N

N
N

HAL

open science

Systemes multimédia et qualité d’expérience

Gianluca Di Cagno

» To cite this version:

Gianluca Di Cagno. Systémes multimédia et qualité d’expérience. domain_ other. Télécom ParisTech,

2004. English. NNT: . pastel-00000874

HAL 1Id: pastel-00000874
https://pastel.hal.science/pastel-00000874
Submitted on 25 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://pastel.hal.science/pastel-00000874
https://hal.archives-ouvertes.fr

SYSTEMES MULTIMEDIA ET
QUALITE D’EXPERIENCE

These
Gianluca Di Cagno

présentée pour obtenir le grade de
docteur de ’Ecole National
Supérieure de Télécommunications

Spécialité: Informatique et Réseaux
ENST

2004

Soutenue le 6 juillet 2004 devant le jury composé de:

Francoise Preteux Président

Benoit Macq Rapporteurs

Daniel D. Giusto
Leonardo Chiariglione Examinateurs

Olivier Avaro

Jean Claude Dufourd Directeur de These



ACKNOWLEDGMENTS

I would like to express my thanks to my supervisor Jean Claude Dufourd for
having welcomed me in his group and for the support he provided during this
work. His talent at creating an extremely liveable and pleasing working place
has made my stay at ENST an excellent period. Special thanks are also due to
Leonardo Chiariglione and Mauro Quaglia for having given me the possibility

to start this thesis and for the enthusiasm they always showed for my work.

I would like to thank Prof. Daniel Giusto and Prof. Benoit Macq for having
accepted to review this thesis. I am grateful also to all the members of the jury

for having accepted to be part of the thesis committee.

I am indebted to my friends and colleagues Guido Franceschini, Andrea
Varesio, Gianluca De Petris, Stefano Battista, Zvi Lifshitz for the work they
did in the context of the development of the MPEG-4 standard and for the
excellent training I received from them. My thanks also to all the ENST gang:
Cyril Concolato, Jean Le Feuvre, Frédéric Bouilhaguet, Souhila Boughoufalah.
They all contributed to this work with many valuable discussions and

suggestions.

I would also like to thank the following people with whom I shared most of
my free time in Paris: Riitta Vaananen, Simone Fontana, Luca Prati, Gianluca
Allaria, Simon Berth Andersen (“Il conte”), Marco Combetto, Marco Ricci,
Alessandro Tinti, Eddie Cooke, Nigel Savage, Giorgio Mula and the other
Italian students at ENST. They all contributed to make my stay in Paris an
happy period. A big thanks to Anne-Christine Muri, because when she
showed up (“hello”) nothing was really ready. I finally express gratitude to my

family for their constant support and love.



RESUME

Au cours des derniéres années, des efforts de recherche considérables ont été
effectués dans le domaine de 'adaptation de diverses entités dans la chaine de
distribution des informations numérique, depuis la génération du contenu
jusqu’au terminaux des utilisateurs finaux. Dans ce contexte, ce travail prend
en considération les adaptations effectuées au niveau des terminaux. La
contribution principale en est I'établissement d’un cadre multimédia pour la
gestion de la qualité des présentations qui fonctionnent sur les systemes
d'exploitation d'usage universel. Le fait d’accorder les ressources disponibles,
tres variables, avec le volume des calculs des systemes de multimédia, dont la
dynamique est aléatoire, pose un probléme stimulant. En modelant un
terminal comme un systeme centré sur l'utilisateur, nous postulons que
I'utilisateur apporte sa notion de valeur en spécifiant la qualité de service pour
tous les médias. La spécification identifie une série d’options qualitatives pour
chaque dimension de la qualité d’expérience de médias et établit une
hiérarchie entre elles. L’adaptation est par conséquent réalisée en
sélectionnant une combinaison d’options qualitatives pour chaque dimension
de la qualité d’expérience d’un flux multimédia, afin de maximiser l'utilité du
systtme et la satisfaction de lutilisateur. En empruntant des principes
empruntés a la théorie du controle pour des systemes a évenements discrets,
nous abordons les questions ayant trait a la controlabilité, a la résistance et a la
configuration réactive. D’abord, nous définissons le processus de controle qui
assure que tous les components du systeme atteignent de maniere cohérente
le parametre QoS demandé. Ensuite, nous établissons un schéma de gestion
de qualité. Les résultats montrent comment le cadre proposé satisfait les
besoins typiques des applications fonctionnant sur les logiciels d'exploitation
d'usage universel: controle d’admission, compétition entre les applications et
gestion de puissance. La deuxieme contribution est l'intégration des
graphiques synthétiques 2D dans le cadre de gestion de qualité. Afin de

choisir des options de qualité selon les ressources informatiques disponibles,



une évaluation de la tache de rendu est essentielle. Nous avons subdivisé le
processus de rendu en un certain nombre de taches conceptuellement
indépendantes et nous avons identifié les parametres qui affectent leur
exécution. Le modele peut étre employé dans une approche réactive pour
fournir des chiffres de complexité au cadre de gestion de qualité, afin d'allouer
les ressources informatiques a la mise en train ou quand des violations de QoS
sont détectées. Nous prouvons que le modele peut également étre employé
dans une approche prédictive, pour programmer correctement les taches de
rendu de la vidéo et le graphique 2D. Pour finir, nous montrons comment la
gestion de qualité peut étre effectuée le long de la dimension de la qualité
visuelle perceptuelle quand la bibliothéque de rendu est capable de fournir
différents niveaux de qualité. La troisiéme contribution est I'étude sur la facon
de réaliser la commande de charge sur une classe des applications, les flux a
forte contrainte temporelle qui exigent le décodage continu des mises a jour
successives de description de scene. Un modele du temps de décodage est
donné, ainsi que des prédicteurs pour estimer le décodage. Nous prouvons
qu'il est possible de mettre en application des prédicteurs bon marché et
efficaces qui peuvent prévoir des temps de décodage a moins de 3% et moins
de 5%, avec un taux de succeés allant de 90 a 100 % des échantillons. En
conclusion, nous fournissons des exemples de l'utilisation de ce modele
d'amélioration du playback des dessins animés 2D. Nous avons basé ce travail
sur le standard MPEG-4 Systems et sa plateforme de logiciel de référence.
MPEG-4 Systems fournit un cadre intégré et normalisé pour présenter les
médias principaux considérés dans ce travail, les graphiques 2D et la vidéo.
Nous avons contribué au développement de la norme, et nous avons congu
notre cadre comme une extension conforme de l'architecture de MPEG-4
Systems. Nous sommes persuadés que ce choix a renforcé ’homogénéité de

ce travail, et a augmenté l'intérét et la réutilisation des résultats.



ABSTRACT

In the last years, considerable research efforts have been spent on the
concept of adaptation at various points in the digital information
distribution chain, from content/setvice generation to end-uset terminals.
As part of these efforts, this work considers adaptation in multimedia
end-user terminals. The core contribution is the establishment of a
multimedia framework for quality management of presentations running
on general-purpose operating systems. Matching the typically varying
available resources with the dynamically changing computational load of
multimedia systems poses a challenging problem. Modelling a terminal as
a user-centric system, we assume the user to provide his notion of value
expressing a user-level quality of service specification for each media. The
specification identifies a set of guality options for each media quality dimension,
and sets up a ranking among them. The adaptation is hence performed
selecting a combination of quality options for each quality dimension of a
stream, in order to maximize system utility and user satisfaction.
Borrowing principles investigated in control theory for discrete event
systems, we addressed the issues of controllability, robustness and reactive
confignration first defining control processes that ensure that all system
components meet the required QoS parameters consistently, and second
establishing a quality management scheme. Results show how the
proposed framework fulfils the requirements typical of applications
running on general-purpose operating systems: admission control,

competition among applications and power management.

The second contribution is the integration of 2D synthetic graphics in the
quality management framework. In order to select quality options
according to the available computational resources, an estimate of the
rendering task is essential. We subdivided the rendering process into a

number of conceptually independent tasks and we identified the



parameters that affect their performance. The model can be used in a
reactive approach to provide complexity figures for the graphic
enhancement stream, in order to allocate computational resources at start-
up or when QoS violations are detected. We show that the model can also
be used in a predictive approach, to propetly schedule video and 2D
graphics rendering tasks. Lastly, we show how quality management can be
carried out along the dimension of perceptual visual quality when the

rendering library has different rendering quality levels.

The third contribution is the study on how to achieve load control on a
class of applications, specifically time-constrained flows that require the
continuous decoding of successive scene description updates. A model of
the decoding time is given, together with predictors to estimate the
decoding. We show that it is possible to implement efficient cheap
predictors that can predict decoding times within 3 and 5 ms with a rate
of success varying from 90 to 100 % of the samples. Finally, we provide
examples of the use of this model to enhance the playback of 2D

animated cartoons.

We based this work on the MPEG-4 Systems standard and its reference
software platform. MPEG-4 Systems provides an integrated, standardized
framework to support the main media considered in this work, 2D
graphics and natural video. We contributed to the development of the
standard, and we conceived our framework as a compliant extension of
the MPEG-4 Systems architecture. We believe that this choice has
provided homogeneity to this work, and increased the interest and the

reusability of the results.



TABLE OF CONTENTS

Acknowledgments ii
Résumé iii
Abstract v
List of figures X
Introduction 1
1.1 Motivation of the WOrk.........cccoceevievieniinieninieeeeeeeeeeeen 4
1.2 Statement of the problem ............coceevevieniiniieninieeeeeeeeene 5
1.3 Technical Approach.........cccoceeievinierinieeeeeeeeee e 6
1.4 Related WOTK ......cc.eeieriieiiiieieeeeeeeee e 8
1.5 Main contributions of the thesis..........ccecceveeveriieniniienenieeen, 11
1.6 OULINE....coeeeeeeieeeee ettt s 11
MPEG-4 Standard: Concepts and Implementation 12
2.1 MPEG-4 Standard ...........coceveeienieiieneeieneeieeeeeeeeie e 12
2.2 BIFS e 14
2.3 System Decoder Model .........cccovieienieiinieieecieceieeee e 17
24 PrOfIles ..o 18
2.5 Reference Software Architecture............coceevvevvenierienenienennn, 20
2.6 Player 2D software implementation.............cccoeceevereenieneeniennans 22
2.6.1 Rendering ObJECtS .....cc.eevueruienieniierieniieieeteieeteeete e 23
2.6.2 Building the Display List ........cccevevieneniieneniiieeieneeieeeen 23
2.6.3  Painter’s algorithm ...........ccccoooviiiiniininiieeeceeeeeen 24
2.6.4  SynChrOniZAtiON .........coeevieriierieniieieneeieetesieet et 26
2.6.5 2D player profile and levels ..........ccoceevevviininieniniiinecieenee, 27

2.7 CONCIUSIONS.....cuiiiieiiiiieieeite ettt st 28
Quality-Based Multimedia Framework 29
3.1 Motivation of the WOrk..........cceceeveriieninieniiieneeeeeeeee 30
3.1.1  Profile and IeVelS ......cc.cooueriiiiiniiiinieieeeeeeeeee e 30
3.1.2  Graceful degradation ...........ccceeeevuerierienieneniereeeeeeeeseens 31
3.1.3 MPEG-4 QoS management model ...........ccceceeveriineniiencnnnns 32

32 QOS SPECIICALION.....cvieuiiiieieeiieieeteee e 32
3.2.1 User-level QOS specification..........cecuereeriereesienienienienennens 33
3.2.2  Application-level QoS specification...........cccceceveevierieeniennnnns 37



3.2.2.1 Characterization of MPEG-4 elementary streams (core

2D PEISPECLIVE) ..evvevrenieeiieieeiiesteetesteetesteetesaeesesseensesssenseessensesnnans 38

33 Framework Architecture..........coceveverenininencnincnccccee 43
3.3.1 Distributed Control........c.ccoceveriereneneneneneneneneseseseeeeee 44
3.3.1.1 QoS Monitor control Units ...........ccceeeevveeevveeecreeenveeenenn. 46
3.3.1.2  Control FIlter Units ......c.cceceveverenenenenenenenenesenieenne 48
3.3.1.3  Resource Manager: system monitor .............cccceecvevuennnene 49
3.3.2  Quality Management ...........ccceeeevuerierienienienieniesieieseeneeeens 50
3.3.2.1  Quality alloCAtOr .......c.eecuereieiereieiesieieeeesie e 50
3.3.3 Carriage of QOS deSCIIPLOTS ......ccverurerverrerieeierieererieeeenieennens 54
34 Experimental ResSults.........ccccoecieiieiieniniienieieceeeeeee e 55
341 EXAMPIE 1 .eooiieiiiiieieiceeeeee e 55
3.4.1.1 Admission control, low end terminal ..............cceeuunneeee. 60
34.1.2 Competition among applications..........ccccceeeverreecverreennans 62
34.1.3 Power management...........ccceveerierienienienieneenieneenieeens 67
342 EXAMPIE 2 ..o 69
35 CONCIUSIONS ...ttt st 71
Integration of 2D Synthetic Content 73
4.1 ANALYSIS ettt 74
4.1.1 Scene graph traversal............coccevieverieneniieneeieneeieeee e 75
4.1.2 Painter’s algorithms..........cceceeverierenienienieeeteeeee e 78
4.1.2.1 MPEG-4 Systems reference software (RS).................... 80
4.1.2.2  Dirty Rects (DR) ..coeevuieiiiiiiiieieieeeeeeeeeeeen 81
4.1.2.3  Sector (SR) .o 83
4.1.2.4  Evaluation of Painter’s algorithms ..........cccceceeveriennennen. 86
4.1.2.5 Performance evaluation of composition..........c..cecceueuue. 89
4.1.2.6  Load control ........ccceevieeiiienieeiieeeceeeeeee e 94
4.1.3  RaASIEIIZAION ....eevieeieeieeiieeiieeteesiee e eteeseeeseaeeaeeseeseaesnaeensees 98
4.1.4  Display update ........ccccecereeiiirieienieeeeeeeeee e 101
4.1.5 Preliminary conclusions ..........ccccceceeverienenienenieneneeneeene 105
4.2 Quality management...........cceevverueerieneerieneeieeteie et 106
4.2.1 Integration in the framework...........ccccoceeveniininiininiinenne 106
4.2.2 Improved presentation algorithm...........cccceceeveriiininiinennn. 110
4.2.3  Animated CaArtOOMNS. .....c.eervveerreerrreeieeriieriesreesieesaeeseesaeeseaeens 116
43 (000) 1 Ted 11 K 103 SRS 119
Continuous Scene Description Streams 120
5.1 Motivation of the WOrk.........cccceevieeiiieiiiieeee 120
5.2 Estimation Model .........cccooovieieiieiiieieeceeeeeee e 126

5.2.1 BIFS Decoding ......ccccoeeeveriinieniiieeieseeeeeeieseeeseeieeine 126



5.2.2  Regression ANalYSIs ......cceeeererienieriienieeienieeieseeie e
5.2.3  PrediCtors ..co.eeeeieeeeeieeeieeieeeeeeee s
524 EValuatiON.....cccoceviririririeeeeeeeeee e
5.2.5 Preliminary Conclusions .........ccccoeeeviereenienienienienienienienens
5.3 Use of predictor model ...........cocevieviiniinenienienieeeeeeeeee
5.3.1  Frame SKIPPING ..ccueeveriiirieniieieeieieeeeetesee et
5.3.2  Time base adjustment...........ccceecuerueevieneeiienierieniesieseeieeeens
54 CONCIUSIONS. ..ot
Conclusions
6.1 ACRIEVEMENLS ..o
6.1.1 Quality-based multimedia framework .............cccccevieninnne.
6.1.2 Integration of 2D synthetic content..............cccceveeveerveriennnnne
6.1.3 Continuous scene description Streams ............cceceeveereereennnens
6.1.4 MPEG-4 standardization and R&D projects...........ccceeueueen.
6.1.5 Published WOrK ........cccooeriririniiniceccee
6.2 Future developments ...........cccceoevierienienienienieneceeeeeee e

Appendix: Résumé long en Francais

Bibliography




LIST OF FIGURES

Number Page
Figure 1: Low detail multiple Streams .......ccooinivininininiicncccsesscssncssnns 2
Figure 2: Video, still images and text presentation ... 3
Figure 3: Systems Decoder Model.........cviiiininieniiiiniisicccecesncenes 17
Figure 4: MPEG-4 Reference Platform ..o 20
Figure 5: MPEG-4 SCENC......cciiiiiiiciciiciiricicietcisie e 25
Figure 6: Kart racing application ..........cuieinieimrinninimniinisiissssssssssssssssssssssssnnes 33
Figure 7: Video Catalogue ... 34
Figure 8: Extended decoding and rendeting pipelines.........ccveveeveereeieremnierevreennn. 45
Figure 9: Example 1, two CIF streams and 9 QCIF BIES scene........ccocvvuiunnce. 56
Figure 10: CPU load during one minute of simulation, QoS disabled................... 60
Figure 11: Frame rates of streams 1, 3, 7, 9 during one minute of simulation,
QOS dISADIEd ...t 60
Figure 12: CPU load during one minute of simulation, QoS enabled ................... 61
Figure 13: Frame rates of streams 1, 3, 7, 9 during one minute of simulation,
QOS €NADIEd......oiieiiiirete i 62
Figure 14: CPU utilization on Pentium 1.3 Ghz for Example 1.......cccccovvriunnnee. 62
Figure 15: CPU Utilization for CPUStress program ...........ccceeeeuneunicrnemeicnseneenns 63
Figure 16: CPU utilization when MPEG-4 Player and CPUStress tool are
active, QOS diSAbIed ... 64
Figure 17: CPU utilization when MPEG-4 Player and CPUStress tool are
active and QoS 1S €NAbIEd... ..o 64
Figure 18: Frame rates when MPEG-4 Player and CPUStress tool are active
and QOS 18 diSADIEd .....vvueeeiririieirieieicre e 65
Figure 19: Frame rates when MPEG-4 Player and CPUStress tool are active
and QOS 18 €NADIEd ....viveiiieecee e 65
Figure 20: Decoder lateness stream V1, heavy stress, QoS enabled ...................... 66
Figure 21: Decoder lateness stream V1, heavy stress, QoS disabled...................... 67
Figure 22: CPU utilization when clock frequency changes, QoS enabled ............ 68
Figure 23: CPU utilization when clock frequency changes, QoS disabled............ 68
Figure 24: Frame rates when clock frequency changes, QoS disabled .................. 68

Figure 25: Frame rates when clock frequency changes, QoS enabled................... 69



Figure 26: Scene 2 running on fast CPU terminal .........ccocvvvivivivivinininininniennn. 71

Figure 27: Scene 2 running on slow CPU terminal.........cccccoeeuviviviininincninincninines 71
Figure 28: Invalidated area as union of bounding boxes in the reference
software algorithm ... 79
Figure 29: Reference Software algorithm ........cccvvivivinininininininicecccnn, 81
Figure 30: Dirty Rects algorithm ........ccocviiiiiniiiiiiniiinicicicccecnes 83
Figure 31: The Sector algorithm uses a grid to identify the area to redraw .......... 34
Figure 32: Sector AlOrithm ..o 85

Figure 33: Sum of cleaned and drawn pixels for some conformance bitstreams 88

Figure 34: Number of invalidated pixels as a function of the time for the three

proposed algorithms . .......ccuiiciiiiciic s 89
Figure 35: IBMConfetti.mp4 screen Shot......oiinininininincccnine, 90
Figure 36: Performance of RS Algorithm.........ccocvivivinivininininiinicesicne. 91
Figure 37: Performance of SR AIGOrithm........cccvvivierininininenirreceeecseeenne 91
Figure 38: Performance of the DR algofithm.........ccocvicuniiivcininiccnicicsicincnieaes 92
Figure 39: Comparison between DR and SR composition algorithms.................. 93
Figure 40: Comparison between DR and SR algofrithms ..........cccevvivivivirinninnnn. 93
Figure 41: Comparison of Dirty Rects and Direct algorithms for

ENSTCompfx bItStream ......ccivivivirieiriiciiciecsscsscssscssscssscsnns 94
Figure 42: Comparison of DR and Direct algorithms for ENSTVectofx ............ 95

Figure 43: Comparison between Direct and Dirty composition of
IDMOCONLELH o 95

Figure 44: Comparison of Hybrid and Dirty composition for ENSTCompfx....97
Figure 45: Comparison of Hybrid and Dirty composition for ENSTVectofx ....97
Figure 46: Measured and predicted rasterization times for ENSTKarate.mp4....99
Figure 47: Measured and predicted rasterization times for ENSTAg001.mp4....99

Figure  48: Measured and  predicted  rasterization times  for

ENSTKAaNgaro0.mp4 ..o 100
Figure 49: Comparison between high speed and antialiased rendering.............. 101
Figure 50: 2D Rendering ArChiteCture. ....ouviieveieieeierieeieeieieeiieieeieesseeeeeeeesesenens 102
Figure 51: Video and BIFS augmentations ..........cccecveericuiinicunienineinieeicnsieinennns 108

Figure 52: 40 seconds of simulation for the scene in Figure 51, QoS disabled. 109
Figure 53: 40 seconds of simulation for the scene in Figure 51, QoS enabled . 110
Figure 54: BIFS and Video composed together at 10 fps and 25 fps................. 111



Figure 55: CPU utilization for the scene with BIFS and Video .........cccccvcueuncenee 113

Figure 56: Video and BIFS frame rates......ccocuvucmneureuneeneeneenerneiereneneiensensenennes 113
Figure 57: Deadlines of video (solid lines) and BIFS (dotted lines) ........cccc...... 113
Figure 58: CPU utilization of example 1 with enhanced presentation................ 115
Figure 59: Video and BIFS frame rates for example 1 with enhanced
2SI oL 5 03 o OO 115
Figure 60: ENSTAGO01b.mMpP4 CArtOON ...t 116
Figure 61: Comparison of frame rates for ENSTAg001b.mp4, hybrid and
high QUALIEY c.oeieiceici e 118
Figure 62: Comparison of frame rates for ENSTAg001b.mp4, hybrid and low
QUALIEY oot 118
Figure 63: Structure of a BIFS cartoon ... 121
Figure 64: Compfx sNaPSIOLS ... 122
Figure 65: CPU load duting COMPLX ....c.cuuvereicmcrcicicieieieeiesesenesessenenennes 122

Figure 66: Distribution of execution time among the main system
components during execution of the compfx bistream ........cccccevueuucee. 122

Figure 67: Distribution of the execution time between modules of the

MPEG-4 PIAYEL ..ot 123
Figure 68: Distribution of the execution clockticks in the BIFS decoder

MOAULE ..t 124
Figure 69: Distribution of clockticks over all the functions of the player.......... 124
Figure 70: 10 functions with max execution clockticks (GPAC)........cccccocuveuncenee 125
Figure 71: BIFS decoding time as a function of time during Compfx.mp4..... 125
Figure 72: BIFS decoding time as a function of AU Size predicted by a linear

MOAELcciiiiii s 127
Figure 73: ENSTgen002.mp4 ..o 128
Figure 74: Histogram of errors for BIFS_Pl......ccccccocviviniininicnincnicice 132
Figure 75: Histogram of errors for BIFS_P2........ccccccviiiiiiininininiciciiie, 132
Figure 76: Histogram of errors for BIFS_P3........cccccoviiinininininininisieiien. 133

Figure 77: Compfx, estimated decoding and rendering times, and value of the
clock scale factor (SCaled) .....cecueinicerinicrccrccc e 137

Figure 78: AaO01b, estimated decoding and rendering times, and value of the
clock scale factor (SCaled) ......cuiercericinciniccrecccc e 138



Chapter 1

INTRODUCTION

The term multimedia, introduced during the 70s to describe a theater-based
film and slide show extravaganza, is nowadays widely utilized to express
“human-computer interaction involving text, graphics, voice and video”
[hyp2003]. This definition clarifies two basic concepts of multimedia
applications. First, they are composed of different media, glued together
providing a rich audio-visual experience; second, they provide mechanisms to
offer user interaction. Fields of application include entertainment, education,
and advertising. According to this definition, a Multimedia System is a
terminal that plays different media simultaneously, according to some
synchronization rules, with a certain level of user interaction. Even if
multimedia often refers to computer technologies, it can be used to describe a
number of dedicated media appliances, such as digital video recorders, set-top
boxes, advanced wireless devices and public video displays. Indeed the last
years have shown an important growth of the number and type of these

devices.

Compared to traditional data applications, multimedia presentations have
different requirements. They are comprised of continuous and non-
continuous media, which have to be presented at precise instants in time and
require extensive computational resources. Besides, in contrast with data
applications, errors in the media streams are often tolerable or conceivable
using appropriate media-specific techniques. It follows that traditional metrics
to capture the quality of data applications are not easily applicable in the field
of multimedia. Still, requiring heavy computational loads, multimedia

applications are traditionally difficult to support (only few years ago a



multimedia PC was considered a high end terminal, with expensive video and

audio boards, CPU etc.).

This thesis deals with the problem of designing multimedia systems capable
of scaling down the computational needs whenever they have to adapt their
running conditions. The background of this thesis is provided by work in this
field we did in the context of International Standards (MPEG), European
Research Projects (SOMMIT, OKAPI, MPEG-4 PC) and hi-tech industrial
projects with the Japanese TDK R&D, ENST and TILAB. In the context of
these works, we often faced the problem of providing complex multimedia
presentations composed of several media streams on different terminals, with
different capabilities. For instance, Figure 1 shows a multimedia application
composed of 16 MPEG-4 videos running concurrently. When clicking on one
running video, a different screen is proposed (Figure 2), composed of two

videos at a better quality, plus text and still images.

Figure 1: Low detail multiple streams



Figure 2: Video, still images and text
presentation

Looking at these applications, questions may arise: how is the quality of a
presentation quantitavely expressed? How does the terminal monitor and
control the quality of a multimedia presentation? This thesis aims at providing
some answers to these questions, contributing to the field of research called
quality-based multimedia, which deals with presentation systems capable of
adapting to varying system requirements on the basis of a Quality of Service
specification (QoS). The next paragraphs illustrate why this subject is worth
studying, and provide a clear statement of the problem under investigation

and the technical approach adopted.



1.1  Motivation of the work
We investigate the problem of supporting adaptive multimedia terminals on

the basis of the following facts:

® The demand for high-quality multimedia applications is constantly

increasing.

The incredible success of hyperlinked documents has quickly accelerated the
demand for real-time multimedia applications. In the Internet world we are
now familiarized with the concepts of navigation through “static” text
documents. A natural evolution is the concept of multimedia document
navigation where synthetic and natural content are mixed to provide a more
sophisticated navigation experience. A similar concept applies to the digital
television broadcast domain where there is a demand for an increased level of
interactivity (i.e. broadcast of sport events: a set of live cameras providing
different views, additional text information with statistics, synthetic graphics
ovetlay etc.). The advent of 3G multimedia mobile phones is yet another

example of the rapid growing multimedia applications.

® Multimedia devices have different available resources.

Multimedia devices range from high-resolution television displays and
advanced graphics workstations, over PCs to handheld, wireless devices such
as PDA and mobile phones. Since the associated available resource power
(memorty, processing power and network bandwidth) varies by orders of
magnitudes, it becomes mandatory to adapt the media content and the

decoding and rendering algorithms to the device-specific resources.

® The data networks are evolving.

Circuit-switching networks are leaving the ground to packet-switching

technologies. The circuit-switching networks were designed to minimize



switching and transmission jitter. Packet switching networks were instead
designed to maximize link utilization rather than minimize transmission jitter.
The burden of providing an acceptable quality of service (i.e. coping with
packet losses and network jitter) is hence pushed to terminals, at the

application level, rather than protocols.

The interest in research in this area is also evident in the work of
standardization ~ bodies in  the area of multimedia.  The
ISO/IEC/SC29/WG11 group, also known as MPEG, is in the process of
finalizing a multimedia framework (MPEG-21) for digital items consumption
where the issue of multimedia adaptation is considered both at the content

and terminal and network level.

1.2 Statement of the problem
The problem of supporting multimedia applications is a challenging problem

because of the following facts:

® Operating Systems: multimedia applications are requested to run on
general-purpose operating systems (GPOS), where applications can’t
reserve resources. Applications instead compete for the use of

computational and memory resources.

e Computational requirements: multimedia applications have varying
computational requirements (i.e. the amount of data varies from
frame to frame in a video application). In operating systems where
applications compete for the use of resources, the available resources
are also a varying quantity. Hence, matching the varying available
resources with the requirement of dynamically changing

computational load poses a challenging problem.



® Synchronization: synchronized presentation of different media is

necessary at the user end.

e Compressed media: in order to be stored/transmitted efficiently,
media have to be compressed. At the terminal side, this implies the

need for a decoding task before the display of each media unit.

® Synthetic Graphic: multimedia applications require the composition
of continuous media with synthetic content whose processing time

may vary considerably over different display boards.

® User Interaction: in order to be user-friendly, these systems require
fast response time and rapid switching between different viewing

options.

Multimedia terminals running on general-purpose operating systems must
hence be robust to unpredictability and to variations in the computational
load of incoming data. They must constantly monitor application progress
and react to losses of value caused by the natural unpredictability of the
underlying environment. In performing this, a presentation system has to take
into account the value of service provided to the user. A “quality-based”
presentation system performs the adaptation process on the basis of a quality
of service specification (QoS). This work is meant to provide contributions to

this field of research.

1.3  Technical Approach

We model a multimedia terminal as a user-centric system. We assume that users
provide the notion of value of the different media of a presentation to a
terminal, suggesting how they expect it to work under unpredictable events.
This implies the need for a user-level quality specification, which brings this

information to a terminal, and also metrics to control its performance and



then react to loss of value of its behaviour. We first identified user and
application quality specification for a multimedia terminal and then we

proposed a multimedia framework based on this model.

Our contribution is based on the MPEG-4 Systems standard and its reference
software platform. MPEG-4 Systems provides an integrated, standardized
framework to support 2D graphics and natural video. The rationale behind
this choice is that we believe the standard to be the perfect playground to
verify the value of this work, since it has the semantic power to express real-
time multimedia applications composed of several media streams, applications
that may end up being highly resource consuming. Being then an
International Standard, the specification is public, and our work is not tied to
a particular, private design. Allowing a great flexibility in combining different
types of streams, the standard introduces some interesting challenges in
relation to the problem we stated. Actually the choice of the standard as
reference has also influence on the novelty of our work. In fact, most of the
work in the area under study (detailed in the next section) concentrates on
terminals handling audio-video streams. Instead we consider multimedia
scenes where the scene description streams are rather complex and as a result
challenge the task of providing quality-based presentations. We refer here for
example to 2D animations (l.e. cartoons), multiple camera applications (i.e.
remote surveillance, sport events), e-learning (mixed video and 2D graphics
applications). While studying the subject, we tried to concentrate on this kind
of applications rather than on the traditional ones based on single audio video
flows. These considerations motivated our interest in the use of MPEG-4

Systems.

