. Tab, 10: Estimateurs a posteriori par résidu sur les triangulations générées de façon adaptative avec ? 1,T (f, g, u h ) lorsque = 10 ?4 La figure 4

. [. Bibliographie, S. Achchab, A. Achchab, and . Agouzal, Hierarchical robust a posteriori error estimator for a singularly pertubed problem, C.R Acad. Paris, vol.336, pp.95-100, 2003.

A. [. Achchab, J. Agouzal, J. F. Baranger, and . Maitre, Estimateur d'erreur a posteriori hi???rarchique. Application aux ???l???ments finis mixtes, Numerische Mathematik, vol.80, issue.2, pp.159-179, 1998.
DOI : 10.1007/s002110050364

C. [. Achdou and . Bernardi, Un schéma de volumes oú eléments finis adaptatif pour leséquationsleséquations de DarcyàDarcy`Darcyà perméabilité variable, C.R Acad. Paris, vol.I, 2001.

Y. Achdou, C. Bernardi, and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy?s equations, Numerische Mathematik, vol.96, issue.1, pp.17-42, 2003.
DOI : 10.1007/s00211-002-0436-7

M. Afif, A. Bergam, and Z. Mghazli, A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem, Numerical Algorithms, vol.34, issue.2-4, pp.127-136, 2003.
DOI : 10.1023/B:NUMA.0000005400.45852.f3

J. [. Ainsworth and . Oden, A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, vol.142, issue.1-2, 2000.
DOI : 10.1016/S0045-7825(96)01107-3

M. Amara, L. Nadau, D. N. Trujilloab85-]-d, F. Arnold, and . Brezzi, Estimateurs a posteriori pour une méthode de volumes finis appliquéè a deséquationsdeséquations linéaires elliptique et parobolique Rapport technique Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates, M2AN), pp.7-32, 1985.

]. P. Aze95 and . Azerad, Analyse deséquationsdeséquations de Navier?Stokes en bassin peu profond et de l'´ equation de transport, 1995.

A. [. Babu?ka and . Aziz, Survey lectures on the mathematical foundation of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp.1-359, 1972.

I. Babu?ka, R. Durán, and R. Rodriguez, Analysis of the Efficiency of an a Posteriori Error Estimator for Linear Triangular Finite Elements, SIAM Journal on Numerical Analysis, vol.29, issue.4, pp.947-964, 1992.
DOI : 10.1137/0729058

]. I. Br78a, W. C. Babu?ka, and . Rheinboldt, Error estimates for adaptative finite element computations, SIAM J. Numer. Anal, vol.15, issue.4, pp.736-754, 1978.

]. I. Br78b, W. C. Babu?ka, and . Rheinboldt, A posteriori error estimates for the finite element method, Int. J. Num. Meth. Engrg, vol.12, pp.1597-1615, 1978.

A. [. Bank, A. Sherman, and . Weiser, Some refinement algorithms and data structures for regular local mesh refinement, IMACS, 1983.

K. [. Bank and . Smith, A Posteriori Error Estimates Based on Hierarchical Bases, SIAM Journal on Numerical Analysis, vol.30, issue.4, pp.921-935, 1993.
DOI : 10.1137/0730048

A. [. Bank and . Weiser, Some a posteriori error estimators for elliptic partial differential equations, Mathematics of Computation, vol.44, issue.170, pp.283-301, 1985.
DOI : 10.1090/S0025-5718-1985-0777265-X

P. [. Becker, M. G. Hansbo, and . Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.5-6, pp.723-733, 2003.
DOI : 10.1016/S0045-7825(02)00593-5

H. [. Becker, R. Kapp, and . Rannacher, Adaptative finite element methods for optimal control of partial differential equations : basic concept, SIAM J. Control Optimization, vol.1, pp.113-132, 2000.

R. [. Becker and . Rannacher, A feed-back approach to error control in finite element methods : basic analysis and examples, East-West J. Numer. Math, vol.4, pp.237-264, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00343044

R. [. Becker and . Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, vol.10, pp.1-102, 2001.
DOI : 10.1017/S0962492901000010

A. Bergam, Z. Mghazli, and R. Verfürth, Estimations a posteriori d?un sch???ma de volumes finis pour un probl???me non lin???aire, Numerische Mathematik, vol.95, issue.4, pp.599-624, 2003.
DOI : 10.1007/s00211-003-0460-2

]. C. Bibliographie-[-ber89 and . Bernardi, Optimal finite element interpolation on curved domain, SIAM J. Numer. Anal, vol.26, pp.1212-1240, 1989.

