.. Onde-planes-de-cisaillement, ´ evolution de l'amplitude des harmoniques en fonction de la distance, p.99

.. Au-déplacement, Interaction d'ondes avec la source 1D : ´ evolution des harmoniques dans les directions paralì ele et perpendiculaire, p.113

J. Rapport and . +1, J N en fonction de l'ordre et de l'indice de modulation, p.122

.. Modèle-de-faisceau-gaussien, profils d'amplitude des harmoniques dans un plan paralì elè a la source

M. Hamilton and D. T. Blackstock, Nonlinear Acoustics, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00152153

J. Coirier, Mécanique des milieux continus, 2001.

L. Landau and E. Lifschitz, Physique théorique Tome 1 : Mécanique,quatrì emé edition, Edition MIR, 1964.

D. Royer, Acoustique, propagation dans un fluide. Techniques de l'Ingénieur, traité Sciences Fondamentales, pp.1-16, 2000.

R. T. Beyer, Parameter of Nonlinearity in Fluids, The Journal of the Acoustical Society of America, vol.32, issue.6, pp.719-721, 1960.
DOI : 10.1121/1.1908195

S. Makarov and M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics, part I. Acustica -Acta Acustica, pp.579-606, 1996.

A. B. Coppens, R. T. Beyer, M. B. Seiden, J. Donohue, F. Guepin et al., Parameter of Nonlinearity in Fluids. II, The Journal of the Acoustical Society of America, vol.38, issue.5, pp.797-804, 1965.
DOI : 10.1121/1.1909806

M. J. Povey, S. A. Hindle, J. D. Kennedy, Z. Stec, and R. G. Taylor, The molecular basis for sound velocity in n-alkanes, 1-alcohols and dimethylsiloxanes, Physical Chemistry Chemical Physics, vol.5, issue.1, pp.73-78, 2003.
DOI : 10.1039/b206425a

X. Xu, F. Mao, X. Gong, and D. Zhang, Theoretical calculation and experimental study on the third-order nonlinearity parameter C/A for organic liquids and biological fluids, The Journal of the Acoustical Society of America, vol.113, issue.3, pp.1743-1748, 2003.
DOI : 10.1121/1.1553460

A. D. Pierce, Acoustics, An Introduction to Its Physical Principles and Applications, 1981.
DOI : 10.1115/1.3269197

S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, Distortion and harmonic generation in the nearfield of a finite amplitude sound beam, The Journal of the Acoustical Society of America, vol.75, issue.3, pp.749-768, 1984.
DOI : 10.1121/1.390585

V. P. Kuznetsov, Equation of nonlinear acoustics, Sov. Phys. Ac, vol.16, pp.467-470, 1971.

P. J. Westervelt, Parametric Acoustic Array, The Journal of the Acoustical Society of America, vol.35, issue.4, pp.535-537, 1963.
DOI : 10.1121/1.1918525

O. V. Rudenko and S. I. Soluyan, Theoretical foundations in nonlinear acoustic. Studies in soviet science, 1977.

K. Naugolnykh and L. Ostrovsky, Nonlinear Waves Processes in Acoutics. Cambridge texts in applied mathematics, 1998.

G. B. Whitham, Linear and nonlinear waves, 1974.
DOI : 10.1002/9781118032954

L. Landau, On shock waves at large distances from the place of their origin, J. Phys. USSR, vol.9, pp.496-500, 1945.

L. Landau and E. Lifschitz, Physique théorique Tome 6 : Mécanique des fluides,deuxì eméemé edition, Edition MIR, 1971.

. Blackstock, Connection between the Fay and Fubini Solutions for Plane Sound Waves of Finite Amplitude, The Journal of the Acoustical Society of America, vol.39, issue.6, pp.1019-1029, 1966.
DOI : 10.1121/1.1909986

F. H. Fenlon, An Extension of the Bessel???Fubini Series for a Multiple???Frequency CW Acoustic Source of Finite Amplitude, The Journal of the Acoustical Society of America, vol.51, issue.1B, pp.284-289, 1972.
DOI : 10.1121/1.1912839

D. T. Blackstock, Propagation of Plane Sound Waves of Finite Amplitude in Nondissipative Fluids, The Journal of the Acoustical Society of America, vol.34, issue.1, pp.9-30, 1961.
DOI : 10.1121/1.1909033

M. Planat, Propagation non linéaire des ondes acoustiques dans les solides, Thèse de doctorat, 1984.

B. Mcdonald and J. Ambrosiano, High-order upwind flux correction methods for hyperbolic conservation laws, Journal of Computational Physics, vol.56, issue.3, pp.449-460, 1984.
DOI : 10.1016/0021-9991(84)90106-2

A. S. Birks, R. E. Green, and P. Mcintire, Introduction to Fourier optics, volume second edition 1996, 1968.

F. Ingenito and A. O. Williams, Calculation of Second???Harmonic Generation in a Piston Beam, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.319-328, 1970.
DOI : 10.1121/1.1912332

P. Alais and P. Y. Hennion, Etude par une méthode de fourier de l'interaction non-linéaire de deux rayonnements acoustiques dans un fluide absorbant. cas particulier de l'´ emission paramétrique, Acustica, vol.43, pp.1-11, 1979.

