuseur est placé par la suite à une certaine hauteur égale à la hauteur de pluviation par rapport au bas de la colonne. On ouvre ensuite la grille du réservoir à sable tout en démarrant le moteur qui fait remonter la grille. La colonne de sable est remplie progressivement par pluviation tout en maintenant constante la hauteur de pluviation. A la fin du remplissage de la colonne, on dégage la traverse supérieure et on arase la partie supérieure du tube, et on réalise une pesée permettant d’obtenir la masse exacte du matériau mis en place dans la colonne. Ensuite, on met une couche homogénéisante de gravier de 4 cm d’épaisseur et on met un tamis en toile de nylon sur cette couche. Cette couche de gravier permet d’empêcher les grains de sable de venir colmater l’orifice de sortie situé dans
Chapitre 3 - Dispositifs expérimentaux et procédures d’essais

l’embase supérieure. Enfin, on fixe l’embase supérieure de la colonne grâce aux trois tiges filetées. Les différentes connexions sont réalisées entre la colonne et les arrivées, à la base de la colonne ainsi qu’avec le flexible d’évacuation en partie haute.

3.4.2.2. Saturation de la colonne et mesure de perméabilité

Afin de saturer la colonne, on fait d’abord circuler à travers celle-ci du dioxyde de carbone (CO₂) sous une pression de 20 kPa pendant 15 minutes. On remplace ainsi l’air contenu dans les pores par du CO₂ qui présente l’avantage d’être beaucoup plus soluble dans l’eau que l’air, ce qui permet d’avoir une meilleure saturation de la colonne de sable. On sature par la suite la colonne en injectant de l’eau, à débit constant, à l’aide de la pompe. Le débit de saturation étant égal à celui utilisé lors de l’injection du coulis. Au cours de la saturation, la perméabilité de la colonne de sable est mesurée.

Au cours de cette phase, l’acquisition des différentes mesures est réalisée (masses et pressions). Les mesures des pressions permettent de vérifier la cohérence des résultats obtenus qui sont compatibles avec un écoulement vertical ascendant au sein de la colonne. Les mesures effectuées par les balances permettent de vérifier l’absence de fuite au sein de la colonne en s’assurant que la quantité d’eau injectée correspond bien à celle qui remplit la colonne. La saturation de la colonne est poursuivie jusqu’à l’injection d’un volume d’eau égal au double du volume des vides de la colonne mesuré lors du premier remplissage. À la fin de la saturation de la colonne par l’eau, un régime permanent doit être atteint. Il est caractérisé par une stabilisation de la masse de la colonne ainsi que des pressions enregistrées par les six capteurs de pression de fluide.

3.4.2.3. Préparation et injection du coulis

Cette étape ressemble à celle suivie pour les échantillons de 4 cm de haut. Un programme d’acquisition spécifique aux essais d’injection des colonnes permet d’enregistrer et de visualiser en temps réel les pressions à différents niveaux de la colonne, la masse de la colonne et la masse du bécher contenant le coulis à injecter. A noter qu’au cours de l’essai, la masse volumique du coulis sortant de la colonne, est mesurée à plusieurs instants.

En fin d’essai, l’acquisition des données est arrêtée.
3.4.2.4. Démontage du dispositif et nettoyage des pièces

En fin d’essai, on procède au démontage et au nettoyage des différentes pièces et tuyaux.

3.5. Cellule de mesure de variation de volume

Cette cellule dérive de la cellule triaxiale ordinaire, mais dans des dimensions nettement plus réduites. La réduction de son volume a pour but de minimiser les variations de volume parasites résultant de sa déformation propre. L’embase supérieure de la cellule est de forme conique afin d’éviter de piéger l’air. De plus, elle est équipée d’un robinet de purge qui permet de bien la remplir et d’évacuer l’air. L’embase inférieure est munie de deux robinets, l’un est relié à la cellule et l’autre à l’échantillon. Deux contrôleurs pression – volume type GDS peuvent être connectés à ces robinets. Le premier permet d’appliquer la contrainte de Consolidation et de mesurer les variations de volume lors de la phase initiale de consolidation (de 0 à 100 kPa), lors de la phase de saturation au CO₂ et à l’eau. Le second sert à mesurer les variations de volume durant la deuxième phase de consolidation à partir de l’eau drainée par l’échantillon. Deux capteurs de pression sont fixés entre les GDS et la cellule et permettent la vérification des mesures de pression effectuées. Les acquisitions de données sont réalisées à l’aide d’un ordinateur. Le dispositif expérimental utilisé est présenté par la figure 3-15.
Figure 3-15 Schéma de principe de la cellule de mesure des variations de volume (d’après Benahmed (2001))

La mesure de la variation volumique de l’échantillon comprend trois étapes : mesures durant la phase de consolidation de 0 à 100 kPa, mesures durant la phase de saturation au CO₂ et à l’eau désaérée et enfin mesures durant la phase de consolidation de 100 à 800 kPa. Trois indices de densité initiaux ont été considérés (I₀=0,95 ; 0,70 ; 0,40) pour les échantillons consolidés, qui correspondent aux indices de densité des éprouvettes injectées. Le démoulage de l’échantillon a été réalisé en appliquant un vide de –10 kPa à l’intérieur de l’échantillon. La variation de volume durant cette phase ne sera pas connue mais sera supposée négligeable compte tenu des résultats obtenus ultérieurement. Les bouts de la membrane contenant l’échantillon sont coupés afin d’éviter de piéger des bulles d’air. Le remplissage de la cellule se fait avec un débit d’eau très faible afin de ne pas piéger des bulles d’air.

Variation de volume durant la phase de consolidation initiale (0 à 100 kPa)
 Durant cette phase, on applique grâce à une pompe à vide une dépression à l’intérieur de l’échantillon, et on augmente ainsi sa pression de consolidation à 100 kPa. Les variations de volume de l’échantillon sont mesurées à l’aide du GDS connecté à la cellule et qui lui impose une pression constante et mesure le volume injecté nécessaire afin d’imposer cette pression constante. Lorsque les variations de volume sont mesurées, on transfère la pression de consolidation appliquée par le vide à l’intérieur de l’échantillon à une pression appliquée à l’extérieur de...
l’échantillon par le GDS. Pour cela, on augmente doucement la pression appliquée par le GDS à l’intérieur de la cellule, en diminuant en même temps le vide régnant à l’intérieur de l’échantillon de façon à ce que la pression de consolidation reste toujours constante. On estime que durant cette phase, la variation de volume de l’échantillon est négligeable.

Variation de volume durant la saturation de l’échantillon

Durant cette phase, on sature l’échantillon à l’aide du CO₂ (on applique une pression de CO₂ de 15 kPa pendant 15 minutes) et on fait circuler par la suite un volume suffisamment important d’eau désaérée (trois fois le volume des vides de l’échantillon). Le GDS connecté à la cellule imposera une pression de 100 kPa à la cellule et mesurera le volume d’eau injecté à l’intérieur de la cellule afin d’imposer cette pression constante.

À la fin de cette phase, on applique une contre pression de 200 kPa à l’intérieur de l’échantillon tout en imposant une pression de 300 kPa à l’extérieur de la cellule de façon à ce que la pression de confinement de l’échantillon reste constante et égale à 100 kPa. Cette procédure a pour but d’améliorer la saturation de l’éprouvette en eau.

Variation de volume durant la phase finale de consolidation, après saturation

Durant cette phase, on connecte un GDS à l’intérieur de l’échantillon. Par la suite, on impose une pression constante à l’intérieur de l’échantillon et on augmente la pression de confinement de l’échantillon de 100 à 800 kPa à l’aide du premier GDS. Les variations de volume sont mesurées à partir de l’eau expulsée par l’échantillon.
Chapitre 4

Présentation des résultats expérimentaux

On présente dans ce chapitre les différents matériaux étudiés ainsi que l’ensemble des résultats obtenus lors des essais d’injection réalisés.
La majorité des essais a concerné l’injection d’échantillons de 4 cm de haut. Ces essais ont été réalisés dans le but de déterminer les lois d’évolution des prises de masse et de perméabilité d’éprouvettes homogènes. Ces lois d’évolution de prises de masse et de perméabilité pourront être ensuite utilisées dans un modèle d’écoulement afin de simuler des essais d’injection de colonnes.

4.1. Les matériaux étudiés

4.1.1. Matrices utilisées

La majorité des essais ont été réalisés sur le sable de Fontainebleau. Quelques essais ont été réalisés sur un matériel modèle, ayant une granulométrie très proche de celle du sable de Fontainebleau, constitué par des billes de verre.

4.1.1.1. Le sable de Fontainebleau

Le sable de Fontainebleau est un sable fin siliceux (SiO₂ > 98%). Les photos prises à l’aide d’un microscope électronique à balayage montrent une forme plutôt arrondie des grains (Figure 4-1).
La figure 4-2 indique la courbe granulométrique du sable de Fontainebleau. Il s’agit d’un sable fin et uniforme. Ses principales caractéristiques sont données par le tableau 4-1.

Tableau 4-1 Caractéristiques du sable de Fontainebleau

<table>
<thead>
<tr>
<th>Sable</th>
<th>(D_{50}) (mm)</th>
<th>(C_U)</th>
<th>(e_{\text{min}})</th>
<th>(e_{\text{max}})</th>
<th>(\rho_\sigma) (g/cm³)</th>
<th>(\rho_{\text{min}}) (g/cm³)</th>
<th>(\rho_{\text{max}}) (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fontainebleau</td>
<td>0,19</td>
<td>1,9</td>
<td>0,530</td>
<td>1,000</td>
<td>2,650</td>
<td>1,325</td>
<td>1,732</td>
</tr>
</tbody>
</table>
Figure 4-1 Vues au microscope électronique à balayage du sable de Fontainebleau (d’après Benahmed (2001))

Figure 4-2 Courbe granulométrique du sable de Fontainebleau
4.1.1.2. Le matériau modèle (billes de verre)

Quelques essais ont été effectués sur un matériau modèle constitué par des billes de verre ayant une courbe granulométrique proche de celle du sable de Fontainebleau. Le tableau 4-2 présente les principales caractéristiques du matériau modèle.

<table>
<thead>
<tr>
<th>Matrice</th>
<th>D_{50} (mm)</th>
<th>CU</th>
<th>e_{min}</th>
<th>e_{max}</th>
<th>ρ_s (g/cm³)</th>
<th>ρ_{min} (g/cm³)</th>
<th>ρ_{max} (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billes de verre</td>
<td>0,21</td>
<td>2,25</td>
<td>0,490</td>
<td>0,610</td>
<td>2,450</td>
<td>1,522</td>
<td>1,644</td>
</tr>
</tbody>
</table>

On compare sur la figure 4-3, la courbe granulométrique du sable de Fontainebleau à celle du matériau modèle.

![Courbes granulométriques du sable de Fontainebleau et du matériau modèle](image)

Figure 4-3 Comparaison des courbes granulométriques du sable de Fontainebleau et du matériau modèle

4.1.2. Coulis étudiés

4.1.2.1. Ciment

Le ciment utilisé est le Spinor A12 fabriqué par la société Ciments d’Origny. Il s’agit d’un liant ultra fin de granulométrie inférieure à 12 µm, issu d’un broyage d’une composition à
base de laitier et de clinker. Il est mis en œuvre sous forme de coulis superfliuidifiés ayant des pouvoirs de pénétration nettement supérieurs à ceux des coulis de bentonite-ciment. Il permet le traitement des milieux de perméabilité allant jusqu’à 10^4 m/s.
Sa masse volumique est de 2,94 g/cm3, sa densité apparente est de 0,7 et sa surface spécifique blaine est de 10^4 cm2/g.
Le tableau 4-3 indique les principaux éléments chimiques qui composent ce ciment ainsi que leurs proportions respectives.

Tableau 4-3 Principaux éléments chimiques du ciment Spinor A12

<table>
<thead>
<tr>
<th>Elément</th>
<th>CaO</th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantité (%)</td>
<td>44</td>
<td>31</td>
<td>9,5</td>
<td>1,3</td>
<td>6,5</td>
</tr>
</tbody>
</table>

Afin d’obtenir une injectabilité optimale, les coulis de Spinor A12 nécessitent l’ajout d’un superplastifiant dispersant, qui permet la défloculation des particules du liant et évite la formation de flocs pouvant diminuer la pénétration du coulis dans le milieu à traiter. Ce superplastifiant améliore aussi les propriétés rhéologiques des coulis (viscosité, seuil de cisaillement). Le superplastifiant recommandé par le fabricant de ciment est le Résiflow N40 (à base de naphtalène sulfonate) fabriqué par la société Fosroc.

La figure 4-4 présente la courbe granulométrique du ciment Spinor A12.

Figure 4-4 Courbe granulométrique du ciment Spinor A12
Chapitre 4 – Présentation des résultats expérimentaux

4.1.2.2. Adjuvant

Le fluidifiant utilisé, le microsol, est un produit fourni par la société Solétanche-Bachy.

4.2. Essais d’injection sur éprouvettes centimétriques

4.2.1. Programme expérimental

Le programme expérimental a été défini afin d’étudier l’influence de différents paramètres significatifs du processus sur les résultats obtenus lors de l’injection d’éprouvette de 4 cm de haut. Il s’agit de l’état de compacité de la matrice, du débit d’injection, de la contrainte de consolidation isotope appliquée à l’éprouvette, de la concentration du coulis en ciment et du type de matrice injectée.

La répétabilité de la majorité des essais a été étudiée afin d’évaluer la signification et la précision des résultats obtenus. Le tableau 4-4 présente les caractéristiques des essais d’injection réalisés sur des éprouvettes de 4 cm de haut.

