. Cependant, certains résultats présentés ici s'´ etendent aisémentaisémentà des cas plus généraux, et il est donc possible que la démarche entreprise dans cette thèse, qui donne les outils de base

]. O. Bibliographie1, M. Rioul, and . Vetterli, Wavelets and signal processing, IEEE Signal Processing Magazine, vol.8, issue.4, pp.14-38, 1991.

P. Goupillaud, A. Grossmann, and J. Morlet, Cycle-octave and related transforms in seismic signal analysis, Geoexploration, vol.23, issue.1, pp.85-10285, 1984.
DOI : 10.1016/0016-7142(84)90025-5

L. Auslander and I. Gertner, Wide-band ambiguity function and the ax + b group, Signal Processing, Part I : Signal Processing Theory, pp.1-12, 1990.

J. E. Younberg and S. F. Boll, Constant-Q signal analysis and synthesis, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.375-378, 1978.

J. B. Allen and L. R. Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proc. IEEE, pp.1558-1564, 1977.
DOI : 10.1109/PROC.1977.10770

A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5
DOI : 10.1002/cpa.3160450502

M. Frazier and B. Jawerth, The ?-transform and decomposition of distributions, Proc. Conf. Fucntion Spaces and Appl, 1986.

G. Kolata, New technique stores images more efficiently, 12 Novembre, pp.1-12, 1991.

O. Rioul and P. Flandrin, Time-scale energy distributions: a general class extending wavelet transforms, IEEE Transactions on Signal Processing, vol.40, issue.7, pp.1746-1757, 1992.
DOI : 10.1109/78.143446

M. V. Wickerhauser, Acoustic Signal Compression with Wavelet Packets, Wavelets : A Tutorial in Theory and Applications, pp.679-700, 1992.
DOI : 10.1016/B978-0-12-174590-5.50026-5

J. Kova?evi´kova?evi´c and M. Vetterli, Perfect reconstruction filter banks with rational sampling factors, IEEE Trans. Signal Processing

T. Blu, Iterated filter banks with rational factors : Links with discrete wavelet transforms, IEEE Trans. Signal Processing. Special issue on wavelets

R. E. Crochiere, S. A. Weber, and J. L. Flanagan, Digital Coding of Speech in Sub-bands, Bell System Technical Journal, vol.55, issue.8, pp.1069-1085, 1976.
DOI : 10.1002/j.1538-7305.1976.tb02929.x

D. Esteban and C. Galand, Application of quadrature mirror filters to split-band voice coding schemes, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.191-195, 1977.

M. Vetterli, J. Kova?evi´kova?evi´c, D. L. Gall-]-m, M. Antonini, P. Barlaud et al., Perfect reconstruction filter banks for HDTV representation and coding Image coding using lattice vector quantization of wavelet coefficients, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.349-364, 1990.

C. K. Cheong, K. Aizawa, T. Saito, and M. Hatori, Subband image coding with biorthogonal wavelets, IEICE Trans. Fondamentals, issue.7, pp.871-881, 1992.

P. L. Borgne, F. Sellan, and C. Dorize, Applications of wavelet transform to image compression and texture analysis, Proc. Int. Colloqueum " Wavelets and Applications, 1993.

S. Mallat and S. Zhong, Compact image coding from edges with wavelets, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, pp.2745-2748, 1991.
DOI : 10.1109/ICASSP.1991.150970

W. R. Zettler, J. Huffamnn, and D. C. Linden, Application of compactly supported wavelets to image compression, Image Processing Algorithms and Techniques, pp.150-160, 1990.

S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463

K. Ramachandran and M. Vetterli, Best wavelet packet bases in a rate-distortion sense, IEEE Transactions on Image Processing, vol.2, issue.2, 1993.
DOI : 10.1109/83.217221

J. Kova?evi´kova?evi´c and M. Vetterli, Design of multidimensional non-separable regular filter banks and wavelets, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.389-392, 1992.

