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Abstract

The thesis addresses some open problems in the area ofreffi@@smission of loss-
sensitive and delay-sensitive data over wireless chann€le thesis mainly deals with
coding techniques for multicast systems. Multicast diffeom the information theoretic
broadcast channel in that only common information is sempdint-to-point transmission,
reliability is achieved by means of Automatic RetransroisgeQuest (ARQ). Forward Error
Correcting (FEC) codes and ARQ are combined together inrameptimize the trade-off
between reliability and efficiency. This approach is caligrid ARQ, (HARQ).

We consider HARQ schemes for point-to-point transmissitnmodern coding techniques
(Low Density Parity Check codes, LDPC). The theoreticallgsia shows that these codes
ideally achieve optimal performance in terms of throughgdbwever, for practical finite-
length codes, the scheme exhibits a loss in performancedifigeent solutions are shown
to recover most of this performance gap. Analysis of the dexitp of HARQ schemes with
LDPC decoding shows that a method based on asymptotic amdensity Evolution)
yields considerable savings with respect to the other aithat stop the iterations of the
LDPC decoding.

In a multicast setting, however, HARQ protocols are inedfiti Strictly speaking, they are
not fully scalable, i.e. the throughput goes to zero whennimmber of users increases.
This motivates us to study the throughput per user of thesteqwls. In particular, HARQ
based on Selective Repeat (SR) or Incremental Redunddrygdgih be defined to be fully
scalable if we allow for a fractionc > 0 of users that do not decode successfully. We
show that under certain conditions the throughput achiewedhe IR protocol equals the
ergodic capacity at the expense of a delay that grows to tgfiMoreover, when the number
of users increases, the performance of IR is identical tdgperance achieved by a FEC
based system, in terms of delay, throughput and error pritibabrl his makes questionable
the interest of retransmission protocols in a multicastisgt

While in the first part of the thesis we have considered datarsanications, for which the
relevant performance measure is error probability, in tkeend part we consider the trans-



mission of an analog source (for example an image). Exigtiagtical solutions, mainly

based on Shannon’s separation theorem, are highly ineftieied in particular they are not

robust to channel errors. Only few bits in error at the outp@ithe channel decoder lead
to catastrophic effects on the reconstruction quality.sTrequires very stringent conditions
on the performance of the channel code and leads to subdppengbrmance in terms of
spectral efficiency.

In a multicast setting, moreover, it is important to desigecheme that guarantees good
performance over a wide range of signal to noise ratio. Déffe users with different chan-
nel conditions can decode the source with acceptable réxaat®n quality. Joint source-
channel coding is a viable solution for robustness and efficy in this context.

In this multicast environment we analyze and optimize thve#-known strategies in a
comprehensive manner: the first is based on an ideal suseessiinement source code,
coupled with a a progressive transmission scheme (timarghathe second concatenates
the same source encoder with a superposition broadcasngastheme. These two fully
digital schemes are compared with an optimized Hybrid Rigknalog (HDA) approach
based on bandwidth splitting of the source and the comlmnaif a digital and an “analog”
encoder. By “analog” encoder we mean that the source sighaént directly on the channel
(with a suitable scaling, in order to meet the transmit powenstraint) as in conventional
analog amplitude modulation. These schemes are optimizddthat the average overall
distortion is minimized subject to both power and spectfiitiency constraints.

Finally, the problem of code construction for the HDA sysisraddressed in the last part
of the thesis. Two schemes are proposed.

In the first case all the complexity relies on the quantizéresee. The quantizer is defined
in such a way that its performance is based on bit error rated(aot frame error rate) at
the output of the channel decoder. We consider an embedd#ististye Trellis Quantizer
(MTQ), based on standard binary convolutional codes. Itigven to achieve performance
close to the theoretical limit and comparable to the bestitsfound in literature. More-
over, thanks to the fact that convolutional codes have raiastrophic encoder, it is very
robust with respect to channel errors.

The second is consider a very simple quantizer scheme. batpression and channel
coding are combined and accomplished with a linear code. ellemultilevel compres-
sion scheme based on linear codes (Turbo Codes) is condiddrmear codes provide
compression by exploiting the redundancy at the outputefjtantizer. Traditionally the
source/channel coding system is based on the concateradtibe quantizer, a lossless data
compression stage and a standard channel code. Here, thsisivo stages are replaced by
a single stage based on linear codes. This approach is showivé remarkable improve-




ments compared to the traditional solution. This method lmamsed in the HDA scheme
when concatenated to entropy constrained scalar or vect@ntizers. Moreover, it can

be easily adapted to work with more sophisticated and prattjuantizers as Differential

Pulse Code Modulation (DPCM) for transmission of images @rwén be generalized to

achieve progressive transmission through embedded quaeioin.
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CHAPTER 1

Introduction

1.1 CHALLENGES AHEAD FOR WIRELESS COMMUNICATIONS

The demand for new high-speed, reliable, wireless senvcgsowing fast. Future wire-
less networks will provide added value by allowing a larggets of services. Real-life
networks require the performance to be compliant with aedaality of service targets in
forms of delay, error probability or fidelity in the reconsttion of the data. Depending on
the applications, different measures of performance mayde critical than others. For
example data-transmission (web browsing, data trangfeajleis not strictly delay sensi-
tive but require a virtually error free link. Multimedia demt (video streaming) can be
more delay sensitive but tolerate some losses, or it car te&aconditions on the delay
and accept some losses as in the case of image transmissiganded source and channel
coding is the key technology that allows for the design ofradvadth efficient transmission
layer [1, 2, 3].

While in the single user case, families of codes exist thatewe capacity for increasing
block-length [1, 2], the multiuser scenario, and in patéciroadcast scenario, is still not
so simple. Broadcast channels have been widely studiedseveral years, especially from
the information theoretic stand-point, [4, 5]. Nevertlsslethe capacity region for a general
broadcast channel has not been fully characterized yeorrhdtion-theoretic broadcast
channels correspond to systems where one transmitter smhejsendent information to
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different users and possibly some common information. Hexkeever we limit ourselves
to a system where the transmitter sends only the commomiaftton toall the users. To
differentiate this setting from that of the conventionabdmicast channel, we refer to this
situation as anulticastsetting.

As an example consider a multicast application where skuseas ask a server the same
service. Practically speaking, the server will open a nemneation for each user demand-
ing the service. This is clearly inefficient when considgrthe bandwidth consumption.

In fact, it can happen that when a new user asks the same esetlree system refuses to
provide the service because of lack of bandwidth. Schenssitploits the multicast set-

ting by sharing the bandwidth, are surely more bandwidtltiefit but at the expense of a
penalty in the throughput seen by each user.

Hence, one of the challenges of wireless communications d&sign bandwidth efficient
systems that satisfy quality of service requirements.

This thesis tackles some open problems in the area of effic@rsmission of loss-sensitive
and delay sensitive data over wireless channels in singlearsl multicast setting.

1.2 CODING FOR DATA TRANSMISSION

1.2.1 Hybrid Retransmissions Schemes in Single User Sgttin

Data transmission is very sensitive to noise/fading rdlaeors. Therefore, it is essential
that the MAC layer is able to correct deficiencies of the ptgisiayer code. To do so,
Forward Error Correction (FEC) is complemented with a resraission protocol (Auto-
matic Repeat reQuest (ARQ)) [6]. FEC consists in adding alfasmount of redundancy
to the data packet allowing the decoder at the receiver siderrect a certain number of
transmission errors. ARQ consists in requesting a retressson, when the receiver de-
tects a corrupted packet.The gain of using ARQ, beyond thefli®f eventually obtaining
error free packets is to decrease the required operating ete for physical layer FEC
algorithms, thus effectively lowering the Signal to Noisati@ (SNR) requirement at the
terminal and access points. However, this gain comes atribe @f an added delay due to
retransmissions [6, 7]. A recent trend is the joint optirtiaa between the physical layer
and the MAC layer. An example of such cross-layer optimazatan be seen in the joint
design of the FEC and the ARQ. This gives rise to hybrid ARQ R} schemes where
the decoding function of the physical layer is handled Jgintith the combining of re-
transmitted packets (see [6, 7] and references thereinypn | HARQ, the basic idea is
that multiple disjoint coded versions of the same origiredkets are transmitted upon each
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retransmission. The code design is such that the messageaddable upon reception of
just a single coded packet. The different copies can be audbat the decoder in order
to better exploit the diversity of the channel and to incectiee probability of successful
decoding. Packet combining can be based on hard decisid@) )] or on soft channel
output [11, 12]. Throughout the thesis we refer to the typARQ as the Selective Repeat
(SR) protocol.

Type-1l HARQ (also called Incremental Redundancy, (IR)B,[14] can be interpreted as a
variable coding scheme where flexibility is realized by @aging or decreasing the coding
rate depending on the channel conditions. The code rate difghtransmission is very high
and whenever the system is asked for a retransmission is safuitional redundancy low-
ering the received rate. Furthermore the received packetsambined in order to exploit
the time diversity of the channel since several coded blockyg experience independent
fading coefficients. This principle can be implemented byngifRate Compatible Punc-
tured Codes (RCPC) [13] where the transmitter progresspahctures the same “mother”
low-rate code. Moreover, since the first transmission isgymade using a very high rate
code, in bad channel conditions, a retransmission alwaysre@nd the delay is penalized
[15, 16, 17].

An information-theoretic approach to study simple HARQtpools over a slotted multiple-

access Gaussian channel with fading is given in [18]. Th#re,authors analyze the
throughput and average delay as well as the asymptotic lmehaith respect to various

system parameters. In [13, 14, 19, 20] rate compatible poedtconvolutional codes are
used in the IR scheme. The transmission starts with the siglogle rate and additional
redundancy is sent whenever requested. In [21] the authggested the use of Turbo
codes [1] for type-Il HARQ protocols where the incrementdundancy can be obtained
by puncturing the parity bits.

1.2.2 Hybrid ARQ with LDPC

Recently, we have seen increasing interest in the classwoDansity Parity Check (LDPC)
codes [2, 22, 23, 24, 25]. Together with the particular todideffered by Hybrid ARQ
techniques, this motivates us to analyze the throughputooéimental redundancy schemes
with this class of codes.

LDPC codes were first studied by Gallager in his thesis [2kmthe introduced an iterative
message passing decoding technique that approximatesndiaxLikelihood (ML) decod-
ing. In fact, ML decoding becomes too complex for LDPC codetha block length grows,
while the message passing algorithm, also caBed-Product AlgorithniSPA) [25, 26],
has a complexity per iteration that is linear in the bloclkglén
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The term ‘fow density refers to the fact that the number & in each row of the parity
matrix is small, in particular linear in the block lengthThese codes exhibit a threshold
phenomenon: as the block length tends to infinity, an arilitramall Bit Error Rate (BER)
can be achieved if the SNR is larger than a certain thresi2djl [Otherwise, the BER is
bounded away from zero for any number of decoder iterations.

The idea in SPA is to calculate approximate marganpbsterioriprobabilities by applying
Bayes'’ rule locally and iteratively. In the case when thegpbreepresenting the code has no
cycle, the SPA computes exact marginal a posteriori prdibabi

The asymptotic performance of the message-passing deandén particular of the SPA,
are evaluated by using a method call2ehsity Evolution(DE) [27, 25, 22, 24], that allows

to compute the value of the threshtldhe concentration theorem [22] guarantees that the
threshold computed via density evolution coincides with ¢lkact asymptotic threshold in
the limit of large block-length.

DE gives information about the performances in terms of BE&vever, the computation

of the throughput is based on the frame error rate (FER) nharethe BER. Itis also known

that these codes exhibit very good waterfall performanderins of BER, but bad results in
terms of FER [28, 29] unless countermeasures are adoptbdaswgmncatenation or special
graph constructions. Therefore the following issues amgmrding a practical design of
LDPC-based HARQ protocols:

Analysis of the behavior of ideal LDPC codes (infinite bloekdth) and generaliza-
tion of DE under HARQ protocols and block fading channels.

Analysis of the behavior of practical (finite length) LDPCngoared with infinite
length counterparts.

Definition of good countermeasures in order to have suchsobely adapted to the
HARQ framework, thus obtaining close to ideal performance.

Finally, should more sophisticated constructions basesdpacial graph design [30,
31, 32, 33] be considered for practical implementation ?

Some of these problems are addressed in chapter 2.

'For random linear codes the expected numbdris proportional tan?, [22].
2The threshold is defined as the worst channel parameter lsatthe message distribution evolves in a way
that the associated probability of error converges to zasake number of iterations goes to infinity.
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1.2.3 Coding and Retransmission for the Multicast Channel

In the downlink of wireless networks, the transmitter mpsttals with multiuser situations,
where multiple terminals need to be served at once in anaiti@énd reliable way. This
situation is in general referred to as “broadcast” chaniddl, 35, 36, 37]. Here, however,
we limit the analysis for the multicast scenario where ordynmon information is sent
to all the users. In this case, existing retransmissionopa are in general not efficient,
[38, 39, 40, 41]. Because the HARQ has to adapt to the conditid all the users in the
cell including the worst one, the retransmission proto@i possibly be solicited many
times and the effective coding rate of the system will be Jewy This means that strictly
speaking these kinds of protocols are not scalable with tineber of users.

Very recently and independently from us, Gopala et al. [4®]ehstudied retransmission
protocols in the same multicast setting as here. The authwalyze the scaling low of
the throughput and delay with respect to the number of usgnen SR and IR HARQ
schemes are considered. However, when they analyze theoBRqlr they assume perfect
channel state information both at the transmitter and ateheiver, while the IR scheme
does not require channel state information. They compasettwo schemes with a method
based on cooperation among users. They show that the thlieegpdave progressively
increasing complexity but also better throughput/delafisg lows. They show that the SR
scheme achieves optimal throughput scaling low when timstn#ter targets the user with
the “average” conditions in the cell.

In our case, for both IR and SR, the transmitter is not infatrabout the channel coef-
ficient of each user, since the feedback is very easy and givgsinformation about the
correctness of the received packets.

In this scenario, multiple open issues arise again, whicladdress in chapter 3:

e How can these protocols be made “fully scalable? By “fullglable we means that
the delay does not increase with the number of users.

e How do these protocols scale with the number of users? Whiz igmiting behavior
of these protocols with respect to system or design parastete

e An open issue is whether these retransmission protocolgiaée solutions for the
multicast setting.

These problems are tackled in chapter 3.
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1.3 CODING FOR MULTIMEDIA SOURCES

Modern telecommunications very often involve the transiois of analog sources over
digital channels. Paramount examples are digital TV, abdiadcasting (DTV, DAB) and
transmission of still and moving pictures over wirelessgadhannels in 3G (and beyond)
mobile devices.

In contrast to the error-sensitive data applications noeetil before, such applications can,
by nature, be much more delay-sensitive (especially sirga@pplications), but at the
same time more loss-tolerant (within the requirements imseof quality of reconstruc-
tion). Other multimedia applications can have more relec@uastraints on delay, such as
for instance the transmission of images over mobile devices

In such setting, bit-error probability at the output of tiaonel decoder is no longer a good
measure of performance. On the contrary, the end-to-endriiis is more representative
of the quality of transmission.

In some lucky sporadic cases, such as a Gaussian source @aussian channel, both
with the same bandwidth, it is well-known that “analog transsion” is optimal [3, 45]. By
analog transmission we mean that the source is scaled in wrdeeet the transmit power
constraint and then it is sent over the channel. This candeasregular analog AM. Such
conditions require mainly a particular match between cbhand source. For example it
requires equal source and channel bandwidth. The sourckvidth is in general given by
nature while the channel bandwidth has to respect certginrements. Therefore, it can be
interesting to try to maximize the spectral efficiency, gies the ratio between source and
channel bandwidth, or equivalently try to optimize to syst® meet a particular spectral
efficiency. In order to achieve high spectral efficiencyX), in general the source must be
compressed, and at the same time protected against etrocuiced by the channel [3, 46].

1.3.1 Lossy Transmission over Compound Channel

Consider a Block-Fading Additive White Gaussian Noise deaiiBF-AWGN) where the
channel gain is random but constant over the duration of awort. Under the assumption
that the transmitter is not informed about the channel fadihthe user but only of its
statistic, the BF-AWGN channel can model a broadcast chamitte infinite users each of
one experiencing a different fading coefficient. Henceegia certain statistic of the SNRs
(or of the users), itis desirable to design a single trartemihat performs “well” for a wide
range of SNR.

While analog schemes show a gradual change (graceful degmagin the received signal
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quality with changes in SNR, digital schemes suffer fronf‘theeshold effect”. The system
can be designed to achieve asymptotically optimal perfacaat a given target SNR, but
they perform poorly for SNR below this target and they do m@etadvantage of better
channel conditions when the actual SNR is above the targBt SN

In general digital schemes are designed based on Shanepasasion principle that states
that no loss in performance is incurred when designing soara error coding schemes
separately [47, 46]. However, this does not take into camaiibn complexity and delay

and it does not hold for non-ergodic scenario or multiuséingeas considered here. Con-
sequently, much research has been done based ajoititeSource and Channel Coding
(JSCC) principle that links and jointly optimizes the saand the channel strategy. In
[48, 49] and references therein, the authors have showioihasource-channel codes can
solve the problem above for fixed complexity and delay ang #ie more robust to change
in channel noise.

Consider the case when the transmitter sends the same aoai@g to all the users each of
one having a different channel condition. Possibly, the, useexploiting the “goodness” of
its channel, can reconstruct the source at different gquightels. The key issue is to define
one transmission scheme that works as close as possiblettosibretically achievable limit
for a wide range of SNR, i.e for a large number of users.

In this setting, different well known transmission straésgcan be analyzed. The easiest
scheme is based on time sharing, also called “progressimsrtrission” of information. The
source is splitted into independent layers of informatiachemapped onto a different chan-
nel codeword possibly with different channel coding ratée Todewords are sent trough
the channel by using a time sharing strategy. The splittinidp@ source into independent
layers can be implemented by usingideal successive refinemgsb, 51, 46, 52] source
encoder. The concept of successive refinement consistsbéfiproximating the data by
using a few bits of information and then iteratively impnoyithe approximation as more
and more information is supplied. Under particular condgiton the source [51], the suc-
cessive refinement source code achieves optimal perfosr(#@me rate-distortion function)
at each level. Here we consider such an ideal successivemedint source code.

In [34] it is shown that a superposition-based transmissioategy lies on an achievable
rate region of the broadcast channel, greater than theregliieved by time-sharing. Such
a scheme consists in superimposing a low-rate informatiothe ‘bad’ user into a higher-

rate information that can be decoded only by the users witlelbehannel conditions. The
same ideal successive refinement source encoder can beedouph the superposition

strategy where each layer of information is mapped intoferdiht channel codeword. The
codewords are then superimposed and transmitter over tmneh
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The third strategy considers an hybrid system that couplesbenefits of a digital sys-
tem, with graceful degradation in reconstruction qualifiei@d by an “analog” (uncoded)
scheme. These kind of schemes, called Hybrid Digital-Ap#teDA), have been analyzed
from a theoretical point of view in [53, 54, 55, 56]. In [56§rfexample, the authors design
HDA schemes that achieve for one target SNR asymptoticailynal performance. How-
ever in a multiuser environment, it seems more interestingptimize the system in view
of having a performance level (average distortion) as smastpossible over the range of
possible SNR values.

Given this background, some issues exist that should bessiehl:

e The definition of an optimization problem for the theoretiaaalysis of the three
transmission strategies described before (time sharupgrposition, HDA) is a key
issue. The optimization problem is based on the minimipatibthe average distor-
tion, where the average is done over the distribution of tNRS This becomes a
power and rate allocation problem that allows for compassio terms of distortion
versus instantaneous signal to noise ratio.

e The definition of algorithms that find the optimal allocatipower and rate policies
subject to total power and spectral efficiency constraiivts guidelines for the prac-
tical construction of these systems.

e A big issue is, of course, the construction of codes (souotie/channel code) that
can approach the theoretical limit.

These problems are addressed in chapter 4.

1.3.2 Separated vs Joint Source-Channel Coding: Code Carttion

Among the strategies briefly described in the previous secthe HDA scheme gives the
best results, in the sense that it achieves smooth recotistriguality for a wide range of
SNRs. These schemes are made of a digital part (sourceelhamcoder) superimposed
with the analog (uncoded) signal. We refer to the digitat parto “tandem encoder”. The
result of the optimization problem is the SNR threshold aicihhe digital code should
be design to work. The analytical development considersleal source and channel code
when the rate-distortion and the capacity-cost functienamhieved. However, a key open
problem is the construction of codes that work as close asitleso the theoretical limit.
The tandem encoder can be designed separately or jointly.
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Let us consider, first, the standard separated approachrdém to allow source compres-
sion, practical source encoders involve some linear toamsftion (e.g., Fourier or Wavelet
subband decomposition), followed by some segmentationdacination [3, 57]. Then
the analog data may be quantized and the sequence of quantizadexes is lossless-
compressed by an “entropy coding” stage, usually impleateby some form of adaptive
arithmetic coding [58]. The best results known so far, imigf quantization of mem-
oryless sources are found in the family of Entropy Consgrdiirellis Coded Quantizers
(ECTCQ) [59]. These schemes uses the expanded signal $etN@Get partitioning ideas
from coded modulation. The probability with which the pgint the code alphabet are
selected is not uniform. Hence, rate improvements can bieath by concatenating this
scheme with an arithmetic encoder and eventually a chamade © protect against the ef-
fects of the channel. Because of the variable-length cosliage, the source decoder is not
robust to residual channel errors and a few wrong bits ahfisitimay cause intolerable
degradation of the reproduced source. This is the main vesskof Shannon’s source-
channel separation theorem. Moreover, the separatiometimedoes not generally hold in a
non-ergodic environment such as the slowly fading AWGN dlehnT his leads to the analy-
sis of the joint approach (JSCC), that links and jointly optes the source and the channel
strategy. In [48, 49] and references therein, the authors slaown that JSCC can solve the
problem above for fixed complexity and delay and they are mmlvast to change in chan-
nel noise. Different approaches for JSCC has been proposkd, $ut we can summarize
them mainly into two groups. The first tries to optimize thawgization step by deleting all
the redundancy of the source. These schemes can be couptestavidard channel codes.
The main issue here is to construct quantizer schemes satththreconstruction quality
relies on BER more than FER, i.e few bits in error at the outgguhe channel decoder
do not have a catastrophic effect on the reconstructiontgu&xamples of this group are
Channel Optimized Scalar/Vector Quantizer [61, 62, 63].

The other group of JSCC schemes considers very easy quastirEme and the data com-
pression and channel coding stage is performed jointlys [Esi stage achieves compression
ratio by exploiting the residual redundancy at the outpuhefquantizer. However, the de-
coder needs the a priori information about the statistichefindexes at the output of the
quantizer. The joint data compression-channel codingestag be efficiently implemented
via linear codes, as shown in [64, 65].

The following open problems are addressed in chapter

e Existing practical tandem encoder are not very close tohberttical performance.
However, source codes (ECTCQ) and channel codes (TurbechBé¥C) that per-
form very close to the ideal rate-distortion or capacitgtciunctions exists. Their
potential is still to be explored when jointly optimized.
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The design of non-catastrophic quantizer, i.e robust toeélaerrors is a key issue.
A challenging features is the independence of performarsa the source statistic.
In practice, in fact the statistic of the source is not prelgi&known.

Data compression/channel coding schemes based on lindes bave, as well, a big
potential. An open problem is the design and optimizatiooaafes for this compres-
sion/protection method.

An open issue is whether soft reconstruction can be helphdnathe compression
method based on linear codes is considered.

Parallel Concatenated Turbo codes are particularly sfiitedSCC because by na-
ture they are systematic and different coding rates can bieaxd by puncturing
the same mother code. However, analytical optimizationoisstraightforward. It
could be interesting to optimize families of codes like L@ Irregular Repeat
and Accumulate (IRA) codes [66], where DE reveals all itseada&ges. In this case,
modification of DE to take into account the compression se&hshould be carried
out.

The analysis and study of the performance achieved by th&ERRCQ coupled with
compression scheme based on optimized IRA codes is of greatst.

An interesting point is to adapt this compression schemaadh & way that it can pro-
vide a graceful degradation of performance and thus can &eted to the multiuser
setting, also without the use of the analog signal.

1.4 CONTRIBUTIONS

We summarize our results around the two following axes ddagsh: HARQ-based trans-
mission over wireless channels and efficient transmissionuitimedia content. The con-
tributions in terms of publications are specified.

Throughout the chapters less intuitive acronyms are repeédr the sake of clarity.

1.4.1 HARQ-based Transmission over Wireless Channels

(i) Chapter2
The work is mainly inspired by [18]. By usingenewal Rewarfb7] theory, the throughput
of LDPC codes ensembles with incremental redundancy prbtaer slow fading channel
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is studied, and the density evolution method is extendetidaase of block fading chan-
nel and general retransmission protocols. The analysiwsstitat assuming infinite block
length, LDPC codes yield almost the same performance asnabthary codes.

As expected, the throughput performance of practical fileitgth LDPC codes show a con-
siderable loss with respect to the ideal behavior of therabie Two original methods are

presented and are shown to recover most of the gap betwespa&&ormance and practical

results. The first method is based on a simple special graphgement and the second is
based on an outer selective-repeat protocol acting on engaltkets of information bits.

Finally we analyze the complexity of the IR protocol with LDRodes. When a packet hits
a deep fade, the iterative decoder may perform many iteatathout converging to small
error probability. This is a waste of computation time anttdrg energy. Ideally, it would
be useful to trigger the iterative decoder only if the praligbof successful decoding is
high. A method based on the asymptotic analysis (densityygon) is shown to provide an
asymptotic region of convergence of the IR scheme and peaathe saving in complexity
compared to standard stopping criteria.

