
HAL Id: pastel-00000896
https://pastel.hal.science/pastel-00000896

Submitted on 23 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyse statique modulaire des langages à objet.
Francesco Logozzo

To cite this version:
Francesco Logozzo. Analyse statique modulaire des langages à objet.. Informatique [cs]. Ecole Poly-
technique X, 2004. Français. �NNT : �. �pastel-00000896�

https://pastel.hal.science/pastel-00000896
https://hal.archives-ouvertes.fr

Thèse
présentée à

l’École Polytechnique

Pour obtenir le titre de

Docteur En Sciences de l’École Polytechnique

Discipline
Informatique

par
Francesco Logozzo

le 15 Juin 2004

Analyse statique modulaire de
langages à objets

Modular static analysis of object-oriented languages

Président Xavier Leroy
Directeur de recherche, INRIA

Rapporteurs Agostino Cortesi
Professeur, Università Ca’ Foscari di Venezia, Italie
Jens Palsberg
Professeur, University of California, Los Angeles, États Units

Examinateur David A. Schmidt
Professeur, Kansas State University, États Units

Directeur de thèse Radhia Cousot
Directeur de recherche, CNRS

2

Acknowledgments

This Ph.D. thesis is the result of the work, the aid and the support of many
people, who made it possible to conceive and write it. These people deserve
to be acknowledged. I hope I will not forget anyone....

I would like to thank Xavier Leroy, who agreed to be the president of
my jury: I am honored of that.

Agostino Cortesi and Jens Palsberg accepted to be the reviewers
for my thesis: I am very grateful for the burden they have taken, for their
comments and for their suggestions that helped me to improve the present
work.

Many thanks also to David Schmidt, for taking part in my jury and
for the interesting discussions we had on different subjects, as Italian coffee,
Kansas City Chiefs and computer science.

I express all my gratitude to my advisor, Radhia Cousot who did not
let me get depressed by my initial failures and supported me throughout all
my doctoral activities.

The period that I spent at École Normale Supérieure as a visiting un-
dergraduate student from Scuola Normale Superiore of Pise was very impor-
tant for my development, as a person and a researcher. I am indebted with
Patrick Cousot who patiently answered to all my questions and provided
very deep insights in Abstract Interpretation, and to Fabio Beltram who
helped me to obtain the grant that made such a period possible.

I would like to thank all the friends who encouraged and helped me:
Bruno Blanchet, Charles Hymans, Jérôme Feret, Damien Massé,
Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Ri-
val, Alexander Serebrenik, Axel Simon, Elodie-Jane Sims, Fran-
cesco Tapparo, Yann Tholoniat, Eben Upton and Mirko Zanotti.

I would like to thank my parents, Rita and Mimmo, and my two sisters,
Erica and Alessandra, for having always supported me. Finally, this
thesis (and the work that lead to it) was conceived and written with the
constant and tender support and encouragement of Aurélie, for whom I
reserve my very special thanks.

3

4

Résumé

Dans cette thèse nous présentons un cadre pour l’analyse statique de langages
orientés objets qui tient compte des propriétés de modularité de ces langages.

L’analyse statique consiste en la détermination de propriétés d’exécution
de programmes. Elle est complètement automatique et couvre toutes les exé-
cutions possibles, à l’opposé du test de programmes. Les propriétés inférées
par une analyse statique peuvent être utilisées pour l’optimisation et la vérifi-
cation. Par exemple, si l’analyse statique d’un programme détermine qu’il ne
peut jamais lancer une certaine exception, alors le gestionnaire d’exception
correspondant peut être supprimé sans que cela ne présente de danger. De
plus, comme la propriété inférées est une approximation sûre du comporte-
ment du programme, la spécification du programme peut lui être confrontée
afin de vérifier si le programme la respecte.

Une analyse statique est modulaire si le programme à analyser peut être
décomposé en composants qui sont analysés séparément et indépendamment
et dont les résultats peuvent être fusionnés afin d’obtenir un résultat valable
pour le programme entier.

L’étude des langages orientés objet se justifie par le grand impact qu’ils
ont eu et qu’ils ont encore sur la technologie informatique. En fait, la pro-
grammation orientée objet est fréquemment utilisée dans des domaines allant
des cartes à puces (JavaCard) aux grands systèmes distribués (“.net Frame-
work” et “Java Enterprise Edition”).

Il y a plusieurs défis à relever pour obtenir une analyse statique efficace
de langages orientés objet. Tout d’abord, elle doit gérer les particularités
de ces langages telles que l’héritage, le polymorphisme et la résolution de
méthodes virtuelles. Deuxièmement, elle doit être modulaire. En fait, les
programmes orientés objet typiques sont fait de plusieurs milliers de classes
et une analyse monolithique du programmes complet peut être trop coûteuse
pour être pratiquée. Troisièmement, la technologie orientée objet favorise
la programmation par composants, en cela qu’un composant (une classe)
est développée une fois pour toute et utilisée dans de nombreux contextes
différents. Aussi, une analyse statique efficace doit pouvoir inférée des pro-

5

6

priétés des composants valides pour toutes les instantiations possibles de
contextes.

Dans cette thèse, nous présentons une analyse qui relève les défis esquis-
sés ci-dessus. En particulier, nous nous concentrons sur une analyse qui peut
inférer des invariants de classe. Un invariant de classe est une propriété
d’une classe valide pour chaque instanciation, avant et après l’exécution de
n’importe quelle méthode de la classe. Notre analyse a plusieurs avantages.
Elle est indépendante du langage, elle exploite la structure modulaire des lan-
gages orientés objet et elle gère les principales fonctionnalités de ces langages,
à savoir l’héritage, le polymorphisme et l’encapsulation

Le cadre présenté dans cette thèse est très flexible. En particulier, il
permet de régler finement l’analyse selon les trois axes orthogonaux suivants:

– Domaine abstrait sous-jacent: une classe peut être analysée en utilisant
soit un domaine abstrait générique soit un domaine abstrait symbolique
de façon à obtenir une analyse plus efficace mais moins précise [74, 76].

– Gestion de l’héritage: une sous-classe peut être analysée soit directe-
ment, en expansant syntaxiquement la relation de sous-classe, soit indi-
rectement, en utilisant l’invariant du parent afin d’éviter une explosion
quadratique de la complexité [77, 75].

– Traitement des contextes d’instantiation: une classe peut être utilisée
soit indépendamment du contexte, afin d’obtenir un résultat valable
dans tous les contextes, soit en utilisant une approximation du contexte
afin d’obtenir un résultat plus précis mais moins général [78].

Contents

1 Introduction 11
1.1 Motivations . 12

1.1.1 Object-oriented Languages 12
1.1.2 Verification and Optimization 13
1.1.3 Modularity . 13

1.2 Abstract Interpretation . 14
1.3 Results . 15

1.3.1 Static Analysis of Classes 15
1.3.2 Introductory Example 18
1.3.3 Main Results . 18

1.4 Overview of the Thesis . 20

2 Preliminaries 23
2.1 Notation and Basic Definitions 23

2.1.1 Partial Orders . 24
2.1.2 Functions and Fixpoints 25
2.1.3 Traces . 27

2.2 Abstract Interpretation . 28
2.2.1 Galois Connections . 29
2.2.2 Fixpoint Approximation 31
2.2.3 Chaotic and Asynchronous Iterations 32

3 Concrete Semantics 35
3.1 Semantics of Object-oriented Languages in Literature 35

3.1.1 Types . 36
3.1.2 Object Calculi . 36
3.1.3 Abstract State Machines 36
3.1.4 Denotational Semantics 37

3.2 Whole-Program Trace Semantics 37
3.2.1 Syntax . 37

7

8 CONTENTS

3.2.2 Semantic Domains . 38
3.2.3 Whole-Program Semantics 39

3.3 Class Trace Semantics . 40
3.3.1 Constructor and Methods Semantics 40
3.3.2 Object Semantics . 43
3.3.3 Class Semantics . 49

3.4 Relation between wJ·K and cJ·K 50
3.4.1 Abstraction . 50
3.4.2 Soundness and Completeness of the Class Semantics . . 52

3.5 Languages with Class Destructor 53

4 Abstract Semantics 55
4.1 Stepwise Abstraction . 55
4.2 First Abstraction: Collecting Traces 57

4.2.1 Abstract Domain . 58
4.2.2 Abstraction . 62
4.2.3 Abstract Semantics . 65

4.3 Second Abstraction: Reachable States 68
4.3.1 Abstract Domain . 68
4.3.2 Abstraction . 68
4.3.3 Abstract Semantics . 70

5 Inference of Class Invariants 75
5.1 Overview of Class Invariants 76
5.2 Class Invariants in the Literature 76

5.2.1 Design by Contract . 77
5.2.2 Java Modeling Language 77
5.2.3 Assertions in Java and .net 78
5.2.4 Daikon . 78
5.2.5 ESC/Java and Houdini 79
5.2.6 Some Static Analyses for Object Oriented Languages . 79

5.3 Automatic Inference of Class Invariants 80
5.3.1 Strongest State-based Class Invariant 81
5.3.2 Abstraction . 82

5.4 A Bank Account Example . 84
5.4.1 Abstract Domain . 84
5.4.2 Fixpoint Computation 87

5.5 Escaping Scope . 88
5.6 Fixpoint Computation and Complexity 91
5.7 Modularity and Program Analysis 93
5.8 Discussion . 94

CONTENTS 9

6 Symbolic Relations for the Approximation of Set of Traces 95
6.1 Relational Symbolic Abstract Domains 96
6.2 Module Abstraction by Relations 96

6.2.1 Constraints . 96
6.2.2 Concretization of Constraints 97
6.2.3 Variables Dropping . 99
6.2.4 Abstract Domain Operations 100

6.3 Analysis and Soundness . 102
6.4 Instantiations of the A-domain 104

6.4.1 Types . 104
6.4.2 Relevant Context Inference 105
6.4.3 Incremental Modular Analysis 106

6.5 Discussion . 107

7 Symbolic Relations for Approximating the Class Semantics 109
7.1 Introduction . 109
7.2 An Example of Stack . 110
7.3 First Abstraction: Approximating Classes 112

7.3.1 Definition of an Abstract Class 112
7.3.2 Applications . 113
7.3.3 Checking the Well-behavior of a Client 115
7.3.4 Soundness . 117

7.4 Second Abstraction: Class Invariants 118
7.4.1 History-insensitive Class Invariant 118
7.4.2 History-sensitive Class Invariant 119
7.4.3 On comparing the IA and JA invariants 122

7.5 Discussion . 123

8 Class Invariants in Presence of Inheritance 125
8.1 Inheritance . 126

8.1.1 Inheritance in Software Development 126
8.1.2 Inheritance in Programming Languages 127
8.1.3 Semantics of Inheritance 127
8.1.4 Inheritance and Class Invariants 128

8.2 An Example of Stack with Undo 128
8.3 Non-Modular Analysis . 130

8.3.1 Subclass Expansion . 130
8.3.2 Analysis of the Expanded Class 131

8.4 Modular Analysis . 132
8.4.1 Class Extension . 132
8.4.2 Methods refining . 135

10 CONTENTS

8.5 Symbolic Relations and Inheritance 136
8.6 Discussion . 138

9 Static Analysis-based Inheritance 139
9.1 Behavioral Subtyping . 139
9.2 Examples . 140

9.2.1 Class Hierarchy . 141
9.2.2 Systematic Refinement of the Class Hierarchy 142
9.2.3 Modular Verification 142

9.3 Observables . 143
9.3.1 Domain of Observables 143

9.4 Subclassing through Observables 145
9.4.1 Static Checking of Behavioral Subtyping 146
9.4.2 Modular Verification 146
9.4.3 Domain Refinement . 147

9.5 Application to the Examples 148
9.6 Discussion . 150

10 Context Approximation 153
10.1 Introduction . 153
10.2 Context Syntax and Semantics 155

10.2.1 Syntax . 155
10.2.2 Semantics . 155
10.2.3 Collecting Semantics 157

10.3 Monolithic Abstract Semantics 157
10.3.1 Abstract Semantic Domains 157
10.3.2 Abstract Object Semantics 158
10.3.3 Monolithic Abstract Context Semantics 158

10.4 Separate Abstract Semantics 160
10.4.1 Regular Expressions Domain 160
10.4.2 Interaction History . 162
10.4.3 Separate Object Analysis 163
10.4.4 Separate Context Analysis 164
10.4.5 Putting It All Together 167

10.5 Discussion . 171

11 Conclusions 173

Bibliography 175

Chapter 1

Introduction

L’abstraction ne consiste qu’à
séparer par la pensée les qualités
sensibles des corps, ou les unes
des autres, ou du corps même
qui leur sert de base.1

Denis Diderot (1749)

In this thesis we present a framework for abstract interpretation-based static
analyses of object-oriented languages which takes into account the modular
features of such languages.

Static analysis consists of determining execution properties of programs.
It is completely automatic and it covers all the possible executions, unlike pro-
gram testing. The properties inferred by a static analysis based on abstract
interpretation can be used for optimization and verification. For instance if
the static analysis of a program determines that it can never throw a given
exception then the corresponding exception handler code can be safely re-
moved. Furthermore, as the inferred property is a sound approximation of
the program behavior, the program specification can be matched against it
in order to verify whether the program respects or not its specification.

The study of object-oriented languages is justified by the great impact
they had, and they are still having, on information technology. For instance
a Gartner report [49] has projected that within a few years the two most
important object-oriented platforms, .net [82] and J2EE [56], will share the
95% of the distributed systems market. More in general object-oriented

1(French) Abstraction consists only in separating the perceptible qualities of bodies
with the mind, either one quality from another, or from the bodies to which they apply.

11

12 Introduction

programming is pervasive in different areas, from smart-cards [103] to very
large systems.

Modularity is a wished feature for effective static analyses and in par-
ticular for the analysis of object-oriented languages. In fact, object-oriented
programming favors the development by components: typically, classes are
written once and used in many different contexts. For instance, in the .net
framework classes are shared by all the programs which support the platform,
so that often a class is used in a context very different from the one it was
designed for. Furthermore, object-oriented programs may have very complex
structures, characterized by a large number of classes and a rather complex
interaction web. For instance, NetBeans [87], an open-source Java IDE, is
made up of 8328 Java classes with very complex interactions. As a conse-
quence, a class-level modular analysis can be used both to verify components
and to reduce the cost of full program analyses.

1.1 Motivations
1.1.1 Object-oriented Languages

Object-oriented languages provide the language support for the object-oriented
paradigm. A programming language is said to be object-oriented if it sat-
isfies the three properties of encapsulation, inheritance and polymorphism.
Roughly speaking, encapsulations facilitates code modularization, inheri-
tance make possible code sharing and polymorphism enables to call a variety
of functions using exactly the same interface. More specifically,

– encapsulation means that the state of an object is not directly accessible
by the context. This implies that the only way to access to object data
is through messages passing;

– inheritance allows to create objects by specializing or redefining existing
ones. The inherited object may answer to all the messages of the parent;

– polymorphism means that the same operation may behave differently
on objects of different classes.

There are two main families of object-oriented languages.
The first family contains object-oriented extensions of procedural or func-

tional languages such as C++ [101], Objective-C [5], Object Pascal [12] or
OCAML [70]. The advantage of such languages is that they are backward-
compatible with existing code, so that they favor a smoothly migration to
object-oriented. The drawback is that as they are half-path languages they
present some idiosyncrasies, e.g. rather complicated syntax and semantics.

1.1 Motivations 13

The second family contains pure object-oriented languages as Smalltalk
[55], Java [56] or C# [84]. The advantage of such languages is that they
strongly enroll the object-oriented concepts, so that for instance they ensure
encapsulation. The drawback is that they oblige the programmer to work
following the object-oriented methodology.

In mainstream languages of both families, objects are intensionally de-
scribed by classes. A class is a description of the structure and the behavior
of set of objects. Classes may specify access permissions for clients and in-
herited classes, visibility and member lookup resolution. Objects are created
through class instantiation.

1.1.2 Verification and Optimization

Verification of object-oriented programs is a hard task made harder by some
peculiarities of such languages as inheritance, virtual methods and component-
based development. Traditional program testing has two drawbacks. First,
it is not sound as just a finite number of executions can be covered. Second,
the testing of a class is made even harder by the fact that the instantiation
context is not known a priori. Theorem provers require heavy human interac-
tions, and even for rather simple cases they may entail a considerable human
effort, e.g. as in [60]. As a consequence they are not suited for the analysis
of large programs. Model checkers suffer of the state-explosion problem, the
incapability of checking directly the source code and the limitations to adapt
to modules without human-provided annotations [65].

Optimization is a sensible issue in the implementation of object-oriented
languages. Dynamic resolutions of method-calls [42], implicit box and un-
boxing of objects [89], checks of array bounds [3], etc. may cause non-
negligible slowdown. Nevertheless, most of the existing optimizations are
whole-program, so that e.g. they cannot be used for the optimization of a
single class, aside from its context.

1.1.3 Modularity

Modular reasoning is a widespread methodology that has been proved effec-
tive in many human activities. It enables to handle complex problems by
studying smaller, easier to deal with sub-problems, connected by a simple
structure, and independent enough to allow further work to proceed sepa-
rately on each of them.

In computer science it is a main tool for reasoning about parts of the sys-
tems, develop components independently, and even configure customized sys-
tems. For instance, it has been worthwhile for system designs, as a methodol-

14 Introduction

ogy to specify and to document the artifacts of a system under development
[97]; for language specification as constructs capable to express and to check
some aspects of the modular structure [69]; for compilation as a way to struc-
ture the source code and to speed-up the compiling process [17].

A methodology is worthy of being called modular if it satisfies at least the
three requirements of decomposability, composability and understandability.
We say that a methodology satisfies

– the decomposability requirement if it allows to decompose a complex
task into easier sub-problems, connected by a simple structure and
mutually independent;

– the composability requirement if it favors the production of elements
which may be freely combined with each other to produce new systems;

– the understandability requirement if the elements can be understood
with a limited knowledge of the others.

The object-oriented paradigm satisfies the requirements above. In such
a view a complex system is decomposed into a set of objects which interact
via message passing. Objects are specified and developed independently,
so that it is possible to reuse them in contexts different from the one they
were originally designed for. Finally, objects have a clear interface, i.e. the
messages they can answer, so that they can be understood without a full
knowledge of the surrounding context.

1.2 Abstract Interpretation
We use the theoretical framework of Abstract Interpretation. Abstract In-
terpretation is a general theory due to P. Cousot’s thèse ès sciences math-
ématiques [25] which formalizes the notion of approximation. In particular,
it formalizes the idea that the semantics of a language can be more or less
precise depending on the considered observation level. Semantics can be
partially ordered according to their relative precision [29, 28] and the more
precise the semantics the more precise the properties about programs it cap-
tures.

An abstract interpretation-based static analysis is an abstract semantics
which is precise enough to capture properties of interest and coarse enough
to be computable. Differently stated, a static analysis is a sound, finite and
approximate calculation of the program semantics. Those three requirements
imply that

– no program behavior is ignored (soundness);

1.3 Results 15

– the static analysis terminates and the inferred property is computer-
representable (finiteness);

– the inferred property may not be the most precise one (approximation).

A static analysis is modular if a program can be decomposed into compo-
nents (decomposability) which are analyzed separately (understandability)
and whose results can be merged together in order to obtain a result valid
for the whole program (composability).

1.3 Results

We present a modular static analysis for object-oriented languages. In par-
ticular we concentrate on the analysis of the basic bricks of object-oriented
programming, i.e. classes.

1.3.1 Static Analysis of Classes

We introduce a framework for the modular inference of class invariants. A
class invariant is a property that it is valid for all the instances of the class,
before and after the execution of any method. It can be used for both verifi-
cation and optimization of object-oriented programs. In fact, as an abstract
interpretation-based static analysis is sound, the inferred property is valid
for all the object instances and for all the contexts; as static analysis is auto-
matic, classes can be verified without human intervention. Class invariants
can be used for the verification of a single class or of a whole program. In the
first case, given a class specification, e.g. the absence of run-time errors, it is
sufficient to match the class specification against the class invariant in order
to see if the class respects or not its specification. In the latter, the cost of
the analysis of a whole program can be drastically reduced by performing
the analysis of its classes in parallel. Furthermore, the analysis of a class
can be used many times. For instance, when analyzing programs that use
libraries, class invariants may replace the analysis of the class source code.
This reduces the overall cost of the analysis. Finally, class invariants can be
used for the optimization of code at the class level. For instance, if a class
invariant states that the class will never throw a given exception, then in
the corresponding code for throwing/handling the exception can be dropped.
Once again, this is a consequence of the soundness of the analysis.

16 Introduction

class StackError extends Exception {}

class Stack {
// Inv : 1 <= size &&

5 // 0 <= pos <= size &&
// size=stack.length

protected int size, pos;
protected Object[] stack;

10
Stack(int size) {

this .size = Math.max(size,1); this .pos = 0;
this .stack = new Object[this .size];

}
15

boolean isEmpty() { return (pos <= 0); }
boolean isFull() { return (pos >= size); }

Object top() throws StackError {
20 if (!isEmpty())

// 0 <= pos-1 < stack.length
return stack[pos −1];

else throw new StackError();
}

25 void push(Object o) throws StackError {
if (!isFull()) {

// 0 <= pos < size
stack[pos++] = o;

} else throw new StackError();
30 }

void pop() throws StackError {
if (!isEmpty())

pos−−;
else throw new StackError();

35 }
}

Figure 1.1: A class implementing a stack

1.3 Results 17

class StackWithUndo extends Stack {

// SubInv : Inv && -1 <= undoType <= 1 &&
// if undoType == 1 then 0 < pos

5 // else if undoType == 0 then 0 <= pos <= size
// else if undoType == -1 then pos < size

protected Object undoObject;
protected int undoType;

10
StackWithUndo(int x) {

super (x);
undoType = 0;
undoObject = null ;

15 }
void push(Object o) throws StackError {

undoType = 1;
super .push(o);

}
20 void pop() throws StackError {

if (!isEmpty()) {
undoType = −1;
undoObject = stack[pos −1];

}
25 super .pop();

}
// StackError never thrown

void undo() throws StackError {
if (undoType == −1) {

30 super .push(undoObject);
undoType = 0;

} else if (undoType == 1) {
super .pop();
undoType = 0;

35 }
}

}

Figure 1.2: A subclass of Stack with undo

18 Introduction

1.3.2 Introductory Example

Let us consider the classes in Figure 1.1 and Figure 1.2. The first class,
Stack, is the implementation of a stack parameterized by its size, specified at
object creation time. It provides methods for pushing and popping elements
as well as testing if the stack is empty or full. Moreover, as the internal
representation of the stack is hidden a stack object can only be manipulated
through its methods. The second class, StackWithUndo extends the first
one by adding to the stack the capability of performing the undo of the last
operation.

The comments in the figures are automatically derived when our frame-
work is instantiated with the Octagon abstract domain [86] refined with trace
partitioning [59]. In particular, for the Stack we have been able to discover
the class invariant Inv without any hypothesis on the class instantiation con-
text. The invariant Inv guarantees that the array stack is never accessed
out of its boundaries. This implies that the out-of-bounds exception is never
thrown (verification) so that the bounds checks at lines 22 and 28 can be
omitted from the generated bytecode (optimization).

The class invariant for StackWithUndo, SubInv, states that the parent
class invariant is still valid and moreover the field undoType cannot assume
values outside the interval [−1, 1]. It implies that the method undo will never
raise the exception StackErr. Once again this information can be used for
verification (if a class never raises an exception Exc, then the exceptional
behavior described by Exc is never shown) and for optimization (as the ex-
ception handling can be dropped). It is worth noting that SubInv has been
obtained without accessing to the parent code but just to its class invariant.

Finally, let us consider the class Test in Figure 1.3 which creates an in-
stance of StackWithUndo. Using the properties inferred about StackWithUndo,
and not its code, we can show that the exception StackError is never thrown.
Therefore, the code inside the exception handler is never reached so that the
program always prints “ok!” on the console.

1.3.3 Main Results

We present a language-independent static analysis for the analysis of classes.
We systematically derive the equations that characterize a class invariant
from a concrete and liberal class semantics. As a consequence, the soundness
of the approach is guaranteed by construction.

We consider the different aspects/features of object-oriented languages.
In fact, the analysis:

– exploits encapsulation for the inference of class invariants;

1.3 Results 19

class Test {

public static void main(String args[]) {

5 StackWithUndo s = new StackWithUndo(10);

try {
for (int i=0; i < 10; i++)

if (Math.random() <0.5)
10 s.push(new Integer(i));

else
s.undo();

}
catch (StackError e) {

15 // Unreachable code
System.out.println("Error in stack operations!");
return ;

}
System.out.println("ok!");

20 }
}

Figure 1.3: A class that uses StackWithUndo

– supports inheritance as it infers subclass invariants without accessing
to the code of the ancestors;

– handles polymorphism by considering a semantic characterization of
subtyping.

It is worth noting that the analysis is modular in that it is performed on
classes (decomposability), classes are analyzed without any hypothesis on
the instantiation context (understandability) and the results of the analysis
can be easily combined (composability).

In addition to the inference of class invariants, we present

– a program-transformation for the derivation of approximate classes to
be used either for documentation or as tester for the class clients;

– a separate compositional analysis for the parallelization of the static
analysis of an object and its context.

20 Introduction

1.4 Overview of the Thesis
This thesis is made up of 11 chapters. Each chapter begins with an introduc-
tory paragraph and a section in which the subject of the chapter is informally
introduced and compared with the existing literature. The results of chapters
5 and 8, 6, 7, 9, 10 have been published in the proceedings of international
conferences [77, 76, 74, 75, 78].

Below we sketch the content of the next chapters.
In Chapter 2 we recall some basic definitions, notations and results used

throughout the thesis.
In Chapter 3 we introduce the concrete class semantics. The semantics

of a class is given by the semantics of all its instances. In its turn, the
semantics of an object is a set of traces. Each trace corresponds to a possible
evolution history of the object internal state. We show the soundness and
the completeness of such a semantics w.r.t. a trace semantics for a full object-
oriented program.

In Chapter 4 we obtain the reachable-states semantics of a class by step-
wise abstraction of the concrete semantics. First, all the traces correspond-
ing to the same interaction with the context are merged together. Then,
the states are collected and the reachable-states semantics is obtained by
construction.

In Chapter 5 we show how an approximation of the reachable-states se-
mantics is a class invariant and how it can be obtained as soon as a static
analysis for the methods bodies is provided. Furthermore, we show how to
handle the situation in which an object exposes a part of its state to the
context. We illustrate the results by studying in the details the analysis of
two classic examples, a bank account and a random walk.

In Chapter 6 we introduce an axiomatic characterization for symbolic
relational modular analyses. We prove it correct with respect to a trace se-
mantics, and we show how it can be used to perform an incremental modular
analysis of the object methods. It turns out that such an axiomatization
captures the structure of a whole class of modular static analyses, namely
the symbolic modular ones.

In Chapter 7 we study the situation in which a symbolic relational analysis
is used for the approximation of the methods semantics. We show how to
derive approximated classes, obtained by replacing the methods with the
relations that approximate their input/output behavior. An approximated
class can be used for documentation, as a tester for clients that use the class
and for deriving two kinds of class invariants.

In Chapter 8 we extend our framework in order to cope with inheritance.
Such an extension is worthwhile for the effective analysis of large class hi-

1.4 Overview of the Thesis 21

erarchies. We show how to infer an invariant for a subclass using just the
parent’s invariant and not to its code. We consider the two orthogonal aspects
of inheritance: class extension and method redefinition and we illustrate the
results on an extension of a stack.

In Chapter 9 we present an application of class invariants to a more
semantic characterization of the inheritance relation. Inheritance is defined
in terms of preservation of properties: a class is a semantic subclass of another
if its class invariant preserve the one of the ancestor. Such an approach is
effective for the modular analysis of polymorphic functions.

In Chapter 10 we use regular expressions for approximating the interac-
tions between a context and an object. The intuition is that a node in the
expression corresponds to an invocation of a set of methods. We show how a
generic static analysis of a context that uses an object can be split into two
separate semantic functions involving respectively only the context and the
object. We introduce an iterative schema for composing the two semantic
functions. A first advantage is that the analysis can be parallelized, with
a consequent gain in memory and time. Furthermore, the iteration process
returns at each step an upper approximation of the concrete semantics, so
that the iterations can be stopped as soon as the desired degree of precision
is reached.

Finally, in Chapter 11 we report the conclusions and the perspectives for
future work.

22 Introduction

Chapter 2

Preliminaries

Resulta que scriptura in
symbolos es circa dicem vice
plus breve que scriptura per
lingua commune. 1

Giuseppe Peano
Formulario Mathematico (1896)

In this chapter we introduce the mathematical background used in the rest
of the thesis. We fix the notation and we recall some well-known results in
lattice theory, fixpoint theory and abstract interpretation theory.

2.1 Notation and Basic Definitions
We use the notation of denoting sets with capital letters and elements of sets
with the sans serif font. So, when e is a member of the set S we write e ∈ S
or S 3 e. We denote with N the set of natural numbers, with [a..b] the set
{i ∈ N | a ≤ i ≤ b}, with Z the set of integer numbers, with B the set of
boolean values and with O the proper class of all the ordinals [15].

Given two sets U and V , the cartesian product is U×V . The i-th element
of a vector v = 〈u1, u2, . . . un〉 ∈ U1×U2 · · ·×Un is denoted by v(i). A relation
R between U and V is a subset of the cartesian product, R ⊆ U × V , and a
relation R on U is R ⊆ U × U . We write uRv to mean 〈u, v〉 ∈ R. We say
that u is in relation R with v if uRv holds. Given two relations R1 ⊆ U1×V1

1(Latino sine flexione) It turns out that writing using formulas is almost ten times
shorter than using natural languages.

23

24 Preliminaries

and R2 ⊆ U2 × V2 the relation R1 ×R2 ⊆ (U1 × V1)× (U2 × V2) is

{〈〈u1, v1〉, 〈u2, v2〉〉 | u1R1v1 ∧ u2R2v2}.

The set of all u which are in relation R with some v is called the domain of
R, dom(R), and it defined as:

dom(R) = {u ∈ U | ∃v ∈ V. uRv}.

In a similar way, the co-domain or the range of a relation, range(R), is defined
as:

range(R) = {v ∈ V | ∃u ∈ U. uRv}.

An equivalence relation E on a set S is a relation on S which is reflexive,
symmetric and transitive. Given an equivalence E on S, an equivalence class
is [s0] = {s ∈ S | sEs0} and the quotient set of S by E is defined as:

S/E = {[s0] | s0 ∈ S}.

2.1.1 Partial Orders

A partial order on a set D is a relation v on D which is reflexive, antisym-
metric and transitive. A set with a partial order defined on it is called a
partially ordered set, poset, or, with an abuse of language, simply a par-
tial order. We denote it as 〈D,v〉. A relation on D which is reflexive and
transitive is called a preorder.

Given a poset 〈D,v〉 and a subset U of D, we say that an element d ∈ D
is an upper bound for U if ∀u ∈ U. u v d. We say that d ∈ D is the least
upper bound of U , denoted by tU , if it is an upper bound and any upper
bound d′ ∈ D is such that d v d′. An element u ∈ U is the largest element
of U if u is an upper bound for U . It is worth noting that because of the
antisymmetric property, if the largest element exists then it is unique. If it
exists, we denote the largest element of D with >. Lower bounds, greatest
lower bounds and smallest elements are defined dually. In particular, if it
exists, we denote the smallest element of D with ⊥.

A poset 〈D,v〉 is called a lattice if any two elements of D have both a
greatest lower bound and a least upper bound. If a poset admits greatest
lower bounds and least upper bounds even for infinite sets then it is a complete
lattice. In such a case we write either 〈D,v,⊥,>,t,u〉 or, when the lattice
operators are clear from the context, simply 〈D,v〉. We say that the operator
t is complete if any subset U of D admits the least upper bound tU .

A poset 〈D,v〉 is said to satisfy the ascending chain condition (ACC)
[88] if every ascending chain d1 v d2 v ... of elements of D is eventually

2.1 Notation and Basic Definitions 25

stationary, that is, there is some positive integer n such that ∀m > n. dm =
dn. Similarly, 〈D,v〉 is said to satisfy the descending chain condition (DCC)
if there is no infinite descending chain. Every finite poset satisfies both ACC
and DCC.

2.1.2 Functions and Fixpoints

Given two sets D and R, a relation f ⊆ D × R is called a function, or a
mapping, if df r1 and df r2 imply r1 = r2 for any d, r1, and r2. In other words,
a relation f is a function if and only if for every d from dom(f) there is
exactly one r such that df r. This unique r is called the value of f at d and
it is denoted f(d). We specify functions using the λ-notation [19], i.e. λx.B
defines a function with an input x and an output given by the expression B,
parametric w.r.t. x. Given a function f , a y ∈ dom(f) and a v ∈ range(f),
the update of f is the function defined as:

f [y 7→ v] = λx. if x = y then v else f(x).

We denote the set of all the functions with a domain D and a range
included in R as

[D → R] = {f | f is a function ∧ dom(f) = D ∧ range(f) ⊆ R}.

Given two functions f ∈ [D → R] and g ∈ [R → C] their composition is
g ◦f ∈ [D → C]. In particular if the domain and the co-domain of a function
f coincide then it can be composed with itself so to obtain: f i = f ◦ f · · · ◦ f︸ ︷︷ ︸

i times

.

The notion of quotient set can be extended to cope with functions. So,
let S, R be sets and let f ∈ [S → R] be a function. Then the quotient set of
S by f is S/Ef

, where the equivalence relation is defined as:

Ef = {〈s1, s2〉 | s1, s2 ∈ S ∧ f(s1) = f(s2)}.

In the following, with an abuse of notation we will simply write S/f instead
of S/Ef

.
Given a poset 〈R,v〉, a set D and two functions f, g ∈ [D → R], then

the order v can be lifted to the point-wise order v̇ on functions:

fv̇g ⇐⇒ ∀d ∈ D.f(d) v g(d).

If 〈D,v〉 and 〈R,�〉 are complete lattices, then we say that a function
f ∈ [D → R]

26 Preliminaries

– is monotonic if it preserves the order of the elements:

∀d1, d2 ∈ D. d1 v d2 =⇒ f(d1) � f(d2);

– is a join-morphism if it preserves least upper bounds:

∀d1, d2 ∈ D. f(d1 t d2) = f(d1) g f(d2)

– is a complete join-morphism if it preserves least upper bounds for ar-
bitrary subsets of D:

∀{di} ⊆ D. f

(⊔
i

di

)
=

j

i

f(di)

– is continuous if it preserves the least upper bound of increasing chains:

∀{di} ⊆ D. d0 v d1 v d2 . . . =⇒ f

(⊔
i

di

)
=

j

i

f(di)

Similarly, a function f is said to be a meet-morphism if it preserves the
greatest lower bound of two elements and a complete meet-morphism if it
preserves the greatest lower bound for any subset of a complete lattice D.

Given a set D and a function f ∈ [D → D], a fixpoint of f is an element
d ∈ D such that f(d) = d. If f is defined over a partial order 〈D,v〉, then
an element d ∈ D is:

– a pre-fixpoint if d v f(d);

– a post-fixpoint if f(d) v d;

– the least fixpoint if d = f(d) and ∀d′ ∈ D. d′ = f(d′) =⇒ d v d′;

– the greatest fixpoint if d = f(d) and ∀d′ ∈ D. d′ = f(d′) =⇒ d′ v d.

Given a function f defined over a poset 〈D,v〉 and an element d ∈ D,
we denote with lfpvd f , the least fixpoint of f w.r.t. the order v larger than
d, if it exists. Sometimes, when the order and the element are clear from the
context, we will simply write lfpf . The definition of gfpvd f is dual.

A main result of Tarski [104] is that a monotonic function defined over a
complete lattice admits a least and greatest fixpoint:

2.1 Notation and Basic Definitions 27

Theorem 2.1 (Fixpoint Theorem, Tarski [104]) Let 〈D,v,⊥,>,t,u〉
be a complete lattice and let f ∈ [D → D] be a monotonic function. Then
the set F = {d ∈ D | f(d) = d} is a non-empty complete lattice w.r.t the
order v. Furthermore

lfpv⊥f = u{d ∈ D | f(d) v d}
gfpv⊥f = t{d ∈ D | f(d) w d}.

The result of the theorem is not constructive and an alternative characteri-
zation of the least fixpoint for monotonic functions defined over a complete
lattice can be given using the following theorem:

Theorem 2.2 (Transfinite Iterations, Cousot & Cousot [30]) Let
〈D,v,⊥,>,t,u〉 be a complete lattice, f ∈ [D → D] be a monotonic func-
tion and let the transfinite iteration sequence be defined as:

f 0(⊥) = ⊥
f δ+1(⊥) = f(f δ(⊥)) for successor ordinals δ

fλ(⊥) =
⊔
δ≤λ

f δ(⊥) for limit ordinals λ.
(2.1)

Then the increasing sequence f δ, δ ∈ O, is ultimately stationary at rank ρ ∈ O
and converges to fρ = lfpv⊥f .

The result can be generalized in order to obtain lfpvd f for any d ∈ D such
that d v f(d) [30]. It suffices to change the base case of (2.1) with f 0(⊥) = d.

2.1.3 Traces

Definition 2.1 (Traces) Given a set Σ of states and an Ω 6∈ Σ, a trace
τ is a function τ ∈ [N→ Σ ∪ {Ω}] which respects the prefix condition:

∀n ∈ N. τ(n) = Ω =⇒ ∀i > n. τ(i) = Ω.

Roughly, if a trace is undefined for an n ∈ N, then it is undefined for all
the successors of n too. We say that a trace τ is finite if ∃n ∈ N.τ(n) = Ω.
If not we say that it is infinite. The sets of finite traces over Σ is denoted by
T(Σ).

Definition 2.2 (Length of a Trace, len) The function len ∈ [T(Σ) →
N] is defined as

len = λτ. min{n ∈ N | τ(n) = Ω =⇒ ∀i > n. τ(i) = Ω}.

28 Preliminaries

A trace can be isomorphically represented by a succession of states. If τ
is finite then we can write τ = σ0 −→ σ1 −→ σ2 −→ . . . σn where n = len(τ)− 1
and ∀i ∈ [0..n]. σi = τ(i). The empty trace is denoted by ε and a trace of
length one is just a state σ ∈ Σ. Given a trace τ , we assume that τ −→ ε = τ .

Given a set of traces T ⊆ T(Σ), a τ ∈ T is a maximal trace of T if
6 ∃τ ′ ∈ T. (∀i ∈ [0..len(τ)− 1]. τ(i) = τ ′(i)) ∧ (len(τ) < len(τ ′)).

Traces can be labeled. Let us consider a set of states in the form of
Σ = Σ′×L, where L is a set of labels that contains the empty label ε. Then,
a trace τ ∈ T(Σ) in the form of

τ = 〈σ0, ε〉 −→ 〈σ1, `1〉 −→ 〈σ2, `2〉 . . .
can be rewritten as a labeled trace:

τ = σ0
`1−→ σ1

`2−→ σ1

Sometimes, with an abuse of notation we tacitly assume the set of labels L

is given, so that we write T(Σ′) instead of the more verbose T(Σ′ × L).
Given a program P, the associated transition relation P−→⊆ Σ × Σ, and a

set of initial states S0, the partial traces semantics of P can be expressed as
a fixpoint:

Theorem 2.3 (Fixpoint Partial Traces Semantics, [25, 31]) Let Σ

be a set of states, P−→⊆ Σ × Σ be the transition relation associated with a
program P, S0 ⊆ Σ be a set of initial states and F ∈ [P(Σ) → P(T(Σ)) →
P(T(Σ))] be

F (S0) = λX.S0 ∪ {σ0 −→ . . . σn −→ σn+1 | σ0 −→ . . . −→ σn ∈ X

∧ σn
P−→ σn+1}.

Then the partial trace semantics of P, trJPK ∈ [P(Σ)→ P(T(Σ))], is:

trJPK(S0) = lfp⊆∅ F (S0) =
⋃
i≤ω

F i(S0).

With a slightly abuse of notation, in the following we often write −→ for P−→,
so that in particular we do not differentiate between the transition relation
P−→ and the −→ used for denoting traces.

2.2 Abstract Interpretation
The abstract interpretation theory, due to P. Cousot [25, 29, 31], formalizes
the approximation correspondence between the concrete semantics sJPK of a
syntactically correct program P and an abstract semantics s̄JPK which is a
safe approximation on the concrete semantics.

2.2 Abstract Interpretation 29

2.2.1 Galois Connections

The concrete semantics belongs to a concrete semantic domain D which is a
partially ordered set 〈D,v〉. In such a setting, the partial order v formalizes
the loss of information, e.g. the logical implication. The abstract semantics
also belongs to a partial order 〈D̄, v̄〉, which is ordered by the abstract version
v̄ of the concrete approximation order v. We use the notation to tag the
abstract counterparts for concrete entities with an over-line. For instance,
D̄ and v̄ are the abstract counterparts for the concrete domain D and the
order v.

Definition 2.3 (Galois Connections, [29]) Let 〈D,v〉 and 〈D̄, v̄〉 be
two partial orders and let α ∈ [D → D̄] and γ ∈ [D̄ → D]. If

∀d ∈ D.∀d̄ ∈ D̄. α(d)v̄d̄⇐⇒ d v γ(d̄) (2.2)

then we say that 〈α, γ〉 is a Galois connection and we denote it as

〈D,v〉 −−−→←−−−α
γ
〈D̄, v̄〉.

Theorem 2.4 ([29]) Let 〈D,v〉 and 〈D̄, v̄〉 be two partial orders and let
α ∈ [D → D̄] and γ ∈ [D̄ → D] be two maps such that:

1. α and γ are monotonic functions

2. ∀d ∈ D. d v γ ◦ α(d)

3. ∀d̄ ∈ D̄. α ◦ γ(d̄)v̄d̄.

Then 〈D,v〉 −−−→←−−−α
γ
〈D̄, v̄〉.