P. P. Vaidyanathan, Quadrature mirror filter banks, M-band extensions and perfect-reconstruction techniques, IEEE ASSP Magazine, vol.4, issue.3, pp.4-20, 1987.
DOI : 10.1109/MASSP.1987.1165589

M. Vetterli and D. L. Gall, Perfect reconstruction FIR filter banks: some properties and factorizations, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, issue.7, pp.1057-1071, 1989.
DOI : 10.1109/29.32283

URL : http://infoscience.epfl.ch/record/33918

P. P. Vaidyanathan and Z. Doganata, The role of lossless systems in modern digital signal processing: a tutorial, IEEE Transactions on Education, vol.32, issue.3, pp.181-197, 1989.
DOI : 10.1109/13.34150

A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5
DOI : 10.1002/cpa.3160450502

F. Mintzer, Filters for distortion-free two-band multirate filter banks, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.33, issue.3, pp.626-630, 1985.
DOI : 10.1109/TASSP.1985.1164587

M. J. Smith and T. P. Barnwell, Exact reconstruction techniques for tree-structured subband coders, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.3, pp.434-441, 1986.
DOI : 10.1109/TASSP.1986.1164832

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math, vol.XLI, issue.7, pp.909-996, 1988.

M. J. Shensa, The discrete wavelet transform: wedding the a trous and Mallat algorithms, IEEE Transactions on Signal Processing, vol.40, issue.10, pp.2464-2482
DOI : 10.1109/78.157290

P. J. Burt and E. H. Adelson, The Laplacian Pyramid as a Compact Image Code, IEEE Transactions on Communications, vol.31, issue.4, pp.532-540, 1983.
DOI : 10.1109/TCOM.1983.1095851

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.5161

O. Rioul and P. Duhamel, Fast algorithms for discrete and continuous wavelet transforms, IEEE Transactions on Information Theory, vol.38, issue.2, pp.569-586, 1992.
DOI : 10.1109/18.119724

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.598.7428

C. K. Chui, Wavelet Analysis and its applications, vol. I. An Introduction to Wavelets, 1992.

I. Daubechies, Ten lectures on wavelets, Philadelphia : CBMS-NSF Series in Appl, Math, 1992.
DOI : 10.1137/1.9781611970104

A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5
DOI : 10.1002/cpa.3160450502

S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math, vol.XLI, issue.7, pp.909-996, 1988.

J. D. Johnston, A filter family designed for use in quadrature mirror filter banks, ICASSP '80. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.291-294, 1980.
DOI : 10.1109/ICASSP.1980.1171025

W. M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, Tech. Rep. AD900402, Aware, inc, 1990.
DOI : 10.1063/1.529093

I. Daubechies and J. C. Lagarias, Two-Scale Difference Equations II. Local Regularity, Infinite Products of Matrices and Fractals, SIAM Journal on Mathematical Analysis, vol.23, issue.4, pp.1031-1079, 1992.
DOI : 10.1137/0523059

A. Cohen and I. Daubechies, Non-separable bidimensional wavelet bases, Revista Matem??tica Iberoamericana
DOI : 10.4171/RMI/133

L. Villemoes, Sobolev regularity of wavelets and stability of iterated filter banks, Proc. Int. Colloqueum " Wavelets and Applications, 1992.

H. Volkmer, On the regularity of wavelets, IEEE Transactions on Information Theory, vol.38, issue.2, pp.872-876, 1992.
DOI : 10.1109/18.119743

M. J. Smith and T. P. Barnwell, Exact reconstruction techniques for tree-structured subband coders, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.3, pp.434-441, 1986.
DOI : 10.1109/TASSP.1986.1164832

N. Dyn, Subdivision schemes in CADG Advances in numerical analysis II : Wavelets, subdivision algorithms and radial functions, pp.36-104, 1991.

