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Chapitre 1

Introduction

Nous nous intéressons dans cette thése a I'etudemiEnénts rares dans des réseaux de com-
munication. Dans un premier temps, nous introduisons &seldes réeseaux monotones séparables
qui nous permettra une analyse systématique de réseapanide dimension. Parmi ceux-ci, nous
appliquerons notre théorie en détail aux réseaux (nha)fiinéaires et aux réseaux de Jackson
généralisés.

La premiere étape de notre étude consiste a compreadhgnamique de ces réseaux. Nous
décrivons leur comportement fluide, ce qui permet d'eciéis conditions de stabilité du réseau
et de construire les variables d’état (telles que tempsattige aux differentes stations, tailles des
files d'attente...) dans leur régime stationnaire.

L'étude trajectorielle du réseau nous permet ensuiteodgeendre le comportement aléatoire
du réseau. Nous calculons les asymptotiques des prdbahilievénements rares (dont la proba-
bilité tend verd)) et décrivons "comment” ces événements se produisemisontrons que le
"comportement” du réseau est radicalement différerdrstds hypotheses probabilistes faites sur
les temps de service.

Dans le cas de distributions sous-exponentielles, fiew@ent rare est di a un unique grand
service qui bloque une station du réseau tandis que dams ldecdistributions a queue exponen-
tielle, 'événement rare est dii & une conjonction de I@ux temps de services anormalement
longs. Ces heuristiques sont rendues précises par legxds probabilités considérées. Dans un
dernier temps, nous étudions I'impact d’une structure&fmeddance entre les difféerents temps de
service grace au mouvement Brownien fractionnaire.

Cadre general

Dans ce chapitre, nous introduisons le cadre monotoneadpaqui a été développé par
Francois Baccelli et Serguei Foss [13]. Les principaleppetés de ces réseaux sont rappelées, en
particulier la condition de stabilité d’'un réseau momzaeéparable est connue sous des hypothéses
probabilistes générales (stationarité et ergodbéé processus d’entrée).

Nous donnons des conditions naturelles sous lesquellegsaau (max,plus)-linéaire appar-
tient a cette classe. Nous montrons que les graphes riéawents utilisés pour modéliser des
réeseaux de communication ainsi que les mécanismes darsynigation de certains protocoles
font partie de cette classe.

Concernant les réeseaux de Jackson généralisés, nouwsns les équations d'évolution sous

7



8 Chapitre 1. Introduction

la forme d’'une équation de point fixe dans un espace fonutiorCette écriture permet d’avoir
un cadre unifié permettant de décrire un systeme ayandymamique discrete ou une dynamique
fluide. Dans le premier cas, les fonctions considéréesdesfonctions de comptage tandis que
dans le second cas, les fonctions sont simplement suppos@ssantes.

Modeles fluides

Dans ce chapitre, nous nous intéressons au comportemetd tu réseau lorsque le temps
est accéléré par un facteurtandis que la variable d'espace (i.e. la taille des filesefdt ou la
charge des stations) est divisée par ce méme faateur

Dans le cas des réseaux de Jackson généralisés, niamatdes propriétés de monotonie et
de convexité des operateurs définissant I'equation dw fime pour caractériser la limite fluide.
Dans un cadre aléatoire stationnaire ergodique, cesbnfiilides correspondent a des lois fortes
des grands nombres. Nous faisons le lien entre ce calcuhite filuide et la condition de stabilité
du réseau.

Nous étudions ensduite le cas de files de type GPS (Gener&lipeessor Sharing). Differentes
files d’attente se partagent un serveur de maniére égaligi toutes les files sont pleines, chacune
recoit une proportion de la capacité du serveur. Si l'ueefies est vide, la capacité normalement
allouée a cette file est redistribuée parmi les files oeeapNous calculons la limite fluide du
systeme dans le cas ou le systéme global est instables idontrons que certaines files peuvent
cependant rester stables et nous caractérisons I'ensefalaes files.

Asymptotiques sous-exponentielles

Dans ce chapitre, nous étudions le comportement du ré&aaule cas ou la distribution des
temps de service dans chaque station est sous-exporeriells cette hypothése, une méthodologie
générale a éte développée par Francois Baccelli gjuBeFoss [14] pour étudier les asympto-
tiques de réseaux monotones séparables. La formeajémnter ces asymptotiques est donnée mais
les constantes doivent &tre calculées au cas par cas.

L'idee générale est que I'evénement rare se prodionsen événement typique : si la charge
du réseau est grande au tentpsceci est di a un grand service qui a bloqué une station a u
moment dans le passé. Hormis ce temps de service excegltement long, le réseau se comporte
"normalement”, en particulier il est bien approximé patisate fluide.

Dans le cas de réseaux (max,plus)-linéaires, cettedifhiide est bien connue et donnée par
les exposants de Lyapunov. Ceci nous permet d’exprimerolestantes des asymptotiques sous-
exponentielles en fonction de ces exposants. Dans le cagsterix de Jackson généralisés et des
systemes de type GPS, les calculs du chapitre précédenegient de conclure.

Grandes ckviations

Dans ce chapitre, nous traitons le cas ou les distributi@sstemps de service ont des queues
exponentielles. Ce cas est complémentaire du chapitreegent et les techniques probabilistes
sont differentes.

La premiére étape consiste a développer une méthgidofi@nérale pour ces hypothéses pro-
babilistes. Un processus sous-additif est naturellenmssuicié a un réseau monotone séparable (de



la méme maniére qu’une marche aléatoire est naturefieassociée a une file d’'attente avec un
serveur). Nous avons d’abord montré que le principe dedgra@éviation correspondant au cas du
maximum d’'une marche aléatoire s’étend au cas du maximumpmtocessus sous-additif. Ceci
nous permet d’obtenir un résultat général pour touta@snonotone séparable en fonction d’'une
transformée de Laplace asymptotique.

Dans le cas des réseaux (max,plus)-linéaires, les @téprd’'idempotence de I'algebre (max,plus)
nous permettent d’exprimer cette transformée de Lapladeretion des differentes composantes
du réseau. Dans le cas des réseaux de Jackson, nous démmoineipe de grandes déviations
trajectorielles du processus de la longueur des files digtte chaque station. Ce résultat est origi-
nal et étend le seul cas connu correspondant a des tempsvittesexponentiels. En particulier, la
preuve utilise une extension du principe de contractionpguit avoir des applications a d’'autres
systémes ou réseaux.

Asymptotiques pour des Eseaux (max,plus)-ligaires browniens frac-
tionnaires

Ce dernier chapitre traite le cas ou les temps de servicdemtjueues exponentielles mais
contrairement aux deux chapitres précédents la suitéed®ss de service a chaque station a une
structure de dépendance. En particulier, nous calculeffietld’'une dépendance a long terme (ob-
servée empiriquement dans le trafic internet) sur les paebces générales d’'un réseau (max,plus)-
linéaire.

Overview

The goal of this thesis is the study of rare events in stoghastworks. What we call rare
events are events with very small probability. The one desimral example of such an event is the
tail of the stationary workloadll” of a stable single server queue,

P(W > z) asz — oc.

This is exactly the kind of asymptotics we want to study in amoek setting. Dealing with net-
works instead of single server queue means that we have noultaimensional object to un-
derstand. This naturally raises intricate mathematicablems and a problem of methodology
too. The range of interesting networks one can build frony wmple bricks is now exploding.
One has to find proofs that are sufficiently systematic to icawehole set of networks. If one finds
a very suitable technique for a very specific brick, therétle lhope that his technique will extend
to a non-negligible subset of the possible networks !

To avoid this kind of annoyance, we chose another approaetfirgd study the general pro-
perties of a set of networks, namely the set of monotone abfgnetworks. This class has enough
structure to enable us to derive general properties fopuarnetworks. Knowing if this class of
networks is negligible is then more a matter of philosoptanyway it covers several classical
networks !

In Chapter 2, we present the general framework of monotoparable networks and three
subclasses : (max,plus)-linear systems, generalizeddaaketworks and generalized processor
sharing (GPS) queues. The class of monotone separablerkstwas first introduced by Francois



10 Chapitre 1. Introduction

Baccelli and Serguei Foss to study stability of such neteil8]. In particular they constructed
the stationary version of generalized Jackson networkd2h With the first section of Chapter
3, the dynamic of such networks is quite well understoodhingecond section of this chapter,
we construct the stationary regime of a GPS system. The nave@asisting in the study of the
overloaded system, we show that even if the whole systenstable, there exist subsystems that
are stable. In Chapter 4, we address the core of the problednthanks to results of previous
chapters, we are able to derive subexponential asymptatidhese three classes of networks.
The technique used has been proposed by Baccelli and Fo4]inThanks to the three cases
we explore, we show both the power of the method and its lifdks end the chapter with some
thoughts to generalize it.

Chapters 5 and 6 are quite independent. We study the samesjhjamely monotone sepa-
rable networks, but under different stochastic assumstidhe techniques used in these chapters
are completely different from previous chapter. Chaptereélsl with standard large deviations
theory and show that the monotone separable framework meselbeuited for such large devia-
tions studies. In Chapter 6, we study the impact of corr@mhabietween successive service times
at a same station. The study of fractional Brownian motioabés us to get some results in this
direction.



Chapitre 2

General Framework

2.1 Monotone Separable Networks

2.1.1 Framework

The framework described in this section has been develop&damcois Baccelli and Serguei
Foss and results of this section can be found in [13], [10][&A¢
Consider a stochastic network described by the followiagnework :
— The network has a single input point procééswith points{7},,} _cc<n<oo; for all m <
n € Z, let Ny, ) be the[m,n] restriction of N, namely the point process with points

{TeYym<e<n.

— The network has a.s. finite activity for all finite restrcts of V : for all m < n € Z, let
Xm,n)(IV) be the time of last activity in the network, when this onetstampty and is fed
by Njy,,n)- We assume that for all finite: andn as above X, ,,) is finite.

We assume that there exists a set of functipfg, f, : R x K — R, such that :
X[m,n](N) = foeme1{(Ty, G), m < £ <n}, (2.1)

for all n, m and N, where the sequendg,, } is that describing service times and routing decisions.
We say that a network described as above is monotone-sépérdie functionsf,, are such
that the following properties hold for al :

1. Causality : for all m < n,
2. External monotonicity : for all m < n,
X[m,n} (N,) = X[m,n} (N)v

wheneverN’ := {7} is such thatl], > T, for all n, a property which we will write
N’ > N for short;

3. Homogeneity :for all c € R and for allm <n
Ximn)(N +¢) = X ) (N) + ¢
4. Separability : forall m < £ < n, if X[m’g](N) < Tyy1,then
Ximn)(N) = Xjog1,7)(N).

11



12 Chapitre 2. General Framework

2.1.2 Maximal Dater
By definition, form < n, the|[m, n] maximal dater is
Z[mm(N) = X[m,n](N) -T, = X[m,n](N —Ty).

Note thatZ,, (V) is a function of{¢¢}m<e<n @aNd{7}m<e<n Only, wherer,, = T}, 11 — Ty, In
particular,Z,, := Z,, ,,)(N) is a function of¢,, only and does not depend ¢} o <¢<co-

Lemma 1. Internal monotonicity of X and Z
Under the above conditions, the variablés,, ,,; and Z,, ,,; satisfy the internal monotonicity
property : forall N, m < n,

X[m—l,n] (N)
Z[m—l,n] (N)

> X[m,n] (N)>
In particular, the sequendg”’|_,, o (V) } is non-decreasing in. Put
Z = Z(_m70}(N) = lim Z[—n,O](N) < oo.

Lemma 2. Sub-additive property of Z
Under the above conditions,, ,, } satisfies the following sub-additive property : for all <
{ < n,foral N,

Z[m,n} (N) < Z[m,f](N) + Z[Z—l—l,n](N)'

2.1.3 Stationary Ergodic Setting and Main Stability Resuls

Assume the variableér,,, ¢,,} are random variables defined on a common probability space
(Q,F,P,6), whered is an ergodic, measure-preserving shift transformatiooh shat(r,, ¢,,) o
0 = (Tn+1, Cut1)- The following integrability assumptions are also assutodubld :

E[r,]:= A" :i=a <00, E[Z,]< 0.
Lemma 3. Under the foregoing ergodic assumptions, either: oo a.s. orZ < ~c a.s.

The network is stable i¥ < co a.s. and unstable otherwise.
Denote by the degenerate input process with all its points equal:t@;,(Q) = 0 for all n.
In view of Lemma 33, the Kingman’s sub-additive ergodic tteso gives :

Lemma 4. Under the foregoing ergodic assumption, there exists amegative constant(0)
such that

2 E|Z_,_
lim 2o (@) = lim [ [, 1](Q)] =v(0) a.s.
n—oo n n—oo n
The main result on the stability region will be proved in tlexinsection :

Theorem 1. (a) If Ay(0) < 1,thenZ < oo a.s.
(b) If Z < > a.s., themy(0) < 1.
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2.1.4 UpperG/G/1/oo Queue and Lower Bound for the maximal Dater

We first derive a lower bound that will give us part (b) of Thermrl2 and will be useful in the
large deviation analysis of monotone separable networks.

Proposition 1. We have the following lower bound

Z > Slil:o) (Z[—n,O](Q) +T1_, — TO) .

Proof.
Forn fixed, let N™ be the point process with poiit" = 7",, — Tp, for all j. Then

Zi_po = XenoN) =To > X_, 0 (N")
= Xn0(Q) +T-p —To = Z|_, 0)(Q) + T—p, — To,
where we used external monotonicity in the first inequalitg homogeneity between the first and
second line. O

Proof of Theorem 12 part (b).
Suppose thaky(0) > 1, then we have

Zi ol (N
liminfL]() > ~(0) —a >0,
n—oo n
which concludes the proof of part (b). a
We assume now that(0) < a. We pick an integef. > 1 such that
E[Z_1-1(Q)] < La, (2.2)

which is possible in view of Lemma 34. Without loss of genigyalve assume thdfy = 0. Part
(a) of Theorem 12 will follow from the following proposition

Proposition 2. The stationary maximal datef is bounded from above by the stationary response
time R in the G/G/1/00 queue with service times

8n = Z|L(n-1)+1,Ln] (Q)
and inter-arrival times?,, := Tr, — Tp,—1), WhereL is the integer defined in (5.17). Since
E[31] < E[f1] = La, this queue is stable. With the conventplj ' = 0, we have,

-1
Z < §p +sup Z (8 — Tit1) =: R.

k20, ")

Proof.

To an input proces#’, we associate the following upper bound proceégs, = {7/} > N,
whereTF = Ty if n = (k—1)L+1,...,kL. Then for alln, since we assumet = 0, we have
thanks to the external monotonicity,

X_n0)(N) = Z1_n)(N) < X[y qf(NT) = Z1_pp g)(N'). (2.3)
We show that for alk > 1,
—1
Zi_kr1,0(NT) <8+ sup Z (8 — Tj+1)- (2.4)

—k+1<i<0 /.7,

This inequality will follow from the two next lemmas
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Lemma 5. Assumdy = 0. Foranym < n < 0,
Zim0)(N) < Zpp o) (N) + (Zpnn—1)(N) = Tn-1) "
Proof of Lemma 35.
Assume first tha,,, ,,_1j(N) — 7,—1 < 0, which is exactlyX{,, ,_1j(N) < T,,. Then by the
separability property, we have
Zim,0)(N) = Xim0)(N) = Xip o) (N) = Zpp, (V).

Assume now thal(,,, ,_1j(N) —7,—1 > 0. Let N' = {T}} be the input process defined as follows

Vizn T = T+ Zyu(N) -

Then we haveV’' > N and X, ,—11(N') < T, hence by the external monotonicity, the separa-
bility and the homogeneity properties, we have

Z[m,O] (N) = X[m,O] (N) < X[m,O}(N/)
X[n,O}(N,) = X[n,O](N) + Z[m,n—l}(N) - Tpn—1— Z[n,O} (N) + Z[m,n—l] (N) — Tn—1-

O
From this lemma we derive directly

Lemma 6. Assumdy = 0. For anyn < 0,

-1
Z[n,O](N) < sup (Z(Z’ - Ti+1)> + Z(),

n<k<0 \ i

with the conventiory ;" = 0

Applying Lemma 36 tQZ|_j1 11 ) (NT) gives (5.19). We now return to the proof of Proposi-
tion 22. We have

Z = lm Z_pri1)

= supZ_pr+1,0/(N)
k>0

< sup Z_jr41,0/(NT) thanks to (5.18)
k>0
—1 A
< sup |8+ sup Z (5 —Tj+1) | = R, thanks to (5.19).

k>0 —k+1<i<0 /=7,

from Lemma 36. O
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2.2 (max,plus)-Linear Systems and Event Graphs

2.2.1 (max,plus)-Linear Systems

Most of the material of this section is taken from the b&ykchronization and Linearifit 1].
Some notations are taken from [16].

