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Thesis abstract

This thesis report describes new designs for transmitters and receivers of bit-interleaved coded
modulations over multiple antenna channels. The objective is to achieve near Shannon capacity
performance over ergodic channels and near outage probability performance over block fad-
ing channels. Iterative joint detection and decoding are applied in the aim of achieving near
maximum likelihood performance. Design criteria are derived for each block optimization from
the error performance expressions under the ideal interleaving assumption. First, we describe
the binary mapping optimization for ergodic channels by introducing the new concept of mul-
tidimensional mapping that provides large amount of coding gain. We achieve near capacity
performance either with turbo-codes or with multi-dimensional mappings associated with a sim-
ple code. Then, we present the bit-interleaved coded modulation with linear precoding as a
Space-Time code for multiple antenna block fading channels. We show that the channel inter-
leaver is the fundamental part of the bit-interleaved coded modulation calling the shots about the
achieved diversity. We describe the linear precoding optimality condition and a class of quasi-
optimal linear precoders. The minimal linear precoder size providing full diversity is deduced
from a modified Singleton bound applied to the global Euclidean code. We show that full diver-
sity and quasi-optimal coding gains are observed for a given error correcting code. Finally, we
achieve near outage capacity performance thanks to turbo-codes. Next, iterative joint detection
and decoding techniques are considered, we describe a near optimum soft-input soft-output list
sphere decoder which allows the computation of a posteriori probabilities for very high spectral
efficiency transmitter schemes with reduced complexity.
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Résumé de la these en Francais

Introduction

Les communications numériques sont apparues en 1840 avec les transmissions télégraphiques
basées sur le code inventé par Samuel Morse. Emile Baudot a amélioré le rendement des trans-
missions sur lignes téléphoniques en 1874 avec le code Baudot. En 1880, Alexander G. Bell
et Thomas Edison ont développé la théorie de la téléphonie (c’est-a-dire la transmission de la
voix sur des cables électriques). En 1924, les études d’Harry Nyquist ont permis de réduire la
distorsion lors des transmissions télégraphiques. John Baird a ensuite implémenté un systeme

de télévision dont le rendement était de 5 images par seconde et 30 lignes par image.

Les communications numériques sont devenues un sujet de grand intérét pour a la fois les
mathématiciens et les ingénieurs depuis I'introduction d’un modele mathématique pour la théorie
de linformation par Claude E. Shannon en 1948 aux laboratoires Bell. Il a aussi introduit le
concept fondamental d’information et de capacité : “Quel est le rendement maximal avec lequel
on peut transmettre sur un canal donné?”. Une fois cette limite fondamentale déterminée, on
peut se poser la question : “Comment concevoir un systéme de transmission qui approche au
mieux cette limite?”. Cette question hante l'esprit de milliers de chercheurs depuis. Sans aucun
doute, les progres des télécommunications sont intimement liés a ’évolution technologique du
dernier siecle. Les systemes de télécommunications occupent de plus en plus de place dans nos

vies depuis que les téléphones mobiles se sont démocratisés dans le milieu des années 1990.

Les objectifs d’aujourd’hui dans le domaine des télécommunications radiomobiles sont :
améliorer la qualité de transmission pour la voix et les données (qualité de service), accroitre le
débit (les services), minimiser le cott des équipements grace a des traitements algorithmiques
de plus en plus puissants, et enfin maximiser le nombre d’utilisateurs qui peuvent recevoir ou
transmettre des données en méme temps. Tous ces objectifs sont liés a la couche physique, et
en particulier aux technologies de communications numériques. Finalement, ces objectifs ne
seront atteints conjointement qu’en trouvant une solution pour transmettre des données avec un

rendement maximum et un taux d’erreur minimal.

La plupart des transmissions radiomobiles s’effectuent sur des canaux sélectifs en fréquence.
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Depuis une dizaine d’années, le couplage des techniques multi-antennes et des modulations a sous
porteuses orthogonales a permis a la fois d’augmenter les débits tout en supprimant les inter-
férences entre symboles temporels. Les antennes multiples en émission et en réception, ainsi que
d’éventuelles diversités temporelles ou fréquentielles doivent étre exploitées pour améliorer les
performances. En pratique, les antennes multiples sont déja prévues pour P'UMTS, la troisieme
génération de téléphonie mobile. Pour la quatrieme génération de téléphonie mobile, leur usage

devrait étre encore plus intensif, ainsi que I'utilisation des techniques OFDM.

Dans un futur (proche?), les efforts vont se concentrer dans I’amélioration des débits pour les
réseaux sans fil, notamment pour fournir un transfert de données haut débit sur les mobiles. Par
exemple, HiperLAN 1 est un protocole de réseau sans fil local permettant des débits de 1Mb/s a
20Mb/s. Les normes HiperLAN 2 ou IEEE 802.11 (Wifi) supportent des débits variant de 6Mb/s
a b4Mb/s, et le IEEE 802.16 (Wimax) un débit maximal de 70 Mb/s. L’objectif n’est pas de
rivaliser les transmissions filaires, mais de fournir une connexion confortable, avec 'avantage
supplémentaire de la mobilité. Ceci ne sera pas envisageable sans 'utilisation d’antennes multi-

ples.

Ce rapport de these présente de nouvelles méthodes d’émission et de réception basées sur les
modulations codées a bits entrelacés et optimisées pour les canaux a antennes multiples. Nous
nous placons dans un contexte ou l'ordre de diversité temporelle ou fréquentielle du canal est
faible ou si la structure d’émetteur/récepteur n’en récupere qu'une partie pour des raisons de
complexité, de flexibilité ou de largeur de bande, comme dans le cas des modulations OFDM. Un
domaine d’application privilégié de cette these est donc la transmission haut débit de données

a I'intérieur de batiments.

Plus la diversité du canal de transmission a évanouissement est élevée, plus grande est la
possibilité d’obtenir des performances proches du cas idéal du canal sans évanouissements. Dans
le cas ou la diversité fréquentielle ou temporelle du canal est limitée, il est primordial de con-
cevoir un systeme capable d’exploiter les faibles ordres de diversité disponibles pour garantir des
performances et un débit acceptables. Une solution matérielle pour lutter contre les canaux aux
faibles ordres de diversité est de prévoir des antennes multiples & I’émission et/ou a la réception
et d’exploiter la diversité spatiale apportée par les canaux de transmission supplémentaires et
potentiellement décorrélés. Cette these s’inscrit donc dans 'axe de recherche des techniques
MIMO (Multiple-Input Multiple-Output) qui ont connu un grand essor depuis la fin des années
1990.

Le premier objectif de cette these est par conséquent d’atteindre des performances proches
de la capacité au sens de Shannon pour les canaux ergodiques. Nous cherchons ensuite a obtenir
des taux d’erreur proches de la capacité de coupure du canal a antennes multiples subissant
des évanouissements par blocs. Un traitement itératif de détection et de décodage conjoints est

effectué dans l'objectif d’atteindre les performances d’un récepteur a maximum de vraisemblance.




Résumé de la these en Francais 19

Les criteres de conception de chaque organe de la modulation codée sont déduits des expres-
sions des performances calculées sous la contrainte d’optimalité de ’entrelaceur. Nous présen-
tons dans un premier temps des optimisations de I’étiquetage binaire et introduisons la notion
d’étiquetage multidimensionnel. Sur les canaux a antennes multiples ergodiques, des perfor-
mances proches de la capacité de Shannon sont aussi bien atteintes en utilisant des turbo-codes

que des étiquetages optimisés couplés a des codes correcteurs élémentaires.

Dans le cas des canaux a antennes multiples et évanouissements par blocs, la modulation
codée a bits entrelacés est un code spatio-temporel. Nous montrons que ’entrelaceur de canal
est la piece maitresse du systeme, dictant sa loi quant a 'ordre de diversité observé au récepteur.
Nous introduisons des précodeurs linéaires a I’émission, dérivons un critere d’optimalité pour
leur conception, et présentons une classe de précodeurs quasi optimaux. Le facteur d’étalement
spatio-temporel minimal garantissant une diversité maximale est déduit de la borne de Single-
ton appliquée au code euclidien global. Nous montrons que les diversités maximales et gains
de codage quasi optimaux sont atteints pour chaque configuration de canal et pour un code
correcteur donné. Des performances proches de la capacité de coupure du canal sont obtenues

grace a l'utilisation de turbo-codes.

Finalement, nous présentons un détecteur a entrées souples et a sorties souples quasi optimal
et a complexité réduite pour les modulations a hautes efficacités spectrales transmises sur des

canaux a antennes multiples.
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Chapitre 1 : Bases de théorie de 'information

La théorie de l'information, fondée par Claude E. Shannon dans les années 1940, définit les
limites fondamentales d’un systéeme de transmission. Plus particulierement, pour les sujets
abordés dans cette these, elle fixe le débit maximal avec lequel on peut transmettre sans erreur
sur un canal dont ont connait certaines données statistiques. L’exemple le plus connu est celui
du canal a bruit additif blanc gaussien, sur lequel le débit est maximisé par ’émission de sources
gaussiennes. Bien siir, on peut déterminer la capacité de canaux plus complexes tels que les

canaux a évanouissements, avec ou sans interférences entre symboles.

Dans le premier chapitre de ce rapport de thése, nous présentons les résultats fondamen-
taux de la théorie de I'information pour les canaux & antennes multiples. Pour les canaux a
évanouissements ergodiques, la capacité au sens de Shannon illustre I'intérét d’utiliser plusieurs
antennes en émission et en réception, a la fois en terme de débit et de performances. La limite

fondamentale qu’est la capacité n’est atteinte que sous la contrainte d’entrée gaussienne.

L’information mutuelle du canal a entrées discretes est une limite plus pragmatique puisqu’elle
tient compte de la modulation linéaire utilisée, et donne ainsi une indication sur les meilleures
performances qu’on peut espérer atteindre en pratique. Le choix de la constellation multidi-
mensionnelle utilisée pour la transmission de données appartenant a un alphabet discret, a une
importance primordiale sur les performances observées. Ceci est confirmé par la théorie de
I'information. En effet, on peut montrer qu'un choix judicieux de transformation linéaire multi-
dimensionnelle peut améliorer les limites données par 'information mutuelle entre 'entrée et la
sortie du canal. La transformation linéaire répartit en effet les points de la constellation initiale
sur un grand nombre de dimensions, de sorte que l'alphabet des points qu’on peut transmet-
tre par dimension soit largement augmenté. Par 'effet du théoréeme central limite, I’entrée du
canal obtient des propriétés d’autant plus proches de la loi gaussienne que le nombre de points
mis en jeu (lié a la taille de la constellation initiale ou au nombre de dimensions traitées con-
jointement par la transformation linéaire) est grand. C’est ce principe qui motive depuis des
années le codage sur les réseaux de points et les codes spatio-temporels. Bien sur, ce principe
s’applique directement aux canaux MIMO ergodiques et de nombreux travaux illustrent 1’effet

de la “gaussianisation” du canal par des rotations.

Dans le cas des canaux non ergodiques, ou encore qualifiés de canaux a évanouissements par
blocs, la capacité est nulle. En effet, chaque mot du code correcteur d’erreur voit un nombre
fini de réalisations de canal et, quel que soit le rendement du code, il existe toujours au moins
une réalisation suffisamment mauvaise pour qu’aucune transmission sans erreur soit possible. La
probabilité qu’une telle réalisation se produise est appelée probabilité de coupure du canal. Cette
derniere sera calculée avec une entrée gaussienne ou discréte et constituera la limite fondamentale

du canal a antennes multiples et a évanouissements par blocs.
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Considérons une mot de code gaussien suffisamment long transmis sur un canal a bruit additif
blanc gaussien. Le module au carré d’un vecteur gaussien correspondant & un mot de code suit
une loi de Nakagami d’ordre élevé, qui se rapproche d’autant d’une impulsion de Dirac que le
nombre de dimensions mises en jeu est grand. Ainsi, les éléments du code se situent avec une
grande probabilité proche de la surface d’'une sphere multidimensionnelle, qu’on appellera sphere

de Shannon.

Quand des entrées discretes sont utilisées, on peut dénombrer le nombre total de mot de
codes. L’objectif d’'un bon codage est de répartir ces mots de code sur la surface de la sphére
afin de les séparer les plus possibles les uns des autres pour des raisons évidentes de résistance
au bruit additif. Un code de Shannon est défini comme un code satisfaisant cette condition.

L’analogie entre le codage et la quantification de sources gaussiennes est remarquable.

Dans le cas d’un canal MIMO a entrées gaussiennes, la sphere est déformée par les différentes
atténuations du canal de sorte qu’elle devient une ellipsoide. L’objectif est donc de construire
un code discret qui suit parfaitement les évolutions de l’ellipsoide et dont les mots de code sont
distribués le plus uniformément possible a sa surface. Nous verrons par la suite que la premiére
condition est directement liée a l'optimisation de l'ordre de diversité apres décodage tandis que
la deuxiéme condition est a la fois liée a la maximisation de I'ordre de diversité et du gain de

codage.

Nous verrons qu’un canal MIMO peut étre converti, moyennant certaines conditions, en un
modele de canal a évanouissements par blocs en entrée du décodeur. Nous pouvons donc nous
interroger sur les capacités d’un code correcteur a exploiter la diversité d’un tel canal. La borne
la plus simple sur la distance minimale d’un code correcteur d’erreur est la borne de Singleton,
qui existe pour tout code linéaire construit sur un alphabet g-aire. Cette borne ne dépend que
du rendement du code. Quand un code correcteur est transmis sur un canal a évanouissements
par blocs indépendants, on peut le représenter comme un code de longueur égale au nombre de
blocs du canal et dont la taille de 'alphabet est liée au nombre de bits d’informations transmis
par blocs. Lors d’'un décodage a maximum de vraisemblance de ce code, si un mot différent
du mot transmis est décodé, le nombre des symboles différents entre les deux mots de code,
c’est-a-dire la distance de Hamming sur le code g-aire, définit la diversité de la paire considérée.
La borne de Singleton donne une borne supérieure sur la distance minimale du code, et donc

sur l'ordre de diversité maximale observé en sortie du décodeur.
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Chapitre 2 : Modele et performances de la modulation codée a

bits entrelacés appliquée a des canaux a antennes multiples

La seconde partie de ce document présente le modele du systeme et les notations. Nous nous
consacrons a 1’émission de longs blocs, ce qui impose de lier les informations de la trame au
moyen d’une modulation codée. En effet, on montre en annexe A que toute segmentation
en codes indépendants des données a transmettre sur un canal non ergodique introduit une

dégradation, souvent tres significative, du taux d’erreur par trame.

Le code euclidien associé a un systeme de transmission est défini comme la bijection entre
les mots d’informations et un point dans ’espace euclidien multidimensionnel correspondant au
vecteur d’observation en sortie du canal, avant I’ajout du bruit. Par exemple, dans le cas des
modulations codées a bits entrelacés, le code euclidien est défini par la concaténation d’un code
correcteur d’erreur, d’un entrelaceur sur les bits codés, d’un convertisseur bits vers symboles

complexes d’une modulation, d’un éventuel précodage linéaire et du canal de transmission.

L’étude de bonnes stratégies d’émission pour les canaux MIMO est focalisée sur la conception
d’une modulation codée a bits entrelacés pour les canaux multi-antennes. En effet, la structure
aléatoire inhérente a l'entrelaceur sur les bits permet, dans le cas de mots de code suffisam-
ment longs, de satisfaire naturellement a leur disposition proches de la surface de ’ellipsoide
de Shannon. Malheureusement, la répartition uniforme des mots de code a sa surface n’est pas
vérifiée avec un entrelaceur purement aléatoire. Nous verrons dans le chapitre 3 quelles sont les

conditions a vérifier pour obtenir un code aussi proche que possible du code de Shannon.

Afin de trouver les criteres a optimiser, nous dérivons les probabilités d’erreur par paires
entre deux mots de code du code euclidien. Nous définissons la propriété d’entrelacement idéal,
essentielle pour I’étude des modulations codées a bits entrelacés. En effet, cette propriété assure
que les bits erronés sont transmis lors de temps symboles différents et uniformément sur tous les
états de canal dans le cas des canaux a évanouissements par blocs. Cette propriété a pour avan-
tage de garantir un ordre de diversité maximal et un gain de codage optimal. Cependant, cette
propriété est idéaliste puisqu’elle impose des conditions d’entrelacement devant étre satisfaites
pour chaque paire de mots de code sans s’inquiéter de la structure du code correcteur d’erreur,
et donc de l'existence d’un entrelaceur réel satisfaisant ces conditions. Nous verrons par la suite
que la borne de Singleton donne la condition d’existence d’un tel entrelaceur, et nous présen-
terons la construction d’un entrelaceur optimisé qui satisfait les propriétés d’entrelacement idéal

avec une bonne probabilité.

Dans un premier temps, et afin de connaitre les criteres de conception de la modulation
codée a bits entrelacés sur les canaux a antennes multiples, nous dérivons les calculs exacts de la
probabilité d’erreur par paire pour les canaux ergodiques. Ce calcul se décompose en plusieurs

étapes. Nous exprimons tout d’abord la fonction caractéristique de la variable de décision
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sur un des temps symboles observant un bit erroné. Cette fonction caractéristique est ensuite
moyennée sur ’ensemble des réalisations du canal. La fonction caractéristique de la variable de
décision globale associée a la paire de mots de code en est déduite. Une décomposition en parties
fractionnaires permet ensuite de calculer la distribution de probabilité, et donc la probabilité

d’erreur par paire moyenne.

La borne de I'union sur le polynéme énumérateur de poids du code correcteur d’erreur permet
d’évaluer de maniere tres précise le taux d’erreur par trame ou binaire de la modulation codée
pour des rapports signal a bruit hauts et modérés, et dans le cas d’un canal ergodique. Le gain de
codage est extrait de I'expression de la probabilité d’erreur par trame, et sera utilisé par la suite
comme critere de conception des étiquetages binaires. La borne de 'union est précise sur un
canal ergodique car 'ordre de diversité d’une probabilité d’erreur par paire est proportionnelle
a la distance de Hamming entre les deux mots de code du code binaire. Placons-nous au dessus
d’un certain rapport signal a bruit. Seuls les points correspondants aux mots de code a la
distance minimale dans le code binaire sont significatifs dans la borne de I'union car ils ont des
performances dont I'ordre de diversité est le plus faible. De plus, tous les mots de code étant a la
meéme distance de Hamming que le mot de code émis ne sont pas a la méme distance euclidienne
apres entrelacement, modulation et envoi sur le canal. La décroissance exponentielle de la densité
de probabilité du bruit gaussien assure de plus que seules les probabilités d’erreur par paires
correspondant aux voisins de distance euclidienne minimale seront significatives dans le calcul
de la borne de 'union. Ainsi, les termes significatifs de la borne de 'union sont & la distance
euclidienne minimale ce qui conduit & une borne supérieure du taux d’erreur suffisamment précise
dans le cas des canaux ergodiques. A titre de remarque, la borne de I'union est principalement
précise car nous avons dérivé un calcul exact des probabilités d’erreur par paire sur les canaux
MIMO ergodiques. Les autres méthodes d’évaluation des performances qu’on peut trouver dans
la littérature sont soit imprécises car elles utilisent la majoration de la fonction de Marcum par
une exponentielle, soit elles utilisent des intégrations numériques, ce qui est moins élégant que

la forme exacte de la probabilité d’erreur par paires présentée dans ce chapitre.

Si le canal a antennes multiples subit des évanouissements par blocs, la borne de 'union n’est
plus valable. En effet, dans I’hypothese ou la condition d’entrelacement idéale est vérifiée, toutes
les paires de mots de code ont la méme diversité. Pour simplifier, supposons que le systeme se
comporte comme sur un canal additif blanc gaussien a la différence pres que 1’énergie du code
euclidien, et donc les distances entre les points, varient en fonction des réalisations du canal
alors que la variance du bruit reste constante. De maniere completement équivalente, on peut
considérer que c’est la variance du bruit qui varie en fonction de la réalisation du canal. 1l
existe toujours une réalisation du canal telle que I'atténuation correspondante soit extrémement
faible. Ceci correspond & un niveau de bruit équivalent tres élevé sur le canal AWGN, situation
pour laquelle la borne de I'union est tres mauvaise. Cependant, des bornes plus précises (qui

estiment mieux les taux d’erreur pour les niveaux de bruits forts), telles que la borne de la
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sphere tangentielle, peuvent étre utilisées, et la probabilité d’erreur par paire reste la quantité

fondamentale & optimiser pour améliorer les performances.

Nous dérivons la probabilité d’erreur par paire sur les canaux a évanouissements par blocs
en factorisant les distances qui observent le méme état de canal. Les distances factorisées sont
transmises de maniere virtuelle sur un canal ergodique, ce qui permet une application immédiate
des résultats exposés auparavant. De plus, un précodeur linéaire peut se révéler indispensable
dans certaines configurations de rendements tres élevés et de diversité de canal tres faible. Nous
calculons la probabilité d’erreur par paire dans le cas du précodage linéaire en considérant la
matrice de précodage comme un corrélateur du canal. La fonction caractéristique de la trace
de la matrice de Whishart permet le calcul exact de la probabilité d’erreur par paire, dont on

extrait le gain de codage, qui sera le critere d’optimisation du précodeur linéaire.

Nous disposons a la fin de ce chapitre des expressions exactes des probabilités d’erreur par
paire sous la condition d’entrelacement idéal. Nous allons en déduire dans le chapitre 3 quels

sont les parametres et les criteres de 'optimisation de la modulation codée a bits entrelacés.
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Chapitre 3 : Optimisations de la BICM pour des canaux MIMO

Le troisieme chapitre de cette these traite de 'optimisation de I’émetteur, c’est-a-dire de chacun
des blocs de la modulation codée a bits entrelacés : le code correcteur d’erreur, ’entrelaceur de

canal, I’étiquetage binaire associé a la modulation complexe et le précodage linéaire.

Dans un premier temps, nous nous intéressons aux canaux ergodiques. Notre objectif est
d’atteindre des performances tres proches de la capacité au sens de Shannon. L’expression
du gain de codage illustre I'impact de I'étiquetage binaire sur les performances de la modula-
tion codée. Le critere de conception des étiquetages binaires donné par la méthode du génie
est équivalent a celui donné par les performances du décodeur a maximum de vraisemblance
sous la contrainte d’entrelacement idéal. Cette derniére hypothese est aisément obtenue dans
le cas des canaux ergodiques par 'utilisation d’un entrelaceur aléatoire suffisamment long. Le
gain de codage est maximisé si les distances obtenues par la complémentation d’un seul bit
dans 'étiquetage binaire sont maximisées. Nous introduisons donc la notion d’étiquetage mul-
tidimensionnel qui permet d’augmenter le nombre de dimensions dans lesquelles s’étendent les
distances élémentaires, et donc d’atteindre des gains de codage plus élevés. Nous atteignons des
performances proches de la capacité de Shannon en couplant un étiquetage multidimensionnel a
un code correcteur d’erreur tres simple pour des raisons de convergence. En effet, un décodeur
a maximum de vraisemblance étant trop complexe, on utilise un traitement itératif qui permet
d’atteindre des performances trés proches de 'optimal & un niveau de bruit suffisamment élevé.
Il existe un niveau de bruit critique en deca duquel aucune convergence n’est possible, c’est
cette valeur qu’on compare a la capacité de Shannon. En effet, pour tous les niveaux de bruit
plus faible, les performances sont en dessous des performances cibles imposées par les couches
réseau supérieures. Nous pouvons atteindre des performances comparables a celles obtenues avec
un turbo-code et un étiquetage de Gray. La conclusion de cette étude est qu’on doit toujours
trouver un juste équilibre entre protection euclidienne et algébrique : la capacité de correction
du code correcteur d’erreur doit varier de maniere inversement proportionelle avec la protection
euclidienne apportée par l'étiquetage binaire. En effet, la limite sur les performances donnée
par le code de Shannon nous informe qu’il y a une limite sur la distance des voisins formant la
région de Voronoi. Ainsi, on ne peut pas a la fois trop augmenter les distances euclidiennes au
sein des temps symboles ou les étiquetages binaires des mots de code different, et le nombre de

celles-ci, déterminé par la distance de Hamming entre les mots de code binaires.

Notre second objectif est bien plus délicat, il consiste en effet a s’approcher au mieux de la
capacité de coupure du canal multi-antennes a évanouissements par blocs. Pour atteindre un tel
résultat, nous décomposons classiquement notre optimisation en deux étapes : premierement, il
est nécessaire de maximiser la diversité afin d’obtenir des courbes de performances paralleles a
la courbe de capacité de coupure du canal, méme aux faibles taux d’erreur par trames. En effet,

si cette condition n’est pas vérifiée, on observe une perte en gain de codage non négligeable pour
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un taux d’erreur par trame fixe. Une fois la diversité maximisée, on cherchera a optimiser le

gain de codage.

L’ordre de diversité observé en sortie du décodeur dépend de plusieurs parametres. L’ordre
de diversité d’émission est défini comme le produit entre le nombre d’antennes d’émissions et
de blocs de réalisations indépendantes. L’ordre de diversité cible est celui imposé par le canal,
c’est-a-dire le produit entre ’ordre de diversité d’émission et le nombre d’antennes de réception.
La diversité de réception est tres simple a exploiter, c¢’est pourquoi nous supposerons qu’elle est

acquise.

La structure du code correcteur d’erreur limite la récupération de la diversité d’émission
selon la borne de Singleton, qui dépend uniquement du rendement du code. Malheureuse-
ment, le rendement du code correcteur doit-étre inversement proportionnel a I’ordre de diversité
d’émission pour que la diversité maximale soit observée en sortie du décodeur. Un précodeur
linéaire est utilisé, il va permettre de récupérer une partie de la diversité d’émission au niveau du
détecteur et donc d’augmenter d’autant le rendement du code. Le facteur de diversité récupéré
par I'intermédiaire du précodeur linéaire dépend linéairement de la taille de celui-ci. Nous in-
cluons ce parametre dans le calcul de la borne de Singleton, et en déduisons la taille minimale

du précodeur linéaire qui garantit la diversité maximale.

Toujours sous I’hypothese d’entrelacement idéal, nous déduisons le gain de codage que 'on
pourrait obtenir avec un précodeur linéaire idéal. Une modulation codée a bits entrelacés at-
teignant un tel gain pour toutes les probabilités d’erreur par paire jouant un role dans le taux
d’erreur est transformée par une homothétie quelle que soit la réalisation du canal et est donc un
code optimal de Shannon. Les précodeurs qui permettent de vérifier cette condition sont de tres
grande taille et nécessitent donc des traitements tres complexes au récepteur. Le gain optimal
qu’on peut atteindre avec un précodeur de taille arbitraire est dérivé. Les criteres d’optimisation
de précodeurs atteignant ce gain pour toutes les paires de mots de code en sont déduits. Les
précodeurs satisfaisant & ces propriétés sont appelés DNA et se distinguent de matrices quel-
conques par deux conditions : l'orthogonalité et 1’égalité des normes des sous-parties de leurs
lignes, dont la taille dépend des parametres du systeme. Nous construisons ensuite des matri-
ces de précodage a partir de matrices cyclotomiques, en les modifiant pour que les conditions
d’optimalité soient vérifiées. L’avantage de ces précodeurs est qu’ils existent quelque soient les

parametres du systeme, et quelque soit la taille du précodeur voulu.

Nous observons et déterminons ensuite les cas ou les précodeurs linéaires sont inutiles ou
nécessaires en terme de gain de codage et de diversité. Nous montrons que le critere de con-
ception des précodeurs linéaires est différent de celui des codes espaces temps. Cependant, dans
certains cas, et en particulier quand le correcteur d’erreur est suffisamment bon, toute optimi-
sation supplémentaire du précodeur linéaire est inutile, et on peut utiliser au choix les matrices

présentées dans cette these ou d’autres matrices de précodage linéaire déja existantes. La con-
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clusion principale est la suivante : quand la distance minimale du code correcteur d’erreur est
grande devant la diversité d’émission du systeme, le précodage linéaire n’est utile qu’en terme
de diversité, sa contribution au gain de codage est négligeable car le code correcteur d’erreur
et 'entrelaceur de canal atteignent a eux seuls le gain idéal. Dans ce cas, nous choisirons
par Iintermédiaire de la borne de Singleton modifiée la taille minimale du précodeur linéaire qui
garanti ’observation de 'ordre de diversité maximal en sortie du décodeur. A titre de remarque,
si l'ordre de diversité total est grand, on peut se limiter a I’exploitation d’un ordre de diversité

maximal au dela duquel aucun gain significatif ne sera observé en terme de performances.

Finalement, le dernier mais aussi le plus important des blocs a optimiser pour obtenir les
avantages promis par les autres composants de la modulation codée est I’entrelaceur de canal,
véritable piece maitresse de la structure d’émission. Rappelons que toutes les optimisations
présentées jusqu’a présent ont été effectuées sous I’hypothese d’un entrelacement idéal. Par abus
de langage, nous appellerons bits erronés les bits qui different entre deux mots de code. Dans un
premier temps, nous considérons des codes convolutifs car nous disposons de décodeurs a entrées
et sorties souples peu complexes (Forward-Backward algorithm). Un autre avantage de ces codes
est leur structure en treillis qui génere des erreurs localisées dans le cas d’événements d’erreur
simples. Nous utilisons cette propriété pour construire un entrelaceur qui repartit uniformément
les bits erronés sur les états du canal et sur différents temps symboles. Pour simplifier la
description de l’entrelaceur, considérons un canal quasi-statique sur lequel on transmet une
modulation BPSK. La construction d’un entrelaceur pour n’importe quel type de modulation et
un canal block fading est exposée en détail dans ce document. La premiere étape d’entrelacement
est de séparer la trame de bits codés en autant de sous-trames qu’il y a d’antennes en émission.
Chacune de ces sous-trames sera émise sur une des antennes d’émission. Le démultiplexage en
sous-trames est effectué avec une période égale au nombre d’antennes plus un, modulo le nombre
d’antennes. Ceci permet de limiter les comportements périodiques d’apparition des bits erronés
et de favoriser la répartition la plus uniforme possible de ces bits dans les sous-trames. Les
erreurs sont encore localisées dans les sous-trames, on utilise donc un entrelaceur aléatoire qui
vérifie la propriété suivante : tous les bits appartenant & une fenétre glissante dont la taille est
a maximiser ne doivent pas appartenir au méme bloc de taille égale au nombre d’antennes en
sortie de I'entrelaceur. Chaque sous-trame est entrelacée par le méme entrelaceur, qui est choisi
de maniere aléatoire en gardant le meilleur qui satisfait aux propriétés suscitées. Puisque nous
considérons dans la description présente des modulations BPSK, chaque bloc de bits en sortie
de I'entrelaceur correspond a 1’émission de données sur un nombre de temps symboles égal au
nombre d’antennes. La probabilité que deux bits soient émis dans le méme bloc est d’autant
plus faible que la taille de la fenétre glissante est grande. De plus, la probabilité que des bits
erronés apparaissent dans le méme bloc dans les autres sous-trames et dans la méme position
dans le bloc est tres élevée. Ceci est dii au fait que le méme entrelaceur est utilisé pour chaque
sous-trame. Nous envoyons donc les bits de chaque bloc sur I’antenne associée a chaque sous-

trame, avec un décalage circulaire modulo le nombre d’antennes afin que les erreurs consécutives
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dans le treillis soient émises diagonalement sur le canal, c’est-a-dire sur toutes les antennes et
sur des temps symboles différents. Ainsi, la probabilité qu’un tel entrelaceur atteigne 1'ordre de
diversité maximal est tres important. Notons qu’un entrelaceur aléatoire a tres peu de chances

d’atteindre la diversité promise par la borne de Singleton.

Finalement, nous appliquons un tel entrelaceur aux turbo-codes qui présentent une propriété
intéressante : le taux d’erreur par trame d’un code spatio-temporel construit a partir d’'une
modulation codée a bits entrelacés reste invariant en fonction de la taille de la trame. La
dégradation observée avec I'utilisation de codes convolutifs simples peut étre tres significative et
s’expliquer simplement : aussi parfaite que soit la répartition des mots de code sur la sphere de
Shannon, lorsqu’on augmente la taille d’un entrelaceur, les voisins formant la région de Voronoi
restent inchangés et d’autres sont ajoutés & cause de la structure en treillis du code. Ainsi, la

région de Voronoi ne peut étre que réduite et les performances dégradées.

Nous montrons finalement plusieurs scénarios de simulation ou les performances sont tres

proches de la capacité de coupure du canal, ce qui était un des objectifs de notre étude.
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Chapitre 4 : Optimisations de récepteurs pour la BICM sur
canaux MIMO

Une fois I’émetteur de la modulation codée & bits entrelacés optimisé, nous nous intéressons a
des optimisations relatives au récepteur. Pour des raisons de compromis entre efficacité spectrale
et performances, de flexibilité et d’optimisations du récepteur, nous considérons exclusivement
des modulations d’amplitude en quadrature (MAQ). Des rappels sur les réseaux de points sont
tout d’abord présentés. Le décodage par sphere, un algorithme de décodage a maximum de
vraisemblance est détaillé par la suite. L’idée principale d’un tel décodeur est de parcourir les
points du réseau a la recherche du point le plus proche du point recu en limitant la recherche a
une zone géographique délimitée par une sphére centrée sur ce point. A chaque fois qu'un point
est trouvé, le rayon de la sphere est réduit jusqu’a ce qu’aucun point n’appartienne plus a la
sphere. Différentes techniques permettent d’accélérer 'algorithme. Tout d’abord, les bornes de
la constellation sont prises en compte dans I’algorithme de sorte a chercher les points appartenant
a l'intersection entre la modulation et la sphere. Deux stratégies de parcours des points de la
constellation appartenant a la sphere sont comparées : la méthode de Pohst et la méthode
Schnorr-Euchner. La seconde méthode est moins complexe que la premiere, elle est en effet
analogue a une recherche par arbre de type branch-and-bound. Dans le cas de la stratégie de
recherche de Pohst, le choix du rayon de la sphere est délicat. Contrairement, un rayon infini
peut étre choisi comme initialisation de 'algorithme utilisant la stratégie de Schnorr-Euchner
sans ralentir trop les recherches. Des réductions de base peuvent étre utilisées pour accélérer
la recherche dans un réseau de points, elles sont cependant inefficaces pour le décodage de

constellations car empéchent 1'utilisation des bornes de celles ci pour limiter la recherche.

Nous présentons ensuite un algorithme de détection a entrées et sorties souples. Il est défini
par une marginalisation sur une liste de points appartenant a I’hypersphere centrée autour du
point & maximum de vraisemblance. Cet algorithme permet de calculer, avec une complexité ré-
duite et des performances tres proches de 'optimal, la sortie souple d’un systeme multi-antennes
a haute efficacité spectrale. L’avantage de cet algorithme est son utilisation sur des canaux qui
ne varient pas ou peu temporellement. En effet, la liste de points peut dans ce cas étre calculée a
chaque nouvelle réalisation de canal et translatée autour du point ML & chaque temps symbole.
La création de la liste étant un des facteurs dominant la complexité, ne I'effectuer qu'une seule
fois par réalisation de canal, diminue grandement la complexité du récepteur. De plus, une
implémentation de la liste par arbre permet le calcul des bornes de la constellation de maniere
récursive et simplifie énormément 1’étape de détection. Grace & un tel récepteur, nous pouvons
simuler des systeémes avec de tres grandes efficacités spectrales et atteindre des performances

trés proches de la capacité sur des canaux MIMO ergodiques.

Nous présentons enfin un algorithme sous optimal de détection, a complexité réduite, basé
sur un égaliseur MMSE a entrées et sorties souple. Nous présentons des méthodes de réduction
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de complexité d’un tel détecteur et comparons ses performances avec le décodage par spheres a
entrée et sortie souple.
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List of notations

Mathematical tools notations

Transpose operand.
Transpose conjugate operand.
| Floor function.
.]  Ceil function.
]  Nearest integer function.
| Module.
I Euclidean norm.
|l.||# Frobenius norm, i.e. the square root of the sum of all the matrix coefficients squared norms.
det  Matrix determinant.
diag Diagonal matrix.
vol  Fundamental volume of the lattice.
n!  Factorial of n, n! =n.(n —1)...3.2.1.
(Z) Binomial coefficient, “n choose k’.
I'(.) Complete gamma function, I'(z) = [;* " e 'dt.
Z  Set of integers.
R Set of reals.
C  Set of complex numbers.

List of Variables

Error correcting code notations

C Error correcting Code.
Cg Fuclidean code, contains all the noiseless transmitted codewords.
Re Code Rate.
Ke Number of inputs of the convolutional code.
le Constraint length of the convolutional code.
Le Number of branches of the convolutional code.
Ne¢ Number of outputs of the convolutional code.
(91,--.,9n:)s Octal generator polynomials of the convolutional code.

Interleaver Notations
II Name of the channel interleaver.
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Mapping and modulation notations
m  Spectral efficiency of the digital modulation, m = logy(M).
M Number of points in the digital modulation constellation, M = 2™.
Q N; dimensional constellation, also denotes the binary mapping associated to the constellation.
Q(cg) Set of constellation points with their /-th labeling bit equal to c¢y.

Linear precoder notations
s Spreading factor, i.e. the number of time periods grouped by the matrix S.
N; Number of inputs and outputs of S. Ny = sn;.
S The N; x Ny linear precoder matrix.
ng Number of indepedent channel realizations seen by the matrix S.

Channel notations
H  Channel matrix, can be represented in the extended version for linear precoding.

n, Number of receive antennas.

n;  Number of transmit antennas.

N, Number of outputs of the precoded channel matrix SH.
N; Number of inputs of the precoded channel matrix SH.
x  Transmitted noiseless vector, x = zH.

y  Received vector, y = zH + 1.

z  Symbol vector to be transmitted.

n  Noise vector.

Lattices notations
G Gram matrix of the lattice, G = M M}.

My Lattice generator matrix.
A The equivalent channel lattice.

List of Acronyms

BPSK  Binary Phase Shift Keying.

BSK Binary Shift Keying.

HIHO  Hard-Input Hard-Ouput.

LDPC  Low Density Parity Check Codes.

MIMO  Multiple-Input Multiple-Output, multiple antenna.
ML Maximum likelihood.

MMSE Minimum Mean Square Error.

OFDM  Orthogonal Frequency Division Multiplex.
QAM  Quadrature Amplitude Modulation.

SD Sphere Decoder.

SD-SE  Sphere Decoder, Schnorr-Euchner strategy.
SIHO Soft-Input Hard-Output.

SISO Soft-Input Soft-Output.

ST Space-Time.