Another view of the technical approach we followed can be provided if we
model a multimedia terminal as composed of three different layers: user,
application, and network. It is well agreed in literature that in multiple layer
models, QoS must be specified and enforced at all the layers [CCG93]. This



work focuses on user and application level layers, and do not consider any
particular network service scenario. The assumption is then that the data a
terminal needs is always available when requested. Although this may imply
that a direct usefulness of this work is only possible in local scenarios (i.e.
incoming data is stored on a file), we believe that our work can be
complemented with existing work carried out on network level QoS (the
following section mentions some related work). Since different networks have
different requirements this can be done focusing on particular service

scenatrios.

In relation to quality of service, we can mainly organize issues related to QoS

into three categories [VKvBG95]:

1 Assessing QoS in terms of usetr’s subjective wishes or satistaction with the

quality of application performance, synchronization, etc.

2 Mapping results of the assessment into QoS parameters for various systems

components.

3 Specification of control processes to ensure that all system components

meet the required QoS parameters values consistently.

According to this characterization, this work falls into the second and the
third category. Specifically, we propose QoS parameters in terms of which we
define the quality of a presentation (2), presentation algorithms and load

control techniques driven by these QoS parameters (3).

1.4 Related work

In the past Quality of Service has been mainly addressed in literature at the
network level, with contributions to measure the level of service in a
established communication. The need for an end-to-end infrastructure for

quality of service in distributed multimedia systems has been first reported in



the work of Campbell [CCGI3], [CCH95|, [CAH97]. The papers propose a
layered architecture of an end-to-end system with quality of service
mechanisms present at each layer. QoS principles are introduced together
with QoS user-level specifications and QoS mechanisms that realize end-to-
end behaviours. It is a reference for any work on QoS. Similarly, [SCDS97]
proposes a QoS-driven resource management framework for the
management of conflicts with system resources. It proposes a taxonomy of
Quality of Service parameters composed of metrics (performance, security),
and policies (level of service, management policies). This work is interesting
because it somehow generalizes the problem and provides a broader view in
which to fit the less general problem of finding metrics for multimedia
systems. Most of the research in QoS has occurred in the context of
individual architectural layers (network and end-system). QoS on current best
effort Internet is a topic that attracted several researchers, either proposing
enhancements to the Internet protocol to enable scalable service (diffserv), or
specifying protocols to request specific resources (RSVP), or metrics to be
used by an application to measure the current quality of a communication. In
end systems, we found contributions in the areas of scheduling, flow
synchronization, playout and transport support. Playout techniques to
preserve temporal relations in presence of network jitter are reported in
[SDF93], clock synchronization problems over the Internet are tackled in
[HPH 2000]. These papers well handle problems arising when deploying
multimedia applications over best effort networks. Media synchronization
algorithms are proposed in [IT 95, I'TI2000, IYYS1996]. They introduce the
notion of virtual time to extend or shrink the duration of the playback in
order to cope with network delays. Even if it is focused on synchronization
algorithms for distributed networks, their work is interesting because they
propose also application level metrics to measure the quality of the playback:
smoothness of video playback is captured by coefficient of output variation
and media unit output rate, synchronization is captured by the mean square

error of clock skew. Quality-based presentations are dealt in [BKWSAKGY0].



The paper defines some quality of presentation (QoP) metrics and proposes a
set of protocols to preserve multimedia streams presentation over network.
The metrics they use are quality degradation due to deadline miss and data
dropped due to destination buffer overflow. In [RB 1993] a first tentative of
dealing with the mapping of application level QoS parameters to network
level is reported. In particular, the skew between streams, a metric defined at
application level, is translated in a relaxation of delay constraints imposed to
the network. This implies a less demanding resource request from the
network, such as allocation of packet buffers and assignment packet
scheduling policy. The characterization of multimedia flows is best expressed
in [BS96], where the authors illustrate every possible relation between media
streams and define the concepts of inter-stream, intra-stream synchronization.
The paper is a reference in the field of theory of synchronization. The
subjective quality of synchronization in a multimedia presentation has been
exhaustively assessed by the work of Steinmetz [Stein96]. He defines media
synchronization quality in terms of skew between streams. He proposed
various thresholds of clock skew to capture synchronization between audio,
video, text, and images as perceived by the user. He proposed also a method
to extend the property of synchronization from two objects to a third one,
knowing the relationship between each couple. This work is very important to
us, since it translates human perception of synchronization to quantitative
values that can be used by algorithms at the application level. In the field of
MPEG literature, [RPS93] is one of the first papers on software video
decoding and rendering. [BMP98], [BA2000], [MB96] provide models to
estimate MPEG-2 and MPEG-4 Video decoding times. [RKR96] describes in
a clear way how synchronization is achieved in MPEG-2 streams, it has been
very useful in understanding the MPEG-4 reference software use of clocks at
start-up. [PE2002] provides basically all the MPEG-4 notions related to this
thesis work. [N4848] (the official ISO specification) is the reference for
MPEG-4 Systems. [FS93] and [NRLD2002] describe 3D frameworks that

tried to address the same problem of supporting adaptive multimedia, for 3D

10



scenes. We did not find any contribution on presentation algorithms for 2D
MPEG-4 terminals enhanced by quality of service specifications, or 2D
terminals capable of mixing synthetic and natural content with quality metrics
to capture the relationships among video streams and synthetic graphic. This

work is meant to provide a contribution to this field.

1.5 Main contributions of the thesis

The core contribution of this thesis is the establishment of a multimedia
framework for quality management of terminals presenting multiple streams
on general-purpose operating systems. We introduce means to reason about
the loss of value of multimedia applications introducing a user-level quality
specification, and we identify application level metrics for system
components. We provide algorithms to enhance the performance of media
composition, a model to estimate 2D composition tasks and methods to
integrate this model in the proposed quality management framework as a
second contribution. The third contribution is the study on how to achieve
load control on a class of applications, specifically time-constrained flows that
require the continuous decoding of successive scene updates. A model of the
decoding time is given, together with predictors to estimate the decoding. The
last contribution is the work we did participating at the development of the
MPEG-4 standard, in the context of the reference software activity (MPEG-4
Part 5).

1.6 Outline

This document consists of 6 chapters. They are organized as follows. Chapter
1 is this introduction. Chapter 2 introduces the MPEG-4 standard and the
reference software implementation. Chapter 3 introduces the quality-based
framework. Chapter 4 deals with the integration of 2D synthetic content.
Chapter 5 concentrates on time-constrained scene description streams.

Chapter 6 draws the conclusions of this work.

11



Chapter 2

MPEG-4 STANDARD: CONCEPTS AND IMPLEMENTATION

This chapter illustrates the multimedia standard and the software framework
on which we based our work. When we started this thesis, the ISO/IEC
working group SC29/WG11 (that produced the successful MPEG-1 and
MPEG-2 standards) was finalizing its new standard, MPEG-4. MPEG-4
became the international standard for communicating multimedia applications
in 1999. We contributed to the standardization activity, and we participated to
the implementation of the reference software. As we said in the previous
chapter, we decided to base our work on the MPEG-4 standard because of its
features enabling advanced composition of different media, and because it is
an open standard. In the following, a brief explanation of the objectives of
the standard is given, followed by further explanation of some features of the
standard we used in the context of this work: the Binary Format for Scenes
(BIES), the System Decoder Model, Profiles and the Reference Software. It
must be noticed however that this chapter does not cover the whole standard.
MPEG-4 is a very broad standard, and probably a complete book would be
necessary to cover all the issues. This chapter instead focuses on some aspects
that are relevant to the work done, and that are vital for a good understanding

of the following chapters.

21 MPEG-4 Standard

The MPEG-4 standardization process started in November 1992 with the
initial aim at targeting very low bit rate coding [N271]. MPEG-1 being the
compression standard for Video CD and MPEG-2 the standard for digital
television, the new project was supposed to cover the missing scenatio.

However, the original vision soon evolved in a broader one. MPEG-4 would

12



support new ways of communicating, accessing, and manipulating digital
audiovisual data [PE2002]. Content based interactivity, compression efficiency
and universal access were the key concepts of the new vision. With the usual
excellence in the Video (renamed Visual to highlight the presence of not only
video tools, but also still pictures and 2D /3D synthetic graphics tools) and

Audio parts of the standard, the vision was definitely appealing.

The Systems part of this new project would specify a multimedia terminal,
capable of decoding and synchronizing different compressed media
(“elementary streams”), and composing them according to a scene description
stream in a 2D/3D application. Compared to previous versions (that the
standard was not meant to replace), the MPEG-4 Systems scope was hence
wider: it did not provide only tools to synchronize and multiplex audio-video
streams, but enabled spatial composition of very different media: video, audio

but also 2D /3D synthetic graphics.

The standard included also a part called Delivery Multimedia Integration
Framework(DMIF), that defined a session protocol for the management of
streaming over generic delivery technologies, providing an abstraction from
the storage or transport medium. A complex multimedia application could
have been created using only MPEG-4 tools, and conveyed on different

networks and medium.

The following Systems tools are of particular interest for our work:

® Binary format for scenes (BIFS): a 2D /3D binary scene desctiption
language based on the textual VRML 3D [VRML97] language. This is

the tool to achieve media composition and user interaction.

®  Object descriptor framework: describes the properties of the different
elementary streams. This tool describes the media assets of the

multimedia application.

13



® Systems Decoder Model: defines the buffering and synchronization
models. It is an advanced version compared to previous versions of
the standard, modified to take into account the added complexity of

handling multiple streams.

The first version of the standard was completed in 1999. By that time, the
standard was mainly focused on broadcast environments, and lacked several
important features. A non-framed life-cycle file format (mp4) and new BIFS
features were added to the specification in 2001 and specifications for the
carriage of MPEG-4 scenes over MPEG-2 Transport and over IP were added

later.

MPEG-4 is still evolving. Two new media codecs have been added recently in
March 2003. Advanced Video Coding (AVC) improves the natural video
coding efficiency of the MPEG-4 Visual standard. AAC-HE (high efficiency

AAC) is the most advanced coding technique for generic audio signals.

As of today, the MPEG-4 standard is still the only complete standard solution
for the delivery of synchronized, compression and network optimal, rich

media services on any media and any network [SIG99].

2.2 BIFS

The MPEG-4 scene description language is based on the Virtual Reality
Modeling Language (VRML) [VRMLI7|. In VRML, a scene consists of three
different tools: the scene graph, an event routing mechanism, and prototypes.
The scene graph is constituted of nodes, grouped in a hierarchical structure
(scene tree), which describe objects on screen and their properties. Nodes can
be roughly divided in grouping nodes, that are used to logically combine objects
and compose them spatially, and /af nodes that provide graphic primitives
(circle, rectangle, line, cube, cylinder etc.), text, video, audio and sensors to

interact with objects on the screen (i.e. double-click, drag-n-drop

14



functionalities). The following is an example of a scene containing a video

object.

OrderedGroup {
children |
DEF TR Transform2D {
translation 100 100
children [
DEF TS TouchSensor{}
Shape {
appearance Appearance {
texture DEF Movie MovieTexture {
starttime 0
stoptime -1
url [“17]

}
geometry BitMap {}

|
}

This simple scene contains two grouping nodes (OrderedGroup, that is the
start of a 2D scene and Transform2D, used to spatially compose the
subsequent nodes) and a shape node that includes a video node
(MovieTexture). Nodes contain fe/ds that store values and express features of
the object that can be read/written. The scene contains also a TouchSensor
node that may allow some form of interaction. The Transform, MovieTexture
and TouchSensor nodes are preceded by a DEF construct that allows
assigning a name to the nodes, name that can then be used to access their
fields from other tools. No interaction is present in this scene. It just displays
a video, centered at the x=100, y=100 position of the display. In order to add

some form of interactivity, we need more tools.

15



Event routing gives authors a mechanism through which events generated by
nodes can be propagated to other nodes. This processing can change the state
of the node, generate additional events, or change the structure of the scene
graph. Prototypes allow the extension of the pre-build set of nodes. If we add
the route mechanism at the end of the previous scene, we may achieve simple

interaction:
ROUTE TS.touchTime TO Movie.stopTime

In this way, clicking the mouse button when the pointer is on the video will
cause the value of the TouchSensor’s touchTime field to be copied to the
Movie’s stopTime field. This will cause the movie to stop, as the name of the

fields suggests. Note that we used the DEF names to refer to the nodes in the
ROUTE.

BIFS has added several new concepts to the VRML standard. BIES is a
compressed binary format, and as a consequence scenes are optimized in size
and can be streamed. BIFS elementary streams are composed of access units
that include BIFS commands to add new nodes, replace field values, and
replace the whole scene tree. These commands enable single changes to the
scene. BIFS-Anims streams enable structured changes to a scene. Together,
these constructs add dynamic scenes. In other words, scenes are not static but
can change over time. For instance, adding the following BIFS update to the
previous scene would change the position of the video object at the time

specified:

AT 10000 {REPLACE TR.translation BY 200 200}

Using this tool, an MPEG-4 terminal connected to a network can receive

BIFS updates that modify completely the scene running on the terminal.

16



2.3 System Decoder Model

In MPEG-1 and 2 Systems, in order to provide precise definition for
allowable synchronization and buffer states that can be produced by a legal
bitstream (one that does not violate any syntactical or semantic rule of
MPEG), MPEG defines the systew target decoder, that is a theoretical target
decoder used to model the behavior of a terminal. In analogy, MPEG-4
defines a systen decoder model, which models the ideal behaviour of an MPEG-4
terminal. The bitstream is assumed to be de-multiplexed in elementary
streams destined for various audio and video decoders, as depicted in Figure
3, taken from [N4848]. Elementary streams are composed of access units, the

smallest entity to which time information can be attached.

Decoding | |, || Composition
Buffer DB, Decoderl Memory |
l;)(?f:odgg N R 1\C/Iomposition\‘

uffer emory

2 2
Decoder ,

Decoding | [, Compositor
Buffer DB

Decoding | |, | Composition
Buffer DB, Decoder n Memory

IElementary Stream Interface |

Figure 3: Systems Decoder Model

Access units are placed in decoding buffers DB,,.. DB,. The decoders start
decoding the bits that compose every video or audio element at the time
specified in the bitstream (decoding time stamp). The model is ideal because it
assumes the decoding to be instantaneous, and fixed end-to-end delay (the
time for the transmission of data from the stream encoder output to the
decoder buffer is constant). The decoded frames are then placed in a
composition memory. In the picture we see an element called “compositor”.

It fetches units from composition buffers and presents them on the display.

17



The exact size of buffers DB, ..DB, is specified in the bitstream. The size of
the composition memory instead is not managed explicitly, although it can be
estimated from profile and levels. Composition units stay available until the
composition time of the subsequent unit is reached. During this period the
compositor may access the composition as often as necessary. The model
prescribes that in a legal bitstream if the elements are decoded and rendered
using the times given in the bitstream, the buffers DB, ...DB_never overflow
nor underflow. Clearly no real decoder can instantaneously decode the
bitstream elements. So it is up to the decoder system designer to insure that
his system will be able to decode any bitstream that the system target decoder

could decode.

2.4 Profiles

Profiles and levels are one of the most important MPEG tools to ensure
interoperability and conformance testing. In general, profiles restrict the
algorithmic features available; levels set a rough limit on processing power
based on content complexity. A profile and level combination defines a
conformance point. It ensures that content encoded for a particular
combination can be exchanged and will work on any decoder implementation
that conforms to that combination. For decoding hardware, the profile@level
combination gives minimum performance constraints to be observed at
design and manufacture time. For decoding software, the combination also

may imply resource availability to be monitored at run time.

Applying these concepts to an MPEG-4 terminal, every elementary stream
should comply with a profile and level. Audio and Video streams comply
with Audio and Visual profiles, while BIFS elementary streams comply with
scene graph and graphics profiles. Hence we can divide the set of profiles to

which a terminal must comply in the following broad categories:

18



®  Visual Profile

Governs which visual object types can be present in the scene,
thereby determining which coding tools can be used to code these

objects and, hence, what their elementary streams (ESs) look like.

e  Audio Profile

Similarly to video, defines the audio object types present in the scene.

® Scene Graph

Defines what types of scene description capabilities need to be

supported by the terminal

® Graphics

Defines which types of the graphics and textual elements can be used

to build a scene

®  OD profile

Specifies the allowed configurations of the Object descriptor and

Synch layer tools

One important difference with MPEG-2 to be noticed is that MPEG-4 is an
object-based standard. Audiovisual scenes are hence composed of different
objects. Levels do not define the maximum complexity per individual object
but give bounds on the total of all objects in the scene. This is because the
number of objects in the scene that need to be decoded simultaneously is

important in determining the complexity of the decoder.

19



2.5 Reference Software Architecture

An MPEG-4 terminal implementation must be designed to process input
from many sources in parallel, including various media streams and user
interaction, and create a rich audio and video experience combining the input
streams. Figure 4 [PE2002] illustrates the reference software architecture of

such a terminal.

T
DMIF | Frame Application Application
| :

-r-————————————- VL .
|Core Compositor
| |

DMIF SL- e }l» Presenter
Client | ||Manager mé BIFSDecoder |-, I
edia) | ODDecoder
Data % qpream [

Channel -—

Data L Media ) (" Media

|
|
|
|
i
|
|
|
'+' Data [ )
| Media
|
N
|
|
|
I
1

I
Channel Stream ’r Decoder | Stream
. J -
: e |
Channel I'| Decoder : Media |
Stream Stream
. J h I \ |
Data ) W |
Channel [ Media | | &~ —————— 'i I
Stream | ! | Media J |
\—J\ IPMPManager ?{ I
: | Stream |
_IPMP ! !

Represents a boundary between modules

------------------- = Points from the object which instantiates
the object pointed to

—= Shows the direction of data flow

Figure 4: MPEG-4 Reference Platform

From left to right, DMIF is the implementation of the network part of the
terminal; the Core part includes media decoders, media buffers and the scene
tree; the compositor is responsible of the composition of the elementary
streams. Binary scene description streams (BIFS) and compressed media data
(elementary stream of encoded raw audio-visual information plus

synchronization information) arrive through independent network channels

20



to their respective decoders. After the decoding step (done in parallel by
independently running decoders), the uncompressed data units (composition
units) are placed in playout buffers. A special decoder, called BIFS decoder, is
in charge of decompressing the scene information stream and build a data
structure called scene graph. The scene graph contains the description of the
multimedia scene. It is built parsing the BIFS stream, and instantiating C++
objects for each node present in the description. A rendering engine cyclically
traverses this linked list of nodes (“scene traversal”), takes composition units
from each media buffer and composes the media following the specification
of the scene description, adding synthetic graphics (text, 2D primitives) if
necessary. This is the architecture of the MPEG-4 Systems reference
software. The architecture is multi-threaded, each decoder runs in its own
thread, and the composition is done by a different thread called “Presenter”.
A typical scene composed of audio-video and BIFS streams causes the launch

of the following core and renderer threads:

e BIFS decoder: decodes the scene and possible following updates,

creates the scene graph

® OD decoder: decodes objects descriptors and possible updates

® Audio Decoder: transforms compressed audio data in PCM samples

® Video Decoder: transforms compressed audio data in YUV/RGB

samples

® DPresenter/Visual Renderer: traverses the scene graph and performs

composition and rendering at a given rate

® Audio Renderer: plays PCM samples, mixing samples from different

sources if necessary

21



It is worth noting that MPEG-4 does not specify how to compose the
different media. No composition algorithm is specified in the standard and

included in the reference software.

2.6  Player 2D software implementation

We contributed to the development of the MPEG-4 standard specification
and we implemented a 2D player for Windows platforms when the
specification was still an early draft, providing feedback to the members of the
group and participating to the open discussions. This work has been done in
the context of the MPEG-4 reference software activity, even though this part
is not normative but only informative. It was anyway a fruitful activity,
validating the concepts of the standard during its development. Since it was a
2D compositor, only a subset of the MPEG-4 BIFS nodes has been
implemented (a list of nodes implemented can be found at [MPE99]). This is
the multimedia player that we used in the context of this thesis. We had to

solve the following problems:

® The reference software creates the scene graph, using an object
oriented approach. Every BIFS node has a corresponding C++ class.
We had to add rendering capabilities to each node, without modifying
this normative part of the standard. This was solved by the use of the

proxy objects design pattern (Section 2.6.1).

® The scene graph generated by the BIFS decoder may contain multiple
references to other nodes. We used display lists to manage the

duplication of objects to display (Section 2.6.2).

® Media composition, rendering, and synchronization algorithms had to

be implemented (Sections 2.6.3 and 2.6.4).

22



2.6.1 Rendering Objects

The basic player architecture and the flow of information is the one depicted
in Figure 4. As said before, the Core set of classes does not include the
implementation of the rendering capability of an MPEG-4 Systems terminal.
Implementing proxy objects has solved the problem of adding 2D rendering
to the framework. The “proxy objects” are a design pattern useful for
implementing a specific functionality on a framework of classes. The idea is to
add to each BIFS node class a “proxy” class that encapsulates the rendering
functionality of that node. In this way, a separation between the rendering
part and the node semantics is achieved. This is particularly useful when
implementing an MPEG player while the standard specification is evolving,
because when cosmetic changes of the specification occur, these do not
necessarily impact on the implementation of the proxy object. Also, this
architecture mirrors the task allocation in the player implementation, where
people working on the rendering were not necessarily the same working on
the Core framework. The last important advantage of this approach is that it
confines the platform dependent part of the Player implementation to the
proxy objects, so that the porting of the Player to another OS or graphic
library implies only changes in the proxy objects. There is however, one
drawback to using this design pattern. The proxy nodes are traversed before
scene rendering, at each tick of the simulation. BIFS nodes fields are cached
in proxy objects data structures. This implies that at each scene traversal a
proxy object has to test whether the associated node has changed or not, or, if
an automatic update mechanism is present, new values have to be retrieved

from the original nodes whenever there is a change.

2.6.2 Building the Display List

One important feature of the BIFS language lets the author define a portion
of a scene as reusable in other parts of the same scene. This derives from the
VRML specification [VRMILI97] and the reason is to improve performance by

caching the geometric computation done for the first occurrence and merely

23



rendering for subsequent occurrences. Since scene traversal is done on the
proxy objects, a proxy object has been designed to render more than one
instance of a BIFS node during each simulation tick. This is achieved by
creating a “drawable context”, a data structure containing all the information
(bounding rectangle, clipping rectangle, visible/not visible, pointers to its
appearance, geometry, event handler nodes) that a renderer needs to render
the node. A drawable context is taken from a pool of free contexts at each
visit to a node. If a node is visited twice during a single tree traversal, this
means that it is being “used”, hence two contexts are used in order to render
the media object in different positions. The Visual Renderer has a list of used
drawable contexts and uses this list to draw the media objects. The list of
drawable context is hence a display list, since it contains the list of objects that
have to be displayed at each tick of the simulation. The next paragraph

illustrates the method used to display the media objects.

2.6.3 Painter’s algorithm

The rendering of Visual Objects is a process that basically implies two steps:
object composition in a memory surface and copy of the memory surface into
the frame buffer. Figure 5 shows a MPEG-4 scene composed of several

Visual Objects.

24



ECR3ZT.MP4 - IM1-2D __ e =0l
Fle Wlew Go Options Hel
& > @ 4 @ 6 @ .F A .

Back Fonwand  Stop  Refesh HOME  Seevch Faveites:  Brik Fore

0011533 15, s ; ) 7

Figure 5: MPEG-4 Scene

It shows four MPEG-4 Visual Objects providing different views of a cycling
event. BIFS text nodes are rendered on top of the videos displaying
information about the event. The composition process starts when the BIFS
and OD decoders have finished decoding the respective elementary streams.
It is a cyclic process done at a specific rate (typically 25 or 30 times per
second). First the BIES tree is traversed to collect information about the
nodes to draw. Media objects are drawn in the order they appear in the BIFS
scene, unless an OrderedGroup node is in the scene. If this is the case, the
drawing priority field indicates which media object should be drawn first. A
list of objects to be drawn is created. Objects are then drawn using an
algorithm that minimizes the number of objects to draw. Drawing all the
media objects at each tick is not required and would be highly inefficient. For
instance, a rectangle that is painted at the beginning of the scene and does not
change appearance during the rest of the simulation does not require a 25

times per second drawing,

25



At each tick of simulation, a visual object is drawn if:

1. Its appearance or geometry nodes have changed (or, in the case of a

movie node, there is a new frame to display).

2. Its position in the scene has changed.

3. The intersection with a drawn node is not empty; in that case, only

the part that intersects the media object is drawn.

After composition, the memory surface is copied to the frame buffer.

2.6.4 Synchronization

In the following, it is described how elementary streams synchronization is
achieved. The 2D Compositor implementation uses the reference software
mp4 file format implementation for the playback of mp4 streams. As a
consequence, this section applies only to local file playback, and does not
cover all the issues concerning the synchronization of elementary streams in a
“push” scenario. In a “pull” scenario, such as local file playback, elementary
streams synchronization may be achieved without taking into account OCRs,
since there are no problems of clock skew between client and server

terminals.

The Core framework provides a set of classes that associate a clock to each
elementary stream. If the authors of the MPEG-4 scene require two or more
streams to be synchronized, they must signal in the ES descriptor of each
stream at authoring time whether that stream has its own clock or shares the
clock with other streams. Synchronization between streams is hence achieved
by sharing the same clock between elementary streams. In an mp4 file, all the
streams (tracks) are by default synchronized. As a result, no specific synch
information has to be inserted, unless we specifically want to deviate from the

default behaviour.

26



Let’s consider now the case when the terminal has to synchronize two
clementary streams: one carrying audio, the other video. Two different
threads are used to render audio and video. The audio thread fetches audio
frames produced by audio decoder and copies it in the audio board buffer.
The audio thread is set to a higher priority than the video one, because failure
in copying the audio samples into the audio board buffer on time (for
instance in the case the CPU is loaded) heavily affects the quality of the
presentation. Video frames, on the other hand, may be skipped without
seriously affecting the overall quality. The audio and video renderers access
composition buffers to get composition units. Core media buffers expose a
set of methods to access the composition units in sequence or to get the most
mature units, i.e., units whose composition time matches the composition
time of the simulation. Video frames are fetched from the composition buffer
using a method that compares the object clock to the composition time and
gives back the most appropriate latest valid frame. As a result, video frames
may be skipped if the terminal is late during the presentation. Audio frames
on the other hand, are fetched one after the other, since no skipping is
obviously desirable when rendering audio. Audio-visual synchronization is
achieved using the Adjust Clock method of the Core. When elementary
streams share the same clock, this method sets the clock to the value indicated
as an argument. After the initial audio buffering required to smoothly play
audio, the audio rendering starts, then the composition time stamp of the
audio sample that is being played is used as an argument in the Adjust Clock
function, causing all the elementary streams sharing that same clock to be in

sync.

2.6.5 2D player profile and levels

The player is designed to comply with the Core2D Scene graph and Graphics
profiles (both @Level2), and Visual Advanced Simple profile. The Graphics
Core2D profile includes support for relatively simple 2D graphics and text:

logos, animated ads, text, lines, and curves. Two levels are designed for this

27



profile: L1 and L.2. They differ mainly for the number of IndexedFaceSet2D
nodes: 15 and 31, and the number of points for Coordinate: 4 and 255.

The Scene Graph Core2D profile includes basic 2D composition, local
interaction, animation through interpolators, BIFS updates, quantization,
access to web links and subscenes, in addition to audio and visual elements.
Two levels are set: L1 and L2. In terms of resources, the levels differ mainly
for the maximum number of nodes allowed: 8191 in L1, 32767 in 1.2, and the
maximum number of children that grouping nodes can have: 31 for .1 and

127 for L.2.

Visual Advanced Simple accepts objects types Simple and Advanced Simple.
It is useful in Internet Streaming but scales to television size picture and
quality. There are six levels specified, that differ in the max resolution and bit

rate supported: 176%144 to 720*576 bit rate from 128 to 8000 kbit/s. The

maximum number of visual objects is four * simple or advanced simple.

These profiles capture the features of multimedia terminals that we
considered in this thesis. They have been proposed by contributions made by
several actors in the field of multimedia, and well capture the basic

functionalities needed by modern multimedia applications.

2.7 Conclusions

The aim of this chapter was first to briefly introduce the multimedia standard
on which we based our work, second to highlight our contribution to the
development of the standard. We saw how MPEG-4 is the complete standard
solution for the representation of synchronized multimedia presentations. We
introduced key MPEG-4 concepts and the tools of the standard that are most
important for the rest of this work: BIES, the System Decoder Model and
Profiles. We illustrated then the architecture of the reference software, and

discussed some design principles introduced in the 2D player.

28



Chapter 3

QUALITY-BASED MULTIMEDIA FRAMEWORK

In this chapter we present a framework to support quality-based 2D
presentations. The framework is meant to be utilized on a General Purpose
Operating System (GPOS), or in any other environment where computational
resources cannot be reserved. In this context, applications must be adaptive
and react to changes in the availability of computational resources caused by
changes in the environment. Besides, since multimedia scenes have very
different characteristics and computational needs, it is desirable that terminals
adapt their rendering algorithms when the demand of increased resources
needed by increased complexity of the scene cannot be satisfied. The
framework is presented as an extension to the MPEG-4 Systems standard, in
the sense that we defined optional quality information that can be carried in
elementary streams descriptors. In this sense, it is a “legal” extension, because
advanced terminals can exploit that information whilst others just ignore the
additional descriptors and go on decoding the bitstream. In the following, we
first provide evidence of the need of a management framework, showing how
it fits into the tools available in the MPEG-4 standard (Section 3.1). Then in
Section 3.2 we identify means to reason about the loss of value of multimedia
applications introducing user and application level quality specifications.
Section 3.3 introduces the framework architecture showing how distributed
control and quality management of a terminal are achieved. Section 3.4 gives
examples of the usage of the framework, considering applications composed
of several video streams. Next chapter will focus instead on 2D graphics, and

will provide examples of the integrated natural and synthetic content.

29



3.1 Motivation of the work

In the following, we analyse what are the tools available in the multimedia
standard we considered and their relationship to the problem of designing
multimedia terminals capable of reacting to changes in the environment and

in the complexity of their input.

3.1.1 Profile and levels

Profile and levels are a powerful tool to declare the portion of the standard
syntax that a terminal should be capable to process and express
computational bounds. However, for a given profile and level, there might be
variations in the resource demand. For what concerns just video decoding, it
is well known that MPEG video does not consume a constant amount of
processing [BMP98]. Considering an MPEG-4 video bitstream for instance,
we have variations up to 2.5 of the resource usage during the decoding
[MB96]. If we consider 2D composition, the variations are much higher,
depending on a series of factors, for example: the number of objects to draw
at each iteration, the properties of the objects to draw (fill, transparency), the
size in pixels of the objects to draw, the quality of the rendering (antialiasing,
deblocking and deringing filters), the level of user interaction. A very simple
example is provided by a MPEG-4 Core2D graphics and scene graph
bitstream with a 400x400 pixels rectangle scrolling from left to right over a
bitmap still image 640x480. On a Pentium 1.3 Ghz, it consumes from 1% up
to 3 % of the CPU time if the scrolling rectangle is opaque low quality, from
30% to 40 % if it is transparent low quality, from 40% to 60% if transparent
and high quality (antialiased rendering). A BIFS update command that
changes the properties of the object from opaque to transparent would
dramatically affect the resource consumption during the playback of a
bitstream. Clearly, the scene belongs to a given profile and level in all the
cases, but we notice heavy variations of the CPU load. And this considers
only one moving object. In order to keep into account changes in the

computational needs due to changes in the scene we need a framework where

30



quality of the presentation is traded with resource usage and performance is

monitored all over the presentation through appropriate metrics.