Definition 1. The (max,plus) semi-ring,,.x is the sefR U {—oc}, equipped withmax, written
additively (i.e.a ® b = max(a, b)) and the usual sum, written multiplicatively (ie® b = a + b).
The zero element is denoted= —oo.

For matrices of appropriate sizes, we defides B)(9) = AW g B09) = max (A0, Bi4),

Let s be an arbitrary fixed natural number. Assume the followinbeaiven :

— {T,,,n € N}, whereT,, € R, the arrival time sequence ;

— {A,,n € N}, whereA4,, is as x s matrix;

— {B,,n € N}, whereB,, is as—dimensional vector.
The associated (max,plus)-linear recurrence is that witte svariable sequenceX,,,n € N},
whereX,, is as—dimensional vector, which satisfies the evolution equation

Xnt1=An1 @ Xy, @ Bry1 @ Tiga. (2.5)

We assume w.l.0.g. that,, has no null column (%¢.. . €)’) and that if thei-th line of A,, is null,
thenB” > 0.

To each (max,plus)-linear recurrence, one associatesvarein the sense of the last section,
with ¢, = (A,,, B,,) and

X[m,n](N) = EB @ (D[k—i-l,n} ® B ® Tk)(i)v

1<i<s m<k<n

where fork < n, Digq1) = ®f;i Aj = Ay ® - @Ay andDy, 4 ) = F, the identity matrix
(the matrix with all its diagonal entries equal to 0 and alribn-diagonal ones equaldp If one
defines

Yimn = EB Dijy1,n) ® By ® Tk,

m<k<n

itis easy to check that],, ,,, = By, ® T;y,, that for alln > m,
Yv[m,n—i-l] = An+1 ® Yv[m,n] ® Bpt1 @ Ty

and thatX[m,n] (N) = max; (Y*[mm})(z)
We denote by the vector with all its entries equal @

Lemma 7. The network associated with a (max,plus)-linear recuresigc monotone-separable
providedA,, ® 0 < B,, ® 0 for all n.

Proof.
The first three properties are immediate. Let us prove thedradility holds under the last
assumption. 18X,  (N) < Tj,1, thenYy,, ; <0 ® Tp4.
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So by monotonicity,

A1 @00 T4y
Biy1 @141 ©0® Tp4;.

A1 @Yy <
<

Hence we have

A1 @ Y @ By @ T
Yim 411

Bii1®@Ti1 900 T4

<
< Y141 © 0@ Ty (2.6)

> 0, hence we havemax; v ¥

(@)
But max; B 01,041]

141 > Tj4+1. And then

< max Y( )

Xima4+1)(N) = maXY[() 141 = X (V)

1+1]
We show by induction that for att > [ + 1,

Yimn < Yig1,n) @ 0@ i1 (2.7)
In view of (5.24), itis true fom = [ + 1. Suppose it is true for, then we have by monotonicity,

< A1 Yip1 ) B Bn1 @141 0@ T4y
Yimnt1 < Yigine © 0@ Ty, sincelyq > Tiyg.

Now taking the maximum over the indices in (5.25) giv&g,, ,j(N) < X[j41,,(IV), but the
converse inequality is clearly true in view of the definitiohithe mappingX (.). Hence we have
finally

X[m,n} (N) = X[H—l,n} (N)

In this case we can define the maximal dater

Z = EB@ [k+1,0] ®Bk®Tk)()_TO

1<i<s k<0

2.2.2 Event Graphs

In this section, we first describe what we define as an evephgaad then show that these
objects belong to the class of (max,plus)-linear systerdsuader some additional assumptions to
the class of monotone separable networks.

Consider a bipartite oriented graghwith two types of nodes : transitions (denoted by bars)
and places (denoted by circles), and with an integer marndregach place. We will only consider
the class okvent graphswhich is the class of such bipartite graphs where each plasexactly
one upstream and one downstream transition. An examplebfasgraph is provided below where
the integer marking of a place (here 0 or 1) is depicted byrtek&/e will also assume that the
event graph is live, namely that there is no circuit with opllgces of zero marking.

A transition without predecessor is called a source ; sitgikatransition with no successor is
called a sink ; we will consider networks that have exactlg snurce and one sink and we will
adopt the following notation :
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— For the source :

i

— For the sink :

/tOUt Pout

Consider an event graph, together withdenote the set of transitions) :

— asequence of non-negative, real variablest € T, n > 0;

— an increasing sequence of real varialflgsn > 0.
We show below that to such a triple, one can associate a (lnakJmear recurrence of type (2.5).

For this, takeX = |T|, and we identifyT with {1, ..., K'}. We adopt a numbering of coordi-
nates such that coordinateis the source an& the sink. For allm = 0, ..., L, whereL is the
maximal value of the initial marking, defing, (n) to be theK’ x K matrix with entries

n

(am(n))(i’j) _ {o—" if there is two hop path fromj to ¢ with a place with markingn 2.8)

€ otherwise.

Let b the K-dimensional vector with all its entries equalsdout the first, which is equal . Let
thenz,, be the sequence df-dimensional vectors defined by the recurrence relation

L, :aO(n)®$n®"'@aL(n)®$n—L@b®Tn- (2.9)

The reduction to a (max,plus)-recurrence is then obtaisddli@ws : the matrixzy can be assumed
to be strictly triangular w.l.0.g. thanks to the livenessuasption (see [11]). Therefore the matrix

ap(n)* = E @ ag(n) ® ap(n)* @ . ..
is well defined and when defining(n) = ag(n)* @ a;(n) andb(n) = ag(n)* @ b, we obtain
Th=a1(n) @2y 1@ - Dar(n) @ z,_r ®b(n) @ T (2.10)
Then, with the following notation

Tp—L+1
Xn = )
In

we get the desired equation, nam&ly = A, X,,_1 & B, T}, when taking

A, = : . B.=1| . |. (2.11)
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So to each event graph, one can associate a (max,plus)4e@arence and therefore a net-
work.

Remarkl. One can drop coordinaigf columni has onlye entries (indeed, in this case coordinate
1 is never used in the recursion). We can drop coordinateessisely. We will not do this for the
last column, which is associated to the last activity.

Here is an example. Consider the following graph :

2

Ho< }zm

and take all sigma’s equal to O but for transitions 2 and 3 fhictv we take some sequences
ando—f; respectively. Herel{ = 4, L = 1 and the matrices are

€ € € € € € € €
2 2
| on e € € | e on € e
ao(n) = ol € € e |’ ar(n) = € € o0 ¢
e 0 0 € €E € € €
The evolution equations are :
wg) - Tn7
2
22 = Ve x;_)l] ® o2,
) = e oo,
:E£L4) = 3351) @ :1:(3)
Denotingol,”? = max(o?; U%), we get :
33511) = T,
=B = (3) @ eT,®a0d,
@ = §)1®a o2 ®od e T, ® 027
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So we have a (max,plus)-linear recurrence with

€ € € € 0

€ 0',% € € U%
A, = 3 B, = 3

€ € o0, € o

e 02 o3 ¢ o2V3

We drop coordinate 1 but we keep coordinat@ our recursion for the reasons explained above.
It is easy to check that what was just done is in fact equivadtethe generic way of transforming
(2.9) into (2.5) which was presented above.

Here it is easy to check that? > acfll andz)) > xff’_)l for all n > 1, and that this
in turn implies thatz,(4) > z,-1(4). Hence we can take (note that the size of the matrix is
s=3< KL =4):

2 2
o, € € o
A, = € o) e B, = ol
2 3 2V3
o, o, 0 On

Similar modifications can be made in FIFO networks where foi, acgf) > xff) 1

Remark2. Although we will not need this in what follows, we find it uséto stress that one
can also associate to all event graphs some token dynaneegX%] p. 69 and following). If
one sees Equation (2.9) as an extension of Lindley’s equéitiitially for the G/G/1 queue) to
event graphs, the token dynamics of event graphs can theeelbeas a generalization of that of
customers in such a queue, see the Section 2.2.4 with example

We just showed how one can associate to such an event grapiixgo(ns)-linear system. In
particular note that the matricet, and the vecto3,, produced have a fixed structure : for each
n and each, j, Aﬁf’j) andBﬁLi) are either almost surely finite, or else almost surely equaldo.
Indeed, we even showed more. ketbe the number of timed transitions in the event graph. The
set of timed transitions is denot&q;,,.q = {t(1),...,t(m)} € T = {1,..., K} and we take

Co = (0' . 6%™). We showed that the matrices and vectprs,, B,,} that are used in the
recursion are obtained via two applicatioAsandB such that :
A R7 — M) (Rmax)
o= (cl,...,0™) Alo),
B RT - M(s,l) ( max)
o= (cl,...,0™) B(o),
via the formula

Note that our notation are consistent and to an event graqghassociates a network in the sense
of section 2.1.1 with

k+1 ®

Xmm(N) = B P ®A(Cj) @BC)OTk |

1<i<s m<k<n
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with the conventior®" = E, the identity matrix.
We show now that under some additional conditions the clbdseavent graphs is a subclass
of the monotone separable class. In what follows, we willgisvassume that these conditions are

satisfied.

Proposition 3. Consider an event graph such that
Al For alli € T, there exists a tokenless path in the oriented grgpgoing from¢; to t,,;
throughi ;
A2 Each transition is either untimed (witlr’, = 0) or recycled, namely such that there exists
a placep with marking 1 such that is both a predecessor and a successoi @ natural
way of making the event graph FIFO).
Then the network associated with this event graph is moeeseparable.

The fact that one can associate a (max,plus)-linear reweras described in Section 2.2.1
with 4,, ® 0 = B,, @ 0 follows from the next proposition. Hence thanks to Lemmav@d know
that this system belongs to the monotone separable frarkewor

Proposition 4. To an event graph verifying conditions of previous proposijtone can always
associate two applicationd and B such that

1. there existd, J such that/ N J =, T U J = [1, s] and (we omit th& since the following
properties are true for all € R'")

Vi € J, B = €, max.A(i’j) =0;
J

Viel, max.A(i’j) = max A7) = B0,
J JeI

2. foralli, A®) > 0 and for allk € [1,m)], there existg such thatAU7) (¢) = o(*),

Proof.

We will show that the matrices given by (2.11) satisfy theimesconditions. In order for
matrix A,, in (2.11) to satisfy point 2, we must add zeros on the diagddate that due to the
FIFO assumption, this is always possible. Now the secondgbgroint 2 follows from the fact
that under Assumption A2 of Proposition 3, eadl is on the diagonal af; which is the diagonal
of a; too sinceqy is strictly triangular thanks to Assumption Al.

The first point follows (with/ = [1,(L—1)K]and! = [(L—1)K +1, LK]) from the Lemma
9 proved in section 2.2.5.

O

Remark3. It is clear that previous conditions are symetric. More @&y if 7 is a permutation
of [1, s] and A = A@7(G) B = B(() then itis equivalent to chec the conditions on the
couple(A, B) or (A, Br). This fact will be used in the next section to get a generimféor the
applications.

2.2.3 Reducible and Irreducible Event Graphs

Two transitions of an event graph will be said to belong to ghene communication class
if there is a directed path i from the first to the second and another one from the second to
the first. We denote bg,.. ., C; these communication classes, which form a partition of the
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set of transitions. By construction, these communicatiasses can be arranged according to a
partial order denotedk. The numbering is assumed to be compatible with this paotidér :
C; < €; = i < j. By definition there is always a place between 2 transitibiesice we can
consider the graph (still denoté where we delete the places. The set of verticésasd there
is an edg€, ) if there is a two hop path fromto j.

There is a natural way (see Section 2.3 of [11]) to assodiatieet applicationsl andB some
graphsG4 = (V,€4) andGg = ({0} UV, Ep). LetV = {1,...,s}. If AU (g) > ¢, then the
edge(i, j) belongs tc 4 and has weightl (o)), If B(®) (o) > ¢, then the edgé, i) belongs to
& and has weighB®) (). We denoteS 45 = G4 U 9.

We will denote by= (resp.=,,) the set of paths i§ 45 from node0 to nodes (resp. with
lengthn, where the length is the number of edges of the path).

Remark4. The simplification on the matrice4,, and B,, correspond to the following operations
on the graplty 45 : if there exists no edge starting from vertideghen we delete this nodeand

all the edges that link to this vertices. We operate recahgiv he final graph corresponds exactly
to the simplified matricesl,, and B,,. Indeed the simplifications will not affect any result on the
underlying event graph and we can deal with the matrices.@fLjZor the proofs.

We refer to [11] (page 42) for the interpretation of produtiratrices in term of paths in
graph. Let®], ..., ¢/, be the communication classes$®jf and< the associated partial order. We
assume that) < (‘3; =1 < 7.

Lemma 8. The setCy,...,Cq, <} and{¢C},...,C,,, <} are isomorphic. In particular = d'.

Proof.
We consider the matrix before simplification and we omit thiessriptn :

€ FE
A= ,
€ E
ar, a1 ay

wherea; = aj ® a;. We take the following notation* = (L—kK+iforl <i <K
e F

andl < k < L. Then the upper part of the matri h correspond ir5 4

€ E
to edges between vertice$ and :**! with null weight. For the lower part of the matrix, the
coefficients of the submatrix, give the weight of edges betweéhand ;' (if d}j’i) > ¢€). Now
if + — j is an edge ofj, then by construction there exists an indiceuch thah,(j’i) > ¢. Hence
there exists a path ii4 fromi! to j', namely 5! — > — ... — ¥ — j1. Nowifi' — jlisan
edge ofG 4, theni — j is an edge of. And the lemma follows. O

The set{Cy,...,Cy4, <} is by definition an acyclic graph. Hence by permuting thedad]
we obtain for the matrix in the evolution equation of the exgmaph the following block structure
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(after simplification) :

Ap(1,1) | € | e | € B, (1)

An(2,1) | An(2,2) | e | € B, (2)
A= - - = === = |B=| - |

A1) | Ad2) || Addd) B.(d)

where eac,, (i, ) is an irreducible matrix of size; (corresponding to communication class.
As the output transition is necessarily in the last commativa class (“last” refers here to the

partial order<), this choice of numbering can be made compatible with odreeaassumption

that the last coordinate is that of the output transition.

2.2.4 Event Graphs : Examples

Queues in tandem

We consider two queues in tandem, as illustrated in Figurel2to?, be the n-th service time

ONINO
N TSN TR SRS NGRS
{T.} {on} {on}

FIG. 2.1 — Queues in Tandem

at thei-th server. We denote by’ (resp.z2) the end of the n-th service in queue 1 (resp. 2). We
have then

2y = (T ®ay_y) ® oy, (2.12)
z; = (z,@zh_y) @0, (2.13)
Putting (2.12) in (2.13) gives
zp = (w1 0Th)® (0, 0) G x,_ ® oy,
with
1
X
Xn = < x% 5
1
o, €
= (%o o)
1
i Un
Bn = < ol +o2 ) ’
so that

Xn=4,0X,18 B, 1T,.
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Tree Queueing Network

Consider a tree with nodes numberedlh, ..., m such thatj is a successor af(we write
j € Suc(i)) impliesi < j. In particular node 1 is the root. We associate to this treentitwork
with m queues and in which departure process of quésithe input process of queugs Suc(i).
Queues in tandem is a special case of tree network. Noterthia¢ iliterature, such tree networks
are also referred to as disassembly networks.

We take the example of a tree with three queues, as illudtiat€igure 2.2. The end-to-end
delay here is defined as the delay for a customer to travdrdeeajueues, which is taken care of

by the dummy node (a max operator) in the end.
& &
S=O=FO—-0
Q/
A

o

Let 0! be the n-th service time at thieth server. We denote hy, the end of the n-th service in
serveri. We have then

B j@al< 2\ -0

FiGg. 2.2 — Tree Network

= (Th®z, ) @0y, (2.14)
v, = (e, @) Q0 (2.15)
v, = (e, @) Q0 (2.16)
= 2ol (2.17)
Putting equation (2.14) in (2.15), (2.16), (2.17) we obthim desired recursion equation with
@, o
2 1 2
X, = | % |, Ba= Mo ,
wn Un + Un
T oy + max(c7, 7))
J,{L € € €
J}L + a% o2 € ¢
An — 3
o} + o3 € 0, €
ol + max(a%, o3) o2 o2 0

Notice that both precedent examples are feed-forward mk$yo

Queueing network with fixed window control

We consider nown queues in tandem with a window-based control which does Iy a
more thanL customers in the system. In other words, thih customer can enter the first queue
only after then — L th customer leaves the last queue in the tandem queueingrketWe denote
by z¢, the end of the n-th service in quetie

For the network of two queues in Figure 2.3, we have then

= (Th®z, @25 1) ®0,, (2.18)
= (z, D) R0} (2.19)

8 8
SvI
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= JU—A= 10— 10—__ ]+l

Sender

Reveiver

FIG. 2.3 — Tandem Queueing Network with Fixed Window Control

From these equations, if we put (2.18) in (2.19), we obtagndsired recursion equation with

2
xg—L+l €
Lpn—L+2 €
Xn — . ; Bn = . ;
2
xnl_l 61
:L'n Un
w% O',ll + a,%
€ 0 € ... €
€ € € €
A, =
€ 0
1 1
o, € ... € o, ,

e

1 2 1 2
o, t+o;, € o, + 0o, o,

In the tree network case, the window control with sizis implemented in such a way that the
n th customer can enter the first queue (root of the tree) omdy #fe all then — L th customers
quit the leave queues in the tree queueing network.