<table>
<thead>
<tr>
<th>N° d’essai</th>
<th>Sable</th>
<th>(I_D)</th>
<th>(p'_c (kPa))</th>
<th>(C/E)</th>
<th>(F/C)</th>
<th>(Q (cm^3/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE1</td>
<td>FB</td>
<td>0,70</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,54</td>
</tr>
<tr>
<td>IE2</td>
<td>FB</td>
<td>0,70</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,40</td>
</tr>
<tr>
<td>IE3</td>
<td>FB</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,42</td>
</tr>
<tr>
<td>IE4</td>
<td>FB</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,48</td>
</tr>
<tr>
<td>IE5</td>
<td>FB</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,40</td>
</tr>
<tr>
<td>IE6</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>2,55</td>
</tr>
<tr>
<td>IE7</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>2,58</td>
</tr>
<tr>
<td>IE8</td>
<td>FB</td>
<td>0,95</td>
<td>800</td>
<td>0,20</td>
<td>0,05</td>
<td>2,15</td>
</tr>
<tr>
<td>IE9</td>
<td>FB</td>
<td>0,95</td>
<td>800</td>
<td>0,20</td>
<td>0,05</td>
<td>2,48</td>
</tr>
<tr>
<td>IE10</td>
<td>FB</td>
<td>0,40</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,23</td>
</tr>
<tr>
<td>IE11</td>
<td>FB</td>
<td>0,40</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,43</td>
</tr>
<tr>
<td>IE12</td>
<td>FB</td>
<td>0,40</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>2,95</td>
</tr>
<tr>
<td>IE13</td>
<td>FB</td>
<td>0,70</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>2,47</td>
</tr>
<tr>
<td>IE14</td>
<td>FB</td>
<td>0,40</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>2,66</td>
</tr>
<tr>
<td>IE15</td>
<td>FB</td>
<td>0,95</td>
<td>100</td>
<td>0,20</td>
<td>0,05</td>
<td>2,33</td>
</tr>
<tr>
<td>IE16</td>
<td>FB</td>
<td>0,70</td>
<td>800</td>
<td>0,20</td>
<td>0,05</td>
<td>2,18</td>
</tr>
<tr>
<td>IE17</td>
<td>FB</td>
<td>0,40</td>
<td>800</td>
<td>0,20</td>
<td>0,05</td>
<td>2,52</td>
</tr>
<tr>
<td>IE18</td>
<td>FB</td>
<td>0,70</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>4,87</td>
</tr>
<tr>
<td>IE19</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>4,61</td>
</tr>
</tbody>
</table>
Tableau 4-4 Caractéristiques des essais d’injection réalisés sur des éprouvettes de 4 cm de haut (suite)

<table>
<thead>
<tr>
<th>N° d’essai</th>
<th>Sable</th>
<th>I_D</th>
<th>p'_c (kPa)</th>
<th>C/E</th>
<th>F/C</th>
<th>Q (cm3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE20</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>6,85</td>
</tr>
<tr>
<td>IE21</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>8,13</td>
</tr>
<tr>
<td>IE22</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>1,07</td>
</tr>
<tr>
<td>IE23</td>
<td>FB</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>5,62</td>
</tr>
<tr>
<td>IE24</td>
<td>FB</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>5,88</td>
</tr>
<tr>
<td>IE25</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>4,49</td>
</tr>
<tr>
<td>IE26</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>6,43</td>
</tr>
<tr>
<td>IE27</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>8,32</td>
</tr>
<tr>
<td>IE28</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>2,24</td>
</tr>
<tr>
<td>IE29</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>2,63</td>
</tr>
<tr>
<td>IE30</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>3,84</td>
</tr>
<tr>
<td>IE31</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>9,77</td>
</tr>
<tr>
<td>IE32</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,25</td>
<td>0,05</td>
<td>4,36</td>
</tr>
<tr>
<td>IE33</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,15</td>
<td>0,05</td>
<td>4,41</td>
</tr>
<tr>
<td>IE34</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,10</td>
<td>0,05</td>
<td>4,73</td>
</tr>
<tr>
<td>IE35</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,30</td>
<td>0,05</td>
<td>5,00</td>
</tr>
<tr>
<td>IE36</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,25</td>
<td>0,05</td>
<td>4,91</td>
</tr>
<tr>
<td>IE37</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>9,95</td>
</tr>
<tr>
<td>IE38</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,30</td>
<td>0,05</td>
<td>4,80</td>
</tr>
<tr>
<td>IE39</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,30</td>
<td>0,05</td>
<td>5,18</td>
</tr>
<tr>
<td>IE40</td>
<td>FB</td>
<td>0,95</td>
<td>400</td>
<td>0,10</td>
<td>0,05</td>
<td>4,60</td>
</tr>
<tr>
<td>IE41</td>
<td>BV</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>4,66</td>
</tr>
<tr>
<td>IE42</td>
<td>BV</td>
<td>0,95</td>
<td>400</td>
<td>0,20</td>
<td>0,05</td>
<td>4,56</td>
</tr>
<tr>
<td>IE43</td>
<td>BV</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>4,87</td>
</tr>
<tr>
<td>IE44</td>
<td>BV</td>
<td>0,95</td>
<td>200</td>
<td>0,20</td>
<td>0,05</td>
<td>4,73</td>
</tr>
<tr>
<td>IE45</td>
<td>BV</td>
<td>0,95</td>
<td>400</td>
<td>0,10</td>
<td>0,05</td>
<td>4,45</td>
</tr>
</tbody>
</table>

IE = injection d’échantillon ; I_D = indice de densité ; p'_c = contrainte de consolidation ; C = masse de ciment ; E = masse d’eau ; F = masse de fluidifiant ; Q = débit d’injection ; FB = sable de Fontainebleau ; BV = billes de verre.

4.2.2. Résultats typiques

Deux types de résultats ont été obtenus selon le débit d’injection utilisé. Le seuil de débit séparant les deux types de comportement est de 3,5 cm3/s environ. La différence de comportement concerne uniquement la phase d’injection.
4.2.2.1. Saturation de l’éprouvette en eau
Lors des essais, les éprouvettes étaient saturées par de l’eau désaérée qui circulait d’une façon grviditaire. Dans ce qui suit, on va présenter les résultats des essais de saturation en eau de l’échantillon de deux façons différentes : la circulation grviditaire et la saturation à l’aide de la pompe d’injection.

Saturation de l’échantillon par circulation grviditaire

La figure 4-5 présente les évolutions des masses de la cellule et de l’échantillon, et la figure 4-6 présente les évolutions des pressions de cellule et d’injection.

![Graphiques](image.png)

Figure 4-5 Évolutions des masses de la cellule et de l’échantillon pendant la phase de saturation à l’eau
La figure 4-5 montre bien une stabilisation de la masse de la cellule après remplissage de celle-ci par l’eau. On constate aussi une stabilisation de la variation de masse de l’échantillon après le remplissage de la cellule par l’eau. La figure 4-6 montre bien que la pression d’injection de l’eau se stabilise lorsque l’eau commence à sortir de l’échantillon. À noter que la courbe de variation de masse de l’échantillon représente en fait la variation de masse de l’échantillon après sa saturation par l’eau.

Saturation de l’échantillon à l’aide de la pompe d’injection

Deux essais d’injection d’eau dans des échantillons saturés à l’eau ont été réalisés. Ces essais ont été effectués dans le but de vérifier la stabilisation de la masse de l’échantillon quand celui-ci est déjà saturé en eau. Ces essais vont permettre de valider partiellement le dispositif de mesure de masse de la cellule.

Les figures 4-7 et 4-8 présentent les variations de masse des échantillons lors de la phase d’injection d’eau, ainsi que les pressions d’injection et de cellule pour deux débits différents ($Q=2,59$ cm3/s et $Q=9,92$ cm3/s).
Figure 4-7 Evolutions des pressions et de la masse lors de l’injection d’eau à un débit de

$2,59 \text{ cm}^3/s$

Figure 4-8 Evolutions des pressions et de la masse lors de l’injection d’eau à un débit de

$9,92 \text{ cm}^3/s$
Les figures 4-7 et 4-8 montrent bien que la variation de masse de l’échantillon est quasiment stabilisée. Les faibles variations de masse (de l’ordre de 1 g lors d’un essai) sont dues aux erreurs de mesure. Ces erreurs de mesure sont parfaitement acceptables car on mesure des variations de masse de l’échantillon de l’ordre de 10 g au cours d’un essai d’injection de coulis lors de la phase de filtration (l’échantillon est déjà saturé en coulis).

4.2.2.2. Phase d’injection du coulis
En ce qui concerne les variations de masse des échantillons, deux types de comportements ont été observés selon la valeur du débit d’injection.
Pour les faibles débits (de l’ordre de 2,5 cm3/s), après remplissage de la cellule, on observe une première phase durant laquelle la masse de l’échantillon varie faiblement, suivie d’une deuxième phase durant laquelle il se produit une accélération de la prise de masse et une instabilité de l’échantillon par liquéfaction.
Pour les débits les plus élevés (compris entre 3,5 cm3/s et 10 cm3/s), on observe une prise de masse assez importante dès la sortie du coulis de l’échantillon. La prise de masse de l’échantillon continue à augmenter jusqu’à l’instabilité de l’échantillon par liquéfaction.
Les figures 4-9 et 4-10 montrent les résultats obtenus pour les essais IE3 et IE25.
Il est à souligner que la courbe de variation de masse de l’échantillon représente en fait l’évolution de masse de l’échantillon après sa saturation avec le coulis de ciment.
Figure 4-9 Résultats obtenus pour l’essai IE3
Figure 4-10 Résultats obtenus pour l’essai IE25
Concernant l’essai IE3, on constate que la pression d’injection était stable en moyenne jusqu’à une masse injectée de 2000 g. A partir de là, la pression d’injection a augmenté et a atteint la valeur de la pression de consolidation. À ce moment là, l’échantillon s’est liquéfié. Les fluctuations de la valeur de la pression d’injection sont dues aux impulsions données par la pompe d’injection. L’évolution de la masse de la cellule comporte trois phases. D’abord, une phase de remplissage initial, suivie d’une phase de très faible prise de masse (le palier de la courbe) et enfin une phase de prise de masse accélérée. La courbe de prise de masse de l’échantillon correspond à la courbe de prise de masse de la cellule à laquelle on a enlevé la phase de remplissage. Cette courbe permet de mieux analyser les variations de masse de l’échantillon durant la phase de filtration (durant cette phase la prise de masse de l’échantillon est due uniquement à la filtration des grains de ciment présents dans le coulis par l’échantillon de sable). La figure présentant le débit instantané montre que celui-ci oscille autour d’une valeur moyenne. Ces oscillations sont dues aux impulsions produites par la pompe lors de son fonctionnement. La figure indiquant le débit moyen montre que celui-ci reste pratiquement constant tout au long de l’essai.

Par ailleurs, l’unique différence de comportement entre les essais IE3 et IE25 concerne les variations de masse de l’échantillon. En effet, on constate que pour l’essai IE25, la prise de masse de l’échantillon se fait d’une façon uniforme dès la fin de la phase initiale de remplissage.

Par ailleurs, quelques différences peuvent être enregistrées, entre deux essais différents, pour la masse correspondant au remplissage de la cellule. Ces différences sont dues à une mesure de masse parasite que l’on enregistre au début de l’essai mais qui n’a pas d’influence sur les mesures enregistrées lors de la phase de filtration (la phase qui succède la phase de remplissage) qui nous intéresse.

Dans la suite, on présentera l’évolution des pressions en termes de valeurs moyennes uniquement pour un souci de simplification.

4.2.3. Répétabilité des essais

Les figures 4-11 et 4-12 permettent d’évaluer la répétabilité des essais IE3 et IE25. On constate que l’on dispose d’une bonne répétabilité pour les essais d’injection des échantillons de 4 cm de haut, aussi bien pour les faibles débits \(Q=2,5 \text{ cm}^3/\text{s}\) que pour les débits les plus élevés \(Q=4,7 \text{ cm}^3/\text{s}\). Il est à noter quand même le caractère aléatoire du blocage de l’injection pour les débits faibles (cas de l’essai IE3). En effet, le démarrage de l’accélération
de la prise de masse peut se déclencher à différents moments. De plus, la phase d’accélération de prise de masse peut durer plus ou moins longtemps (essais IE3, IE4 et IE5). Par contre, les taux de prise de masse durant les deux phases (la phase du palier et la phase d’accélération de prise de masse) sont égaux pour les différents essais (figure 4-11).

Figure 4-11 Répétabilité de l’essai IE3
Figure 4-12 Répétabilité de l’essai IE25

4.2.4. Influence de l’indice de densité I_D

Des essais d’injection ont été réalisés à plusieurs indices de densité afin d’étudier son effet sur les résultats obtenus en terme de prise de masse et de pression d’injection. Trois indices de densité ont été considérés : $I_D = 0,95$ (échantillon dense), $I_D = 0,7$ (échantillon moyennement dense) et $I_D = 0,4$ (échantillon lâche). De plus, l’effet de l’indice de densité a été étudié pour plusieurs contraintes de consolidation et débits.
Chapitre 4 – Présentation des résultats expérimentaux

4.2.4.1. Résultats obtenus pour les faibles débits

Les figures 4-13, 4-14 et 4-15 présentent les résultats obtenus, lors de l’injection à faible débit (2,5 cm³/s), concernant les effets de l’indice de densité \(I_D \) sur les évolutions des pressions d’injections et des taux de prise de masse.

Figure 4-13 Influence de l’indice de densité \(I_D \) pour une contrainte de consolidation de 200 kPa

Figure 4-14 Influence de l’indice de densité \(I_D \) pour une contrainte de consolidation de 400 kPa
Figure 4-15 Influence de l’indice de densité I_D pour une contrainte de consolidation de 800 kPa

Commentaires
Un même comportement a été observé pour tous les essais réalisés, à faible débit ($Q = 2,5 $ cm3/s), sur le sable de Fontainebleau. On observe une phase initiale à faible taux de filtration, suivie d’une deuxième phase marquée par une filtration plus accentuée et une augmentation de la pression d’injection jusqu’à atteindre la contrainte de consolidation. A noter que l’accélération de la filtration n’est pas due à l’hydratation des grains de ciment, car on vérie que la granulométrie du ciment présent dans le coulis reste identique durant tout l’essai.