Introduction and Thesis Outline

Digital communications in its electric form appeared in 1840 with the telegraphic transmission
code invented by Samuel Morse. Emile Baudot improved the data rate of telegraphic lines in 1874
with his Baudot code (i.e., high data rate for text over electric wires). In 1880, Alexander G. Bell
and Thomas Edison developped the theory of telephony (i.e., voice over electric wires). In 1924,
Harry Nyquist proposed a simple theory for reducing the distortion in telegraph transmission.
John Baird implemented a television system with a rate of 5 frames per second and a resolution
of 30-lines per frame. Digital communications became a topic of great interest for both the
mathematical and the engineering communities since the introduction of a mathematical model
for information theory by Claude E. Shannon in 1948 at Bell Laboratories. He also introduced the
fundamental concept of information and capacity: “what is the best transmission data rate over
a given channel?”. Once this theoretical limit is determined, one can expect to give an answer to
the question: “How to design a practical transmitter that approaches this limit?”. This question
haunts the mind of thousands of researchers since that time. Undoubtedly, telecommunications
are linked to the overall technical progress in the last century. They acquired a more and more
important place in the daily life since the mobile phone became democratized in the mid 1990’s.

The today objectives of mobile phone technologies are: improving the reliability of data or
voice transmissions (Quality of Service), improving the data rate, i.e., the services, minimizing
the hardware cost thanks to powerful software processing, and allowing a maximal number of
users. All these objectives are related in part or entirely to the physical layer, and in particular
to digital communications technologies. Finally, all these objectives are jointly achieved when
finding a solution to transmit the data with a maximum data rate and a minimum error rate.

The first objective is to enhance the data rate on multi-path fading channels. The two
convincing solutions introduced in the last decades were OFDM and multiple antennas in trans-
mission. In order to enhance the bad performance observed on fading channels, we usually
exploit some diversity provided by a channel ergodicity, and multiple transmit or receive anten-
nas. Practically, multiple antennas are already chosen for UMTS, the third generation of mobile
phones. For the fourth generation, a combination of multiple antennas and OFDM is considered
as a good candidate.

In the (not so) far future, the most important wireless communications objective will be to
provide high data rate wireless Internet connections. As an example, HiperLAN Type 1 is a
wireless local area network standard designed to provide a 1Mb/s to 20Mb/s communication
between portable devices. HiperLAN Type 2 or IEEE 802.11 standards are intended to provide
6Mb/s to 54Mb/s data rates. Actually, the objective is not to rival wired communications which
already provide data rates around 1Gb/s for LANSs, but to provide a comfortable connection with
the great advantage of mobility. This will not be feasible without the use of multiple antennas.




2 Introduction and Thesis Outline

This thesis report describes the design of transmitters and receivers for single user multi-
ple antenna channels. We do not consider OFDM modulations or multi-user communications.
However the ideas and principles described in this thesis report are applicable to OFDM with
few changes. The direct practical issue of this thesis would be broadcasting, but the results are
also transposable to multi-user techniques.

The outline of the thesis is:

e In Chapter 1, we introduce the multiple antenna channel and its mathematical model.
We then introduce the essential material for an information theorical analysis of multiple
antenna channels. The fundamental limits of an ergodic channel is Shannon capacity, we
can also derive a discrete-input mutual information which is a more limiting quantity.
For block fading channels, we recall that Shannon capacity is null, we derive the outage
probability with Gaussian and discrete input. Next we recall the recently introduced
diversity-multiplexing tradeoff which enables to see how optimal a given system is for
multiple antenna channels and high data rates. Finally, we define the Singleton bound on
the diversity when the transmitter rate is constant.

e In Chapter 2, we describe the system model and notations of a bit-interleaved coded mod-
ulation applied to multiple antenna channels. The receiver is supposed to be iterative
in order to achieve quasi-optimal performance at feasible complexity and focus on the
essential limitations imposed by the channel. After the presentation of the optimality con-
ditions, we derive performance estimations for ergodic and block fading multiple antenna
channels. These performance evaluations are based on the exact computation of the pair-
wise error probability. Next, classical upper bounding techniques such as union bound or
tangential sphere bounds are used to estimate the optimal achievable frame error rate and
bit error rate.

e In Chapter 3, we focus on the transmitter optimization. We decompose the BICM onto
different blocks and optimize them independently before considering the global optimiza-
tion. First, the labeling optimization is considered, we show how to achieve high potential
gains, in particular for ergodic channels. Next, we consider linear precoding and introduce
the conditions of optimality for ergodic, quasi-static and block fading channels. We de-
scribe a new construction of linear precoders that provide quasi-optimal coding gains for
a given target diversity. We then consider the Singleton bound on the diversity order to
determine the minimal precoder size that guarantees full diversity. Finally, we optimize
interleavers in order to approach the perfect interleaving conditions.

e In Chapter 4, we study the receivers for bit-interleaved coded modulations and describe
in detail the maximum likelihood lattice sphere decoder algorithm. We then introduce a
new soft-input soft-output detector based on the a posteriori probability detection over
a spherical list (soft-input soft-output sphere decoder). A classical soft-input soft-output
minimum mean square equalizer is then described and some complexity reductions are
considered. We then compare the complexity of such receivers and show near-capacity
performance.

Finally, conclusions and future work perspectives are given. We report some complementary
material in the appendices.




Chapter 1

Generalities about multiple antenna
channels

Introduction

Multiple antenna channels became a widespread solution for near future wireless telecommu-
nication systems. The receive antennas naturally enhance the performance providing multiple
independent observations of the transmitted signal. Depending on the separation between the
transmit antennas, the receiver observes correlated or independent observations of the transmit-
ted signal. If the transmit antennas are not spatially de-correlated, the phased array antennas
can produce single and multiple beams that allow spatial selectivity. This technique is par-
ticularly useful in downlink, where the base station can locate the receiver and transmit in a
pinpointed direction with a lower amount of power. Moreover, the processing complexity is
mainly at the transmitter end, which enhances the mobile phones autonomy. Beamforming
techniques will not be discussed in this thesis report, which focuses on multiple antenna diver-
sity techniques. When the transmit antennas are separated by a distance greater than half the
wavelength, the observations at the receiver are supposed to be independent. In this case, the
transmit antennas are basically used to either

1. transmit the same symbol over all the transmit antennas in a way to enhance the perfor-
mance

2. or transmit different symbols over the transmit antennas in a way to enhance the data rate

These spatial diversity techniques are relevant in the uplink, when the transmitter has a limited
complexity and the receiver should recover the information of multiple interfering transmitters.
Moreover, this could be used to provide diversity for downlink reception at the handset, especially
if it is stationary and does not observe temporal diversity. If the handset is moving fast, good
performance is naturally provided by the temporal diversity. If a target error rate is fixed, the
data rate can be adapted thanks to a channel feedback from the receiver. The tuning possibilities
are enhanced thanks to the multiple transmit antennas and excellent data rates can be achieved
in the case of good links.

In this first Chapter, we will present the channel mathematical model and its validity in
Section 1.1. Then, we will present the state of the art of digital communication systems for
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Figure 1.1: Rich scattering environment. Multiple antennas system.

multiple antenna channels in Section 1.2. In Section 1.3, we will expose the fundamental limits of
multiple antenna channels, i.e., the Shannon capacity limit, the mutual information with discrete
input, the outage error probability for block fading channels and the diversity-multiplexing
tradeoff. We will also consider the coded modulations and the Singleton bound on the diversity
order, depending on the code rate.

1.1 Multiple antenna channel model

In this section, we will present the multiple antenna channel model and its validity. Let us con-
sider a rich scattering environment and a channel with multiple transmit and receive antennas.
Wireless communications experience multi-path propagation because the signal is reflected from
nearby surfaces on its way to a receiver. An example of some propagation paths are drawn in
Fig. 1.1. Multi-path propagation causes dispersions in delay, frequency and spatial domains,
and each antenna receives an infinity of different versions of the transmitted signals, each having
a different attenuation, phase and propagation delay.

The main channel parameters are the coherence time and bandwidth. If the signal bandwidth
is larger than the channel coherence bandwidth, a frequency selectivity is experienced. In this
case, the multipath spread of the channel is longer than the signal time period and inter-symbol
interference (ISI) is experienced after the channel digitalization. Some techniques such as Or-
thogonal Frequency Division Multiplex (OFDM) are used to spread the signal in the frequency
domain and absorb the ISI. Without ISI, all the transmitted energy is collected with a matched
filter into a single coeflicient called fading. The paths summation provides a random variable,
supposed to be complex Gaussian thanks to the central limit theorem.

The antennas are supposed to be sufficiently separated to observe very different path configu-
rations, which lead to independent random variables. Finally, the system model is the following:
each equivalent path between each transmit and receive antenna experiences a complex Gaussian
attenuation of zero mean and unit variance (N¢(0,1)), as shown on Fig. 1.2.

When the channel coherence time is small enough, the channel is said to be ergodic, i.e., the
random variables from one time period to another are independent. This situation for example
occurs when a handset is moving fast or when an interleaver is used. If the coherence time is
longer than a frame transmission length, the channel does not vary and is said to be quasi-static.
However, we assume that the channel realizations are independent from frame to frame. Finally,
we consider the case of block fading channels where n. independent channel realizations occur
during a frame. An example of block fading channel is given by the frequency hoping over a
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Nc(0,1)

ny transmit ny receive
antennas antennas

Figure 1.2: Non-frequency-selective MIMO channel Model.

quasi-static channel, where the different frequencies are separated by more than the coherence
bandwidth.

As a remark, the block fading channel model for a frame transmitted over L time periods
includes the quasi-static channel n. = 1 and the ergodic channel n. = L.

1.2 State of the art in digital communications for multiple an-
tenna channels

Channel coding techniques for MIMO channels, commonly known as space-time coding can be
classified into four major categories: multi-dimensional trellis coded modulations, space-time
block coding, multilevel coding and bit-interleaved coded modulations. Each technique will be
briefly presented in the following.

1.2.1 Trellis coded modulations

A multi-dimensional trellis coded modulation (TCM) [93][85] is a bandwidth efficient technique
that combines an error-correcting code and a modulation scheme. It includes Ungerboeck-
like coded modulations and the simple case of a classical convolutional code where each trellis
transition is associated with one channel use. Trellis-based space-time codes provide diversity
and some coding gain at additional encoding/decoding complexity. They usually perform better
than space-time block codes, but their optimization is much more complex. There is no way
to search for good codes that maximize the rank of certain codeword matrices, only few good
codes are known. We notice that an inner full rank code can be added to improve the BER
performance via interleaving gain.

1.2.2 Space-time block codes

The space-time block codes (STBC) consist of the transmission of R¢.n;.s symbols over s time
periods and n; transmit antennas. The code rate is equal to R¢. Usually, the transmission
scheme is represented by an n; x s matrix whose coefficients are linear combinations of the
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symbols to be transmitted. The latency of space-time block coding is minimal compared to
other techniques. The first space-time code was proposed by Alamouti [3] in 1998. It is designed
for n; = 2 transmit antennas and an arbitrary number of receive antennas n, and it provides
full transmit diversity, i.e., the diversity order is n;.n,. Some generalization to higher number
of transmit antennas have been proposed, such as orthogonal and quasi-orthogonal designs (OD
and QOD) [86][53]. Initially, people thought that the rate had to be reduced in order to achieve
full transmit diversity but, recently, full-rate full-diversity space-time codes have been proposed
for more transmit antennas [7][28][29][30][31][34][70].

Many people are working on this topic that is having a fast and important progress. However,
the space-time block codes used alone do not provide sufficient coding gains. There are few
studies on the joint design of STBCs and error correcting codes, as proposed in Chapter 3.

1.2.3 Multilevel coding

Since the original work by Imai and Hirakawa [51][99], it has been demonstrated that multilevel
coding (MLC) can be applied to all types of channels, i.e., scalar and vector channels. In MIMO
channels, different levels for coding are defined on QAM symbols fed at the channel input or
directly on the binary labels of those symbols.

1.2.4 Bit-interleaved coded modulation

Combining the original ideas by Zehavi [103][22], Berrou & Glavieux [9], a bit-interleaved coded
modulation is built by cascading a convolutional code, a pseudo-random interleaver, a QAM
symbol mapper and the MIMO channel.

The main application of BICM to multiple antenna channels was the Bell Laboratories layered
space-time (BLAST). It was initially motivated by the capability of canceling the interference of
transmit antennas thanks to a greater number of receive antennas. Basically, independent data
streams are transmitted over different transmit antennas. At the receiver, an ordered successive
interference cancellation is processed from the strongest to the weakest data stream. The main
drawback of this initial version of BLAST was the error propagation.

Of course, the concatenated nature of such a transmission scheme allows iterative joint
detection and decoding: The receiver starts by an APP detection of the multiple antenna channel
followed by a SISO decoding of the convolutional code. The latter procedure is iterated a finite
number of times, where the convolutional code extrinsic probabilities are fed back as a priori
information to the APP detector [15][82]. We will describe in detail the BICM structure and
optimize it in the aim of achieving good performance on MIMO channels.

1.3 Information theory for multiple antenna channels

Let us now consider some information theory tools for multiple antenna channels. The fundamen-
tal limits presented below are derived from Shannon theory [79] and extended to multiple-input
multiple-output channels [87].
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1.3.1 Information theory tools: a reminder

We will introduce the main information tools necessary for computing the fundamental limits

of MIMO channels [27][5]:

Let Z and Y be two independent random variables. Their probability densities are p(z)
and p(y), respectively. The entropy H(Z) is defined by

H(Z) = B[~ 1og, ()] = [ ~1og (0(2) pl2)ds (1)
4

where E[.] denotes the mathematical expectation. The entropy H(Z) measures the neces-

sary binary information to describe the variable Z. The highest the entropy, the more the

randomness of the variable.

The joint entropy H(Z,Y") of the two variables Z and Y is defined by

H(Z,Y) = E[-log, (p(2,9))] =/ —log, (p(2,y)) p(2, y)dzdy (1.2)

Y

where p(z,y) is the joint probability density of z and y. It measures the necessary binary
information to jointly describe the variables Z and Y.

The conditional entropy H(Y'|Z) is defined by

H(Y|Z) = B[H(Y|Z = 2)] = B[~ log, (p(y]2))] = / “logs (p(y]2)) p(ylz)dzdy  (1.3)
z,Y

It measures the necessary binary information to describe the variables Y having a knowl-
edge on Z.

The mutual information Z(Z;Y") between Z and Y is defined by
I(Z;Y)=H(Z)+HY)-HY,Z) =H(Y) —H(Y|Z) = H(Z) — H(Z|Y) (1.4)

It conversely measures the average supplementary quantity of information offered by Y on
Z.

The capacity C' of a discrete memoryless channel with input Z and output Y is the maximal
value of I(Z;Y") over all possible probability densities p(z):

C =max (I(Z;Y)) (1.5)

p(2)

This induces that the capacity is obtained by optimizing the probability density function
at the channel input.

The capacity is linked to the system spectral efficiency by the Shannon’s channel coding
theorem. It is summed up in the following statement: for a given channel, there exists a
code that allows error-free transmission across the channel at a rate R, provided R < C,
where C'is the channel capacity. Equivalently, if the system rate is fixed, the capacity gives
a limit on the signal-to-noise ratio below which error-free transmission is not possible.
Since the capacity is a fundamental non-achievable limit, it will be used as a reference
to measure the quality of a given transmission system. This is why it is important to
compute the Shannon’s capacity limit of a given system before the transmitter design
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step. For example, the capacity of an additive white Gaussian noise channel for a target
rate Ris C = log, <1 + Rﬁ—g) bits/complex dimension and is obtained for Gaussian inputs.

The signal-to-noise ratio limit is obtained by % = Lc_l Using an infinitely good code

with quasi-null rate, we obtain the limit limgc_.q QCT_l =In2=—-1.6dB.

Let us now describe the capacity limit for multiple antenna channels.

1.3.2 Capacity of ergodic MIMO channels

Let us first consider the case of ergodic MIMO channels with ns-dimensional input z and n,.-
dimensional output y. The input-output relation is supposed to be:

y=zH+n (1.6)

where 7) is an n,-dimensional Gaussian noise vector with covariance matrix 2NgI,,. Such channel
capacity has been expressed in parallel in [87] and [37]. The capacity is achieved for Gaussian
input (more precisely for circularly symmetric complex Gaussian input, see [87]), it can be
computed by the expectation of the conditional C|y over all possible H, where

P
C=Ey |[Cy) =En [logQ <det (Im + —H*H))] bits/complex dimension (1.7)

nt
and P = ?9[[?75*]] = n’i’fﬁ\ﬁo Moreover, the capacity can be traced as a function of the bit error
rate, which is equal to CT?’ = QETSO It can be demonstrated that n; x n,, MIMO channels capacity

in bit/complex dimension is equal to n, x n; MIMO channels capacity.

On Fig. 1.3, MIMO channels capacity are represented for n; and n, varying from 1 to
4. We can observe that for a given total number of transmit antennas n; + n,, the optimum
repartition in the sense of capacity is obtained when n; = n,. We also observe that the slope
of the asymptote is linked to min(n¢,n,) and that the vertical sliding is linked to max(n¢,n,).
This is explained as min(ng, n,) fixes the number of equivalent sub-channels and max(n¢, n,) the
diversity order on each sub-channel. If max(n:,n,)/min(n¢ n,) grows to infinity, the capacity
tends to min(n¢, n,)Cawgn, Where Cyygn is the capacity of the additive white Gaussian noise
channel.

The Shannon’s capacity is given by Gaussian inputs that are impractical. For a given in-
put law p(z) associated with an input Z, the mutual information Z(Z;Y") represents another
fundamental limit on the rate or signal-to-noise ratio. This limit is more restrictive than the
Shannon’s Limit and enables to evaluate the modulation and preprocessing quality. Moreover,
we can evaluate the quality of the error correcting code and detection process measuring the
gap between the mutual information and the real performance.

Assume that Z € Q, a discrete alphabet of M™ = 2™"t vectors (e.g a M — QAM). We can
express the Entropies:

HY) = - / p(y)log2(p(y))dy = — / > p(y/2)p(z)log, <Zp(y/2')p(2’)> dy (1.8)

Y
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Capacity (bits/channel use)
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Figure 1.3: Shannon’s capacity for MIMO channels

H0'/2) = = 3062 | /) 080t/ =) (1.9)

The mutual information is given by

L(Z5Y) = HY) = H(Y(2) = e = 1 3 [ otufoytons (2220050 Yoy o
T Yy

The integral over y reduces to an integral over H and n. This mutual information does not exist
in a closed form expression, we can use a Monte-Carlo simulation to evaluate it (see Appendix
D for some simplifications of the mutual information computation).

We can observe that the mutual information saturates to the spectral efficiency mn,. For low
signal-to-noise ratios, the mutual information has the behavior of the Gaussian input capacity.
If n, tends to infinity, the mutual information tends to the AWGN case.

In Fig. 1.4 we notice that the mutual information of a 1 x n,, MIMO channel with QPSK
input saturates to 2 bits per channel use. In Fig. 1.5 we notice that the mutual information of
a 1 x n, MIMO channel with 16QQAM input saturates to 4 bits per channel use. In Fig. 1.6 the
mutual information of a 2 x n,, MIMO channel with QPSK input saturates to 4 bits per channel
use. This shows us that from an information theory point of view, if the spectral efficiency is
fixed to mns, the best performance is obtained by minimizing m and maximizing n;.
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Figure 1.5: Mutual Information for 16-QAM input.

1.3.3 Outage probability for block-fading MIMO channels

The conditional capacity Cp is a random variable with probability density pc,, (x). Over ergodic
channels, the capacity is the mean of C'y because an infinite length codeword sees an infinite
number of channel states. However, when the channel is quasi-static, one codeword only sees one
channel realization. For a given channel matrix H, we deduce an instantaneous capacity Cip.
Consider a fixed transmission rate R. If R < Cp, there exists at least one code that provides
error-free transmission. However, if R > Cp every code would lead to a packet loss. Based on
this observation, we can deduce that the capacity of quasi-static channels is null. Indeed, for
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Figure 1.6: Mutual Information for QPSK input.

a fixed non-null R, there always exists a bad channel realization such that R > Cp. We can
consider the probability P,,; that such outage situation occurs, i.e.,

R
Pyt =P(Cxg <R) = /0 pey, (x)dx (1.11)

This outage probability gives a limit on the frame error rate only achievable with an infinitely
good code and Gaussian input. We can obviously derive the outage probability with discrete
input from the mutual information Zg(Z;Y")

Poutro = P(Zu(Z € Y) < R) (1.12)

When the channel is block fading with parameter n., we can multiplex the data without changing
the performance. We consider an equivalent quasi-static channel with block diagonal matrix

= diag (Hy,...,Hy,) (1.13)

where all blocks are n; X n, matrices corresponding to the n. different channel realizations.
Moreover, observing that Hj corresponds to n. channel uses, we have

P
Pout,nc = P <_ 108;2 det ( NrNe + Hb Hb) < R) (1'14)

— ( Zloggdet< + = H* @> <R> (1.15)

The outage probability of a block fading MIMO channel is equal to the probability that the
averaged instantaneous capacity (over the n. realizations) is lower than the fixed rate R. Clearly,
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the more the number of different realizations n., the lower the outage probability. This induces

(ncll)r&oo e Zlog2 det ( + H* Z> < R) =P(C<R)=Iy(CY(R)—2) (1.16)

where C~!(R) is the minimal signal-to-noise for the existence of error-free rate R transmission
and Iy is the Heaviside step function. Fig. 1.7 shows the outage probability for a single antenna
block fading channel with n. blocks for a rate equal to 1 and Gaussian input. The capacity limit
for R = 1 bit per channel use is 0.96 dB.

10° = —_———
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10-1:1 - - B
— o
$10? s B
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% (@)
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=
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15
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Figure 1.7: Outage probability, R = 1 bit per channel use, 1 x 1 MIMO channel.

1.3.4 Diversity-multiplexing tradeoff

We will present another fundamental limit called diversity-multiplexing tradeoff, presented in
[104]. We can observe from subsection 1.3.2 that asymptotic behavior of the capacity of an
ergodic MIMO channel is

C’NN Omln(nt, n,)logy (SNR) + O(1) (1.17)
0—)

where SNR = 2%0. The single antenna system behaves like log, (SNR), whereas the capacity

of a MIMO channel grows linearly with log, (SNR), the linear factor min(n¢,n,) is called the
multiplexing gain.

Consider a family of codes C. Assume that for each signal-to-noise ratio value SNR =
Es/2Ny, a code C(SNR) € C with rate R¢(SNR) and error rate P.(C(SNR)) is chosen. The
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multiplexing gain r of such a family of codes is defined by

s . Re(SNR)

"7 SNRSs log, SNR

(1.18)

Notice that 7/ min(n¢,n,) ~ R¢(SNR)/C(SNR) indicates how far the system is operating from
the Shannon limit. The diversity gain is obtained by the asymptotic error exponent

g2 pm 1082 (P(C(SNR)))

1.19
SNR—oo 10g2 SNR ( )

The multiplexing-diversity tradeoff (r, d) gives the information about the optimality of a family
of codes for very high data rates. However, it does not give any information on the coding gain.
For example, if we choose a code with a constant rate that achieves the full-diversity order nn,.,
the multiplexing-diversity tradeoff is (0,n¢n,). If a family of codes has maximal multiplexing
gain, the data rates and the number of possible codewords respectively evolves linearly and
exponentially with the capacity, and the achievable diversity disminishes. This induces that the
best multiplexing-diversity point for full-multiplexing is (n¢,0).

There exists an optimal multiplexing-diversity tradeoff for any value of r, denoted d*(r):
d*(r)=(ny—r)(n, —r), 0<r <min(ng,n,) (1.20)

The optimal multiplexing-diversity tradeoff shows that the diversity and multiplexing gains
evolve inversely from each other. The extrema values are the full diversity gain d*(0) = nun,
and the full multiplexing gain 7* = min(n, n,.) for d = 0.

For block-fading channels with n. blocks,the optimal tradeoff d*(r) is
d*(r) =nc(ne —r)(ny, —r), 0 <r <min(n,n,) (1.21)

Fig. 1.8 illustrates the optimal diversity multiplexing tradeoff for a 4 x n, quasi-static MIMO
channel. Again, we see how the receive antenna increases the fundamental limit, which induces
a simplification of the transmission scheme optimization. If n, tends to infinity, we approach the
ideal case when both maximal diversity and multiplexing gain are achieved. Next, in Fig. 1.9, we
observe the gain obtained with an increasing number of channel states n.. Fig. 1.11 illustrates
the optimal multiplexing-diversity tradeoff for system configurations having a maximal diversity
order n.nyn, = 16. We observe that advantaging the spatial diversity gives a better optimal
multiplexing-diversity tradeoff.

1.3.5 Singleton bound for block fading channels

In most digital communication systems, a binary error correcting code is used to protect the
information bits. This is the case for BICM, which is the system we will focus on in this thesis
report.

In [54][55][68], the authors consider bounds on the diversity for the transmission of a binary
code on block fading channels. Let us consider a binary code C of rate R¢ and length L coded
bits. The block fading channel is supposed to have n¢ independent blocks. The diversity is
upper-bounded by n¢ and the minimal Hamming distance of the binary code which is denoted
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for maximum diversity order 16.

dgmin- We will consider the Euclidean code Cg that corresponds to the transmission of all the
codewords over the block fading channel. All the symbols transmitted on the same block are
grouped into a hyper-symbol. The code Cy has a length ne and an alphabet size 2Lcfie/ne The

minimal Hamming distance between two coderwords gives the diversity d upper bounded by the
Singleton bound of the code Cg [54][55][68]:

d<1+|n.(1-Re)| (1.22)
Fig. 1.12 draws the singleton bound values for a single antenna channel and an increasing
number of blocks n.. The full diversity is achieved if and only if R¢ > 1/n.. In the following, we
will consider the Singleton bound assuming that a detector perfectly converts an n; x n,, MIMO
block fading channel with n. blocks into a 1 x n, block fading channel with nsn. blocks. The
Singleton bound will give the maximum achievable diversity for a given code rate Rc¢.

As a remark, it was shown in [45] that the discrete input outage capacity is also constrained
by the Singleton bound.
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16 Generalities about multiple antenna channels

Conclusions

We have presented the multiple antenna block fading channel model. We saw that the channel
capacity (or outage probability) gives the fundamental SNR limit for high performance. Fur-
thermore, we described the optimal multiplexing diversity tradeoff which gives an information
on the quality of a transmission scheme for very high data rates. The two fundamental limits are
enhanced by increasing the number of receive antennas. Moreover, we deduced that the spatial
transmit diversity is preferable to time diversity in terms of information theory.
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Chapter 2

BICM model and performance

Introduction

On AWGN channels, it is shown that the Shannon channel capacity is achieved for gaussian
inputs. If the frame length is sufficiently high, the squared Euclidean square norm of the trans-
mitted signal is quasi-deterministic since it has a high order chi-square distribution, and the
phase is uniform. This sphere-hardening phenomenon tells us that a good coded modulation
should place the codewords close to the surface of a sphere. The ideal Shannon code is located
on this Shannon’s sphere. In a BICM, thanks to the interleaver, the codewords have a squared
Euclidean square norm with very low variance, which implies that they lie close to the surface
of the Shannon’s sphere. The coded modulation may be seen as a quantizer of this sphere and
built in order to find the most uniform repartition of the codewords. This leads to larger Voronoi
regions and minimizes the error rate.

At the output of a MIMO fading channels, the Shannon’s sphere becomes an ellipsoid. Before
transmission over the channel, the BICM aims at finding a good distribution of the points on
the surface of the sphere since it is known to be capacity achieving. Designing a good space time
code is equivalent to ensure large and uniform Voronoi regions at the surface of the ellipsoid,
whatever the channel realization We show that the ideal BICM configuration achieves such a
condition and how to design a practical system that approaches this condition.

Moreover, we have to focus on the construction of a low complexity decoder associated to
such a code. The growing importance of iterative and probabilistic processing of information in
communication systems during the last decade allows for exceptional performance on different
types of data transmission channels. Graph codes for binary channels have been extensively an-
alyzed [11][52][59][60][64][76][77] and bit-interleaved coded modulations (BICM) for non-binary
channels became a widely known standard technique for coded modulations with and without
frequency selective channels [103][22][15][57]. Under realistic conditions and without any mild
theoretical constraint, the nature of such concatenated systems does not allow for the derivation
of closed-form expressions for the error rate versus the number of decoding iterations.

This chapter first describes the bit-interleaved coded modulation (BICM) transmitter scheme
applied to multiple antenna channels. Then the BICM iterative receiver will be described and
the “a posteriori probability” (APP) exhaustive detector detailed. A new exact computation
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Figure 2.1: Bit-interleaved coded modulation transmitter and multiple antenna channel model.

of the codeword pairwise error probability will then be introduced in the perfect interleaving
context. A union bound can then be computed to estimate the asymptotic performance when
the channel is ergodic and the interleaving ideal.

Moreover, in the case of ergodic channels, an analogy between BICM with iterative joint
detection and decoding performance and the maximum likelihood decoding performance is de-
veloped. This analogy is available when the channel interleaving is ideal and when the signal to
noise ratio is sufficiently high to achieve a perfect convergence of the iterative processing.

2.1 Bit-Interleaved Coded Modulation with iterative decoding

2.1.1 Structure of the Bit-Interleaved Coded Modulation transmitter

The transmitter scheme is given by the following fundamental block concatenation: A binary
error-correcting code C (e.g., a convolutional code) followed by a deterministic interleaver II, a
symbol mapper (e.g., for a QAM modulation), a full-rate space-time spreader S (i.e., a linear
precoder) and a serial-to-parallel converter. Fig. 2.1 illustrates the BICM transmitter structure.
We will now describe the notations and the role of each fundamental block.

a) The error correcting code:

The transmission of digital data with the minimum error rate is the objective of any telecom-
munication system. In many of those systems, the data rate is forfeited to binary protection by
the way of an error correcting code. Let R¢ denote the coding rate of the error correcting code
C and b the information word at the encoder input. The encoder applies the bijection between
the input information word b and the codeword ¢ € C. The length of ¢ is 1/R¢ times higher
than the length of b. We can choose the error correcting code among a wide variety containing
the following non-exhaustive list:

e Linear block codes: cyclic or non-cyclic linear block codes (BCH, Reed-Solomon). They
have been developed in the 60-70’s and used for high rate systems.

e Trellis codes: non-recursive non-systematic convolutional (NRNSC ) codes, recursive sys-
tematic convolutional (RSC) codes. Traditionally, convolutional codes are considered for
BICM. Indeed, they have the double advantage of having simple and low complexity en-
coders, maximum likelihood (ML) and soft-input soft-output (SISO) decoders. Indeed,
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the code can be represented by a trellis, and the Viterbi algorithm [95][38] with Ham-
ming distance (defined on the Galois field GF'(2™)) can be applied for maximum likelihood
decoding. The trellis structure can also be exploited for SISO decoding via the forward-
backward algorithm [4]. A convolutional code by default has an infinite length. However,
finite linear block codes can easily be extracted selecting a finite window of the trellis.
A coding gain enhancement is obtained by forcing the first and last states to 0, but
this introduces a slight code rate reduction. The code is defined by its octal polynomial
(91,...,9n.)s- It takes K¢ bits and returns N¢ bits by trellis transition. The constraint
length of the code is denoted l¢, and the codeword length is LeNe coded bits. The code
rate is Re = [K¢ — (Ic — 1)/ L¢]/N¢, but we consider L¢ > l¢ which leads to Re ~ K¢ /N¢.
As a remark, NRNSC codes have a slight coding advantage when compared to RSC codes
with the same coding rate.

e Concatenated codes: concatenated codes have been discovered in the 60’s [42][39]. We
generally distinguish the turbo-codes from low density parity check (LDPC) codes. The
turbo-codes are based on the serial or parallel concatenation of two convolutional codes,
the revolutionary papers [9][10][8] gave birth to the iterative decoding techniques of con-
catenated codes. The LDPCs [42][66][67] are based on multiple simple parity equations
grouped into sparse matrices. A factor graph can be constructed for the iterative decoding,
based on message passing between the multiple parity check nodes [59].

b) The channel interleaver:

The interleaver II scrambles the LeNe coded bits. This is the main component of the BICM.
It is crucial when performing iterative joint detection and decoding because it enhances the
independence between extrinsic and a priori probabilities both in the soft-input soft-output
detector and decoder. It is also very important for ML decoding (if such a decoding is tractable)
because it limits the interference in the same time period between two erroneous bits of an
error event. The interleaver II can be a pseudo-random (PR interleaver) or a semi-deterministic
interleaver with some deterministic constraints as described in Section 3.4.

c) The symbol mapper:

The interleaved coded bits are demultiplexed into blocks of m bits fed to the mapper that con-
verts them into a constellation symbol. The bijection between the bit vectors and constellation
symbols is called mapping or labeling. The number of points in the constellation is equal to
M = 2™. At each channel use, the mapper reads m x n; coded bits and generates n; modulation
symbols. To make the reading easier, the n;-dimensional constellation 2 will equally make refer-
ence to the set of symbols or their binary labelings. The mapping is not unique and can be very
influent on the system’s performance. The Gray mapping is one of the most famous, as it mini-
mizes the number of different bits between two neighbors in the constellation, which minimizes
the bit error rate of an uncoded system. We will see in this thesis report that in many cases, we
can achieve better performance by using other mapping techniques, and even demonstrate that
the Gray mapping is the worst for BICM with ideal interleaving. All along this thesis report, we
will consider QAM (Quadrature Amplitude Modulations) as they achieve a good compromise
between spectral efficiency (in bits/s/Hz or bits/dim) and performance. Moreover, they give a
lattice constellation structure to the system and the access to the lattice theory toolbox, both
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for the transmitter and receiver optimizations. If a M-QAM is used on each transmit antenna,
the transmitted symbol energy per transmit antenna is equal to:
M—-1
3

E,=2. (2.1)

d) The linear precoder:

The linear precoder S spreads the QAM symbols over s time periods. It converts the n; x n,
vector channel into an N; x N, vector channel, where N; = n;s and N, = n,s. The N; x N,
matrix S multiplies a vector of Ny QAM symbols z;, = (zx.1, 2k,2, - - - , 2k,N; ) at the mapper output,
generating N; symbols to be transmitted during s time periods. Vector zj, is the k™ vector to be
precoded. The role of S is to spread the transmitted symbols over a higher number of channel
states, for example to exploit a time or space diversity. We suppose that S is normalized, so it
does not act as an amplifier. This is satisfied if the square Frobenius norm ||.|| # of S is equal to

Nti
N¢ N

ISIF=>_) "8 =N (2.2)

i=1 j=1

e) Channel input-output relation:

Without space-time spreading (s = 1 and S is the identity matrix), the channel path connecting
antenna i to antenna j has a complex Gaussian distributed gain h;;, where H = [h;;], Elhsj] =
0, E[|hij|’] = 1,4 =1...n; and j = 1...n,. Here, the symbol E[] denotes mathematical
expectation. The MIMO channel coefficients h;; are supposed to be statistically independent.
The correlated MIMO channels will be left for further studies. Denote H the set of channel
realizations seen during the transmission of a codeword.

We assume a block fading channel with n, distinct channel realizations during a code word.
We denote ng the number of distinct channel realizations during a precoded symbol. To simplify
notations, we assume that ng divides n.. We will call “channel state” the 1 x n, SIMO channel
associated to one of the n; transmit antennas of one of the n,. channel realizations. The channel
experienced by precoded symbol k is represented by a N; x N, block-diagonal matrix H; with
s blocks of size ny x n,. We assume that each of the ng channel realizations is repeated s/ng
times. Matrix Hj, is organized as follows:

H, = diag (H,E””, Ml g gl glnelBE et/ ”S]) (2.3)

where H ,[:] il denotes the ng X n, complex matrix representing the i-th block of the ¢-th channel
realization experienced by the precoded symbol k. Elements of H ,[:] i are independent complex
Gaussian variables with zero mean and unit variance. Let H denote the set of channel realizations
observed during the transmission of a codeword. Thanks to the extended channel matrix, we

write the channel input-output relation as:
Yk = Tk + ik = 2 SHy + g (2.4)

where y;, € CV" and each receive antenna is perturbed by an additive white complex Gaussian
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noise 1y, ;, j = 1... N;, with zero mean and variance 2/Ny. Thanks to linear precoding, the n; xn,
MIMO n.-block fading channel is converted into an Ny x N, MIMO N.-block fading channel
where N, = n./ns. If ng = n., we say that full time spreading is performed. If ng = 1, the
precoder experiences a quasi-static ny x n, MIMO channel. In the following, if a single precoded
symbol is considered, the index k will be omitted and “precoding time period” will refer to a
transmission over SH, i.e., over s time periods.

The global spectral efficiency is B¢ X m X n; bits per channel use. We consider a binary
signal-to-noise ratio (Ey/Ny) at the receiver, where Ej is the band-pass information bit energy at
the receiver, E,. is the band-pass coded bit energy at the receiver and Ny/2 the noise band-pass
spectral density. In the case of M-QAM, we have

E, E.  Emn, n.(2"-1)
No NyRe 2NyRem  3NyRem

(2.5)

Usually, we consider the logarithmic signal-to-noise ratio SINR = 10log (%) in decibels (dB).

f) The global Euclidean code Cg:

The concatenation of the binary error correcting code C, the interleaver 1I, the mapper €2, the
linear precoder S and the channel describes a global Fuclidean code. If we suppose that the
error correcting code has a length Lo N¢ and a rate Re = K¢ /N¢, the global Euclidean code Cg
converts L¢ K¢ information bits into a complex L¢Ne/m-dimensional point.