2.2.5 Event Graphs : proofs
Lemma9. Forall k € [1,L] and alli € [1, K], we havemax; a,(f’j) < max; a&i’j) _a
Proof. Thanks to Assumption Al, we have by construction forkalt 1,
a0 @ 0 < a(0.
Hence by monotonicity, we have

ap(ar0 & 0) < agap0 = a0, (2.20)

since clearly0 < a,0. From (2.20), we derive thaf,a;0 < aj0. Since(a;0)® = max;(af)*/) =
(a3)®) =5, we showed that
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Now for aq, we have thanks to Assumption A2 that ensures that the evaphgs FIFO :
CL10 > 0.

Hence we haveja;0 > a}0 and finallya; 0 = b which concludes the proof. 0

2.3 Generalized Jackson Networks

In this section, we introduce the (single class) generdliz@ckson network. Such networks
have been considered among others by Jackson [61] or GordbNewell [52]. The framework
that we use here is that of Baccelli and Foss in [12].

We will take the following notation

1. Ay (resp.A}) is the set of non-negative sequences= {u;}i<i<n, Such that, < +oo,
andu; > 0, (resp.u; > 0)foralli <n;

2. Ay (resp.A%) is the set of non-decreasing sequendgs= {U;}1<i<n, such that, < +oo,
and0 < U; < U;4q (resp0 < U; < Uiqq)foralli <n —1;

We will denote byA (resp.A*) the set of discrete measure Bn such that there exisfs € A,
(resp.U € A5) withd% = }",.,,, du,. To such a measure we can associate a sequesca
(resp.u € AY) in the following manner; = U; — U;_1, for i > 1 and with the convention
Up = 0. Az (resp.Aj) will denote the set of counting functiondl:: R, — N such thafll(t) =
S icicn Lty = [3 d% with d% € A (resp.d% € A*). Clearly the spaces, A, A, andAs
are isomorphic and the same holds with A}, A5 andA3.

2.3.1 Single Server Queue

A single server queue will be defined Iy = (r4,0), wherer? = {r'},<,<, ando =
{0i}1<i<n belong toA,; and A; respectively. The interpretations are the following : ouseri
arrives in the queue at time® and its service time is;.

Associated to a queug, we define the departure process’ }1<i<, € Ay by

D A
{TZ.D:max[Tf,Tilzl]—i—ai, 2<i<n. (2.21)
7P is the departure time of customerExpanding this recursion yields
7 = max (' +0(j,i)), for 1<i<mn, (2.22)
=11

with the notatiornv (j,i) = o + - - - + 0;. Hence we defined a mappidg: A x A — A such that :
P = {rPhici<n = 2(Q). (2.23)

We will use the following notation for the different courgifiunctions :
— A(t) =322, Loacys
- 2(t) =20t Yomy<t) s
- D(t) = 2221 I{TL-DSt}'
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For any non-decreasing functidn, we denote by~ (z) = inf{¢, F'(t) > =} the pseudo-inverse
of F' (which is left-continuous). We havé~ (z) < u < z < F(u). Moreover, we use the
notationA for min andV for max. The following lemma gives a new description of the departur
process in term of counting functions.

Lemma 10. Given a queud) € A* x A, let D = ®(Q) where® is the mapping defined by
Equations (2.22) and (2.23). In term of counting functiome,have :

D(t) = A@$) A inf [t =5+ X7 (A(s)); (2.24)

Proof.
For1 < j, we define the point proce$y as follows :

i = 0 forl<n<j—1,
T,l;j = T]A—I—J(j,n) forn > j.

The construction of'; is depicted in Figure 2.4 and we have for> 1 and with the convention
o(1,0) =0,

it = j—1 fort<rs,
Ti(t) = S(t—7+0(1,j—1)) fort>rA

FiG. 2.4 — Construction of ;

Thanks to (2.22), we haue> TnD &SVi<n, t> T,l;j, hence we have

D(t)>n & infI'(t) > n,
j<n

but we have for allj > n +1,T';(t) > n, for all t, henceD(t) = inf;>; I';(¢). We have

. ‘ _ . _ A .
anlti I';(t) {jg{négt}z[t 4+ o(l,7 = DA A®R).
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We now show thatnszl Fj(t) = A(t) VAN infogsgt E[t — S+ EH(A(S))] SinceTjA € AZ, on
each intervalr;* |, 7!) (we use the conventior;' = 0), we haveA(s) = j — 1 and the function
s +— X[t — s+ X7 (j — 1)] is non-increasing, hence we have

inf  B[t—s+T7(A®s))] = Bt—71+0o(l,5- 1)

SE[TJAil,T]A)
Moreover, we have for! < ¢ < /|,

inf D[t — s+ 27 (A(s))] = 2D (k)) > k = A(t).

sE[T,f,t)
Finally we have

A(t) /\0i<r;f;t2[t—s+2‘_(A(s))] = A({t)AN  inf E[t—T]A +o(l,5—1)]

Remark5. Equations (2.22) and (2.24) give two equivalent definitiohthe mappingd : A* x
A — A. Butfor74 € A, only Equation (2.22) gives the right definition ®f In particular notice
that we always have” > o(1,i) v 7/, from which we deriveD(t) < 3(t) A A(t).

2.3.2 Generalized Jackson Networks

We recall here the notation introduced in [12], to descrilgemeralized Jackson network with
K nodes.
The networks we consider are characterized by the facténgite times and routing decisions are
associated with stations and not with customers. This mibab$hej-th service on statiok takes
o—](.k) units of time, Where{a](.k)}jzl is a predefined sequence. In the same way, when this service
is completed, the leaving customer is sent to stazt/iﬁl)] (or leaves the network ifj(k) =K+1)
and is put at the end of the queue on this station, Wl{lej/é? };>1is also a predefined sequence,

called the routing sequence. The sequer{m%@ };>1 and {uj(k)}jzl, wherek ranges over the
set of stations, are called the driving sequences of theAngeneralized Jackson network will be
defined by

IN = {{%('k)}jzl» (Y51, 0, 0 <k < K} :

where(n(®, n(M .. n)) describes the initial condition. The interpretation is aofvs : for
k # 0, attimet = 0, in nodek, there arex(¥) customers with service timesgk), . ,afﬁ,)c) (if

appropriateagk) may be interpreted as a residual service time).
Node0 models the external arrival of customers in the network.déen
— if n(© =0, there is no external arrival.
—ifco > n® > 1, thenforalll < j < n®, the arrival time of thej-th customer in the

network takes place a:tgo) + -+ aj(.o) and it joins the end of the queue of statiaﬁ).

Henceaj(.o) is the j-th inter-arrival time. Note that in this case, there may Hfi@ite number
of customers passing through a given station so that theomnletis actually well defined
once a finite sequence of routing decisions and service t@mgegiven on this station.
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— if n(0) = 0, then when taking for instance the seque{nz]g)) }j>1 i..d., the arrival process
is a renewal process etc.
To each node of a generalized Jackson network, we can assti@dollowing counting functions
inA:
1. K + 1 functions associated to the service tinaé® (as in the single server queue) ;

2. K(K + 1) functions that counts the number of customers routed frorde {0, . .. , K'}
toanode{l,...,K};

3. K + 1 functions associated td*).

Hence a generalized Jackson network with K nodes is an abjadt< TD(5+2) — AIN,
We will use the following notation for each of these countfagctions :

— N= (n(o), . ,n(K)), withn® > 0;

- O'(k') = {UJ(»k)}jZl ando®) (1,n) = > =1 O'J(-k), for0 <k <K,

_Pi,j(n):Zl<n1{ (i)_j},f0r0§i§K, 1§j§K+1.

= Vl =

We denote the arrival and departure processes of each gusfitbe networks byAd*) and D(*)
respectively, with the following notatioA = (A0 ..., A¥))andD = (DW, ..., DF)), We
give a procedure that constructs the procegsesdD :

Procedure 1(JN) :
—1- t:=0;
for i>0 do
RO (t) := UY); AD @) :=n®;  DO() =0,

od
e a0 B owe RO@; =g i, AD(O DO )1} RO
—3— if V=00 then END;
fi
—4— DOt +V):=DVt)+1; ADE+V):= AV (1);
if AD(t+V)-DD(t+V)>1 then RV(t+V):=0\) vy B

c_ () .
J = VD('Y)(t+V)7

if j#K+1 then AV (t+V):=A0 @) +1; DY+ V):= DU (1),
if AO(t) - DY(t)=0 then R (t+V):=0Y) vy B
fi
for i¢{y,5} do
ROt +V):=RIt)-v; AO@t4+V):= AD@); DOt +V):=DO();
od
t:=t+V,
—5— goto 2;
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()

Remark6. Since each sequenc{er](.k)}jzl or {u](.k)}jzl is infinite, the variabIeS/Dm(HV),

ag?w (t4V) anda%) (t4V) in step 4 are always available :

— if 25, n < 400 then the procedure ends in step 3;

—if 25 ,n = 400, the procedure never ends, this corresponds to a netwohk imt
finite number of customers. In this case there exts< oo such thatlim, .7 A(t) =
hmt_>T D(t) = OQ.

We take the following notation : given a departure processofeeue0 : (), and departure
processes for the queuesc [1, K] : X = {X®},;<, and an initial number of customers
in each queue”), we construct the following arrival process¥s= {Y )}, ;< :

K
YO ) =n + Py (SO) An®) + 3 Pa(X9(1)). (2.25)
7j=1

We denote this byy = I'(X, JN).

Given an arrival process for each que(,:we define the corresponding departure proéessd
denote it byX = ®(Y,JN). Hence, we hav&l ) = (Y x()), where® was defined for the
single server queue in (2.22).

Proposition 5. A andD, the arrival and departure processes of the generalize#tslart network
are the unique solution of the fixed point equation

(2.26)

{ A =T(D,JN),
D = ®(A,JN).

We will denote by the mapping from\’N to A? that to any Jackson netwotkN associates the
corresponding coupléA, D).

Proof.
If we defineJ*) = sup{j, >27_, a§k> = 0}, the generalized Jackson network is equivalent to
the following

K
k k .
{{UJ( RISTSIRN U P IRNLEDY Pi,k(J())}.
=0

Hence, we can assume that") = 0, for all k and we have for time = 0, A®(0) = n;,
D@ (0) = 0. Fort > 0 let
DY)y = AD(0) A inf tz@') [t — s+ 204 (0))]
A = 204 P (8O @) Anl)+ Y P(DY(1)).
j=1

Now considert; = inf{t > 0, 3i, D (t—) # DO (t),0r £ (t—) # £O)(¢)} the first time of
jump for processe® andA. Thus

AD@)y = AD@1) foro<t<t,

DOty = DO@4) foro<t<t,
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provide a solution pair to (5.33) ovek [0, ¢;], moreover this solution is exactly the one construc-
ted by the previous procedure. Now suppose a solution AaibD) has been constructed @nt,],
wheret,, is a jump point for one of thed®, D, As above letX(s) = A(s) for s < t,,
X(s) = A(ty) for s > t,,, and fort > ¢,, define,

DO = XV A inf 2O =5+ 207X ()],

K
AD@) = 04+ P (5O) An®)+ " P(DY (1)),
j=1

Letting t,41 = inf{t > t,, 3i, DO (t—) # DO (t),or 2O (t—) # £ ()}, one concludes as
above. The uniqueness EA, D) and the fact thatA, D) are constructed brocedure lare a
consequence of this construction procedure. O

Remark7. 1. This construction is very similar to the construction loé¢ treflection mapping
made in the proof of Theorem 2.1 of [26] ;

2. This property gives the connection between two possigderiptions of a generalized Jack-
son network. One of these descriptions has been given insaairthe beginning of this
section and is depicted with more rigor in tReocedure 1 The other description is in
term of fixed point Equation (5.33) which has already beemdiced by Majewski in [71].
These two descriptions are equivalent in the special casigsofete inputs and an empty
network at timet = 0—.

2.4 Generalized Processor Sharing Queues

Consider a processor which offers service to inputs agiWwom a variety of sources. If one
wishes to offer different levels of service to different égpof sources, then separate customer
classes are needed and a service policy must be establiSkadralized Processor Sharing is a
policy that has been proposed for use in high-speed dataoretw

Consider the following model oV coupledG/G/FIFO queues. Each queue is served in
accordance with the Generalized Processor Sharing (GB8pliie, which operates as follows.
Queuej is assigned a weight’, with Zj.v:l ¢’ = 1. If all queues are backlogged, then qugue
is served at speeg¥. If some of the queues are empty, then the excess capacidistributed
among the backlogged queues in proportion to their resesteights. All customers within each
queue are served in a FIFO order.

More formally we can construct the workload of each queudsliasvs. Let{T*, 5, c,} be a
simple marked process, with, > 0 andc,, € {1,..., N}. The interpretations are the following :
customern arrives in the queue, at ime7 and its service time is,,. We will say that this
customer is of clasg, € {1,..., N} and we denote by, = T,j‘H — T the inter-arrival times.
We denote by [n] := W (TA—) the workload of queué at time 72— with initial condition
Wi [0] = Y. The sequencé€Wy [n] = (Wi[n],..., W [n])} is generated by the recurrence

Wy [n+ 1] = h(Wyn],opn,cn, ™), n=0,1...
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where the functiork is defined by the following equations :

WIHTE) = W/(Ti'=) + oklye=jy, (2.27)
M(t) = —@t) forTA <t<TH (2.28)
dt = b
() = {ZZSM‘ J ¢ 100), (2.29)
0 j e 1(t);
I(t) = {i, Wt) =0}. (2.30)

Equations (2.27), (2.28), (2.29) and (2.30) show how to tansthe workload process of each
queue fort > T3
Note that we have

N
Z Wiln+1] = <Z Weln] + o, — Tn> ,

the recurrence for the sum of the componentigf[r] reduces to the Lindley’s equation.

The stability of the GPS queues follows directly from thebglity of the single server queue
with input process{T2, o, }.ez, since the sum of the workload of each queue is exactly the
workload of this single server queue.
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Chapitre 3

Fluid Models

3.1 Fluid Limit of Generalized Jackson Networks

In this section, we consider a (single class) generalizekisdm network and its fluid limit as
introduced in Section 2.3.

In [26], Chen and Mandelbaum derive the fluid approximationdeneralized Jackson net-
works. The queue-length, busy-time and workload procemsesbtained from the input processes
through the obligue reflexion mapping due to Skorokhod [8H bne-dimensional setting and to
Harrison and Reiman [56] in the context of open networksnishis fluid approach and assu-
ming that service times and inter-arrival times are indelpeh and identically distributed (i.i.d.),
Dai shows in [29] that generalized Jackson networks ardes{ab. positive Harris recurrent) when
the nominal load is less than one at each station. The fitsligtaesult for generalized Jackson
networks under ergodic assumptions can be found in the pdpeass [43]. In [71], Majewski de-
rives an unified formalism which allows discrete and fluidtoogers. The input for the model are
the cumulative service times, the cumulative externavalsiand the cumulative routing decisions
of the queues. A path space fixed point equation characsefisecorresponding behavior of the
network.

The framework that we use here is that of Baccelli and Fos&2h wvhere only stationarity
and ergodicity on the data are assumed. Denot&Pythe time to empty the system when
customers arrive at the same time from the outside worldem#twork. Thanks to a subadditive
argument, the following limit is shown to hold in [12]

lim X0 =~v(0) a.s. (3.1)

The constanty(0) corresponds to the maximal throughput capacity of the ndtwla fact the
saturation rule [13] makes this intuition rigorous and eastthat ifp = Ay(0) < 1 then the
network is stable. In this chapter, we provide a new proof3t) using fluid approximations
which gives an explicit formula for the constant0). One contribution of this paper is to provide
a connection between the fluid approximation of a genehliszkson network and the stability
condition for this network under stationary and ergodicuagstions on the data. In particular, no
i.i.d. assumptions are needed (on inter-arrival times orige times) and we can consider more
general routing mechanism than Bernouilli routing.

The other application of this section will be linked to thdccdation of tails in generalized
Jackson networks with subexponential service distrilngtim next chapter. We are able to give
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here the behavior (in the fluid scale) of the network on a “rawent. We refer to the next chapter
for an exact notion of what we mean by rare event.