V. [. Bernardi and . Girault, A Local Regularization Operator for Triangular and Quadrilateral Finite Elements, SIAM Journal on Numerical Analysis, vol.35, issue.5, pp.1893-1916, 1998.
DOI : 10.1137/S0036142995293766

B. [. Bernardi and . Métivet, Indicateurs d'erreur pour l'´ equation de la chaleur. Revue européene desélémentsdeséléments finis, pp.425-438, 2000.

C. Bernardi, B. Métivet, and R. Verfürth, Analyse numérique d'indicateurs d'erreur. Rapport technique, 1993.

R. [. Bernardi and . Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numerische Mathematik, vol.85, issue.4, pp.579-608, 2000.
DOI : 10.1007/PL00005393

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Bourgeat, M. Kern, S. Schumacher, and J. Talandier, Special Issue on Simulation of Transport around a Nuclear Waste Disposal Site: The COUPLEX Test Cases, Computational Geosciences, vol.8, issue.2, pp.1-79, 2004.
DOI : 10.1023/B:COMG.0000035097.89798.f9

URL : https://hal.archives-ouvertes.fr/hal-01315496

]. A. Bow81 and . Bowyer, Computing Dirichlet tesselations, Comput. J, vol.24, pp.162-167, 1981.

A. [. Braack and . Ern, A Posteriori Control of Modeling Errors and Discretization Errors, Multiscale Modeling & Simulation, vol.1, issue.2, pp.221-238, 2003.
DOI : 10.1137/S1540345902410482

M. [. Brezzi and . Fortin, Mixed and hybrid finite element methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

L. [. Brezzi, A. Franca, and . Russo, Further considerations on residual-free bubbles for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.25-33, 1998.
DOI : 10.1016/S0045-7825(98)00080-2

A. [. Brezzi and . Russo, CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.04, issue.04, pp.571-587, 1994.
DOI : 10.1142/S0218202594000327

T. [. Brooks and . Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.32, issue.1-3, pp.199-259, 1982.
DOI : 10.1016/0045-7825(82)90071-8

B. Burman, A new framework for stabilized finite element methods based on arbitrary approximation and interior penalty

E. Burman, A. Ern, and V. Giovangigli, Bunsen flame simulation by finite elements on adaptively refined, unstructured triangulations, Combustion Theory and Modelling, vol.106, issue.1, pp.65-84, 2004.
DOI : 10.1017/S0022112082000457

URL : http://infoscience.epfl.ch/record/102963

P. [. Burman and . Hansbo, Edge stabilization for galerkin approximations of the generalized stokes' problem, Comput. Methods Appl. Mech. Engrg, 2003.

P. [. Burman and . Hansbo, Edge stabilization for Galerkin approximations of convection?dffusion problems, Comput. Methods Appl. Mech. Engrg, 2004.

]. C. Car97 and . Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp, vol.66, issue.218, pp.465-476, 1997.

]. P. Clé75 and . Clément, Approximation by finite element functions using local regularization, RAIRO, Anal. Numér, vol.9, pp.77-84, 1975.

]. R. Cod98 and . Codina, Comparison of some finite element methods for solving the diffusion?convection?reaction equations, Comput. Methods Appl. Mech. Engrg, vol.156, pp.185-210, 1998.

J. [. Courbet and . Croisille, Finite volume box schemes on triangular meshes, M2AN), pp.631-649, 1998.
DOI : 10.1051/m2an/1998320506311

]. Cro00 and . Croisille, Finite volume box schemes and mixed methods, Math. Mod. Numer. Anal. (M2AN), vol.31, issue.5, pp.1087-1106, 2000.

[. Croisille, Keller's box?scheme for the one?dimensional stationary convection?diffusion equation Croisille et I. Greff. Some nonconforming mixed box schemes for elliptic problems, Computing Numer. Methods Partial Differ. Equations, vol.68, issue.8 3, pp.37-63, 2002.

[. Croisille and I. Greff, An efficient box-scheme for convection???diffusion equations with sharp contrast in the diffusion coefficients, Computers & Fluids, vol.34, issue.4-5, 2004.
DOI : 10.1016/j.compfluid.2003.12.003

M. Crouzeix and P. Raviart, Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I, RAIRO Modél Math. Anal. Numér, vol.3, pp.33-75, 1973.

]. H. Dar56 and . Darcy, Les fontaines publiques de la ville de Dijon, p.1856

]. C. Daw93 and . Dawson, Godunov mixed methods for advection?diffusion equations in multidimensions, SIAM, J. Numer. Anal, vol.30, pp.1315-1332, 1993.