Example 2.1 (States Abstraction, αΣ) Let Σ be a set of states. Then

〈P(T(Σ)),⊆, ∅, T(Σ),∪,∩〉 −−−→←−−−
αΣ

γΣ 〈P(Σ),⊆, ∅, Σ,∪,∩〉,

where the abstraction and the concretization functions are defined as follows:
αΣ(T) = {σ ∈ Σ | ∃τ ∈ T. ∃i. τ(i) = σ}
γΣ(S) = {τ ∈ T(Σ) | ∀i. τ(i) 6= Ω =⇒ τ(i) ∈ S}.

Example 2.2 (Final States Abstraction, αa) Let Σ be a set of states.
Then

〈P(T(Σ)),⊆, ∅, T(Σ),∪,∩〉 −−−→←−−−
αa

γa 〈P(Σ),⊆, ∅, Σ,∪,∩〉,

where the abstraction and the concretization functions are defined as follows:
αa(T) = {σ ∈ Σ | ∃τ ∈ T. τ is maximal ∧ τ(len(τ)− 1) = σ}
γa(S) = {τ ∈ T(Σ) | ∃n ≥ 0. τ(n) ∈ S ∧ τ(n + 1) = Ω}.

30 Preliminaries

Galois connections enjoy several properties [33]:

Lemma 2.1 (Composition) If 〈D,v〉 −−−→←−−−
α1

γ1 〈D̄1, v̄1〉 and 〈D̄1, v̄1〉 −−−→←−−−
α2

γ2

〈D̄, v̄〉 then 〈D,v〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2 〈D̄, v̄〉.

Lemma 2.2 (Unicity of the Adjoint) Let 〈D,v〉 −−−→←−−−
α1

γ1 〈D̄, v̄〉 and 〈D,

v〉 −−−→←−−−
α2

γ2 〈D̄, v̄〉. Then α1 = α2 if and only if γ1 = γ2.

Lemma 2.3 (Determination of the Adjoint) If 〈D,v〉 and 〈D̄, v̄〉 are
complete lattices and if 〈D,v〉 −−−→←−−−α

γ
〈D̄, v̄〉 then

α(d) = ū{d̄ ∈ D̄ | d v γ(d̄)} and
γ(d̄) = t{d ∈ D | α(d)v̄d̄}.

Lemma 2.4 (Preservation of Bounds) If 〈D,v〉 and 〈D̄, v̄〉 are com-
plete lattices and if 〈D,v〉 −−−→←−−−α

γ
〈D̄, v̄〉 then α is a complete join-morphism

and γ is a complete meet-morphism.

Lemma 2.5 (Lifting to the Higher-order) Let 〈Di ,vi〉 −−−→←−−−αi

γi 〈D̄i , v̄i〉,
〈D̄o , v̄o〉 −−−→←−−−

αo

γo 〈D̄o , v̄o〉. Furthermore, let [Di
m−→ Do] and [D̄i

m−→ D̄o] be
sets of monotonic functions. Then

〈[Di
m−→ Do], v̇〉 −−−→←−−−

α̇

γ̇
〈[D̄i

m−→ D̄o], ˙̄v〉,

where
α̇(f) = λv̄. αo ◦ f ◦ γi(v̄) and
γ̇(f̄) = λv. γo ◦ f̄ ◦ αi(v).

Theorem 2.5 (Lattice of Abstract Intepretations, [25, 31]) Let 〈D,
v〉 be a complete lattice. Furthermore, let

A(D) = {〈D̄, v̄〉 | ∃〈α, γ〉. 〈D,v〉 −−−→←−−−α
γ
〈D̄, v̄〉}

and the order vA on A(D) be defined as

vA= {〈〈D̄1, v̄1〉, 〈D̄1, v̄2〉〉 | ∃〈α, γ〉. 〈D̄1, v̄1〉 −−−→←−−−α
γ
〈D̄1, v̄2〉}.

Then, 〈A(D),vA〉 is a complete lattice. In particular, the least element of
A(D) is 〈D,v〉.

Definition 2.4 (Reduced Product, [31]) Under the hypotheses of the
previous theorem, let uA be the meet operator on A(D). Then, the reduced
product, ⊗ ∈ [A(D)× A(D)→ A(D)], is defined as

⊗ = λ〈D1, D2〉. D1 uA D2.

2.2 Abstract Interpretation 31

2.2.2 Fixpoint Approximation

The concrete and abstract semantics of a program P are usually given in
a fixpoint form as sJPK = lfptJPK and s̄JPK = lfpt̄JPK, where the semantic
transformers tJPK and t̄JPK are monotonic functions respectively on [D → D]
and [D̄ → D̄]. If the concrete and abstract transformer satisfy the local
commutative condition tJPK ◦ γ v γ ◦ t̄JPK then the next theorem ensures the
soundness of the abstract semantics:

Theorem 2.6 (Fixpoint Transfer, [31]) Let 〈D,v〉 and 〈D̄, v̄〉 be com-
plete lattices. Let tJPK and t̄JPK be monotonic functions defined respectively
on [D → D] and [D̄ → D̄]. If 〈D,v〉 −−−→←−−−α

γ
〈D̄, v̄〉 and if tJPK ◦ γ v γ ◦ t̄JPK

then
sJPK = lfptJPK v γ(lfpt̄JPK) = γ(s̄JPK).

The abstract fixpoint lfp t̄JPK is computed as the limit of the iteration
sequence (2.1). If the abstract domain D̄ enjoys the ACC condition then
the computation is guaranteed to terminate. If not the sequence convergence
must be assured using a widening operator [29]. Informally a widening is a
kind of join for which every increasing sequence is stationary after a finite
number of steps and that extrapolates the sequence limit. Formally:

Definition 2.5 (Widening, [29]) A widening ∇̄ ∈ [D̄ × D̄ → D̄] is an
operator such that

∀d̄1, d̄2 ∈ D̄. d̄1v̄d̄1∇̄d̄2 and d̄2v̄d̄1∇̄d̄2

and for all increasing chains d̄0v̄d̄1v̄ . . . v̄d̄i+1 . . . the increasing chain de-
fined by

ȳ0 = d̄0, ȳ1 = ȳ0∇̄d̄1 . . . , ȳi+1 = ȳi∇̄d̄i+1 . . .

is not strictly increasing.

A widening operator can be employed to force the convergence of the com-
putation of the abstract semantics to a post-fixpoint. In fact the following
result holds:

Theorem 2.7 (Iterations with widening, [29]) The following iteration
sequence

X0 = ⊥̄

X i+1 =

{
X i if tJPK(X i)v̄X i

X i∇̄tJPK(X i) otherwise

32 Preliminaries

is ultimately stationary and its limit X̄ is a post-fixpoint for t̄JPK: lfpv̄⊥̄t̄JPKv̄X̄.
Thus, it is a sound approximation of the semantics:

lfpv⊥tJPK v γ(lfpv̄⊥̄t̄JPK) v γ(X̄).

Several variants of the above theorem are possible. For example one may
use a different widening at each iterate or even define a widening that depends
upon all the previous iterations [34].

2.2.3 Chaotic and Asynchronous Iterations

Let us consider a monotonic function F ∈ [D1 × . . . Dn → D1 × · · · × Dn]
where each 〈Di,vi〉, i ∈ [1..n] is a complete lattice. Then, the fixpoint
equation X = F (X), X ∈ D1× · · ·×Dn can be decomposed into the system
of equations [25, 24]:

{Xi = Fi(X1, . . . , Xn) | i ∈ [1..n], Xi ∈ Di}.

Let J ⊆ [1..n]. We denote by FJ ∈ [D1 × · · · × Dn → D1 × . . . Dn] the
function FJ(X1, . . . Xn) = (Y1, . . . Yn) where for all i ∈ [1..n]:

Yi =

{
Fi(X1, . . . Xn) if i ∈ J
Xi otherwise.

Definition 2.6 (Ascending Chaotic Iterations, [25]) Let C = {Jδ ⊆
[1..n] | δ ∈ O} such that

∀δ ∈ O.∀i ∈ [1..n].∃Jρ ∈ C. δ ≤ ρ ∧ i ∈ Jρ.

Then the chaotic iteration sequence for the monotonic function F ∈ [D1 ×
. . . Dn → D1 × · · · ×Dn] is defined as

X0 = (⊥1, . . .⊥n)

Xδ+1 = FJδ(Xδ) for successor ordinals δ

Xλ =
⊔
δ≤λ

Xδ for limit ordinals λ.
(2.3)

where t is the join operator on D1 × · · · ×Dn.

Theorem 2.8 (Convergence of Chaotic Iterations, Cousot [25])
Under the hypotheses of Definition 2.6, the sequence Xδ, δ ∈ O is ultimately
stationary at rank ρ ∈ O and Xρ = lfpv1×···×vn

(⊥1,...⊥n) F .

2.2 Abstract Interpretation 33

Definition 2.7 (Ascending Asynchronous Iterations, [25]) Let C =
{Jδ ∈ [1..n] | δ ∈ O} such that

∀δ ∈ O.∀i ∈ [1..n].∃Jρ ∈ C. δ ≤ ρ ∧ i = Jρ.

Let D = {Sδ | δ ∈ O, Sδ ∈ On} such that for any Sδ ∈ D:

– ∀i ∈ [1..n].∀δ ∈ O. Sδ
(i) < δ

– ∀i ∈ [1..n].∀δ ∈ O.∃ρ ∈ O.∀β ≥ ρ. δ ≤ Sβ
(i)

– ∀λ, δ ∈ O.λ < δ ∧ λ is a limit ordinal =⇒ ∀i ∈ [1..n]. λ ≤ Sδ
(i) .

Then the ascending asynchronous iteration sequence for the monotonic func-
tion F ∈ [D1 × · · · ×Dn → D1 × · · · ×Dn] is defined as

X0 = (⊥1, . . .⊥n)

Xδ+1 = FJδ(X
Sδ

(1)

(1) , . . . X
Sδ

(n)

(n)) for successor ordinals δ

Xλ =
⊔
δ≤λ

Xδ for limit ordinals λ,

where t is the join operator on D1 × · · · ×Dn.

Theorem 2.9 (Convergence of Asynchronous Iterations, Cousot [25])
Under the hypotheses of Definition 2.7, the sequence Xδ, δ ∈ O is ultimately
stationary at rank ρ ∈ O and Xρ = lfpv1×···×vn

(⊥1,...⊥n) F .

34 Preliminaries

Chapter 3

Concrete Semantics

Semantics is not a device for
establishing that everyone
except the speaker and his
friends is speaking nonsense.

Alfred Tarski (1944)

In this chapter we introduce the concrete semantics of object-oriented pro-
grams. The concrete semantics describes the properties of the execution of
programs. The goal of a static analysis is to provide an effective computable
approximation of the concrete semantics [34]. Therefore, the first step of a
static analysis is the definition of a concrete semantics.

We define two semantics. The first one is a trace semantics for a whole
object-oriented program and the second one is a trace semantics for a single
class. We study the relation between the two semantics, and in particular we
show the soundness and the completeness of the class semantics w.r.t. the
whole-program semantics.

3.1 Semantics of Object-oriented Languages in
Literature

Several authors proposed different approaches to the semantics of object-
oriented languages. We will review some of these semantics shortly, and
we explain why they do not fulfill our needs. We considered approaches
based on types [16], object calculi [62, 2], Abstract State Machines [100] and
denotational semantics [64].

35

36 Concrete Semantics

3.1.1 Types

Cardelli introduced in [16] the view of objects as records : objects are essen-
tially records with possibly functional components (the object’s methods).
Message passing is achieved by field selection and inheritance deals with the
cardinality and the type of the record fields. Therefore, in the object-as-
record model objects are record values, classes are record generators and
message passing is field selection.

The great advantage of the objects as records approach is its clarity and
elegance. Unfortunately, it is not suitable for modeling object aliasing. In
fact, in such a view two objects are the same if their fields have the same
values. Therefore, the concept of object identity, and hence of object aliasing,
cannot be captured. As a consequence, such a formalism cannot be used for
modeling mainstream object-oriented languages.

3.1.2 Object Calculi

Object calculi are formalisms at the same level of abstraction as λ-calculus,
but based on objects rather than functions. There is a wide spectrum of
object calculi, as for example the Featherweight Java [62] or ζ-calculus [2].
Object calculi are meant to capture some properties of realistic programming
languages, while abstracting away from others. For example, Featherweight
Java is an object calculus that abstracts away from the store as its main
concern is to prove the type-soundness of a subset of the Java programming
language. Similarly, ζ-calculus presents a low-level mechanism for object
updating and in [1] it has been extended with imperative features.

We have chosen not to use existing object calculi as, in general, they put
themselves into a level of abstraction that is too abstract to capture the prop-
erties we are interested in. For instance, the notions of program points or call
stack are missing. Furthermore, the formulation of these calculi as rewriting
systems hides the underlying fixpoint computation. As a consequence, the
adoption of one of such calculi would have required some additional work in
order to make the fixpoint explicit.

3.1.3 Abstract State Machines

Abstract State Machines (ASM) are a formalism for modeling complex sys-
tems that has been widely used in the software engineering field [11]. It
is based on the use of a transition relation specified as a set of conditional
statements. The conditions are expressed using first order logic and naive
set theory. Stärk et al. [100] used them to formalize the semantics of the full
Java language. However, the use of the ASM as a concrete semantics has two

3.2 Whole-Program Trace Semantics 37

main drawbacks. First, the ASM notation has the tendency to hide low-level
details, by making wide use of macros. While this may be an advantage to
the casual reader, it is a drawback for the design of precise yet sound static
analyses. Second, the program computation is hidden in the ASM transition
relation, and the fixpoint computation is not explicitly stated. As a conse-
quence, this formalism is inadequate to express e.g. program-wide invariant
properties.

3.1.4 Denotational Semantics

Denotational semantics is well-suited for modeling object-oriented languages.
In fact, object’s self application and inheritance can be smartly expressed as
fixpoints on suitable domains [64, 23]. Moreover, in such a setting it is
straightforward to consider a domain composed by an environment, i.e. a
map from variables to addresses, and a store, i.e. a map from addresses to
values, so that object aliasing can be naturally expressed. However, it can
be shown that generally denotational semantics is an abstraction of a trace-
based operational semantics [28]. Intuitively, it abstracts away the history of
computations, by considering input-output functions. As a consequence, we
prefer to start directly with a small-step operational semantics rather than
with one of its abstractions.

3.2 Whole-Program Trace Semantics
The trace semantics models the program computation by a set of state se-
quences. In this section we define the syntax of a class and of an object-
oriented program. Then we define the semantic domains and the trace se-
mantics of a whole object-oriented program.

3.2.1 Syntax

A class is a description for a set of objects, instances of the class. The class
source is provided by the programmer, who specifies the class constructor,
the fields and the methods. Therefore, the class syntax can be modeled as a
triplet:

Definition 3.1 (Class) A class A is a triplet 〈init, F, M〉 where init is the
class constructor, F is a set of variables and M is a set of function definitions.

We denote by C the set of all the classes. It is worth noting that for the
sake of generality in the definition above we do not require to have typed
fields or methods. Moreover we assume that all the class fields are protected.

38 Concrete Semantics

This is done to simplify the exposition, and it does not cause any loss of
generality: in fact any access to a field f can be simulated by a couple of
methods set_f/get_f. Additionally we also assume that a class has just a
single constructor, the generalization to an arbitrary number of constructors
being straightforward.

An object-oriented program is a set of classes. In particular, it is made
up by a main class and a library:

Definition 3.2 (Object-oriented Program) An object-oriented program
P is a pair P = 〈Amain, L〉 where Amain ∈ C is the main class and L ⊆ C is the
program library.

With an abuse of notation, given an object-oriented program P = 〈Amain, L〉
in the following we write A ∈ P if A = Amain or A ∈ L.

3.2.2 Semantic Domains

The first step in specifying the semantics is the definition of the semantic
domains. Intuitively we need a domain that models that an object has its
own identity and environment. Moreover, in order to be realistic, we need to
express object aliasing.

In order to fulfill the above requirements, we consider a domain whose
elements are pairs of environments and stores: an environment is a map from
variable names to memory addresses, and a store is a map from addresses to
memory elements. In its turn, a memory element can be a primitive value
or an environment. The object environment is stored in a certain memory
location whose address represents the object identity. In such a setting, two
distinct variables are aliases for an object if they reference the same object,
i.e. the same memory address. We can formalize what said above:

Definition 3.3 (Environment, Env) Let Var be a set of variables and let
Addr ⊆ N be a set of addresses. Then the set of environments is Env =
[Var→ Addr].

Definition 3.4 (Store, Store) Let Val be a set of values such that Env ⊆
Val. Then the set of stores is Store = [Addr→ Val].

Given a state ρ ∈ Env × Store, ρ = 〈e, s〉 and a variable x, we write ρ(x)
to mean s(e(x)).

It is worth noting that in the above definition we require Env to be in-
cluded in the possible memory values, so that given an object, i.e. a memory
address, we can access its environment through the store. Moreover, in order

3.2 Whole-Program Trace Semantics 39

to be as generic as possible we put no further constraint on the values that
can be stored in memory. Thus, for example the C++ memory model can
be obtained once we have that Addr ⊆ Val.

We assume that a state contains some special variables, namely: the
pointer to the current object, the current program counter [72, §3.5.1], the
call stack [72, §3.6] and the method input value and the method return value,
if any. This is summarized by the following definition:

Definition 3.5 (Special Variables) Let ρ = 〈e, s〉 ∈ Env × Store and
{this, pc, callStack, inVal, retVal} ⊆ Var. Then

– e(this) is the pointer to the current object;

– ρ(pc) is the program counter;

– ρ(callStack) is the call stack;

– ρ(inVal) is the input value of the current method;

– ρ(retVal) is the value returned by the current method.

In general, from the call stack it is possible to infer the current method
(e.g. [72, §3.6]) and the height of the call stack. So, with an abuse of notation,
we denote the current method of a state ρ with ρ(curMethod) and the height
of the call stack with ρ(stackHeight).

3.2.3 Whole-Program Semantics

The semantics of an object-oriented program P is a set of traces that repre-
sents the executions of the program starting from a set of initial states R0.
According to Theorem 2.3, it can be expressed in fixpoint form as follows:

Definition 3.6 (Object-oriented Program Semantics, wJ·K) Let P

= 〈Amain, L〉 be an object-oriented program, −→⊆ (Env× Store)× (Env× Store)
be a transition relation, main be a method of Amain, pcin be the entry point
of main and R0 ∈ P(Env × Store) be a set of program initial states, i.e. such
that:

∀ρ0 ∈ R0. ρ0(curMethod) = main ∧ ρ0(pc) = pcin.

Then the semantics of P, wJPK ∈ [P(Env × Store)→ P(T(Env × Store))] is

wJPK(R0) = lfp⊆∅ λX. R0 ∪ {ρ0 −→ . . . ρn −→ ρn+1 | ρn+1 ∈ Env × Store

∧ ρ0 −→ . . . ρn ∈ X ∧ ρn −→ ρn+1}.

40 Concrete Semantics

It is worth noting that for the sake of generality we do not explicitly
define the transition relation −→ as it depends upon the particular considered
object-oriented language.

The transition relation −→ (and the Theorem 2.3) can be used to express
the semantics of the constructor and of the methods in fixpoint form as:

Definition 3.7 (Method Trace Semantics, wmJ·K) Let A = 〈init, F, M〉,
m be init or m ∈ M. Let pcin and pcexit be respectively the entry point and
the exit point of m. Furthermore, let −→⊆ (Env × Store) × (Env × Store) and
let R0 ∈ P(Env × Store) be a set of method initial states, i.e. :

∀ρ0 ∈ R0. ρ0(pc) = pcin.

Then, the trace semantics of m, wmJmK ∈ [P(Env × Store)→ P(T(Env × Store))]
is

wmJmK(R0) = lfp⊆∅ λX. R0 ∪ {ρ0 −→ . . . ρn −→ ρn+1 | ρn+1 ∈ Env × Store

∧ ρ0 −→ . . . ρn ∈ X ∧ ρn −→ ρn+1}
∪ {ρ0 −→ . . . ρn | ρ0 −→ . . . ρn ∈ X∧

ρ0(stackHeight) = ρn(stackHeight)∧
ρn(curMethod) = m ∧ ρn(pc) = pcexit}.

Roughly, the trace semantics of a method m is such that the maximal
traces end with a state such that the program counter refers to the exit point
of m and the height of the stack is the same as the entry point. This last
condition implies that we consider the exit point of m at the same level of
recursion as the input.

3.3 Class Trace Semantics
We define the semantics of a class as the set of all the semantics of its in-
stances. In its turn, the semantics of an object is the set of traces that cor-
respond to the evolution of the object internal state. In this section, we give
the fixpoint characterization of the class semantics. The soundness results of
the next chapters will be given with respect to this concrete semantics.

3.3.1 Constructor and Methods Semantics

The semantics of an object is given on the top of the semantics of the class
constructor and of the class methods. In its turn, the semantics of the con-
structor and the methods are obtained as an abstraction of the trace seman-
tics of Definition 3.7.

3.3 Class Trace Semantics 41

When a class is instantiated, for example by means of the new construct,
the class constructor is called to set up the new object internal state. The
context, that creates the object, passes to the constructor the actual parame-
ters and the store. The constructor initializes the object fields and returns
the new object environment and the modified store. Such a behavior is for-
malized by the following definition:

Definition 3.8 (Constructor Semantics, iJ·K) Let Din ⊆ Val be the
semantic domain for the input values, e0 be the initial environment, ain, apc

be fresh memory addresses, pcinit be the constructor entry point and αa the
abstraction function defined in Example 2.2. Then the semantics of the class
constructor, iJinitK ∈ [Din × Store→ P(Env × Store)], is

iJinitK = λ(vin, s). let ρ0 = 〈e0[inVal 7→ ain, pc 7→ apc], s[ain 7→ vin, apc 7→ pcinit]〉
in αa(wmJinitK({ρ0})).

Here are some remarks on the above definition. First, the semantics
iJinitK is essentially an abstraction of wmJinitK in which just the initial
state and the final states are retained. Second, the output is a set of pairs as
in general the execution of the constructor may be non-deterministic. Third,
the generalization for a tuple of input values is straightforward.

Example 3.1 (Constructor Semantics) Let us consider the C++ class
in Figure 3.1. The class constructor creates a new environment consisting
of two entries, one for i and the other for b. Then it sets the value of i
and b to that of the actual parameters i0 and b0. The semantics of the Ex

constructor is

iJEx :: Ex()K = λ(i0, b0, s). {〈e0[i 7→ ai, b 7→ ab, pc 7→ apc],

s[ai 7→ i0, ab 7→ b0, apc 7→ 11]〉},

where e0 is an environment, ai, ab and apc are fresh memory locations and 11

is the exit point of the constructor.

Once an object has been created, the context can interact with it. When
the context invokes a method, it passes some input values, the object en-
vironment and the store. In its turn, the method returns a value, the new
object environment and the modified store. The behavior of the method can
be formalized by the following definition:

Definition 3.9 (Method Semantics, mJ·K) Let Din, Dout ⊆ Val be the
semantic domains for the input values and the output values, ain and apc

be fresh memory addresses, m be a method, pcm be the m entry point and αa

42 Concrete Semantics

class Ex {

private:
int i;

5 bool b;

public:
Ex(int i0, bool b0) {

i = i0;
10 b = b0;

};

void modify(int delta) {
if (b) i += delta;

15 else i −= delta;
};

bool * getPointer() {
return &b;

20 };

};

Figure 3.1: An example of a C++ class

be the abstraction function defined in Example 2.2. Then the semantics of a
method m, mJmK ∈ [Din × Env × Store→ P(Dout × Env × Store)], is

mJmK = λ(vin, e, s). let ρ0 = 〈e[inVal 7→ ain, pc 7→ apc], s[ain 7→ vin, apc 7→ pcm]〉
in let Rf = αa(wmJmK({ρ0}))
in {〈ρf (retValue), ef , sf〉 | ρf = 〈ef , sf〉 ∈ Rf}.

Some remarks on the above definition. First, it is essentially an in-
put/output abstraction of wmJmK. Second, the execution of the method may
present some kind of non-determinism. Third, in order to model procedural
methods, i.e. methods that does not return any value, we assume to have a
special void value � ∈ Dout. Fourth, if Addr ⊆ Dout then the method may
expose a part of the object internal state to the context.

Example 3.2 (Method Semantics) The class in Figure 3.1 has two meth-
ods. The first, modify, adds or subtracts a given value to i depending
whether b is true or not. It does not return any value to the caller and it

3.3 Class Trace Semantics 43

does not change the object environment. Hence its semantics is:

mJmodifyK = λ(v, e, s). {〈�, e, s[apc 7→ 16, e(i) 7→ if s(e(b)) = true

then s(e(i)) + v

else s(e(i))− v]〉}.

It is worth noting that we update the value of the program counter to the
exit point of modify, i.e. apc = 16.

The method getPointer is a helper method that returns a pointer to a
part of the object state, namely to b. Hence this method exposes a part of
the object state but it does not modify neither the environment nor the store
(except for the program counter). The semantics of getPointer is:

mJgetPointerK = λ(�, e, s). {〈e(b), e, s[apc 7→ 20]〉}.

3.3.2 Object Semantics

The semantics of an object is given by a set of traces. Intuitively, each
trace represents a possible evolution history of the object. The first state
represents the object just after its creation. Each further state is the result
of an interaction between the object and a context. This interaction can
happen in two ways:

1. the context invokes a method of the object; or

2. it modifies a memory location that is reachable from the object envi-
ronment.

We refer to the former as direct interaction and to the latter as indirect
interaction. We do not consider a third possible kind of interaction, namely
the one in which the context accesses the object fields unless the object has
revealed them before. For instance, this is the case of a context that may
guess the memory addresses where the object fields are stored.

For each interaction with the context, we consider the environment and
the store after the interaction, the eventual value returned by a method
execution and the set of addresses that escapes from the object. Formally,
we define the interaction states as

Definition 3.10 (Interaction States) The set of interaction states is
Σ = Env × Store× Dout × P(Addr).

The initial interaction states are the states reached just after the creation
of a class, i.e. after the invocation of the class constructor:

44 Concrete Semantics

Definition 3.11 (Initial States, S0〈v, s〉) Let v ∈ Din be an input value,
s ∈ Store be a store and o be an instance of a class A. Then the set of initial
states of o is:

S0〈v, s〉 = {〈e′, s′, �, ∅〉 | iJinitK(v, s) 3 〈e′, s′〉}.

It is worth noting that we use � to model the fact that the class con-
structor does not return any value. As a consequence, it does not expose any
address to the context.

Example 3.3 (Initial States) Let us instantiate Ex in some store s with
initial values 3 and true. Then, ignoring the special variables, the initial
states are given by:

S0〈〈3, true〉, s〉 = {〈e′, s′, �, ∅〉 | e′ = [i 7→ ai, b 7→ ab],

s′ = s[ai 7→ 3, ab 7→ true]}.

The successors of a state are given by a transition function next. Given
a state σ the intuitive meaning of next(σ) is to consider all the states that
are result of an interaction of σ with a context. Thus, as there are two kinds
of interaction, next will consist of two parts: one corresponding to the direct
interactions, and the other to the indirect ones. Moreover, in the following
we will be interested to know whether a state is a consequence of a direct
or an indirect interaction. For that purpose we tag each successor of σ with
a label. A label can either be a pair consisting of the name of the invoked
method and the input value, or a special term κ to denote an action of the
context. Thus, the set of labels is

Definition 3.12 (Transition Labels, Label) The set of labels is defined
as Label= (M× Din) ∪ {κ}.

The transition function, next ∈ [Σ → P(Σ× Label)], is made up of two
components: nextdir and nextind.

The direct interaction happens when the context invokes a method of the
object. The context may invoke any method with any input value. Therefore,
the transition function for the direct interaction is

Definition 3.13 (Direct Interaction, nextdir) Let 〈e, s, v, Esc〉 ∈ Σ be
an interaction state. Then the function nextdir ∈ [Σ → P(Σ× Label)] is
defined as:

nextdir(〈e, s, v, Esc〉) = {〈〈e′, s′,v′, Esc′〉, 〈m, vin〉〉 | m ∈ M, vin ∈ Din,

mJmK(vin, e, s) 3 〈v′, e′, s′〉,
Esc′ = Esc ∪ reachable(v′, s′)}.

3.3 Class Trace Semantics 45

In the above definition we made use of the helper function reachable, that
given an address v and a store s, determines all the memory addresses that
are reachable from v. Intuitively, if a method returns an address, then the
context can access it so that the context can arbitrarily modify the value of
the store at that point. In that case we say that the object exposes v or that
v escapes the scope of the object. For the sake of simplicity, we assume that
the only way that an object has to expose a part of its state is by returning
an address to the context. At its turn, the memory element s(v) = v′ may be
(the identity of) an object. Then s(v′) is its environment, and (the addresses
of) all its fields escape. And so on recursively:

Definition 3.14 (reachable) The function reachable ∈ [(Dout × Store) →
P(Addr)] is recursively defined as follows:

reachable(v, s) =if v ∈ Addr then
{v} ∪ {reachable(e′(f), s) | ∃B. B = 〈init, F, M〉, f ∈ F,

s(v) is an instance of B, s(s(v)) = e′}
else ∅.

Example 3.4 (Direct Interaction) Let us apply the above definitions
to determine the successors of the state σ0 ∈ S0〈〈3, true〉, s〉. In that case,
the context can arbitrarily decide to invoke one of the methods of Ex. Thus,
the successors of σ0 are:

nextdir(σ0) = {〈〈e, s′, �, ∅〉, 〈modify, v〉〉 | mJmodifyK(v, e, s) 3 〈�, e, s′〉,
s′ = s[ai 7→ 3 + v]}

∪ {〈〈e, s, ab, {ab}〉, 〈getPointer, �〉〉 |
mJgetPointerK(�, e, s) 3 〈ab, e, s〉}.

If the context invokes modify with a certain input value v then the store
address corresponding to the field i is updated. On the other hand, if the
context invokes getPointer, it returns the b’s address, while the environment
and the store remain unchanged. Thus ab escapes its scope.

Once an address escapes from an object, the context is free to access the
corresponding memory location and to modify it arbitrarily. The transition
function for the indirect interactions formalizes this intuition:

Definition 3.15 (Indirect Interaction, nextind) Let 〈e, s, v, Esc〉 ∈ Σ
be an interaction state. Then the function nextind ∈ [Σ → P(Σ× Label)] is
defined as:

nextind(〈e, s, v, Esc〉) = {〈〈e, s′,�, Esc〉, κ〉 | ∃a ∈ Esc. s′ ∈ update(a, s)}.

46 Concrete Semantics

We used the function update in the definition above. It takes as input a
pair of memory address a and a store s and it returns the set of the stores
where the memory element s(a) takes all the possible values in the values
domain:

Definition 3.16 (update) The function update ∈ [Addr×Store→ P(Store)]
is defined as:

update(a, s) = {s′ | ∃v ∈ Val. s′ = s[a 7→ v]}.

The class constructor does not return any value. Therefore, no address
escapes the object scope just after its creation. So, if we refer to the running
example of this chapter, it is immediate to see that nextind(S0〈〈3, true〉, s〉)=∅.
This is a particular case of a more general result, that states that if the object
methods do not expose any internal address, then no indirect interaction can
happen:

Lemma 3.1 Let σ = 〈e, s, v, ∅〉 be an interaction state. Then nextind(σ) = ∅.

Proof. It follows directly from Definition 3.15: if Esc = ∅, then nextind(σ) is
empty.

q.e.d.

Example 3.5 (Indirect Interaction) Let us consider 〈σ1, `〉 ∈ nextdir(σ0).
If σ1 is the result of an invocation of the method modify, i.e. ` = 〈modify, v〉
for some v, then the lemma above assures that nextind(σ1) = ∅. On the other
hand, if ` = 〈getPointer, �〉 then the context knows the address ab and it
can arbitrarily access and modify the corresponding store position. Hence:

nextind(σ1) = {〈〈e, s′, �, {ab}〉, κ〉 | ∃v ∈ Val. s′ = s[ab 7→ v]}.

The transition function for the indirect interaction only takes into ac-
count the modification of one memory location at time. However, an indi-
rect interaction that affects several memory addresses can be simulated by
the successive applications of the nextind function. This is expressed by the
following lemma:

Lemma 3.2 Let σ = 〈e, s, v, Esc〉 and σ′ = 〈e, s[a0 7→ v0, . . . an 7→ vn], �, Esc〉
be two interaction states. If ∀i.ai ∈ Esc and ∀i, j. i 6= j ⇒ ai 6= aj then

∃σ1 ∈ Σ . . . ∃σn−1 ∈ Σ. 〈σ1, κ〉 ∈ nextind(σ),

〈σ2, κ〉 ∈ nextind(σ1), . . . 〈σ′, κ〉 ∈ nextind(σn−1).

3.3 Class Trace Semantics 47

Proof. The proof is by induction on n:

n = 0: The thesis follows immediately by the definition of nextind and update;

n > 0: The induction hypothesis implies that there exists a succession of states
σ1 . . . σn−1 such that σn−1 = 〈e, s[a0 7→ v0, . . . an−1 7→ vn−1], v, Esc〉.
Then, as all the addresses are distinct, nextind(σn−1) contains an ele-
ment 〈σ, κ〉.

q.e.d.

It is now possible to define the transition function next, that sums up the
direct and indirect interactions:

Definition 3.17 (Transition Function, next) Let σ ∈ Σ be an inter-
action state. Then the transition function next ∈ [Σ → P(Σ× Label)] is
defined as:

next(σ) = nextdir(σ) ∪ nextind(σ).

Once the transition function is set up, the semantics of an object can be
expressed as a least fixpoint on the complete lattice 〈P(T(Σ)),⊆, ∅, T(Σ),∪,∩〉.
Essentially, the semantics of an object is the set of the traces that encode all
the interactions between the object and all the possible contexts it can be
instantiated in:

Definition 3.18 (Object Fixpoint Semantics, oJoK) Let v ∈ Val be
an object input value and s ∈ Store a store at object creation time. Then
the object semantics oJoK ∈ [Din × Store→ P(T(Σ))] is defined as:

oJoK(v, s) = lfp⊆∅ λT. S0〈v,s〉 ∪ {σ0
`0−→ . . .

`n−1−−→ σn
`′−→ σ′ |

σ0
`0−→ . . .

`n−1−−→ σn ∈ T, next(σn) 3 〈σ′, `′〉}.
(3.1)

Using Theorem 2.3 it is immediate to see that

Theorem 3.1 Let

F = λT. S0〈v, s〉∪{σ0
`0−→ . . .

`n−1−−→ σn
`′−→ σ′ |

σ0
`0−→ . . .

`n−1−−→ σn ∈ T, next(σn) 3 〈σ′, `′〉}.

Then oJoK(v, s) =
⋃ω

n=0 Fn(∅).

48 Concrete Semantics

Example 3.6 (Object Semantics) We can use the previous theorem to
compute (3.1) once it is instantiated with our running example. For the sake
of simplicity we do not consider special variables. The first two iterates are:

I0 =∅
I1 =I0 ∪ F(∅) = ∅ ∪ S0〈〈3, true〉, s〉

={〈[i 7→ ai, b 7→ ab], s[ai 7→ 3, ab 7→ true], �, ∅〉}.

Let e0 = [i 7→ ai, b 7→ ab], s0 = [ai 7→ 3, ab 7→ true] and σ0 = 〈e0, s0, �, ∅〉.
Now, from Lemma 3.1 it follows that nextind(σ0) = ∅. Hence, the third
iterate of the fixpoint computation is:

I2 = I1 ∪ F(I1) = {σ0}∪{σ0
〈modify,v〉−−−−−→ 〈e0, s0[ai 7→ 3 + v], �, ∅〉 | v ∈ Val}

∪{σ0
〈getPointer,�〉−−−−−−−−→ 〈e0, s0, ab, {ab}〉}.

It is worth noting that the invocation of getPointer exposes the address ab to
the context. Therefore, in a successive interaction the context can change the
value of the field b, and set it to false. This can be seen in the next iteration.
Let s1(v) = s0[ai 7→ 3 + v], σ′1 = 〈e0, s1, �, ∅〉 and σ′′1 = 〈e0, s0, ab, {ab}〉,

I3 = I2 ∪ F(I2) = {σ0} ∪ {σ0
〈modify,v〉−−−−−→ σ′1} ∪ {σ0

〈getPointer,�〉−−−−−−−−→ σ′′1}

∪ {σ0
〈modify,v〉−−−−−→ σ′1

〈modify,v1〉−−−−−−→ 〈e0, s1(v + v1), �, ∅〉}

∪ {σ0
〈modify,v〉−−−−−→ σ′1

〈getPointer,�〉−−−−−−−−→ 〈e0, s1, ab, {ab}〉}

∪ {σ0
〈getPointer,�〉−−−−−−−−→ σ′′1

〈modify,v〉−−−−−→ 〈e0, s1, �, {ab}〉}

∪ {σ0
〈getPointer,�〉−−−−−−−−→ σ′′1

〈getPointer,�〉−−−−−−−−→ σ′′1}

∪ {σ0
〈getPointer,�〉−−−−−−−−→ σ′′1

κ−→ 〈e, s0, �, {ab}〉}

∪ {σ0
〈getPointer,�〉−−−−−−−−→ σ′′1

κ−→ 〈e, s0[ab 7→ false], �, {ab}〉}.

The iteration schema continues, so we obtain an increasing chain I3 ⊆ I4 ⊆
I5 · · · ⊆ Iω. The fixpoint, Iω, collects all the partial execution traces.

Now we can explain more formally what does it mean that the semantics
of an object contains all the possible interactions between an object with
any possible context. A generic context is free to interact with the object,
by calling any method with any value or by arbitrarily modifying the value
of the escaping addresses: the functions nextdir and nextind take into account
these cases. As a result, we have that oJoK is the most precise property for an
object: it describes the behavior of an object during all his lifetime, for each

3.3 Class Trace Semantics 49

invocation history and context. Therefore it is an object invariant. However,
in general it is not computable so that we need to perform some abstraction
in order to obtain an effective object and hence class invariant.

3.3.3 Class Semantics

As a class is a description of a set of objects, it is natural to define the
semantics of a class C as the set that contains the semantics of all the objects
that are instances of C. This is expressed by the next definition:

Definition 3.19 (Class Semantics, cJAK) Let A = 〈init, F, M〉. Then its
semantics cJAK ∈ P(T(Σ)) is

cJAK = {oJoK(v, s) | o is an instance of A, v ∈ Din, s ∈ Store}.
A class invariant is a property that is satisfied by the semantics of all the

objects that are instance of that class. In our setting, this is equivalent to say
that it is satisfied by all the traces in the class semantics. Once again, the
most precise class invariant is not computable, so that we need to perform
some abstractions in order to obtain an effective analysis.

The class semantics defined above can be expressed in a fixpoint form.
Roughly the semantics of a class is the set of semantics of its instances.
By definition, the semantics of each instance takes into account, among the
others, the interaction with other objects. In particular this is valid when the
objects belong to the same class. Therefore, it is possible to “flat” together
the semantics of the different instances without introducing new behaviors:

Theorem 3.2 (Class Semantics as Fixpoint) The class semantics can
be expressed in fixpoint form

cJAK = lfp⊆∅ F〈Din × Store〉,
where

F〈S〉 = λT. {S0〈v, s〉 | 〈v, s〉 ∈ S}∪{σ0
`0−→ . . .

`n−1−−→ σn
`′−→ σ′ |

σ0
`0−→ . . .

`n−1−−→ σn ∈ T, next(σn) 3 〈σ′, `′〉}.
Proof. By definition cJAK = {oJoK(v, s) | v ∈ Din, s ∈ Store}. Applying in
the order Definition 3.18, Theorem 3.1 and Theorem 2.3, we can rewrite the
definition of the class semantics as follows:

cJAK =
⋃

〈v,s〉∈Din×Store

lfp⊆∅ F〈{〈v, s〉}〉 =
⋃

〈v,s〉∈Din×Store

ω⋃
n=0

Fn〈{〈v, s〉}〉(∅)

=
ω⋃

n=0

Fn〈Din × Store〉(∅) = lfp⊆∅ F〈Din × Store〉.

50 Concrete Semantics

q.e.d.

3.4 Relation between wJ·K and cJ·K
We are now left to study the relation between wJPK, the semantics of a whole
object-oriented program, and cJAK, the semantics of a class. The main result
of this section are Theorems 3.3 and 3.4, which state the soundness and the
completeness of the class semantics w.r.t. the whole program semantics.

3.4.1 Abstraction

We define an abstraction function that, given a trace τ ∈ T(Env×Store) and
an object o that belongs to a class A, cuts all the sub-traces of τ that do not
involve the object o.

First, we define the helper function splito ∈ [T(Env × Store) → (Env ×
Store) × T(Env × Store)] which, given a trace τ and an object o, finds the
longest prefix of τ made up of states involving the execution of a method
of o and returns a pair consisting of the last state of such a prefix and the
remaining suffix of τ . Formally:

Definition 3.20 (splito) Let o be an object and τ ∈ T(Env × Store) and
pcexit be the exit point of τ(0)(curMethod). Then splito ∈ [T(Env×Store)→
(Env × Store)× T(Env × Store)] is defined as

splito(τ) =let n = min{i ∈ N | τ(i)(pc) = pcexit ∧ τ(i)(this) = o ∧
τ(0)(stackHeight) = τ(i)(stackHeight)}

in 〈τ(n), τ(n + 1) −→ . . . −→ τ(len(τ)− 1)〉.

Definition 3.21 (αo
✂) Let o be an object, τ ∈ T(Env × Store). Then αo

✂ ∈
[(T(Env × Store)× Store)→ T(Env × Store)] is defined as:

αo
✂ = λ(τ, slast).



ε if τ = ε

let 〈ρ′, τ ′〉 = splito(τ)
in let 〈e′, s′〉 = ρ′

in ρ′ −→ αo
✂(τ ′, s′)

if τ = 〈e, s〉 −→ τ ′′, e(this) = o

αo
✂(τ ′′, slast)

if τ = 〈e, s〉 −→ τ ′′, e(this) 6= o,
s/s(o) = slast/s(o)

〈e, s〉 −→ αo
✂(τ ′′, s)

if τ = 〈e, s〉 −→ τ ′′, e(this) 6= o,
s/s(o) 6= slast/s(o).