3.1.2 Graceful degradation

Great amount of work has been done by the Implementation Study Group
(ISG) to define methods to enable the graceful degradation of MPEG-4
Visual streams, specifically video and 3D synthetic models (SHNC). As a
result, the MPEG-4 Video standard syntax allows the insertion of optional
complexity measures (basically statistics about the coded sequence) in the
video bitstream at the encoder side, which let the terminal figure out the
complexity of a part of a bitstream before decoding it. It has been shown how
a terminal can control the decoding power needed to decode a stream using
this complexity information and degrade the visual quality of the decoded
image [MB96]. The same approach has been used by the SHNC group that
identified complexity measures (size of projected surface of a model at
different viewpoints) in order to control the decoding and rendering
complexity of a 3D model. These efforts were motivated by the observed
large variation in decoding and rendering times (up to factor 2.5 for video and
up to 24 for SHNC models) depending on the incoming data [MB96]
[LB1998]. Graceful degradation covers some areas, namely 2D mesh and
texture decoding and 3D SHNC objects rendering. 2D scenes were not
tackled by the ISG group. As we reported in the previous sub section,
important variations in the complexity of a presentation of 2D scenes are easy
to induce. Methods to predict the complexity of 2D rendering tasks are
desirable and we will provide a model in the next chapter. It must be noticed
however that in the best effort systems we are considering prediction of tasks
can only be useful in limiting the effects of missed deadlines, not in avoiding
them. Besides, high unpredictability due to deeper caching hierarchies,
increasing prevalence of multiprocessors, variable processor speeds for power
and heat management, and finally due to user interaction do require the need

for QoS monitoring models.

31



3.1.3 MPEG-4 QoS management model

The QoS management model of MPEG-4 Systems is mainly oriented to
adapt the standard to different service scenarios. In order to achieve scenario
independence, the MPEG-4 object descriptor framework enables the
insertion of desirable channel characteristic in the description of each
elementary stream, and the delivery layer includes support to request channels
with different properties. We observe that the notion of QoS in MPEG-4 is

mainly oriented to network level. Annex E seems to confirm this statement:

“In ISO/IEC 14496-1 the information concerning the total QoS of a particular
elementary stream is carried in a QoS Descriptor as part of its elementary stream descriptor
(ES_Descriptor). The receiving terminal, upon reception of the ES_Descriptor, is therefore
aware of the characteristics of the elementary stream and of the total QoS to be offered to the
end-user. Moreover the receiving terminal knows about its own performance capabilities. 1t is
therefore the only possible entity able to compute the Quality of Service to be requested to the
delivery layer in order to fit the user requirements. Note that this computation conld also

ignore/ override the total QoS parameters.”

We can extend the ISO/IEC 14496 QoS management model in order to take
into account presentation level issues. Since every stream has its associated
elementary stream descriptor, which in turn contains a configurable QoS
descriptor, we can easily extend the architecture with the QoS specification

defined in the following sections.

3.2 QoS specification

As a terminal needs to control the value of a presentation and its complexity,
a specification of how the different components of a presentation contribute
to the value perceived by the user is necessary. In the process of defining
quality descriptors we borrowed some concepts developed in the field of
operating system schedulers, where the use of value functions to maximise

system utility has been investigated. For instance in [LRS98] and [JLDB

32



1995], the authors report on the use of discrete quality dimensions to
maximise task allocation in an OS scheduler. The use of these concepts in a
multimedia framework we think it is an interesting application of those

COﬁCCptS.

3.2.1 User-level QoS specification

‘Quality’ in technical literature is commonly defined as: “The totality of
characteristics of an entity that bear on its ability to satisfy stated and implied
needs’ (ISO 8402). Quality is hence by definition connected to the needs of an
entity. A QoS specification, performed with metrics that capture properties of
an entity, clarifies these needs. In this sense, a user-level quality specification
consists of a list of quality options for the relevant properties of a given
application. The assumption is that the user is able to identify a number of
desirable quality dimensions and their associated quality options and, most
importantly, rate them. Since a multimedia scene is potentially composed of
several streams, a global quality specification would not best capture the needs
of the application. Consider for instance the scene reported in Figure 6. It
shows a kart racing application that provides different cameras to enjoy a

sport event.

—5»;'4

e g g. : .lﬂ!
arad ol |
ERED =

Figure 6: Kart racing application

Three small QCIF (176*144 pixels) videos (10 fps) provide different views of
the race and one CIF (352*288 pixels) video (30 fps) provides a better quality

33



view. The author can certainly identify a set of qualities that may express the
concepts of timeliness (frame rate), size, or perception (post-processing filters,
antialiasing) for the presentation of this event. Clearly, if these options are
declared per stream, the rendering terminal can allocate resources at a finer
granularity, optimising the utility of the system. As an example, suppose that
during the playback of the kart application the frame rate of the CIF video
suddenly decreases, because the CPU is overloaded. The CIF video is
probably not the best candidate for quality degradation, because it is the most
important view for the user. Instead, the three preview QCIF could be
degraded (reducing the frame rate or substituting the videos with some text),
and the released resources could be used to display the CIF video at full
quality. In order to achieve that, quality options should be declared per
stream, and each stream should convey a notion of importance relative to the
others. Since multiple quality dimensions may be associated to each stream
(ex: frame rate options, frame size options, perceptual quality options), there
is also a need to rate each dimension, in order to choose among possible
options taking into account the value that each user assigns to each
dimension. For instance the quality dimension “size” of a video stream is a
very important quality parameter for an action movie, while for a TV news
program it is not as important. Similarly, the size of the screen is very
important for remote surveillance applications, which on the other hand

might tolerate frame rate reduction.

Videos are (c) Marty Stouffer

F{te 7. Video é;f‘aiog{lé‘ :

34



A similar concept applies to 2D graphics. Figure 7 shows a video catalogue
application. Six small QCIF videos scroll from right to left in the lower part
of the screen. When the user clicks on one video, a bigger view is displayed in
the upper part of the screen. Small video scrolling is achieved via a BIFS
construct called time sensor, which fires events at a regular rate. BIFS quality
dimensions may include viewport (display) sizes and frame rates for the
animation. If the author assigns a value to each dimension, when the
presentation system is in the need of assigning resources to each stream it
may trade off resource availability and author preferences. The above
examples suggest the structure of a user-level QoS specification: each stream
should convey its list of QoS dimensions, and their contribution to user
satisfaction. The relative importance of each stream should also be evident by
the description. According to this, a user-level specification of the application

shown in Figure 7 might be:

Stream 1: (Video CIF)

® DPerceptual Visual Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 3

® Frame Rate {25, 12, 5} Dimension Value: 2
® Frame Size {CIF, QCIF} Dimension Value: 1
e Stream Value {3}

Streams 2, 3, 4: (Video QCIF)

® DPerceptual Visual Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 2

® Frame Rate {10, 5, 2} Dimension Value: 1
® Frame Size {QCIF} Dimension Value: 3

e Stream Value {2}
Stream 5: (Audio)

® Perceptual Audio Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 1

¢ Audio Sampling Rate {44100, 22050} Dimension Value: 2
e Stream Value {4}

35



Stream 6: (BIFS)

® Perceptual Visual Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 1

e Frame Rate {10, 5, 1} Dimension Value: 2
® Frame Size {100, 50, 10} Dimension Value: 3
® Stream Value {1}

In the above example, a user-level specification is associated to each stream of
the application. It is composed of a list of guality dimensions declared for each
stream. In the example the quality dimensions capture timeliness, size and
perceptual qualities, but the list is not meant to be exhaustive. Each quality
dimension contains a list of ordered guality gptions, in descending quality order.
Each dimension has an associated dzmension value, which establishes a ranking
among the dimensions in the user satisfaction. For instance in stream 1 the
user rates Perceptual Visual Quality as the highest quality to preserve,
followed by frame rate and finally frame size. This means that the first action
that a terminal would consider when degrading the quality of the scene is a
reduction in frame size. Fach stream has an associated stream value. This
establishes a ranking among the streams of a presentation. Streams with
smaller values are the first ones to be degraded. We assigned the highest value
to audio, and then to the CIF video. This is because audio is the media that is
more sensitive to degradations, and even minimal quality reductions have a

strong impact on user satisfaction.

The assumption on which this specification is based is that the user is able to
identify some qualities for each stream and rate them. We may wonder if it is
always possible to identify a set of quality dimensions. We believe that for
most scenes the answer is yes. The concepts of timeliness, quantity of data,
perceptual quality, well fit with the nature of multimedia streams. What we
can say is that it is not always possible to have all descriptors for each stream.

For instance the concepts of optional frame rates for video cannot be applied

36



to all encoded video. As reported in [IFS03], sometimes there is not a fixed
frame rate nor a constant group of pictures structure (I, P, B pattern) for the
whole bitstream, that will enable, for instance, the decoder to change frame
rate skipping some data. So we foresee that it is not possible for all streams to
have a fixed set of descriptors. But this is then connected to the inner
meaning of a user QoS specification: to provide hints to the terminal about

which quality dimensions degradations can be planned and safely executed.

3.2.2 Application-level QoS specification

It is agreed in literature [CCGY2] that QoS is a concept that spreads at least
over User, Application and Network levels. In this work we consider User
and Application levels and we assume that the input data is always available at
the terminal when it needs it. This assumption can be relaxed considering a
particular service scenario and suitable network quality metrics [D2199]. In
order to define the application level metrics suitable for multimedia streams,
we followed Campbell’s taxonomy [CAH96]. He defined an end-to-end QoS
framework for audio-video streams based on the notion of flow. A flow is
defined to characterize the production, transmission, and consumption of the
state associated with a single media. The framework includes the definition of
QoS specification, which captures quality of service requirements, and QoS
mechanisms that realize end-to-end QoS behavior. The specification is
different at each system layer, and as a consequence at each layer there should
be QoS mechanisms specified too. According to his work, a taxonomy for the

QoS metrics at each layer of a multimedia terminal is comprised of:

® Flow synchronization: specifies how tight the relationship among

different media streams is.

® Tlow performance: provides performance metrics for each stream in

the application.

37



® Level of service: indicates the kind of guarantees that are provided by
the layer addressed by this specification: deterministic, predictive, best

effort.

® QoS management policy: specifies the kind of adaptation that the
flow can tolerate, providing suggested actions to be taken when there

are QoS misses.

® Cost of Service: provides an indication of the price associated to

different levels of service.

Campbell considered mainly single audio video flows, and as a consequence
the presentation system metrics did not include potential problems arising
when dealing with multiple (natural and synthetic) streams. Since MPEG-4
enables the playing of several streams concurrently, we are interested in
finding a QoS specification and management policies that take into account
audio-video and synthetic flows, and their relationships. In the following
sections, we provide a characterization of MPEG-4 elementary streams with
the aim of finding metrics to fill up the previous QoS taxonomy and provide

the mapping between user-level specification and application level.

3.2.2.1  Characterization of MPEG-4 elementary streams (core 2D perspective)

MPEG-4 elementary streams are composed of continuons and non-continuons
media. Continuous media (i.e. video, audio streams) are comprised of several
media units. A basic characteristic of continuous media is their uninterrupted
nature, which entails processing of large amounts of data with real time
deadlines. Non-continuous media (i.e. still images) are composed of single
media units and are somehow easier to handle for a terminal. Their quality
can be specified by parameters like colour depth, resolution, sampling size.
These parameters are independent of temporal relations, and are not strictly
under the influence of the presentation system, being decided at authoring

time. A particular kind of stream is the scene description stream (BIFS). Even

38



if this stream can be considered as a non-continuous stream, some kind of
scenes requires regular updates, and as a consequence BIFS may have also the

properties of continuous data.

3.2.2.1.1  Intra-Stream Synchronization

Continuous media can be represented as a sequence of units, e.g. audio
samples, video frames, or animation frames. Rendering a continuous stream
implies the display of a sequence of samples with a regular frequency, namely
the sampling frequency, which should hence match the rendition rate. Intra-
Stream Synchronization is the process aimed at preserving the temporal relation
between units of continuous media. The quality of continuous media depends
on static authoring issues (i.e. sample rate, compression level), but is also
under the influence of the presentation terminal. Because of operating
systems, networks, disks etc, general-purpose computing environments are
inherently non deterministic in nature. Network delay jitter (non constant
variation in the arrival times of media units), if not handled at the presentation
terminal, may interfere with the regular display of presentation units, because
a unit that is supposed to be presented at a specific instant may not be
available at the terminal. CPU overload may cause a similar effect, since the
terminal is unable to process and display on time the units of a media. The
scheduler of the operating system may also interfere in the regular display of
frames, if the thread that is in charge of performing the display is not woken
up long enough before the deadline.  Hence there can be delays and
disruptions in the presentation of media frames. Audio and video flows are
both continuous media, but with different properties. Since errors in audio
playback are more easily detected by end-users in form of small glitches,
playback techniques try to avoid any audio frame skipping, trying to keep
audio data continuous, with insertion of silence or white noise or
interpolation of previous packets when a media unit is missing (due to packet
loss or late arrival). Video allows somehow more flexibility, since it is possible

to present for a longer time, duplicate or drop a limited number of frames,

39



without heavily impacting the user-perceived quality. BIFS streams can be
considered continuous media, when they contain scene updates at some
specified rate. Application level QoS metrics for continuous media try to

quantify the continuity of the flow of media streams. We identified:

® Average frame rate: it captures the rate at which the presentation units
of a stream are displayed. A nominal frame rate is selected as QoS

baseline according to the available resources and user preferences.

® Maximal frame rate variation: indicates the allowable rate change in
the display of presentation units. It is a number comprised between 0
and 1. If / is the nominal frame rate and 7, is the rate change, then the
stream frame rate can vary between /. and /*(1-7). The nominal frame
rate depends on the quality option that the stream is targeting. This
metric depends mainly on the capabilities of the terminal and the
service scenario. If the maximal frame variation is violated then the
system has to run management policies and compute new QoS

baselines.

® Max instantaneous drift: indicates the maximum delay accumulated by
a decoding/rendering process. It is defined as the difference between
the current time of the clock of the stream and the time stamp of the
unit being processed. It is an indication of the progress of the stream.
We hence assume that every media unit has an associated time stamp
(or it can be implicitly available), and that the terminal maintains a
clock object for each stream being processed. This is exactly what the
MPEG-4 architecture defines: elementary streams are time-stamped

information and each stream has its own time base.

As we said before, the rate of a stream can change due to lost and late
packets, too high decoding or display time. All these factors can determine a

decrease of the presentation rate of a stream. If the maximum rate change is

40



violated then the presentation of the stream might be aborted or the flow
should change rate towards a different QoS baseline. It should be noted that
performance metrics are dependent on the presentation algorithm and the
service scenario. In networks where constant end-to-end delay is not
guaranteed, other metrics like coefficient of output frame variation may be
added [I'TI2000], in order to have a measure of the smoothness of the output
units. However, for the scope of this work the above metrics are sufficient to

monitor the performance of the display of each stream.

These metrics are valid for video streams and continuous BIFS streams, and,
considering frequency instead of frame rate, also for audio playback.
However, as we said before, audio streams are less tolerant to errors, hence
presentation level rendering techniques are somehow limited to masking

audio errors.

3.2.2.1.2  Inter-Stream Synchronigation

Inter-Stream synchronization is meant to preserve the temporal relation
between media objects. A common example is the relation between audio and
video in a movie with a speaker (lip-synch). The term 'skew' indicates the time
difference between related presentation units from different streams. Since it
defines the affordable synchronization boundaries, synchronization can be
defined by specifying a maximal skew between two media streams. It has to
be observed that since we are dealing with presentation level synchronization
between streams, it is assessed by the end user, and it is qualitatively judged by
human perception. As a consequence, it is not straightforward to derive
quantitative measures of quality of synchronization. Besides, skew values
depend also on the specific media streams. For instance two audio streams to
be played simultaneously in each channel of a stereo reproduction system
have tighter requirements in respect of audio video synchronization;
requirements of video and annotated text are yet less stringent. Steinmetz

[RS1996] reported a series of experiment about human media perception,

41



which may be used as QoS guidelines. The results of his work show that
streams that have skew values greater than zero are still perceived as in synch
until the skew reaches a precise value. This means that some misalignments
can be tolerated without degrading the quality of the presentation. The results

are reported in the following table.

Media Mode, Application QoS
Video Animation Correlated +/-120 ms
Audio Lip-synch +/- 80 ms
Image Opverlay +/-240 ms
Non overlay +/-500 ms
Text Opverlay +/-240 ms
Non overlay +/-500 ms
Audio Animation Event correlation +/- 80 ms
Audio Tightly coupled (stereo) | +/- 11 us
Loosely coupled (dialog | +/-120 ms
with various
participants)
Loosely coupled | +/- 500 ms
(background music)
Image Tightly coupled (music | +/-5 ms
with notes)
Loosely coupled (Slide | +/-500 ms
Show)
Text Text annotation +/- 240 ms
Pointer Audio relates to showed | -500 ms, 750
item ms

Table 1: skew values associated to perceived
synchronization

From the table we observe that audio-video streams are considered in synch if
the absolute skew between them is less than 80 ms. If the skew value is 160
ms, the streams are then perceived out of synchronization. Using the results
shown in the table, we have then quantitative values to assess quality of

synchronization between two streams.

42



3.2.2.1.3 QoS management policy

QoS management policies specify actions (“recovery actions”) to be taken
when performance or synchronization QoS for a flow is not met. When a
terminal detects a performance problem, it degrades the quality of the
presentation through recovery actions. Recovery actions follow directly from
user-level QoS specification. If stream importance and quality dimensions and
quality options are declared and accessible by the terminal, a recovery action
will then select first a quality dimension according to the value information
and then select a lower quality option according to the available terminal

resources. We will illustrate in detail quality management in Section 3.3.2.

3.3 Framework Architecture

The architecture we propose is an extension of the MPEG-4 architecture
described in Chapter 2. The architecture extensions are meant to provide
supportt for the control of the playback of a multimedia scene according to a
user provided QoS specification. In the design phase we borrowed design
principles investigated in control theory for discrete event systems [KBE99],
where the issues of controllability, robustness and reactive configuration have
been identified. Even if a multimedia terminal can be defined as a time-driven
system (at every clock tick events occur that advance system behaviour), the
interactions with a hosting environment are rather event-driven (events not
known in advance and not necessarily coinciding with clock ticks interfere
with the behaviour of the terminal). Controllability refers to the capability of a
system to performing according to the specifications when input load changes
dynamically (between specified bounds). This is particularly important for a
multimedia terminal whose data load may change over time. Robustness deals
with unanticipated variations in the environment of a system. As the
environment departs from the expected one, the system degrades gradually in
performance rather than showing a catastrophic failure. This concept is

relevant for terminals running in an un-controlled environment (i.e. general

43



purpose operating systems) where applications compete for system resources.
Reactive configuration indicates the capability of a system of reconfiguring its
main algorithms scaling their computational needs, and it’s triggered by an
evaluation indicating that the system is not accomplishing its mission.
Controllability and robustness have been addressed by a design pattern called
distributed control, illustrated in Section 3.3.1. Reactive configuration has
been addressed in the context of the quality management process (Section
3.3.2). In the following we illustrate the architecture we propose for

distributed control and quality management.

3.3.1 Distributed Control

In order to address robustness and controllability, the load of a system must
be constantly monitored, variations in the load of a terminal identified, and a
reconfiguration of the terminal data processing algorithms can eventually take
place in the context of a quality management process. A major problem in
dealing with the load of a multimedia system is that it varies over multiple

timescales. More precisely:

- Data changes in continuous media usually take place at a time scale of tens

of milliseconds (i.e. time-varying complexity of MPEG decoding [BMP98])

- Scene changes usually take place at a time scale of seconds (i.e. BIFS scene
updates possibly add or remove streams from the presentation, which may

impact the terminal load)

- User changes have time scales of minutes (i.e. user interaction may trigger

events that cause load variations)

- Environment changes have time scales of hundreds of milliseconds (i.e. load

variations due to other applications running on the same OS)

In order to cope with these requirements, a hierarchical control architecture

has been conceived. In the theory of hierarchical control systems [ZU97],

44



separate control units make independent observations and have their own a
priori information and control variables. Control is achieved via collaboration
among independent units. A control unit is constituted of an observation process
that collects information about the controlled system and its environment and
a decision process which uses this information and any a priori information to
perform the control. Following these design principles, the decoding and

rendering pipeline described in Chapter 2 has evolved in the one in Figure 8.

o UserQs—-
. | Control .
Data g o | :
Greme Media " Media M Selector | °SDB
coder, .. /
~. T Weda Object
'\‘~‘\-~“~--‘__'——‘—"——7L/‘ :
/' QoS
/ Monitor
/
/
/
/
7/
| .
/
System Quality ': a 3
o Selector o) <3
\ c 8
\ ;
) s}
N 3
\
\
I ~
- - Monitor
i 1
- Media Obiect
Control /T' e O6i
Data Media Filter - e
Channel E
\ Decoder
| >
- =

——UserQoS———

Figure 8: Extended decoding and rendering
pipelines

The architecture is an extension of the MPEG reference software’s one, since
the main concepts of having separate pipelines running in separate threads, a

shared Scene Graph with media objects that share decoder composition

45



buffers, and a presenter thread that performs the rendering of the nodes of
scene graph, are also present in the proposed architecture. We addressed here
the control at different time scales, achieved with the collaboration of the
different control units located in the Decoders and the Media nodes, and a
new component called Resource Manager (“RM”). Decodert’s control units
observe dynamic load variations of continuous media (i.e. video or BIFS
scenes decoding), and the progress of the decoder process. Control units
contained in media nodes (“QoS monitor” in Figure 8) monitor the continuity
of the flow of the associated media. Control units encapsulated in the root of
the scene graph monitor graph changes (caused by user interaction or scene
updates). The System Monitor element of the Resource Manager observes
instead environment changes, typically CPU usage of the terminal process and
other OS processes. As we will see in the next subsections, observation
performed by control units may lead to independent decision processes, or
notifications to the Resource Manager that will eventually start a new quality
assignment process (in this sense we designed a hierarchy in the control). The
need for a separate entity is justified by the fact that we have to centralize the
analysis of QoS misses and take actions on the basis of a global view rather
than considering only local single flow violations. Each flow should signal the
QoS misses to a unique entity since they have to be processed on the basis of
a priori information (User QoS) and available resources. In the following we
illustrate more in detail the control components of the framework for video
and audio flows. BIFS streams media and decoding control units will be

tackled in Chapters 4 and 5.

3.3.1.1 QoS Monitor control units

QoS Monitor control units (“QoSM” hereafter) observe the consumption of
media composition units, calculate media specific presentation QoS (using the
metrics identified in 3.2), and notify the RM when violations are detected.
QoSM units are media specific, and have been modeled as included in media

nodes contained in the scene graph. Since each stream in a presentation has

46



an associated media node, the nodes are good candidates to include QoS
monitoring functionality. In briefly describing video and audio units, we
assume a model where the decoder is always producing data until either the
composition buffer is full or the decoding buffer is empty. This model is
particularly suited for applications that have to compose several different
media combining media units from different buffers, and it is effective in
service scenarios where frame arrivals suffer from jitter. We further assume
that every stream has an associated clock that provides the notion of object

time base of the stream.

3.3.1.1.1  Video

The rendering function of video media nodes regularly access composition
buffers and display the frame whose timestamp is the closest to the value of
the stream clock. The renderer has the possibility to skip some composition
frames or repeat frames already displayed in order to cope with delays of the
decoder or the renderer itself. This is a form of independent control and
decision process governed by a clock. QoSM units observe the quality of this

process using application level QoS metrics. Whenever a media node has a
new frame to display, the current frame rate f, is calculated. If f, is the
nominal frame rate selected by the current QoS baseline and r the max rate
variation, then f, has to be between f, and f, —r. If this condition is

missed for a number of consecutive times (given by application
requirements), a notification is sent to the Resource Manager. This will

eventually start management actions.

3.3.1.1.2  Audio

QoSM audio units observe the consumption of audio samples and monitor
the progress of stream, comparing the time stamps of the samples being
played with the stream time base clock. When a deviation is detected and is
superior to a tolerable skew, then proper action is taken: samples are inserted

or the clock is updated. This control is meant to compensate potential drift

47



between the audio board clock and the system clock. QoSM units hence
check the progress metric. Control on the audio clock is also meant to
provide synchronization between streams. Several algorithms to achieve
synchronization are available in synchronization literature [I'T2000] and
MPEG literature (master/slave technique reported in [RKRIG]). QoS
synchronization specification is connected to the chosen algorithm. The QoS
synchronization specification for MPEG-4 terminals may express the
acceptable violations of the MPEG-4 Systems Decoder Model. As we
explained in Chapter 2, the System Decoder Model provides an ideal
definition of the behaviour of the terminal, ideal because it assumes
instantaneous decoding time and constant end-to-end delay. This implies that
composition units are available for presentation at the time expressed by their
composition time stamp. It follows that, in the ideal model, assuming the
same time base, then composition units from different streams with same
time stamp have to be composed at the same instant, and any drift would be a
violation of the model. However, some streams may tolerate little violations
of the model. If two or more streams are supposed to be synchronized, they
have to refer to the same time base, and so they share the same clock object.
Intra and inter stream quality of synchronization then depends on how close
the composition time stamps of the units being displayed are, in respect to the
stream clock. QoS for synchronization does not require interactions between
the resource manager and other control units, but has to be taken into
account by the synchronization algorithm as proper thresholds to consider

before taking corrective actions.

3.3.1.2 Control Filter units

These units observe the incoming data of media decoders, and perform media
dependent control, independently or triggered by the Resource Manager. If
the decoding process of a media is too high or the terminal load needs to be
lowered, some action can be taken on media decoders. Control on media

decoding is typically performed on video decoders, but in Chapter 5 we will

48



illustrate the need for a BIFS control unit and its design. The design of video
decoding control units is strictly coupled with the design of the decoder they
control. Two main strategies exist: quality reduction and frame skipping.
Quality reduction is inspired by the imprecise computations model
[JKWAJ91]. If a video decoder provides some form of downgraded decoding
algorithm (i.e. complexity scalability via IDCT data pruning [PS2001]) control
units may predict complexity of incoming data, using either complexity
measures carried in the MPEG-4 Visual syntax [MB96] or performing an
estimation extracting parameters from bitstream headers
[BMPIS][[LCZ2001]] and regulate the decoding process to produce frames of
inferior quality if the complexity of a frame is superior to a threshold selected
by the RM. A simpler strategy is frame skipping, where control units regulate

the decoding process forcing the decoder to skip part of incoming data.

3.3.1.3  Resource Manager: system monitor

General-purpose operating systems are best effort operating systems, and
hence they make no guarantees to applications. They do not reject an
application during overload, but instead reduce the processor time available to
other applications to “make room” for the new one [RBS2000]. Since this
kind of situations cannot be predicted, applications should monitor the usage
of the resources of the terminal and be able to dynamically adapt their needs.
The System Monitor component of the architecture monitors mainly CPU
usage, at regular intervals. The load of the multimedia terminal process and
the total load of the system are quantified. It must be noticed that resource
monitoring alone is not sufficient to determine if an application is successfully
carrying out its tasks. A busy processor could mean that it is handling well a
lot of work, or that is overloaded. Resource monitoring has hence to be
coupled with application QoS monitoring. If QoS violations are detected and
CPU is overloaded, then the quality management process will reduce the
computational needs of the terminal, reassigning quality options to each

stream.

49



3.3.2 Quality Management

Quality Management is the process of assigning the quality of the streams that
compose a presentation on the basis of a user provided QoS specification and
the amount of the resources of a terminal. The assumption we made in 3.2.1
is that the author is able to identify a set of quality dimensions for each
stream, with their associated quality options, and rate them. The presentation
system then selects the quality options for each quality dimension of a stream
in order to maximize system utility and user satisfaction. The quality selection
process may run several times during the execution of a presentation. In the
proposed architecture, the quality management is performed via collaboration
of the Resource Manager (Quality Allocator component) and the following
components of the media nodes associated to each stream in a presentation:
Quality DB and Quality Selector. The Quality Allocator runs a resource
management algorithm in order to assign qualities to each stream. The Quality
DB of each media node contains the stream User QoS specification conveyed
to the terminal as specified in 3.3.3. The Quality Selector of each media node
is responsible of setting the presentation of each stream to the combination
of quality options identified by the Quality Allocator. In the following section
we describe how quality options are assigned. Section 3.4 will provide
examples of how the Quality DB and Quality Selector are used in the

framework.

3.3.2.1  Quality allocator

The process of assigning quality options to streams of a presentation is
connected to the available resources of a terminal. If the terminal had infinite
resources, the best quality options would always be selected. Since this is
obviously not the case, qualities have to be assigned so that the resource usage
does not exceed the available resources. However, since the load of a terminal
changes over time, quality options have to be negotiated and reassigned
whenever changes in the load are predicted (if possible) or detected. We can

formalize the quality allocation problem in the following way.

50



Let the following be given:

S,.S,,..., S, Streams that compose a multimedia presentation
0,,0,,...,0, Quality specifications associated to each stream
R, ,R,,...,R, Resource consumption of each stream S,

A quality specification Q, for a stream S, is composed of a finite set of guality

dimension vectors (ex. PerceptualQuality, FrameSize, FrameRate etc.)

Qi :{Qil’QiZ’”"Qiin}

BEach Q,is composed of a discrete number of quality options (ex.

FrameSize {CIF, QCIF})
Q, ={h hy,shyy;

in order to rate the quality options of quality dimension @, , we define

;2 0y = (1,2, Qif 1)

u;is a bijective function defined so that if u; (hj)>ul.j(h2) then quality

option A, is “better than” h, .

If each quality dimension Q,; of a quality specification (), has an associated

dimension value W, , we can express the quality of a stream S, as a function

of the chosen quality options:

u,:Q, — N

51



di
u; (q, ) = Zwijuij (qu)
=

In a similar way, we can express the quality of the presentation in terms of the

qualities of each single stream S, and its stream value p; :

M(QI 3Gy seees qn) = Zpi u; (qi )

i=1

We aim at maximising u(q, g,,.-.,q,) subject to

Zn: R, <R .
i=1

where R is the available resource of the terminal.

X

As shown in [LRS99], this class of combinatorial problems (Single Resource
Multiple QoS dimensions) are NP-hard, since they can be considered as an
instance of the 0-1 Knapsack Problem. We use a simple greedy algorithm to
choose qualities based on the stream value and the resource consumption
associated to each quality level. We chose a greedy algorithm on the basis of

the following considerations:

1. The number of streams and quality dimensions is not expected to be
so high to justify a more complex algorithm. Note: the framework
assigns qualities to streams. 3D frameworks using similar approaches
assign qualities to each object in a 3D world; in this case more
complex algorithms are necessary since the number of objects and the

number of quality options per object can be quite high [NRLD2002].