Par ailleurs, on constate que, plus l’échantillon est dense, et plus l’instabilité de l’échantillon par liquéfaction se produit rapidement, à l’exception des essais IE13 et IE28. D’ailleurs, les essais de répétabilité ont montré que pour les mêmes conditions opératoires, l’instabilité de l’échantillon par liquéfaction ne se produit pas à un même instant. Cela est dû au caractère aléatoire du processus de filtration des suspensions dans les milieux granulaires.
4.2.4.2. Résultats obtenus pour les débits plus élevés

La figure 4-16 présente les résultats obtenus concernant l’effet de l’indice de densité I_D, pour une contrainte de consolidation de 400 kPa et pour un débit de 4,9 cm3/s, sur les évolutions des pressions d’injections et des taux de prises de masse.

![Diagramme de pression et de variation de masse en fonction de la masse injectée](image)

Figure 4-16 Influence de l’indice de densité I_D pour une contrainte de consolidation de 400 kPa

Commentaires

On constate que la prise de masse est plus élevée pour les échantillons les plus denses. De plus, l’instabilité de l’échantillon par liquéfaction se produit plus rapidement pour ces mêmes échantillons (figure 4-16).

4.2.5. Influence de la contrainte de consolidation

L’effet de la contrainte de consolidation a été étudié pour des échantillons denses aussi bien pour un débit faible ($Q=2,5$ cm3/s) que pour un débit moyen ($Q=5$ cm3/s). Ces essais permettent de simuler l’injection d’échantillons de sol situés à plusieurs profondeurs et soumis à des contraintes de consolidation variables, supposant que leurs états de contrainte sont isotropes.

Par ailleurs, des essais de compression isotope ont été réalisés sur le sable de Fontainebleau afin d’étudier l’effet de la contrainte de consolidation sur les variations de l’indice des vides.
4.2.5.1. Essais de compression isotope
Des essais de compression isotope ont été réalisés sur le sable de Fontainebleau afin d’étudier l’effet de la contrainte de consolidation isotope sur les variations de l’indice des vides. Plusieurs indices de densité ont été considérés (I₀=0,95 ; I₀=0,70 et I₀=0,40) et la contrainte de confinement a été augmentée jusqu’à 800 kPa.
Les figures 4-17 et 4-18 présentent les résultats obtenus concernant les variations de volume et de l’indice des vides. On constate une bonne cohérence des résultats trouvés. En effet, les échantillons les plus lâches sont les plus compressibles. De plus, on remarque que les variations de l’indice des vides sont assez faibles malgré la pression de consolidation élevée qui est appliquée (800 kPa).

![Graphique des variations volumiques en fonction de la pression de confinement](image)

Figure 4-17 Variations volumiques en fonction de la pression de confinement
Figure 4-18 Variations de l’indice des vides en fonction de la pression de confinement

4.2.5.2. Influence de la contrainte de consolidation lors de l’injection à faible débit
La figure 4-19 présente les résultats des essais réalisés sur des échantillons denses ($I_d=0.95$) à faible débit ($Q=2.5 \text{ cm}^3/\text{s}$) et pour quatre différentes contraintes de consolidation : 100 kPa, 200 kPa, 400 kPa et 800 kPa.
Figure 4-19 Influence de la contrainte de consolidation pour un débit faible ($Q=2,5 \text{ cm}^3/\text{s}$) et un échantillon dense ($I_D=0,95$)

Commentaires
On constate que plus la contrainte de consolidation est élevée et plus la pression d’injection peut augmenter avant l’instabilité de l’échantillon par liquéfaction, ce qui est normal. De plus, on remarque que la pression de consolidation n’a pas d’effet clair sur l’instant auquel se produit l’instabilité de l’échantillon par liquéfaction. D’ailleurs, les essais de compression isotrope réalisés, pour différents indices de densité sur le sable de Fontainebleau, ont montré qu’une pression de consolidation de 800 kPa a une faible influence sur l’indice des vides de l’échantillon (figure 4-18). La faible évolution de l’indice des vides en fonction de la contrainte de consolidation montre que le caractère aléatoire de la filtration des particules de ciment a plus d’effets sur l’instabilité de l’échantillon par liquéfaction que la contrainte de consolidation appliquée.
Par ailleurs, on constate que la variation de masse de l’échantillon augmente lorsque la contrainte de consolidation augmente.

4.2.5.3. Influence de la contrainte de consolidation lors de l’injection avec des débits plus élevés
La figure 4-20 présente les résultats des essais réalisés sur des échantillons denses ($I_D=0,95$) à débit moyen ($Q=5 \text{ cm}^3/\text{s}$) et pour deux contraintes de consolidation: 200 kPa et 400 kPa.
Figure 4-20 Influence de la contrainte de consolidation pour un débit moyen \(Q=5\ \text{cm}^3/\text{s}\) et un échantillon dense \(I_D=0,95\)

On constate que la contrainte de consolidation appliquée n’a pas d’effets sur l’instant auquel se produit l’instabilité de l’échantillon par liquéfaction. De plus, le taux de prise de masse de l’échantillon augmente en fonction de la contrainte de consolidation appliquée.

4.2.6. Influence de la concentration du coulis en ciment

Les figures 4-21 et 4-22 montrent les résultats obtenus concernant l’influence de la concentration du coulis en ciment sur les évolutions des pressions d’injection et les variations de masse des échantillons. Le tableau 4-5 indique la variation de masse de l’échantillon après sa saturation en coulis, pour différentes valeurs du rapport \(C/E\). Enfin, la figure 4-23 montre les résultats des essais de répétabilité concernant les évolutions des masses des échantillons.
Figure 4-21 Evolutions des pressions d’injection
Figure 4-22 Evolutions des prises de masse des échantillons

Tableau 4-5 Variations de masse de l’échantillon, après saturation par le coulis, pour différentes valeurs du rapport C/E

<table>
<thead>
<tr>
<th>C/E</th>
<th>0,1</th>
<th>0,15</th>
<th>0,2</th>
<th>0,25</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm (g)</td>
<td>4,3</td>
<td>6,44</td>
<td>8,6</td>
<td>10,74</td>
<td>12,9</td>
</tr>
</tbody>
</table>
Figure 4-23 R épétabilité des essais réalisés

Commentaires
Plusieurs essais ont été réalisés afin d’étudier l’influence du rapport C/E sur les variations de masse de l’échantillon au cours de l’injection. Ces essais ont été réalisés sur le sable de Fontainebleau, à une contrainte de consolidation de 400 kPa, pour un état initial dense ($I_0=0,95$), un débit $Q=4,5$ cm3/s et $F/C=0,05$.

On constate que lorsque la concentration du coulis en ciment augmente, cela favorise l’augmentation de la pression de fluide et accélère l’initiation de l’instabilité de l’échantillon par liquéfaction lorsque la pression de fluide atteint la valeur de la pression de cellule p_c'.

Chapitre 4 – Présentation des résultats expérimentaux
(figure 4-21). De plus, le taux de prise de masse de l’échantillon augmente lorsque le rapport \(C/E \) augmente (figure 4-22).

A souligner aussi le caractère aléatoire de l’instabilité de l’échantillon par liquéfaction. Les essais IE35 et IE39 présentent un parfait exemple (figure 4-23).

4.2.7. Influence du débit d’injection

Plusieurs essais ont été effectués afin d’étudier l’influence du débit d’injection sur la filtration des grains de ciment par la matrice poreuse et le blocage de l’injection. Ces essais ont été réalisés sur du sable de Fontainebleau, à une contrainte de consolidation de 400 kPa, pour un état initial dense \(I_d = 0,95 \), \(C/E = 0,2 \) et \(F/C = 0,05 \).

Les figures 4-24, 4-25, 4-26 et 4-27 présentent les résultats obtenus concernant l’influence du débit d’injection sur les évolutions des pressions d’injection et les variations de masse des échantillons.

![Figure 4-24 Evolution des pressions d’injection pour différents débits d’injection](image)

Figure 4-24 Evolution des pressions d’injection pour différents débits d’injection
Figure 4-25 Evolution des prises de masse des échantillons pour différents débits d’injection

Figure 4-26 Evolution des pressions d’injection pour différents débits d’injection
Figure 4-27 Evolution des prises de masse des échantillons pour différents débits d’injection

Commentaires
On constate que lorsque le débit d’injection augmente, le blocage de l’injection se produit plus rapidement, le blocage étant dû à l’instabilité de l’échantillon par liquéfaction. Ce phénomène s’explique ainsi : les forts débits entraînent des pressions fortes lorsque le processus de blocage s’initie, ce qui accélère l’instabilité de l’échantillon par liquéfaction. Concernant les évolutions des prises de masse, on ne remarque pas d’influence claire du débit sur la prise de masse de l’échantillon.

4.2.8. Influence de la forme des grains

Des essais sur un matériau modèle (billes de verre), ayant pratiquement la même granulométrie que le sable de Fontainebleau, ont été réalisés afin d’étudier l’influence de la forme des grains sur la filtration des grains de ciment par le milieu poreux. La figure 4-28 présente un essai de répétabilité réalisé. Une bonne répétabilité a été obtenue comme le montre cette figure.
La figure 4-29 compare les résultats d’essais d’injection de sable de Fontainebleau et de matériau modèle (billes de verre)
Figure 4-29 Comparaison des résultats d’injection de sable de Fontainebleau et de billes de verre
Chapitre 4 – Présentation des résultats expérimentaux

On met clairement en évidence que le matériau modèle (billes de verre) filtre les grains de ciment nettement plus que le sable de Fontainebleau. À noter aussi le caractère aléatoire du blocage (essais IE41 et IE42) lors de l’injection du matériau modèle.

Enfin, la figure 4-30 présente l’effet de la concentration en ciment sur l’injectabilité du matériau modèle. Cette figure met clairement en évidence l’influence de ce paramètre sur la prise de masse de l’échantillon. La masse filtrée est d’autant plus grande que le rapport C/E est grand.

![Graphique 1](image1)

Figure 4-30 Effet de la concentration en ciment sur l’injectabilité du matériau modèle
4.3. Essais d’injection sur colonnes courtes

4.3.1. Programme expérimental

Des essais d’injection de colonnes courtes (éprouvettes de 16 cm de haut) ont été réalisés pour étudier l’influence de la hauteur de l’échantillon sur les résultats obtenus. De plus, ces essais ont été réalisés afin d’étudier l’influence du débit sur les résultats obtenus car l’effet du débit n’était pas claire pour les échantillons de 4 cm de haut.
Le tableau 4-6 présente les caractéristiques principales des essais réalisés.

| Tableau 4-6 Caractéristiques des essais d’injection réalisés sur des colonnes courtes (éprouvettes de 16 cm de haut) |
|---|---|---|---|---|---|
| N° d’essai | Matrice | \(I_D\) | \(p'_c\) (kPa) | \(C/E\) | \(F/C\) | \(Q\) (cm\(^3\)/s) |
| ICC1 | FB | 0,95 | 400 | 0,20 | 0,05 | 5,50 |
| ICC2 | FB | 0,95 | 400 | 0,20 | 0,05 | 7,54 |
| ICC3 | FB | 0,95 | 400 | 0,20 | 0,05 | 9,22 |
| ICC4 | FB | 0,95 | 400 | 0,20 | 0,05 | 2,83 |
| ICC5 | FB | 0,95 | 400 | 0,20 | 0,05 | 5,79 |
| ICC6 | FB | 0,95 | 400 | 0,20 | 0,05 | 5,55 |

ICC = injection de colonne courte; \(I_D\) = indice de densité; \(p'_c\) = contrainte de consolidation; \(C\) = masse de ciment; \(E\) = masse d’eau; \(F\) = masse de fluidifiant; \(Q\) = débit d’injection; FB = sable de Fontainebleau.

4.3.2. Résultats typiques

Contrairement aux essais d’injection sur des échantillons de 4 cm de haut, un seul type de comportement a été observé pour les différents débits considérés. Concernant la phase de saturation, les résultats des essais étaient analogues à ceux obtenus pour les échantillons de 4 cm de haut. Les résultats relatifs à la phase de saturation ne seront donc pas présentés.
La figure 4-31 présente les résultats obtenus pour l’essai ICC1 lors de la phase d’injection. Ces résultats sont analogues à ceux obtenus pour les essais d’injection d’éprouvettes de 4 cm de haut avec des débits relativement élevés (compris entre 3,5 cm\(^3\)/s et 10 cm\(^3\)/s).
Figure 4-31 Résultats obtenus pour l’essai ICC1

4.3.3. Répétabilité

La figure 4-32 présente la répétabilité de l’essai ICC1. Une bonne répétabilité a été obtenue comme le montre cette figure. À noter le caractère aléatoire du blocage.
Figure 4-32 Répétabilité de l’essai ICC1
4.3.4. Influence du débit d’injection

Quelques essais ont été réalisés afin d’étudier l’influence du débit d’injection sur la filtration des grains de ciment par le milieu poreux et le blocage de l’injection. Ces essais ont été réalisés sur du sable de Fontainebleau, à une contrainte de consolidation de 400 kPa, pour un état initial dense (\(\phi_0 = 0,95 \)), \(C/E = 0,2 \) et \(F/C = 0,05 \). La figure 4-33 présente les résultats obtenus. Aucun effet significatif du débit sur le développement du processus d’injection, pour la gamme étudiée, n’a pu être observé.

![Figure 4-33 Effet du débit d’injection sur les résultats obtenus](image-url)
4.4. Essais d’injection sur colonnes longues

4.4.1. Programme expérimental

Quelques essais d’injection sur colonies longues (104 cm) ont été réalisés, essentiellement afin d’étudier l’influence du débit d’injection sur les évolutions des pressions de fluide et la variation de masse de la colonne. Le tableau 4-7 présente les caractéristiques principales des essais réalisés.