This work led to the publications [68, 69, 70, 71] and two p&te

(i) Chapter 3

In this chapter the scalability of the HARQ protocol is aded. A multicast scenario is
considered, where each user spans a fixed number of fadingsbld@ he results are given
in terms of throughput per user vs number of users, when thandRSR protocols are
considered. These protocols, strictly speaking, are radéble, i.e the average delay grows
to infinity as the number of users augment. HARQ (SR or IR) eambdéully scalable if
we allow for a fractionz > 0 of users that do not decode successfully. One of our results i
that the IR scheme achieves asymptotically, for large nurabesers, performance greater
or equal than the ergodic capacity of the system for fixedtpesi. For the SR protocol,
the optimal performance is always achieved with finite ayemdelay, but at the expense of a
penalty in throughput compared to the IR scheme. Moreoveshee that the performance
of IR and of FEC coding are identical in terms of delay, thigugt and error probability, in
the limit of a large number of users. Finally we target a strieg application and we give
a simple practical example on the requirement in terms dEbusfze at the receiver, based
on the Birth-Death queue process. A part of this work gawetaq72].
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1.4.2 Efficient Transmission of Multimedia Content

(i) Chapter 4

In this chapter, we define the optimization problem for treggtems. The first is obtained
by coupling an ideal successive refinement source codersivikegy based on time shar-
ing and the second by coupling the same source encoder wihnsnission scheme based
on superposition. These two fully digital schemes are coatpavith the optimized HDA
scheme based on superposition of the digital and the analdag Phe function to be min-
imized is the average distortion under the transmit powastaint and total spectral ef-
ficiency. The algorithms gives the optimal power and ratecallion based on these con-
straints, as well as the optimal nhumber of layers. We suppdsally, that the successive
refinement scheme is able to provide independent leveldarhiration and that it achieves
the rate-distortion function at each level. For the sakdebtetical tractability ideal chan-
nel codes are considered. However, the algorithms can lexaered to practical schemes
where the source and channel encoder are not ideal.

This work is presented in [73, 74].

(iv) Chapter5

This chapter deals with the construction of practical cgdioshemes that approach the lim-
its found in the previous chapter. We analyzed and compavélifferent schemes. The first
belongs to the class of robust quantizer schemes that pesfalso data compression. Be-
longing to this class, we analyze a Multistage Trellis Qiznt(MTQ) based on a spherical
dithering and on the scaled version of a “mother” convohaio(de)coder. The idea is to
approximate the behavior of spherical codes with the catiaial code. In fact Lapidoth
in [75] has shown that scaled spherical codes with minimwstadce encoding arebustin
the sense that they achieve the Gaussian rate distortiordhmder very mild conditions on
the source. This scheme, in the noiseless case, achiewmarfce close to the Gaussian
rate distortion bound, independently from the statistithef source. It is robust to channel
errors because it inherits the property of the convolutiemaoder to be non catastrophic.
Moreover, its output is almost non redundant and thus, itied for concatenation with
powerful standard Turbo codes or LDPC.

The second scheme that we analyze is based on the joint iraptation of data com-
pression and channel coding. In particular this can be aedligia linear codes as Turbo
codes. In the following we refer to it as Multilevel Turbo C@ktssion (M-TCOM). The
M-TCOM exploits the residual redundancy of the index at thigoot of the quantizer. Here,
we consider a simple Entropy Constrained Scalar QuantzesQ) whose output indexes
are redundant. The redundancy of these indexes is usedrawiargormation to achieve
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compression rate and drive the turbo decoder, this is catmace aided channel decoding”
[64]. The indexes belonging to@—ary are mapped through a multilevel decomposition
(bit planes) onto turbo codes that act on a per-level basis.systematic bits of each turbo
codes are punctured, together with a certain amount ofypiiti in order to achieve the
desired rate. A time-sharing approach is used for trangoniss/er the channel.

This scheme outperforms standard concatenations thaideomgiantizer, entropy encoder
and standard channel code. Results are given in terms ofaqmtdaization (polynomial
generator of component convolutional codes and punctyatigrn). However, the analysis
of ECTCQ concatenated with turbo compression and IRA caaesvell as the analytical
optimization of such codes, is an on-going work.

This approach, by nature, can handle progressive transmis$ information. Thus, by
choosing th&l-ary to binary mapping such that it is embedded, the souroebearecon-
structed with different levels of distortion.

This scheme and the design of the coding rate are extendée wase of practical trans-
mission of images over the wireless link. This is shown teg®markable results when
coupled with a modified Differential Pulse Code Modulatiaragtizer defined by Kim et al

[57].

This work has partly led to [76, 77]. A comprehensive analgsid summary of the results
as well as the on-going work contributes to [78]. The extamsito embedded quantization
and the application to DPCM-based quantizer scheme catestio [79].
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CHAPTER 2

Throughput of Hybrid ARQ protocols with LDPC
Codes

2.1 INTRODUCTION

This chapter is focused on the concept of reliability in tioatext of packet data trans-
mission. Typically, data transmission is not strictly degensitive but requires a virtually
error-free link. In order to provide such level of reliabjliover wireless channels, affected
by propagation impairments such as fading, ARQ schemes eaotbined with channel

coding (HARQ). In brief, when fading varies slowly over thedtion of a codeword, coding

takes care of the channel noise while retransmissions teeaf bad channel conditions
(deep fades).

This work is mainly inspired by [18] where the authors analyzom an information the-
oretic point of view, throughput and average delay perfarceaof some HARQ protocols
over a slotted multiple access Gaussian channel with fadihg analysis is carried out by
considering Gaussian codes for the shake of mathematacahility.

Here we consider a point-to-point downlink scenario and walyze the performance of
HARQ schemes with the powerful class of LDPC codes, overkbofading channel. Al-
though very idealized, the simple block-fading model cegguseveral aspects of wireless
communications over fading channels (see the thoroughusksan in [80], [81]). For ex-
ample, this model applies to narrow-band transmission aweultipath fading channel with
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slow frequency hopping (e.g., a GSM/GPRS system [82]). lastilated in [80, 81], when
fading is slowly-varying with respect to the duration of aleword, each codeword expe-
riences a fixed number of fading states (ddyvalues). Under the realistic assumption of
large number of dimension per blogk and small}/, the channel is ndhformation stable
and outage capactfyrather than standard ergodic capacity, describes theslhreliable
communications.

The analysis of the Incremental Rredundancy (IR) schemk LIPC code ensembles
with iterative belief-propagation decoding shows thaguasing infinite block length, LDPC
codes yield almost optimal performance.

Unfortunately, practical finite-length LDPC codes incuransiderable performance loss
with respect to their infinite-length counterpart. In ordereduce this performance loss,
two effective methods are proposed : 1) using special LDPgmbles designed to provide
goodframe-error rate(rather than just gooiterative decoding threshoJd2) using an outer
selective-repeat protocol acting on smaller packets afrin&tion bits. Surprisingly, these
two apparently very different methods yield almost the saerormance gain and recover
a considerable fraction of the optimal throughput, thusin@kractical finite-length LDPC
codes very attractive for data wireless communicationgdas incremental redundancy
HARQ schemes.

In the last part of the chapter, the analysis of the complefiHARQ scheme coupled with
Belief Propagation decoding is carried out. When a packstandeep fade, the iterative
decoder may perform many iterations without convergingtalserror probability. Even-
tually, a decoding failure is declared and a retransmissaequested. Therefore, when
such event occurs, the iterations represent wasted cotigputane. Ideally, it would be
useful to detect quickly whether the packet is likely to berectly decoded or not, and
trigger the iterative decoder only if the probability of sassful decoding is high. While
this is very easily obtained in simple ARQ protocols, whesielepacket is independently
encoded and decoded and each retransmission is treate@atyaeceived packet, it is not
so obvious in more sophisticated HARQ schemes that makefysscket combining [11]
or incremental redundancy. In fact, when a data packet isG4eRcoded and the resulting
codeword is sent across the channel on a single fading hilosksufficient to check if the
instantaneous signal-to-noise ratio (SNR) at the recas/irger than the LDPC iterative
decoding threshold [22, 23], to know if the packet can be dedasuccessfully with high
probability. On the contrary, if a codeword is transmittee say,n fading realizations,

'For example, in GSMV = 8 andL ~ 100, and in64kbps downlink reference data channel for UMTS
data-transmission modes, codewords are interleavedidver 2 frames, and each frame may contains up to
~ 1000 dimensions [83].

2Qutage capacity is defined as the maximum information ratectin be achieved in any fading condition
during non-outage
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we would need am:-dimensional region of convergence such that if the SNRordstin
this region, then the iterative decoder is successful widin probability. Characterizing
such multidimensional region of convergence for a given Cli®de and iterative decoder
is not an easy task in general. A simple method to computeigitiplan approximatede-
gion of convergence of the belief-propagation decoder fgivan LDPC code is presented.
This method is based on the use of Density Evolution (DE3.aissible then, to check very
efficiently if the vector of received SNRs is such that susfidsdecoding is expected with
high probability. Then, the iterative decoder is triggeoady if the vector of received SNRs
is in the region. This reduces the expected complexity ofigeoder, with very important
savings in both computation time and battery energy.

2.1.1 Summary of the Contributions

¢ Analysis of the throughput of IR schemes with infinite lengBPC codes and exten-
sion of density evolution method to the case of block fadingmmel and IR scheme.

e Countermeasures to recover the gap between the perforrotinéaite length LDPC
ensemble and that achieved by finite length practical codes.

¢ Analysis of the complexity of IR scheme with Belief Propagatdecoding.

¢ Definition of a approximate convergence region to lower tbeglexity of the de-
coder

2.1.2 Organization of the work

The rest of the chapter is organized as follows: in secti@tf2e system model and the
retransmission protocol is introduced. Section 2.3 redhl throughput analysis based on
Renewal-Reward theory, while in section 2.4.2 and 2.5 tinepegation is particularized for
random binary and LDPC codes. Section 5-22 give resultsimgef throughput achievable
by LDPC when ideal conditions are considered (infinite bliecigth) and in section 2.7 two
methods to fill in the gap between finite length and infiniteglenLDPC codes are given.
The results are shown in section 2.8. Finally the complexitDPC decoding under IR
retransmission protocol is analyzed in section 2.9 andose2t10 concludes the chapter.
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2.2 PrROTOCOL AND MODEL USED

The system is composed by one transmitter and one receivere i$ divided intoslots
each of duratiof?". In each slot the transmitter senfis~ WT dimensions, wher#’ is the
two-sided signal bandwidth and we assui¥id” > 1. The fading is considered slowly time
varying, in particular constant block fading on each slobr&bver the channel gains over
different slots are assumed statistically independentr@@-1). Denotex, the transmitted

Decoding of
Codeword 1

Codewor_d 1 Current Time:
Generation Time Codeword 2
Generation Time

Fig. 2-1. Model representing the division of the codewordbursts.

signal,y s the received signal and, the background noise, during slat

Xs = (:1:5717 Ls 2y «-vs xs,L)
ys = (y8,17 Ys,2y -+ yS,L)
Vs = (Vs1, Vs2, -+, Vs.L) (2-1)

The noise is assumed circularly symmetric Gaussian wiith components with variance
1. The energy per symbol is constant and giveri|hy ||| = 1. The fading coefficient is

normalized so thak||c;|?] = 1. The average received SNR is given]byé Es/Ny. For
later use, we define also the fading power gaj,né |cs|? and the instantaneous received
SNR over slots, 3 2 asI. The received signal over one slot is given by:

Ys = \/fcs Xs + Vg (2'2)

In the following we suppose that the decoder has a perfeatletige of the channel gain
¢s and of the SNRJ,.

The HARQ scheme under analysis is shown in figure 2-2. Rowgegking, the transmitter
keeps sending additional coded symbols (redundancy)autdessful decoding is achieved.




2.3 Throughput Analysis 19

For this reason, itis referred to as incremental redundpratpcol. The transmitter encodes
information messages ofbits by using a channel code with codebabk: C” of length

n = LM and coding rateR = b/n bit/symbol. The codewords are divided M blocks

of length L symbols. Each block is sent over one slot. Cgtdenote the punctured code
of length Lm obtained fromC by “deleting” the last\M — m blocks. Without loss of
generality, we enumerate the slotssas= 1,2,..., M. In order to transmit the current
codeword, the transmitter sends the first block.a§ymbols on slots = 1. The receiver
decodes the codé,, by processing the corresponding received signal If decoding is
successful, a positive ACKnowledgment (ACK) is sent on aylétee error-free feedback
channel, the transmission of the current codeword is stbjgpel the transmission of the
next codeword will start in the next slot (say,= 2). On the contrary, if a decoding
error is detected, a Negative ACK (NACK) is sent back and tle block of the current
codeword is transmitted on slet= 2. In this case, the receiver decod&sby processing
the received signdly,, y2} and the same ACK/NACK procedure is repeated, until either
successful decoding occurs, or &l blocks of the current codeword are transmitted without
successful decoding (see figure 2-2).

If successful decoding occurs after < M blocks, the effective coding rate for the current

codeword is- bit/symbol, where we define the rate of the first block a3 b/L. There-
fore, the IR protocol implements easily an adaptive ratesehthat takes advantage of
good instantaneous channel conditions. The throughpuitediR protocol is defined as the
average number of bit/s/Hz successfully received. As fahashroughput is concerned, it
is irrelevant whether codewords not successfully decofted & blocks are retransmitted
in some successive slots or if they are just discarded [18]th® contrary, the packet loss
rate and the average delay of the system are affected by tiog fur handling decoding-
failures. In general, for some information packet arrivaldel and some delay constraint
we might seek a policy minimizing the delay subject to a paldss probability constraint.
This topic is out of the scope of this work and, for simplicitye shall assume that the trans-
mitter has an infinite number of information packets avddano packet arrival process)
and applies the IR procedure to the current packet untildiagds successful or until a rate
constraint violation happens.

2.3 THROUGHPUT ANALYSIS

In order to study the throughput the following optimistisasptions are taken into account:

e The transmitter has an infinite number of messages to be sent.

e The ACK/NACK channel is delay and error free.
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Codeword 1 X RX

Ys1
NACK
] — DECODE
Ys, 15 Ys,2
NACK
\\\\\\\\\\\- ]~ DECODER

e -
Codeword 2

Ys, 1, Ys,2, Ys,3
e T AN s e - pecoDEr

Fig. 2-2. Protocol HARQ
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e The channel power gains; are i.i.d random variables for all the slots.
The throughput, expressed in bits per second per hertzas diy:
n = lim r(t) = (2-3)

wherer(t) = @ t counts the number of slots am¢) the number of information bits
successfully decoded up to slot As in [18] the throughput can be expressed using the
Renewal-Reward Theorerj67]. The evenf = {The user stops transmitting the current
codeword is recognized to be gecurrent event

A randomreward R is associated to the occurrence of the recurrent eént= r b/s/Hz

if transmission stops because successful decodingRand 0 b/s/Hz if it stops because at
step M it is not possible to successfully decode (violatibthe rate constraint). Applying
the Renewal Theorem we obtajn= % wherer is the random time, expressed in number
of bursts, between two consecutive occurrences of thenaduevent. It is referred to as
inter-renewal time Define the eventd,, = {successful decoding with: transmitted
burstg, andq(m) as the probability of having the first successful decodinstegpm. The
probability ¢(m) can be expressed as:

g(m) = Pr(Ay, As, ..., A1, An)
= Pr(-/_417~'7t27 "'a-/_4m—1) - Pr(jl,jg, 7“7lm)
= p(m —1) — p(m) (2-4)

with p(m) = Pr(A;, As, ..., A,) = 1= 3", g(m). ArewardR = b is obtained
when successful decoding occurs. This happens atrstédpwith a probabilityg(m). It
follows that

M M
E[R] = Y rgm)=r Y q(m) = r[l—p(M)] (2-5)
m=1 m=1

The inter-renewal time is a random variable that takes theegan with probability ¢(m)
form = 0,..., M. Inthe casen = M the transmission can stop not only because of
successful decoding (it occurs with probability\/ )) but also because of the rate constraint
(the decoding is not successful but the process stops etaisomplete codeword has al-
ready been sent). This occurs with probabiliy/). Finally the probability mass function

is given by

if m< M,

q(M) +p(M) if m =M. (2-6)
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It follows that

M
E[r] = ) mgq(m) + Mp(M)

m=1 m=1
M-—1 M-—1
= p(m) =1+ p(m) (2-7)
m=0 m=1

where the last step follows after some algebra and by seiting= 1. Finally the through-
put has the following expression

r(l — p(M 1 — p(M

p= A2 p0D) gy . (29

2 m=0 P(m) L+ 3521 p(m)
The average delay (in slots) can be obtained either by sidigget calculation, or by notic-
ing that the IR scheme where, in the presence of a decodihgeaifter) slot, the proto-
col is reset and the current codeword is transmitted agaimesponds to a newly defined
renewal-reward process with deterministic rew&dl/. Therefore, from (2-8) it follows
that the average inter-renewal time (i.e., the averageypefathis new process is clearly
given by

1+Zm 1p( ) _
1 - pM) (9)

The variance of delay can be obtained by direct calculatrmhityields:

1+Zm1p()+22m1mp() |:1+Zm1p( )]2

7 = 1—p(M) !
M—1 2
p(M) i
( ta ) (1= P 10

2.4 THROUGHPUT BOUNDS: INFINITE LENGTH CODES

2.4.1 Conventional Coded ARQ

We take a short detour to compute the throughput of conveaitibRQ schemes; this will be
used in section 5-22 to motivate the effectiveness of IR watpect to these conventional
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protocols. We shall consider two variants of conventioraded ARQ. In the first case,
codewords of lengtll, and rateR = b/L, spanning a single fading block, are used for
transmission. In the presence of a decoding error (detedtadarbitrarily large probability

in the limit of large L, [18]), the codeword is retransmitted in some successote klsing
the same arguments as before we can compute the through@atydérage delay (in slots)
and the variance of the delay of this scheme; they are clgargn by

nsr-1 = R(1-p(1))
1
PR T
2 p(l) -
OSR—1 (1 _ p(l))2 (2 11)

where the subscript “SR-1" indicatsglective repeatvith coding over one block.

In the second case, codewords of lengts LM and rateR are transmitted ovel/ fading
blocks and decoding is performed only after &l blocks are received. In the presence of
a decoding error, the codeword is retransmitted in someessae group of\/ slots. The
resulting throughput, average delay and variance of theeydsie given by

nsk-M = R(1—p(M))

M
2 _ 2 p(M) )
osR-m = M 1= pD)? (2-12)

The subscript “SR-M" indicateselective repeawith coding overM blocks. Itis immediate
to see thatisg v < mandusr—m > 1 Wheren andy are the throughput and average delay
of the IR scheme given in (2-45) and (2-9).

In Section 5-22, we show by some examples that the IR scherf@pe much better than
the above SR schemes in terms of maximum throughput. Thagaeéelay and the variance
of the delay are comparable for small values of throughput.

2.4.2 Random Binary (RB) Codes

Recall that we assume perfect channel knowledge at thevezcek., the receiver knows
perfectly the fading coefficientses : s = 1,..., M }. Let theinstantaneousnutual infor-
mation per input symbol on slatbe given by

A . _ l p(yslxs, cs) _
J(ﬂs) - I(X&YS‘CS) - LE |:10g2 p(YS|Cs) ] (2 13)
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wherex; is distributed according to some input distributi@rx) and where

1

1 “Ng
p(y|x,c) = We 0

ly—ex|?

is the channel transition pdf for given fading gain Given the sequence of fading gains
Fmn = {es : s =1,...,m}, we define the conditional probability of decoding erroeeft
received slot®r(error|F,,, Cy,) given the cod€ and the fading sequencg,,. In [18] it

is shown that there exist families of codesvith increasing block lengtfi such that

lim Pr(error|F,, Cp) =0 (2-14)

L—oo

if 1,, 2 >, J(Bs) > r. Moreover, for anyl. the error probability of any code is bounded
away from zero ifl,, < r. Finally, assuming typical-set decoding [46] the condi&ib
probability of an undetected decoding error vanished as oo for any codeC and any
fading sequencé&.

Eventually, we can say that for large number of dimensiomssjm L (i.e., large product
WT) the error probability of the best possible code at each & st, for given fading
sequencer,, is given byPr(error|Fy, Cp) = 1{I,, < r} wherel{.} is the indicator
function. Hence, the average error probability (where ayeris with respect to the fading
statistics), is given by

Pr(error|Cy,) = Pr(In, <) (2-15)

We define the probability(m) of successful decoding withe transmitted slots as

q(m) 2 Pr(lh <r, L <r,....Ip1 <7 Lyp>r)
= p(m —1) —p(m) (2-16)

wherep(m) is defined as

pm) 2 Pr(h <7, L<r, ... . Ln<r)=1-Y q(m) (2-17)

=1

In the random binary codes case the input distributipfa) puts uniform probability on

the binary antipodal alphabét-+/E,+/E}. Because of non-negativity of mutual infor-
mation, the sequenddy, Is, ..., I,,,) is a non-decreasing sequence for all fading sequence
realization. This yields

p(m) =Pr(lL <r, ..., L, <r)=Pr(l,, <r)=Pr (i J(Bs) < r) (2-18)
s=1
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For binary inputs the instantaneous mutual informati@ni; ) is given by

53) = 1= [ gy (1 4+ ) E, (2-19)

Since thed,’s are i.i.d. random variables, the cumulative distribatfanction (cdf) (2-18)
is obtained from then-fold convolution of the probability density function (9dif J(5s),
given by

L i (4@ _
@) = 21 (7 ) () (2:20)

wheref,(z) is the pdf of the fading power gain. The probabilityp(m) is then:
p(m) = /0 fm(x)dx (2-21)

wheref,,(z) = F~H{(F{f(z)})™} andF{.} indicates the Fourier Transform.
In order to reduce the computation complexity of 2-21, fogéan we can resort the Gaus-
sian approximation or the Chernoff bound.

(v) Gaussian Approximation Using the Central Limit Theorem [84], for large we
have that

1 m
— > 1(8) - VmEE = N(0,1) (2-22)
maé im1 oG distri

where

EI(B)) = pas E[I(8) - na)’| = o4

are the mean and the variance of the single letter mutualnvefoon /(3;). The value of
p(m) is then found using the integration of the cdf of the GausRdmwith meanmuc and
variancemo?,:

p(m)~ 1 — Q(%) (2-23)

for largem.
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(vi) Chernoff Bound The Chernoff bound gives an upper bound on the probability
p(m):

p(m) = Pr(ZI(ﬁz’) ST)
i=1
= Pr(Zm:I(ﬁi) —r< 0>

i=1

E

i=1

Z{ I1(B) —r < 0}] (2-24)

whereZ{X'} is the indicator function that is equal towhen the even#’ is verified and)
otherwise.
This is upper-bounded by a negative exponential:
plm) < B[ AT 600 -)]
— MR {e—x POy 1(@-)]
= ﬁ ®r.(N\) (2-25)
=1
where we have definetl;,(\) = E [e*(%)]. The last step is due to the fact that t{g; )
are i.i.d RVs. Finally the upper bound is given by
p(m) < eV[@r(AN)]" (2-26)
The minimization of\ gives tighter upper bound,
p(m) < m/\in A @7 (M) (2-27)

In this case the functio®, (\) does not have a closed form solution, so we got the results
through numerical simulations.

2.5 Low DENsSITY PARITY CHECK CODES

In chapterl (LDPC) codes have been introduced together with the keyepties and the
concepts of iterative decoding algorithm based on messagginy used to approximate
maximum likelihood decoding, as well as the DE method useevauate bit error rate
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performance in the limit of large blocklength. The messpassing decoder is called Sum
Product Algorithm (SPA) or Belief Propagation algorithmR)B In the following we refer
to it as BP.

The parity-check matrix of a randomly selected instafida a given LDPC ensemble is
conveniently represented by a bipartite graph with the saethe left (bitnodes) corre-
sponding to the coded symbols and the nodes on the rightkbdes) corresponding to
parity-check equations. A bitnodes connected to a checknodé the corresponding-th
symbol participates in the-th parity equation. The LDPC ensemble is defined by its left
and right degree distributions(z) 2 Y%, Azt andp(z) £ %, pai~L, where);
(resp.,p;) is the fraction of edges in the graph connected to bitnoaep(, checknodes) of

1
degreei. The rate of the ensemble is given By= 1 — L{Ol ’;Ew;jm.
0 xX)ax

Under the sum-product algorithm the variable and check si@tehange messages itera-
tively. A check node gets messages fromiitmeighbors, processes the messages and sends
it back to its neighbors. The same thing applies for the tgiaodes. The essential con-
straint, necessary to have the correct marginal a postgrobabilities, is that the output
message of the variable (check nodes) is a function of atinticg messages to the node
with the exception of the message coming from the node wiiehmessage will be sent
to. After! iterations the variable node decodes the associated ldtlmasall the informa-
tions that it could get from thédepth subgraph of its neighbors. In the limit of very long
codes, it can be shown that the decoding neighborhood ofea gariable node isee-like

it does not contain any cycle; in this case all the randomatéei(the incoming messages to
every node) are independent. T@Bencentration Theorernm [22], assures that, almost all
randomly constructed codes behave alike. It follows thet @nly necessary to determine
the averages behavior of the ensemble. The average belgsloywn to be the cycle-free
case. In the limit of infinite blocklength DE computes thereot marginal a posteriori
probability.

The messages are indicated using a Log-Likelihood Ratidr{LL = log% is the

output message of the variable node ane- log%,/_:_l) is the output message of the

: : : py'|z'=—1) : : .
check node, where is the bit associated to the nodgis all the information available to
the variable nodey’ is the bit value of the node that gets the messageyaiglall the in-
formation available to the check node. The idea, [22], i® ttretrack the evolution of the
messages distribution, (DE), instead than the messag#fs its
Calculating thresholds using density evolution is compoally expensive because the it-
erative process involvesra—dimensional system. Some approximations methods are possi
ble, for example th&rasure-Channehpproximation [25] and th&aussiampproximation,
[25], [24]. For the first case the threshold for the erasuranokl is computetland the

3The density evolution for the erasure channel becomes alionensional evolution [85]
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value is mapped into the threshold of the correct channabtsie equal capacity curve. In
the second case the threshold is estimated approximatisgage densities as Gaussian. In
this case, by using theymmetry conditiof25], it is shown that the mean of the Gaussian is
the only information necessary to characterize the messagsity. This allows to follow
the evolution through the graph of one parameter instead tthe complete characteriza-
tion of the message density. Under the Gaussian approxingatothers one-dimensional
guantities, instead of the mean, have been considered toxapates the message density,
as SNR [25] andMutual Information[27]. In the following, because of numerical stability,
the development is done in terms of mutual information.