P. Cervenka and P. Alais, Fourier formalism for describing nonlinear self???demodulation of a primary narrow ultrasonic beam, The Journal of the Acoustical Society of America, vol.88, issue.1, pp.473-481, 1990.
DOI : 10.1121/1.399926

. Christophebarrì-ere, Effet de la diffraction sur l'interaction paramétrique d'ondes acoustiques ApplicationàApplicationà la mesure de paramètres de non linéarité et de champs acoustiques, Thèse de doctorat, 2001.

E. A. Zabolotskaya and R. V. Khokhlov, Quasi-plane waves in the nonlinear acoustics of confined beams, Sov. Phys. Ac, vol.15, issue.1, pp.35-40, 1969.

Y. S. Lee and M. F. Hamilton, Time???domain modeling of pulsed finite???amplitude sound beams, The Journal of the Acoustical Society of America, vol.97, issue.2, pp.906-917, 1995.
DOI : 10.1121/1.412135

K. Brugger, Thermodynamic Definition of Higher Order Elastic Coefficients, Physical Review, vol.133, issue.6A, pp.1611-1612, 1964.
DOI : 10.1103/PhysRev.133.A1611

L. Landau, E. Lifschitz, and W. D. , Physique théorique Tome 7 : Théorie de l'´ elasticité,deuxì eméemé edition Edition MIR, Zarembo and V. A. Krasil'nikov. Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Ups, p.778, 1967.

P. A. Johnson and P. N. Rasolosofaon, Nonlinear elasticity and stress-induced anisotropy in rock, Journal of Geophysical Research: Solid Earth, vol.97, issue.B2, pp.3113-3124, 1996.
DOI : 10.1029/95JB02880

M. A. Breazeale and J. Philip, Determination of third order elastic constants from ultrasonic harmonic generation measurement. Physical Acoustics, XVII, pp.1-60, 1984.

. Christophebarrì-ere, Cours du DEA d'Acoustique Physique, 2003.

A. Jeffrey and J. Engenbrecht, Nonlinear Waves in Solids, 1994.
DOI : 10.1007/978-3-7091-2444-4

F. D. Murnaghan, Finite Deformations of an Elastic Solid, American Journal of Mathematics, vol.59, issue.2, 1951.
DOI : 10.2307/2371405

R. N. Thurston and M. J. Shapiro, Interpretation of Ultrasonic Experiments on Finite???Amplitude Waves, The Journal of the Acoustical Society of America, vol.41, issue.4B, pp.1112-1124, 1967.
DOI : 10.1121/1.1910443

E. A. Zabolotskaya, Sound beam in a nonlinear isotropic solid, Sov. Phys. Acoust, vol.32, pp.296-299, 1986.

M. F. Hamilton, Y. A. Ilinskii, and E. A. Zabolotskaya, Separation of compressibility and shear deformation in the elastic energy density (L), The Journal of the Acoustical Society of America, vol.116, issue.1, pp.41-44, 2004.
DOI : 10.1121/1.1736652

S. Kostek, B. K. Sinha, and A. N. Norris, Third???order elastic constants for an inviscid fluid, The Journal of the Acoustical Society of America, vol.94, issue.5, 1993.
DOI : 10.1121/1.407336

G. L. Jones and D. R. Kobett, Interaction of Elastic Waves in an Isotropic Solid, The Journal of the Acoustical Society of America, vol.35, issue.1, 1962.
DOI : 10.1121/1.1918405

P. Waldow and F. R. Rollins, Remarks on a Paper by Jones and Kobett, The Journal of the Acoustical Society of America, vol.35, issue.7, p.1060, 1963.
DOI : 10.1121/1.1918659

F. Rollins, L. H. Taylor, and P. H. Todd, Ultrasonic Study of Three-Phonon Interactions. II. Experimental Results, Physical Review, vol.136, issue.3A, pp.597-601, 1964.
DOI : 10.1103/PhysRev.136.A597

A. C. Holt and J. Ford, Theory of Ultrasonic Three???Phonon Interactions in Single???Crystal Solids, Journal of Applied Physics, vol.40, issue.1, pp.142-153, 1969.
DOI : 10.1063/1.1657019

L. K. Zarembo and O. Yu, Serdobol'skaya, and I. P. Chernobai. Effect of bondary reflection phase shift on the nonlinear interaction of longitudinal waves in solids, Sov. Phys. Acoust, vol.18, issue.3, pp.333-338, 1973.