Results of [26] or [71] will be of minor help for us since a Idtwork would be required to
obtain our explicit result form theirs. For these reasons,teok a different approach. For each
timet, we are able to give an explicit formulation of the fluid limiithe simplicity of the result is
due to the concavity of the processes in the fluid scale ; agptpprhich had not been proved yet to
the best of our knowledge. In other words, given some ditste input processes, when a queue
becomes empty, it remains empty forever. It seems that #si ffact has not been exploited yet. It
allows us to reduce the computation of the fluid limits (whaeh solution of a fixed-point network
equation in a functional space as described in [71]) to theprdation of some traffic intensity
for a simplified network that evolves in time. Hence for a fixade, we only have to compute
a fixed point solution of some traffic equations (see Sectidr2B Proposition 8 gives the fluid
approximation of generalized Jackson network. To obtagntithhe to empty the system, we just
notice that if the network is processing fluid, then one ofgheues has work since the initial time.
This gives us a very compact way of obtaining the constdfj (Theorem 2 of Section 3.1.3).
Proposition 9 is a slight extension of the main Theorem 2 aifidoe needed in the computation
of the fluid picture of a generalized Jackson network in thecijg case of one big jump see next
chapter.

This section is based on the paper [67].

3.1.1 The case of Single Server Queue

For any sequence of functiog™}, we define the corresponding scaled sequefe as
follows : f”(t) = w We say thatf™ — f uniformly on compact sets, or simpl§f* — f
u.o.c. if for eacht > 0,

sup |f™(u) — f(u)] = 0 asn — .
0<u<t

We first recall the following lemma known as Dini’s Theorem :

Lemma 11. Let{ "} be a sequence of nondecreasing function®gerand letf be a continuous
function onR. Assume thaf™(¢) — f(t) for all ¢ (weak convergence is denoted By — f).
Thenf™ — f u.o.c.

The following Lemma can be found in Billingsley [19] page 287
Lemma 12. If f,, are nondecreasing functions artfd — f, thenf;,~ — f—.

Proposition 6. Consider a sequence of single server que{@&} = {747,067} € (A x A)N

with associated arrival process™” such thatA”(t) — A(t) for all t > 0, with A concave on
R, , and associated service time procesdssuch thati"(t) — ut for all ¢ > 0, with . > 0, then
D" — D u.o.c, withD(t) = ut A A(t).

Proof :

First observe that thanks to Remark 5, we h&vgt) < X"(t) A A™(t), hence making the fluid
scaling and taking the limit im, we haveD(t) < ut A A(t). Proposition 6 follows in the case
u = 0 by Lemma 11. We consider now the case- 0 and first assume thatQ™ € A* x A for
all n and A(0) = 0.
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Since A(0) = 0, A is continuous ofR and Lemma 11 givesi” — A u.o.c. Moreover thanks
to Lemma 12, the sequencE$ andX™— converge u.o.c. to the respective functiens: ut and
t— L

[ . .
For fixedt > 0, we have thanks to uniformity on compact sets,

nlirrgo - = nh—>nolo ogifgt EE n(t —u) + (") (A" (nu))] A -
. 1, e Am . A"(nt)
= o%%fgmh—?;o EZ [n(t —u) + (Z")7 (A" (nu))] A 1111_{20 -
= inf [t —u) + A(w)] A A1)
= ut ANA(t),

where the last equality follows from concavity &f Now using Lemma 11, the result follows in
this case.

To extend the result to the cas®” € A x A, we consider the sequeneg” = /" + 1/i
which belongs ta\*. For anye > 0, we have form > 1/¢, A"(n(t — €)) < B™(nt) < A™(nt).
HenceA(t — ¢) < B(t) < A(t) and sinced is continuous, we hav& = A. Moreover, since
75" > 74" we haveD?, = ®(B",%") < ®(A", "), and we can apply the first part of the
proof to B, henceD?,(t) — A(t) A ut and the result follows in this case.

The casefl(o) # 0 can be dealt with the same monotonicity argument. Foreany0, consider
the sequence”" = 7>V ie. We haveC'(t) = £ A A(t) andr""™ > 74" We can apply the first

€

part of the proof ta”, henceD? (t) — C(t) A ut. Fore < u~!, we getD(t) > ut A A(t). O
3.1.2 Fluid Limit and Bottleneck Analysis

Bottleneck Analysis

We first define théNon Capture condition as follows :
Condition (NC) : we say that thel' x K matrix P = (p; ;)i<i j<k Satisfies(NC), if P is a
substochastic matrix such that the following stochastitrimna

P11 - pLx 1= ,pii

R = Pi,j :
PK1 .- PKK 1= ;DK

0 0 1

has onlyK + 1 as absorbing state, i.e(if,,) is a Markov chain with transition matrik, almost
surely(X,,) is equal toK + 1 eventually.

Lemma 13. Let P be aK x K substochastic matrix. The following properties are eqleng:
1. P satisfiedNC);
2. the Perron Frobenius eigenvalue Bfisr < 1;
3. (I — P')isinvertible.
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Proof :

1=-2= 3 by Corollary 1 page 8 and Corollary 2 page 31 of Seneta [#9%€E that 3= 1, just
write the equations for the expected number of visits forNaekov chain(X,,) with transition
matrix R, tostatei # K +1,V; = E >, 1;x,—]

K
V,=P[Xo=1d]+ Y p;iV; forallie[LK]. (3.2)
j=1

Since(I — P’) is invertible, (3.2) has a finite solution. Hence the onlyabing state of X,,) is
K+1.0

Forx andy two vectors ofRX, we will write x > y if z; > v;, for all i.

For any matrixP, any vectora € RE and anyy € R, we defineF,, : R¥ — RE and
Gy : Rﬁ_{ — Rﬁ_{ with

K
(Fa)i(l'la ... ,:EK) = a; + ijﬂ'l’j,
j=1

(Gy)i(x1,. .., zx) = x ANy

Proposition 7. If the matrix P satisfies(NC), the fixed point equatiol',, c Gy(x) = x has an
unique solutionx(«, y). Moreover,(«,y) — x(«,y) is a continuous, non-decreasing function.

Remark8. These relations already appeared in Massey [72] and CheMandelbaum [26] see
section 3.1. In fact as pointed out in [26], we can use Tagd$kied point theorem (Tarski [82]) to
get the existence of this fixed point (called inflow in [26]utBve give here a self-contained proof
that shows continuity and monotonicity properties of thieitkan.

Proof :

Existence of a solution to the fixed point equation is an easggequence of monotonicity. Since
F, andG, are non-decreasing functions afd o G, (0) > 0, we see thatF, o G )"(0) " b.
We haveb < F,(y) andF, o Gy(b) = b.

For a given subseh of [1, K] andy € RY we defineF4, : R — RX by

(Foy)i(@1,.. . 2x) = o+ ij,iyj + Z PjiTy-
jea jeae

F2(e) depend only o{z;, i € A°} andF,, = ng_
We fixy € R and first study the case}  (x) = x.
This equation is

T1 = a1+ YA DY T 2 jene PiiT

TR = QK T Y e aPiKY) T D jenc Pi KT
In fact, we only have to calculatgr;, i € A} and then, we obtaifz;, i € A}. Renumbering
the indexes ok, and taking into account only those &f, we have
r1 = Mi(a,y)+ Z?:1 ij,lxjﬂ
: (3.3)
Ty = Anlayy) + Z?:l ij,nwj'
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P2 = (pfy;i,j = 1,...,n)is asubstochastic matrix aid- P> is invertible (even forA =  see
Lemma 13). Hence, ik(a,y) = (M1 (v, y), ..., \(,y)), Equation (3.3) has only one solution
given by :

%2 =Ma,y) +%°P% & %2 =Ma,y)I - PA)7L

We now return to our fix point problem = F, o Gy (x). To show uniqueness of the solution,
take any solutiorze = F, o Gy (z). We havez > 0 henceF, o Gy(z) > F, o G(0) and then
z>b.LetA = {i, z; > y;} andB = {i, b; > y;}. Of course, we hav®& C A andb = x” since
F5 (b) =F, o Gy(b) = b. Moreover, we have

Zp = ai+ij,iyj+ Z pj,iyj+zpj,izj>

JEB jEA\B jEA
(FEy)i(2) = i+ rayi+ D pazi+ %
jEB JEA\B jgA

hence, we hav€&'5 (z) > z. But since(FZ )"(z) / x” = b, we haveb > z. Finallyz = b.

For anyA, (a,y) — %*(a,y) = Ma,y)(I — P?)~!is a continuous non-decreasing function.
Fix any («,y), and defined = {i, z;(a,y) > v}, B = {i, zi(a,y) > v;}. We have of
coursex(a,y) = %4(a,y) = %P(a,y) and for(j,z) in a neighborhood ofa,y), we have
x(8,2z) € {x4(6,2), XP(B,2)}, and the continuity ofa,y) — x(a,y) follows from that of

(0, y) = %5 (a,y).
Now to see that this function is non decreasing, tgkez) > (a,y), we have

FpoGy(x(,y)) 2 Fa o Gy(x(a,y)) = x(,y)
and the sequencgF g o G,)"(x(c, y))}n>0 increases te(4,z). O

Fluid Limit for Generalized Jackson Networks
We consider the following sequence of Jackson networks :
JN" = {o",v",N"}, with,
lim — = R 2W . 2 nO <400, @ <00, i#£0.

Thanks toProcedure 1 given in appendix, we can construct the corresponding iapdtoutput
processedA™ andD". We assume that the driving sequences satisfy
Oy = 2O@),  wheret — 2O (t) An©® is a concave function,
vE>1, S®r@y - W ve>0 (W% >0),
Pri(t) — pigt VE>0.
We suppose that the routing matfiX= (p; ;)1<i j<x SatisfiegNC).

Proposition 8. The processed”™ and D" converge uniformly on compact sets to a fluid limit
defined by

K
AO@) = 0l +poi(2O(t) An®) + > p; DU (1), (3.4)
j=1

DOy = AD@) At (3.5)
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Remarkd. 1. Existence and uniqueness of solutions to Equations éhd)(3.5) follow di-
rectly from Proposition 7 as shown in the proof. Moreoveeasily follows from the proof
that each component &€ andD is concave and i£(?) is piece-wise linear then so are the
processe\ andD.

2. Theorem 7.1 of [26] gives the fluid approximation of a gefieed Jackson network, if we
take a linear function foE(?), then from(A, D), we can calculate explicitly the solution of
the equations of this Theorem.

Proof :
For any fixed» > 1, we define the sequences of proceqskg(k), D} (k) } x>0 and{A} (k), D} (k) } k>0
with the same recurrence equation :

A"(k + 1) = T(D"(k), JN™),
{ D"(k +1) = ®(A"(k + 1), JN"),

but with different initial conditiond? (0) = (2 ... %(K)m) andDP(0) = (0, ... ,0).
We recall the notation :

0i(X,IN (@) = nOn 4 Bry(s©Ont) AnOn +Z

(X, INM(E) = (X;,0Dm™)(1),

and we will use the scaled sequenck(k)(t) = 2-W@ ang D (k) () = 2LEMD e
introduce the mappingg® : CX — CK and®® : CX — CX that appear in Equations (3.4) and
(3.5) (whereC is the set of continuous functions &) :

K
Tz, oak)(t) = n+po (SO An@) +> pjax; (),
j=1

(... xk)t) = ai(t) A pDt.
The following lemma holds for both top and bottom sequenicesce we omit the or ..

Lemma 14. Assume that for a fixel, D" (k) — D(k) u.o.c. and that each componentIdfk)
is a concave function. Then we have

A"(k+1) =2 1%(D(k)) = A(k+1) uo.c.and D"(k+1) = &(A(k+1)) =D(k+1) u.o.c.
and components & (k + 1) andD(k + 1) are concave functions.

Proof of the lemma :
For any fixedt, we have

ADn (4 1)(nt)  n@n PREOR(nt) An@n)y K pr (DU (k) (nt))

— ) ¥
J=1
Hence thanks to Lemma 11, we had& (k + 1) === I'(D(k)) u.o.c. and each component

of A(k 4+ 1) = I*(D(k)) is clearly a concave function. Now thanks to Proposition é risult
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follows. O

We now return to the proof of Proposition 8.

We haveA (k+1) = I'*o®*(A(k)). This equation gives the relation between 2 functions ofh re
parametet. But we can fix this parameter and then we obtain for any fixadl equation between
real numbers that we writd (k + 1)(t) = I'* o ®*(A(k)(t)) (even if['* o ®° is supposed to act
on functions). Moreover as a consequence of Propositiore knaw that the fixed point equation
I o ®%(¢(t)) = ((t) has an unique solution, namefyt) = x(a, pMt, ..., pFt), with o =
(n(l)—l—po,l(E(O) (t)An©), ... ,n(i>+p0,i(2(0> (t)AnO), ... ,n(K)+p07K(E(O) (t)An©))). For any

t, the sequencéA,(k)(t)}x>1 (resp.{A;(k)(t)}x>1) is non decreasing (resp. non increasing).
We haveAy(k)(t) “= ¢(t) and A, (k)(t) “= ¢(t) and Dy(k)(t) “=> @*(¢(t)) and

D (k) () == *(C(1))-

Moreover, fix anyn > 1, the mappings — I'(.,JN") and. — &(.,JN") are non decreasing
and :

A" =T(D",JN™),
D" = ®(A", JN").

Hence, for allk > 0, we have :

Ap(k) < A" < Aj(k),
Dy(k) < D" <D}(k).
We have :
Ap(k)(nt) A" (nt) < AlE)(n)
Ay(k)(t) < liminf, 22 <limsup, 2700 < Ay(k) (1),
hence, we have
vt, limAént) = ((b).

The result follows from Lemma 11J

3.1.3 Maximal Dater Asymptotic
Motivation
We first recall the definition of simple Euler network from 8ew 4.1 of [12]. Consider a

routep = (p1,...,pr)With1 <p; < Kfori =2,...,L—1. Such aroute is successfupif = 0
andp;, = K + 1. We can associate to such a route a routing sequeacel a vector as follows
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(® means concatenation) :

Procedure 2(p) :

—1- for £k=0...K do
v = g,
¢ = 0;
od
—2— for +=1...L—-1 do
o) = i) 4 1,
od

Note thatp/) is the number of visits to nodgin such a route.

A simple Euler network is a generalized Jackson network {o, v, N}, with N = (1,0,...,0).
The routing sequence = {u}k)}?fl) is generated by a successful route ane- {al(k)}fg is a
sequence of real-valued non-negative numbers, repragesdivice times.

Consider now a sequence of simple Euler networks{#ay)},-> whereE(l) = {o (1), v(1), 1}.
We defines andv to be the infinite concatenation of the()}," and{v(l)},-. Denote byo,

the sequence obtained framin the following manner

Oc = (CU(O),U(l), .. ,U(K)).
We consider the corresponding sequence of Jackson netddfks= {o., v, N"}, with N" =
(n,0,...,0). The Jackson networkIN? corresponds to an empty network withcustomers in

nodeO at timet = 0. We will denote byX the time to empty the systedIN’, called maximal
dater of the network. Thanks to the Euler property{ 6f(i) },>1, we know that for alln, X" <
+o0o (see [12]). We suppose that

(0)
lim oe (L,n)  _ < (3.6)
n—o0 n )\
(k)
Al U0 B S Y SRR 3.7)
- (B
P ; . .
lim# = pij, 0<i<K, 1<j<K-+1. (3.8)

We assume thaP = (p; ;)1<i j<k SatisfieSNC). We denote byr; the solution of the following
system
K
Vi € [1,K], T :po,i+zpj,i77j' (39)
j=1
The constantr; is the expected number of visits to sitdor the Markov chain with transition
matrix P and with initial distributionp, ; (see proof of Lemma 13). We will prove the following
theorem :

Theorem 2. Under the previous conditions, we have foraf: 0

n
. T c
lim =% = max — V —.
n—oo n 1<i<k p) A
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Proof of Theorem 2

Given a routing matrixP? = (p;;;i,j = 0,..., K) that satisfieYNC) and a vectorx =
(a1,...,ak) € RE, we denote byr® the solution of the following system (see Lemma 13)

Vie[LK], nf=oi+Y pjr.

Proposition 9. Consider a sequence of Jackson networks as in Propositioci8thaty*) > 0
forall k, ©©) () = Mt/cwith A > 0 andc > 0 (with the convention /0 = +oc0) and X” < 400

for all n, we denotex = (n™ 4+ n©pg ;... )+ nOpq k), we have
n a (0)
lim 2¢ = max ~i v
n—oo m 1<i<K p(0) A
Proof :

Lower bound : )
Consider the auxiliary Jackson netwafN" = {0,", N"}, and the associated vectdf(n),
whereY () (n) is the total number of customers that go through noidethis network. We have

K
YO ) =07 4 PO + 3 Py O(m)

Hencelim,, % = m* thanks to assumptiofNC) on P.
Now consider the original networkIN?. The number of customers that go through nodestill
y @ (n). Hence we have the following inequality for the maximal datenodei > 1, X@n >

(1, Y@ (n)). And for node0, XV > 519" (1,n(®m). Hence, we have

(@) (@) (%) o
limian > lim o1, ¥ (n)) S ,
n—oo n n— oo n 'u(’)

(0),n (0),n (0),n (0)
lim inf Xe > lim oe " (Ln ) _a
n—o00 n n—oo n )\

SinceX? = maxj<j<x X" v X" the lower bound follows.