In our analysis, we make the optimistic assumption that diegois successful (the frame

is error-free) with high probability if, aftem received slots, the BER under BP decoding
vanishes with the number of decoder iterations. Noticevhaishing BER does not neces-

sarily imply vanishing FER in the limit of infinite block-lgth. However, arguments based
on concatenation of LDPCs with outexpandercodes [30] with very large rate show that,

in principle, vanishing BER implies vanishing FER at leastduch concatenated construc-
tions. Furthermore, we assume that the convergence of togldeto vanishing BER can be

detected by the decoder, so that decoding failure is alweweated. Under these optimistic

assumptions, we can use the same throughput formula (2y4®definingp(m) as

p(m) = Pr (llim BER(1) >0, ..., Lim BER") (m) > 0> (2-28)

whereBER(" () is the BER at BP decoder iteratidmvith m received slots.

We assume that the coded symbols are randomly assigned tbf tbkocks so that the
fraction of bitnodes of degreeon eachm-th block is the same as for the total code. In
other words, the fraction of edges connected to bitnodesgfed: on blockm is equal
to\;/M, forallm = 1,..., M. Numerical examples supported our choice of distributing
“uniformly” the left degrees on the blocks.

In order to computéim,_,.. BER" (m) for given fading coefficientéa, ..., a,,), we
resort to a Gaussian Approximation (GA) of DE. L&t denote the channel observation
message, in the form of the log-likelihood ratio for the syinbssociated to the given
bitnode, %, given the channel output. Assuming, without loss of gditgr#hat the all-zero
codeword is transmitted, if the symbol corresponding toliteode is transmitted on the
s-th slot, it is easy to see that the initial message is equal to

Pr(yplzr = 1, ¢5)
M =1lo
g 8 Pr(ygler = —1,¢5)

— 4VTRe{yc}

“Considering the symmetry condition, the variance of thesSim variable? is a function of to the mean.
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wherey;, is the corresponding channel output ands the fading coefficient. It follows that
the distribution of the initial messagest;, ~ N (40;, 83;)°.

We define a random variable that governs the distribution of the variable node beloggin
to the s-th block, so thatP is uniformly distributed oves = 1,..., M. Let X denote
the bitnode variable an#i’ denote all the information available at the bitnode at armive
iteration. Then, the mutual information between the outfithe bitnode and the symbol
X is given by

I(X,Y|P) = E pX.Y | P) }

M
1
o = — I(X,Y|P=s 2.29
p(X,Y,P) gp(X | P)p(Y | P) Z M ( | ) ( )

s=1

From the Gaussian Approximation, it follows that
I(X;Y[P =s)=J((d—-1)0 + )

for a bitnode of degred transmitted on slot, wheref = %E[mc_m] is the the mean
divided by4 of the messages: that goes from the checknodes to the variable node. Call
Iﬁ;&c the mutual information of a message passed along a randoenfemig a check node

to a variable node at iteratioh— 1, than the average messdgen._.,] can be obtained as
E[lme_,] =J 7! (Ie‘l ) Hence we can write

out,c

M
T =37 30 7 (6= 0718k +5,) (2-30)

s=1

In order to find the mutual information transfer function fbe checknodes, we use the so-
called “approximate duality” (reciprocal channel mappirgation [25]. With this approxi-
mation, a checknode can be replaced by a bithode providetdglivgput mutual information
I, is transformed intd — I;,, and its output mutual informatioh,,; is transformed into

1 — I, (See [66, 86] for a more rigorous motivation of this appraiion). The function
¥z (.) : X — X is defined as:

Yo(x) = O M (1 = Cu(a))

whereC,(.) is the capacity function and € X is the channel parameter [25]. Hence, the
mutual information transfer of a checknode of degiég approximated by

Il J((d 1) ! (1 e )) (2-31)

out,c out,v

5Recall that3, 2 a.T
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By combining equations (2-30) and (2-31), we obtain the dingensional recursion

Lot = —ZJ( T 1= s (=D I (1= 1)) +8)  232)

with initial condition 1, mm = 0. Figure 2-3 and 2-4 visualize the message passing. The
generalization to the irregular case is straightforward tollows by defining the frac-
tion of edges emanating from a variable node with degrdet belongs ton-th slot as
Pr(Z=i,P=m)= AM whereZ is the random variable that governs the degree distribu-
tion of the variable nodes. The one-dimensional recurdiab approximate the DE in the
irregular case for IR scheme is given by

E(1—F( ﬁ;mo)M%) (2-33)

where, for a general distribution(z) = >, giz* ™%, g(z) € {\(z), p(z)} andb > 0 we
define the function N

=23 g ((i - 1)J 7 (2) +b) (2-34)
i>2
By defining the mapping functiod(.) as
Cd,—1
d’u - 1 Q E[mv_”]
c Check node
2
1 moy = 4ﬁs
Initial message
Fig. 2-3. Message flow through a variable node.
\11(27/617'”75]\4 : ZFA ]-_ _270)758) (2_35)

we have that the condition of vanishing BER limit for givestemtaneous SNR$§, . .., Gar)
can be approximated by the condition that the one-dimeakaynamical system

H:WG“H&,“ﬁM% 1=1,2,... (2-36)
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Ud,—1

Elme_,] _ O

V9 Check node Variable node

U1

Fig. 2-4. Message flow through a check node.

with initial condition z° = 0 has a unique fixed-point® = 1.

The convergence behavior of the iterative decoding scheanebe seen using a mutual
information transfer characteristic chart: the EXIT Chattoduced by S.ten Brink, [27]

where we plot the curvé,,; , = f(Iin) andli, ., = g(Loutcn): if the two curves have at

least one intersection different fromthe algorithm cannot converge.

At stepm of the IR protocol, the decoder treats the not-yet receiwdablockss = m +
1,..., M as erasures, i.e., as if the received signal was zero. INnER6& R (Gaussian Ap-
proximation applied to Density Evolution) recursion forigesn number of received blocks
m with fading gainsy, . . ., a,, is obtained by letting
T'a, fors=1,...,m,
ﬂs = { °

(2-37)
0 fors=m+1,...,M.

in (2-35). It is possible to show that the functiq@ Zi‘il F\(1-F,(1-2,0), 8,)is
non-decreasing witk € [0, 1] and positive forz = 0. This implies that condition that
(2-36) has unique fixed-point equal to 1 is equivalent to

U(z,Br,....Bu) >z Y z€[0,1) (2-38)

2.6 ACHIEVABLE THROUGHPUT

In this section the results in terms of throughput averadgydand variance of the delay of
RB codes and infinite length LDPC are shown.

In all our numerical examples we assume Rayleigh fading, fi.€z) = ¢=*, andM = 10
fading blocks.
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Figure 2-5 represents the behavior of the probabjlity:) for different values ofn as a
function of the coding raté in the case whel = 10dB for RB codes. The(m) here has
been computed by using equation (2-21), ( by integratindhefgdf f,,, obtained through
the m-fold convolution of the pdf defined in equation (2-20)). HMdhatp(m) is always
equal tol for value of the rateR greater thenn /M. In this case in fact the number of
information bits is greater than the number of bits that heenlsent. On the contrary, for
R < 37, (b < Lm) we have a very small probability of unsuccessful decodirige outage
probability shows a “step” behavior as long as the SNR irsgea

VN L

0.1

0o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rate of the code R

Fig. 2-5.p(m) for M = 10, I" = 10dB. The probabilities are generated using the convolu-
tion of the probability density function in (2-20)

Figures 2-6 and 2-7 show the throughput results in the casswiep(m) is computed
using equation (2-21) (“Convolutions”), using the Gaussa@proximation defined in (2-
22) ("Gaussian Approximation”), and finally when we use theefoff bound defined in
(2-27) (“Chernoff Bound”), forl' = 3, 10dB. The Chernoff bound gives a looser lower
bound of the throughput while the Gaussian approximaticcolmes more precise in the
region of high rate and for lower values of the SNR. Note thet throughput obtained
using the “Convolutions” shows some picks: this is due tophgicular “step” behavior
of the probabilitiegp(m). Consider for example a rate between).1 and0.2b/s/Hz. The
throughput is given by, = 1+Z§i‘wﬁ o 2 1+p5‘5‘1p(2), since from figure 2-p(m) is
negligible whenm > 2. In particular at the extremes of this interval, sing¢) = 1 and
p(2) = 0for R = 0.1 andp(1l) = p(2) = 1 for R = 0.2, the throughput i4/2 and2/3
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respectively. In between we can see th@t) will not increase as much as the rage so
that we can approximate the throughputjas RM/(2 + er) with e = 0 negligible. If
higher values of rate are considered, for exaniple (0.7 — 0.8), this approximation does
not hold anymore since the throughput can be approximate@l ByRM /(7 + er), with
er > 0 (figure 2-5).

Figure 2-6 and 2-7 show also the throughput obtained whevecional coded ARQ sys-
tems are used. The comparison between IR and SR protocolsres euident by plotting
the average delay vs. the throughput (see figure 2-9 in theeltas10dB). From equations
(2-8) and (2-9), we have expressions)and oru parameterized in the code ratec [0, 1]

(for given number of fading blocka/, fading gain statistics and SNIR. Hence, the curve

w = p(n) can be obtained in parametric form, by lettifgvarying in the interval0, 1].
Sincern is a non-monotone function dt, each value ofy corresponds to possibly multiple
values ofu.. Clearly, in the presence of multiple values only the mimmis relevant. Fig-
ure 2-9 clearly shows that SRF is not convenient. On the contrary, for a certain range of
throughput SR-1 (which is also the simplest ARQ scheme)exelsi almost the same aver-
age delay of IR. We have to notice that here SR-1 is coded amrgome slot, meaning that
therate inthat casBsr_1 = % Consider figure 2-6 and 2-9: the highest throughput of SR-
lisngr_1 = 0.7 is achieved whemRgr_1 ~ 0.9 with an average delaysg_1 ~ 1slots;

the same throughput can be obtained with the IR scheme wétlsdime delay and with
mother code rat& ~ 0.09. The IR in the average will send only the first coded burst with
an effective coding rat%% — % However, there is a range of high throughput that is not
achievable by SR-1 while it can be achieved by the IR protattiie cost of a very small av-
erage delay (from 2 to 6 or 7 slots). Figure 2-10 shows theageedelay vs rate in the case
of RB codes fol" = 3, 10dB. Consider for example the curve for= 10dB. The region of
high throughputR ~ 0.7 bit/symbol is achieved with an high average delay (8 or %§lot
For some practical delay constraints we can be interestednsidering regions where the
average delay is small and the throughput is still good ¢re@if R ~ 0.35bit/symbol).

As we expect, as the value bfaugments the average delay is decreasing: in the limit of
I' — oo the delay will be equal the minimum number of bursts necgsgarcontain all
the information bits RA/). The variance of the delay, figure 2-11 increases when the va
of I' is decreasing. This is due to the fact that for high valueF tfie number of bursts
between two transmissions of a codeword does not vary todimuet the limit of high
signal to noise ratio, the number of iterations becomes ataanso that the variance goes
toward zero. Figures 2-6, 2-7 show also the comparison legtwee throughput obtained
using the Random Binary codes and the LDPC codes. In the ¢a$2RC, DE algorithm

is used to obtain a evaluation of the performance. Each mark (figures 2-6 and 2-7

is obtained by using an irregular LDPC ensemble with degisteilalitions \, p optimized

for the corresponding rat® and for the standard unfaded AWGN channel [87, 22]. No
attempt was made to optimize the degree distributions ®itatk account the block-fading
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Fig. 2-6. Comparison between the throughput when we consideconvolution of the pdf,

n (bit/siHz)

1 T T T T
RB Codes: IR, Convolution RB Codes, IR, GA
0.9 / : .
~ \/’:\(ﬁ“_ ;
o8| \/\ ' , 2\ i
- - - = -= T T D N = .
0.7 -=% e T S
RB Cades: IR PN \ N 1
0.6k Chernoff Boung” .7 v 1
L d
P \
— Infinite Length £ \
0.5 LDPC: IR o RB Codes: 1
/ S SR-mM '
~ \’\ \
0.4F (1 : <a . 1 R
- 1 \
1 “ \ RB Codes:
0.3 1 SR-1 : ' 1
- \

o2 ' .

\

\

0.1 A |

N

0 i i i i i i i i i\

o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R (bit/symbol)

the Gaussian approximation and the Chernoff bound, whenl0dB.

Fig. 2-7. Comparison between the throughput when we contideconvolution of the pdf,
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Fig. 2-8. Comparison between the throughput obtained usbBC codes and RB codes,
considering the convolution of the pdf, = 10dB, zoom in the intervalR = (0.1,0.3)
b/s/Hz.

channel. Nevertheless, these results show that AWGN-gtthrensembles perform close
to optimal and not much can be gained by further ensemblenggattion.

2.7 FNITE LENGTH LDPC FOR HARQ

At this point, it is natural to ask how practical finite-lehgtDPC code perform on the
block-fading channel under the IR protocol, by removingapé&mistic assumptions (limit
for large L, vanishing BER=- vanishing FER) that led to the outstanding results of the
previous section. The first subsection shows the perforeeesults of finite length LDPC
without any countermeasure and finally two methods to oveectine performance loss due
to finite length LDPC will be explained.

2.7.1 Finite Length LDPC from Complete Random Ensemble

Figures 2-12 and 2-13 show the throughput obtained by sitonl®f the IR protocol by
using actual finite-length LDPC codes of length= 5000 andn = 10000. For the sake
of comparison we plot also the average throughput obtais@gtylRB codes and infinite
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Fig. 2-9. Average delay vs. throughpug) for IR, SR-1 and SR¥ protocols with random
binary codes fof” = 3, 10dB.
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Fig. 2-10. Comparison between the average delay vs rateeinabe of LDPC codes and
RB codes fol" = 3, 10dB.
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Fig. 2-11. Comparison between the variance of the delaytesmahe case of LDPC codes
and RB codes fol" = 3, 10dB.

length LDPC discussed before. The finite-length resultsoatained by averaging over
the channel fading, the noise and the ensemble of codesa new parity-check matrix is
randomly generated according to the given left and rightekegistributions)\, p defining
the ensemble for each transmitted information packet. mreughput formula for finite-
length codes is still given by (2-45) whepém), for a given LDPC ensemble with degree
distributions), p, is expressed by

pm) = B PP, Ao, Ao (00)] (2-39)

where,a is the sequence of fading gaing, is the event of successful decoding at stemd
where the code parity-check matrix is randomly generated wiiform probability over all
bipartite graphs with degree distributiohsp (a method for generating such random graphs
is given in [22]). Successful decoding is defined by the evleai, after a given maximum
number of BP decoder iterations, all information bits aneex.

The throughput performance loss of finite-length ensembiés respect to their infinite-
length counterpart can be explained by observing thatc&igi irregular finite-length
LDPC codes with bitnodes of degree 2 have very poor FER pugnce, despite the fact
that they perform well in terms of BER. This is because typitecoding errors involve a
very small number of bit-errors per frame error [29].
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In principles, throughput higher than the ensemble avepag®rmance can be achieved by
careful selection of a particularly good realization of twgle parity-check matrix. How-
ever, selecting such matrix is not a simple task in generatafidard technique is to gen-
erate the matrix into some restricted (or “expurgated”)eemisle where codes with good
FER performance can be found with high probability. An exkngs this approach will be
detailed later, in Section 2.7.2.

Another remarkable fact evidenced by figures 2-12 and 2-fifiscodes with block length
n = 5000 slightly outperform codes witlh = 10000. This is surprising since in standard
AWGN settings (without ARQ) BER is known to improve with thede block length [22].
Indeed, irregular LDPC codes are commonly believed to peogood performance only for
extremely large block length. The above results show th#tiermpresence of time-varying
channels and retransmission schemes this is not the caSERaand not BER determines
the throughput performance. Next, we propose two appraaichienprove the performance
of IR with finite-length practical LDPC codes. The first apgeh acts directly on the code
design and leaves the IR protocol unchanged. As anticiggiede, it consists of selecting
the code parity-check matrix in some appropriate ensemlilegeod FER properties. The
second approach acts on the IR protocol and leaves the ceigdenchanged. It consists
of dividing the information packet into subpackets, peariorg error detection on each of
the subpackets and using an outer selective-repeat ptatolydor the subpackets in error.
Interestingly, although these approaches are quite diifethey yield almost the same per-
formance improvement and recover a considerable fractiprid 80% at SNR= 10 dB) of
the loss due to finite with respect to infinite length.

2.7.2 Special graph construction

Solutions to improve the FER performance of LDPCs considindling special construc-
tions based on expander graphs [88, 30, 31, 89, 32, 33, 98]deterministic arrangement
of the edges adjacent to degree-2 bitnodes [87].

Due to its simplicity, we follow this second method. Good FE®tles can be obtained

constructing the graph such that the edges emanating fratnab of degree are placed
semi-deterministically. LeR denote the rate of the code ahg = ZAA/; 7; be the fraction
J

of bitnodes of degre2. For A, < (1_23’) we connect each edge emanating from one of these

bitnodes to a different checknode so that there are no cbdelsnadjacent to more than one
bitnode of degree. For@ < X2 < 1 — R we arrange thé,n deg-2 bitnodes ané,n

checknodes into a cycle of girth\,n, as shown in the example of figure 2-14.

As an example of this construction, consider a standarcdedf&WGN channel and the en-
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Fig. 2-12. Throughput vs. code ratefor I' = 3dB. IR protocol with RB codes, infinite
length LDPC codes with degree distributions taken from [8ifjite length LDPC with
n = 5000, 10000.
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semble of codes with variable and check node degree sequéefired defined in [87], for

a rateR = 0.3 bit/symbol, maximum left degre€, = 100, average right degreg. = 6.9

and block lengtlm = 10000. Figure 2-15 shows the BER and the FER obtained by averag-
ing over all graphs with given degree distributions (Totad@mble) and by averaging over
all graphs with special cyclic arrangement of the edges ected with degree-2 bitnodes
(Modified ensemble). Itis clear that the modified ensemi@tdynuch better FER and BER
performance.

Bit Nodes
Check Nodes

Fig. 2-14. Cyclic arrangement of the edges adjacent to tésmf degree 2.

2.7.3 Outer Selective Repeat System (OSR)

Our second approach to close the gap between infinite and iemgth LDPCs stems from
the following observation: for standard irregular LDPC esdmost frame errors involve
a very small number of bit errors. Therefore, by dividing théormation packet into
smaller subpackets, only a few of them will contain erroterafiecoding. Hence, an Outer
Selective-Repeat (OSR) protocol acting on these smallgpastket units can recover sub-
packet errors without having to retransmit the whole codewonly the erroneous packets
are retransmitted together with new information packetse dptimistic assumption under-
lying this approach is that subpackets in error can be piyfdetected. The concept of the
concatenated selective-repeat scheme is representedri@ #gl6. Let us focus on step

of the IR protocol. If the iterative BP decoder, processhmgreceived signdly, ..., ym}
with instantaneous SNR%x4, .. ., 'a,,, works below the iterative decoding threshold, the
decoded codeword after a given (large) number of iteratioight be either error-free or
contain a small number of residual errors. These few rebeluars are the main cause of
performance loss of finite-length LDPC codes, since evenglesbit-error would generate
a NACK and the IR protocol would proceed to bloek+ 1 of the current codeword instead
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Fig. 2-15. BER and FER of the LDPC ensemble with degree diditns given in [87] for
a rateR = 0.3 bit/symbol, maximum left degre€, = 100, average right degreg. = 6.9
and lengthn = 10000, over the AWGN channel. The curves labeled as “total enseshaloe
obtained by averaging over all code graphs with the givemegedistributions. The curves
labeled by “modified ensemble” are obtained by averaging the graphs with degree-2
edges arranged in a cycle, as shown in figure 2-14.

of starting with block 1 of the next codeword. However, theital case of a few bit-errors
implies that only a small number of data subpackets are or,enhich can be handled by
the OSR.

Let P denote the subpacket length in bits, and= b/ P be the number of subpackets per
LDPC codeword. At stepn of the IR protocol, after a given number of decoder iteragjon
let e,,, denote the number of subpackets in error. We shall consalecessful” decoding
(i.e., the IR protocol stops the transmission of the curcedeword at step) if e, < 4.
Otherwise, ife,, > §, a NACK is sent and the block: + 1 of the current codeword is
sent on the next slot. The system throughput can be optimvibdespect to the threshold
d € [0,np]. Notice that settingg = 0 is equivalent to the IR alone, without the OSR.
Therefore, this system is expected to provide a throughait\gith respect to the basic IR
protocol with finite-length LDPCs.

We shall compute the throughput of the concatenated OSRd#®@| by using again the
Renewal-Reward theorem, by appropriately defining theaandewardR and the inter-
renewal timer. Let £ = {The user stops transmitting the current codewjpl# again the
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recurrent event, ang(m) be the probability that the BP algorithm ends with a number of
erroneous subpackets, < §. DefiningB; = {es; < d} fors=1,..., M, we have

(j(m) = Pr(gl, sy Bm—la Bm) (2-40)

The recurrent event probability is given by

= q i < —
Pr(&n) = G(m) - ff m<M-—1, (2-41)
Pr(€v) = 1= -1 4(m) ifm=M.
Defining p(m) = Pr(Bi, ..., Bm-1, Bin), we haveg(m) = p(m — 1) — p(m) and
substituting this in (3-7) we g&tr(Ey) = p(M —1).
The average inter-renewal time (in slots) is given by:
M ~1 M-1
E[r] = Y m-Pr(&n) = > milm)+ Mp(M —1) =1+ > _ p(m)  (2-42)
m=1 m=1 m=1

The rewardR is a random variable that takes values in the raf@e5/L,...,n,S/L}.
Recalling the definition of,,, as the number of erroneous packets after decoding at IR step
m, We can write

P&
B[R] = 7 > (np—e)Prem = e|Em) Pr(En)
m=1 e=0
P M-1
= = (1 = 2 rmd(m) = rarp(M — 1)) (2-43)
m=1
where we define
Tp
T = 1 ePr(e, =e|l&n)
np e=0

to be the average fraction of subpackets in error after degad stepn, given the recurrent
event. Recalling thaPn, /L = RM, we obtain the desired throughput expression as

1= My d(m) — rup(M —1
= RMET Zm=1 T q(];n_)1 ATMp( )
1+ Zm:l p(m)
The above formula can be evaluated after computing by MoateoGimulation the proba-
bilities p(m) and the fractions,,,.

(2-44)
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2.8 FHNITE LENGTH LDPC: ACHIEVED PERFORMANCE AND COUNTER-
MEASURES

In this section we show the throughput resulting from the ffiredi LDPC ensemble, from
the use of an OSR protocol, or from a combination of both tegles. In all the following
examples, we fixed the subpacket length of the OSR protoc@llégP = 48 bits (6 bytes).

Clearly, the throughput achieved by OSR depends on thehtblices. Analytical optimiza-
tion of § is difficult if not impossible. Hence, we exhaustively séed for the best threshold
value. Figure 2-18 shows the throughput as a functioh®f|0, 1] for the same setting as in
figure 2-15 and” = 10dB. We notice that the performance of the OSR is quite intieasi
to the value o (unlesss is either very close to O or very close to 1). We plotted alo th
throughput achieved by the same ensemble with infinite lengith finite length without
any countermeasure and with finite length by averaging dveentodified ensemble. These
results are shown as horizontal lines as they do not depend on

Both the OSR and the modified ensemble are able to recovege fieaction of the loss
incurred by finite length LDPCs (unt#i0%). It is natural to wonder about the benefit of
using jointly the OSR protocol and a modified LDPC ensemblefotdunately, the answer
to this question is negative. In figure 2-18, the curve latbble“OSR-Modified Ensemble”
refers to this case and we notice that the obtained throughmslightly inferior to that
obtained by using OSR with the total ensemble. This fact eaexplained by noticing that
for a typical code in the modified ensemble a frame-erroresponds to a large number
of bit errors (i.e., a large number of subpackets to retrasrHence, using an outer SR
protocol does not improve the throughput.

The almost constant behavior of throughput of OSR over a watge of values of the
thresholdé is explained by observing the statistics of the number opaakets in error
e after decoding. For example, figure 2-19 shows the prolbgbiiiass function ot,,
conditioned on the event that the decoder works above itiite threshold decoding (i.e.,
subject to the event that DE witth received blocks converges to vanishing BER), with
m = 4 received blocks. We notice that the number of packets inm erraostly concentrated
below 10% and above 90%. This behavior can be observed fon.allTherefore, the
throughput is almost constant fére (0.1,0.9).
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2.9 REDUCING THE AVERAGE COMPLEXITY OF LDPC DECODING

This section is focused on the analysis of the complexityhefdecoder when IR scheme is
coupled with LDPC codes. We show that a method based on DEdalve complexity of
the decoder and can ideally achieve all the trade-offs lEtwemplexity and performance.