2.1.2 Structure of the iterative receiver

An ideal BICM receiver would directly perform a maximum-likelihood decoding on the set Cg of
transmitted codewords. However, it requires an exhaustive search among the 2%¢l¢ codewords,
which is intractable. All existing receivers use the concatenated structure of the BICM to split
the reception into several steps. In this thesis report, we assume perfect synchronization and
channel estimation. Thus, the receiver, as depicted on Fig. 2.2, is divided in two main elements:
a soft-input soft-output (SISO) APP QAM detector, which acts as a soft-output equalizer for
both the space-time spreader and the MIMO channel, converting the received point y into
information on the coded bits in the estimated coded sequence ¢, and a SISO decoder for C,
improving the information on coded bits and estimating the information bit sequence b. The
differences between all possible receivers depend essentially on the hardness or softness of the
exchanged information. The detector has always a soft input y.

a) The decoder

Decoding of an error correcting code has always been a topic of interest for a wide population
of researchers. Obviously, the decoder existence depends on the code nature. We can describe
the state of the art of the most useful decoders for some families of error correcting codes:

e Algebraic decoders: for algebraic codes (RS, BCH), there exist many HIHO algebraic
decoders, the most efficient being proposed in [83]. STHO decoding of algebraic codes have
been addressed in [56], but SISO decoding is still an open problem.
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e Decoders for trellis codes: HIHO and SIHO , e.g., Viterbi algorithm (VA) [95][38]. SISO,
e.g., Soft Output Viterbi algorithm (SOVA) [46], forward-backward (FB) [4]. The forward-
backward algorithm computes the exact a posteriori probability (APP) using the trellis
structure of the code. A trellis is a particular case of a graph, the forward-backward is a
particular case of graph decoding.

e [terative decoders: if the constituent codes of a concatenated scheme have SISO decoders
(e.g., turbo-codes [9][10]), an iterative decoding can be performed exchanging extrinsic
probabilities between the SISO decoders. However, a code can directly be constructed as
a graph structure [59], and decoded by message passing on the graph.

b) The APP detector

There exists many kinds of SIHO or SISO detectors for multiple antenna channels. Hard output
detectors find estimate 2 € () for each transmit antenna and time period, the symbols are then
converted into bits thanks to a de-mapper, de-interleaved and given to the input of a hard input
decoder. We can list the most current hard output detectors:

e Sub-optimal hard output decoders: an estimation of the transmitted symbols Z can be
obtained by linear equalizers followed by a hard decision (e.g., Zero-Forcing (ZF), Minimum
Mean Square Error (MMSE)) or non-linear equalizers (e.g., Decision Feedback Equalizer
(DFE)). They do not provide near optimum performance on MIMO channels, even at high
signal-to-noise ratios. Indeed, such equalizer decision regions are an homothecy of the
equivalent lattice fundamental parallelotope (volume defined by the basis vectors). The
Voronoi region is a homothecy of the fundamental parallelotope only if the lattice basis is
orthogonal, which is not the case for MIMO channels.

e Maximum likelihood hard output decoders: the maximum likelihood point z;;7, can be
found using exhaustive decoders or non-exhaustive algorithms such as sphere decoders
(this algorithm is fully described in Section 4.2).

However, the separated detection and decoding process is sub-optimal in terms of global
maximum likelihood criterion. Suppose that the detector finds the maximum likelihood points
from the transmitted points, which is equivalent to finding all the maximum likelihood n;-
dimensional transmitted points for each time period. Moreover, suppose that the decoder finds
the maximum likelihood codeword from the coded bits vector given by the detector. Even with
these two conditions, the receiver does not achieve the global maximum likelihood performance.
Indeed, the global code Cg contains 25¢l¢ codewords whereas the hard output detector finds
the maximum likelihood vector in a set of 2¥¢L¢ vectors, considering non-existing points which
misleads the decoder. As already said, the ideal but intractable receiver should directly decode
Cg. Another solution is to perform iterative joint detection and decoding thanks to iterative
processing.

The receiver has two main elements as described in Fig. 2.2: An APP QAM-detector that
acts as a soft output equalizer for both the space-time spreader and the MIMO channel, and a
SISO decoder for C. An iterative joint detection and decoding process is based on the exchange
of soft values between the SISO QAM-detector and the SISO convolutional decoder. The SISO
detector computes the extrinsic probabilities £(cy) thanks to the conditional likelihoods p(yx/zk)
and the a priori probabilities 7(cy) fed back from the SISO decoder. At the first iteration,
no information is available at the detector input, so it equally considers all the constellation
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Figure 2.2: Iterative APP detection and decoding receiver.

points and gives probabilities on the coded bits to the SISO decoder. Through the iterations,
the a priori probability of the constellation points computed from the probabilities given by the
SISO decoder becomes more or less reliable. If an ideal convergence is achieved, near maximum
likelihood performance is achieved. This technique requires a SISO detector that converts the
received vector yj, of each time period into extrinsic probabilities on the coded bits &(cy) thanks
to a priori probabilities on the coded bits 7(¢y). We can list some SISO detectors for MIMO
channels:

o exhaustive APP detectors, list APP detectors (see Section 4.3).
e SISO MMSE (see Section 4.4)

e Serial Interference Cancellation, Parallel Interference Cancellation detectors (from mul-
tiuser detection theory).

We will now describe the optimal APP detector based on a marginalization over an exhaustive
list. When the spectral efficiency is too high, such a detector becomes intractable. The complex-
ity reduction of such a case is treated in Section 4.3. However, we need to describe the optimal
detector for the performance computation and system performance optimizations.

The detector independently computes the soft outputs on each time period, the following
APP probability expression is available for any coded bit ¢, of any time period. The received
point during the considered time period is yi. The APP probability of a coded bit ¢, is defined
by the probability to detect the bit conditioned on the observation of yy:

APP(ce) = plee/yr) = W (2.6)

In the above expression, we see that APP(c;) can be expressed as a function of different quan-
tities.

e At each new detection step, the probabilities given by the output of the SISO decoder are
independent from the received point yi. They are called a priori probabilities on the coded
bits ¢p: m(er) = p(ey).
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e The probability p(y) depends on the transmitted coded bits, the a priori probability and
the AWGN, and is not computable. Fortunately, we will see that this is not a necessary
quantity for the iterative processing.

e The conditionned observation p(yi/c,) can be decomposed into more explicit probabili-
ties. We use a marginalization over the set of labelings having the ¢-th bit equal to ¢y,

c ={c1y ..y ¢0,...ycmn, b € Q(cg), where ¢ corresponds to a transmitted vector zp =
{2k 1, 2kN, } and filtered vector xy, = 2, Hy = {2k 1,..., kN, }
plye/ce) = > plyc/e)) = Y ply/c,cop(c) (2.7)
c€(cy) c€Q(cyp)

The condition over ¢, ¢, is equivalent to a condition over all the modulation symbols vectors
2, € Q(cg). Using the independence of the receive antennas and the AWGN distribution,
we can write that

N,
1 1 2
_ - ) — —llyk—=xSHl|?/2No 2.8
¢, c x x e .
The coded bits transmitted during the same time period are supposed to be independent,
we have Ve € Q(cy), p(c) =[], 7(c;) which leads to

plue/ce) = > plue/ze) [ (e (2.9)

T, E€Q(cr) i#l

Let us now consider the information exchange between the SISO decoder and SISO detector.
The two blocks compute the APP probabilities combining the information they gather indepen-
dently (received point and modulation for the detector, trellis for the decoder) and information
from the other block. The decoder gives a priori probabilities to the detector, this amount of
information should not be given back to the decoder in order to keep the random variable inde-
pendence. The detector computes APP(c;) = 7(ce)&(ce), with £(cg) and 7(cg) two independent
variables, £(¢y) is called extrinsic probability, given to the decoder soft input. Moreover, we have
APP(cy) x m(cg)p(y/ce), and since &(cp) should be a probability, we can use the normalization:

p(yr/ce = 1)
p(yr/ce =0) +p(yr/ce = 1)

£(cr) = (2.10)

Finally, the SISO APP detector computes the extrinsic information, which corresponds to the
extrinsic probability that the ¢-th coded bit equals 1, as given in the following normalized

marginalization:
_lw—2'smg)?
ZZIEQ(CZII) € No Hr;éf 7T(CT’)
(2.11)

llve = =S Hy ||
ZzeQ [(6_ No ) Hr;ﬁéﬂ-(cr)]

where € is the Cartesian product (M-QAM)™t, i.e., the set of all vectors z generated by the
QAM mapper, || = 2™, The subset Q(c; = 1), for £ =0,1,...,mN; — 1, is restricted to the
vectors z in which the /-th coded bit is equal to 1. The detector independently computes the

£(er) =
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soft outputs for each precoding time period. At the first iteration, no a priori information is
available at the detector input. Through the iterations, the a priori probability on constellation
points computed from the probabilities fed back by the SISO decoder becomes more and more
accurate. Ideal convergence is achieved when a priori probabilities provided by the decoder are
perfect, i.e., equal to 0 or 1.

2.2 Ideally interleaved BICM exact pairwise error probabilities

This section describes a very accurate computation of bit error rates and frame error rates of
BICM maximum likelihood performance over MIMO channel with ideal interleaving. This new
technique is based on the original computation of the exact pairwise error probability between
two codewords.

The digital communication systems become more and more complex to provide better per-
formance. This technical progress increases the difficulty of theoretical analysis. The graph
iterative decoding introduced in the 1960’s by R.G.Gallager was extended to many kinds of
iterative processing using the concatenated structure. As examples, we can cite turbo-decoding
of concatenated codes, turbo-synchronization, turbo-equalization, joint turbo-detection and de-
coding of BICM.

If the signal-to-noise ratio is sufficiently high, the iterative processing converges to near
maximum likelihood performance, which is particularly interesting when no maximum likelihood
decoding can be processed. However, theoretical analysis for iterative processing is very difficult
or in many cases impossible.

In this thesis report, we mainly consider iterative joint detection and decoding of BICM over
multiple antenna channels. Heavy work has been made to estimate the frame error rate or bit
error rate of this system, in particular using Gaussian approximations, but the exact pairwise
error probability has not been presented yet.

Under the ideal interleaving condition, and when the MIMO channel is ergodic, we are able
to derive a closed form expression of the Log Likelihood Ratio density probabilities at the output
of the detector and a closed form expression of the pairwise error probability at the output of the
decoder. It is then very simple to use the well known techniques to estimate the bit error rate or
frame error rate of a coded modulation when the pairwise error probability is perfectly known.
This subject has been fully discussed for coded modulations over AWGN channels, where the
pairwise error probability is straightforward. As an example, we can cite the union bound of
the transfer function of a convolutional code, or the more accurate tangential sphere bound. We
will then extend these results to the block fading MIMO channels with linear precoding.

2.2.1 Ideal interleaving condition

The evaluation of the bit error rate (BER) or frame error rate (FER) of a coded modulation
is usually based on the derivation of an upper bound on the actual performance obtained by a
balanced summation of pairwise error probabilities. Each pairwise error probability involves the
Euclidean distance between two codewords with a Hamming distance w.
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For example with convolutional codes, consider a nearest neighbor in the trellis. It is defined
by a block of l¢N¢ coded bits, dgmin of which are erroneous (l¢ is the code constraint length).
The channel provides a good protection if these coded bits see a maximum number of independent
channel states.

Considering a general ny; x n, MIMO block fading channel with n. blocks, we collect a
minimum diversity equal to n, at the detector output, and, since the decoder cannot degrade
performance, the reception diversity n, is always obtained at the decoder output. The challenge
is to collect the transmission diversity given by the n, transmit antennas and the n. channel
realizations.

In order to achieve full diversity, the erroneous bits of an error event should be equally
distributed over all channel states. Moreover, the interference of these bits in the precoding
time periods should be limited to first enhance the diversity and then the coding gain. Let
us consider an error event with w erroneous bits. Assume that the maximum diversity order
i8S dmaz- If W > dimaz, we achieve full diversity if at least d,nq, bits among w see the dpqz
independent channel states. In a precoding time period k£ in which at least an erroneous bit is
transmitted, the transmitted and competing points are called x = 2,SHj and ) = 2, SHy.
When performing ML decoding or APP detection, we are interested in the equivalent Binary
Shift Keying (BSK) modulation defined by the two points z, and x). The vector (z; — 2, )SHj,
has sn, independent circular symmetric Gaussian components. Thus, whatever the number of
erroneous bits on a precoding time period, the obtained diversity is limited to sn,.. Having several
erroneous bits per precoding time period is useless. On the contrary, if the erroneous bits are
located on different precoding time periods and experience different fading random variables, a
higher diversity is achieved. This is what we call the non-interference property. Furthermore, we
will see in section 3.3 that an equi-distribution of erroneous bits on channel states is required to
achieve a maximum coding gain. We call it the equi-distribution property. The ideal interleaver
is defined as follows:

Proposition 1 For any pair of codewords with w different bits at positions i1,... ik, ... 0y, an
ideal interleaver allocates the bits to transmitted symbols as follows:

e Non-interference property: Viy, iy, bits at positions iy and iy are transmitted on different
precoding time periods,

o Fqui-distribution property: the bits at positions t1,...,%k,...,%y are as equiprobably dis-
tributed over all channel states as allowed by w.

In practice, such an interleaver does not always exist. We will see in the following that the
Singleton bound gives an existence condition of the ideal interleaver. In section 3.4, we present
optimized interleavers that approach the ideal condition.

2.2.2 Exact pairwise error probability for ergodic channels

A tight upper bound on the pairwise error probability of error-free decoding for a MIMO-BICM
has been given in [50]. It is based on an integral expression that can be evaluated by the
Gauss-Chebyshev quadrature [22]. Here, we establish a closed form expression for the exact
pairwise error probability on ergodic MIMO channels under maximum likelihood decoding of
the BICM and ideal channel interleaving. The mapping design criterion is directly derived from
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this pairwise error probability expression as shown later in section 3.1. Furthermore, tight union
bounds on both frame and bit error rates (FER and BER) will be presented and used to validate
the asymptotic signal to noise ratio gain for optimized mappings.

Transmitted symbols are not precoded: s = 1, S = I,,, the n; x n; identity matrix. Thus,
(2.3) reduces to Hy = H,[j”l]. Consider two codewords X (c¢) € Cp and X(¢') € Cg with a
Hamming distance w = dy (¢, ') between the convolutional codewords ¢ and ¢’. If we assume
ideal channel interleaving, then the w difference positions are spread in space and time over w
distinct transmission periods. Clearly, the conditional pairwise error probability Py, (X (c) —
X(c’)) only depends on those w positions. Hence, we will reduce the notation of X(c) and
X (') to the w time periods. We introduce X = {z1,...,2,} and X’ = {2}, ..., 2},}, where the
components xj and zj, are points belonging to the set QHj.

Our aim in this section is to compute P, (¢ — ¢) = Ey [Py (¢ — ¢)]. The conditional
pairwise error probability Py, (c — ¢') is expressed as

Prw(c—¢) =Py (X - X)=P <e_ Sk llye—zkl?/2No - o= 3k, ||yk—$§€||2/2N0) (2.12)

For a given set of channel realizations H, a correct decision is taken by the ML decoder when
the log-likelihood ratio LLR is positive:

2
e= Xk= lvk—zul7/2N0 - ST (lyk—a |2 = llye =zl

LLR = log | S, ) = i =¥ LLR,
Py (c—¢) = P(LLR<0)=P (X" LLR; < 0)
(2.13)
Thus,
0 0
P, (c— ) =En[P(LLR < 0)] = Ey [/ pLLR(m)d:U] = / Prig(x)de (2.14)

where prir(z) is the probability density function of LLR and pirg(z) = Ex [pLir()] is the
probability density function of LLR = Fy [LLR]. We will first express the characteristic function
Yrr(jv) of LLR. Since the w random variables LLR;, are independent and the channel is
ergodic, using LLR = )"}, LLRy, we have

Yrrr(v) = Bn

SR (jl/)] =11 ¢tx, Gv) (2.15)
K K

where Yz, (7v) = En, [YLir, (jv)] and ¢rir, (jv) is the characteristic function of prig, ().

Two points are involved in the expression of the partial log-likelihood ratio LLR: zp = 2z Hy,
and ) = Zﬁ’“Hk, where Hj denotes an instance of the channel matrix set H at time period k.
As ideal interleaving is assumed, the point z; = Eff is obtained by flipping the bit at position
i in the binary labeling of z; (1 < ¢, < mny). The squared Euclidean distance between z; and

2
zt is denoted di = ||z — Zf;’“ . The distance spectrum {dj} depends on the modulation type,
its size and its binary labeling. For a given 2™-QAM modulation, non-equivalent labelings lead

to non-identical bit error rate performance.
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a) Characteristic function of LLRy

First, we compute the characteristic function of LLRj for a binary modulation (BSK) defined
by two points {z, Zi’“} transmitted over a MIMO channel. The expression of LLRj is:

1

~ 2N, (Rk +2R <(Zk - Eﬁ’“)Hkn;;)) (2.16)

LLR, — g || H,|]?
k—m Yk — 2 g —||yk—2k kH

where *

is the transpose conjugate and Ry is the square norm of the vector (z — Zi’“)Hk. If
a classical mono-dimensional mapping is used independently on each transmit antenna, the
difference vector zj — 2,‘;’“ has only one non-null component in the position given by [{x/m].
However, in order to stay in the general case which will be useful in the following, we do not
take any assumption on vector zj — Eﬁk. It can be shown that R((z — Eﬁk)/No.Hkn,’;) is a
Gaussian noise with zero mean and variance Ry /Ny. Moreover, since (z — Zf;’“) /di.Hy, includes
n, independent identically distributed complex Gaussian random variables with zero mean and

unit variance, then Ry/ d% has a Chi-square distribution of order 2n,..

a(nr—1) g~

PR ja2 (@) = RO (2.17)

First, notice that the random variable LLR is Gaussian distributed.

Ry Ry
LLRy ~ —_— 2.18
e N <2N0’ N0> (2.18)
The characteristic function of LLR, is
, R
YLLR, (V) = B [eMH] = exp (gﬁk(j - V)> (219)
0

The mathematical expectation Eg, [.] over Ry, is equivalent to the expectation over Hy. Thus,
Vg, (V) = ER,, [YLLR, (V)]
&2 —nr
= <1 — VU~ V)) (2.20)
d2 . . —nr
= (v = jald))w - jo(d)))

where
a(dy) = 3 <1+< 1+%>>
b(dy) = 3 <1 — < 1+ %)) (2.21)

b) Characteristic function of LLR

Let D denote the set of all Euclidean distances obtained by flipping one bit in the constellation
Q. Taking ng as the number of different distances occuring in the sequence (dy,ds, ..., dy), we
define the set A = {d1,...,0,,} C D from the sequence (dy,ds,...,d,) € AY C DY, ie., the
Euclidean distance dj, takes its values from the set A.

It is clear that ng = |A| < |D|. Let the integer A\ denote the frequency of 0y in the sequence
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(dl,dg, e ,dw), ZZil )‘k =wand A = {)\1, .. .,)\nd}.
Using (2.15), (2.20) and (2.21), the averaged characteristic function becomes

vrmv) = ] <2N0 ]V+a(dk))(jy+b(dk))>_ T (2.22)
k=1
) ( ) ) (H “‘7”+“<‘5k>“jV+b<6k>]>‘"”’“> (229
k=1
w 32\ e ng
B (H (#) ) I Gy +p (2.24)
k=1 0 k=—ng,k#0

where the poles in the above product are defined by Bx~o = a(dx), Br<o = b(0_k).

¢) The LLR partial fraction expansion

To allow derivation of prr(), we now compute the partial fractions expansion of Yz (jv).
A mathematical reminder about partial fraction expansion is described in Appendix C. The
characteristic function ¢rr(jv) can be written as:

- _d2 o ak K
Yrrr(v) = H <—k> Z Z (2.25)
k=1 2NO k=—ng,k#0 i=1 Jl/ + /Bk?

where the coefficients ay; are given by an identification of the coefficients of the two series
expansions in €:

nyrAg—1 A ng nrAg—1 (_1)Z(nq~)\‘m+l—1) A
Yo apaid +O(EM) = ] > S O (226)
i=0 n=—ngn#ln#0 =0 (/gn - /65)

where (}) = ﬁlk), From the simple properties a(0x)—1/2 = 1/2—0b(0x) and Yr(jr—1/2) =
Yrr(—1/2—jv), we have a_j; = (—1)" oy ;. Hence, coefficients ay,; are only evaluated for & > 0.
Expression (2.25) becomes

o) = [T (= >_W D) DR TR L (227)
rrr(iv) : - )
i1 \2No =S Gr+alr)’ v+ b))

d) Conditional pairwise error probability closed form expression

Finally, we get the probability density function of LLR = >}’ LLRy, by the Fourier transform

+o00 .

prir(z) = % %(ﬂ/) dy (2.28)
w ny Nd NrAg -

= % < 2N0> Z Z ok [Li(z,a(dr)) + (=1)"Li(z,b(0k))]  (2.29)

k=1 k=1 i=1
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and the function I;(z,a(dy)) is defined by
i1

(—)
(i— 1)

Ii(x, a(6) = 2 sgn(a(6,))e" O H(~sgn(a(5y) ) (2.30)

Indeed, we have
and

+oo e Jve
hea@) = [ ey = 2msgn(a(6)e 7 (—sgn(a(6)a)

where sgn(z) is the sign function, and H is the Heaviside step function.

Using f (x,b(dx))dx = 0 and

0 0 (_p)i-1
/ Ii(z,a(éy))dx = 27r/_ ((i _)1)! e¥OR)Tdy = o (;k) (2.32)

—00

the conditional pairwise error probability is P, (c — ¢/) = [ EOO prrg(z)dxz which yields the closed
form expression

w ny Nd nrAg .
Pu(c = ¢) = Po(A,A) = [ (-%) Z Z a(;:)i (2.33)

e) Asymptotic expression of the pairwise error probability

We can compute the asymptotic expression when the noise level is low. Indeed, the coding gain
and diversity are measured for high signal-to-noise ratios (SNRs), where the performance have
a linear asymptote on logarithmic scales.

2n,w — 1\ +— (2No\"" on,w — 1 2Ny wnr
Py(AA) ~ | | =2) = = 2.34
( )NOH()( nyw ) ( di > < nyw > <ge7"90(AvA)> ( )

k=1

The diversity associated with the considered pairs of Hamming weight w is the exponent of Ny,
equal to wn,. We define the coding gain or coding advantage as the coefficient dividing Ny, i.e.,

1/w
Gergo(A, A) (H d2> (2.35)

All sequences (di,...,dy) corresponding to the same pair (A, A) yield the same pairwise error
probability. By averaging over all possible pairs (¢, ¢’) or equivalently over all sets of distances
DY, we obtain P, = Epw [P, (A, A)], the conditional probability that an error event of Hamming
weight w occurs. From this pairwise error probability, it is easy to estimate the FER or BER of
the BICM with ideal interleaving thanks to a classical union bound on the weight enumeration
function of the error correcting code. Moreover, we derive a design criterion of the BICM from
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the coding gain Gergo(A, A) expression. In the following, the objective is to derive this coding
gain for block fading channels and linear precoding in order to derive the ML design criterion of
the space-time (ST) BICM.

2.2.3 Exact pairwise error probability for Block Fading MIMO channels

In section 2.2.2 we computed the exact pairwise error probability of an ideally interleaved BICM
over ergodic MIMO channels. We will now express the same pairwise error probability for
block fading MIMO channels. We assume that proposition 1 is satisfied. Assume that the
number of independent channel realizations in a frame is n.. We use the previously introduced
notation X = {x1,...,2,} and X' = {z],...,2),} to denote the non-equal w components of the
transmitted codewords ¢ and ¢’ (we consider dy(c, ') = w). The involved channel matrices are
not independent as for an ergodic channel. The conditions of independence are the following

e If two LLR random variables depend on two different channel realizations, they are inde-
pendent.

e If two LLR random variables depend on the same channel realization but on different
transmit antennas, the random variables are independent.

The maximum number of independent LLR variables is n.n;, which defines the transmit
diversity order. We will call “channel state” the 1 x n,, SIMO channel associated to one of the
ns transmit antennas of one of the n. channel realizations. We choose the error correcting code
so that w > nine.

We now group the w random variables LLR into min(n¢n.,w) = nin. independent blocks.
Let LLRy ;; be the i-th log-likelihood ratio corresponding to the BSK transmission on the [-th
antenna of the k-th block, k =1...n.,l=1...ny and ¢ = 1... K, where xj is the number of
bits transmitted on the {-th antenna of the k-th block. We have Y ;¢ > /", kx; = w. Finally,

LLR is the sum of n;n. independent random variables LLR}; = Zﬁkf LLRy

1=

ne ng Rkl

LLR =Y Y > LLR4y; (2.36)

k=11=1 i=1

Let dj,;; denote the distance associated with LLR;;, and define ’yg 1= Zf:kll di .; the distance
associated to LLRj ;. We have

LLRy; ~ N <2R—]]\§[’;, %) (2.37)
where Ry = ’y,ilHHk(l)HQ and Hp(l) is the I-th row of Hj. For all ¢, LLRj;; are transmitted
over the equivalent 1 x n, SIMO channel defined by Hy(l), which is chi-square distributed
with degree 2n,. The LLRjy; variables are transmited on independent channel states, as for
the ergodic channel case, we directly apply (2.33) and obtain the conditional pairwise error
probability closed-form expression

Ne Nt r ng nein )
Pu(X — X') = Py(A,A) = H H <_%> Z Z a?‘;n) (2.38)

2
k=11=1 Tkl n=1 i=1
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where 6, € A, and (A, A) is the pair of sets representing the sequence (7%71, . ,7,1,,%). The
ay,,; coefficients are computed thanks to the straightforward application of (2.26).

The asymptotic expression of Py, (A, A) is

2N, NN — e (2N
Fu(2,A) No—0 ( nrnne > H H ( ) (2.59)

k=11=1 Vkl

The diversity associated with the considered pairs of Hamming weight w is then equal to the
exponent ngn.n,. The coding gain is given by the geometrical mean of the 713 ; and is equal to

ne ne Kkl 1/(ntne)
) (2.40)

s - (T3 4,

k=11=11i=1

We will see in the following how to use this coding gain as a design criterion for the ST-
BICM optimization. We now consider an equivalent computation of the coding gain for a linear
precoded ST-BICM.

2.2.4 Exact pairwise error probability with linear precoding

When a linear precoder S of size Ny x Ny is used (N = sny), the detector computes soft outputs
on the N; transmitted symbols and considers the equivalent channel matrix SHy, of size Ny X N,..
Under the ideal interleaving condition, we consider at most a single erroneous bit per block of
s time periods in position 1 < £ < m/V; inside the binary mapping of the transmitted symbol
z, leading to symbol z¢. For simplicity reasons, we assume that the error weight w satisfies
w > N¢N,.

Assume that ng is a divisor of n.. Consider the block-diagonal matrix of size N; x N,.
Assume that Hj, contains n, distinct channel realizations among the s blocks of size ny X n, .
The channel input-output relation is

Yk = 2 SHy + (2.41)

where SHj, can be seen in general as a correlated fading channel [94]. All LLR random variables
associated with a transmission on the k-th block experience the same channel matrix. Hence, we
can apply a factorization of the correlated LLRs as in 2.2.3. Assume that a mono-dimensional
mapping is used, the BSKs are transmitted on a single selected input of the matrix SHy. Let
LLRg,;; be the i-th LLR among kj;, transmitted on the /-th row of the k-th block channel
matrix SHjy. The definition of xj; gives ch/ns Z 1 Kkg = w. Let dj;; denote the BSK
distance between the two points zj ; and zk L assocnated to LLRg ;. Let S; denote the [-th row
of S, we have || (2,14 _5£717i)SHkH2 dz y ZHSlHkHQ The LLRy,; associated with the factorization

of [-th row inputs of H}, satisfies

(2.42)

LLRy; ~ N (R’“ R"”)

2Ny’ No

where Ry = ||ViiHel?s Vi = 1S and 72, = kaf dklZ The variable Ry is a generalized
chi-square random variable with 2N, correlated centered Gaussian components. The random
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variable LLRy = Zfﬁl LLRy,; satisfies

25\21 Ry Z;\fl Ry
LLR; ~ N — =, = : 2.43
s < S (243)

We will first consider ng = 1 and extend the result to any value of ng.

a) The precoding matrix sees one channel realization (ns=1)

For ns = 1, the quasi-static channel matrix H}, is defined as Hy = diag <HIL1M1], .. ,H,Lll[s]). Let

the row vector Sl[i] denote the i-th sub-part of size n; extracted from the [-th row of S. We
construct the s x n; matrix S; whose rows are the s sub-parts S IM. Using the same method, we
decompose Vj,; into the s x n; matrix V), = y1.5].

Sl[l] Sl[l]
S[Q] 5[2}

S = (Slm, . ,Sl[s]> =5 = l and Vi ; = Y, l (2.44)
Sl[s] Sl[s]

Define h; the i-th column of H ][91}[1]7 the n, vectors h; are independent realizations of a ns x 1
MISO channel. We want to express the characteristic function of the random variable

Ny ny Nt Ny Ny
S Reyr=> > WV Vihi =Y hiMjMgh; = tr (Z Mkhih;M;;> (2.45)
=1 i=1 [=1 i=1 i=1
where M, is an n; X n; Hermitian square root matrix of
Ny
k= ViVi=U®s,U = M=DM=U"/35U (2.46)
1=1
where @y, = diag(Vg 1, ..., Uk n,), Uk, is the i-th real eigenvalue of ¥} and U is a unitary matrix.

The random variable Y/, Myh;hi M} has a Wishart distribution with n, degrees of freedom
and parameter matrix 3j. The characteristic function of the trace of > 7", Myh;h} M is given
in [69]:

u(jz— v)tr(d o, %zhlth/:)>] (2.47)

= <det(2k) det (E,;l - ,,(;7];01,)1»" (2.48)

- ﬁ (1 . ”(‘;7];0”)19,%24) o (2.49)

i=1

By, [Yiir, (jv)] = En, [GXP<

where 1}, ; is the i-th real eigenvalue of ¥.
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b) The precoding matriz experiences several channel realizations (ns > 1)

t]

denote

the t-th sub-part of the [-th row. Then, each sub-part S l[t] is decomposed into s sub-parts S l[t] ]

[1]

of size n; and defines the rows of the s x n; matrix 5,
divided with the following method

For ng > 1, we first decompose the rows of S into ng sub-parts of size Ny/ns. Let Sl[

. The Ny x N; precoding matrix S is

5 x Nyny) s gl _

S glla/nd T TPl g/l gl glnela/m

g_ | sl . glllemd gl gl gl L glnalls/n]

1‘1 1][s/ns 2.1 2l[s/ns n‘sl nslls/ns

SWM L gllls/md gl gl sl glalts/ne]
—— —— —— —— N——

N¢/s = ny coefficients

[t]

The s/ns X ny matrix S’ ; is built as follows:

1
S
=1 " (2.50)

glls/ns

[t](4]

For different values of ¢, sub-parts S;""" multiply independent channel matrices H Lt} M, which
allows us to multiply the characteristic functions associated with the sub-parts. Substituting s
with s/ns in the mathematical development presented in section agnd using the independence
of the ng channel realizations, we directly have

ns Nt —y — Ny
Em, [YrLr, (V)] HH < ;No 19&) (2.51)

t=1i=1

[t]

where ¥, is the i-th eigenvalue of
0 gl g s 2 el L2 e gl
Sy = MIME =08 = vV = Zm Z ss) (2.52)
=1 =1 =1

The set of eigenvalues ol ]i is a function of the precoding matrix S and the BSK distances
set reduced to the pair (A, A) The characteristic functions associated with different indices k
can be multiplied thanks to the independence of channel realizations for different k values:

Ne ns ng Ny
VO — V) ol
2 = TTTITT (1 - 2520 (2.5

k=1t=1i=1

Denote A = {62} the set of ns non-null eigenvalues extracted from the sequence defined
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by the ﬁg}i values. Each eigenvalue §2 is repeated A, times. Observe that ns < n.n;. Finally,
using the partial fraction expansion of W¥(jv) as described in (2.26), the exact pairwise error
probability P, (A, A) conditioned on dg(c, ') = w is equal to

ng 2N, Apny M6 Nry Oy
P& 0 =] (-5—2> >N m (2.54)

v=1 v=1 =1

The asymptotic expression of Py, (A, A) is

21, N5 — 1\ 15 /2Ny \ ™™
Pw(A,A)N(;(]( NS >H<¥> (2.55)

v=1
where N5 = > 12 '\, is the total number of non-null eigenvalues.

The diversity associated with the considered pairs of Hamming weight w is the exponent
equal to > 2 Ayn, = Nsn,. The coding gain is given by

neg 1/N6
Gonn(B,A) = (H 5?3“) (2.56)

v=1

We have derived an exact expression of the pairwise error probabilities of a BICM with linear
precoding. The expression is exact for any SNR value, and the asymptotic expression leads to the
well known rank and determinant criteria for space-time code optimization over MIMO block
fading channels [85][35], where the considered space-time code is the whole BICM structure.
As a remark, the asymptotic design criterion is usually derived by first upperbounding the
Q(z) function by exp(—22/2)/2 and then averaging over the channel realizations. The obtained
asymptotic expression has a multiplying coefficient different from (2”553;1), which is inexact
but provides the same coding gain expression, which proves that the design criterion proposed

in [85] are correct.

Moreover, we notice that applying the Tarokh [85] rank and determinant criteria to the
precoder alone does not lead to the whole BICM optimization. Quasi-optimal linear precoders
will be designed to achieve full diversity and optimal coding gain in Section 3.3. Moreover, we
now have the exact pairwise error probability expression which is useful for a tight BER and
FER estimation.

2.3 Estimation of the bit and frame error rates

The estimation of the frame error rate or bit error rate for coded systems is not an easy task,
even for the basic AWGN channel. Indeed, the objective is to compute the probability that a
multi-dimensional additive white Gaussian noise gets out from a non-identified multi-dimensional
polygon defining the Voronoi region. Each polygon facet belongs to the mediator hyperplane of
two neighboring codewords. We will describe two methods for estimating the BER and FER of
ideal BICM over MIMO channels.

All sequences (dy,...,dy) corresponding to the same (A, A) yield the same pairwise error
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probability. We have expressed the pairwise error probability between two given codewords ¢
and ¢ such that dg(c,¢’) = w and the transmission of ¢ — ¢ is characterized by (A, A). We now
have to average this probability over all possible pairs (¢, c’). First, let us consider the averaged
pairwise error probability P, conditioned on dg(c, ) = w:

Pw = L, dw [Pw(c - C,)] = Ec,c’\w [Pw(Av A)] (257)

Averaging over the pairs (¢,c¢’) is equivalent to averaging over (A,A) thanks to the inter-
leaver. Each pair (A, A) is representative of w!/ ], A\;! equivalent pairs (Z, Z’), where the
w-dimensional Z and Z’ vectors are the channel inputs leading to X and X', respectively. As a
pair (Z, Z') corresponds to a high number of pairs (¢, ¢’), the complexity of a numerical evaluation
is dramatically reduced in practice by performing expectation over A and A:

Py = EA,A|w [Pw(Av A)] (258)

2.3.1 Union bound on ergodic channels

The frame error rate at the decoder output FER* is upper bounded by the classical union

bound

FER™ <E.| Y Plc—C¢) (2.59)
c'eC,c'#c

The input-output weight distribution of the error correcting code C is

—+00 —+00 —+00
AILD)= Y Y anI'D¥ and AD)=A(1D)= >  a,D" (2.60)
w=dHmin wW=dHmin

where q; ; is the number of codewords with an output Hamming weight w and an input Hamming
weight 7. We can now express the approximation of the maximum likelihood frame error rate
and bit error rate of the ideally interleaved BICM transmitted over a multiple antenna channel:

+oo +oo
FER®¢ < Z awP(c— d|dp(c,d) =w) = Z Ay Py (2.61)

where P, is given in 2.58 for ergodic channels, or by the equivalent expressions for block fading
channels. Equivalently, we have

+oo .
BER** <Y Y ﬁaj,wpw (2.62)

J w=dHmin
where K¢Le is the number of information bits per codeword.

We can compute the asymptotic expression when the noise level is low. Indeed, the coding
gain and diversity are measured for high signal-to-noise ratios, where the performance have a
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Figure 2.3: 1/2-rate RSC 7,5 convolutional code (N¢L¢ = 1000) , BPSK over AWGN channel,
Union Bound performance (UB) or simulation (simu)

linear asymptote on logarithmic scales. The asymptotic expression of BER¢ when Ny — 0 is

dﬁ <%>n] (2.63)

k=1

2nrdein - 1>E
nrdein

—+o00 .
BER® ~ S L g,
N()—>0 j:1 KCLC 1@ Hmin

Indeed, the error events with Hamming weight greater than dg,.;, have higher diversity and
negligible contribution to the performance for high signal-to-noise ratios.

The union bound (UB) for convolutional codes is known to be tight on AWGN channels.
Our experimental results showed that the union bound provided by 2.58 and 2.61 is also tight on
a MIMO ergodic channel. Indeed, it is well known that the union bound performance is asymp-
totically (i.e, for a sufficiently high signal-to-noise ratio) a good approximation of convolutional
codes performance on AWGN channels with BPSK input. Indeed, there is a dominant term in
the sum and other terms are negligible for low noise levels. We can observe the tightness of the
union bound for a 4-state convolutional code over AWGN channels with BPSK input on Fig.
2.3.

In our case, the terms corresponding to the error event with a weight equal to dg observe a
diversity equal to n,dy. At high signal-to-noise ratios, the terms with dg > dg.min are negligible.
We can observe the tightness of the union bound of a 4-state convolutional code over 2 x 2 MIMO
ergodic channels with 16-QAM input and gray mapping on Fig. 2.4.
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Figure 2.4: 1/2-rate RSC 7,5 (N¢L¢ = 10000) , 16QAM, Gray mapping, 2 x 2 MIMO channel,
Union Bound performance (UB) or simulation (simu) for BER and FER

2.3.2 Evaluation of the Frame Error Rate on block fading channels

For ergodic channels, the frame error rate is easily computed via a union bound. Indeed, only
error events with minimum Hamming distance impact the error rate for a high signal to noise
ratio and the observed diversity is equal to n,dgm:. For block-fading channels, the frame error
rate computation is much more tricky since each pairwise error probability is supposed to have
the full-diversity order n.nyn,. Due to the random nature of each eigenvalue in (2.56), it is
difficult to know the impact of each distance configuration on the final FER.

However, one may assume that for a sufficiently high signal to noise ratio, the FER satisfies
the following expression :

FER ~ > " awE(a aw) [Pu(A, A)] (2.64)

Where ay, is the weighting coefficient of the impact of pairwise error probabilites with hamming
weight w on the global error probability. The interleaver random structure allows for satisfying
this equality. Let us define G the global coding gain. Since each pairwise error probability is
supposed to have full diversity, we can write

2 1\ [ 2Np\ e
FER ~ ( firfittie > <—°> (2.65)

NyeNtNe g

and

G =3 " v B A [G(A, A) ] (2.66)
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where G(A, A) is the coding gain associated to one pair of codewords. We can classically remark
that optimizing indepently all pairwise error probabilities enhances the global performance,
which will be done in the following. Moreover, we observe that the number of receive antennas
does not affect the coding gain of a single pairwise error probability. The effect of the receive
diversity is shown on the expression of the global coding gain, where a generalized harmonic
mean of the gains is processed. As n,n;n. grows, the smallest coding gains have more impact
on the final performance. Asymptotically, if n,.n:n. — +o00, only the nearest neighbours in the
euclidean code have an influence on the FER, as for AWGN channels.