3.4 Relation between wJ·K and cJ·K 51

The four cases of αo
✂ can be explained as follows. The abstraction of the

empty trace is the empty trace. If the first state of the trace involves the
object o (i.e. e(this) = o), then it means we are inside some method m of o,
so that we abstract away all the internal steps of the execution of m but the
last and we apply recursively the abstraction to the rest of the trace. If the
current object is not o, then we can distinguish two cases for the first state
of τ . If the part of memory reached by the environment of o is not changed
(i.e. s/s(o) = slast/s(o)) then it can be dropped. If not, it must be kept. In the
two cases we continue with the rest of the trace (i.e. τ ′′).

The next abstraction maps the states of a trace to interaction states.

Definition 3.22 (αo
↑) Let o be an object and τ ∈ T(Env × Store). Then

αo
↑ ∈ [(T(Env × Store)× P(Addr))→ T(Σ)] is defined as

αo
↑ = λ(τ, Esc).



ε if τ = ε

let 〈e, s〉 = ρ
in let Esc′ = Esc ∪ reachable(ρ(retVal), s)
in 〈〈e, s, ρ(retVal), Esc′〉,

〈ρ(curMethod), ρ(inVal)〉〉
−→ αo

↑(τ
′, Esc′)

if τ = ρ −→ τ ′,
e(this) = o

let 〈e, s〉 = ρ
in 〈〈e, s, �, Esc〉, κ〉 −→ αo

↑(τ
′, Esc)

if τ = ρ −→ τ ′,
e(this) 6= o.

Finally, the abstraction αo ∈ [P(T(Env × Store)) → P(T(Σ))], given a
set of execution states T , projects from the traces in T the states that are
relevant to the object o, either by calling one of its methods or by modifying
the value of a memory location reachable by the fields of o. Formally:

Definition 3.23 (αo) Let o be an object, T ⊆ T(Env × Store) a set of
execution traces and s∅ be the empty store. Then the abstraction αo ∈
[P(T(Env × Store))→ P(T(Σ))] is defined as

αo(T) = {αo
↑(α

o
✂(τ, s∅), ∅) | τ ∈ T}.

Lemma 3.3 (αo is a Complete ∪-morphism) ∀{Ti | Ti ⊆ T(Env×Store)}.
αo(
⋃

i Ti) =
⋃

i α
o(Ti).

Proof. Let {Ti} a collection of set of traces. Then

αo(
⋃
i

Ti) = {αo
↑(α

o
✂(τ, s∅), ∅) | τ ∈

⋃
i

Ti}

=
⋃
i

{αo
↑(α

o
✂(τ, s∅), ∅) | τ ∈ Ti} =

⋃
i

αo(Ti).

52 Concrete Semantics

q.e.d.

The previous lemma, together with Lemma 2.4 and Lemma 2.3 imply
that there exists a concretization function γo such that:

Lemma 3.4 (Soundness of αo)

〈P(T(Env × Store)),⊆, ∅, T(Env×Store),∪,∩〉 −−−→←−−−
αo

γo

〈P(T(Σ)),⊆, ∅, Σ,∪,∩〉.

3.4.2 Soundness and Completeness of the Class Semantics

We can now state the relation between the whole-program semantics wJ·K
and the class semantics cJ·K. The first theorem essentially states that all the
interactions that a program P performs on an object o instance of a class A

are captured by cJAK.

Theorem 3.3 (Soundness of cJ·K) Let P be a whole object-oriented pro-
gram, let A ∈ P and o be an instance of A. Then

∀R0 ⊆ Env × Store.∀τ ∈ T(Env × Store).

τ ∈ wJPK(R0) =⇒ ∃τ ′ ∈ cJAK. αo({τ}) = {τ ′}.

Proof. Let τ ∈ wJPK(R0). By definition of wJ·K, τ = ρ0 −→ . . . −→ ρn, with
ρo ∈ R0. If o is not an object instantiated in τ , then ∀i ∈ [0..n]. τ(i)(this) 6=
o, so that by definition of αo, αo({τ}) = {ε}, so that the theorem is straight-
forwardly verified. If not, αo({τ}) = {τα} is such that τα = σ0

`0−→ . . .
`k−1−−→

σk, with k ≤ n and ∀i ∈ [0..k]. σi ∈ Σ and either `i = κ or `i = 〈m, v〉. The
first state, σ0 is the consequence of the object creation, i.e. of the constructor
invocation. Therefore, as iJinitK is built on the top of wmJinitK, Definition
3.7 and Definition 3.11 imply that ∃i ∈ [0..n]. ρi = 〈ei, si〉.∃x ∈ Vars. σ0 ∈
S0〈ρi(x), si〉. Now, consider for all the i ≥ 0 the sub-trace σi

`i−→ σi+1 of τα. If
`i = κ then by definition of nextind, σi+1 ∈ nextind(σi). Otherwise, ` = 〈m, v〉
for some method m of A and v ∈ Din. Therefore, as nextdir considers all the
methods and all the possible input value, σi+1 ∈ nextind(σi). To sum up, the
fact that σ0 ∈ S0〈ρi(x), si〉 and that all the transitions of τα may be mimicked
by either nextind or nextdir implies that τα ∈ cJAK necessarily.

q.e.d.

Next theorem states that all the behaviors considered by cJAK are feasible.

3.5 Languages with Class Destructor 53

Theorem 3.4 (Completeness of cJ·K) Let A be a class. Then

∀τ ∈ T(Σ). τ ∈ cJAK =⇒∃P.∃ρo ∈ Env × Store.

∃o instance of A.∃τ ′ ∈ T(Env × Store).

τ ′ ∈ wJPK({ρ0}) ∧ αo({τ ′}) = {τ}.

Proof. (Sketch) Let τ = σ0
`0−→ . . .

`n−1−−→ σn ∈ cJAK. The theorem is proved
by constructing a suitable program P and initial state ρ0. By definition of
cJAK and Definition 3.11, it exists a pair 〈v, s〉 such that iJinitK〈v, s〉 = σ0.
As a consequence, we can build a ρ0 = 〈e′, s〉 such that e′ is an environment
that satisfy s(e′(inVal)) = v. The corresponding program P will contain the
line o = new A(inVal). Then, the construction of the other lines of P goes
on by considering the labels `0, `1, . . . `n−1: ∀i ∈ [0..n− 1] if `i = 〈m, v〉 then
P will contain the command o.m(v). If not, for a transition σi

κ−→ σi+1 it will
contain a sequence of assignments ∗aj = v where aj is the address of the an
escaped field value (obtained from the field Esc of σi) and v is the new value
(obtained from the store in σi+1, i.e. si+1(aj) = v). By construction of ρ0 and
P the theorem is proved.

q.e.d.

3.5 Languages with Class Destructor
Most class-based object oriented languages as C++ [101] or Object Pascal
[12] provide a class destructor, somehow a dual of the class constructor. In
simple terms a destructor is a member that implements the actions required
to destroy an instance of a class. For instance, destructors can be used to
recover the heap space or to terminate file I/O that is associated with the
removed class instance. In this section we sketch how the previous definitions
and results can be extended to cope with languages that provide a class
destructor.

First, the class syntax can be extended with a further element: the class
destructor destroy:

D = 〈init, F, M, destroy〉.

The semantics of an object should take into account the destructor so that all
the traces must end with a state consequence of the invocation of the destruc-
tor. As a consequence, all the maximal traces begin with an “init” transition
and they end with a “destroy” transition. Such a semantics can be obtained
from the trace semantics above by filtering the suitable traces. In particular,

54 Concrete Semantics

we keep all the traces that end with an invocation of the destructor:

c
′JDK ={σ0

`0−→ . . .
destroy−−−−→ σn ∈ cJDK}.

Nevertheless, in this thesis we do not consider classes endowed with a
class destructors. The main reason is that modern object oriented languages
come with a garbage collector, so that the use of a destructor to explicitly
deallocate an object is not required, if not forbidden. For example in Java [56]
the memory management is left to the JVM, so that as soon as an object is no
more accessible then it becomes a candidate for removing. However, it still
has a form of destructor, namely the finalize method, which is invoked by
the garbage collector just before it frees the memory allocated by the object.
The main difference between a C++ destructor and the finalize method is
that the first can be explicitly invoked by the program text whereas this is
denied for the latter.

Chapter 4

Abstract Semantics

Per aspera ad astra. 1

Latin proverb

The class concrete semantics cJAK is the most precise class property. Unfor-
tunately, it is non-computable: in the general case, cJAK is a set that contains
infinitely many traces. Therefore, we need to perform some abstractions in
order to obtain a computable approximation of the class semantics. In this
chapter we present a generic, two-steps abstraction for inferring the reach-
able states of a class. The first abstraction collects together all the states
that have the same cause, e.g. they are the result of the invocation of the
same methods. The nodes of the traces will be no more states but sets of
states, and for each node there will be one, and just one, successor for each
class method. Next step abstracts away the computational history. In other
terms, the abstraction collects all the nodes in the traces, forgetting the ca-
sual relation between the states. Finally, the last step will be to abstract the
set of objects that may be instances of a class.

4.1 Stepwise Abstraction
In the stepwise methodology to the design of abstract semantics, the concrete
semantics is approximated by a series of successive abstractions, the intuition
being that each step abstracts away the properties that are not relevant for
the analysis. Examples of stepwise abstraction can be found in [28] to obtain
a hierarchy of semantics as stepwise abstractions of a concrete trace seman-
tics and in [26] to derive a hierarchy of type systems systematically from

1(Latin) Through difficult things to the abstract.

55

56 Abstract Semantics

a denotational semantics. As far as static analysis is concerned, examples
are [27] and [45] where the approach has been used for the design of generic
abstract interpreters respectively for a small imperative language and for the
π-calculus.

The stepwise approach to the design of abstract semantics is theoreti-
cally justified by Theorem 2.5, which states that the set of abstractions of a
given concrete domain forms a complete lattice. Such a methodology can be
sketched as follows. Let us have a concrete domain 〈D,v〉, which is a com-
plete lattice, and a semantic function sJAK defined on D. The first step is to
define the abstract domain, say D̄, and the abstraction function α ∈ [D→ D̄]
that relates the elements of D and D̄. Intuitively, the abstract domain D̄
captures the properties of the semantics we are interested in. Next, one must
show the soundness of the abstraction, e.g. that the concrete and the abstract
domain are related by a Galois connection. For instance, this can be done
either by explicitly giving the concretization map γ or by proving that α is
a complete join morphism (cf. Lemma 2.3). Finally, the abstract seman-
tics s̄JAK is designed by calculus as an upper approximation of the concrete
semantics:

α ◦ sJAKv̄s̄JAK. (4.1)

If the so-obtained abstract semantics is still not satisfactory, then the process
can be repeated starting from the abstract domain D̄ and the corresponding
abstract semantics. As a consequence, the stepwise approach produces a
chain of abstract domains (cf. Theorem 2.5):

〈D,v〉 −−−→←−−−α1

γ1 〈D̄1, v̄1〉 −−−→←−−−α2

γ2

. . . −−−→←−−−
αn

γn 〈D̄n, v̄n〉 (4.2)

and of respective sound abstract semantics s̄iJAK. Roughly, each element in
the chain (4.2) represents an abstraction from a particular property. There-
fore the refinement of the abstract semantics w.r.t. a particular property can
be easily obtained by refining the corresponding abstraction.

Example 4.1 (Temporal Class Invariants) Later in this chapter we
introduce a state-based abstraction of the class semantics that abstracts away
the casual relations between states. Nevertheless, an abstract semantics that
describes the objects evolution in time [41] can be obtained replacing the
state-based abstraction with e.g. Typed Decision Graphs [79].

From Theorem 2.5 it follows that 〈D̄n, v̄n〉 is a sound abstraction of the
concrete domain 〈D,v〉 and from Lemma 2.1 and Theorem 2.4 it follows
that the corresponding abstract semantics s̄nJAK is an upper approximation
of sJAK:

αn ◦ αn−1 ◦ . . . α1 ◦ sJAKv̄ns̄nJAK. (4.3)

4.2 First Abstraction: Collecting Traces 57

σ1
〈mi,v1〉−−−→ σ2

〈mj,v2〉−−−→ σ3

σ′1
〈mi,v′1〉−−−→ σ′2

〈mj,v′2〉−−−→ σ′3

σ′′1
〈mi,v′′1 〉−−−−→ σ′′2

κ−→ σ′′3

α�
=⇒ {σ1, σ

′
1, σ

′′
1}

mi−→ {σ2, σ
′
2, σ

′′
2}

mj−→ {σ3, σ
′
3}

{σ1, σ
′
1, σ

′′
1}

mi−→ {σ2, σ
′
2, σ

′′
2}

κ−→ {σ′′3}

Figure 4.1: The first abstraction

The soundness proof of s̄nJAK boils down in proving that at each abstrac-
tion step the abstract domain and the abstract semantics verify (4.1). In
general such a proof is easier than a direct approach, that can be longer,
more complex and error-prone. Furthermore, the soundness is ensured by
construction, i.e. the abstract semantic function is derived by calculus.

To sum up, the main advantages of a stepwise-abstraction design of ab-
stract semantics are that:

– a lengthy and error-prone soundness prove is split in smaller, easier-to-
check proofs;

– the soundness of the abstract semantics is by construction;

– the points where precision is lost are clearly identified;

– the refinement of the analysis boils down to the refinement of the cor-
responding abstraction.

A further advantage will be made clearer in the next chapter. In fact,
thanks to the stepwise approach, the soundness of a class invariant is proved
once and for all. Thus, an instance of the framework must just prove the
soundness w.r.t. the semantics of the method bodies.

4.2 First Abstraction: Collecting Traces
The semantics of an object is a set of labeled traces. Each node in one of
these traces is an interaction state and the trace labels encode the interaction
history of the object. The aim of the first abstraction is to “smash” together
all the traces that share the same interaction history. For example, let us
consider the traces in Figure 4.1: the first two traces are consequence of the
sequential invocation of the methods mi and mj whereas the third one has a
different interaction history. The abstraction function α� collects together
all the traces and trace prefixes that have the same labels, i.e. the same
invocation history. It abstracts away the method input values v’s and the

58 Abstract Semantics

causality relation between the states. For example in Figure 4.1, the fact
the state σ′′3 is the successor of σ′′2 is lost: it can be either a successor of
σ2, σ′2 or σ′′2 . Nevertheless the property that it is consequence of an indirect
interaction is preserved.

In the rest of this section we formally define the abstract domain of the
collecting traces, the abstraction and concretization functions and eventually
we derive the abstract semantics by calculus.

4.2.1 Abstract Domain

We consider an abstract domain whose elements are sets of traces that we
call collecting traces. A node in a collecting trace is a set of states and
each transition is labeled with the cause that originated it. Furthermore we
require that each element in the abstract domain contains only one collecting
trace with a given interaction history. Differently stated, we forbid that
two traces with the same interaction history coexist in the same set. The
order, the smallest and the largest element, the join and the meet are defined
accordingly. We start by formally defining the interaction history:

Definition 4.1 (Interaction History) The interaction history is given
by the function history ∈ [T(Σ)→ {M ∪ {κ}}∗] defined as follows:

history(ε) = ε

history(σ
〈m,v〉−−→ τ) = m · history(τ)

history(σ
m−→ τ) = m · history(τ)

history(σ
κ−→ τ) = κ · history(τ).

Example 4.2 With reference to the traces in Figure 4.1, we have that:

history

(
σ1

〈mi,v1〉−−−→ σ2
〈mj,v2〉−−−→ σ3

)
= history

(
σ′1

〈mi,v′1〉−−−→ σ′2
〈mj,v′2〉−−−→ σ′3

)
= mi · mj

history

(
σ′′1

〈mi,v′′1 〉−−−−→ σ′′2
κ−→ σ′′3

)
= mi · κ

It is worth noting that the interaction history abstracts away from the
method input value v.

The abstract elements are sets of collecting traces that do not contain
doubles w.r.t. the interaction history. Namely, if an element contains two
traces with the same interaction history then they are the same trace:

Definition 4.2 (Sets of Collecting Traces) The set of collecting traces
D̄� ⊆ P(T(P(Σ))) is such that

∀T̄ ∈ D̄�. ∀t̄1, t̄2 ∈ T̄. history(̄t1) = history(̄t2)⇒ t̄1 = t̄2.

4.2 First Abstraction: Collecting Traces 59

Given two sets of collecting traces T̄1 and T̄2, T̄1 is larger than T̄2 if it is
able to mimic its the behavior. By mimic we mean that for each collecting
trace in T̄2 there exists one in T̄1 that has the same history trace and involves
at least the same states:

Definition 4.3 (Order, ⊆̄�) Let T̄1 and T̄2 be two elements of D̄�. Then

T̄1⊆̄�T̄2 ⇐⇒ ∀t̄1 ∈ T̄1.∃t̄2 ∈ T̄2. t̄1⊆̄τ
�t̄2,

where the order ⊆̄τ
� on single traces is defined as

t̄1⊆̄τ
�t̄2 ⇐⇒(̄t1 = t̄2)∨

(̄t1 = S1
`1−→ t̄′1 ∧ t̄2 = S2

`2−→ t̄′2 ∧ S1 ⊆ S2 ∧ `1 = `2 ∧ t̄′1⊆̄
τ
�t̄′2)

The definition of ⊆̄τ
� above can be rewritten in order to make explicit the

fact that the two traces have the same interaction history 1:

t̄1⊆̄τ
�t̄2 ⇐⇒history(̄t1) = history(̄t2)∧

(∀i. t̄1(i) = Si ∧ t̄2(i) = S ′
i ⇒ Si ⊆ S ′

i).

Example 4.3 Let us consider the following collecting traces:

t̄1 = {σ1, σ2}
`1−→ {σ′1, σ′2}

`2−→ {σ′′1 , σ′′2 , σ′′3}
t̄2 = {σ1, σ2}

`1−→ {σ′1, σ′2, σ′3}
`2−→ {σ′′1 , σ′′2 , σ′′3}

t̄3 = {σ1, σ2, σ3}
`1−→ {σ′4}

`2−→ {σ′′1 , σ′′2 , σ′′3},

applying the definition above, it is easy to see that t̄1⊆̄τ
�t̄2. However, neither

t̄2⊆̄τ
�t̄3 nor t̄3⊆̄τ

�t̄2.

Once we have the order it is quite easy to give the smallest and the largest
elements w.r.t. this order. It is routine to check that ⊥̄� = ∅ is the smallest
element. On the other hand, the largest element in the abstract domain
must contain all the possible interaction histories. Furthermore, each node
in a trace must contain all the possible states. Therefore it is immediate to
verify that:

Lemma 4.1 (Top, >̄�) The set of collecting traces >̄� ∈ D̄�, defined as

>̄� =
⋃

h∈{M∪{κ}}∗
{t̄ | ∀i.̄t(i) = Σ, history(̄t) = h}.

is such that ∀T̄ ∈ D̄�.T̄⊆̄�>̄�.
1We recall that t̄(i) denotes the i-th node of the trace t̄.

60 Abstract Semantics

The join operator collects together the states of the traces that have the
same interaction history:

Definition 4.4 (Join, ∪̄�) Let T̄1 and T̄2 be two elements of D̄�, then the
join operator ∪̄� ∈ [D̄� × D̄� → D̄�] is

T̄1∪̄�T̄2 = {∪̄τ
�T̄ | T̄ ∈ (T̄1 ∪ T̄2)/history},

where ∪̄τ
� ∈ [T(P(Σ))× T(P(Σ))→ T(P(Σ))] is defined as follows:

S1∪̄�S2 = S1 ∪ S2

S1
`−→ τ1∪̄τ

�S2
`−→ τ2 = S1 ∪ S2

`−→ (τ1∪̄τ
�τ2).

Example 4.4 If we apply the definition above to the traces of the Example
4.3, we obtain:

{t̄2}∪̄�{t̄3} = {{σ1, σ2, σ3}
`1−→ {σ′1, σ′2, σ′3, σ′4}

`2−→ {σ′′1 , σ′′2 , σ′′3 }︸ ︷︷ ︸
=t̄4

}.

Clearly, {t̄2}⊆̄�{t̄4} and {t̄3}⊆̄�{t̄4}. Furthermore, each T̄ such that
{t̄2}⊆̄�T̄ and {t̄3}⊆̄�T̄ is also {t̄4}⊆̄�T̄. Thus {t̄4} is the smallest set of
collecting traces larger than {t̄2} and {t̄3}. This result can be generalized,
so that ∪̄� can be shown to be the complete join on the abstract domain
〈D̄�, ⊆̄�〉:

Lemma 4.2 The operator ∪̄� is a complete join on 〈D̄�, ⊆̄�〉.

Proof. Let us consider two arbitrary elements of D̄�, say T̄1 and T̄2. The
first thing to show is that T̄ = T̄1∪̄�T̄2 is an upper bound. By definition
for each trace t̄ in T̄1 or T̄2 there exists a trace t̄′ that is the only one in T̄
with the same interaction history of t̄. Furthermore the states of t̄′ form a
superset of the corresponding states in t̄. Therefore, by Definition 4.3 T̄ is
larger than T̄1 and T̄2. Furthermore T̄ is the least upper bound as if T̄1⊆̄�T̄′

and T̄2⊆̄�T̄′ then for each t̄ ∈ T̄1 ∪ T̄2.∃t̄′ ∈ T̄′ .̄t⊆̄τ
�t̄′. By definition of ⊆̄τ

�,
it means that history(̄t) = history(̄t′) and for all the i ≥ 0.̄t(i) = Si and
t̄′(i) = S ′

i then Si ⊆ S ′
i. By definition of ∪̄�, it exists a trace t̄∪ in T̄ such

that history(̄t) = history(̄t∪). Furthermore for all i ≥ 0.̄t(i) ⊆ t̄∪(i). Thus
T̄⊆̄�T̄′, so that ∪̄� is a join morphism. The completeness follows directly
from the properties of union of sets and the uniqueness of traces with the
same interaction history.

q.e.d.

4.2 First Abstraction: Collecting Traces 61

It is worth noting that if T̄1 and T̄2 are two elements of D̄� that do not
contain traces with the same interaction history then T̄1∪̄�T̄2 reduces to set
union. This is formalized by the following lemma:

Lemma 4.3 Let T̄1 and T̄2 be two elements of D̄�. If

∀t̄1 ∈ T̄1.∀t̄2 ∈ T̄2. history(̄t1) 6= history(̄t2)

then T̄1∪̄�T̄2 = T̄1 ∪ T̄2.

Proof. Using the hypothesis, it is immediate to see that in Definition 4.4:
(T̄1 ∪ T̄2)/history = {{t̄} | t̄ ∈ T̄1 ∨ t̄ ∈ T̄2} = {t̄ ∈ T̄1} ∪ {t̄ ∈ T̄2}. Thus,
T̄1∪̄�T̄2 = T̄1 ∪ T̄2.

q.e.d.

The meet operator can be defined dually w.r.t. the join. Furthermore,
following the lines of the above proof it can be shown to be a complete meet:

Definition 4.5 (Meet, ∩̄�) Let T̄1 and T̄2 be two elements of D̄�, then the
meet ∩̄� ∈ [D̄� × D̄� → D̄�] is

T̄1∩̄�T̄2 = {∩̄τ
�T̄ | T̄ ∈ (T̄1 ∩ T̄2)/history},

where ∩̄τ
� ∈ [T(P(Σ))× T(P(Σ))→ T(P(Σ))] is defined as follows:

S1∩̄τ
�S2 = S1 ∩ S2

S1
`−→ τ1∩̄τ

�S2
`−→ τ2 = S1 ∩ S2

`−→ (τ1∩̄τ
�τ2).

The definition of the abstract domain of collecting traces is a consequence
of what has been said so far. In particular an easy consequence of the above
lemmata is that it is a complete lattice:

Theorem 4.1 (Abstract Domain of Collecting Traces) The abstract
domain 〈D̄�, ⊆̄�, ⊥̄�, >̄�, ∪̄�, ∩̄�〉 is a complete lattice.

For the moment, the term abstract domain is not fully justified. In fact
we have to show that the above domain is related to the domain of traces by
a Galois connection. This is the goal of the next section.

62 Abstract Semantics

4.2.2 Abstraction

The idea of the abstraction function is to collect together, at a given time,
all the states that are consequence of the invocation of the same method or
of the same context interaction. The formal definition is given below.

The abstraction of a state is the singleton that contains such a state. The
abstraction of a set of traces T is a little bit more complicated. As for the
direct interactions are concerned, we consider the set Tm of all the traces in
T whose first action is the invocation of the method m. Differently stated, Tm

is the set of the consequences of m. In order to obtain the set of collecting
traces T̄′ we recursively apply the abstraction function to the traces that are
consequence of an invocation of m. The initial states of the traces in T and
T̄′ are respectively S and S ′. Roughly, S is the set of internal states before
the invocation of the method m and S ′ is the set of internal states after the
invocation of the method m with any input value. Then, we replace the initial
states of the traces in T̄′ with S ′, obtaining the set of traces T̄′′. Finally, the
abstraction of the set of traces T̄ is a set of traces in the form S

m−→ S ′ −→ τc,
where S ′ −→ τc belongs to T̄′′. The case of indirect interaction is similar.

Definition 4.6 (Traces Abstraction, α�) The abstraction function α� ∈
[P(T(Σ))→ D̄�] is defined as follows:

α�(S) = S if S ⊆ Σ

α�(T) = {S m−→ τc | m ∈ M ∪ {init}, Tm = {t ∈ T | t = σ
〈m,v〉−−→ τ},

T̄′ = α�({τ | σ 〈m,v〉−−→ τ ∈ Tm}),

S =
⋃

σ
m−→τ∈Tm

{σ}, S ′ =
⋃

S′′
`−→τ∈T̄′

S ′′,

τc ∈ T̄′′ = {S ′ m−→ τ | ∃t̄ ∈ T̄′. t̄ = S ′′′ `−→ τ}}
∪ {S κ−→ τc | Tκ = {t ∈ T | t = σ

κ−→ τ},
T̄′ = α�({τ | σ κ−→ τ ∈ Tκ}),

S =
⋃

σ
κ−→τ∈Tκ

{σ}, S ′ =
⋃

S′′
`−→τ∈T̄′

S ′′,

τc ∈ T̄′′ = {S ′ κ−→ τ | ∃t̄ ∈ T̄′. t̄ = S ′′′ `−→ τ}}.

Example 4.5 Let us apply the above definition to the traces of Figure 4.1.

4.2 First Abstraction: Collecting Traces 63

The set of traces to abstract is

T =


σ1

〈mi,v1〉−−−→ σ2
〈mj,v2〉−−−→ σ3

σ′1
〈mi,v′1〉−−−→ σ′2

〈mj,v′2〉−−−→ σ′3

σ′′1
〈mi,v′′1 〉−−−−→ σ′′2

κ−→ σ′′3

 .

The corresponding collecting traces, abstraction of T are given by:

α�(T) =

{
{σ1, σ

′
1, σ

′′
1}

mi−→ {σ2, σ
′
2, σ

′′
2}

mj−→ {σ3, σ
′
3}

{σ1, σ
′
1, σ

′′
1}

mi−→ {σ2, σ
′
2, σ

′′
2}

κ−→ {σ′′3}

∣∣∣
Tmi = T, T̄′ = α�




σ2
〈mj,v2〉−−−→ σ3

σ′2
〈mj,v′2〉−−−→ σ′3

σ′′2
κ−→ σ′′3


 ,

S = {σ1, σ
′
1, σ

′′
1}, S ′ = {σ2, σ

′
2, σ

′′
2},

T̄′′ =

{
{σ2, σ

′
2, σ

′′
2}

mj−→ {σ3, σ
′
3},

{σ2, σ
′
2, σ

′′
2}

κ−→ {σ′′3}

}}
.

In the above formula, the function α� is called recursively on a set of shorter
traces in order to obtain T ′. The details of this invocation are given below:

α�




σ2
〈mj,v2〉−−−→ σ3

σ′2
〈mj,v′2〉−−−→ σ′3

σ′′2
κ−→ σ′′3


 =

{
{σ2, σ

′
2}

mj−→ {σ3, σ
′
3}
∣∣∣

Tmj =

{
σ2

〈mj,v2〉−−−→ σ3

σ′2
〈mj,v′2〉−−−→ σ′3

}
,

T′ = α�({σ3, σ
′
3}) = {σ3, σ

′
3},

S = {σ2, σ
′
2}, S ′ = {σ3, σ

′
3}, T′′ = {σ3, σ

′
3}}

∪{{σ′′2}
κ−→ {σ′′3} | Tκ = {σ′′2

κ−→ σ′′3}, T̄′ = {σ′′3},
S = {σ′′2}, S ′ = {σ′′3}, T̄′′ = {σ′′3}}.

The concretization function γ� maps a set of collecting traces to interac-
tion traces. In particular, the concretization of a collecting trace t̄ is the set
of all the traces that have the same interaction history and whose states are
taken from the nodes of t̄.

64 Abstract Semantics

T′ =

{
σ1

〈mi,v1〉−−−→ σ2
〈mj,v2〉−−−→ σ3

σ1
〈mi,v1〉−−−→ σ2

〈mj,v2〉−−−→ σ′3

,
σ1

〈mi,v1〉−−−→ σ′2
〈mj,v2〉−−−→ σ3

σ1
〈mi,v1〉−−−→ σ′2

〈mj,v2〉−−−→ σ′3

,
σ1

〈mi,v1〉−−−→ σ′′2
〈mj,v2〉−−−→ σ3

σ1
〈mi,v1〉−−−→ σ′′2

〈mj,v2〉−−−→ σ′3

}

∪

{
σ′1

〈mi,v1〉−−−→ σ2
〈mj,v2〉−−−→ σ3

σ′1
〈mi,v1〉−−−→ σ2

〈mj,v2〉−−−→ σ′3

,
σ′1

〈mi,v1〉−−−→ σ′2
〈mj,v2〉−−−→ σ3

σ′1
〈mi,v1〉−−−→ σ′2

〈mj,v2〉−−−→ σ′3

,
σ′1

〈mi,v1〉−−−→ σ′′2
〈mj,v2〉−−−→ σ3

σ′1
〈mi,v1〉−−−→ σ′′2

〈mj,v2〉−−−→ σ′3

}

∪

{
σ′′1

〈mi,v1〉−−−→ σ2
〈mj,v2〉−−−→ σ3

σ′′1
〈mi,v1〉−−−→ σ2

〈mj,v2〉−−−→ σ′3

,
σ′′1

〈mi,v1〉−−−→ σ′2
〈mj,v2〉−−−→ σ3

σ′′1
〈mi,v1〉−−−→ σ′2

〈mj,v2〉−−−→ σ′3

,
σ′′1

〈mi,v1〉−−−→ σ′′2
〈mj,v2〉−−−→ σ3

σ′′1
〈mi,v1〉−−−→ σ′′2

〈mj,v2〉−−−→ σ′3

}

∪


σ1

〈mi,v1〉−−−→ σ2
κ−→ σ′3

σ1
〈mi,v1〉−−−→ σ2

κ−→ σ′′3

σ1
〈mi,v1〉−−−→ σ2

κ−→ σ′′3

,

σ′1
〈mi,v1〉−−−→ σ2

κ−→ σ′3

σ′1
〈mi,v1〉−−−→ σ2

κ−→ σ′′3

σ′1
〈mi,v1〉−−−→ σ2

κ−→ σ′′3

,

σ′′1
〈mi,v1〉−−−→ σ2

κ−→ σ′3

σ′′1
〈mi,v1〉−−−→ σ2

κ−→ σ′′3

σ′′1
〈mi,v1〉−−−→ σ2

κ−→ σ′′3

 .

Figure 4.2: The set of traces T′, concretization of α�(T).

Definition 4.7 (Traces Concretization, γ�) The concretization map,
γ� ∈ [D̄� → P(T(Σ))] is defined as follows:

γ�(T̄) =
⋃
t̄∈T̄

γτ
�(̄t)

γτ
�(̄t) = {t ∈ T(Σ) | history(t) = history(̄t),∀i. t(i) ∈ t̄(i)}.

Example 4.6 Let us consider the set of collecting traces α�(T) of Example
4.5. Then their concretization γ�(α�(T)) is the set of traces in Figure 4.2,
where v1, v2 ∈ Din.

In the above example, we can see that T ⊆ γ�(α�(T)). This result always
holds, so that it is possible to show that γ� ◦ α� is extensive:

Lemma 4.4 (Extensivity of γ� ◦ α�) ∀T ∈ P(T(Σ)).T ⊆ γ�(α�(T)).

Proof. Let t ∈ T. Then, the definition of α� implies that there exists a
t̄ ∈ α�(T) that has the same history as t, i.e. history(t) = history(̄t), so that
each node i is such that t(i) ∈ t̄(i). By definition 4.7, t ∈ γτ

�(̄t). The thesis
follows from the fact that t is an arbitrary element of T.

q.e.d.

4.2 First Abstraction: Collecting Traces 65

Furthermore, it is possible to show that α� ◦ γ� is reductive (Lemma 4.5
below), so that 〈α�, γ�〉 is a Galois connection between the concrete domain
of traces and the abstract domain of collecting traces (Theorem 4.2):

Lemma 4.5 (Reductivity of α� ◦ γ�) ∀T̄.α�(γ�(T̄))⊆̄�T̄.

Proof. Let t ∈ γ�(T̄). By definition, there exists t̄ ∈ T̄ such that t ∈ γτ
�(̄t).

Then, the history of t and t̄ are the same and for each node i the state t(i)
belongs to t̄(i). By definition of α�, it is immediate to see that α�({t})⊆̄�{t̄}.
The thesis follows by considering the union on all the t’s.

q.e.d.

Theorem 4.2 (Collecting Traces Abstract Domain) The concrete
domain of set of traces is linked to the abstract domain of sets of collecting
traces by a Galois connection:

〈P(T(Σ)),⊆, ∅, T(Σ),∪,∩〉 −−−→←−−−
α�

γ� 〈D̄�, ⊆̄�, ⊥̄�, >̄�, ∪̄�, ∩̄�〉.

Proof. We use Theorem 2.4. Lemma 4.4 and Lemma 4.5 state extensivity
and reductivity. So, we are left to show that α� and γ� are monotonic. But
such proofs are immediate by the properties of set union.

q.e.d.

4.2.3 Abstract Semantics

We can use the abstraction α� to design the abstract semantics by calculus.
We recall from (3.1) that the semantics of an object is expressed in fixpoint
form as oJoK = lfpλT.F(T), for a suitable set transformer F. Thanks to the
fixpoint transfer theorem (cf. Theorem 2.6), if we have an abstract functor
F̄ that satisfies the commutative property α� ◦ F(T)⊆̄�F̄ ◦ α�(T), then

α�(lfpλT.F(T))⊆̄�lfpλT.F̄(T).

Then, the soundness of the abstract semantics is assured. In the rest of this
section we design F̄ by calculus. We begin with some definitions.

The semantics of a method can be lifted to set of states in a straightfor-
ward fashion:

66 Abstract Semantics

Definition 4.8 (Collecting Method Semantics, MJ·K) Let m be a method
and S ∈ P(Σ) a set of interaction states. Then the collecting method seman-
tics, MJmK ∈ [P(Σ)→ P(Σ)] is defined as:

MJmK(S) = {〈e′, s′, v′, Esc′〉 |〈e, s, v, Esc〉 ∈ S, vin ∈ Din,

mJmK(vin, e, s) 3 〈v′, e′, s′〉,
Esc′ = Esc ∪ reachable(v′, s′)}.

The previous definition can be used to lift the transition function next to
sets of interaction states. In particular, we recall from the previous chapter
that next is made up of two parts: one concerning the direct interactions and
the other concerning the indirect ones:

next(σ) = nextdir(σ) ∪ nextind(σ).

Therefore in order to lift next to set of states, we consider its two components
independently. The lifted version of the direct interaction transition function,
Nextdir, takes as input a set of interaction states. Then for each m of the
class, it systematically applies MJmK to its input. Roughly, it means that it
considers all the states resulting from an invocation of the method m for any
possible input value.

Definition 4.9 (Nextdir) Let S ∈ P(Σ) be a set of interaction states. Then
the function Nextdir ∈ [P(Σ)→ P(P(Σ)× M)] is defined as follows:

Nextdir(S) = {〈S ′, m〉 | m ∈ M,MJmK(S) = S ′}.

The lifted version of the indirect interaction, Nextind, returns a pair made
up of a set of states S ′ and the tag κ. The states in S ′ are the states as after
an arbitrary modification of the values exposed by the object:

Definition 4.10 (Nextind) Let S ∈ P(Σ) be a set of interaction states.
Then the function Nextind ∈ [P(Σ)→ P(P(Σ)× {κ})] is defined as follows:

Nextind(S) = {〈S ′, κ〉 | S ′ = {σ′ | ∃σ ∈ S. nextind(σ) 3 〈σ′, κ〉}}.

Finally, the lifted version of the transition function Next is given below:

Definition 4.11 (Next) Let S ∈ P(Σ) be a set of interaction states. Then
the transition function Next ∈ [P(Σ)→ P(P(Σ)× M ∪ {κ})] is

Next(S) = Nextdir(S) ∪ Nextind(S).

4.2 First Abstraction: Collecting Traces 67

The design of the collecting traces object fixpoint semantics is done by
calculus:

α̇�(λT.S0〈v, s〉 ∪ {τ
`−→ σ

`′−→ σ′ | τ `−→ σ ∈ T, next(σ) 3 〈σ′, `′〉})
=// Properties of Galois connections and functional lifting of abstractions

λT̄.α�(S0〈v, s〉)∪̄�α�({τ `−→ σ
`′−→ σ′ | τ `−→ σ ∈ γ�(T̄), next(σ) 3 〈σ′, `′〉}))

=// Definition of α� and of next

λT̄.S0〈v, s〉∪̄�α�({τ `−→ σ
`′−→ σ′ | τ `−→ σ ∈ γ�(T̄), nextdir(σ) 3 〈σ′, `′〉}

∪ {τ `−→ σ
κ−→ σ′ | τ `−→ σ ∈ γ�(T̄), nextind(σ) 3 〈σ′, κ〉})

=// Properties of Galois connections (join morphism)

λT̄.S0〈v, s〉∪̄�α�({τ `−→ σ
`′−→ σ′ | τ `−→ σ ∈ γ�(T̄), nextdir(σ) 3 〈σ′, `′〉})

∪̄�α�({τ `−→ σ
κ−→ σ′ | τ `−→ σ ∈ γ�(T̄), nextind(σ) 3 〈σ′, κ〉})

⊆̄�// Definition of α�, Nextdir and Nextind

λT̄.S0〈v, s〉∪̄�{t̄
`−→ S

`′−→ S ′ | t̄ `−→ S ∈ T̄, Nextdir(S) 3 〈S ′, `′〉}

∪̄�{t̄
`−→ S

κ−→ S ′ | t̄ `−→ S ∈ T̄, Nextind(S) 3 〈S ′, κ〉}

Finally, it is worth noting that the collecting traces above are in the form
T ∪̄�T1∪̄�T2, where T , T1 and T2 do not have traces that share the same
interaction history. Therefore, the hypotheses of Lemma 4.3 are verified, so
that using it and the fixpoint transfer theorem we can conclude that:

Theorem 4.3 (Collecting Traces Object Fixpoint Semantics,ō�JoK)
The abstract object semantics ō�JoK ∈ [Din × Store→ D̄�] defined as

ō�JoK(v, s) = lfp
⊆̄�
⊥̄�

λT̄.S0〈v, s〉∪{t̄
`−→ S

`′−→ S ′ | t̄ `−→ S ∈ T̄, Next(S) 3 〈S ′, `′〉}

is a sound approximation of the concrete object semantics, i.e.

α�(oJoK(v, s))⊆̄�ō�JoK(v, s).

Using the Theorem 3.2, the extension of the previous soundness result to
the class semantics is straightforward:

Corollary 4.1 (Collecting Traces Class Fixpoint Semantics,c̄�JAK)
The abstract class semantics c̄�JAK ∈ D̄� defined as

c̄�JAK =
⋃̄

�
{ō�JoK(v, s) | v ∈ Din, s ∈ Store}

is a sound approximation of the concrete class semantics, i.e. α�(cJAK)⊆̄�c̄�JAK.

68 Abstract Semantics

{σ1, σ
′
1, σ

′′
1}

mi−→ {σ2, σ
′
2, σ

′′
2}

mj−→ {σ3, σ
′
3}

{σ1, σ
′
1, σ

′′
1}

mi−→ {σ2, σ
′
2, σ

′′
2}

κ−→ {σ′′3}
α◦=⇒


σ1, σ

′
1, σ

′′
1 ,

σ2, σ
′
2, σ

′′
2 ,

σ3, σ
′
3, σ

′′
3


Figure 4.3: The second abstraction

4.3 Second Abstraction: Reachable States
We now proceed with the second abstraction that roughly forgets the trace
histories, keeping just the states reachable in a computation. For example,
let us consider the collecting traces in Figure 4.3. The collecting traces on
the left are abstract by their states so that for instance the fact that σ2 is
a consequence of the execution of the method mi from one of initial states
σ1, σ

′
1 or σ′′1 is lost. On the other hand, the states reached in the computation

are safely approximated, so that the state-based properties are preserved.
As a consequence the abstraction is painless as far as we are interested in
approximating the values that the fields of the objects can take, and e.g. not
their evolution over the time.

4.3.1 Abstract Domain

For what said above, an element of the abstract domain is a set of states
that over-approximates the states reached during a computation. As a con-
sequence the order between the elements boils down to the subset inclusion,
so that the smallest element is the empty set and the largest is Σ, the set of
all the states. The join and the meet in the abstract domain are the set union
and the set intersection. Finally, the abstract domain of collecting states is
the complete boolean lattice

〈P(Σ),⊆, ∅, Σ,∪,∩〉.

4.3.2 Abstraction

The abstract function α◦ abstracts away from the computation history, col-
lecting all the interaction states in the traces, forgetting the casual relations
between sets of states. Formally it can be defined as follows:

Definition 4.12 (Collecting Traces Abstraction, α◦) The abstrac-
tion α◦ ∈ [D̄� → P(Σ)] is defined as follows:

α◦(T̄) =
⋃
t̄∈T̄

ατ
◦ (̄t).

4.3 Second Abstraction: Reachable States 69

where ατ
◦ ∈ [T(P(Σ)) → P(Σ)] is the abstraction of single collecting traces

defined as follows:

ατ
◦(S) = S if S ⊆ Σ

ατ
◦(S

`−→ τ) = S ∪ ατ
◦(τ).