Upper bound :

We consider the original Jackson network. Thanks to Prtipas8, we know that the correspon-
ding input and output processes” and D™ converge to a fluid limitd andD respectively. Let

T = inf{t >0, AD(t) = DO(#)}, T = max;e(y g] T@ andM = T Vv en(9 /). We have
. . K .
vt > M, AD(t) =n® 4 poin©® +> " p; A1),
j=1

hence, we have

(3.10)
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We denoteiy = argmax{T )} and we haved(©)(T) = DU0)(T) = )T by concavity of
Alio), hencel’ = - 20 . Moreover, Equation (3.10) implies :

Y@ (n) — DO (nt) pnooo
n

vt > M, 0, whereY ®(n) is the total number of customers that go through node

SinceX] < +o0, we know that for any,

K
X< nt Y o0n DO (), YO () + o0 (SO (nt), 0,
i=1

n()

takingt = M, we havdim sup,,_, ., X <mM=Tv C"(O) Tig Vv €2— and the result follows.

n p(@0)
O
proof of Theorem 2 :
It is easy to see that assumptions of Proposition 8 hold &d#tkson networkEN” = {o.,v, N"},
with n() = 0, except thex(¥) = 1.0

Stability of Generalized Jackson Networks

We now give the connection between this fluid limit and thdifitg region of generalized
Jackson networks under stationary ergodic assumptioltsviol [12].
Assume that we have a probability spd€e F, P), endowed with an ergodic measure-preserving
shift 6. Consider a sequence of simple Euler networks{dan) }o> _ . whereE(n) = {o(n),v(n),1}.
Leté(n) = {{o(n)}, {v(n)}}. The stochastic assumptions of Section 4.1 of [12] are &sAfsl:

— the variablego(n)}, {v(n)} are random variables defined @n, 7, P) ;

— the random variablé(n) satisfy the relatiorg(n) = £(0) o 6™ for all n, which implies that

{&(n)}, is stationary and ergodic ;
— all the expectation& [¢(*)(0)] andE [Z‘z’( (0) ol* )(O)] are finite () (n) is obtained by
Procedure 2on E(n)).

In such a setting, we can findg, such that orf2y conditions (3.7), (3.8) an¢NC) hold and
P(Q) = 1. Thanks to the strong law of large numbers, we have almostysur

¢(j)(1) NI QS(j)(n)

E [qs(j)(O)} < +o0,

n
() @ (n) #)(0)
SHV D) 44 T -’()HE{

()
- op (0)} < +00.

=1
From these equations, we derive condition (3.7) :
©) ;
can E[ZSLdP0)]

Jm n E [¢0)(0)] = 1) as.

With the same kind of arguments we show that limit (3.8) badtost surely. To show thdt
satisfies(NC), we denotel’ ) = EaU)(0) and VW) (n) = ¢U)(1) + --- + ¢U)(n) and thanks
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to the Euler's property of the graphs, we hav€) (n) = Py;(n) + 30 P;i(V9(n)), hence
VO = po; + 35, p;iVY). Equation (3.9) has a finite solution, henBesatisfies(NC) and
V@ = 7, (see Lemma 13). Now we can defifig as follows :

(k) » ()
QO:{U (o) | 1 Py Vn<n>ﬁﬂj}'

n p®’

We will take the conventional notation:{?) = ) for the intensity of the external arrival.

The limit calculated in Theorem 2 is exactly the consté) defined in Equation (85) of [12].
On the eventl,, Theorem 2 applies and gives a new proof of Theorem 15 of [1H#¢hvsays
that§(0) = v(0) = max; 7;/u(). Moreover, the lower bound of Lemma 6 (in [12]) is shown to
be in fact the exact value @f(c). Theorems 13 and 14 of [12] give the stability condition of a
Jackson-type queueing networks in an ergodic setting. Todre precise : foin < n < 0, we
defineoy,, ) andvy, ,, to be the concatenation of tHe (k) },,<r<n and{v(k)}<r<n and then
define the corresponding generalized Jackson networks :

JN[m,n] = {U[m,n}a V[m,n]> N[m,n]}a with N[m,n} = (n -m+1,0,... ,0).

We defineX(,, ,; to be the time to empty the generalized Jackson netddvk;, ,; and Z,,, ;) =
Xpmn] — St o\ the associated maximal dater. Note that notation is cemgistith

[m.n],i, : ) ) )
[12]. The sequencg|_,, o) is an increasing sequence. So there exists a it lim;,—.oc Z]_, o)
(which may be either finite or infinite). We call this limit the maximal dater of the generalized
Jackson networdN = {0, v, N} whereo andv are the infinite concatenation of the (k) }x<o

and{v(k)}r<o andN = (400,0,...,0). Let A be the event
A={Z= lim Z_,, = oc}. (3.11)

This event is of crucial interest since a finite stationamystnuction of the state of the network can
only be made on the complementary partdofin other wordsZ < oo iff the network is stable.
The following Theorem follows from Theorem 13 and 14 of [12]

Theorem 3. Letp = Amax; <<k %
If p <1, thenP(A) = 0.
If p > 1, thenP(A4) = 1.

Remarkl0. There exists a parallel stream of work which uses samplerpathods (quite different
from the one described in this paper) to prove a weaker forstatfility called pathwise stability
or rate stability. Rate stability means that the long-ruerage departures must equal the long-run
average arrivals at each station with probability 1. In Cf25j, it is proved that for a multiclass
queueing network under work-conserving service disogdjrihe weak stability of the fluid model
implies the rate stability of the stochastic network. Wereb the paper of Chen [25] for a detailed
definition of fluid model and weak stability ; the main resui{2b] is that under the usual traffic
conditions, a generalized Jackson network is rate stabkehé&r in Dai [30], under weak strong
law of large numbers assumptions, it is proved that if 1 (with our notation) then the number
of customers in the network diverges to infinity with probigypil as timet — oo (see Proposition
5.1 of [30]). This result corresponds to the second part ofThheorem. Anyway to prove that
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p < 1 ensures stability of the generalized Jackson network, 9] needs i.i.d. assumptions
and additional conditions on the inter-arrival times that anbounded and spread out. In this
section, we use fluid limits to derive the same result undsiostary and ergodic conditions only.

3.1.4 Rare Events in Generalized Jackson Networks

The aim of this section is to give a picture of one kind of rarerg when the maximal dater
of a generalized Jackson network becomes very big. Undee stmghastic assumptions, one can
prove that large maximal daters occur when a single largecgetime has taken place in one of
the stations, and all other service times are close to theamsee next chapter. We now give the
corresponding fluid picture.

The One Big Jump Framework

We consider a sequence of simple Euler networks{#y.)},:>° . whereE(n) = {o(n),v(n), 1}.

n=—oo

Considering the correspondiddN|_,, ;. network, we assume that

Oy = t/a, Vi, (3.12)

vE>1, S®re) - u® v, (3.13)

Vi,j, Pri(t) — pijt, V. (3.14)

We assume thaP = (p; j)1<i,j<k satisfieSNC) and we take the following notation :

K

Vie[LK], m = poi+ > DriTk (3.15)
k=1

Vie[LK], @ = poi+ Y prik = T; =Dpj, (3.16)
k#j
K

Vie [LK], mi = 0+ Y PriTik (3.17)
k=1

Equation (3.15) is the traditional traffic equation of théwwk in term of number of customers.
In Equation (3.16)p; corresponds to the amount of traffic coming in qugifethis one is blocked
(its departure process is null). Note that in this caseC ;. Equation (3.17) corresponds to the
traffic equation in the network when there is no input from dléside world and only queugis
active. We introduce the corresponding loads :

bj = %, b= Hl]aX bj and, bjﬂ' = %, Bj = mlax bjﬂ‘.
We assume that the stability conditibn< « holds. We suppose that the big jump occurs in the
simple Euler network-n, hence we replac&(—n) by an extraE’ which is not “typical” in the
following sense : a big service timetakes place on statiohand within the set of service times
of the simple Euler network. Let us look at the corresponding maximal dater,, o) (£) in the
fluid scale suggested by the limit of Proposition 9 :
— if ¢ > na, then the number of customers blocked in statjoat time ¢ is of the order

of np;, whereas the number of customers in the other stations i8. soa according to

Proposition9, the time to empty the network from timen should be of the ordeip; B; ;

hence, in this case, the maximal dater in question should the @rder ofo —na+np;B; ;
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— if o < na, then at timeos, the number of customers blocked in statipis of the order
of p;Z, and the other stations have few customers; from tim@ the time of the last
arrival (which is of the order ofa), stationk has to serve approximately the lopgl b; ;.
generated by these blocked customers plus the (oad- a)%k generated by the external
arrivals on the time interval frorar to the last arrival. On this time interval, the service
capacity is of the order ofna — o). Hence the maximal dater should be of the order of
maxy, {pjbj,k% + (na — O’)% — (na — o)

It is now natural to introduce the following function :

f(o,n) = Loonay {0 —na +np;Bj} + 1g<pnay max {pjbj7k% + (f - 1> (na — 0)} (3.18)

We now return to rigor and consider the netwdiN" (E) with input { E(k)}>._, whereE (k) =
E(k)forallk > —nandE(—n) = E. Thatis, if we denote by %) andv(¥)” the concatenations
B (B}, {o®) (—n+1)}, ..., {c®(0)},...) and({v®)(E)}, {v®) (—n+1)},..., {rF)(0)},...)
respectively, then

INY(E) = {o"(E),/"(E),N"}, with N" = (n,0,...,0).

The maximal dater of ordéen, 0] in this network will be denoted byg™ (E). Of courseZ™(E(n)) =

Z[_pq)- For all simple Euler networks = (o, v, 1), letY V) (E) = Zi(:])l o).
Let z,, be some sequence of positive real numbers, we define :

U’(n) = {Eisasimple Euler network such thet”) (E) < z, Vk # 5},
Vi(n) = {EeU(n), YV(E)2n(a—0), ¢V < L},

Proposition 10. Under the previous assumptions, there exists a sequgnee oo with 2= — 0,
such that we have

. Z”(E) _fj(Y(j)(E),n) n—o . (3.19)

EeVi(n) n

3.1.5 Computation of the Fluid Limit

We take a sequence of simple Euler netwafkse V7 (n) and denote byN" = JN"(F,).
Sincez, /n tends ta), we have

Oy — t/a, Vt, as.
Vk£j5>1, SEn@) - e vt as.
Vi,j, Pﬁj(t) — pi,jt, Vi, a.s.
We denote by, = YU (F,) € [n(a — b),+oc) and byT,, the time for stationj to complete
its ¢U)(F;,) first services in the networdN™. From monotonicity, we gef, < T, < . +
>z Y (F,). Hence, we havéim,, .o, 2 = 1, sincez, /¢, < z,/n(a —b) — 0. We first

suppose that,,/n — ¢ < +oo. ThenJN" is such thatoU)»(t) < L for t < T,. Hence
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M < Lfornt < T, so thats)(t) — 0, for all t < ¢. We see that this last fluid

I|m|t does not hold on the whole positive real line. Neveltiss consider the Jackson networks
with the same driving sequencesHEN" except for statiory where we take the concatenation of
({oY)(F,)}, 00,...). For this new network, the fluid limit for stationholds onR . and we can
directly apply Proposition 8. But it is easy to see thatfof T,,, this network and the original
Jackson networdIN™ have exactly the same dynamic. Hence, Proposition 8 appli¢s< ¢, so
that for eachk, the sequencéA ()"} converges u.o.c. to a limid(*) whenn tends toso, with a
similar result and notation for the departure process. We hath A = a1,

K
k=1

DO@) = AD@)AaDt with z® = 1@ fori # j andi@ = 0.
We can rewrite the first expression :
AO) = Apoilt Aa)+ ) pr DW ().
k#j

Hence with the notation introduced in previous section, axeh

AD@)y = DOty = gyt Aa) < Am(tAa) for t<( and i# 3,

Aty = Mpj(tAa) for t<C.
In what follows, we will consider the new Jackson networkaittd by taking as initial condi-
tion the state of the initial network at timg, and as routing and service sequences the rou-

ting decisions and (residual) service still unused at tinet This network will be denoted by
JN" = {", 7", N"}, with

~(0),n _ 0),n— 0 (0),n
5On _ {2() (BOMT) +1) = Ty 0500, )+2,...},
—(0),n __ (0),n (0),n
I/( ) = {VE(O)n(T )+1,V2(0) n (T, )_"_2,...},
NO»n =y 5On(T ),
and fori # 0,
—(i)n __ i)n _(@)n
o0 = {T() 2T DO (T, 427 }
—(i),n __ (),n (2) n
7/() = { D()n(Tn)‘Fl’ D()”L(T )+2, ..}’
N = AOn(T,) - DONT,),
(i) i
D@)ne— (D(Z),n(Tn) + 1)) —T, else.
We have :

lim LAY = lim LDOA(T,) = AD(C) = D) fori £,

n—oo N, n—oo N

lim L AGn(T,) = Ap;(CAa) and lim Lpon,) =0,

n—oo N n—oo N
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Hence, we have

Nn
7 — (A(a—()+,O,,Ap](CAa),,O)
SOny A,V
vi>1, SOn@) - a0y v,

Vi,j, P(t) — pigt, Vi

We can apply Proposition 9 with a parametethat depends on the quantity— ¢ :
— if { > a, then we havex = pje;, withe; = (0,...,1,...,0) with the one is inj-th position
and

Ty =PjTi-

Proposition 9 gives

(Fn) + na — pjmaxﬂi (3.20)

ok

n

Hence, we have
Zn(Fy) = (T —na+npiB;)(1+o(n)) = fi(T,,n)(1+o(n). (3.21)
— if { < a, we haven = A(a — ()P + Ap;Cej, wherePy = (po1, ..., po,x) and
T = A(a — Q)mi + pjm;icl.
Proposition 9 gives

Zn(Fn) +na—T,
n

— (@ —¢) V Amax [(a — i +pjﬂj’ig] .

p®
Hence, we have

, +
Zo(F,) = (1+o0(n)) max [pjbj,i% + (na — Tn)(% — 1)]

= fI(Tn,n)(1 +o(n)).

The cas€,,/n — oo corresponds tQ = co. Results until Equation (3.20) hold true in this context,
hence Equation (3.21) holds true.

Finally we proved that for any sequengg € V7 (n) with YU)(E,) = ¢, € [n(a —b), +oc) such
that(,/n — ¢ < +oo,

Zn(Fn) - f](Cmn)

n—oo

0. (3.22)

But the result holds for any sequenég € V7 (n). Consider any sequendé, € V/(n) and
suppose that

Zn(Fn) B fj(Y(])(Fn)v ’I’L)

n

=1>0.

lim sup
n—oo
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By extracting a subsequence {f,, }, we can replace lim sup by lim. Moreover by doing once
more an extraction, we may suppose M&)(Fn)/n — ¢ < 400 and for this subsequence, limit
(3.22) is violated. Hence for any sequerge we have

n—oo

Zn(Fn) - fj(Y(j)(Fn)v ’I’L)

n

0. (3.23)

We consider now a sequenég € V7 (n) such that

Zn(Fy) — fA(YW(F,),n)

Zn(B) — I (YV)(B),n)

> sup

= — €n,
{E€Vi(n)}

with ¢,, — 0. Thanks to (3.23), we see that (15) holds.

Remarkl1l In the stochastic framework of section 6.2, we see that agsons on the limits
(3.12), (3.13) and (3.14) are fulfilled. In particular, ifettsequence of simple Euler networks
{E(n)}> _isi.i.d, then we deduce from previous proposition that :

n=—oo

Z"E) - FYV(E),n)

n

n—oo
0

sup a.s.

{EeVIi(n)}

3.2 Fluid Limit for GPS Queues

The purpose of this section is to construct the stationamklvad at each queues of a GPS sys-
tem under fairly general stochastic assumptions, namafipsarity and ergodicity. This construc-
tion is quite simple in the case < 1 wherep is the total load of the system. In the case> 1,
we show that there are still some queues that can be stalfie foltowing sense : for any initial
condition the workload process of these queues couplesita fime with an unique stationary
workload process. For the unstable queues, we show theeegésiof a mean service rate and
give its expression in a closed form formula. To the best ofkmowledge there is no such result
available in the literature. With this work, the stability®@PS systems is fully understood.

The other application of this section will be linked to thdccation of tails in GPS systems
with subexponential service distributions in next chaptés are able to give here the behavior (in
the fluid scale) of the system on a “rare” event. We refer toniéset chapter for an exact notion
of what we mean by rare event. Note that the work of Dupuis aachd&han [38] [39] allows to
construct the transient fluid limit of a GPS system.

3.2.1 Construction of the Stationary Regime

Since we will make an extensive use of notation introducegidation 2.4, we repeat it here.

