A. Quarteroni and A. Valli, Domain decomposition methods for partial Differential Equations, 1999.

C. Carlenzoli and A. Quarteroni, Adaptive domain decomposition methods for advection-diffusion problems, The IMA, Mathematics and its Applications, pp.165-186, 1995.

B. Despres, Domain decomposition methods and the Helmholtz problem, Mathematical and Numerical aspects of wave propagation phenomena, SIAM, pp.44-52, 1991.

. Genevì, Résolution numérique par une méthode d'´ eléments finis duprobì eme de Dirichlet pour le laplacien dans un polygone, C.R Acad. Sc. Paris, t, vol.286, pp.791-794

DOI : 10.1016/B978-0-12-358503-5.50013-0

B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Communications on Pure and Applied Mathematics, vol.28, issue.3, pp.313-357, 1979.
DOI : 10.1002/cpa.3160320303

B. Engquist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, MAth, Comp, vol.31, issue.139, pp.629-651, 1977.

P. Charton, F. Nataf, and F. Rogier, Méthode de décomposition de domaine pour l'´ equation d'advection-diffusion, C. R

. Acad and . Sci, Paris,t. 313, serie I, pp.623-626, 1991.

]. F. Nier, Remarques sur les algorithmes de décomposition de domaines

F. Nataf and F. Rogier, Outflow boundary conditions and domain decomposition method, Contemporary Mathematics, vol.180, pp.289-293, 1994.
DOI : 10.1090/conm/180/01984

F. Nataf, F. Rogier, and E. De-sturler, Domain decomposition methods for fluid dynamics Navier-stokes equations on related non linear analysis [15] F.Nataf and F.Nier. Convergence rate of some Domain Decomposition Methods for Overlapping and Nonoverlapping Subdomains, Numerische Mathematik, vol.75, pp.307-377, 1995.

C. Japhet and F. Nataf, The best interface Conditions for domain decomposition methods : Absorbing boundary conditions To appear in Artificial Boundary Conditions, with applications to computational Fluid Dynamics Problems [17] F.Nataf and F.Nier Convergence of Domain Decomposition Methods via Semi-Classical Calculus, Commun in Partial Differenrial Equations. [18] H.A.Schwarz. ¨ Uber einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, pp.1007-1059272, 1998.

T. Hagstrom, R. P. Tewarson, and A. Jazcilevich, Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problem [20] P.L.Lions. On the Schwarz Alternating Method I, First Int, 1988. [21] P.L.Lions. On the Schwarz Alternating Method III A variant for Nonoverlapping Subdomains,Third Internationnal Symposium on Domain Decomposition Methods for Partial Differentiel Equations, pp.299-302202, 1988.

V. A. Kondratiev, Boundary problems for elliptic equations in domains with conical or angular points

P. Le and . Tallec, Domain decomposition methods in computational mechanics, Computational Mechanics Advances, vol.1, issue.2, pp.121-220, 1994.

F. Tony, T. P. Chan, and . Mathew, Domain decomposition algorithms, Acta Numerica, pp.61-143, 1994.