[1]

We will see in section 3.3.1 that the best coding gain is achieved when all eigenvalues ¥,
are equal. In this ideal configuration, the coding gain is shown to be the same as with the same
coded modulation transmitted on a 1 X n.nin, SIMO channel. Simulating this latter case is
less complex: the performance curve is semi-analytically computed using a reference curve on
an AWGN channel. Alternatively, performance may be obtained by computing the Tangential
Sphere Bound for spherical modulations [48]. In the following, ideal BICM will refer to the
performance of the ideal configuration, which will be drawn on simulation results. This lower
bound has the advantage to take the modulation and error correcting code into account and will
be useful to evaluate the optimality of both the linear precoder and the channel interleaver.

2.4 Genie concept and performance

2.4.1 Principle

The genie method has been described and intensively used for mapping optimization of a BICM
transmitted on a single antenna ergodic channel [24]. The main idea is to consider that for
a sufficiently high signal-to-noise ratio, the extrinsic probabilities become very reliable. When
processing the detector output during a time period, the genie condition is satisfied if the m/N; a
priori probabilities are perfect, i.e w(cg) = ¢. In this case, the extrinsic probability computation
of the £ — th coded bit at the detector output is

_lly—=s5H|?
e 2Ng
Cp) = 2.67
§lee) Cly—ssH2 _|v-ztsH|? (267)
e 2N +e 2N

where z and z‘ have a 0 or a 1 in the (-th position, respectively. We can observe that only
the two points z and z° are considered, they define a binary shift keying modulation (BSK).
The computation of a given extrinsic probability behaves like LLR computed on a single time
period, and introduced in the ideal BICM ML performance. The BSKs obtained by flipping
one bit on the labeling are important to define the BICM geometrical behavior under perfect
feedback assumption. This property can be used to design the labeling, this will be discussed in
Section 3.1.

However, the genie situation assumed for the whole codeword is very optimistic, as it is
equivalent to an error-free scheme, which is impossible. That is why we only consider the genie
at the detector and for a single time period decoding. This is a practical design concept, not
a physical quantity. However, we will see how this simple design tool is equivalent to the more
complex maximum likelihood criterion.
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2.4.2 Genie and maximum likelihood analogy

An information bit sequence, coded into a codeword, interleaved and spread over antennas and
time periods, leads to a point of Cg in a space with a number of dimensions equal to the number
of receive antennas times Lc Ng /(mNy), the indices of time periods corresponding to a codeword.
With the well-known ML criterion leading to optimum performance in terms of Frame Error rate
(FER), we choose the information bit sequence minimizing the distance between the equivalent
point and the noisy received point.

If we consider a low noise level, the error probability is quasi-null and very dependent on the
distance between the transmitted point and its neighbors. Indeed, the probability that the noise
results in a received point far from the transmitted point is very low. In this case, and assuming
convolutional encoding, the codeword neighbors of the transmitted sequence are given by simple
error paths. Ideally, the few different neighbor bits are separated thanks to the interleaver. If
two or more of these bits are grouped in the same time period, the generated interference will
degrade the performance. Therefore, the interleaver has to be carefully designed to separate
the erroneous bits onto different time periods. If this interleaver condition is satisfied, the
distance between the transmitted point and its considered neighbor is equal to the equivalent
BSK distances sum. Averaging this remark on all the transmitted sequences and all the simple
error paths leads to a construction criterion which is very close to the genie criterion. Indeed,
the genie method considers the equivalent BSKs given by considering all the transmitted bits
on s time periods.

On one hand, maximizing the distance between two neighboring codewords is not sufficient
to optimize performance according to the ML criterion, since only considering two neighbors
corresponds to optimizing a ML performance lower bound. Nevertheless, experiments show
that performance is mainly lead by neighbors. On the other hand, the genie performance is
given by an ideal situation that never exists in practice, so we minimize an inferior bound too.
We have shown here that the two optimization criteria given by approximated ML and genie
considerations are quite equivalent, provided that the interleaver is well designed. However, the
genie performance is easily computable at the detector output. It allows us to consider only s
symbol periods instead of considering the whole codeword.

2.4.3 Genie performance closed form expression at the detector output

We will apply 2.33 to compute the genie performance BER%* at the output of the detector in
the case of ergodic MIMO channels. Since only one time period is considered, the temporal
subscripts k are not necessary. The expression of the detector soft value, when the a priori is
fed back by a genie, is given in 2.67. The bit error probability BER®! is directly related to the
decision making on £(c¢g). By conditioning on the channel state H and the transmitted QAM
vector z, we can write

BER", = E¢ [P (|é(cr) — e > 0.5)] (2.68)
The symbol FEy[.] denotes the mathematical expectation over the position ¢ of the coded bit.
Then, using 2.67 and 2.68, we can express BER? as a function of the LLR of a BSK with
distance d = d(z, z), averaged over H, z and n:

BER® = By, [PH(Z - zf)] = E., [@ <d(z, zf))} (2.69)

)
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where ® (d(z,2") = Ey [Pu(z — 2%)]. We notice that the performance under the genie condition
at the detector output, or equivalently at the decoder input, is the average probability of the
|Q|mn; equivalent BSKs with distance d(z, ‘) on an n; x n, MIMO channel. We can directly
compute the pairwise error probability from 2.33 choosing ng = w =1, d; =6 =d, \; = 1.
Finally, we just have to identify the coeflicients «; from

iy a1, —i nr—1 (_1)i(nr+ize1)
; et Tom = ; (B_1 — PBy)nrTignr—i +0(1) (2.70)

using —16_1 = Qd#, we can write the closed form expression of ® (d):

B 42\ ny—1 (m—i_kk_l) _nr—l np+k—1 ﬂl k ﬁfl A Ny
v = (o) G ) ) (e

k=0 k=0
1oL\ " 141 \"*
/148Ny /d2 n.+k—1 /148Ny /d?
- ) 20 2 27

k=0

which is the result obtained in [74]-chap.14. Finally, the error probability at the detector output
is given by
mng

BER® = — 33 ¢ (d(z.2) = Eypy 2 ()] (2.73)

mi| €] 2eQ 1=1

Conclusions

We have described the BICM transmitter applied to multiple antenna channels and its associated
iterative receiver. Then the fundamental ideal interleaving condition is described and exact
pairwise error probabilities are computed in both ergodic and block fading channels cases. These
exact pairwise error probabilities may be used to compute very tight bounds on the error rates
using either a union bound for ergodic channels or a tangential sphere bound for block fading
channels. The asymptotic performance expressions give design criteria for the binary labeling,
the linear precoder and the error correcting code choice. These optimizations will be discussed in
next section. Finally, the genie method and an analogy with the ML performance at the detector
output assuming ideal interleaving are described. Section 3 shows that the genie method can be
invoked for the labeling and for the linear precoder optimizations.
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Chapter 3

Bit-Interleaved Coded Modulation
optimizations for MIMO channels

Introduction

In Chapter 2, we have presented the BICM transmitter and iterative receiver structure, and
its performance on MIMO channels. We will now optimize each BICM component in order to
enhance the Frame Error Rate (FER) or Bit Error Rate (BER).

In Section 3.1, we will focus on the mapping optimization over ergodic MIMO channels (or in
the case of a sufficiently high number of independent channel states), providing high coding gains
and obtained by increasing Fuclidean distances between the global codeword points. We intro-
duce the new idea of multi-dimensional mappings allowing capacity approaching performance
with elementary codes.

The case of block fading MIMO channel is much more thorny. We must first maximize the
diversity order before thinking of optimizing the coding gain. The BICM components optimiza-
tion should be done jointly. In Section 3.3, the linear precoding optimization is considered, we
present the conditions to be satisfied to achieve the optimal coding gain for a target diversity,
and optimize the linear precoder to achieve good performance with an iterative receiver. In
section 3.2, we take the linear precoding spreading factor into account in the computation of
the Singleton bound on the diversity order, which enables us to find the minimal precoder size
that leads to full diversity performance. Finally, in section 3.4, we optimize the interleaver to
achieve the potential diversity and coding gains promised by the other elements optimization,
under the constraint of ideal interleaving.

The notations required for the reading of this section were presented in Section 2.

3.1 Mapping optimizations

The binary mapping optimization of a signal constellation is an old problem in communication
theory. Mappings based on Gray code [2] and Ungerboeck set partitioning [92] are among the
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most famous binary labelings for coded and uncoded modulations. Multi-dimensional mapping
has been extensively studied in the 80’s for coded constellations on bandwidth-limited channels,
as in [40] for the transmission of fractional bits, in [93][23][100] for trellis-coded multi-dimensional
modulations, and in [41] for lattice constellations. More recently, in a parallel work to ours, a
multi-dimensional binary mapping and a construction algorithm have been proposed for QPSK
on single antenna fading channels [91]. Also, multi-dimensional mappings for multiple antenna
BPSK signaling have been described in [78] using a design criterion which is a special case of
our figure of merit (see (3.2) below).

In this section, a figure of merit for the binary mapping is derived from the ideal ML perfor-
mance on an ergodic multiple antenna channel. A design criterion based on this figure is applied
to the signal constellation to find good mappings suited for space-time coding. This ideal ML
design criterion coincides with the criterion based on the genie method. Then, it is shown that
the mapping figure of merit given by the ML performance is equivalent to the one given by the
closed-form expression of the genie performance, related to ideal iterative decoding. The genie
method has been previously applied to single antenna fading channels [24][63] and to multiple
antenna channels with bi-dimensional mappings [106].

Optimized mappings may be determined either by searching inside a randomly selected
list or by applying the binary switching algorithm (BSA) presented in [102][81]. Due to the
intractability of the more optimal BSA for large labeling sizes, the first method is used in high
complexity systems.

We have presented an approximation of the BICM performance with ideal interleaving and
ML decoding. This approximation is a function of the signal-to-noise ratio, the number of
transmit antennas and the error-correcting code. Moreover, it mainly depends on the set of
distances D given by the binary mapping bit flipping and does not rely on the constellation shape
itself. This allows to evaluate the performance of any constellation, even the most unstructured.
The performance computation has been processed in the general case of ns-dimensional distances
dp.

We will first calculate the figure of merit to be optimized for a given ns-dimensional mod-
ulation €2 thanks to its associated distance set D. Then we will apply such an optimization to
the classical QAMs and introduce the multi-dimensional mapping concept.

3.1.1 Mapping figure of merit

Let us first extract the asymptotic coding gain from the genie performance at the detector
output. The asymptotic expression of BER%* when Ny — 0 is

2n,. — 1\ (2Np)""
e () 20 o
Ny gﬂe
where the figure of merit F& can be computed via
1 1 — 1
- _F d—2w] = S 3.2
Fdet {D} [ ] mng Q| ZS:] ; d(z, 20)2nr (3:2)
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The asymptotic expression of BER%® when Ny — 0 is

il (2%’“0)] (33

nrdein k1

=Xy on,d 1
p [
BERYN,; .o = Z kL aMHmm( o )E{D}

_]:1 cHc
Indeed, the error events with Hamming weight greater than dg,,;, have higher diversity and
negligible contribution to the performance for high signal-to-noise ratios. The distances in the
sequence (d1,...,dq,, . ) are independent random variables thanks to the ideal interleaver. The
coding gain is a function of the mapping figure of merit S‘éec

de'Ln

—2n
II
k=1

1

g%ec =L

= (Eypy [a=2m]) (3.4)

which leads to & = (3§llet)dem. We notice that optimizing the mapping by maximizing the
figure of merit derived from the ML decoding criterion is equivalent to maximizing the figure of
merit given by the genie method at the detector output. We can compute the asymptotic gain
of labeling €29 with respect to labeling €21 as follows:
1 3!
Gai ~ —101 —=Z 3.5
aingp n 0810 < S?ft (3.5)
1
The asymptotic gain only depends on the distance distribution of the equivalent BSKs. We can
for example compare two QAM mappings together or a QAM mapping with a PSK mapping.

3.1.2 Multi-dimensional labelings

When we consider classical mono-dimensional complex labelings, the asymptotic gain optimisa-
tion is limited by the m x n; distances of mono-dimensional complex vectors. Clearly, vectors
with more dimensions will lead to higher asymptotic gains. Let us define 1,4, as the number
of antennas linked by the labeling.

When performing APP detection, the soft output is computed taking the whole set of trans-
mitted vectors into account. Thus, there is no complexity increase using a multi-dimensional
mapping instead of a mono-dimensional mapping. When the spectral efficiency is too high, e.g.,
4 x 4 MIMO with 16-QAM input, the exhaustive detector is intractable, and a near-optimum
APP detector such as SISO sphere decoder can be used [107]. When using sub-optimum APP
detectors such as SISO-MMSE [32], the multiple antenna channel is considered as n; interfering
1 x n, SIMO channels, and an exhaustive APP detector is processed on each sub-channel input.
In this case, the multi-dimensional mappings cannot be used. The ny x n, MIMO channel can be
viewed as npqr+ sub-channels equivalent to ng/npgre X n, MIMO channels. We can use a multi-
dimensional mapping with 7,4, < npere, compute an exhaustive detector on each sub-channel
and a sub-optimum low complexity detector to separate the n,q.+ sub-channels.

The BICM performance depends on the set of BSK modulations associated with the mapping.
For example, the Gray mapping and its associated BSKs are represented on Fig. 3.1-a. The
function ®(d?) defined in (2.72) is a decreasing function of d2, this induces that maximizing the
BSK distance improves the constellation mapping. Asymptotically, the mapping figure of merit
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Mean | Variance | Max gain Max gain
(dB) (dB)
at random | with BSA alg

Ny =1, Nypap =1 | 3.15 0.35 7.10 7.23

Ny =2, Npap = 1 | 2.40 0.29 7.27 7.42

Ny =4, Nap =1 | 1.43 0.13 7.15 7.36

Ny =1, Nypap =2 | 6.75 0.02 7.48 10.68

Ny =2, Nnap = 2 | 5.65 0.04 6.80 11.12

Ny =4, Npap = 2 | 3.59 0.04 5.01 10.98

Ny =1, Npap = 4 | 10.97 0.01 10.99 /

Ny = 2, Nnap = 4 | 10.67 0.01 10.71 /

Ny =4, Npap =4 | 8.33 0.02 8.57 /

Table 3.1: Statistics of 16-QAM optimized mappings

is Sglft defined in (3.2). For example, the genie performance of 16-QAM with Gray labeling and
minimal Euclidean distance 2.0 is

24 8
BER{<!, = 35 2(4) + 55 8(36) (3.6)

The genie performance closed-form expression on MIMO n; x n, channels and the asymptotic
gain expression (3.5) are very useful when designing binary mappings because of the search
procedure low complexity. We choose the mapping at random or using an optimization algorithm
such as the Binary Switching Algorithm (BSA) [102][81]. A mapping is optimized for two
parameters: n, and n,,q,. Indeed, for a given labeling, the asymptotic gain is the same for all
ng. We can numerically determine the asymptotic gain probability distribution of a randomly
selected binary mapping, taking the Gray mapping as reference. On Fig. 3.2, for a 16-QAM
constellation, we see the asymptotic gain distribution when n, = 1,2,4 and n,,q, = 1,2,4. We
also listed in Table 3.1 the mean, variance and maximum value of the asymptotic gain found by
our search procedure. We randomly selected a large number of 2"-QAM mappings, the search
is not exhaustive. In the case of n, = 1 and n,,p = 1, the best mapping we found exhibits an
asymptotic gain of 7.1 dB. When increasing the mapping number of dimensions (nyqp > 1), it
is possible to increase the minimum Euclidean distances of the embedded BSKs. This explains
why the statistical mean of the asymptotic gain improves for 7,4, > 1.

0010 0110 1110 1010 T e e e 0111 0100 1011 0001
° ° ° ° L] [} ° °
— e o e
— e e %
0011 0111 1111 1011 0010 1110 1000 1101
o ° ° o o ) ° °

Bit1 Bit2 Bit1 Bit2

0001 0101 1101 1001 j ) ) } l0.0l Ol.Ol 00.11 01.10
o 0K B
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[ [ [ ] [} [} [ [ ]

Bit3 Bit4 Bit3 Bit4

(a) Gray (b) Optimized
Figure 3.1: Mappings of 16-QAM constellation.
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m=1|m=2|m=4|m=26
ny =1, Nypap =1 0.00 1.25 7.23 12.62

M =1, fimap =2 | 1.25 | 505 | 10.68 | /
=1, nmap =3 | 355 | 652 | J 7
Ny =1, Npep =4 | 5.05 / / /

Ny =2, Nopap = 1 | 0.00 | 1.02 | 7.42 | 12.97

Ny = 2, Nypap = 2 1.02 5.02 11.12 /
Ty =2, Tonap = 3 | 3.46 | 6.24 / /
Ny =2, Npap =4 | 5.02 / / /

Ny =4, Nmap =1 | 0.00 0.69 7.36 12.81

My =4, nap = 2 | 0.60 | 4.98 | 1008 | /
Mty =4, fimap = 3 | 3.35 | 6.16 ] 7
ny =4, Npap =4 | 4.98 7.26 / /

Table 3.2: Best found asymptotic gains (in dB) with respect to Gray mapping for 2™-QAM
constellations and 7,4, dimensions

We applied such optimizations to other spectral efficiency values and mapping number of
dimensions, the best gains we found with BSA are presented in Table 3.2 for 2™-QAM constel-
lations. Unfortunately, the BSA algorithm complexity grows strongly with the global spectral
efficiency of the system, that is why we are limited to m.n,4p < 10. The number of receive an-
tennas n, has an impact on the figure of merit. Thus, for a same mapping number of dimensions
Nmap, different values of n, will lead to different optimized mappings. As an example, when n,.
tends to infinity, the minimum distance in D will be dominant in the figure of merit expression,
as on an AWGN channel, unlike smaller n,. values.

3.1.3 Increasing the number of dimensions with Space Time precoding

Linear precoding can be used to increase the diversity of systems with a small number of anten-
nas. The symbols of s time periods are grouped together and spread over the transmit antennas
and time periods without decreasing the system rate. The linear precoder’s matrix S has sn¢
rows and columns, where s is called the spreading factor of the linear precoder. A BICM on
an ergodic multiple antenna channel exhibits a diversity equal to d gminn.-. We can increase the
observed diversity to sdgminn, using an sn; X sny; complex linear precoder. For example we
may use cyclotomic rotations [14][106][109]. If the linear precoder satisfies the norm conditions
presented in [106] on an ergodic channel and under a genie condition, maximum precoding gain
is obtained and the channel may be seen as a 1 x sn,, SIMO channel. Multi-dimensionnal map-
pings designed for sn, receive antennas may be used without any adaptation. The detection
is processed over s time periods. We can use at most an sn-dimensional mapping. As shown
in Section 3.1.5, if s > 1, we succeed in enhancing the coding gain via a mapping dimension
increase at the cost of detector complexity increase.
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Figure 3.2: Asymptotic gain distribution of random 16-QAM mapping with respect to Gray
mapping.

3.1.4 Convergence behavior

We have designed multi-dimensional mappings having large potential gains. Unfortunately, we
cannot use such good mappings with a powerful error-correcting code because of convergence
problems. Many studies have been made on BICM convergence using exit charts [88] or transfer
functions. Most of them conclude that the better the gain at the last iteration, the worst at
the first iteration. When considering a joint detection and decoding, the convergence is perfect
if the bit error rate at the SISO decoder input in the first iteration is under a given threshold,
which corresponds to a SNR value, commonly called waterfall point. The threshold depends on
the error-correcting code, and in general, the better the code, the lower the threshold. If the
signal to noise ratio is higher than the waterfall point, the system converges to an asymptote
after a number of iterations decreasing with the noise level. At very high signal to noise ratio,
the mapping gain with respect to Gray mapping is always observed at the output of the error-
correcting code. For different mappings, the asymptotes are parallel, their slope are equal to
the collected diversity lead by the minimum Hamming distance of the code, the number of
receive antennas and the linear precoding factor. If we are interested in a target bit error
rate equal to 107°, we have to find a good compromise between the waterfall and the error
floor, as in all iterative processes. In the best case, performance converges to the asymptote
exactly at the target error rate. This explains why, when using mappings with high gains,
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Figure 3.3: Transfer function of RSC codes and QPSK multi-dimensional mappings, ny = 2,
n, =2, SNR=4.0dB

we have to use "bad” error-correcting codes to ensure a good convergence. We illustrate this
point on Fig. 3.3 which represents transfer functions (SNRZ SNR!) of the detector using
a Gaussian approximation with error probability matching [16] and different mappings. The
transfer functions (SNRZ¢ SNRY) of different convolutional codes are also drawn. The transfer
functions of recursive systematic convolutional codes show us that the better the code, the higher
the slopes. The transfer function of the detector of a 2 x 2 MIMO channel with SNR = 4.0 dB
with QPSK input is also represented with different mappings. The higher the asymptotic gain,
the higher the right asymptote, but the lower the left asymptote. We deduce the convergence
point searching for the fixed point beginning from the bottom left of the graph. For a given signal
to noise ratio, when using multi-dimensional mappings with high asymptotic gain, we should
use "bad” error-correcting codes in order to achieve a fixed point close to the right asymptotic
value of the detector transfer function. This is equivalent to a perfect convergence to the limit

obtained by the genie method.

3.1.5 Simulation Results

We present some simulation results illustrating the signal to noise ratio gains produced by
multi-dimensional labeling under iterative joint detection and decoding. When considering con-
volutional codes, an exhaustive APP detector computes the soft values delivered to a single
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Figure 3.4: Ergodic 2 x 2 MIMO channel, interleaver size is 10000 bits, 2-state (3,2)g convolu-
tional code, 16-QAM modulation, 10 decoding iterations. ML upperbound is denoted by "ML
UB” and Monte Carlo simulation is denoted by ”sim” in the captions.

SISO decoder: one iteration includes one detection and one forward-backward processing on
the convolutional code trellis [4]. When a turbo code is used, one iteration at the receiver side
includes one detection, one forward-backward processing on the first convolutional constituent
code followed by one forward-backward processing on the second constituent code. A more
precise study of the scheduling as in [18] is out of the scope of this thesis.

First, Fig. 3.4 illustrates the error rate of a two-state (3,2)g recursive systematic convolu-
tional code (RSC) on a 2 x 2 MIMO channel with 16-QAM modulation. All situations presented
in Fig. 3.4 correspond to 7y, = 1. Gray mapping is compared to optimized mapping. The
latter shows more than 7.4 dB gain with respect to Gray mapping. The three graphs in Fig.
3.4 show how the simulated error rate quickly converges to the ideal ML bound. The left graph
depicts the bit error rate at the decoder output, the middle graph depicts the frame error rate at
the decoder output and the right graph depicts the bit error rate at the MIMO detector output.

We now consider a target bit error rate equal to 107>, usually taken as a reference for wireless
data transmission. The bounds are not drawn anymore.

A convolutional code cascaded with multi-dimensional mappings is compared to a turbo
code in Fig. 3.5. The channel is 2 x 2 MIMO ergodic with QPSK input. A two-state (3,2)s
non recursive non systematic convolutional code (NRNSC) is combined to mono-dimensional,
bi-dimensional and four-dimensional mappings. A parallel turbo code based on an RSC (7,5)g is
cascaded with Gray mapping. Optimized mappings degrade the performance of the turbo code
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Figure 3.5: Ergodic 2 x 2 MIMO channel, interleaver size is 9000 bits, rate 1/2 NRNSC and
Turbo-codes, QPSK modulation, 20 decoding iterations.

at the first iteration which entails a dramatic signal to noise ratio loss in the waterfall region.
Fig. 3.5 shows that a (3,2)g convolutional code with four-dimensional mapping (nmep = 4 =
sny = 2 x 2) thanks to the linear precoder [106] performs within 0.5 dB from a rate-1/2 Gray
mapped turbo code. The price to pay is the increased detection complexity of the time spreaded
(s = 2) four-dimensional constellation. The optimized mapping with 7,,,, = 2 and without
linear precoding exhibits excellent error rates above 1073,

On Fig. 3.6, we present some simulation results on a 4 x 4 ergodic MIMO channel with
QPSK input and NRNSC (3,2)g. We used mono-, bi- and four-dimensional optimized map-
pings. We observe that the 0.69 dB (respectively 4.98 dB) expected gain between Gray and
mono-dimensional (respectively bi-dimensional) optimized mappings is achieved. When the
four-dimensional mapping simulation converges, the asymptote performs lower than 1072, this
is why we measure slightly less than the 7.26 dB expected gain at this BER value. In the latter
configuration, the optimal case when the simulation converges to the asymptote exactly at the
target BER 107° is almost achieved. Finally, the system performs as well as the more complex
system including turbo code, without increasing the complexity of the detection process. In-
deed, in both cases, 20 iterations between the detector and decoder are necessary to achieve the
convergence limit and, in each receiver iteration, the turbo decoding is four times more complex
than the 2-state convolutional code decoding.

On Fig. 3.7, we present some simulation results on a 2 x 2 ergodic MIMO channel with
16-QAM input. When the BER is 107°, the gain with a mono-dimensional mapping is 7 dB.
With a bi-dimensional mapping we achieve 9.1 dB, which is less than the asymptotic 11.12 dB
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Figure 3.6: Ergodic 4 x 4 MIMO channel, interleaver size is 8192 bits, rate 1/2 NRNSC and
Turbo-codes, QPSK modulation, 20 decoding iterations.

gain because convergence is not reached at 10~°. With high spectral efficiency modulation and a
simple NRNSC (3,2)g, we achieve performance within 0.5 dB from the turbo code performance
with RSC (7,5)s constituent codes even on the 2 x 2 ergodic MIMO channel.

The mapping optimization topic has been extensively discussed for BICM on single-antenna
channels. In this section, we have presented an extension of this optimization to multi-dimensional
mappings. In the case of high spectral efficiency modulations or a large number of transmit an-
tennas, we achieve very high mapping gains and we perform close to turbo-codes with a single
convolutional code, without increasing the optimum or near-optimum APP detector’s complex-
ity.
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Figure 3.7: Ergodic 2 x 2 MIMO channel, interleaver size is 8192 bits, rate 1/2 NRNSC and
Turbo-codes, 16-QAM modulation, 20 decoding iterations.

3.2 The Singleton bound with linear precoding

Let us now focus on the optimization of BICMs with linear precoding for non-ergodic MIMO
channels. The studied ST-BICM is a serial concatenation of a rate R, binary convolutional code,
an interleaver of size N¢Le bits, and a QAM mapper followed by the precoder as described in
Section 2.1.1.

Proposition 1 ensures that any pair of codewords has a full diversity order. In this section,
we derive a condition on the existence of a practical interleaver that could achieve the conditions
of proposition 1. Let us first make the following hypothesis :

Hypothesis 1 The detector perfectly converts the Ny x N, correlated MIMO N.-block fading
channel SHy, with QAM input into a 1 x sn, SIMO nyn./s-block fading channel with BSK input,
assuming that s is a divisor of nyn..

We will present in section 3.3 linear precoders that satisfy hypothesis 1. Under this condition,
the detector collects an amount of diversity equal to sn,. The full diversity nin.n, is collected
by the detector when s = nin., but unfortunately, the APP signal detection has an exponential
complexity in s. On the other hand, the BICM channel decoder is also capable of collecting
a large amount of diversity, but the latter is still limited by the Singleton bound [54][55][68].
Hence, the lowest complexity solution that reaches full diversity is to draw advantage of the
whole channel code diversity and recover the remaining diversity by linear precoding. The best
way to choose the spreading factor s is given by the Singleton bound described hereafter.
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When S is the identity matrix, the ST-BICM diversity order is upper-bounded by [55]:
d <n,(|ncni(l —R.)|+1) (3.7)

The maximal diversity given by the outage limit under a finite size QAM alphabet also achieves
the above Singleton bound [44]. With a vanishing coding rate, i.e. R. — 0, it is possible to
attain the overall system diversity order n,n.n; produced by the receive antennas, the transmit
antennas and the distinct channel states. Unfortunately, this is unacceptable due to the vanishing
transmitted information rate. Precoding is one mean to achieve maximum diversity with a non-
vanishing coding rate.

The integer N, = n.n¢/s is the best diversity multiplication factor to be collected by C. The
length of a C codeword is L¢Ne binary elements. Let us group LeNe /N, bits into one non-
binary symbol creating a non-binary code C’. Now, C’ is a length-Nj, code built on an alphabet
of size 2LeNe/No - The Singleton bound on the minimum Hamming distance of the non-binary C’
becomes Dy < N, — [NpyRc] + 1. Multiplying the previous inequality with the Nakagami law
order sn, yields the maximum achievable diversity order d,q, after decoding,

Neht

s < ST L (1-Re)+ 1J (3.8)

where d,,q. is an integer. Finally, since d;,q. is upper-bounded by the channel intrinsic diversity
and the minimum Hamming distance d gy, of the binary code, we can write

e

Armar < Min (snr { (1—Re)+ lJ SNy snrdem) (3.9)

S

If dprpmin is not a limiting factor (we choose C accordingly), we can select the value of s that
leads to a modified Singleton bound greater than or equal to nn.n,.

Proposition 2 Considering o« BICM with a rate Re binary error-correcting code on an ng X n,
MIMO channel with n. distinct channel states per codeword, the spreading factor s of a linear
precoder must be a divisor of ngn. and must satisfy s > Reneny in order to achieve the full
diversity ngnen, for any pair of codewords. In this case, the ideal interleaving conditions can be
achieved with an optimized interleaver.

The smallest integer s,,; satisfying the above proposition minimizes the detector’s complexity.
If Rc > 1/2, then sqp = neny which involves the highest complexity. If Re < 1/(n.n), linear
precoding is not required.

Tables 3.3 and 3.4 show the diversity order derived from the Singleton bound versus s and
ng, for n. = 1 and n. = 2 respectively. The values in bold indicate full diversity configurations.
For example, in Table 3.3, for n, = 4, s = 2 is a better choice than s = 4 since it leads to an
identical diversity order with a lower complexity.

3.3 Linear precoder optimizations

We call space-time spreading matrix or linear precoder the particular case of full rate linear
space-time block codes. The space-time matrix enhances the diversity by mixing the symbols of
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mN\s|1 2 3 4 5 6 7 8
1 1
2 2 2
3 2 3
4 3 4 4
) 3 5
6 4 4 6 6
7 4 7
8 5 6 8 8

Table 3.3: Diversity order from modified Singleton bound versus number of transmit antennas
ng and spreading factor s, for Rg =1/2, n, =1 and n, = 1.

mN\s| 1 2 3 4 5 6 7 8
1 2 2
2 3 4 4
3 4 6 6
4 5 6 8 8
) 6 10
6 7T 8 9 12
7 8 14
8 9 10 12 16

Table 3.4: Diversity order from modified Singleton bound versus number of transmit antennas
ny and spreading factor s, for Re = 1/2, n, =1, n. = 2.

different time periods and antennas.

Many studies have been published on space-time spreading matrices introducing some re-
dundancy, well-known as space-time block codes. On one hand, some of them are decoded by
a low-complexity ML decoder, but they sacrifice transmission data rate for the sake of high
performance. Among them, the Alamouti scheme [3] is the most famous, but is only optimal for
a 2 x 1 MIMO channel. The other designs allowing low ML decoding complexity are based on
an extension of the Alamouti principle (e.g., DSTTD [90]) but also sacrifice the data rate. On
the other hand, full rate space-time codes have recently been proposed [7]28][29][30][31][34][70].
However, their optimisation does not take into account their concatenation with an error cor-
recting code. In this section, we describe a near-ideal solution for linear precoding in BICMs
under iterative decoding process. Our strategy is to separate the coding step and the geometry
properties in order to express some criteria allowing the construction of a space-time spreading
matrix for given channel parameters n;, n,, n.. The inclusion of rotations to enhance the BICM
performance over single antenna channels has been proposed in [61]. The proposed solution uses
this concept for designing a space-time code including a powerfull error correcting code.

When the channel is ergodic, the diversity at the decoder input and output are respectively
n, and n,dgmin. We have shown in Section 3.1 that some elementary codes (e.g., NRNSC
(3,2)g) could be used to allow a good convergence when using high gain mappings. In this case,
the error-floor exhibits low diversity. One solution to enhance the diversity of elementary codes
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is the use of linear precoding that allows to recover a diversity order up to n,s and n,sdgmi, at
the decoder input and output, respectively. The parameter s is called spreading factor.

When the channel is quasi-static or block fading with parameter n., the diversity is upper
bounded by n.n¢n, which may be more limiting than n,dgm, (e.g., ne =2, n, = 1, n.=1). We
introduce a new design criterion of space-time spreading matrices that guarantees a diversity
proportional to the spreading factor and a maximal coding gain at the last iteration of an
iterative joint detection and decoding.

First, the linear precoder matrix must have a non-null determinant to exhibit full-diversity.
Indeed, a non-full rank transformation is equivalent to a reduction of the number of transmit
antennas. We suppose that the rows unity norm condition is satisfied but this is not a necessary
condition, an unequal power transmission on each dimension could be exploited by a successive
interference cancellation receiver. This is not the issue in our case.

In Section 2.2.4, the coding gain of an ideally interleaved BICM with linear precoding is
defined by

neg 1/N6
Gsno (A A) = (H 55“) (3.10)
v=1

and N5 = > 02, \,. Remember that the 62 values are given by the sequence of the non-null

eigenvalues 19[ ] The value 19[ ] , denotes the i-th eigenvalue of M [t]M 1% where M ,Lﬂ is defined by

V1 <k <ne/ne, V1 <t<n, xi=mM"n Z Zst][’]*s“ (3.11)

3.3.1 The BICM ideal coding gain

First, remember that the linear precoding converts the n; x n, MIMO n.-block fading channel
into an Ny X N, correlated MIMO N_.-block fading channel.

First we look for the best achievable coding gain for the fixed parameters n;, n,, n., R. and
the appropriate way to choose the error correcting code, the binary mapping, the linear precoder
and its parameters s and ng to achieve the ideal coding gain.

We want to achieve full diversity under ML decoding or iterative joint detection and decoding,

£

this induces that there are n.n; non-null eigenvalues 19‘£C I

Ne ns 1/ (nen)
) (3.12)

o2 =TT

k=1t=11i=1

Furthermore, we want to maximize the Gs, (A, A) expression. Assume that the norm of
each row .5; is equal to 1, we get

Ne ng ng Ne N Ne N¢ Kk

ZZZ% = ZZ'YI%J = Zzzdilz (3.13)

k=1t=1 i=1 k=11=1 k=1 1=1 i=1
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We use the Lagrange multiplier

Ne ns ng Ne ns ng N. N
[t] ™ t
A1 ICEERI0 ) 9) SF RS 9 o8y o
k=1t=1i=1 k=1 t=1 i=1 k=1 1=1
The nulling of the derivation of f with respect to ﬂ[t;}i, leads to
Ne Ns nte [t] T N. N w
. A I [0 TEE 9y, [t’ 2
AT . , i
vEL Dt n_r B 19[” ' Z Z NN Z NNe (3.15)
k'’ k=11=1 i=1
which induces
c Nt w d2
ideal (A, A) . 3.16
Gumta =53 TR =3 @16

The exact pairwise error probability simplifies to the classical expression of the performance of

a BPSK with separation > =1 ] over a diversity channel with order n.nin, .

. —1/2 NeNt Ny nengng—1 (ncntnr+k71) 8N, —-1/2 k
NyNe k RS
Pu.ideal (A A) = 1+ = P C D S
w,idea Z] 145 ;) 2nenenrtk ZJ 14

(3.17)
The ideal coding gain is obtained when all eigenvalues are equal.

With a perfect Shannon code, i.e., gaussian channel inputs, the transmitted vector is close
to the surface of a sphere at the channel input, thanks to the sphere hardening phenomenon.
After transmission on a fading channel, vectors belong to an ellipsoid. In a ST-BICM, precoded
modulation symbols quantify the Shannon sphere and best quantization is obtained by uniformly
distribute them on the sphere. Indeed, Bit-Interleaved Coded Modulations are known to be
capacity achieving schemes over AWGN channels. This induces that a quasi uniform repartition
of the code words on the sphere surface is achieved. At the output of the MIMO channel,
the noiseless points are placed, with a high probability, on the surface of the ellipsoid. From
equation (3.16), we see that an ideal interleaving leads to an equi repartion of the euclidean
distance between two codewords on the n;n. channel states. This induces that the euclidean
distance varies as a ngn.n, Nakagami distribution. Finally we may conclude that the BICM with
ideal precoding and ideal interleaving is an outage capacity achieving scheme. The objective is
to be the most as possible near from these two ideal conditions.

The ideal coding gain is a fundamental limit which cannot be outperformed. It is useful to
evaluate how optimal the practical design of a BICM is. Our aim is to find the best design,
corresponding to eigenvalues which are as much as possible all close together. The more different
the eigenvalues are, the lower the product in (3.12) and the coding gain are. From (3.16), we
see that the ideal coding gain is the same as with the same coded modulation transmitted on
a 1 x nenyn, SIMO channel, applying the appropriate E}/Ny normalization if necessary. This
proves that the ideally precoded and interleavd BICM is an orthogonal space time code.

Without linear precoding, the ideal coding gain is only achieved if all -y, ; are equal. Remem-
ber that each ~;; is a sum of xj; distances dj,; ;. Thanks to the second point of Proposition 1,
the ky are close to w/(nsn.). We conclude that the variance of the yj; values decreases when
w increases. Thus, if the error correcting code is powerful enough with respect to nyn. and |D|,
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it allows for a good averaging of the dj ;; into the «;; and quasi-ideal coding gain is observed.

If the error correcting code is not powerful enough to achieve the ideal coding gain, i.e., the
Yk, values are very different, we will see in the following that the linear precoder provides an
additional coding gain by averaging the 7;; values before transmission. First, we derive the
optimal coding gain which can be achieved using an ideal linear precoder for a given binary
labeling and error correcting code. The expectation in (3.12) is made over the set of eigenvalues

79%] which is only dependent on the set of factorized distances 7y ;. Variables 7 for different

i
k values correspond to independent channel realizations Hj; which are not linked by the linear
Ty
precoder. Thus, random variables [, [[:, vﬂg]l. are independent for distinct values of k. The

optimal coding gain with linear precoding is

Ne¢ Ny 7]31 1/Nc
gs,ns,opt(A,A) = H (Z nt—T;) (3.18)

k=1 \Il=1

Equation (3.18) means that an optimal linear precoder is capable of making eigenvalues equal
[t]

for a same k. However, for different values of k, the 9, eigenvalues are different, which induces
a coding gain loss.