<table>
<thead>
<tr>
<th>N° d’essai</th>
<th>sable</th>
<th>I_D</th>
<th>C/E</th>
<th>F/C</th>
<th>Q (cm3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,050</td>
<td>5,50</td>
</tr>
<tr>
<td>IC2</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,050</td>
<td>5,78</td>
</tr>
<tr>
<td>IC3</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,050</td>
<td>7,33</td>
</tr>
<tr>
<td>IC4</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,050</td>
<td>9,61</td>
</tr>
<tr>
<td>IC5</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,050</td>
<td>3,13</td>
</tr>
<tr>
<td>IC6</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,075</td>
<td>3,17</td>
</tr>
<tr>
<td>IC7</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,075</td>
<td>7,30</td>
</tr>
<tr>
<td>IC8</td>
<td>FB</td>
<td>0,95</td>
<td>0,20</td>
<td>0,075</td>
<td>9,22</td>
</tr>
</tbody>
</table>

IC = Injection de colonne ; I_D = Indice de densité ; C = masse de ciment ; E = masse d’eau ; F = masse de fluidifiant ; Q = débit d’injection ; FB = sable de Fontainebleau.

Il est à noter qu’il y a une légère différence dans le mode de malaxage du coulis pour les essais IC6, IC7 et IC8 par rapport à la procédure décrite dans le chapitre 3. La procédure utilisée pour le malaxage est la suivante : l’eau est agitée à 900 tours/mn. Le ciment et le fluidifiant sont par la suite ajoutés. La vitesse de rotation est ensuite augmentée à 1500 tours/mn pendant 6 minutes. Enfin, la vitesse de rotation est baissée à 1000 tours/mn et on procède à l’analyse granulométrique d’échantillons de coulis à l’aide du granulomètre laser.

4.4.2. Résultats typiques

Dans ce qui suit, les résultats obtenus pour l’essai IC1 lors des phases de saturation et d’injection seront présentés.

4.4.2.1. Phase de saturation

La figure 4-34 indique les résultats obtenus lors de la phase de saturation de la colonne de sable.
Chapitre 4 – Présentation des résultats expérimentaux

On constate l’existence d’une première phase de remplissage de la colonne durant laquelle la masse de la colonne ainsi que les pressions augmentent linéairement. Ensuite, un régime stationnaire (deuxième phase) s’installe. Durant cette deuxième phase, la masse de la colonne et les pressions enregistrées par les capteurs se stabilisent.

Figure 4-34 Résultats obtenus pour l’essai IC1 lors de la phase de saturation
4.4.2.2. Phase d’injection
La figure 4-35 présente les résultats obtenus pour l’essai IC1 lors de la phase d’injection.

Figure 4-35 Résultats obtenus pour l’essai IC1 lors de la phase d’injection

En analysant la courbe de variation de masse de la colonne, on constate la présence d’une première phase de remplissage de la colonne jusqu’à une masse injectée de 2500 g. À la fin de cette phase, la masse de la colonne continue à augmenter rendant compte d’une filtration des
grains de ciment en présence dans le coulis, par la colonne de sable. Durant l’essai d’injection de coulis, il n’a pas eu de régime permanent.
La figure indiquant les variations de pressions, à différents niveaux dans la colonne, montre que la pression enregistrée par un capteur donné reste constante jusqu’à ce qu’il soit parcouru par le coulis de ciment. À ce moment là, la pression enregistrée par le capteur commence à augmenter linéairement. Concernant la pression enregistrée au niveau de la pompe d’injection (z=0), on constate la présence de variations rapides de la pression enregistrée. Ces variations rapides sont dues aux impulsions produites par la pompe lors de son fonctionnement. De plus, on remarque que les pressions enregistrées par les capteurs ne se stabilisent pas lorsque le coulis commence à sortir de la colonne. Cela confirme, l’hypothèse de filtration des grains de ciment par la matrice sableuse vu l’absence de régime stationnaire pour l’injection du coulis.
Le débit instantané enregistré oscille autour d’une valeur moyenne. Ces oscillations sont dues aux impulsions produites par la pompe lors de son fonctionnement. Le débit moyen, reste quasiment constant lors de l’essai.

4.4.3. Répétabilité des essais

La figure 4-36 présente la répétabilité de l’essai IC1. Elle indique uniquement les variations des pressions moyennes et celles des masses de la colonne. Une bonne répétabilité a été obtenue comme le montre cette figure.
Figure 4-36 Répétabilité de l’essai IC1
4.4.4. Influence du débit d’injection

Les figures 4-37 et 4-38 montrent l’effet du débit sur l’évolution de la masse de la colonne lors de son injection par du coulis.
On met ici clairement en évidence une influence du débit. En effet, plus le débit est élevé et plus le niveau de filtration est faible. A noter aussi que la méthode de préparation du coulis utilisée pour les essais IC6, IC7 et IC8 permet de diminuer la filtration des grains de ciment au cours de l’injection.

Figure 4-37 Effet du débit d’injection sur l’évolution de masse de la colonne

Figure 4-38 Effet du débit d’injection sur l’évolution de masse de la colonne
Chapitre 4 – Présentation des résultats expérimentaux

Par ailleurs, les figures 4-39 et 4-40 présentent l’effet du débit sur les pressions enregistrées au sein de la colonne.

Figure 4-39 Effet du débit sur les évolutions des pressions de fluide au cours de l’injection
Figure 4-40 Effet du débit sur les évolutions des pressions de fluide au cours de l’injection
Chapitre 4 – Présentation des résultats expérimentaux

Pour l’essai IC5 correspondant au débit le plus faible (Q=3,13 cm3/s), on constate que la pression d’injection dépasse le double de la pression enregistrée au niveau de l’abscisse $z=0,2$m. Cela montre qu’une bonne masse de grains de ciment a été filtrée près du point d’injection (pour $z\in[0 ; 0,2]$ m). Ce phénomène n’a été observé que pour l’essai IC5.

Pour tous les autres essais, on constate une distribution uniforme des pressions au sein de la colonne ce qui montre que les grains de ciment ont été filtrés d’une manière uniforme au sein de la colonne.

De plus, on constate qu’en général, les pressions enregistrées augmentent lorsque le débit d’injection augmente.

Enfin, le tableau 4-8 présente les résultats obtenus concernant la masse volumique du coulis sortant des colonnes (ρ_{coulis}) au cours des essais d’injection. Il est à noter que la masse volumique du coulis sortant de la colonne reste pratiquement constante ou peut diminuer légèrement.

Tableau 4-8 Résultats obtenus pour (ρ_{coulis}) lors des essais d’injection de colonnes

<table>
<thead>
<tr>
<th>N° d’essai</th>
<th>IC1</th>
<th>IC2</th>
<th>IC3</th>
<th>IC4</th>
<th>IC5</th>
<th>IC6</th>
<th>IC7</th>
<th>IC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ρ_{coulis})</td>
<td>1,07</td>
<td>1,07</td>
<td>1,09</td>
<td>1,09</td>
<td>1,04</td>
<td>1,07</td>
<td>1,08</td>
<td>1,08</td>
</tr>
<tr>
<td>(g/cm3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5. Comparaison des résultats obtenus sur les différents appareillages

Les résultats d’injection de colonnes et d’échantillons de 4 cm de haut seront comparés en termes de prise de masse et de pressions de fluide.

4.5.1. Comparaison en terme de prise de masse

D’abord, il faut signaler que deux types de comportement ont été obtenus lors de l’injection d’échantillons de 4 cm de haut, selon que l’on injecte à faible débit (inférieur à 2,5 cm3/s) ou à débit plus important (compris entre 3,5 et 10 cm3/s). Pour les faibles débits, on observe un taux de prise de masse faible (presque un palier) suivi d’une accélération du taux de prise de masse. Pour les débits les plus élevés, le taux de prise de masse est élevé dès le début de l’injection. Par contre, lors de l’injection de colonnes et de colonnes courtes (échantillons de 16 cm de haut), un seul type de comportement a été observé. Il est similaire à celui observé lors de l’injection d’échantillons de 4 cm de haut avec des débits relativement élevés (compris entre 3,5 et 10 cm3/s).

De plus, lors de l’injection des colonnes, il a été constaté que lorsque le débit d’injection augmente, le taux de prise de masse diminue (pour les débits compris entre 0 et 10 cm3/s), ce qui n’a pas été observé pour les échantillons de 4 cm de haut.

Les raisons de ces différences de comportement sont les suivantes.

Premièrement, lorsque l’énergie cinétique donnée à un grain de ciment augmente, celui-ci a plus de chance de traverser la colonne de sable sans être filtré. Par contre, l’énergie cinétique nécessaire pour pouvoir traverser un échantillon de 4 cm de haut est nettement plus faible que celle nécessaire pour pouvoir traverser la colonne. Ce fait explique la diminution du taux de prise de masse pour les colonnes lorsque l’on augmente le débit d’injection. Il explique aussi la raison pour laquelle, on n’observe pas d’effet clair du débit sur le taux de prise de masse lors de l’injection d’échantillons de 4 cm de haut.

Deuxièmement, pour les faibles débits, les grains de ciment les plus gros sédimentent dans les tuyaux d’injection et ne traversent pas les échantillons ni les colonnes. L’énergie cinétique des grains de ciment qui restent en écoulement leur permet de traverser un échantillon de 4 cm de haut beaucoup mieux que la colonne de 1,04 m de haut. De plus, la majorité de ces grains ne bloque pas dans l’échantillon de 4 cm de haut à cause de leur faible diamètre, ce qui explique pourquoi on observe un faible taux de prise de masse lors de l’injection des échantillons de 4
cm de haut avec des débits relativement faibles, mais que l’on n’observe pas le même phénomène lors de l’injection d’une colonne avec le même débit.

4.5.2. Comparaison en termes de pressions et de blocage de l’injection

Lors de l’injection d’échantillons de 4 cm de haut, on constate que la pression d’injection reste pratiquement constante pendant longtemps durant l’injection avant d’augmenter et d’atteindre la valeur de la pression de consolidation. Durant la phase où la pression reste constante, une masse assez importante de ciment est filtrée et, pourtant, la perméabilité reste pratiquement constante. Ce fait est dû aux écoulements préférentiels qui tendent à stabiliser la perméabilité malgré le colmatage du milieu poreux par une masse non négligeable de ciment.
Par contre, lors de l’injection de colonnes, la pression d’injection continue à augmenter après le remplissage de la colonne par le coulis. Les écoulements préférentiels ont beaucoup moins d’effet sur les perméabilités des colonnes que sur celles des échantillons de 4 cm de haut.
On constate, de plus, que le blocage se produit plus rapidement pour les échantillons de 4 cm de haut lorsque l’on augmente le débit d’injection, le blocage étant dû à l’instabilité de l’échantillon par liquéfaction, ce que l’on n’observe pas lors de l’injection des colonnes.
Ce phénomène s’explique ainsi : lorsque le débit d’injection augmente, le nombre de grains de ciment qui traverse un pore donné par seconde augmente et la probabilité de colmatage du pore augmente. Ce phénomène est marqué pour les échantillons de 4 cm de haut. Pour les colonnes, il est compensé par la filtration due au faible débit.
Enfin, il est à noter que le blocage de l’injection se produit plus rapidement pour les échantillons que pour les colonnes. La raison de ce résultat est que lors de l’injection, les variations de débits sont plus importantes pour les essais d’injections de colonnes que pour les essais d’injections d’échantillons. De plus, les variations de débits permettent le déblocage de certains grains de ciment bloqués dans la matrice poreuse. Le nombre de particules débloquées augmente lorsque l’amplitude des variations du débit augmente.
Les figures 4-41, 4-42 et 4-43 présentent quelques essais d’injections de colonnes et d’échantillons et montrent les variations de débits pour ces essais.
Figure 4-41 Essais d’injection d’échantillons de 4 cm de haut (essais IE25 et IE26)
Figure 4-42 Essais d’injection d’échantillons de 16 cm de haut (essais ICC1 et ICC2)
Figure 4.43 Essais d’injection de colonnes (essais IC7 et IC8)
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Chapitre 5

Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

5.1. Lois phénoménologiques et théoriques retenues pour la modélisation

Comme cela a déjà été indiqué dans le chapitre 2, certaines lois doivent être identifiées expérimentalement ou théoriquement afin de compléter la modélisation de l’écoulement de suspensions dans un milieu poreux en présence de filtration de particules. Il s’agit d’identifier la loi d’évolution de la viscosité du coulis, la loi d’évolution de la masse filtrée par unités de volume et de temps et la loi d’évolution de la perméabilité intrinsèque du milieu poreux.

5.1.1. Loi d’évolution de la masse filtrée par unités de volume et de temps

Une différence de comportement a été observée pour les évolutions des masses filtrées par unités de volume et de temps entre les essais d’injection de colonnes et les essais d’injection d’échantillons de 4 cm de haut.

On va donc essayer d’identifier la loi d’évolution de la masse filtrée par unités de volume et de temps en utilisant les essais d’injection de colonnes. Ce choix a été retenu car les essais d’injection de colonne sont plus représentatifs des écoulements dans un milieu poreux de grandes dimensions que les essais d’injection d’échantillons de 4 cm de haut.

On constate lors des essais d’injection de colonnes, que pour tous les essais, la prise de masse de la colonne est linéaire en fonction de la masse de coulis injecté lorsque le coulis a commencé à sortir de la colonne. Cette prise de masse est due uniquement à la filtration de grains de ciment par la matrice sableuse. Ce constat réalisé lors des essais d’injection nous suggère de retenir une loi d’évolution de la masse de ciment filtré par unités de volume et de temps linéaire par rapport à la fraction volumique du ciment dans le coulis en écoulement dans le milieu poreux.

Un terme d’échange de masse par unités de volume et de temps linéaire en fonction de la fraction volumique du ciment dans le coulis a donc été retenu. Il s’agit d’un développement limité au premier ordre du terme d’échange de masse par unités de volume et de temps par rapport à la fraction volumique du ciment dans le coulis en écoulement.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Le terme d’échange de masse retenu pour la modélisation est donc identique à celui retenu dans le chapitre 2. Le coefficient de proportionnalité \(a \) est déterminé expérimentalement à l’aide de la courbe d’évolution de la masse de la colonne.

Ce terme d’échange de masse est donné par l’équation suivante :

\[
\mu = -a \rho_b \delta
\]

(5.1)

\(a \) est un paramètre phénoménologique positif que l’on peut évaluer à l’aide des essais.

Enfin, les comparaisons des valeurs numériques et expérimentales de fraction volumique du ciment dans le coulis sortant de la colonne doivent permettre de valider expérimentalement le modèle numérique.