2. The framework assigns the same quality options to streams with the

same stream value. Streams with the same stream values are

52



considered to share some semantic meaning. Quality options are
hence assigned so that streams with the same semantic value share the

same quality options. This also simplifies the algorithm.

We observe that point 2 it is not a limitation, since if we need different quality
options to be allocated to different streams it is sufficient to assign them
different stream values. The greedy algorithm performs the following steps,

assuming as input a value Rmax of available CPU:

® Order the streams in decreasing importance, grouping streams with

the same stream value.

®  Otrder quality levels in decreasing quality order. Ordered quality levels
are determined combining the quality options of each quality

dimension, starting from higher dimension values to lower ones.

® For each group of streams, starting with the group at highest stream

value:

o Start selecting quality level that corresponds to highest quality.

o Estimate resources for this group at the selected quality level.

o If the estimation is higher than Rmax, select a lower quality
level and perform again estimation until the condition is

satisfied.

o If no combination of quality level is found, select lowest

quality level and raise exception.

An example of how complexity estimation and quality levels are identified is

reported in Section 3.4.

53



3.3.3 Carriage of QoS descriptors

All the streams of a MPEG-4 presentation are described by object
descriptors, conveyed in the Object Descriptor (OD) stream. An object
descriptor is defined as a set of elementary streams descriptors (ESD) that
provide one or more encoding of the same media, plus descriptors with
semantic information about an object and hooks for security. Fach
elementary stream descriptor contains information about its associated
stream: location, type, encoding, bit rate, buffer requirements, and decoder set
up information. The standard allows the insertion of QoS descriptors in a
clementary stream descriptor. A QoS descriptor consists of an index of
predefined QoS scenario, or a set of QoS qualifiers. The following syntax,
taken from the ISO 14496-1 specification, describes the structure of a QoS

descriptor:

class QoS_Descriptor extends BaseDescriptor : bit(8) tag=QoS_DescrTag

{
bit(8) predefined;

if (predefined==0) { QoS_Qualifier qualifiers][]; }
§

QoS qualifiers are hence defined as derived classes from the abstract
QoS_Qualifier class. They are identified by means of their class tag. Unused
tags values up to and including Ox7F are reserved for ISO use. Tag values
from 0x80 up to and including OxFE are user private. Tag values 0x00 and
OxFF are forbidden. A number of qualifiers have been hence predefined by
ISO to express: maximum end-to-end delay for the stream in microseconds
(MAX_DELAY), preferred end-to-end delay in  microseconds
(PREF_MAX_DELAY), allowable loss probability of any single access unit
(AU) (0.0 1.0) (LOSS_PROB), maximum number of consecutively loss AU
MAX_GAP_LOSS), maximum size of AU in bytes (MAX_AU_SIZE),
average size (AVG_AU_SIZE), max arrival rate of AU in AU/second

54



(MAX_AU_RATE), ratio of the decoding buffer to be filled in case of pre-
buffering or rebuffering (REBUFFERING_RATIO). Since it is possible to
add QoS descriptors via the QoS_DescrTag, we can extend the standard
adding descriptors that carry user-level quality of service specification for each
stream. New descriptors, conforming to the specification we introduced in
Section 3.2, can be declared in the following way (taking as example the

quality dimension “Frame Rates”):

class QoS_Qualifier FRAME_RATES: public QoS_Qualifier
{

public:

SDLInt DimensionValue;

SDLArray<8> FrameRates;
i3
It should be noted that these qualifiers are vital information for the
framework presented in this chapter. If the terminal detects a QoS
specification for a stream then it includes the stream in the resource
management process. If no descriptors are detected for a stream then the

playback is performed in an un-controlled way.

3.4 Experimental Results

In the following, two examples of utilization of the framework are proposed.
The examples are meant to provide evidence of how the different elements
that we proposed so far cooperate in order to make a terminal adapt its

running conditions.

3.41 Examplel

We consider here a scene constituted of ten video streams. Ten Movie
Texture nodes are spatially composed in a BIFS scene as illustrated in Figure
9. The 704x576 screen is divided in four 352x288 areas, containing from top
left:

55



1 video CIF MPEG-4 Advanced Simple Profile (ASP) 1 Mb/s, 25 fps (V1)
4 video QCIF Advanced Simple Profile 250 Kb/s, 25 fps (V3-V0)
4 video QCIF Advanced Simple Profile 250 Kb/s, 25 fps (V7-V10)

1 video CIF MPEG-4 Advanced Simple Profile 1 Mb/s, 25 fps (V2)

Figure 9: Example 1, two CIF streams and 9
QCIF BIFS scene

We assume, as we stated in Section 3.2, that the author/user is able to
identify a set of qualities for each stream (dimensions), with associated
options (quality options) and rate them. A User QoS specification for the
scene in Figure 9 may assign different values to the CIF and the QCIF videos.
Three levels of interest may be expressed (in descending order): V1 and V2
(the two CIF videos) have the same highest value, V3, V4, V5, V6 share the
same middle value and V7, V8, V9, V10 have separate decreasing values.

Besides, the user may declare that is willing to accept only frame rate

56



variations, and accept the QCIF nodes to be completely switched off, if it is

necessary. We express this in the following way:

Streams CIF (V1 and V2)

QoS_Qualifier FRAME_RATES{FRAME_RATES |[25,8,2] dimensionValue
1}
QoS_Qualifier STREAM_VALUE {STREAM_VALUE 6}

Streams QCIF (V3, V4, V5, V6)

QoS_Qualifier FRAME_RATES {FRAME_RATES[25,8,2,0]
dimensionValue 1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 5}

Streams QCIF (V7, V8, V9, V10)

QoS_Qualifier FRAME_RATES{FRAME_RATES|25,8,2,0]
dimensionValue 1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 1-4}

As we say in 3.3.3, this specification can be included in MPEG-4 systems
elementary descriptors as additional information conveyed to the terminal.
From this specification, the terminal is able to identify 3 levels of complexity
for each CIF node, and 4 levels of complexity for each QCIF node. Various
definition of complexity can be found in literature. We defined complexity as
the percentage of CPU needed for the rendering and decoding of a media

associated to a node at given level of quality over a second. If Cjis the

number of CPU cycles per second for the display of a node i at quality level
J and F the CPU clock frequency then the complexity of node i at quality

option j is defined as:

Complexity ;= (C;*100)/ F

57



From the above then we can calculate complexity levels for each combination

of quality levels of a stream, as follows:

CIF (stream V1)
Complexity ;= (((25*a)+b, )*100)/ F
Complexity , = (((8*a)+b,)*100)/ F

Complexity ,,= ((2*a)+b,)*100)/ F

a = cycles for CIF Frame Rendering

b, = cycles for CIF Decoding ASP @ 1 Mb @ 25 fps
b, = cycles for CIF Decoding ASP @ 1 Mb @ 8 fps (skip B frames)

b, = cycles for CIF Decoding ASP @ 1 Mb @ 2 fps (skip P and B frames)

The number of cycles for video decoding is a quantity variable in time over
bounds that depends on incoming data and software implementation on a
particular architecture. We first assigned an average decoding complexity and
then updated the value during playback. We could have chosen worst-case
cycles, but, as reported in [MB97], worst-case analysis is not adequate to
define a useful decoding complexity. The same paper reports that variances of
complexity figures for fixed bitrates do not show large variations. We hence
started with an average complexity and updated the estimate during playback.
While this approach is cleatly not suitable for scheduling on real time systems,
it can be used for the purpose of this work to validate the systems concepts
we introduced. Better complexity estimation figures, if available, can be

retrieved from information inserted at the encoder side [MBI6].

Cycles for frame rendering are instead constant, assuming the same display
depth. We implemented simple Decoding Control filters that use the frame
skipping strategy, assuming a fixed Group of VoP (GOV) structure for the

whole bitstream. We are aware this is sometimes a false assumption, since

58



some encoders can change GOV structure in order to better encode changes
in the content. However, if this is the case, then the author should not signal
frame variations as a suitable quality dimension and provide other quality

dimension (size, visual quality) descriptors.

In a similar way, QCIF Media Texture nodes have complexity over 4 levels,

as follows:

QCIF (Stream V3)

Complexity ,,= (((25*c)+d, )*100)/ F
Complexity ;= ((8*c)+d,)*100)/ F
Complexity ,,= ((2*c)+d,)*100)/ F

Complexity ;=0

¢ = cycles for QCIF Frame Rendering

d, = cycles for QCIF ASP Decoding @ 250 Kb/s @ 25 fps

d, = cycles for QCIF ASP Decoding @ 250 Kb/s @ 8 fps (skip B frames)
d, = cycles for QCIF ASP Decoding @ 250 Kb/s @ 2 fps (skip P and B
frames)

Note that ¢ and d, ,d,,d; can be detived from a and b, ,b, b, .

QoS Application level metrics verify the continuity of media streams using
frame rate and max rate variation. In our set up we chose 0.2 as value for max
rate variation. This means that frame rate for stream V1 for example can vary
from 25 to 20 (25*(1-0.2)), and still is acceptable. This value can be changed
including in the scene the appropriate QoS_Qualifier MAX_VARIATION
descriptor (for instance in order to have different tolerable variations

according to the value of each stream).

59



3.4.1.1  Admission control, low end terminal

We first ran the scene on a low level CPU (600 MHz Pentium III), using a
player ignoring QoS descriptors. Figures 10 and 11 show respectively CPU
usage and Stream V1 (CIF) V3, V7, V9 (QCIF) frame rates over one minute

of simulation.

“CPU Utllizetian

Counter Yaluss (scaled)

P LEELLEESEPLEPIELEESEELELES

Time (Milissconds)

- Processor '(:'_Tntalj % Processor Time - Process (IEXPLORE) @ % Processor Time

Figure 10: CPU load during one minute of
simulation, QoS disabled

In Figure 10, the CPU utilization includes the percentage of processor time
used by the MPEG-4 player (running as a plug-in of Internet Explorer), and
the percentage of processor time used by the system. This is in order to

distinguish load due to the player from load due to other processes.

40

Stream 1
Stream 3 | |
Stream 7
Stream 9

©w
o
D> %o x

(&)
o
T

*%%‘

.

D sox
o

b P8
k'

frame rate
n
o
&>

&
B
+bo
B
0

&

=Y

Figure 11: Frame rates of streams 1, 3,7, 9
during one minute of simulation, QoS disabled

60



As we see from Figure 10, the CPU is at maximum utilization for all the
duration of the simulation. In Figure 11 we observe that the system is indeed
overloaded, since stream rates are not at their nominal value (25 frames per
second), but instead they vary from 5 to 25. We observe that variations occur
in the same way for all the streams in the presentation. So the presentation
has a unique frame rate for all the streams. Figures 12 and 13 show the same

sampling of CPU load and frame rates, in the case where QoS is enabled.

CPU Utiization

o MWWWW

60,00
40,00
20,00

=3
=
=1
=}

Courter Yalues (scaled)
o
=)
=

EEESELEEEEELELESIFE LS IEFLELE S

Time (Milizeconds)

B Processor (_Total): % Processor Time. —#- Process (IEXPLORE) : % Pracessor Time

Figure 12: CPU load during one minute of
simulation, QoS enabled

In Figure 12 we observe that the CPU load is at its maximum at start up, then
it is always under 100% of utilization. Rates in Figure 13 are distributed
according to the QoS parameter “Stream Value™: stream 1 and 3 are
distributed around their maximum quality (25 fps), stream 7 is around level 1
(8 fps), stream 9 is always at 0, that is it never runs. The QoS system
performed admission control on the number of movie textures right at start
up, and assigned qualities so that streams with higher value would run at
maximum quality and the CPU would not be overloaded. The resource
allocation algorithm described in 4.1.1 performs this. It greedily assigns
resources starting from most important streams to less important ones, and
from most important quality dimensions to less important ones (in this

example, only one quality dimension is considered).

61



40

Stream 1
Stream 3 | |
Stream 7
Stream 9

351

D> %0 x

w
o

n
o1

- SRRt o etecnlomed R e R T

o
©
o 20
£
g
15}
10}
ootk ok ksl okidkioikpiiol ook
5| *
0 Lsmosny o
0 1 2 3 4 5 6 7
Time (ms) x 10

Figure 13: Frame rates of streams 1, 3,7, 9
during one minute of simulation, QoS enabled

3.4.1.2  Competition among applications

On a Pentium 1.3 GHz, the same example scene consumes from 50 to 60 per
cent of the CPU (Figure 14). All the streams have frame rates of 25 fps for
the whole duration of the simulation. In this configuration, we aimed at
testing the behaviour of the QoS enabled terminal when other processes were
running on the same terminal, inducing heavy load (in other words, we

focused on changes in the environment of the terminal).

“CPU Ltilization
100,00

80,00
60,00
40,00

20,00

Counter Yaluss (scaled)

U B EELEEEEEL PSS EPEERESIISEES

Time (Miliszconds)

-B- Processor (_Total): % Processor Time - Process (IEXFLORE) : % Processor Time

Figure 14: CPU utilization on Pentium 1.3
Ghz for Example 1

In order to produce CPU loads at different levels, we used a tool commonly

used to simulate processor workload on Windows platforms, CPUStress.

62



Figure 15 shows CPU utilization when the CPU stress program is running,
with three threads active, generating respectively busy medium and low

activity. As we see from the picture, CPU utilization varies from 60 to 80 %o.

“CPU Utllizetian

PR e e P Y W P e

(FESSELISELIT LTRSS PSSP IS ES

Time (Miliseconds)

B Processor (_Total) : % Processor Time & Process (CPUStres) : % Processor Time

Figure 15: CPU Utilization for CPUStress
program

From Figures 14 and 15 it is obvious that the player and CPUStress processes
cannot run at full CPU utilization on the same system. Figure 16 shows the
interaction between the CPU stress activity and the MPEG-4 player with no
QoS handing. In performing the simulation, we took care in avoiding any
difference in the priority of the two processes. This is because we are
considering general-purpose operating systems with rate-monotonic
programming model (i.e. Windows XP, Linux, Solaris) [RBS2000]. If one of
the two processes had a major priority then the OS scheduler would have
assigned more CPU time to the higher priority one. We also removed the
foreground process advantage, that is the normal OS scheduler policy to
assign higher priority and hence longer slices to the foreground process. We
switched this feature off from the facilities offered by the OS, in order to
better perform the simulation. In Figure 16, first the player is launched, then,
after 12 seconds the CPUStress process is activated. As we see, the two
applications compete for resources (overall processor activity is always at 100
per cent when both applications are running) and the OS scheduler tries to

fairly share resources between the two applications.

63



CPU Utlization
100,00

CEEEELELEEPEPEEESEEEEEEPESPFF

Time (Miliseconds)

Counter Yalues (scaled)

-®- Processor {_Total) ;% Processor Time -& Process (CPUStres) : % Processor Time & Process (IEXPLORE) : % Processor Time

Figure 16: CPU utilization when MPEG-4
Player and CPUStress tool are active, QoS
disabled

Figure 17 shows the interaction between the CPUStress tool and the MPEG
—4 player with QoS enabled. Again first the player is launched, then the CPU
stress tool is activated. As we see from the picture, the player is “adaptive”, in
the sense that it adapts its resource consumption to the environment
situation. Frame rates for both simulations are reported in Figures 18 and 19.
Frame rates are not at their nominal value in both simulations, but the QoS
enabled player has selected a combination of rates so that the system is not
overloaded (total CPU utilization is high, but not constantly at 100%). We
observe that, when QoS is enabled, stream 1 and stream 3 show some
variations in the frame rates. This is because the configuration of this example
imposes a high stress to the system, and a high variation in the amount of
computational resources available. Nevertheless, the variation in the frame

rate occurs between the tolerable thresholds set by the QoS specification.

CRU Lttilization

100,00
80,00
60,00

40,00

20,00

Counter Yalues (scaled)

m5$@ﬁﬁ@ﬁw@@$ﬁ§§$ﬁgﬁ§ﬁ§ﬁﬁyﬁﬁﬁﬁﬁ£

Time (Miliseconds

-&- Processor (_Tatal] © % Processor Time -&- Process (CPUStres): % Processor Time =& Process ([EXPLORE) : % Processor Time

Figure 17: CPU utilization when MPEG-4
Player and CPUStress tool ate active and QoS
is enabled

64



frame rate

frame rate

Using the same system stress tool, we observed V1 decoder lateness in the
QoS enabled and disabled case. Figures 20 and 21 show respectively the
sampling of decoder lateness when QoS is enabled and disabled. When the
system is not under stress, the video decoder decodes frame in advance, up to

the capacity of the composition buffer (set to 5 frames in our set up, i.e. 200

40

351

30

25

201

40

35

30

25

20

x Stream 1
o Stream 3 | |
* Stream 7
A Stream 9
B0 1
& 4
y 5
£ +® A ]
go* w0 % 1Y *%géé" % g A
e o B P RAT B el
* X o
PNV bAH o A
0 1 2 3 4 6 7
Time (ms) % 10

Figure 18: Frame rates when MPEG-4 Player
and CPUStress tool are active and QoS is

disabled
x Stream 1
L (¢} Stream 3 | |
* Stream 7
A Stream 9
F * x x
-m-;; SR R T
*****f* ¥ *;t o * K * e S x
r A xx O F . k *
* *
i 4
AN ° iy VY —
0 1 2 3 4 5 6 7
Time (ms) x10°

Figure 19: Frame rates when MPEG-4 Player
and CPUStress tool are active and QoS is
enabled

65



ms of video at 25 fps). Lateness is hence always negative when the system is
not under stress. In the simulation of Figures 20 and 21, during a simulation
of 40 seconds we created heavy stress after 10 seconds and we returned to
normal load after 30 seconds. As we see from Figure 20 the QoS enabled
player shows two peaks in the lateness when system stress is switched off and
on and then stays always negative. On the other hand, the QoS disabled
player shows an increasing delay (up to 7 seconds) from time 10 to time 30
and then slowly returns to normality. During system stress, the V1 stream in
the QoS enabled player has frame rates between 20 and 25, while the V1

stream in the QoS disabled around 5 frames per second.

100

50

-50

Decoder lateness (ms)

-150

-200

Time (ms) 4

Figure 20: Decoder lateness stream V1, heavy
stress, QoS enabled

66



8000

7000

6000

5000

4000

3000

Decoder lateness (ms)

n
=}
1<)
S

1000

-1000
0 0.5 1 1.5 2 25 3 3.5 4 4.5

Time (ms) % 10*

Figure 21: Decoder lateness stream V1, heavy
stress, QoS disabled

3.4.1.3  Power management

An interesting scenario for the framework we propose is given by mobile
computing. Modern mobile laptops can be configured to vary the CPU clock
frequency when batteries are low or there is a switch in the power source (i.e.
from AC adapter to battery). We configured an Intel Centrino laptop so that
CPU clock speed would vary from 1.3 GHz to 600 MHz when switching
from AC adapter to battery power source. Figures 22 and 23 show the CPU
utilization during a run of 30 seconds. The player is started in AC power
mode, then after about ten seconds the AC cable is disconnected. The figures
show CPU utilization of the system, the MPEG-4 player, and clock frequency
when QoS is enabled and disabled. As we see, when QoS is enabled the CPU
utilization is high, but the system is not overloaded. The MPEG-4 player
reallocates resources when it detects that the scene cannot run at full quality at
a lower CPU frequency. Stream frame rates (Figures 24 and 25) are much
different in the two cases. When QoS is enabled, as soon as clock speed is
slow down, the player reallocates stream qualities accordingly. When QoS is

disabled instead the frame rates of all the streams decrease uniformly.

67



Figure 22: CPU utilization when clock
frequency changes, QoS enabled

Figure 23: CPU utilization when clock
frequency changes, QoS disabled

40

x Stream 1
351 o) Stream 3 | |
* Stream 7
AN Stream 9
30
BlonnbbstRoesRs
Qo
® A
E 20 6 * x« & A
§ 28000 9
£ A 1) N *|
15 A &ag“; ° *
o)
&‘XA* AO PN
10 o 6
5k
0 )
0 0.5 1 1.5 2 25
Time (ms) x10°

Figure 24: Frame rates when clock frequency

changes, QoS disabled

68



frame rate

N
o

Stream 1
Stream 3 | |
Stream 7
Stream 9

w
&
D+0 x

w
=]

n
o

- Bpefreadeess | 009900500
o

n
o

15} &

x
10} A © ,
ok ok ok ok ok Rk 4k

b
b

0 0.5 1 1.5 2 25
Time (ms) 4

Figure 25: Frame rates when clock frequency
changes, QoS enabled

3.4.2 Example 2

A more complex scenario of quality management is shown in Figure 26. We
considered a BIFS scene with a CIF video scaled to 704x576, with height
QCIF video superimposed on screen. The QoS specification is meant to
assign more value to stream on the left of the display, and then streams on the
right and finally the scaled CIF video. The quality dimensions of size and

frame rate are included in the specification of each stream, as follows:

Streams QCIF (V1,
QoS_Qualifier FRAME_RATES{FRAME_RATES|25,8,2] dimensionValue

1}

V2, V3, V4)

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 3}

Streams QCIF (V5,

V6, V7, V8)

QoS_Qualifier FRAME_RATES {FRAME, RATES|25,8,2,0]

dimensionValue 2}

QoS_Qualifier FRAME_SIZE{FRAME,_SIZE [100,50] dimensionValue 1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 2}

Stream CIF (V9)

69



QoS_Qualifier FRAME_RATES{FRAME_RATES|25,8,2,0]
dimensionValue 2}

QoS_Qualifier FRAME_SIZE{FRAME_SIZE [100,50] dimensionValue 1 }
QoS_Qualifier STREAM_VALUE {STREAM_VALUE 1}

Complexity levels for stream V9 are defined as follows:

CIF (stteam V9)

Complexity 4= (((25*a*s)+b, )*100)/ F
Complexity = (((25*a)+b, )*100)/ F
Complexity o,= ((8*a)+b,)*100)/ F

Complexity ;= ((2*a)+b,)*100)/ F

= cycles for CIF Frame Rendering
b, = cycles for CIF Decoding ASP @ 1 Mb @ 25 fps

b, = cycles for CIF Decoding ASP @ 1 Mb @ 8 fps (skip B frames)

b, = cycles for CIF Decoding @ 1 Mb @ 2 fps (skip P and B frames)

s = factor of scale to take into account linear scaling complexity.

We hence build the complexity levels taking into account both Frame Size
and Frame Rate Quality Dimensions, and we order the levels taking into
account dimension values. In the case of stream V9, Frame Size
dimensionValue is smaller than Frame Rate dimensionValue. This means that
the author is willing to accept frame size reductions more “enthusiastically”
than frame rate reductions. Levels of complexity are then built up in
decreasing user satisfaction and stored in appropriate Movie Texture private
data. As a result, the scene looks different whether it runs on a fast CPU or a

slower one as shown in Figures 26 and 27.

70



ol i -
| 7 | | FEDERICO FELLINT
\;’V

FEDERICO FELLINT
Ao AT

iy
i

1]
‘|

www.luniversalstudios.com

Figure 26: Scene 2 running on fast CPU
terminal

www.universalstudios.com

Figure 27: Scene 2 running on slow CPU
terminal

3.5 Conclusions

In this chapter, we established a framework for quality-based multimedia
presentations. The proposed terminal performs resource allocation and
management, trading off user satisfaction and available system resources. User
satisfaction is implied from a user-level quality specification, that identifies a

list of quality options for each media quality dimension and sets up a ranking

71



among them. Monitoring of terminal performance is performed using proper
application level metrics. The quality of a multimedia application is defined in
terms of quantitative observations of its constituent media. Instead of
suffering from lack of resources in an uncontrolled way, the proposed
terminal regulatly checks the performance of its streams against specified
tolerances, and reacts to violations with precise actions selected trading
performance and importance of each media. This is achieved adding
monitoring capabilities to each media node, and providing an additional entity
that centralizes the analysis of violations and initiates recovery actions. Results
show how the proposed framework fulfils the requirements typical of
applications running on general-purpose operating systems: admission
control, competition among applications and power management. Next
chapter will introduce a model to deal with 2D graphics and will show

examples of the integration of this model in the proposed framework.

72



Chapter 4

INTEGRATION OF 2D SYNTHETIC CONTENT

In this chapter we aim at introducing a model to estimate the resources for
the 2D rendering tasks, and provide examples of how to use this model in the
framework we proposed in Chapter 3. This work focuses on consumer
hardware, namely a PC with a state of the art graphics card. It must be
noticed that these are best-effort systems, and the graphic libraries provide no
tools to give a hard time limit for the execution of a given set of rendering
commands. What it can be achieved is a best-effort estimation of the
resources needed, that can be used by a quality management algorithm. An
important part of this chapter is constituted by an analysis of the rendering of
2D scenes described using the MPEG-4 BIFS standard, limited to the
Core2D profile. Since the standard does not mandate algorithms to perform
the rendering, part of this chapter proposes and discusses some techniques to
perform the rendering. This has pertinence to the aims of this chapter, and
also provides a contribution to the literature in the field of composition of
MPEG-4 2D scenes. An assumption valid throughout this work is that the
terminal uses a 2D rendering software graphic library. As a consequence, no
hardware acceleration is used in the rendering of graphic primitives (but, if
present, it can be used for bitmapped operations like copy transfers and
scaling). Similar contributions, in the field of 3D based engines can be found
in [FS93], [LB1998], and [WW2003]. These contributions are based on
different assumptions because they imply that part of the rendering
commands are executed by processing units located on hardware acceleration
boards. As a consequence, their models cannot be used for systems based
only on 2D rendering libraries. When we started this work, 2D rendering

engines were commonly used for 2D tasks. Nowadays there is a shift versus

73



3D rendering engines, also for 2D scenes. However, for the kind of
applications we target, basically videos with 2D synthetic graphics
augmentations and 2D cartoons, 2D rendering libraries are still an interesting

solution, independent from particular hardware board features.

4.1 Analysis
The methodology we followed is to subdivide the rendering process into a
number of conceptually independent tasks that can be estimated separately.

The subdivision we considered is the following:

Scene graph traversal and construction of the display list (“Pre-render” in

the following)

® Determination and Invalidation of the areas to draw (“Painter’s

Algorithm”)

® Drawing of invalidated objects (“Rasterization”)

® Copy of the drawn area to the screen (“Display update”)

This subdivision is based on the assumption that the multimedia objects are
stored in a graph data structure, and that a double buffering technique is used
for the display. Both these assumptions are commonly true in most 2D
rendering engines. The term “composition” is often used in MPEG-4
literature. In this subdivision, composition is comprised of the Painter’s
algorithm and Rasterization phases. In the following we consider each phase
separately, deserving particular attention to the Painter’s algorithm, since, as
we will see, it plays an important role in the overall performance of the

rendering task.

74



4.1.1 Scene graph traversal

MPEG-4 scenes are described using a tree graph technology similar to VRML
and Open Inventor technologies [OP][VRMLI7]. A graph is constituted by
nodes connected by directed links and a root node is used to define the start
of the scene data. The scene graph is heterogeneous, since the nodes have
different types. The main distinction is between interior and leaf nodes.
Interior nodes structure the nodes in groups and define the visual layout of
scene objects. Leaf nodes define the visual objects (basically geometry or
bitmapped data) included in the scene. The target of the graph traversal is to
build a list of visual objects that are contained in the scene, with their
associated visual properties. Traversal begins at the root node. The structure
of the scene graph suggests a depth-first method of traversal that has a
asymptotic complexity of O(n), where nis the number of nodes of the tree.
Object layout requires some geometric transformations involving seven 3x3
matrix multiplications for each Transform2D node [VRML97]. The
asymptotic complexity will then be O(f) where ¢ is the number of
Transform2D nodes in the scene. For each shape node, we additionally
perform a transformation of each vertex and we determine the smallest
enclosing rectangle (“bounding box”). This step has hence complexity O(v)
where v is the number of vertices of an object. From these observations a
good estimation of the traversal time is given by:

T, ora (NS, 5,V) =, ¥+, ¥t +c; *(s%V)

traversa

where nis the number of nodes of the scene graph, sis the number of

shapes, fthe number of Transform2D and v the average number of vertices
for each object. The parameters ¢, ,c,,c; are constants that are determined

experimentally.

Experimental results confirmed our analysis. We first built three scenes with a

high number of nodes, but with no shapes. In this way, we gathered some

75



figures about the traversal and the number of nodes of a graph. The results
are reported in Table 2. It shows an extract with the first 500 ms of a

simulation that lasted 3 minutes.

Time Pre- Time Pre- Time Pre-
of Render of Render of Render
simulation | 2000 Obj | simulation | 8191 Obj | simulation | 32767 Obj
(ms) (ms) (ms)
113 2 168 8 447 34
116 2 178 8 481 33
118 2 186 8 515 34
127 1 195 9 549 34
160 1 217 8 583 34
193 1 250 8 617 34
226 1 283 8 650 33
259 1 316 8 684 34
292 1 349 8 718 34
325 1 382 8 753 35
358 1 416 8 787 34
391 1 448 8 821 33
425 1 481 8 855 34
457 1 514 8 888 33
490 1 547 8 922 33
Table 2: timing of the tree traversal (15
samples)

The table reports the performance of tree traversal for three different tree
sizes: 2000, 8191, 32767. We chose 2000 objects as the average tree size of a
complex scene. 8191 is instead the maximum number of nodes allowed in
Scene Graph Core2D@L1 profile, and 32767 is the maximum number of
nodes in Scene Graph Core2D@I.2 and Scene Graph Advanced2D@]I.1
profiles. As we can see from the table, the tree traversal has O (n)
computational requirements, where “n” is the number of nodes. On the
machine used for the experiment (a Pentium III 750 MHz CPU PC), the
traversal time is almost negligible up to 2000 objects, but is quite high instead
for 32767 objects. We noticed similar results on every MPEG-4 player

publicly available as product or reference implementation. We see that the

76




traversal of a scene graph with 32767 nodes takes more than 30 ms. This
means that for instance it is not possible to render the scene graph at 25
frames per second, since at that rate we have only 40 milliseconds to traverse
and render. In this case, a terminal implementation can detect before the start
of the presentation that the scene graph is too big to be rendered at full frame
rate, and run a quality degradation algorithm right at the beginning. The
following table reports tree size, pre-render time and display list size for a
scene containing nearly 1000 shape objects. This scene has been built using an
automatic tool, that translates a collection of animation frames (drawn in a
concept similar to cartoons) in a BIFS scene. Cartoons will be extensively
studied in Chapter 5. BIFS contains simple geometric nodes like rectangle,
circle and more complex primitives like  IndexedLineSet2D,

IndexedFaceSet2D and Curve2D that can be used to build complex shapes.