P. Li, W. P. Winfree, W. T. Yost, and J. H. Cantrell, Observation of Collinear Beam-Mixing by an Amplitude Modulated Ultrasonic Wave in a Solid, 1983 Ultrasonics Symposium, p.1152, 1983.
DOI : 10.1109/ULTSYM.1983.198244

R. B. Thompson and H. F. Tiersen, Harmonic generation of longitudinal elastic waves, The Journal of the Acoustical Society of America, vol.62, issue.1, pp.33-37, 1977.
DOI : 10.1121/1.381501

E. C. Everbach and R. E. , measurement, The Journal of the Acoustical Society of America, vol.98, issue.6, pp.3428-3438, 1995.
DOI : 10.1121/1.413794

D. C. Hurley, P. T. Purtscher, D. Balzar, K. W. Hollman, and C. M. Fortunko, Non linear ultrasonic properties of as-quenched steels, Review of Progress in Quantitative Nondestructive Evaluation, pp.17-4584, 1998.

R. T. Smith, R. W. Stern, and . Stephens, Third???Order Elastic Moduli of Polycrystalline Metals from Ultrasonic Velocity Measurements, The Journal of the Acoustical Society of America, vol.40, issue.5, pp.1002-1008, 1966.
DOI : 10.1121/1.1910179

J. H. Cantrell and M. A. Breazeale, Ultrasonic investigation of the nonlinearity of fused silica for different hydroxyl-ion contents and homogeneities between 300 and 3??K, Physical Review B, vol.17, issue.12, pp.4864-4870, 1978.
DOI : 10.1103/PhysRevB.17.4864

P. , A. Jr, and H. J. Mcskimin, Pressure dependance of ultrasonic wave velocities and elastic stiffness moduli for tio 2 ? sio 2 glass (Corning 7971), J. Appl. Phys, vol.47, issue.4, pp.1299-1301, 1976.

P. B. Nagy, Fatigue damage assessment by nonlinear ultrasonic materials characterization, Ultrasonics, vol.36, issue.1-5, p.375, 1998.
DOI : 10.1016/S0041-624X(97)00040-1

J. K. Na, J. H. Cantrell, and W. T. Yost, Linear and Nonlinear Ultrasonic Properties of Fatigued 410Cb Stainless Steel, Review of Progress in Quantitative Nondestructive Evaluation, p.15, 1996.
DOI : 10.1007/978-1-4613-0383-1_176

K. Jhang, Application of nonlinear ultrasonics to the NDE of material degradation, IEEE Trans. Ultrason., Ferroelec., Freq. Contr, vol.47, issue.3, 2000.

O. Buck, Nonlinear Acoustic Properties of Structural Materials ??? A Review, Review of Progress in Quantitative Nondestructive Evaluation, vol.9, 1990.
DOI : 10.1007/978-1-4684-5772-8_216

R. B. Thompson, O. Buck, and D. O. Thompson, Higher harmonics of finite amplitude ultrasonic waves in solids, The Journal of the Acoustical Society of America, vol.59, issue.5, pp.1087-1094, 1976.
DOI : 10.1121/1.380962

O. Bou-matar-lacaze, Application de l'acoustique non-linéairè a l'imagerie médicale et au au contrôle non destructif de matériaux. HabilitationàHabilitationà diriger les recherches, 2003.

A. Moreau, Detection of acoustic second harmonics in solids using a heterodyne laser interferometer, The Journal of the Acoustical Society of America, vol.98, issue.5, pp.2745-2752, 1995.
DOI : 10.1121/1.413240

M. Villa, Caractérisation ultrasonore de matériaux par des méthodes d'acoustique nonlinéaire, Thèse de doctorat, 2003.

H. Fukukita, S. Ueno, and T. Yano, and attenuation coefficient, The Journal of the Acoustical Society of America, vol.99, issue.5, pp.2775-2782, 1996.
DOI : 10.1121/1.414873

C. A. Cain, : I. A theoretical basis, The Journal of the Acoustical Society of America, vol.80, issue.1, pp.28-32, 1986.
DOI : 10.1121/1.394186

D. Kourtiche, L. Allì-es, A. Chitnalah, and M. Nadi, parameter, Measurement Science and Technology, vol.12, issue.11
DOI : 10.1088/0957-0233/12/11/331

URL : https://hal.archives-ouvertes.fr/hal-00458460

D. Kourtiche, L. Allì-es, A. Chitnalah, and M. Nadi, Harmonic propagation of finite-amplitude sound beams: second harmonic imaging in ultrasonic reflection tomography, Measurement Science and Technology, vol.15, issue.1, pp.21-28, 2004.
DOI : 10.1088/0957-0233/15/1/003