For standard time-invariant channels (e.g., the binapyti\WGN channel) and for a given
ensemble(}, p) it can be shown that there exists a value SNRe iterative decoding
threshold such that if the signal to noise ratio is below SNRen the DE error probability
limit is bounded away from zero (even after an infinite numbkiterations) while if it

is above SNR the DE error probability limit is zero. For LDPC codes of preal length
(say, betweemn = 5000 to n = 10000), in order to predict if iterative decoding is successful
with high probability, we can just compare the instantarsechannel SNR with the iterative
decoding threshold SNR

This idea does not carry over straightforwardly for a tineeying channel such as in the
case of the IR-HARQ protocol considered here. The BP decatdglotm “sees” a time-
varying channel defined by the instantaneous SNRs. .., 5,,} and by the fact that the
symbolsinslotsn+1, ..., M are erased (i.e., the corresponding channel outputs ag zer
Clearly, no simple threshold criterion for convergence Bfdan be applied here. Indeed, we
might define a region of convergence for the decoder inrslas anm-dimensional region
R, C RT, suchthatif(5y,...,0,) € R, then DE converges to vanishing BER and the
BP decoder applied to the actual finite-length code with oebabservationgy, ..., ym}
yields successful decoding with high probability. For aegivensemblé), p) and a given
average SNR’, in principles one could determine the region of convergeRg, by run-
ning the DE algorithm for all values af?i, ..., 5,) € RI'. This is clearly not an easy
task, since the SNR vector takes on values in a continuousi@alindedn dimensional
real set. In order to overcome this problem, it is possiblage a on-line low-complexity
approximation of DE and run it in real-time at each newly reee slot before activating
the BP decoder. Hopefully, the approximate DE is able to@pprate accurately the con-
vergence regiofk,, for allm = 1,..., M. Therefore, if the approximate DE converges to
zero error probability, the BP decoder is triggered andaatacoding is performed, other-
wise a NACK is sent without actually performing decodingisTiesults into a tremendous
saving in decoder average complexity without affectingatherage throughput.

2.9.1 Average Throughput and Complexity

It is important to note that this method may, in general, dase the average throughput
since it declares a decoding failure whenever DE does netcge, while there is a chance
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that the actual BP decoder is successful even if DE does maeage. Recall that the
throughput ca be written as

)= 1 — p(M)
1+ M p(m)

We definep?”(m) andp” (m) as the outage probability obtained when running always
the BP algorithm and when using the DE-test, a@id’ (m), ¢” (m) as the probability of
successful decoding at stepfor the two methods; thus, redefining},, as the even{The

BP algorithm converges at step}, ands3,,, the event{ The DE test converges at step} it
follows thatg®” (m) = Pr(As, .., Ap—1, An) = pPF(m — 1) — pPP(m) and

(2-45)

m

qT(m) = ZPI‘(BL .. .Bi_l,Bi,./Tli, .. ../Tlm_l,/lm)

i=1
= a: (mli) - ¢™(i) = p" (m — 1) —p" (m) (2-46)
i=1

where we have defined A - -
q>(i) = Pr(Bl, .. Bz‘—lagia)

and N
q?(m|z) = PI’(./_4@', "7“7t7n—17"477l |Blv "7Ez’—178i7 )

We callnB” the average throughput obtained when using always BP #igoend;” when
using the DE-test based decoder; they can be obtained tstibgtip”" (m) andp’ (m) in
(2-45) respectively. Let us consider the simple case whettetine BP decoder run for
a maximum number of iterations without stopping criteriand for DE, we evaluate the
mapping curvel over a fine grid of points over the interviil, 1] and we detect if these
points are all above the diagonal or if there is intersecf®¥]. Under these simplifying
hypothesis, figure 2.10 shows the comparison betwg&n(m) and ¢’ (m) vs rate as a
function of the number of transmitted slots for I' = 3dB. As we expect, the DE-test
method does not decrease the performance of the iteratbceldesince the probability of
successful decoding for the two method are very close (seeefiy22).

2.9.2 Average Complexity: Independent Case

In the following we demonstrate that using this method theraye complexity is greatly
reduced with respect to the case when we perform always tlueB&ter. First we consider
the simple case described before when the complexity of BBtlnd DE are independent
on the fading realization and on the index We compute the average complexity under
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the following hypothesis1) Look-up table cost zero (i.e., evaluatidgz) costs zero)2)
Additions, multiplications and comparisons cost the saore (binary operation)3) We
considerl,; points equally spaced df, 1] to evaluate the mapping function equal$We
call I the maximum number of iterations of the BP algorithm.

In this simple case, le€'pr and Cgp the complexity of the DE test and the complexity
of BP algorithm. Callinge and d the different degrees in the check node and variable
node degree distribution; the number of binary operations to compute a logarithm and
exponential,;n. the number of edges in the graph, anthe length of the code, it follows
that

CDEZCDEZ'Id:[Zl'C—I-d'(2—|—3M)—|—3]Id (2-47)
Cgp =Cpgpily = [(2£ +6) 2ne + 272] I (2-48)

given in number of binary operations. Lebe the RV denoting the number of slots needed
for stopping the transmission of the current codewards: 1,... M the number of slots
needed to have DE convergemt= 0,... M — h + 1 the number of slots after DE have
converged (including the slot for which DE converges) uBf converges, thus = h +

¢ — 1. We call Cy;q and C..; the average complexity when using BP always and when
using the proposed method. We can always write the expeota@lexity conditioning on
the value ofr, thusE[C] = E[E[C|7]], yielding®

Cstq = E[Cs1a] = E[E[Cqq|7]] = E[Cp 7]

= CppEI7] (i)CBP

M-1
1+ pBP(m)] (2-49)
1

m

where (a) follows from equation (2-45) noticing that oc 1/E[7], with pB”(m) defined
above.

The average complexity of the DE-test method can be obtanedaging over the value of
h and¢, yielding

C_(test = E[Ctest] = E[E[E[ Ctest|h7 (b] ] ]
= CpgeE[h] + CppE[¢] (2-50)

wherelE|h] is the average number of slots after which DE convergegs = 1+Z%;11 p>(m)

8In the following whenever there is no confusion, we skip theex that denotes the RV with respect to
whom we are averaging.
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By definition E[¢] = ":=0 ¢Pr(¢ = i) and

M
Pr(¢ =i) =Y Pr(¢ =ilh =k)Pr(h =k)
k;l
=> ql (k+i—1[k) - ¢ (k) (2-51)
k=1

All this quantity ¢®7 (m), ¢ (m|i) andg>(m) are computed by Monte Carlo simulations.

Figure 2-22 gives the average complexity.,; andC,; as a function of the rate when we
considerl; = 100 and;, = 200. The curve referred to as,,.q represents an amelioration
of the proposed method. The rationale is the following: we macompute a threshold for
B1 by running DE offline, so that for the step = 1 there is no need for performing the DE
test. In this case, the complexi€y..; can be further reduced to

Cmod = E[Ctest] = E[E[E[Ctest|ha ¢]H

M
= Cpp »  hPr(h) + CppE[g]
=2
= CDEE[}L] — CDEqOO(l) + CBPE[¢] (2-52)

As we can see the average complexity is drastically deadeaben using DE-test based
method while this further amelioratiaf,,,q does not introduce important gain with respect
to étest-

2.9.3 Average Complexity: BP Stopping Criteria

Consider now the case wherizp and Cpr are not constant but depend on the fading
realization and indexn: this includes cases when we consider stopping criteriéBfér
algorithm and when we run DE as a dynamical system. ConsidirsaBP algorithm:
in [91, 92, 93, 94] the authors analyzed criteria to stop tamtion process in turbo de-
coding, in particular in [91] this is studied in the contexttgpe | HARQ); these criteria
are based essentially on Cross Entropy (CE) computatioheostimates at the outputs
of the decoder after each iteration. The decoder declareskepacceptable if the cross
entropy at theth iteration falls below a particular threshold. It is imfaort to notice that
in [91, 92, 93, 94] the authors find a criterion to stop thesitiens of BP algorithm while
here we propose a method to trigger the iterative decodihgibthe instantaneous SNR
is inside the convergence region; obviously the stoppiitgra studied in [91, 92, 93, 94]
can be jointly applied with the DE-test method, yieldingtiier savings. They have also
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introduced a method based on the Cyclic Redundancy CheBRC) QAfter each iteration of
the turbo decoder the CRC bits are used to detect any errorettmains. The packet is ac-
cepted when the CRC decoder declares the packet to be exeorTinese criteria reduce the
number of iterations of the iterative decoding techniquitihey accept performance degra-
dations that can be important in the case of CRC based meftiethave also to notice that
the CE based stopping criteria requires evaluating avafalbach-Leibler distance over
the whole block: this costs roughly as an additional iteratper iteration (additional cost
per iteration proportional ta). Here we do consider an other stopping criterion based on
syndrome computation at each iteration: it costs verelihce it is an operation in the
binary field. When we consider the DE-test based method, wewaDE as a dynamical
system stopping the iterations when a fixed point is reacAdiis includes also the pos-
sibility to modify the initialization at each new iteratidor the DE test: in the standard
algorithm the initialization i/’ , , = 0; let us consider the case when at steghere is

out,v
a fixed point different from, fj;m( ), when; is as before the maximum number of
iterations. The decoder needs more redundancy to be ablectmld. At stepn + 1 we
change the initialization settinéf),, ,(m + 1) = Igjtv( ). This speed up the algorithm
without loosing in performance since it can be shown thatineual information sequence
is monotonically increasing iffa,,. We call Cyg,, and Cieqn the average complexity
using the classical method and the DE-test method with CEmaireme computation as
stopping criteria (in the figuren’ will be substituted with CE or SY respectively). In the
case when we consider the BP algorithm, ¢&lf” the sum of all the iterations done after

receivingl, ..t slots, given the fact that BP converges at step
Cutam = ElCutam) = E[E[Curanlr) ] LCppE[E[I5F]]

Z il Z ier ] (2-53)

where(a) is due to the fact that the average complexity givas equal to the complexity
of one iteration times the total number of iterations doner@l ther sIots]BP (b) is due
to the fact thafE [I57] = E[ Y7 _, P ] = S5 E[ifT] = > _, 2", With analogy
we say that the average complexity when using the DE tesvengy

= CBPz = CppiE

Ctestm = E[Crestm] = E[E[E[Cée“m’(b]ﬂ
E Zh:z'kDE
k=1

wherei DE (Zh—i-l 1) is the average number of iteration necessary to know if DE) (@n-
verges when transmittinig (h+7— 1) slots. Figure 2.10 shows results in terms of throughput

= CpEi

@
+ CpiEn,¢ [ Z Nt ] (2-54)
=1
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for all the methods considered here, BP without any courdaesure;,;;, BP with stopping
criteria based on Cross Entropy and Syndrome computatioi-z, nstasy), the DE-test
based method for the three cases abawe:( niestcr, Mestsy); for the sake of comparison
we plot also the throughput obtained when using PEg. As we can see all this methods
does not significantly modify the throughput, as shown atsbigure 2.10 that shows the
probability of successful decoding for the cases above iomeed. However the average
complexity shown in figure 2-22 for all the cases consideteavs that DE-test based sys-
tem decreases considerably the average complexity. Itaseisting to notice that even if
CE based stopping criterion introduces more complexityiteeation, on the other hand it
reduces a lot the average number of iterations when chodisengorrect threshold value.
We can see that DE-test method with stopping criterion basesyndrome computation
achieves the best average complexity, thus it is a good datedfor practical implementa-
tion.

2.9.4 Modified DE-Test

As we have seen above the DE-test method proposed does adizpehe throughput while
reducing a lot the complexity.

In this section we modify the DE-test in order to find a tradebeftween throughput and
complexity. Clearly if we use a test with a very high rejenti@te the average complex-
ity can be made as small as we want but the throughput will géstm zero. Therefore by
penalizing the DE-test we can reduce the complexity at tive pf accepting some through-
put degradation. In order to control the trade offs C' we introduce the penalized SNR
Talas = T'lap — Algp Where the parametek can be interpreted as an SNR margin of the
actual BP decoder over the ideal BP decoder applied to artinfength LDPC code. In
order to find the fixed points of DE, we now iterate the recurgi®33) substitutinda to

I', thus for each received slot we run the following modified-diteensional recursion

M
1 _
Iclmt,v = M E F)\<1 - Fp<1 - I(l)utl,vv 0) ) OZSFA) (2-55)

m=1

The introduction of the parametér > 0, reduces the probability of having DE convergent
for a certain vectofay, ..., «a,,) at stepm, thus reducing the average number of bursts
processed with BP algorithm. Figure 2-23 and 2.10 show tkeage throughput and com-
plexity as a function oA whenR = 0.3bit/symbol and’ = 3dB. It is interesting to notice
that using this simple method there are valueg\of 2dB for which the throughput loss
is negligible ¢ 0.55bit/sec/Hz vs~ 0.53bit/sec/Hz) while reducing the complexity of a
factor of about0%.
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2.10 CONCLUSIONS

This work extends the previous analysis in [18], where thi@as study the performance
of HARQ-IR protocol based on infinite length Gaussian codereHhe analysis is extended
to ideal infinite length binary codes (random binary and LPB to practical finite block

length LDPC codes. We have shown that irregular LDPC ensesnhkith degree distribu-

tion optimized for the standard AWGN channel [22] providefpenance very close to the
information-theoretic limit given by random binary codes.

Although infinite-length LDPC codes provide near-optimiatoughput, practical finite-
length LDPC codes incur a considerable performance losseid in the IR scheme without
any countermeasure. We proposed two methods to overcom@ribthlem and to make
practical LDPC codes effective for the IR protocol: the firetthod consists of construct-
ing the LDPC code with a special arrangement of the edgesftefiégree2, in order to
improve the FER performance. The second method is basedeocotitatenation of an
outer selective-repeat loop acting on smaller informagiaoket units. We have shown that
both methods are able to recover a significant fraction olidbeand provide approximately
equivalent performance. Hence, they can be regarded asalwable alternatives for the
system designer.

Finally we have shown an easy to implement method that loecomplexity of the de-
coder in the context of HARQ protocols. The method consiatstroducing a test based
on DE prior to decode that prevent using the iterative decibdes likely to be non conver-
gent. The proposed algorithm reduces considerably thageeromplexity without degrad-
ing the performance, and modification of the same algorithouwa to achieve all range of
trade-offs between throughput and complexity.
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CHAPTER 3

Feedback Systems for Multicasting Common
Information

3.1 INTRODUCTION

Consider a multicast wireless downlink scenario wihusers, where the transmission is
slotted and the channel is slowly block-fading. Recall tlatlticast’'means that the base
station sends the same information to all the users.

Traditionally the transmitter opens a new connection faheasers with an extremely high
waste in terms of bandwidth. In this case the transmittemopes the transmission param-
eters for the particular users but it does not exploit theticasgt setting.

This chapter deals with the computation of throughput,ydatad limiting behavior for large
N, when simple HARQ (IR and SR) protocols are considered in kicast environment.

Several HARQ schemes have been proposed for a point-to-g@oironment [6]. Recently
these point-to-point HARQ techniques have been extenddéldetacase of multicast links,
[38, 40, 41, 39, 95], where the authors find ameliorationstafidard HARQ schemes to
achieves good performance for a particular point to mutrplink. But the study of the
achievable performance in terms of throughput for simpleR@Aprotocols has not been
carried out. HARQ protocols better exploit the charactiessof the wireless link such as
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independence of the channel seen by different users andethdigrity of the multicast
setting that is to send only common information. In chaptelRzand SR protocols have
been introduced. For the sake of completeness we recaltierander SR the transmitter
sends disjoint copies of the same packets possibly comlaintdte receiver , while under
IR the transmitter sends additional redundancy at each egansmission.

Since the users are completely symmetric and informatidheésame for all, the optimal
delay-unconstrained coding transmission strategy igtljwgiven by coding at rate as close
as desired to the ergodic capacity of the channel (the samellfosers). However if we
assume that, because of delay constraints, codewords $ipée aumber of fading blocks,
than reliable communication based on pure FEC coding is s#sipte. With a FEC based
system, in order to achieve vanishing error probabilitgrgwcodeword must span an arbi-
trarily large number of fading blocks. This is true even if back-off in rate and we accept
a non vanishing gap from the ergodic capacity. Hybrid ARQestbs, on the contrary, en-
sure reliable communications but require explicit ACK/NA&edback. In the single user
case [18] shows that zero error probability can be achiewefirfite average delayfor any
spectral efficiency with fixed gap to capacity by using a HARQtqcol based on IR [18].

However, in the multicast setting, the delay of an HARQ sohédnat keeps on sending the
same information message until all users have successfatigded, goes to infinity as the
number of users increases. Gopala et al. [42] very receatlg Analyzed the scaling low,
with respect to the number of users, of throughput and delayhfee protocols. The first
is a “static” SR where they assume that both the transmittdrtle receiver have perfect
channel state information. At each retransmission, théngorhte is designed in order to
target a fixed fraction of users. The protocol reset whenhalusers are satisfied. They
compare this scheme with the IR protocol, assuming, as lieséthe transmitter is not
aware of the fading coefficients of the users. They show timaverage delay of the IR
scheme grows to infinity slower than the average delay of BprStocol. Here, for both SR
and IR protocol, we consider that the transmitter has noretlsstate information. Strictly
speaking, these HARQ protocols are not scalable with thebenwf users, in the sense that
the average delay grows to infinity as long as the number g&usereases. We show that
if we optimize the system in order to achieve a target thrpuglequal to a given fraction
of the ergodic capacity, the delay increases very slowl wie number of users if the gap
from capacity is not too small. Hence, if we are not too arobgiin spectral efficiency, the
system becomegractically scalable up to typical values of the number of users in a ¢ell o
a wireless cellular system. In order to make the IR and SRsetsealable in a strict sense
(meaning that the delay tends to a finite limitlis— oo, for target throughpuy < C(I")),
we have to accept that a fixed fraction of users (0, 1) will not be able to correctly
decode the information. We refer to these userardslfilled A receiver moves from the

lDelay is measured in slots, i.e., in multiplesiof
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unfulfilled to the fulfilled state when its channel coeffiderare such that it can decode
the information, (see Figure 3.3). The transmitter stopslisg the current codeword and
move to the next codeword if the number of unfulfilled usersaslarger thanc N. Note
thatx = 0 means to wait until all the users are satisfied.

The main difference between the SR protocol analyzed hetdhenone in [42] relies on

the fact that they consider perfect channel state infoonatvhile here we do not. This
means that the coding rate is adjusted at each retransmidsfending on the scheduling
algorithm, while here the coding rate is a fixed parameter dbas not change from one
retransmission to the other.

The IR scheme they consider is the same as here, but they éoctige analysis of the
scaling low forz = 0.

In this chapter the general expression of the throughputfaedion of z, the number of
users and the parametBr= b/L is given. Recall thab is the number of information bits
per codeword and. is the number of dimensions per slot. We study the behavidhef
average delay versus for given target throughput, when we IBtbe a design parameter
to be optimized. Then, we study the Ilmj\ghm n for givenz > 0 and we show that this

limit coincides with the spectral efficiency of FEC codingeo\a number of slots equal to
the delay of the IR system (that becomes a deterministictijydor large number of users)
and with error probability precisely equal 1o Hence, forx > 0 and N — oo the IR
scheme has the same performance (in terms of throughpat; detl error probability) of a
FEC coding system. We notice also that in this limit, due ®lainge-system hardeningo
explicit feedback channel is needed unless the transmi¢teds to know, for some reason
such as billing, the identity of the unfulfilled users. Henaader IR protocol considered
here, the optimal policy is to accept a fraction of unfulfilleserse that equals the outage
probability that minimize the average throughput when tB€RKcheme is used.

3.1.1 Summary of the Contributions

e General expression of the throughput as a function of theidna of unfulfilled users,
N andR.

¢ Analysis of the limiting behavior of the throughput of IR a8R under various system
parametersy, N and R.

e Itis shown that for certain values ofwhenN — oo, the achievable throughput of IR
equals the ergodic capacity at the expense of an averagettiatagrows to infinity.
However if we accept a gap from the ergodic capacity the geedelay becomes a
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constant. For the other values othe maximum throughput is always achieved for
finite average delay.

e The SR protocol is shown to achieve the maximum throughpueiya for finite aver-
age delay. This maximum is obviously less than the maximumesed by IR.

e The comparison of IR protocol with FEC based scheme is chaig in the limit of
large number of users. It is found that, in this limit, the tsatvemes are identical, for
equal error probability.

e A simple example, based on Birth-Death process [96], giveglea of buffer size
requirement at the receiver side for a streaming applicatio

3.1.2 Organization of the Work

This chapter is organized as follows: section 3.2 desctibesnulticast model, section 3.3
compute the throughput of SR scheme with a Markovian modeénThe general expres-
sion of the throughput for SR and IR is given by using the RettdReward theory and the
limiting behavior for large number of users is analyzed. dot®n 3.6.1 the comparison
between IR and FEC is carried out, and finally we conclude tiagier with an example of
buffer requirements calculation at the receiver, wheneasting application is considered.

3.2 SvsTEM MODEL

We consider a wireless multicast system where a sender @aisen) wishes to transmit
reliably the sameanformation toN users. The channel is block-fading Gaussian. Trans-
mission is slotted, every slot spahs~ W1 > 1 complex dimensions (wherd is the
two-sided bandwidth and is the duration of a slot) and the channel fading coefficiémts

all users are i.i.d., constant on each slot. The signalveddyy usen on slots is given by

Ysu = cs,u\/fxs + Vs (3'1)

wherec, ,, is the fading coefficients; € Cl is the transmitted signal belonging to Gaussian
codebook, andv, ;, ~ N:(0,1I) is a complex circularly-symmetric white Gaussian noise.
With the normalizationE[|c, x|*] = FE[|x,|?] = 1, T takes on the meaning of average
received SNR. The transmitter is not aware of the fading iekooefficients, while the
receivers have perfect channel state information.

For later use we define here the ergodic capacity,
C(T) = E[log(1 + T'a)] (3-2)
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wherea ~ f,(2) is a random variable distributed as the channel power gain?. To

simplify the presentation we assume thfa(z) = e *1{z > 0}, i.e., Rayleigh fading,
wherel{-} is the indicator function. The results of this work hold undgld conditions on
the fading distribution and apply to other fading distribos.

In the IV users case, due to the fact that information is the same lfosafs and that the
users are completely symmetric, we will measure spectiialexicy (or “throughput”) from
the base station viewpoint. Lettirdgs) be the number of transmitted information bits up to
slot s, the throughput is given by

n = lim @ bit/dim. (3-3)
s—oo s
We expect that the average delay necessary to achieve aingdddgoughput; tends to
infinity as IV increases. Intuitively, the probability that at least osernout ofN is not able
to decode successfully aftet slots tends to 1 for any finite: and N — oo. Hence, the
transmitter will eventually send “for ever” additional rgwancy of the same codeword. In
the next section we provide an exact throughput analysiseoSR and IR scheme witN
users and show that indeed this intuition is correct. Howews interesting to notice that
the delay necessary to achieve throughput (1 — §)C(I"), increases quite slowly if is
not too small. Hence, we argue that for typical valuesVoin a cellular system, and for
target throughputs not too close to the ergodic capacigy]Rhscheme is a viable solution
for reliable multicast.

3.3 MARKOV MODEL

ACK
NACK Idle

Fig. 3-1. Receiver model.

In the following we consider the SR scheme and we computehiteeighput at the base
station using a Markovian model. Note that under the SR sehé transmitter encodes
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b information bits by using a channel code with codebdbke CF, length L and rate
R = b/L bit/symbol. The codeword is sent over one slot. We associatecto @ser an
error probability,a given by the probability that the mutual information perungymbol
on slots Al is less or equal than the coding rate [18], i.e.

4 = Pr(AL, < R) = Pr(logy(1 +yas) < R) = Fi (2:_ 1) (3-4)

wherea, = |c|? is the fading power gain andl,(.) is the cdf ofa; equation (3-4) is
justified by assuming@ a Gaussian random code ahdufficiently high.

DefineU a random variable that counts the number of unfulfilled uséne system keeps
sending packets until the number of unfulfilled users is éesxqual to a fraction of the total
number of users, i.e. it is less or equal thanThe system can be modeled as a Markov
chain withN — n + 1 states where each statgfor i = 0,... N —n — 1 representd/, i.e

s; = N —1i; the last statey_,, 11 represents the successful event, the number of unfulfilled
users isU < n. We callsy_,+1 = S. Whenever the “successful” state is reached the
system is reset and the transmitter begins sending a newvoadie Figure 3.3 shows the
Markov chain forN = 2 andn = 0 users.

a2 2a(1—a) (1—a)?
d=| 0 a l-a (3-5)
1 0 0

and solvingr = 7 ® using the normalization property of the stationary prolighbvector,

. 2 . .
we obtainrs = 575.¢5 and consequently the throughput is givervhy, = R4
The generalization for an arbitrary value 8fandn is cumbersome. Moreover for the IR
the Markovian description is much more complicated bec#usstate is av-dimensional
vectore Rﬂf where each element is the mutual information accumulated ajgertain step.
This becomes & -dimensional discrete time Markov process. Fortunatedytkitoughput
of SR and IR can be computed by resorting the Renewal the@ry1f.

3.4 THROUGHPUT ANALYSIS BASED ON RENEWAL THEORY

The SR scheme can be seen as a particular case of IR schemeheddllowing we apply
the Renewal theory to the IR scheme and we particularize thioSR case.

We define the everff,, = {The transmitter stops transmitting the current codeworer af
m slots}. This is seen to be a recurrent event, since the system réstg,,, denote the
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(1-a)’

-

Fig. 3-2. Markov ChainV = 2,n = 0.

number of unfulfilled users aften transmitted blocks of the current codeword, and define
the eventD,,, = {U,, < zN}. Then,

En=DiN--- ,NDy_1 N Dy, (3-6)
(the bar indicates complement event). The probability efréturrent event is given by

Pr(&n) = p(m —1) — p(m) 3-7)
where we defing(m) 2 Pr(Dy, ..., Dm-1, Dpy).

From the renewal theorem [97], the throughput seen at therirdter is given by the ratio

between the number of information bits/dimensiBn(it is the reward associated to the
occurrence of,,) and the average inter-renewal time= E[r], defined as the number of
slots between two occurrence of the recurrent event. We have

R R
n(NaxaRar) - ; - Z?;L):l mPr(Em)
R

ST ) (3-8)

Notice thatr is also the average delay measured in slots.