M. Vetterli, Multi-dimensional sub-band coding: Some theory and algorithms, Signal Processing, vol.6, issue.2, pp.97-112, 1984.
DOI : 10.1016/0165-1684(84)90012-4

URL : http://infoscience.epfl.ch/record/33932

T. Blu and O. , Wavelet regularity of iterated filter banks with rational sampling changes, IEEE International Conference on Acoustics Speech and Signal Processing, 1993.
DOI : 10.1109/ICASSP.1993.319473

. Dans-le-cas, u L est pair, il existe un complément bi-orthogonal

L. 'algorithme-qui-le-détermine, En effet, puisque la longueur des filtres (symétriques) est paire, ces filtres admettent nécessairement chacun un zérò a z = ?1 On peut doncécriredoncécrire G(z) = (1 + z ?1 )F (z) et G ? (z) = (1 + z ?1 )F ? (z) En observant (5.4) on remarque qu'alors le couple formé des filtres de longueur impaire, (1 + z ?1 ) 2 F (z) et F ? (z) est solution, o` u F ? (z) se déterminè a partir de (1 + z ?1 ) 2 F (z) par l'algorithme CB 0 . Il suffit donc, appelé CB 1 dans la suite, se déduit immédiatement du précédent

C. K. Cette-idée-se-généralise-immédiatementimmédiatementà-l-'algorithme, partir d'un filtre passe-bas G(z) de longueur L ayant K zéroszérosà z = ?1, de déterminer un complément biorthogonal G ? (z) ayantégalementayantégalement K zéroszérosà z = ?1. Pour ce faire, il suffit d'ajouter K tels zéroszérosà G(z), d'appliquer CB 0, ) est alors L ? = L + 2(K ? 1). Imposer une forte contrainte de platitude augmente donc la dissymétrie des longueurs

. Cette-méthode-pourrait-se-généraliser-au-cas, on imposerait un nombre différent de zéros zérosà z = ?1 dans les deux filtres. On a préféré cependant utiliser le même K, afin de simplifier leprobì eme et de s'approcher du cas orthogonal en

C. Appliquer-l-'algorithme and G. , z) (cf. § 5.2.2) pour obtenir son complément birothogonal G ? (z)

A. N. Akansu and R. A. Haddad, Multiresolution signal decomposition, 1992.

A. K. Jain, A Fast Karhunen-Loeve Transform for a Class of Random Processes, IEEE Transactions on Communications, vol.24, issue.9, pp.1023-1029, 1976.
DOI : 10.1109/TCOM.1976.1093409

J. Shore, On the Application of Haar Functions, IEEE Transactions on Communications, vol.21, issue.3, pp.209-216, 1973.
DOI : 10.1109/TCOM.1973.1091637

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math, vol.XLI, issue.7, pp.909-996, 1988.

I. Daubechies, Orthonormal Bases of Compactly Supported Wavelets II. Variations on a Theme, SIAM Journal on Mathematical Analysis, vol.24, issue.2, 1993.
DOI : 10.1137/0524031

A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5
DOI : 10.1002/cpa.3160450502

M. Vetterli and C. Herley, Wavelets and filter banks: theory and design, IEEE Transactions on Signal Processing, vol.40, issue.9, 1992.
DOI : 10.1109/78.157221

URL : http://infoscience.epfl.ch/record/33904

F. Mintzer, Filters for distortion-free two-band multirate filter banks, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.33, issue.3, pp.626-630, 1985.
DOI : 10.1109/TASSP.1985.1164587

M. J. Smith and T. P. Barnwell, Exact reconstruction techniques for tree-structured subband coders, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.3, pp.434-441, 1986.
DOI : 10.1109/TASSP.1986.1164832

P. P. Vaidyanathan and P. Hoang, Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.1, pp.81-94, 1988.
DOI : 10.1109/29.1491

O. Herrmann, On the approximation problem in nonrecursive digital filter design, IEEE Transactions on Circuit Theory, vol.18, issue.3, pp.411-413, 1971.
DOI : 10.1109/TCT.1971.1083275