URL : https://hal.archives-ouvertes.fr/hal-00175075

D. Zhang, X. Gong, and X. Chen, Experimental imaging of the acoustic nonlinearity parameter B/A for biological tissues via a parametric array, Ultrasound in Medicine & Biology, vol.27, issue.10, pp.1359-1365, 2001.
DOI : 10.1016/S0301-5629(01)00432-X

X. Gong, D. Zhang, J. Liu, H. Wang, Y. Yan et al., Study of acoustic nonlinearity parameter imaging methods in reflection mode for biological tissues, The Journal of the Acoustical Society of America, vol.116, issue.3, pp.1819-1825, 2004.
DOI : 10.1121/1.1781709

N. Ichida, T. Sato, H. Miwa, and K. Murakami, Real-Time Nonlinear Parameter Tomography Using Impulsive Pumping Waves, IEEE Transactions on Sonics and Ultrasonics, vol.31, issue.6, pp.31-635, 1984.
DOI : 10.1109/T-SU.1984.31548

R. A. Graham, Determination of Third??? and Fourth???Order Longitudinal Elastic Constants by Shock Compression Techniques ??? Application to Sapphire and Fused Quartz, The Journal of the Acoustical Society of America, vol.51, issue.5B, 1972.
DOI : 10.1121/1.1913001

. Chavrier, . Lafon, . Birer, . Cathignol, and . Jacob, An original method for determining the nonlinearity parameter B/A. non soumis, 2005.

M. A. Breazeale, Nonlinear acoustics and how she grew, Review of Progress in Quantitative Nondestructive Evaluation (RPQNDE), vol.11, pp.2015-2023, 1992.

B. D. Blackburn and M. A. Breazeale, Nonlinear distortion of ultrasonic waves in small crystalline samples, The Journal of the Acoustical Society of America, vol.76, issue.6, 1984.
DOI : 10.1121/1.391002

G. E. Dace, R. B. Thompson, and O. Buck, Measurement of the acoustic harmonic generation for characterization using contact transducer, Review of Progress in Quantitative Nondestructive Evaluation (RPQNDE), vol.11, pp.2069-2076, 1992.

A. Le-brun, Méthodes ultrasonores de caractérisation des matériaux endommagés, Thèse de doctorat, 1997.

R. N. Thurston and K. Brugger, Third-Order Elastic Constants and the Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed Media, Physical Review, vol.133, issue.6A, pp.1604-1610, 1964.
DOI : 10.1103/PhysRev.133.A1604

H. Ogi, N. Nakamura, M. Hirao, and H. Ledbetter, Determination of elastic, anelastic, and piezoelectric coefficients of piezoelectric materials from a single specimen by acoustic resonance spectroscopy, Ultrasonics, vol.42, issue.1-9, pp.1-9, 2004.
DOI : 10.1016/j.ultras.2004.01.007

T. J. Ulrich, K. R. Mccall, and R. A. Guyer, Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy, The Journal of the Acoustical Society of America, vol.111, issue.4, pp.1667-1674, 2003.
DOI : 10.1121/1.1463447

K. Van-den-abeele, A. Sutin, J. Carmeliet, and P. A. Johnson, Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS), NDT & E International, vol.34, issue.4, pp.239-248, 2001.
DOI : 10.1016/S0963-8695(00)00064-5

L. A. Ostrovsky and P. A. Johnson, Dynamic nonlinear elasticity in geomaterials. La revista del nuovo cimento, 2001.

H. Kwun, A. Hikata, and C. Elbaum, Nonlinear interactions of two ultrasonic waves in a dispersionless liquid medium, Journal of Applied Physics, vol.51, issue.9, pp.4645-4650, 1980.
DOI : 10.1063/1.328334

J. Dusquesne, Measurement of third-order elastic constant in silicon by a comparaison method, J. Acoust. Soc. Am, vol.108, issue.3, 2000.

J. Dusquesne and D. A. Parshin, Interaction of coherent collinear acoustic waves in a liquid/solid system, Journal of Applied Physics, vol.82, issue.7, p.3275, 1997.
DOI : 10.1063/1.365634

J. R. Davies, J. Tapson, and B. J. Mortimer, A novel phase locked cavity resonator for B/A measurements in fluids, Ultrasonics, vol.38, issue.1-8, pp.283-291, 2000.
DOI : 10.1016/S0041-624X(99)00139-0

V. Tournat, Effet non linéaire d'auto-démodulation d'amplitude dans les milieux granulaires : théorie et expériences, Thèse de doctorat, 2003.