By observing thaD; O ... DO D,,_; O D,,, we obtain

p(m) = Pr(Dp,) = Pr(Up, > zN). (3-9)
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Let Al , denote the average mutual information (in bits per dimem)sio slot s for user
u. Assuming a Gaussian codebook, we have

1
AIS,U = EI(XS,M YS,u|Cs,u) = 10g2(1 + FO‘S,U)

The mutual information accumulated up to stdiy useru is given by
1 m
~ 3" Al (3-10)
m s=1

Following [18], for sufficiently largel, useru decodes successfully at stepif the mutual
information (3-10) is larger than the effective coding ra®en by R/m, while it cannot
decode successfully if the mutual information is bel&m. Define the eventd,, ,, =
{The usern: decodes at stem }, it follows that

1 & b < b
Pr(Aym) Pr<m ;21 Al > 7 ) Pr(ZE:1 AL, > L)
=1—p(m) (3-11)
wherep(m) is defined, as in chapter 2, as

p(m) 2 Pr(Au1, Aus, .. Aum) (i)Pr(,Tlu,m) =Pr <Z Al,; < R> (3-12)
=1
and whereg(a.) is becaused, 1 D Ay 2 2 -+ 2 Ay .
The probabilityp(m) has the following expression

p(m) = Pr(U,, > zN)

N m
= Pr (Z 1 {ZAIS,U < R} > :rN)
u=1 s=1
N—[zN]

2y () st am (3-13)

k=0

where (a.) follows by noticing that the random variablé$> """ | A, < R} for u =
1,..., N are independent Bernoulli random variables with parameter) defined in (3-
12). By using (3-7) and (3-13) in (3-8), the throughput isagi\by

R

L+ Y2 SN (1= p(m)* p(m)N—+

U(Nvl'vRvF) = (3_14)
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Notice that the probabilities(m) depends on botfk andT".

When the total codeword of length is retransmitted instead of additional redundancy,
we obtain the SR scheme. The SR scheme can be seen as a sageiaf the general
IR scheme where the codewords are obtained by the condatemdita code of length.
with an arbitrarily long repetition code. Hence, the thropgt of SR lower-bounds the
throughput of IR. For SR, useris unfulfilled afterm slots if the evenn?” , {AI, < R}
occurs. Since th& [, , are i.i.d. random variables, we obtain an explicit expas$or the
probability p(m) as

_2Ra\N™
p(m) = (1 —e ) (3-15)
where we have used the fact that,, is exponentially distributed.

It is easy to verify that forV = 2, n = 0 we obtain agaim(2,0,R,7) = R1% in
accordance with the previous Markov chain analysis.

3.5 THROUGHPUT FOR FINITE NUMBER OF USERS N

Whenz = 0, the throughput in (3-14) is given by

2(N,0,R.T) = i . (3-16)

S o1 (1 —pm)N

It is easy to see that, for anfy < oo,

lim n(N,0,R,T) =0. (3-17)

In [42] the authors show that for IR scheme= © (loﬁ)lgOJgVN).

The limit (3-17) is valid for allR < co. Hence, by letting firstV — oo and thenkR — oo
it still holds. On the contrary, by following in the footstepf the analysis in [18], it is not
difficult to see that for any fixedV < oo we obtain

lim n(N,0,R,T) = O(D). (3-18)

where also the average delay tends to infinity- ©(R). Hence, by reversing the order
of the limits and letting firsi? — oo and thenN — oo we find that the throughput is not
vanishing, although the average delay still tends to irfinit
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At this point it is natural to ask about the behavior of averdglay with respect t& when
we let the throughput equal to a given fraction of the ergadigacity, i.e., when we sét
as the solution of the equation

n(N,0,R,T) = (1 - 6)C(T)

Figure 3-3 showsk and the resulting® needed to achieve the above equality for
3%,7%,15%. As expected, the average delay grows very fast if the tahgetighput is
close to the ergodic capacity. On the contrary, it increaseg slowly (except for an initial
transient where it increases roughly linearly) when wevalfor a certain non-negligible
gap from capacity. This gap from capacity is the price to magdhieve reliable commu-
nications (vanishing error probability) in the block-fadichannel under a delay constraint,
with this simple protocol.

3000

2500

2000

—--R
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1000} |

500

0 50 100 150 200 250 300 350 400 450 500
N

Fig. 3-3. R andr s.tn(N,0, R,3dB) = (1 —0)C(T") vs N for I = 3dB for different value
of 6.

3.6 LIMITING THROUGHPUT FOR LARGE NUMBER OF USERS

This section analyzes the behavior of (3-14) in the limitaw§e number of users\{ — oo)
with n/N = x wherex > 0 when we schedule the transmission to a fraction of users
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that experiences favorable channel conditions. The rdgéeaenewal reword process is
adjusted such that each transmission by the base statidmeca@ecoded only by a fraction
x of users.

The results of this section are manifold. First the besteaetile throughput is analyzed and
itis shown that for particular values ofthe ergodic capacity is achievable but at the expense
of large delays. On the other end if the delay is fixed thenaabible throughput € (0, 00)

can be achieved depending onHowever, we can define the average throughput, computed
from the user point of view, ag = (1 — z)n. It is easy to show that there is a particutar
that yields the besi.

Define
N—[Nxz] N
Vova = > (§)a-nter
k=0
We have

Neo(z,R,v) = lim n(N,z,R,7)
N—oo

R
= 1
N1 1 > _ 1 V(p(m), N, )
R
= . 3-19
1+ A}im oo V(p(m),N,x) (3-19)

It is straightforward to see that it is possible to exchargelimit in (3-19) with the infinite
summation w.r.tn. Note thatV(p(m), N, x) can be seen as the cdf of a Binomial random
variableX,,, computed inN — [N, i.e X,;, ~ Bin(N,1 — p(m)). Hence

lim V(p(m),N,z) = A}im Pr(X,, < N —[zN])

N—oo

The mean and the variance &, are given byuxy = E[X] = N(1 —p(m)) ando?% =
N(1 —p(m))p(m). Appendix 7.1 shows the following Lemma

Lemma 1:: The limit for large number of users of the functidiip(m), N, z) is given by

1
lim V(p(m), N,z) = Yz < p(m)} = 50 = p(m)) (3-20)
O
Eventually, the limiting throughput is given by
Noo(z, R, T') = 1 (3-21)

L+ Yooy Hz < p(m)} — 56(z — p(m))




70 Chapter 3. Feedback Systems for Multicasting Common Infonation

For the SR scheme, using (3-15), we obtain the explicit féamu

R
14 Llog:cJ _ %5(Llong log:c)

loga logad ~ Toga

7700(«737 R,F) =

(3-22)

. 2B
where|.| means the integer part anc2 <1 —e T >

For eachm, p(m) is an increasing function ak. Fork =0, 1,2, ..., we define

R(k) 2 sup {R : Yz <p(m)} - %5(1- —p(m)) < k} (3-23)

m=1
The following result holds:

Theorem 2:The supremum oveR > 0 of 7. (z, R, T") is given byR(k)/(1 + k) for some
k=0,1,...,that in general depends arandl . O

The proof is given in Appendix 7.2.

For N = 1, [18] shows that the IR throughput is an increasing functb® and that

supn(1,0,R,T) = lim n(1,0,R,T) = C(T) (3-24)
R>0 R—o0

Appendix 7.3 shows that the limiting throughput for largemer of users of IR protocol,
for a positive fraction of unfulfilled users is a constantttfta same particular values af
equals the ergodic capacity.

Theorem 3:For independent Rayleigh fading SNRand IR protocol, defin&s,,(z) the

cdf of the random variablel Y™ | AL, ,. Definezy = min(G,,(C(I'))). Then for all

x € (0,24), neo(x, R,T) is increasing withR. Therefore sup 1. (z, R,T") is achieved for
R>0
R — oo and7 — oo, and itis equal ta’(I"). Also, for allz € (z4,1) sup neo(x, R,T") is
R>0

achieved for finite delay. O

The derivation of a closed form expression igras a function of” is not straightforward.
Nevertheless, it can be observed that for a wide range of BMRis very close td).5.

Note that Theorem 2 guarantees the existenog,gf, while Theorem 3 gives the value of
Nsup,> @nd the rate and average delay necessary to achieve it.

For the SR protocol, Appendix 7.4 shows the following theare
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Theorem 4:For the SR protocokup 7 (z, R, T') is always achieved for finit& and delay.
R>0

In particular the optimaR is given byR(k) = F(k + 1) — e wherek is found as the index
that maximizes the following sequence

] = - i (F(i+1) — (3-25)
and )
F() = [1og2(1 - rlog<1 - x))]
for arbitrarily smalle. O

Figure 3-4 shows the behavior of the sequebi¢cevs i for I' = 0dB parametrized in,
whene = 10~3. We can clearly see that for atl the maximum is a small value of It
become® whenz — 1.
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r=0dB
0.4} 5 1
O Ek&<>
0.2 OO %% 1
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A ++H§§%@i?:@ié 90400900
0
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i+1

Fig. 3-4. Sequencki] vsi + 1 for I' = 0dB parametrized im, e = 1073,

3.6.1 Comparison with the “FEC only” System

In this section the comparison between IR scheme and a sysédinroadcasts the same in-
formation to all the users using only channel code withoutARcarried out. This scheme
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is referred to as “FEC only” system. The information bits emded using a code of length
BL symbols transmitted oveB different slots. The throughput seen by the transmitter is
simply given by the code rat¢ = Rrgc , for which the average error probability is
Note that the “FEC only” system has a fixed delay equal to tmelrar of slots used to send
the codeword3, while SR and IR have a variable delay

In order to make a fair comparison we consider the averagey délthe IR (or SR) equal
to the fixed delay of the “FEC only” scheme, we 98t= |7| where7 is the average
delay (in slots) of the IR system, and such that users hawee grobabilityxz. This is a fair
comparisons for larg&V, since both the delay and the fraction of unfulfilled usersobee
deterministic and equal for the two systems7ifs an integer). The following theorem
holds.

Theorem 5:Let 7 be the integer delay of IR protocol such that the error pridipats .
Consider a “FEC only” system witB = k£ + 1 and let the error probability be equalto
Then the spectral efficiency of “FEC only” system equals tireughput of the IR scheme
in the limit for large number of users, i.e.

nfPC¢ = noo(z, R(k),T) (3-26)

O

The proof follows from the fact that the spectral efficiendyF&EC coding satisfies the
equation

B
Pr (Z Al, < BnFEC> =z (3-27)
s=1
We notice thatR(k) defined in (3-23) must satisfy the equation
k41
Pr (Z Alg, < R(k)) = (3-28)
s=1

By comparing (3-27) and (3-28) we conclude that for all ietegelaysr = 1 + k, R(k) =

(1 + k)nFEC and, from Theorem 13, (z, R(k),T) = n¥FC. In particular, since the
throughput is maximized for sonig we find that the maximum throughput (with respect to
delay, forz andT" given) of the IR and of the FEC coding systems is identicahi [timit

of a large number of users.

3.7 RESULTS

It is interesting to note that, with a very simple binary feadk scheme from each user,
whenever a positive fraction of users to be unfulfilled is accepted, the throughput seen by
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the transmitter is positive even for an infinite number ofrsse

Consider, without loss of generality, the SR case: the dinput approacher (the coding
rate) whenever the parametegoes to zero (lossless channel),zogoes tol (we accept
100% of unfulfilled users), and it goes fwhenever we want all the users to be fulfilled

(z — 0). Note also thatjoe , = R when{gigzg < 1, that means whea < z.

Figure 3-5 and 3-6 show the comparison of the throughput mizeid overR versusz, in
the limit for N — oo, for I' = 3, 10dB for the two protocols SR and IR.

In the case of’ = 3dB z; = 0.5. Moreover forz € (0.552,1) suppnoo(z, R,T') =
logy(1 —T'log(1 — x)) achieved with average delay = 1. Forz € (zg4,z,) it is only
possible to conclude thatis a decreasing function of.

WhenT' = 10dB, insteadry = G (C(T")) = 0.48, and moreove€; ! (z) > G} (z) for all
x > xq4. This tells that forr > x4 supg 1o (z, R,T') = logy(1 — I'log(1 — x)) achieved
with average delay = 1.

Since for highe the optimal throughput is obtained for= 1, and the throughput of the SR
protocol lower-bounds the performance of IR, then SR andchirexe the same results.

Figure 3-7 showsg(z, R,T") as a function of for fixed z andI" = 3dB. The throughput
is a non decreasing function of the rate for smallOn the contrary, for large there exist
a finite value ofR which maximizes the throughput, and this maximum is largantthe
ergodic capacity, as stated in theorem 4.

Figure 3-8 represents the optimal throughpub,, 7. (z, R(k),I") for SR and the optimal
constrained throughput for the IR, when we 8gt = 7sr. Also in that suboptimal case
the IR still gains with respect to SR in region = < 0.24. The figure also shows the rate
R(k) for IR and SR and the average delay for S&%.

Figure 3-9 shows the convergencesab, n(NV,z, R(k),T') vs N for SR whenz = 0.2.
The rate of convergence slows down as long as we séleafual to the optimal value,
R(k). Further analysis on the number of users necessary to &chiesrtain error between
supy, oo (z, R(k),I") andsupy, n(N, z, R(k),T") shows that it depends %lm that

is in general very smallp(k + 1) also depends oR(k)). Therefore, as long as we accept
a small rate los®* = R(k) — e the rate of convergence increases.

Figures 3-10 and 3-11 show the throughp(tV, =, R,T') for z = 1072, ' = 3dB and

7 = 10, 50 respectively.R is set equal tad?(7 — 1) defined in (3-23). We can notice that
FEC and IR coincides only in the limit of large number of usarsn though they are always
quite close for smallV. Surprisingly the throughput of IR is not a decreasing fiomcof

N. This is due to the fact that we allow > 0 and that the delay becomes a deterministic
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Fig. 3-5.sup; 7eo(x, R,T') vsz, for I' = 3dB.
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Fig. 3-6.sup;, 7eo(z, R,T") vsz for I' = 10dB.
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Fig. 3-7.nx (z, R,I") vs R = b/ L for different value ofr for I' = 3dB.
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Fig. 3-8. sup;, o (z, R(k),I") for SR and IR vst when we fix7;r = 7sr. We plot also
the rateR (k) and7gp.
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Fig. 3-9. sup;, n(N,z, R(k),I") for SR andsup;, 7~ (z, R(k),I') vs N. Convergence vs
limit for SR whenz = 0.2, R(k) = 1.06bit/symbols and” = 3dB.

variable only for large number of users while for smallthis is a random variable that
depends on N.

Finally consider a fixed delay and the IR protocol.n(co, z, R(B),T') is an increasing
function ofx. However we can compute the total average throughput as

Mot = (1 - 33)77(00>$>R(B)7F)

It is possible to show that them, .1 nt = 0 implying the existence ot* that yields
optimal total throughput. This turns out to be a known prohlee find the optimal outage
probability that minimize the total throughput when a FEGten is considered.

3.8 DIMENSIONING THE PRE-FETCHING BUFFER FOR STREAMING APPLI -
CATION

Consider an application like video streaming where difieresers request the same in-
formation. Traditionally the system opens a connectionefach user and it adapts the
transmission parameters to the channel condition of that uShis is very expensive in
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Fig. 3-10. 7o (z, R,T) andn(N,z,R,T) vs N for x = 1072, T = 3dB 7 = 10 and
R=R(7-1).

terms of bandwidth and can cause problems when a new usetdriccess to the same
service. Eventually the system refuses to open the commeftii the new user. In this case
the system is not exploiting the multicast setting and irtipalar the fact that all the users
needs the same information. A better solution, in terms afibadth efficiency would be
to share the bandwidth among the users at the expense of kypearthroughput of each
user. Hence, we can consider the use of IR or “FEC only” paitadth a fixed fraction of
users targeted at each transmission or equivalently fixed probability .

Suppose that each user is equipped with a buffer witBlements wherd” packets can

be stored. Moreover, suppose that the application use orlepper time instant. The
queue is filled in with probability1 — x), i.e the probability that the user can decode the
information or equivalently that the user is the “fulfilledét. Suppose also that at time
instant0 the queue is completely filled up. We want to find the probshbihiat the buffer is
empty before a certain time instatht This gives rise to a Birth-Death process [96] shown

in figure 3.8. The last stat& is an absorbing state. When this state is reached an outage
occurs and a resynchronization is necessary. Défitlee time necessary to reach the state
‘E’, and consider that at time instafithe system is in the stae i.e the buffer is full. It is
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Fig. 3-11. 7o (2, R,T) andn(N,z,R,T) vs N for x = 1072, T = 3dB 7 = 50 and
R=R(7-1).
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easy to see that the probability mass functiol’a$ given by

0 ift<FE
Pr(Tt){ (;—_11 >a:E(1—:r)t_E olse (3-29)

and finally the cumulative density functidtx (7" < 6) is

0 ifo<FE
Pr(T <0) = { Z?:E( ;_—11 > 2B —2)E else (3-30)

MoreoverPr(T' < #) = 1for E = 0andV 6 > 0.

Define Sy, a binomial random variable with parametgri.e Si, ~ Bin(k,p). Itis
straightforward to see that (3-30) can be written as

0 ifo < E

e LPr(Si1.=E—1) else (3-31)

Pr(T<6)= {
Suppose to fix the time threshofdand define the outage probability as the probability of
an empty buffer before time instafti.e Pr(7" < 0) . Itis possible to find the the minimum
buffer size, as a function af, such that the outage probability is less that a certairstiuie
valuepy, Pr(T < 0) < pg. The optimal buffer size is then found as

0
:' . _ CC: —_ < <
Eopt, = inf {E x;EPr(St 12=F 1)1{E_9}_p0}

Figure 3-13 shows an example of buffer size requirement asaibn of the constraint time
6 whenpoy = 10~8. The time here is measured in packets. It is interesting teathat the

buffer size increases slowly with the constraint the value ofz is sufficiently small. Note

that wher¥ = E thanPr(T" < 0) = Pr(T = 0) = z. If z < po than the optimal buffer size
IS Eopt = theta + 1.

3.9 CONCLUSIONS

The results of this analysis are mixed. On one hand, sincabfelpacket transmission
in delay-limited wireless communications is currentlyabed by using HARQ protocols,
one would like to keep the same protocol for reliable musticaOn the other hand, it is
clear from this analysis and from [42], that the scalabitifysuch protocol in a multicast
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Fig. 3-13. Buffer requirement versédgor py = 10~8 parametrized ir.

environment is questionable. If the underlying applicatian afford a non-vanishing prob-
ability of error (expressed by the fractiarof unfulfilled users), then IR and SR schemes are
fully scalable and guidelines for the choice of optimal paeters are given. However, the
conclusion is that FEC coding targeted to achieve errorgiiby x, without any explicit
ACK/NACK feedback channel, is to be preferred since it aodsethe same performance
when the number of users gets large, with less complexity.

If full reliable transmission is required, the HARQ schempractically scalable for typical
number of users per cell in a cellular environment, if onespt a certain non-vanishing
gap from ergodic capacity.

These conclusions might be radically different in a raattion setting, where the same
source can be multicasted to several users at differemtrticsis.




CHAPTER 4

Lossy Broadcasting Common Information:
Optimization of Some Transmission Strategies

4.1 INTRODUCTION

This chapter is focused on the analysis and the optimizatieome strategies for the trans-
mission of an analog source over the Gaussian multicastnehann this case, bit-error

probability at the output of the channel decoder is no loraggood measure of perfor-
mance. On the contrary, the end-to-end distortion is mgueesentative of the quality of

transmission.

If we restrict to the case of band-limited Gaussian sourcdxettransmitted on an additive
band-limited Gaussian channel, it is well known that whesdburce and the channel are
particularly matched to each other (the channel bandwildtiequals the source bandwidth
W, and when a Gaussian source has to be sent over a Gaussiaslphteruncoded trans-
mission achieves optimal performances. In [45] it is shomat,tallowing for a single letter
mapping, sufficient and necessary condition for the opiignaf uncoded transmission can
be found. The main result is a criterion to check whether thgle letter code performs
optimally for a given source-channel pair. It is also showattwhen a single Gaussian
source is sent to two different users through Gaussian @tgrumcoded transmission gives
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a distortion that is Pareto optintaand that lies strictly outside the distortion region for the
separation based approach when superposition codingusasgs Superposition coding
consists on embedding high-rate information on low-ratermation [46, 36]. However, it

is easy to find some practical and not negligible examplesw@estpar’s conditions do not
hold, for example when the source bandwidliiy is different from channel bandwidt ..

As an example, compare the bandwidth of an analog TV signal the bandwidth of the
FM TV signal, clearlyiV, > W, (where we have calletV. the band of the channel amt

that of the source). WheW, > W, coding of the source becomes necessary to exploit the
additional channel bandwidth.

One of the advantages of using analog schemes is that thewadradual changes in the
reconstruction quality when changing the SNR while digietiemes show the “threshold
effect” described in section 1.3.1.

Shannon'’s separation theorem states that separatingdhngéoto two steps, source coding
and channel coding is optimal. This does not take into adodelay and complexity issues
and in general it does not hold for multiuser communicationan-ergodic scenario [98].
In [48, 49] and reference therein, the authors have showrddiat Source-Channel Codes
(JSCC) outperform codes designed based on the separatioreth, for fixed complexity
and delay, and they are more robust to change in channel noise

In this chapter we consider the simplest possible scendrtbi® kind, which is, never-
theless, not yet fully solved. We consider a Gaussian i.sdurce with bandwidtbt
that has to be transmitted over a band-limited channel watidiwvidth 1V, under the end-
to-end quadratic distortion criterion. As motivated befowe assume spectral efficiency

n2 W, /W, > 1.

Again, the BF-AWGN channel is considered, for which the c¢i®rgain is random but
constant over the duration of a codeword. The coding bloogtheis assumed large enough
such that any rate below the instantaneous channel capacttye given fading realization
can be decoded with negligible probability of error, whiteyaate above the instantaneous
channel capacity yields probability of error closeltoThe BF-AWGN channel is a useful
mathematical abstraction that models very slowly-varyadjng channels, as for example,
stationary terminals such as TV receivers, or the path lessrohined by the distance to
the base station in a mobile cellular communications. Ils¢heases, the fading changes
much more slowly than the coding delay and the channel behawe-ergodically (see [80]
for a thorough discussion). The BF-AWGN channel, under gsumption, made here,

*Optimality criterion for optimization problem with multiriteria objectives. A state A is said to be Pareto
optimal if there is no other state B dominating the state Atwthe state of objectives functions. A state A
dominates the state B if A is better than B in at least one ¢lfunction and not worse w.r.t all other objective
functions.
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that the transmitter is not informed of the channel fadingt {pknows its statistics), may
also model a Gaussian broadcast/multicast channel [48] Wit— oo users, such that
the empirical distribution of the users SNRs converges stregerywhere to the fading
cumulative density function. For this scenario, we optengnd compare three strategies:
time-sharing-based transmission, superposition codidgaaHybrid Digital/Analog scheme
(HDA). We optimize these schemes by minimizing the average ew®emd distortion for
given transmit powel’ and fading statistics (assumingcantinuouspdf f4(z) and cdf

Fy(2)).

A transmission strategy widely used in the broadcast gettomsists of the so-called “pro-
gressive transmission”. The source is splitted ihtparallel streams mapped onto channel
codewords with different coding rate and possibly différenergy per channel symbol.
This achieves unequal error protection for each level afrmfation. The codewords are
sent through the channel by a time-sharing strategy. Intf@pptimization analysis is car-
ried out for Binary Symmetric Channel (BSC) and Binary Erasthannel (BEC). Using
this principle, [100] characterizes an achievable avedigjertion region for the broadcast-
ing of a common source. The splitting of the source is repiteseby an ideal successive
refinement source encoder that provides independent letgifrmation each of one con-
veying the same amount of information bits per source symbol

A broadcast approacho the BF-AWGN channel was proposed and analyzed in [10H (an
references therein) in order to maximize the average treasson rate. It consists again of
splitting the information message info — oo parallel streams and mapping each stream
onto a layer of a superposition coding scheme. Each layerodutated with a power
level v(a), and optimized under the overall power constrédif(A)] < I' such that the
average successfully received rate is maximized. Follgwire approach of [101] yields
unmanageable expressions due to the fact that the distastid non-linear function of the
rate and the elegant solution of [101] based on Euler inteigr@s not apply.

The last strategy that we analyze is a Hybrid Digital-Ana{bipA) JSCC. These hybrid
systems have been proposed in [53, 54, 55, 56]. These sclemge the graceful degra-
dation in reconstruction quality with changes in SNR oftelsy the analog part with the
error correcting capability of the digital part.

Shamai et al., in [53], show thaystematic joint source channel codifagtype of bandwidth
splitting HDA\) is optimal for a wide class of source and chalsn They analyze the capacity
of the channel consisting of the digital channel in paraili¢h the analog channel. They call
systematic those sourtehannel codes which transmit the raw uncoded source iniaddit
to the encoded version (see figure 4.1). When a Gaussiaresauticchannel are considered
and whenWW, > W, they show that the conditions for optimality of systematuzling
techniques are respected. In [55] the authors show that @iagissian mixture source are
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Fig. 4-1. Systematic Source-Channel coding.

transmitted over a Gaussian broadcast channel, the HDArselseasymptotically optimal.

Other types of HDA systems has been studied by Mittal et §b6ih where the authors an-
alyze in terms of average distortion, several coding systased on dimension (bandwidth)
splitting and'or power splitting of the source. Also in this case Gaussiamee and AWGN
channel is considered. They provide examples of “nearlgtist systents They show that
the HDA scheme proposed outperforms in terms of distortegion a time-sharing sys-
tem and the purely digital system and in certain cases thgyedorm the systematic code
introduced above.

In the following we compute analytically the average distor of the systems in the ideal
case when the source code achieves rate-distortion antdaheel code achieve the capacity-
cost functiond. The system is optimized for block fading AWGN channel. Weegan
algorithm that can be generalized to take into account mmetipal scenario where the
source and the channel codes are not ideal. Moreover we certtgaprogressive and su-
perposition scheme with an distortion-based optimizedigarof the nearly robust HDA
scheme proposed in [56].

4.1.1 Summary of the Contribution

e Definition of the optimization problem based on the mininiza of the average dis-
tortion for progressive, superposition and HDA based s&hdor BF-AWGN chan-
nel.

2“Nearly robust” means that the system asymptotically djesrat the rate-distortion limit for a particular
SNR value

%This notion is meaningless since a single code caanbieve capacityHowever, what we mean here is
thatC is a member of a sequence of codes that work arbitrarily dlmsiee capacity limit for increasing block
length.
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e Algorithms for superposition and progressive approach ghee the optimal trans-
mission power and/or coding rate.