Example 4.7 Applying the above definitions to the collecting traces of the
Example 4.5 it is immediate to see that the abstraction function collects the
states of the different traces, i.e. :

S = α◦(α�(T)) =


σ1, σ

′
1, σ

′′
1 ,

σ2, σ
′
2, σ

′′
2 ,

σ3, σ
′
3, σ

′′
3

 .

Lemma 4.6 (α◦ is a complete Join-morphism) The function α◦ is a com-
plete join-morphism, i.e. for any set of abstract elements {T̄i}:

α◦

(⋃̄
�
{T̄i}

)
=
⋃
i

{α◦(T̄i)}.

Proof. Let {T̄i} be a set of elements of D̄�. Then, applying the definition
of α◦ and observing that ∪̄� does not lose states nor it does introduce new
ones, it follows that:

α◦

(⋃̄
�
{T̄i}

)
=

⋃
t̄∈
S̄

�{T̄i}

ατ
◦ (̄t) =

⋃
i

⋃
t̄∈T̄i

ατ
◦ (̄t) =

⋃
i

{α◦(T̄i)}.

q.e.d.

The abstraction above is a complete join morphism (Lemma 4.6), so that
by Lemma 2.3, Lemma 2.2 and Lemma 2.4, there exists a unique concretiza-
tion function γ◦ = λS. ∪̄�{T̄ | α◦(T̄) ⊆ S} such that the collecting traces
domain and the reachable states domain are linked by a Galois connection:

〈D̄�, ⊆̄�, ⊥̄�, >̄�, ∪̄�, ∩̄�〉 −−−→←−−−α◦

γ◦ 〈P(Σ),⊆, ∅, Σ,∪,∩〉.

The abstraction α◦ abstracts away the computation history and the ca-
sual relations between states, by just retaining the states reached during the
computation. Therefore, the concretization of a set of states S consists of
all the traces with any possible interaction history such that their nodes are
identically equal to S:

γ◦(S) =
⋃

h∈{M∪{κ}}∗
{t̄ | history(̄t) = h,∀i. t̄(i) = S}.

70 Abstract Semantics

Example 4.8 The concretization of the set of states S of Example 4.7 is

γ◦(S) =


S

S
m1−→ S, S

m2−→ S, S
m3−→ S, . . .

S
m1−→ S

m1−→ S, S
m1−→ S

m2−→ S, S
m1−→ S

m3−→ S, . . .
. . .

 .

It is immediate to see that α�(T)⊆̄�γ◦(S).

4.3.3 Abstract Semantics

The design of the reachable states semantics is carried on by calculus. In
fact, we can derive the reachable object states semantics, OJoK(v, s), as an
upper approximation of α◦(ō�JoK(v, s)). We proceed as in the previous sec-
tion, i.e. we first approximate the transfer function and then we apply the
fixpoint transfer theorem to conclude the approximation of the object se-
mantics. Before proceeding to the design-by-calculation, we need to define a
function that given a set of states S returns all the possible indirect interac-
tions between the context and the part of the internal object fields exposed
to the context.

Definition 4.13 (Context(·)) Let S ⊆ Σ be a set of interaction states.
Then their indirect interaction with the context is summarized by the function
Context(·) ∈ [P(Σ)→ P(Σ)]:

Context(S) = {〈e, s′, �, Esc〉 | 〈e, s, v, Esc〉 ∈ S,∃a ∈ Esc. update(a, s) 3 s′}.

It is worth noting that given a set of states S, if 〈S ′, κ〉 ∈ Nextind(S) then
S ′ ∈ Context(S). We exploit such a property in the derivation below:

4.3 Second Abstraction: Reachable States 71

α̇◦(λT̄.S0〈v, s〉 ∪ {t̄
`−→ S

`′−→ S ′ | t̄ `−→ S ∈ T̄, Next(S) 3 〈S ′, `′〉})
=//Definition of Next

α̇◦(λT̄.S0〈v, s〉∪̄�{t̄
`−→ S

`′−→ S ′ | t̄ `−→ S ∈ T̄, Nextdir(S) 3 〈S ′, `′〉}

∪̄�{t̄
`−→ S

κ−→ S ′ | t̄ `−→ S ∈ T̄, Nextind(S) 3 〈S ′, κ〉})
=//Definition of functional lifting of abstractions and Galois connections

λS.α◦(S0〈v, s〉) ∪ α◦({t̄
`−→ S

`′−→ S ′ | t̄ `−→ S ∈ γ◦(S), Nextdir(S) 3 〈S ′, `′〉})

∪ α◦({t̄
`−→ S

κ−→ S ′ | t̄ `−→ S ∈ γ◦(S), Nextind(S) 3 〈S ′, κ〉})
=//Definition of α◦, Next, Nextind and Context(·)

λS.S0〈v, s〉 ∪ α◦({t̄
`−→ S

m−→ S ′ | t̄ `−→ S ∈ γ◦(S), m ∈ M,MJmK(S) = S ′})

∪ α◦({t̄
`−→ S

κ−→ S ′ | t̄ `−→ S ∈ γ◦(S), Context(S) = S ′})
=//Definition of α◦

λS.S0〈v, s〉 ∪ S ∪
⋃
m∈M

MJmK(S) ∪ S ∪ Context(S)

=//Idempotence of ∪

λS.S0〈v, s〉 ∪ S ∪
⋃
m∈M

MJmK(S) ∪ Context(S)

At this point we can state the following theorem, that gives a fixpoint char-
acterization of the states reached for all the possible executions of an object.
The proof is based on the following technical lemma:

Lemma 4.7 Let f ∈ [〈D,v〉 → 〈D,v〉] be a complete join-morphism. Then:

lfpv⊥λS. S0 t S t f(S) = lfpv⊥λS. S0 t f(S). (4.4)

Proof. By hypothesis f is a complete join-morphism, hence it is continuous.
So are the two functions at the left and the right member of (4.4). Because
of continuity, the fixpoint can be reached after at most ω steps. We prove
the thesis by proceeding on induction on the iterations:

n = 1 the iterations for the left and the right members are I1 = S0t⊥tf(⊥)
and J1 = S0 t f(⊥). By definitions of t and ⊥ it is immediate to see
that I1 = J1.

72 Abstract Semantics

n > 1 For the inductive step we have that at the n-step of the iterations:

In = S0 t
⊔
i≤n

f i(S0) t
⊔
i≤n

f i(⊥)

Jn = S0 t
⊔
i≤n

f i(S0) t f i(⊥)

and as it is immediate to see that for a monotonic function fn(⊥) =⊔
i≤n f i(⊥) then In = Jn.

q.e.d.

Theorem 4.4 (Reachable States Object Fixpoint Semantics,OJoK)
The reachable states fixpoint semantics of an object o instance of a class
A = 〈init, F, M〉 is a function OJoK ∈ [Din× Store→ P(Σ)] defined as follows

OJoK(v, s) = lfp⊆∅ λS.(S0〈v, s〉 ∪
⋃
m∈M

MJmK(S) ∪ Context(S)). (4.5)

Furthermore, OJoK is a sound approximation of the concrete semantics, i.e.

α◦ ◦ α�(oJoK(v, s)) ⊆ OJoK(v, s).

Proof. Applying the fixpoint transfer theorem to the equation derived above
we obtain that

α◦(ō�JoK(v, s)) = lfp⊆∅ λS.(S0〈v, s〉 ∪ S ∪
⋃
m∈M

MJmK(S) ∪ Context(S)).

At its turn, it is immediate to see that the hypotheses of the Lemma 4.7 are
fulfilled, so that S on the right side of the equality above can be dropped,
proving the first part of the thesis. Finally, the soundness w.r.t. the concrete
semantics is a consequence of the compositional property of Galois connec-
tions and of Theorem 4.3.

q.e.d.

The equation (4.5) captures the intuition that the states reached during
the execution of an object are given by initial states (i.e. S0〈v, s〉), by the
states consequence of the execution of a method (i.e. MJmK) and by the
states that are consequence of an interaction with the context (i.e. Context).

An immediate corollary to the theorem above is the soundness of the
reachable states class semantics:

4.3 Second Abstraction: Reachable States 73

Corollary 4.2 (Reachable States Class Fixpoint Semantics,CJAK)
The reachable states semantics of a class A: CJAK ∈ P(Σ) defined as

CJAK =
⋃
{OJoK(v, s) | o is an instance of A, v ∈ Din, s ∈ Store}

is a sound approximation of the class concrete semantics, i.e.

α◦ ◦ α�(cJAK) ⊆ CJAK.

Furthermore, it can be expressed in fixpoint form as:

CJAK = lfp⊆∅ λS.(IJinitK ∪
⋃
m∈M

MJmK(S) ∪ Context(S)), (4.6)

where IJinitK ∈ P(Σ) are the states reached after any invocation of the class
constructor:

IJinitK =
⋃

〈v,s〉∈Din×Store

S0〈v, s〉.

Proof. The first point of the corollary is an immediate consequence of the
definition of the class semantics and of the soundness of the stepwise design
of the abstract semantics. The fixpoint formulation of the reachable states
semantics of class A is a consequence of Theorem 3.2.

q.e.d.

74 Abstract Semantics

Chapter 5

Inference of Class Invariants

Omnium rerum principia parva
sunt. 1

Marcus Tullius Cicero,
De Finibus (45 BCE)

A class invariant is a property valid for all the class instances, before and
after the execution of any method. The goal of this chapter is to introduce
a generic framework for the automatic and modular inference of sound class
invariants for object oriented languages.

Using the fixpoint formulation of the class reachable states, the most pre-
cise state-based class invariant can be expressed as a solution of a system
of equations involving the class constructor and methods. Nevertheless, in
general such an invariant may be not computable. As a consequence, an
abstraction is required in order to derive an effective algorithm for the infer-
ence of class invariants. In particular, we show how a class invariant can be
iteratively computed on the top of a static analysis of the class constructor
and methods. Thus, if the provided static analysis is a sound approxima-
tion of the semantics of the methods then the consequent class invariant is
a sound approximation of the class semantics. We discuss the modularity in
the derivation of the class invariant as well as the complexity issues for the
fixpoint computation.

This chapter is based on the published paper [77].

1(Latin) The beginnings of all the things are always small.

75

76 Inference of Class Invariants

5.1 Overview of Class Invariants
A class is correct or incorrect not by itself, but with respect to a specification.
For instance, a specification can be the absence of runtime errors, such as null-
pointers dereference or the absence of uncaught exceptions. More generally,
a specification can be expressed in a suitable formal language. The software
engineering community [81] proposes to annotate the source code with class
invariants, method preconditions and postconditions in order to specify the
desired behavior of the class.

The natural question with such an approach is: “Does the class respect its
specification?”. The traditional approach is to monitor the assertions, so that
for instance the preconditions and the class invariant are checked before the
execution of a method. Such an approach has many drawbacks. For example,
it requires checking arbitrary complex assertions so that it may introduce a
non-negligible slowdown at runtime. Moreover it is inherently not sound. In
fact the code must be executed in order to test if an assertion is violated or
not. However, program execution or testing can only cover finitely many test
cases so that the global validity of the assertion cannot be proved. Therefore
the need for formal methods arises.

5.2 Class Invariants in the Literature
Many authors pointed out the importance of class invariants for the verifi-
cation of object oriented programs and hence of the components-based ap-
proach to the software development [85]. We can distinguish two main lines
of thought in the verification of object oriented languages, that we name the
top-down and the bottom-up one.

According to the top-down approach to the verification of components,
e.g, [81, 67], the class source code is annotated with a specification that looks
like a contract between the class instances and their clients. This specification
consists of a “candidate” class invariant and “candidate” preconditions and
postconditions. The conformity of the class to its “candidate” invariants is
either checked at runtime or by means of proof assistants.

The second approach, i.e. the bottom-up [46, 44, 47], is somehow comple-
mentary to the first one. The goal of such an approach is to infer the behavior
of the class from its semantics, if necessary making use of code annotations.
Then the inferred information is checked against the class specification, for
example to prove that runtime errors do not occur.

In the rest of this section we briefly review some existing top-down and
bottom-up approaches.

5.2 Class Invariants in the Literature 77

5.2.1 Design by Contract

Under the Design by Contract (DbC) theory [81], a software system is viewed
as a set of communicating components whose interaction is based on precisely
defined specifications of the mutual obligations, i.e. contracts. In such a
view, a class is annotated with an invariant and each method is endowed
with a precondition and a postcondition. The annotations can be used as
a specification for the clients of the components and their validity can be
checked at runtime.

The most relevant incarnation of the DbC philosophy is the Eiffel pro-
gramming language [80]. It provides explicit language constructs for the spec-
ification of “contracts”. The Eiffel compiler can be instructed to introduce
into the compiled code runtime checks for the assertions. In fact, according
to a compilation switch [48], one can have:

– CHECK_NO: disable all checkings. It corresponds to the release builds;

– CHECK_REQUIRE: check the preconditions for each method;

– CHECK_ENSURE: check the postconditions for each method;

– CHECK_INVARIANT: check the class invariant before and after each
method is called;

– CHECK_ALL: check any assertions.
Nevertheless, the Eiffel compiler approach has some drawbacks. First,

the annotations are not guaranteed to hold for all the instantiation contexts,
so that they can hardly be defined invariants. Second, the behavior of a
program depends on the compilation switch: e.g. in the release build a
class may violate its annotations without any warning be raised. On the
other hand, if CHECK_INVARIANT is enabled then such a violation causes the
program to fail. Third, the annotation language is a large subset of the Eiffel
expressions. As a consequence, the assertions to be checked can be arbitrarily
complex and they can introduce side-effects. Fourth, the class annotations
are hand-made, so that they do not necessarily reflect the implementation
of the class. Fifth, even when the CHECK_ALL switch is specified some care
must be paid for the handling of function callbacks, as a naive approach may
lead to unsound conclusions [61].

5.2.2 Java Modeling Language

The Java Modeling Language (JML) [67] is a formal behavioral interface
specification language for Java. It allows to specify both the syntactic inter-
face of the Java code and its behavior. The syntactic interface consists of

78 Inference of Class Invariants

names, visibility, type checking informations, etc. of a class. The behavior
interface describes the semantic behavior of a class as the preconditions and
the postconditions of methods.

JML adds to the Eiffel approach to Design by Contract paradigm the
expressiveness of model-oriented specification languages à la Larch [58]. For
instance, the JML assertion language endows Java expressions with quanti-
fiers.

There exist several tools that made use of the JML. For example the
JML compiler jml is an extension to the Java compiler that compiles JML-
annotated programs including the runtime checks of the annotations in the
bytecode. The LOOP tool [63] translates JML annotations into proof oblig-
ations that are feed to a proof assistant to verify the soundness of classes
w.r.t. the JML specification. The problem with such an approach is that the
use of a proof assistant is tedious and it requires an interaction with the user.

5.2.3 Assertions in Java and .net

Last generation mainstream object oriented languages as Java and object
oriented frameworks as .net provide a minimal support for DbC through
runtime assertions.

The version 1.4 of the Java platform [56] introduced the support to as-
sertion facilities through the keyword assert, the AssertionError class
and a few additional methods to java.lang.ClassLoader. The command
assert bExp : str checks if the boolean expression bExp evaluates to true.
If not, the program fails and prints str on the error stream. Such a facility
can be used to implement a very simple form of DbC, in particular to check
method preconditions.

The .net framework [82], through the class Debug, provides a set of meth-
ods and properties that helps the code debugging. In particular the method
Debug.Assert checks the boolean condition passed as a parameter, and if it
is not satisfied, then it displays a dialog box with an error message. This
facility is available to all the languages that support the .net architecture as
C# [84] or the compilers for such platform as Visual C++ .Net [83]. Thus,
it is quite easy to write a class that on the top of Debug provides a form of
DbC and that exploiting the inter-language features of .net is available to all
the compilers for the platform.

5.2.4 Daikon

The Daikon tool [44] is an invariant-like detector for C, C++ and Java. The
tool idea is to infer pseudo-invariants from a set of execution traces: first,

5.2 Class Invariants in the Literature 79

the analyzing program is executed on a set of sensible inputs and then the
execution traces are matched against a list of wished properties. If some
property in this list is valid for all the tested traces, then it is said to be a
pseudo-invariant. The advantage of such an approach is that it is relatively
easy to implement w.r.t. a complete static analyzer or theorem prover and
that it can be easily parallelized, each execution test being executed on a
different computer. Nevertheless it is inherently unsound, as the test can
cover just a finite number of executions. Furthermore, there are some kind
of properties, e.g. most of those related to parallelism, that cannot handled
by such an approach. For instance, possible deadlocks or sharing violations
are unlikely to be discovered with such methods, as it relies too heavily on
effective executions.

5.2.5 ESC/Java and Houdini

The Extended Static Checker for Java (ESC/Java) [47] is a tool for stat-
ically and modularly finding errors in Java programs. It is based on user
annotations, that supply the preconditions, the postconditions and the class
invariants. Then it uses a theorem prover in order to verify that the annota-
tions are both consistent with the program semantics and they do not raise
runtime exceptions. A drawback of such an approach is that modularity is
obtained through annotations, that specify the behavior of other modules,
so that they can be either incomplete or inconsistent w.r.t. the program se-
mantics.

Houdini [46] is an annotation assistant developed in order to overcome
this problem. The idea of the tool is to generate the annotations of a class and
then to use ESC/Java to see whether the generated annotations are consistent
with its semantics. If they are then the generated annotations are invariants
for the class. Otherwise, the set of annotations is refined and the process is
iterated. Such an approach corresponds to a greatest fixpoint computation,
the starting point being the initial set of annotations. This implies that the
soundness and the precision of the induced invariants depend on the initial
set of annotations.

5.2.6 Some Static Analyses for Object Oriented Languages

Several static analyses have been developed for object-oriented languages
with different goals. For instance, the analysis of Zee and Rinard, [105],
focuses on the removal of write-barriers in generational garbage collectors;
the analysis of Pollet, Le Charlier and Cortesi, [92], infers the “may” and
“must” relations in Java programs; the analysis of Blanchet, [8], determines

80 Inference of Class Invariants

whether the lifetime of objects exceedes or not their static scope; the analysis
of Spoto and Jensen, [99], proposes a hierarchy of class analyses obstained
as an abstraction of the trace semantics.

Some static analyses for object-oriented languages present modular fea-
tures in that they analyze a program fragment without requiring the full
program to stay in memory. For instance, Chatterjee, Ryder and Landi,
[18], propose a modular alias analysis for C++ programs and Probst, [93],
presents a modular control-flow analysis for object-oriented languages. Nev-
ertheless those analyses are different from our work in that both are not able
to discover class invariants, essentially because they exploit modularity at
method, and not class, level.

The problem of inferring specialized class invariants has been faced by
[3, 51] and [40]. The aim of [3] and [51] is to optimize Java programs by
removing array-bounds checks. The presented analyses are capable to infer
class invariants in the form of

a == null ∨ 0 ≤ b ≤ a.length,

where a is an array and b an integer. On the other hand, Detlefs, [40],
discusses the importance of the inference of class invariants for optimizing
the performances of the Java’s garbage collector. In particular, the author
sketchs a static analysis for determining when the reference counters of an
heap-allocated object is equal to zero, so that it can be removed from the
memory. Our framework for the inference of class invariants is more general
than those, in that it can handle more generic properties. Furthermore we
prove the soundness of our approach w.r.t. a concrete semantics.

5.3 Automatic Inference of Class Invariants
We present an approach to the verification of object-oriented programs based
on abstract interpretation. It consists in computing an approximation of the
class semantics and checking whether it satisfies the specification. In partic-
ular, if a sound class invariant, which is inferred from the program source,
matches the specification then the class itself matches the specification, be-
cause of soundness. Therefore a static analyzer capable of inferring sound
class invariants can be used as an effective verification tool. Furthermore
automatically inferred class invariants can be used to optimize the compiled-
code, e.g. to drop superfluous exception handlers or synchronizations, and
for code documentation.

5.3 Automatic Inference of Class Invariants 81

5.3.1 Strongest State-based Class Invariant

The equations that characterize a class invariant can be derived directly from
the fixpoint formulation of the class reachable states of Corollary 4.2. In fact,
according to such a result, the reachable states of a class A = 〈init, F, M〉 are
given by:

CJAK = lfp⊆∅ λS.(IJinitK ∪
⋃
m∈M

MJmK(S) ∪ Context(S)). (5.1)

Recalling the definition of the lfp operator, (5.1) denotes the least solution
w.r.t. set inclusion larger than the empty set of the following recursive equa-
tion:

S = IJinitK ∪
⋃
m∈M

MJmK(S) ∪ Context(S).

In its turn, such an equation can be rewritten as the following system of
recursive equations, where n is the number of methods of A:

S = S0 ∪
⋃

1≤i≤n

Si ∪ Context(S)

S0 = IJinitK
Si = MJmiK(S) 1 ≤ i ≤ n.

(5.2)

A solution of the above system of equations is a tuple of sets of states 〈S, S0,
S1, . . . Sn〉 where

– S are the states reached after the execution of a class constructor and
at the entry and exit point of any method in the class;

– S0 are the states reached after the execution of a class constructor;

– Si are the states reached after the execution of the method mi.

Stated in another way around, S is a class invariant, S0 is a constructor
postcondition, and each Si is a postcondition of the corresponding method
mi. The least, w.r.t. set inclusion, solution of such a system is 〈CJAK, IJinitK,
MJmiK(CJAK) . . .MJmnK(CJAK)〉 (Lemma 5.1). It represents the strongest state-
based class invariant, the strongest constructor postcondition and the strongest
postconditions of the methods:

Lemma 5.1 (Strongest State-based Class Property) The tuple of sets
of states

〈CJAK, IJinitK,MJmiK(CJAK) . . .MJmnK(CJAK)〉

82 Inference of Class Invariants

is the least solution of (5.2) w.r.t. pointwise set-inclusion on P(Σ)n+2. Hence
it is the strongest class-based property.

Proof. Let 〈S, S0, S1, . . . Sn〉 ∈ P(Σ)n+2 be a solution of (5.2). By (5.1),
CJAK ⊆ S. Furthermore, it is trivial to check that MJmiK is monotonic, so
that CJAK ⊆ S implies that MJmiK(CJAK) ⊆ MJmiK(S) = Si. Finally, as the
tuple is a solution of the system of equations, then IJinitK = S0 necessarily.

q.e.d.

In general the strongest state-based class property is not computable so
that we need to perform an abstraction in order to safely approximate it.

5.3.2 Abstraction

The framework we present is highly generic: it is language independent and
more importantly any abstract domain can be plugged in. As abstract do-
mains consider particular properties (e.g. pointer aliasing or linear relation-
ships between variables) the choice of a particular domain influences the
property reflected by the so-inferred class invariant. Hence it influences the
check of the program specification. For instance, if the specification is, in
some formal language, “The class never raises the null -pointer exception”
then we are likely to instantiate the framework with a pointer analysis, in
order to show that the methods in the class never cause the throwing of such
an exception.

Let 〈D̄, v̄, ⊥̄, >̄, t̄, ū〉 be an abstract domain approximating sets of inter-
action states, i.e. it is linked to the concrete domain by a Galois connection:

〈P(Σ),⊆, ∅, Σ,∪,∩〉 −−→←−−α
γ
〈D̄, v̄, ⊥̄, >̄, t̄, ū〉. (5.3)

Moreover, let us consider the abstract counterpart for the constructor
collecting semantics so that the initial states are approximated by a function
ĪJinitK ∈ D̄ such that:

IJinitK ⊆ γ(ĪJinitK). (5.4)

The collecting method semantics of a method mi of A is approximated by
an abstract semantic function M̄JmiK ∈ [D̄ → D̄]. Roughly, M̄JmiK is a
computable and sound approximation of the semantics of the method mi:

∀S ∈ P(Σ). MJmiK(S) ⊆ γ(M̄JmiK(α(S))). (5.5)

From previous chapters we know that the context is free to change the internal
state exposed by an object and that this behavior is captured by the function

5.3 Automatic Inference of Class Invariants 83

Context. The abstract counterpart of such a function is Context ∈ [D̄→ D̄],
defined as follows:

∀S ∈ P(Σ). Context(S) ⊆ γ(Context(α(S))). (5.6)

Finally it is possible to state the following theorem, that gives a charac-
terization of class invariants and postconditions as solutions of a system of
recursive equations on D̄ that mimics (5.2):

Theorem 5.1 (Soundness of Class Invariant) Let A = 〈init, F, M〉 be
a class, D̄ an abstract domain that is linked to the domain of reachable states
according to (5.3). Moreover, let

– ĪJinitK ∈ D̄ be a sound approximation of the initial states as in (5.4);

– M̄JmiK ∈ [D̄ → D̄] be an abstract semantic function that satisfies the
soundness condition (5.5); and

– Context ∈ [D̄ → D̄] a sound approximation of the context behavior
(5.6).

Then a tuple 〈̄I, Ī0, Ī1 . . . Īn〉 ∈ D̄n+2, solution of the following recursive equa-
tions system:

X = X0t̄
⊔̄

1≤i≤n

Xi t̄ Context(X)

X0 = ĪJinitK
Xi = M̄JmiK(X) 1 ≤ i ≤ n.

(5.7)

is such that CJAK ⊆ γ(̄I), IJinitK ⊆ γ(̄I0) and for all the methods mi of A
MJmiK(CJAK) ⊆ γ(̄Ii).

Proof. The system of equations above is in the form ~X = F̄(~X), where F̄
is a monotonic operator on [D̄n+2 → D̄n+2]. On the other hand, the system
of concrete equations is in the form ~X = F(~X), where F is a monotonic
operator on [P(Σ)n+2 → P(Σ)n+2]. By theorem hypotheses, F̄ is a sound
approximation of F. By the fixpoint transfer theorem [29], the least fixpoint
of F̄ is a sound approximation of the concrete properties. If Ī is a solution of
(5.7), then it is larger than the least fixpoint of F̄. Then the thesis follows
from the monotonicity of γ.

q.e.d.

84 Inference of Class Invariants

A class invariant obtained through (5.7) is a sound approximation of the
concrete class semantics:

Corollary 5.1 Under the hypotheses of Theorem 5.1, if Ī is a class invari-
ant that satisfies (5.7) then

cJAK ⊆ γ� ◦ γ◦ ◦ γ(̄I).

Proof. According to Corollary 4.2 and definition of Galois connections we
have that cJAK ⊆ γ� ◦ γ◦(CJAK). By Theorem 5.1 above CJAK ⊆ γ(̄I). The
thesis follows from the fact that in Galois connections the concretization
function is monotonic.

q.e.d.

In Theorem 5.1 we assumed that all the methods are analyzed on the
same abstract domain. Nevertheless, the result can be easily generalized
to the case of different methods analyzed using different abstract domains.
For example, one can think to analyze methods with few variables using
a very precise, but expensive, abstract domain and the others with a less
precise/cheaper abstract domain.

5.4 A Bank Account Example
As a first example let us consider a rather classical one: a Java class which
implements a bank account. The definition of the class Account, taken from
[71, §4], is in Figure 5.1. It has three fields, acctNumber, balance and name

which store respectively the account number, the current balance and the
name of the person holding such an account. According to the Design by
Contract approach, the code must be annotated with an expression speci-
fying that the value of balance is always non-negative. This is a top-down
approach. On the other hand, we follow a bottom-up approach, in that we in-
fer from the class definition that the value of balance is always non-negative.

5.4.1 Abstract Domain

According to the abstract interpretation methodology, the first step is the
design of the abstract domain for the inference of class invariants. We choose
to abstract sets of interaction states with a pair 〈sign, Esc〉 whom first element
denotes the sign of the value of balance and the second captures the fields
that may escape the object scope. As a consequence, the abstract domain is

D̄ = Sign× P({acctNumber, balance, name}),

5.4 A Bank Account Example 85

public class Account { // Implements a Bank Account
private long acctNumber;
private double balance;
private String name;

5 private final double RATE = 0.045; // interest rate 4.5%

public Account(String owner, long account, double initial) {
name = owner;
acctNumber = account;

10 if (initial >= 0.0)
balance = initial;

else
balance = 0.0;

}
15

public double getBalance() {
return balance;

}

20 public double deposit(double amount) {
if (amount < 0)

throw new ExceptionAccount();
else

balance += amount;
25 return balance;

}

public double withdraw (double amount, double fee) {
amount += fee;

30 if ((amount < 0) | | (amount > balance))
throw new ExceptionAccount();

else
balance −= amount;

return balance;
35 }

public double withdrawAll(){
double tmp = balance;
balance = 0;

40 return tmp;
}

public double addInterest() {
balance += (balance * RATE);

45 return balance;
}

}

Figure 5.1: A Basic Bank Account Example

86 Inference of Class Invariants

where Sign is the abstract domain of signs depicted below:

>

pos

xxxxxxxxx
neg

FFFFFFFFF

zero

GGGGGGGG

wwwwwwwww

⊥

The order, the least and the largest element, the join and the meet opera-
tors of the abstract domain D̄ are defined in the obvious, component-wise
way. The abstraction function for values, αs ∈ [P(Val) → Sign] and the
corresponding concretization γs ∈ [Sign→ P(Val)] are given below:

αs(V) =



⊥ if V = ∅
zero if V = {0}
pos else if ∀v ∈ V. v ≥ 0

neg else if ∀v ∈ V. v ≤ 0

> otherwise.

γs(d) =



∅ if d = ⊥
{0} if d = zero

Z+ ∪ {0} if d = pos

Z− ∪ {0} if d = neg

Val if d = >

The abstraction of sets of states, α ∈ [P(Σ) → D̄] is built on the top of αs.
Roughly, it abstracts away the field accntNumber, the field name and the
value returned by a method. On the other hand, it keeps the sign of the
values taken by the field balance and it keeps the fields stored in an address
that is exposed to the context:

α(S) = 〈αs({s(e(balance)) | 〈e, s, v, Esc〉 ∈ S}),
{f | ∃〈e, s, v, Esc〉 ∈ S. e(f) ∈ Esc}〉.

It is worth noting that we must keep the information on the escaping fields in
order to infer a non-trivial invariant. If not, by the soundness requirement all
the fields are assumed to escape and hence their value is undetermined. Thus
the consequent class invariant is trivially the largest element of the abstract
domain, i.e. “I do not know”. We will return on this issue in the next section.

Once that the abstract domain is set up, the definition of the abstract
counterparts for the constructor and methods semantics is straightforward.
In particular as for the escaping information is concerned, we can consider
a very rough escape analysis that considers the type of value returned by a

5.4 A Bank Account Example 87

method. If the returned value belongs to a non-primitive type, then all the
fields of that type may escape. If not then it is a primitive type and the Java
semantics [56] assures that the field cannot escape.

5.4.2 Fixpoint Computation

A class invariant for Account can be obtained by instantiating the equation
system (5.7) and solving it iteratively.

A first observation is that as the height of the abstract domain is finite
the iterations will converge in a finite number of steps. Furthermore we
ignore the getter methods, getBalance and getAccountNumber, as they do
not modify the object state. According to the recursion schema (2.1), the
iterations begin with the bottom element of D̄6, that is:

I0 = 〈〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉〉.

The first component in the vector represents the class invariant, the second
one the constructor postcondition and the others the postconditions of the
methods. The first iteration roughly corresponds to the abstract execution
of the class constructor. In fact it is immediate to see that

ĪJAccount.Account(. . .)K = I1
Account = 〈pos, ∅〉

whereas for all the methods m of Account:

M̄JmK(〈⊥, ∅〉) = 〈⊥, ∅〉.

As a consequence, the first approximation for the class invariant is 〈⊥, ∅〉t̄
〈pos, ∅〉 = 〈pos, ∅〉, so that

I1 = 〈〈pos, ∅〉, 〈pos, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉〉.

Roughly, after the creation of the object the context can decide to invoke
any of the methods of the class. In this case, the methods are invoked in a
state where the object fields are approximated by 〈pos, ∅〉, i.e. the approxi-
mation of the fields after the creation of the object and the execution of the
class constructor. Therefore the postconditions for the methods deposit,
withdraw and addInterest are

M̄JdepositK(〈pos, ∅〉) = M̄JwithdrawK(〈pos, ∅〉) =

M̄JaddInterestK(〈pos, ∅〉) = 〈pos, ∅〉.

On the other hand, the method withdrawAll resets the field balance so its
postcondition is

M̄JwithdrawAllK(〈pos, ∅〉) = 〈zero, ∅〉.

88 Inference of Class Invariants

Afterward we have to consider the possible interaction of the context on the
fields that escapes the object state. Nevertheless, as balance does not escape
from its scope there is no indirect interaction, so that Context(〈pos, ∅〉) =
〈pos, ∅〉. The resulting vector of invariants for the second iteration is

I2 = 〈〈pos, ∅〉, 〈pos, ∅〉, 〈pos, ∅〉, 〈pos, ∅〉, 〈zero, ∅〉, 〈pos, ∅〉〉.

It is immediate to see that the third iteration does not modify the vector,
so that the fixpoint is reached and I2 is a sound approximation of the class
invariant and the methods postconditions.

Summing up, we showed that in any instance of Account, the value of
balance is always positive or equal to zero and it does not expose its internal
state to the context. Such invariants can be used for verification, as the fact
that balance is always positive or equal to zero assures that the balance
of an account can never be red. In particular, it assures that an invocation
of the method withdrawAll never cause miraculous vanishing of debts as
a balance can be only positive or equal to zero. Furthermore, they can be
used for documentation: they can be shipped with the class source and they
describe the behavior of the class.

5.5 Escaping Scope
The example above emphasizes that a consequence of the soundness require-
ment is that the abstract domain and the abstract operations must be ex-
pressive enough to capture escape information [8]. For example, if a method
m returns a reference to an object field f, then the context is free to arbi-
trary modify the value of f. Because of soundness, a static analysis of m,
M̄JmK, must determine that f escapes its scope. Furthermore, because of the
soundness of Context, the corresponding class invariant Ī will be such that
Ī(f) = >̄, i.e. f may assume any value. This is the only sound assumption if
we want to infer a class invariant valid for all the possible contexts.

As an example, we can consider the C++ class Walk below, which imple-
ments a random walk. The movement is ruled by the boolean field goRight:
if it is true then it moves on the right, otherwise it moves on the left. Nev-
ertheless, the class exposes goRight to the context through the method
getDirPointer which returns a pointer to the field.

class Walk { // Implements a random walk

private:
int pos;

5 bool goRight;

5.5 Escaping Scope 89

public:
Walk() {

pos = 0;
10 goRight = true ;

};
void doStep() {

if (goRight) pos += 4;
else pos −= 6;

15 };
bool * getDirPointer() {

return &goRight;
};

};

For the analysis of the class Walk we proceed as in the Account example.
As abstract domain we chose

D̄ = Con× Bool× P({pos, goRight}),

where Con is the abstract domain of linear congruences [57] and Bool is the
simple abstract domain for booleans depicted below:

>

true

{{{{{{{{
false

DDDDDDDD

⊥

CCCCCCCC

zzzzzzzz

Intuitively, an element of the abstract domain is a triple 〈c, b, E〉 where c
is a linear congruence that upper-approximates the values taken by pos, b
abstracts the value of the field goRight and E denotes the fields that may
escape. The order on the abstract domain is a point-wise extension of the
order on the underlying abstract domains. The least and the largest element
as well as the join and the meet can be also defined point-wise. Once that
the abstract domain is set up, the abstract semantics of the constructor and
of the methods can be easily obtained.

In order to obtain an invariant for Walk we use the iteration schema (2.1).
It is worth noting that D̄ satisfies the ACC condition, so that the iterations
are assured to converge. The iterations begin with the bottom element of
D̄4:

I0 = 〈〈⊥,⊥, ∅〉, 〈⊥,⊥, ∅〉, 〈⊥,⊥, ∅〉, 〈⊥,⊥, ∅〉〉.

90 Inference of Class Invariants

The first iteration roughly corresponds to the abstract execution of the class
constructor, so that ĪJWalk :: Walk()K = 〈0, true, ∅〉 implies that:

I1 = 〈〈pos = 0, true, ∅〉, 〈pos = 0, true, ∅〉, 〈⊥,⊥, ∅〉, 〈⊥,⊥, ∅〉〉.

Next iteration involves the method semantics. Roughly, at this point the
object has been created and the context can choose between invoking the
method doStep or getDirPointer. Thus, doStep and getDirPointer are
invoked with the object fields approximated as in the previous iteration:

M̄JdoStepK(〈pos = 0, true, ∅〉) = 〈pos = 4, true, ∅〉
M̄JgetDirPointerK(〈pos = 0, true, ∅〉) = 〈pos = 0, true, {goRight}〉.

It is worth noting, that the constructor does not return any value and in
particular it does not expose the object internal state, so that Context(〈pos =
0, true, ∅〉) is trivially the identity. The approximation for the class invariant
is obtained by merging the invariant at the previous step and the abstract
states at the exit-point of the two methods. Therefore, the vector for the
second iteration is

I2 = 〈〈pos ≡ 0(4), true, {goRight}〉, 〈pos = 0, true, ∅〉,
〈pos = 4, true, ∅〉, 〈pos = 0, true, {goRight}〉〉.

At the third step, we have a situation where the context can interact with
the object either directly, i.e. invoking a method, or indirectly, i.e. changing
the value of goRight:

M̄JdoStepK(〈pos ≡ 0(4), true, {goRight}〉) = 〈pos ≡ 0(4), true, {goRight}〉
M̄JgetDirPointerK(〈pos ≡ 0(4), true, {goRight}〉) = 〈pos ≡ 0(4), true, {goRight}〉

Context(〈pos ≡ 0(4), true, {goRight}〉) = 〈pos ≡ 0(4),>, {goRight}〉.

It is worth noting that after an indirect interaction, the value of the boolean
field is undetermined. The consequent vector of invariants is:

I3 = 〈〈pos ≡ 0(4),>, {goRight}〉, 〈pos = 0, true, ∅〉,
〈pos ≡ 0(4), true, {goRight}〉, 〈pos ≡ 0(4), true, {goRight}〉〉

The iterations are still not stable, so that they continue:

M̄JdoStepK(〈pos ≡ 0(4),>, {goRight}〉) = 〈pos ≡ 0(2),>, {goRight}〉
M̄JgetDirPointerK(〈pos ≡ 0(4),>, {goRight}〉) = 〈pos ≡ 0(4),>, {goRight}〉

Context(〈pos ≡ 0(4),>, {goRight}〉) = 〈pos ≡ 0(4),>, {goRight}〉.

5.6 Fixpoint Computation and Complexity 91

and the resulting vector is

I4 = 〈〈pos ≡ 0(2),>, {goRight}〉, 〈pos = 0, true, ∅〉,
〈pos ≡ 0(2),>, {goRight}〉, 〈pos ≡ 0(4),>, {goRight}〉〉.

At next step the only component of the vector that changes is the one cor-
responding to getDirPointer, as

M̄JgetDirPointerK(〈pos ≡ 0(2),>, {goRight}〉) = 〈pos ≡ 0(2),>, {goRight}〉,

so that the vector corresponding to the fifth step is

I5 = 〈〈pos ≡ 0(2),>, {goRight}〉, 〈pos = 0, true, ∅〉,
〈pos ≡ 0(2),>, {goRight}〉, 〈pos ≡ 0(2),>, {goRight}〉〉.

It is immediate to see that a further iteration does not change the vector,
i.e. I5 = I6, so that the least fixpoint is reached.

To sum up, we proved that the value assumed by the field pos is, for all
the possible instances and contexts of Walk, an even number. This result
is valid even if the object expose to the context the field goRight, which
controls the direction and the length of the step during the walk. Furthermore
the invariant on pos that we inferred, i.e. its value is always even, is not
explicitly present in the source code and it cannot be derived by a simple
scan of the Walk source code. As a consequence, our bottom-up approach
for the inference of class invariants is more powerful than those based on
source-code and class documentation syntactic scanning as e.g. [6].

5.6 Fixpoint Computation and Complexity
In the examples above we have seen that the least solution of (5.7) can
be computed using the standard fixpoint iterations. However, in general
the height of the domain D̄ is infinite. In such a case, the convergence of
the iterations must be forced through the use of a widening operator ∇̄ ∈
[D̄×D̄→ D̄]. An immediate iteration schema, whose soundness is justified by
the chaotic iterations theorem (cf. Theorem 2.8), consists in mimicking the
interactions between an object and a context. The first step is the creation
of the object and the initialization of the fields to the invocations of the
constructor. The second step consists in the non-deterministic invocation
of one of the methods of the class without considering indirect interactions.
In fact, as the class constructor does not return any value, in particular it
cannot expose the object state so that no indirect-interaction may occur.

92 Inference of Class Invariants

The further steps are the non-deterministic invocation of one of the methods
of the class joined with the indirect interactions:

I0 = ĪJinitK

I1 = I0t̄
⊔̄

1≤i≤n

M̄JmiK(I0)

Ik+1 = Ikt̄
⊔̄

1≤i≤n

M̄JmiK(Ik)t̄Context(Ik) if 1 ≤ k < w (5.8)

Ik+1 = Ik∇̄
⊔̄

1≤i≤n

M̄JmiK(Ik)∇̄Context(Ik) if k ≥ w

The iteration schema above performs w exact iterations and then it applies
the widening operator. By definition of the widening, after further w∇̄ steps
the iterations converge to a post-fixpoint.

The immediate implementation of the iteration strategy of (5.8) is to
consider at step k + 1:

Ik+1
1 = M̄Jm1K(Ik)

...
Ik+1
n = M̄JmnK(Ik)

and then to take the least upper bound, i.e.
⊔̄

Ik+1
i . If the analysis is per-

formed on a single sequential machine then the cost, in time or memory, is
the sum of the cost of the analysis of each method: κseq = κ1 + κ2 + . . . κn,
where κi is the cost of computing M̄JmiK(Ik). Stated differently, κi is the cost
of analyzing mi when the initial states are specified by Ik.

Therefore the cost of the whole analysis is proportional to the cost of
analyzing the methods times the total number of iterations: O(κseq·(w+w∇̄)).