B. C. Jinaga and S. C. Roy, Explicit formula for the coefficients of maximally flat nonrecursive digital filter transfer functions expressed in powers of cos w, Proc. IEEE, pp.1135-1136, 1985.
DOI : 10.1109/PROC.1985.13244

M. J. Shensa, The discrete wavelet transform: wedding the a trous and Mallat algorithms, IEEE Transactions on Signal Processing, vol.40, issue.10, pp.2464-2482, 1992.
DOI : 10.1109/78.157290

T. W. Parks and J. H. Mcclellan, Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase, IEEE Transactions on Circuit Theory, vol.19, issue.2, pp.189-194, 1972.
DOI : 10.1109/TCT.1972.1083419

E. Hoffsetter, A. V. Oppenheim, and J. Siegel, On optimum nonrecursive digital filters, Proc. 9th Allerton Conf. Circuit System Theory, 1971.

H. L. Bihan, P. Siohan, O. Rioul, and P. Duhamel, Une méthode simple de calcul de bancs de filtres/ondelettes bi-orthogonales, Proc. European Signal Processing Conf. (EUSIPCO), 1993.

M. Antonini, M. Barlaud, and P. Mathieu, Image coding using lattice vector quantization of wavelet coefficients, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, pp.2273-2276, 1991.
DOI : 10.1109/ICASSP.1991.150745

T. Q. Nguyen and P. P. Vaidyanathan, Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, issue.5, pp.676-690, 1989.
DOI : 10.1109/29.17560

URL : http://authors.library.caltech.edu/6339/1/NGUieeetassp89.pdf

B. R. Horng and J. A. Willson, Lagrange multiplier approaches to the design of two-channel perfect reconstruction linear phase FIR filter banks, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.1731-1734, 1990.

O. Rioul and P. Duhamel, Fast algorithms for discrete and continuous wavelet transforms, IEEE Transactions on Information Theory, vol.38, issue.2, pp.569-586, 1992.
DOI : 10.1109/18.119724

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.598.7428

T. A. Ramstad and T. Saramäki, Efficient multirate realization for narrow transition-band FIR filters, 1988., IEEE International Symposium on Circuits and Systems, pp.2019-2022, 1988.
DOI : 10.1109/ISCAS.1988.15338

M. Vetterli, Analyse, synthèse et complexité de calcul de bancs de filtres numériques, 1986.

Z. J. Mou and P. Duhamel, Short-length FIR filters and their use in fast nonrecursive filtering, IEEE Transactions on Signal Processing, vol.39, issue.6, pp.1322-1332, 1991.
DOI : 10.1109/78.136539

P. P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial, Proc. IEEE, pp.56-93, 1990.
DOI : 10.1109/5.52200

M. Vetterli and D. L. Gall, Perfect reconstruction FIR filter banks: some properties and factorizations, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, issue.7, pp.1057-1071, 1989.
DOI : 10.1109/29.32283

URL : http://infoscience.epfl.ch/record/33918

M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, Image coding using wavelet transform, Speech, Signal Processing
DOI : 10.1109/83.136597

URL : https://hal.archives-ouvertes.fr/hal-01322224

S. Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, issue.12, pp.2091-2110, 1989.
DOI : 10.1109/29.45554

G. Karlsson and M. Vetterli, Extension of finite length signals for sub-band coding, Signal Processing, vol.17, issue.2, pp.161-168, 1989.
DOI : 10.1016/0165-1684(89)90019-4

L. Karray, Compression d'images par ondelettes, 1992.

M. Antonini, Transformée en ondelettes et compression numérique des images, 1991.

A. Cohen, I. Daubechies, and P. Vial, Wavelets on the interval, Proc. Int. Colloqueum " Wavelets and Applications, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01311753

C. Herley, J. Kova?evi´kova?evi´c, K. Ramchandran, and M. Vetterli, Time-varying orthonormal tilings of the time-frequency plane, IEEE International Conference on Acoustics Speech and Signal Processing
DOI : 10.1109/ICASSP.1993.319471