Time Pre- Tree | Display list
Render size size
(ms)
1277 17 1971 973
1540 17 1963 969
1613 17 1963 969
1632 17 1963 969
1653 17 1963 969
1822 18 1921 948
1898 21 1921 948
1964 16 1921 948
1985 19 1921 948
2169 17 1842 906
2241 16 1842 906
2259 16 1842 906
2276 16 1842 906
2299 16 1842 906
2473 13 1384 679
2528 12 1384 679

Table 3: Pre-Render time for a scene
constituted of 1000 shapes

77



Comparing Table 2 and Table 3, we notice that when tree sizes are
comparable (2000 from Table 2 and 1970 from Table 3), pre-render times are
much higher when the tree contains shapes. This is because during traversal
of shape nodes (rectangle, circle, indexedlineset2D, indexedfaceset2D, and
curve2D) we perform some additional operations (matrix multiplications and
construction of smallest enclosing rectangle) as previously mentioned. We
experimentally noticed that the size of the scene tree alone is not sufficient to
capture the pre-render execution times. On the other hand, if the size of the
tree is below a threshold C (2000 in our study); the pre-render time depends

mainly on the number of shapes in a scene.

4.1.2 Painter’s algorithms

In order to draw the objects of the display list (“drawables”), it is necessary to
scan the display list and identify which parts of the drawables need to be
redrawn, with the target of minimizing the number of pixels drawn. The
commonly called “Painter’s algorithm” performs this task. In Chapter 2 we
reported the Painter’s algorithm implemented in the MPEG-4 reference
software (Section 2.6.3). A preliminary observation is that the algorithm does
not perform well when the number of objects to draw (“drawables”)
increases. This is because it keeps track of the area to be redrawn using the
union of the bounding boxes of the drawables. When objects that do not
overlap and are distant from each other need to be redrawn, the area equal to
the union of the two areas is invalidated and so marked for redrawing. All the
objects intersecting that area are then redrawn, even if it would not be needed.
For instance, suppose that at a given tick of simulation objects A and B in the

following figure need to be updated.

78



I
‘K{\
i 1 Inwalidated Area

td

Figure 28: Invalidated area as union of
bounding boxes in the reference software
algorithm

The reference software algorithm considers the union of the bounding boxes
of objects A and B, and invalidates as a consequence the area “Invalidated”.
Object C and part of object D are then redrawn in addition to objects A and
B.

In this section we propose two variations of the painter’s algorithm and then
we compare the performances of the reference software algorithm with these
two algorithms. The algorithms have been introduced to overcome the
problems told above. They all follow a similar pattern quite common in
videogame engines: at each frame, localize the areas of the screen that have to
be updated, clear them if necessary, and draw all the objects that intersect
those areas. To do so, first the display list is scanned and two data structures
are built: the “NeedsDrawing”, defining the area of the screen that needs to
be updated because of changes in the appearance or in the shape of nodes,
and the “Transparent”, containing the area of the screen that must be cleared
before starting to draw the new frame, ie. the area of the screen where
objects have been deleted, have changed position or are transparent and
something behind them have changed. Then the Transparent area is deleted

and objects in the display list are drawn if they need to be updated or they

79



intersect the Transparent area. This is the process that every algorithm
proposed here performs. However, the algorithms are different in the data
structures they use for the NeedsDrawing and Transparent areas: the first
one (“Reference Software”) stores the smallest rectangle that contains the
union of all the areas, the second one (“”’Dirty Rects”) uses a list of rectangles
and the third one (“Sector”) uses the concept of a grid superimposed on the
screen, and stores in the two data structures the index of grid sectors that
become invalidated. As we will see, the data structures have an impact on the
final performance of the algorithm, in particular on the number of objects
drawn at each frame display. The following sections illustrate each algorithm

and compare their performances.

4.1.2.1  MPEG-4 Systems reference software (RS)

We wuse two rectangles to keep track of the changed areas: the
“NeedsDrawingRect” and the “TransparentRect”, both initially empty. While
scanning the display list, if a drawable needs drawing or is transparent, we add
the bounding box of the object to the appropriate rectangle (as described
above), performing the union between the bounding box and the
NeedsDrawingRect/TransparentRect. The data structures needed are just two
bounding boxes. Inserting a bounding box means performing a union, and
checking for overlapping implies performing the comparison between two
bounding boxes. The algorithm is outlined in the following figure. The
algorithm has low complexity (using asymptotic analysis, O(n) where n is the
size of the display list), but, as we will see afterwards, storing the union of all

the areas to be changed leads to high number of objects to be redrawn.

80



e For each drawable in the display list, if it needs to be drawn, add its
bounding box to the NeedsDrawingRect (initially empty), performing a
union between the two sets. If the drawable is also transparent, add its
bounding box to the TransparentRect (initially empty), performing a

union between the two sets.

e Add deleted nodes areas to TransparentRect, performing a union

between the two sets.
e (Clean TransparentRect.
e For each Drawable, draw it if:
o It needs drawing (draw all the object)
o ltintersects the TransparentRect (re-draw the intersection)
o ltintersects the drawn area (re-draw the intersection)

e Add drawn area to the DrawnRect, performing a union between the two

sets.

Figure 29: Reference Software algorithm

4.1.2.2  Dirty Rects (DR)

The idea of the algorithm is to achieve better precision in the selection of the
areas that need to be drawn, using a list of rectangles to store the areas. The
algorithm uses two lists of rectangles to keep track of the changed areas: the
“NeedsDrawingDirtyList” and the “TransparentDirtyList”, both initially
empty. While scanning the display list, we add the bounding box of the
objects to the appropriate list, adding their bounding boxes to the
NeedsDrawingDirtyList and/or TransparentDirtyList. Particular care has to
be taken when inserting a new rectangle in the list, since the rectangle may

overlap another rectangle already present in the list. If this is the case and we

81




store the rectangle we will end up cleaning several times the same area of the
screen, which is not optimal. We implemented a trade-off mechanism that, in

case of ovetlapping:

® It does not insert an object if it is contained completely in another

object already in the list.

® It stores the union between the two overlapping rectangles if the area
of the union is smaller than the sum of the two areas; it stores the two

rectangles otherwise.

Compared to the previous algorithm we achieve a better precision in the area
to redraw, since we collect all the rectangles that need to be updated. The
drawback is that when the scene contains several objects, the display list may
grow considerably, and the algorithm can be costly (in fact it has a worst case
of O(n"2) where n is the size of the display list). The algorithm is outlined in
the following figure.

82



e For each drawable in the display list, if it needs to be drawn, add its
bounding box to the NeedsDrawingDirtyList, taking into account possible
overlaps. If the drawable is also transparent, add its bounding box to the
TransparentDirtyList, taking into account possible overlaps.

e Add dirty areas to TransparentDirtyList, taking into account possible

overlaps.
e Clean every bounding box in the TransparentDirtyList.
e For each Drawable, draw it if:
o It needs drawing (we draw all the object).

o ltintersects a bounding box contained in the TransparentDirtyList

(re-draw the intersection).

o Itintersects a bounding box contained in the DrawnRectDirtyList
(re-draw the intersection).

e Add drawn area to the DrawnRectDirtyList, taking into account possible

overlaps.

Figure 30: Dirty Rects algorithm

4.1.2.3  Sector (SKR)

We divide the screen in a grid of rectangles (“sectors”). During the pre-render
step, for each drawable we store in a list the sectors it is included in. During
the composition step, if an object in the display list needs drawing or is
transparent, we invalidate all the sectors it is included in, building as usual two
lists (of sectors in this case), the NeedsDrawingSector and TransparentSector.
We then clear all the invalidated sectors that are in the transparent list and

draw all the objects contained in the invalidated sectors.

83



Figure 31: The Sector algorithm uses a grid to
identify the area to redraw

The data structures needed are two lists of invalidated sectors (size equal to
the number of sectors), a list containing the sectors bounding boxes (this list
is created whenever the player window is resized), and a list of sectors for

each drawable. The algorithm is outlined in the following figure.

84



e For each drawable in the display list, if it needs to be drawn, invalidate all
the sectors it overlaps in the NeedsDrawingSector list. If the drawable is
also transparent, invalidate all the sectors it overlaps in the

TransparentSector list.

e For each deleted node, invalidate all the sectors it overlaps in the

TransparentSector list.

e  (Clean every sector in the TransparentSector list.

e For each Drawable, draw it if:

o It needs drawing (draw all the object)

o It intersects an invalidated sector contained in the
TransparentSector list (re-draw the intersection)

o It intersects an invalidated sector contained in the DrawnSector
list (re-draw the intersection)

® For each drawn rectangle, invalidate all the sectors it overlaps in the
DrawnSector list

Figure 32: Sector Algorithm

The algorithm has been conceived to be an intermediate solution between the
first two. It is not as good as the DR in determining the areas to redraw, but it
does consider separate areas to redraw. Besides, it has complexity of O(n*k),
where n is the size of the display list and k is the number of sectors. This
becomes O(n) when the number of objects on the screen increases and the
number of sectors k becomes negligible. Like the RS algorithm, the memory
requirements for the data structures are known in advance, since we know the
number of sectors we use. Clearly, the number of sectors that constitute the

grid determines the performance of the algorithm. As the number of sectors

85



increases, the precision in determining the areas to draw increases as well, but

the performance worsens.

4.1.2.4  Evaluation of Painter’s algorithms

In order to compare the proposed painter’s algorithms, we use the number of
pixels that the algorithm invalidated as to be cleaned and drawn during the
playback of a bitstream. The following table reports these measures for a
number of bitstreams among the ones we performed the evaluation tests. The
table contains streams taken from the systems conformance and others
provided by IBM, ENST and Optibase. The first column reports the name of
the bitstream, the second the algorithm used (RS = reference software, SR =
SECTOR, DR = DIRTY RECTYS), the third and the fourth columns the
number of pixels cleaned and drawn respectively. Figure 33 provides, as a
different view, a histogram that compares the algorithms. The table and the
figure show that the DR algorithm produces the minimum number of cleaned
and drawn pixels. SR is sometimes quite better than RS, but sometimes has
results comparable to RS. This comes from the fact that we chose a fixed size
for the sectors (16*16 blocks), and we tested bitstreams with different screen
dimensions. Besides, conformance bitstreams very often contains a limited
number of objects, because they are meant to test single BIFS functionalities.
SR algorithm instead is designed to produce good results when the screen

contains a large number of objects compared to the grid size.

86



Bitstream Algorithm Pixels Pixels
Cleaned Drawn
IBMCoordinatelnterpolator2Ds RS 15495534 23716707
SR 9732608 18337635
DR 8311027 16666031
IBMCircleFading RS 11503887 22554867
SR 4940032 16777173
DR 4236795 15361107
IBMCircleScaling RS 4871987 4791120
SR 5030400 5478494
DR 4462128 4789520
IBMCurve2DMorph RS 7606800 15393600
SR 7681200 15472200
DR 7586400 15352800
IBMCurve2DScaling RS 9092436 18508080
SR 9204192 18637920
DR 8937666 18198540
IBMMpegl.ogo RS 121200 270600
SR 159744 374104
DR 121200 270600
IBMTIles RS 9160000 16520000
SR 9180160 16570160
DR 7170000 14530000
ENSTKangaroo RS 5263718 11259823
SR 4650688 11706170
DR 4087877 9771259
ENSTCompfxMerged RS 1457280 3491547
SR 1401888 3464010
DR 1331775 3366042
ENSTWipeln RS 5765134 9127103
SR 6111808 9277403
DR 5741421 9103399
ENSTTicker RS 1276416 4893096
SR 2551296 4232664
DR 1273224 2960832
OptibaseMosaic31 RS 28554512 43597427
SR 16018432 43442206
DR 12571152 42119686
TDKKaraoke RS 7019067 8802459
SR 7231488 8785635
DR 6838998 8491671

Table 4: Efficiency of Painter’s Algorithms

87




80000000
70000000
60000000

50000000 @RS
40000000 ESR
30000000 ODR

20000000
10000000

Figure 33: Sum of cleaned and drawn pixels
for some conformance bitstreams

The following figure shows the number of pixel drawn plus the number of
pixels cleaned as a function of time for the three algorithms, for the
“EnstTicker” bitstream. Visually, the bitstream is comprised of a static

background, a video and a text scrolling under the video.

88



14 T T T T T T
. normal
0 dirty
124 + sector |
®
10f
[%2]
@ R I A A )
X 8t .
aQ .
B ceese
- PR
S 6l B it b o o
g ++
S T
4+t
4 ++++ OooooOOOOOOOOOOOOOOOO
+1 oOOOOOO e
& 00° HEHE
2+
A )

0 )@ ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000
Time (ms)

Figure 34: Number of invalidated pixels as a
function of the time for the three proposed
algorithms

We observe that the number of invalidated pixels is distributed around two
different lines for each algorithm. The line with the highest number of pixels
drawn corresponds to when both video and text have to be updated. The line
with the lowest number of pixels drawn corresponds to when only text has to
be updated. We notice that the DR produces always the minimal number of
pixels invalidated. The SR higher line is lower than the RS higher line, but the
SR lower line is higher than the RS lower line. The small number of objects

penalizes the efficiency of the SR algorithm.

4.1.2.5  Performance evaluation of composition

The previous section contains a “static”’ evaluation of the three painter’s
algorithms, in terms of number of invalidated pixels during a simulation. In
order to understand better the differences in the algorithms and the
consequences that the adoption of one brings, we compared the execution
performances timing the painter’s algorithms time plus the drawing times
(here after we call it “composition time”). This is because the immediate

effect of a “bad” painter’s algorithm is the excessive redrawn of display areas

89



that in turn produce a performance hit. As test case for this discussion, we
utilize IBMConfettimp4, a conformance bitstream. It adds 5 shapes
(rectangles and circles) every 100 ms, up to 5000 shapes. Then it displays a
text message and then starts deleting the objects, 5 shapes every 100 ms as
well. Figure 35 provides a snapshot of the screen after some seconds from the

start.

Figure 35: IBMConfetti.mp4 screen shot

This bitstream is an interesting test case because it requires the regular update
of different areas of the screen, and requires the display of a high number of
objects. Geometric objects are added and deleted at opposite sides of the
display area. The following pictures (Figures 36, 37, 38) report the
performances of the composition algorithms. They show the composition
time in milliseconds as a function of the time of the scene. Looking at the
graph of the RS algorithm (Figure 36), the composition time shows a big peak
as soon as the player starts deleting objects and the text message has to be
deleted. All the algorithms have a similar peak, because a high number of
objects have to be deleted and redrawn. However, the RS algorithm continues
having high composition times when deleting each group of five objects. This
is because of the way we build the NeedsDrawing and Transparent rects in
the RS algorithm. In fact we calculate the union of the bounding boxes of the
five shapes to be deleted and we clear that area. If the objects are very distant
among them, then the union contains a large number of objects. Cleaning that

area means redrawing all the objects that overlap the area. In this particular

90



bitstream, after 500 ms that it started deleting, we removed 25 objects, and

redrawn 15970, with an obvious peak in the composition time.

600 -

500

400

300

Composition Time(ms)

200

100

Ll

0 0.5 1 1.5 2 2.5
Time (ms) 5

Figure 36: Performance of RS Algorithm

The SR (Figure 37) and DR (Figure 38) algorithms perform a lot better. We
have a single peak around time 10000 (as before, when the player deletes the
text message) and then the composition time decreases quickly (instead of
slowly descending as in the RS case). The Dirty Rects algorithm shows the

best performance.

700

W B a @
=] o =] =]
=] S S S

Composition Time(ms)

n
=1
S

100}
v woapadibamiiss bl
o ; “M_ \

0 0.5 1 1.5 2 25
Time (ms) 5

Figure 37: Performance of SR Algorithm

91



700

600

500

400+

300+

Composition Time(ms)

200+

100

OJH«f—’*LMM\

0 0.5 1 1.5 2 25
Time (ms) X 10°

Figure 38: Performance of the DR algorithm

In order to better understand the differences between the SR and DR
algorithm, we further analysed the composition time as a function of the time,
restricting the y-axis (composition time) to the interval [0,100] (Figures 39 and
40). From the pictures we see that even if the DR algorithm performs better
when deleting objects, the SR algorithm performs better when the number of
object on screen is around 9000 and we keep adding new objects. The DR
algorithm achieves the best finding of the areas to clean, because it stores the
list of single drawable objects to clean. The SR algorithm on the other hand
has a fixed number of areas to clean, and this explains its inferiority when
cleaning areas. The DR algorithm suffers from the potential growth of its
rectangles list (asymptotic analysis produced O(n"2) for the DR and O(n) for
the SR). When the number of rectangles contained in the dirty rect list
increases, the performance of the algorithm decreases because of the
multitude of intersection tests that has to be done. The SR algorithm has a
fixed number of sectors, and this explains why it is slightly better when adding

objects to the screen in the case there are already lot of objects displayed.

We conclude saying that the DR algorithm is a good option for the
composition of 2D scenes, provided that when the number of objects

increases some load control technique can be used. In the following section

92



we introduce a load control method for composition algorithms based on the

DR technique.

dirty rects algorithm
1 00 T T T T

80
60

40

20

composition time (ms)

0 1 1 1
0 0.5 1 1.5 2 25
time (ms 5
sector al(gon)thm x10
100 T T T

80

60 |

20

composition time (ms)

Figure 39: Comparison between DR and SR
composition algorithms

composition time {ms)

Time (ms) w10

Figure 40: Comparison between DR and SR
algorithms

93



4.1.2.6  Load control

In Section 4.1.1 we observed that when the number of shapes is high, scene
graph traversal and construction of the display list become time consuming
tasks that can preclude the rendering of a scene at a defined rate. This
observation suggests as interesting load control option to skip the
construction of the display list phase and substitute the painter’s algorithm
with an algorithm that simply performs the refresh of the entire screen
(“Direct” algorithm). The following figure shows the comparison between the
Dirty Rects and the Direct algorithms for a cartoon scene that contains an
average of 1000 objects (ENSTCompftx). We plot the “Drawing Time” as a
function of the time of the scene. “Drawing Time” is the sum of Pre-render
and Dirty Rects painter’s algorithm and Draw execution times in one case

(DR) and Scene Graph traversal and Draw in the other case (Direct).

90

——  Direct Rendering
——  Dirty Rects

Drawing Time

30
0

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (ms)

Figure 41: Comparison of Dirty Rects and
Direct algorithms for ENSTCompfx
bitstream

As we see from the picture, Direct rendering performs indeed better. We

observed a similar behaviour for another cartoon, ENSTVectoFx, as reported

in Figure 42.

94



25 T T T T T T T T

———  Direct Rendering
——  Dirty Rects

Drawing Time (ms)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (ms)

Figure 42: Comparison of DR and Direct
algorithms for ENSTVectofx

On the other hand, the use of Direct rendering for IBMConfetti would

instead produce a disastrous effect, as shown in Figure 43.

600 T T T T

——  Direct Rendering
——  Dirty Rects

500 | E

400} -

300 E

Drawing Time (ms)

0 L L L
0 0.5 1 1.5 2 2.5

Time (ms) x 10°

Figure 43: Comparison between Direct and
Dirty composition of IbmConfetti

As we saw from the previous three examples, in order to decide which

composition algorithm to use, the number of objects in the display list is not

95



enough, since for instance IBMConfetti displays up to 10000 objects
compared to the average 1000 of ENSTCompfx, yet IBMConfetti is not
suitable for direct rendering. What is most important instead is the number of
new objects that are introduced or modified, at each frame display. The first
two cartoons have a high number (on the order of magnitude 10"2) of
objects to be updated, while IBMConfetti just 5 every 100 ms. The number of
objects in the display list is superior (10000 versus 1000), but this does not
penalize the performance of the DirtyRects algorithm. Ideally, we would like
to find a way to switch between the two algorithms dynamically while
rendering a scene. The idea is to keep track of the changes occurred to the
tree, then decide which algorithm to use on the basis of the number of shapes
modified or added. To achieve this, we count the modifications of the shapes
and transform nodes of the scene graph at each tick of the simulation. We
start composition using the Dirty Rects algorithm, then, at each rendering
iteration, if the number of objects modified is bigger than a threshold T we
use direct rendering. The following pictures show the result of this hybrid
direct/dirty rendering technique, using a threshold T equal to 200 (that means
that if more than 200 shapes are introduced or modified at each iteration we
use Direct Rendering). We observe that hybrid rendering almost constantly

produces lower drawing times.

96



60 T T T T T T T T T

Hybrid Rendering
55| ——  Dirty Rects i

Drawing Time (ms)
[&) w N N o
o a o a o
.

N
a

n
o

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

-
[9)]

o

Figure 44: Comparison of Hybrid and Dirty
composition for ENSTCompfx

25 : : : : : :

Hybrid Rendering
Dirty Rects

ul
s

Drawing Time (ms)

0 . . . . . . . .

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (ms)

Figure 45: Comparison of Hybrid and Dirty
composition for ENSTVectofx

To conclude, the Dirty Rects algorithm showed better performance compared

to the other algorithms. Its complexity depends on the size of the display list.

The proposed load control technique identifies Direct rendering as an

97



interesting alternative when, during the playback of a scene, the size of the

display list grows and many modifications of the scene graph are detected.

4.1.3 Rasterization

Rasterization specifies which pixels on a display device each object in a scene
covers. 2D scenes are basically constituted of bitmapped images and 2D
geometry primitives (point, line, rectangle, circle, polygon, etc.). Rasterization
of bitmapped images implies transforming the bitmaps in a format
compatible with the screen resolution. Rasterization of geometric primitives
specifies which pixels on a raster display are covered by the geometry. The
basic algorithm is the Bresenham’s algorithm for lines drawing [Bre77]. The
performance of rasterization depends on both hardware (video board, CPU)
and software (video board driver, rendering library) issues. If we consider a
particular software and hardware configuration, we can determine execution
time for the rasterization of graphic primitives using a linear regression model
as a function of the distance between two pixels (line primitive) or multiple
regression as a function of vertices and pixels covered by an object (rectangle,
polygon). These models can be identified for a particular rendering library
repeating several rasterizations at different object sizes and then running a
regression on the results. Once the models are identified, we can calculate an
estimation of the rasterization time for each frame simply summing the
estimates for each object in the scene that needs to be drawn. We observe
that the rasterization time for a frame depends on the objects we actually
draw and it is bounded by the sum of the rasterization times of each object

(since at each frame we draw a part or at maximum all the objects):

TRasterization (F) = TRasterization (01 4 02 ’* 'on ) < TRasterization (01 ) + TRasterization (02 ) +.. 'TRa.vterization (On )

where 0, ,0,,...0, are the objects included in a frame F' .

98



Figures 46, 47, 48 show measured and predicted rasterization times for three

BIFES scenes composed mainly of lines and polygon primitives.