4.1.2 Organization of the work

The chapter is organized as follows: In section 4.2 the géwefinition of the optimization
problem is given and the computation of the optimal powexcaltion and coding rate pol-
icy that achieves minimum average distortion is carriedfoutime-sharing based scheme.
Section 4.3 finds the optimal power allocation policy in tlase of the superposition ap-
proach. In section 4.3.1 the optimization of the HDA schemeairried out. Section 4.5
gives the results and compare the different strategiesinstef average distortion versus
average and instantaneous SNR when Rayleigh fading isd=resi.

4.2 PROGRESSIVE-BASED TRANSMISSION STRATEGY

We consider a discretized system withlayers, where the number of source code layers
coincides with the number of channel codewords. Each leaglahsource coding ratg
bits/source sample and it is mapped onto a codeword belgngia channel codé;, mod-
ulated at different power levels. In genedlis identified by the rate SNR-threshold pair
(r;, ;) such that for SNR larger than the code yieldscceptableperformance (roughly
speaking, low-enough bit-error rate).

The successively refinability property of the source alldawschieve the distortion-rate
function at each leveD, = 22"s¢ and D, = 1, where( is the number of layer successfully
decoded .

Codewordi has coding rate; = nﬁ wherek is the number of bits output by thieth layer
of the multiresolution source coder angl is the blocklength. Figure 4-2 illustrates this
scheme. The spectral efficiency is given by

1 1
7’] = — = —_ = —
Define~, as the energy per channel symbol used to transmif-tle codeword. The total
powerI" can be computed as
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Define a set of fading thresholfs< a1 < --- < ar, (Wherear,1 = o) such that layers
up to/ can be decoded il € [ay, as41]. Assuming ideal Gaussian channel codes /tte
code rate is given by, = log, (1 + ay). Call nowz, = % andy, = Z—f It follows that

oMz 1) 2
I bt L (4-1)
Ye
We wish to minimize the resulting average distortibg, (75, z, y) with respect ta andy
subject to the constraints

L 1 L T
da=—i > u= (4-2)
=1

nrs i—1 nrs
whereD,, (rs, z,y) has the following expression

L

Dav(rsv Zvy) = FA(al) + ZDZ (FA(af-i-l) - FA(CLE)) (4'3)
(=1

with a, defined in (4-1).

The associated Lagrangian functiodals given by

L L
o = Dav(TS,Z,y) +)\ZZZ +szz
i=1 i=1

For the Kuhn Tucker’s conditions it follows that the parti@rivative with respect te, and
ye has to be greater or equal to 0,

) 21/2¢ _ 1) z, — 21/%¢1n2
a—:ADefA(CLE)(( )t Z)+az0

0z 2eYe
oP 2 (27 — 1
—— = ADyfa(ar) _Z(—Q) +p=>0 (4-4)
Oye Yp
(4-5)

y¢ can be found as a function pf A andz,

(215 1) 22

1
— 4-6
p 2Y/20n2 — (212 — 1) z (4-6)

Yp =

A

wherey is defined ag: = £. 2 is then obtained as

—ADg (20, ) + A =0 (4-7)
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whereg (zy, 1) is defined as

91/ze]n9 — (242 — 1 ol/ze1n2 — (212 — 1) 2,)*
(20 1) 2 fa (u ( )zé> : (u( ( ( ) #) > (4-8)

2 23 2L/z — 1)

4.3 SUPERPOSITION-BASED TRANSMISSION STRATEGIES

Consider now a superposition-based approach where eaghidemapped onto an inde-
pendently selected codeword of “a basic channel cadlehodulated at different power
levels. Each layer has source coding ratdits/source sample and channel coding rate
bit/channel uses, so that= r./r,. Figure 4-3 shows the block diagram of the superposition
scheme. The mother codéis identified by the rate SNR-threshold péit, 7).

¢V1
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Source Code o
k

s =5

rmzz2Z2>»IT0O

Reconstructed
Source
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|

Deecodable Layers
Fig. 4-3. Superposition scheme.

The transmitted superposition codeword is giverxby Zle Vec, wherey, andc are
the power level and the codeword@fassociated to levél, respectively.
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Define again the set of fading thresholdlsc a; < --- < az, (Wwherear; = oo) such that
layers up to? can be decoded i € [ay, ary1]. The resulting average distortion is given by

L
Day(rs,) = Fa(a1) + Y Dy (Fa(ae1) — Falar)) (4-9)
=1
wherey = (71, ...,7v1). We want now to solve the following minimization problem
L
min min Dy (7s, s.t ;=T 4-10
iin 1 (re,) > o (4-10)

=1

The condition for successive decodability of the supetfmrstode up to layef is given by

il > (4-11)
L+ard i

The levelsa, are uniquely defined by the power levelsby imposing the constraint (4-11)
with equality,

-
L

Ye— T Zj:£+1 i

Conversely, they,’s can be expressed in terms of thgs by solving the triangular linear

ay = (4-12)

systemayy, — rag Y1 ,,,7; = 7 forall £ = 1,..., L which yields
L .
Yo =Tx+ T Tp41 + Z 22 (1 + 7)1 (4-13)
j=0+2
wherex, 2 a% We wish to minimize the average distortion (4-9) with retpe{~1,...,v.}

subject to the constrait,, v, = I.

The associated Lagrangian functional is

L
® = Day(re, Y1, 7L) + A D% (4-14)
=1
The/-th partial derivative is given by
= 1 1 11 1
— = ADj—fa(— ) —ADi==fa— ) +A (4-15)
8’}’@ = a:j €4 T X, Ty

whereAD, = D,_1 — D,. From the Kuhn-Tucker conditions, we look for the values: pf
such that the derivative is non-negative.
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With the substitutionw, = x%fA ( L ) the system given bg% = 0 is linear and lower
L

g

triangular, and the solution is given by

AT (1+ T)é_l
=——""——=) 4-16
W=D, Ge (4-16)
where we have defineg) a %.
Finally, the derivative is greater or equal to zero if
& (3)
—‘T +A>0 (4-17)
¢

4.3.1 Hybrid Analog/Digital Scheme

The scheme of the encoder is shown in figure 4-4 while the dgdeghown in figure 4-5.
The source bandwidth is splitted so th&t 4 dimensions are sent through an analog (un-
coded) branch whil&V; p = W, — W, 4 is sent through the digital encoder, called tandem
encoder. The two outputs are modulated by power leygland~y; respectively, superim-
posed and sent to the channely,y; are such that 4 + ~; = I'. The total transmitted
signal is given by

Y = /7181 + /7484 + v

wheres = [s1,s4] is the total analog source with bandwidtt, v is the complex circu-
larly symmetric AWGN with components; ~ N (0,1). At the received side the digital
decoder decodes the information by considering the an@pglsas noise. The estimated
information is re-encoded and removed from the receiveksidhis constitutes the signal
from which the analog decoder estimates the analog infoomat

YA = /7asa+v7(s1 —81) +v (4-18)

When the digital decoder can not decode the information vattishing error probability,
than the analog decoder will estimatg by considering the second term in 4-18 as additive
noise.

In [56] the system is designed such that to satisfy the “ggatbust” constraint, i.e to give
asymptotically optimal performances for a particular eabi SNR, = SNR*. This yields

a particular power splitting between the digital and thel@mngart. In this work, instead
of constraining the system to be nearly robust, we find thegpallocation policy that
minimize the average distortion subject to a total powerst@amt. The “analog code” is
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a linear coder/decoder with coefficients that minimize treamsquared error. In [56] the
authors consider a matched tandem encoder as digital systamencoder is said to be
matched if the channel input is a scaled version of the firsbmponents of the quantizer
output, wheren is the blocklength. When the SNR is such that the tandem @eexzh not
decode the information (the SNR is lower than the threshbttieocode), then the decoder
becomes a linear decoder that estimates therfissimbols.

Here we limit the analysis and the results for the non matciasé. However note that the
construction of such codes is not straightforward and they tead to small improvement
in the performances only for SNR SNR, i.e very small values of fading coefficients.

This scheme has only one digital layer so we will define onlg ¢ding threshold:;
s.t. 0 < a3 < +4oo. The thresholdu, is such that if the actual fading value is above
that threshold, then the digital decoder can recover thermmdtion with vanishing error
probability, while on the contrary the digital decoder aamssnoise for the analog decoder.
The channel code is defined by the pait, 7), where in the ideal case = 2™ — 1 =
2(1=1rs _ 1 and the condition for successful decodability is given by

a1vi

_UM S ZSNR (4-19)
1+ a1va

where the analog layer is treated as additional noise by itfi@lddecoder. By imposing

the equality in (4-19) and substituting the total power ¢a@ist, we obtainy, = ﬁ —

m. Note that for a given fading value if a < a4 the digital signal cannot be decoded

correctly, i.e the output of the channel encoder acts agrorsthe linear estimator of the
analog layer. The distortion due to the analog layer is ghsen

1
Da(rs,a1) Tran if a > ay
ayA
=1- else 4-20
14+ al’ ( )

The average distortion can be written as

Dave(rsa (11) :777_1 (FA(CLl) + Dl(l - FA(al))) + %

al d o0 d
Fala) - [l L) g

The result of the unconstrained minimization of (4-21) isaied by findingz; solution of
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the following equation

n—1 ~aaifa(ar) falar) Fa(ar)T
fA(al) - leA(al) - 77(1 +a1F) - 7](1 +al’YA) B 77(1 +T)a%F
T “ fa(a)da * fala)da | )
+77(1+T)a%[0 T+ ol ‘/al (1+a%4)2}_0 (4-22)

4.4 SHANNON'S SEPARATION THEOREM

For comparison, a system based on the separation theoré¢tnathemits a single layer is
considered. This can be regarded as the baseline systeeseapative of today’s technol-
ogy, such as terrestrial and satellite DTV, or DAB. We coesitie minimization of average
distortion with respect to the source coding rajeThe average distortion of the one-layer
digital system is given by

2Ms — ] 2Ms — ]
Dgep = Fa ( = > + 272 [1 — Fy ( ﬂ (4-23)

r

In the general case, the optimal valtfeis given by the solution of

T —1\ z'n 1 T —1 1 T -1\ z'n
——log2—2log(2)—(1— F —— —log2 =
a5 ) Fhos2-210e@ 5 (1- Fa (T ) ) - gha (T ) Fhles2 =0

with z = 275,

4.5 ON AcHIEVABLE RSNR: RAYLEIGH FADING

In this section we show the results of the optimization peokd defined above. We consider
Rayleigh fading so that the pdf of the fading power gain iregiby f4(a) = e~®*. The
spectral efficiency is fixed to3 complex source symbol per channel use. Note that in
all the above systems, is left as a design parameter and numerical optimizatiorn w.r

is further carried out. For the superposition strategy liynig L arbitrarily large withr,
arbitrarily small our numerical computable solution wipgoach arbitrarily closely the
optimal solution of [101] when the average distortion is imiized instead of maximizing
the average rate. For the progressive transmission agprtse optimal performance is,
as well, obtained for;, — 0. For the HDA scheme however the optimalis a fixed non
vanishing value-}.

Figure 4-6 shows a graphical representation of (4-17) ferdhperposition scheme, for
Rayleigh fading. The set of solutions is to be found in the region defined as ‘valid
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solutions’ in the figure 4-6, i.e the region where the propeit > x5 ... > x holds. We
would like to stress the fact thatj, is an increasing sequence with resped, tior fixed \.
Hence, the number of levels that yield optimal performaiggiven byL = sup{¢: w, <
AG,}, for the choice of\ that satisfy the power constraiht

For the progressive transmission approach, 1) in (4-8) has the same behavior as (4-17).
Moreover, analogous analysis on set of solutions and thenaptumber of levels, fixed
u, holds. Figure 4-7 shows the results in terms of RSNR defiised) g % where D

is the average distortion vs the average channel signalise matioI". In the figure the
average performances of superposition, progressive antlfiA (‘HDA p’ in the figure)
scheme are compared. Also plotted are the scheme based sephetion theorem and
the nearly robust HDA (‘HDArR' in the figure). For the superposition and progressive
schemes, when vanishing is optimal we plot the average performances fot; &small
enough”,r; = 1/20. For practically small rate the gap from the optimal perfantes
becomes negligible.

Reducingr, increases the optimal number layer and since a small enalga efr, allows

to achieve optimal performance, practically there is nalieanake too many layers. For
the separated approach and for the HDA the value of fixed tor;. Finally, notice that the
HDA p outperforms all the other schemes and that there is prégticadifference between
the separation theorem based approach and the progressigetssion in terms of average
distortion.

Figure 4-8 shows the performances in terms of RSNR vs irstaous SNR, for average
SNRT' = 20dB. For comparison the performance of the nearly robust natcimed HDA

scheme is plotted. The theoretical limit, in terms of distor, is given by Shannon as
Dg;, = m As announced before, the enhancement of the performansesod

the matched encoder is small and concentrated in a range SNRRIR® because in that
range the tandem decoder becomes a linear decoder thaatestithe symbols. The HDA
schemes and the superposition scheme gives smooth perfcestor a wide range of SNR
providing more graceful degradation under mismatched mdlasondition compared to the
separation theorem based scheme and the progressive epprbamally most of the gain
in RSNR of the HDA, is due to the presence of the linear encoder.

Note that even if the separated approach yields the samerpenfice as the progressive
scheme in terms of average distortion vs average SNR, thatisit is different when the
average distortion is plotted as a function of the instagas SNR. The progressive based
scheme shows advantages in terms of graceful degradatiparfifrmances over a wide
range of SNRs and therefore it is more suited to multiuseliGgions.

Further computation with different fading statistic havewn that, when considering a
uniform distribution of users over a circular cell and attetion due to path loss, the super-
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position scheme yields closed form solution for the optip@ker allocation policy.

4.6 CONCLUSIONS

In this chapter a general optimization method for threesmaesion schemes for com-
pound channel is given: the first scheme is based on idealleneltquantizer and time-
sharing transmission scheme, the second couples the eweltdjjuantizer with a superpo-
sition scheme. Finally, the third is an hybrid digital-aswlscheme. These schemes are
optimized in order to minimize the average overall distortunder total transmitted power
constraint and spectral efficiency. The algorithms givedpgmal power/rate allocation
policy that minimize the average distortion, as well as thgnoal number of layers. The
algorithms are derived for ideal source/channel code behbut can be generalized to take
into account more practical setting where the source andhhanel codes are not ideal.
Under the assumption, considered here, that the transisitiet informed about the instan-
taneous fading condition, the compound channel can modelaalbast (multicast) scenario
where each users has a particular fading coefficient. Thaitighs found in this chapter
can be used for the design of good joint source channel cddésapproach theoretical
limits in a multicast setting.
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CHAPTER 5

Practical Code Constructions

5.1 INTRODUCTION

Chapter 4 shows that HDA schemes outperform fully digitaatsgies based on time-
sharing and superposition. Hence, here, we focus on theiqalconstruction of HDA
schemes. Figure 5-1 recall the encoding structure of the Béh®me. Recall that the HDA
is based on the splitting of the source bandwidth such thafant is uncoded and the sec-
ond part is encoded by a tandem encoder. The two signals atelated by different power
levels, superimposed and passed through the channel. Artaadcoder is a general term
to indicate both the source and the channel encoder. Thaiagption of the HDA scheme
in chapter 4 yields the value of a threshold SNBr which the tandem encoder should be
designed. Therefore, a key issue is the design of a tandeodenwmbust to channel errors,
such that it works as close as possible to the theoreticdl lim

We consider here two different strategies. The first is basedophisticated quantizer
schemes as vector quantization-based constructiongpubait almost non-redundant bits.
These can be protected against channel errors by usingasthadannel codes, like Turbo
codes or LDPC. The issue, here, is to design quantizer schératare non-catastrophic,
in the sense that few bits in error at the output of the chadaebder should not lead to
catastrophic effects on the reconstruction quality. EXasmpf such schemes can be found
in [102, 103, 104]. Note that best quantizer schemes knoviiterature, are found among
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the family of Entropy Constrained Trellis Coded QuantiZe€TCQ) [113]. However, since
the indexes at the output of the quantizer have residuahdahcy, traditionally they are
coupled with a variable rate source code. This makes therselery sensible to channel
errors, since it is well known that arithmetic encoders haatastrophic inverse.

Here we propose a scheme, based on convolutional codes aay transformations, effi-
ciently implemented by FFT/IFFT and interleaving. Thisestle offers performance com-
parable to the best known Trellis Coded Quantizer (TCQ) %] very fine granularity of
rates. This scheme inherits from convolutional codes thpgmty of being non-catastrophic,
thus it is robust to residual errors of the channel decoderan be coupled with standard
Turbo codes or LDPC. Note also that this quantizer is emhekdigeconstruction, i.e it
implements a successive refinable source code. Consegitecdah work also with time-
sharing/superposition transmission strategy.

The second class of tandem encoder that we consider exjhleit®sidual redundancy of
the indexes at the output of the quantizer. For this, scalaector quantizers whose out-
put is redundant, can be considered. Data compression amhehprotection are jointly
performed. A key issue is the design and the optimizationuochscodes so that they are
robust to channel errors. The idea of exploiting the rednogaf the source coder output
to increase performance is well known. Sayood et al. [10§psated to use this redun-
dancy for error protection. Hagenauer et al. in [106] prepo® use it to modify the soft
information processed by the decoder. Another increagipgpular scheme involves dual-
functional channel codes. It was shown in [107] that fixedixed length data compression
of a discrete source using linear codes is strongly relaigcahsmission via linear codes
on a discrete additive noise channel where the noise hasathe statistic of the source.
This analogy can be exploited by using linear error coroecthannel codes such as LDPC
codes [107] or Turbo codes, for data compression. In [10BG@%cia-Frias et al. proposed
a scheme for data compression for both single memorylessesamd correlated sources
where the desired compression ratio can be achieved bynyquencturing turbo codes, in
particular by puncturing the information bits and the pabits. A priori probability of the
source is used to modify the extrinsic information in thedtee decoding process.

Here we consider a data-compression/ channel protectimense based on Turbo codes,
and we refer to it as Multilevel Turbo COMpression (M-TCOMMis is realized by cou-
pling a scalar/vector quantizer, whose indexes still doantadundancy, with a compres-
sion/protection multilevel scheme based on Turbo Codessiktplicity we consider here
Entropy Constrained Scalar Quantizer (ECSQ), but the sahmense can be generalized to
work with Entropy Constrained Vector Quantizer (ECVQ) IKETCQ.

A @Q—ary to binary mapping transforms the output of the ECSQ intait-streams. Each
bit level is, then, mapped on different Turbo codes wheresttstematic bits are punctured,
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together with a certain amount of parity bits in order to achithe desired rate. The code-
words are multiplexed and transmitted over the channel. ¥gerae that the decoder is
aware of the “conditional statistic” of each bit-plane. Bgohditional statistic” we mean
the conditional probability of the bits at levébiven the previous levels.

Optimization of turbo codes is necessary in terms of polyiabgenerator of the component
convolutional code and puncturing pattern. This can beéezhwwut by using EXIT Chart-
based method [27].

The M-TCOM approach, by nature, can be generalized to yigdgrnessive transmission
of information. By choosing thé€)-ary to binary mapping and the quantizer scheme such
that it is embedded, the source can be reconstructed widretitt levels of distortion. The
scheme and the design of the code are extended to the casacti€qrtransmission of
images over the wireless link. This is shown to give remaekabsults when coupled with

a modified Differential Pulse Code Modulation-based (DP@Mgntizer defined by Kim et

al [57].

Finally, MTQ concatenated with Turbo codes and M-TCOM schamre compared. MTQ
based scheme yields performance closer to the theoretraa($hannon limit). The poorer
performance of M-TCOM compared to MTQ are mainly due to twetdes. First, in the
noiseless case the M-TCOM scheme can achieve only the penfme of ECSQ (poor
performance in low rate region). Second, the optimizatibiwbo codes is not straight-
forward. An open issue is the analytical optimization of e@dbelonging to the Irregular
Repeat and Accumulate family, through Density Evolutiond the use of ECTCQ, instead
of ECSQ. This, potentially, will approach, in a better wang Shannon’s limit.

5.1.1 Summary of the Contribution

o Definition of the Multistage Trellis Quantizer (MTQ) basedumnitary transformation
and convolutional code.

e Analysis of the behavior of the MTQ in the noiseless and noase.
e Construction and analysis of a compression scheme basedrba dodes.

e Guidelines for optimization of Turbo codes.

5.1.2 Organization of the Work

This chapter is organized as follows Section 5.2 describesconstruction of the MTQ.
In section 5.2.1 the necessary background is given whilgoseb.2.2 explains the code
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design. Section 5.3 deals with lossy transmission oveyratiannel when considering the
MTQ scheme.

Section 5.4 introduces the compression scheme based an dodes and give the results
of the optimization of the component codes. An example ismgim section 5.5 when this

scheme is coupled with more practical quantizer (DiffaerPulse Coded Modulation,

DPCM) for lossy transmission of image over noisy channelnally 5.6 concludes the

chapter and discuss some open points and extensions.

5.2 MULTISTAGE TRELLIS QUANTIZER

5.2.1 Background

Consider a sourcd € R with rate-distortion function?(D) with respect to a certain dis-
tortion measurel : R x R — R, inducing the distortion measure & x R* according
to

k
d(s.35) = % S d(si,5) (5-1)
=1

An L-level successive refinement source code of block lehgshdefined by the encoding
functionsg, : R* — {1,..., M,} and by the reconstruction functions

b {1,..., M} x---x{1,...,M;} - RF

The rateL-tuple of the successive refinement code is given by
¢
Ry=> logy Mj:{=1,...,L
j=1

and the achieved distortiab-tuple is given by

{DE =E [d(S, ¢£(91(S)> s 796(5)))] 1 6=1,... >L}

The successive refinement structure of the code manifest$ ih the fact that distortion
level D, is obtained byrefining the coarser description at levél— 1 by incorporating
additional information at rate incremeRy — R,_; bits/source symbol.

The sourceS is saidsuccessively refinab[®1, 50] if, for any desired integef, distortion
L-tuple D; < Dy < --- < Dp, e > 0 and sufficiently largek, there exists arl.-level
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successive refinement source code of block lergt¥ith rate L-tuple (Ry, ..., Ry) such
that
Ry<R(Dy)+e VL=1,...,L (5-2)
and
E[d(s> @g(gl(s), cee 79@(5)))] <Dj+e Vi=1,...,L (5'3)

In other words, thd.-tuple of optimalrrate-distortion pair§(R(Dy),Dy) : £ = 1,...,L}
is achievable by successive refinement.

In the rest of this work we restrict to the quadratic distmtineasuré(s, 5) = |s —5]? and
to sources with mean zero and variance 1 (different vargnaa be handled by normaliza-
tion).

It is well-known that a Gaussian i.i.d. sour§e~ N (0, 1) is successively refinable [51, 50].
It is also well-known that, in the Gaussian case, optimatessive refinement codes have
an additive structure [109], i.e., tifeth level representation vectsy for the source vector
s is given by

¢
Se=) il9i(s) (5-4)

j=1
whereq, : {1,... 2FH—Fe1))} _ RF denotes the reconstructioncrementfunction at

level ¢.1

Now, consider a spherical codebook
C:{chRk : q:1,...,2’f’“s} (5-5)

wherer; is a design parameter. The codeword€ 6& on ak dimensional sphere of squared
radiusk. ConsiderA € (0,1] and letQ, : R¥ — {1,...,2%} denote the minimum
Euclidean distance decoder for the scaled cedei.e.,

Qo (s) = arg mqin d(s, acy) (5-6)

Lapidoth [75] showed that far, > 3 log, +, @ = v1 — A, e > 0 and for sufficiently large
k there exist spherical codé€ssuch that
E[d(s, acq, (s))] <A+e (5-7)

This result holds for any sourcg&, not necessarily Gaussian, i.i.d., or even ergodic, under
the condition that%\s\2 — 1 in probability [75]. In some sense, scaled spherical codes

We defineRy, = 0 andDg = 1.
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with minimum distance encoding arebustin the sense that they achieve the Gaussian rate
distortion bound under very mild conditions on the source tke other hand, for these
codes all sources appear as hard to compress as the Gatissiaource.

We shall construct_-levels successive refinement codes from a single spheariciC,
denoted as the “basic code”. Fig. 5-2 provides a pictoriptegentation of the geometry
of the proposed construction. The encoding function atl léwe based on the minimum
distance decoder of the basic code. It computegbgel index

9e(s) = Qyar= (8 —8p-1) (5-8)
where ,
/S\g = Z [02Y Aj_lcg]. (s) (5-9)
j=1

is the representation vector at levelSuch multistage structure can achieve the fataple
{Ry=/try:¢=1,...,L} with distortion L-tuple { D, = A’ : ¢ =1,..., L}.

Lastras and Berger [52] showed that any well-behaved saamcde encoded by successive
refinement incurring a bounded rate penalty at each levgatticular, letS be an arbitrary
.i.d. source with mean zero, variance 1, finite differdrgiatropy #(.S) and rate-distortion
function R(D). The distortionL-tuple (D1, ..., D) can be achieved by successive refine-
ment at rategRy, . .., Ry) such that

1 1
Ry < R(Dy) + = logy = (5-10)
2 Ps

2h(S) . . e . .
wherePg = 22755) is theentropy powelof S, i.e., it is the variance of a Gaussian source

with the same differential entropy of.

The multistage spherical code can achigye= A’ at rateR, = £ log, &. By using the
Shannon lower bound on the rate distortion function [46],find that the rate penalty is
bounded by

1 Ps 1 1

-1

“log =5 = — 11

Ry~ R(Dy) = 3 logy 5 — R(A") < % log, % -
which coincides with the bound in (5-10). In other words, behavior of the proposed
scheme is good in the sense that it meets Lastras and Berged lior any source for
which Lapidoth result [75] holds. In practice, a successgfsnement code thapproaches

the Gaussian rate-distortion bound for any target distorii-tuple and any well-behaved
source is highly desirable. This is pretty much all what we leape for in practical appli-
cations, when the statistics of the source is not known aipitd might not be ergodic.
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A typical example is provided by image coding, where theistias of the output of the
“analog” part of the encoder, essentially given by a lineangformation followed by seg-
mentation and decimation, gives origin to blocks of signa be quantized, that are nearly
uncorrelated and whose statistics may change from imageadge and it is usually esti-
mated adaptively [110].