A. N. Akansu and R. A. Haddad, Multiresolution signal decomposition, 1992.

P. Desarte, B. Macq, and D. T. Slock, Signal-adapted multiresolution transform for image coding, IEEE Transactions on Information Theory, vol.38, issue.2, pp.897-904, 1992.
DOI : 10.1109/18.119749

M. Barlaud, P. Solé, M. Antonini, P. Mathieu, and T. Gaidon, Pyramidal lattice vector quantization for multiscale image coding, IEEE Transactions on Image Processing, vol.3, issue.4
DOI : 10.1109/83.298393

J. H. Conway and N. J. Sloane, Sphere packings, lattices and groups, 1988.

P. Zador, Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Transactions on Information Theory, vol.28, issue.2, pp.139-149, 1982.
DOI : 10.1109/TIT.1982.1056490

Y. Linde, A. Buzo, and R. M. Gray, An Algorithm for Vector Quantizer Design, IEEE Transactions on Communications, vol.28, issue.1, pp.84-95, 1980.
DOI : 10.1109/TCOM.1980.1094577

A. Gersho, Asymptotically optimal block quantization, IEEE Transactions on Information Theory, vol.25, issue.4, 1979.
DOI : 10.1109/TIT.1979.1056067

Y. Shoham and A. Gersho, Efficient bit allocation for an arbitrary set of quantizers (speech coding), IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.9, pp.1445-1453, 1988.
DOI : 10.1109/29.90373

G. J. Sullivan and R. L. Baker, Efficient quadree coding of images and video, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.2661-2664, 1991.
DOI : 10.1109/icassp.1991.150949

K. Ramachandran and M. Vetterli, Best wavelet packet bases in a rate-distortion sense, IEEE Transactions on Image Processing, vol.2, issue.2, 1993.
DOI : 10.1109/83.217221

. Bibliographie, On the choice of " wavelet " filters for still image compression, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1993.

J. D. Johnston, A filter family designed for use in quadrature mirror filter banks, ICASSP '80. IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.291-294, 1980.
DOI : 10.1109/ICASSP.1980.1171025

M. Antonini, Transformée en ondelettes et compression numérique des images, 1991.

T. Kronander, Some aspects of perception-based image coding, 1989.

Y. Meyer, S. Jaffard, and E. O. , L'analyse par ondelettes, Pour La Science, issue.119, pp.28-37, 1987.

O. Rioul and M. Vetterli, Wavelets and signal processing, IEEE Signal Processing Magazine, vol.8, issue.4, pp.14-38, 1991.
DOI : 10.1109/79.91217

O. Rioul and P. Duhamel, Fast algorithms for discrete and continuous wavelet transforms, IEEE Transactions on Information Theory, vol.38, issue.2, pp.569-586, 1992.
DOI : 10.1109/18.119724

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.598.7428

O. Rioul and P. Duhamel, A Remez exchange algorithm for orthonormal wavelets, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.41, issue.8
DOI : 10.1109/82.318943

C. Dorize, O. Rioul, and A. Chaigne, Analysis and synthesis of sound signals using a discrete wavelet transform (DWT), 13th International Congress on Acoustics, 1989.

P. Flandrin, B. Vidalie, and O. , Fourier and wavelet spectrograms seen as smoothed Wigner-Ville distributions, Proc. Int. Colloqueum " Wavelets and Applications, pp.93-103, 1989.

P. Flandrin and O. , Wavelets and affine smoothing of the Wigner-Ville distribution, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.2455-2458, 1990.

O. Rioul and P. Duhamel, Transformées en ondelettes discrètes et continues?Comparaison et algorithmes rapides, inTreizì eme Colloque GRETSI, vol.1, pp.193-196, 1991.

T. Blu and O. , Wavelet regularity of iterated filter banks with rational sampling changes, IEEE International Conference on Acoustics Speech and Signal Processing, 1993.
DOI : 10.1109/ICASSP.1993.319473

H. L. Bihan, P. Siohan, O. Rioul, and E. P. Duhamel, Une méthode simple de calcul de bancs de filtres/ondelettes bi-orthogonales, Proc. European Signal Processing Conf. (EUSIPCO), 1993.