V. Gusev, Parametric attenuation and amplification of acoustic signals in the media with hysteretic quadratic nonlinearity, Physics Letters A, vol.271, issue.1-2, pp.100-109, 2000.
DOI : 10.1016/S0375-9601(00)00298-X

A. Moussatov, B. Castagnède, and V. Gusev, Frequency up-conversion and frequency down-conversion of acoustic waves in damaged materials, Physics Letters A, vol.301, issue.3-4, pp.281-290, 2002.
DOI : 10.1016/S0375-9601(02)00974-X

V. Y. Zaitsev, V. Gusev, and B. Castagnède, Observation of the ???Luxemburg???Gorky effect??? for elastic waves, Ultrasonics, vol.40, issue.1-8, pp.627-631, 2002.
DOI : 10.1016/S0041-624X(02)00187-7

A. M. Sutin, S. W. Yoon, E. J. Kim, and I. N. Didenkulov, Nonlinear acoustic method for bubble density measurements in water, The Journal of the Acoustical Society of America, vol.103, issue.5, pp.2377-2384, 1998.
DOI : 10.1121/1.422756

A. D. Phelps, D. G. Ramble, and T. G. Leighton, The use of a combination frequency technique to measure the surf zone bubble population, The Journal of the Acoustical Society of America, vol.101, issue.4, pp.1981-1989, 1997.
DOI : 10.1121/1.418199

X. Jacob, Mesure de paramètres de non-linéarité de gels et de solidesàsolidesà l'aide de l'interaction paramétrique de deux ondes, 2001.

O. Casula, Caractérisation des champs acoustiques par sonde optique hétérodyne et par sonde acoustique active, Thèse de doctorat, 1997.

S. Zhou and Y. Shui, Nonlinear reflection of bulk acoustic waves at an interface, Journal of Applied Physics, vol.72, issue.11, pp.5070-5080, 1992.
DOI : 10.1063/1.352036

P. R. Stepanishen, Experimental verification of the impulse response method to evaluate transient acoustic fields, The Journal of the Acoustical Society of America, vol.69, issue.6, pp.1610-1617, 1971.
DOI : 10.1121/1.385937

D. Cassereau, Nouvelles méthodes et application de la propagation transitoire dans les milieux fluides et solides, Thèse de doctorat, 1988.

A. Lhémery, Cours du DEA d'Acoustique Physique, 2001.

M. Mooney, A diffusion theory of the visco-elasticity of rubbery polymers in finite elastic strain, Journal of Polymer Science, vol.34, issue.127, pp.599-626, 1959.
DOI : 10.1002/pol.1959.1203412741

A. S. Birks, R. E. Green, and P. Mcintire, Nondestructive Testing Handbook, 1991.

R. Takatsu, Quantitative measurement methods of nonlinear coefficient and shock waves, 2004.

C. Barrì-ere, X. Jacob, and D. Royer, Nonlinearity parameter measurements in liquids and gels using the parametric interaction, 17th International Congress on Acoustics, 2001.

X. Jacob, C. Barrì, and D. Royer, Acoustic nonlinearity parameter measurements in solids using the collinear mixing of elastic waves, Applied Physics Letters, vol.82, issue.6, pp.886-888, 2003.
DOI : 10.1063/1.1541100

T. Bateman, W. P. Mason, and H. J. Mcskimin, Third???Order Elastic Moduli of Germanium, Journal of Applied Physics, vol.32, issue.5, pp.928-936, 1961.
DOI : 10.1063/1.1736135

D. Lheureux, F. Decremps, M. Fischer, J. Itie, G. Syfosse et al., High-Pressure Ultrasonic Measurements on Single Crystal, High Pressure Research, vol.22, issue.3-4, pp.763-767, 2002.
DOI : 10.1080/08957950212423

J. Emery, S. Gasse, and C. Dugué, COEFFICIENT DE NON LINEARITE ACOUSTIQUE DANS LES MELANGES EAU-METHANOL ET EAU-ETHANOL, Le Journal de Physique Colloques, vol.40, issue.C8, pp.231-234, 1979.
DOI : 10.1051/jphyscol:1979839

URL : https://hal.archives-ouvertes.fr/jpa-00219544

M. C. Sehgal, B. R. Porter, and J. F. Greenleaf, Ultrasonic nonlienar parameters and sound speed of alcohol-water mixture, J. Acoust. Soc. Am, vol.72, issue.2, pp.566-570, 1986.