If we have n processing units then the computation can be performed in
parallel by allocating the analysis of each mi on a different unit. In fact, the
body of a method mi may invoke a method mj that belongs to the same class.
However, as such a call to mj is somehow private to the class, i.e. it is not an
explicit invocation of the class user, then at this point the class invariant may
not hold [81]. So, the access the mj code is enough to parallelize the fixpoint
computation. The soundness of the result of the computation is assured by
Theorem 2.9. If enough computation resources are available, then the cost of
one iteration step is the maximum of the cost of the analyses of each method:
κpar = max{κ1, . . . κn} so that of the whole analysis is O(κpar · (w + w∇̄)).

From the previous considerations we can conclude that the cost of the
class invariant inference is a function of the underlying static analyses of the

5.7 Modularity and Program Analysis 93

methods’ bodies. Therefore in a practical implementation it is important
to find a good trade-off between the analysis cost and the desired precision.
This may depend on different factors, such as the goal of the class invariant:
if it is used for verification purposes, then it is reasonable to use a high-
precision/expensive static analyses. On the other hand, if the goal is the
discovery of runtime errors in early stages of code development, then a not-
so-precise/fast static analysis can be useful.

5.7 Modularity and Program Analysis
Our approach is modular as it satisfies the three requirements of composabil-
ity, decomposability and understandability (cf. Section 1.1.3). Classes are
analyzed without any hypothesis on the calling context, so that decompos-
ability and understandability are fulfilled.

If a class A to be analyzed has a variable (field, method formal parameter,
etc.) of type B then B must be analyzed before A. However the analysis of
A does not strictly require the code of B and it can use the class invariant
and the postconditions of the methods: any reference in A to an object of
type B can be conservatively substituted by the B class invariant, and any
invocation of a B method can be replaced by its postcondition. Therefore the
composability requirement is satisfied.

The advantage of the approach is that if two or more distinct classes use
the same class B then it can be analyzed once and its result can be used
many times, speeding up the whole analysis. Eventually, if two or more
classes depend in a cyclic way, then they must either be analyzed together
or the circularity must be broken with the technique of separation of the
analyses of Chapter 10.

In general an object-oriented program consists of a set of classes {Ai} and
a main expression. For the moment we do not consider inheritance as it will
be the subject of the Chapter 8. From the set of classes we can statically
derive the (inverse) graph of the has-A relation [90]. This graph is such that
the nodes are the classes of the program and there is an edge from B to A if
and only if the class A has fields or local variables of type B. The program
analysis begins with the initial nodes, i.e. the nodes that have no predecessor.
Once these nodes are analyzed (if possible in parallel on distinct computation
units) the successors can be considered and so on. If a cycle is found, then the
considerations of the last paragraph apply. Most of the time, the analysis of
a full program does not require the analysis of all the classes it uses. In fact,
in general a program will use some library classes. These can be analyzed
once and the result (re-) used by all the programs that use of them.

94 Inference of Class Invariants

5.8 Discussion
We present a modular and generic framework for the inference of class in-
variants. The invariants are obtained from the program source, without any
human interaction or annotation. We illustrated the approach with two ex-
amples and we discussed the complexity of the analysis. Nevertheless, such
a direct approach has some drawbacks:

– the cost of the fixpoint computation. The inference of a class invari-
ant consists of two nested fixpoint computations: one for the analysis
methods and the other for the class invariants;

– the analysis of inheritance. A naive analysis of subclasses using the
expansion of inheritance [90] may cause a quadratic slowdown. Fur-
thermore, it does not take into account the sharing of computations
enabled by inheritance;

– the handling of mutually recursive classes. Classes that are mutually
dependent must be analyzed together, so that the encapsulation fea-
tures of object-oriented languages are not fully exploited.

We face the problem of the cost in Chapters 6–7, of the analysis of inheritance
in 8–9 and of mutually recursive classes in 10.

Chapter 6

Symbolic Relations for the
Approximation of Set of Traces

Everything should be made as
simple as possible, but not
simpler.

Albert Einstein (1950)

In this chapter we introduce a generic constraint domain for relational sym-
bolic modular analysis. The idea is that the semantics of a module can be
approximated by a set of relations symbolically linking the input, output and
local variables. We show how this result is correct w.r.t. a trace semantics,
and how it can be used to perform an (incremental) modular analysis. Such a
generic constraint domain captures the structure of a given class of modular
static analyses, namely the symbolic relational ones [35], so that in a certain
sense the results of this chapter are orthogonal to those of the rest of the
thesis.

On the other hand, it turns out that symbolic relational analyses are
worthwhile for the modular static analysis of object-oriented languages. For
instance, in the next chapter we will show how they can be used to obtain
a precise yet not-so-expensive class invariant and in Chapter 8 we will show
how they can be used for a precise handling of down-calls and up-calls.

This chapter is based on the published paper [76].

95

96 Symbolic Relations for the Approximation of Set of Traces

6.1 Relational Symbolic Abstract Domains
The main idea of symbolic relational static analyses [76, 35] is that the values
that input, output and local variables can simultaneously take are restrained
by some constraints. In this chapter we present a generic abstract domain
(A-domain) which axiomatizes this kind of analyses. The abstract domain is
made up by a set of relations, their interpretation and a constraint simplifi-
cation operator. The soundness of the approach w.r.t. a compositional and
modular trace semantics is shown.

This construction is effective in that several relation-based modular analy-
sis as e.g. [32, 18, 91] can be directly formulated as instances of our frame-
work. So, in a certain sense we can say that the A-domain factors out the
common structure of these analyses, and it simplifies their correctness proofs,
since it is sufficient to show that they fulfill the hypotheses of being an A-
domain. Eventually, we give a hint of how to perform incremental modular
analyses by refining the result of the analysis using an approximation of the
values of local variables.

6.2 Module Abstraction by Relations
A natural way to abstract the module semantics is by keeping relations be-
tween the input and the output values. For example [32] has shown how
linear inequalities can be used to approximate the input/output behavior of
a function. We formalize and extend this idea, by giving a generic abstract
domain whose intuition is to approximate a set of traces by symbolically
linking the input, the output and the local environments. The so obtained
result can then be used in two ways: either by dropping the local values
and keeping just the relations between the input and the output, so that by
instantiating the input values the output is automatically determined, or by
running an imprecise, worst-case analysis on the module in order to approxi-
mate the values of local variables and then to use these values and the actual
input to have a better approximation of the output.

We begin by giving the elements, the order and the operations of the
abstract domain and the corresponding soundness results.

6.2.1 Constraints

The elements of our abstract domain are sets of constraints. A constraint
is a relation between variables at (possibly) different program points. The
idea is that variables range over a given domain and a constraint restricts the
values they can simultaneously take. To exploit modular analysis, we want

6.2 Module Abstraction by Relations 97

to compute the interdependencies between the module input and the output.
We use the module’s variables indexed by the program point they refer

to. So for example if x is a variable at module’s entry point it will be denoted
as x(in). Formally if V and PP are the sets of respectively module variables
and program points then a labeled variable belongs to the set

Vars = {x(pp) | x ∈ V, pp ∈ PP}.

The formal meaning of a label variable is given by a set of states, that is
by a function Γ ∈ [Vars→ P(Σ)] such that

Γ(x(i)) = {σ ∈ Σ | σ(x) ∈ dom(x), σ(pp) = i},

where dom(x) is the range domain for x, e.g. if it is a pointer then dom(x) =
Addr and pp denotes the program point.

A constraint describes the interdependencies between variables, so it
can be defined as a term built on Vars and a set of Terms. For example,
PointsTo(y(3), null) is built from the variable y(3), the atom null and the
constructor PointsTo. In general in order to describe the module behavior we
need finitely many constraints. Formally:

Definition 6.1 (Constraints) Let Vars be a set of labeled variables, Term
a set of terms and Rel the set of relations built on them, i.e.

Rel = {ρ[t1 . . . tm](x1 . . . xn) |ρ[·] is a relation constructor,
ti ∈ Terms, xj ∈ Vars}.

Then the set of constraints is defined as C = Pfin(Rel), and its elements are
denoted by c.

Moreover, we need a function that given a set of constraints returns the
set of restrained variables, e.g. tiedVars({PointsTo(y(3), null)}) = {y(3)}. So
it is natural to define the function tiedVars ∈ [C→ P(Vars)] as

tiedVars(c) =
⋃

ρ[t1...tm](x1...xn)∈c

{x1, . . . xn}.

6.2.2 Concretization of Constraints

How is the set of constraints related to the semantics? At first we assume to
have an interpretation for a set of constraints, i.e. a boolean function RJ·K
that given a n-tuple of values says if they satisfy the relation or not. Then
the concretization of the constraint is the set of all the traces verifying it,

98 Symbolic Relations for the Approximation of Set of Traces

i.e. all the traces whose states are compatible with the interpretation RJ·K.
Eventually, the concretization of a set of constraints is simply the intersection
of concretizations. Therefore we can state the:

Definition 6.2 (Meaning Function) Let Γ ∈ [Vars → P(Σ)] be the in-
terpretation for symbolic values, I an interpretation for terms, Di the range
domain of the i-th variable and RJ·K ∈ [Rel → I × D1 × . . . D|Vars| → B] the
interpretation for constraints. Then the concretization of a single constraint
γρ ∈ [C→ P(T(Σ))] is defined as :

γρ(ρ[t](x1, . . . xn)) =

{τ ∈ T(Σ) | ∀σ1 . . . σn ∈ αΣ({τ}).
x1 = y1(pp1), σ1 ∈ Γ(y1(pp1)), σ1(y

1) = vx1 , σ1(pp) = pp1,

. . .

xn = yn(ppn), σn ∈ Γ(yn(ppn)), σn(yn) = vxn , σn(pp) = ppn

⇒ RJρ[t](x1, . . . xn)K(I(t), vx1 , . . . vxn)}.

The concretization of a set of constraints γC ∈ [C→ P(T(Σ))] is

γC(c) =
⋂

ρ[t](x)∈c

γρ(ρ[t](x)).

With a slight abuse of terminology, in analogy with vector spaces theory,
sometimes we refer to γC(c) as the space of c and to |tiedVars(c)| as the
dimension of this space.

It is worth noting that the meaning of an element in C is parameterized
by the domains of the interpretation of variables and terms, i.e. the Dis and
I. Actually it turns out to be an instance of the reduced cardinal power
[31, 53] construction on semantics domains. Nevertheless, the proof is out of
the scopes of this work, so we skip it.

At this point we can endow C with an order. The order construction relies
on the γC function just defined and the following technical lemma. It states
that the more the constraints the smaller the space determined by them.

Lemma 6.1 (Space Reduction) Let c1, c2 ∈ C such that c1 ⊆ c2. Then
γC(c1) ⊇ γC(c2).

Proof. The hypothesis c1 ⊆ c2 implies that it exists a c′ such that c2 = c1∪c′.
Then γC(c2) = γC(c1 ∪ c′) = γC(c1) ∩ γC(c′) ⊆ γC(c1). The last step is by
monotonicity of intersect by enlarging gamma(c’) to the maximal set (which
is a unit for intersect).

6.2 Module Abstraction by Relations 99

q.e.d.

The �-order arises in a natural way: it states that the more the con-
straints and the more the information, the less the traces:

Lemma 6.2 (Order on C) The relation � defined as ∀c1, c2 ∈ C. c1 �
c2 ⇔ γC(c1) ⊆ γC(c2) is a preorder. Moreover, the largest element � is ∅.

Proof. The proof follows immediately by the definition of the subset inclusion
and the previous lemma. In particular, ∅ imposes no constraint, so that its
image through γC are all the possible traces. Hence it is the largest element
w.r.t. the order �.

q.e.d.

6.2.3 Variables Dropping

We have seen that constraints relate together different variables. But what
about the inverse operation, i.e. the variable elimination? In this section we
introduce an axiomatic characterization of an operator δ whose goal is to
eliminate a given variable from a set of constraints. Roughly speaking, we
need it for two purposes: to reduce the size of constraints in order to obtain a
more efficient analysis and to hide the module internal variables in the result
of a module analysis.

Intuitively a drop operator δ is required to preserve the logical implica-
tion (monotonicity) and to lose all the information about a variable at once
(variable elimination). Moreover, dropping a variable causes a lose of infor-
mation (extensivity), the application order does not matter (commutativity)
and dropping a variable that is not restrained has no effect (unit). This is
formalized by the next definition:

Definition 6.3 (Dropping Operator Axioms) A dropping operator on
C is a function δ ∈ [Vars → 〈C,�〉 → 〈C,�〉] such that ∀x, y ∈ Vars and
∀c1, c2 ∈ C:

– c1 � c2 ⇒ δx(c1) � δx(c2) (monotonicity)
– x 6∈ tiedVars(δx(c1)) (variable elimination)
– c1 � δx(c1) (extensivity)
– δx ◦ δy(c1) = δy ◦ δx(c1) (commutativity)
– δx(c1) = c1, if x 6∈ tiedVars(c1) (unit).

Because of commutativity property of δ we write δx1,x2,... for δx1 ◦ δx2 ◦
A dropping operator is also idempotent (Lemma 6.3 below) so it can

be seen as an abstraction in a lower-dimension domain. In fact idempotence

100 Symbolic Relations for the Approximation of Set of Traces

together with monotonicity and extensivity are the three hypotheses required
for an upper closure operator [31]. Our definition is stronger in that we ask
the abstraction being strict.

Some properties of δ are given by the next lemma. Briefly it states that δ
is idempotent; that when dropping all the variables remains no information
at all so that if the constraints are not contradictory then it corresponds to
the whole set of possible traces; and that once a variable is dropped then in
the concrete it assumes all the possible values of its definition domain:

Lemma 6.3 (δ Properties) Let δ being as in the above definition. Then
∀x ∈ Vars. ∀c ∈ C :

1. δx(c) = δx ◦ δx(c)

2. δx ◦ δVars(c) = δVars(c)

3. γC(δVars(c)) = T(Σ)

4. ∀v ∈ dom(x). ∃σ ∈ αΣ ◦ γC ◦ δx(c). σ(x) = v.

Proof. By (variable elimination) x 6∈ tiedVars(δx◦δx(c)) so that the condition
of (unit) is verified which implies that δx(c) = δx◦δx(c). Idempotency implies
2., because by definition x ∈ Vars.

As for 3. is concerned, (variable elimination) implies that ∀x ∈ Vars.x 6∈
tiedVars(δVars(c)). As a consequence, tiedVars(δVars(c)) is either empty, or it
contains tautologies (e.g. 1 = 1), or it contains contradictions (e.g. 1 = 2).
Applying the definition of γC, it is immediate to verify that in all of the three
cases γC(∅) = T(Σ).

Finally, if dom(x) is empty the thesis is straightforwardly true. If not, let
v ∈ dom(x). By definition of δ, x 6∈ tiedVars(δx(c)) so that by definition of
γC ∃τ ∈ γC(δx(c)). ∃i.(τ(i))(x) = v. The state τ(i) is the one we are looking
for, and it is captured by the abstraction αΣ (cfr. Example 2.1).

q.e.d.

The dual of δ, i.e. the function that drops all the variables but the specified
ones will be denoted as πx1,x2,...(c) = δVars−{x1,x2,...}(c).

6.2.4 Abstract Domain Operations

At this point just few operations are missing to complete the definition of
our (parametric) abstract domain. Namely we need the join, the meet and a
widening operator to ensure the analysis’ termination.

6.2 Module Abstraction by Relations 101

Intuitively we need an operator g to gather the information described by
its two operands so that it returns a space greater than the spaces of the two
operands. Therefore it is natural to require that

∀c1, c2 ∈ C. c1 � c1 g c2 and c2 � c1 g c2.

Nevertheless, in general we do not require g to be the least upper bound.
An example of g is the convex-hull operation on linear inequalities.

Analogously a smaller space is obtained by adding more constraints,
i.e. by putting together two sets of relations by means of the operation f.
So, ∀c1, c2 ∈ C.

c1 f c2 = c1 ∪ c2 = {ρ | ρ ∈ c1 ∨ ρ ∈ c2}.

Lemma 6.4 (γC is a Meet-morphism) ∀c1, c2 ∈ C. γC(c1 f c2) = γC(c1)∩
γC(c2).

Proof. The lemma’s thesis is obtained by applying in sequence the definition
of f, γC, set intersection properties and the definition of γC:

γC(c1 f c2) = γC(c1 ∪ c2) =
⋂

ρ∈c1∪c2

γρ(ρ)

=
⋂
ρ∈c1

γρ(ρ) ∩
⋂
ρ∈c2

γρ(ρ) = γC(c1) ∪ γC(c2)

q.e.d.

It is worth noting that whilst γC is a meet-morphism, in general it is not a
complete meet-morphism. In fact, if we consider linear inequalities, then it is
immediate to construct an infinite sequence {ci | i ≥ 0} of polyhedra which
contains the unitary ball B = {〈x, y〉 | x2 + y2 ≤ 1}, such that

⋂
i≥0 γC(ci) =

B and γC(
c

i≥0 ci) does not exist.
The widening takes account of the last two iterations during fixpoint com-

putation keeping the constraints that remain stable in between. Essentially
this is the idea shared by well-known abstract domains as intervals [29], poly-
hedra [37], octagons [86] and octahedra [20]. Formally it can be shown that
the operator −g is a widening in the sense of [29]:

Lemma 6.5 (Widening,−g) Let −g ∈ [C× C→ C] be defined as

−g = λ(c1, c2). {ρ ∈ c1 | ∃c′2 ⊆ c2. γC({ρ}) ⊇ γC(c′2)}.

Then −g is a widening.

102 Symbolic Relations for the Approximation of Set of Traces

Proof. Let c1 and c2 be in C. By definition c1
−gc2 contains fewer constraints

than both c1 and c2. Then, by Lemma 6.1 it is an upper bound of c1 and c2.
Furthermore, the number of constraints can only decrease and as elements
of C are finite sets of constraints then the convergence in a finite number of
steps is assured.

q.e.d.

All that have been said in this section is summarized by the next defini-
tion:

Definition 6.4 (A-domain) The abstract domain A is the tuple

〈C/≡, �,�, g, f,−g, δ〉

where the equivalence relation is defined as c1 ≡ c2 ⇔ γC(c1) = γC(c2).

The elements of the A-domain are related to set of traces by means of
the function γC. As in general γC is not a complete meet-morphism the
abstraction function may not exists. Therefore the relation between the
concrete domain and the A-domain is weaker than the traditional one based
on Galois connections. As a matter of fact, we are in a more general abstract
interpretation setting [34]:

Lemma 6.6 (Soundness of A-domain)

〈P(T(Σ)),⊆, ∅, T(Σ),∪,∩〉 γC←−−− A-domain.

6.3 Analysis and Soundness
Once C has been given a domain structure by means of the results of Section
6.2 it is rather simple to analyze a module. In fact we can use the operations
of an A-domain plus some approximations of the basic constructs of the
language which preserve the relations with the input.

For example, in an imperative language we need an approximation of the
assignment := that do keeps the relations with the input values. Nevertheless,
the assignment := is a forgetful command whose execution deletes some part
of the knowledge we had before it. Equivalently, we can say that the effect
of an assignment is twofold: to add some relations between the values before
its execution and the assigned variable and to delete the information about
some other variables. So the constraints of an assignment

(ppi)x:=E(ppi+1)

6.3 Analysis and Soundness 103

are given by ρ(x:=E), where tied variables refer to program points ppi and
ppi+1. Formally, if PPi is the set of variables labeled with program point i,
then

tiedVars(ρ(x:=E)) ⊆ PPi ∪ PPi+1.

These constraints are added to that at program point ppi (cppi) to obtain an
approximation of the state after the assignment execution. Eventually just a
subset V of variables is kept. So, using the operations of A we can state the:

Lemma 6.7 (Assignment Semantics) Let eJEK ∈ [Σ → P(Σ)] be the se-
mantics of expression, let cppi ∈ C and let

γC(ρ(x:=E)) ⊇ {τ ∈ T(Σ) |σ ∈ αΣ(γC(cppi)), σ(pp) = ppi,

τ = . . . σ −→ σ′ . . . , σ′(x) ∈ eJEK(σ)}.

Then it is sound to define

cppi+1
= ρ((ppi)x:=E(ppi+1)) = πV(ρ(x:=E) f cppi).

Proof. (Sketch) By hypothesis ρ(x:=E) is a sound approximation of the
assignment semantics. Therefore, ρ(x:=E)fcppi approximates the traces that
satisfy both constraints (before and after the execution of the assignment)
and as δ is monotonic, soundness is preserved.

q.e.d.

It is worth noting that, in order to exploit modular analysis, assignment
abstract semantics must (at least) keep relations with the module input val-
ues (i.e. in PPin). Then we are likely to have V ∩ PPin 6= ∅.

The previous lemma can be easily extended to cope with other basic
language constructors, as sequence, conditional, etc. In particular in [76]
we defined a trace semantics tJMK parameterized by the semantics of a set
of basic operators {Bi}. Then, we defined the abstract counterparts of the
basic operators {B̄i} and a function t̄JMK which mimics the trace semantics.
Here we just recall the main result of [76]:

Theorem 6.1 (A-Soundness) Let M be a module, let tJMK be a trace se-
mantics built using a set of basic operators {Bi∈ [P(Σ) → P(Σ)]}. Let
{B̄i ∈ [C → C]} be sound counterparts of the basic operators , i.e. ∀i. Bi

⊆̇γC(B̄i). Then the abstract trace semantics t̄JMK obtained by replacing the
concrete operators with their abstract counterparts is such that

tJMK⊆̇γC ◦ t̄JMK.

104 Symbolic Relations for the Approximation of Set of Traces

If M is a program module, then t̄JMK, can be used for a whole-program
analysis. In general t̄JMK is in the form of c[xin, xout, xloc] i.e. the result of
the analysis keeps relations between the input, output and local variables of
M. When analyzing a program, such a relation can be used in two different
ways. First, by dropping the local info, and keeping just the input/output
relation:

c′[xin, xout] = δxloc(c[xin, xout, xloc]).

It is sound because of property (extensivity) of droppings. Second, by com-
puting an approximation for xloc so that in the abstract call to the module
both xin and xloc can be instantiated in order to obtain a tighter result.
This can be done for example by performing an imprecise and fast analysis
of the module. Formally, it is possible to use a different abstract domain
D̄, not necessarily relational, linked to C by a function flowD̄→C to obtain
d[xin, xout, xloc]. Then the final result is

δxloc(c[xin, xout, xloc] f flowD̄→C(d[xin, xout, xloc])).

In Section 6.4.3 we show how a polyhedra analysis can be refined using the
result of a very imprecise parity analysis.

6.4 Instantiations of the A-domain
We prove that some well known modular analysis are instances of our A-
domain. We begin by showing how polymorphic types can be rewritten in
our framework, and we give a hint of how they can be use to perform modular
monotype inference:

6.4.1 Types

Intuitively the type of a function is a relation between the input and the
output. This information can be expressed in our framework provided the
correct instantiations. According to Definition 6.1 the terms are the types.
Types are built on atoms

Types = Atoms ∪ {t1 → t2, t1 list | t1, t2 ∈ Types}

and Atoms = {int, bool} ∪{α, β, . . . }. Relations are equalities in the form
variable is equal to either a type or another variable, i.e.

Rel = {x = t | x ∈ Vars, t ∈ Types ∪ Vars}.

The interpretation function I gives out the concrete set corresponding to a
type, e.g. I(int) = Z, whereas a constraint is satisfied either if the variable

6.4 Instantiations of the A-domain 105

ranges in the correct set:

RJx = tK(v)⇔ v ∈ I(t)

or the two variables range over the same set:

RJx1 = x2K(v1, v2)⇔ ∃t. v1, v2 ∈ I(t).

Eventually dropping eliminates all the relations involving a given variable
and g is the most general unifier (mgu) operation [66].

It can be shown that the construction fulfills the requirements of the last
section so it can be used to analyze a module. But why doing it? It is
good for example to perform a modular analysis of monomorphic types. In
fact a module can be analyzed with polymorphic types and then instantiated
to obtain a monotype. For example the function hd, that returns the first
element in a list, has polytype α list→ α so that for hd([2, 3, 5, 8]) we can
simply instantiate α with int to obtain its monotype int.

6.4.2 Relevant Context Inference

A further example is Relevant Context Inference (RCI) whose main idea is
to abstract module semantics by relations between the module caller context
and the result. [18] introduced an application of RCI to a points-to analysis
for the C++ language. Roughly, the analysis assigns symbolic names to
input, and global, values then propagated inside the method body. The
result is finally obtained by dropping the relations containing local variables.

We claim that this analysis can be easily encapsulated in our framework.
In fact the “dataflow elements (dfelms)” of the analysis are terms in the form
〈rc, points-to〉 where rc, the relevant context is a condition on the possible
aliasing and/or the type of the module input values and points-to is a pair
specifying which variable points to which object. The meaning is that if
rc holds then so points-to. Assignment at a program point ppi is modeled
according to Lemma 6.7 by setting

ρ(x:=E) = {〈∅, 〈x(ppi+1), E〉} ∪ {〈∅, 〈y(ppi), y(ppi+1)〉〉 | y 6= x}
∪ {〈rc, pt〉 | ∀x′(in) ∈ PPin. (rc = 〈x eq x′(in)〉, pt = 〈x′pp(i+1)

, E〉)
∨ (rc = 〈x neq x′(in)〉, pt = 〈x′(ppi+1)

, x′pp(i)
〉)}.

The intuitive meaning is that after an assignment the variable x has the value
of the right operand, all the others maintain the value they had at ppi and
all the possible aliasings with the input must be considered. Assignment
semantics is obtained by keeping the variables at ppi+1 and ppin, so referring

106 Symbolic Relations for the Approximation of Set of Traces

to Lemma 6.7 we drop all the variables but that in V = PPin ∪ PPi+1. Even-
tually the δy consists in the transitive closure followed by elimination of such
dfelms containing y. Analysis soundness immediately follows from Theorem
6.1.

The formulation of RCI as A-domain is twofolds: first the soundness
proof cames out from the previous section theory and second the analysis is
formalized and not only explained using examples.

6.4.3 Incremental Modular Analysis

Last example is about the combination of analyses. The basic idea is to refine
the result of a relational analysis by approximating the value of local variables
whenever the first is not precise enough. To the best of our knowledge this is
the first time that it used for modular analysis. In modular interval analysis
c[xin, xout, xloc] is a set of linear equations and xloc can be approximated by
performing a worst-case analysis on a different domain. For example this C
function:

int f (int x) {
int b,c;
c = getint();
if (isEven(2 * c))

5 b = 2* x+1;
else

b = 2* x;
return (y = b − 2* x);

}

when analyzed with the polyhedra domain returns the following system of
linear equations:

c[x, y, b] = {0 ≤ y ≤ 1, y + 2 · x− b = 0}.

If we drop internal information we get

δb(c[x, y, b]) = {0 ≤ y ≤ 1}

that is a rough approximation, since even the relation with the input value
is lost. However, if we analyze the the code on the parity domain [29] with
x = >, i.e. assuming the worst-case we obtain that b = odd. Then this result
in conjunction with c[x, y, b] shows that if y = 0 then the system is infeasible.
Therefore y = 1 for all the possible inputs.

Our conjecture is that the method illustrated in the previous example is
an approximation of the reduced product [31] of the two domains. However

6.5 Discussion 107

it is effective in that the operations do not need to be redefined and it is
faster since the second analysis is performed only if the result of the first is
not precise enough.

6.5 Discussion
We presented a generic abstract domain for symbolic modular analysis and
we proved its soundness w.r.t. a domain of traces. We showed that the
construction is general enough to cope with some existing modular analyses
and we give a hint on how the results can be improved by combining two
kinds of modular analyses, the symbolic and the worst-case one.

In the future, we plan to go deeper in investigating to refine the result
of a constraint based modular analysis by partitioning traces. Intuitively,
abstraction is performed not on a module seen as a big set of traces, but on
a partition of this set, so that the analysis results might be better.

108 Symbolic Relations for the Approximation of Set of Traces

Chapter 7

Symbolic Relations for
Approximating the Class
Semantics

We all agree that your theory is
crazy, but is it crazy enough?

Niels Bohr (1926)

In this chapter we study the particular case when the semantics of the
methods is approximated by symbolic relations, i.e. the methods are analyzed
using an instance of the A-domain. In particular, we show how starting from
a class A we can derive an approximated class Ā to be used either as a class
documentation or as a tester for a client using A. Furthermore, Ā can be used
for the inference of two kinds of class invariants, enabling fine tuning of the
cost/precision ratio.

This chapter is based on the published work [74].

7.1 Introduction
Exploiting the results of the previous chapter, the class constructor and meth-
ods input/output behavior can be approximated by a set of constraints sym-
bolically relating input values (instance fields and formal parameters) with
outputs (updated instance fields and return value). Therefore, given a class
A each one of its methods m is approximated by a set of constraints cm[xin,
xF, xout, xF′] where xin and xF are respectively the method formal parameters
and the class fields at m’s entry-point, xout is the return value (if any) and
xF′ symbolically represent the values of class fields at the exit-point.

109

110 Symbolic Relations for Approximating the Class Semantics

An immediate application is the automatic generation of documentation:
as the constraints describe the methods’ behavior, they can be shipped as
class documentation. The main advantage is that they are directly gener-
ated from the source and no human intervention is required when the code
changes: it is sufficient to (re-)run the analysis on the modified methods.
Another application is the derivation of an abstract1 class Ā to be used in
full program analysis: the methods of A are replaced by their abstract coun-
terparts cm.

In whole-program analysis the use of an (already computed) abstraction
of m brings to a global analysis speedup. From such a point of view, our
approach is close to [95]. In such a work the authors address the problem
of verifying whether the client of a class uses it in a correct way. To do
it, they essentially derive a symbolic class invariant and they check that a
given client does not violate it. However, our work is different since we do
not require any human interaction for deriving the methods’ approximations
and our analysis does not necessarily need a client in order to derive class
integrity properties.

A further use of Ā is for the inference of class invariants. In fact as the
method semantics is approximated once and for all, the fixpoint computation
of (5.8) can be approximated so to reduce its cost. In particular, we exploit
Ā in order to obtain two kinds of class invariants IA and JA the first being
cheap to compute but imprecise and the second one being more expensive
but more precise, too.

7.2 An Example of Stack
We will illustrate the results of this chapter on the Java class, taken from
[67], in Figure 7.1. The class Stack implements a stack parameterized by its
dimension, specified at object creation time. The annotations on the right
have been automatically derived by instantiating the results of this chapter.
The comments at lines 6 to 8 specify the class invariant, i.e. a property that,
for each possible instantiation of the class Stack, is valid before and after
the execution of each method in the class. In particular, it states that the
size of the stack is always greater than zero and it does not change during
the execution. Moreover the stack pointer pos is always positive and smaller
or equal to the array size.

The inferred class invariant can be used either to automatically produce
1In this context we employ the term abstract in the sense of abstract interpretation

theory and not of object-oriented programming: hence by an abstract class Ā we mean a
semantic object that approximates the semantics of A, and not a class that should not be
instantiated [56].

7.2 An Example of Stack 111

class StackError extends Exception {
}

public class Stack {
5

private int size; // 1 <= size
private int pos; // 0 <= pos <= size
private Object[] stack; // size = stack.Length

10 Stack(int size) {
this .size = Math.max(size,1);
this .pos = 0;
this .stack = new Object[this .size];

}
15

boolean isEmpty() {
return (pos <= 0);

}

20 boolean isFull() {
return (pos >= size);

}

Object top() {
25 return stack[pos −1]; // -1 <= pos-1 < stack.Length

}

void push(Object o) throws StackError {
if (!isFull()) {

30 stack[pos] = o; // 0 <= pos < size
pos++;

} else
throw new StackError();

}
35

void pop() throws StackError {
if (!isEmpty())

pos−−;
else

40 throw new StackError();
}

}

Figure 7.1: Java source code and annotations for the Stack class

112 Symbolic Relations for Approximating the Class Semantics

the code documentation or to point out possible runtime errors as for exam-
ple at line 25 where a negative array access may be performed if the stack
is empty. Moreover the same property can be used to optimize the gener-
ated bytecode: in fact for each possible instantiation of the Stack and for
each possible calling context it is sure that the array upper bound is never
accessed or overcome so that this check can be avoided in the compiled code.
Analogously at line 30 at bytecode level the array checks can be omitted as
it is proved that pos is always in the array boundaries.

7.3 First Abstraction: Approximating Classes
In this section we show how to build a class approximation on the top of
methods abstraction. The idea is quite simple: given a class A the abstract
class Ā can be obtained as follows:

– the constructor init is replaced with an a symbolic relational approx-
imation of its semantics cinit;

– each one of the methods m is replaced with the corresponding symbolic
relational approximation cm;

– each field f of type T is replaced with a field f̄ of type T̄.

7.3.1 Definition of an Abstract Class

We need some preliminary definitions, before giving the formal definition of
abstract classes. First we define the subset initialC of the constraints that
are about just the initial states:

Definition 7.1 (Initial Constraints, initialC) Let in be the entry point
of the constructor or of a method. Then, the subset of initial constraints
initialC ∈ P(C) is defined as follows:

initialC = {c | ∀x(pp) ∈ tiedVars(c). pp = in}.

It is worth noting that if c0 ∈ initialC, then γC(c0) is a set of traces of
length one, i.e. of states.

Next we define the relation b, which intuitively states that a constraint is
a sound approximation of the method collecting semantics. Roughly speak-
ing, the definition below says that if the input states of a method are soundly
approximated by an initial constraint c0, then cfc0 is a sound approximation
of the method collecting semantics.

7.3 First Abstraction: Approximating Classes 113

Definition 7.2 (Approximation of a Method, b) Let m ∈ M, c ∈ C
and αa ∈ [T(Σ) → P(Σ)] be the abstraction defined in the Example 2.1.
Then the relation b is defined as follows:

m b c ⇐⇒ ∀S ∈ P(Σ). ∀c0 ∈ initialC.

S ⊆ γC(c0) =⇒MJmK(S) ⊆ αa ◦ γC(c f c0).

In such a case, we say that c approximates m.

The soundness requirement of the definition above implies that if m b c
then, in particular, c contains the information about the fields that may
escape from the method m. We denote such fields with E(c).

The definition of b can be easily extended to cope with the approximation
of the semantics of the constructor, so that we have all the elements for the
definition of the abstract class:

Definition 7.3 (Abstract Class, Ā) Let A = 〈init, F, M〉 be a class. An
abstract class Ā is a triplet 〈cinit, {T̄i f̄i}, {cm}〉 where:

– cinit approximates the constructor: init b cinit;

– each field f̄i of type T̄i replaces the corresponding field fi ∈ F of type Ti;

– each cm approximates the corresponding method m ∈ M: m b cm.

In the following, with an abuse of notation, we will write F̄ for the abstract
fields and M̄ for the set of constraints approximating the semantics of methods.

7.3.2 Applications

The approximation Ā has two immediate applications. The first one is as
documentation. In fact, constraints describe the methods’ behavior, so that
they can be used as a description of the compiled code. The main advantage
of this way of doing is that the documentation is obtained automatically from
the source code and not from user annotations [102], saving programmer time
and being less error-prone.

The second one is for the abstract debugging of a client of the class. In
fact suppose to have a program P using the class A. In a static analysis of P
we can employ Ā either to save time by avoiding the analysis of A’s methods
at each (abstract) invocation or to test that P uses the class in a correct way,
e.g. in the Stack example it never pops an element from an empty stack. On
the other hand, a similar form of abstract debugging, in which the semantics
of an invocation is replaced by a summary function, is used in ESC/Java to

114 Symbolic Relations for Approximating the Class Semantics

perform modular analysis of classes [47], in [95] to perform modular analysis
of Java containers and in [94] to perform modular verification of concurrent
Java programs.

Example 7.1 (Abstract Stack, Stack) With reference to our running
example, the constructor and the methods of Stack can be, automatically,
approximated by set of linear inequalities in order to obtain the abstract
class Stack.

We begin with the approximation of fields. As size and pos are of integer
type, we leave them unchanged. On the other hand, stack is an array object
that we chose to approximate with its length, i.e. we abstract away the values
and the representation of array by just keeping its length. Therefore Object[]
= int and

F̄Stack = {int size, int pos, int stacklen}.
The approximation of the constructor as well as that of methods is ob-

tained by giving formal names (e.g. posF) to the values of the actual pa-
rameters and instance fields corresponding to the initial values at method
entry-point and by establishing a relation with the final value (e.g. posF′)
of these variables. In our case this relation can be established by abstractly
executing the methods on the polyhedra abstract domain refined with trace
partitioning [59].

Therefore, if in and out are the program points corresponding respec-
tively to the entry-point and exit-point of the constructor, then the approx-
imation of the class constructor is:

cStack() = {size(in) ≤ size(out), 1 ≤ size(out),

stacklen(out) = size(out), pos(out) = 0}.

Roughly, it states that the initial size of the stack can never be smaller than
1 or smaller than the value of the constructor parameter. Furthermore, the
length of the array is equal to the value of the instance field size and the
stack pointer pos is initially set to 0.

The approximation for the helper methods isEmpty and isFull is below.
The return value is, without any loss of generality, assumed to be stored in
the variable x(out). F and F′ are respectively the field values before and after
the execution of a method.

cisEmpty = {x(out) = (pos ≤ 0)} ∪ {F = F′}
cisFull = {x(out) = (pos ≥ size)} ∪ {F = F′}.

Such an approximation states that an invocation of the two methods does
not change the values of the object fields.

7.3 First Abstraction: Approximating Classes 115

The approximation of top must take into account the array access. In
fact, if the pointer pos is out of the bounds then the exception ArrayIndex-
OutOfBoundsException is thrown. We assume that Ω(Exc) denotes that
the exception Exc is thrown.

ctop = {if (pos(in) > size(in)) or (posF ≤ 0)

then xout = Ω(ArrayIndexOutOfBoundsException)

else F = F′}

It is worth noting that in ctop if no exception is thrown then the value returned
is abstracted to be everything.

Finally, we are left with the approximations of push and of pop, given
below. Fp and F′p are as above except that they do not contain, respectively,
the variables pos(in) and posout:

cpush = {if (pos(in) < size(in))

then if (pos(in) ≥ 0)

then pos(out) = pos(in) + 1, pos(out) > 0, pos(out) ≤ size(in)

else x(out) = Ω(ArrayIndexOutOfBoundsException)

else x(out) = Ω(StackError)} ∪ {Fp = F′p}
cpop = {if (pos(in)) > 0)

then pos(out) = pos(in) − 1, pos(out) ≥ 0

else x(out) = Ω(StackError)} ∪ {Fp = F′p}.

Finally, the abstract class Stack is the triplet

〈cStack(), F̄Stack, {cisEmpty, cisFull, ctop, cpush, cpop}〉.

From the last example it follows that if a class A uses a class B, e.g. it has
a field of type B, then either the abstract class B̄ must be available before the
derivation of the abstract class Ā or, if the two are mutually dependent, the
derivation of Ā and B̄ must be performed at the same time.

7.3.3 Checking the Well-behavior of a Client

An interesting use of Stack is to check for client well-behavior, i.e. to check
that a client which uses this class does not cause an exception raised by
pushing an object on a full stack, or calling top on the empty stack. Therefore
we can say that Stack abstracts away from Stack the effective values of the
array but it behaves in the same way with respect to the exceptional behavior.

116 Symbolic Relations for Approximating the Class Semantics

Abstract Object o

cinit[v0]

πxF′ (cinit)

cm[v1]

cn[v2]

πxF′ (cm)

o = new C(v0)

Client

πxout(cn)

...
...

o.m(v1)

πxout(cm)

o.n(v2)

time

Figure 7.2: A schema of a client using an instance of an abstract class Ā

In Figure 7.2 a general schema is given for performing a client debugging:
at first the client instantiates a new object o of the abstract class Ā. This
gives out an approximation of the internal object fields o.xF′ . In our running
example it essentially reduces to give the stack size. Then, whenever the
client calls a method m with an input value v, the corresponding approxi-
mation cm[x(in), xF, x(out), xF′] is fetched and instantiated with x(in) = v and
xF = o.xF′ resulting in the new set of constraints:

c′[x(out), xF′] = cm[x(in), xF, x(out), xF′] f {x(in) = v, xF = o.xF′}.

Eventually the return value for the client is obtained by keeping the value of
xout, hence πxout(c

′[xout, xF′]). Analogously the new o internal state is o.xF′ =
πxF′

(c′[xout, xF′]).

Example 7.2 (Stack Underflow) Let us suppose to have a context that
creates an instance of the class Stack as the one given below:

int i;
s = new Stack(10);

s.push(new Integer(123));

7.3 First Abstraction: Approximating Classes 117

5 i = s.pop();
s.top();

In such a case we have that just after the invocation of the constructor
the object internal state is approximated by the following constraints:

c0 = {size(out) = stacklen(out) = 10, pos(out) = 0}.

The internal state s after the invocation of push is:

πxF′
(cpush[size(in), pos(in), xout, sizeF′ , posF′] f c0)

=πxF′
({size(out) = stacklen(out) = 10, pos(out) = 1,

pos(out) > 0, pos(out) ≤ 10})
={size(out) = stacklen(out) = 10, pos(out) = 1}.

Invoking pop in such a state causes the pointer to be reset to 0, so that the
object internal state becomes:

c2 = {size(out) = stacklen(out) = 10, pos(out) = 0}.

Finally, the invocation of top causes the raising of the runtime exception:

πx(out)
(ctop[size(in), pos(in), xout, size(out), pos(out)] f c2)

=πx(out)
({x(out) = Ω(ArrayIndexOutOfBoundsException)}

=Ω(ArrayIndexOutOfBoundsException).

7.3.4 Soundness

The soundness comes out from the following observation: the construction
proposed in Definition 7.3 is a program transformation, i.e. a meaning-
preserving mapping defined on the program syntax [36]. In fact, the above
definition is equivalent to a program transformer t on the syntax and a con-
cretization function γ such that the following diagram commutes:

Ā
Semantics // cJĀK

γ

��
A

Semantics //

t

OO

cJAK

Differently stated, if we transform the class source and we take its seman-
tics then we obtain an upper approximation of the original class semantics.
Formally, the following theorem holds:

118 Symbolic Relations for Approximating the Class Semantics

Theorem 7.1 (Soundness of the Abstract Class) The abstract class
Ā is a sound approximation of the semantics of A.

Proof. (Sketch) The semantics of an abstract class may be defined in the
same way as the trace semantics of classes introduced in Chapter 3. In such
a case a transition is an instance of a method approximation.