V. [. Dawson and . Azinger, Upwind?mixed methods for transport equations, Computational Geosciences, vol.3, issue.2, pp.93-110, 1999.
DOI : 10.1023/A:1011531109949

R. [. Doerfler and . Nochetto, Small data oscillation implies the saturation assumption, Numerische Mathematik, vol.91, issue.1, pp.1-12, 2002.
DOI : 10.1007/s002110100321

T. [. Douglas and . Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Computing Methods in Applieds Sciences, 1976.
DOI : 10.1007/BFb0120591

R. [. Durán and . Rodriguez, On the asymptotic exactness of Bank-Weiser's estimator, Numerische Mathematik, vol.24, issue.1, pp.297-303, 1992.
DOI : 10.1007/BF01396231

A. [. Alaoui and . Ern, error estimates for nonconforming mixed finite element methods, M2AN), pp.903-929, 2004.
DOI : 10.1051/m2an:2004044

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to Adaptive Methods for Differential Equations, Acta Numerica, vol.27, pp.105-108, 1995.
DOI : 10.1007/BF01390056

C. [. Eriksson and . Johnson, Adaptive Finite Element Methods for Parabolic Problems IV: Nonlinear Problems, SIAM Journal on Numerical Analysis, vol.32, issue.6, pp.1729-1749, 1995.
DOI : 10.1137/0732078

J. [. Ern and . Guermond, Theory and practice of finite elements, Applied Mathematical Series, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

J. [. Ern and . Proft, A posteriori discontinuous Galerkin error estimates for transient convection???diffusion equations, Applied Mathematics Letters, vol.18, issue.7, 2004.
DOI : 10.1016/j.aml.2004.05.019

T. [. Eymard, R. Gallouët, and . Herbin, Finite volume methods. Handbook of numerical analysis, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

M. [. Fortin and . Soulié, A non-conforming piecewise quadratic finite element on triangles, International Journal for Numerical Methods in Engineering, vol.29, issue.4, pp.505-520, 1983.
DOI : 10.1002/nme.1620190405

B. P. Franca and A. Russo, Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Applied Mathematics Letters, vol.9, issue.5, pp.83-86, 1996.
DOI : 10.1016/0893-9659(96)00078-X

[. Ghidaglia and F. Pascal, Passerelles volumes finis ??? ??l??ments finis, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.328, issue.8
DOI : 10.1016/S0764-4442(99)80240-7

]. I. Gre03 and . Greff, Schémas bo??tebo??te : Etude théorique et numérique, 2003.

]. Gue99 and . Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN), pp.1293-1316, 1999.

]. Gue01 and . Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators, Journal of Numerical Analysis, vol.21, pp.165-197, 2001.

B. [. Hoppe and . Wohlmuth, Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems, SIAM Journal on Numerical Analysis, vol.34, issue.4, pp.1658-1681, 1997.
DOI : 10.1137/S0036142994276992

B. [. Hoppe and . Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods, M2AN), pp.237-263, 1996.
DOI : 10.1051/m2an/1996300202371

C. [. Houston, E. Schwab, and . Süli, -Finite Element Methods for Advection-Diffusion-Reaction Problems, SIAM Journal on Numerical Analysis, vol.39, issue.6, pp.2133-2163, 2002.
DOI : 10.1137/S0036142900374111

URL : https://hal.archives-ouvertes.fr/hal-00882219

A. [. Iron and . Razzaque, Experience with the patch test for convergence of finite elements. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp.557-587, 1972.

J. Jaffré, Décentrage etélémentsetéléments finis mixtes pour leséquationsleséquations de convection? diffusion, Calcolo, vol.2, pp.171-197, 1984.

G. [. John, F. Matthies, L. Schieweck, and . Tobiska, A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems, Computer Methods in Applied Mechanics and Engineering, vol.166, issue.1-2, pp.85-97, 1998.
DOI : 10.1016/S0045-7825(98)80014-5

V. John, J. M. Maubach, and L. Tobiska, Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems, Numerische Mathematik, vol.78, issue.2, pp.165-188, 1997.
DOI : 10.1007/s002110050309

B. Johnson, Numerical solution of partial differential equations by the finite element method, 1987.

]. C. Joh93 and . Johnson, A new paradigm for adaptive finite element methods, 1993.