Consider the following model oV coupledG/G/FIFO queues. Each queue is served in
accordance with the Generalized Processor Sharing (GB@plitie, which operates as follows.
Queuej is assigned a weight’, with Z;-Vzl ¢’ = 1. If all queues are backlogged, then queue
is served at speegf. If some of the queues are empty, then the excess capacigdistributed
among the backlogged queues in proportion to their resesttights. All customers within each
queue are served in a FIFO order.
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More formally we can construct the workload of each queudsliasvs. Let{T2, 5, ¢, } be a
simple marked process, with, > 0 andc,, € {1,..., N}. The interpretations are the following :
customern arrives in the queue,, at timeT2 and its service time is,,. We will say that this
customer is of class, € {1,..., N} and denote by,, = T,f‘H — T4 the inter-arrival times.
We denote by [n] := Wi (T:A—) the workload of queué at time 72— with initial condition
Wi[0] = Y. The sequencé€Wy [n] = (Wit[n],..., W [n])} is generated by the recurrence

Wy [n+ 1] = h(Wy[n],on,¢n, ), n=0,1...

where the functiork is defined by the following equations :

WHTE) = WHTE-) + ol =gy (3.24)
M(t) = —ri(t) forTA<t<T{ (3.25)
dt +1
ri(t) = { Zzez(zz)(t)‘z’[ JEIE), (3.26)
0 j e I(t);
I(t) = {i, Wit) =0} (3.27)

Equations (3.24), (3.25), (3.26) and (3.27) show how to tansthe workload process of each
queue fort > T3
Note that we have

N
Z Wiln+1] = <Z Wiln] + o, — Tn> ,

the recurrence for the sum of the componentigf[n] reduces to the Lindley’s equation.

The stability of the GPS queues follows directly from thebgity of the single server queue
with input process{T/4, o, }nez, since the sum of the workload of each queue is exactly the
workload of this single server queue.

But if the single server queue is unstable, there are stiflesstable queues in the GPS system.
In this section we show this result by constructing the gpoading stationary workload of these
gueues.

We first recall some basic results on the single server quedeeier to Chapter 2 of [10]
for more details on the next result. Lg?, F,P) be a probability space with measurable fléyy
t € R, such thatP, ¢;) is ergodic. LetT'” be a point process defined ¢f, F). AssumeT“ is
simple and compatible witkd,}. We assume that this arrival process has finite intensiand
let the sequencéo, c) be a sequence of marks of the arrival process that desctibeantount
of required service and the class of custometet p = )\IE?F aloo] be the traffic intensity. The
process T4, o, c) can be obtained by the superposition of independent poattegses of finite
intensity (see Section 1.4.2 of [10]).

For theG/G/1/o0 queue, the evolution of the workload proc&gst) between two successive
arrivals is described by Lyndley’s equation :

W(t)=(W(Ti—)+on— (=TT, telTdTh), (3.28)

wherea™ = max(a, 0).
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Theorem 4. Under the stability condition
p <l

there exists a unique finite workload proc€3¥'(¢)}, ¢t € R, compatible with the flow#, }, and
satisfying equation (3.28) for atle R. This process is such that

n +
W(0) =sup | T, + Z o | -
n<0 i=0
Moreover, there are an infinite number of negative indigeand an infinite number of positive
indicesn such that

W(T2-) =0,

If the traffic intensityp is strictly larger than 1, there exists no finie-stationary workload pro-
cess{W(t)}, t € R.

Returning to our GPS model, if < 1, it is easy to construct the workload process of each
queue (compatible with,). Let {W(¢)}, ¢t € R, be the uniqué&— stationary workload associated
with {T4, 5, }.cz. The point proces& defined by

E(B) = Z VraemyLiw(ra =0}
neL

counts the pointg# at which an arriving customer finds an empty system. Cldaitycompatible
with {0;}. Let{U,}, n € Z, be the sequence of points Bf with the usual conventiotyy < 0 <
U1. Then we can construct the uniqiestationary workload procesgW!(t),..., W% (t))} of
the GPS queues using the mappilagve defined above on each cydlg,, U,1) with initial
condition0.

In the case > 1, we can still construct a workload process for the “stablégups of the GPS
system.

We are looking for a random variable > 0 which verifies the functional equation :

ZofO=h(Z,o,cr1), Pli-as, (3.29)

wheref = 0r1,, o = 0g, ¢ = ¢p andt = 71y. Recall that the mappinl was defined above section
and thatZ is a vector of sizeV. If there exists such a random variable with at least oneefinit
component, we define the workload sequefidén|} by

Win]=2Z060" necZ,
and the associated workload proc¢8g(¢)} by equations (3.24), (3.25), (3.26), (3.27), and with
W(TA-) = Wln).

The fact thatV (T2 —) is indeed the limit ag — T4, ¢ < T2 of W (t) follows from (3.29). We
refer to Section 2.2.1 of [10] for more details.

Indeed with the stochastic assumptions we made, the seg§i#ne(n|}, n > 0 is generated
by a stochastic recurrence as defined in Section 2.5 of [10] :

Wy [n+ 1] = h(Wy[n],on,cn, ), n=0,1... (3.30)

Moreover we are in the framework of Section 2.5.2 of [10]. Btete space in and< is the
coordinate-wise partial ordering afid= (0, ...,0). The mapping: is such that
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- 0 < h(W,o,¢,7), forall W € RY and(o,c,7);

- W < W'impliesh(W,o,¢c,7) < h(W',o,¢,7), forall (o,¢,7) ;

— forall (o,¢,7), W — h(W,0,c,7) is a continuous mapping frolRY to itself.
Hence we can use a Loynes ’ sequence (as in the single sepgrtodind a minimal stationary
solution to (3.30). However the Loynes variable associatét the stochastic recurrence will
not belong th{f whenp > 1. Some of its components will be infinite but we will show in the
next theorem that some components are finite almost surelyndke it precise, we need some
additional notation.

Let A\’ be the intensity of the point proce§%' that counts the points of7;4} with mark
cn = L. Let pt = XE, ,[o0]. We havep = S0, pf, see section 1.4.3 of [10]. We assume

TAL
without loss of generality that

1 N
P P
— << (3.31)
P! ¢
Define
1= pf
Ry = T—N .
SN o
ok
K = —
ki??’fw{w = R’“}’

S = {1,....K},

R = Z;gs‘f)j (1;;)])

We will show thatS is indeed the set of “stable” queues. This set is emptylifip! > 1, in this
case we takd{ = 0 andR = 1.

For anyk, we will consider the GPS system where queiles k are always backlogged, i.e.
forall j < k,

177, (K] .
dV[;t t) = —rM@) forTA <t<TA, (3.32)
wiE(T WHR(TA—) + o1,y (3-33)
. ¢ aIe
TJ’[M(t) 2 g1kl () @ i ¢ ®) (3.34)
0 j e IF(¢)
1 (#) {z <k, Wil (1) = o} : (3.35)

Note that for alll > k, we have? ¢ I¥](¢) for all t. The interpretation for it is that queues with
indice larger thark + 1 are always backlogged.

Theorem 5. Under previous condition on the input proceE”, o, ¢), we have the following
properties :
— there exists a unique finite workload procdgs/ V151 (1), ... WKIKl(t))}, t € R, com-
patible with the flow{é, }, and satisfying equations (3.32), (3.33), (3.34) and (Bfaball
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t € R with & = K. Moreover, there are an infinite number of negative indiaeand an
infinite number of positive indicessuch that

K .
S WHEITA) — 0.
i=1

— if K+1 < N, under the additional conditiogi—i > R, there exists no finitB—stationary
workload processW'(t)}, t € R for anyi > K + 1. For any finite initial condition

Y € RY, we can define the workload of each queuetfor 0, following equations (3.24),
(3.25), (3.26) and (3.27), and we have for K + 1

Wi (t) ~ (p' —#'R)t ast — oc.

Proof.

If p < 1,thenK = N and the result follows from previous construction on thde&yc

We assume now that< K < N — 1. The proof will proceed as follows : for ea¢gh< K, we
will show that there exists an unique finite workload prod@gs:1*I(¢), ..., W (t)) compatible
with the flow {6, } and that corresponds to a GPS system where queues, ..., N are always
backlogged. Moreover there are an infinite number of negatidicesn and an infinite number of
positive indices: such thafy~,., WHF(T4-) = 0.

For simplicity we will noteW >l (t) = W (0) 0 6, := Wk o 4,

Fort > 0, we will denote byWB[f](t) = (W;’[k} (t),... W{ﬁ’[k](t)) the process that satisfies
equations (3.32), (3.33), (3.34) and (3.35)for 0 and with initial conditioni:'*(0) = V.

The first step is easy. We hatec S, hencep' < ¢'. Thanks to Theorem 4, there exists a
unique workload procedd’! o ¢, that satisfies

= +
W) = (WHEH ) +op =o' —TM) T te [T Th)).

We have clearly’ [l = 11 and we haveV LT+ —) = 0 for infinitely many positive or
negativen.
For the second step, let define the following random variable
=1 bt
= lygwsey + =5 L=y
{ >0} S & { }

We have
P(WHI = 0)
Zj;ﬂ ¢’

Now consider the following recursion

W2(t) = <W2<Tf’2—> +on— ¢ /

+
~ A A,2
Ay 720 Qudu> . temM T,
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We have

hence we have € S implies thati¥’2 is stable in the sense of Theorem 4. We deniteo 6, the
unique workload process compatible with the shift.

We return now to our GPS system where queli&s. .., N are always backlogged. Observe
that the following functions

Wol’m (t)o6_, and W2 [2}( t)ofH_, areincreasing im.
Moreover we have (just by looking at the service rates)

WolB @) oo_, < wit) oo, 220 Wil

And since) " (u) < WM () < W1 (u), we have by looking at the service rate again,
W2 () 0 0_y < W2(t) 0 0_, =20 W2

Hence we proved that

WoPy oo, = iRl < il
Wolltyoo_, =2 W <W?
where(W 2l W2[2)) 0 6, corresponds to a GPS system where quéues , N are always back-
logged.
We have that i? (W11 + W2 = 0) = 0 thenp® > ¢?R,. This follows from the fact that if
WLl 4+ W2 > 0 P-a.s., then we have

[N}
v

Pt +p

t—oo t
= p' +¢°R.
In our case, we have? < ¢?R,, hence we havél b[!! + 1772) (T4 —) = 0 infinitely often, and
the same result holds fgFV -2 + W22 (T4 —),

We now show uniqueness of this solution : consider any fimtet®n (7;, Z,) o 0;, then we
have

lim t(¢>11 ; + ¢*72(u)) d
0 {WL(u)>0} r(u U

(W ,[2] +W2 [2}> (t) < (Wl (2] —|—W [2]) t) < (Wl i[1] +WZ2) ®).
Let
v = inf {t >0, (Wl i WZ2> (t) = 0} .

With the same kind of arguments as above, we héﬁéé’lm + Wi) (t) > 0forallt >0,

implies thatp' + p? > p' 4+ ¢?Ry. Hence we haver < oo P-a.s. Thus for any finite initial
condition(Z;, Z,), there exists a finite time such that

vt > v, Wy Pty =Wy and, Wity =wiPa).



54 Chapitre 3. Fluid Models

In particular takingZ;, = Wh? and Z, = W2, we have that(Wol’[z](t),Woz’[Q} (t)) and
(WLE2(1), w2Bl(t)) couple. This in turn implies the(tV_Vé’l[z] (t), Wé’lm (t)) and (WLBl(¢), w2l (t))
couple. And we have for sufficiently large

7, = WZ[% (t)ob_ =WhR()obo_, = WHE,

Z, = WiPt)yoo_, = W>R(t)oo_, = W2,
This finishes step 2.

Fork < N, we assume that/ k=11 whlk—1] gre given. We construct the random va-
riable

. 1
T = N - .
2 j=1 P gty

We have by construction

k—1 N
Z ¢Jfk1{Wj,[k—1]>0} + fk Z gﬁj == 1,
j=1

ik
and sincep’ i o 0, = r7[F=1(¢) is exactly the service rate of quetie’*—1],
E [gaff’f]t{wj,[kflbo}] — .
This implies that
E |i*] = Ry. (3.36)

We consider the following recursion

+
- ~ N Ak
Wk@t) = (W’“(T{"k—) +of — ¥ /[TM ) rkoeudu> , te [T T,

We have

E%A,k [/ n fk 9} Hudu
[0,777)

hence we havé € S implies thatii’* is stable in the sense of Theorem 4. We dentteo 6, the
unique workload process compatible with the shift. Now theopis similar to step 2. We have

that Woi’[k] o f_; are increasing im and that

Wyt oo, < Wy Nweo, vi<k-1,

Wg’[k](t) (¢} H—t < Wéf(t) o) H—t-

Hence we can show existence and then uniqueness by a coapiimgent.
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It remains to show that queues that are nofiare unstable under the additional condition
pK+1

W>R.

First assume thakl' = N — 1. In this caseg’)—x > R implies thatp > 1. Hence thanks to
Theorem 4, we know that there exists no firlite stationary workload proces{szﬁi LW}
t € R. Now for any finite workload proceg@'(t),..., WY (t)) of queuesl, ..., N fort > 0,
we have for alk < N — 1,
Wi() < Wyl 0, v >0,

This shows thaW™ () — oo ast — oc. Indeed we havaV™ (t) ~ (p — 1)t = (pV — ¢" R) t.
In this case, the proposition follows.

We assume now th f(i > R (with the possible value 0 fak’, in which caseR = 1). This
ensures that > 1. Thanks to the ordering of the indices, we have

N ,
Zi:K—l—l P’

N .
dick1

If we replace the classek + 1,... N by an unique class with weiglEf.\iKJrl @', the work-
load obtain for this virtual class is clearly a lower bound thee sum of the workloads of classes
K +1,... N. The argument above applies to this virtual class whichivesemean service rate
SN 4.1 ¢'R and we have for any finite workload proce@¥(t), ..., WN(t)) defined orR .
(we denotel(t) = {i, W'(t) = 0}),

>R

1 [t oK+ ... N N ‘ N
limsup—/ 4 Tt du < Z 'R < Z o
0

t—00 ZJ'EU(U) ¢’ i=K+1 i=K+1
Hence for: > K + 1, we have

1/t ¢ . ,
li ~ | =————du<¢ L
im sup " /0 Zjef](u) o du < ¢'R < p

t—o0
Hence we havaV'(t) — oo ast — oo for i > K + 1. From which we derive that

I g . 4
1m—/l———fmzw3<m
t=o0 t Jo Djeawu) ¥’

and then
Wi(t) ~ (p" — ¢"R)t ast — oc.
O

Remarkl2. 1. We imposed;% > R in order to avoid the critical case (corresponding to
p = 1inthe single server queue).

2. The constant&” and R already appeared in the work of Borst, Boxma and JelenK@uf
But the approach of these authors is completely differehéyTassume the existence of the
mean service rates for each flow (see their Appendix C) anddbéve the equations they
must solve. They use these equations to get the so-calledriegalities.
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The study of the case > 1 is indeed interesting in itself ! Consider a GPS system wigigivt
o', ..., o~ but with greedy classes, i.e. the clasés- 1,..., N are continuously claiming their
full share of the link rate. The other classes behave “ndygale. the input processed', o)
satisfy the stationary ergodic conditions. The previoeotbm gives us the following result

Proposition 11. The subsystem consisting of queles. ., K is stable in the sense that there
exists an unique stationary workload process if

LK
N LA O V) (3.37)
A Y
Moreover there exists a mean service rate for the greedyegjen the following sense : for any
finite initial conditionY’, let Iy (t) = {i < K, W{.(t) = 0}, then we have
. 1

lim — T & - =

t=oot Jo 30y W' higry(u) + itk O
Hence the mean service rate of greedy qugisep’ R

In the case

o
max — > R,
i
there is at least one of the queuks. ., K which is unstable.
Indeed, it is not very hard to see that the system describ&tdposition 11 belongs to the
monotone separable framework. Hence we computed the congt@ that corresponds to this
system. We can rewrite the stability condition (3.37) atofes

E9., [0l
Ay(0) Z)\max{ETA 0] (1—Z¢Z> TA JO {Co )] } <1,

J

which gives the explicit formulation of(0).
Let F'(S1,...,Sk) be the time to empty the system described in Proposition &t timeo,
the load of queué is S;. The mappingF is clearly continuous and satisfy the following scaling

property :
Vk >0, F(kS1,...,658k)=rF(S1,...,5K).
Let S;(n) = ZJ 005 1{c;=iy, We have

Zon(@)  _ F(Si(n) _ P (M)
! !
7(0) = F(ES.4 [001{co=i}])
Hence we have by identification
_ =Y ¢ g
F(S1,...,5k)= max ¢S+ Sy+---+ S+ S;op- (3.38)
j=1,...,.K oY

This is certainly not the most direct way to compute the magpi. Indeed a simple computation
would have given the expression (3.38), from which we wowdehbeen able to computg0).
Then the stability condition\y(0) < 1 would have ensured us that there exists a finite minimal
stationary solution. Anyway with this approach we would hate been able to prove the second
order ergodic results and the coupling-convergence me@ualparticular uniqueness).
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3.2.2 Rare Events in GPS Queues

In this section we consider a stable GPS system with 1. W.l.o.g we assume that the or-
dering (3.31) holds We are interested in the effect of a \eégyservice time of sizer arriving
in queue; at time T} 4 Hence we consider workload process given by equatlond)ﬁz 25),
(3.26) and (3.27) fot > T/, with initial condition (W (T —), ..., WN(T;%-)), i.e. in the
stationary regime but we replaeg by a deterministic value. We assume W.I.o.g thﬁTOA’j =0
and we denotéV {7} (0, t) = (Wit (o,t),...,WNAi}(0,t)) the corresponding workload pro-
cess.