By definition, the constructor and the methods of Ā are such that cm b m.
As a consequence, each transition caused by a method m is upper-approximated
by a transition caused by the corresponding approximation cm. Finally, the
thesis follows from the fixpoint transfer theorem (cf. Theorem 2.6) and the
fact that the fields and the classes they belong to are finitely many.

q.e.d.

7.4 Second Abstraction: Class Invariants
On the base of the abstract classes previously introduced, in this section we
show how to automatically derive a class invariant.

7.4.1 History-insensitive Class Invariant

If A has, for example, just two methods m1 and m2, respectively approximated
by cm1 and cm2 , then the property “cm1 or cm2” is always true for each instance of
A and for each calling context. Thus “cm1 or cm2” is a class invariant. Formally:

IA = πxF′
(cm1) g πxF′

(cm2).

In general a class invariant can be obtained by gathering all the method
approximations of the object local environment, so that we can state the
following theorem:

Theorem 7.2 (History-insensitive Class Invariant) Let A = 〈init,
F, M〉 be a class and Ā = 〈cinit, F̄, M̄〉 the corresponding abstract class. Fur-
thermore, let

cA = cinit g
j

m∈Ā

πxF′
(cm) .

Then
IA = δE(cA)(cA) (7.1)

is a class invariant for A. Moreover each I ′A such that IA � I ′A is a class
invariant.

7.4 Second Abstraction: Class Invariants 119

Proof. Let us consider the formulation of the strongest class invariant of (5.2).
By theorem hypotheses, the constraints approximate both the initial states
and the collecting semantics of the methods for all possible inputs. Thus
the fixpoint computation of (5.8) terminates after one step. The soundness
follows from definition of join g, from the property (extensivity) of π, and
from the fact that we drop the fields that may escape from the object scope
(i.e. E(cA)).

q.e.d.

We call (7.1) a history-insensitive class invariant since the method invo-
cation history is not considered in method’s analyses, as can be seen in the
following example:

Example 7.3 (I-Class Invariant for Stack) If we apply (7.1) to the
Stack example, we obtain:

IStack � {posF′ = 0}g {0 < posF′ ≤ sizeF′}g {0 ≤ posF′}
= {0 ≤ posF′}

since isEmpty(), isFull() and top() do not modify the object fields. The �
originates from the fact that, for example purposes, we do not consider the
value of stack.length and that size is not modified after constructor invo-
cation. The intuitive meaning of IStack is that whatever method is invoked
the field variable pos is positive.

The invariant discovered in the last example immediately allows us to
point out that at line 25 of Figure 7.1 there is a possible out of the bounds
array access. The programmer did not provide any check for it, so that if the
stack is empty (i.e. pos = 0) a runtime exception is thrown. However IStack
does not give any upper bound for the stack pointer value. Hence the code
generated for lines 25 and 30 cannot be optimized by removing the check
pos < stack.length. In the next section we show how to obtain a more
precise (but more expensive to compute) class invariant.

7.4.2 History-sensitive Class Invariant

When carefully looking at (7.1) it is possible to realize that the result can be
improved by exploiting the inter-relations between different methods. Differ-
ently stated, proceeding as in last section, we completely abstract away from
the method invocation history. In particular (7.1) does not consider the fact
that the first called method is the class constructor, that intuitively sets up

120 Symbolic Relations for Approximating the Class Semantics

the object local environment. So, in order to avoid this problem we propose
an iterative algorithm to compute a class invariant.

The first step performs an approximation of the object internal state after
the invocation of its constructor, i.e. J0 = πxF′

(cinit). After that an approxi-
mation of the method’s semantics is computed with the object internal state
specified by J0, obtaining for each method m a

J1
m = cm f J0.

Intuitively this can be justified as follows: after the object creation, the client
invokes the method mi. Thus, when the method returns it has changed the
object internal state, that is now πxF′

(J1
m). Now, since we are performing a

modular analysis, i.e. without considering the client context, we do not know
which method is called. Equivalently, we can say that the invoked method
is either the first one, or the second one, or the third, etc. This writes down
as: j

m∈A

πxF′
(J1

m).

Eventually since we are interested in the class invariant, we must collect the
effects (on the internal fields) of the first and the second step, obtaining:

J1 = J0 g

(
j

m∈A

πxF′
(J1

m)

)
.

Then we can iterate, obtaining J2, J3, It is immediate to see that this se-
quence is an increasing chain: J0 � J1 � J2 . . . � Jk � Jk+1 Moreover,
in general it is possible that it is infinite, i.e. the analysis does not terminate.
So, as usual in abstract interpretation, in order to force the convergence of
the sequence (and hence of the analysis) we need a widening operator [29].
We adopt the fixpoint strategy of (5.8) that consists in limiting the sequence
of exact iterations to a given step n and then replacing the g with −g.

Theorem 7.3 (History-sensitive Class Invariant) Let Ā = 〈cinit, F̄, M̄〉
be an abstract class for a class A and let n be an integer. Then the limit JA

of the sequence constructed as follows:

J0 = πxF′
(cinit)

Jk+1 = Jk g
j

m∈M̄

πxF′
(cm f Jk) g δE(Jk)(J

k) if 0 ≤ k < n

Jk+1 = Jk−g
j

m∈M̄

πxF′
(cm f Jk)) g δE(Jk)(J

k) if k ≥ n

(7.2)

exists and it is a class invariant for A.

7.4 Second Abstraction: Class Invariants 121

Proof. The iteration schema above is an instance of (5.8). The convergence
is assured by the definition of −g. The soundness follows from the definition
of Ā and the properties of π, g and −g. Note that escaping scope is handled
by δE(Jk)(J

k), which throws away the fields that escape from the object, so
that it upper-approximates Context(·).

q.e.d.

The presented method is more precise but also more expensive as a fix-
point computation is introduced in addition to the local fixpoint computa-
tions for inferring the approximations cm. Nevertheless the results are very
good. In fact in the next example, 6 iterations are sufficient to compute
JStack, the stack invariant.

Example 7.4 (J-Class Invariant for Stack) Applying the iteration strat-
egy of (7.2) with n = 4, it is possible to discover a class invariant for the
class Stack. We begin by considering the abstract class Stack derived in the
Example 7.1.

The first step corresponds to the approximation of the constructor:

J0 = cinit = {1 ≤ size(out), pos(out) = 0, stacklen(out) = size(out)}

For the successive iterations we restricts to the methods push and pop since
they are the only two to modify the object internal state. So, we obtain

J1
push = cpush f J0 = {1 ≤ size(out), pos(out) = 1}
J1
pop = cpop f J0 = {∅}

so that, thanks to the property (unit) of dropping operator, we obtain the
next step:

J1 = J0 g J1
push g J1

pop = {1 ≤ size(out), 0 ≤ pos(out) ≤ 1}.

Next iterate is:

J2
push = cpush f J1 = {1 ≤ size(out), 1 ≤ pos(out) ≤ 2}
J2
pop = cpop f J1 = {1 ≤ size(out), pos(out) = 0}

yielding

J2 = J1 g J2
push g J2

pop = {1 ≤ size(out), 0 ≤ pos(out) ≤ 2}.

Then the fixpoint computation goes on with:

J3
push = cpush f J2 = {1 ≤ size(out), 1 ≤ pos(out) ≤ 3, pos(out) ≤ size(out)}
J3
pop = cpop f J2 = {1 ≤ size(out), 0 ≤ pos(out) ≤ 1}

122 Symbolic Relations for Approximating the Class Semantics

so
J3 = {1 ≤ size(out), 0 ≤ pos(out) ≤ 3, pos(out) ≤ size(out)}

and
J4 = {1 ≤ size(out), 0 ≤ pos(out) ≤ 4, pos(out) ≤ size(out)}.

At this point we can apply a widening operator order to extrapolate the
sequence limit. The intuition is that at step n we have a constraint in the form
of pos(out) ≤ n, so a way to stabilize the chain is by upper-approximating it
with pos(out) ≤ +∞, i.e. by removing it from the constraint system. As a
consequence, it the resulting set of constraints

JStack = {1 ≤ size(out), 0 ≤ pos(out) ≤ size(out)}

can be easily verified to be a fixpoint.

In the particular example that we consider, no gain of precision is obtained
by postponing the application of the widening operator or by considering a
more precise widening. However, in practice it may be useful to have a more
flexible handling of widening thresholds [9] or more precise widenings on
polyhedra [7].

It is worth noting as with this second method we are able to discover the
class invariant pos ≤ size and to produce the code annotations of Figure
7.1.

7.4.3 On comparing the IA and JA invariants

We have pointed out, and we illustrated with an example, that the history-
sensitive class invariant is more precise than the history insensitive one. So
why not always use the second one? The reason is the cost, both in time and
memory.

In fact it is clear that in general, in order to compute JA we need more
iterations than for IA and in certain cases this computation may be so expen-
sive to make the analysis in practice infeasible. So, in our opinion, the choice
between the two must be made by carefully looking at the precision/cost
trade-off. We consider some heuristics for two typical scenarios:

The first scenario is during code development. At this stage a tool that
helps the programmer to quickly find source(s) of (potential) bugs is welcome.
However such a tool is required to run in a reasonable amount of time. Thus
the use of an invariant computation based on the history-insensitive method
makes sense. For example, a tool adopting such a strategy can indicate at
early stages of program developing the missing check at line 25.

The second scenario is at code shipping time. Suppose that the code
exiting from the development cycle is ready to be shipped. At this stage the

7.5 Discussion 123

cost of a long but precise analysis can be afforded. This because a precise
analysis is useful

– to prove that the code is correct, e.g. it contains no run-time errors,
all the exception raised are caught, etc. and

– to optimize the compiled code, e.g. removing superfluous checks, stat-
ically resolving the virtual methods calls, etc.

Therefore in this second scenario it is reasonable to think of a tool computing
a JA-style class invariant.

Nevertheless, both the methods are in general less precise than the generic
one of Chapter 5 but also less expensive to compute.

7.5 Discussion
In this chapter we showed how to perform a class-level modular analysis for
object oriented languages when the semantics of methods is approximated
using a symbolic relational abstract domain. We presented two successive
abstractions:

– the first one is a program transformation that given a class A, allows
the construction of a transformed version Ā to be used for client con-
formance testing or for class documentation;

– the second one is the automatic discovery of class invariant to be used
either for verification or as support for an optimizing compiler.

Some empirical experience suggests that symbolic relations are worth-
while for the the analysis of classes in that, intuitively, precision is gained
by keeping relations between the state of objects at creation-time and their
evolution over the time. Furthermore, in next chapter we show how a IA
invariant is useful for the modular inference of subclass invariants.

124 Symbolic Relations for Approximating the Class Semantics

Chapter 8

Class Invariants in Presence of
Inheritance

There’s no sense in being precise
when you don’t even know what
you’re talking about.

John von Neumann (1930)

In this chapter we extend our framework in order to cope with inheritance.
In particular, we address the problem of inferring a class invariant for a class
S = “E extends B”, for some base class B and extension E. A direct approach,
i.e. an approach based on the expansion of the subclassing relation [90], has
several drawbacks: it may cause a quadratic code blow-up and it does not
allow sharing of computations, e.g. the base class must be re-analyzed for
each one of its descendant. Furthermore, in some circumstances, the source
code of B may not be available, so that the analysis cannot be done at all.

In order to overcome such problems, we present an extension of our frame-
work in which the invariant for S is inferred by referring only to the code of
the extension E and the invariant of the base class B. Such an approach solves
the above-mentioned problems as the base class needs to be analyzed just
once, and the result of the analysis may be used many times. Furthermore,
the compiled code of B may be shipped with the class invariant, enabling the
analysis of code that relies on third-part libraries.

This chapter is based on the published work [77].

125

126 Class Invariants in Presence of Inheritance

Rectangular Region

Container

kkkkkkkkkkkkkk
Two States

TTTTTTTTTTTTTTT

Resizable

nnnnnnnnnnn
Non Resizable

SSSSSSSSSSSSSSS

Figure 8.1: An example of conceptual hierarchy for a GUI

8.1 Inheritance
Classes do provide a good modular decomposition technique and possess
many of the qualities expected of reusable components as they are homo-
geneous and coherent modules and interfaces can be clearly separated from
their implementation according to the principle of information hiding. Nev-
ertheless, more language support is needed in order to achieve the goals of
code reusability and extendibility. Object-oriented languages provide such a
support through the inheritance mechanism.

8.1.1 Inheritance in Software Development

Inheritance is a main concern in software development for two main reasons:
in the design phase of a system, it enables the structuring of concepts in
hierarchies and in the development phase, it enables code reuse and extension.

From a conceptual point of view, inheritance allows to model a system by
factoring together the common structure of the entities that made up such a
system. So, for instance, in a graphic toolkit resizable windows, dialog boxes
and buttons all share some properties, e.g. they occupy a rectangular region
on the screen and they must react to mouse actions. Furthermore resizable
windows and dialog boxes may contain other windows, whereas buttons can-
not. On the other hand, buttons are particular rectangular regions with just
two visible states: pressed or not-pressed. Finally, resizable windows and
dialog boxes are different in that the first may be able to change dynamically
the area they occupy on the screen but not the latter. As a consequence, the
common attributes can be smashed together so to obtain the conceptual hi-
erarchy of Figure 8.1. For example, a dialog box is a non-resizable container.
At its turn every container is a rectangular region, so that a dialog box is
even a rectangular region.

From the programmer point of view, inheritance is a mechanism for in-

8.1 Inheritance 127

cremental programming. In particular, it allows to reach the two goals of
reusability and extendibility. For reusability, it avoids to rewrite the same
code over and over again, wasting time, introducing inconsistencies and risk-
ing errors. For extendibility, it allows to smartly extend existing code so to
cope with new functionalities and needs. So, for instance in the above ex-
ample the handling of the child windows is implemented by the class “Con-
tainer”. Such an implementation is shared by its subclasses “Resizable” and
“Not Resizable”.

8.1.2 Inheritance in Programming Languages

The notion of inheritance first appeared in Simula 67 [39]. In Simula, objects
are grouped into classes and classes can be organized into a subclass hier-
archy. Subclasses inherit all the attributes of their superclasses. Smalltalk
[55] adopts and exploits the idea of inheritance, in particular by stressing the
message-passing paradigm. Furthermore, with respect to Simula, Smalltalk
abandons static scoping and strong typing in order to gain flexibility and to
implement system introspection. Finally, Simula and Smalltalk both allow
multiple inheritance, i.e. a class may have several incomparable superclasses.

Inheritance is also one of the main ingredients for the object-oriented
extensions of procedural languages as C and Pascal. In particular the inher-
itance support in C++ [101] and Object Pascal [12] is very close to that of
Smalltalk. On the other hand, in Objective-C [5] a class may at most have
one superclass. Moreover, Objective-C introduces an orthogonal aspect to
subclasses: categories. Roughly, categories allow to directly add methods to
a class rather than define a subclass to extend it.

Last generation object-oriented languages as Java [56] and C# [84] pro-
vide a form of inheritance through class extension and interface implemen-
tation. Roughly, they have a weaker concept of multiple inheritance: a class
has exactly one superclass but it may implement an arbitrary number of in-
terfaces. An interface is a class without the implementation of the methods.

8.1.3 Semantics of Inheritance

In their seminal work on Simula [39], Dahl and Nygaard justified the concept
of inheritance on syntactic bases, namely as textual concatenation of program
blocks. A first semantic approach is [55] where the authors introduced an
(informal) operational approach to the semantics of inheritance. In particular
they reduced the problem of specifying the semantics of message dispatch to
that of method lookup.

In the objects as records model [16], the semantics of an object is ab-

128 Class Invariants in Presence of Inheritance

stracted with its type so that the inheritance identified with subtyping and
the semantics of inheritance boils down to the subtyping relation. Neverthe-
less, such an approach is not fully satisfactory as shown in [22].

In [23] a denotational characterization of inheritance is introduced and
proved correct w.r.t. to an operational semantics based on the method lookup
algorithm of [55].

An unifying view of the different forms of inheritance provided by pro-
gramming languages is presented in [13]. The authors present an inheritance
mechanism, based on composition of mixins, that subsumes the others. Mix-
ins are the CLOS [10] equivalents of Objective-C categories.

8.1.4 Inheritance and Class Invariants

In the Design by Contract (DbC) approach the inheritance is strictly tied
to the preservation of class invariants, in that it enforces the preservation of
the invariant by the subclass. For example, in Eiffel a subclass “inherits” the
assertions of invariants of its superclasses. This means that if AB and AE are
class assertions for respectively the base class B and the extension E, then the
assertion of the subclass S = E extends B is “AE and AB”. Then, the Eiffel
compiler generates stubs to check that at each entry point and exit point of
methods the assertion “AE and AB” is not violated.

The approach of Eiffel is a kind of dynamic behavioral subtyping [73, 4].
One drawback is that the inheritance relation is not decidable. In fact, as
the assertion language is a side-effects free subset of Eiffel, in particular it is
as expressive as Turing machines. Thus it is not possible to statically check
that a subclass preserves the assertions of the superclass. We will cope with
this aspect in the next chapter, where we present a notion of inheritance
based on static analysis.

8.2 An Example of Stack with Undo
We will illustrate the results of this chapter through the example in Figure
8.2. It defines a class StackWithUndo which extends the class Stack of Figure
7.1 by adding to the stack the capability of performing the undo of the last
operation.

The comments in the figures are automatically derived when the frame-
work presented in this chapter is instantiated with the Octagon abstract
domain [86] refined with trace partitioning [59]. The class invariant for
StackWithUndo, SubInv, states that the parent class invariant is still valid
and moreover the field undoType cannot assume values outside the inter-
val [−1, 1]. It implies that the method undo will never raise the exception

8.2 An Example of Stack with Undo 129

class StackWithUndo extends Stack {

// SubInv : Inv, -1 <= undoType <= 1,
// if undoType == 1 then 0 < pos

5 // else if undoType == 0 then 0 <= pos <= size
// else if undoType == -1 then pos < size

protected Object undoObject;
protected int undoType;

10
StackWithUndo(int x) {

super (x);
undoType = 0; undoObject = null ;

}
15

void push(Object o) throws StackError {
undoType = 1;
super .push(o);

}
20

void pop() throws StackError {
if (!isEmpty()) {

undoType = −1;
undoObject = stack[pos −1];

25 }
super .pop();

}

// StackError never thrown
30 void undo() throws StackError {

if (undoType == −1) {
super .push(undoObject);
undoType = 0;

} else if (undoType == 1) {
35 super .pop();

undoType = 0;
}

}
}

Figure 8.2: UndoStack, an extension of Stack with undo

130 Class Invariants in Presence of Inheritance

StackErr. Once again this information can be used for verification (if a
class never raises an exception Exc, then the exceptional behavior described
by Exc is never shown) and for optimization (as the exception handling can be
dropped). Finally it is worth noting that SubInv has been obtained without
accessing the parent code but just to its class invariant.

8.3 Non-Modular Analysis
Most object-oriented languages provide inheritance through class extension
and differentiation: the programmer defines a subclass by writing down its
parent class as well as the fields and the methods it adds. Moreover it is also
allowed to redefine method bodies, and in the subclass one can gain access the
previous implementation through the meta-variable super. For instance Java
and C# have the syntactic construct E extends B which creates a subclass of
B. With an abuse of language, the so-created subclass is called E, i.e. it takes
the same name as the extension. However, in this thesis we differentiate
between the name of the subclass and the name of the extension, so that
S = E extends B, i.e. the proper subclass of B is called S.

In the rest of this section, we formally define the syntactic transformation
behind extends and we show how to apply the results of previous sections
in order to infer an invariant for the subclass.

8.3.1 Subclass Expansion

The Java subclassing mechanism can be formalized as a program transfor-
mation in the style of [13, 23, 90].

First, we define a class combination operator ⊕ ∈ [Classes × Classes →
Classes] that forms a new class with fields, constructor and methods from its
two arguments. If a method is defined in both classes then the value from the
left argument is kept unchanged, whereas that from the right is kept after
modifying its name by prefixing the right-argument class name. The new
class constructor is that of the left argument. The right class constructor is
renamed as in the case of overlapping methods and then kept.

Example 8.1 (Combination of Classes) Let us consider the class Incr
= 〈init, {a}, {add}〉, where

init = λa0. (a := a0)

add = λ(). (a := a + 1).

8.3 Non-Modular Analysis 131

Now, let us extend the class Incr with: E = 〈init, {b}, {add}〉 where

init = λ(a0, c0). (super.init(a0); b := c0 − a0)

add = λ(). (super.add(); b := b− 1).

Then E⊕ Incr = 〈init, {a, b}, {add, Incr$add, Incr$init}〉.

The next step is to handle the binding of the meta-variable super. This
is done by a renaming function θ ∈ [Classes → Classes] that firstly replaces
all the calls in the form of super.m(. . .) with “superclassname”$m(. . .) and
then substitutes all the occurrences of super with self.

Example 8.2 (Renaming Function, θ) When applying the renaming func-
tion to the previous example we obtain that θ(E⊕ Incr) = 〈init, {a, b},
{add, Incr$add, Incr$init}〉, where

init = λ(a0, c0). (Incr$init(a0); b := c0 − a0)

add = λ(). (Incr$add(); b := b− 1).

Finally, we assume that the name of methods in a class are implicitly
prefixed by the class name, i.e. for a given class C the names C$mi and mi are
synonymous.

The program transformation that corresponds to the subclass extension
mechanism is

λE. λB. θ(E⊕ B),

i.e. the the subclass S corresponding to the Java/C# construct “E extends

B” is S = θ(E⊕ B).

8.3.2 Analysis of the Expanded Class

Thanks to the syntactic transformation above, it is possible to directly apply
the results of Chapter 5 for the inference of a subclass invariant. The idea
is to take the code of the base class B, that of the extension E and then to
instantiate (5.7) to the expanded class S = θ(E⊕ B).

The general form of S is 〈init, FE ∪ FB, {m1 . . . mn} ∪ {n1 . . . nk}〉, where
FB are the fields of the base class, mi are the methods of the base class
not redefined by E and FE and ni are the fields and the methods from the
extension E. As the redefined methods are hidden to the class clients, they
are considered as they were protected methods. Thus they do not contribute
to the class invariant. To sum up, a class invariant for S is a solution of the
equation system (8.1) below. Note that for the sake of simplicity we omit
the term Context, i.e. we assume that the methods dos not expose the state

132 Class Invariants in Presence of Inheritance

of the object. Nevertheless, the extension of our results to cope with this
aspect are immediate, to the cost of a more complex notation.

Y = ĪJinitEKt̄
⊔̄

1≤i≤n

M̄JmiK(Y)t̄
⊔̄

1≤i≤k

M̄JniK(Y). (8.1)

However such a naive approach has several drawbacks. First, it is not
suitable for the analysis of large class hierarchies. In fact, it is known [90, §6.4]
that the expansion of the inheritance causes (in the worst case) a quadratic
blow up of the code size. Therefore, the direct analysis of the expanded code
may cause a quadratic loss of performances.

Second, in general B can be the base class for two distinct extensions E

and E′. In that case the code B will be expanded and hence analyzed twice,
with a further performances loss.

Third, in some cases the B source code is not available, e.g. with appli-
cations that use third-party libraries. In that case, the library providers are
unlikely to distribute the source code. A reasonable solution may be to ship
the class invariants together with the compiled code. In that way the analysis
of S will use the source code of E and the class invariant for B, instead of its
source.

8.4 Modular Analysis
In this section we present a modular approach to the inference of invariants
for subclasses. The goal is to solve the equation (8.1) in a smarter way
than performing the brute force fixpoint computation. In particular, we
are interested in a solution that is a function of the base class invariant,
so that the methods mi does not need to be analyzed again. We consider
separately the two orthogonal aspects of inheritance: class extension and
method redefinition.

8.4.1 Class Extension

In this section we assume that E may add methods and fields to B, it may
provide a new constructor, but it cannot redefine the methods of B.

The first remark is that the property J0 = ĪJinitEK is about the variables
in FB ∪ FE, so that it can be split in two parts J0 = JB

0 t̄JE
0 where the first

refers to the inherited fields and the latter to the fields of the extension FE.
As for JB

0 is concerned, it is reasonable to assume JB
0 v̄I, i.e. at creation time

the subclass objects do not violate the superclass invariant. Recall that the
order relation v̄ is the abstract counterpart of logical implication. This is
a very common situation in object oriented programming: for example in

8.4 Modular Analysis 133

C++ [43] it is a standard procedure to call the superclass constructors to
set up the inherited fields and then to initialize the fields in FE and even
Java semantics [56] forces the initialization of the base class fields before the
subclass constructor(s) can access them.

Next, we look for a solution of (8.1) with a particular shape. Informally, S
can behave either as the base class B or the extension E. Thus it is reasonable
to look for a solution in the form of It̄U , where I is the invariant of the base
class B and U involves just the methods of E. Formally, U is a solution of the
following recursive equation:

X = JE
0 t̄

⊔̄
1≤i≤k

M̄JniK(It̄X). (8.2)

As a consequence we obtain the following equation system:

{(8.1), (8.2), J0 = JB
0 t̄JE

0 , J = It̄U}. (8.3)

It is worth noting that a solution J of (8.3) is a solution of (8.1), whereas in
general the contrary does not hold.

The interest of using (8.3) is that the computation of J reduces to the
computation of (8.2), so that the subclass invariant J can be obtained using
just the superclass invariant (as J = It̄U). Furthermore, it is possible to
show that when analyzing a class hierarchy, in general the obtained speedup
is linear in the number of direct descendants of a class and quadratic in the
depth of the class hierarchy. The following theorem gives a sufficient and
necessary condition for the existence of solutions of (8.1):

Theorem 8.1 If M̄J·K is a join-morphism then the equation system (8.3)
has a solution iff ⊔̄

1≤i≤n

M̄JmiK(U)v̄It̄U. (8.4)

Proof. Using the identities of (8.3) it is possible to rewrite the equation (8.1)
as follows:

J =ĪJinitEKt̄
⊔̄

1≤i≤n

M̄JmiK(J)t̄
⊔̄

1≤i≤k

M̄JniK(J)

=JB
0 t̄JE

0 t̄
⊔̄

1≤i≤n

M̄JmiK(It̄U)t̄
⊔̄

1≤i≤k

M̄JniK(It̄U)

=JB
0 t̄

⊔̄
1≤i≤n

M̄JmiK(I)t̄
⊔̄

1≤i≤n

t̄M̄JmiK(U)t̄JE
0 t̄

⊔̄
1≤i≤k

M̄JniK(It̄U)

=It̄
⊔̄

1≤i≤n

M̄JmiK(U)t̄U

134 Class Invariants in Presence of Inheritance

From basic lattice theory, it follows that the above equation is consistent
with J = It̄U iff (8.1) holds.

q.e.d.

If the subclass preserves the parent invariant w.r.t. the inherited fields,
i.e. πFC(U)v̄I then the above equation system admits solutions. In general
it may be difficult to prove the theorem hypothesis, and in the worst case it
is computationally equivalent to solve (8.1). However, in Section 8.5 we will
show that an analysis carried on using an instance of the A-domain satisfies
the hypothesis of the theorem, so that (8.1) must be checked once and for
all.

Example 8.3 (Modular Inference of Subclass Invariant) The class
ClosedSystem which models closed physical systems with a total energy
c0 and two different kinds of internal energy a and b, can be defined as
ClosedSystem = 〈init, {a, b}, {add, sub}〉, where

init = λ(a0, c0). (a := a0; b := c0 − a0)

add = λ(). (a := a + 1; b := b− 1)

sub = λ(). (a := a− 1; b := b + 1).

Using (5.7) and the Octagon abstract domain it is possible to infer the class
invariant I = {a+ b = c0}. It states that the sum of the two fields is always
equal to the value of the parameter passed to the constructor.

Now, let us consider the extension ExtendedSystem with a field c, a new
constructor and a method ext :

init = λ(a0, c0). (super.init(a0, c0); c := c0)

ext = λ(). (c := c− 1; a := a− 1).

If we instantiate and solve (8.2) we obtain

U = {a + b = c, c ≤ c0} and
J = It̄U = {a + b ≤ c0, c ≤ c0}.

The invariant J is a class invariant for the class “ExtendedSystem extends

ClosedSystem”. Nevertheless, the direct application of (8.1) gives J ′ =
{a + b = c, c ≤ c0}. It is immediate to see that J ′ is a more precise invariant
than J , that is J ′v̄J .

The example above points out that whilst a solution of (8.3) is a solution
of (8.1) in general it is not the least solution. Roughly, precision is lost
because information flows from I to U but not in the other way.

8.4 Modular Analysis 135

8.4.2 Methods refining

In this section we consider a subclass that may “refine” the behavior of the
superclass by redefining some of its methods. The modalities for doing it
largely depend on the considered object oriented language. For example
C++, C# and Java apply syntax criteria (the overriding method must have
the same name and type as the overridden) whereas in Eiffel a method n

overrides m if and only if the type of n is (co-variantly) a subtype of m. Nev-
ertheless in order to be as language-independent as possible, we consider just
how overriding and overridden methods interact and not how the overriding
is provided by the language. However an implementation of an analyzer for
a real language must consider this point.

As usual in abstract interpretation, we proceed by successive approxima-
tions. First we assume that all the methods of S may be executed, even those
that are redefined, so that the results of the previous section apply directly.
This is an over-approximation of the real behavior: if a method is redefined
in a subclass, then it is not directly accessible by the context, but it is still
reachable by the method bodies of E.

In general, because of late-binding, we must distinguish two situations:
downcalls and upcalls: in the first case a method of the parent class invokes
one that has been redefined and in the latter the interaction happens in
the opposite direction. Once again, we can handle both by performing an
upper-approximation. Let us consider a method definition in the form

m = λxin. (. . . ; v := mcall(y); . . .),

for some variables v and y.
If the invocation of mcall may resolve in a down-call, then a safe (but

rather imprecise) approximation is to consider that an overriding method
can arbitrarily modify the object internal state. Then the object state at the
program point just after the assignment can be any σ ∈ Σ. Therefore when
performing the analysis of the m body, the abstract environment just after
the assignment will be set equal to α(Σ) = >̄, the largest element of the
abstract domain. An improvement would be to use I instead of α(Σ), but
then the subclass must be checked to preserve the invariant I, i.e. πFB(J)v̄I.
In the next chapter we will consider a model of inheritance in which such a
property holds.

On the other hand, if mcall resolves in an up-call then a worst case approx-
imation of MJmcallK must be employed so that v := M̄JmcallK(>̄). Why this?
Essentially because in the m body the (super)class invariant may not hold [81]
so that it is not sound to assume it as an approximation of mcall semantics.
Therefore, if we want to analyze the subclass code without referring to the

136 Class Invariants in Presence of Inheritance

parent one then the only sound assumption is to consider the mcall postcon-
dition when its input is not known, i.e. it can be everything. This is sound
as semantic functions are monotonic, so d̄v̄>̄ ⇒ M̄JmcallK(d̄)v̄M̄JmcallK(>̄).
Using the worst-case approximation, the base class must be shipped not
only with the invariant I but also with an approximation M̄JmiK(>̄) for each
method mi.

Example 8.4 (StackWithUndo Class Invariant) Applying the consider-
ations above and instancing the equation system (8.3), it is possible to infer
a class invariant for StackWithUndo. We use the Octagon abstract domain,
so that t̄ is the union of octagons. It is easy to see that the constructor
preserves the Stack invariant, so

J0 = It̄{undoType = 0}.

Then we can consider the application of (8.2) to undo and to the over-
ridden methods push and pop. The three perform an up-call. In that case
it is sound to replace it with the Stack invariant as it holds at the program
point just before the super.pop and super.push invocations. Therefore it is
immediate to obtain

U = It̄{−1 ≤ undoType ≤ 1},

so that using Th. 8.1 the class invariant for StackWithUndo is J = It̄U .
If it is needed, the obtained invariant and method post-conditions can

be improved by using the incremental refinement technique of [50]. In our
example, the abstract domain can be refined by partitioning it through the
values assumed by undoType, that using the already computed class invariant
J are at most 3. In such a way it is possible to infer the property:

undoType = 1⇒ pos > 0

undoType = 0⇒ 0 ≤ pos ≤ size

undoType = −1⇒ pos < size


so that it is proved that the method undo never throws the exception StackError.

8.5 Symbolic Relations and Inheritance
We now consider the case in which the underlying abstract domain is an
instance of the A-domain. The methods added or redefined by a subclass
can be handled as in Chapter 7: their semantics is approximated by a suitable
symbolic relation and the base class invariant is computed using the history-
insensitive schema of Section 7.4.1. Then, if IB is the history-insensitive class

8.5 Symbolic Relations and Inheritance 137

invariant corresponding to the base class, then the subclass invariant in the
form of IB g W can be given, with W defined as:

W = πF′(cinitE) g
j

1≤i≤k

πF′(cmi).

It is routine to check that W satisfies the hypothesis of Theorem 8.1
so that H = IB g W is effectively a solution of (8.1) and hence a modular
subclass invariant:

Theorem 8.2 Let S be a subclass of B. Furthermore, let IB be an history-
insensitive class invariant for B. Then H = IB g W is a class invariant for
S.

Last theorem is useful in that it guarantees that whenever we have an
analysis that fulfills the requirements of being symbolic relational it can be
immediately used to derive a subclass invariant without any additional check.
For example this is the case of the Octagon domain used in the previous
examples.

Furthermore, using symbolic relations the handling of up-calls can be
improved: with reference to what we said in Section 8.4.2, we can use a
symbolic relational approximation of the method mcall instead of the worst-
case one. Therefore, if the environment before the method invocation is
approximated by cF , then the object state after that is approximated by
πF ′(cmcall f cF). This because we have an approximation for the method
input/output behavior w.r.t the object fields, cmcall , and one for the input,
cF . Then we put together the two using g, and we project on the output
values F′. In general this handling of up-calls is likely to be more precise than
the one presented in Section 8.4.2.

Constraints may also be used to improve the treatment of down-calls:
the overriding method(s) can be added as a further parameter to symbolic
relations so that they assume the general form of cm[mdown]. Therefore the
resulting base class invariant I[mdown] is parameterized by the (approximation
of the) semantics of methods redefined in subclasses so that if cdown is the
constraint for the method overriding mdown then H can be rewritten as

H = πF ′(K[mdown] f cdown) g W.

The formula above holds whenever the subclass S does not introduce new
virtual functions, i.e. functions that can be overridden, and S subclasses do
not further redefine mdown. Nevertheless, to the detriment of exposition clarity,
it is possible to give a more general formulation to drop these two hypotheses.

138 Class Invariants in Presence of Inheritance

8.6 Discussion
In this chapter we presented a framework for class modular analysis of object
oriented languages in presence of inheritance. We instantiated the equations
for the class invariants to cope with inheritance. We discussed the resolv-
ability whenever a solution, function of the base class invariant, is required.

Chapter 9

Static Analysis-based
Inheritance

Tu non pensavi ch’io loico fossi!1

Dante Alighieri
Hell, Divine Comedy (1321)

In mainstream object oriented languages the inheritance relation is defined
in terms of subtyping, i.e. a class A is a subclass of B if the type of A is a
subtype of B. In this chapter we extend this notion to consider arbitrary
class properties obtained by a modular static analysis of the class. In such a
setting, the subclass relation boils down to the order relation on the abstract
domain used for the analysis of the classes. We show how this approach
yields a more semantic characterization of class hierarchies and how it can
be used for an effective modular analysis of polymorphic code.

This chapter is based on the published work [75].

9.1 Behavioral Subtyping
Inheritance is one of the main features of object oriented languages. It allows
a form of incremental programming and of code reuse. Moreover it allows
the structuring of the code in a hierarchy, so that the classes composing a
program (or a library) are organized in a subclass hierarchy. The traditional
definition of the inheritance relation is that a class A is subclass of class B if
its type is a subtype of that of B. Stated otherwise this means that an object
that belongs to A can be used in any context that requires an object of B

1(Italian) You didn’t think I was a logician!

139

140 Static Analysis-based Inheritance

without causing a type-error at runtime. However, the subtyping relation is
not strong enough to ensure, for instance, that an object of A does not cause
a division by zero, if the B’s object did not. Behavioral subtyping tries to
overcome this problem [4, 73, 68].

Roughly speaking the behavioral subtype relationship guarantees that no
unexpected behavior occurs when subtype objects replace supertype’s ones.
The essential idea is to annotate the class source code with a property in
a suitable formal language. Such a property is called the behavior type of
the class [73]. Then the behavioral subtyping relation is defined in terms
of property implication: A is a subclass of B if its behavioral type implies
that of B. The checking of this implication can be done in several ways: by
a hand-proof [73], a theorem prover [68] or even at runtime [80]. However,
most of the times the formal correspondence between the class semantics and
the hand-provided behavioral type is neglected.

We present an approach to behavioral subtyping based on static analysis.
The main idea is to analyze a class on a suitable abstract domain to infer a
class invariant as well as methods preconditions and postconditions. We call
the result of the analysis of A the observable of A, O(A). An observable is a
sound approximation of the class semantics, thus it is a behavioral type of A.
The correspondence between the semantics of A and O(A) is straightforwardly
given by the soundness of the static analysis. The behavioral subtyping
relation boils down to the order v̄ on the abstract domain: given two classes
A and B, then O(A) v̄O(B) means that A preserves the behavior of B. In other
words A is a behavioral subtype of B.

Our approach to behavioral subtyping has several advantages. First, as
it is based on static analysis it does not require any human intervention
for the annotation of the source code. Second, the observable is ensured to
be a sound approximation of the class semantics and it saves programmer
time. Third, as the order relation v̄ is decidable it can be automatically
checked. Thus there is no need of using a theorem prover or to rely on
unsound methods as runtime assertion monitoring [80]. Fourth, the definition
of the behavioral subtyping in the abstract interpretation framework allows
to use standard techniques as for instance domain refinement [31] in order to
systematically improve the precision of the observables.

9.2 Examples
We illustrate our approach on the classes in Figure 9.1. They implement
different kinds of bags. They have a method to add an element to the con-
tainer, add(e) and addSq(e), and to extract an element from it, remove().

9.2 Examples 141

class Stack is

s : list of int;
init() : s = []
add(e) : s = e :: s
remove() : let s = e :: ls in

s = ls;
return e

(a) Stack

class Queue is

s : list of int;
init() : s = [];
add(e) : s = s :: e
remove() : let s = e :: ls in

s = ls;
return e

(b) Queue

class PosStack is

s : list of int;
init() : s = []
add(e) : s = |e| :: s
remove() : let s = e :: ls in

s = ls;
return e

(c) PosStack

class SqStack is

s : list of int;
init() : s = []
add(e) : s = |e| :: s
addSq(e) : s = (e ∗ e) :: s
remove() : let s = e :: ls in

s = ls;
return e

(d) SqStack

Figure 9.1: Four implementations of a bag

However, they differ in the handling of the elements: the method remove()
of Queue returns the elements in the same order they have been inserted
whereas that of Stack, PosStack and SqStack returns them in the reverse
order. Moreover PosStack and SqStack contain only positive integers and
SqStack has a further method that inserts the square of its argument. For
the sake of simplicity we do not consider such errors, as removing an element
from an empty container.

9.2.1 Class Hierarchy

It is evident that the four classes have different behaviors. However the three
are not totally unrelated, so which is the relation between them? Which are
the admissible class hierarchies? To put it another way, when is it safe to
replace an object s of Stack with an object q of Queue? The answer depends
on the meaning of “safe”. In type theory “safe” means that the use of q at
the place of s will not cause a run-time type error, if s did not cause one [90].
Thus in the example, the classes Stack, PosStack and Queue have the same
type so that for instance Stack may be a subtype of Queue and conversely.
Only SqStack has to be a subtype of Stack, PosStack or Queue, due to
method addSq. This is the only constraint on the possible class hierarchies.

142 Static Analysis-based Inheritance

On the other hand, if the context requires that the values extracted from
the bag are in the reverse order with respect to the insertion one then it is
not “safe” anymore to replace s with q. Thus the order of the elements of a
bag is a property, different from types, that induces a different inheritance
relationship. In particular, from this point of view Stack and SqStack exhibit
the same property, so that Stack may be defined as a subclass of SqStack.
Therefore, the admissible class hierarchies are different from that allowed by
the subtyping relation.

9.2.2 Systematic Refinement of the Class Hierarchy

Types and element ordering are both properties of classes that can be dis-
covered once they are analyzed on suitable abstract domains, say T̄ and S̄
respectively. The two domains can be combined together using the reduced
product P̄ = T̄ ⊗ S̄ (cf. Definition 2.4). Thus, using the more precise ab-
stract domain P̄ it is possible to infer more precise class properties. In the
example SqStack can only be a subclass of Stack or of PosStack. However
it is still admissible to have Stack subclass of PosStack and vice versa. This
is essentially a consequence of the fact that P̄ does not capture the sign of
the elements in field s. Therefore, P̄ can be combined with the Sign abstract
domain [29] in order to capture such a property: R̄ = P̄ ⊗ Sign. Thereafter,
using R̄ we obtain that Stack can never be subclass of PosStack as it does
not preserve the property that all the elements in s are positive integers.
Only four class hierarchies preserve the properties captured by R̄: the triv-
ial one in which the subclass relation is the identity and the three listed in
Figure 9.2.

9.2.3 Modular Verification

The initial motivation of our work on behavioral suptyping was the applica-
tion of behavioral subtyping to the modular analysis of polymorphic object
oriented code, robust with respect to the addition of subclasses. Consider for
example the following function that references an object of type PosStack:

sqrt(PosStack p) : return
√
p.remove().

One would like to prove sqrt correct for all possible future subclasses of
PosStack, as all these may be passed as a parameter. This is possible if the
subclasses do not violate the PosStack property that the elements are always
positive. It is evident that the subtyping-based subclass relation is too weak
to ensure this property.

However, if only subclass relations based on the properties encoded in

9.3 Observables 143

Stack Queue

PosStack

SqStack

(a)

Stack Queue

PosStack

qqqqqqqqqqq
SqStack

LLLLLLLLLL

(b)

Stack Queue PosStack

SqStack

(c)

Figure 9.2: Admissible class hierarchies using R̄

R̄ are allowed, then all the subclasses of PosStack preserve the required
invariants. This reduces the proof that sqrt never performs the square root
of a negative number to proving it with PosStack as an argument.