25 T T T T T
——  Measured
Predicted
2 o M N
@
£
o 1.5 i
£
=
il
T
N
s It 1
b7
©
i
0.5F B
0 4 s
0 500 600
Figure 46: Measured and predicted
rasterization times for ENSTKarate.mp4
8 T T T T T
——  Measured
~~~~~~~~~~~~~~~~~ Predicted
7 -
6 s -
m
E sl |
[0}
£
541 :
©
N
e s} 1
(2]
©
o
ot 4
1F 4
O 1 1 1 1 1
0 100 200 300 400 500 600

Frame

Figure 47: Measured and predicted
rasterization times for ENSTAg001.mp4

99



2.5 T T T T T T T T T

——  Measured
............... Predicted

Rasterization time (ms)

0.5}

A

O 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Frame

Figure 48: Measured and predicted
rasterization times for ENSTKangaroo.mp4

Basic rasterization techniques produce aliased lines, since they produce an
approximation of the theoretical line. More sophisticated techniques improve
the visual quality of the rasterization using partially transparent pixels together
with opaque pixels (antialiasing). The assumption in the use of antialiased
lines is that they are perceived as more smooth by the human eye. So, if the
rasterization library enables antialiasing, we have two quality options for the
rendering of geometric primitives. Even if antialiasing produces frames of
higher visual quality, there is an additional cost due to the use of transparent
pixels. Figure 49 shows a comparison between antialiased and normal
rendering times for 180 animation frames mainly constituted of lines and
polygons. As we see, the use of antialiasing produces constantly higher

rendering times.

100



14 T T T T T T T T
——  highspeed

——  antialiased
12 VM E

Rasterization time (ms)

0 1 1 1 1 1
0 20 40 60 80 100

Frame

120 140 160 180

Figure 49: Comparison between high speed
and antialiased rendering

We estimated the cost of antialiasing for lines and other basic geometric
primitives. Antialiased rendering can be estimated from the models for
normal rendering since it basically adds additional processing time that
depends on the same linear models identified for the rasterization of lines and
polygons. Section 4.2.3 will provide an example of how antialiasing and

normal rendering can be used in the context of quality-based presentations.

4.1.4 Display update
The final step of the 2D rendering pipeline is the update of the display. Figure

50 shows a basic architecture of a multimedia PC.

101



CPU

Other periphery

~_~ System Bus

=

(2D graphical primitives)

System Raster Video
Memory Engine Controller

Frame Buffer

2D graphics subsytem

Figure 50: 2D Rendering Architecture

The video card consists of a frame buffer that contains special fast access
memory, a raster engine and a video controller, which contains the digital to
analog converter (DAC). From an application’s point of view, the update of
the display is usually performed using a method called double buffering.
Instead of directly update the display it is more convenient to compose the
scene in an off-screen surface, and then update the display. This has the
advantage of eliminate flickering and provides also a gain in performance if
the copy is performed asynchronously, because other computations can be
performed in the meantime. The need for a double buffering technique rises
however an important performance issue for what concerns the allocation of
the off-screen surface. System memory or video memory are the possible
options. We observe that in the latest years two diverging rendering methods
have developed independently of each other. On one hand, video cards are
offering hardware support for more and more rendering operations (i.e.
scaling of 2D surfaces, alpha blending, 3D support). On the other hand,
CPUs are getting faster and have specialized multimedia extensions (MMX,

SIMD etc.). Using a mix of hardware and software methods to take advantage

102



of these independent technology trends raises some problems. If the off-
screen rendering surface is located in video memory, the application can
benefit of full graphics hardware acceleration. Write speed performed by the
CPU is also quite fast; using AGP (accelerated graphics port) can in fact reach
200 MB/s. Read speed is instead quite slow (12 MB/s on latest AGP
systems). This read performance strongly penalises MMX routines and other
routines like alpha blending that require read operations. If on the other hand
the off-screen surface is located in system memory, then CPU rendering is
maximally efficient because of the CPU data cache. However, video hardware
cannot be used, and parallel processing while copying off-screen to video
memory cannot be performed. If the off-screen surface is located in AGP

memory, video hardware acceleration is possible, but CPU read is again slow.

All these considerations conspire to make it difficult to use both software and
hardware rendering to the same off-screen surface, as it would be necessary
by the requirements of a complex multimedia presentation where text and 2D
graphics have to be combined with video and bitmapped images. If a
multimedia scene contains only video streams then a video memory off-
screen surface would be the perfect candidate, since hardware acceleration
maximise the performance. On the other hand, if a scene contains several 2D
graphics objects, then a system off-screen surface is required, since most 2D
graphics primitives require CPU processing. Since we are considering a
multimedia terminal with heavy interaction between 2D graphics and video,
an off-screen surface located in system memory is the choice for the update

of the display using double buffering.

Experimental results confirmed this analysis. We performed a simple test
using a PC with an ATI Radeon 7500 video board and AGP 4x. Ten
geometric objects (circle and rectangles), with different line, fill and
transparent properties are composed in a scene of 704 *576 pixels, 16 bits per

pixel. In the first test, (first row of Table 5) objects are first drawn in an off-

103



screen surface located in video memory, and then the surface is copied on
screen. In the second test (second row of Table 5), objects are drawn in a
system memory surface and then copied to screen. Table 5 shows how
drawing geometric objects in system memory is more efficient, and the
overhead of copying into from system memory to video memory for display

is negligible compared to the saving in the drawing phase.

Oft-screen Surface | Draw | Update Display

Video memory 44 ms | 0.05 ms

System memory 23 ms | 1.05 ms

Table 5: Comparison between Video and
System off-screen surfaces as target for
rendering of geometric primitives

Table 6 shows that the copy of video frames to video or system memory
require same time. This is because, as we said above, write operations from

CPU are performed at high speed.

Oft-screen Surface | Draw | Update Display

Video memory 10 ms | 0.05 ms

System memory 10 ms | 1.05 ms

Table 6: Comparison between Video and
System off-screen surfaces as target for
rendering of 640*480 video

Table 7 shows how the rendering of scaled video is instead more efficient
when both surfaces are in video memory. This is because the video board has
hardware acceleration. We repeated the same test using a Nvidia and a Matrox
G400 video boards and AGP technology, and we noticed a behaviour similar

to the one reported in the test.

104



Off-screen Surface | Draw | Update Display

Video memory 3.5ms | 0.05 ms

System memory 9.5ms | 3.5 ms

Table 7: Comparison between Video and
System off-screen surfaces as target for
rendering of 352*288 video stretched to
1024*768

From the simple tests we performed, we conclude that if 2D graphics and
video have to be composed together, the current PC architecture suggests a
double buffering technique that composes multimedia scenes in system
memory and then copies it in video memory. The performance of this last
step is then linear in the size of the surface (number of pixels * number of bits
per pixel) and the write speed from system memory to video frame buffer.
We measured values of about 0.25 ms for 352*288 (101376 pixels) copy and
about 1.05 ms for 704*¥576 (405504 pixels) copy in 16 bits per pixel display

mode. We conclude that the time T, of this last rendering step is linearly

Copy
proportional to the size of display area cand a constant d, that captures the

transfer speed between off-screen and primary surfaces that depends on the

memory and bus bandwidth of the hardware platform:
’Tcopy (C) = dl *c

If the off-screen surface is located in video memory the formula is still valid
and would yield values close to 0 since both surfaces are located in video

memory.

4.1.5 Preliminary conclusions

In these sections we discussed the rendering of MPEG-4 2D scenes,
proposing and discussing different algorithms, and we provided models to
estimate the complexity of each task. We observe that, given a scene graph, it
is not possible to know a priori the required time for the rendering step,

unless we assume that all the visual objects need to be drawn at every iteration

105



(direct rendering). This is because the painter’s algorithm tries to minimize the
number of objects drawn, and as a consequence we cannot know in advance
how long the rasterization will take. However, after each traversal of the scene
graph, running the painter’s algorithm on the display list we know how many
objects will be drawn or partially drawn, and we can estimate the rasterization
time. In other words, we observe that the separate steps needed for the
rendering can be estimated right before their execution, using the parameters

we identified. More precisely:

® Scene graph traversal: number of shapes and size of the tree

® Painter’s algorithm: size of display list

® Rasterization: type, dimension and properties of each object to draw

® Display Update: size of the window

In the next section we will see how to use the result of this analysis in the

context of the quality management framework.

4.2  Quality management

We discuss here how to integrate the framework we proposed in Chapter 3
with the rendering estimation model that we introduced here. We first
illustrate how basic graphic management is achieved and we provide a simple
example. Then we consider the integration between video and heavy BIFS
streams, clarifying the need for an improved presentation algorithm. Finally
we consider animated cartoons and we give an example of utilization of the

framework for this kind of applications.

4.2.1 Integration in the framework
Similarly to video streams, we envisage the use of descriptors for frame rate,

size, and visual quality dimensions. The framework requires each stream in a

106



presentation to provide complexity information for each quality option
declared by the author. Since a graphic stream may have complexity varying
over time, complexity in the form of percentage of CPU cannot be calculated
only once at the beginning. The scene may change during the playback and
hence complexity estimated at the beginning can be completely wrong after
only a few seconds. We can use the model we introduced in this chapter to
build a running estimate during the whole length of the simulation. We
calculate a first estimation based on the initial scene parameters like number
of shapes, quality of the rendering, frame size, and desired frame rate. Then
we refine the estimation, monitoring changes in the number of shapes in the
scene graph and estimating the composition time at each frame after the
display list is built. In this way we know how many objects will be displayed
and we can produce an estimate. We use the estimation, rather than timing
the effective drawing time for a frame, because timing errors on the
considered platforms have high jitter, and so cannot be safely used in
determining the resources needed to draw a frame. In order to fit into the
framework, each stream should have an associated scene graph node that
provides the monitoring and quality selector functionalities. For BIFS
streams, the node associated to the root of the scene graph should provide
the information. When a violation of the QoS specification of a scene is
detected, the node associated to the root of the scene graph provides the
estimation of the graphics complexity of the scene to the Resource Manager.
This information will be used during the quality management process. Figure
51 provides an example of utilization of this basic management process. Five
videos are laid out in the upper part of the screen, and two BIFS animations

scroll from right to the left part of the screen, providing a commercial spot.

107



Figure 51: Video and BIFS augmentations

The following quality specification assigns high value to the CIF video, then
the QCIF videos and finally the BIFS graphics. The BIFS frame rates include
a 0 value, meaning that the animation can stop if the resources are not

sufficient.

VIDEO 1 (CIF):

QoS_Qualifier FRAME_RATES{FRAME_RATES [25,8,2] dimensionValue
1}
QoS_Qualifier STREAM_VALUE {STREAM_VALUE 3}

VIDEO 2, 3, 4, 5 (QCIF):

QoS_Qualifier FRAME_RATES{FRAME_RATES |[25,8,2] dimensionValue
1}
QoS_Qualifier STREAM_VALUE {STREAM_VALUE 2}

BIFS 6:

QoS_Qualifier FRAME_RATES{FRAME_RATES [10,5,0] dimensionValue
1}
QoS_Qualifier STREAM_VALUE {STREAM_VALUE 1}

Figures 52 and 53 provide frame rates of videol and video2 and BIFS streams

when QoS is disabled (Figure 52) or enabled (Figure 53) for 40 seconds of

108



simulation. We ran the scene on a low level machine and after about 5
seconds we additionally simulated heavy load using the tool CPU Stress
described in previous chapter. We observe that the results are similar to the
ones obtained in the previous chapter, and that the BIFS stream is taken into
account when allocating quality options (in this example the stream is blocked

when heavy load is induced).

frame rate

40 T T T T T T T
x Stream 1
35+ (e} Stream 2 | |
* Stream 6
30} E
25F®Ox x @x 4
* OO o X X XO X x
60 OO O o le)
204 x

e
+¥ o

*

X O
* kK -*-ﬂs* FH D F Fedokk t*éb B
* Fokgy x @ X
®O *% O x & * (¢] * %

25 x ¥

QO
X  xQOx
O

(e}

X

X

OO

X

® i

0.5

1.5

2

2.5

Time (ms) 4

Figure 52: 40 seconds of simulation for the
scene in Figure 51, QoS disabled

109



40 T T T T T T T

x Stream 1
351 (e} Stream 2 | |

* Stream 6
30} E
25-@)@@@@)()(xxxxxxxxxxxxxxx xxxx xxxxxx

20 H******Qk* E
Odo
15} E

frame rate

10 B
00000000000000000000000000(g

Figure 53: 40 seconds of simulation for the
scene in Figure 51, QoS enabled

We observe that the use of the rendering estimation model in this example is
reactive, since we use the model basically for providing an estimation of the
resources needed for the BIFS stream, when violations are detected. The
following two sections provide examples of how to use the model in a

predictive way, that is in order to anticipate QoS violations.

4.2.2 Improved presentation algorithm

Integration between video and BIFS raises some problems. Videos are
continuous streams, they are associated to nodes declared in the scene graph,
and they need to be presented at high rates (i.e. 25 or 30 Hz). 2D graphics is
declared in the scene graph, and does not usually require high rates. Scene
graph traversal and object composition might be time consuming tasks,
principally depending on the number of shapes. The systems reference
software presentation algorithm performs the tasks of scene graph traversal
and composition at a regular rate, equal to the rate needed by video streams.
This solution does not well integrate video and 2D graphics, because scene

traversals and composition are done at high rates and the difference in rates

110



of BIFS and video streams is not taken into account. A mechanism to
decouple media rendering and BIFS objects rendering is needed. Separate
rendering rates can be achieved storing the active video nodes in a separate
list from the scene graph. The list can be updated at each full traversal of the
scene tree. Full traversal is performed at the first simulation tick, then at the
rate of the nominal BIFS rate, if rate descriptors are provided, or whenever
the graph is invalidated if not rate descriptors are provided. In this way, we
can render video nodes without traversing the scene graph. Composition is
done on the basis of information collected at the latest full traversal, so that
the player output can be consistent if videos have BIFS objects on top that
need to be redrawn each time video is redrawn. User interaction is then taken
into account allowing full traversals whenever a new event invalidates the

scene graph.

This improved presentation algorithm, while optimizing the CPU utilization
between the tasks needed by graphics and video, does not completely solve
the problem of guaranteeing independent rates. Full graph traversals and
composition, even if separate rendering rates are implemented, can influence
regular processing of other continuous data. As an example, we created a
simple test scene, with a BIFS stream and a video stream composed together,

each one with different rates (Figure 54).

Figure 54: BIFS and Video composed together
at 10 fps and 25 fps

111



The QoS specification we associated to the scene is the following:

VIDEO:
QoS_Qualifier FRAME_RATES{FRAME_RATES [25] dimensionValue 1}

QoS_Qualifier MAX_RATE_VARIATION{MAX_RATE_VARIATION
0.1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 2}

BIFS:

QoS_Qualifier FRAME_RATES{FRAME_RATES [10,5,1,0]
dimensionValue 1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 1}

We notice that the rates are different, namely 25 fps for video and 10 fps for
BIFS, and that the user assigns more value to the video stream. Besides, he is
willing to accept variations in the rates of the BIFS stream, but he cannot
accept variations in the rate of the video stream (a tolerance is provided, in
the form of max rate variation descriptor). The BIFS scene is initially empty.
Afterwards, every 100 ms 5 geometric objects are added. The initial
complexity is low, since the scene graph is quite small. However, after 8
seconds, the scene graph contains 400 shapes, and about 1300 nodes. Each
time a full traversal is done, about 40 ms are necessary. Figures 55 and 56
show CPU utilization and Video and BIFS frame rates for the first 9 seconds
of the scene. We notice that CPU is never overloaded. This means that the
resource manager and the BIFS and Video estimation components succeed in
controlling CPU utilization. Still, Figure 56 shows that video QoS is not met,
while the BIFS stream is always at its maximum quality, that is the opposite of

what the quality specification of the scene mandates.

112



CPLU Utilization

70,00

80,00

50,00

40,00

Counter Yaluss (scalsd)
w
8
=
=

20,00 |

10,00

& »5:‘59

& &

& & & &

Time (Miliseconds)

= Processor {_Total) : % Processar Tine

Frame Rate

40

351

30

25

20

Figure 55: CPU utilization for the scene with

BIFS and Video

—— Video
—— BIFS ||

Figure 56: Video and BIFS frame rates

0 40

80 120 160 200 240 230

Figure 57: Deadlines of video (solid lines) and
BIFS (dotted lines)

113

L 4




Figure 57 illustrates the different deadlines of presentation of video (solid
line) and BIFS graphics (dashed line) for the first 280 milliseconds. Since
video frame rate is 25 fps, every 40 ms a frame has to be presented. BIFS rate
is instead 10 fps, so every 100 ms there is a deadline. Full traversals coincide
with BIFS frames and are showed in dotted line. We notice that if full
traversals take more than 20 ms, then some video frames will not be displayed
(ie. frame 120 in Figure 57). Video frame 240 instead will be regularly
displayed, because last traversal is distant 40 ms. It follows that in order to
assure video frame rates an estimation of the traversal has to be done, then

compared to the next video deadline, and possibly postponed or skipped.

We observe that, when dealing with graphics and video, the quality
management framework proposed in Chapter 3 cannot be only based on
violations and reassignment of available CPU load. Other parameters have to
be considered, as the proper scheduling of tasks like traversal and
composition. The execution of these tasks can lead to quality degradations
even if the CPU is not overloaded. The solution commonly used in video
augmentation systems (MHEG-5, MHP) is to use overlay between video and
graphics, in order to always assure video performance and achieve truly
independent output of video and graphics. Since video overlay cannot be
always assumed in a multimedia terminal or can be too strict (only two levels
of overlapping are possible between graphics and video), it is interesting to

see how to take into account this factor in our quality management model.

Using the estimation of traversal model, before actually traversing the scene
graph we can foresee if the time to traverse would disturb a video deadline,
and then postpone the traversal or skip it, with the goal of keeping video
frame rates untouched. In the deadline graph of Figure 57, we can postpone
the traversal scheduled at time 100 to time 120, adding 20 ms of jitter in the
presentation of the BIFS frame scheduled at time 100. We observe that this

will degrade the presentation of graphics elements, but this behaviour is

114



coherent with the quality specification of BIFS stream (the rate may even
drop to 0). Figures 58 and 59 show CPU utilization and frame rates of the
enhanced presentation algorithm. We observe that the BIFS rate drops to 0
even if the CPU is never overloaded. The video frame rate remains instead

constant.

CPU Ltilization

w @
e
=}
=}

Courter Values (soaled)

R A T

Time (Miliseconds)

& Processor (Total): % Processor Time

Figure 58: CPU utilization of example 1 with
enhanced presentation

IS
o

—— Video
—— BIFs ||

w
o

[
=]

n
o

Frame Rate
— n
(& o

o

o

Figure 59: Video and BIFS frame rates for
example 1 with enhanced presentation

When scheduling of traversal have to be delayed or composition of BIFS
objects skipped (due to the number and dimension of graphics objects), the
overall graphic enhancement quality can degrade considerably. This
conclusion seems to be also shared in other contexts, like the MHEG-5,
MHP standards we mentioned above. Reading the profiles for the
implementation of terminals with 2D graphics augmentations, we found

sentences like “Rendering performance: anthors should be aware that the graphics

115



drawing speed may decrease where visibles with an intermediate level of transparency are
Pplaced directly over objects other than MPEG video or MPEG I-frames. Also, visible
objects may overlay RTGraphics or the TV services DV'B Subtitles. However, the
RTGraphic/ Subtitle rendering speed may degrade and possibly even stop”. MPEG-4
profiles or industry committees have not (yet) covered these concepts in their
developments. We believe that our management framework may provide a

contribution to this topic.

4.2.3 Animated cartoons
We consider a scene comprised of a continuous BIFS stream and no other
visual streams. The scene is conceived as a sequence of frames constituted of

geometric objects. One frame of the scene is shown in Figure 60.

Figure 60: ENSTAg001b.mp4 cartoon

The QoS specification of the BIFS stream is the following:

QoS_Qualifier FRAME_RATES{FRAME_RATES [12,8,2] dimensionValue
2}

QoS_Qualifier_VISUAL_QUALITY {QUALITY[HIGH,LOW]
DimensionValue 1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 1}

We assume that the user is willing to accept changes in the perceptual quality

of the scene instead of changes in the rates. The presentation algorithm can

116



then use the model we described to estimate the rendering for the
rasterization of each frame, and switch from high quality to low quality (if the
rendering library provides such options) when resources to complete a frame
at a given quality level are insufficient. The information about desired BIFS
frame rates (normally not contained in the MPEG-4 Systems standard) is
useful in knowing how much time we have to complete a frame. A best effort
system without quality management can render a scene whenever scene
changes are detected, but in this way no assumptions about how much time is

available to render a frame could be made.

A consequence of the use of this quality specification is that depending on the
terminal, a scene can be displayed at a different quality. Quality changes can
never occur for high-end (always high quality) or low-end terminals (always
low quality), or they can occur during the presentation depending on the
available resources. We used antialiased and normal rendering as high
quality/low quality modes. As we saw in section 4.1.3, antialiasing provides a
better visual quality but it requires more computational resources. We ran the
scene first with QoS enabled. Then we ran the scene with QoS disabled and
using high quality, antialiasing rasterization for the whole scene. Figure 61
compares the frame rates of the two experiments, for 250 animation frames.
The figure shows also the quality mode used during the rendering, for the
QoS enabled experiment. The quality level is set to 1 if the frame is rendered
in low quality and O if a frame is rendered in high quality. We observe that,
when QoS is enabled the terminal switches to low quality mode in order to
keep the frame rate constant from time 2000 to 4000 and from time 10000 to
14000, while when QoS is disabled the terminal shows low frame rates in the
same interval. Figure 62 compares instead the frame rates when QoS is
enabled and when QoS is disabled but the terminal uses always low quality.
We observe that minor frame variations occurs when QoS is enabled and the
terminal uses high quality and low quality rendering, but the frame rate is

similar to the one obtained using always low quality rendering.

117



Frame Rate

Frame Rate

* Hybrid High/Low Quality
181 + High Quality b
. Quality Level
16} .
14} .
12} .
o i
0 1 1 J 1 1 L 1 L 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (ms)
Figure 61: Comparison of frame rates for
ENSTAg001b.mp4, hybrid and high quality
20 T T T T T T T T T
* Hybrid High/Low Quality
181 + Low Quality ]
. Quality Level
16 R
14} .
12 R

6} i
4} i
oL i
O 1 1 I 1 1 1 1 i i
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (ms)

Figure 62: Comparison of frame rates for
ENSTAg001b.mp4, hybrid and low quality

118



4.3 Conclusions

As part of the multimedia architecture proposed in this work, this chapter
focused on the rendering components of an MPEG-4 Systems terminal. We
subdivided the rendering process into a number of conceptually independent
tasks and we identified the parameters that affect their performance. Since
composition of visual objects is not specified by the standard specification, we
also discussed algorithms for 2D composition, and identified load control
processes. We observed that predicting a priori the time for the rendering of a
frame is not possible when a painter’s algorithm is used to minimize the
number of object drawn. However, we showed how the estimation of the
separate tasks could be used in the context of the proposed framework. The
model can be used to provide complexity figures for the BIFS graphic
enhancement stream, in order to better allocate computational resources at
start-up or when QoS violations are detected. We also discussed the need for
separate rendering rates for graphic augmentations and video streams, and we
saw how to use the prediction of the separate rendering tasks in order to
improve video rendering. Lastly, we showed how quality management could
be carried out along the dimension of perceptual visual quality when the

rendering library has different rendering quality levels.

119



Chapter 5

CONTINUOUS SCENE DESCRIPTION STREAMS

In Chapter 3 we proposed a multimedia framework to provide quality-based
presentations. In the proposed architecture, decoding control filters monitor
the performance of the associated media decoders. In this chapter, we aim at
providing evidence that a control mechanism is needed also for the decoding
of scene description stream (BIFS), and discuss options to achieve that.
Usually, decoding complexity of scene description streams is not a penalizing
issue for the run-time performance of a terminal. In most multimedia
applications the terminal is supposed to receive the scene, decode it and then
start the simulation. Scene decoding is hence done only once, and when the
simulation is not even started. However, some specific kind of multimedia
applications requires the continuous decoding of scene updates during the
simulation, and as a result the continuous update and render of the scene
graph. This task is similar to the reconstruction of a time-constrained flow
where presentation units are composed of set of nodes of the scene tree. In
the following, we first provide evidence of the need of a control mechanism
(Section 5.1), afterwards in Section 5.2 we provide a model to estimate
decoding times and finally in Section 5.3 we discuss methods to use this

model in the context of the proposed framework.

5.1 Motivation of the work

In ‘animated cartoons’, the illusion of character animation is achieved drawing
consecutive frames one after the other in rapid sequence. Cartoons can be
easily represented using the MPEG-4 BIFS language. Animation frames are

represented using 2D primitives to draw lines, polygons and curves. A BIFS

120



cartoon scene is composed of a set of /ayers, and a dictionary of shapes

MCD2001].

Dictionary of Shapes Layers

Figure 63: Structure of a BIFS cartoon

Layers are declared one after the other, at the root level of the scene. Each
layer contains one or more reference to shapes contained in the dictionary.
The initial scene contains the declaration of layers and the initial dictionary of
shapes. Consecutive scene updates are declared using time-stamped access
units with BIFS commands (introduced in Chapter 2, Section 2.2). Each BIFS
command may contain an update of the shapes contained in the dictionary,
either as a replacement of the dictionary shapes or a replacement of the
properties of the existing ones, and an update of the layers. We observe that
at each scene update, a MPEG-4 terminal has to decode the update’s access
unit, and render the scene graph. Obviously, the complexity of the decoding
task affects the performance of the system. Fig. 64 shows three snapshots of
an MPEG-4 based cartoon, “compfx”. Fig. 65 shows the CPU load as a
function of time during the execution of this scene. The graphs show clearly
that the CPU is overloaded for the first part of the rendering. The visual
effect during the play is definitely not pleasant: the animation goes slower and
faster since the periodicity of the output is disturbed by the CPU load. As a

result, many animation frames are not displayed (40 out of 70, ~57%).

121



Figure 64: Compfx snapshots

CPU Litiization

1000 2000 ao00 4000 5000 5000 7000 s000
Time (uiliseconds)

-m- Processor (_Tetal): % Processor Time.

Figure 65: CPU load during Compfx

We profiled the reference software MPEG-4 player in order to get some
insight on the time spent in each module during the execution of this cartoon.
Figure 66 shows a broad repartition of the execution times between the
MPEG-4 player and some dlls and drivers running on the terminal. We notice

how the player uses 37% of the time while the graphic library uses the 25%.

Clockticks %

ntdil.dll
1%

MPEG-4

ntoskrnl.exe Player

14% 37%
win32k.sys
13%
GdiPlus.dll
25%

Figure 66: Distribution of execution time
among the main system components during
execution of the compfx bistream

122



Figure 67 instead shows the distribution of the execution time between the
main modules of the player. We observe that the BIFS decoder runs for most
of the time (41%), followed by the scene graph management (27%) and the
visual renderer (17%). Figures 66 and 67 suggest the need for further profiling
of the BIFS decoder, in order to get some insight about the functions that

most influence its performance.

Clockticks %
Others
15%
BIFS
Visual Decczder
Renderer 41%
17%

Scene
Graph
27%

Figure 67: Distribution of the execution time
between modules of the MPEG-4 player

Figure 68 shows the 4 functions that collected most clockticks in the BIFS
decoder. We observe that most of the execution time is used by the GetBit
and ParseFloat functions; indeed they collect nearly the totality of the
clockticks samples. These functions are dependent on the size of the access
units that constitute the bitstream. This suggests that the performance of the

BIFS decoder is mainly affected by the size of the incoming access units.

123



60
50
40
30
20
10
0

GetBit ParseFloat GetByte  Parselnt

Figure 68: Distribution of the execution
clockticks in the BIFS decoder module

25
20
19 B Clockticks 9
10 ockticks %
5
0

a 3 2 3 53 g L < x
3 = = £ 2@ a 2 £ 9 c
O%EDQ_E < o 9 8o
n 2 0 n o 2 oo
Lo [m] o =
IS o35 Q g T E
o © o x @
o mn_
— =

Figure 69: Distribution of clockticks over all
the functions of the player.

In order to confirm our analysis, Figure 69 shows the 10 functions that have
got most execution clockticks in the all MPEG-4 player. As expected, the

GetBit and Parse Float functions received the most of CPU time.

We performed the same analysis on another MPEG-4 player implementation
(GPAC source forge project). Figure 70 shows the 10 functions that received
most CPU time for the GPAC player.

124



50
40
30 : 5
20 @ Clockticks %
10
0
= = = =) [ 3> © = N
m § £ o 5= £ 5§ B E
T 8§ 9 @438 o Q@0 =
e T 5 QB 538
(0] g (] = T O ch SO ETO
o § T E o I8gTLo25cir
I = o Q"5 Z<£275%
% I g UJ‘ ?) | o‘ & |
)
a m > 9 & = a

Figure 70: 10 functions with max execution
clockticks (GPAC)

The profiling gives the very same results for what concerns the two functions

most called, confirming our previous analysis. Finally we timed the BIFS

decoding time (Figure 71).

Bifs decoding times
S (42 [o2]
o o o

(%)
=3

0 . . f A n
0 1000 2000 3000 4000 5000 6000
time (msec)

Figure 71: BIFS decoding time as a function
of time during Compfx.mp4

We observe that, since the nominal frame rate of this application is 12.5
frames per second, the terminal has 80 milliseconds to parse an access unit,
update the scene tree, and render the tree. As we can see from the picture, the
average initial decoding times are around 60 milliseconds. Decoding and tree

update times then vary a lot over the time, from ~10 to 90 ms for each access

125



unit. Decoding and rendering times in most cases do not fit in the interval
between two access units. As a consequence, most frames (57 %) are decoded
but not presented. It should be noted that since decoding times are very high,
a control action only on the rendering process would not improve the
terminal load. Even if we render the scene at a rate different from the
nominal frame rate, there would not be much improvement. On the basis of
this analysis, in the next section we investigate a model to predict the

decoding times as a function of the size of the incoming data units.

5.2 Estimation Model

In this section we aim at finding a model to predict BIFS decoding times.
First a brief overview of BIFS decoding is given. Then we illustrate the
environment in which decoding time measurements were taken, followed by
the mathematical analysis of the acquired samples. A set of predictors is given

and finally the results are discussed.

5.2.1 BIFS Decoding

As pointed out in Chapter 2, BIFS is the MPEG-4 scene representation
format, which can be seen as a binary encoding of VRML plain text standard,
with some added features. Access units of BIFS elementary streams are called
Command Frames. They contain a number of BIFS-Commands, that all share
the same time stamp. These commands enable  the
insertion/deletion/replacing of nodes, fields, routes or the replacement of the
whole scene. Nodes are encoded according to some coding tables and the
fields containing floats or coordinates are further quantized to improve
coding efficiency. BIFS decoding implies parsing access units of variable sizes
and building the scene tree or updating an existing one. We don’t go into the
details of the encoding/decoding process hete, since a thorough analysis of
BIFS decoding is not in the scope of this work. BIFS decoding is described in
[PE2002].

126



5.2.2 Regression Analysis

We considered a set of BIFS applications, all characterized by continuous
scene updates, and we sampled the BIFS decoding times. The decoding of
each access unit was timed using a high-resolution timer. We then ran a
regression modelling the access units decoding time as a function of its size
measured in bytes. The plot of the Compfx cartoon analysis is given in Fig.

72.

35

30

- n n
a1 =] a1

BIFS Decoding Time (ms)

o

0 2 4 6 8 10 12 14
BIFS AU Size 4

Figure 72: BIFS decoding time as a function of
AU Size predicted by a linear model