Dans ce qui suit, on va justifier qualitativement la loi retenue pour le terme de filtration par unités de volume et de temps.

Justification qualitative de la loi d’évolution de la masse de ciment filtrée par unités de volume et de temps

Supposons que la probabilité pour une particule injectée d’être bloquée dans l’intervalle \([0; z]\) soit donnée par la formule suivante :

\[
p_r = \alpha . z
\]

(5.2)

Cette probabilité augmente quand la longueur de l’intervalle augmente. On peut toujours supposer l’existence d’une distance \(\frac{1}{\alpha} \) qu’aucune particule n’arrive à dépasser à partir de la source d’injection.

Soient \(S \) la section d’un échantillon élémentaire, \(h \) sa longueur (figure 5-1) et \(V_c \) le volume moyen d’une particule de ciment. On suppose que la suspension de ciment traverse le volume poreux de cet échantillon élémentaire.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

![Diagram](image)

Figure 5-1 Schéma de l’échantillon élémentaire injecté

Le nombre de particules bloquées pendant Δt dans l’échantillon de hauteur h et de section S est donné par l’équation (5.3):

$$N_p = \int_0^h \frac{\Delta \Phi_v \Delta t}{V_e} \alpha$$ \hspace{1cm} (5.3)

On en déduit que le nombre de particules bloquées par unité de volume et de temps est donné par l’équation (5.4):

$$\lim_{\alpha \to 0} \frac{N_p}{\Delta t (h \cdot S)} = \frac{\Phi_v \cdot V}{V_e} \alpha$$ \hspace{1cm} (5.4)

Ainsi, la masse de suspensions filtrée par unité de volume est donnée par l’équation (5.5):

$$\mu = \rho_c \Phi_v \cdot \nu \alpha$$ \hspace{1cm} (5.5)

α est une fonction décroissante de la porosité, par exemple : $\alpha = \frac{\alpha_0}{\phi}$.

166
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Si on suppose que \(\alpha = \frac{\alpha_0}{\phi} \), qui est une hypothèse qualitativement vrai, on déduit à partir des équations (2.5) et (5.5) la loi d’évolution de la masse de ciment filtrée par unités de volume et de temps :

\[
\mu = \rho_c \cdot \frac{\phi_0}{\phi} \cdot v \cdot \alpha_0 = \left(v \alpha_0 \right) \cdot \rho_c \cdot \delta \quad (5.6)
\]

On justifie donc qualitativement l’hypothèse retenue pour la fonction de prise de masse par unités de volume et de temps.

D’ailleurs, on ne peut pas démontrer mathématiquement une loi phénoménologique (en physique, on parle assez souvent de postulats). Par contre, on peut montrer à l’aide d’un raisonnement simple le type de comportement que l’on peut avoir.

5.1.2. Loi d’évolution de la perméabilité intrinsèque du milieu poreux

Une différence de comportement a été observée pour l’évolution des pressions entre les essais d’injection de colonnes longues et les essais d’injection d’échantillons de 4 cm de haut. De plus, afin de simuler l’écoulement dans un milieu poreux de grande dimension, il faut plutôt se référer aux essais d’injection de colonnes. C’est pourquoi, on va se baser sur les résultats de ces essais pour proposer le modèle d’évolution de la perméabilité intrinsèque du milieu poreux.

On constate lors des essais d’injection de colonne que le gradient de pression est une fonction affine de la porosité. Compte tenu de la loi de Darcy et du débit constant d’injection, il faut que la perméabilité intrinsèque soit une fonction hyperbolique de la porosité. Ce raisonnement nous suggère de retenir une fonction hyperbolique de la porosité pour la perméabilité intrinsèque. Cette loi est donnée par l’équation (5.7) :

\[
k_{int} = \frac{k_{int,0}}{1 + b \left(\phi - \phi_0 \right)} \quad (5.7)
\]

La loi (5.7) est bien évidemment valable dans le cas d’un écoulement unidimensionnel.

\(k_{int,0} \) est la perméabilité intrinsèque initiale du milieu poreux. \(b \) est un paramètre phénoménologique négatif déterminé en utilisant les résultats des essais d’injection de colonnes. La loi (5.7) exprime bien le fait que la perméabilité intrinsèque diminue lorsque la porosité diminue. On va utiliser cette loi dans le modèle développé afin d’évaluer les profils.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

des pressions au sein du milieu poreux. Par la suite, on comparera les résultats expérimentaux avec ceux des simulations numériques.

5.1.3. Loi d’évolution de la viscosité du coulis
La loi d’évolution retenue pour la viscosité du coulis est la loi d’Einstein :

\[\mu_{coulis} = \mu_{eau} \left(1 + \frac{5}{2} \delta \right) \] \hspace{1cm} (5.8)

Cette loi d’évolution de la viscosité peut être retenue comme première approximation pour les coulis à faibles concentration en ciment, ce qui est le cas pour le coulis étudié.

5.1.4. Utilité des essais d’injection d’éprouvettes de 4 cm de haut
Il a été indiqué dans les paragraphes précédents que les lois phénoménologiques retenues pour le modèle ont été identifiés à l’aide des essais d’injection de colonnes. Qu’en est-il alors de l’utilité des essais réalisés sur les éprouvettes de 4 cm de haut.

Les essais d’injection d’échantillons servent à étudier l’effet de la contrainte de consolidation isotrope sur les résultats, ce que les essais de colonne ne permettent pas de faire. De plus, les essais d’injection d’échantillons permettent aussi d’étudier l’effet de l’indice de densité sur l’injectabilité, ce que les essais de colonne ne permettent pas de faire. En effet, lors de l’injection de colonnes constituées par du sable lâche, on observe un phénomène de tassement du sable et une densification de l’échantillon de sable.

Par ailleurs, lors de l’injection d’échantillons, on enregistre un taux de prise de masse par unités de volume et de temps proche de celui enregistré lors des essais d’injection de colonnes pour les mêmes conditions opératoires. Les essais d’injection d’échantillons permettent donc d’avoir une première estimation du taux de prise de masse par unités de volume et de temps que l’on peut retenir pour faire des simulations numériques.

5.2. Calcul de la masse et des pressions au sein de la colonne longue

5.2.1. Calcul de la variation de masse de la colonne
La variation de masse de la colonne est dûe à l’injection de coulis de ciment au sein du volume poreux de la colonne, initialement saturé en eau.

Initialement, le volume poreux de la colonne a une masse donnée par la formule (5.9) :
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

\[m_i = S \int_0^l \rho_e \phi_0 \, dz \]

(5.9)

\(S \) et \(L \) sont respectivement la section et la longueur de la colonne injectée.

Après injection du coulis, la variation de masse du volume poreux de la colonne aura trois composantes :

- La variation de masse due au remplissage des couches filtrantes et des tuyaux. Un calcul approximatif donne :

\[\Delta m_1 \approx 0,03 \text{ kg} \]

(5.10)

- La variation de masse due à la propagation du coulis dans le milieu poreux.

\[\Delta m_2(t) = S \int_0^l \rho \text{coulis}(z,t) \phi(z,t) \, dz - S \int_0^l \rho_e \phi_0 \, dz \]

(5.11)

Les variations de la porosité ainsi que de la masse volumique du coulis en fonction de l’abscisse \(z \) sont évaluées numériquement. À noter que la masse volumique du coulis est donnée par la formule (5.12) :

\[\rho \text{coulis}(z,t) = \rho_e + (\rho_c - \rho_e) \delta(z,t) \]

(5.12)

- La variation de masse due à la filtration des grains de ciment par le sable.

\[\Delta m_3(t) = -S \int_0^l \int_0^\tau \mu(z,\tau) \, dz \, d\tau = a.S.\rho_c \int_0^l \delta(z,\tau) \, dz \, d\tau \]

(5.13)

La variation de masse globale de la colonne à un instant \(t \), est donnée par la formule (5.14) :

\[\Delta m(t) = 0,03 + S \int_0^l \rho \text{coulis}(z,t) \phi(z,t) \, dz - S \int_0^l \rho_e \phi_0 \, dz + S.a.\rho_c \int_0^l \delta(z,\tau) \, dz \, d\tau \]

(5.14)

En toute rigueur, la formule (5.14) est valable lorsque la colonne est déjà saturée en coulis. Lorsque la colonne n’est pas encore remplie en coulis, il faut modifier la variation de masse due au remplissage des couches filtrantes et des tuyaux.
5.2.2. Calcul des pressions au sein de la colonne

Les pressions seront calculées à partir de la loi de Darcy (2.4), de la loi d’évolution de la perméabilité intrinsèque du milieu poreux (5.7) et de la loi d’évolution de la viscosité du coulis (5.8).

Compte tenu des équations (2.4) et (2.27) et du fait que le problème étudié est unidimensionnel (le tenseur de perméabilité devient un scalaire), on déduit que :

$$\nabla \cdot \mathbf{v} = \phi \cdot \mathbf{v} = \frac{k_{\text{int}}}{\mu_{\text{coulis}}} (\nabla \mathbf{p}) + \rho_{\text{coulis}}.g.\mathbf{e}_z \quad (5.15)$$

Les équations (5.8) et (5.15) impliquent :

$$- \nabla \mathbf{p} = \frac{\mathbf{v} \cdot \mu_{\text{coulis}} \left(1 + \frac{5}{2} \delta \right)}{k_{\text{int}}(\phi)} + \rho_{\text{coulis}}.g \quad (5.16)$$

En intégrant l’équation (5.16) par rapport à l’intervalle $[z, L']$ (ou on dispose de capteurs ; $L' = 1 \text{ m}$), on obtient :

$$\int_z^{L'} - \nabla \mathbf{p} \, dz = \int_z^{L'} \left(\frac{\mathbf{v} \cdot \mu_{\text{coulis}} \left(1 + \frac{5}{2} \delta \right)}{k_{\text{int}}(\phi)} \right) \, dz + \int_z^{L'} \rho_{\text{coulis}}.g \, dz \quad (5.17)$$

Les équations (5.7), (5.12) et (5.17) entraînent :

$$p(z, t) - p(L', t) = \frac{\mathbf{v} \cdot \mu_{\text{coulis}}}{k_{\text{int},0}} \int_z^{L'} \left(1 + \frac{5}{2} \delta \right) (1 + b(\phi - \phi_0)) \, dz + \left(\rho_c(z) (L' - z) + (\rho_c - \rho_e) \right) \int_z^{L'} \delta \, dz \quad (5.18)$$

5.3. Simulation de quelques essais et première validation du modèle dans le cas unidimensionnel

5.3.1. Les objectifs et les essais simulés

On se propose de simuler numériquement quelques essais d’injection de colonne réalisés sur le sable de Fontainebleau. À l’aide des simulations, on va essayer de retrouver l’évolution de
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

la masse de la colonne et les évolutions des pressions au sein de celle-ci. Pour chaque essai, on va comparer la fraction volumique du ciment dans le coulis sortant de la colonne que l’on détermine numériquement, avec celle mesurée expérimentalement, afin de vérifier la conformité des résultats numériques et expérimentaux.
Le tableau 5-1 rappelle les caractéristiques des essais simulés.

<table>
<thead>
<tr>
<th>Essai</th>
<th>Sable</th>
<th>Débit (cm³/s)</th>
<th>I₀</th>
<th>C/E</th>
<th>F/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>FB</td>
<td>5,60</td>
<td>0,95</td>
<td>0,20</td>
<td>0,05</td>
</tr>
<tr>
<td>IC3</td>
<td>FB</td>
<td>7,33</td>
<td>0,95</td>
<td>0,20</td>
<td>0,05</td>
</tr>
<tr>
<td>IC4</td>
<td>FB</td>
<td>9,16</td>
<td>0,95</td>
<td>0,20</td>
<td>0,05</td>
</tr>
</tbody>
</table>

F : masse de fluidifiant dans le coulis; E : masse d’eau dans le coulis; C : masse de ciment dans le coulis; I₀ : indice de densité ; FB : sable de Fontainebleau.

Afin de réaliser les simulations numériques, les paramètres a et b sont évalués de la manière suivante.

Le paramètre b est évalué afin de minimiser la fonction suivante :

\[F_b(b) = \left(\sum_{z \in [0,0,2,0,4,0,6,0,8]} \int_0^{2L \phi_0/v^-} \left(p_{th}(z,t) - p_{exp}(z,t) \right)^2 dt \right)^{0.5} \] (5.19)

Cette minimisation permet d’approcher au mieux les évolutions des pressions enregistrées par les capteurs placés aux absisses 0 ; 0,2 ; 0,4 ; 0,6 et 0,8.

\(p_{th}(z,t) \) est la pression déterminée théoriquement à l’abscisse z et à l’instant t.

\(p_{exp}(z,t) \) est la pression mesurée expérimentalement à l’abscisse z et à l’instant t.

Deux méthodes ont été utilisées afin de déterminer le paramètre a. La première consiste à déterminer le paramètre a qui permet de retrouver la variation de masse de la colonne à l’instant \(t = 2L \phi_0 / v^- \) (lorsque l’on injecte un volume de coulis égal au double du volume des vides de la colonne). La deuxième méthode consiste à déterminer le paramètre a qui permet d’approcher au mieux, au sens des moindres carrées, la courbe de variation de masse de la colonne que l’on détermine expérimentalement. Le paramètre a minimise la fonction suivante :
Chapitre 5 – Évaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

\[F_a(a) = \left(\frac{2.1.9}{\sqrt{e}} \int_0^\infty (\Delta m_{th}(t) - \Delta m_{exp}(t)) dt \right)^{0.5} \]
(5.20)

\(\Delta m_{th}(t)\) est la variation de masse de la colonne, évaluée théoriquement à l’instant \(t\).

\(\Delta m_{exp}(t)\) est la variation de masse de la colonne, mesurée expérimentalement à l’instant \(t\).

5.3.2. Résultats obtenus lorsque le paramètre \(a\) est déterminé pour retrouver numériquement la masse de la colonne à l’instant \(t=2.1.9/\sqrt{e}\)

La figure 5-2 indique l’évolution de la fonction \(F_b\) par rapport aux valeurs du paramètre \(b\), pour l’essai IC1.