U. [. Johnson, J. Nävert, and . Pitkäranta, Finite element methods for linear hyperbolic problems, Computer Methods in Applied Mechanics and Engineering, vol.45, issue.1-3, pp.285-312, 1984.
DOI : 10.1016/0045-7825(84)90158-0

R. [. Johnson and . Rannacher, On Error Control in CFD, Int. Workshop Numerical methods for the Navier-Sokes equations, pp.133-144, 1994.
DOI : 10.1007/978-3-663-14007-8_14

F. [. Kanschat and . Suttmeier, A posteriori error estimates??for nonconforming finite element schemes, Calcolo, vol.36, issue.3, pp.129-141, 1999.
DOI : 10.1007/s100920050027

F. [. Karakashian and . Pascal, A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems, SIAM Journal on Numerical Analysis, vol.41, issue.6, pp.2374-2399, 2003.
DOI : 10.1137/S0036142902405217

M. [. Knobloch and . Tobiska, Element: A New Nonconforming Finite Element for Convection-Diffusion Problems, Mar85] L.D. Marini, pp.436-456, 1985.
DOI : 10.1137/S0036142902402158

J. Ne?as, Sur une méthode pour résoudre leséquationsleséquations aux dérivées partielles de type elliptique, voisine de la variationnelle, Ann. Scuola. Norm Sup. Pisa, vol.16, pp.305-326, 1962.

]. R. Noc93 and . Nochetto, Removing the saturation assumption in a posteriori error analysis . Rapport technique n o 127, Istit. Lombardo Acad. Sci. Lett. Rend, 1993.

J. [. Pousin and . Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems, Numerische Mathematik, vol.69, issue.2, pp.213-232, 1994.
DOI : 10.1007/s002110050088

A. [. Quarteroni and . Valli, Numerical approximation of partial differential equations, Computational Mathematics, vol.159, 1997.

]. R. Ran98 and . Rannacher, A posteriori error estimation in least-squares stabilized finite element schemes, BIBLIOGRAPHIE Comput. Methods Appl. Mech. Engrg, vol.166, pp.1-2, 1998.

[. Raviart and J. Thomas, A mixed finite element method for second order elliptic problems. dans I. Galligani et E. Megenes, ´ editeurs, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, vol.606, 1977.

[. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations ? Convection-diffusion and flow problems, 1996.

P. Siegel, R. Mose, and P. Ackerer, SOLUTION OF THE ADVECTION-DIFFUSION EQUATION USING A COMBINATION OF DISCONTINUOUS AND MIXED FINITE ELEMENTS, International Journal for Numerical Methods in Fluids, vol.26, issue.6, pp.595-613, 1997.
DOI : 10.1002/(SICI)1097-0363(19970330)24:6<595::AID-FLD512>3.0.CO;2-I

L. [. Stynes, ]. S. Tobiskasw03, M. Sun, and . Wheeler, The streamline-diffusion method for nonconforming Qrot1 elements on rectangular tensor-product meshes, IMA Journal of Numerical Analysis, vol.21, issue.1, pp.123-142, 2001.
DOI : 10.1093/imanum/21.1.123

[. Thomas and D. Trujillo, Mixed finite volume methods, International Journal for Numerical Methods in Engineering, vol.25, issue.9, pp.1351-1366, 1999.
DOI : 10.1002/(SICI)1097-0207(19991130)46:9<1351::AID-NME702>3.0.CO;2-0

URL : https://hal.archives-ouvertes.fr/inria-00343041

]. R. Ver89 and . Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math, vol.55, pp.309-325, 1989.

]. R. Ver91 and . Verfürth, A posteriori error estimators for the Stokes equations II. Nonconforming discretizations, Numer. Math, vol.60, pp.235-249, 1991.

]. R. Ver94 and . Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp, vol.62, issue.206, pp.445-475, 1994.

B. Verfürth, A review of a posteriori error estimation and adaptative meshrefinement techniques, 1996.

]. R. Ver98 and . Verfürth, A posteriori error estimators for convection?diffusion equations, Numer. Math, vol.80, issue.4, pp.641-663, 1998.

]. R. Ver04 and . Verfürth, Robust a posteriori error estimates for stationary convection? diffusion equations. soumisàsoumis`soumisà SIAM, J. Numer. Anal, 2004.

]. D. Wat81 and . Watson, Computing the n?dimensionnal Delaunay tesselation with applications to Vorono¨?Vorono¨? polytopes, Comput. J, vol.24, pp.167-172, 1981.

R. [. Wohlmuth and . Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Mathematics of Computation, vol.68, issue.228, pp.1347-1378, 1999.
DOI : 10.1090/S0025-5718-99-01125-4