When the mapping and error correcting code are given and the interleaving is ideal, the choice
of linear precoding parameters impacts on optimal coding gain. Let us consider codewords that
are equidistant from the transmitted codeword, i.e., a set of distance configurations correspond-
ing to a same value of ZR,I 72,. The variance of Z{\Ql 72 ,/(nins) over this set decreases when
ns increases, as the number of distances building each 77;971 is higher. The lower the variance
of eigenvalues, the higher the coding gain. Thus, G, opt(A, A) is an increasing function of n.
For a given s, we should choose ns = min(s,n.). The optimal coding gain G min(s,ne),opt (A, A)
is an increasing function of s. If ny = n. and s = nsn., the ideal coding gain is achieved by the
optimal precoder. Finally, we can surround the coding gain as follows:

Vs,ns gideal(AaA) > gs,min(s,nc),opt(A’A) > gS,LOpt(A’A) > ng,OPt(A’A) > gbf(A?A) (319)

If, for any pairwise error probability, the error correcting code and the mapping are designed
to allow Gpr(A,A) ~ Gigear(A,A), the linear precoder optimization is useless from a coding
gain point-of-view. However, obtaining near-ideal coding gain without precoding requires an
optimization of the error correcting code and mapping for any pairwise error probability, which
is intractable for non-trivial modulations and codes. Furthermore, the first objective of linear
precoding is the diversity control, which has a high influence on the performance even at medium
FER (1072 ~ 1073), especially for low diversity orders. Therefore, precoding is often useful in
the BICM structure.

We saw the impact of the linear precoding for a considered pairwise error probability. We
can wonder what is the behaviour of the global performance under linear precoding. As stated
in section 2.3.2, if n,nsn. grows, the smallest coding gains have more impact on the final per-
formance. Since the linear precoder provides a more substantial gain for the low hamming
weight configurations, the role of the linear precoder will be magnified as the diversity grows.
This is particularly true when the number of transmit antennas increases: The increasing diver-
sity gives more and more importance on the nearest neighbours in the euclidean code. These
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Figure 3.8: Coding gain for unprecoded 2 x 1 quasi-static MIMO channel
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Figure 3.9: Coding gain for precoded 2 x 1 quasi-static MIMO channel, s = 2

neighbours are defined from the error events with the smallest hamming weights. For a given
hamming weight, as the number of transmit antenna increases, the variables v;; decrease and
their variance increase. The difference between the coding gain obtained with linear precoding
and unprecoded systems finally dramatically increases with n;.

Ezxample of ideal coding gain with a 2 x 1 quasi-static MIMO channel

In order to illustrate the role of the linear precoding in the coding gain optimization, we consider
a 2x 1 quasi-static MIMO channel, a pairwise error probability between two codewords separated
by a Hamming distance w bits.

Fig. 3.8 represents the distribution of the two v and 7, values over the two transmit antennas
and on two different time periods. This illustrates the factorization of the distances into the
7 values. The instantaneous coding gain is equal to y/7?73. Suppose that a linear precoder
spreads the value v over two time periods as presented in Fig.3.9 and two transmit antennas
dividing the power in two equal parts 7/2. The average value (vi + 73)/2 is transmitted on
each antenna, the coding gain is optimal and equal to (y? 4+ ~v3)/2.

For example, consider a BPSK modulation and a pairwise error probability with Hamming
weight 3. With optimal linear precoding, the ideal interleaving provides for example v2 = 2 x 22
and 73 = 1 x 22. With optimal linear precoding, we have a distance (2 x 22 + 1 x 22)/2
associated to each antenna. The ratio between the two averaged coding gain is equal to /9/8
which predicts a gain of 0.26 dB using linear precoding. If w = 5, the coding gain becomes
10log(+/24/25) ~ 0.09 dB. If w = 11, the coding gain becomes 10logy(1/120/121) ~ 0.02
dB. The higher the Hamming weight involved in the pairwise error probability is, the less the
difference between the factorized distances is and the less coding gain is; because the xj values
are higher.

We can see on Table 3.5 the best gain to be provided by linear precoding for a quasi-satic
channel with BPSK input with respect to a full diversity unprecoded scheme. These gains are
particularly low because the error correcting code aims at recovering a large amount of coding
gain, which shows that a BICM is a very efficient structure. As a remark, if an other modulation
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w=2lw=3|lw=4|lw=>5]w=6]|w=7|w=_§
ns =2 1| 0.00 0.26 0.00 0.09 0.00 0.05 0.00
ng =3 / 0.00 0.25 0.21 0.00 0.08 0.08
ng =4 / / 0.00 0.22 0.26 0.17 0.00
ng =25 / / / 0.00 0.19 0.26 0.24
ng =06 / / / / 0.00 0.17 0.25
ng =17 / / / / / 0.00 0.15
=8| |/ / / / / / 0.00

Table 3.5: Best gain in dB to be provided by linear precoding with respect to an unprecoded
system, with ideal interleaving and for a given pair of codeword with hamming distance w and
BPSK input.

with Gray mapping is used, the nearest neigbour in the euclidean code has the same distance
configuration as the BPSK input case. Moreover, for high diversity orders, the global error rate
will be dominated by the neighbours for high SNR and the gain provided by linear precoding will
be very close to the ones shown in Table 3.5. However, if the diversity is low, we cannot make the
approximation that the error rate is dominated by the errors with the neighbours in the euclidean
code. In this case, the gains provided by linear precoding may be much more important. Assume
that a 16-QAM modulation with Gray mapping is transmitted on an n; = 2 quasi-static channel.
For w = 5, there exists a neighbour with distances configuration (34,3A4,3A4, A, A), and more
precisely 72 = 942 + 942 + 942 and 73 = A% + A% The gain to be provided by linear precoding
is equal to 10log;((29/2/v/54) = 2.95dB. As already stated, the final coding gain is equal to a
weighted sum of all the coding gains, where the weighting coefficients cannot be easily computed
in the case of low diversity orders.

Since the linear precoder may be necessary for the diversity order control, we will focus on
the creation of linear precoders that maximize the coding gain for a given s.

3.3.2 A class of linear precoders

[1]

Under linear precoding, the optimal coding gain is achieved if all ¥ ki variables are equal for a
same k. Let us first consider the eigenvalues associated to the independent realizations in the
spreading matrix, indexed by t. First, two matrices M ,Lm and M,Ltﬂ, as introduced in (2.52),
should have the same eigenvalues, which is satisfied if V(¢1, t2), M,gm = Rtl’tQ*MILtQ]Rtl’tQ, where
R™:"2 is a unitary matrix, for example a rotation. Hence, \V/(tl,tQ),S/l[tl] = S’l[tQ]Rtlvt? The
precoding sub-part Sl[tl], with spreading factor s’ = s/ng, experiences a quasi-static channel.
We assume that s’ is an integer, divisor of n;. It is sufficient to design the first sub-part of the
precoder matrix rows for a quasi-static channel and rotate it to compute the other sub-parts.
Furthermore, any choice of R!+*2 leads to the same performance because the eigenvalues remain
unchanged. The condition simplifies to HS’Z[MH = ||S’l[t2}\|.

Let us now set the index ¢ and optimize the equivalent precoder over the quasi-static channel
diag (H g”l], o H Lﬂ [s ]>. If all the eigenvalues of M lgt] M ,Lﬂ* are equal, M ,Lﬂ is a weighted unitary
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. . t
matrix, so is Mk[;]* and

N
MM = M =S vV = Zy g/l g/l (3.20)
=1
The s’ x n; matrix S’ l[ﬂ given by
Sl
o)
S
gl = 7t (3.21)
SlIs)

We get

N
t* ] 1][i]* oltl

S ks Z%IZS[ * gl (3.22)

=1
Matrix Sl[ﬂ [i}*Sl[t”i] has rank one and matrix Zle Sl[ﬂ M*Sl[ﬂ "l has maximal rank s’. It can be
shown that it is impossible to get all eigenvalues equal to ZzN i) ’y,% N /nins as required to achieve
the optimal coding gain. However, in order to insure that M, L5 [t] has a rank n; and that the
eigenvalues are as equal as possible, we group ss’ values 7y together and associate them to one

of the ny/s’ group of s’ eigenvalues: we denote Sl[t”i”j] the j-th sub-part of size s’ of Sl[ﬂ b and
{l2,11} the index of the (I3 — 1)ss’ + l3-th row of S, where Iy € [1,n:/s'],l1 € [1,ss']. Let us
£][4]

assume that S*[{b L has only one non-null sub-part in position I, i.e.,

Vil Sl =1o,...,0 (3.23)

Considering such a structure is equivalent to considering separate precoding on n¢/s’ distinct
groups of s’ transmit antennas. We have

Ny ne/s’ ss’ s’
[t} g gl gl
Z lS/ Z Z 7k {l27ll} {lz,h}S{lQ,ll} (324)
=1 la=11;=1 =
LSS 1 [il[l2]x glt]la][Lo]
S IPIEIRCS (ZS{W; o) 529
la=111=1

where ©;,(A) is a block diagonal matrix with only one non-null block A in position 5. Now, if
we assume that © is an s’ x s’ scaled unitary matrix, we get ©0* = ©*0 = Zflzl 0;0; = Iy

where ©; is the i-th row of ©;. We choose SE”Z}U}Q] as the i-th row of a s’ x s’ unitary matrix.

Using ||S{§]2[Z}£lf > =1/s, we get:

Ny nt/S ss’
ZV}?,[S’l[t}*S/l[ﬂ = > Vi@ (— ) (3.26)
=1

lo=111=1

ss’

= — Z dlag <’}/k, {1 ll}Is PN ,’7]37{nt/8/7ll}_[8/) (327)
ll 1
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which leads to

ss
b oo ] _ 1 S 42
l2 < nt/s 1< s, ﬁk,(lg—l)ss’—i—i - ; '7197{127[1} (328)
I1=1

The random variables 713 (a0} 1€ independent and identically distributed for different values
of I and ls, the coding gain is

/
N, nt/s/ ss’ 9 s /(Ncnt)

Gens AN =TT IT | D2 @ (3.29)

k=11l=1 \[1=1

For any value of ng, the gain expressed in (3.29) is a geometric mean of order nyn./s. For

/ /
a given realization {dy,...,dy}, a given s and for any ng, Zg;l thl Sk (1o,12} 2nd thus

lels/:l 7,%’ (o1} 2T€ constant, ensuring the same coding gain. However, such a precoder does not
achieve the optimal coding gain for any value of s’. The summation is made over ss’ different
values whereas the optimal coding gain in (3.18) necessitates a summation over sn; values. Only
if ss’ is high enough, the obtained coding gain is almost optimal. If s’ = n;, the complete spatial
transmit diversity is collected by the detector and the optimal coding gain is achieved.

Proposition 3 Dispersive Nucleo Algebraic (DNA) Precoder Let S be the Ny x Ny pre-
coding matrix of a BICM over an ny X n, MIMO nc-block fading channel. Assume that S
precodes a channel block diagonal matriz with s blocks and ng channel realizations. We denote
s the spreading factor, Ny = sn; and s’ = s/ns. Let Sl[t] be the t-th sub-part of size Ny/ns of the
I-th row of S. Let Sl[t][z] be the i-th sub-part of size ny of Sl[ﬂ. Let Sl[tMZMJ] be the j-th sub-part
of size s’ of Sl[ﬂ U The sub-part Sl[t][l][]] is called nucleotide. The linear precoder guarantees full
diversity and quasi-optimal coding gain at the decoder output under mazimum likelihood decoding
of the BICM if it satisfies the two conditions of null nucleotides and orthogonal nucleotides for
allt € 1,ngl,i € [1,5'],11 € [1,s5'],le € [1,n4/s"] and {lo, 11} = (Io — 1)ss" + 1y:

Vi #£la, 7 €[1,n/s], SE]Q[Z}EJ}] = 01y Null Nucleotide condition
Vil £i4,i € [1,5], SE]Q[T'EI}Q]SE]Q[?A[F* =10(i— ') Orthogonal Nucleotide condition

(3.30)

where 9(0) = 1 and ?(z # 0) = 0.

Let us take for example n; = 4, nys = 1 and s = 2. A DNA matrix would have the following
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structure :
- S 1][2][1 q
5%1]7[1%[ ] 0 5%1]7[1%[ ] 0
S 11][21 1] 0 S 11][22 1] 0
Sﬁ]’[ﬁ'm 0 Sﬁ]’[ﬁm 0
fl,Si fl,ﬁ%i
5{11] E}[ll 0 5{11] g}[ll 0
0 SE}’[ﬁm 0 S”fg’[ﬁ[z]
o sl 0 s
1[1][2 1][2][2
o sl o Sl

Now, let us consider a linear precoder matrix S that satisfies proposition 3. Define H él} an
ss’ x N, matrix defined by the extraction of the rows of H} corresponding to the i-th block of
s’ transmit antennas. More precisely, we extract every n;/s’-th block of s’ rows of Hj begining
with the i-th block

Vi€ [1,n,/5],V5 € [1,5'),Yu € [1,s],v € [I, N,], HI(G+us',v) = Hy(j+un+is',v) (3.32)

Likewise, S{ is the ss’ x ss’ matrix obtained from the i-th block of ss’ rows of S and every
n¢/s’-th block of s’ columns beginning with the i-th block. We easily show that

s gt

s g

SH;, = (3.33)

/') (Ne/)

which means that the matrix S independently precodes the n;/s’ blocks of transmit antennas.
Thus, the optimization may be split into n;/s’ independent optimizations of linear precoders
for ' x n, MIMO ng-block fading channels with linear spreading factor s. As s = s'ng, full
space-time spreading of the s’ x n, block fading channel is performed.

From (2.40) and (3.29), we notice that, at the decoder input and under ideal interleaving
condition, the linear precoder at the transmitter end and the detector at the receiver end allow
the conversion of the n; x n,, MIMO channel with n. independent blocks into a 1 x sn,, SIMO
channel with n.n;/s independent blocks with BSK input. The independence of the blocks is
provided by the structure of the linear precoding matrix:

1. The null nucleotides dispatch the transmitted symbols on n;/s" different blocks of s’ an-
tennas.

2. The orthogonal nucleotides provide full diversity and a coding gain increasing with the
spreading factor.

For instance, if a rate 1/2 BICM is transmitted on a quasi-static 4 x 2 MIMO channel, linear
precoding with s = 2 is required to achieve full diversity: a full-rate space-time block code with
spreading factor s = s’ = 2 may independently be applied on 2 separate groups of 2 transmit
antennas. Good 2 X 2 space-time block codes are for instance the TAST [29] and the Golden
code [7].
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Assume that n. = 1, ny = n, = 2 and s = ' = 2. The Golden code [7] is the best space
time code for uncoded 2 x 2 quasi-static MIMO channels. However, it does not satisfy the
equal norm property of orthogonal nucleotides in Proposition 3. Indeed, one row of the Golden
linear precoder contains two non-null coefficients of square norm a7 = 0.277 [and as = 0.723,

respectively. Thus 3.29, which assumes equality between the eigenvalues of M kt] M ,Lt]*, does not
hold. It can be shown that (let 77 = ~2 0 Z.})

Gaolden (A, A) = \/(061 (V43 +a2 (3 +732)) (a1 (B +13) + a2 (Vi +13)) (3.34)

As dgmin increases, (v + 73)/(73 + 73) tend to 1 for any pairwise error probability and
Gaotden(A,A) — Go1(A,A). The explain how the error correcting code limits the coding loss
due to the non-equal norm of the sub-parts of the Golden code. As a remark, if 35 + 'yg =0,
which exhibits the worst case, the coding loss is 10log(y/a12/4) = 0.5dB.

With DNA precoder and ideal interleaving, hypothesis 1 is satisfied and the modified Single-
ton bound on the diversity order can apply: the detector perfectly converts the N; x N,. correlated
MIMO N,-block fading channel SHj with QAM input into a 1 x sn,, SIMO nyn./s-block fading
channel with BSK input, assuming that s is a divisor of nsn. All results from the field of error
correction coding over block fading channels directly apply without any modification to the new
1 x sn, SIMO channel with n;n./s independent blocks. The space-time spreading factor s is a
parameter that determines which fraction of the space-time diversity will be recovered by the
detector and which one by the decoder.

3.3.3 The genie method design criterion for full spreading linear precoders
(8 =ny)

A linear precoding design criterion based on the genie performance optimization at the detector
output was proposed in [106]. When a genie gives a perfect feedback of the mn; coded bits in
the APP detector computation, the performance is computed by averaging all the pairwise error
probabilities obtained when changing only one bit out of mn;. Denote d the distance of the
BSK. Assume that the BSK is transmitted on antenna [, the asymptotic expression of the error
probablity with genie is

N5 — 1\ 42 / 62 \ "
P (ALA) ~ v v .
enie (A, )N(HO< N >];[1 o (3.35)

where {§,} is the set of distinct non-null eigenvalues of d25’ l[t]*S' l[t] for all t, A\, their frequency

and Ny their number. In the best case, there are s non-null eigenvalues and the coding gain

is maximized if they are equal. First, a sufficient condition to have an equality between the

eigenvalues of S’}m*S’l[tl] and S’}tﬂ*S’l[tQ] is ||S’Et1} I? = ||S’l[t2} |?. Then, all eigenvalues of S’Et}*S’l[t]
[t]

are equal if S’;" is a unitary matrix, which leads to the following proposition:

Proposition 4 A linear precoder achieving a diversity order sn, with mazimum coding gain at
the detector output must satisfy the following conditions under perfect iterative APP decoding of
the space-time BICM:

1. The ng subparts of the rows in the sny X sny precoding matrix have the same Fuclidean
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square norm

2. In each of the ng subparts, the s subparts (nucleotides) are orthogonal and have the same
Fuclidean square norm

If ' would not be equal to ny, this proposition would not be optimal in terms of maximum
likelihood performance. However, this is a first step to satisfy proposition 3. As s’ = ny,
propositions 3 and 4 are equal, so we can use the separation of the optimization of an Ny x Ny
linear precoder with spreading factor s into n;/s’ optimizations of full spreading s’s x s’s linear
precoders. The optimization of S is now decomposed into two steps

1. Apply the genie method to design a full spreading s’s x s’s linear precoder for s’ x n,
MIMO channel with ng blocks, satisfying proposition 4

2. Place the non-null sub-parts in S as described in proposition 3.

3.3.4 Modified cyclotomic DNA rotations: Full spreading optimal linear pre-
coder

It was shown that if a full spreading is processed by the linear precoder, i.e., if s = nng,
proposition 4 is sufficient to achieve optimality and has the great advantage to be more intuitive.

We can see the block fading MIMO channel is an ergodic MIMO channel in which the
different realizations are those of a quasi-static MIMO channel. Let us define A as a block
diagonal matrix, the block of which have size n? x n? . Any linear combination of the lines of
the Ny x Ny matrix A satisfies proposition 4, this implies that for all N; x N; matrices M, the
matrix S = M A satisfies proposition 4 too. The other condition to satisfy proposition 3 is the

norm equality between the considered parts of a same row.

We have shown that any full spreading matrix that satisfies proposition 3 achieves the same
genie performance at the detector output. In practice, the genie limit and the ML performance
when using iterative joint detection and decoding are never reached. However, the performance
can be close to both limits if the convergence quality is good. The system convergence is very
dependent on the first iteration performance at the detector output which has the same behavior
as the lattice decoding ML performance. Thus, our goal is to construct S both satisfying
proposition 4 and achieving good uncoded ML performance. In general, rotations give good
lattices performance.

Denote Al[tl)[i] the v-th coefficient of Al[ﬂ m, the I-th row of A. Let us focus on the particular
case in which all non null N;/ns-lengthed parts of the rows of A are equal, i.e.,

V(1) € [1, N, V(4 1) € [Lingli € [Lng], AL = Af Y (3.36)

K}
A can be decomposed into two matrices A and U (A = UA), where A is a diagonal matrix
and U is a block diagonal matrix where each block is an n; x n; matrix filled with ones. In this

[i] (i

particular case, the diagonal elements are A;*”" satisfying

Vi,v, Al = Al (3.37)

(2
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i.e., the coefficients of the n?-lengthed parts of the first row of A are put on the diagonal of
the matrix and repeated ng times. Matrix A has of course non-full rank. We now apply the
matrix M to obtain a space-time spreading matrix S = MUA, being a rotation. Thus, S has
to satisfy SS* = MUAA*(MU)* = I. For example, if A and MU are rotations, the equality is
satisfied. Based on this method, we will now explicitly describe the space-time spreading matrix
construction using cyclotomic rotations.

Choosing A as a rotation implies that the norms of its diagonal elements are equal to 1. The
diagonal of A is built from the n,-fold repetition of one block with size n? satisfying proposition
4. This block may be constructed as the concatenation of the lines of an n; X n; rotation matrix.
Furthermore, this rotation must have all elements with unit norm, in order that A has diagonal
element norms equal to 1. Cyclotomic rotations satisfy this property.

An n x n cyclotomic rotation © is defined by [13][14]

Oi¢ = exp <2j7r(i —1) ((1)11(2”) + g; 1>> (3.38)

where ®(.) is the Euler’s function. The non-null diagonal coefficients A are defined by:

All — exp (2]'77(@' ~1) [‘1)1}27%) + v;t 1D (3.39)

The matrix S = MUA satisfies the conditions of orthogonality for any choice of matrix
M. Since S has to be a rotation, the choice of M is restricted to matrices satisfying BB* =
MUU*M* = I. Taking B as a rotation matrix, BA must satisfy proposition 4, i.e.,

C = [t][3] o[t][¢']* VPR 1 v—1 B
V(l,t),i #1 ,;Blw By, " exp <2]7r(7, i') [@‘1(27%) + o }) =0 (3.40)

which is satisfied if
ik, BB~ g s

The property (3.41) is satisfied by cyclotomic rotations. Indeed, if B is an Ny x N; cyclotomic
rotation, the coefficients of which are

[l _ o 1 (t—1n?+(G—1ng+v—1
By~ =exp <237r(l 1) [@—1(2]\7,5) + N, (3.42)
we have
2[4 (2] [+ . 1 (i — 1" )ny
B, B, " =exp | 2jm(l—1) 2Ny TN, (3.43)

which is independent of v.

Finally, we obtain a modified cyclotomic rotation given by S = BA, the coefficients of S
being equal to
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Sl (i-ne+(t—1)n2 =
nii,e;i) (12)]';:({([11 i) (‘19_1(12Nt) + (t—l)n?+(]iv—tl)m+v—1) 1) (W n v_1)]> (3.44)

LN is a normalisation term. Let S(n¢, n,,ns) be the modified cyclotomic rotation designed for

t
ng X n,. MIMO block fading channel, assuming that the precoder sees ng channel realizations.

In order to confirm the choice of the modified cyclotomic space-time matrix, we will describe
another construction. We have already said that cyclotomic rotations are good candidates for
spreading matrices because of their norm properties, their easy construction and their perfor-

mance as lattices in the ML sense. Let ©® be an Ny x N; cyclotomic rotation, it does not satisfy
- o L]
the property 3. We apply multiplicative correction terms e¥™ w10 © coefficients so that ©

satisfies proposition 3.

i 1 . B 1 v—14+ (G —Dng+ (t — l)n? [t
o = e (21m [0 (G + 7 to]) 849

First, © has to be a rotation

Vil Zt t][z]@[t}[} o(l l')
& Z“v ny €XP <2]7T [ 1= (q) ) v—l-&-(z‘—lg\v;:—l—(t—l)nf) i a[tm _ awq) — (L, 1)
(3.46)
which is satisfied if V(I,1’ ),al[tl)[l] = aw ], Since each coefficient is a complex exponential, the

norm properties are satisfied, the last property to be satisfied is the orthogonality between the
subparts which leads to

Tt

.
exp <2j7r(l - 1)2 ! ) Z it exp (2]71'( %) a}ty })) =0(i,7") (3.47)

n
t v=1

[t](4]

lv

, 1 v—1
Oﬂ“ (1—1) ((1)1(27%) + o ) (3.48)

The equality is satisfied if exp(2jra
cyclotomic rotation, i.e.,

) is chosen like the phase coefficient (i,v) of an n; x ny

We directly obtain the same modified cyclotomic matrix S(ns,n,,ns), which gives full di-
versity and optimal coding gain at the detector and decoder output under ideal interleaving
assumption.

3.3.5 Non-full spreading quasi-optimal linear precoder: DNA cyclotomics

Proposition 3 gives the design criterion for optimal full and non-full spreading quasi-optimal
linear precoders. We first choose an quasi-optimal linear precoder designed for a full interleaving
of an s’ x n,, MIMO block-fading channel with ng channel states in each precoded matrix. For
example, let us choose S(s’,n,,ns) defined in 3.44. Then place ny/s’ times each subpart of
S(s',ny,ns) in the precoding matrix in order to satisfy 3.44. This leads to the quasi-optimal
linear precoder for any parameters n;, ns and s. Let P(n¢,ng, s) denote such an quasi-optimal




68 Bit-Interleaved Coded Modulation optimizations for MIMO channels

linear precoder (s’ = s/ngs and N] = s's), its coefficients are equal to

Vig € [1,n:/s'],Vl; € [1,s8],Vt € [1,n4],Vi € [1,5],Vv € [1,5],
S1a—1)s" 5411 0+ (l2—D)me /s/+(i—1)ne+(t—1)s'ng =

1 . 1 v—1+4(i—1)s'+(t—1)s'? . 1 v—1 3.49)
Sy (27 |0 =) (ot + N )+ =) (o + 7))

and 0 elsewhere.

<
U}\

3.3.6 Performance of the quasi-optimal precoder with iterative receiver

We have presented quasi-optimal linear precoders providing good coding gain and full diversity
ML performance under ideal interleaving. However, the ML decoder of the global Euclidean
code does not exist and we process iterative joint detection and decoding. Proposition 3 is
satisfied by an infinity of matrices, all providing the same ML performance. Let us consider
the performance behaviour after the first iteration. As no a priori information is available at
the detector, errors before decoding are numerous and not necessarily transmitted on different
precoding time periods. Let us consider one precoding time period and assume that we observe
two erroneous bits. If the bits are transmitted on the same modulation symbol, the Euclidean
distance dp changes but this does not affect the linear precoder optimization. However, if the
two bits are placed onto two different rows of S, the average performance might be modified
and interference inside a block and between blocks should be considered. An optimization of
the precoder following the Tarokh criterion should be done, under the conditions presented in
proposition 3. Simulation results show that the modified cyclotomic rotation has good uncoded
ML performance, close to algebraic full rate space-time block codes. Thus we expect good
performance at the first iteration of a joint detection and decoding process, which is desirable to
reduce the number of iterations needed to achieve the near ML performance and to provide good
performance with non-iterative receivers. The optimization of the first iteration is not addressed
in this thesis, but first answers can be found in [112].

3.4 Interleaver optimizations

The maximum diversity to be gathered is limited by the channel properties, the linear precoding
spreading factor, the minimum Hamming distance of the binary code and the Singleton bound
of the global code. Assume that the linear precoder spreading factor s is chosen thanks to
the modified Singleton bound. Thus, there exists an interleaver that allows ML performance
with full diversity. We present a new BICM interleaver design which satisfies proposition 1 and
leads to the concept of full diversity BICM since the system exhibits a predetermined diversity
whatever the parameters of the considered block fading channel.

3.4.1 The BICM diversity with convolutional codes

On fading channels, the diversity of a coded modulation can be defined by the number of
independent channel states affecting a codeword. More precisely, the diversity is the exponent
associated with the signal-to-noise ratio in the bit error rate expression.




3.4 Interleaver optimizations 69

We usually consider convolutional codes when designing BICM, because of their flexibility.
A transition in the trellis of a convolutional code is defined by a state, K¢ information bits at
the code input and N¢ coded bits at the code output. The code rate is R¢ = K¢/N¢. A path in
the trellis is equivalent to a codeword. The length of the path in the trellis is L¢ branches, i.e.,
a codeword has length L¢Ne coded bits. The protection of the information bits comes from the
code trellis structure since only predetermined transitions are allowed. However, some errors
occur when the noise makes at least one other path more reliable (in the Euclidean distance
sense) than the transmitted path. On binary symmetric channels, the most probable error path,
called minimum error path, has the smallest number of different coded bits from the transmitted
path. The number of bit errors in this case is equal to dgmin, the so-called minimum distance
of the code (in the Hamming sense). We will call “neighbor path” a path in the trellis that
differs from the transmitted codeword exactly by dpmin bits. On fading channels, a neighbor is
a codeword minimizing the Euclidean distance. This is not always equivalent to minimize the
Hamming distance, but equivalence can be assumed to be an average behavior.

The maximum achievable diversity diq. is upper-bounded by the number of independent
laws generated by the channel nsn,n., the minimal Hamming distance of the binary code, and
the Singleton bound of the global code:

et

Armae < min <snr H J (1—-Re)+ 1J SN snrdem> (3.50)

3.4.2 Interleaver design criteria

A simple way to theoretically estimate the bit error rate is to use the union bound. This upper
bound is the sum of the pairwise error probabilities, it is dominated by the minimum error
paths. In order to be able to efficiently design the system, we make the optimistic assumption
that improving the dominant term of the sum will improve the global sum and that the gain
obtained on the union bound will also be obtained for the exact bit error rate.

Let us consider a neighbor in the trellis. It is defined by a block of [¢N¢ coded bits, drmin
of which are erroneous (¢ is the code constraint length). We can say that a good protection is
given by the channel if these coded bits see a maximum number of independent channel states.
This is the fundamental concept of diversity exploitation. The minimum Hamming distance
of the code is chosen to be non-limiting. The Singleton bound is a limiting factor: it can be
increased by judiciously choosing the linear precoding. Without this space-time spreading, the
interleaver should be designed to achieve the Singleton bound diversity order.

Considering a general n; x n, MIMO block fading channel with n. blocks, we collect a
minimum diversity equal to n, at the detector output, and, since the decoder cannot degrade
performance, the reception diversity n, is always obtained at the decoder output. The challenge
is to collect the transmission diversity given by the n; transmit antennas and the n. channel
states.

In order to achieve the full diversity, the erroneous bits of an error event should be equally
distributed over all the transmit antennas and channel time realizations. Moreover, the interfer-
ence of these bits in the time periods should be limited to first enhance the diversity and then
the coding gain.This will be explained in the following.

Let us consider an error event with w erroneous bits. Assume that the maximum diversity
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order is dpaz- If W > dipes, we can expect to achieve full diversity if at least dj,q. bits over
w see the dp,q; independent fading random variables. In a time period k& where more than one
erroneous bits are transmitted, the transmitted and interfering points are called xj = zipHy
and 2} = 2. H,. When computing ML decoding or APP detection, we are interested by the
equivalent BSK defined by the two points z; and . It was shown that the vector dz(l;k;j;)H 2
has n, independent circular symmetric Gaussian variables components. We can conclude that
even if the erroneous bits are transmitted on different antennas, the generated diversity is n,.
However, if the erroneous bits are transmitted on different time periods and see different fading

random variables, a higher diversity is achieved.

For a given diversity, the coding gain is given by the distance between the transmitted code-
word X and the considered erroneous codeword X’. If all the w erroneous bits are transmitted
over j different time periods, the number of non-null components of X — X’ is n,.j. On average,
the distance is maximized if j = w. An optimal coding gain is obtained if the Gaussian variables
components of a multi-dimensional vector have same variance. We can approach such a property
by uniformly placing the erroneous bits over all the random variables.

Moreover, if no interference is observed between the erroneous bits in the time periods, the
situation is very similar to the genie condition. In the case of a sufficient number of independent
laws, we can use optimized mappings that exhibit a large amount of coding gain under perfect
convergence of the iterative processing. In such mappings, the bits are not equally protected,
the interleaver must then distribute the bit positions over all the available fadings. Such remarks
lead to the fundamental design criterion of the interleaver:

Proposition 5 In order to take the advantage of the available diversity and coding gain given by
the concatenation of a BICM and a block fading MIMO channel, the interleaver should uniformly
place consecutive bits on all the channel time realizations, transmit antennas, bit positions of the
mapping and prohibit the interference of these consecutive bits in the time periods.

We will now build, step by step, an interleaver that satisfies such conditions. First, we will
build an interleaver that enables to achieve maximum diversity on an n; X n, quasi-static MIMO
channel with BPSK input. Then, we will extend it to the case of higher spectral efficiency
modulations and to block fading channels with n. channel states.

3.4.3 Interleaver design for quasi-static MIMO channels with BPSK input

On quasi-static channels, only one channel realization is experienced by a codeword. Let us
consider an error event in the code trellis where dg coded bits differ from the transmitted
codeword. All error events are supposed to have a non-null probability, the interleaver should
be designed for any of them. Let us ensure that L;N¢ successive coded bits, L;N¢ being the
length of an error path with L; branches, are transmitted by all the n; transmit antennas in
the same proportion. The maximum transmit diversity is upper bounded by n¢, dgmin and the
Singleton bound.

The Singleton bound cannot be improved with a designed interleaver. However, we will
design it in the aim of achieving the n:n, diversity, keeping in mind that the maximal achievable
diversity is upper-bounded by the Singleton bound.




3.4 Interleaver optimizations 71

o 20 L LOTECEERPREE L ECICEELEPRERE L ECICEELEPRERE L R R

Figure 3.10: NRNSC 7,5 trellis

Another condition to optimize the performance is the non-interference of the erroneous bits
in the time periods. In the maximum-likelihood sense, two interfering erroneous bits can either
degrade the diversity or coding gain. When considering the iterative processing, a time period
corresponds to a channel node in the graph. Ideally, the considered bit probabilities should be
independent, practically, coming from branches far away from each other in the trellis. These
conditions lead to a design criterion for quasi-static channels, well known in the space-time
coding theory as the "rank criterion” and applied here to the BICM interleaver.

We want to design an interleaver ensuring that consecutive bits are mapped on different
symbol times over all the transmit antennas. To achieve this property, we demultiplex the L¢Ne
coded bits into ny vectors of length Lo Ne/ng. Each of the ny sub-frames will be transmitted on
a predetermined transmit antenna. However, the demultiplexing step is not simply processed
selecting every n; bits. Indeed, we can observe on Fig.3.10 the trellis of the half-rate, four
states NRNSC 7,5 code. In bold lines, we drew the error event leading to minimum weight
(dfmin = 5) and error events maximizing the number of branches with a constant weight (e.g.,
6 and 7). Such error events are good candidates to frequently occur at high signal-to-noise ratios,
and we remark that the error positions (represented by a ”1”) are not equally distributed on the
5 errors over 7 would be transmitted on the first antenna with a classical demultiplexing scheme.
In order to equally distribute the erroneous bits on the n; antennas, for all convolutional code
parameters, we apply the demultiplexing:

0<i<ng,0<j<LcNe/ng,Vi(j) =V ((i + 7)mod ng + jng) (3.51)

where V is the codeword to be demultiplexed, V; is the i-th demultiplexed frame, and .mod .
the modulo operator. This ensures the uniform distribution of the erroneous bits over the n
transmit antennas all along the transmitted frame. Once the n, frames are extracted, each frame
is interleaved separately and transmitted over an antenna.

We now have to limit the erroneous bits interference in the time periods. First, we can
assume that only simple error events occur. If each of the n; frames is interleaved by a different
interleaver, we cannot control the interferences because of the randomness of each interleaver.
On the contrary, if the same interleaver is used, the n; consecutive bits are in the same positions
of the interleaved frames, we can limit the interference by sliding each frame by one bit position
and transmit all the frames serially on their associated antenna. This ensures that bits in the
same position in the interleaved frames will not be transmitted in the same time period, but
does not guarantee that the considered LjN¢ successive bits are transmitted over different time
periods.

To satisfy this strong condition, we use a particular S-Random interleaver which guarantees
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that any L successive bits in the interleaved frames are not transmitted during the same block
of ny time periods. If we consider that bit position ¢ is placed at position II4(i) by the interleaver
11, we should have

0§j<Lch/’nt—L[,0§i<L], \‘H;—U)J 7& \‘WJ (3.52)
t t

We find such an interleaver by choosing it at random until the conditions are satisfied. Each of
the n; frames V; are interleaved to V:

0<i<n,0<j<LeNefn, Vi(ILG)) = Vi()) (3.53)

Then, the bits of the interleaved frame V; will be placed in another sub-frame V”, before the
serial transmission on i-th antenna, with the following method: Blocks of n; bits of V; are
transmitted in the corresponding block of n; time periods, with a time slide equal to ¢ and a
modulo n; to stay in the block of n; time periods (cyclic shift of ¢ positions in a block of size

ng).

0<i<ng,0<gj <LeNe/ni,0<jos<ng, Vi ((i+ jo)mod ng + jing) = Vi (j2 + jine)
(3.54)

3.4.4 Basic interleaver construction

In the following, we consider a basic interleaver Zy, s, 1., designed for Ny channel inputs, a frame
size St and a separation Lj. It should satisfy the conditions presented above for diversity and
coding gain optimizations. It will be used again in the following, this explains the introduction
of the general notation Zy; s, 1, However, in the previous subnewsection, we considered the
ZTn, LeNe,L; interleaver.

In Fig. 3.11, we present the basic interleaver with N; = 4 channel inputs, the bits of the
codeword are colored in 4 different colors, each one corresponding to a specific channel input.
This illustrates the way the codeword is demultiplexed into Nj vectors V;, i = 1,..., Ny, of
length S7/Nj, as presented before. Step 1 corresponds to this demultiplexing. Each vector V; of
size S;/Ny is then interleaved by the S-random interleaver in step 2 into a vector V. In step 3,
we build the N; x S;/Nj matrix as the concatenation of Sy matrices of size Ny x Nj. The first
row of an N; X Ny matrix contains the Ny first values of the vector Vj for channel input 1. The
second row contains the first Ny values of the vector VY for channel input 2, shifted by 1 position
modulo N;. Rows 3 and 4 are built from vectors V4 and VJ similarly. All S;/N? matrices of
size N1 x N are constructed the same way using the following bits of the Ny vectors V.

In this last step, we see the space-time distribution for the N; = 4 first bits of each interleaved
frame, each channel input is represented by a row. We can notice that the cyclic diagonal thread
on the space-time domain in each block is very similar to the threaded algebraic space-time codes.

Finally, the Ny x S7/N; matrix is transmitted on the channel with a space-time repartition
on transmit antennas and time periods given by the rows and columns, respectively.