5.2.2 Code Design

Suppose that we are given a “capacity achieving” sphericde €, for the real AWGN
channel with SNRr. Then, we choose, = 1logy(1+7), A = 1/(1+7) anda =

V7/(1+ 7). We can write the source vector as

L
s=> aVAl-lc, +ey (5-12)

(=1

whereey, is the representation error vector at le¥elBy interpreting (5-12) as the output
of a multiple-access channel with background neigewe notice that the levels are suc-
cessively decodable by stripping in the order. ., L. In fact, the interference plus noise
ratio (SINR) seen by stageof the stripping decoder is given by

a2A€—1
L i
Ab a2y, A

=T (5-13)

Unfortunately, spherical codes that work very close to t¢GN capacity and admit min-
imum distance decoders with practical complexity (sayypainial in the block length)
have not been found so far. If they were available, both tbelpms of channel coding and
of source coding would have been already solved. Hencegrdtly complexity consider-
ations, we propose to use as basic code a trellis-termirmtedy convolutional code with
binary antipodal modulation (i.e., mapping the alphdltet } onto{+1, —1}). In this case,
the minimum distance decodéx, (-) is efficiently implemented by the Viterbi algorithm.

Since trellis-terminated convolutional codes with fixedt(@mcreasing with the block length)
trellis complexity do not approach the AWGN capacity, theich ofa« andA according to
a threshold SNR- outlined at the beginning of this section is not optimal amyger. On
the contrary, for a given basic code we find the optimal sgalactor o and the resulting
optimal distortionA numerically. Lets be Gaussian i.i.d~ N(0,1). By Monte Carlo
simulation, we find

o = arg 1512118 E |d(s, Bcgys)) (5-14)
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and the resulting distortion is given By = E [d(s, acq, (s))] - Fig.5-3 showd |d(s, fcq ,s))
versusd, where the optimal paifa, A) is clearly evidenced.

It is interesting to observe that for the optimal valuecoéind A, the convolutional code
works “above capacity”. More precisely, suppose that wevzaie the source as

S = acq,(s) + e (5-15)

wheree; is the representation error signal, such tE@,ﬂelP] = A (by definition). If
we interpret (5-15) as a binary-input AWGN channel, its SNRyiven bya?/A. The
corresponding capacitﬁmwgn(a2 /A), is found to be less than the ratg of the basic
codeC. For example, for the code of ratg = 1/4 and 128 states of Fig.5-3 we find
a = 0.52 andA = 0.729, yielding capacitﬁbiawgn(a2/A) = 0.2268, which is less than
1/4.

In some sense, this explains why using LDPC [26] or Turbo G¢tleas quantizers is hope-
less. These codes have a very sharp behavior around theittf8dB8Rold. For SNRs larger
than the threshold they achieve very small bit-error praibghwhile for SNRs smaller than
the threshold their error probability is very large. Theatere Belief-Propagation decoder
is clearly unable to find a codeword if the channel SNR is bdtmwvcode threshold. Since
the code threshold is strictly larger than the capacity ShNieshold, and since for quan-
tization we have to work with a “test channel” whose SNRessthan the SNR capacity
threshold, it is clear that codes under Belief-Propagatienative decoding cannot work as
quantizers.

Another countermeasure we take to partially compensatbéagap of binary convolutional
codes from the AWGN capacity consists of introducing ugiteansformations at each level
such that the signals input to the Viterbi decoders look Glaussian. In particular, l&f,
denote a unitary transformation Bf'. Each Viterbi decoder at levélcomputes

9e(s) = Qar(Us(s —8p-1)) (5-16)

Then, the representation vector at le¢& given by
Sp =81+ VAU ey 6 (5-17)

Ideally, we should select the unitary transformations jpegelently at each level, according
to the Haar measure, i.e., uniformly distributed on the riadhiof unitary &£ x k£ matrices.
This approach requires common randomness between encudieleaoder, and might be
seen as a spherical version of fiehering approach commonly used in lattice quantizers
[111]. In fact, since lattices are additive groups, rand@ton with lattice quantizers is
obtained bytranslatingthe source vector by a dither vecwuniformly distributed over the




5.2 Multistage Trellis Quantizer 107

lattice Voronoi cell. In our case, since spherical codegiolkd from binary convolutional
codes arenultiplicativegroups, we obtain randomization bytating the source vector by a
unitary matrixU uniformly distributed over the unit sphere (Haar measwaed, hence also
over the code Voronoi cell because of the geometric unifiyrprioperty.

Notice that both translations and rotations &®metriesof R*, therefore, they preserve
Euclidean distance (distortion). This means that the ofigceof randomization via the
unitary transformation is to present to each level Vitegxader a signal whose statistics is
moreadaptedto the basic code.

We notice also that this approach might be extended to o#tmeitiés of spherical geomet-
rically uniform codes, such as linear trellis codes dégr mapped to thél/-PSK constel-
lation [112].

In practice, sampling elements from the Haar measure ig quimputationally intensive
for large dimensiork. Moreover, matrix-vector multiplications have complgxi?(k2) and
matrix inverseO(k3). Also, precomputing and storing x & real matrices with no special
structure is highly impractical for large. Hence, for the sake of complexity and practical
implementation, we propose the use of structured unitansformations given by

(5-18)

Ug:]._.[g|:c —S]

S C

whereIl, is a random permutation of siZe(interleaving),C + jS = \/%F and where

F is the Fourier matrix of dimensiok/2, with (n,m) elementse =3 %™, for m,n €
{0,...,k/2 — 1}. In this way, the producU,x can be efficiently computed by FFT and
interleaving. Fig. 5-4 shows the block diagram of the prepldglultistage Trellis Quantizer
(MTQ). In standard TCQ [59], a trellis code defined over a itavel alphabet is used. The
resulting code is similar to Ungerboeck TCM [60]. It turnst dlat the probability with
which the points in the code alphabet are selected is nooumif Hence, rate improve-
ment can be obtained by binary labeling the points with \@eidength labels. A modified
Max-Lloyd algorithm that exploits Viterbi decoding anditrimg vectors is used in order
to optimize the code alphabet and the binary representafitime points. This approach is
generally known as ECTCQ, entropy-constrained TCQ. Thelesvn trellis quantizers
for standard i.i.d. sources such as Gaussian, uniform apthtian, are found in the fam-
ily of ECTCQ [113]. It is natural to ask if some rate improvamhean be achieved in our
scheme by applying entropy coding on the quantization ieslgXs). Notice thatg,(s) is
the sequence of information bits (input to the convoluticgracoder) that corresponds to
the codeword found by the Viterbi algorithm in (5-16). We some experiments by ap-
plying the Burros Wheeler Transform-Minimum Descriptioarigth (BWT-MDL) source
modeler of [114]. This modeler identifies the tree source ehtitht best explains the bi-
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nary sequence,(s) by using the Burrows-Wheeler transform and the Minimum Eipsc
tion Length principle, i.e., the tree source model for whilsh overall description length
(including coding and model redundancy) @fs) is minimized. We simulate@000 in-
dependent source sequence of lerigte 1000 and we computed the empirical entropy of
g¢(s) according to the BWT-MDL model. For all simulated framestivas always equal to
1 bit per symbol. This shows that the output of our multistggantizer is close to an i.i.d.
sequence of fair bits and that, in practice, post-procgssitiropy coding cannot improve
performance.

Figures 5-5, 5-6 and 5-7 show the performance of the muggsteellis quantizer for Gaus-
sian, Laplacian and uniform sources, in terms of RSNR defased10log,, A* vs R, =
lrg, with r, = 1/4 and 128 states. The performance is compared with the optimal RSNR
achieved by the distortion rate function. In the case of &ajpin and uniform sources we
plot also the Shannon’s lower bound (SLB) [46] and the RSNRiabd with the Gaussian
distortion rate function. We can see that uniform and Ldplasources achieve exactly
the Gaussian performance, respecting Lapidoth’s resh]t [7Note that the deviation of
the MTQ with respect to the limit in high rate region is not doesimulations but to the
method itself. In fact, recall that the MTQ can theoretigalthieve distortionD, = A’
at rateR, = /(r, while the distortion-rate function is given ), = 272", If we con-
sider the RSNR it follows that log Dy = ¢log 1/A and—log(D¢) = 2¢rslog(2), where
A > 27?75 The different slope of the two curves is due to the fact tladestconvolutional
code is only an appoximation of the ideal sperical code.

5.2.3 Soft Reconstruction? Systematic Recursive Convohdl Codes or not?

As far as the reconstruction is concerned, several receriswocused on soft reconstruc-
tion, where the channel decoder provides soft-output sysmpeymbol information and
this is used by the source decoder to mitigate the effectadfilwal post-decoding channel
errors. In the same spirit of ubiquitous “EXIT charts” [2%e may model the channel
decoder soft output as provided by a BI-AW@trinsic channelLetq; , € {0,1} denote
the j-th binary symbol of the source encoder indets), for j = 1, ..., r:k. We model the
posterior log-likelihood ratio provided by the channel aiger for the(?, j)-th symbol as

Ljo= (1 —2q50) + /2uN(0,1) (5-19)

wherep > 0 is a parameter. Lef(u) = I(q;¢; L) denote the mutual information (as
a function ofy) of ¢; , andL; ,. Optimal soft reconstruction of thieth level codeword in
the Minimum Means Squared Error (MMSE) sense, given theessmpiof (independent)
LLRs defined above, is obtained by computing the non-lineBf9& estimator of eachith
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codeword symbol as

G =Y aP(eil{Li:j=1,...,rk}) (5-20)
ceC

We notice that (5-20) involves only the symbol-by-symbadtevior probabilities”(c¢;|{L; ¢ :
j=1,...,rsk}), that can be readily and efficiently computed by the BCIRrédlga [115]
acting on the trellis of the basic codewith input {£;, : j = 1,...,r.k} for the infor-
mation bits (convolutional encoder input) and input zenotfee coded bits (convolutional
encoder output).

In Fig.5-8 we show the reconstruction SNR versus the extrcisannel mutual information
J (), for hard reconstruction (corresponding to making hardsiteesg; , = 1{£;, < 0}
and feeding these into the convolutional encoder) and fiiirsoonstruction based on the
BCJR algorithm, when the basic code of the multistage scheasenon-recursive non-
systematic (NN) and recursive systematic (RS) encodersndtiee that there is almost no
difference between hard and soft reconstruction in botkesaslence, the more complex
BCJR reconstruction is not needed. However, there is aewddile difference between NN
and RS realizations of the encoders (notice that the cotle isame for both realizations, so
its distortion in the absence of the noisy channel is idahtitboth cases). Not surprisingly,
Fig. 5-8 shows that the NN encoder has better conditionezt$evthan the RS encoder.

5.3 LOSSY ADAPTIVE TRANSMISSION OVER NOISY CHANNELS

We consider the transmission of a souftever a channePy | x. The decoder must provide
a reproduction of the source such that end-to-end distoigioninimized.

Practical source encoder and decoder are too sensitiveatmeherrors, this implies very
strong requirements in terms of residual BER at the outpuhefchannel decoder. This
is mainly due to the catastrophic behavior of the source d@ingoinverse function. The
non-catastrophic behavior of convolutiorecodershas been widely studied. We know
that convolutional codes admits non-catastrophic ensosiech that small Hamming dis-
tance between encoder input sequences cause small digtaaneoded sequences, and
vice versa. In particular, this is the case of feedback-fi@® catastrophic convolutional en-
coders [116]. Our multistage source encoder inherits thpegty of having well-conditioned
inverse function from its basic code component.

Driven by this consideration, we shall consider the conwatien of the multistage source
code with a channel code.

In general, the best possible performance is achieved aratign. Namely, let) denote




110 Chapter 5. Practical Code Constructions

spectral efficiency measured by the number of source syrpeolshannel use (equivalently,
by the ratio of the (discrete-time) source bandwidth over(tliscrete-time) channel band-
width). Let R(D) denote the source rate-distortion function &id") denote the channel
capacity-cost function. Hence, spectral efficiemayan be achieved with distortioR and
input costl" if and only if

n < % (5-21)

~—

For fixed spectral efficiency, the best achievable distordi® a function of the channel input
cost is given byD., = R~1(C(T')/n). In our example, for simplicity, we fix the channel
to be a binary-input AWGN (BI-AWGN) channel, defined by

y=VTz+v (5-22)

wherex € {—1,+1} with energy per symboF;, v ~ N(0,1/2), T is the signal to
noise ratiol’ = E;/Ny. and the source to be Gaussian i.i.d. with quadratic dietort
Notice that in this case the conditions of [45] do not holdndee wehaveto code the
source and the channel in smart ways. The multistage sonooeler produces the indexes
(g91(s),...,9L(s)) in the form of binary sequences. Namely(s) is the sequence of in-
formation bits corresponding to the codewerg ) selected by the Viterbi decoder at level
¢. As channel codes we may consider any family of good binadesdor the BI-AWGN
channel. In particular, in our example we considered cartiaial codes with 64 states and
ratesl/4, 1/3, 1/2, 2/3, 3/4, 5/6, and the turbo code with component generators (37,21)
(octal notation) taken from [1] with interleaving size 6%58nd puncturing in order to have
ratesl/3, 1/2, 2/3, 3/4, 5/6, 11/12. We run experiments by using LDPC codes with op-
timized right and left degree distributions [87]. In thiseave can scan the rates with higher
granularity and we consider all the possible channel raiek thaty = 55‘5, in particular
R.=L/12andL =1, ..., 12.

The source code is based on the convolutional code of ratentd4.28 states already used
in Fig. 5-3.

Figures 5-9 and 5-10 show the resulting distortionsfor= 1/3 versus the channel SNR,
defined ad” = E;/Ny. The separation limit is shown for comparison. Remarkablg,
performance of the turbo-coded and LDPC system is quitedtmthe theoretical optimum.
Note also the LDPC codes achieve slightly better performsriban Turbo codes. This
difference is due to the fact that LDPC codes do not need pringtto obtain different rate
but they are optimized for the given coding rate. Degradatiomes from two effects: a
horizontal displacement due to the SNR gap of the punctundzbtcodes with respect to
their capacity limit, and a vertical displacement due toghp of the multilevel source code
with respect to its rate-distortion limit.
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In practice, coupling our multilevel source code with chelrcoding of different rates can
easily implement a variable-quality scheme that operdtéige target spectral efficiency
and adapts itself to the user SNR condition.
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5.4 JOINT SOURCE CHANNEL CODE BASED ON TURBO CODES: M-TCOM

This section deals with the practical construction of JS@8eld on Turbo codes. The
scheme is realized by coupling the best scalar quantizevkrso far, the Entropy Con-
strained Scalar Quantizer and a compression/protectidtilenal scheme based on Turbo
Codes. The performance is given for AWGN channel.

With properly chosen rate and puncturing, the system istaldeatperform the conventional
Separated Source Channel Coding (SSCC) setup that coositte concatenation of the
same source encoder, an arithmetic encoder and the besi dade. EXIT Chart [27]
analysis gives us insight on the choices of particular puingg pattern and component
codes for Turbo codes. The concatenation of this schemepsatttical source encoder,
like modified DPCM, validates its advantages over conveatischemes.

Shannon’s source coding theorem states that a binary mé&asigourcd) = uq, us, ...up,
can be lossy compressed up to its entrépyU) [46]. When the compression rate is lower
than the entropy of the source, then the compression intexda distortion. Obviously
when the source is not discrete the quantization introdad®ays a distortion. It was
shown in [107] that there is strong correlation between ainmoiseless fixed-length data
compression and almost noiseless coding of a discretelsigd#ive noise whose noise
has the same statistics as the source. This analogy can leéteckoy using linear error
correction channel codes such as LDPC codes for data cosmmed07]. Turbo codes
which is able to give near Shannon limit performance with lttve complexity iterative
decoding is another well suited candidate. Garcia-Friasvel that desired compression
ratio can be achieved by properly punctured Turbo codeg|[i®Particular by puncturing
the information bits and the parity bits. A priori probatyilof the source is used to modified
the extrinsic information in the iterative decoding praze¥/hen channel error is present,
the rate of the Turbo codes has to be selected such that itliesmpth Shannon’s channel
coding theorem, in which case less puncturing is neededefberberror protection.

5.4.1 M-TCOM System Structure

The proposed system is illustrated in Figure 5-11. In thiefdhg the development and the
rationale is carried out for ECSQ, but it can be easily extend ECTCQ. Conventional
separated approaches (figure 5-12) achieve rate redugtiosifiy arithmetic coding at the
output of the quantizer. When the block length is sufficiehtgh, the rate of the arithmetic
codes approaches the entropy of the sources [117]. Howiheyr,are very sensible to
channel error. A single bit in error at the output of chanreglatier can eventually propagate
forever. That is the reason why these schemes need verygsBBR conditions at the
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output of channel decoder. Instead of arithmetically emgpthe quantization indexes, the
JSCC scheme provides compression and error protectionnaa todes as explained in the
following.

Callq € NV the quantization indexes vectagre (0, ... Q — 1). Suppose further th&) =

2L, The sequencq is an independently identically distributed sequence wigtobability
mass function (pmf)Py(¢). The indexes are mapped into binary bitstream by using a
one-to-one mapping : Zg — F% such thatu(q) = (u1(q), - .., pr(q)). Call B, the

£-th bitplane obtained by applying the mappipgto the sequencg componentwise, i.e
B, = we(q), for¢ =1, ..., L. After interleaving, each bitplane is mapped onto a distinc
channel codeworet,, such that the composition of all the codewosds= (xy, ..., x1.)
represents the transmitted codeword. The total codewdheéspassed through the AWGN
channel and the observation is givenyy= (y1, ..., y1),

y:\/fx—l—u

wherev is the circularly symmetric AWGN with per component variang/2, T' is the
signal to noise ratio.

Defineb; . 2 (11(q), -, 1e(q)) = pt(q). For each bit plane we define the conditional
marginal probability atleved = 1,...,L as

P(0fbrs—1) 2P(e(g) = Olpne—1(q) = be_1, -, pa(q) = by)

:quzQzﬂl(Q):07N€71(Q):bl:é—l PQ(q) (5_23)

ZqEZQZNfl(Q)Zbuil Po(a)

By applying the chain rule, we can express the entropy ofdhepées as:

L
H(q) =Y H(pe(@)lie-1(a), -, pa(q)
Y4

Il
—

M-

Z P(bre—1)H (p1e(q) |1y (q) = brie—1)
1,

> Po(q)h(Pu(1]b1s—1))

Lbie-1 gelig:pt="(q)=b1.e 1

M= M=

H, (5-24)

o~
Il

1
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where the second summation is done over all the possiblenveslizations of the vector
bi.o_1, P(b1.o_1) is the probability thatu!™' = b, ; andh(p) = —plog(p) — (1 —
p) log(1 — p) is the binary entropy function and whekfg is defined as

H 2y 3 Po(@)h(Py(0[br.e—1))

bre—1 gelig:pi ™ (9)=br.c—1

Consider a binary linear systematic code of rAte- k£/n defined by a generator matr,

and letc € F5 denote the information vector. The corresponding codevgabtained as

x = cG that splits into thesystematic paréind theparity vector called herai. Examples

of powerful systematic binary linear codes are turbo paraibncatenated codes [1], and
irregular repeat-accumulate codes [66, 118]. In [65, 1@, hear codes and iterative
Belief Propagatiordecoding are shown to be able to provide data compressianidéh is

as follows. Consider for a moment a BSC channel. With sligbdification, the rationale
can be extended to AWGN channel. Letlenote a sequence of i.i.d. symbols such that
Pr(¢; = 1) = p. Then, we can produce the codewotdand retain only the parity part
u. This is our compressed sequence, of length k. The compression rate is given by
R. =1-Fk/n =1— R. Now, if the code is very powerful and is able to approach the
capacityC' = 1 — h(p) of a BSC with parametep, then the compression rate is as close
as desiredtd — R = 1 —1+ h(p) = h(p), i.e., to the source entropy. Of course, we
have to ensure that the source sequancan be reconstructed from the parity sequence
u. Let us suppose that the parity part of the code is transinitia another BSC with
crossover probability, then it can be shown (see [64]) that the decoder is fully\edeint

to a channel decoder that obserwevia the BSC channel with parameterandc via a
BSC with crossover probability. In other words, the statistics of the source yields an
“equivalent” noise statistics. The achievable transrissate, in terms of source symbols
per channel use, is given BY — h(p))/h(p).

We can get back now to our case. Suppose that we have a aslleétinear binary channel
codes with systematic encoders, with information lenithand rateR;, ..., Ry. Letuy
denote the parity part of code at levedf lengthm, = N/(Rie — 1). Suppose that level-

¢ code can recover with high probability the bitplaBg from the outputy, and using
the a priori probability?, ,,,(0]b1.,—1) defined in (5-23) and the knowledge of the previous
bitplanesb, ..., by_1, that have already been recovered at the previous decodiggss
This yields anecessaryeondition on the coding rat&, for successful decoding with high
probability, i.e

c(r)

N'/my < (C(T))/H, = Res g3 200

whereC'(T") is the capacity of the BI-AWGN channel. The overall codinig raf the scheme

(5-25)
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is upper-bounded by
N/
25:1 my
N'(CT)) _ o)
B N’Zéﬁzlgg H(q)
Note that for a perfect channel and an ideal entropy compregmplied to the sequence of

quantization indexeg, we obtain a rate of /(H (¢q)) source symbols per coded bit, which is
exactly the best achievable by the lossy source encoder@g@iSne, without the channel.

’[7:

(5-26)

Each turbo decoder will output the soft information, a poste probability, on the in-
formation bits for a particular bit-plane. Decoding theth bitplanes will provide the a
posteriori probabilities of the quantization indexd®P;(¢). These soft values are used
for the MMSE estimate of the quantizer reconstruction v&lu€he ‘soft’ reconstruction
sequence is given by

5 = ) ¢(q)APP(q) (5-27)

QEZQ

is determined foi = 1, ..., N’, where¢(q) is the dequantizer operation.

5.4.2 Simulation’s Results

In this section we discuss some results in terms of optinozadf the Turbo codes and
Reconstructed SNR (RSNR) of the M-TCOM approach. We comipeaeesults with the
separate scheme SSCC and the MTQ coupled with turbo codée following, the source
is Gaussian memoryless. As stated in the previous sectitineimoiseless case the M-
TCOM scheme can achieve the same performance of ECSQRCAI) the Shannon rate-
distortion function and? (D) the rate-distortion curve achieved by ECSQ, then, in thé lim
of large rate, it is possible to show that(D) — R(D) ~ 0.25 bits [117]. Figure 5-13
shows the comparison between the reconstructed signalide retio achieved by ECSQ
and MTQ vs rate, Shannon rate-distortion function and th® BCheme with 28 state and
R + 1 Lloyd-Max output points [59]. Note that MTQ outperforms EQ$or small rate
while as long as the rate increases the MTQ diverges fromatieedistortion function while
the ECSQ has a fixed asymptotic gap fréttD). This shows that in low rate region the M-
TCOM scheme coupled with ECSQ will be penalized with respedITQ based system.
Moreover, note that the performance of MTQ and TCQ is conipara

We compare, now the M-TCOM scheme and the MTQ, coupled witbd@aodes, when the
channel is AWGN. For this matter, we fix a target spectral iefficy» = 1/3 and a target
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Thresholds| —2.66 —1.61 —0.66 0.28 1.22 2.21 3.26

Probability | 3.9103 | 4.910~2 | 210~ | 3.5710! | 2.7810! | 9.7102 | 1.2810~2 | 5.510~4

TABLE 5-1. THRESHOLD VALUES AND PROBABILITY MASS FUNCTION OF THE IN
DEXES AT THE OUTPUT OF THEECSQ.

Py(0) : 0.611
P;(0[0) : 0.087 | P(0[1) : 0.965
P5(0]00) : 0.074 | P5(0[01) : 0.74 | P,(0]10) : 0.36 | P»(0[11) : 0.96

TABLE 5-2. CONDITIONAL PROBABILITY PER BIT-LEVEL.

RSNR, for exampl&RSNR* = 11.5dB. ECSQ achieves this RSNR féf (@) ~ 2.16bits.

However, since from (5-26) < % the target signal to noise ratio is given By ~ 0dB.

The ECSQ algorithm optimizes the codebook and the valuee§tlantization thresholds
with the constraint that the rate equals the desired entfbpy, 3]. Table 5-1 shows the
thresholds and the probability mass function of the indetéle output of the ECSQ with
target entropy (@)) = 2.16bits.

The Q—ary to binary mapping is defined simply as the natural binaappng that trans-

form an index into a binary stream. The definition of the magmllows to compute the
a-priori conditional probability per bit-plane. These af®wn in table 5-2. Finally table
5-3 gives the value of the average entropy per bit-pland ¢falsimn) and the bound on the
rate of the Turbo code per level given by (5-25) (second cajum

Note that the matrix of a-priori probability is a side infaation that needs to be sent error-
free to the decoder. However, a slight modification of thadliecoder defined in [65] can
estimate, at each iteration, the value of the a-priori podibies.

However it is not easy to find the exact rate, shown in the stcoiumn of table 5-3, by
puncturing ratel /3 Turbo codes. The results are given by conservatively chgadbie rate
of the codes. These are shown in the third column of tableFsrilly the last column show
the polynomial generator used for the simulations.