LetT' (o) > 0 be the time for queugto empty. On the intervdld, T'(o)], the queug is always
backlogged. Hence we are exactly in the situation of Préiposi1 with queug as greedy queue
and if

max 2 > 1‘27?%

i#j @ zi;éj o}
then at least one queue# j begins to grow on this period of time. Hence the situatiorinét
T (o) is that some queues are very big and will remain backloggeal Ifing period of time. Indeed
we are still in the situation of Proposition 11 but this timighaa set of greedy queues.

It is now quite natural to introduce the following notatiooresponding to a GPS system
in which queued1,..., N}\D are greedy. Given a sé& = {d;,...,d,} C {1,...,N}, with
dy <--- <d,, we still have

d1 dn

p p
WS...SE_

Hence results of previous section apply and we denote

d i—1 d
pl 1= p”
K(D = max 7
(D) i:l,...,n{ Zé TaR DY J¢D ¥

S(D) = {d17"'7dK(D)}7

1
o - w( Z”)

jES(D

with the conventiory_? ; = 3" = 0.
In the caseD = {;j}, we will use the notatiorij) instead of({j}). From the proof of Theorem
5, itis clear that all queues< j remain stable whepis greedy. Indeed we have

N

Y o <1= R >p. (3.39)

i=1

In view of results of previous section, the interpretatisritie following. Denote byV % (D) the
stationary workload of queug& when queues that are notincontinuously claim their full share
of the link rate. Then we have

d; € S(D) = W% (D) < oo. (3.40)
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Note thatl¥’% (D) is an upper bound for the stationary workload of quéyéV % (which is well-
defined ap < 1). Hence (3.40) provides an upper bound that is independemhat happens
in queues that are not iD. In other words, the queug is insensitive from the point of view of
stability to the queues that are notiin In particular if

P <R, (3.41)

then queué is insensitive to queug Note that it is always the case%} <1.

We proceed now to the analyze of the effect of a very big sereictype; when condition
(3.41) is not satisfied. We will give a superscript! to the constants that are calculated in this
case. We denote

NVE = N —[S()

O I

' PIR(j) — pI’
k,{j _ k . )

i v R
4 = /O (b =" () " du,

L= {1,...,N\(SG) U},
o=

We have the following interpretation for these constantteim of fluid queues (which will be
more detailed in next proposition). Quepempties at timg"l{”o and at this time, the workload of
queuest € I; reaches Ieveif’{”o—, whereas other queues are empty (in the fluid approximation)

Hence at timg‘"l{j}a, queues: € I are backlogged and will have a service rafeR(I,), whereas
other queues including are stable. Then define

i-{J}
AU 0 G : “1
() = wompl ok}
i.{i}
{7} — inf 1 {7}
’ félh{wz%uo—pi}”l |
RV p - o _ |
) = ¢ RUINY 6 e iy
" ! L
5 = /O (b =2 () " du

L= m\{i}.

The interpretation is the following : at timﬁz{j}o—, queues{zéj}} empty whereas queues In
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reach levels: 17}

o. More generally we define

i,{j}
B - wilamm)
i{j}

{ith} - m{w}
Ipyn = Ié\{iéj}}ﬂ

PO = FRID 1 ey
k{} fidh k_ k. A{5} i
s = [ o)

Forallk € {1,..., N}, we defined a function®{7}(¢) for t < o/(1 — p) that we extend for
t>o/(1—p)byy®l}(t) = p*. We can now define the function

) t . +
W (o) = / (pk _ ,Yk,{y}(u/g)) du i #k,
0
. . t . . +
w0ty = (o4 [/~ oRG)M)
0
Letwl}(0,t) = (wh}(0,1),..., w1} (0, t)) be the multidimensional function.

Since the sequence of s€tf } is decreasing, it is easy to see th#i(tl,,,) > R(I;). Indeed
Figure 3.1 shows what the functien’! (, .) looks like for fixedo.

o
/Q),
\ ‘ N
<L | V4
ziﬂ{J}a
@ﬂ?&%\
fl{j}a f2{j}a e 1%;)

FIG. 3.1 — functionw’} (o, .) for fixed &

Proposition 12. Under previous condition, we have for any constant > 0, asn — oo,

wiit 1) — wlit ¢
| WO 0|
o>na,t<p n

a.s.
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Proof.
We consider a sequeneé& such thav™ > na. We suppose that

O,TL

— — o< +oo.
n

We will show that
wiit(gn — wlit(on
. (o™, nt) —wVi (o™, nt)

0<t<p n

— 0,

which is sufficient to prove the proposition. For simplicitye denoteW;\”} (t) = Wi} (o™, ¢)
andw? (t) = wlit (o, 1).

We first assume that < co. LetTT* be the first positive time at which queyi®ecomes empty,
ie queuey is backlogged oif0, 77']. Hence we have thanks to the result on the mean service rate
of Proposition 11,

lim ”7@1)

n— 00 n

= o -oro (m T <0

n—oo N

n

from which we deriveim,, TTl =o/(¢"R(j) — p’). Now for0 < t < o—fl{j}, we can apply
Proposition 11 and we have

L,

P8 (o o R, VA
b, -

Wt o4 (o) - /RGN

We have shown in the case< oo that for all j,

Wéj}(nt) — w;gj}(nt)
n

sup — 0.

o<t<fito

Moreover, we see that at tini*, the queues € I; are backlogged. Defing? the first time at
which one of these queues become empty. Using Proposition thie same manner, we obtain

thatTy /n — o7} and that,
) — wl (nt)

n

sup — 0.

o<t<fito

Hence in the case < oo, the proposition follows by iterating the same kind of argunts.
In the caser = +oo, sincel]* > o™, we have for sufficiently large, we havel]* > npg.
Hence for allk # j, we have with the same argument as above that

Wf’{j}(nt) — wﬁ’{j}(nt)

n

sup — 0,

0<t<p

and fork = j, we have for alt < 3,

35} ) g -
M BZT (- g RO

This concludes the proof. O
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Subexponential Asymptotics

4.1 Introduction

Subexponential distributions are a special case of heaalgdtdistributions. The name arises
from one of their properties, that their tails decrease nstoely than any exponential tail. This
implies that large values can occur in a sample with nonigidg probability and makes the
subexponential distributions candidates for modelinggibns where some extremely large values
occur in a sample compared to the mean size of the data.

4.1.1 Some Definitions and Notations

Notation

Here and later in the paper, for positive functiohsnd g, the equivalence (z) ~ dg(x) with

d > 0 meansf(z)/g(x) — d asz — oco. By convention, the equivalenc&z) ~ dg(z) with

d = 0 meansf(z)/g(z) — 0 asxz — oo, this will be written f(z) = o(g(z)). We will also use
the notationf (z) = O(g(z)) to meanlimsup f(z)/g(x) < oo andliminf f(x)/g(z) > 0.

In what follows, ¢(x) denotes a function such thetz) ~— 0. The functione may vary from
place to place; for example(z) + e(x) = e(x), e(x)(1 + €(z)) = €(x), etc. Similarly, we will
write e(z, y) for e(x) + €(y), ore(z)e(y), etc.

The tail of the distribution functiod” is denoted (z) = 1— F(x). We recall here some definitions

Definition 1. A distribution functionF’ onR. is long tailed if for anyy > 0,

Fz+y)~F(x) as z— oo.

We introduce a proper subset of the class of long tailedibligions, the class of subexponen-
tial distributions denoted b§ :

Definition 2. A distribution functionF” on R, is called subexponential #+2(x) ~ 2F (x).
For basic properties of subexponential distribution sdé &#ud [40].

Definition 3. A positive measurable functigfion [0, +00) is called regularly varying with index
aeR(f eR(a))if

lim f(tz)
z—oo f(x)

=t* forall¢t> 0.

61
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Definition 4. A positive measurable functidnon [0, +o0) is called rapidly varyingk € R(—o0))
if

lim lt)

=0 forallt>1.
v—c0 h(z)

For example, Weibull or lognormal random variables havediatributions that are rapidly va-
rying.

For a distribution functior on the positive real line with finite first momenf = [ F (u)du,
the integrated tail distributio®™® of F' is defined by

Fz):=1-F(z) = min{l,/mﬁ(u)du}.

We will need the following lemma later on

Lemma 15. If ¥ is long tailed, then there exists a non-decreasing integéwad functionV, —
oo such that for all finite non-negative real numkemwe have

Ny
ZF(QE +nb) =0 (F’(z)), asz— .

n=0

Proof.
For any integen, we have (for sufficiently large)

F(z) = / F(u)du > bF(z +0b)+bF(z +2b)+---+bF(x + nb) + / F(u)du
T z+nb
= bZF(:ﬂ + kb) + F’(x + nb).
k=1
SincefF™ is long tailed, we have for fixed, asr — oo,
Sie P+ k) o
F(z)
from which the lemma follows. 0
We present now what we call Veraverbeke’s theorem.d.elbe a random walk with negative
drift, namely { X; };cn is a sequence of i.i.d. random variables such Bia;] = —u < 0. Let
define
So=0, S,= X;, and, M =sups,.
0 ZZ:; nZIS
The conditionE[X] = —u < 0 ensures that/ is a.s. finite. Assume that there exists a distribution

function F on [0, co) such that

P(X; > x) ~ dF(x) withd > 0asz — oo.
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Theorem 6. If F'* is subexponential then the random variaBlleis subexponential and we have

P(M > z) ~ %FS(x) asz — oo. (4.1)

This result was first proved in different contexts by Borovk20], Cohen [27], Veraverbeke
in [84], Pakes in [77] and Embrechts and Veraverbeke in [#gre are now probabilistic proofs
of this result see for example the work of Asmussen [6] or 2a¢lB5]. Finally, we remark that a
proof of the converse of Veraverbeke’s Theorem - thatffoX] finite and negative) the relation
(4.1) implies the subexponentiality éf - is given by Korshunov in [66].

The fact that equivalence (4.1) is a product of the integra#dl and of the inverse of the
drift, has a very nice queueing interpretation. Considey imdependent sequencéX’, X; };cn
and{Y,Y;};en of i.i.d. random variables. Define

Mxiy = sup Y (Xi+Y) and My gy = sup > (Xi +E[Y]).
n=Yi n=Yi

Assume thaP(X +Y > x) ~ P(X > ) and that the tail distribution ok satisfies the condition

of Veraverbeke’s Theorem. Then we have by rewriting (4.1),

]P)(MX-i-Y > 1‘) ~ ]P)(MX-HE[Y] > x) asr — 0oo.

This is an example of reduced load equivalence : the tail psytiins of the workload is domi-
nated by the heaviest input and is asymptotically the santbeasne of a system fed by this
heaviest input and in which we replace the rest by its meais Rihd of equivalence has first
been understood by Agrawal, Makowski and Nain in [2] for ayl@rserver with fluid inputs and
generalized to more general input by Jelenkovi¢, Monviitl@and Zwart in [63]. For other results
concerning various models of single server queue, we refétret works of Zwart [87] and Likha-
nov and Mazumdar [69], [70]. In a network setting, we will shthat the same kind of results
hold, the heaviest tail distribution dominates the asyitiggolf different stations in the network
have service times with the same kind of tail distributidrert each of them will contribute to the
asymptotics. New arguments have to be found to derive thaptsyfics.

4.1.2 The Single Big Event Theorem

In this section we summarize results from the work of Bacesltl Foss [14].

A corollary of Veraverbeke’s theorem already proved by Aharam [3] (in the regularly case)
and by Asmussen and Kluppelberg [7] states that, inZ¢G1/1 queue, large workload occur
on a typical event where a single large service time has takase in the distant past, and all
other service time are close to their mean. The main restii®Eection is to extend the notion of
typical event to subexponential monotone separable nktndarge maximal daters occur when a
single large service time has taken place in one of the s@fnd all other service time are close
to their mean.

We recall assumptions of [14], the notations were introduneSection 2.1.

(1A) : the sequence$(,} and{r,} are mutually independent and each of them consists of
i.i.d. random variables.

(AA) : For alli,
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where the random variablég(j) are non negative, independent of inter-arrival times arath su
that the sequence of random vect()ks(l), . Yi(’")) is i.i.d.; general dependences between the
components of the vecthVi(l), . Yi(’")) are allowed. In addition

0
Z0,)(Q) > max VY as.

Consider a distributiorf’ onR ;. such that the following holds :
1. F is subexponential, with finite first momeif = [° F(u)du.
2. The integrated tail distributiof™ is subexponential.

3. Forallj=1,...,r
P (Yl(j) > ac) ~ d9DF (),

with 3. d9) > 0.
We make the following assumption on tb’(éj )’s,
(H): P <Z v > x) ~P (x> 2) ~ 3P (V) > 1)
1 1

Theorem 7 and 8 of [14] state

Theorem 7. Let Z be the stationary maximal dater of some monotone separaveonk. For any

randforj=1,...,r let{Kj .} be asequence of events such that
. . - (,) _ -
1. for anyn andj, the eventk;, , and the random varlabléf_(]n) = f;l( n) Jg)(—n) are
independent ;

2. for anyj, ]P’(K%@) — 1 uniformly inn > N, asz — oo.

For all sequences,, — 0, we denoter,, = =z + n(a — b+ €,). Then, asc — oo,

K
P[Z > 2] ~ PIZ > 2, YY) > 2, K], (4.2)
j=1n>N,

and
P[Z > x] = O(F’(z)).

The equivalence (4.2) will be the key relationship for thaaasymptotics in the next sections.
It shows that for the monotone separable network also, wieertbe maximal dater is large, at
most one of the service times is large whereas all other aeemaderate.
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4.2 Asymptotics of Subexponential Max Plus Networks : the $t
chastic Event Graph Case

This section is focused on the derivation of the tail asyriggmf the steady state end-to-end
response times in open, single input, stochastic eventhgrgf], a class of networks which are
known to admit a (max,plus)-linear representation.

To the best of our knowledge, within this class of networksjar subexponential statistical

assumptions, exact asymptotics are only known for theviatig special cases :

— the case of dimension 1; this type of asymptotics is knowRade’s [77] or Veraverbeke’s
theorem [84], and most often expressed as a property of thimgvar response times in the
G/G/1 queue (this can also be seen as a property of extreraaddm walks) ;

— the case of irreducible event graphs [17], a first class tforks with general dimension
that contains the G/G/1 queue as a special case;

— the case of tandem queues [14], a class of reducible evaphgwith a specific linear
topology, which also contains the G/G/1 queue as a speal ca

This section is based on the paper [16].

4.2.1 Stochastic Assumptions
Model Description and Stochastic Assumptions

For now on, we consider an event graph as described in Sezi#o, withm < K timed
transitions, namel§;;..q = {t(1),...,t(m)}, satisfying the assumptions in Property 3, and with
associated recursion :

of dimensions < K L. This means that the matric¢sl,,, B,,} and vectors that are used in the
recursion are obtained via two applicatiohandg such that :

A . RT — M(s’s) (Rmax)
o= (c%...,0™m) Alo),
B R — M) (Rmax)
o= (c%...,0™) B(o),
via the formula
B(¢n) = Bn
with ¢, = (o0, ..., oil™).

We now assume that the following independence assumptilois ho

Assumptiorl. (IA) The sequence&(,} and{r, = T,+1 — T,,} are mutually independent and
each of them consists of i.i.d. random variables.
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The following assumptions are also assumed to hold
E(r) = A" =a < oo, E(a(t)(i)) =p) <00 Vi=1,...,m.

This implies in particulai£(Z|y ) < oc.
Under these assumptions, considering the matrigg#, k), we have for ali andy :

(A-i(ky k) @ Aok, k) @ - © A_p(k, k))*)
n

— v both a.s. and il

where~,, is a constant referred to as the top Lyapunov exponent ofatyeence A, (k, k)}, see
theorem 7.27 (p. 325) in [11].
In addition, we assume stability of the system, namelk;. v, = v < a (see [13]).

We will also adopt the following notations :
— if j € €;, we denotey(;) = i ;
— for all transitionsi, the subset of transitionssuch that there is a directed pathdrfrom ¢
to j is denoted> i ;
— finally, we define

Ty = max ).

The subexponential assumptions are now the following :

Assumptior?. (SE) The service times®(*) are independent r.v., with respective mé4f . There
exists a distribution functio” on R, such that :

— (SE.1) F is subexponential, with finite first moment.