In a block of N; bits transmitted on one of the N; channel inputs, the bits are separated
by more than Lj bits in the demultiplexed frame, which correspond to a bit separation equal to
Ni(L;—1)+ Lymod Ny in the codeword. The cyclic diagonal repartition of the bits in one block
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of N; time periods guarantees that the bits contained in one symbol period, i.e., in 1 column of
the final matrix, were originally separated by N;(L; —2) + Lymod Ny + 1 bit positions before
interleaving. Moreover it guarantees that Nj(L; — 2) + Lymod Ny + 1 consecutive bits before
interleaving are equally distributed on all transmit antennas and mapped on different symbol
periods. Practically, the parameter L; of the S-random-like interleaver should be maximized in
order to take the long error events into account.

3.4.5 Interleaver design for quasi-static MIMO channels with M-ary input

We have presented an interleaver for MIMO quasi static channels and BPSK modulation. This
interleaver tries to exploit the maximum diversity and to limit the interference of erroneous bits
in the time period. The extension of such interleavers is straightforward for higher spectral
efficiency modulations if we only consider the diversity criterion. However, it has been shown
that labeling optimisation allows high coding gain under iterative decoding on ergodic channels.
In some cases, there is a sufficient transmit diversity order in the channel to exploit the mapping
gain, but the less the diversity order is the more the interleaver has to be optimized.

When the genie condition is satisfied, only one bit is changed in a time period, so the labeling
can be optimized to maximize the average distance of the equivalent BSKs. In order to take
advantage of the coding gain given by the optimized labeling, we have to design the interleaver
such that a genie-like situation occurs.

Erroneous bits in an error path should be dispatched on different time periods and equally
transmitted over all the transmit antennas and bit positions. Moreover, the transmitted bits
should not interfere in the time periods. These conditions are satisfied by the Z,.,, r.~e,1;
interleaver.

It is clear that the diversity is more important than the coding gain. If an error event has a
Hamming weight w < mny, all the sub-frames mn; cannot carry an erroneous bit. The ny first
rows of the last interleaver matrix should be transmitted on the n; transmit antennas and on
the first mapping bit, for example. Then the second block of n; rows will be transmitted on the
second mapping bit, and so on.

3.4.6 Application to linear precoding

When a linear precoder is used to recover a part of the transmit diversity, the new channel
matrix SH has sn; X sn; rows and columns. If at most one erroneous bit is observed on each
time period, optimal linear precoders have been optimized in 3.3. We have shown that the
precoded channel output is divided into independent blocks, we modify the order of the rows as
follows (s" = s/ns and N/ = §'s)

Vip € [1,n¢/8'],Vly € [1,88'],Vt € [1,ns],Vi € [1,5'],Vv € [1, 5],
S(ll—l)nt/5’—1—12,v+(lg—1)nt/5’+(i—1)m+(t—1)s’n(t :) e (3.55)
1 . 1 v—1+(i—1)s'+(t—1)s’ . 1 v—1 .

mexp <2]7r {(ll -1) <¢,1(2N{) + N7 > +(i—-1) <¢,1(28, + >D

and 0 elsewhere.

~
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Now, the n;/s’ consecutive rows of S lead to independent row vectors S;Hy, that look like a true
multiple antenna channel. In this case, the interleaver Z g, roNe,1; is designed for diversity
and gain exploitation. As presented in the previous subsection, the sn; first rows of the last
interleaver matrix will be transmitted on the first mapping bit, and so on.

3.4.7 Interleaver design for block fading MIMO channels

For block fading channels, n. different channel realizations occur during the codeword. Note
that n. = 1 corresponds to the quasi-static context and n. = L¢N¢/ny to the ergodic context.
We directly apply the two design criteria described above to generalize the conditions that
should be satisfied by the BICM interleaver: In order to take advantage of the transmission
and time diversity given by the transmit antennas and the n. different realizations of a block
fading MIMO channel, the interleaver of a BICM should place consecutive bits on different time
periods and equally distribute them among all transmit antennas and all n. channel realizations.
The n. channel states are grouped together into blocks of length LeNe¢/(n.n¢) time periods. We
will extract n. sub-frames from the codeword , each sub-frame will be transmitted on one
of the n. blocks, and only see one channel state. We can interleave each sub frame with the
interleaver optimized for MIMO quasi-static channel to exploit the n; transmit antenna diversity.
The demultiplexing of the n. frames is done in the same manner as for the transmit antenna
separation for the same reasons.

0 <y, <ne,0<j<LeNe/(nent), V" (j) =V ((in, + j)mod n. + jne) (3.56)

This demultiplexing/interleaving is sufficient to exploit the time diversity. Indeed, there is no
interference between the symbols applied to the different channel states in opposition to symbols
transmitted on different antennas, bits positions and time periods.

3.4.8 Interleaver design: algorithm

We will present the algorithm for an easy implementation of the interleaver designed for a
2Mm — QAM, precoded by an sn; X sny; matrix, and transmitted on an n; x n,, MIMO block fading
channel with n. blocks. A codeword contains L¢ Ne coded bits, each sub-frame is L¢ Ne /(smneny)
bits long. Let us first consider the pseudo S-Random interleaver for each of the smmnn. sub-
frames. It should guarantee that any L; successive bits in the interleaved sub-frame are not
transmitted during the same block of smn; time periods. If we consider that bit position 7 is
placed at position II4(7) by the interleaver Ils, we should have

(i (i +i
0<j< LeNg/(smny) — Ly,0<i< Ly, { S(J)J £ { sU “)J (3.57)
smny smny
We can find such an interleaver by choosing it at random until the conditions are satisfied. Let
Vin, a vector of LeNe coded bits, be the input of the interleaver, and V,,; the output vector to
be given to the mapper.
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Algorithm 1: Optimized interleaver for precoded Ny x N, MIMO channel with n. blocks,
2Mm-QAM

input : A codeword Vj, of size L¢N¢ coded bits.

output: A frame V,; of size Le N¢ bits, ready for serial to parallel and mapping
conversion for transmission on the n; transmit antenna.

init : L1 — Lch/TLC, L2 — Ll/(mNt)

1 for k=0ton.,—1do
for i =0 to mN; — 1 do
for j=0to Ly — 1 do V5 (j) < Vin ((5 + (ine + k))mod mNyn. + jmN¢n,)

" for j =0 to Ly — 1 do Vi (I1,(j)) — V5 (j)

for j =0 to Ly/(mN;) —1 do
for v =0 to mN; —1 do
L Vi (v +i)mod mN;y + jmN;) «— V3 (v + jmNy)

8 | for j=0to Ly —1do V5 (i + jmN) < Vi(j)

9 for i =0to L1/(mN;) — 1 do

10 for j=0to Ny, —1do

11 foru=0tom—1do

12 L Vout (u+ jm +imNy + kLq) «— V5 (j + ulNy + imNy)

3.4.9 Application to turbo-codes

The BICM precoder and interleaver have been designed to provide full-diversity and optimal
coding gain for any pairwise error probability. However, the final error rate is given by the
probability to get out from the Voronoi region. The facets of this decision region belong to the
median hyperplanes of the BSKs considered in the pairwise error probabilities. When using con-
volutional codes, the number of neighbors increases with the frame length whereas the minimal
Hamming distance dm;, remains constant. The minimal Euclidean distance in Cg depends on
dirmin, we can deduce that the frame error rate will increase with the frame length. The idea
is to find a code whose Euclidean distance increases with the frame length. If the performance
gain provided by the Euclidean distance increase is greater than the performance attenuation
provided by the number of neighbors increase, the frame error rate will decrease with the frame
length. It has been shown in [44][17] that turbo-like codes can achieve such a proposition over
block fading channels. We use the coding scheme presented in Fig. 3.12. Information bits are
encoded by an RSC1 encoder. The information bits are interleaved by the turbo-code inter-
leaver II;, encoded by an RSC2 encoder. The coded bits of RSC2 are then de-interaleaved by
Iy 1. This last step is not processed in classical parallel turbo-code schemes, but it allows us
to perfectly control the position of the information bits and associated coded bits. Indeed, the
presented optimized channel interleaver is designed using the simple observation that the error
events are localized. Then a 1/2 puncturing is computed on each coded bit stream, followed by
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a multiplexing. Let b(i) denote the i-th information bit, ¢1(7) denote the i-th coded bit at the
output of RSC1 and ca(i) the i-th coded bit at the output of RSC2. The final coded stream
has the following form

b(0) c1(0) b(1) c2(1) b(2) c1(2) b(3) c2(3) b(4) c1(4) b(5) c2(5) - (3.58)

Information bits

RSC 1 Coded bits ¢
c1
n, RSC 2 n; C""Ce: bits_+ 4

Puncturing  Multiplexing
Figure 3.12: Parallel turbo-code encoder

The error events occur locally at different positions in the frame. This induces that the
optimized interleaver is directly applicable.

3.5 Simulation results

In this section, we evaluate the performance of actual iterative joint detection and decoding of
the ST-BICM. The APP detector is performed by exhaustive marginalization. The set of 2Vt
noiseless received precoded symbols zSH is computed once per channel block realization since
the channel matrix SH is constant during the block. This results in a complexity reduction for
the marginalization, which now requires around L¢Ne/ (msnt)QmNt operations per iteration if
s < LeNe. Reduced complexity quasi-optimal or sub-optimal MIMO detectors could also be
used, e.g., a SISO list sphere decoder [49][75][6][107], a SISO-MMSE detector [89] or a detector
using sequential Monte Carlo method [33].

Let us consider a 2 x 1 quasi-static (n, = 1) MIMO channel and QPSK modulation. We
use (7,5)s NRNSC or (3,2)s NRNSC codes with rate 1/2 and a blocklength of 1024 coded bits.
From the Singleton bound we know that full diversity can be achieved without linear precoding.
We compare on Fig. 3.13 the performance obtained with a classical PR interleaver and the
performance obtained with the optimized interleaver described in section 3.4. Full diversity
order is only achieved with the optimized interleaver, for which the performance slope is equal to
the one of the outage probability. The optimized interleaver provides performance improvement
without any increase of complexity neither at the transmitter nor at the receiver. In most cases,
the PR interleaver only provides a diversity n.., i.e., it does not allow any transmit diversity
order recovery. The (7,5)s NRNSC code achieves a higher coding gain than the (3,2)s NRNSC
code. It achieves performance within only 2.5dB from the outage capacity with Gaussian input
and within 1.5dB from the outage capacity with QPSK input. The performance lower bound
corresponding to ideally precoded BICM is also drawn. It is obtained from the performance of
the same coded modulation transmitted on a 1 X n.nsn, SIMO channel, as explained in section
3.3.1. There is a 1dB gap between ideal and actual performance with the (3,2)g NRNSC code
and a 0.75dB gap with the more powerful (7,5)s NRNSC code. This confirms the analytical
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result of section 3.3.1 obtained for ML performance: the higher the Hamming weight is, the
closer to the ideal performance the actual iterative receiver can perform. However, a better code
does not always provide better frame error rate. Indeed, we saw that, when w > n¢n., the full
diversity of the considered pairwise error probability can be achieved with an ideal interleaver.
The remaining w — ngn. BSK distances are uniformly distributed among all the channel states.
A better error correcting code with greater Hamming weights w’ does not enhance the diversity
but the coding gain per pairwise error probability. However, the degradation induced by the
increased number of neighbors may be higher than the improvement brought by increased coding
gains. How to handle this trade-off is left for further study.

In Fig. 3.14, we show the performance of a rate-1/2 (7,5)gs NRNSC code over a 2 x 2 MIMO
block fading channel with n, = 2 and QPSK input. The frame length is 256 coded bits. With
a PR interleaver, a diversity order n, = 2 is achieved, as transmit diversity is not collected.
Even with the optimized interleaver, full diversity is not obtained at the last iteration. Indeed,
the Singleton bound is equal to 6 without linear precoding. Two different linear precoders, the
Golden code and the DNA code, both with s = 2, are used to achieve the full diversity order 8.
The Golden code does not satisfy the equal norm condition, which induces a slight loss in coding
gain. However, this loss is fully compensated by the averaging of the dj,;; into the ~;; provided
by the error correcting code as explained in 3.3.1. The slope difference between diversity orders
6 and 8 is not significant. However, linear precoding provides an additional coding gain which
allows to perform within 2dB from the outage capacity with Gaussian input using a four-state
convolutional code and a small frame length. For a higher frame length, the performance with
convolutional codes is degraded. Therefore, we will also investigate performance with turbo-
codes.

In Fig. 3.15, we compare two strategies for achieving full diversity with BICM: linear pre-
coding and constellation expansion. Constellation expansion consists in increasing m while
decreasing the coding rate, in order to achieve the full diversity without precoding and with the
same spectral efficiency. A MIMO 2 x 2 channel with n. = 2 is considered. The frame length
is 1024 coded bits. Using QPSK modulation and rate-1/2 coding, full diversity is not achieved.
Using a precoded QPSK with s = 2 and a 16-state rate-1/2 (23,35)s NRNSC code having min-
imal Hamming distance 7, we get the same spectral efficiency, 2 bits per channel use, and the
Singleton bound is equal to 8, the full diversity order. We compare this full-diversity scheme
using linear precoding with a scheme using constellation expansion from QPSK to 16-QAM with
a 64-state rate-1/4 NRCSC code having generator polynomials (135,135,147,163)s and mini-
mal Hamming distance 20. With the latter scheme, we get the same spectral efficiency and the
Singleton bound is also equal to 8. The linear precoder provides a greater diversity order at the
first iteration. At the last iteration, both schemes have same diversity and the precoded scheme
slightly outperforms the scheme with constellation expansion. Since the detector complexity is
around L¢Ne/ (msnt)Qme operations per iteration if s < L¢Ne, the detection of the precoded
system is as complex as the detection of the one with constellation expansion. However, channel
decoding of the 64-state (135,135,147,163)s NRNSC code is more complex than the decoding
of the 16-state (23,35)s NRNSC code. Thus, to get a same performance, it is less complex to
use linear precoding than to use constellation expansion. When choosing a 64-state NRNSC
(133,171)g code with rate 1/2 and minimal Hamming distance 10, the coding gain is increased
by almost 1 dB.

In order to increase the frame length without degrading performance, we now consider turbo-
codes. Fig. 3.16 illustrates the performance of a (7,5)g RSC turbo-code over a 1 x 1 channel with




3.5 Simulation results 79

ne = 4, QPSK input and either a PR or an optimized interleaver. Two different frame lengths
(256 and 2048 coded bits) are tested. With the PR interleaver and without precoding, the full
diversity order 4 is not achieved. If the optimized interleaver is used, the full diversity order
is not achieved, but the smaller slope is not visible down to a FER equal to 1073. A similar
behavior is obtained with PR interleaver and precoding s = 2. Finally, the DNA precoded
modulation with optimized interleaver achieves full diversity performance within less than 2dB
from the outage capacity with Gaussian input.

Fig. 3.17 illustrates the performance of a (7,5)g RSC turbo-code over a 2 x 2 quasi-static
channel with QPSK input and either a PR or an optimized interleaver. Two different frame
lengths (256 and 2048 coded bits) are tested. With the PR interleaver, the full diversity order
4 is not achieved, and the performance degrades when the frame length increases, as with
convolutional codes. With the optimized interleaver, the full diversity order is achieved and the
frame error rate decreases when the frame length increases. The system using DNA precoding
(s = 2), optimized interleaver and a turbo code finally performs within 1dB from the outage
capacity with Gaussian input.

Fig. 3.18 represents the performance of a (7,5)s RSC turbo-code over a 4 x 1 quasi-static
channel with BPSK input and either a PR or an optimized interleaver. Two different frame
lengths (256 and 2048 coded bits) are tested. Without linear precoder and using a PR interleaver,
the full diversity gain is not achieved. Asymptotically, the observed diversity is n, = 1, but for
low SNRs the performance is close to the performance obtained with the optimized interleaver.
Indeed, the turbo-code generates a large amount of errors for low SNRs and the probability
of satisfying the ideal interleaving condition with a PR interleaver is high. However, when the
number of errors is low at high SNRs, it is crucial to place the few erroneous bits over all the
channel states. This behaviour is stressed with increased frame length. To achieve maximum
diversity, according to the Singleton bound, a precoding with at least s = 2 is needed. This is
confirmed by the simulation results and again the error rate decreases when the frame length
increases. With the 4 x 1 MIMO channel, a large amount of interference exists between the
transmit antennas. Nevertheless, performance is within 2.5 dB from the outage probability with
Gaussian input. Performance will be even closer to the outage probability with a higher number
of receive antennas or channel realizations.

On Fig. 3.19, performance of NRNSC codes and parallel turbo-codes with RSC constituent
codes are drawn versus frame size for a given signal-to-noise ratio equal to 15 dB over a 2 x 1
quasi-static MIMO channel. Performance of the Alamouti scheme [3] having same spectral
efficiency without channel coding is also drawn as a reference. The frame error rate increases
with the frame size when using Alamouti scheme or NRNSC codes whereas it remains constant
when using turbo codes. This strong property is in part explained by the interleaving gain of
the turbo-code but it needs further research to be clearly expressed.
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Figure 3.13: Optimized interleaver with rate-1/2 NRNSC codes - QPSK modulation, 2 x 1
MIMO channel, n. = 1, 10 iterations, L.N,. = 1024.
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Figure 3.14: Optimized interleaver with rate-1/2 (7,5)s NRNSC code and linear precoders -
QPSK, 2 x 2 MIMO channel, n. = 2, 5 iterations, L.N. = 256 - No linear precoder, DNA
cyclotomic precoder (s = 2,ns = 1), Golden code (s =2,n, = 1).
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Figure 3.15: Constellation expansion versus linear precoding - 2 x 2 MIMO channel, n, = 2,
L.N, = 1024, optimized interleaver.
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Figure 3.16: Optimized interleaver with rate-1/2 RSC (7,5)g turbo-code and DNA cyclotomic
precoder - QPSK, 1 x 1 MIMO channel, n. = 4, 15 iterations, L.N. = 2048 - Parity check bits
of the second constituent are multiplexed via the inverse turbo interleaver.
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Figure 3.17: Impact of frame size with a rate-1/2 RSC (7,5)g turbo-code - QPSK, 2 x 2 MIMO
channel, n. = 1, 15 iterations - Parity check bits of the second constituent are multiplexed via
the inverse turbo interleaver.
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Figure 3.18: Impact of frame length with a rate-1/2 RSC (7,5)g turbo-code - BPSK, 4 x 1 MIMO
channel, n, = 1, 15 iterations - Parity check bits of the second constituent are multiplexed via
the inverse turbo interleaver.
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Figure 3.19: Frame error rate versus the frame size L N, - BPSK, 2 x 1 MIMO channel, n, = 1,
SNR = 15 dB - Alamouti STBC, NRNSC codes, parallel turbo codes - Parity check bits of the
second constituent are multiplexed via the inverse turbo interleaver.
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Conclusions

We have presented bit-interleaved coded modulation optimizations for multiple antenna chan-
nels. We achieve near capacity on ergodic channels thanks to turbo-codes or optimized inter-
leavers. It is shown that the design for ergodic channels is much easier than for block fading
channels. In this last case, the full diversity is the first objective to be achieved by the receiver.
The Singleton bound gives the maximum diversity the decoder can recover and the minimum
spreading factor that guarantees full diversity. Next the coding gain has to be optimized using a
well chosen binary code, an optimized interleaver and an optimized linear precoder. Finally we
have presented a modification of the turbo-codes in order to achieve near outage performance.
The error rate decreases with an increasing frame length.
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Chapter 4

BICM receivers for MIMO channels

Introduction

In order to improve the data transmission rate over fading channels, most of new transmission
systems use a set of multiple antennas at the transmitter and receiver side. However, the receiver
has to be sophisticated enough to recover the large amount of data received with a large amount
of interference. Iterative techniques, such as iterative joint detection and decoding, seem to
be a judicious choice for high performance receivers with tractable complexity. This requires
soft-input soft-output detectors and decoders. However, when using high spectral efficiency
QAM modulations with multiple transmit antennas, the classical exhaustive soft list detector
becomes intractable. Recently, a sub-optimum soft list detector has been proposed in [49], but
some weaknesses are still existing to achieve near optimum soft detection performance. We will
present some modifications to the list construction and complexity reduction in the case of block
fading channels.

In Section 4.1, some basics on lattices are presented, the multiple antenna (MIMO) channel
lattice model is expressed. Some simple lattice theory tools are also introduced, they will be
helpful to describe and optimize the maximum likelihood Sphere Decoder presented in Section
4.2. In Section 4.3, we present the soft-input soft-output (SISO) spherical list detector and its
application to MIMO channels joint detection and decoding. In Section 4.4, the SISO-MMSE
described in [32] is modified for MIMO channels with some complexity reductions. Complexity
and performance comparison between the presented SISO detectors is discussed in section 4.5
to conclude this chapter.

4.1 Basics on lattices

4.1.1 MIMO channel equivalent lattice

Lattice theory and coding theory are applied to efficiently encode and decode information in a
digital transmission system with multiple antennas. For some information theoretical reasons
(see [87]) it is assumed that n; = n, throughout this section.
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Lattice theory [26] is a powerful mathematical tool to geometrically represent the modu-
lation and channel concatenation. It helps us to better understand its behavior, in order to
design a good modulator and its corresponding demodulator. Since multi-dimensional QAM
constellations are subsets of Z", we can write z € Z*>*. Let na denote the dimension of the real
Euclidean space,

ny=2xXn;=2xn, (4.1)

The equality x = zH is now extended to the real space R"* to get
x=zMp,x € R™ 2z € 72" (4.2)

Therefore, the MIMO channel output y = z + v is obtained by perturbing a lattice point z with
additive white noise v. A lattice A is a discrete subgroup of R™A | i.e. it is a Z-module of rank
na. In (4.2), the lattice A is generated by the np x ny real matrix My, which is derived from
the channel matrix H by the following simple expression

§Rh11 %hll . e §Rh1nr %hlnT
~Qhyy Rhiy ... ... —Shi,,  Rhin,
.. S
= I - (1.3
Rhng  Shogt oo oor Rhpn Shogn,
~Shnt Rhnyt oo oo —Shan, Rham,

When 2z is restricted to a finite QAM integer constellation, x belongs to a finite lattice
constellation denoted by Q. For example, if n; = n, = 8 antennas and m = 4 (16-QAM), the
constellation 2 at the MIMO channel output has 2™* = 232(~ 4) billion points. Each point
in 2 has a binary label of 32 bits. Before combining an error-correcting code with a digital
modulation for use on a MIMO channel, we first analyze the main parameters of the lattice A
associated with multiple antenna channels. Such a geometrical analysis is complementary to the
one made by information theory concerning Shannon capacity of MIMO channels.

4.1.2 Important lattice parameters

The matrix My is called a lattice generator matriz of the lattice A(My). Let Pp be the set of
points that satisfy
Py={zeR"/z=aMy, ac[0...1]"} (4.4)

Py is called the fundamental parallelotope of A (see Fig. 4.1).

The first lattice parameter to be considered is the fundamental volume vol(A), which repre-
sents the volume of the fundamental parallelotope defined by

vol(A) = |det(My)| = \/det(G) (4.5)

where the Gram matrix G defining the quadratic form @(z) associated with the lattice is related
to My by
G = MAMY, ||z]]* = 2G=" = Q(2) = Zgijzizj (4.6)
ij
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Figure 4.1: Lattice parameters.

The second lattice parameter is the minimum Euclidean distance dgpmin(A) defined by

dBmin(A) = ;I;Ifi% llpr — p2ll  p1,p2 € A, pl # p2 (4.7)
The problem of computing d gmin(A) is hard (it is NP-complete). Thus, we suggest three different
methods to get an estimation of the minimum Euclidean distance in A:

1. The rows of My are a Z-basis for A. Read the np Euclidean norms in the lattice basis and
keep the minimum. This yields an upper bound on d g (A). In practice, we equivalently
search for the minimum element of the Gram matrix diagonal.

2. Reduce the basis My by finding another lattice basis with shorter vectors. We suggest here
to use the efficient LLL reduction algorithm [62], or the more complex Korkine-Zolotarev
algorithm ([58]). This yields a tight upper bound on dgmin(A). If a Minkovsky reduction
can be processed, we find the exact value of dgpin(A).

3. Find the exact minimum distance by enumerating lattice points inside a sphere centered
on the origin, then take the minimal norm of a non-zero point. We suggest the application
of Short vectors algorithm [72] to determine the exact value of dgmin(A).

Of course, the three methods above are listed in increasing order of complexity. As shown later
in this study, the estimation of dg,in(A) helps to accelerate the Sphere Decoder algorithm [98]
used to find the maximum likelihood (ML) lattice point. Given the lattice minimum distance
and its fundamental volume, it is possible to derive the normalized squared minimum distance,
called fundamental gain, given by

Din (M)

Emin

1) = vol(A)2/ma
Usually, the fundamental gain is expressed in decibels, v45 = 10logi1o(7y). A lattice sphere
packing is non-dense if v4p < 0, i.e. the lattice is less dense than the cubic integer lattice Z™*.
When 45 > 0, the dense lattice is associated with a good MIMO channel that may perform
better than an AWGN single antenna channel. Such a performance comparison should also take
into account the kissing number of A [26] which is completely random and difficult to estimate
in a multiple antenna channel context.

(4.8)
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Number | d%, . (exact) | d%, . (LLL) | d%, . (Gram) ~v(dB) ~v(dB) < 0
of antennas mean/variance mean/variance mean/variance mean/variance Percentage
2 0.979/0.542 0.979/0.543 1.250/0.687 -1.10/2.04 78.1
4 1.607/0.576 1.608/0.579 2.182/0.803 -0.65/1.42 66.9
8 3.867/1.004 | 3.875/1.019 | 4.488/1.272 | +0.76/0.75 171
16 9.719/2.231 9.734/2.274 9.770/2.309 +1.98/0.59 1.15

Table 4.1: Main lattice parameters of the MIMO channel (first table).

Number | d%, . (exact < LLL) | d%, . (LLL < Gram) | d%, . (exact < Gram)
of antennas Percentage Percentage Percentage
2 0.19 40.02 40.07
4 0.92 61.60 61.86
8 3.18 53.82 54.67
16 2.36 4.79 5.64

Table 4.2: Main lattice parameters of the MIMO channel (second table).

Nevertheless, the three above-mentioned main parameters are sufficient to understand the
geometrical behavior of A. Tables 4.1 and 4.2 show the main parameters of a MIMO lattice and
some statistics related to these parameters.

As expected, the lattice minimum distance increases with the number of antennas. Indeed,
the channel diversity order is proportional to the number of antennas. The percentage of dense
lattices is surprisingly high, especially for 8 and 16 antennas. This predicts a performance
extremely close to the Gaussian channel when n; = n, is large. If the channel matrix H is
known at the transmitter, it is possible to take a waterfilling approach where the information
instantaneous rate is proportional to (A). Two important results may be deduced from Table
4.2:

1. The LLL reduction algorithm is extremely efficient in finding the minimum distance of a
MIMO lattice. The failure percentage varies from 0.19% to 3.18% only

2. The simplest method (method 1 based on the diagonal of the Gram matrix) seems also to
be quite efficient for a large number of antennas, (only 5.64% failure with 16 antennas)

Finally, Fig. 4.2, 4.3 and 4.4 give more details on the distribution of d g, (A) and y(A) versus
the number of antennas. Note that in Fig. 4.4, in the case of 16 antennas, ~y is limited to -1dB
for non-dense lattices and upper bounded by 4dB for dense lattices. For comparison, we recall
that n; = n, = 16 antennas correspond to a lattice in R3? for which some known structured
dense lattices have a fundamental gain equal to 6dB.

4.1.3 Lattice generator matrix QR decompositions

A matrix decomposition is a transformation of a given matrix into a canonical form. For example,
we cite LU, Singular Value, eigenvalue, and Schur decompositions. In this chapter, we are
interested in QR decompositions of My:
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Let My be a square matriz, there exists a lower triangular matriz A and a rotation matriz Q

(QQ! = I) such that My = AQ.

Let us rotate the first basis vector of A(My) to fit the first Euclidean basis vector. The
applied rotation is called @, , and we define the rotated matrix Ay = Mx@p,. The first row of
A1 has only one non-null coefficient on the first position. We extract a ny — 1 X ny — 1 matrix
from the last ny — 1 rows and columns of A; and apply a rotation @,,—; that aligns the first
basis vector to the first ny — 1 dimensional space. This operation repeated np — 1 times leads
to a lower triangular matrix, via ny — 1 rotations. The global transformation is a rotation Q:

A = MpQ = MpAQn,diag(l11, Qny—1) - - - diag(lg ks @ny—k) - - - diag(Iny ny) (4.9)

where diag (I, Qn,—r) is a block diagonal matrix with two blocks: a k x k identity matrix and
a np — k-dimensional rotation.

In order to efficiently process the QR decomposition, we use the simple observation that
a rotation is a Householder reflexion R = [ — 2m’lm 1, where m | is the normal vector of
the reflexion hyperplane. We see a geometrical representation of a 2-dimensional Householder

reflexion in Fig. 4.5. The vector m  that transforms a given vector x into [|z]|,0,...,0] by
reflexion is )

m, = Ty +sgn(zy)||z|, x2, ..., Ty 4.10
1 \/HxH(HfﬂH‘*"xlD[ 1+ sgn(x1)||z]], x2 ] (4.10)

We apply the Householder reflexions to compute the transformation of the M and I matrices,
respectively leading to A and (). The complexity in flops (floating point operations, i.e., any

addition, multiplication, division, square root of a floating point variable) is 5n§\ /3 + Qn?\ +
161, /3.

Another method to compute A is to apply a Cholesky decomposition of the Gram matrix
G = MpAM} = AQQ'A" = AA': the main idea of the Cholesky decomposition is to observe
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(I —2m'm))

Figure 4.5: Householder reflexion of x Figure 4.6: Basis reduction example.
with respect to an hyperplane defined
by the normal vector m .

that

V0 < i < ny, A2, =Gy — Y1 A2 (4.11)
Vi <k <np, Apildi;= Gik Z A A (4.12)

which is sufficient to compute A. This method exactly leads to the same matrix as QR decom-
position. The algorithm complexity is 5n3 /6 —3n% /24 2n, /3 flops. However, the Gram matrix
computation (na(na+1)(2na —1)/2 flops) has to be added if Cholesky is used for My triangular
decomposition. The algorithm does not allow an easy computation of the rotation matrix Q.
Some algorithms do not require ¢ but a matrix © such that:

V1 <i<n, Oi = A, (4.13)
Aji
A

)

V1l<1 <j <n, Gi,j = (4.14)

which is easily provided by the Cholesky decomposition.

4.1.4 Lattice reductions

The MIMO channel leads to a random lattice structure. The basis of the lattice, given by M, is
not always the best in terms of orthogonality and vectors’ shortness. The procedure of finding
a better lattice basis is called reduction. This work was initiated by Gauss who proposed some
algorithms for dimensions two and three, but the main three algorithms were proposed by

1. H. Minkovsky

2. Ch. Hermite, enhanced by A. Korkine and G. Zolotareff (KZ reduction, [58])

3. A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz (LLL reduction, [62])
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No efficient algorithms are known to find the shortest non-zero basis of an arbitrary lattice.
However, the LLL algorithm, proposed in 1982, computes an approximation of the smallest
basis in polynomial time.

Since the basis reduction is a basis change, the lattice remains the same after reduction and
the reduction matrix is unitary V:

M, =VMy, AM,y)=AM,) (4.15)

Fig. 4.6 presents an example of basis reduction, the basis (M, 1, M, 2) is the reduced version of
(M, M3). We will briefly present some basic knowledge on lattice reduction that will help us to
accelerate the decoding of MIMO channels.

First, let us recall the Gram-Schmidt Orthogonalization computation. Let (v1,...,v,) be a
basis of R™, an orthogonal basis (u1,...,u,) is obtained by the recurrence:
i—1 uwt i—1
Wzl...n, Ui:ui—z “U“‘]2ijUi_Zui’jvj (416)
j=1 1" j=1

i.e., recursively substracting the non-orthogonal components of the basis vectors. The Gram-
Schmidt Ortoghonalization is not a basis reduction since the resultant basis does not generate
the same lattice, the p; ; coefficients are not integers. Now, we present the definition of basis
reduceness:

A lattice A basis (u1,...,up,) is reduced if V1 <i<j<mn, |pi;l|<32

The Gram-Schmidt orthogonalization is directly applied into basis reduction:

1. Compute the Gram-Schmidt orthogonalization basis (u1,...,u,) of (vi,...,vy)

2. Compute the algorithm:

for i = 1.n{for j =i — 1.1{ w; < u; — [pij|uy; for k = 1.5{ i — pix — Lpiglijet}}

The algorithm complexity is %ng +n? — %n flops, but the provided basis is not particularly
orthogonal, no vector exchanges have been processed. However, we will see that this reduction
will be very useful for lattice constellation decoding because of the triangular property of the
reduction basis change matrix.

An efficient algorithm to compute reduced basis is the LLL reduction [62] which statisfies a
sub-optimal reduction criterion:
A lattice A with basis (u1,...,un) and Gram-Schmidt orthogonal basis (vi,...,vy), is said to be
LLL-reduced if and only if:

Vi<j<i<n, gl < 3
, 2 _ 4 i1 2
Vi<i<n-—1,  |o|® <3 |uip1 — D50 Hit1,50;

This is a looser property than the one used by the more efficient but more complex algorithm
KZ [58].
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4.2 Sphere decoding

The sphere decoder is an algorithm providing ML performance on lattice channels. For example,
we can cite rotated rayleigh channels [14], CDMA or MC-CDMA [19] [20][21][25][36][101]. As
described, the MIMO channel can also be seen as a lattice, the sphere decoder is well suited for
ML decoding of the received point.

A lattice point © € A(H) represents the signal received after a transmission over a MIMO
channel (or any lattice channel). Here, A(H) = A(My) refers to the real lattice of rank ny
generated by My, or equivalently by H. A maximum likelihood lattice decoder applied to the
received point y = z + v determines the nearest lattice point to y, i.e., it minimizes ||y — x||?.
The point that minimizes the distance is called the closest point. In our case, x is perturbed
by an n-dimensional centered additive white Gaussian noise of variance Ny, the likelihood is
p(y/x) = e_”y_“”HQ/QNO/\/m; maximizing the likelihood is equivalent to minimizing the Eu-
clidean distance, the maximum likelihood point is the closest lattice constellation point.

The so-called closest point problem is not straightforward, except for orthogonal lattices.
Indeed, in this trivial case, the lattice Voronoi region is parallelepipedic and the ML point is
found by simple independent quantization on each dimension. When the lattice matrix is non-
diagonal, the Voronoi region is a complex polygon we cannot use for decoding. The only way
to perform ML decoding is then to compare the distance ||y — z||? between the received vector
and a set of points including the ML point. If the transmitted set of points cardinality is small
enough, we apply an exhaustive computation of all the distances ||y — z||2. However, for high
spectral efficiency systems, or for lattices (infinite number of points), the exhaustive decoding
is intractable. If we use a 2™-QAM transmitted on n; transmit antennas, the constellation
cardinality is 22™™ . which leads to a comparison of 216 = 65536 distances for 16-QAM over 4
transmit antennas.

The Sphere Decoder is a very efficient algorithm to find the closest point in a lattice [97][98].
The main idea of this algorithm is to enumerate all the lattice points x belonging to a sphere
S(y, Rs) of radius Rs centered on y, and to compute the distances ||y —x||?. If no point is found,
the radius of the sphere has to be enlarged. Each time a point is found, the radius of the sphere
is reduced to the distance of this new point, which limits the number of enumerated points but
still ensures the closest point criterion.

4.2.1 The Sphere Decoder based on Pohst point enumeration strategy

The Sphere Decoder based on Pohst strategy [72] was applied by Viterbo and Boutros (VB)
[98] to digital communications. The key idea is to enumerate lattice points inside an ellipsoid
in the integer space corresponding to a spherical search region in the real space. This technique
is derived from the short vectors algorithm, initially thought up for the first lattice shells’ point
enumeration. The point enumeration in Z"* is straightforward, processed by coordinate incre-
ment. The enumeration of the lattice points belonging to the sphere S(y, Rs) is equivalent to the
enumeration of the Z™* points belonging to an ellipsoid £(w, Rs, MXl) centered on w = yMXl.
This is illustrated in Fig. 4.7. The Z" points belonging to the ellipsoid satisfy the equation

2 € E(w,Rs, My ) NZ™ & ||(w — 2)Mp||* = |6M4||* < R% (4.17)
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Figure 4.8: Effect of the lattice generator matrix decomposition into a lower triangular form on
the ellipsoid bounds computation.

where § is the difference vector between the tested point z and the Zero-Forcing point w. Unfor-
tunately, in the general case, M has non-zero off-diagonal coefficients and all the § components
are linked together, so this does not allow a simple enumeration without solving an na X na
equation system.

Let us rotate the first basis vector of A(My) to fit the first Euclidean basis vector, which is
equivalent to make one ellipsoid axis collinear to the first basis vector of Z™A as presented in
Fig.4.8. The applied rotation is called @1, and we define A; = My (@1 the new generator matrix
of A(A1). In this case, z; only occurs in the first coordinate z of z € A(A;), with a scaling
factor Ay 1. The ellipsoid bounds are directly linked to the sphere bound along this dimension.
If we fix the value of zi, the projection of the ellipsoid on the corresponding Z"™ ! space is
always an ellipsoid, we turn one basis vector to one of the ellipsoid’s axis thanks to the rotation
Q2 leading to As = A1Q)2, and so on until the last dimension, which does not need to be rotated.
Finally, the lattice has been rotated na — 1 times, the global transformation is a rotation ) and
transforms My into a lower diagonal matrix A via np — 1 successive rotations:

A= MAQ = M\Q1Q2...Qny—1 (4.18)

We saw that if we rotate My to A, a lower triangular matrix, the ellipsoid bounds are computed
recursively. We apply a QR decomposition of My to compute A.