9.3 Observables
A behavioral type of a class A is a property of the semantics of A [73]. Next,
we consider behavioral types that are the result of a static analysis of A, and
we define them as observables of the class: O(A) = C̄JAK.

The advantage of defining the behavioral type of a class as the result
of a static analysis of its source is that it can be automatically inferred.
Moreover, given two classes A and B, it is sufficient to check if O(A)v̄O(B)
in order to verify if they are in the behavioral subtype relation. In a static
analysis the elements of D̄ are computer-representable approximations of the
concrete properties and the v̄ order on the abstract domain D̄ is a decidable
abstract counterpart for the logical implication. Therefore the behavioral
subtype relation is decidable too.

9.3.1 Domain of Observables

We begin by defining the abstract domain of observables. Let us put ourselves
in the setting of Theorem 5.1. We recall that a solution of (5.7) is a tuple
〈̄I, Ī0, Ī1 . . . Īn〉 ∈ D̄n+2 where the first component is a class invariant, Ī0 is the
constructor postcondition and the Īis, i ≥ 1 are the methods postconditions.
The method preconditions can be obtained using a backward analysis starting

144 Static Analysis-based Inheritance

from the postcondition: P̄i = M̄
<JmiK(̄Ii). Therefore, the result of a static

analysis of A is:

C̄JAK = 〈̄I, {mi : P̄i → Īi | mi ∈ {init} ∪ M}〉.

The domain of the observables, 〈Ō, v̄o〉, is built on the top of the domain
used for the analysis, i.e. 〈D̄, v̄〉. The elements belong to the set

Ō = {〈̄I, {mi : P̄i → Īi}〉 | Ī ∈ D̄,∀i. P̄i, Īi ∈ D̄}.

We tacitly assume that if a method n is not defined in a class, then its pre-
condition and postconditions are respectively >̄and ⊥̄. Such an assumption
allows us to give a smart definition of the order relation v̄o:

Definition 9.1 (Order on Observables, v̄o) Let o1 = 〈̄I, {mi : P̄i →
Īi}〉 and o2 = 〈J̄, {mj : Q̄j → J̄j}〉 be two elements1 of Ō. Then

o1v̄oo2 ⇐⇒ Īv̄J̄ ∧ (∀mi. Q̄iv̄P̄i ∧ Īiv̄J̄i).

Roughly speaking, if o1 and o2 are the observables of two classes A and B

then the order v̄o ensures that A preserves the class invariant of B and that
the methods of A are a “safe” replacement of those with the same name in
B. Intuitively, the precondition condition says that if the context satisfies Qi

then it satisfies the inherited method precondition Pi too. Thus the inherited
method can be used in any context where its ancestor can. On the other hand,
the postcondition of the inherited method may be stronger than that of the
ancestor.

Having defined v̄o, it is routine to check that if D̄ is a complete lattice
then ⊥̄o = 〈⊥̄, {mi : >̄ → ⊥̄}〉 is the smallest element of Ō and >̄o = 〈>̄, {mi :
⊥̄ → >̄}〉 is the largest one.

The join and the meet operations can be defined point-wise:

Definition 9.2 (Join and Meet of Observables, t̄o and ūo) Let o1 =
〈̄I, {mi : P̄i → Īi}〉 and o2 = 〈J̄, {mj : Q̄j → J̄j}〉 be two elements of Ō. Then

o1t̄oo2 = 〈̄It̄J̄, {mi : Q̄iūP̄i → Īit̄J̄i}〉
o1ūoo2 = 〈̄IūJ̄, {mi : Q̄it̄P̄i → ĪiūJ̄i}〉

Moreover, let us suppose that the order relation v̄ is decidable. For
instance, this is the case of an abstract domain used for an effective static
analysis. As v̄o is defined in terms of v̄ and the universal quantification
ranges on a finite number of methods then v̄o is decidable too. To sum up,
we have the following result:

1We use the same index for methods with the same name. For instance Pi and Qi are
the preconditions for the homonym method mi of o1 and o2.

9.4 Subclassing through Observables 145

Theorem 9.1 Let 〈P̄, v̄, ⊥̄, >̄, t̄, ū〉 be a complete lattice. Then 〈Ō, v̄o, ⊥̄o,
>̄o, t̄o, ūo〉 is a complete lattice. Moreover, if v̄ is decidable then v̄o is
decidable too.

Proof. It is straightforward to check that, by definition, ⊥̄oand >̄o are re-
spectively the least and the largest element of Ō w.r.t. the order v̄o. For the
join, consider a set {ok} of observables. Then by definition of t̄o,

⊔̄
o
{oi} =

〈⊔̄
k

Īk,

{
mi :

l̄

k

Q̄ik →
⊔̄
k

Īik

}〉

exists as, by hypothesis, t̄ and ū are respectively a complete join-morphism
and a complete meet-morphism. For the same reason ūo is a complete meet-
morphism.

q.e.d.

9.4 Subclassing through Observables
It is now possible to formally give the definition of subclassing as inclusion
relation between elements of the abstract domain:

Definition 9.3 Let A and B be two classes, 〈Ō, v̄〉 a domain of observables.
Then A is a subclass of B, A E B, with respect to the properties encoded by Ō
iff O(A) v̄o O(B).

Observe that when 〈Ō, v̄o〉 is instantiated with the types abstract domain
[26] then the relation defined above coincides with the traditional subtyping-
based definition of subclassing [16].

The Definition 9.3 can be visualized by the following diagram:

B
Semantics // cJBK

Static
Analysis // O(B)

w̄o

��
A

Semantics //

E

OO

cJAK

Static
Analysis // O(A)

This diagram essentially shows how the concept of subclassing is linked to
the semantics of classes. It states that when the abstract semantics of A and
B are compared, that of A implies the one of B. That means that A refines
B w.r.t. the properties encoded by the abstract domain Ō. This is in accord

146 Static Analysis-based Inheritance

with the mundane understanding of inheritance which states that a subclass
is a specialization of the ancestor [81].

Moreover we have made no hypothesis on the abstraction of the concrete
semantics. In particular we do not differentiate between history properties
and state properties, unlike [73], the two being just different abstractions
of the concrete semantics. In fact, history properties correspond to trace
abstractions and state properties to state abstractions.

It is worth noting that our definition of observables is slightly different
from the notion of observables of [21]. In that paper, the authors present
a theory of observables for logic programming. In particular they define an
observable as an abstraction function. Our approach is different in that we
define observables as abstract elements.

9.4.1 Static Checking of Behavioral Subtyping

The main advantage of our approach is that the subclassing relation can
automatically be checked by a compiler: the derivation of class observables
is automatic and their inclusion is decidable. As a consequence a compiler
can accept subclasses only if they preserve the parent behavior. For instance,
this is in the spirit of Eiffel subclassing mechanism [80]. However, the speci-
fication of Eiffel requires to check the preservation of the ancestor invariants
at runtime. An interesting future work can be the extension of our work on
subclassing to the Eiffel language.

9.4.2 Modular Verification

A major advantage of having the compiler which rejects subclass definitions,
that do not preserve the parent properties, is that it enables a form of mod-
ular analysis for polymorphic functions. Consider the following polymorphic
function f, that references an object of type B:

f(B b) : . . . b.m(v)

Now, suppose to analyze it on the 〈D̄, v̄〉 abstract domain. If the analysis
is performed using B then the call b.m(v) resolves to the invocation of the
method mB of B. Having an observable of B, the precondition Q̄ and the post-
condition J̄ of mB can be used in the analysis, so that the body of the methods
does not need to be analyzed again. Thus, if v̄ ∈ D̄ is the approximation of
the concrete values taken by the variable v then

v̄v̄Q̄ =⇒ M̄JmBK(v̄)v̄J̄.

The result of such an analysis is valid for all the invocations f(a) where a is
an instance of a class A E B. This can be shown as follows. If A E B then

9.4 Subclassing through Observables 147

O(A) v̄oO(B). Then, by definition of the order relation v̄o the method mA of
A is such that mA : P̄→ Ī with Q̄v̄P̄ and Īv̄J̄. So:

v̄v̄Q̄v̄P̄ =⇒ M̄JmAK(v̄)v̄Ī ∧ Īv̄J̄.

Thus J̄ is a sound approximation of the semantics of the method mA. As a
matter of fact we have proved the following theorem:

Theorem 9.2 Let A and B two classes such that A E B. Let mB be a method
of B and mA the homonym method that belongs to A. Let mB : Q̄ → J̄ and
mA : P̄→ Ī. Then

∀v̄v̄P̄. v̄v̄Q̄ =⇒ M̄JmAK(v̄)v̄J̄.

Hence the analysis of polymorphic code using the superclass is enough to
state that the result is valid for all the subclasses. So, it is not necessary to
reanalyze the code for each subclass of B.

9.4.3 Domain Refinement

A further advantage of formalizing the behavioral subtyping in the abstrac-
tion interpretation framework is that it is possible to apply well-known ab-
stract domain refinement techniques [31, 54, 52] in order to improve the
precision of the observables. Hence having more fine-grain class hierarchies.
In particular, the use of the reduced product is practical for refining the
precision of the captured properties.

Theorem 9.3 (Domain Refinement) Let 〈D̄1, v̄1〉 and 〈D̄2, v̄2〉 be two
abstract domains such that

〈D̄1, v̄1〉 −−−→←−−−α
γ
〈D̄2, v̄2〉.

If A E B using D̄1, then A E B using D̄2.

Proof. By theorem hypotheses O(A)v̄oO(B), where v̄o is the order built on the
top of v̄1. By monotonicity of Galois connections, α(O(A))v̄′oα(O(B)), where
v̄′o is the order built on the top of v̄2. If C̄J·K is the best abstract function
defined on D̄2 [29], then by soundness of static analyses α(O(A))v̄′oC̄JAK and
α(O(B))v̄′oC̄JBK imply that A E B using D̄2.

q.e.d.

An abstract domain of observables must, at least, encapsulate the types
abstract domain T̄. On the other hand we have argued before how a further

148 Static Analysis-based Inheritance

>̄

straight

sssssssssss
reverse

JJJJJJJJJJJ

empty

KKKKKKKKKK

tttttttttt

⊥̄
(a) The abstract domain S̄

>̄

pos

vvvvvvvvv
neg

HHHHHHHHH

empty

HHHHHHHHH

vvvvvvvvv

⊥̄
(b) The abstract domain Sign

Figure 9.3: Abstracts domains expressing the order of elements and their
sign

abstract domain D̄ is needed to capture non-typing properties, e.g. the sign
of the field values. Then the domain of observables can be built on the top
of the reduced product of the two: P̄ = T̄ ⊗ D̄. As a consequence, from a
well-known result in abstract interpretation (cf. Theorem 10.1.0.2 of [31]) it
follows that P̄ is a domain more precise than types, so that in general the
resulting E relation is more precise than the subtyping one.

9.5 Application to the Examples
In this section we show how the definition of the previous section applies
to the examples of Sect. 9.2. At first we show how when instantiating the
underline abstract domain with types, the definition of E reduces to the
traditional subtype-based one.

It is known that types can be seen as an abstract interpretation [26]. We
consider the abstract domain T̄ corresponding to the Church/Curry mono-
types. Then, if we instantiate the Definition 9.3 with the abstract domain T̄
we obtain that:

O(Stack) = O(Queue) = O(PosStack) =

{〈s : list of int〉,
{init : void→ void; add : int→ void;

remove : void→ int}},
O(SqStack) = {〈s : list of int〉, {init : void→ void;

add, addSq : int→ void; remove : void→ int}}

Therefore the only constraint on the definition of the subclassing relation

9.5 Application to the Examples 149

>̄

straight

fffffffffffffffffffffffffffffff
pos

oooooooooooooo
neg

NNNNNNNNNNNNNN
reverse

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

〈straight, pos〉

lllllllllllllll
〈straight, neg〉

RRRRRRRRRRRRR

ggggggggggggggggggggggg
〈reverse, pos〉

WWWWWWWWWWWWWWWWWWWWWWW

mmmmmmmmmmmmmm
〈reverse, neg〉

QQQQQQQQQQQQQQ

empty

XXXXXXXXXXXXXXXXXXXXXXXXXX

OOOOOOOOOOO

ppppppppppp

ggggggggggggggggggggggggg

⊥̄

Figure 9.4: The abstract domain H̄ = S̄⊗ Sign

is that SqStack cannot be the ancestor of any of the other three. This is
because O(SqStack) is a subtype of O(Stack) [16].

A different subclassing relation can be obtained using the abstract domain
in Figure 9.3(a), whom intuitive meaning is to consider if the elements of the
list are inserted at the head or tail position. It is worth noting that the order
of the elements is a history property. In that case, the observables using S̄
are:

O(Stack) = O(PosStack) = {〈s : reverse〉,
{init : ⊥̄ → empty; add : reverse→ reverse;

remove : reverse→ reverse}},
O(SqStack) = {〈s : reverse〉, {init : ⊥̄ → empty;

add, addSq : reverse→ reverse;

remove : reverse→ reverse}},
O(Queue) = {〈s : straight〉, {init : ⊥̄ → empty;

add : straight→ straight;

remove : straight→ straight}}.

In this last example, it happens that for instance Queue and Stack can never
be in the subclass relation as neither O(Queue) v̄o O(Stack) nor O(Stack)
v̄o O(Queue).

However nothing avoids to have Stack E PosStack as S̄ do not capture
the sign of the elements in s, but just the order in which they are inserted.
Therefore it is possible to refine S̄ using the domain Sign of Figure 9.3(b). In
that case we consider the domain H̄ of Figure 9.4 that is the reduced product

150 Static Analysis-based Inheritance

of the two: H̄ = S̄⊗ Sign . Thus the resulting observables for the two classes
are:

O(Stack) = {s : reverse, {init : ⊥̄ → empty;

add : reverse→ reverse;

remove : reverse→ reverse}},
O(PosStack) = {s : 〈reverse, pos〉, {init : ⊥̄ → empty;

add : 〈reverse, pos〉 → 〈reverse, pos〉;
remove : 〈reverse, pos〉 → 〈reverse, pos〉}}.

It is routine to check that Stack 6E PosStack.
Eventually, the subclass relation that brings to the class hierarchies in

Figure 9.2 is obtained considering the properties encoded by the abstract
domain R̄ = T̄⊗ H̄ = T̄⊗ S̄⊗ Sign.

9.6 Discussion
In this chapter we have presented an approach to the behavioral subtyping
based on a modular static analysis of classes’ source. In particular we have
shown how the subclassing relation can be defined in terms of the order on
the underlying abstract domain. Our approach has several advantages over
traditional subtyping and behavioral subtyping: the class behavioral type
is automatically inferred, the subtyping is decidable, it is more semantically
characterized and it is formulated in the abstract interpretation framework so
that well-known techniques on the composition and refinement of abstracts
domain can be used. Moreover, in this setting the problem of analyzing, and
hence verifying, polymorphic code is by far more simple. In fact as every
subclass extension preserves, by definition, the ancestor invariant then it is
not required to reanalyze the code once a new subclass is defined.

However, an open problem is the choice of the abstract domain used
for the inference of observables. For what concerns general purposes object
oriented languages, it is difficult to fix in advance the properties that one
wishes to be preserved by subclasses. Types have been shown to be effective
for that purpose, so that an abstract domain of observables must at least
include them. One can think to continue in that direction considering other
runtime errors, e.g. division by zero, overflow or null-pointer dereferencing,
so that given a class, all its subclasses are assured not to introduce runtime
errors.

On the other hand we are trustful that our approach can be effective for
the design and the development of problem-specific object oriented languages.
As an example, let us consider a language for smartcards programming. In

9.6 Discussion 151

this setting security is important, so that a wished property is that if a
subclass does not reveal a secret, so do the subclasses. In that case, we can
use a domain of observables able to capture security and information-flow
properties. Embedded systems are another field that may take advantage of
a more constrained subclass relation. In fact, in such a field it is immediate
to see the benefits of having a language that ensures that subclasses does not
violate the space and time constraints of the superclass.

In the future we plan to extend this work to cope with multiple inheri-
tance and Java interfaces, too. The first extension is quite straightforward.
The case of interfaces is more difficult: an interface is essentially a type
specification, though most of the time such a specification is not expressive
enough. Consider for example the case of a Java thread, which can be defined
using either the Runnable interface or the Thread class. In both cases the
class implementing a thread needs to define a method run. So what is the
difference between a class implementing Runnable or extending Thread? The
intuition is that in both cases the behavioral type of the class is the same,
the difference being just syntactic. For instance, in [14] it is clearly hinted
that the use of the Runnable is just a way to overcome the problem of single
inheritance. We plan to define a specification language in order to cope with
not-typing properties able to express properties imposed by interfaces. Then
we will use it to prove that a class correctly implements an interface.

152 Static Analysis-based Inheritance

Chapter 10

Context Approximation with
Regular Expressions

Sì che raffigurar m’è più latino.1

Dante Alighieri
Paradise, Divine Comedy (1321)

In this chapter we face the problem of analyzing mutual recursive classes by
presenting a separate compositional analysis for object-oriented languages.
In particular, we show how a generic static analysis of a context that uses
an object can be split into two separate semantic functions involving respec-
tively only the context and the object. The fundamental idea is to use a
regular expressions for approximating the interactions between the context
and the object. Then, we introduce an iterative schema for composing the
two semantic functions. The iteration process returns at each step an up-
per approximation of the concrete semantics, so that the iterations can be
stopped as soon as the desired degree of precision is reached. Furthermore,
the analysis can be easily parallelized enabling a gain in time and memory.
Finally, we illustrate our approach with a core object-oriented language with
aliasing.

This chapter is based on the published work [78].

10.1 Introduction
One important facet of object-oriented design is encapsulation [81]. Encap-
sulation hides the objects’ inner details from the outside world and allows a

1(Italian) So that my understanding become easier.

153

154 Context Approximation

hierarchical structuring of code. As a consequence, a program written in the
object-oriented style has often the structure of C[o], where C[·] is a context
which interacts with an encapsulated object o.

In this chapter we are interested in exploiting the encapsulation features of
the object-oriented languages for obtaining an efficient static analysis, namely
to separately analyze the context and the object. Most available analyses are
not separated e.g. [92, 93], or they are imprecise as they assume the worst
case for the calling context, e.g. [8, 96]. A separate analysis presents several
advantages. First, it may significantly reduce the overall analysis cost both
in time and space, as e.g. different computers can be used for the analysis
of the context and the object. Second, as the total memory consumption is
reduced, very precise analyses can be used for the context and/or the object.
Third, it allows a form of modular analysis: if o is replaced by another object
o′ then the analysis of C[o′] requires just the analysis of o′. For instance, this
is the case when C[·] is a function and o and o′ are actual parameters, or
when o′ is a refinement of o, e.g. o′ is a sub-object of o.

We present a generic monolithic static analysis of the context and the
object K̄JC[o]K, parameterized by an abstract domain D̄. We show how it can
be split into two semantic functions, Γ and Θ, corresponding respectively to
the analysis of the context and the object. The fundamental idea is the use of
regular expressions for approximating the interactions between the context
and the object, so that we refine the abstract domain D̄ with a domain of
regular expressions. We have that:

– the object analysis Θ is a function that takes as input a map from
objects to regular expressions. It returns a map from objects to their
approximations.

– the context analysis Γ is a function that takes as input the approxima-
tion of the semantics of the objects. It returns an abstract value and a
map from objects to regular expressions.

The functions Θ and Γ are mutually recursive. Thus, we handle this situation
with the usual iterative approach. In particular, we begin by assuming the
worst-case for the objects approximations and the contexts. Then, we show
that the iterations form a chain of increasing precision, each step being a
sound upper-approximation of K̄JC[o]K. This implies that the iterations can
be stopped as soon as the desired degree of precision is reached, enabling a
trade-off between precision and cost.

10.2 Context Syntax and Semantics 155

10.2 Context Syntax and Semantics
We begin by defining the syntax and the semantics of a context. The goal
is to study the interactions between the context and the objects it interacts
with.

In order to simplify the notation we assume that it exists just one class
and that the semantics of the context, of the methods and of the class con-
structor is deterministic. Nevertheless, the generalization of the results to
the case of an arbitrary number of classes and to non-deterministic semantic
is straightforward.

10.2.1 Syntax

The syntax of a context is quite standard, except that we distinguish three
kinds of assignments: the assignment of the value of a side-effects free ex-
pression to a variable, the assignment of a value of one variable to another
one and the assignment of the return value of a method call to a variable:

Definition 10.1 (Context Syntax) Let x, x1, x2 and o be variables, let
e be an expression and let b be a boolean expression. Then a context belongs
to the language generated by the following grammar:

C ::= A o = new A(E) | C1; C2 | skip | x = E | x1 = x2

| x = o.m(E) | if b then C1 else C2 | while b do C.

C denotes an arbitrary context, C[·] denotes a context that may contain one
or more objects and C[o] denotes a context that uses an object o. However,
as we allow aliasing of objects, we cannot give the formal definition of C[o]
on a strictly syntactic basis. Therefore, such a definition is postponed to the
next section.

It is worth noting that in the previous definition we implicitly assume that
a method call always returns a value. If this is not the case, we can suppose
that it returns a void value that is assigned to some dummy variable.

10.2.2 Semantics

We define the context semantics in denotational style, by induction on the
syntax. The semantics of expressions and that of the boolean expressions
are assumed to be side-effect free, such that eJEK ∈ [Env × Store→ Val] and
bJbK ∈ [Env×Store→ B]. The semantics of the context is given by induction
on the syntax:

156 Context Approximation

kJA o = new A(E)K = λe, s.let v = eJEK(e, s), a = alloc(s),

(e0, s0) = iJinitK(v, s),

e′ = e[o 7→ a], s′ = s0[a 7→ e0]

in (e′, s′)

kJC1; C2K = λe, s.kJC2K(kJC1K(e, s)) kJskipK = λe, s.(e, s)

kJx = EK = λe, s.(e, s[e(x) 7→ eJEK(e, s)])
kJx1 = x2K = λe, s.(e[x1 7→ e(x2)], s)

kJx = o.m(E)K = λe, s.let v = eJEK(e, s),
(v0, e0, s0) = mJmK(v, s(e(o)), s),

s′ = s0[e(x) 7→ v0, e(o) 7→ e0]

in (e, s′)

kJif b then C1 else C2K = λe, s.if bJbK(e, s) = tt then kJC1K(e, s) else kJC2K(e, s)
kJwhile b do CK = lfpλφ.λe, s.if bJbK(e, s) = tt then φ(kJCK(e, s)) else (e, s)

Figure 10.1: Semantics of the context

Definition 10.2 (Context Semantics, kJ·K) Let alloc ∈ [Store→ Addr]
be the function that returns a fresh memory address. Then, the semantics of
a context, kJCK ∈ [Env × Store→ Env × Store] is given in Figure 10.1.

When a class A is instantiated, the initial value is evaluated, and the class
constructor is invoked with that value and the store. The class constructor
returns the environment e0 of the new object and the modified store s0.
Then the environment and the store change, so that o points to the memory
allocated for storing e0. When a method of the object o is invoked, its
environment is fetched from the memory and passed to the method. This
implies that the method has no access the caller environment, but only to
that of the object it belongs to. In other words, the context has the burden of
setting the right environment for a method call, so that the handling of this
is somehow transparent to the callee. For the rest, the semantics in Figure
10.1 is a quite standard denotational semantics [98]. In particular, the loop
semantics is handled by the least fixpoint operator in the flat Scott-domain
Env × Store ∪ {⊥}.

The identity of an object is given by the memory address where its envi-
ronment is stored. Thus the concept of a context that can access an object
is a semantic rather than a syntactic concept. So, we can formally define the
writing C[o], i.e. the context C that uses an object o:

10.3 Monolithic Abstract Semantics 157

Definition 10.3 (Context, C[·]) Given a pair (e0, s0) ∈ Env × Store, a
context C uses an object o if kJCK(e0, s0) = (e, s) and

∃x ∈ Var.e(x) = o ∧ s(e(x)) ∈ Env.

In that case, we write C[o].

10.2.3 Collecting Semantics

A semantic property is a set of possible semantics of a program. The set of
semantic properties P(Env × Store) is a complete boolean lattice

〈P(Env × Store),⊆, ∅, Env × Store,∪,∩〉

for subset inclusion, that is logical implication. The standard collecting se-
mantics of a program, KJCK(In) = {kJCK(e, s) | (e, s) ∈ In}, is the strongest
program property. The goal of a static analysis is to find a computable
approximation of KJCK.

10.3 Monolithic Abstract Semantics
We proceed to the definition of a generic abstract semantics for the language
presented in the previous section. First we consider the abstract semantic do-
mains. Afterward, we present the abstract semantics for the class constructor
and methods, and for the context.

10.3.1 Abstract Semantic Domains

The values in P(Val) are approximated by an abstract domain Val. The
correspondence between the two domains is given by the Galois connection:

〈P(Val),⊆, ∅, Val,∪,∩〉 −−−→←−−−αv

γv 〈Val, v̄v, ⊥̄v, >̄v, t̄v, ūv〉.

The set of abstract addresses is Addr ⊆ Val. We assume Addr to be a sublat-
tice of Val. If o ∈ Addr denotes an object in the concrete, then ϑ = αv({o})
is the corresponding abstract address. On the other side, ϑ stands for the set
of concrete addresses γv(ϑ), which may contain several objects. Therefore, ϑ
approximates all the objects in γv(ϑ). With an abuse of language, we call ϑ
an abstract object.

The domain D̄ abstracts the domain of concrete properties P(Env × Store)
by means of a Galois connection:

〈P(Env × Store),⊆, ∅, Env × Store,∪,∩〉 −−→←−−α
γ
〈D̄, v̄, ⊥̄, >̄, t̄, ū〉.

158 Context Approximation

We call an element of D̄ an abstract state. In general, the domain D̄ is a
relational abstraction of P(Env × Store). We consider two projections such
that for each d̄ ∈ D̄, πe(d̄) and πs(d̄) are, respectively, the projections of d̄ on
the environment and the store. We use the brackets b·c to denote the inverse
operation of the projection, i.e. given an abstraction for the environment and
the store it returns the abstract state. Moreover, some operations are defined
on D̄: alloc, assign, true and false. The first one, alloc ∈ [D̄ → Addr], is the
abstract counterpart for memory allocation. It takes an approximation of
the state and it returns an abstract address where the object environment
can be stored. It satisfies the soundness requirement:

∀d̄ ∈ D̄.{alloc(s) | (e, s) ∈ γ(d̄)} ⊆ γv(alloc(d̄)).

The function assign ∈ [D̄ × (Var × D̄)+ → D̄] handles the assignment in the
abstract domain. It takes as input an abstract state and a non-empty list of
bindings from variables to values. It returns the new abstract state. With
an abuse of notation, we sometimes write assign(d̄, πs(d̄) 7→ πs(d̄0)) to denote
that the abstract store πs(d̄) is updated by πs(d̄0).

Moreover, true, false∈ [BExp× D̄ → D̄] are the functions that given a
boolean expression and an abstract element d̄ return an abstraction of the
pairs (e, s) ∈ γ(d̄) that make the condition respectively true or false. For
instance true is such that:

∀b ∈ BExp.∀d̄ ∈ D̄.{(e, s) | bJbK(e, s) = tt} ∩ γ(d̄) ⊆ true(b, d̄).

10.3.2 Abstract Object Semantics

The abstract semantics for the class constructor and methods we consider
here is slightly different from that considered in Chapter 5. The abstract
counterpart for the constructor semantics is a function ĪJinitK ∈ [Val ×
D̄→ D̄], which takes an abstract value and an abstract state and returns an
abstract environment, that of the new object, and an abstract store. The
abstract semantics for methods is similar. It is a function M̄JmK ∈ [Val×D̄→
Val×D̄]. The input is an abstract value and an abstract state, and the output
is an abstraction of the return value and a modified abstract state.

10.3.3 Monolithic Abstract Context Semantics

The abstract semantics for contexts is defined on the top of the abstract
semantics for the expressions and the basic operations of the abstract domain
D̄. In particular, the abstract semantics of expressions is ēJEK ∈ [D̄ → Val].
It must satisfy the soundness requirement:

∀(e, s) ∈ Env × Store. eJEK(e, s) ∈ γv ◦ ēJEK ◦ α({(e, s)}).

10.3 Monolithic Abstract Semantics 159

K̄JA o = new A(E)K = λd̄.let v̄ = ēJEK(d̄), ϑ = alloc(d̄),

d̄0 = ĪJinitK(v̄, d̄)

in assign(d̄, ϑ 7→ πe(d̄0), πs(d̄) 7→ πs(d̄0))

K̄JC1; C2K = λd̄.K̄JC2K(K̄JC1K(d̄)) K̄JskipK = λd̄.d̄

K̄Jx = EK = λd̄.assign(d̄, x 7→ ēJEK(d̄))

K̄Jx1 = x2K = λd̄.assign(d̄, x1 7→ πe(d̄)(x2))

K̄Jx = o.m(E)K = λd̄.let v̄ = ēJEK(d̄), ϑ = πe(d̄)(o),

(v̄0, d̄0) = M̄JmK(v̄, bπs(d̄)(ϑ), πs(d̄)c),
in assign(d̄, x 7→ v̄0, ϑ 7→ πe(d̄0), πs(d̄) 7→ πs(d̄0))

K̄Jif b then C1 else C2K = λd̄.K̄JC1K(true(b, d̄))t̄K̄JC2K(false(b, d̄))

K̄Jwhile b do CK = λd̄.false(b, lfpv̄
d̄
λx.K̄JCK(true(b, x)))

Figure 10.2: Monolithic abstract semantics

The generic abstract semantics mimics the concrete semantics. In partic-
ular, when a method m is invoked, the corresponding abstract function M̄JmK
is used. In practice, this means that the body of a method m is analyzed
from scratch at each invocation. Therefore the encapsulation of the object
w.r.t. context is not exploited in the analysis. We call such an abstract se-
mantics a monolithic abstract semantics in order to differentiate it from the
separate compositional abstract semantics that we will introduce in the next
section.

Definition 10.4 (Monolithic Abstract Context Semantics, K̄J·K)
The monolithic abstract context semantics K̄JCK ∈ [D̄→ D̄] is defined in Fig-
ure 10.2.

The semantics in Figure 10.2 is quite similar to the concrete one in Figure
10.1. It is worth noting that the burden of handling the assignment is left to
the underlying abstract domain D̄, and in particular to the function assign.

In general the abstract domains Val and D̄ may not respect the Ascend-
ing Chain Condition (ACC) [88], so that the convergence of the analysis
is enforced through the widening operators ∇̄v ∈ [Val × Val → Val] and
∇̄ ∈ [D̄× D̄→ D̄].

The soundness of the above semantics is a consequence of the definitions
of this section:

160 Context Approximation

Theorem 10.1 (Soundness of the Monolithic Abstract Semantics)
The monolithic context abstract semantics is a sound approximation of the
concrete semantics:

∀In ∈ P(Env × Store).KJCK(In) ⊆ γ ◦ K̄JCK ◦ α(In).

Proof. (Sketch) We consider just a didactic case of the method invocation. By
theorem hypotheses, we have that v̄ is a sound approximation of eJEK(γ(d̄)),
γ(ϑ) 3 πe(γ(d̄))(o). Thus, as M̄JmK is a sound abstraction of the method
collecting semantics then (v̄0, d̄0) is a sound approximation of the method
invocation. The proof of such a case follows by the soundness of assign.

The full proof of the theorem proceeds by structural induction on the
syntax of the contexts and by induction on the iterations for the while.

q.e.d.

10.4 Separate Abstract Semantics
The abstract semantics K̄J·K defined in the previous section does not take
into account the encapsulation features of object-oriented languages, so that,
for instance each time a method of an object is invoked, its body must be
analyzed. In this section we show how to split K̄J·K into two parts. The first
part analyzes the context using an approximation of the object. The latter
analyzes the object using an approximation of the context. This reduces the
overall cost of the analysis, as it can be parallelized.

10.4.1 Regular Expressions Domain

The main idea for the separate analysis is to refine the abstract domain D̄
with the abstract domain R of regular expressions over the infinite alphabet
({init}∪P(M))×Val×D̄. Given an object, the intuition behind the refinement
is to use a regular expression to abstract the method’s invocations performed
by the context. In particular, each letter in the alphabet represents a set of
methods that can be invoked, an approximation of their input values and
an approximation of the state. Such a regular expression is built during the
analysis of the context. Then it is used for the analysis of the object.

The definition of the regular expressions in R is given by structural in-
duction. The base cases are the null string ε and the letters l of the alphabet
({init} ∪ P(M))× Val× D̄. Then, if r1 and r2 are regular expressions so are
the concatenation r1 · r2, the union r1 + r2 and the Kleene-closure r∗1.

10.4 Separate Abstract Semantics 161

>r∇rx = x∇r>r = >r x∇rε = ε∇rx = x

〈m, v̄, s̄〉∇r〈m1, v̄1, s̄1〉 = 〈m ∪ m1, v̄∇̄vv̄1, s̄∇̄s̄1〉 (r1 · r2)∇rn = (r1∇rn) · r2

(r1 + r2)∇rn = (r1∇rn) + (r2∇rn) r∗∇rn = (r∇rn)∗

(r1 · r2)∇r(r
′
1 · r′2) = (r1∇rr

′
1) · (r2∇rr

′
2) r∗1∇rr

∗
2 = (r1∇rr2)

∗

(r1 + r2)∇r(r
′
1 + r′2) = (r1∇rr

′
1) + (r2∇rr

′
2)

x∇ry = >r in all the other cases

Figure 10.3: Widening on regular expressions

Definition 10.5 (Regular Expression) Given a class A = 〈init, F, M〉
the abstract domains D̄ and Val, the set of regular expressions R is the lan-
guage generated by the following grammar:

r :: = ε | l | r1 · r2 | r1 + r2 | r∗

l ∈ ({init} ∪ P(M))× Val× D̄.

The language generated by a regular expression is defined by structural
induction:

Definition 10.6 (Language generated by a regular expression)
The language generated by a regular expression r is:

L(〈ms, v̄, s̄〉) = {〈m, v, s〉 | m ∈ ms, v ∈ γv(v̄), s ∈ γ(̄s)} L(ε) = ∅
L(r1 · r2) = {s1 · s2 | s1 ∈ L(r1), s2 ∈ L(r2)}

L(r1 + r2) = L(r1) ∪ L(r2)

L(r∗) = lfp⊆∅ λX.L(r) ∪ {s1 · s2 | s1 ∈ X, s2 ∈ L(r)}.

The order on regular expressions is a direct consequence of the above
definition:

∀r1, r2 ∈ R.r1 vr r2 ⇐⇒ L(r1) ⊆ L(r2).

So, two expressions are equivalent if they generate the same language: r1 ≡
r2 ⇐⇒ L(r1) = L(r2).

The expression 〈{init} ∪ M, >̄v, >̄〉∗ ∈ R stands for a context that may
invoke any method, with any input value and with any memory configuration
for a non-specified number of times. So, it gives no information. Thus, the
largest element is >r = 〈{init} ∪ M, >̄v, >̄〉∗.

The join of two regular expressions is simply their union: ∀r1, r2 ∈ R.r1tr

r2 = r1 + r2. Similarly, it is possible to define the meet operator ur, so that

162 Context Approximation

Lemma 10.1 (Lattice of Regular Expressions) 〈R,vr, ε,>r,tr,ur〉 is
a complete lattice.

Proof. We are left to show that the empty expression ε is the least element.
We have that, by definition of L(ε) = ∅, so that ∀r ∈ R. ε vr r.

q.e.d.

It is immediate to see that the domain R does not satisfy the ACC, so
we need the operator of Figure 10.3 to deal with strictly increasing chains
of regular expressions. There are two intuitions behind the operator ∇r.
The first one is to preserve the syntactic structure of the regular expressions
between two successive iterations, so that the number of {·, +,∗ } does not
increase. The second one is to propagate the∇r inside the regular expressions
in order to use the widenings on Val and D̄. Convergence is assured as M is a
finite set, and ∇̄v and ∇̄ are widenings on the respective domains.

Lemma 10.2 (Widening of regular expressions) The operator ∇r ∈
[R× R→ R] defined in Figure 10.3 is a widening.

10.4.2 Interaction History

For the purpose of our analysis, we need to associate with each abstract
address, i.e. a set of concrete objects, a regular expression that denotes the
interaction of the context on it. As a consequence we consider the functional
lifting of the abstract domain of regular expressions, Ṙ = [Addr → R]. The
order v̇r is defined pointwise:

∀ṙ1, ṙ2 ∈ Ṙ.ṙ1v̇rṙ2 ⇔ ∀ϑ ∈ Addr.ṙ1(ϑ) vr ṙ2(ϑ).

Similarly, the join and meet are defined point-wise: ∀ṙ1, ṙ2 ∈ Ṙ.

ṙ1ṫrṙ2 = λϑ. ṙ1(ϑ) tr ṙ2(ϑ)

ṙ1u̇rṙ2 = λϑ. ṙ1(ϑ) ur ṙ2(ϑ)

so that, because of basic domain theory:

Lemma 10.3 〈Ṙ, v̇r, λϑ.ε, λϑ.>r, ṫr, u̇r〉 is a complete lattice.

We call an element ṙ ∈ Ṙ an interaction history.

10.4 Separate Abstract Semantics 163

10.4.3 Separate Object Analysis

The goal of the separate object analysis is to infer an object invariant and
the method postconditions when the instantiation context is approximated
by a regular expression. Thus, the input of the abstract semantics ŌJϑK
is a regular expression r and an initial abstract value for the object fields
and the method preconditions. The output is an invariant for the object
fields and the method postconditions, under the context represented by r.
A postcondition is a pair consisting of an approximation of the return value
and an abstract state. Thus, the result is an element of the abstract domain
Ō = D̄× [M→ Val× D̄]. From basic domain theory [98], the orders on D̄ and
Val induce the order on Ō. So, for instance the order is

v̄o = v̄ × ˙(v̄v × v̄),

the least element is ⊥̄o = 〈⊥̄, λm.〈⊥̄v, ⊥̄〉〉 and the largest is >̄o = 〈>̄, λm.
〈>̄v, >̄〉〉. The meet, the join and the widening can be defined in a similar
fashion, so that

Lemma 10.4 〈Ō, v̄o, ⊥̄o, >̄o, t̄o, ūo〉 is a complete lattice.

The definition of ŌJϑK is by structural induction on the regular expres-
sions:

Definition 10.7 (Separate Object Analysis, ŌJ·K) The separate ob-
ject abstract semantics ŌJϑK ∈ [R× Ō→ Ō] is defined in Figure 10.4.

The base cases are the empty expression ε and the letters 〈ms, v̄, s̄〉 and
〈{init}, v̄, s̄〉. In the first case the context does not perform any action, so
that the state of the object does not change at all. In the latter, the context
may invoke any method mi ∈ ms. The abstract value

⊔̄
s̄i approximates the

object field values after calling the method m1 or m2 or . . . or mn. As a
consequence, īt̄

⊔̄
s̄i approximates the object fields before and after executing

any method in ms. Hence, it is an object invariant. On the other hand,
if 〈w̄i, q̄i〉 is the initial approximation of the return values and the states
reached after the execution of a method mi ∈ ms, then 〈w̄it̄vv̄i, q̄it̄s̄i〉 is the
postcondition of mi after its execution. The case of the constructor init is
quite similar.

As for the inductive cases are concerned, the rules for concatenation and
union formalize respectively that “the context first performs r1 and then r2”
and “the context can perform either r1 or r2”. Finally, the rule for the Kleene-
closure is a little bit more tricky. In fact the intuitive meaning of r∗ is
that, starting from an initial abstract value 〈̄i, p̄〉 the context performs the

164 Context Approximation

ŌJϑK(ε, 〈̄i, p̄〉) =〈̄i, p̄〉
ŌJϑK(〈{init}, v̄, s̄〉, 〈̄i, p̄〉) =let 〈ē0, s̄0〉 = ĪJinitK(v̄, s̄t̄̄i)

in 〈̄it̄s̄0, p̄[init 7→ 〈⊥̄v, ē0〉]〉
ŌJϑK(〈ms, v̄, s̄〉, 〈̄i, p̄〉) =let ∀mi ∈ ms.(v̄i, s̄i) = M̄JmiK(v̄, s̄t̄̄i),

〈w̄i, q̄i〉 = p̄(mi)

in (̄it̄
⊔̄

s̄i, p̄[mi 7→ 〈w̄it̄vv̄i, q̄it̄s̄i〉])

ŌJϑK(r1 · r2, 〈̄i, p̄〉) =let (̄i1, p̄1) = ŌJϑK(r1, 〈̄i, p̄〉),
(̄i2, p̄2) = ŌJϑK(r2, (̄i1, p̄1))

in (̄i, p̄)t̄o(̄i1, p̄1)t̄o(̄i2, p̄2)

ŌJϑK(r1 + r2, 〈̄i, p̄〉) =let (̄i1, p̄1) = ŌJϑK(r1, 〈̄i, p̄〉),
(̄i2, p̄2) = ŌJϑK(r2, 〈̄i, p̄〉)
in (̄i, p̄)t̄o(̄i1, p̄1)t̄o(̄i2, p̄2)

ŌJϑK(r∗, 〈̄i, p̄〉) =lfpv̄o

〈̄i,p̄〉 λx, y.ŌJϑK(r, (x, y))

Figure 10.4: Separate object abstract semantics

interaction encoded by r an unspecified number of times. We handle this case
by considering the least fixpoint greater than 〈̄i, p̄〉 according to the order v̄o

on Ō. Nevertheless, if the abstract domains D̄ and Val do not respect the
ACC then the convergence of the iteration must be enforced. In that case,
we use the following pointwise widening operator to force the convergence:

λ(̄i, p̄), (̄i′, p̄′).(̄i∇̄̄i′, λm.p̄(m) (∇̄v × ∇̄) p̄′(m)).

The regular expression r> = 〈{init}, >̄v, >̄〉 · >r stands for a context
that calls at first the class constructor with an unknown value and then may
invoke any object method, with any possible value, an unspecified number
of times. Thus the abstract value 〈̄i, p̄〉 = ŌJϑK(r>, ⊥̄o) is such that ī is a
property of the object fields valid for all the object instances, in any context.
So it is a class invariant in the sense of Chapter 5.

