Coupling between permeability and damage in concrete - Archive ouverte HAL Access content directly
Theses Year : 2004

Coupling between permeability and damage in concrete

Lien entre la perméabilité et l'endommagement dans les bétons à haute température

Stefano Dal Pont

Abstract

Due to its technical and economical advantages, concrete is nowadays the most used building material in civil engineering. Even if its use is known since nearly two centuries, its behavior has not been yet completely explained due to the complexity of its porous microstructure. This fact is quite evident under particular conditions such as, by instance, during an elevation of temperature. This condition can mainly occur in two cases: due to a casualty (e.g. a fire) or in normal use conditions (e.g. storage of nuclear rejects). This work aims at contributing to the study of the phenomena that can be observed in concrete exposed to high temperatures and, in particular, focuses on the study of the evolution of intrinsic permeability. The characterisation of permeability (which is hardly measurable in hot conditions) is necessary for describing and modelling transport phenomena which occur in porous media. An experimental study has been made in collaboration with the CEA. A real-scale hollow cylinder has been instrumented with gauges for studying the evolution of temperature and gas pressure fields inside concrete. Later, the cylinder has been then numerically modelled by means of a thermo-hydro-chemical (THC) and a thermo-hydro-chemo-mechanical (THCM) model. The THC model, implemented by means of the finite volume method, has allowed a first, qualitative study of the behaviour of concrete submitted to high temperature. This model, which, for sake of simplicity, has neglected all mechanical effects, has allowed the description of the main phenomena occurring inside concrete: mass transport, phase changes, microstructure evolution. Later, the modelling has been completed by means of the THCM model using the Hitecosp code, implemented by means of the finite element method at the university of Padua. This code allows a very complete description of the phenomena occurring inside concrete and takes into consideration the mechanical behavior of concrete by means of an elastic constitutive law. Total damage is also taken into account. A comparison between experimental data and numerical results has allowed the proposition of a law describing the evolution of permeability as a function of total damage.
Le béton est un matériau de construction qui trouve son champ d'utilisation dans pratiquement tous les domaines du génie civil. Actuellement il est sans doute le plus utilisé pour les avantages économiques et techniques qu'il présente. Cependant, bien que largement utilisé depuis presque deux siècles, il s'agit d'un matériau dont le comportement n'a pas encore été totalement compris. Sa microstructure poreuse rend son comportement difficilement prévisible, spécialement dans des conditions particulières comme, par exemple, pendant une élévation de température. Celle-ci peut se produire essentiellement dans deux cas: des conditions accidentelles (par exemple un incendie) et des conditions normales d'utilisation (par exemple un stockage de déchets nucléaires). Ce travail vise à apporter une contribution à l'étude des phénomènes mis en jeu dans une telle situation et, en particulier, vise à étudier l'évolution de la perméabilité intrinsèque en fonction de l'évolution des caractéristiques du béton. La caractérisation de la perméabilité intrinsèque (qui n'est pas facilement mesurable à chaud) est, en fait, indispensable pour décrire et modéliser de manière correcte les phénomènes de transport qui se produisent dans un milieu poreux. Une étude expérimentale en collaboration avec le CEA a été menée sur une éprouvette cylindrique à échelle réelle pour la mesure de l'évolution des températures et des pressions du gaz dans le béton. Nous avons modélisé la maquette à l'aide de deux modèles mathématiques: un modèle thermo-hydro-chimique (THC) et un modèle thermo-hydrochémo-mécanique (THCM). L'utilisation du modèle THC, implémenté à l'aide de la méthode des volumes finis, a permis une première étude, qualitative, du comportement du béton soumis à un chauffage. Cette modélisation, qui, par souci de simplicité, a négligé les effets liés à la mécanique, a permis une première description des phénomènes de transport, changement de phase, évolution de la microstructure auxquels le béton est sujet lorsqu'on élève la température. Ensuite, la modélisation a été complétée à l'aide du modèle THCM par éléments finis, implémenté dans le code de calcul Hitecosp (développé à l'université de Padoue). Ce code donne une description très complète du comportement du béton et prend en compte les effets liés à la mécanique à l'aide d'une loi de comportement du béton élastiqueendommageable. Grâce à une comparaison entre les résultats issus des analyses expérimentales et numériques, nous avons pu aboutir à la proposition d'une loi pour décrire l'évolution de la perméabilité intrinsèque en fonction de l'endommagement total.
Fichier principal
Vignette du fichier
these_S_DalPont.pdf (2.65 Mo) Télécharger le fichier
Loading...

Dates and versions

pastel-00001001 , version 1 (28-01-2005)

Identifiers

  • HAL Id : pastel-00001001 , version 1

Cite

Stefano Dal Pont. Coupling between permeability and damage in concrete. Engineering Sciences [physics]. Ecole des Ponts ParisTech, 2004. English. ⟨NNT : ⟩. ⟨pastel-00001001⟩
252 View
931 Download

Share

Gmail Facebook Twitter LinkedIn More