P. W. Bridgman, Theoretically Interesting Aspects of High Pressure Phenomena, Reviews of Modern Physics, vol.7, issue.1, pp.1-33, 1935.
DOI : 10.1103/RevModPhys.7.1

K. Yoshizumi, T. Sato, and N. Ichida, for media predominantly composed of water, The Journal of the Acoustical Society of America, vol.82, issue.1, pp.302-305, 1987.
DOI : 10.1121/1.395566

M. Rénier, Mesure du coefficient de non linéarité de milieux complexes par interaction d'ondes, 2004.

L. Ganjehi, Propagation nonlinéaire des ondes acoustiques en milieu hétérogène. application au bang sonique, 2004.

G. Emschwiller, Chimie Physique, 1961.

I. Y. Solodov, Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications, Ultrasonics, vol.36, issue.1-5, pp.383-390, 1998.
DOI : 10.1016/S0041-624X(97)00041-3

J. H. Cantrell and W. T. Yost, Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation, Applied Physics Letters, vol.77, issue.13, pp.1952-1954, 2000.
DOI : 10.1063/1.1311951

J. Gennisson, Le palpeur acoustique : un nouvel outil d'investigations des tissus biologiques, Thèse de doctorat, 2003.

X. Jacob, J. Gennisson, S. Catheline, M. Tanter, C. Barrì-ere et al., Study of elastic nonlinearity of soft solids with transient elastography, IEEE Ultrasonic Symposium, 2003.

S. Catheline, J. Gennisson, X. Jacob, C. Barrì-ere, D. Royer et al., Elastic nonlinearity of soft solids using transient elastography. Congrès Français d'Acoustique, 2004.

J. Gennisson, S. Catheline, S. Chaffa¨?chaffa¨?, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, The Journal of the Acoustical Society of America, vol.114, issue.1
DOI : 10.1121/1.1579008

G. T. Mase and G. E. Mase, Continuum mechanics for ingeneers, 1999.

M. F. Hamilton, Y. A. Ilinskii, and E. A. Zabolotskaya, New formulation of the elastic energy density for soft tissue, The Journal of the Acoustical Society of America, vol.114, issue.4, pp.2436-2436, 2003.
DOI : 10.1121/1.4809220

E. A. Zabolotskaya, M. F. Hamilton, Y. A. Ilinskii, and G. D. Meegan, Modeling of nonlinear shear waves in soft solids, The Journal of the Acoustical Society of America, vol.116, issue.5, pp.2807-2813, 2004.
DOI : 10.1121/1.1802533

R. W. Lardner, Nonlinear effects on transverse shear waves in an elastic medium, Journal of Elasticity, vol.35, issue.1, pp.53-57, 1985.
DOI : 10.1007/BF00041304

S. Catheline, Interférométrie speckle ultrasonore : applicationàapplicationà la mesure d'´ elasticité, Thèse de doctorat, 1998.

L. Sandrin, Elastographie impulsionnelle par ultrasons : du palpeur acoustiquè a l'imagerie ultrarapide, Thèse de doctorat, 2000.

J. Bercoff, L'imagerié echographique ultrarapide et ses applications, Thèse de doctorat, 2004.

S. Catheline, J. Gennisson, M. Tanter, and M. Fink, Observation of Shock Transverse Waves in Elastic Media, Physical Review Letters, vol.91, issue.16, pp.43011-43014, 2003.
DOI : 10.1103/PhysRevLett.91.164301

J. Gennisson, S. Catheline, and M. Fink, Third order elastic moduli measurements in soft solids using transient elastography, 2002.

Y. A. and E. A. Zabolotskaya, About interaction of plane longitudinal and shear waves, J. Acoust. Soc. Am

E. V. Charnaya and V. A. Shutilov, Propagation of finite-amplitude acoustic waves in a solid medium with small-scale inhomoneneities, Sov. Phys. Acoust, vol.31, issue.1, pp.65-67, 1985.

D. Royer, N. Dubois, and M. Fink, Optical probing of pulsed, focused ultrasonic fields using a heterodyne interferometer, Applied Physics Letters, vol.61, issue.2, pp.153-155, 1992.
DOI : 10.1063/1.108202

B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, Heterodyne interferometer with two???wave mixing in photorefractive crystals for ultrasound detection on rough surfaces, Applied Physics Letters, vol.69, issue.25, pp.3782-3784, 1996.
DOI : 10.1063/1.116997

D. Certon, O. Casula, F. Patat, and D. Royer, Theoretical and experimental investigations of lateral modes in 1-3 piezocomposites, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.44, issue.3, pp.643-651, 1998.
DOI : 10.1109/58.658320

D. Clorennec and D. Royer, Analysis of surface acoustic wave propagation on a cylinder using laser ultrasonics, Applied Physics Letters, vol.82, issue.25, pp.4608-4610, 2003.
DOI : 10.1063/1.1586463

D. Royer, Génération et détection optiques d'ondesélastiquesondesélastiques, 1996.

P. Vairac and B. Cretin, New heterodyne interferometers using double passing, Proc SPIE, Optical Inspection and Micromeasurements, pp.486-492, 1996.