In [119, 120], the authors show that a priori probabilityséd polynomial generator selec-
tion gives better thresholds behavior. The optimizatiomwbo codes is not straightforward
and, due to the lack of analytical tools, exhaustive seacteeded in order to find good
polynomial generator and/or puncturing pattern. The EXRBI [27] provides with an ap-
proximate and asymptotic threshold and reduces the compleixthis exhaustive search.
Figures 5-14 and 5-15 show results in terms of thresholdmdadehrough EXIT Chart when
different polynomial generator are considered for lévahd levell. It is clear that for the
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H, R, R, | Polynomial
0.064 | 0428 | 042 | (5,7)
0.345 | 0.67 | 0.66 (31,23)
0.859 | 0.456 | 0.44 | (5,7)

W N =

TABLE 5-3. AVERAGE ENTROPY PER BITLEVEL, NOMINAL CHANNEL CODE RATE
!
(#W), QUANTIZED VALUES AND POLYNOMIAL GENERATOR FORH (Q)) = 2.16BITS.

first level polynomial generatais, 7) yields better performance than the others while for
the second level, polynomial generat@t, 23) outperforms all the others. The threshold
found by EXIT Chart idl';, s ~ 1.2dB for the three layers. Further ameliorations of per-
formance can be obtained by asymmetrically puncturing tineotcodes. The number of
parity bits punctured at the output of the first convoluticgracoder is different with respect
to the number of parity bits punctured at the output of th@sdencoder. The puncturing
pattern are randomly generated at each simulated framecetiéme results are obtained
by averaging over different puncturing pattern. Howeviecan happen that a particularly
“bad” realization of the puncturing pattern occurs, whidminates the performance. Fig-
ures 5-16 and 5-17 show the performance in terms of threstfaddymmetric punctured
Turbo codes for laye® and layerl when the best polynomial generator is considered. The
performance achieved by symmetric puncturing are also sliomcomparison. The EXIT
Chart are computed fdr = I'y, ;. From figure 5-16 we can see that for low rate and poly-
nomial generatof5, 7) asymmetric puncturing allows for a better threshdlg, , ~ 0.9

dB (first level), while figure 5-17 shows clearly that no impement in the performance
is achieved by asymmetrically puncturing the componenesad the second level. The
system, however, is limited by the threshold of the worsetayf the Turbo code at layer

£ works above its threshold, the propagation of errors deeiethe probability of correct
decoding at levelg + 1,..., L. However the use of asymmetric puncturing on lager
prevents from propagation of errors from layeto 1.

Figure 5-18 show the comparison between MTQ coupled witlh@godes and M-TCOM.
Also shown are the Shannon’s bound, the performance achlgy&CSQ in the noiseless
case and the threshold obtained via EXIT Chart. The perfoceauffers from an horizon-
tal and vertical loss mainly due to two factors. First beeanfshe sub-optimality of ECSQ
and second because analytical optimization of Turbo cadestipossible and too many pa-
rameters influence the behavior of these codes. An openis#uganalytical optimization
of different families of codes, as IRA or LDPC, where DE canigtten in closed form.

Finally, 5-19 shows the comparison between M-TCOM and SS&@rse in terms of
RSNR versus channel SNR. The Turbo code, in the SSCC, ismekguch that the two
schemes achieve the same spectral efficiency. In partithdamate of the Turbo code @57
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information bits per channel use, and the polynomial geoeia (37,21). We can clearly
see the difference between the separated scheme and thappmach. The separated
scheme needs a much higher input mutual information in dodachieve high RSNR per-
formances. This is due to the fact that the performancesecétithmetic code are strongly
dependent on the FER performances of Turbo codes and not Bn'Bte entropy decoder
can recover the indexes when the output of the turbo codesoisfeee, so it needs very low
FER performances in order to achieve close to optimal RSNR.

5.5 DPCM AND TURBO COMPRESSION

In this section we briefly generalize the analysis beforeraento take into account the
particularities of a more practical Differential Pulse @ddodulation scheme for robust
transmission of images over the wireless link.

In [57] Kim et al. introduced a low bit-rate predictive imageder, which consists of a
modified DPCM coder using multi-rate processing and the fiéler. Further rate reduc-
tion is achieved through allocating different entropy asde different areas of the image.
The joint decoder exploits the residual redundancy of trennkl encoder input bits and
produces soft-bits for the reconstruction to be used in tkediptive source decoder. This
scheme is again to be compared with SSCC setup where theesmder output (the output
of the entropy coder) is protected from channel noise by eotiwnal turbo codes. Figure
5.6 illustrates the proposed system. In the predictive @mcahe source image € RY

is first low-pass filtered and down-sampled two dimensigndll is then fed through the
DPCM encoder, which outputs the difference between the ekampled image and its pre-
diction. The prediction error imadé is quantized using a uniform quantizer and fed back
through the prediction loop. The prediction error imagh stintains residual redundancy
and this can be exploited through a classification processdaan its varying local statistics.
The prediction error image is first divided into blocks of tbaze, typically 4x4 pixels. The
block variances? is used as classification criterion. The image can then Issifiled into
M sub-sources based on the probability distribution of tleelolvariances. A Lloyd-Max
like algorithm is used to find the optimal variance represton values of each class such
that the over-all average description length is minimized given distortion. More details
can be found in [58].

For the SSCC approach it is possible to exploit the nonestatity of the source and to
achieve rate reduction by using the Adaptive Entropy CodkigC) method [58], i.e by
designingM different entropy codes, one for each class. The average wodd length
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using M sub-sources’,,, can be expressed as:

Cv = Z Cec,, Z/ o®)ps2(0?)do? (5-28)

d,m—1

whereCgc,, is the average code word length from entropy coderC,,(o2) is the code
word length function for coding clags. and ps:2(0?) is the probability density function
(pdf) of the block variances. The output of thé entropy encoders are concatenated and
fed into punctured Turbo codes to obtain rdte such that the spectral efficiency 1is
Instead of applying arithmetic code as entropy code to thentigation indexes of each
class followed by channel coding, the JSCC scheme descabede is concatenated to
obtain joint compression and protection against chanmet®rThe analytical formulation
defined in section 5.4.1 still holds with slight modificatitwat take into account that now the
sequence of indexes is piecewise independently identidatributed where each segment
has a probability mass function (pn¥),, (¢). Figure 5-21 show an example whéh = 3.

Without loss of generality, the indexes that belongs to #mesclass are grouped together,
i.e.q = (ai, ..., qu) andq € {0,..Q,, — 1} form =1, ..., M, whereQ,, = 2",
The total number of levels i§ = max,,,(L,,). The total entropy of the source is computed
averaging over all the classes

M
> Ho(pe(@)p1e-1(9); - p1(q) T,

1 m=1

p"qh

14

M

(5-29)

~
I

1

where we have defined the average entropy per class as

Hyp(pe(q) | pe-1(q)s - -5 p1(q))

L
=>. >, > PQ,,. (@) h(Pem (0]b1:0-1)) (5-30)

=111 gelg,, 1 @) =br.e 1

and the average entropy per level as

ZH (@) pe-1(a), -+ (@), (5-31)

and wherell,, is the probability of them-th class andP; ,,,(0|b1.,—1) is the conditional
probability at level and for the class, defined in 5-23.
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5.5.1 DPCM'’s Results

In this section we discuss some results in terms of entropgybauind on the rate and in
terms of the Peak Signal to Noise Ratio (PSNR) for 8 bit grafessource image, defined
as10 log;, % whereD is the mean squared distortion per pixel, vs channel capadie
simulations are run for BSC channel.

The test image is the monochromig2 x 512, “Lena” image and the JSCC system has
been design to work at a nominal channel parameter0.05. For the SSCC setup we use
arithmetic codes as entropy coders and the coder outputdesl by same Turbo codes.
Figure 5-22 shows the comparison between the JSCC with tée shown in table 5-4 and
the SSCC scheme with rafé; = 0.72 and generator polynomigB7,21) and(5,7). The
true spectral efficiency (by considering the second colufrtalge 5-4) isy = 1.25 source
sample per channel use, while the actual spectral effici@ghey to quantization of the rate)
is equal ton ~ 1.1 source sample per channel use.

The predictive coding scheme generally has the problemrof propagation. Our bitplane
setup ease the problem by relying on low BER performancerbbtoodes at the same time
avoid spending much synchronization bits as arithmetiesagted. Hence, we can achieve
a PSNR equal to the noiseless case for lower input mutuainvgtion. Here the results are
given for hard reconstruction of the source, further impraents can be obtained through
using so-called ‘soft-bits’ for reconstruction. The intigation of “soft-reconstruction” is
an interesting open issue.

5.6 CONCLUSIONS AND FUTURE WORK

This chapter has dealt with the construction of joint sowed channel code that achieve
close to optimal performance when AWGN channel is consitieféese schemes are prac-
tical implementations of the tandem encoder used in the HE#eme introduced in the
previous chapter.

The first part has been focused on the construction of maggssource code that guaran-
tee successive refinement of information and almost nonAgght layers. This scheme is
shown to be very resistant to channel errors, due to the liattconvolutional codes have
non-catastrophic encoders. This makes the scheme suitegifoatenation with good chan-
nel code as Turbo codes or LDPC to implement adaptive tresssom over noisy channel.

The second part has dealt with the construction of joint@and channel codes where a
simple quantizer is concatenated with a data compressian/e| protection scheme. It is
based on Turbo codes. This scheme exploits the redundarnicg aburce encoder output
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and it is less sensitive to channel errors than variabletthebgsed source encoder schemes.
Hence, it yields much better results compared to SSCC.

However, the comparison between the multistage trellisiiger and the Turbo compres-
sion based scheme, when the channel is AWGN, reveals that &h@ves better perfor-
mance. We think that analytical optimization of other faeslof codes different from Turbo
codes and the use of ECTCQ could achieve better perform&ieece, the potential of this
scheme is not fully explored. Further results on the apftinaf these schemes in the HDA
system are working progress.

An interesting generalization is to extend this scheme toeae progressive image trans-
mission through embedded quantization. The proposed sEleaicodes bit-plane by bit-
plane and decodes them in sequence, such that bit-glana be recovered after having
received the corresponding channel outputand after having decoded the previous bit-
planes at leveld, ...,/ — 1. Hence, the scheme is suitable foogressive transmission
By choosing the@-ary to binary mapping: such that it is embedded, the source can be
reconstructed at different levels of distortion frdn®, ..., ¢ bit-planes. If the reconstruc-
tion operation (from to s) is linear, then the reconstruction of the bitplanes canibely
added after interpolation for finer resolution. Severalrojgsues are still to be explored in
this area, of which some are subject to the author’'s on-gaagarch, and are discussed in
the next chapter.
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Fig. 5-1. Hybrid digital-analog scheme.

Fig. 5-2. Geometry of a successive refinement source codel lmesspherical code.
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Fig. 5-14. EXIT Chart optimization of polynomial generafor level 0 (see table 5-2).
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Fig. 5-17. EXIT Chart optimization of polynomial generafor level 1 (see table 5-2).
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Fig. 5-18. Comparison between MTQ ans M-TCOM.
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ECSQ + Turbo Compression
- Threshold I H(Q)=2.16, n~1/3
ith EXIT CHART /Symmetric Puncturing

/

ECSQ + AC + Turbo Code
H(Q)=2.16, n~1/3, RC =0.7

Code (37,21)

RSNR

Fig. 5-19. Comparison of the M-TCOM and SSCC based on ariiicreeurce code.

H, R, | Ry | Polynomial
0.071 | 0.9 | 0.88 (37,21)
0.374 | 0.65 | 0.64 | (37,21)
0.734 | 049 | 0.46 | (5,7)
0.805 | 0.46 | 0.44 | (5,7)
0174 | 08 | 0.78 | (37.21)
0.079 | 0.9 | 0.88 (37,21)

U W RS

TABLE 5-4. AVERAGE ENTROPY PER BIFLEVEL, NOMINAL CHANNEL CODING RATE
!
(ﬁml) AND QUANTIZED VALUES FOR DPCM AND POLYNOMIAL GENERATOR.
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Fig. 5-20. JSCC Using Turbo Compression and Error Protectio

B,
bl,l--bl,l bl+1,1--bj,l bj+1’1..bN/,1 ™ TC1 |—
|§ 7-th bit plane T e TCt —
@ G | — | 3 3 B,
- bl,Ll--bl,Ll
m=1 m=2 m=3 0 brir.biL,
""""""" 0 bj+1,L3--bN’,L3 = TL TCL | —
B.

Fig. 5-21. JSCC Using Turbo Compression and Error Proteetpplied to DPCM output.
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Fig. 5-22. Comparison between JSCC and SSCC. Here the JS@ithisatural binary
code as binary mapping. The SSCC are arithmetic codes wltb ttodes using the corre-
sponding generator polynomials




CHAPTER 6

Conclusions

In this thesis we have tackled some of the open problems fgsusked in chapter 1, re-
lated to the concept of efficient transmission of loss- ardydsensitive data over wireless
channels. We address in particular a multicast settingreviiie transmitter sends the same
common information to all the users in the cell. Dependinghenapplication, certain mea-
sures of signal delivery performance (distortion, BERaglel.) will be more critical than
others. For example in packet oriented transmission treeatatnot always delay-sensitive
but they typically require a quasi error-free link, whileaéog sources can be delay sensitive
but error-tolerant or they can have more relaxed consgraintthe delay.

In point to point scenarios, a good trade-off between réitgland efficiency is obtained by
coupling ARQ protocols and FEC. This gives rise to hybridesohs (HARQ) than can eas-
ily adapt to channel conditions. FEC handles most frequerdturring errors while ARQ
solves remaining FEC decoder failures with a retransmissquest. Motivated by the in-
creasing interest in iterative decodable codes we havgaeththe performance of HARQ
schemes coupled with LDPC in a single user setting and sleaant fading. We have
shown that ideally these codes approach optimal perforesanin this case the analysis
is done by means of powerful tools like DE, generalized tetaito account block fad-
ing conditions and HARQ protocols. However we have showi pinactical finite length
codes exhibits a considerable loss in performance due tbaled=ER behavior. Two ef-
fective methods to recover this gap are given and inteigigtithey achieve almost equal
performance, making LDPC codes attractive for implemerawrith HARQ schemes. The
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analysis of the complexity shows however that some savingoesobtained by triggering
the decoder only when the probability to decode is high. Ahoeétbased on asymptotic
analysis is considered prior to decode. It prevents usiagténative decoder if it is likely

to be non convergent, and it can be coupled with standardadetio stop the iterations to
further reduce the complexity. Additionally, some simpledification of the same algo-
rithm allows to achieve all range of trade offs between thhguut and complexity. Open
issues and extensions could be to explore more sophistigag®h construction in order to
improve the FER performance.

However a critical issue is to achieve good trade-offs betweliability, delay, performance
in a multicast setting. Hence we have analyzed the througbgriormance of HARQ pro-
tocols in such a framework. Strictly speaking these prdteme not scalable with the
number of users. However, if we are not too ambitious and petaonable limit on the
performance requirements, these protocols can be madtcpigcscalable. In order to
make HARQ protocols fully scalable an expurgated ensemblgésers needs to be con-
sidered, by selecting only a fraction of users to which tle@gmission is intended. We
show that under particular conditions the throughput oféntental redundancy schemes
equals the ergodic capacity of the system but with delaygrats to infinity. For selective
repeat based protocols, one achieves optimal performaitbdinte average delay but at
the expense of a penalty in throughput compared to incrahesdundancy based scheme.
We show that the performance of IR and of FEC coding are idahin terms of delay,
throughput and error probability, in the limit of a large noen of users.

In many cases, the sources that are transmitted over therkeére analog, for example
transmission of images, video, voice over the wireless. lilke schemes that are practi-
cally implemented nowadays are based on the separaticriperihat states that no loss in
performances is incurred by separating source and chaodel @esign. However it does
not take into consideration complexity and delay and it dosshold in a non ergodic sce-
nario or in a multiuser scenario. Consequently joint sowlt@nnel coding technique are
attracting a lot of interest in our field of research. Thes$eates achieve better performance
by linking together the source and channel code design. Wemmodel the multicast sce-
nario with a compound channel. In fact, the compound chamnmgler the assumption that
the encoder is aware of the channel coefficient of the useit knbws the statistic of the
fading, can model a Gaussian broadcast/multicast chanttebw infinity of users each of
one experiencing a different channel coefficient. Furtherassumed that the decoder has
perfect channel state information.

In this setting we study three different strategies; the fr$ased on a successive refine-
ment source encoder coupled with a time-sharing transomissiheme, the second couples
the same source encoder with a superposition transmisstonitjue. Finally, the third is an
Hybrid Digital Analog (HDA) scheme based on bandwidth andi@osplitting that super-
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imposes the output of a digital tandem encoder with an arexlegder. These three schemes
are optimized in order to yield minimal end-to-end averaigéodion and are compared in
terms of average distortion vs. average and instantanegoal $0 noise ratio. The key
conclusions are that superposition schemes and progeesgiemes give graceful degrada-
tion of performance. Furthermore, superposition scheroe®ewee better average distortion
results. However the hybrid scheme is very close to the ORpAirfal performance the-
oretical attainable) curve for a wide range of instantasezsignal to noise ratios, showing
very clearly that most of the gain is due to the analog braifitie algorithms that give the
optimal transmission parameters in the three cases arprgined and analyzed.

However, for the analytical analysis ideal source/chanadés are considered. Hence, a big
issue is the construction of practical codes that can aelpevformance close to the limits
mentioned above. In particular, we have analyzed the amtigin of tandem encoder that
can be used in the HDA scheme.

A Multistage Trellis Quantizer (MTQ) based on the scaledigar of a unique convolutional
encoder is shown to give results very close to the distoraba function. Moreover the re-
sults are independent from the statistic of the sourcediyiglalways the same performance
as in the Gaussian distributed source case, which is a vefylu®bustness property in
practice. Notably this can be interesting in implementetiorhere the probability density
function (pdf) of the source is a mixture of different pdf netetl, in general, as Gaussian.
The results obtained with this scheme in an ideal noiseleaanel are comparable to the
best results found in literature, that have to be found infaingly of Trellis Coded Quan-
tizer (TCQ). The latter schemes are known to be very seasitichannel-related errors,
while on the contrary, the multistage scheme proposed kerery robust to errors. This
advantage is due to the fact that the convolutional encaalebe non-catastrophic.

Another joint source channel coding scheme based on Mudtileurbo COMpression (M-
TCOM) is analyzed. In this scheme a linear code (Turbo cosle)sed to compress a
redundant digital source. This scheme exploits the fattthieainput bits are not fair coins.
This a-priori probability is considered to be known at thealter. This technique can be
coupled with entropy constrained scalar/vector quargjzarthe best Entropy Constrained
TCQ by mapping the output into binary streams. Practicallte®n the transmission of
images over a BSC channel are also given by coupling ouritiigomwith a Differential
Pulse Code Modulation based quantizer. It then shows reabhkrkesults, especially when
compared to the standard approach that consists on coatiatgithe quantizer with an
arithmetic code and a powerful channel code. This schemsadasieell suited to progressive
transmission of information when we consider an embeddedtier instead than ECSQ.

However, several issues are the subject of on-going workt &f all more extensive results
on the use of the MTQ and M-TCOM scheme in a HDA system, wilegmore insights
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into the behavior of such methods, and it will lead to moreusai® conclusions on the
construction of these codes.

So far we have shown that the MTQ and the M-TCOM have big piateriut the com-
parison between the two has been carried out in a specigliaasehen the output of the
ECSQ is compressed with a scheme based on Turbo codes. Tite ggg in favor of the
MTQ scheme. However, we think that better results, thatccéethd to opposite conclu-
sions, can be achieved by considering other families of€add.DPC or Irregular Repeat
and Accumulate (IRA). The degree distribution of these spdefact, can be analytically
optimized via DE, taking into account the particular stawetof the compression method.
This is shown to provide advantages compared to the use bbTaades.

Moreover, the outstanding results of ECTCQ motivate us #&iyae the concatenation of the
compression scheme based on optimized IRA with these kimgliaftizers, for the trans-
mission of images over the wireless link. This concatematidll surely give remarkable

gains, compared to the results given here, and have thet@btenapproach closely the
Shannon’s bound.

Overall, our conclusions tend to indicate that Multilevero/IRA compression and Mul-
tistage Trellis Quantizer can be considered as a viabldisolfor the problem of transmis-
sion of images over a wireless link in a multicast settingewehthe property of graceful
degradation of performance with respect to different digmaoise ratios, is fundamental.




CHAPTER 7

Feedback Systems for Multicasting Common
Information

7.1 COMPUTATION OF THE LIMIT FOR N — oo OF V(p(m), N, x)

In this section we want to show that

lim V(p(m),N,z) = lim Pr(X,, <N — [Nz]|) =4, (7-1)

N—o0 N—oo

wherel,, = 1if x < p(m), ¢, = 1/2 if x = p(m) and0 otherwise. The case when
x = p(m) is straightforward since we are computing the probabiligt & Binomial random
variable is less than its mean. Let us restrict to the casenwhe p(m) meaning that
N — [Nz] > E[X,,]. In order to compute the limit in (7-1) standard bounds ontéile
of binomial distribution can be used: here we applied theoaeptial Hoeffding’s bound
[121] to the Binomial RVX,,, ~ Bin(N,1 — p(m))

2

Pr(Xy, > E[Xon] + p) < e Vartm) (7-2)

In order to show the limits we need to show that> 0 arbitrarily small3 Ny such that
if N > Npthan|¢,, — Pr(X,, < N —[Nz])| < e. The limit holds by using (7-2) and
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settingp = N(p(m) — =) — 1. In fact,

|y, — Pr(X,, < N —[Nz]|)|=Pr(X,, > N — [Nz]))

_ (N(p(m)—2)—1)*
<Pr(X;, > N—Nz—1)) <e NI-pmpin) =¢

(7-3)
. . . _ (Nolp(m)—2)—1)®
The result is shown by settiny, solution ofe *No(i—r(m)r(m) = ¢. Analogously for the
conditionz > p(m) by noticing thatPr(X,, < N — [Nz]) < Pr(X,, < N — Nz).

7.2 PROOF OF THEOREM 2

Theorem
The supremum over R > 0 of . (z, R,T") is given by R(k)/(1 + k) for some k =
0,1,...,thatin general depends onz and T". O

Proof: Suppose that the maximum throughput is achieved lectsey R = R(k) — 0
whered is such that the average delay is still giveniy k£ + 1, then

R(k) =6  R(k)—5/2
K+l k+l

contradicts the fact tha® = R(k) — ¢ is the rate for which the throughput is maximum.
Suppose now that the maximum throughput is achieved Rith R(k) + . By definition
T =k + 2 and then
R(k)+d _ R(k)
k12 k4l
for ¢ sufficiently small. This shows thak (k) is a stationary point ofi., ,, and the rate that
maximize the throughput is one of ti&k).

7.3 PROOF OF THEOREM 3

Theorem

For independent Rayleigh fading SNRI" and IR protocol, define G,,(z) the cdf of the

random variable - 3" | AT, . Definez, = min(G,,(C(T'))). Thenforall z € (0, z4),

Moo (2, R, T") is increasing with R. Therefore, sup 7 (z, R,T") is achieved forR — oo
R>0

and 7 — oo, and itis equal toC(T). Also, for all = € (24, 1) sup 700 (z, R, T') is achieved
R>0
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for finite delay. O

Proof: Recall that), (., g ) is given by
R
1+ 0 Hz < p(m)} — 36(z — p(m))

In the following we skip the dependency of the parametersvamdall it simply ., . By
definitionp(m) = G,,(£), it follows that

Uoo(l” R7 P) =

B R
R _1
L+ laim) 25<m G:nlm)
> 732 > Gl (x) (7-4)
LGﬁll(m)J
We need to show thatz < (0,1)
lim G,!(z) =C(T) (7-5)

Call Z,, the RV defined a¥/,, 2 % S, Ali,, with meanE[Z,,] = C(T') = p. For
the definition of limit we need to show thet 3 my, such that ifm > mg than |G, () —
C(T)| < e. It follows that

G lz)—C(M)|<e = p—e<GHx)<p+e (7-6)

The functionG,,(.) is continuous and monotonically increasing and thus iofed that
Gm(p—e€) <z < Gp(p+ €). For the central limit theorer,,, converge in probability to
a Gaussian random variable with the same mean and variahtemEans that ¢; > 0 it
is possible to findn > m; such thatG,,(x + €) > 1 — €1; V €2 > 0 it is possible to find
m > mgy such thatG,, (i — €) < es. This implieses < 2 < 1 — ¢;. Thus it is sufficient to
takem > max(my,ms) S.tz € (€2, < 1 — ¢;) for the limit to hold.

For definition ofz 4, it follows thatV « € (0, z4) G;,}(x) < C(T). In particularsup,,, G, (z) =
C(T) andargsup,, G;,,}(z) = oo for (7-5).

Also note thatG,, ! (z) = Bm) if the limit for m — oo is a constant different from zero

m

and infinity, than alsd? = ©(m). This means that

SUD oo = SUP Noo = C(I) V z € (0,24)
R m

Forx € (w4,1), for definition it exists a valuen < oo such thatG;!(z) > C(T), this
already show thatupy 7., > C(I") andargsupp 1. < m.
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7.4 PrROOF OF THEOREM 4

Theorem:
For the SR protocol, sup 7 (z, R,I") is always achieved for finite R and delay. In
R>0

particular the optimal R can be found asR(k) = F(k + 1) — ¢ where k is the index
that maximize the following sequence

bli] = T [F(i+1)—¢€] (7-7)

and X
Fi) = [1og2(1 - r10g<1 - x))]
for arbitrarily small epsilon. O
The throughput is defined as
R
Moo = Tloo(x’ R’ F) - log z 1 log z logz
L Lise) - go(Lisks ) - iose)

R_q

and recall thaty = <1 — e‘—2 T > Consider the values at such that

log x

<k+1
loga

k<

After some algebra we find th#&t must satisfy the following inequality
F(k)<R<F(k+1)

where
F(k) = [1og2(1 - Flog(l . x%))]
R

WhenF'(k) < R < F(k + 1) the average delay is a constant equat @ndn., = 7.
Moreover,

R(k) sup Noo = F(k+1) —¢

Re(F(k),F(k+1))

with € arbitrarily small. Define novb|:] & 11%4(:2

it follows directly form computation that

lim b[k] =0 and %in% blk] = logy[l —T'log(l —z)] — €

k—oo

This implies that thewgsup,blk] < oc.
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