. Collectif, Articles sur les transformées en ondelettes soumis par le département ETP Rapport Technique CRPE, CRPE (CNET/CNRS), vol.192, pp.38-40, 1991.

A. C. Calcul, . De-filtres:-bo?ites-`-abo?bo?itesbo?ites-`-bo?ites-`-a, . Outils, . Matlab, and . Magnitude, H) plots magnitude (frequency) response of FIR filter described by vector H. By default, a linear scale is assumed, MAGNITUDE, issue.1

A. Attenuation-(-h and B. , gives stop-band attenuation, in dB, of half-band FIR filter with transition band (0.25 ? B/2, 0.25 + B/2), where B is the normalized transition bandwidth) assumes H corresponds to a square magnitude, =ATTENUATION(. . . ) also gives the tolerance ? in the stop band

P. Phasevar-phase and Z. Or, This is a measure of phase distortion : If it is close to zero, then H is close to being linear phase. If it is zero, then the filter is linear phase CAUTION : This measure is generally spoiled by zeros in the stop band's magnitude response, causing diracs to appear in the group delay. However, phase transitions by ? should not be a problem. [var1,var2]=PHASEVAR(H) gives group delay variations in the first (0, ?/2) and second (?/2, ?) half band, respectively. This measure is more significant for half-band filters (var1 for low-pass filters, var2 for half-band filters) and avoids the problem of Diracs

M. See and . Zeroes, Zeroes on the unit circle are not selectable : They are retained with twice less multiplicity.) ZP can be obtained from design routines like REMEZWAV, etc. The resulting filter is normalized such that NORM(H)=1, but this may be inappropriate for e.g. MAGNITUDE (gain problem). (Note that checking the result with ZEROES will add computational round-off errors

P. Phasesort, describe filters H n of the same magnitude response (as given by FACTORALL), returns this matrix, sorted from the closest to the farthest from linear phase. A filter is closer to linear phase if its group delay deviation in the pass-band, as given by PHASEVAR, is smaller, HSORTED,INDEX]=PHASESORT(H) also gives the corresponding indexes of filters n = 0, 1, . . . (=phase codes as described in FACTORALL). [HSORTED,INDEX,VAR]=PHASESORT(H) also gives the group delay variations

R. H=remezz-(-l and K. , gives optimum low-pass filter described by vector H, of length L, with K zeroes at the Nyquist frequency, normalized transition bandwidth B, normalized frequency offset ? = (? p +? s )/2?0.25, and (optional) weight coefficient C = ? 1 /? 2 (pass-band attenuation is greater as C is larger). [H,? 1 ]=REMEZZ(. . . ) also gives the maximum deviation ? 1 in the passband (? 2 = ? 1 /C, attenuation is ?20 log 10,0) uses global variable glob as initial guess of alternations and set glob for next call (to minimize the number of iterations)

D. Deriv, the nth derivative of the scaling function (father wavelet) associated to low-pass FIR filter described by vector H. DERIV(H) sets n to 1. DERIV(H,G,n) plots the nth derivative of the (mother) wavelet associated to low-pass and high-pass filters described by vectors H and G, respectively. More generally, DERIV(H,G,n) plots the nth derivative of the limit function of an iterative " subdivision " procedure whose initial sequence is G, DERIV(H,n) sets G = H. By default, the number of iterations is the maximum permissible on this computer

R. Reg, Hölder Regularity of filter described by vector H, as estimated by a sharp upper bound. (The regularity may be negative.) Removal of zeroes in H at half the sampling frequency is done assuming remainder values < 10 ?3, REG(H,Z) forces the number Z of such zeros

B. Biorth-k-=-k+1, If L =length(H) is even, L ? =length(H ? )=length(H) If L =length(H) is odd