X. Jia, L. Adler, and G. Quentin, Nonlinear distortion of finite???amplitude ultrasonic waves investigated by optical heterodyne interferometry, The Journal of the Acoustical Society of America, vol.98, issue.6, pp.3456-3461, 1995.
DOI : 10.1121/1.413796

C. Barrì-ere and D. Royer, Optical measurement of large transient mechanical displacements, Applied Physics Letters, vol.79, issue.6, pp.878-880, 2001.
DOI : 10.1063/1.1389503

X. Jacob, R. Christophebarrì-ere, G. Takatsu, D. Montaldo, and . Royer, Optical measurement of transient ultrasonic shock waves, IEEE Ultrasonics Symposium, 2004, 2004.
DOI : 10.1109/ULTSYM.2004.1417666

G. Montaldo, C. Barrì-ere, D. Royer, and M. Fink, Absolute measurements of ultrasonic shock waves with an optical interferometer, IEEE Trans. Ultrason., Ferroelec. and Freq. Contr, 2002.

C. Barrì-ere, G. Montaldo, X. Jacob, D. Royer, and M. Fink, Quantitative measurements of ultrasonic shock waves using a standard optical interferometer. Congrès Français d'Acous- tique, 2004.

J. F. Krucker, A. Eisenberg, M. Krix, R. Lotsch, M. Pessel et al., Rigid piston approximation for computing the transfer function and angular response of a fiber-optic hydrophone, The Journal of the Acoustical Society of America, vol.107, issue.4, 1994.
DOI : 10.1121/1.428483

H. S. Yadav, D. S. Murty, S. N. Verma, K. H. Sinha, B. M. Gupta et al., Measurement of refractive index of water under high dynamic pressures, Journal of Applied Physics, vol.44, issue.5, pp.2197-2200, 1973.
DOI : 10.1063/1.1662536

M. Costantini, A novel phase unwrapping method based on network programming, IEEE Transactions on Geoscience and Remote Sensing, vol.36, issue.3, p.813, 1998.
DOI : 10.1109/36.673674

C. Barrì-ere, O. Casula, and D. Royer, Acoustic field imaging using the nonlinear mixing of ultrasonic waves, Ultrasonics, 2003.

O. Casula and D. Royer, Transient surface velocity measurements in a liquid by an active ultrasonic probe, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.45, issue.3, p.760, 1998.
DOI : 10.1109/58.677726

O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium, The Journal of the Acoustical Society of America, vol.99, issue.5, pp.2791-2798, 1996.
DOI : 10.1121/1.414805

K. Beissner, The acoustic radiation force in lossless fluids in Eulerian and Lagrangian coordinates, The Journal of the Acoustical Society of America, vol.103, issue.5, pp.2221-2332, 1998.
DOI : 10.1121/1.422751

B. T. Chu, Relationship between Boussinesq and Cauchy radiation stresses in solids, Physical Review B, vol.35, issue.2, pp.870-872, 1987.
DOI : 10.1103/PhysRevB.35.870

W. L. Nyborg and J. A. Rooney, , 1673???1687 (1982)], The Journal of the Acoustical Society of America, vol.75, issue.1, pp.263-264, 1984.
DOI : 10.1121/1.390412

A. I. Potapov, G. A. Maugin, and C. Trimarco, Radiative stresses of acoustic waves in solids, World Congress on Ultrasonics, 2003.

P. J. Westervelt, Acoustic Radiation Pressure, The Journal of the Acoustical Society of America, vol.29, issue.1, pp.26-29, 1957.
DOI : 10.1121/1.1908669

J. H. Cantrell-jr, Acoustic-radiation stress in solids. I. Theory, Physical Review B, vol.30, issue.6, pp.3214-3220, 1984.
DOI : 10.1103/PhysRevB.30.3214

J. H. Cantrell, W. T. Yost, and P. Li, Acoustic radiation-induced static strains in solids, Physical Review B, vol.35, issue.18, pp.9780-9782, 1987.
DOI : 10.1103/PhysRevB.35.9780

W. T. Yost and J. H. Cantrell-jr, Acoustic-radiation stress in solids. II. Experiment, Physical Review B, vol.30, issue.6, pp.3221-3227, 1984.
DOI : 10.1103/PhysRevB.30.3221

A. B. Coppens, R. T. Beyer, and J. Ballou, Parameter of Nonlinearity in Fluids. III. Values of Sound Velocity in Liquid Metals, The Journal of the Acoustical Society of America, vol.41, issue.6, pp.1443-1448, 1966.
DOI : 10.1121/1.1910504

B. Hartmann, Potential energy effects on the sound speed in liquids, The Journal of the Acoustical Society of America, vol.65, issue.6, pp.1392-1396, 1979.
DOI : 10.1121/1.382924

B. Hartmann, G. F. Lee, and E. Balizer, -alkane liquids using the Tait equation, The Journal of the Acoustical Society of America, vol.108, issue.1, pp.65-70, 2000.
DOI : 10.1121/1.429444

URL : https://hal.archives-ouvertes.fr/hal-00807552

. Ch, Physique de l'´ etat solide. Dunod, 1983.