Let us now describe the maximum likelihood Sphere Decoder based on Pohst strategy. As-
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sume a set of transmitted points z belonging to a lattice constellation [zmin, Zmaz]™. Such
constellation is an homothetie of a 2™-QAM constellation of an na/2 x ny/2 MIMO channel,
and enables easier manipulation (the symbol energy is divided by 4 with respect to the classical
QAM constellation). Using QQ! = I, the considered square Euclidean distance for ML decoding
is

|6M4|? = ||6A]? = 6AALS = 6GS' < R% (4.19)
Using the lower triangular property of A, and defining ©;; = AZQZ and ©; ; = Aj;/A;;, we have

that
2

16A? = Z Z(s A Z@” 5; + Z 5;0i; (4.20)

=1 Jj=t Jj=t+1

We want to enumerate all the points belonging to the translated integer lattice § € (Z"* + w),
this is done by first computing the bounds of d,,,

(4.21)
NA,MA nAMA
and recursively deducing the other bounds, assuming {dx1,...,0n, } known,
) 2
R — 3211 O <5 + 2 59@',]‘)
- (4.22)
Ok k
RS~ S0 O (5 + 5 2
S k-+1 H< + 10 )
<0k + 2o Ok < - = (4.23)
Ok k
Substituting 0 = wy — 2z and using zx € [0, Zpaz], We obtain
R~ 0, 0 (504 g |
S~ j1 O < + 410 )
Maz | 0, |wg — T I (4.24)
Ok i
na
i=k+1
R~ S0 O (54 0 2
S j1 O ( + 410 )
Min | zmaz, |wr + il = (4.26)

Ok k

Originally, the Sphere Decoder performs on a lattice without constellation bound restrictions.
However, introducing equations 4.24, 4.25, and 4.26 is a straightforward but necessary trick that
strongly reduces the complexity, or, in other words, not activating it would strongly increase the
complexity.

If different PAM sizes are used on each antenna, for example for spectral efficiency tuning or
adaptive modulations, the constellation is rectangular parallelepipedic, the constellation bounds
[Zmin,i, maz,i] vary for each dimension i.
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Notice that the algorithm only requires MXl, A and the ©® matrix. This shows us that a
Cholesky decomposition is more pertinent than QR decomposition (see subsection 4.1.3).

The computed bounds are updated recursively thanks to the equations [98]

Sk = Sk(kt1,-er0ny)  =wrt Y Ol (4.27)
i—kt1
2
na na
Tr_1 = kal((skw ... 7571/\) = R?g — Z @m‘ o; + Z @i,j(sj (4.28)
i—k j=itl
=T} — Opi(Sk — 21)? (4.29)

and finally, each time a vector z is found, the distance between y and z = zM}y is
d*>=R% - T, (4.30)

Since we are interested in the point minimizing cz, the radius R?S is reduced to d each time a
point is found. This strongly reduces the complexity and keeps the optimality. When no points
are found, the last found point is the ML point.

4.2.2 The Sphere Decoder based on Schnorr-Euchner point enumeration strat-
egy

The Sphere Decoder based on Schnorr-Euchner strategy [80] was first introduced in digital
communications by Agrell, Eriksson,Vardy and Zeger (AEVZ) in [1]. The key idea is to view the
lattice as laminated hyperplanes and then start the search for the closest point in the nearest
hyperplane. A radius is specified in order to limit the explored region to a sphere. If no
radius reduction is applied during the search, all the points belonging to the sphere would be
enumerated, as for the Pohst strategy, which justifies the name of Sphere Decoder too.

a) Laminated hyperplanes structure of the lattice
Using the QR decomposition A = MpQ, we get

YQ = zMAQ +1Q = zA +1] (4.31)

y

where ¢ and 17} are the rotated version of y and 7, respectively. The matrix A can be decomposed

into
0 0
Ao | am-u o Aacd] : (4.32)
0 0
na—1
A"A ALLAA ! AnmnA

where AlPa=1] ig an np — 1 X np — 1 matrix obtained by extracting the first np — 1 rows and
columns of A = Al and AL?A/FH contains the first ny — 1 components of the row A, . Any
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lattice point can be written as the sum of a A(A"A=1) point and a translation vector z,, Ay, :
Al = AalA 1) L zZA, (4.33)

The lattice is decomposed into an infinite set of parallel sub-lattices, obtained by translating
an initial lattice by an integer multiple of the vector A,,,. The lattice A[nA U_ A(A["A_l}) is
taken as the reference, we can use the notation AE“A U= A([)nA 1 +iA,, to describe the parallel
hyperplanes set. The translation vector A,, can be decomposed into A, || = {AL? AAfl], 0] and
Ap,1=10,...,0,Ap, n,], the collinear and orthogonal components to the hyperplane A[On"_l],

respectively. The distance between the parallel hyperplanes d (A[nA U AZ[T_LFAJI]> is |Apynal
Each lattice A[ AU has a triangular generator matrix and can be decomposed into a set of

[1}

parallel lattices with a translation vector A 1, and so on.

b) Closest point computation

[nA 1}

The received point 7 is located between two hyperplanes ALRA U and A, Let us consider

that Aq[)nA U is the closest hyperplane. The indice v, is found by the normahzed projection of

A
yAnA \‘ gn,\ “
Uy, = — | = (4.34)
: UAM,A\ w A

MATA

gon Ay, i:

where |.] is the nearest integer rounding function. Let o = sgn <UnA — A%A > be the direction
MASTA
of the nearest hyperplane, we can sort the set of hyperplanes by increasing order of distances to
y:
{ a1, Alma=t] gl pact] pfnact) } (4.35)

Uny ATQ Ry 07 Fun y =207 Tun, +207

The projection of ¥ on any hyperplane associated with A[nA U Where Zny =Uny +k, k€EZ,is

yma—1 However, the lattice is translated from the origin w1th a vector vy, A in order to

na,|l»
consider a noisy point in a centered lattice, we apply the translation to y[”/‘ I and obtain the
new noisy point:

yA[”A g[n/\—l} - ZnAAL?AA_H (4.36)

ZnA

[nA 1]

The Euclidean distance between the received point ¢ and the hyperplane associated with A}
is

2
(A[nA uﬁg) = [gn/\ - Zn/\AnAJlA]2 (4-37)

ZnA

Fig. 4.9 illustrates the laminated hyperplanes structure and notations.

The hyperplanes are sorted in decreasing order of likelihood, it seems natural to begin a

[nA U 1t is important to insist on the fact that

there is no guarantee that the ML point belongs to the nearest sub-lattice AQ[Z‘I\\_H, we indeed
have no knowledge of the np — 1 other dimensions at this step of the algorithm. After projecting
["A 1] (

2]

closest point search in the first sub-lattice Ay

1 on the nearest hyperplane Ay with translation), we repeat the same processing recursively

by sorting the sub-lattices AL,:; s projecting the new received point, and so on, until the last
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dimension, where the closest point search over Aq[)lg is made by a simple quantization.

A?"'av27j

The first point found by the algorithm is called the Babai point, which is a sub-optimal
detection point, yet more reliable than Zero-Forcing. This can be seen as a decision feedback
equalization on the laminated hyperplane structure: once a decision is taken on one symbol, a
part of its interference contribution is subtracted by orthogonal projection. Fig. 4.10 shows a
simple example where the ZF point, Babai point and ML point are all different. It can easily be
shown that the Babai point always leads to smaller distances than ZF which is obtained after
non-orthogonal projections parallel to the lattice basis. For any received point, the ZF point
always equals the Babai point if and only if the lattice is orthogonal, and in this case ZF is
ML. This remark is illustrated in Fig. 4.10 via the ZF, Babai and ML decision regions limits.
Moreover, the Babai point depends on the order in which the dimensions are treated. There
exists an optimal order that minimizes the Euclidean distance, but this depends on the region
¢ belongs to, and this will be treated later. As an example, in Fig. 4.10-(c), we see the Babai
point obtained by first considering dimension 1, but we can notice in Fig. 4.10-(d) that the
Babai point obtained by first considering dimension 2 is the ML point.

Once the Babai point is found, we can reduce the radius search to the distance d(9, = Bapai),
and continue the enumeration considering the next most likely hyperplane of previous dimension,
and so on recursively until no more point belongs to the sphere.

We now have to express the recursive processing of the sphere bounds and point enumeration.

K]

Let us define v a noisy point in the hyperplane of A[Z The point py is the ZF point

nA:(]v"'>Zk+1:0.
of vy, obtained by the relation v VIF = Pk, Where vk = (A[k})_1 is lower triangular. The
vector IAd—:,kIA’i’ projects the point v, on the hyperplane A’[izlz]o’n”z’ﬁl:o’zk’ gﬂ—l]_

We can compute

leading to v

Pkk — 2k

dy = v — 2k Dp g =
Vi

(4.38)

The distance ||dg||? is the component for the k-th step of the distance between the lattice point

found and the received point y. Then y,[ffl} is translated by zkAkal] to consider the equivalent

1

problem in A[z]i;fo =0 The new noisy point is

Vp_1 = el zkAl[f_l] (4.39)

We can compute pp_1:

oot = v VU = pF W Al (4.40)

and noticing that Agﬂfl]v[k*l] + Ak,kv,[f*” = I,Ekil] =[0,...,0], we have that

poo1=pp = v (4.41)

It is important to see that the variables py, vk, di, depend on the choice of coordinates zy,,, ..., 2k.
The authors in [1] use equations (4.41) and (4.38) to process the recursive enumeration while
computing the distance, but we will see in the sequel why (4.39) is useful to make a parallel with
the Pohst strategy. An implementation version is avalaible on Alg .2 and a commented version
is available on next paragraph.
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Figure 4.9: Laminated hyperplanes structure of the lattice.
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Algorithm 2: Schnorr-Euchner strategy + boundaries of the constellation processing.

input : A received point y, the generator matrix Ma(na X np) of the lattice, the radius R of the sphere, and
the bounds z,in and zmqz of the constellation.

output : The ML point Z belonging to the constellation and the squared Euclidean distance bestdist between y
and ZMx

Pre-processing

QR decomposition My = AQ where A is lower-triangular and QQ* = I

Initialization

bestdist «+ R2, k < np

<
T
>

©ON0 ot kWK
- <
Il
<
C O
=

2 — lexk)s 2k — max(zg, Zmin), 2k < Min(zx, Zmaz)
10 p« (exk — 2x)/(Vir)
11 stepy < sgn(p)

13 newdist «— dist), + p?
14 if newdist < bestdist and k # 1 then Goto Label 2
15 else Goto Label 3
Label 2
17 fori=1to k—1do €k—1,4 < €k, — kaZ
18 k«—k—1
19 disty «— newdist
20 zp — [exr]s 26 — maz(2k, Zmin); 2k — Min(2k, Zmaa)
21 p=(exr — 2x)/(Vir)
22 stepy < sgn(p)
23 Goto Label 1

24 | Label 3
25 if newdist < bestdist then
26 Z—z

27 bestdist «— newdist

=
N

[y
=]

28 else if k = np then return Z and terminate
29 else k—k+1

30 zp «— zp + stepy

31 if zp < Zmin OT Zk > Zmas then

32 stepy < —stepy — sgn(stepy)
33 2k < 2k + stepg
34 if zp < zZmin OT 2k > Zmaz then Goto Label 3

35 p« (exk — 2k)/Vik
36 stepy — —stepy, — sgn(stepy)
37 Goto Label 1

The SE algorithm for multiple antenna channels with extended explanations:

Input. A received point y, the generator matrix Mx(na X np) of the lattice, the radius R of the sphere, and the

bounds z,,;n and zmaez of the constellation. You can set the radius R to +o00 or to an optimized value.
Output. The ML point Z belonging to the constellation and its squared Euclidean distance bestdist to y.

Step 1. Pre-processing: Compute the QR decomposition My = AQ, where A is lower-triangular and QQ? = I.
Compute the inverse V = A~! and § = yQt.
Step 2. Initialization - Dimension n: Set bestdist «+ R?, k «— ny, dist, «— 0 (The algorithm starts with dimension

ny, the cumulative distance dist,, between the received point and the hyperplane with dimension n +1 (not
existing) is 0). Set ey «— yV (Vector ey, contains the np real coordinates of the received point ¢ in the vector
space with dimension np). Set zp « [egr] (The closest hyperplane with fixed coordinate zn, is chosen by
taking the closest integer value of en, n, ). Set zx «— max(2zk, Zmin), 2k <— Min(zk, Zmaz) (If the hyperplane
does not belong to the constellation, the closest hyperplane belonging to the constellation is chosen). Compute
p = (exk — 2k)/(Vikr) (This is the coordinate distance between the received point and the chosen hyperplane
of dimension ny — 1, —1 < p < 1). Set stepy, < sgn(p) (This is the increment for the next zn, value, to test
the second closest hyperplane, which is located “on the other side” of the received point).
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Step 3. Distance computation: Compute newdist «— dist;, + p> (The distance between the current hyperplane
and the received point is computed by the Pythagore algorithm, since projections are orthogonal. The
squared new distance newdist is obtained by summing the squared distance dist) between the hyperplane
of dimension k£ + 1 and the received point and the distance p between the projection on the hyperplane of
dimension k 4+ 1 and its projection on the hyperplane of dimension k. If newdist < bestdist and k # 1

go to Step 4 (the hyperplane is valid, it may contain points with an associated distance smaller than
bestdist and no point has been reached yet (k # 1)).

else
go to Step 5 (either a valid point has been found (k = 1) or the hyperplane with dimension k is too

far from the received point, i.e., the distance between all the points it contains and the received point is
higher than bestdist).

endif.
Step 4. Processing of a lower dimension: Compute for ¢ = 1,....,k — 1 ex_1; < eg; — pVi; (The coordinates

of the projected point on the hyperplane of dimension £ — 1 in the lattice contained in this hyperplane are
computed). Decrement k (We now consider the projection on an hyperplane with one dimension less). Set
disty, < newdist (The cumulative distance disty, between the received point and the hyperplane with dimension
k+1 is newdist). Set zp < [exr] (The closest hyperplane with fixed coordinates zn,,2n,—1,. .., 2 is chosen
by taking z; equal to the closest integer value of eyy). Set zp «— maz(zk, 2min), 2k — min(zk, 2Zmaz) (If
the hyperplane does not belong to the constellation, the closest hyperplane belonging to the constellation is
chosen ). Compute p = (exr — 2k)/(Vir) (This is the coordinate distance between the projected point on the
hyperplane with dimension k and the chosen hyperplane of dimension k — 1, —1 < p < 1). Set stepy < sgn(p)
(This is the increment for the next zj value, to test the second closest hyperplane, which is located “on the
other side” of the point projected on the hyperplane with dimension k). Go to Step 3.
Step 5. Termination of a branch:

If newdist < bestdist
set £ « z, bestdist « newdist (A valid point has been found (k = 1) with an associated distance smaller

than bestdist. Thus, the point is stored and bestdist is updated. Since the next closest hyperplane with
dimension k —1 = 0 (point) is obviously located at a higher distance than bestdist, it is not necessary to
change z1).
else if k = ny
return 2 and terminate (The closest hyperplane with dimension np — 1 is located at a higher distance
than bestdist, the algorithm is finished).
endif. Increment k (The closest hyperplane with dimension k& — 1 for fixed values zn,,...,z is located at
a higher distance than bestdist or we have found the best value z; (k = 1) for fixed values zn,,..., 22, i.e.,
it is not necessary to change zy. The fixed value for dimension k + 1, zi4; has to be changed). Compute
2k < 2 + stepr (The fixed coordinate in dimension k is changed to test the next closest hyperplane). If
2k < Zmin O 2k > Zmax
set stepy <« —stepr — sgn(stepr) (The next closest hyperplane is outside the constellation, the next
closest hyperplane at the “opposite side” will be test ). Set zj < zx + stepr (The zj, value is updated in
order to test the next closest hyperplane at the “opposite side” ). If zx < zZmin OF 2k > Zmaz
go to Step 5 (The next closest hyperplane at the opposite side is also outside the constellation. It
is not necessary to further change z. The fixed value for dimension k+ 1, 2,41 has to be changed ).

endif.
endif. Compute p « (egxr — 2r)/Vigr (This is the coordinate distance between the projected point on the

hyperplane with dimension k and the chosen hyperplane of dimension £ — 1, —1 < p < 1).  Set
stepy, < —stepy, — sgn(stepy) (Step is prepared to test the next closest hyperplane at the “opposite side” later
on). Go to Step 3.

4.2.3 Strategies differences and similarities

The two strategies presented in 4.2.1 and 4.2.2 are often presented as different and the comparison
often tips the scales in favor of Schnorr-Euchner enumeration strategy. In this subsection, we
will make a comparison between these two algorithms based on the tree exploration.

The two Sphere Decoders can be seen as a tree search using the intrinsic tree structure
of the lattice. If the search is performed over all the points belonging to the intersection of
a (2™ — QAM)™ constellation and the lattice, the tree has a depth na and 2"/? states by
stage. The chosen metric is the Euclidean distance between the projected received point and the
chosen hyperplane. We can see the tree of a 4-PAM over a 3 x 3 random lattice in Fig 4.11, the
abscissa represents the cumulative distances of the enumerated points, the ordinate represents
the explored dimension. The square distances of all the constellation points can be read at the
branches end, on the abscissa. The ML point corresponds to the path achieving the smallest
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Figure 4.11: Lattice constellation tree representation, cumulative distances through exploration
of dimensions.

value on the abscissa.

When the noise places the received point close to the median limit between two hyperplanes,
the two corresponding branches are merged. This effect is emphasized by strong fading and
interference, and results in the crossing of branches, which slows down the research process.

The sphere radius corresponds to an abscissa limit for the branches, which is shifted left for
each new computed point. It cuts some branches adaptatively with the found points. We will
later use such a representation to justify some complexity reductions.

The two presented Sphere Decoders (Pohst and Schnorr-Euchner) iniatially do not seem to
have the same point enumeration strategy, neither the same tree. Indeed, Pohst strategy enu-
merates the points in Z"* while Schnorr-Fuchner strategy uses the lattice laminated hyperplane
structure for the direct enumeration in A. The branches end of both trees are the same since
the same lattice points are enumerated. Let us compare the two tree constructions in order to
see the differences between the two strategies.

Pohst | Schnorr-Euchner
Tree depth nA
States at stage k The set of coordinates {z,, ..., 2k}
Number of outgoing branches by states 2m/2
)
: 2 Pk =2k
Branch Metric Ork(Sk — zk) (ﬁ>

The branch metric of Pohst strategy is equal to

na 2 na 2
Okk(Sk — 2k)* = Op |wi + Z O, i(wi — 2i) — Zk] = [yk — Z Az (4.42)
i—k

1=k+1

Furthermore, the branch metric of Schnorr-Euchner strategy can be modified using (4.38),
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(4.39) and v,, =y, we have that
p 2\ 2 na 2
kk — 2k
(ﬁ) = Uk — 210k k)" = [yk - Z Aikzi] (4.43)
’ ’l:k?

We can conclude that both algorithms compute the ML point by browsing the same tree.
The difference between the two algorithms sums up in the order the 2"/2 branches are selected
from a given state, and the equations used for computing the metrics.

Once the tree structure is defined, we can use a global tree decoding method such as branch-
and-bound algorithm. This has been proposed for example in [65] with the memorization of the
whole tree structure, which is not necessary. This tree browsing technique is strictly equivalent
to the Schnorr-Euchner decoding, and is optimal when considering the total number of selected
branches. Indeed, the sub trees are scanned by decreasing order of likelihood. We can see the
Schnorr-Euchner algorithm as a branch-and-bound algorithm on the intrinsic tree structure of
the lattice.

Initially, the Pohst method was designed to enumerate the lattice points belonging to a
sphere. Any enumeration strategy would lead to the same list. When the algorithm was applied
n [98], the radius reduction has been added but the enumeration strategy kept unchanged.
Clearly, an ordering of branches in each dimension would accelerate the decoding, the optimal
choice is the sorting by decreasing order of likelihood. In the dimension k, the integer components
to enumerate belong to the interval

R?S_Zz k+1 ”(5 +zg z+1 )2 RS zz k+1 ”<5 +Z] z+1 >2
Ok k ’ Ok

(4.44)
The Sphere Decoder in [98] enumerates the points of this dimension from the lower to the
upper bound, but an optimal enumeration would begin from the center (most likely value) and
alternate around this value as for the hyperplanes selection in Schnorr-Euchner. With this new
enumeration, the two Sphere Decoders perform exactly the same search in the tree and they only
differ on the recursive equations complexity. We will now compare the complexity associated
with each branch and to the pre-processing computations.

Pohst enumeration complexity analysis
The pre-processing for Pohst enumeration strategy has complexity equal to n?\(fmA - 1)/2,
including:

1. the channel matrix My inversion: 2n3 /3 4+ n% /2 — na /6 flops

2. the Gram G matrix calculation (using the symmetry): na(na + 1)(2na — 1)/2 = n3 +

n3/2 —na/2 flops
3. the A and © matrices computation via Cholesky decomposition: 5n% /6 — 3n% /2 + 2n, /3
The initialization for Pohst enumeration strategy includes the ZF point computation which

requires Qn?\ flops. The computation of a tree branch metric in the dimension k requires 2(np —
k) + 10 flops.
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Schnorr- Euchner complexity analysis
The pre-processing for Schnorr-Euchner enumeration strategy requires 7n3 /3 +3n3 /2 + 31n, /6
flops:

1. the A and © matrices computation via QR decomposition: Sni /3 + Qn?\ + 16n,/3

2. the channel matrix A inversion (triangular): 2n3 /3 —n3 /2 — ny /6 flops

The initialization for Schnorr-Euchner enumeration strategy requires Qni — 2np + 3 flops. The
computation of a tree branch metric in the dimension k requires 3k — 1 flops.

Complexity comparison
First, we can notice that the complexity of the initialization phase of the Pohst and Schnorr-
Euchner strategies are quite equivalent.

The branch complexity varies with ny — k for the modified Pohst strategy, and with & for
Schnorr-Euchner. However, the algorithm computes more branches in the dimension with lower
indices, which justifies why Schnorr-Euchner is often less complex than Pohst strategies, applied
to sphere decoding. The optimal choice would be to compute the Pohst recursive equations
for the higher dimension indices k > ny /2 and the Schnorr-Euchner recursive equations for the
lower dimension indices k& < nj/2. However, the Schnorr-Euchner initializations, necessary at
each new shift between the two strategies, are as complex as the complexity reduction given by
the use of the Pohst recursive equations for the higher dimension indices k > n /2.

In the end, the Schnorr-Euchner strategy seems to be a judicious choice for decoding a lattice
constellation. Based on this conclusion, we will now always consider this strategy for ML sphere
decoding until the end of the thesis report. The algorithm will be called for simplicity SD-SE
(Sphere Decoder with Schnorr-Euchner strategy).

In Fig. 4.12, we can observe the Point Error Rate, i.e., the probability that the n-
dimensionnal decoded point is not the transmitted point for QPSK and 16-QAM transmissions
over MIMO channels. Even with 16 antennas, i.e. 32 real dimensions, the accelerated Sphere
Decoder finds the ML point with a reasonable complexity.

4.2.4 Complexity reductions

The complexity of the Sphere Decoder depends on many parameters. As a non-exhaustive list,
we cite:

e the sphere point enumeration strategy (Pohst or Schnorr-Euchner)

e the choice of the sphere radius, and possibly its reduction through iterations

the constellation bounds processing

the lattice basis modification via reduction

the dimensions exploration order, where the objective is to separate as much as possible
tree branches
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Point Error Rate

Point Error Rate

Figure 4.13: Point error rate of a 16-QAM on a MIMO channel.
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a) Initial Sphere radius choice

The optimal radius choice would be f?% = |ly — xas1]|? since only the ML point would belong
to the sphere. However, such a choice is impossible without any pre-computation. We can first
notice that y — 1, = © — xprr, + 1 which leads to some conclusions:

e If x = xps7, which is about achieved only when the signal-to-noise ratio is high (low error
rate), we have that |y — xa71||?> = ||1]|? only depends on the na-dimensional real Gaussian
noise square norm, which is a random variable with chi-square distribution:

1 na/2—1 _—r/2N
py(r >0) = Ny (2 = 1)!7“ A/2=1=T/2No (4.45)

The probability that the noise square norm is greater than R?S is equal to

R 2o NN RN
F(R%) = A pn(m)d;p — 1 — ¢~ Rs/2No Z 0 (2—]\‘;0> (4.46)

which gives the probability p R (z ¢ S) that the transmitted point 2 does not belong to the
search sphere. We can inverse this function to find the sphere radius that leads to a given
PR, (x ¢ S). As an example, we could choose a set of radii Rs1 < Rs2 < Rs 3 < Rs 4 such
that pR?S,l(x ¢S)=0.1, pR‘zm(x ¢ S) =0.01, pR‘zg’S(x ¢S) =104, pR‘zSA(x ¢S)=10"".
If no point is found with the first radius, the processing is repeated with the second
radius, and so on until one point is found. It is very difficult to find the optimal choice
of probability set that minimizes the average complexity because the complexity of fixed
radius decoding is not known.

e If the received point belongs to the constellation volume, i.e., if the Zero-Forcing point
belongs to [0, Zpaz]™, the maximal distance to a constellation point is dgmin/2. The
search radius may e limited to this value. This is particularly useful at reasonable signal-
to-noise ratio, when the point belongs to the constellation and the radius given by the noise
statistics is too large. Indeed, the lower the signal-to-noise ratio, the lower the probability
to be within the constellation limits. We can compute the lattice minimal distance d gy
using a Sphere Decoder on the lattice, with the received point at the origin. Unfortunately,
this is as complex as the sphere decoding itself. If the channel is quasi-static or block fading
with few blocks, it could be economical to process such a computation for each new channel
block. If the channel is ergodic, we can use some upper bounds on the lattice minimum
Euclidean distance, for example the minimum Gram matrix diagonal element as suggested
in section 4.1.2.

e Noticing that Vo € Qu, |ly — xamr]* < |ly — 2|, we can choose a radius performing a
simple detection # such as ZF, MMSE or DFE, and compute the radius R% , = |ly — 2%
This last technique has the great advantage to take into account the instantaneous noise
amplitude and received point position, whereas the other techniques do not make benefit
from any knowledge of y.

Finally, we can take advantage of each technique to find the best radius that limits the com-
plexity.

In Fig. 4.14, we can observe the complexity of SD-SE with an infinite initial radius over a
4 x 4 MIMO channel and different modulation sizes. The complexity decreases exponentially
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with the noise level. For high signal-to-noise ratios, the complexity converges to a constant
value given by the complexity to decode one point. The complexity increases with the spectral
efficiency. In Fig. 4.15, Fig. 4.16 and Fig. 4.17, we can observe the complexity ratio between
an SD-SE with a radius pre-computation and an SD-SE with an infinite initial radius. We can
notice that for the practical signal-to-noise range, a complexity reduction is achieved using the
well-designed initial radius taking into account the noise variance and the minimum distance
evaluation when the point is inside the constellation. This reduction factor increases with the

number of dimensions and spectral efficiency.

As a conclusion, we can notice that the complexity attenuation is never huge. Taking into
account the constellation boundaries in the search algorithm provides a substantial complexity

reductions.
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Figure 4.18: Babai wrong decision region without (left) and with (right) lattice reduction.

b) Lattice basis modifications

We will present two lattice basis modifications that can lead to complexity reduction: lattice
reduction and basis vector re-ordering. As presented in section 4.1.4, lattice reductions can be
used to change the random channel basis into a more orthogonal and shorter one. We already
have seen that if the lattice basis is orthogonal, the ZF , Babai and ML points are the same. We
can deduce that the more orthogonal the basis is, the simpler the decoding is. In this case, each
decision in the tree is more reliable and this involves that lattice basis reduction reduces sphere
decoding complexity. Studies supported by computer simulations showed that Schnorr-Euchner
Decoder is two to four times faster than Pohst Sphere Decoder in finding the nearest point in a
completely random lattice perturbed by uniformly distributed noise [1]. The factor 4 in speed
ratio is measured after applying basis reduction like LLL (Lenstra-Lenstra-Lovasz [62]) or KZ
(Korkine-Zolotareff [58]).

In Fig. 4.18, we observe the Voronoi regions and the Babai decision regions with and without
reduction. When the received point belongs to one of the two cross hatched regions, the Babai
point is not ML. The two regions @ and @ are given by the dimension decoding order. Notice
that without any reduction, the order leading to region will provide faster decoding since
the Babai point is more reliable. With a reduction, we first notice that the regions @and

are disjoint, which indicates that for each received point, the lattice reduction associated
with a point-specific dimension ordering enables the Babai point to always be ML. However, this
optimal ordering consideration is at least as complex as the ML decoding itself. Nevertheless,
it shows that the reduction always enhances the Babai decoding and accelerates the Sphere
Decoder.

In Fig. 4.19, we observe the complexity gain obtained by an LLL reduction when decoding an
ng X ng MIMO channel equivalent lattice with a Schnorr-Euchner Sphere Decoder. At high signal-
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to-noise ratio, the Babai point is often the ML point and the reduction is less useful. However,
at low signal-to-noise ratio, we can observe the gain factors obtained thanks to reduction and
increasing with the number of dimensions.

However, such a complexity reduction is difficult to obtain for QAM modulations on MIMO
channels, and that for different reasons:

e If the channel is ergodic, the reduction has to be computed at each new channel realization,
in this case the complexity gain might be inferior to the complexity of the reduction. The
first conclusion is that lattice reductions have to be used for block fading MIMO channels,
and computed only at each new channel realization.

e The bounds of the constellation cannot be computed anymore, indeed, the channel re-
duction transforms the cubic constellation into a parallelepipedic constellation where each
bound depends on all the dimensions at the same time. The complexity reduction given
by the restriction to the cubic constellation bound is higher than the one given by the
reduction, this can be seen in Fig. 4.20.

The constellation boundaries can be computed after a reduction if and only if the basis change
matrix V is triangular, where M,. = V M}, is the reduced basis from My. Indeed, the transmitted
point z € A is associated with z € Z™ and 2z’ € Z™ considering the generator matrices My
or M’, equivalently. Using the relation z = 2’V between z and 2/, we can see that if V is
lower triangular, the decisions on z can be computed, dimension by dimension and recursively.
Unfortunately, some simulation results have shown that the complexity reduction obtained with
the bad reduction is inferior to the recursive bounds processing complexity addition.
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4.3 Soft-output list decoding of a lattice constellation

Usually, to compute the soft-output of the mn; coded bits transmitted on each time period , an
exhaustive marginalization which takes into account all the 27" possible transmitted symbols
has to be processed. However, for complexity issues in the case of high spectral efficiency, this
marginalization is limited to some well chosen points in a spherical list. However, the list has to
be well chosen to keep near-optimal performance while strongly reducing the complexity of the
APP detector.

4.3.1 Limitation of the likelihood in exhausive APP detector

For systems whose equivalent lattice dimension is too important, the exhaustive marginaliza-
tion becomes too complex. For the example of 16-QAM modulations, a 2 x 2 MIMO channel
requires a marginalization of 2'6 points by channel use, and an 8 x 8 MIMO channel requires
a marginalization of 264 points by channel use. We propose to limit the marginalization to the
points belonging to a list £. The approximated soft value becomes

lly—='15 2
Zz/eﬂ(cjzl)m: [(6 207 ) Hr;éj W(Cr)]
£(cj) = (4.47)

N

>zeone [(6 2"2> Hr;éj W(Cr)}

We observe that the soft outputs depend on both the geometrical configuration when considering
the likelihoods and the a priori probability configuration given by a decoder. In the case of an
exhaustive list (£ contains the 2™ points), some of the likelihoods in the expression (4.47) are
negligible. Let us suppose that all the points whose likelihood is not negligible belong to a list
£

2
1 =My ” 1 ly—=mal?

e 252 e 202 (4.48)

Vi ¢ L, VzegL,

2mo? 2mo?

The geometrical limit that separates these likelihoods is a sphere centered on the received point
that justifies the construction of a non-exhaustive list with the points of a sphere. The choice of
the sphere radius determines the performance and the complexity of the corresponding soft-input
soft-output detector and is the main difficulty of the solution presented by the authors. Indeed,
the random nature of the channels implies a non-stability in the list size. Another difficulty
appears in the case of bursted channels, the list directly depends on the received point y, which
requires the reconstruction of the list for each new received point, i.e., at each symbol time.
Indeed, even if the channel is constant, the noise varies continuously and so does y.

4.3.2 A shifted spherical list

In the case of an ergodic channel, once the ML point is found, we choose to center the list on the
ML point instead of centering it on the received point. Clearly, the marginalization (4.47) does
not give the same results since the points in the list are different. We make the approximation
that the output of the marginalization is quasi-equal to the output when the sphere is centered
on the received point. Indeed, to compute efficient soft values, the radius of the sphere must be
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Figure 4.21: Comparison between the sphere centered on the ML point and the sphere centered
on the received point y.

relatively high, and the points that will differ in the list are close to the surface of the sphere,
so they have the smallest likelihoods. In Fig. 4.21, we clearly see the advantages of the ML
center when compared to the received point center. Indeed, when the received point is outside
the constellation, which has a high probability when considering a large number of dimensions,
the sphere centered on the received point enumerates a large number of lattice points to find a
small number of constellation points. When the sphere is centered on the ML point, the number
of listed points is reduced and the high likelihood points are taken into consideration.

Since a classical SD finds the closest point to a noisy received point in a lattice, some
changes have to be made to the SD algorithm to extend it to a soft-output sphere detector: the
radius of the sphere is not reduced during the search like presented before, every point found
in the intersection of the sphere and the constellation is stored, together with its distance to
the received point. A double Pohst recursion is used to enumerate the points. Indeed, the first
classical recursion is needed to check all lattice points at a squared distance less than the radius
of the sphere centered on the ML point. We added a parallel second recursion to compute the
distances between the enumerated points and the received point y (see step 1 and variables with
an upperscript d in the description of the algorithm 2) with a reduced complexity.

Instead of centering the sphere on the ML point, we evaluate it with classical sub-optimal
methods to reduce the complexity of the system. As a non-exhaustive list, we cite some known
methods that can be implemented as an alternative to the Sphere Decoder:

Zero Forcing (ZF) with or without a hard decision

Minimum Mean Square Equalizer (MMSE) with or without a hard decision

Interference Cancelation with or without ordering (MMSE or ZF)

Babai point in the constellation

Until the end of this document, we will only discuss the case when the sphere is centered on the
ML point, the above simplifications can be applied in most cases.
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Algorithm 3: Spherical list enumeration.

input : A received point y, a point of the lattice x, the generator matrix M (na X np) of the lattice, the radius
r of the sphere, and the bounds z,,;n, and zmaz of the constellation.

output : A list £ of points of the lattice that belong to the sphere, a list of the distance between y and each
point of the list.

Pre-processing
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27 store z and d in £

28 | Goto Step 2

29 else if i = np then Teminate

30 else

31 i— i+ 1

32 | Goto Step 2

4.3.3 Choice of the radius

The choice of the sphere radius R for this list Sphere Decoder is as important as the choice of
the radius for the conventional SD. Having too many points in the sphere heavily slows down
the detection while not having enough points degrades significantly the performance. In this
section, some properties of lattices are exploited to determine a sphere radius that guarantees a
stability in the number of points in the list. Let us assume we want to find N, points to create a
list centered on the origin. We make the approximation that the volume of a sphere containing
N,, points is equal to the volume of N, fundamental parallelotopes. Hence, the radius R of a
sphere that contains IV, points is well approximated by

R= (M%?W) ' (4.49)




4.3 Soft-output list decoding of a lattice constellation 117

9000 T T T T T T T T 0.16

8000 1 014 |

S
=]
IS}
3

012

6000 - =6

5000 =5

4000 =4

Deviation over Mean

Average number of listed points
8
8
T
i
w

2000 =2

1000

0

. . . . . . . . o . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Expected number of points Expected number of points

(a) Mean, lattice. (b) Deviation over mean, lattice

Figure 4.22: Mean and Deviation of the number of points in the list for a MIMO lattice decoding.
The list sphere radius is derived from the fundamental volume.

where vol (A) is the fundamental volume of the lattice and V/, is the volume of a unitary sphere
in dimension n:

7.‘.11/2 L/Q n even
_ (4.50)

_ n/2)!
Va F(n/Q + 1) 2””("_18/2((”*1)/2)! n odd

n!

This method of choosing the radius is quite stable in a lattice when NV, is high. We can see the
average number of points obtained in a lattice with this method in Fig. 4.22-(a). The average
number of listed points is equal to the expected number of points N, for any value of n;. In Fig.
4.22-(b), we can see the deviation over the mean of the number of listed points, and we notice
that for high values of N, the list becomes more and more stable, as expected.

When considering a constellation, the intersection between the sphere and the constellation
significantly disminishes the number of selected points. Depending on the position of the ML
point in the constellation, the number of enumerated points varies. Fig. 4.24 shows a situation
where 13 points are enumerated in the lattice and only 7 points in the constellation. In Fig.
4.23-(a)(b), we can see the mean and deviation of the number of listed points in the intersection
of the spherical list and a 16-QAM modulation. First, we can notice that the average number
of points is significantly lower than the expected number of points, and this depends on the
number of transmit antennas. Indeed, the number of listed points saturates to 2",

In order to have more stability in the number of listed points and to avoid small and large
lists, we can adjust the sphere radius taking into account the number of hyperplanes nj,, the
ML point belongs to. The number of expected points N, is multiplied by a[np,,], an expansion
factor of the list size which depends on nj,,. Indeed, the more the number of hyperplanes the
ML point belongs to, the less we have points in the list. For example, the choice afi] =1+ ﬁ
gives good results. We can see respectively in Fig. 4.25-(a) and Fig. 4.25-(b) the average
number of points in the list, with and without the expansion factor afi]. We can observe that
the expansion factor succeeds in correcting the average number of points for any parameter 1.
The average number of points is lower than IV, this has to be taken into consideration when n,,
is chosen.

We will now try to reduce the number of points deviation, using the observation that the
number of listed points is also influenced by the lattice geometry. The more dense the lattice
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Figure 4.23: Mean and Deviation of the number of points in the list for a MIMO constellation.
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Figure 4.24: The loss of points in the list in the case of constellations.

is, the more stable the list becomes, and we have less side effects. To take into account this
property, we can use the fundamental volume ~(A) and add a pre-correction of the expected
number of points to the list radius. The problem of finding dQEmin is NP complex, that is why
we approximate it by the minimum of the diagonal of the Gram matrix. We will call g2,, (A)
this quantity and ¢ the approximation of the fundamental gain of A:

Ya(A) = det(My) PP (4.51)

We then use a simple criterion for an additional expansion g of the number of points:

{ Y6(A)dB > = iy = (4.52)
")/G'(A)dB > Y2 = My = U2

E.g., we take v4 = 3dB, v = 6dB, 1 = 4, to = 16. Finally, the new radius is given by

3=

o (a[nhyp] < 11y ;an x det (G) > " .

If the number of points in the list is too small, we can reenumerate the points in a larger sphere,
for example by multiplying the radius by 1.5.
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Figure 4.25: Average number of listed points with or without the expansion factor afi].

Figure 4.26: Translation invariance of the lattice.

4.3.4 Complexity reduction for block fading channels

Let us define Npjoer, the number of symbols in a code word. In the case of an ergodic channel,
we have to store Nk lists to compute the observations on all coded bits before giving them to
the observation input of the SISO decoder. In the case of a block fading channel, the channel
remains unchanged during the block. Thanks to the lattice structure, we can find the points
in the sphere centered on the origin of the lattice and translate them to find the points in the
sphere centered on z 7. This invokes the translation invariance of the lattice (cf Fig. 4.26).