10.4.4 Separate Context Analysis

The separate context analysis S̄JC[·]K has two goals. The first goal is to
analyze C[o] without referring to the o code, but just to a pre-computed
approximation of its semantics. The second goal is to infer, for each object

10.4 Separate Abstract Semantics 165

S̄JA o = new A(E)K = λd̄, ϑ̇, ṙ.let v̄ = ēJEK(d̄), ϑ = alloc(d̄),

〈̄i, p̄〉 = ϑ̇(ϑ), 〈⊥̄v, d̄0〉 = p̄(init),

ṙ′ = ṙ[ϑ 7→ 〈{init}, v̄, d̄〉 tr ṙ(ϑ)]

in (assign(d̄, ϑ 7→ πe(d̄0), πs(d̄) 7→ πs(d̄0)), ṙ
′)

S̄JC1; C2K = λd̄, ϑ̇, ṙ.let (d̄1, ṙ1) = S̄JC1K(d̄, ϑ̇, ṙ)

in S̄JC2K(d̄1, ϑ̇, ṙ1)

S̄JskipK = λd̄, ϑ̇, ṙ.(d̄, ṙ)

S̄Jx = EK = λd̄, ϑ̇, ṙ.(assign(d̄, x 7→ ēJEK(d̄)), ṙ)

S̄Jx1 = x2K = λd̄, ϑ̇, ṙ.(assign(d̄, x1 7→ πe(d̄)(x2)), ṙ)

S̄Jx = o.m(E)K = λd̄, ϑ̇, ṙ.let v̄ = ēJEK(d̄), ϑ = πe(d̄)(o),

〈̄i, p̄〉 = ϑ̇(ϑ), 〈v̄m, q̄m〉 = p̄(m)

d̄′ = assign(d̄, x 7→ v̄m, ϑ 7→ πe(q̄m), πs(d̄) 7→ πs(q̄m)),

ṙ′ = ṙ[ϑ 7→ ṙ(ϑ) · 〈m, v̄, bπs(d̄)(ϑ), πs(d̄)c〉]
in (d̄′, ṙ′)

S̄Jif b then C1 else C2K = λd̄, ϑ̇, ṙ.let (d̄1, ṙ1) = S̄JC1K(true(b, d̄), ϑ̇, ṙ),

(d̄2, ṙ2) = S̄JC2K(false(b, d̄), ϑ̇, ṙ)

in (d̄1t̄d̄2, ṙ1ṫrṙ2)

S̄Jwhile b do CK = λd̄, ϑ̇, ṙ.let (d̄′, ṙ′) = lfpv̄×v̇r

(d̄,λϑ.ε)
λ(x, y).S̄JCK(true(b, x), ϑ̇, y)

in (false(b, d̄′), λϑ.ṙ(ϑ) · (ṙ′(ϑ))∗)

Figure 10.5: Separate context semantics

o a regular expression r that describes the interaction of the context with o.
This r can then be used to refine the approximation of the object semantics.
In general, a context creates several objects and it interacts with each of
them in a different way. As a consequence, in the definition of the abstract
context semantics S̄J·K we use a domain ˙̄O = [Addr → Ō], whose elements
are maps from abstract objects to their approximations. The definition of
S̄JCK is by structural induction on C:

Definition 10.8 (Separate Context Semantics, S̄J·K) The separate con-
text semantics S̄JCK ∈ [D̄× ˙̄O× Ṙ→ D̄× Ṙ] is defined in Figure 10.5.

166 Context Approximation

Let us describe the semantics in Figure 10.5 informally. It takes three pa-
rameters: an abstract state, an approximation of the semantics of the objects
and the invocation history. When a class is instantiated, the semantics S̄J·K
(abstractly) evaluates the value to pass to the constructor init and it obtains
an address ϑ for the new object. Then, it uses the object abstraction ϑ̇(ϑ)
to get the constructor postcondition p̄(init) and it updates the invocation
history. In general, the abstract address ϑ identifies a set γv(ϑ) of concrete
objects. So, the semantics adds an entry to the ϑ history corresponding to
the invocation of init, with an input v̄ and an abstract state d̄. The result is
the new abstract state, obtained considering the store after the execution of
the constructor, and the updated invocation history. The sequence, the skip
and the two assignments do not interact with objects so, in these cases, S̄J·K
is very close to the corresponding semantics in Figure 10.2. The definition
of S̄J·K for method invocation is similar to the constructor’s one: it fetches
the (abstract) address corresponding to o and the corresponding invariant.
Then, it updates the abstract state, using the m postcondition, and the invo-
cation history. The definition of the conditional merges the abstract states
and the invocation histories originating from the two branches. Eventually,
the loop is handled by the least fixpoint operator on the abstract domain
D̄× Ṙ. In particular we consider the least fixpoint greater than (d̄, λϑ. ε) as
we need to compute an invocation history that is valid for all the iterations
of the loop body. The history for the whole while command is the con-
catenation of the input history with the body one, repeated an unspecified
number of times. As usual, the convergence of the analysis can be forced
through the use of the widening operator

λ(d̄1, ṙ1).(d̄2, ṙ2). (d̄1∇̄d̄2, ṙ1∇̇rṙ2).

We conclude this section with two soundness lemmata. The first one
states that for each initial value and object approximation, all the history
traces computed by S̄J·K are of the form of 〈{init}, v̄, s̄〉 · r, for some v̄ ∈ Val,
s̄ ∈ D̄ and regular expression r. Intuitively, it means that the first interaction
of the context with an object is the invocation of init with some value
and store configuration. Formally, the following lemma can be proved by
structural induction:

Lemma 10.5 (Soundness of ŌJ·K) Let d̄0 ∈ D̄, ϑ̇ ∈ ˙̄O and

S̄JCK(d̄0, ϑ̇, λϑ.ε) = (d̄, ṙ).

Then for all the abstract objects ϑ such that ṙ(ϑ) 6= ε:

1. ∃v̄ ∈ Val. ∃s̄ ∈ D̄. ∃r ∈ R. ṙ(ϑ)〈{init}, v̄, s̄〉 · r;

10.4 Separate Abstract Semantics 167

2. ŌJϑK(ṙ(ϑ), ⊥̇o) v̄o C̄JAK.

The next lemma shows that the history traces computed by S̄J·K are
an over-approximation of the history traces computed by K̄J·K. Thus, the
soundness of K̄J·K implies that the history traces are a sound approximation
of the context. The proof of the lemma uses a slight refinement of the se-
mantics in Figure 10.2 in order to deal with the history of (abstract) method
invocations.

Lemma 10.6 (Soundness of the History Traces) Let K̄JC[o]K(⊥̄) = d̄,
αv({o}) = ϑ and

t = 〈init, v̄, s̄〉 · 〈m1, v̄1, s̄1〉 . . . 〈mn, v̄n, s̄n〉

a sequence of method invocations of ϑ when the rules of Figure 10.2 are used
to derive d̄. Then

(d̄′, ṙ′) = S̄JC[o]K(⊥̄, λϑ.C̄JAK, λϑ.ε)

are such that d̄v̄d̄′ and L(t) ⊆ L(ṙ′(ϑ)).

10.4.5 Putting It All Together

In this section we show how to combine the two abstract semantic functions
ŌJ·K and S̄J·K in order to obtain a separate compositional analysis of C[o].
The functions ŌJ·K and S̄J·K are mutually related. The first one takes as
input an approximation of the context and it returns an approximation of
the object semantics. The second one takes as input an approximation of
the objects. It returns an abstract state and, for each abstract object ϑ, an
approximation of the context that interacts with ϑ. Then it is natural to
handle this mutual dependence with a fixpoint operator.

First, we need to formally define the function Θ ∈ [Ṙ→ ˙̄O], that maps an
interaction history ṙ, to a function ϑ̇ from abstract objects to their approx-
imation. Second, we consider the set of the abstract objects that interact
with the context, i.e. the abstract addresses whom interaction history is non-
empty: I = {ϑ | ṙ(ϑ) 6= ε}. Third, we define a function that maps elements
of I to their abstract semantics and the others to the class invariant C̄JAK:

ϑ̇ṙ = λϑ.

{
ŌJϑK(ṙ(ϑ), ⊥̄o) if ϑ ∈ I

C̄JAK otherwise.
(10.1)

Finally, we require that the more precise the abstract object, the more precise
its abstract semantics. Therefore we perform the downward closure of ϑ̇ṙ, to
make it monotonic:

168 Context Approximation

Definition 10.9 (Object Abstractions in a Context) Let ṙ ∈ Ṙ
and let ϑ̇ṙ be as (10.1). Then the object abstractions function in a context ṙ,
Θ ∈ [Ṙ→ ˙̄O], is defined as follows:

Θ(ṙ) = λϑ. ūo{ϑ̇ṙ(ϑ
′) | ϑ′ ∈ Addr and ϑ v̄vϑ

′}.

The function Θ is well-defined as Addr is a sublattice of Val. Moreover, the
monotonicity of Θ(ṙ) is a direct consequence of the definition.

Using the above definition and putting Γ(ϑ̇) = S̄JCK(⊥̄, ϑ̇, λϑ.ε), it is now
possible to formally state the interdependence between the context and the
objects semantics as follows:

ϑ̇ = Θ(ṙ)

(d̄, ṙ) = Γ(ϑ̇).
(10.2)

A solution to the recursive equation (10.2) can be found with the standard
iterative techniques. Nevertheless, our goal is to parallelize the iterative
computation of Θ and Γ, in order to speed up the whole analysis. Therefore,
we start the iterations by considering a worst-case approximation for ṙ and ϑ̇:
ṙ0 = λϑ.r> and ϑ̇0 = λϑ.>̄o. In other words, we assume an unknown context
when computing the abstract object semantics and an unknown semantics
when analyzing the context. Then we obtain ϑ̇1 = Θ(ṙ0) and (d̄1, ṙ1) = Γ(ϑ̇0).

As we consider the worst-case approximation for the objects semantics,
the abstract state d̄1 is an upper approximation of K̄JCK(⊥̄) [35]. Further-
more, it is easy to see that ṙ1v̇rṙ0 and ϑ̇1v̇oϑ̇0. Roughly speaking, this means
that after one iteration we have a better approximation of the context and
the object semantics. As a consequence, if we compute ϑ̇2 = Θ(ṙ1) and
(d̄2, ṙ2) = Γ(ϑ̇1), we obtain a better approximation for the abstract state,
the semantics of the objects and that of the context. This process can be
iterated, so that at step i + 1 we have:

ϑ̇i+1 = Θ(ṙi)

(d̄i+1, ṙi+1) = Γ(ϑ̇i).
(10.3)

The next theorem synthesizes what has been said so far. It states that the
iterations of (10.3) form a decreasing chain and that at each iteration step
d̄i+1 is an sound approximation of the monolithic abstract semantics. Hence,
of the concrete semantics.

Theorem 10.2 (Soundness) Let C be a context. Then ∀i ≥ 0.

1. d̄i+1v̄d̄i, ṙi+1v̇rṙi and ϑ̇i+1v̇oϑ̇i.

10.4 Separate Abstract Semantics 169

2. K̄JCK(⊥̄)v̄d̄i.

Proof. (Sketch) The theorem follows from the fact that (abstract) semantic
functions are monotonic and that the dual of (10.3) is an instance of the
asynchronous iteration schema (cf. Definition 2.7), so that it produces a chain
of increasing elements and because of Theorem 2.9 such a chain converges to
the least fixpoint at a rank ρ ∈ O. Therefore by duality, the chain originated
by (10.3) forms a decreasing chain that converges to the greatest fixpoint,
and in particular d̄ρ is above the least fixpoint K̄JCK.

q.e.d.

Roughly speaking the first point of the theorem states that the more
the iterations the more precise the result of the analysis. On the other
hand, the second point states that the abstract states are all above the result
of the monolithic abstract semantics. Nevertheless, in general the abstract
domain may not satisfy the Descending Chain Condition, so that a narrowing
operator must be used [29]. For instance, a possible narrowing is to stop
the iterations at a step i. The resulting abstract state d̄i is then a sound
approximation of the concrete semantics.

An analysis based on (10.3) has several advantages. First, it is possible to
use the asynchronous iterations with memory [24] in order to parallelize the
analysis of the context and the objects. Intuitively, this is a consequence of
the fact that at each iteration, the result of Θ and Γ depends just on the result
of the previous iteration. Furthermore, Θ computes the abstract semantics
for several, independent, abstract objects (cf. (10.1)). Therefore, even the
effective implementation of Θ may take advantage of a further parallelization.
Finally the fact that each iteration is a sound approximation allows a fine
tuning of the trade-off precision/cost. In particular, we can stop the iterations
as soon as the desired degree of precision is reached.

Example 10.1 As an example, we can consider the context and the class A
in Figure 10.6, where Prop is the property:

(o1.a + o1.b)− (o2.a + o2.b) + (o1.y + o2.y) ≥ 0.

We are interested in proving that the assert condition is never violated. In
order to do it, we instantiate the abstract domain D̄ with Polyhedra [37], and
we consider the two abstract objects ϑ1 and ϑ2 corresponding respectively to
o1 and o2. According to the iteration schema (10.3), the first step approxi-
mates the objects semantics with the class invariant: Θ(ṙ0) = λϑ.〈̄i, λm.p̄(m)〉.

170 Context Approximation

o1 = new A(5, 10);
o2 = new A(3, 10);
while . . . do

if o1.get_y() + o2.get_y() ≥ 0 then

o1.addA(5); o1.addB(3);
else

o2.addA(7); o2.addA(1);
{ assert(Prop) }

(a) The context

F : {a, b, y}

init(a0, c0) : a = a0; b = c0 − a0; y = 0

addA(x) : a = a + x; b = b− x; y = y + 1

addB(x) : a = a− x; b = b + x; y = y− 1

get_y() : return y
(b) The class A

Figure 10.6: Example of a context and a class

The object fields invariant is ī = {a + b = c0} and the method postconditions
are:

p̄ =


init 7→ 〈⊥̄v, ī ∪ {y = 0}〉
addA 7→ 〈⊥̄v, ī ∪ {y = y + 1}〉
addB 7→ 〈⊥̄v, ī ∪ {y = y− 1}〉
get_y 7→ 〈>̄v, ī〉.

On the other hand, as far as the context analysis is concerned, we have
(∅, ṙ1) = Γ(ϑ̇0), where ṙ1 is the following interaction history 1:

ṙ1 =

{
ϑ1 7→ 〈{init}, (5, 10)〉 · (〈{get_y}, ∅〉 · 〈{addA}, 5〉 · 〈{addB}, 3〉)∗

ϑ2 7→ 〈{init}, (7, 10)〉 · (〈{get_y}, ∅〉 · 〈{addA}, 7〉 · 〈{addA}, 1〉)∗
.

The result of the next iteration, Γ(ϑ̇1), is still too imprecise for verifying
the assertion, as the object fields invariant ī implies that (o1.a + o1.b) −
(o2.a + o2.b) = 0, but nothing can be said about o1.y + o2.y. Nevertheless,

1We simplify the structure of the interaction history by omitting the abstract state.
Nevertheless, in the example this is not problematic, as the objects do not expose the
internal state.

10.5 Discussion 171

the analysis of the object semantics under the context ṙ1 results in a more
precise approximation of the objects semantics. In particular, we obtain for
the first object the field invariant ī1 = ī ∪ {0 ≤ y ≤ 1} and for the latter
ī2 = ī∪{y ≥ 0}. As a consequence, a further iteration is enough to infer that
the condition Prop is verified. From Theorem 10.2 it follows that the result
is sound, even if it is not the most precise one. In fact it is easy to see that
a further iteration gives a more precise result, proving that the else branch
in the conditional is never taken. Therefore that o2.y is identically equal to
zero.

10.5 Discussion
In this chapter we introduced a separate compositional analysis and we
proved it correct for a small yet realistic object-oriented language. In par-
ticular we presented an iteration schema for the computation of the abstract
semantics that approximates it from above. The central idea for the paral-
lelization is the use of a domain of regular expressions to encode the interac-
tions between the context and the objects.

In future work we plan to study the practical effectiveness of the presented
technique, for example with regard to memory consumption. Moreover, it
would be interesting to study how many iterations are needed in order to
reach an acceptable degree of precisions. As far as the theoretical point
of view is concerned, a straightforward extension of this work is a direct
handling of inheritance. Nevertheless, in our opinion the combination of
the present work with modular techniques for the handling of inheritance of
Chapter 8 presents some more challenges that must be explored.

172 Context Approximation

Chapter 11

Conclusions

Finem respice. 1

Chilon (560 BCE)

We presented a framework for the modular analysis of object-oriented
languages. We defined a liberal and generic trace semantics for class-bases
object-oriented languages and we proved it sound and complete w.r.t. a trace
semantics for object-oriented programs. We derived systematically the equa-
tions characterizing class invariants as an abstraction of the class concrete
semantics. We dealt with the three main features of object-oriented lan-
guages:

– inheritance, by considering the analysis of subclasses without accessing
the parent’s class source;

– polymorphism, by studying an effective notion of behavioral subtyping;

– encapsulation, by abstracting the interactions between an object and
its context using regular expressions.

The framework is very flexible and in particular we can distinguish three
orthogonal axes for the analysis:

– abstract domain: a class can be analyzed using either a generic abstract
domain (Chapters 6 and 5) or a symbolic relational domain (Chapter
7) to obtain a more efficient analysis;

1(Latin) Have regard to the end.

173

174 Conclusions

– inheritance: a subclass can be analyzed either directly, by expand-
ing the subclass relation, or indirectly, by using the parent’s invariant
(Chapters 8 and 9);

– context: a class can be analyzed either aside from the instantiation
context, so to obtain a result valid for all the contexts, or using an
approximation of the context itself (Chapter 10).

The future work will include the implementation and the study of the
practical aspects of our results. In particular the interest will be the ex-
ploration of the orthogonal axes of the analysis. Furthermore, we plan to
extend the results in order to cope with aspect-oriented languages [38], with
concurrency and with temporal properties of objects.

Bibliography

[1] M. Abadi and L. Cardelli. An imperative object calculus. Theory and
Practice of Object Systems, 1(3):151–166, 1995.

[2] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, New
York, 1996.

[3] A. Aggarwal and K. H. Randall. Related field analysis. In Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’01), volume 36(5) of SIGPLAN
Notices, pages 214–220. ACM Press, June 2001.

[4] P. America. Inheritance and subtyping in a parallel object-oriented lan-
guage. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP ’87), volume 276 of Lectures Notes in Com-
puter Science, pages 234–242. Springer-Verlag, June 1987.

[5] Apple Inc. The Objective-C programming language. Available online
at http://developer.apple.com/documentation/Cocoa/
Conceptual/ObjectiveC/ObjC.pdf .

[6] K. Arnout and B. Meyer. Finding implicit contracts in .NET compo-
nents. In First International Symposium on Formal Methods for Com-
ponents and Objects (FMCO 2002), volume 2852 of Lectures Notes in
Computer Science, pages 285–318. Springer-Verlag, October 2002.

[7] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widen-
ing operators for convex polyhedra. In Proceedings of the 10th Static
Analysis Symposium 2003 (SAS ’03), volume 2694 of Lectures Notes
in Computer Science, pages 337–354. Springer-Verlag, June 2003.

[8] B. Blanchet. Escape analysis for object oriented languages. Application
to Java. In 14th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA’99), pages
20–34. ACM Press, November 1999.

175

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf

176 BIBLIOGRAPHY

[9] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Proceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’03), pages
196–207. ACM Press, June 2003.

[10] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales,
and D. A. Moon. Common LISP object system specification. SIGPLAN
Notices, 23(Special Issue), September 1988.

[11] E. Börger. The origins and the development of the ASM method for
high level system design and analysis. Journal of Universal Computer
Science, 8, August 2002.

[12] Borland Inc. Turbo Pascal 5.5 Object Oriented Pro-
gramming Guide. Borland Inc., 1989. Available on-
line at http://community.borland.com/ article/
images/20803/TP_55_OOP_Guide.pdf .

[13] G. Bracha and W. R. Cook. Mixin-based inheritance. In Proceedings of
the 5th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA ’90), volume 25(10)
of SIGPLAN Notices, pages 303–311, October 1990.

[14] M. Campione, K. Walrath, and A. Huml. The Java Tutorial: A Short
Course on the Basics. Addison-Wesley, third edition, 2000.

[15] G. Cantor. Contributions to the founding of the theory of transfinite
numbers (1 and 2). Mathematische Annalen, 1895 and 1897. Original
in German. French traduction by Éditions Jacques Gabay, Sceaux.

[16] L. Cardelli. A semantics of multiple inheritance. In G. Kahn,
D. MacQueen, and G. Plotkin, editors, Semantics of Data Types, vol-
ume 173 of Lecture Notes in Computer Science, pages 51–67, Berlin,
1984. Springer-Verlag. Full version in Information and Computation,
76(2/3):138–164, 1988.

[17] L. Cardelli. Program fragments, linking, and modularization. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’97), pages 266–277. ACM
Press, 1997.

http://community.borland.com/article/images/20803/TP_55_OOP_Guide.pdf
http://community.borland.com/article/images/20803/TP_55_OOP_Guide.pdf

BIBLIOGRAPHY 177

[18] R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context infer-
ence. In Proceedings of the 26th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL ’99), pages 133–146. ACM
Press, 1999.

[19] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58:345–363, 1936.

[20] R. Clarisó and J. Coradella. The octahedron abstract domain. In
Proceedings of the 11th Static Analysis Symposium (SAS’04), Lectures
Notes in Computer Science, August 2004.

[21] M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic
programs. Information and Computation, 169(1):23–80, August 2001.

[22] W. R. Cook, W. Hill, and P. S. Canning. Inheritance is not subtyping.
In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’90). ACM Press, Janu-
ary 1990.

[23] W. R. Cook and J. Palsberg. A denotational semantics of inheritance
and its correctness. Information and Computation, 114(2):329–350,
November 1994.

[24] P. Cousot. Asynchronous iterative methods for solving a fixed point
system of monotone equations in a complete lattice. Res. rep. R.R. 88,
Laboratoire IMAG, Université scientifique et médicale de Grenoble,
Grenoble, France, September 1977.

[25] P. Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique
de programmes. Thèse d’Etat ès sciences mathématiques, Université
scientifique et médicale de Grenoble, March 1978.

[26] P. Cousot. Types as abstract interpretations, invited paper. In Pro-
ceedings of the 24th ACM Symposium on Principles of Programming
Languages (POPL ’97), pages 316–331. ACM Press, January 1997.

[27] P. Cousot. The calculational design of a generic abstract interpreter.
In M. Broy and R. Steinbrüggen, editors, Calculational System Design.
NATO ASI Series F. IOS Press, Amsterdam, 1999.

[28] P. Cousot. Constructive design of a hierarchy of semantics of a tran-
sition system by abstract interpretation. Journal of Theoretical Com-
puter Science (TCS), 277(1–2):47–103, April 2002.

178 BIBLIOGRAPHY

[29] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM Symposium on Principles
of Programming Languages (POPL ’77), pages 238–252. ACM Press,
January 1977.

[30] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific Journal of Math., 82(1):43–57, 1979.

[31] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’79), pages 269–282.
ACM Press, 1979.

[32] P. Cousot and R. Cousot. Relational abstract interpretation of higher-
order functional programs. JTASPEFL ’91, Bordeaux. BIGRE, 74:33–
36, October 1991.

[33] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. Journal of Logic Programming, 13(2–3):103–179, July
1992.

[34] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, August 1992.

[35] P. Cousot and R. Cousot. Modular static program analysis, invited
paper. In Proceedings of the Eleventh International Conference on
Compiler Construction (CC 2002), volume 2304 of Lectures Notes in
Computer Science, pages 159–178. Springer-Verlag, April 2002.

[36] P. Cousot and R. Cousot. Systematic design of program transforma-
tion frameworks by abstract interpretation. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’02), pages 178–190. ACM Press, New York, NY,
January 2002.

[37] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’78), pages
84–97. ACM Press, 1978.

[38] D. Crawford, editor. Aspect Oriented Programming, volume 44(10) of
Communications of the ACM (CACM), New York, October 2001. ACM
Press.

BIBLIOGRAPHY 179

[39] O. Dahl and K. Nygaard. SIMULA – an ALGOL-based simulation
language. Communications of the ACM (CACM), 9(9):671–678, Sep-
tember 1966.

[40] D. Detlefs. Automatic inference of reference-count invariant.
In Proceedings of the 2nd workshop on Semantics, Program
Analysis, and Computing Environments For Memory Management,
January 2004. Available at http://www.diku.dk/topps/
space2004/space_final/detlefs.pdf .

[41] D. Distefano, J.P. Katoen, and A. Rensik. On a temporal logic for
object-based systems. In 4th International Conference on Formal Meth-
ods for Open Object-Based Distributed Systems (FMOODS 2000), vol-
ume 177 of IFIP Conference Proceedings, pages 285–304, Stanford, CA,
U.S.A., September 2000. Kluwer Academic Publishers.

[42] K. Driesen and U. Hölzle. The direct cost of virtual function calls
in C++. In Proceedings of the 1996 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’96), volume 31(10) of SIGPLAN Notices, pages 306–323.
ACM Press, October 1996.

[43] B. Eckel. Thinking in C++, 2nd Edition, volume 1. Prentice Hall,
2000.

[44] M. Ernst. Dynamically Discovering Likely Program Invariants. PhD
thesis, University of Washington Department of Computer Science and
Engineering, 2002.

[45] J. Feret. Abstract interpretation of mobile systems. Journal of Logic
and Algebraic Programming, special issue on π-calculus, 2004.

[46] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant
for ESC/Java. In Proceedings of the International Symposium of For-
mal Methods Europe (FME 2001), volume 2021 of Lectures Notes in
Computer Science, pages 500–517. Springer-Verlag, March 2001.

[47] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’02), pages 234–245. ACM Press, June 2002.

http://www.diku.dk/topps/space2004/space_final/detlefs.pdf
http://www.diku.dk/topps/space2004/space_final/detlefs.pdf

180 BIBLIOGRAPHY

[48] Free Software Foundation. Nana: improved sup-
port for assertions and logging. GNU, 2003.
http://www.gnu.org/manual/nana-1.14/ .

[49] Gartner, Inc. .NET vs. Java: Competition or cooperation?
Slides are available online at http://www.gartnervoice.com/
homepageApril2003/enetvJavaDW.pdf .

[50] S. Genaim and M. Codish. Incremental refinement of semantic based
program analysis for logic programs. In Proceedings of the 22nd
Australasian Computer Science Conference. Springer-Verlag, January
1999.

[51] S. Ghemawat, K. H. Randall, and Scales D. J. Field analysis: get-
ting useful and low-cost interprocedural information. In Proceedings of
the 2000 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’00), volume 35(5) of ACM SIGPLAN
Notices, pages 334–344. ACM Press, June 2000.

[52] R. Giacobazzi and F. Ranzato. Refining and compressing abstract do-
mains. In Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP’97), volume 1256 of Lectures
Notes in Computer Science, pages 771–781. Springer-Verlag, 1997.

[53] R. Giacobazzi and F. Ranzato. The reduced relative power operation
on abstract domains. Journal of Theoretical Computer Science (TCS),
216(1-2):159–211, March 1999.

[54] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpre-
tations complete. Journal of the ACM, 47(2):361–416, 2000.

[55] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Im-
plementation. Addison-Wesley, 1983.

[56] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification - 2nd Edition. Sun Microsystems, 2001.

[57] P. Granger. Static analysis of linear congruence equalities among vari-
ables of a program. In Proceedings of the International Joint Confer-
ence on Theory and Practice of Software Development (TAPSOFT’91),
volume 464 of Lectures Notes in Computer Science, pages 169–192.
Springer-Verlag, April 1991.

http://www.gnu.org/manual/nana-1.14/
http://www.gartnervoice.com/homepageApril2003/enetvJavaDW.pdf
http://www.gartnervoice.com/homepageApril2003/enetvJavaDW.pdf

BIBLIOGRAPHY 181

[58] J. V. Guttag, S. J. Horning, J. J. with Garland, K. D. Jones, A. Modet,
and J.M. Wing. Larch: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

[59] M. Handjieva and S. Tzolovski. Refining static analyses by trace-based
partitioning using control flow. In Proceedings of the 5th Static Analysis
Symposium (SAS ’98), volume 1503 of Lectures Notes in Computer
Science, pages 200–215. Springer-Verlag, 1998.

[60] M. Huisman, B. Jacobs, and J. van den Berg. A case study in class
library verification: Java’s vector class. In Object-Oriented Technol-
ogy: ECOOP’99 Workshop Reader, volume 1743 of Lecture Notes in
Computer Science, pages 109–110. Springer-Verlag, June 1999.

[61] K. Huizing and R. Kuiper. Verification of object oriented programs
using class invariants. In Fundamental Approaches to Software Engi-
neering, Third International Conference (FASE 2000), volume 1783 of
Lectures Notes in Computer Science, pages 208–221. Springer-Verlag,
April 2000.

[62] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. In 14th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’99), volume 34(10) of ACM SIGPLAN Notices, pages 132–
146. ACM Press, November 1999.

[63] B. Jacobs, J. van den Berg, H. Huismann, M. van Berkum, U. Hensel,
and Tews H. Reasoning about Java classes (preliminary report). In
13th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’98), volume 33(10)
of SIGPLAN Notices. ACM Press, October 1998.

[64] S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented
languages. In C. A. Gunter and J. C. Mitchell, editors, Theoretical
Aspects of Object-Oriented Programming: Types, Semantics, and Lan-
guage Design, pages 464–495. MIT Press, 1994.

[65] O. Kupferman and M. Y. Vardi. Modular model checking. In Composi-
tionality: The Significant Difference, International Symposium (COM-
POS’97). Revised Lectures, volume 1536 of Lectures Notes in Computer
Science, pages 381–401. Springer-Verlag, September 1997.

182 BIBLIOGRAPHY

[66] J.L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In
Foundations of Deductive Databases and Logic Programming, pages
587–625. Morgan Kaufmann, 1988.

[67] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of
JML: A Behavioral Interface Specification Language for Java, Novem-
ber 2003. ftp://ftp.cs.iastate.edu/pub/leavens/JML/
prelimdesign.pdf .

[68] G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and
a sketch of their extension to component-based systems. In Gary T.
Leavens and Murali Sitaraman, editors, Foundations of Component-
Based Systems, chapter 6, pages 113–135. Cambridge University Press,
2000.

[69] X. Leroy. A modular module system. Journal of Functional Program-
ming, 10(3):269–303, May 2000.

[70] X. Leroy. The Objective Caml system release 3.07, 2004. Available at
http://caml.inria.fr/ocaml/htmlman/index.html.

[71] J. Lewis and W. Loftus. Java Software Solutions, Second Edition Up-
date. Addison Wesley Longman Inc., 2001.

[72] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
The Java Series. Addison Wesley Longman, Inc., 2nd edition, April
1999.

[73] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems (TOPLAS),
16(6):1811–1841, November 1994.

[74] F. Logozzo. Class-level modular analysis for object oriented languages.
In Proceedings of the 10th Static Analysis Symposium 2003 (SAS ’03),
volume 2694 of Lectures Notes in Computer Science, pages 37–54.
Springer-Verlag, June 2003.

[75] F. Logozzo. An approach to behavioral subtyping based on static analy-
sis. In Proceedings of the International Workshop on Test and Analysis
of Component Based Systems (TACoS 2004), Electronic Notes in The-
oretical Computer Science. Elsevier Science, April 2004.

[76] F. Logozzo. Approximating module semantics with constraints. In Pro-
ceedings of the 19th ACM SIGAPP Symposium on Applied Computing
(SAC 2004), pages 1490–1495. ACM Press, March 2004.

ftp://ftp.cs.iastate.edu/pub/leavens/JML/prelimdesign.pdf
ftp://ftp.cs.iastate.edu/pub/leavens/JML/prelimdesign.pdf
http://caml.inria.fr/ocaml/htmlman/index.html

BIBLIOGRAPHY 183

[77] F. Logozzo. Automatic inference of class invariants. In Proceedings of
the 5th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI ’04), volume 2937 of Lectures Notes
in Computer Science, pages 211–222. Springer-Verlag, January 2004.

[78] F. Logozzo. Separate compositional analysis of class-based object-
oriented languages. In Proceedings of the 10th International Conference
on Algebraic Methodology And Software Technology (AMAST’2004),
volume 3116 of Lectures Notes in Computer Science, pages 332–346.
Springer-Verlag, July 2004.

[79] L. Mauborgne. Abstract interpretation using typed decision graphs.
Science of Computer Programming (SCP), 31(1):91–112, May 1998.

[80] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[81] B. Meyer. Object-Oriented Software Construction (2nd Edition). Pro-
fessional Technical Reference. Prentice Hall, 1997.

[82] Microsoft Inc. The .net framework. http://msdn.
microsoft.com/netframework/ .

[83] Microsoft Inc. Visual C++ .net. http://msdn.microsoft.com/
visualc/ .

[84] Microsoft Inc. Microsoft C# Language Specifications. Microsoft Press,
2001.

[85] Microsoft Inc. The Component Object Model Specification. Microsoft,
2003. Available online at http://www.microsoft.com/com/
tech/com.asp .

[86] A. Miné. The octagon abstract domain. In AST 2001 in
WCRE 2001, IEEE, pages 310–319. IEEE CS Press, Oc-
tober 2001. http://www.di.ens.fr/˜mine/publi/
article-mine-ast01.pdf .

[87] NetBeans.org and Sun Mycrosystem, Inc. Netbeans IDE, 2004.
http://www.netbeans.org/ .

[88] E. Noether. Idealtheorie in ringbereichen. Mathematical Annals, 83:24–
66, 1921.

http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/visualc/
http://msdn.microsoft.com/visualc/
http://www.microsoft.com/com/tech/com.asp
http://www.microsoft.com/com/tech/com.asp
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.netbeans.org/

184 BIBLIOGRAPHY

[89] T. Owen and D. Watson. Reducing the cost of object boxing. In Pro-
ceedings of the 13th International Conference on Compiler Construc-
tion (CC 2004), volume 2985 of Lectures Notes in Computer Science,
pages 202–216. Springer-Verlag, March 2004.

[90] J. Palsberg and M.I. Schwartzbach. Object-Oriented Type Systems.
John Wiley & Sons, Chichester, 1994.

[91] F. Pessaux and X. Leroy. Type-based analysis of uncaught excep-
tions. ACM Transactions on Programming Languages and Systems,
22(2):340–377, bo 2000.

[92] I. Pollet, B. Le Charlier, and A. Cortesi. Distinctness and sharing
domains for static analysis of Java programs. In Proceedings of the
European Conference on Object Oriented Programming (ECOOP ’01),
volume 2072 of Lectures Notes in Computer Science, pages 77–98.
Springer-Verlag, 2001.

[93] C. Probst. Modular control flow analysis for libraries. In Proceedings of
the 9th Static Analysys Symposium (SAS ’02), volume 2477 of Lecture
Notes in Computer Science, pages 165–179. Springer-Verlag, 2002.

[94] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing proce-
dures in concurrent programs. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’04), pages 245–255. ACM Press, January 2004.

[95] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv.
Deriving specialized program analyses for certifying component-client
conformance. In ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (PLDI ’02), volume 37(5) of
ACM SIGPLAN Notices, pages 83–94. ACM Press, June 2002.

[96] A. Rountev, A. Milanova, and B.G. Ryder. Fragment class analysis for
testing of polymorphism in Java software. In Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), pages
210–220. IEEE, May 2003.

[97] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, Reading, Massachusetts,
USA, 1st edition, 1999.

[98] D. S. Scott. Domains for denotational semantics. In Proceedings of 9th
International Colloquium on Automata, Languages and Programming

BIBLIOGRAPHY 185

(ICALP’82), volume 140 of Lecture Notes in Computer Science, pages
577–613. Springer-Verlag, 1982.

[99] F. Spoto and T. P. Jensen. Class analyses as abstract interpretations
of trace semantics. ACM Transactions on Programming Languages and
Systems, 25(5):578–630, September 2003.

[100] R. Stärk, J. Schmid, and E. Börger. Java and the JavaVirtual Machine:
Definition, Verification, Validation. Springer-Verlag, Berlin, 2001.

[101] B. Stroustrup. The C++ Programming Language (Special 3rd Edition).
Addison-Wesley, 2000.

[102] Sun Microsystem, Inc. javadoc Tool Homepage, 2004.
http://java.sun.com/ j2se/javadoc/ .

[103] Sun Microsystems, Inc. JavaCard Technology Homepage, 2004.
http://java.sun.com/products/javacard/index.jsp .

[104] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[105] K. Zee and M. Rinard. Write barrier removal by static analysis. In
17th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA ’02), volume 37(11) of
SIGPLAN Notices, pages 191–210. ACM Press, November 2002.

http://java.sun.com/j2se/javadoc
http://java.sun.com/products/javacard/index.jsp

	1 Introduction
	1.1 Motivations
	1.1.1 Object-oriented Languages
	1.1.2 Verification and Optimization
	1.1.3 Modularity

	1.2 Abstract Interpretation
	1.3 Results
	1.3.1 Static Analysis of Classes
	1.3.2 Introductory Example
	1.3.3 Main Results

	1.4 Overview of the Thesis

	2 Preliminaries
	2.1 Notation and Basic Definitions
	2.1.1 Partial Orders
	2.1.2 Functions and Fixpoints
	2.1.3 Traces

	2.2 Abstract Interpretation
	2.2.1 Galois Connections
	2.2.2 Fixpoint Approximation
	2.2.3 Chaotic and Asynchronous Iterations

	3 Concrete Semantics
	3.1 Semantics of Object-oriented Languages in Literature
	3.1.1 Types
	3.1.2 Object Calculi
	3.1.3 Abstract State Machines
	3.1.4 Denotational Semantics

	3.2 Whole-Program Trace Semantics
	3.2.1 Syntax
	3.2.2 Semantic Domains
	3.2.3 Whole-Program Semantics

	3.3 Class Trace Semantics
	3.3.1 Constructor and Methods Semantics
	3.3.2 Object Semantics
	3.3.3 Class Semantics

	3.4 Relation between w"464A671 "564B679 and c"464A671 "564B679
	3.4.1 Abstraction
	3.4.2 Soundness and Completeness of the Class Semantics

	3.5 Languages with Class Destructor

	4 Abstract Semantics
	4.1 Stepwise Abstraction
	4.2 First Abstraction: Collecting Traces
	4.2.1 Abstract Domain
	4.2.2 Abstraction
	4.2.3 Abstract Semantics

	4.3 Second Abstraction: Reachable States
	4.3.1 Abstract Domain
	4.3.2 Abstraction
	4.3.3 Abstract Semantics

	5 Inference of Class Invariants
	5.1 Overview of Class Invariants
	5.2 Class Invariants in the Literature
	5.2.1 Design by Contract
	5.2.2 Java Modeling Language
	5.2.3 Assertions in Java and .net
	5.2.4 Daikon
	5.2.5 ESC/Java and Houdini
	5.2.6 Some Static Analyses for Object Oriented Languages

	5.3 Automatic Inference of Class Invariants
	5.3.1 Strongest State-based Class Invariant
	5.3.2 Abstraction

	5.4 A Bank Account Example
	5.4.1 Abstract Domain
	5.4.2 Fixpoint Computation

	5.5 Escaping Scope
	5.6 Fixpoint Computation and Complexity
	5.7 Modularity and Program Analysis
	5.8 Discussion

	6 Symbolic Relations for the Approximation of Set of Traces
	6.1 Relational Symbolic Abstract Domains
	6.2 Module Abstraction by Relations
	6.2.1 Constraints
	6.2.2 Concretization of Constraints
	6.2.3 Variables Dropping
	6.2.4 Abstract Domain Operations

	6.3 Analysis and Soundness
	6.4 Instantiations of the A-domain
	6.4.1 Types
	6.4.2 Relevant Context Inference
	6.4.3 Incremental Modular Analysis

	6.5 Discussion

	7 Symbolic Relations for Approximating the Class Semantics
	7.1 Introduction
	7.2 An Example of Stack
	7.3 First Abstraction: Approximating Classes
	7.3.1 Definition of an Abstract Class
	7.3.2 Applications
	7.3.3 Checking the Well-behavior of a Client
	7.3.4 Soundness

	7.4 Second Abstraction: Class Invariants
	7.4.1 History-insensitive Class Invariant
	7.4.2 History-sensitive Class Invariant
	7.4.3 On comparing the IA and JA invariants

	7.5 Discussion

	8 Class Invariants in Presence of Inheritance
	8.1 Inheritance
	8.1.1 Inheritance in Software Development
	8.1.2 Inheritance in Programming Languages
	8.1.3 Semantics of Inheritance
	8.1.4 Inheritance and Class Invariants

	8.2 An Example of Stack with Undo
	8.3 Non-Modular Analysis
	8.3.1 Subclass Expansion
	8.3.2 Analysis of the Expanded Class

	8.4 Modular Analysis
	8.4.1 Class Extension
	8.4.2 Methods refining

	8.5 Symbolic Relations and Inheritance
	8.6 Discussion

	9 Static Analysis-based Inheritance
	9.1 Behavioral Subtyping
	9.2 Examples
	9.2.1 Class Hierarchy
	9.2.2 Systematic Refinement of the Class Hierarchy
	9.2.3 Modular Verification

	9.3 Observables
	9.3.1 Domain of Observables

	9.4 Subclassing through Observables
	9.4.1 Static Checking of Behavioral Subtyping
	9.4.2 Modular Verification
	9.4.3 Domain Refinement

	9.5 Application to the Examples
	9.6 Discussion

	10 Context Approximation
	10.1 Introduction
	10.2 Context Syntax and Semantics
	10.2.1 Syntax
	10.2.2 Semantics
	10.2.3 Collecting Semantics

	10.3 Monolithic Abstract Semantics
	10.3.1 Abstract Semantic Domains
	10.3.2 Abstract Object Semantics
	10.3.3 Monolithic Abstract Context Semantics

	10.4 Separate Abstract Semantics
	10.4.1 Regular Expressions Domain
	10.4.2 Interaction History
	10.4.3 Separate Object Analysis
	10.4.4 Separate Context Analysis
	10.4.5 Putting It All Together

	10.5 Discussion

	11 Conclusions
	Bibliography