N. W. Ashcroft, C. University, and N. D. Mermin, Solid state physics, 1976.

A. Tanguy, J. P. Wittmer, F. Leonforteand, and J. L. Barrat, Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations, Physical Review B, vol.66, issue.17, pp.66-67, 2002.
DOI : 10.1103/PhysRevB.66.174205

S. Alexander, Amorphous solids: their structure, lattice dynamics and elasticity, Physics Reports, vol.296, issue.2-4, pp.65-236, 1998.
DOI : 10.1016/S0370-1573(97)00069-0

D. C. Wallace, Thermoelasticity of Stressed Materials and Comparison of Various Elastic Constants, Physical Review, vol.162, issue.3, pp.776-789, 1967.
DOI : 10.1103/PhysRev.162.776

F. Birch, Finite Elastic Strain of Cubic Crystals, Physical Review, vol.71, issue.11, pp.71-809, 1947.
DOI : 10.1103/PhysRev.71.809

P. N. Keating, Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure, Physical Review, vol.145, issue.2, pp.637-645, 1966.
DOI : 10.1103/PhysRev.145.637

Y. Hiki and A. V. Granato, Anharmonicity in Noble Metals; Higher Order Elastic Constants, Physical Review, vol.144, issue.2, pp.411-419, 1966.
DOI : 10.1103/PhysRev.144.411

M. Blackman, On the relation between the finite strain approach and the lattice theory of thermal expansion, Proc. Phys. Soc, pp.371-378, 1964.
DOI : 10.1088/0370-1328/84/3/306

K. Brugger, Generalized Gr??neisen Parameters in the Anisotropic Debye Model, Physical Review, vol.137, issue.6A, pp.1826-1827, 1965.
DOI : 10.1103/PhysRev.137.A1826

J. H. Cantrell, Generalized Gr??neisen tensor from solid nonlinearity parameters, Physical Review B, vol.21, issue.10, pp.4191-4195, 1980.
DOI : 10.1103/PhysRevB.21.4191

A. P. Mayer, Surface acoustic waves in nonlinear elastic media, Physics Reports, vol.256, issue.4-5, pp.237-366, 1995.
DOI : 10.1016/0370-1573(94)00088-K

J. A. Garber and A. V. Granato, Fourth-order elastic constants and the temperature dependence of second-order elastic constants in cubic materials, Physical Review B, vol.11, issue.10, pp.3998-4007, 1975.
DOI : 10.1103/PhysRevB.11.3998

C. Z. Tan, J. Arndt, and H. S. Xie, Optical properties of densified silica glasses, Physica B: Condensed Matter, vol.252, issue.1-2, pp.28-33, 1998.
DOI : 10.1016/S0921-4526(98)00051-9

K. Trachenko and M. T. Dove, Compressibility, kinetics, and phase transition in pressurized amorphous silica, Physical Review B, vol.67, issue.6, pp.1-11, 2003.
DOI : 10.1103/PhysRevB.67.064107

A. Polian and M. Grimsditch, versus pressure, Physical Review B, vol.41, issue.9, pp.6086-6087, 1989.
DOI : 10.1103/PhysRevB.41.6086

M. R. Vukcevich, A new interpretation of the anomalous properties of vitreous silica, Journal of Non-Crystalline Solids, vol.11, issue.1, pp.25-63, 1972.
DOI : 10.1016/0022-3093(72)90305-5

A. Hikata and C. Elbaum, Generation of ultrasonic second and third harmonics due to dislocations. I. Phys. Rev, pp.469-477, 1966.

A. Hikata, F. A. Sewell, and C. Elbaum, Generation of Ultrasonic Second and Third Harmonics Due to Dislocations. I, Physical Review, vol.144, issue.2, pp.442-449, 1966.
DOI : 10.1103/PhysRev.144.469

P. Johnson, Dynamic Elastic Nonlinearity in Earth Materials, Thèse de doctorat, 1997.

K. Van-den-abeele, Elastic pulsed wave propagation in media with second??? or higher???order nonlinearity. Part I. Theoretical framework, The Journal of the Acoustical Society of America, vol.99, issue.6, pp.3334-3345, 1996.
DOI : 10.1121/1.414890

K. Van-den-abeele, P. A. Johnson, and A. Sutin, Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS), Research in Nondestructive Evaluation, vol.43, issue.1, pp.17-30, 2000.
DOI : 10.1029/98GL51231

M. Scalerandi, P. P. Delsanto, and P. A. Johnson, Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments, Journal of Physics D: Applied Physics, vol.36, issue.3, pp.288-293, 2003.
DOI : 10.1088/0022-3727/36/3/311

V. Gusev, Propagation of acoustic pulses in material with hysteretic nonlinearity, The Journal of the Acoustical Society of America, vol.107, issue.6, pp.100-109, 2000.
DOI : 10.1121/1.429333