The x-axis contains the AU size, the y-axis the actual decode time. The
regression line is also reported. To further measure the goodness-of-fit of the
linear regression, we calculated the R” correlation coefficient and we obtained
0.97, which confirms the visual appearance of the data. Figure 73 shows

instead the plot of linear fitting for another cartoon, “gen002”.

127



BIFS Decoding Time (ms)

0 05 1 1.5 2 25
BIFS AU Size . 10°

Figure 73: ENSTgen002.mp4

We found similar results for all the BIFS applications considered. Table 8

reports the R? coefficients for some bitstreams.

Sample | N Pts | R?

Ad004c | 132 0.967034
Ag001 | 191 0.993852
Ag005 | 63 0.987426
Ay001 | 266 0.986040
Gen002 | 203 0.921692
Vecto | 30 0.959497

Table 8: Regression analysis results

We also ran a regression on a set comprised of data from the cartoons in the
table (“Union”). We obtained a R* value of 0.96. This study clearly shows
that there is a strong correlation between the size of an access unit and its
decoding time. In the following we compare predictors based on this

observation.

5.2.3 Predictors
Dynamically computing a linear regression in real time is too expensive for a
predictor that is meant to be used before every decoding. We implemented

cheap predictors, which approximate a linear model. Our first predictor

128



(BIFS_P1) comes from a simple proportion. Let Au,, Au, be n BIFS access

units. For the generic Au, unit we apply the following proportion:
(1) DecodingTime (Au,) = (DecodingTime (Auy,)* Size (Au,))/ Size (Au, )

The second predictor (BIFS_P2) uses a line with a slope computed on the
basis of the last four access units decoding times and sizes. This linear
predictor derives from the one used in [BMP98] to predict MPEG video
decoding times, even if we applied it to another context. If we denote E (X))
the mean of the variable X based on k observations, and Slope, ; the slope
calculated at the k-1 access unit on the basis of the four previous one, we

have:

(2) DecodingTime (Au,) = E (DecodingTime, ;) + (Size (Au,) -E (AuSize,_
1)*Slope,

The third predictor (BIFS_P3) is a little variant of the second one. Instead of
using a slope based on the last four samples, we use a slope pre-calculated
(once) by linear regression on a set of all the samples. In the following

section we evaluate the predictors against seven chosen cartoons.

5.2.4 Evaluation

We tested the three predictors on the seven cartoons and the set composed of
union of the samples, 955 access units. In the latter case, the data are only
locally correlated, with a correlation window equal to the length of each
cartoon. The following tables report the performance of the predictors for
each cartoon. The performance is measured observing the sum of absolute
error (ms), the maximum absolute error (ms) and the percentage of samples

predicted within a threshold of one/three/five/ten milliseconds.

129



Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Error Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS_P1 | 1569 30 82 92 94 96
BIFS_P2 | 1790 28 49 90 95 98
BIFS_P3 | 1615 28 55 92 96 98
Table 9: Performance of three BIFS predictors
for Union Sample
Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Error Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS_P1 | 325 28 73 93 95 97
BIFS_P2 | 333 27 62 90 96 98
BIFS_P3 | 375 27 60 90 96 98
Table 10: Performance of three BIFS
predictors for Gen002 file
Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Error Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS _P1 | 137 25 68 82 90 91
BIFS P2 | 109 24 64 78 91 97
BIFS_P3 | 108 19 65 85 92 95
Table 11: Performance of three BIFS
predictors for Compfx
Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Error Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS P1 | 24 5 65 96 100 100
BIFS_P2 | 41 5 64 90 100 100
BIFS _P3 | 48 5 66 90 100 100

Table 12: Performance of three BIFS

predictors for Vecto

130




Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Ertror Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS_P1 | 240 13 84 93 94 96
BIFS_P2 | 341 12 58 90 92 97
BIFS_P3 | 203 14 83 96 96 97
Table 13: Performance of three BIFS
predictors for Ag001
Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Ertror Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS_P1 | 109 10 95 97 98 98
BIFS P2 | 140 16 72 98 98 99
BIFS_P3 | 138 10 95 98 99 99
Table 14: Performance of three BIFS
predictors for Ay001
Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Etror Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS_P1 | 60 4 73 92 95 98
BIFS_P2 | 80 3 53 20 96 98
BIFS_P3 | 40 2 85 98 98 98
Table 15: Performance of three BIFS
predictors for Ag005
Predictor | Total Max % w/in | % w/in | % w/in | % w/in
Error Error 1ms 3ms 5ms 10ms
(ms) (ms)
BIFS_P1 | 370 62 71 83 84 91
BIFS_P2 | 213 24 69 90 94 97
BIFS_P3 | 237 15 59 90 94 96

Table 16: Performance of three BIFS

predictors for Ad004c

As we can see from the tables, BIFS_P1 has always the best performance in

predicting times within 1 ms, but has always the worst max error value. The

following picture shows the histogram of error for BIFS_P1 predictor on the

union sample. As we see, the error follows a normal distribution centred on

ZEro.

131




500

400 1

350 |- b

300 |- b

250 b

200 1

150 1

100 1

50 1

- L P i " -

0
-40 -30 -20 -10 0 10 20 30 40
Prediction error in milliseconds

Figure 74: Histogram of errors for BIFS_P1

BIFS_P2 has low total and maximum errors. With the exception of compfx,
all the cartoons decoding times can be predicted within a threshold of 3 ms in
the 90-98% of the cases. If we look at the 5 ms threshold instead, BIFS_P2
works well on all the cartoons, since the 90-100% of all the decoding times
can be predicted within a confidence of 5 ms. Figure 75 shows the histogram

of error for this predictor.

300

250 1

150 9

100 9

50 b

0 L . " . .
-40 -30 -20 -10 0 10 20 30 40
Prediction error in milliseconds

Figure 75: Histogram of errors for BIFS_P2

132



BIFS_P3 is similar to BIFS_P2, but it has always the minimum max error and
almost always the minimum total error, and also shows the best performance
in predicting times up to 3 ms seconds, with a percentage of 85% for compfx,
and of 90% and more for all the other streams. Figure 76 shows the

histogram of error.

300 T T T T T T T

250 1

200 | 1

100 1

50 1

0 . . " " .
-40 -30 -20 -10 0 10 20 30 40

Prediction error in milliseconds

Figure 76: Histogram of errors for BIFS_P3

All the three predictors are very cheap to implement. BIFS_P3 is penalized
because it requires a pre-calculated linear regression calculus, done on a large
set of data. BIFS_P2 and BIFS_P1 are instead generic enough to be
implemented on software architectures without changes. Since we are not
interested in predictions within 1 ms, BIFS_P1 is not the most favourite
candidate. BIFS_P2 has better total error values and good performances
within 3 and 5 ms, that are good margins for any practical use of this

predictor.

5.2.5 Preliminary Conclusions
This study shows that it is possible to predict BIFS decoding times, using a
linear model, as function of the size of the BIFS access unit. It shows also

that it is possible to implement efficient cheap predictors that can predict

133



decoding times within 3 and 5 ms with a rate of success varying from 90 to

100 % of the samples.

5.3 Use of predictor model
In the context of the subject of this thesis, we envisage the use of the BIFS
prediction to intelligently skip some command frames or to modify the

stream time base. In the following we illustrate these two options.

5.3.1 Frame skipping

As with video streams, a simple technique to reduce the load of a decoder is
the skipping of some decoding units. However, all the decoding units may
contain information that cannot be skipped. For instance, in the case of
cartoons, BIFS update commands can contain shapes meant for the update of
the dictionary, which might then be used in several other frames. Blindly
skipping the decoding of these shapes would compromise the display of
several animation frames. Clearly, a method to differentiate between access
units is needed. Unfortunately, the header present in BIFS access units just
define the kind of BIFS command, and does not provide any hint about the
possibility to skip or not a given command. If we consider a particular service
scenario, then some additional information can be used. For instance the mp4
file format provides a data structure, called “DegradationPriority” atom,
which can contain degradation information for each sample of a presentation.
The information is comprised of 15 freely usable bits. The author of a BIFS
scene can specify which commands the decoder can skip without affecting the
consistency of the scene. Using the BIFS decoding prediction model, the
terminal can skip only the samples that are too costly to be decoded. This
method preserves the temporal duration of the stream, while degrading the
fluidity of the animation. However, the author has to add some degradation

information to the scene, without which the presentation cannot be degraded.

134



5.3.2 Time base adjustment

A different approach is to work on the temporal scale of the presentation.
The main idea is to slow down the presentation when the processing
requirements cannot be satisfied. In order to achieve that, we can operate on
the clock associated to the BIFS stream. For each BIFS access unit, we
predict its computational requirements and we modify the clock by slowing it
down or accelerating it on the basis of a prediction of the decoding and

rendering time. We can express this in the following way.

Let the following be given:

S={a,,a,,...a,} stream of access units

T={t,,t,,..1,} time stamps associated to the stream S

The processing time (sum of decoding and rendering time) for an access unit

a, can be expressed as a function:

p:S—>R

The requirement to achieve the display of all the access units can be expressed

as:

M pla)<t, —t k:l,.n

This means that the time to process access unit @, is bounded by the interval

between two consecutive time stamps f,,,,f, . If this condition is not satisfied,

delay will be introduced and subsequent frames will be skipped. In order to
avoid any disruption, the stream clock speed should then be scaled of a factor

given by:

135



2) ¢, =pla) /., —t,) k:l,.n

In practice, if we assume a stream with nominal fixed frame rate f, , then the
time interval between two consecutive access units is constant and given by
1000/ f, . The time to process an access unit can be approximated by the

sum of the decoding and rendering models identified in this chapter and the
previous one:

(3) ];‘endering (ak )S (1 000/ fs ) - Td

ecoding

(a,,,) k:l.n

In (3) we assume that we determine the clock speed factor at each cycle
before starting the rendering. A more obvious solution would have been to
modify it before the decoding of BIFS unit, but in that case the estimate of
the rendering time would have been less precise because it would not have

considered the variations in the scene graph produced by the BIFS unit itself.

Figure 77 shows the clock speed factor and the estimated decoding and
rendering times as a function of the time for the compfx cartoon. The clock
speed factor normally varies from O to 1 and in Figure 77 it is scaled by a
factor of ten for clarity. The frame rate is 12.5 fps, so the terminal has 80
milliseconds to perform the decoding and rendering of each access unit. We
observe that when the sum of decoding and rendering is higher than 80
milliseconds, the clock scale factor lowers accordingly. Considering the
number of displayed frames, 64 out of 70 frames are correctly displayed.
Some frames are nevertheless missed, because in order to improve the visual
quality and the smoothness of the scene we implemented a system that
gradually modifies the clock speed proportionally to the exact value of the
clock speed factor. Running the player without time base adjustment, only 40

frames out of 70 would be displayed.

136



90 T T T T T

——  Decoding Time
80 ——  Rendering Time
. Clock Scale Factor

Time

0 3 2 s ° I. . 1 1
0 1000 2000 3000 4000 5000 6000
Scene time

Figure 77: Compfx, estimated decoding and
rendering times, and value of the clock scale
factor (scaled)

Figure 78 shows the same plot for another cartoon, “aa001b”, that in a way
shows a more typical performance for the decoding and rendering tasks. We
observe that BIFS decoding time is quite small compared to rendering time.
Nevertheless, there are cases where the sum of decoding and rendering is
higher than the 80 milliseconds time duration for each frame. Frame statistics
show that 115 frames out of 130 are displayed, compared to 95 out of 130

when no time adjustment is used.

137



——  Decoding Time
Rendering Time i
. Clock Scale Factor

20 1
O.MF.;AQ._.,,_ ot / e s ..m

0 2000 4000 6000 8000 10000 12000
Scene time

Figure 78: Aa001b, estimated decoding and
rendering times, and value of the clock scale
factor (scaled)

5.4 Conclusions

Even if usually BIFS decoding complexity is minor compared to other system
tasks (i.e. rendering), there are cases where the complexity of the decoding
task can affect the quality of the playback. In this chapter we introduced a
model to predict BIFS decoding times, meant to be used in applications like
BIFES cartoons that require the decoding of a continuous BIFS updates. The
model can be used to predict decoding times within 3 and 5 ms with a rate of
success varying from 90 to 100 % of the samples. We also showed how the
model could be used in the context of the work of this thesis, namely for the
adjustment of the time base of a stream, when the only other acceptable

solution would be the abort of the presentation.

138



Chapter 6

CONCLUSIONS

In this thesis we addressed the problem of supporting quality-based
multimedia applications. The methodology adopted throughout this work
consisted in modelling a multimedia terminal as a user-centric system, assuming
end users to provide the notion of value to a terminal, suggesting how they
expect it to work under unpredictable events. Consequently, we first identified
QoS parameters to define the quality of a presentation, then proposed a
multimedia framework based on this quality specification and subsequently
identified control processes for the main system components of the
framework. This contribution has been based on the MPEG-4 Systems
standard and its reference software platform. However, we believe that most
of the concepts expressed in this work can be used in other contexts as well.
MPEG-4 Systems provides an integrated, standardized framework to support
2D graphics and natural video, and as such this contribution has progressed
touching various aspects of the standard. Adopting and contributing to the
development of the standard has provided homogeneity to this work, that
otherwise would have suffered of multiple private systems choices that would
have limited the effective interest and usefulness of this thesis. Section 6.1
briefly reports the main achievements of the thesis, while Section 6.2

discusses possible future developments.

6.1 Achievements

In the following the main achievements of the thesis are reported.

139



6.1.1 Quality-based multimedia framework

We established a framework for quality-based multimedia presentations. The
framework has been designed to adapt to variations in the load of a terminal
on the basis of a user quality of service specification. Borrowing design
principles investigated in control theory for discrete event systems, we
addressed the issues of controllability, robustness and reactive configuration
defining an architecture together with control and quality management
processes. The proposed terminal performs resource allocation and
management, trading off user satisfaction and available system resources. User
satisfaction is implied from a user-level quality specification, that identifies a
list of quality options for each media quality dimension, and sets up a ranking
among them. Monitoring of terminal performance is performed using proper
application level metrics. We exercised the concepts on three scenarios:
admission control, competition between applications and power management.
The results show how the proposed architecture succeeds in controlling the
terminal under variations in the load, trying to preserve the quality dimensions

that the user valued the most.

6.1.2 Integration of 2D synthetic content

We identified the main tasks and the parameters that affect the performance
of scene graph based 2D graphic rendering. The methodology we followed is
to subdivide the rendering process into a number of conceptually
independent tasks that can be estimated separately. We hence provided a
model to estimate the resources of these main tasks. As a result we proposed
ways to integrate 2D graphics in the quality management framework, using
the rendering model to estimate the resources for the different quality options
for 2D graphics augmentations and to anticipate variations in the load of a
terminal due to changes in the performance of the graphic subsystem. We
identified algorithms to achieve composition of 2D MPEG-4 scenes, and

discussed their performances and their integration in the framework.

140



6.1.3 Continuous scene description streams

The decoding and rendering of continuous scene description streams has
been analyzed in the context of the scope of this work. We showed how the
estimation of the rendering task could be used for the playback of a stream at
different levels of quality. We introduced a simple linear model to predict
BIFS decoding times. The model can be used to predict decoding times
within 3 and 5 ms with a rate of success varying from 90 to 100 % of the
samples. We showed how the model could be used for the adjustment of the
time base of a stream, when the resources are insufficient for the normal
playback, and the only other acceptable solution would be the termination of

the presentation.

6.1.4 MPEG-4 standardization and R&D projects

During this thesis we contributed to the development of the MPEG-4
standard. Part of the 2D player we developed was included in the reference
software as informative annex in 1998 and since then has been providing
advanced multimedia services in a number of European Projects (MPEG-4
PC, NEXTTV, SOMMIT, OCCAM) and Italian Research Projects (BROM,
MAD). At the moment of writing this thesis, the player is a core part of a
suite of advanced streaming media products shipped by TDK to Educational,

Corporate and Residential markets in Japan (www.wonderstream.com).

6.1.5 Published work
Part of this thesis has been published in the following articles and book

chapters.

J-C Dufourd, S. Boughoufalah, G. Di Cagno et alii, MPEG<4 PC — Authoring
and Playing of MPEG-4  Content, EMMSEC 99 European Multimedia,

Embedded Systems and Electronic Commerce Conference and Exhibition,

Stockholm June 21-23 1999.

141



G. Di Cagno, F. Casalino, MPEG-4 multicast over satellite, 1EEE
MULTIMEDIA SYSTEMS 99 JUNE 7-11 1999, Florence, ITALY

L. Ronco, G. Di Cagno, F. Casalino MPEG-4 1Video decoder optimization, IEEE
MULTIMEDIA SYSTEMS 99 JUNE 7-11 1999, Florence, ITALY

Z. Lifshitz, G. Di Cagno, S. Battista, and G. Franceschini, MPEG-4 Players
Implementation, Chapter 15, Advances in Multimedia: Systems, Standards and
Networks, edited by Atul Puri and Tsuhan Chen Marcel & Dekker Inc, 2000

Z. Lifshitz, G. Di Cagno, M. Leditschke, Implementing the Standard: the Reference
Software, Chapter 16, The MPEG-4 BOOK, edited by Fernando Pereira and
Touradj Ebrahimi, Prentice Hall, IMSC Multimedia Series, 2002

6.2 Future developments

This thesis covered only a part of the problematic of supporting multimedia
services, namely adaptation at end-user terminals caused by variations of the
available computational resources. Adaptation is currently investigated at
various entities in the digital information distribution chain, from
content/setvice generation to end-user terminals. We believe our work can
be leveraged in the context of achieving an end-fo-end QoS for distributed
multimedia. The first step towards this objective would then be to
complement our framework with research on QoS on a particular networked
service scenario (i.e. wireless or internet). Besides, since MPEG-21 is in the
process of defining a framework for the management of terminal QoS, the
integration of our framework into the MPEG-21 terminal architecture would

be an interesting extension of our work.

142



APPENDIX

RESUME LONG EN FRANCAIS

Introduction

Le mot multimédia a été introduit pendant les années soixante-dix pour
décrire la composition d’un film et d’une projection de diapositives. De nos
jours, il est généralement utilisé pour exprimer l'interaction homme machine
impliquant du texte, des graphiques, de la voix et de la vidéo [hyp2003]. Cette
définition clarifie deux concepts de base des applications multimédia.
D'abord, elles se composent de différents médias, aggreges pour fournir une
expérience audiovisuelle riche; en second lieu, elles fournissent des
mécanismes avec lesquels 'utilisateur peut interagir. Les champs d’application
incluent le divertissement, I'éducation et la publicité. Selon cette définition, un
systeme multimédia est un terminal qui joue différents médias
simultanément, selon quelques régles de synchronisation, avec un certain
niveau d'interaction utilisateur. Méme si le multimédia se rapporte souvent a
Iinformatique, il peut étre employé pour décrire un certain nombre d'appareils
manipulant des médias, tels que les magnétoscopes numériques, les dispositifs
sans fil et les affichages publics. En effet ces dernieres années ont montré une
croissance importante du nombre et du type de ces dispositifs. Comparé aux
applications traditionnelles de données, les présentations multimédia ont des
besoins différents. Elles sont composées de médias continus et non continus,
qui doivent étre présentés a des instants précis. En outre, contrairement aux
applications de données, les erreurs dans les flux de média peuvent souvent
étre cachées ou tolérées. Il s’en suit que les mesures traditionnelles pour
capturer la qualité des applications de données ne sont pas facilement

applicables aux applications multimédia. Exigeant des volumes de calcul

143



lourds, il est traditionnellement difficile de soutenir des applications
multimédia. Cette thése traite du probleme de concevoir des systemes
multimédia capables de réduire les besoins informatiques de telles
applications. Les fondements de cette these sont fournis par le travail dans ce
domaine que nous avons fait dans le contexte des normes internationales
(MPEG), des projets de recherche européens (SOMMIT, OKAPI, MPEG-4
PC) et des projets industriels avec Pentreprise japonaise TDK. Dans le
contexte de ces travaux, nous avons souvent fait face au probleme de fournir
des présentations multimédia complexes composées de plusieurs flux de
médias sur différents terminaux. Par exemple, le Schéma 1 montre une
application multimédia composée de 16 vidéos MPEG-4 fonctionnant en
parallele. En cliquant sur une vidéo, on propose un écran différent (le Schéma

2), composé de deux vidéos d’'une meilleure qualité, plus le texte et les images.

Schéma 1: Flux multiples

144



Schéma 2: Vidéo, images immobiles et
présentation de textes

En considérant ces applications, des questions peuvent se poser: comment la
qualité d'une présentation est-elle quantitativement exprimée ? Comment est-
ce que le terminal sutrveille et controle la qualit¢é d'une présentation
multimédia ? Cette thése vise a fournir quelques réponses a ces questions,
contribuant au champ de recherche qui traite des systemes de présentation
capables de s'adapter aux conditions variables de systéme sur la base d'une
spécification de qualité de service (QoS). Les paragraphes suivants illustrent
pourquoi ce sujet nécessite d’étre étudié, et fournissent un rapport clair du

probleme et de I'approche technique adoptée.

Motivations
Nous étudions le probléme du support des terminaux multimédia adaptatifs

sur la base des faits suivants:

® Ta demande des applications multimédia de haute qualité augmente

constamment.

Le succes incroyable des documents HTML a rapidement accéléré la
demande des applications multimédia en temps réel. Dans le monde

d'Internet nous sommes maintenant familiarisés avec les concepts de la

145



navigation de documents texte. Une évolution normale est le concept de la
navigation de document multimédia ou les contenus synthétiques et naturels
sont mélangés pour fournir une expérience plus sophistiquée de navigation.
Un concept similaire s'applique au domaine de télévision numérique ou il y a

une demande d'un plus grand niveau d’interactivité.

® Les dispositifs multimédia ont différentes ressources disponibles.

La puissance disponible (mémoire, capacité de traitement et largeur de bande
de réseau) peut changer d’ordre de grandeur. Il devient obligatoire adapter le
contenu des médias et les algorithmes de décodage et de rendu aux ressources

spécifiques aux terminaux.

® Les réseaux informatiques évoluent.

Les réseaux a commutation de circuit laissent place aux technologies de
commutation par paquets. Les réseaux a commutation de circuit ont été
congus pour réduire au minimum la fluctuation temporelle de commutation et
de transmission. Des réseaux de commutation par paquets ont été
différemment congus pour maximiser l'utilisation de lien plutdét que pour
réduire au minimum la fluctuation temporelle de transmission. La tache
importante de fournir une qualité acceptable de service est alors dévolue aux
terminaux, au niveau applicatif, plutét qu'au niveau protocolaire. L'intérét
pour la recherche dans ce secteur se retrouve dans le travail des groupes de
standardisation ~ dans le secteur du multimédia. Le  groupe
ISO/IEC/SC29/WG11, également connu sous le nom de MPEG, est en
cours de normaliser un cadre d’é¢tude (MPEG-21) pour la consommation de
données multimédias ou la question de l'adaptation de contenus multimédia

est considérée a la fois au niveau du contenu, du terminal et du réseau.

146



Problématique

Le probleme du support des applications multimédia est un probleme

stimulant en raison des faits suivants:

Systemes d'exploitation : les applications multimédia doivent
fonctionner sur les systeme d'exploitation d'usage universel (GPOS).
Les applications rentrent en concurrence pour l'usage des ressources

informatiques et de mémoire.

Besoins de calcul : les applications multimédia ont des besoins de
calcul trées variables. Dans les systemes d'exploitation ou les
applications rentrent en concurrence pour l'usage des ressoutces, les
ressources disponibles sont également variables. Par conséquent, faire
s’accorder la variabilité des ressources disponibles avec la variabilité
des besoins de calcul des applications multimédia est un probleme

intéressant.

Synchronisation : la présentation synchronisée de différents médias

est nécessaire.

Médias compressés : afin d'étre transmis efficacement, certains médias
doivent étre compressés. Du coté du terminal, ceci implique le besoin

d’une tache de décodage avant I'affichage de chaque unité de média.

Graphique synthétique : les applications multimédia exigent la

composition de médias continus avec du contenu synthétique.

Interaction avec l'utilisateur : ces systémes exigent des temps rapides
de réponse et de commutation entre différentes options de

visionnement.

147



Les terminaux multimédia fonctionnant sur les systemes d'exploitation
d'usage universel doivent par conséquent étre robustes a l'imprévisibilité
et aux variations du volume de calcul des données entrantes. Elles doivent
surveiller constamment les progres de l'application et réagir aux pertes de
valeur provoquées par l'imprévisibilité fondamentale de l'environnement.
En exécutant ceci, un systeme de présentation doit tenir compte de la
valeur du service fourni a l'utilisateur. Le systeme de présentation exécute
le processus d'adaptation sur la base d'une spécification de la qualité de

service (QoS).

Approche technique

Nous formalisons un systtme multimédia comme un systéme centré sur
I'utilisateur. Nous supposons que les utilisateurs fournissent la notion de
valeur des différents médias d'une présentation a un terminal, suggérant
comment ils prévoient le fonctionnement de la présentation lors
d’événements imprévisibles. Ceci implique le besoin de spécifier la qualité au
niveau de l'utilisateur. Nous avons proposé un cadre d’étude basé sur ce
modele. Notre contribution est basée sur les systemes standard MPEG-4 et sa
plateforme de logiciel de référence. Le raisonnement derriere ce choix est que
nous pensons que la norme est un candidat parfait pour vérifier la valeur de ce
travail, puisqu'elle a la puissance sémantique d'exprimer des applications
multimédia composées de plusieurs flux de médias en temps réel. Ftant une
norme internationale, les spécifications sont publiques, et notre travail n'est
alors pas attaché a une conception particulicre et privée. Permettant une
grande flexibilité en combinant différents types de médias, la norme présente
quelques défis intéressants par rapport au probleme que nous avons énoncé.
En fait, le choix de la norme comme référence a également une influence sur
la nouveauté de notre travail. La majeure partie des travaux existants dans le
secteur étudié (détaillé dans la prochaine section) se concentre sur des

terminaux manipulant des flux audio-visuels. Au lieu de cela, nous

148



considérons des scénes multimédia ou les flux de description de scene sont
plutot complexes. Nous nous référons ici par exemple aux animations 2D (c.-
a-d. dessins animés), applications vidéo multiples (c.-a-d. surveillance,
événements sportifs a distance). Tout en étudiant le sujet, nous avons essayé
de nous concentrer sur ce genre d'applications plutot que sur les applications
traditionnelles basées sur des flux vidéo et audio simples. Ces considérations
ont motivé notre intérét pour l'utilisation des systtmes MPEG-4. Une autre
vue de I'approche technique que nous avons suivie peut étre fournie si nous
formulons un terminal multimédia comme composé de trois couches
différentes : utilisateur, application, et réseau. On le congoit bien dans la
littérature ou dans les modeles de couche multiples, la QoS doit étre indiquée
et imposée a toutes les couches [CCGY3]. Ce travail se concentre sur
l'utilisateur et les couches de niveau applicatif, et ne considere pas n'importe
quel scénario particulier de service de réseau. Nous supposons que les
données dont un terminal a besoin sont toujours disponibles une fois
demandées. Bien que ceci puisse impliquer que ce travail est seulement
directement utilisable pour les scénarios locaux (c.-a-d. lorsque les données
entrantes sont stockées dans un ficher), nous croyons que notre travail peut
étre complété avec les travaux existants menés au niveau de la QoS du réseau

(la section suivante mentionne des travaux sur ce sujet).

Travaux associés

Les études de la littérature sur la qualité de service concernent principalement
le niveau réseau, avec des contributions pour mesurer le niveau de service
dans une communication établie. Le besoin d'infrastructure de bout en bout
pour la qualité du service dans les systemes multimédia a d'abord été introduit
dans les travaux de Campbell [CCGI3], [CCH95], [CAH97]. Ces études
proposent une architecture de systeme avec des mécanismes de qualité de
service a chaque couche. Elles constituent une référence pour n'importe quel

travail sur la QoS. De la méme manicre, [SCDS97] propose un cadre de

149



gestion de ressource pour la gérer les conflits avec des ressources systeme. 11
propose une taxonomie de qualité des parametres de service, composée de
mesures (exécution, sécurité), et de politiques (de niveau de service, de
gestion). Ce travail est intéressant parce qu'il généralise le probleme et fournit
une vision d'ensemble dans laquelle on poutra inscrire le probleme moins
général de trouver des mesures pour les systemes multimédia. La majeure
partic de la recherche dans le domaine de la QoS s'est produite dans le
contexte de couches architecturales différentes (réseau et systeme). La QoS
sur le réseau Internet est un domaine d’étude qui a attiré plusieurs chercheurs,
proposant des perfectionnements au protocoles Internet afin de permettre un
service scalable (diffserv), des protocoles pour demander des ressources
spécifiques (RSVP), ou des mesures a employer par une application pour
mesurer la qualité courante d'une communication. Dans le domaine des
terminaux, nous avons trouvé des contributions dans les secteurs de la
synchronisation, de la présentation et du transport. Des techniques de
présentation qui préservent les relations temporelles sont rapportées dans
[SDF93], et les problemes de synchronisation d'hotloge sont abordés dans
[HPH 2000]. Des présentations basées sur la qualité sont présentées dans
[BKWSAKGY06]. L'article précedent définit une mesure de qualité de
présentation (QoP) et propose un ensemble de protocoles qui préservent la
présentation de flux multimédia. La qualité subjective de la synchronisation
dans une présentation multimédia a été évaluée exhaustivement par les
travaux de Steinmetz [Stein96]. Il définit la qualité de synchronisation de
médias en termes de biais entre les flux. Il a proposé divers seuils de biais
d'hotloge pour capturer la synchronisation entre I'audio, le visuel, le texte, et
les images comme celle-ci serait percue par l'utilisateur. Il a proposé également
une méthode pour prolonger la propriété de synchronisation de deux objets a
un troisi¢me objet, connaissant les rapports entre chaque couple. Ce travail est
tres important pour nous, puisqu'il exprime la perception humaine de la
synchronisation en valeurs quantitatives, qui peuvent ¢tre employées par des

algorithmes au niveau applicatif. En ce qui concerne la littérature traitant des

150



standards MPEG, [RPS93] est un des premiers articles sur le décodage logiciel
de la vidéo. [BMP98], [BA2000], et [MB906] fournissent des modeles pour
évaluer les temps de décodage de la vidéo MPEG-2 et MPEG-4. [RKR90]
décrit d’'une maniere claire comment la synchronisation est réalisée dans les
flux MPEG-2; il a permis de comprendre l'utilisation des hotloges dans le
logiciel de référence MPEG-4. [PE2002] fournit fondamentalement toutes les
notions sur MPEG-4 liées a ce travail de these. [N4848] est la référence pour
les systemes MPEG-4. [FS93] et [NRLD2002] décrivent des cadres d’étude
3D qui ont approché le méme probléme de soutenir 'adaptation multimédia
mais pour les scenes 3D. Nous n'avons trouvé aucune contribution sur des
algorithmes de présentation pour les terminaux 2D MPEG-4 qui améliorent
la qualité des caractéristiques de service, ou les terminaux 2D capables de
mélanger du contenu synthétique et naturel en considérant des mesures de
qualité pour capturer les rapports entre les flux visuels et les graphiques
synthétiques. Ce travail est censé fournir une contribution a ce domaine

d’étude.

Les contributions principales de cette thése

La contribution centrale de cette these est I'établissement d'un cadre d’étude
multimédia pour la gestion de qualité des terminaux présentant des flux
multiples sur des systemes d'exploitation d'usage universel. Nous présentons
des moyens de réfléchir au sujet de la perte de valeur des applications
multimédia présentant des spécifications de qualité au niveau utilisateur, et
nous identifions des mesures de niveau d'application pour les éléments d’un
systtme multimédia. Nous fournissons des algorithmes pour améliorer
l'exécution de composition de médias, un modele pour estimer des taches 2D
et, comme deuxi¢me contribution, des méthodes de composition pour
intégrer ce modele dans le cadre proposé de gestion de qualité. La troisicme
contribution est une étude sur la maniere de réaliser le contréle de charge sur

une classe d’applications, les flux de données spécifiquement contraints au

151



temps qui exigent le décodage continu des mises a jour successives de la
scene. Un modeéle du temps de décodage est donné, ainsi que des prédicteurs
pour estimer le décodage. La dernicre contribution est le travail que nous
avons fait dans le cadre de la participation au développement de la norme
Mpeg-4, dans le contexte de l'activité du logiciel de référence (Mpeg-4 partie
5).

Premiére contribution : cadre d’étude de QoS

Parce qu’un terminal doit contrdler la valeur d'une présentation, il est
nécessaire de spécifier la manicre dont les différents composants d'une
présentation contribuent a la valeur percue par l'utilisateur. Lors de la
définition des descripteurs de qualité, nous avons emprunté quelques