![Figure 5-2 Evolution de la fonction \(F_b\) pour l’essai IC1](Image)

Les essais IC1, IC3 et IC4 ont été simulés numériquement. Les figures 5-3, 5-4, 5-5, 5-6, 5-7 et 5-8 comparent les résultats numériques et expérimentaux.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Les paramètres communs retenus pour les simulations des 3 essais sont les suivants :
\[f=0,064 \ ; \ \phi_0 = 0,36 \ ; \ \Delta t = 0,839 \text{ s} \ ; \ N_c = 200 \ ; \ L_i=1,04 \text{ m} \ ; \ L'=1 \text{ m} \ ; \ g=10 \ \text{N/kg} ; \]
\[\mu_{eau} = 1,1.10^{-3} \text{ Pa.s} ; \ \rho_c = 10^3 \ \text{kg/m}^3 ; \ \rho_e = 2,94.10^3 \ \text{kg/m}^3 . \]

Les paramètres spécifiques à chaque essai sont donnés par le tableau 5-2. Ce tableau indique aussi les valeurs expérimentales et numériques de la fraction volumique du ciment dans le coulis sortant de la colonne, ainsi que l’erreur relative commise.

On rappelle que la masse volumique du coulis sortant de la colonne reste sensiblement constante en fonction du temps jusqu’à l’arrêt de l’essai. L’essai étant arrêté lorsque l’on injecte un volume de coulis égal au double du volume des vides de la colonne.

Tableau 5-2 Paramètres retenus pour les simulations numériques, et résultats obtenus pour
\[\delta(z=L,t>1,2.(L.\phi_0)/v^-) \]

<table>
<thead>
<tr>
<th>Essai</th>
<th>IC1</th>
<th>IC3</th>
<th>IC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v^- \text{ (m/s)})</td>
<td>1,116.10^{-3}</td>
<td>1,460.10^{-3}</td>
<td>1,823.10^{-3}</td>
</tr>
<tr>
<td>(k_{int,0} \text{ (m}^2)</td>
<td>1,25.10^{-11}</td>
<td>1,18.10^{-11}</td>
<td>1,32.10^{-11}</td>
</tr>
<tr>
<td>(a \text{ (s}^{-1})</td>
<td>1,10.10^{-3}</td>
<td>1,12.10^{-3}</td>
<td>1,02.10^{-3}</td>
</tr>
<tr>
<td>(b)</td>
<td>-170</td>
<td>-150</td>
<td>-150</td>
</tr>
<tr>
<td>(\delta(z=L,t>1,2.(L.\phi_0)/v^-)) expérimental</td>
<td>3,61.10^{-2}</td>
<td>4,64.10^{-2}</td>
<td>4,64.10^{-2}</td>
</tr>
<tr>
<td>(\delta(z=L,t>1,2.(L.\phi_0)/v^-)) numérique</td>
<td>2,40.10^{-2}</td>
<td>3,00.10^{-2}</td>
<td>3,67.10^{-2}</td>
</tr>
<tr>
<td>erreur relative sur (\delta(z=L,t>1,2.(L.\phi_0)/v^-))</td>
<td>0,33</td>
<td>0,35</td>
<td>0,21</td>
</tr>
</tbody>
</table>
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-3 Profils des masses numérique et expérimentale de la colonne en fonction du temps (essai IC1)

Figure 5-4 Profils des pressions numériques et expérimentales au sein de la colonne en fonction du temps (essai IC1)
Figure 5.5 Profils des pressions numériques et expérimentales au sein de la colonne en fonction du temps (essai IC3)
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-7 Profils des masses numérique et expérimentale de la colonne en fonction du temps (essai IC4)

Figure 5-8 Profils des pressions numériques et expérimentales au sein de la colonne en fonction du temps (essai IC4)
5.3.3. Résultats obtenus lorsque le paramètre a est déterminé afin de minimiser la fonction F_a

La figure 5-9 indique les évolutions des fonctions F_a et F_b pour l’essai IC1.

![Diagramme](image)

*Figure 5-9 Evolutions des fonctions F_a et F_b pour l’essai IC1

Les essais IC1, IC3 et IC4 ont été simulés numériquement. Les figures 5-10, 5-11, 5-12, 5-13, 5-14 et 5-15 comparent les résultats numériques et expérimentaux.

Les paramètres communs retenus pour les simulations des 3 essais sont les suivants :

$f = 0,064$; $\phi_0 = 0,36$; $\Delta t = 0,839$ s ; $N_e = 200$; $L = 1,04$ m ; $L’ = 1$ m ; $g = 10$ N/kg ;

$\mu_{eau} = 1,1.10^{-3}$ Pa.s ; $\rho_e = 10^3$ kg/m3 ; $\rho_c = 2,94.10^3$ kg/m3.

Les paramètres spécifiques à chaque essai sont donnés par le tableau 5-3. Ce tableau indique aussi les valeurs expérimentales et numériques de la fraction volumique du ciment dans le coulis sortant de la colonne, ainsi que l’erreur relative commise.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Tableau 5-3 Paramètres retenus pour les simulations numériques, et résultats obtenus pour $\delta(z=L,t>1,2.(L.\phi_0)/v^\gamma)$

<table>
<thead>
<tr>
<th>Essai</th>
<th>IC1</th>
<th>IC3</th>
<th>IC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>v^γ (m/s)</td>
<td>$1,116 \times 10^{-3}$</td>
<td>$1,460 \times 10^{-3}$</td>
<td>$1,823 \times 10^{-3}$</td>
</tr>
<tr>
<td>$k_{int,0}$ (m²)</td>
<td>$1,25 \times 10^{-11}$</td>
<td>$1,18 \times 10^{-11}$</td>
<td>$1,32 \times 10^{-11}$</td>
</tr>
<tr>
<td>a (s⁻¹)</td>
<td>$1,3 \times 10^{-3}$</td>
<td>$1,5 \times 10^{-3}$</td>
<td>$1,3 \times 10^{-3}$</td>
</tr>
<tr>
<td>b</td>
<td>-150</td>
<td>-130</td>
<td>-160</td>
</tr>
<tr>
<td>$\delta(z=L,t>1,2.(L.\phi_0)/v^\gamma)$ expérimental</td>
<td>$3,61 \times 10^{-2}$</td>
<td>$4,64 \times 10^{-2}$</td>
<td>$4,64 \times 10^{-2}$</td>
</tr>
<tr>
<td>$\delta(z=L,t>1,2.(L.\phi_0)/v^\gamma)$ numérique</td>
<td>$2,00 \times 10^{-2}$</td>
<td>$2,30 \times 10^{-2}$</td>
<td>$3,15 \times 10^{-2}$</td>
</tr>
<tr>
<td>erreur relative sur $\delta(z=L,t>1,2.(L.\phi_0)/v^\gamma)$</td>
<td>0,46</td>
<td>0,50</td>
<td>0,32</td>
</tr>
</tbody>
</table>
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-10 Profils des masses numériques et expérimentales de la colonne en fonction du temps (essai IC1)

Figure 5-11 Profils des pressions numériques et expérimentales au sein de la colonne en fonction du temps (essai IC1)
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-12 Profils des masses numériques et expérimentales de la colonne en fonction du temps (essai IC3)

Figure 5-13 Profils des pressions numériques et expérimentales au sein de la colonne en fonction du temps (essai IC3)
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-14 Profils des masses numérisque et expérimentale de la colonne en fonction du temps (essai IC4)

Figure 5-15 Profils des pressions numériques et expérimentales au sein de la colonne en fonction du temps (essai IC4)
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

5.3.4. Commentaires et modélisation de l’évolution du paramètre \(a \) en fonction du débit

Comme le montrent les figures 5-3 à 5-15, les résultats numériques obtenus sont en bon accord avec les résultats expérimentaux.

Par ailleurs, les tableaux 5-2 et 5-3 permettent de comparer la fraction volumique du ciment dans le coulis sortant de la colonne qui est mesurée expérimentalement, avec la même fraction évaluée numériquement. On constate que les résultats numériques sont assez proches des résultats expérimentaux, ce qui confirme bien l’accord des résultats numériques avec les phénomènes physiques qui se produisent au cours de l’injection et valide expérimentalement le modèle développé.

Il est à noter de plus, que les deux méthodes de détermination du paramètre \(a \) donnent des résultats comparables, avec une meilleure précision de la première méthode pour déterminer la valeur numérique de la fraction volumique du ciment dans le coulis sortant de la colonne.

Dans la suite, les résultats de la première méthode seront utilisés.

Le tableau 5-2 montre que le paramètre \(a \) une valeur constante, \(a=1.1.10^{-3} \text{ s}^{-1} \).

Il faut souligner que la valeur numérique du paramètre \(a \) est valable pour l’intervalle de débit étudié.

Dans toute la suite, cette valeur sera retenue pour les simulations numériques.

5.4. Evaluation de l’abscisse critique pour l’écoulement unidimensionnel

Dans ce qui suit, on va déterminer une abscisse critique \(z_{\alpha} \) à partir de laquelle la fraction volumique totale de ciment dans le milieu poreux devient inférieure ou égale à une concentration \(\phi_{c,\alpha}^T \). Dans la pratique, \(\phi_{c,\alpha}^T \) représente la fraction volumique de ciment au-dessous de laquelle les effets de l’injection de coulis sur les propriétés mécaniques du sol injecté sont inférieures à celles imposées par le cahier des charges de l’injecteur.

Pour cela, on utilisera la solution analytique donnée dans le paragraphe 2.7.

La fraction volumique totale du ciment est égale à la somme du ciment présent dans le coulis et du ciment qui a été filtré par la matrice poreuse. Elle est donnée par l’équation (5.21) :

\[
\phi_c^T = \Delta \phi_c + \phi \delta
\]

(5.21)

Les équations (2.8) et (5.21) donnent :

\[
\phi_c^T = -\Delta \phi_c + \phi \delta
\]

(5.22)
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Dans la suite, on va supposer que \(z_{cr} < v^+ t \). Après l’évaluation de l’abscisse critique, il faut vérifier la validité de cette hypothèse.

Les équations (2.69), (2.71) et (5.22) impliquent :

\[
\phi^r_c = a \left(t - \frac{z}{v^+} \right) \delta + \left(\phi_0 - a \left(t - \frac{z}{v^+} \right) \delta \right) \delta = -a \left(t - \frac{z}{v^+} \right) \delta^2 + \left(\phi_0 + a \left(t - \frac{z}{v^+} \right) \right) \delta \quad (5.23)
\]

Puisque \(\delta \ll 1 \), on déduit que :

\[
\phi^r_c \approx \left(\phi_0 + a \left(t - \frac{z}{v^+} \right) \right) \delta \quad (5.24)
\]

Dans ce qui suit, on va déterminer l’abscisse critique \(z_{cr} \). Cette abscisse est définie comme étant l’abscisse à laquelle la fraction volumique totale en ciment du milieu poreux devient égale à une fraction critique \(\phi^r_{c,cr} \).

Pour l’évaluer, il faut résoudre l’équation (5.25) :

\[
\phi^r_c \approx \left(\phi_0 + a \left(t - \frac{z_{cr}}{v^+} \right) \right) \delta = \phi^r_{c,cr} \quad (5.25)
\]

Les équations (2.69) et (5.25) donnent :

\[
\left(\phi_0 + a \left(t - \frac{z_{cr}}{v^+} \right) \right) \frac{1}{1 + \left(\frac{1}{f} - 1 \right) e^{\frac{a z_{cr}}{\phi_0 v^+}}} = \phi^r_{c,cr} \quad (5.26)
\]

On déduit à partir de l’équation (5.26) que :

\[
\phi^r_{c,cr} \left(\frac{1}{f} - 1 \right) e^{\frac{a z_{cr}}{\phi_0 v^+}} + a \left(\frac{z_{cr}}{v^+} - t \right) + \phi^r_{c,cr} - \phi_0 = 0 \quad (5.27)
\]

On considère la fonction \(f_{cr}(z) \) définie par l’équation (5.28) :

\[
f_{cr}(z) = \phi^r_{c,cr} \left(\frac{1}{f} - 1 \right) e^{\frac{a z}{\phi_0 v^+}} + a \left(\frac{z}{v^+} - t \right) + \phi^r_{c,cr} - \phi_0 \quad (5.28)
\]
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Cette fonction est strictement croissante et admet un seul zéro, comme le montre le tableau de variation 5-4. Le zéro de la fonction f_{cr} est l’abscisse critique.

<table>
<thead>
<tr>
<th>z</th>
<th>0</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(\frac{\partial f_{cr}}{\partial z} \right)_t$</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>f_{cr}</td>
<td>$\frac{\phi_{cr}}{f} - a t - \phi_0$</td>
<td>$+\infty$</td>
</tr>
</tbody>
</table>

Il est à rappeler que la solution numérique du problème est valable en présence d’un terme de filtration linéaire en fonction de δ. De plus, à partir d’une variation assez importante de la porosité ϕ (de l’ordre de 30%) , on peut estimer que l’hypothèse de linéarité du terme de filtration en fonction de δ n’est plus valable. A ce moment là, il y aura une filtration accentuée accompagnée d’une forte augmentation de la pression et d’un blocage de l’injection.

La figure 5-16 présente les variations de l’abscisse critique z_{cr} en fonction de la vitesse d’injection du coulis de ciment à l’instant $t=2000$ s, ainsi qu’en fonction du temps pour une vitesse d’injection $v^{-} = 1,115.10^{-3}$ m/s . Pour toutes ces valeurs de l’abscisse critique, on vérifie la validité de l’hypothèse $(\xi_{cr} < v^{-}.t)$ selon laquelle le front du coulis aura atteint l’abscisse critique.