In the list centered on the origin, we store ng points zH belonging to the lattice. For each
channel use, the noise changes, so does the ML point and the distances to the received point
have to be reprocessed. An efficient implementation is to store the list as a dynamic tree, based
on the tree structure of the lattice. In this case, a recursive computation of the distances to
the received, the constellation bounds and binary labelling point strongly reduces the overall
complexity.

A less performant version only takes into account the distance to the ML point, so the
distances are processed once at the beginning of each block. We can also enumerate a larger list
and sort it with the distance to the origin. This can be seen as a list of concentric spheres. If
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Figure 4.27: A concentric list of spheres.

Figure 4.28: Situation leading to inconsistency.

the first sphere leads to a list which is too small, we consider the second sphere and so on (see
Fig. 4.27).

4.3.5 Applications to iterative detection and decoding of BICM

In this section, we illustrate the application of the new soft detector to BICM on MIMO. The
symbols z; belong to an M-QAM constellation. The binary information elements are encoded
using a rate R, convolutional code. The coded bits {c;} are randomly interleaved and fed to a
QAM mapper (M = 2™) that generates z. The spectral efficiency of the system is R. x m x ny
bits per channel use, or equivalently R. X m x n; bits/sec/Hz.

When there is only one symbol representing one bit in the list, the observation is either 1 or
0. In that case, there is no point in the constellation with the other symbol, which can cause
computation inconsistency when marginalizing. For example, in Fig. 4.28, if we consider that
the a priori of the first bit is equal to 0.0, the SISO decoder fails because there is no point
corresponding to a first bit equal to 0 in the list. Without loss of generality, we will consider
this case until the end of this section.

A first solution to solve the inconsistency problem is to replace the APP of the considered
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bit by the minimum among the contributions in the list, (4.47) becomes

. N -
mlnz/GQ(CjZUQE € 20 Hr;ﬁ] W(CT)
3 (4.54)

§(Cj) = |1+ TEIYNE
Zz'eQ(cjzl)mz [(e 207 ) Hr;éj W(Cr)]

Another solution is to consider the worst case when the nearest point that does not belong to the
list lies on the surface of the sphere. We consider the sphere radius to compute its likelihood.
The corresponding a priori probability m, of this virtual point can be chosen using different
ways:

e By an average case when all a priori probabilities are equal to 0.5:

T, = 0.5 1 (4.55)

e By the worst case when the point is of higher a priori probability:

Ty = H max{m(c,),1 —m(cr)} (4.56)
T#j

With this method, (4.47) becomes

-1

_E2
~ Tp.€ 202

f(Cj) = |1+ EENE
Zz'eQ(cjzl)mz [(e 207 ) Hr;éj W(Cr)]

Another efficient way to reduce insconsistency computation problems is to apply a ceiling on
the soft values exchanged between the blocks. A first ceil with parameter €. is applied to soft
values given by the soft decoder to the detector, i.e., a priori probabilities for the detector:

(4.57)

m(cj) < €c = m(cj) — €

VJ7 { 71-(C]) > 1-— €c = 7T(C]) — 1 - € (458)

The same method can be applied at the output of the detector with parameter ¢;, but it is
preferable to apply the ceiling during the computation of the a priori probabilities product.

Initialization a; < 1 — ¢
for r =0 to m x ny and r # j, oj «— a; x 7(cy),05 «— max {oy, €}

Indeed, we can see that the perfect case when a; = 1 is solved by initializing aj to 1 —¢;. During
the computation, if the current product becomes inferior to €;, a ceiling is done, which limits
the calculation distortion. At the end of the computation, a; gives an estimate of the product
of the a priori probabilities in the computation (4.57). The parameters ¢; and €, can be chosen
equal to 1075 for example.
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4.4 Soft-input soft-output MMSE

In the previous section, we have presented an a posteriori probability detector for multiple
antenna channels. It has the high advantage of providing good performance but has an NP
complexity. We will now present a sub-optimal soft-input soft-ouput detector based on the min-
imum mean square error (MMSE) criterion. Such a SISO-MMSE equalizer has been presented
in [32] in the case of single antenna dispersive channel. We describe the direct application to
MIMO channels and present supplementary complexity reductions.

4.4.1 SISO-MMSE processing

Let us assume that a mono-dimensional complex mapping Q' is used to independently convert
m bits into a constellation symbol on each transmit antenna. This independence allows to see
the n; x n, channel as n; interfering 1 x n, channels. If the feedback from the SISO decoder is
sufficiently reliable, we can assume that the interference is perfectly removed and the extrinsic
probability of a coded bit computed by an exhaustive marginalization over Q. We clearly see
the complexity reduction at a cost of performance degradation for low signal-to-noise ratios. The
basic SISO-MMSE is fully presented in Appendix B. However, we will recall the main equations
for the soft output processing.

Assume that the constellation has zero mean, i.e, £, co1(2;) = 0. The constellation variance
is equal to the symbol energy F, = Ezl,EQl(ZZZ). Note ¢; = [0,...,0,1,0,...,0] the null vector
with a 1 in position ¢. The SISO-MMSE is computed from the following steps

1. VO < i < ny, compute the vectors z = [Zg, ..., Z,,_1] and 02 = [02’0, .. ,az’m_l]
m.i+m—1
mz) = ] wle) (4.59)
j=m.

Z; = Zziﬂ'(zl-) (460)

D
o, = D lala(z) — a7 (4.61)

Z;

2. V0 <4 < ng, compute

PZ = dlag [02707 7Uz7i—17E870-27i+17"' ,0'277”_1] (462)
% = Egly—(Z—ezi)H][HT;H + NoI] " (e;H)* (4.63)
pi = E(e;H)[HT;H + NoI] ' (¢;H)* (4.64)
(4.65)

Zi — izl
p(lz) = exp [—ﬁ} J(i1 — i) Er)

3. V0 <4 < ny, YO < j < 'm compute

£(Cjpim) = ZZiEQ(Cjil) p(Zil2i) Hbéj m(cp)
e ZziEQ p(2i|zi) Hl#j 7T(Cl)

(4.66)
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4.4.2 Complexity reductions of matrix inversions

Without any complexity reduction, the SISO MMSE requires the computation of n; matrix
inversions (size n, x n,) for each iteration and time period. We will first show how to compute
only one matrix inversion per iteration and time period and present some ideas to limit the
number of matrix inversions in the whole iterative process.

a) Application of the Sherman-Morrison Formula

To compute z;,V0 < i < ng, the SISO-MMSE requires the computation of the n, X n, matrix
inversion:

Al = [H*T;H + NoI| ™! (4.67)
where
FZ = dlag [0270, . 7U§,i—17 E87 Ug,i+17 . 70’2,7115—1] (468)

varies at each iteration (the Jzi variables are computed from the a priori probabilities given by
the error correcting code SISO decoder) and for each antenna. Notice that

1

A7V = [H* (T'+ (BEs — 02,)€;) H + Nol|~ (4.69)

where I' = diag {az’j} and €; is a matrix having only one non-zero coefficient equal to 1 and
coordinates (7,7). With the property €&, = &;, we deduce that

H*&H = (&;H)*¢;H = hh; (4.70)

where h; is the i-th row of H. If we define B = [H*T'H + NyI], we get

- (4.71)

AV = [B+ (B — 02 )hihy]
by applying the Sherman-Morrison formula, and using the Hermitian symmetry v* = B71h} =
(hi B~1)*, we obtain
(Bs — Ug,i)

Al=p" -
1+ (Es — Uii)hiv*v

v (4.72)

As a conclusion, and at each iteration, we only have to compute the n, X n, matrix inversion

B! and for each antenna, we have to compute one “matriz by vector” multiplication and two

“vector by vector” multiplications. Finally, we have

_ Byly— (2 —«zi)H] [H'TH + NoI| " b}
L+ (B, —02)) (B + No (HH?);")

(4.73)

b) Matrix series expansion applied to the matriz inversion

The n, X n, matrix inversion B~! has to be done at each new iteration. We will use in some
adapted situations a series expansion of this matrix to evaluate the inversion. At the n-th
iteration, we have to compute

B~! = [H*TH + NoI| ! (4.74)
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Direct method, series expansion on I’
After some iterations, I' is supposed to be quasi null in the case of converging high SN R systems.
We will use this property of I' to evaluate the inversion B~. We have

1

Bl =
Ny

©+1" (4.75)
with © = NLOH *I'H. We can compute B~! thanks to the power series expansion under some
convergence conditions. Let us define the spectral radius r(0©) = max; |);| the maximum of
the modulus of the eigenvalues A; of ©. The convergence condition of the series expansion is
r(©) < 1. The computation of the eigenvalues is too complex, so we will use a straightforward
application of the Gershgorin Theorem that gives a loose upper bound on r (0©):

r(0) < max Z |©i;] (4.76)

If the convergence criteria is verified, the series expansion is given by

1 )
max > 18yl | <1=B'= e > (-8) (4.77)
j i=0

In conclusion, we can limit the order of the series expansion to L, which leads to

L i
1 . L1 -1,

The series expansion can be expressed by the less complexity consuming recurrent relation

1 1 1
Bl'~ —H*(I-—THH" (I - —THH*(I—...)))H*? 4.79
ot (1= qrane (1= grae - ) (4.79)
Hence, HH™ can be pre-computed each time the channel changes, and I" is diagonal, which sim-
plifies the processing of I'H H*. The number of matrix multiplications, which are predominant
in terms of complexity, is L + 2, this method is useful if L + 2 < 2n,.

Series expansion on the difference ' 1 — T,

Even at low SNR, the system converges to a state when the difference T, 41 = I'yy1 — 'y is
quasi null. We can apply the power series expansion in this case, indeed at the n-th iteration,
we have an estimation of B, . We want to evaluate B;il from the new feedback correction
Y,+1. We can write

M1 = HB, L H* = My [T+ Tpy1 M) (4.80)

We can directly apply the results seen above:

max D Yogrgi Mol | < 1= Mgy~ My (I = Yo a My (I = T My, (1= ..)))  (4.81)
j
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This recurrent evaluation of B~! can be computed by these different points

e Iteration 0: compute or evaluate By Vand My = H By L~

e [teration n + 1: if the convergence condition is satisfied, compute Y,4+1M, and M,
thanks to Eq. (4.81), and compute B;il =H ‘M, H 1

4.4.3 Application to Space-Time precoders

In order to improve the diversity order of the system, we introduce a new class of precoders based
on a modification of cyclotomic rotations. The precoder spreads the symbols in space and time
with a factor s thanks to a s.n; x s.n, matrix S. The new extended s.n; X s.n, channel matrix H
is block diagonal, each block on the diagonal is a ns X n, matrix H; corresponding to the MIMO
channel matrix during symbol period ¢. Our precoder is a rotation, so SS* = I and S*S = I.
At the first iteration, all the variances agﬂ- are equal, this induces that I' = 0’270[ Without any
considerations on S, we should compute the inversion of B~! = [H*S*T'SH + Nyl ]_1 which is
s.ny. X s.n,.. Since S*S = I, we have

B~' =[H'TH + NoI,,,, | " )
. -1 -1 4.82
= diag { [o2oHi Hy + NoI, ] " [02 0 HIH, + NoI,, ] '} (
We compute s inversions of (n; X n,) matrices for s symbol periods (as if there was no precoder)
instead of 1 inversion of (n¢.s X n,.s) matrix. Then at high signal-to-noise ratio we can compute
the matrices series expansions methods.

4.5 Performance and complexity comparison

In this section, we will compare the performance and complexity of the three iterative receivers
presented in the previous sections. We consider a 4 x 4 ergodic MIMO channel with 16-QAM
input. The objective of the near APP detector design is to achieve performance not far from
the capacity limit.

Let us consider a rate 1/2 parallel turbo-code [9] whose constituent codes are two (1,5/7)
recursive systematic convolutional codes. The rate 1/2 constituents are punctured in order to
increase the concatenation rate from 1/3 to 1/2. Figure 4.29 shows the achievable information
rate for 4 x 4 multiple antenna channel with 16-QAM input alphabet. The mutual information
value of 8.0 bits per channel use yields a minimum achievable signal-to-noise ratio equal to
4.0dB. The capacity limit with a Gaussian input at 8.0 bits per channel use is 3.7 dB. Figure
4.29 illustrates an application of the soft output Sphere Decoder to the evaluation of MIMO
channel information rate under the constraint of a finite QAM constellation input. Two scenarios
are presented: 1- A target list size N, = 1000. The effective list size was distributed between
Ne(min) = 256 and Ne(maz) = 2300 with an average equal to 1000. 2- A target list size N, =
60000. The effective list size was distributed between N.(min) = 4000 and N,(mazx) = 26000
with an average equal to 10000. It is clear that mutual information evaluation is useful at high
coding rates (R. > 1/2) where its value diverges from the Gaussian input capacity. A reduced
size list is sufficient in this region.
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In Fig. 4.30, we observe the turbo-code performance over the 4 x 4 MIMO channel. We
compare a shifted list sphere decoder and a list sphere decoder centered on y both performing
at 1.3 dB from the mutual information limit. The complexity ratio is 3.7 in favor of the shifted
list sphere decoder. In this case, the effective number of listed points histograms are presented
in Fig. 4.31. We can see that the shifted list sphere decoder succeeds in limiting the small
and large lists whereas the list sphere decoder centered on y often generates very small list and
with a non-null probability large lists. When the list sphere decoder centered on y has the same
complexity as the shifted list sphere decoder, a loss of 0.5 dB gain is experienced.

In Fig. 4.32, we can observe the behavior of the shifted list sphere decoder with the number
of expected points IV, and the interleaver size. First, we observe that the higher the interleaver
size, the steeper the waterfall region. Then we observe that arround 1 dB gain is observe between
N, = 400 and N, = 2500 and only 0.1 dB gain more is obtained choosing NN, = 30000 which
induces that the APP detector is near-optimum. The system performs at 1.2 dB from the
mutual information limit,which is the best performance known for 16-QAM over a 4 x 4 MIMO
channel. Moreover, we show that the SISO-MMSE performs at 1.25 dB from the best List APP
detection. However, the complexity is not comparable between the two detectors. In Fig. 4.33,
we can see the performance of the SISO-MMSE detector over a quasi-static MIMO channel and
observe that it is far from being optimal. The more the number of channel states, the more the
SISO-MMSE will be optimal.

Conclusions

In this section, we have fully described the lattice model of the MIMO channel and the maximum
likelihood sphere decoder. We have shown that the Schnorr-Euchner strategy is optimal for
a given lattice constellation. Then we introduced a new soft-input soft-output detector for
MIMO channels. A spherical list is constructed arround the ML point processed with the sphere
decoder, and a marginalization is computed over the list points. The sphere radius is computed
to enumerate a target number of points N,,. Such a list construction limits the number of small
and large list, which stabilizes the effective number of listed points and reduces the complexity
or enhances the performance.
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Figure 4.29: Achievable rate on a 4 x 4 ergodic MIMO with 16-QAM input, N, = 1000/60000,

Ne(min) = 256,/4000.
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Figure 4.30: Performance of a (1,5/7)s parallel turbo-code over an ergodic 4 x 4 MIMO channel
with 16-QAM input. Comparison between the shifted list sphere decoder and the list sphere
decoder centered on the received point. Performance comparison for equal performance - Per-
formance comparison for equal complexity.
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Figure 4.31: Histograms of the number of points in the list of the shifted list sphere decoder
and the list sphere decoder centered on the received point.(1,5/7)s parallel turbo-code over an
ergodic 4 x 4 MIMO channel with 16-QAM input. SNR=5.3dB, BER=10"5.
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Figure 4.32: Performance of a (1,5/7)g parallel turbo-code over an ergodic 4 x 4 MIMO channel
with 16-QAM input. The frame size is 20000 or 100000 coded bits. Performance of the shifted
list sphere decoder for different parameters N,. Performance of the SISO-MMSE.
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Figure 4.33: Performance of a (7,5)s NRNSC over a quasi-static 2 x 1 MIMO channel with

QPSK input. The frame size is 1024 coded bits. Performance of the SISO-MMSE detector and
exhaustive detector.
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Conclusions and perspectives

We presented near capacity and near outage performance over multiple antenna channels thanks
to optimized bit-interleaved coded modulations. The design conclusions sum up in the following
points, original material found in this thesis report is underlined and indicated by a star.

e If the channel is ergodic, the amount of available time diversity is much more greater than
the minimum Hamming distance of the code. In this case the objective is not to achieve
full diversity but to maximize the coding gain. We presented two methods to achieve near
capacity performance for a target bit error rate:

— Use a turbo-code to protect the binary data and process iterative joint detection and
decoding with a near optimum or exhaustive APP detector. A gray mapping provides
the best performance with such a good code.

— Use an optimized multi-dimensional mapping® with large potential gain. A simple
error correcting code is necessary to allow a good convergence and achieve near turbo-
codes performance.

e It the channel is block fading and the amount of available diversity low, the system should
be designed to guarantee the full diversity order. This is achieved with the three following
steps :

— The detector converts the MIMO block fading channel into a simple block fading
channel. The error correcting code is capable of collecting an amount of diversity
limited by the Singleton bound applied to the equivalent block fading channel. When a
linear precoder is used, compute the minimum time spreading* factor that guarantees
full diversity distributing the diversity exploitation between the detector and the

decoder.

— Design a linear precoder* that provides a diversity proportional to the spreading fac-
tor times the number of receive antennas.

— Choose an error correcting code whose Hamming distance is greater than the maxi-
mum transmit diversity order. Design a channel interleaver* taking the error correct-
ing code structure into account in the aim of satisfying the ideal interleaver condition.
Note that the ideal interleaver existence is given by the choice of the spreading factor
with the Singleton bound.

Once the full diversity order is guaranteed, the coding gain is maximized if the linear
precoder satisfies the DNA condition under ideal interleaving. Optimize the channel in-
terleaver to approach the ideal channel interleaving condition. In general, the frame error
rate increases with the frame size. However, concatenated error correcting codes such as
turbo-codes allow to observe a frame error rate decreasing with the frame size, and achieve
near outage capacity performance.
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We have expressed exact pairwise error probabilities* for ergodic, block fading, and precoded
MIMO channels. The asymptotic expressions of the performance give the design criteria for the
binary labeling, the linear precoder and the choice of the error correcting code. Moreover,
the pairwise error probabilities can be used to tightly evaluate the error rates of the ideally
interleaved BICM using either a union bound or a tangential sphere bound.

The bit-interleaved coded modulation is designed in the case of a maximum likelihood decod-
ing on the global Euclidean code. However, such a decoder is intractable and an iterative joint
detection and decoding is processed to achieve near-ML performance. The detector complexity
evolves exponentially with the spectral efficiency. We proposed a new list sphere decoder® that
achieves near optimal APP detection and allows a strong complexity reduction on both ergodic
and block-fading channels.

The future work should include:

e Optimize the binary mappings for block fading channels. The derived pairwise error prob-
ability over a MIMO block fading channel provides the design criterion.

e Minimize the error rate at the first iteration in the goal of accelerating the iterative pro-
cessing and giving good performance if no computational resources are available at the
receiver for iterative processing. Indeed, the linear precoders satisfying the DNA condi-
tion guarantee optimal coding gain and full diversity under ideal interleaving condition
and ML decoding or converging iterative joint detection and decoding. However, if the
optimized interleaver cannot achieve the ideal condition, more than one erroneous bit can
be transmitted in a time period. Since the DNA condition does not fix all the system
freedom degrees, the precoder can be designed to minimize the error rate when different
rows of the linear precoder matrix are interfering at the same time. Furthermore, at the
first iteration of the decoding process, the detector has no feedback from the decoder and
all the rows of the linear precoder matrix are interfering.

e Find the condition to be satisfied by an error correcting code to allow an error rate decreas-
ing with the frame length, and the expression of this decreasing function. The behavior of
the error rate with the frame length can be deduced from the error rate expressions.

e Other concatenated codes than turbo-codes can be used to achieve the outage probability.
One objective is to design LDPC-like codes for MIMO block fading channels.

Such a bit-interleaved coded modulation achieves near capacity performance at the price of
a large complexity. A sub-optimal soft-input soft-output minimum mean square error can be
used instead of the list APP detector. If the channel is ergodic, we observe right shifting of
the waterfall region and if the channel is block fading, we observe a coding gain loss. Since the
bit-interleaved coded modulation optimized in this thesis report are designed for ML decoding,
any sub-optimal system being asymptotically near-ML should have full diversity and optimal
coding gain too. Some supplementary research will be made to consider low-complexity scheme
for practical system applications. Finally, the space-time bit-interleaved coded modulation can
be applied to OFDM and multi-user techniques such as MC-CDMA for the next generations of
mobile phones and Internet wireless technologies.
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Appendix A

Influence of the frame length on the
Frame Error Rate over quasi-static
channels

A.1 Uncoded case

Assume that a frame is subdivided into N coded blocks, transmitted by an orthogonal design.
Let m define the diversity order recovered by an uncoded scheme, for example an orthogonal
design. For a given channel realization, the probability of error of each independent code is a
function f (83,y) where [ denotes the coding gain multiplied by the signal to noise ratio, and y
is a chi-square random variable. Remember that

n
y=30 v~ N0 (A1)
i=1
and ) 1207
yn 271€fy 20
— _ A2
Since we are considering MIMO block fading channels, assume that 02 = 1/2, n even and
m=mn/2,
ymfl
- 7Y A3
p) = e (4.3
and

T m— 1’
)dy =1 — — A4
| oy =1 S (A4)
k=0
Let I denote the frame error rate as a function of NV

= [ [t- a1y (A5)
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First consider Vz € [0,1],g(x) = 1 — (1 — x)". The concavity of g(x) allows to define the
(A.6)

following upper and lower bound (z( € [0,1]), represented in Fig. A.1 :
J (w0, 9(20)) <1— (1 —2)" < J(1/N,1)

where J(a,b) = min (b, gx)

, /
I /
- -- J(1/N,1)
J (20, g(0))

— g(2)

| -
Figure A.1: Upper and lower bound of g(x).
Let o be a function of N such that xg ~ 1/N and g(zp) ~ 1 (We can choose for example

J(1/N,1) "

J(1/N,1)

~

zo = NYVIWMN)=1) In this case
J (20,9(20))

1= (1 N CL‘)N N——+o0

Finally, f (8,y) is a decreasing bijection from y € [0, +o0] to [0, 1], we get
« “+o0o
Ivov | v [N @ pay (A3)

where « is defined as

f(B,a)=1/N (A.9)
Let us now assume that
2 NA
~ A2 o0 o~ Zlog | == A.10
an AWGN

f(B,y) 5o
where A is the number of neighbours having an influence on the errror rate over
channel. Moreover, we choose 3 such that limy_. 4 3400 @ = 0. The first term of the sum

2 NAV\™
= e _— Y — ~ °
0 pPy)ay h k! a—0 m! B—+o0o,N—+oc0 m)!
=m

satisfies
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and the second term satisfies

400 +o00 m—1_,—y3/2
|Gty ~ [N (A12)

O Ne PRI (aBf2)F L
ftoo 2(B/2)™ = Kl p—too 24(B/2)™

(A.13)

Finally, the frame error rate of an uncoded system degrades while increasing N, the behaviour
of the degradation is log (N)™.

A.2 Coded case

Let us consider a coded modulation, assume that the code is geometrically uniform and that
Zf:_ol a;(N) is the number of points defining the shape of the decision Voronoi region of each
codeword on an AWGN channel. Denote d;(N) the increasing euclidean distances associated to
the coeffcient a;(N) (do(NN) is the minimal distance of the euclidean code). The frame error rate
over a quasi-static channel with intrinsic diversity order m is upper bounded by

. L1
FER < ! inl1 M —di(N)yB/2 d A4
< min 1, e p(y)dy (A.14)

y=0 i=0 2

IN
@\g

L—1 oo
p(y)dy + <Z a,(N)) %/ e—do(N)yﬂ/Qp(y)dy (A.15)

=0 i=0

where o = BdoL(N) log (Zf:_ol ai(QN)). We finally have an upper bound on the FER that behaves

like log (25;01 ai(N)>m Jdo(N).

The difficulty is now to determine the number of neighbours that have an influence on the
shape of the Voronoi region and the behaviour of the coefficients ZiL;OI a;(N) with N. If a
convolutional code is used, do(NN) is constant and a;(N) is linear in NV and the behaviour of the
FER degradation is log (N)™. It is difficult to know the real behaviour of a;(N) when turbo-
codes are used. However, simulation results have shown that the FER seems to be asymptotically
constant with N. In wireless mobile networks, the number of coded bits to be transmitted is
around 10000. Even with a high spectral efficiency (e.g 8 bpcu), N is large enough to dramatically
degrade the performance on quasi-static channels (see fig 3.19 page 86). This result is directly
transposable to block-fading channels, using m as the diversity collected by the coded modulation
scheme.
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Appendix B

Soft-input soft-output MMSE
Detector

In this Annex, we remind the SISO-MMSE construction presented for single antenna frequency
selective channels in [32] and adapted to MIMO channels. Such a soft-input soft-ouput detector
is sub-optimal when compared to the APP exhaustive detector, specially for low signal-to-
noise ratios. However, it has the great advantage to provide near-optimum performance for a
sufficiently high signal-to-noise ratio and with a strong complexity reduction for ergodic channels.
The principle of such a detector is to view the n; x n,- channel as n; interfering 1 x n,, MIMO sub-
channels. It uses the information given at each iteration by the decoder to cancel the interference
of the sub-channels.

First we compute the a priori probability associated with the modulation symbols from the
a priori on the coded bits given back by the SISO decoder. Then, we are able to estimate the
constellation symbols thanks to the a priori probabilities on the symbols. Finally, we convert
the estimated symbols into extrinsic probabilities to be given to the SISO decoder input as a
priori probabilities.

The classical SISO detector computes extrinsic probabilities {{(c;)} taking into account the
a priori probabilities {7 (c;)} with j # i. In an iterative processing between two blocks, the
probability at the output of a block in iteration n should not be given back in the input of
iteration n + 1, since this would introduce dependence between the random variables.

A priori probabilities of the constellation symbols

First of all, we have to compute the a priori probabilities m(z;) of the modulation symbols
Q) from the a priori probabilities 7(c;) of the coded bits. Assuming independence between the

interleaved coded bits:
m.i+m—1

)= ] e (B.1)

j=m.i

Where m is the modulation spectral efficiency. We define the a priori-based mean z; of the
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symbol z; by

Z; =) {Zz} = Z ZZT('(ZZ) (B.2)
2
The a priori-based variance aii of the symbol z; is defined by

o, 2 E{|a’} — 7l =) |ul’w(z) — |&) (B.3)

Zi

Symbol estimation
A MMSE detector for the symbol z; on the i-th antenna is a linear filter w; that provides
Zi=Efzi} + [y - E{y}]w; (B4)
by minimizing the mean square error E [|z; — Z|?], we find
w; = cov {y, z; } cov {y,y} (B.5)
The covariance function cov{z,y} is defined by
cov {z,y} £ E{[z — E{z}]" [y — E{y}]} (B.6)

The a priori information of the considered symbol z; should not be used for the estimate z;. We

define

3 =205 5 2i-1,0, Zig 1,y - ooy Zny—1] (B.7)
We have
cov{y,y} = H'T;H + NoI (B.8)
where
I =cov{z,z} = [0370, . 7U§,z‘—17E87‘7§,z‘+17 . ,aintil] (B.9)

Indeed, the independence between the coded bits leads to the independence between the symbols
and cov{z;,z;} = 0 for ¢ # j. The two quantities Ny and E, are the variances of the additive
noise and transmitted signal, respectively. We have

cov{y, zi} = cov{z,3;}H = E{2]|z — z|} H = Es¢;H (B.10)
where ¢; is a vector with a unique non-null term equal to 1 in position 3.

Using (B.4), (B.5), (B.8), (B.10) and noticing that E{z;} = 0 and E{y} = 3;H, we can
write the expression of the symbol estimate Z; as

% = By — 5:H] [H'T.H + NoI| " (e;H)" (B.11)

It is important to notice that the matrix inversion has to be computed for each symbol detection
(n; times), each iteration and time period, even for block fading channels. If no a priori is
available (first iteration), the soft detector is equivalent to a classical MMSE detector.

Soft-output on the bits
We make the assumption that the estimated symbol Z; is transmitted on an equivalent AWGN
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channel, i.e, there is no interference anymore from the n; — 1 other transmit antennas. This
situation occurs when the feed back from the decoder is sufficiently reliable to effectively cancel
the interference.

Zi = WiZi + ’17; (B.l?)

The two parameters of the equivalent AWGN channel Z; ~ Ng(u;2;, af]() have to be estimated

for each new symbol detection.
E{z},z;} = miFBs = E{z]|z — 3|} Hw; = Ese; Hw; (B.13)

which leads to
i = e;Hw} = E, (¢;H) [H*T;H + NoI] " (¢;H)* (B.14)

The variance 0727

, is given by
oy = E{lni*} = wi [H*T:H + NoI] ™' w} =y} By = pu(1 — i) E; (B.15)
Thanks to the AWGN channel assumption and the Bayes rule, we can write

2i|zi)77(zi)

b
P(zly) = P(z|%) = B.16
The extrinsic probability can be deduced:
P(zily) X

; — |2 B.17
£(zi) o w(21) o p(Zi|z:) ( )

Using the complex AWGN equivalent channel hypothesis, we can write

. 1 Zi — pizi|?
p(ilz) = —— exp [—7‘ i | ] (B.18)
T Ty

Assume a mono-dimensional complex mapping Q! is used independently on each transmit an-
tenna. The extrinsic probabilities on the coded bits (c¢j44m) can be expressed by the expression

l=t.m+m—1

Eejem) = > pEl) ] @ (B.19)

2;€Q(cy) l=i.m, l#£]

where Q1 (c;) represents the set of mono-dimensional complex constellation symbols with their
J-th bit equal to ¢; (0 < j < m —1). In order to solve the proportionality issue, we compute the
normalization of the soft-output:

Zzieﬂl(cjzl) p(Zilz) Hl;éj m(cr)

Hegrim) = =5 (a1 T, () (B.20)
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Appendix C

Partial fraction expansion

We want to decompose a function having the following form:
1
[Ir=1 (2 + ar)™

into partial fractions. We assume that V(i # j),a; # aj. Applying the Bezout’s theorem, we
can say that there exists polynomials Ay (z) with deg(Ax(z)) < ng such that

) — 1 _ " Ak(m)
f@) [y (x + ap)™ l; (x + ay)™

fz) =

Moreover, the Taylor’s theorem shows that (w‘i‘;ix))% =0k (xi%)” in this case, we can decom-
pose f(z) into
n
O 4
x
f@) = Hklx—i—ak ;1; (x + ag)

We can compute the «;; coefficients via a series expansion with = ¢ — a;.

1 1 - 1
[Tici(z+ap)™ & szlyk#(ak —a;)™ H (1+ akfaj )T

n nj—1 (_1)1 (le-l—i—l)gi

1 )
= — L — + O
e [ Tomt g j(ar — az)™ H Z (ar — a;)’ ()

k=1k+j =0
le—l nj—l o
= s o) =) S+ 0()
i=0 =0

In this case, ajn;—; = 7ji, where the 7, coefficients are obtained by identifying the degree
k < n; coefficients of the series expansion

njfl

Z aj,nj—iXi + O(Xn]) = H

=0 k=1,k#j i=0

n;—1 (_1) (nk+z 1)

. & X"
(ar — aj)mti +O(X™)
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Appendix D

Applications of the spherical list to
MIMO channel mutual information
computation

D.1 MIMO Mutual information computation

The capacity C of a channel and its mutual information I(z;y) between its input z and output
y are two essential quantities that are necessary to be computed when designing quasi-optimal
performance systems. Indeed, for a given coding Rate R, they give lower bounds on the signal
to noise ratio Ej/Ny that allow error-free transmissions. The capacity C' of a MIMO channel
has been established in ([87]), g is a complex gaussian entries vector:

¢ = oy (s (1 P ) o

Let us consider a constellation point z and the output vector of the MIMO channel H, denoted
y = zH +n, where 7 is the additive white gaussian noise vector. The mutual information between
the input and output of the channel is

Z Z p(y/ )
This quantity can be computed by a Monte-Carlo simulation:

=~ . o (22201 | v

We have the choice to make the expectation over z, H and 7 separately or jointly. The best
results will be given by a separated expectation but will need longer time. We will take into
account some symetries of the channel that enables to limit the complexity of the first expectation

I(z;y) = mny —




144 Applications of the spherical list to MIMO channel mutual information computation

Figure D.1: Modulos of a 16QAM constellation

process. Let us define:

> p(y/2)p()
f(z / Zp y/2)p(z) log, ( (072 ) dy (D.4)

The average mutual information (we suppose a non-stationnary channel) is given by

I(Z;Y) = By, (In(Z = 2,Y =y)) / Z f(z,H)d (D.5)

The evaluation of this mutual information with a separated expectation Monte-Carlo method is
prohibitive when we consider more than 2 antennas in emission and reception and a 16-QAM
modulation (this expectation needs 2™ x Ny x N, random samples where Ny is the number of
samples for the channel and N, is the number of samples for the noise). We can use a property
of the channel to simplify the evaluation of this mean. Indeed, the phase of each entry of a
MIMO channel is uniformly distributed. We consider two points z and z’ of equal norm:

2= {zh = 2067, ... 2 = zp,e0Pm ) = ¢z (D.6)

Where the matrix ¢ is diagonal defined by
¢ = diag{e’?} (D.7)

The phase of each entries of the matrix H is uniformly distributed, so p(H(p, ¢)) = p(H(p)):

/ p(H) f (2, H)dH = / / P(H(0)) (=, H (p, 6))ddp (D.5)
H pJo

(& H(p,8) = (= Hp, &) (D.9)

:>/Hp(H) z,H)dH = / H)dH (D.10)

We can replace all the points that have the same module configuration by a single “virtual
point”, for example on Fig. D.1 we can see that only 3 “virtual points” have to be taken into
account in the sum over z for a 16-QAM input. The point with modulo v/2 has a weight equal
to 4, the point with modulo /10 has a weight equal to 8 and the point with modulo /18 has a
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weight equal to 4. We consider the weights N,(z) to be the number of points that have the same
module configuration than z. For example, when we consider 2 antennas in emission with a 16-
QAM constellation, we only have to consider 32 points instead of 162. Let Q be the set of points
that are sufficient to calculate the mutual information, 2 € A, where A is the constellation. The
mutual information is now given by

I(Z;Y):log22m'"t—2mnt//ZN p(y/2)logs (Z (p(//) )>dde (D.11)

Y 2eQ

We can estimate this mutual information with a Monte-Carlo simulation, with N,, realizations
of the noise, Ny realizations of the channel.

1 Jn S S aq eIy HIP /2o
[(Z:Y) =mm = s Ny ;%N )Zb:logQ o ly—=HI /2N (D.12)
z

Nonetheless, the numerator of the logarithm is computed by an exhaustive marginalization of
the 2™ gymbols 2’ of the constellation 2, which limits simulations to m.n; < 8 (for example
16-QAM on MIMO 4x4 is unfeasible).

D.2 Bounds with a spherical list

The complexity of the marginalization can be reduced by computing the marginalization over
points chosen in a subset of the constellation. For example, one may choose the spherical list £
of radius R centered on the received point described before. Each point z’ that does not belong
to the sphere has a likelihood upper bounded by the likelihood p(y/zs) of a point z4 lying at the

surface of the sphere:

(/%) exp (—R2/2N0)
z =

p(y/zs BN

There are (|Q2] — |£]) points that do not belong to the list £, where || and |£| are equal to the

cardinals of  and £, respectively. We can express upper and lower bounds to the numerator of
the logarithm in (D.2):

> p(y/2) <> p(y/z) < py/z) + (19 - |2]) ply/2) (D.14)

zeL z€Q zeL

(D.13)

This leads to upper and lower bounds to I(z;y):

I(Z7y) > m.ny — Ez,H,n lOQQ p(y/z)

2iee p(y/z/)Jr(IQl*IEI)P(y/Zs)> }

/ D.15)

e p(y/) (
1(z1y) < mane = Buiy {logs (Z255555) ) |

We have already seen in the list detector section that the number of point belonging to the list
centered on the received point y is not as controllable as the one belonging to the list centered
on the ML point. Indeed, the radius of the sphere can be corrected before the enumeration step
depending on the position of the ML point in the constellation. Nevertheless, we do not have
again a lower bound on the mutual information I(z;y) when considering the substitution of the
likelihoods of the missing points by the likelihood p(y/zs). For example, in Fig. D.2, we can
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Figure D.2: Lists centered on received and ML points

see that the zo point’s likelihood is lower than the z; point’s one, the likelihood of the missing
points cannot be upper bounded. As a remark, the upper bound provided by the list centered
on the ML point is still avalaible.

D.3 Computer simulations and numerical results

Figure D.3 shows the achievable information rate for 4 x 4 multiple antenna channel with 16-
QAM input alphabet. The mutual information value of 8.0 bits per channel use yields a minimum
achievable signal-to-noise ratio equal to 4.0dB. The capacity limit with a Gaussian input at 8.0
bits per channel use is 3.7 dB. Figure D.3 illustrates two scenarios: 1- A target list size N,, = 1000.
The effective list size was distributed between N.(min) = 256 and N.(maz) = 2300 with an
average equal to 1000. 2- A target list size N, = 60000 ! The effective list size was distributed
between N, (min) = 4000 and N, (maz) = 26000 with an average equal to 10000. It is clear that
mutual information evaluation is useful at high coding rates (R. > 1/2) where its value diverges
from the gaussian input capacity. A reduced size list is sufficient in this region. Similarly, Figure
D.4 shows the achievable information rate for 8 x 8 multiple antenna channel with 16-QAM
input.
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nt=nr=4 antennas, listsize=1000/60000, min=256/4000

nt=nr=8 antennas, listsize=200000/400000, min=10000/65000
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Filed Patents

e List Sphere Decoding of Symbols Transmitted in a Telecommunication System.

e Method for transmitting data in a MIMO telecommunication system offering a high
diversity as perceived by a receiver end.

e Method for transmitting optimally interleaved data in a MIMO telecommunication
system.

e Method allowing an enhanced iterative interpretation of received symbols.

e Method for interpreting transmitted symbols allowing an iterative adaptation of a
basic list of symbols.

e Method for interpreting transmitted symbols involving a list sphere radius tuning step.

e Method for transmitting uniformly distributed data in MIMO telecommunication sys-
tem.