concepts développés dans le domaine des programmateurs de systeme
d'exploitation, ou a ¢été ¢étudié l'utilisation des fonctions de valeur pour
maximiser l'utilité du systeme. Par exemple dans [LRS98] et [JLDB 1995], les
auteurs traitent de l'utilisation des dimensions discretes de qualité pour
maximiser l'attribution d’une tiche dans un systeme d'exploitation. Nous
pensons que 'utilisation de ces concepts pour des applications multimédia est

intéressante.

L'hypothese est que l'utilisateur peut identifier et évaluer un certain nombre
de dimensions souhaitables de qualité et leurs options de qualité associées.
Puisqu'une scene multimédia se compose potentiellement de plusieurs flux,
une spécification globale de qualité ne capturerait pas les besoins de
l'application. Considérons par exemple la scene représentée sur le Schéma 3. 11
montre une application de course de kart qui fournit différentes vues pour

apprécier 'événement sportif.

152



| |
B ]
7’7

E =
LaMave )
ERER

Schéma 3: Application de course de kart

Trois petites vidéos au format QCIF (176 * 144 pixels) (10 fps) fournissent
différents points de vue de la course et une vidéo au format CIF (352*288
pixels) (30 fps) fournit une vue de meilleure qualité. L'auteur peut
certainement identifier un ensemble de mesures de qualité qui peuvent
exprimer les concepts de performance (fréquence d’affichage d’image), de
taille, ou de perception (filtre de post-traitement) pour la présentation de cet
événement. Clairement, si ces options sont déclarées pour chaque flux, le
terminal de rendu peut allouer les ressources a une granularité plus fine,
optimisant l'utilité du systeme. Par exemple, supposons que pendant le
playback de l'application de course de kart, la fréquence d’affichage d’image
de la vidéo CIF diminue soudainement, parce que l'unité centrale est
surchargée. La vidéo CIF n'est probablement pas le meilleur candidat pour la
dégradation de qualité, parce que c'est le point de vue le plus important pour
l'utilisateur. Au lieu de cela, les trois vidéos QCIF pourraient étre dégradées
(réduisant la fréquence d’affichage d’image ou remplagant les vidéos par un
texte donné), et les ressources libérées pourraient étre employées pour
montrer la vidéo CIF a pleine qualité. Afin de réaliser cela, des options de
qualité devraient étre déclarées par flux, et chaque flux devrait donner une
notion d'importance relativement aux autres flux. Puisque des dimensions
multiples de qualité peuvent étre associées a chaque flux, il y a également un

besoin d'évaluer chaque dimension, afin de choisit parmi des options

153



possibles tenant compte de la valeur que chaque utilisateur assigne a chaque

dimension.

Videos are (c) Marty Stouffer

Sc'}:a' 4 Catalogﬁmc/viciégv

Un concept semblable s'applique aux graphiques 2D. Le Schéma 4 montre
une application visuelle de catalogue. Six petites vidéos QCIF défilent de
droite a gauche dans la partie la plus inférieure de I'écran. Lorsque 'utilisateur
clique sur une vidéo, une plus grande vue est montrée dans la partie
supérieure de I'écran. Le petit défilement visuel est réalisé par l'intermédiaire
d'une construction BIFS appelée #ime sensor. Les dimensions de qualité de
BIFS peuvent inclure des tailles d’affichage et des fréquences d’affichage
d’image pour l'animation. Si l'auteur assigne une valeur a chaque dimension,
lorsque le systeme de présentation est dans le besoin d'assigner des ressources
a chaque flux, il peut alors considérer les besoins de 'auteur. Les exemples
précédents suggerent la structure des spécifications de QoS au niveau de
Iutilisateur : chaque flux devrait donner une liste de dimensions de QoS, et
leur contribution a la satisfaction de l'utilisateur. L'importance relative de
chaque flux devrait également étre évidente dans la description. Selon ce
mécanisme, des spécifications au niveau utilisateur de I'application représentée

sur le Schéma 4 pourraient étre :

Flux 1: (Video CIF)

® Perceptual Visual Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 3

154



e Frame Rate {25, 12, 5} Dimension Value: 2
® Frame Size {CIF, QCIF} Dimension Value: 1
® Stream Value {3}

Flux 2, 3, 4: (Video QCIF)

® Perceptual Visual Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 2

e Frame Rate {10, 5, 2} Dimension Value: 1
® Frame Size {QCIF} Dimension Value: 3
e Stream Value {2}

Flux 5: (Audio)

® DPerceptual Audio Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 1

® Audio Sampling Rate {44100, 22050} Dimension Value: 2
® Stream Value {4}
Flux 6: (BIFS)

® Perceptual Visual Quality {HIGH_QUALITY, LOW_QUALITY}
Dimension Value: 1

¢ Frame Rate {10, 5, 1} Dimension Value: 2
® Frame Size {100, 50, 10} Dimension Value: 3
e Stream Value {1}

Dans I'exemple ci-dessus, une spécification au niveau utilisateur est associée a
chaque flux de l'application. Elle se compose d’une liste de dimensions de
qualité pour chaque flux. Dans l'exemple, les dimensions de qualité capturent
l'opportunité, la taille et les qualités perceptuelles, mais la liste n'est pas censée
étre complétée. Chaque dimension de qualité contient une liste d'options de
qualité, dans l'ordre descendant de qualité. Chaque dimension a une valeur
associée, qui établit un rang parmi les dimensions dans la satisfaction de
l'utilisateur. Par exemple dans le flux 1 l'utilisateur évalue la qualité visuelle

perceptuelle comme plus haute qualité a préserver, suivie de la fréquence

155



d’affichage d’image et finalement de la taille d’image. Ceci signifie que la
premicre action qu’un terminal considérerait pour dégrader la qualité¢ de la
scene est une réduction de la fréquence d’affichage d’image. Chaque flux a
une valeur associée de flux. Ceci établit un rang parmi les flux d'une
présentation. Les flux avec de plus petites valeurs sont les premiers a étre
dégradés. Nous avons assigné la valeur la plus élevée a I'audio, puis a la vidéo
CIF. Clest parce que l'audio est le média qui est le plus sensible aux
dégradations, ou méme des réductions minimes de qualité ont un impact fort
sur la satisfaction de l'utilisateur. L’hypothese sur laquelle ces spécifications
sont basées est que l'utilisateur peut identifier quelques qualités pour chaque
flux et les évaluer. Nous pouvons nous demander s'il est toujours possible
d'identifier un ensemble de dimensions de qualité. Nous croyons que pour la
plupatt des scenes la réponse est oui. Les concepts d'opportunité, quantité de
données, qualité perceptuelle, sont bien applicables a la nature des
applications multimédia. Ce que nous pouvons dire est qu'il n'est pas toujours
possible d'avoir tous les descripteurs pour chaque flux. Par exemple les
concepts de fréquence d’affichage d’image facultative pour la vidéo ne
peuvent pas ctre appliqués a toutes les vidéos encodées. Comme rapporté
dans [IFS03], il n'y a parfois pas pour le flux de données entier de fréquence
d’affichage d’image fixe, ni un groupe constant de structure d'images (modele
d’images I, P, B), qui permettra par exemple au décodeur de changer la
fréquence d’affichage d’image en sautant quelques données. Ainsi nous
prévoyons qu'il n'est pas possible que tous les flux aient un ensemble fixé de
descripteurs. Mais ceci est alors relié a la signification interne des
spécifications de QoS au niveau de l'utilisateur : il faut fournir des conseils au
sujet du nombre de dégradations de dimensions de qualité qui peuvent étre

projetées et exécutées sans risque.

Ll'architecture du cadre d’étude
L'architecture que nous proposons est une extension de l'architecture MPEG-

4. Les extensions d'architecture sont nécessaires pour supporter le controle du

156



playback d’une scéne multimédia selon les spécifications de QoS fournies par
lutilisateur. Dans la phase de conception, nous avons emprunté des principes
de conception étudiés dans la théorie de contrdle pour les systemes
d'événement discrets [KBE99], ou les problemes de la controlabilité, robustesse et
la configuration réactive ont été identifiés. La controlabilité est la capacité d'un
systeme a étre exécuté lorsque la charge d'entrée change dynamiquement
(entre les limites indiquées). Ceci particulicrement important pour un terminal
multimédia dont la charge de données peut varier. La robustesse traite des
variations imprévues de l'environnement d'un systeme. Pendant que
l'environnement sort du cadre prévu, le systeme dégrade graduellement son
exécution plutot que de montrer un échec catastrophique. Ce concept est
approprié pour des terminaux fonctionnant dans un environnement non
controlé (c.-a-d. systeme d'exploitation d'usage universel) ou les applications
entrent en concurrence pour des ressources systeme. La configuration
réactive indique les possibilités d'un systeme de modifier ses algorithmes
principaux en mesurant leurs besoins informatiques, et est déclenché par une
¢valuation indiquant que le systeme n'accomplit pas sa mission. La
controlabilité et la robustesse ont été traitées par un modéle de conception
appelé le controle distribué. La configuration réactive a été traitée dans le
contexte du processus de gestion de qualité. Dans le paragraphe suivant nous
illustrons l'architecture que nous proposons pour la gestion distribuée de

controle de qualité.

Afin d'adresser la robustesse et la controlabilité, la charge d'un systéme doit
étre constamment surveillée, des variations de la charge doivent étre
identifiées, et une reconfiguration des algorithmes des terminaux peut par la
suite avoir lieu dans le contexte d'un processus de gestion de qualité. Un
probleme important lorsque I'on traite de la charge d'un systeme multimédia

est que celle-ci change sur plusieurs échelles. Plus précisément :

157



o les changements de données des médias continus
interviennent habituellement 2 de échelles de l'ordre de la

dizaine de millisecondes (c.-a-d. une complexité temps-

variable de MPEG [BMP9S])

o les changements de scene ont lieu habituellement a des

échelles de 'ordre de la seconde

o les changements d'utilisateur ont des échelles de temps de
Pordre de la minute (c.-a-d. l'interaction de l'utilisateur peut
déclencher des événements qui causent des variations de

charge)

o les changements d'environnement ont des échelles de temps
de lordre de la centaine de millisecondes (c.-a-d. des
variations de charge dues a d'autres applications fonctionnant

sur le méme OS)

Afin de faire face a ces conditions, une architecture de controle hiérarchique a
été congue. Dans la théorie des systéemes de controle hiérarchiques [ZU97],
les unités de controle séparées effectuent des observations indépendantes et
ont leurs propres variables. Le controle est réalisé par l'intermédiaire de la
collaboration entre les unités indépendantes. Une unité de contrdle est
constituée d'un processus d'observation qui rassemble des informations sur le
systeme commandé et son environnement, et un processus de décision qui
emploie cette information et n'importe qu’elle information a priori pour

effectuer la controle.

158



— Control —
Data : Filter : QoS
Channel Media W Media 1 Selector el
Decoder, .. /
~. T _"Media Object
- S AT
R —‘//
/ QoS
/ Monitor
/
Vi
/
. /
P /
/ =
Resource Manager // _(c% %
4
System Quality ,: > a
Monitor Selector o @
\ Qo a
* N\ (o)
\ o
\ n
\
\
o QoS
T T Monitor
Lo B k ¥
e . Medi ject
Control /T' _ Media Obj
pata Media Filter Media 4 .95 | quspB
Channel Selector
S Decoder
~— _ > 2

———UserQS———

Schéma 5: Architecture

L'architecture est une extension de I'architecture de référence de MPEG-4,
puisque les concepts principaux d'avoir des pipelines de décodage séparées
qui fonctionnent en processus séparés, un graphe de la scéne avec des objets
médias qui sont partagés par la composition et le décodage, et un processus
de présentation qui exécute le rendu des noeuds du graphe de la sceéne, sont
¢galement présents dans l'architecture proposée. Nous avons traité ici du
controle a différentes échelles de temps, réalisé avec la collaboration des
différentes unités de controle situées dans les décodeurs et les noeuds de
médias, et un nouveau composant appelé le manageur de ressource (RM). Les
unités de controle des décodeurs observent les variations dynamiques de

charge des médias continus et le progrés du processus de décodage. Les unités

159



de contréle contenues dans des noeuds de medias observent la continuité de
laffichage des médias associés. Les unités de controle encapsulées dans le
graphe de la scene controlent les changements dans la scene (causés par des
mises a jour ou par linteraction de l'utilisateur). L'élément de contrdle de
systtme du manageur de ressource observe des changements
d'environnement. L'observation effectuée par des unités de controle peut
mener a des procédés de décision indépendants, ou a des avis au manageur de
ressource qui commencera par la suite un nouveau processus de tache de
qualité (dans ce sens nous avons cong¢u une hiérarchie dans le controle). Le
besoin d'entité séparée est justifié par le fait que nous devons centraliser

l'analyse du manque de QoS et agir sur la base d'une vue globale.

Conclusions

Nous avons établi un cadre d’étude pour des présentations multimédia basées
sur la qualité. Le terminal proposé exécute l'attribution et la gestion de
ressource, en fonction de la satisfaction de l'utilisateur et des ressources de
systeme disponibles. La satisfaction de l'utilisateur est traitée en spécifiant une
liste d'options de qualité pour chaque dimension de qualité de médias, et en
installant un rang parmi ces dimensions. La surveillance de l'exécution est
effectuée en utilisant les mesures appropriées au niveau de l'application. La
qualité d'une application multimédia est définie en termes d'observations
quantitatives de ses médias constitutifs. Au lieu de patir du manque de
ressources d'une manicre non controlée, le terminal proposé vérifie
régulierement l'exécution de ses flux en comparaison des tolérances indiquées,
et réagit aux violations par des actions précises sur chacun des médias. Ceci
est réalisé en surveillant des possibilités a chaque noeud de médias, et en
fournissant une entité additionnelle qui centralise l'analyse des violations et
lance des actions de rétablissement. Les résultats montrent comment le
systeme proposé remplit les conditions typiques des applications fonctionnant
sur les logiciels d'exploitation d'usage universel : controle d'admission,

concurrence entre les applications et gestion de puissance.

160



Deuxiéme contribution : intégration de contenu 2D

Dans cette contribution nous présentons un modele pour estimer les
ressources des taches de rendu 2D, et fournissons des exemples d’utilisation
de ce modele dans le cadre d’étude que nous avons proposé dans la premiere
contribution. Ce travail se concentre sur le matériel du consommateur, a
savoir un PC avec une carte graphique dernier cri. Notons que ce sont des
systemes dits « best effort», et que les logiciels graphiques ne fournissent
aucun outil pour donner un délai strict d'exécution d'un ensemble donné de
commandes. Ce qui peut étre réalisé est une évaluation des ressources
requises, qui peut étre employée par un algorithme de gestion de qualité. Une
partie importante de cette contribution est constituée par une analyse du
rendu des scénes 2D décrites en utilisant la norme MPEG-4 BIES, limité au
profil Core2D. Puisque la norme n'exige pas d’algorithmes particuliers pour
exécuter le rendu, une partie de cette contribution propose et discute quelques
techniques pour exécuter le rendu. Ceci correspond aux objectifs de cette
contribution, et fournit également une contribution a la littérature dans le
domaine de la composition des scenes MPEG-4 2D. Une hypothese valide
dans tout ce travail est que le terminal emploie une bibliotheque de rendu
2D. Par conséquent, aucune accélération matérielle n'est employée dans le
rendu des primitives graphiques. Des contributions semblables dans le
domaine des moteurs graphiques 3D peuvent étre trouvées dans [FS93],
[LB1998], et [WW2003]. Ces contributions sont fondées sur différentes
hypotheses parce qu'elles impliquent qu'une partie des contréles de rendu soit
exécutée par des GPU d'accélération matérielle. Par conséquent, leurs
modeles ne peuvent pas étre employés pour des systemes basés seulement sur

les bibliotheques de rendu 2D.

LLa méthodologie que nous avons suivie est de subdiviser le processus de

rendu en un certain nombre de taches conceptuellement indépendantes qui

161



peuvent étre estimées séparément. La subdivision que nous avons considérée

est la suivante:

® Parcours du graphe de scéne et construction de la liste d'affichage

® Détermination et invalidation des objets a dessiner

Peinture des objets

Copie des objets dessinés a I'écran

Cette subdivision est fondée sur I'hypothese que les objets multimédia sont
stockés dans une structure de données (graphe de scene), et qu'une double
technique de buffering est employée pour l'affichage. Ces deux hypotheses
sont généralement valides dans la plupart des moteurs de rendu 2D. Le mot
« composition » est souvent employé en littérature. Dans cette subdivision, la
composition est composée de l'algorithme de Painter et de la phase de
Rasterization. Nous observons que, étant donné un graphe de scene, il n'est
pas possible de connaitre a prioti le temps exigé par I'étape de rendu, a moins
que nous supposions que tous les objets visuels doivent étre dessinés a chaque
itération (rendu direct). C'est parce que l'algorithme de Painter essaye de
réduite au minimum le nombre d'objets dessinés, et pat conséquent nous ne
pouvons pas savoir a l'avance combien de temps le « rasterization » prendra.
Cependant, apres chaque parcours du graphe de la scene, en exécutant
l'algorithme de Painter sur la liste d'affichage nous connaissons combien
d'objets seront dessinés ou partiellement dessinés, et nous pouvons estimer le
temps de rasterization. En d'autres termes, nous observons que les étapes
séparées peuvent étre estimées bien avant leur exécution, en utilisant les

parametres que nous avons identifiés. Plus précisément :

® Parcours du graphe de la scene : nombre des objects et taille de l'arbre

162



e Algorithme de Painter : taille de la liste d'affichage

® Rasterization : type, dimension et propriétés de chaque objet a

dessiner

® Mise a jour d'affichage : taille de la fenétre

Dans le paragraphe suivant nous verrons comment employer le résultat de

cette analyse dans le contexte du cadre de gestion de qualité.

L'intégration entre la vidéo et le BIFS souleve quelques problemes. Les vidéos
sont flux continus, ils sont associés aux noeuds dans le graphe de la scene, et
ils doivent étre présentés a des fréquences d’affichage d’images élevées (c.-a-d.
25 ou 30 hertz). Le graphique 2D est déclaré dans le graphe de la scéne, et
n'exige pas habituellement des fréquences d’affichage élevées. Le parcours du
graphe de scéne et la composition pourraient étre des taches lourdes,
principalement suivant le nombre de objets. L'algorithme de présentation du
logiciel de référence de MPEG-4 accomplit les taches du parcours et de la
composition a une fréquence d’affichage régulicre, égale a la fréquence requise
par les flux visuels. Cette solution n'intégre pas bien la vidéo et le graphique
2D, parce que le parcours et la composition de scene sont effectués a des
fréquences d’affichage élevées et la différence de fréquences de BIFS et des
flux visuels n'est pas prise en considération. Un mécanisme pour découpler la
vidéo et le rendu d'objets BIFS est nécessaire. Des fréquences de rendu
séparées peuvent ctre réalisées en stockant les noeuds visuels actifs dans une
liste séparée du graphe de la scene. La liste peut étre mise a jour a chaque
parcours de l'arbre de scene. Un parcours complet est exécuté au début de la
simulation, puis a la fréquence d’affichage nominale de BIEFS, si des
descripteurs de fréquence sont fournis, ou toutes les fois que le graphique doit
étre mis a jour si des descripteurs de fréquence ne sont pas fournis. De cette
facon, nous pouvons assurer le rendu des noeuds visuels sans parcourir le

graphe de la scene. Llinteraction avec l'utilisateur est alors prise en

163



considération en permettant des parcours complets toutes les fois qu'un
nouvel événement invalide le graphe de scene. Nous observons que cet
algorithme amélioré de présentation ne résout pas completement le probleme
de garantir des fréquences indépendantes. Méme si les fréquences d’affichage
séparées sont mises en application, les parcours complets et la composition de
graphique peuvent influencer le traitement régulier d'autres données
continues. Par exemple, nous avons créé une scene simple d'essai composant
un flux de BIFS et un flux visuel, chacun avec des fréquences d’affichage

différentes (voir le Schéma 0).

Schéma 6: BIFS et Vidéo a 10 fps et a 25 fps

VIDEO:
QoS_Qualifier FRAME_RATES{FRAME_RATES [25] dimensionValue 1}

QoS_Qualifier MAX_RATE_VARIATION{MAX_RATE_VARIATION
0.1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 2}

BIFS:

QoS_Qualifier FRAME_RATES{FRAME_RATES [10,5,1,0]
dimensionValue 1}

QoS_Qualifier STREAM_VALUE {STREAM_VALUE 1}

164



Nous notons que les fréquences d’affichage sont différentes, a savoir 25 fps
pour la vidéo et 10 fps pout le BIFS, et que 'utilisateur assigne plus de valeur
au flux visuel. En outre, il est disposé a accepter des variations des fréquences
d’affichage du flux BIFS, mais il ne peut pas accepter des variations des
fréquences d’affichage du flux visuel (une tolérance est fournie sous forme de
descripteur de variation de fréquence d’affichage maximum). Au début, la
scene BIFS est vide. Ensuite, 5 objets géométriques sont ajoutés chaque 100
millisecondes. La complexité initiale est faible puisque le graphe de la scene
est tout a fait petit. Cependant, aprés 8 secondes, le graphe de la scene
contient 400 formes, et environ 1300 noeuds. A chaque fois quun parcours
complet est effectué, environ 40 millisecondes sont nécessaires. Les Schémas
7 et 8 affichent l'utilisation du CPU et les fréquences d’affichage de la vidéo et

du BIES pendant les 9 premiéres secondes de la simulation.

CPUI Ltilization

70,00
60,00

50,00

(scaled)

40,00

o
=i
=
=i

20,00

Courter Yaluss

10,00

T

Time (Milizeconds)

& Procsssor (_Total): % Procsssor Time

Schéma 7: utilisation CPU pour la scéne avec
BIFES et Vidéo

165



N
o

—— Video
—— BIFS

w
&

[95]
=]

Frame Rate
n n
o (&

o1

o
L

o1

Schéma 8: fréquences d’affichage de la vidéo
et du BIFS

k4

0 40 80 120 160 200 240 280

Schéma 9: Limite pour la vidéo (lignes solides)
et BIES (lignes pointillées)

Nous notons que le CPU n'est jamais surchargée. Ceci signifie que le
manageur de ressource (RM) et les composants d'estimation du BIFS et de la
vidéo réussissent a controler l'utilisation du CPU. Le Schéma 8 prouve que la
QoS visuelle peut-étre affectée, alors que le flux BIFS est toujours a sa qualité
maximale, ce qui est a l'opposé de ce que les spécifications de qualité de la

scene exigent.

166



Nous observons qu’en traitant les graphiques et la vidéo, le cadre de gestion
de qualité proposé ne peut pas étre seulement basé sur des violations et sur la
réattribution de la charge disponible d'unité centrale. D'autres parametres
doivent étre considérés pour 'ordonnancement approprié des taches comme
le parcours et la composition. L'exécution de ces taches peut mener a des
dégradations de qualit¢ méme si le CPU n'est pas surchargé. En utilisant
I'évaluation du parcours, avant de parcourir réellement le graphe de la scéne
nous pouvons prévoir si le parcours est susceptible de dépasser un temps
limite, et remettre le parcours a plus tard ou bien le passer, avec pour but de
maintenir la fréquence d’affichage visuelle intacte. Dans le graphique du
Schéma 9, nous pouvons reprogrammer le parcours du temps 100 a plus tard
au temps 120, ajoutant 20 millisecondes de gigue dans la présentation du flux
BIFS programmé au temps 100. Nous observons que ceci dégradera la
présentation des éléments graphiques, mais ce comportement est logique avec
les spécifications de qualité du flux BIFS (la fréquence d’affichage peut méme
chuter a 0). Les Schémas 10 et 11 illustrent la fréquence d’affichage et le CPU
de la présentation. Nous observons que la fréquence d’affichage du BIFS
chute 2 0 méme si le CPU n'est jamais surchargé. La fréquence d’affichage

d’image de la vidéo est quant a elle constante.

JCPU Liilization

@

Cotirter Yalues (soalsd)
@ m
o 8 2
= o o
58 B
R T

& & & & & &

Time (Miliseconcs)

@ Processor (_Total): % Processor Time

Schéma 10: utilisation CPU

167



IS
o

——  Video
—— BIFS ||

w
o

w
=]

n
o1

Frame Rate
— n
L& o

o
b

o

Schéma 11: fréquences d’affichage vidéo et
BIFS

Troisiéme contribution : prédiction de décodage du BIFS

Dans l'architecture proposée dans la premicre contribution, une unité de
filtrage controle l'exécution des décodeurs associés aux médias. Dans cette
contribution, nous cherchons a fournir la preuve qu'un mécanisme de
controle est nécessaire également pour le décodage du flux de description de
scene (BIFS), et nous discutons de la maniere pour réaliser cela.
Habituellement, la complexité de décodage des flux de description de scene
ne pénalise pas l'exécution. Dans la plupart des applications multimédia, le
terminal recoit la scéne, la décode et puis commence la simulation. Le
décodage de la scene est par conséquent fait seulement une fois, et alors que
la simulation n'a méme pas commencé. Cependant, un certain type
d'applications multimédia exige le décodage continu des mises a jour de scene
pendant la simulation, et en conséquence la mise a jour continue et le rendu
du graphe de la scene. Nous avons considéré un ensemble d'applications
BIFS caractérisées par des mises a jour continues de scéne, et nous avons
mesuré les temps de décodage du flux BIFS. Le temps décodage de chaque
unité a été observé en utilisant un chronomeétre a haute résolution. Nous
avons alors effectué une régression modélisant le temps de décodage en

fonction de la taille de I’ AU mesurée en octets (Schéma 12).

168



35

30

)
- n n
a1 =] a1

BIFS Decoding Time (ms

(=]

0 2 4 6 8 10 12 14
BIFS AU Size 4

Schéma 12: temps de décodage BIEFS en
fonction de la taille de PAU

Cette étude montre clairement qu'il y a une corrélation forte entre la taille
d'une unité d'acces (AU) et son temps de décodage. Dans cette these nous
comparons des prédicteurs basés sur cette observation. Cette étude prouve
qu'il est possible de prévoir des temps de décodage du BIFS, en utilisant un
modele linéaire comme fonction de la taille de 'unité d'acces BIFS. Elle
prouve également qu'il est possible de mettre en application des prédicteurs
moins précis mais efficaces qui peuvent prévoir des temps de décodage de
moins de 3 et 5 millisecondes avec un taux de succes changeant de 90 a 100

% des échantillons.

Conclusions

Dans cette thése nous avons étudié le probléme de supporter des applications
multimédia basées sur la qualité. La méthodologie adoptée dans ce travail a
consisté a modéliser un terminal multimédia comme un systeme centré sur
Putilisateur, les utilisateurs suggérant comment ils s'attendent a ce que
I'application fonctionne sous des événements imprévisibles. Nous avons
identifi¢ des parametres de QoS pour définir la qualité d'une présentation,

puis avons proposé un cadre d’étude multimédia basé sur ces spécifications de

169



qualité. Ensuite, nous avons identifié des procédés de controle pour les
composants du systeme principal de ce cadre d’étude. Cette contribution a été
basée sur le systtme du standard MPEG-4 et sa plateforme de logiciel de
référence. Cependant, nous pensons que la plupart des concepts exprimés
dans ce travail peuvent étre aussi bien employées dans d'autres contextes. Le
systtme MPEG-4 fournit un cadre intégré et normalisé de support des
graphiques 2D et de la vidéo, et notre contribution a progressé en considérant
différents aspects de la norme. La contribution de ce travail au
développement de la norme a donné une homogénéité a cette these, en

améliorent la revalorisation des résultats.

170



BIBLIOGRAPHY

[AD2002] Anthony Vetro and Sylvain Devillers, Position Paper: Delivery
Context in MPEG-21, W3C Delivery Context Workshop, March 2002.

[BA2000] Lars-Olof Burchard, Peter Altenbernd, Estimating Decoding Times
of MPEG-2 Video Streams, Image Processing, 2000. Proceedings. 2000

International Conference on, Volume: 3, 2000

[BKWSAKGI6] Shabab Baqai, M. Farrukh Khan, Miae Woo, Seiichi Shinkai,
Ashfaq A. Khokhar, Arif Ghafoor, Quality-Based Evaluation of Multimedia
Synchronization Protocols for Distributed Multimedia Information Systems.

IEEE Journal on Selected Areas in Communications 14(7): 1388-1403 (1996)

[BL2002] Gianluca Bontempi, Gauthier Lafruit, Enabling Multimedia QoS
Control with Black-box Modelling. SoftWare 2002: Computing in an

Imperfect World, Lecture Notes in Computer Science

[BMPI8] Andy C Bavier, A. Brady Montz, Larry Peterson, Predicting MPEG
Execution Times, SIGMETRICS ’98. Proceedings of the joint international

conference on measurement and modelling of computer systems, 1998

[BRE77] J.E. Bresenham, A linear algorithm for incremental digital display of
circular arcs, Communications of the ACM, 20(2): 100-106, 1977

[BS96] Gerald Blakowski and Ralf Steinmetz, “A Media Synchronization
Survey: Reference Model, Specification, and Case Studies”, IEEE JSAC Vol
14, No. 1, Jan. 1996

[CAH96] Andrew Campbell, Cristina Aurrecoechea, Linda Hauw, A Review
of QoS Architectures, Proceedings of the 4th International Workshop on
Quality of Service, Paris, March 1996

171



[CCGI92] A. Campbell, G. Coulson, F. Garcia, D. Hutchinson, and H.
Leopold, Integrated Quality of Service for Multimedia Communications, In

COMM '92, pages 99-110, 1992.

[CCHI5] A. Campbell, G. Coulson and D. Hutchinson, Supporting Adaptive
flows in a quality of service architecture, Multimedia Systems Journal,

November 1995
[D21] Definition of Quality of Service, Deliverable D.21, Sequin Project.

[FS93] Thomas A. Funkhouser , Carlo H. Séquin, Adaptive display algorithm
for interactive frame rates during visualization of complex virtual
environments, Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, p.247-254, September 1993

[HPH 2000] Orion Hodson, Colin Perkins and Vicky Hardman, Skew
detection and compensation for Internet audio applications, Proceedings of
the IEEE International Conference on Multimedia and Expo, New York, July
2000.

[HYP2003] www.hyperdictionary.com

[IT95] Y. Ishibashi, S. Tasaka, A synchronization mechanism for continuous
media in multimedia communications. Fourteenth Annual Joint Conference
of the IEEE Computer and Communication Societies, April 02 - 06, 1995,

Boston, Massachusetts

[IFSO3] Damir Isovia, Gerhard Fohler, Liesbeth Steffens : Timing Constraints
of MPEG-2 Decoding for High Quality Video: Misconceptions and Realistic
Assumptions, 15th Euromicro Conference on Real-Time Systems

(ECRTS'03) July 02 - 04, 2003 Porto, Portugal

172



[ITT2000] Y. Ishibashi, S. Tasaka, T. Iwama, Adaptive QoS Control for Video
and Voice Traffic in Networked Virtual Environment, T. Computer
Communications and Networks, 2000. Proceedings. Ninth International

Conference on, 2000

[(IT2000] Y. Ishibashi, S. Tasaka, A comparative survey of synchronization
algorithms for continuous media in network environments, 25th Annual
IEEE Conference on Local Computer Networks, November 08-10, 2000,
Tampa, Florida

[JKWAJ91] JW.S. Liu, K.J. Lin, W.K. Shih, A.C. Yu, ]J.Y.Chung, and W.
Zhao, “Algorithms for scheduling imprecise computations,” IEEE

Computer, vol.24, no.5, pp.58-68, May 1991.

[JLDB 1995] M. Jones, P. Leach, R. Draves, and J. Barrera. Modular Real-
Time Resource Management in the Rialto Operating System. In Proceedings

of the Fifth Workshop on Hot Topics in Operating Systems, May 1995

[LB1998] Gauthier Lafruit, Jan Bormans, The need for Computational
Graceful Degradation in SNHC. ISO/IEC JTC1/SC29/WG11/MPEG97/
M3009, San Jose, February 1998

[LCZ2001] C. J. Lan, Y. Chen, Z. Zhong. Mpeg2 decoding complexity
regulation for a media processor. In Proceedings of the 4th IEEE Workshop
on Multimedia Signal Processing (MMSP), Cannes, France, pp. 193 - 19§,
October 2001

[LRS99] Chen Lee, John Lehoczky, Ragunathan (Raj) Rajkumar, Dan
Siewiorek, On Quality of Service Optimization with Discrete QoS Options

[LS98] C. Lee and D. Siewiorek. An Approach for Quality of Service
Management. Technical Report CMU-CS-98-165, Computer Science
Department, CMU, Oct. 1998

173



[KBE99] M.M. Kokar, K. Baclawski and Y.A. Eracar. Control Theory-Based
Foundations of Self-Controlling Software. IEEE Intelligent Systems, pp. 37-
45, Vol. 14, No. 3, May/June 1999

[Macro2003] www.macromedia.com

[MB96] M. Mattavelli, S. Brunetton, “Controlling decoding power by graceful
degradation techniques,” ISO/IEC JTC1/SC29/WG11/MPEG97/M1445,
Maceio, November 1996

[MB97] M. Mattavelli, S. Brunetton, “Results of core experiment on CGD:
methods to measure bitstream video decoding complexity for CGD
implementation” ISO/IEC JTC1/SC29/WG11/MPEG97/M1445
Stockholm, July 1997

[MCD2001] ].C. Moissinac, C. Concolato, J.C. Dufourd, "Codage MPEG-4

de dessins animés", Journées Coresa, 12-13 novembre 2001
[MPE99] Contribution MPEG99/4460 IM-1 2D FDIS Player

[N271] MPEG Convener. New York Item Proposal (NP) for Very-Low-
Bitrates Audiovisual Coding. Doc ISO/MPEG N271, London MPEG
Meeting, November 1992

[N4848] ISO/IEC 14496-1: 2002 MPEG-4 3td edition

[NRLD2002] N. Pham Ngoc, W. Van Raemdonck, G. Lafruit, G. Deconinck,
and R. Lauwereins, A QoS Framework for Interactive 3D Applications, Proc.
10th International Conference on Computer Graphics and Visualization'2002,

WSCG'2002, February 4-8, 2002.

[OP] Open Inventor (http://oss.sgi.com/projects/inventor)

174



[ITTI2000] Yutaka Ishibashi, Shujii Tasaka, Tomohiro Iwana, Adaptive QoS
control for voice and video traffic in networked virtual environments,
Computer Communications and Networks, Proceedings. Ninth International

Conference 2000

[PE2002] The MPEG-4 Book, edited by Fernando Pereira and Touradj
Ebrahimi, Prentice Hall IMSC Multimedia Seties 2002

[PS2001] S.Peng, Complexity Scalable Video Decoding Via IDCT Data
Pruning, ICCE 2001

[R96] Thomas P. Ryan, Modern Regression Methods, Wiley Series in
Probability and Statistics. Applied Probability and Statistics 1996

[RB 1993] K. Ravindran, V.Bansal, Delay Compensation Protocols for
Synchronization of Multimedia Data Streams IEEE Transactions on

Knowledge and Data Engineering, August 1993.

[RBS2000] John Regehr, Michael B. Jones, John A. Stankovic, Operating
System Support for Multimedia: The Programming Model Matters, Technical
Report MSR-TR-2000-89, September 2000

[RKR96] P. V. Rangan, S. S. Kumar and S. Rajan, Continuity and
Synchronization in MPEG, IEEE Journal on Selected Areas in

Communications, Special Issue on Multimedia Synchronization, 1996

[RPS93] Rowe, L.A., Patel, K., and Smith, B.C., Performance of a Software
MPEG Video Decoder, Proceedings ACM Multimedia 93, pp. 75-82

[RS1996] Ralf Steinmetz, Human perception of jitter and media
synchronization, IEEE Journal on Selected Areas in Communication Vol. 14

NO. 1, January 1996

175



[SDF93] H. Santoso, L. Dairaine, S. Fdida, E. Horlait Preserving temporal
Signature: A Way to Convey Time Constrained Flows, Globecom 94,
Houston, USA, November 29-December 2, 1993

[Stein96] Ralf Steinmetz: Human Perception of Jitter and Media

Synchronization. IEEE Journal on Selected Areas in Communications 1996

[SCDS97] Sabata, B., Chatterjee, S., Davis, M., Sydir, J. J., and Lawrence, T.,
Taxonomy for QoS Specifications, In Proc. of the Third Annual Workshop
on Object- Oriented Dependable Systems, Feb. 5 - 7, 1997

[SIG99] Signes, J., Binary Format for Scene (BIFS): Combining MPEG-4
media to build rich multimedia services Proc. SPIE Vol. 3653, p. 1506-1517,

Visual Communications and Image Processing '99, 1999

[VEJE2001] Bobby Vandalore, Wu-chi Feng, Raj Jain, and Sonia Fahmy, A
Survey of Application Layer Techniques for Adaptive Streaming of
Multimedia, Academic Press 2001.

[VKvBG95] Andreas Vogel, A Distributed Multimedia and QoS: A Survey.
IEEE Multimedia Magazine, 1995

[VRML97] VRML 2.0  specification, ISO/IEC  14772-1:1997,

http:/ /www.vtml.org/Specifications

WW2003] Michael Wimmer, Peter Wonka, Rendering Time Estimation for
Real-Time Rendering, Rendering Techniques 2003 (Proceedings of the
Eurographics Symposium on Rendering 2003), pages 118-129. June 2003

[WS1996] Wijesekera, Srivastava, Quality of Service Metrics for Continuous
Media, 1996

[ZU97] Zekeriya Uykan, Hierarchical Control and Multimedia, Multimedia

applications in industrial automation — Collected papers of the Spring 1997

176



postgraduate seminar. Helsinki University of Technology, Report 106, June
1997

177