On constate que l’abscisse z_{cr} augmente en fonction du temps et de la vitesse d’injection. On peut montrer ce constat dans le cas général et indépendamment des valeurs numériques retenues pour l’application numérique.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-16 Variations de l’abscisse critique \(z_{\phi} \) en fonction de la vitesse d’injection du coulis de ciment à l’instant \(t=2000 \text{ s} \), ainsi qu’en fonction du temps pour \(v^- = 1,115 \times 10^{-3} \text{ m/s} \)

Il est à souligner que la connaissance de \(z_{\phi} \) permet de :
- gérer la durée de l’injection afin d’obtenir le traitement désiré sur une zone donnée à débit prescrit ;
- déterminer le débit d’injection pour obtenir le traitement voulu sur une zone donnée pour une durée prescrite ;
- déterminer la zone de sol traitée efficacement \(\left(\phi_c^T \geq \phi_{c,\phi}^T \right) \) pour des valeurs données du débit et de la durée d’injection.

5.5. Effet du débit sur l’écoulement radial

Afin d’étudier l’effet du débit sur les évolutions de \(\delta \) et de \(\phi \) lors de l’écoulement radial, quelques simulations ont été réalisées, la valeur retenue pour le paramètre \(a \) est celle déterminée grâce aux essais de colonne \((a=1,1 \times 10^{-3} \text{ s}^{-1}) \). Les paramètres suivants ont été retenus pour les simulations :
\[
\phi_0 = 0,36 ; \quad r_0 = 0,1 \text{ m} ; \quad R = 1 \text{ m} ; \quad f = 0,064 ; \quad N_e = 200 ; \quad \Delta t = R.\phi_0/(2.N_e.v^-) \]
\(\Delta t \) étant la durée de passage de l’une des particules de ciment. Les figures 5-17 et 5-18 présentent les résultats obtenus pour un même volume injecté de coulis \((t.v^- = 2,88 \text{ m}) \) et pour plusieurs débits (plusieurs vitesses d’injection).

On constate bien que lorsque le débit augmente la filtration des particules de ciment diminue.
Chapitre 5 – Évaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Figure 5-17 Evolutions de la fraction volumique du ciment dans le coulis δ en fonction du rayon pour plusieurs débits d’injection

![Graphique de la fraction volumique du ciment](image1)

Figure 5-18 Evolutions de la porosité ϕ en fonction du rayon pour plusieurs débits d’injection

![Graphique de la porosité](image2)
5.6. Evaluation du rayon critique pour l’écoulement radial

On va déterminer un rayon critique \(r_{cr} \) au-delà duquel la fraction totale du ciment dans le milieu poreux devient inférieure à une concentration critique \(\phi_{c,cr}^T \). Pour cela, on se basera sur la solution analytique du problème d’écoulement radial et qui est donnée dans le paragraphe 2.11.

Cette évaluation permet d’avoir une idée sur la fraction totale du ciment dans le sol après les travaux d’injection. Cela nous permet de déterminer le maillage qu’il faut faire avec les tubes d’injection afin d’avoir un certain apport de ciment dans le sol qui pourrait être imposé par un cahier de charges par exemple.

La quantité de ciment présente dans le milieu poreux est égale à la somme du ciment présent dans le coulis et du ciment qui a été filtré par la matrice poreuse. Cette fraction volumique totale en ciment du milieu poreux est donnée par l’équation (5.29) :

\[
\phi_{c}^T = \Delta \phi + \phi \delta \tag{5.29}
\]

Les équations (2.8) et (5.29) impliquent :

\[
\phi_{c}^T = -\Delta \phi + \phi \delta \tag{5.30}
\]

Dans la suite, on va supposer que \(r_{cr} \leq \sqrt{r_{c,0}^2 + 2(v^+ - r_{c,0})t} \). Après l’évaluation du rayon critique, il faut vérifier la validité de cette hypothèse.

Les équations (2.127), (2.129) et (5.30) impliquent :

\[
\phi_{c}^T = a \left(t - \frac{r^2 - r_{c,0}^2}{2v^+ r_{c,0}} \right) \delta + \left(\phi_0 - a \left(t - \frac{r^2 - r_{c,0}^2}{2v^+ r_{c,0}} \right) \delta \right) \delta \tag{5.31}
\]

On déduit à partir de l’équation (5.31) :

\[
\phi_{c}^T = -a \left(t - \frac{r^2 - r_{c,0}^2}{2v^+ r_{c,0}} \right) \delta^2 + \left(\phi_0 + a \left(t - \frac{r^2 - r_{c,0}^2}{2v^+ r_{c,0}} \right) \delta \right) \delta \tag{5.32}
\]

Puisque \(\delta \ll 1 \), on en déduit à partir de l’équation (5.32) que :

\[
\phi_{c}^T \approx \left(\phi_0 + a \left(t - \frac{r^2 - r_{c,0}^2}{2v^+ r_{c,0}} \right) \right) \delta \tag{5.33}
\]
Dans ce qui suit, on va déterminer r_{cr}. Ce rayon critique est par définition le rayon pour lequel la fraction totale en ciment présente dans le milieu poreux devient égale à une fraction totale critique $\phi_{c,cr}^T$. Pour déterminer ce rayon critique, il suffit de résoudre l’équation (5.34) :

$$\phi_{c}^T = \phi_0 + a \left(t - \frac{r_{cr}^2 - r_0^2}{2v^* r_0} \right) = \phi_{c,cr}^T$$ \hspace{1cm} (5.34)

Les équations (2.127) et (5.34) impliquent :

$$\left(\phi_0 + a \left(t - \frac{r_{cr}^2 - r_0^2}{2v^* r_0} \right) \right) \frac{1}{\left(1 + \frac{1}{f} - 1 \right) e^{\frac{a \left(r_{cr}^2 - r_0^2 \right)}{2v^* \nu^* \phi_0}}} = \phi_{c,cr}^T$$ \hspace{1cm} (5.35)

Ce qui implique :

$$\phi_0 + a \left(t - \frac{r_{cr}^2 - r_0^2}{2v^* r_0} \right) = \phi_{c,cr}^T + \phi_{c,cr}^T \left(\frac{1}{f} - 1 \right) e^{\frac{a \left(r_{cr}^2 - r_0^2 \right)}{2v^* \nu^* \phi_0}}$$ \hspace{1cm} (5.36)

On déduit que :

$$\phi_{c,cr}^T \left(\frac{1}{f} - 1 \right) e^{\frac{a \left(r_{cr}^2 - r_0^2 \right)}{2v^* \nu^* \phi_0}} + a \left(t - \frac{r_{cr}^2 - r_0^2}{2v^* r_0} \right) + \phi_{c,cr}^T - \phi_0 = 0$$ \hspace{1cm} (5.37)

On considère la fonction g_{cr} définie par l’équation (5.38) :

$$g_{cr}(r) = \phi_{c,cr}^T \left(\frac{1}{f} - 1 \right) e^{\frac{a \left(r_{cr}^2 - r_0^2 \right)}{2v^* \nu^* \phi_0}} + a \left(t - \frac{r_{cr}^2 - r_0^2}{2v^* r_0} \right) + \phi_{c,cr}^T - \phi_0$$ \hspace{1cm} (5.38)

La fonction g_{cr} est strictement croissante et admet un seul zéro comme le montre le tableau de variations 5-5. Le zéro de cette fonction est le rayon critique r_{cr}.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Tableau 5-5 Tableau de variations de la fonction g_{τ}

<table>
<thead>
<tr>
<th>r</th>
<th>r_0</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(\frac{\partial g_{\tau}}{\partial r} \right) \big</td>
<td>_{t}$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

g_{τ}

|$\theta_{\tau\alpha} = \frac{\phi_{\tau} - a t - \phi_{0}}{f}$|

| $+\infty$ |

Il est à rappeler que la solution numérique du problème est valable en présence d’un terme de filtration linéaire en fonction de δ. De plus, à partir d’une variation assez importante de la porosité ϕ (de l’ordre de 30%), on peut estimer que l’hypothèse de linéarité du terme de filtration en fonction de δ n’est plus valable. A ce moment la, il y aura une filtration accentuée accompagnée d’une forte augmentation de la pression et d’un blocage de l’injection.

La figure 5-19 présente les variations du rayon critique r_{α} en fonction de la vitesse d’injection du coulis de ciment à l’instant $t=2000$ s, ainsi qu’en fonction du temps pour une vitesse d’injection $v^\tau = 1,115 \times 10^{-3}$ m/s. Pour toutes les valeurs déterminées du rayon critique r_{α}, on vérifie la validité de l’hypothèse $\left(r_{\alpha} \leq \sqrt{r_0^2 + 2(v^\tau r_0) t} \right)$ selon laquelle le front du coulis aura atteint le rayon critique.

Par ailleurs, les valeurs numériques retenues pour les simulations sont les suivantes : $f = 0,064$; $\phi_{\tau\alpha} = 0,0064$; $\phi_{0} = 0,36$; $a = 1,1.10^{-3}$ s$^{-1}$; $r_{0} = 0,1$ m ; $R = 1$ m.

On constate que le rayon critique r_{α} augmente en fonction du temps et de la vitesse d’injection. On peut montrer ce constat dans le cas général et indépendamment des valeurs numériques retenues.
Figure 5.19 Variations de r_{cr} en fonction de la vitesse d’injection du coulis de ciment à l’instant $t=2000$ s, ainsi qu’en fonction du temps pour $v^{-} = 1,115.10^{-3}$ m/s

On note que la connaissance du rayon critique permet de :
- gérer la durée de l’injection en vue d’obtenir le traitement désiré sur une zone donnée à débit prescrit ;
- déterminer le débit pour obtenir le traitement sur une zone donnée pour une durée prescrite ;
- déterminer la zone traitée efficacement ($\phi_{c}^{T} \geq \phi_{c,cr}^{T}$) pour des valeurs données du débit et de la durée d’injection.

5.7. Conclusions
Une première validation du modèle théorique développé a pu être réalisée grâce aux essais d’injection de colonnes présentés dans le chapitre 4.
Ce modèle prévoit fidèlement les résultats expérimentaux d’injection de coulis de ciment Spinor A12 dans des colonnes de sable de Fontainebleau.
Pour des essais d’injection utilisant d’autres matériaux, les lois de filtration et d’évolution de la perméabilité doivent être éventuellement modifiées afin de les adapter aux matériaux étudiés.
Chapitre 5 – Evaluation du modèle dans le cas unidimensionnel. Détermination de l’abscisse et du rayon critiques

Toutefois, le modèle proposé garde un caractère généraliste et reste valable pour tous les essais, indépendamment des matériaux considérés. Par ailleurs, l’abscisse et le rayon critiques ont été évalués. L’évaluation du rayon critique permet d’avoir une idée sur le maillage qu’il faut faire avec les tubes d’injection afin d’avoir le renforcement voulu du sol.
Conclusion générale et perspectives

Dans le cadre de cette thèse, des travaux expérimentaux et théoriques ont été réalisés dans le but de modéliser l’écoulement de suspensions dans des milieux poreux constitués par des matrices granulaires, en présence de filtration des grains de ciment par le milieu poreux.

Concernant le travail expérimental, une cellule d’injection d’échantillons cylindriques de petites dimensions (4 cm de haut et 8 cm de diamètre) a été développée afin d’évaluer les lois d’évolutions des prises de masses et de perméabilité d’éprouvettes élémentaires supposées homogènes.

Des essais ont été réalisés sur cette cellule et ont permis d’étudier les influences de divers paramètres : indice de densité de la matrice, contrainte de consolidation, concentration du coulis en ciment, débit d’injection et forme des grains constituant le milieu poreux injecté.

Deux types de comportement ont été obtenus en terme des variations de masse des échantillons, selon la valeur du débit.

Pour les faibles débits (de l’ordre de 2,5 cm³/s) on observe, après remplissage initial de la cellule, une première phase de faible prise de masse, suivie d’une deuxième phase durant laquelle se produit une accélération de la prise de masse et une instabilité de l’échantillon par liquéfaction.

Pour les débits les plus élevés (compris entre 3,5 cm³/s et 10 cm³/s), on observe une prise de masse assez importante dès la sortie du coulis de l’échantillon.

Concernant, l’évolution de la pression d’injection, on constate qu’elle reste pratiquement constante pendant une bonne période de temps avant d’augmenter jusqu’à la valeur de la pression de consolidation.

Par ailleurs, un effet clair de l’indice de densité a été mis en évidence. En effet, quelle que soit la contrainte de consolidation appliquée, plus l’échantillon est dense et plus l’instabilité de l’échantillon par liquéfaction se produit rapidement.

D’autre part, plus le coulis est riche en ciment, et plus le taux de prise de masse est élevé avec une instabilité de l’échantillon par liquéfaction qui arrive d’autant plus rapidement.

Enfin, concernant l’effet du débit, on a pu constater que l’instabilité de l’échantillon par liquéfaction se produit plus rapidement lorsque l’on augmente le débit d’injection. Par contre, aucun effet clair du débit sur le taux de prise de masse n’a pu être observé.
Conclusion générale et perspectives

D’autres essais ont été réalisés sur des éprouvettes ayant une hauteur plus importante (colonnes courtes de 16 cm de haut) afin d’étudier à la fois l’effet de la hauteur de l’échantillon et l’effet du débit d’injection sur les résultats obtenus. Il a été constaté lors de ces essais que le débit n’avait pas d’influence sur le taux de prise de masse pour la gamme des débits étudiés (entre 2,5 cm3/s et 10 cm3/s).

De plus, on a pu constater que la pression d’injection évolue faiblement au début de l’essai d’injection. Par la suite, la pression entre dans une phase d’augmentation accélérée jusqu’à l’instabilité de l’échantillon par liquéfaction.

Par ailleurs, des essais de colonne ont été réalisés afin d’étudier l’effet du débit d’injection. La colonne est instrumentée de capteurs de pression interstitielle à différents niveaux et elle est placée sur une balance de précision qui permet de mesurer l’évolution de la masse de celle-ci. Les essais de colonne ont été réalisés afin de pouvoir valider le modèle d’écoulement à développer.

Un seul type de comportement a été observé pour la gamme de débits étudiée (compris entre 2,5 cm3/s et 10 cm3/s). En effet, les pressions augmentent linéairement depuis le début de l’injection jusqu’à l’arrêt de l’essai. D’autre part, la masse de la colonne continue à augmenter linéairement après son remplissage par le coulis.

Par ailleurs, un effet clair du débit sur les variations de masse de la colonne a pu être observé pour la gamme des débits étudiés : plus le débit d’injection est faible et plus la filtration des grains de ciment est accentuée et, par suite, plus la prise de masse de la colonne est élevée.

Une différence de comportement a été observée entre l’injection d’échantillons de faible hauteur (4 cm) et des colonnes de grande hauteur (1,04 m). Pour cette raison, les paramètres retenus pour la modélisation de l’écoulement unidimensionnel ont été déterminés directement à partir des essais de colonne. Il est raisonnable de penser que les essais d’injection de colonnes sont plus représentatifs des écoulements dans un milieu poreux de grande dimension que les essais d’injection d’éprouvettes de faible hauteur.

En ce qui concerne la partie théorique de ce travail, un modèle d’écoulement d’une suspension dans un milieu granulaire, en présence de filtration de la suspension par la matrice, a été développé. Ce modèle permet de déterminer les profils de pressions et de concentrations des différents constituants et phases, en fonction du temps, au sein du milieu poreux.
Conclusion générale et perspectives

Le problème a été résolu dans le cas de l’écoulement unidimensionnel afin de simuler les essais d’injection de colonne. Les lois d’évolutions du taux de prise de masse et de la perméabilité intrinsèque ont été déterminées en s’inspirant des résultats d’injection de colonne et la loi d’évolution retenue pour la viscosité du coulis a été la loi d’Einstein. Un taux de prise de masse linéaire en fonction de la fraction volumique du ciment dans le coulis a été retenu en première approximation. Il s’agit d’un développement limité au premier ordre.

De plus, une loi d’évolution hyperbolique en fonction de la variation de porosité a été retenue pour la perméabilité intrinsèque du milieu poreux.

Les équations du modèle ont été résolues à l’aide de la méthode des éléments finis. La méthode numérique de résolution a été validée numériquement en comparant la solution numérique à la solution analytique d’un problème dont la solution est connue. La validation expérimentale a pu être réalisée en comparant la fraction volumique du ciment dans le coulis à la sortie de la colonne que l’on détermine expérimentalement et numériquement. Une erreur relative faible a été obtenue (de l’ordre de 0,3) ce qui confirme bien la précision des résultats obtenus.

Enfin, une solution analytique exacte a été proposée pour le problème étudié.

Le problème a aussi été résolu dans le cas de l’injection radiale avec symétrie de révolution. Les profils des différents constituants et phases ont été évalués en fonction du temps. La méthode de résolution a été validée numériquement en comparant les solutions numériques aux solutions analytiques de deux problèmes dont les solutions analytiques sont connues.

Par ailleurs, une solution analytique exacte a été proposée pour le problème étudié.

Enfin, l’abscisse et le rayon critique ont été évalués. Il s’agit des abscisses et rayons au-delà desquels les effets de l’injection du coulis sur les propriétés du sol ne remplissent pas les conditions imposées par le cahier des charges.

L’évaluation du rayon critique permet de se faire une idée sur le maillage des forages à mettre en œuvre lors de l’injection afin d’avoir le renforcement du sol voulu.
Conclusion générale et perspectives

A l’issue de ce travail, les perspectives suivantes peuvent être proposées pour poursuivre les recherches dans ce domaine :
- sur le plan expérimental, il reste à étudier les caractéristiques mécaniques en petites et grandes déformation du matériau injecté après prise. De plus, il serait intéressant de développer des dispositifs expérimentaux d’injection radiale et tridimensionnels d’échantillons de sable afin de mieux comprendre les essais d’injection in situ. On peut en particulier penser à des essais d’injection dans de gros massifs de sable préparés en chambre d’étalonnage ;
- sur le plan théorique, il pourra être intéressant de prendre en compte la compressibilité du milieu poreux dans le modèle développé afin de mieux pouvoir simuler les essais d’injection in situ. Il sera aussi important de développer la loi d’évolution du tenseur de la perméabilité intrinsèque lors des essais d’injection bidimensionnels ou tridimensionnels. Enfin, il sera aussi important de modéliser le processus d’injection pour des configurations tridimensionnelles.
Notations

Ces notations sont valables pour les chapitres 2, 3, 4 et 5.

Indices latins

a : paramètre figurant dans la fonction de prise de masse par unités de volume et de temps μ.

b : paramètre adimensionnel figurant dans la fonction d’évolution de la perméabilité intrinsèque.

B : vecteur contenant les dérivées des fonctions d’interpolation.

C : masse de ciment dans le coulis.

CU : coefficient d’uniformité.

e : indice des vides.

e_{max} : indice des vides maximum.

e_{min} : indice des vides minimum.

e_x : vecteur unitaire de l’axe (o, r).

e_z : vecteur unitaire de l’axe (o, z) orienté dans le sens vertical ascendant.

E : masse d’eau dans le coulis.

f : fraction volumique initiale du ciment dans le coulis présent dans le réservoir.

f_{cr} : fonction définie par l’équation (5.28), dont le zéro est l’abscisse critique z_{cr}.

F : masse de fluidifiant dans le coulis.

F_n : fonction définie par l’équation (5.20).

F_k : fonction définie par l’équation (5.19).

F^n : vecteur global des forces nodales donné par les équations (2.45) et (2.46).

F'^n : vecteur global des forces nodales donné par les équations (2.54) et (2.55).

F^n_i : vecteur des forces nodales élémentaires donné par l’équation (2.46).

F'^n_i : vecteur des forces nodales élémentaires donné par l’équation (2.55).

$F_{r,1}$: fonction de la variable $\left(t - \frac{1}{2.\nu^* r_0^2} \right)$.

$F_{r,2}$: fonction de la variable $\left(t - \frac{1}{2.\nu^* r_0^2} \right)$.
Notations

\(F_{x3} \) : fonction de la variable \(t - \frac{z}{v^*} \).

\(Fr^n \) : vecteur global des forces nodales donné par les équations (2.103) et (2.104).

\(Fr_i^n \) : vecteur des forces nodales élémentaires donné par l’équation (2.104).

\(g \) : accélération de la gravité.

\(g_{cr} \) : fonction définie par l’équation (5.38) dont le zéro est le rayon critique \(r_{cr} \).

\(h \) : longueur de l’échantillon élémentaire injecté (figure 5-1).

\(H \) : épaisseur de sol sur laquelle le coulis est injecté lors de l’injection radiale.

\(I_D \) : indice de densité.

\(k_{int} \) : tenseur de perméabilité intrinsèque.

\(k_{int} \) : perméabilité intrinsèque dans le cas unidimensionnel.

\(k_{int,0} \) : perméabilité intrinsèque initiale.

\(K^n \) : matrice de rigidité globale donnée par les équations (2.43) et (2.44).

\(K'^{n+1} \) : matrice de rigidité globale donnée par les équations (2.52) et (2.53).

\(K_i^n \) : matrice de rigidité élémentaire donnée par l’équation (2.44).

\(K_i^{n+1} \) : matrice de rigidité élémentaire donnée par l’équation (2.53).

\(Kr^n \) : matrice de rigidité globale donnée par les équations (2.101) et (2.102).

\(Kr_i^n \) : matrice de rigidité élémentaire donnée par l’équation (2.102).

\(L \) : longueur de la colonne.

\(L' \) : longueur sur laquelle on dispose de capteurs de pression sur la colonne (\(L' = 1 \) m).

\(m_i \) : masse initiale du volume poreux de la colonne, donnée par l’équation (5.9).

\(\Delta m, \Delta m_1, \Delta m_2, \Delta m_3 \) : variations de masse.

\(\Delta m_{nu}(t) \) : variation de masse de la colonne, évaluée théoriquement à l’instant \(t \).

\(\Delta m_{eq}(t) \) : variation de masse de la colonne, évaluée expérimentalement à l’instant \(t \).

\(\text{IN} \) : ensemble des entiers naturels.

\(N \) : vecteur contenant les fonctions d’interpolation.

\(N_e \) : nombre d’éléments du maillage.

\(N_p \) : nombre de particules bloquées pendant \(\Delta t \) dans l’échantillon de longueur \(h \) et de section \(S \) (équation (5.3)).

\(N_t \) : nombre de nœuds du maillage.
p : pression.

p'_c : pression de consolidation isotrope.

p_c : probabilité d’une particule injectée d’être bloquée dans l’intervalle $[0; z]$, donnée par la formule (5.2).

$p_{th}(z,t)$: pression déterminée théoriquement à l’abscisse z et à l’instant t.

$p_{exp}(z,t)$: pression déterminée expérimentalement à l’abscisse z et à l’instant t.

Q : débit volumique d’injection du coulis.

r : première coordonnée dans le repère des coordonnées cylindriques.

r_0 : rayon du forage.

R : étendue de la zone de sol étudiée lors de l’injection radiale.

r_{cr} : rayon critique au-delà duquel la fraction volumique en ciment du milieu poreux devient inférieure à une fraction critique $\phi^{T}_{c,cr}$.

S : section de la colonne.

t : temps.

t_n : temps normalisé défini par l’équation (2.33).

Δt : pas de discrétisation temporelle.

U^{n+1} : vecteur contenant les valeurs nodales de la fonction $\delta^{n+1}(z)$.

U_i^{n+1} : vecteur contenant les valeurs nodales de la fonction $\delta^{n+1}(z)$ dans l’élément Ω_i délimité par les nœuds n° (2.i-1) et (2.i+1).

U_r^{n+1} : vecteur contenant les valeurs nodales de la fonction $\delta^{n+1}(r)$.

ν : vitesse d’écoulement du coulis dans le volume poreux.

ν^- : vitesse d’écoulement du coulis avant son entrée dans le milieu poreux.

ν^+ : vitesse d’écoulement initiale du coulis juste après son entrée dans le milieu poreux, à l’abscisse $z=0^-$ (injection unidimensionnelle) ou au rayon $r = r_0^+$ (injection radiale).

V_e : volume moyen d’une particule de ciment.

w : fonction test.

z : abscisse, orientée positivement dans le sens vertical ascendant.

z_0 : profondeur à laquelle on réalise l’injection radiale.

z_{cr} : abscisse critique au-delà de laquelle la fraction volumique en ciment du milieu poreux devient inférieure à une fraction critique $\phi^{T}_{c,cr}$.
Notations

Indices grecs

\(\alpha\) : coefficient défini par l’équation (5.2).

\(\alpha_0\) : coefficient vérifiant \(\alpha_0 = \alpha \phi\).

\(\delta\) : rapport de la fraction de ciment présent dans le coulis par la porosité. C’est aussi la fraction volumique du ciment dans le coulis.

\(\delta_j^t\) : valeur de la fonction \(\delta\) à l’instant \(j \Delta t\) \(\delta_j^t(z) = \delta(z, t = j \Delta t)\) où \(\delta_j^t(r) = \delta(r, t = j \Delta t)\).

\(\delta_k^t\) : valeur de \(\delta\) au nœud \(k\) d’abscisse \(z = \frac{(k - 1)L}{N}\) (ou de rayon \(r = r_0 + \frac{(k - 1)R}{N}\)).

\(\phi\) : porosité.

\(\Delta \phi\) : variation de la porosité.

\(\phi_0\) : porosité initiale.

\(\phi_e\) : fraction volumique occupée par le ciment en écoulement dans le volume poreux.

\(\phi^t\) : fraction volumique totale de ciment (la somme du ciment présent dans le coulis et du ciment colmaté dans la matrice poreuse).

\(\phi^{t, cr}\) : fraction volumique totale critique de ciment.

\(\phi_{es}\) : fraction volumique du ciment en phase solide.

\(\phi_e\) : fraction volumique occupée par l’eau dans le volume poreux.

\(\phi_j^t\) : valeur de la fonction \(\phi\) à l’instant \(j \Delta t\) \(\phi_j^t(z) = \phi(z, t = j \Delta t)\) où \(\phi_j^t(r) = \phi(r, t = j \Delta t)\).

\(\phi_k^t\) : valeur de \(\phi\) au nœud \(k\) d’abscisse \(z = \frac{(k - 1)L}{N}\) (ou de rayon \(r = r_0 + \frac{(k - 1)R}{N}\)).

\(\phi_s\) : fraction volumique occupée par le squelette dans le volume poreux.

\(\Delta \phi_s\) : variation de \(\phi_s\).

\(\phi_{ea}\) : fraction volumique du sable en phase solide.

\(\Omega_j\) : élément no\(i\) du maillage délimité par les nœuds no\(2.i-1\) et \(2.i+1\).

\(\Omega_r\) : domaine d’étude de l’injection radiale, \(\Omega_r = [r_0, r_0 + R]\).

\(\Omega_z\) : domaine d’étude de l’injection unidimensionnelle, \(\Omega_z = [0, L]\).

\(\mu\) : fonction de prise de masse par unités de volume et de temps.

\(\mu_{eau}\) : viscosité de l’eau.

\(\mu_{coulis}\) : viscosité du coulis.
Notations

\[\rho_c : \text{masse volumique intrinsèque du ciment.} \]
\[\rho_{coulis} : \text{masse volumique du coulis.} \]
\[\rho_x : \text{masse volumique intrinsèque de l’eau.} \]
\[\rho_s : \text{masse volumique du squelette.} \]
\[\rho_{sa} : \text{masse volumique intrinsèque du sable.} \]
\[\rho_{\text{max}} : \text{masse volumique maximale.} \]
\[\rho_{\text{min}} : \text{masse volumique minimale.} \]
\[\theta : \text{deuxième coordonnée dans le système des coordonnées cylindriques.} \]
Références bibliographiques

Happel J., Brenner H. (1973) 'Low Reynolds number hydrodynamics". Noordhoff, Leyden, the Netherlands, 320.

Kutzner C. (1996) "grouting of rock and soil". Publié par A. A. Balkema, P. O. Box 1675, 3000 BR Rotterdam, Netherlands. 271 pages.
Références bibliographiques

Poupelloz B. (1979) "Traitement des terrains par injection". Laboratoire de l'est parisien. 82 pages.

Références bibliographiques