— (SE.2)The integrated tail distributiodr’® is subexponential.

— (SE.3)The following equivalence holds whantends tooo :

P(O‘i(i) > z) ~ dOF(2),

foralli=1,...,mwith 37", ) = ¢ > 0.

Fori ¢ Tiimea, We will denotevk, ot = 0 andc¢’ = 0. Under(SE.1)and (SE.3) we have (see
[17] or [51]) :

Lemma 16.

K K
IP(Z ok > 1)~ P(linkziXK o > 1)~ Z &F(x).
k=1 - k=1

Preliminary Results

Lemma 17. For any event graph as described in Section 2.2.2, therésesgne set&’; such that
U; X; = [1;s] and

() — k _ k
By = @®0n—mj’gm20n.

J keX; keX;
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Moreover,Y; there exists only one integéf;j) such that :

(Ap)RGHFGD) > i
(Ap) k0D > 5
(B,)F0) > 57

The following two properties hold (referred to as (AA’) inattiollows) :
Zi=Zjy) = EB ® o} = max Z oy, (AA-1)
J keX; g keX;

and, when denoting b the point process with all its points in 0

0
Zino)(Q) > mgxgaf. (AA-2)

Proof.
The first part is proved in Section 4.2.3. Thanks to Lenthave have

Z; = max BZ-(j) = Bi(s),
J

and for the second part :

Zin(Q) = max [(A0® -+ © A1 ® BY)Y| = (A @+ ® Ay © Bo)
> (A) RO g (A FDRD) 4 (B, )EG)
> oy +-+o) +ol,

for all j. a

Lemma 18. For all positive integerd., let

Sp = Z[L(n—1)+1,Ln] (Q)

We have
Ln m Ln
k2 k
max Z o; <85, < Z Z oy (4.3)
i=L(n—1)+1 k=1i=L(n—1)+1
Proof.
The firstinequality follows from (AA-2). The second onelfaks fromZ; = max; Zkeﬂg af <
> kef15) 0 » @nd the sub-additivity of. O

We will assume that assumptio(i®\) and(SE) hold throughout this paper without restating it.
Moreover N, will denote a non-deceasing integer-valued function tegdd infinity such that for
all finite real numbers,

Ny

ZF(% + nb) = o(F’ ().

n=0

The existence of this function follows from the fact thét is long-tailed (see [14]).
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Proposition 13. Let Z be the stationary maximal dater of the event gragh= lim,, .. Z|_,, (-
Foranyx and forj =1,...,r let {K%,x} be a sequence of events such that

1. for anyn andj, the evemKﬂ;,x and the random variable{n are independent ;
2. for anyj, P(K3,.) — 1 uniformly inn > N, asz — oc.
For all sequencesﬁ;,j =1,...,s, tending to O, put

oo s
Al =Ko, > o tna— ), A= () AL, and 4, (] 4L
n=N_ 7j=1

Then, ast — oo,

P[Z > 2] ~P[Z > x, Ay] ~ P(Z > x, Al

Proof.

The proof is omitted but uses the same arguments as the pfddfemrem 8 in [14]. The
only difference lies in the fact that Condition (AA) in [14hk to be replaced by (AA), defined
in Lemma 17. But under (AA), (7) of [14] still holds as showmliemma 18, which is enough to
prove the desired result. a

4.2.2 Exact Tail Asymptotic

Theorem 8.
S Ci s
P(Z >z) ~ —— | F'(2), 4.9
(2 a- F<>z'>>
with :
Ty = max g
Proof.

For the sake of simplicity, we give a proof in the case of camisinter-arrival times only.
In fact, it was shown in [14] Section 7.3., that the resulieaxds to the stochastic framework we
introduced.
Lower bound :
Thanks to Proposition 13, we have

P(Z > z) ~ i ES:IP(Z >, AL ).

n=Ny j=1

We have to find appropriate sequenéés), .} and {1, }.
For all j, we have(B_,,)*) > ¢/  Hence we have

Z>0) , 4+ (A10A 5®...0 A _p)®k0) —na. (4.5)
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Consider the events

Koo = {(A—l DA L@ ... QA 1)) > n(T) - 77%)} :

and choose a sequen@fk — 0 such thaﬁP[Kﬂ;,w] — 1 uniformly inn > N, asxz — oo. Then
from (4.5), we have

P(Z > w,Aim) > ]P’(a];n >z +n(a—vy+ nﬁ;), a{n >+ na— n(F(Zj) — nﬁl))
> (1+o(1)P(c?, >z +n[a+n) —min(y,Tsj)]).

V

But we have for allj, I' > ;) < ') andy = I'(>1).
Hence we get an equivalent {ﬁ%?s(x).
Upper bound :

We have

S
P(Z >z, Ay) :Z P(Z > z,07, >x+n(a—7+n2),K£7n).
Jj=1n>Ng

As

]P)(Z > x,a{n > T+ n(a -7+ 77”)7K:{:,n) < P(Oj—n > T+ n(a -7+ Un)),

we have an upper bound {i + o(1)) —=— [ F(y)dy.

) a—l'(>1) Jz
We consider now the cadg. ;) < I'i>1).
We then have the following decomposition :

Z = max {Z[—n—i-l;O};Iilf*é([(A—l ® @A ppr1 @ B_yp)® = (n+ k‘)a]}
= max{U,;V,},
V, = max {(A_l R QA1 ® B_n)(s) — na;

max[(A—y @ @ Ay ® B_p)®) = (n+ k‘)a]}

= max {Z}L; Zfl} .

Thanks to Lemma 19, we have? < Z! + R, whereR,, = Z_oo,—n—1] is @ random variable
independent o6’ . Hence we have

Vo>z = Zl>x or Z2>u
= Zl>az or Z'+R,>z
= Z'+R,>uz.

Hence

P(Z > x, Al ) < P(max{Z, + Ry, Up} >z, A ).
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We will denotePA, = A_ 1 ®---® A_,11. We have then

7z} = max[ZZ, 22D with
ZZ) = max[PA®) 1+ (B_,)%] — na,
i€[>]
ZZ)° = max [PA®) + (B_,)%] — na.
i€[>j]°

SinceU,, < Z a.s.,P(U, < z) — 1 uniformly inn asz — oo. Since the distribution oR,, =
Z|_o0,—n—1) does notdepend on R, /n — 0in probability. Due to the SLLNmax,-E[Zj}C[PA%S’i)+
(B_p)D)/n — ¢; < andmax;c> [PASLS’i)]/n — L5 Fori € [> j], we have(B_,)® <
o’ + Y s 0F . We denotes, = 3, 0¥, we have(; /n — 0 in probability. Therefore, there
exists a sequenag, | 0, ne, — oo such that

P {Un < 2, Ry < nep, max [PAS) + (B_,)D] < n(y + ),

i€[24]°

PA(s’i) <n(I'>; n)s < n 1
zren[g)y(}[ n ]—n( (Zj)—i_e)gn—ne}_)

uniformly inn > N, asz — oo. Denote the latter evemf,{vx. Fori € [> j]¢, the random variables
(B_,)® ando’  are independent, hendé), . is independent of’ . Moreover, observe that on

K3}, ., we have
{max{Z! + R,,U,} >z} = {Z}+R, >z}
C {n(y+e) —na+ Ry >z U{n(l ) + ) +ne, + o +ne, —na >z},

Putnﬁ; = —3¢,. Then
P(Z >z, Al,) < P(R,>z+n(a—v—en, K,{@)]P’(a{n >z+n(a—vy+1))
+P(0”, >z +n(a—T(sj) — 3en), K7 )
= o(D)P(’, >z +nla—v+n)))+ (1 +o01)P(c’, >z +n(a— L5+ ),

and the desired asymptotics follows. O

4.2.3 Two Technical Lemmas

Proof of Lemma 17.

The first property is a mere rewriting of the definitionigf = ag(n)* ® b. Remark??, which
gives the relation between the matrices and j, allows one to establish the last properties.
Indeed, the maximum ifv;)®) = max;(a;)®7) is on the diagonal. Moreover, we haiz ) F*) =
max;[(ag) ®V + (a1)®P] > (a1)**), which ensures the existencekdfj) such thay B,,) () >
o}, and(A,,)*):k0) > &) because the diagonal termsmfare diagonal terms of too.
Moreover, we have

@)% = max{(ap)* + (@) )

(@) -+ () o
(al)(k,k)

A\VARLY}
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and then, we haved,,)s+0) > o7
O
We will denote fora > 0 andu < v :
Z[u v] = max |:(D[i+l,v} ® B,)(s) — (v — z’)a .

u<i<v

Lemma 19. We denote fon > 1:

Zrlz = (AO R QA 11 ® B—n)(s) — na,
Zy = max[(Ag @ ® Ay 41 @ Bon)Y — (n+ k)al.

We have then
Z2 < Z2 4 Zi o n
Proof. We have only to prove that
Z2<ZE 4 2 o),

with Z? = max;>1[(A_1® - @ A_, 11 @ B_p_1)®) — (n+k)a]. We will assume that > 1
in what follows and we denote :

Dy = A ® - QA _pi1,
DBy = Di_ppi1,-n-1® Bn—t,
782 = (Dy®A_, @ DB)® — (n+ k)a.
With this notation, we hav! = (D; ® B_,,)®) — na andZ? = max;>[Z*?]. We have then
752 = max[D? + (A_)@) + DBY] — (n + k)a
Z?]

< max[D{* + (4-,) )] + max[DBY] — (n + k)a.
1,7 J
First show that ' N ‘ ‘
max[D{* + (A_,) 9] < max[DP + (B_,) D).

Indeed, thanks to condition 2, we havaxlej[ D 1 (A0 < maxse [DS) + (B_,) )],
We have then only to prove thaiax,eJ[D( ( )] < maxZeI[Dgs’Z) + (B_y)].
But we havemax;cs[D\*? + (A_,)9)] = max;e,[D*"] becausgA_, ) = 0 for i €

J. Moreover we havenax;c ;[D{™"] < max;e;[D{™"] < max;e;[DV™ + (B_,)?] and the
equality follows.
Finally, we have

782 < 7! 4 max[DBY)] - ka.
J
But [DB](gj)] = (D[—n—k—i-l,—n—l] ® B—n—k)(j) < (D[—n—k—i-l,—n—l] ® B—n—k)(s)y and we have
thenZk2 < Z} + (Dj_p—j41,—n—1] ® Bon—p)"®) — ka, and

2 1 (s) _
Zn < Z +r]?>ai([(D[—n—k+1,—n—1}®B—n—k) k‘a]

< Zrlz + Z[—oo,—n—l}'



72 Chapitre 4. Subexponential Asymptotics

4.3 Tails in Generalized Jackson Networks with Subexponeral Ser-
vice Time Distributions

To the best of our knowledge, the literature on generalizaettsbn networks with heavy tailed
service times is limited to tandem queues. Bounds on thaggihptotics of waiting and response
times were considered in [17] and [57]. Exact asymptotigstiiese quantities were obtained
in [14]. The present section addresses the case of gemetaleckson networks with arbitrary
topology. It focuses on a key state variable, already usdiderpast for determining the stability
region of such networks [13], [12], which is the time to emftg network when stopping the
arrival process (this variable boils down to the virtual ldoad in an isolated queue or to the
sojourn time for queues in tandem). The aim of this sectido @erive an exact asymptotic for the
tail of this state variable in the stationary regime. Themiagredients for the derivation of this
result are

— ageneralization of the so called "single big event thedrevall known for isolated queues,

to such generalized Jackson networks which was establish§t#]; In the GI/GI/1
queue, this theorem states that in the case of subexpadnsgniéce times, large workloads
occur on a typical event where a single large service timddiasn place in a distant past,
and all other service time are close to their mean. Simijlarlgeneralized Jackson networks
with subexponential service times, large maximal datecsioerhen a single large service
time has taken place in one of the stations, and all otheicgetimes are close to their
mean.

— the identification of the role played by fluid limits withihe context of the single big event

theorem for this class of networks ;

— the combination of these fluid limits and heavy tailed clalswvhich allows one to derive

the closed forms formulas for the asymptotics.
Although this result sheds light on the way such a networlegrpces a deviation from its normal
behavior, it is in no way final as the tail behavior of othetesteariables such as stationary queue
size are still unknown. The derivation of the (more complasymptotic behavior of these other
state variables was already obtained using a similar metbgd in the particular case of tandem
queues [14]. The extension of these queue size asymptotigEneralized Jackson networks with
arbitrary topology seems to require much more effort antneti be pursued in the present section.
The proposed method should however extend to other chésdicte of stationary workload like
for instance the sum of the residual service times of allarusts present in the network at some
given time.

This section is based on the paper [15].

4.3.1 Stochastic Assumptions

Service time and routing sequences
We recall here the notation used to describe a generalizédda network with' nodes.
The networks we consider are characterized by the facténace times and routing decisions are
associated with stations and not with customers. This mibab$hej-th service on statiok takes

a](.k) units of time, WhequJ(.k)}jzl is a predefined sequence. In the same way, when this service
is completed, the leaving customer is sent to stazuﬁﬁ (or leaves the network ifzj(.k) =K+1)
and is put at the end of the queue on this station, Wlﬁej@ };>1 is also a predefined sequence,
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called the routing sequence. The sequer{mﬂj@ }i>1 and {yj(.k)}jzl, wherek ranges over the
set of stations, are called the driving sequences of theNoete 0 models the external arrival of
customers in the network, then the arrival time of ki customer in the network takes place at
a§°) +-- -—1—0'](-0) and it joins the end of the queue of stat}q). Henceaj(.o) is thej-th inter-arrival
time.

The sample path construction we introduce here is that df [ll2e main interest of such a
construction is that some monotonicity properties arequuesl. These monotonicity properties as
shown in [14] are crucial for our asymptotic calculation.

A generalized Jackson network will be defined by

IN = {{U](-k)}jzh (v js0, n®, 0 <k < K} :

whereN = (0 n() ... n(K)) describes the initial condition. The interpretation is@fvs :
for i # 0, at timet = 0, in nodes, there arex(") customers with service tim@sﬁl), e ,07(;()2.) (if

appropriateali) may be interpreted as a residual service time).
The interpretation of(?) is as follows :

— if n(®) = 0, there is no external arrival.

—ifco > n® > 1, thenforalll < j < n®, the arrival time of thej-th customer in the
network takes place a’éo) +-e a](-o). Note that in this case, there may be a finite number
of customers passing through a given station so that theonletis actually well defined
once a finite sequence of routing decisions and service tisrgagen on this station.

— if n(0) = o, then when taking for instance the seque(mjéo)}jzl independent and identi-
cally distributed (i.i.d.), the arrival process is a renkpracess etc.

Euler route, Euler network

Consider aroute = (r1,...,ry) With1 <r; < K fori =2...¢ — 1. Such aroute isuccessful
if 71 = 0 andr, = K + 1. To such a route, we associate a routing sequeneg(v(©), ... vK))
as follows (> means here concatenation ghthe empty sequence) :

Procedure(r) :
1 for k=0...K do
) = g,
¢ = 0;
od
2 for 1=1...¢—1 do
p(ri) = (i) g rit1;
¢(m) — ¢(m) +1;
od

Note thaty?) is the number of visits to nodgin such a route.
A simple Euler network is a generalized Jackson network

E ={o,v,N},
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with N = (1,0,...,0) = 1, such that the routing sequence= {ui(k)}jfl) is generated by a
successful route and such that= {ag’“)}fff is a sequence of real-valued non-negative numbers,
representing service times.

Consider a sequence of simple Euler networks {g8¢n)}0__, whereE(n) = {o(n),v(n), 1}.
Form < n < 0, we defineoy,, ,; and v, , to be the concatenation dbr(k)},<x<n and
{v(k) }m<k<n and then define theomposedjeneralized Jackson network :

JN[m,n] = {U[m,n}a V[m,n]> N[m,n]}a with N[m,n} = (n -m+1,0,... ,0).

Maximal dater
As proved in [12], for all possible values ofp) ando(p) in the simple Euler networks, for all
integersm < n, the composed netwotkN|,, ;) stays empty forever after some finite time. We de-

note byXj,, ,,) the time to emptyNy,,, ,,, forever and byZ,,, ,,; = X ) — Z?z‘lmﬂ 0[(32 nli the
associated maximal dater. The sequefge, o) is an increasing sequence. We define the maxi-
mal dater of the generalized Jackson netwdX = {o,v, N} whereo andv are the infinite

concatenation of théo(n)},, and{v(n)}, andN = (+o0,0,...,0), by

Z = lim Z[—n,O]- (46)

n—oo
To all generalized Jackson netwaflN|,,, ,,;, we also associate the generalized Jackson network
JN,, (@) in which driving sequences are the same as in the originatarktexcept for the

sequence{aj(.o)} that is nOWO'](-O) = 0 for all j. Similarly we defineZ,, ,;(Q) the time to empty
the generalized Jackson netwar,, ,, (Q).
Let

o™ (i)
v =3 o) (4.7)

j=1

be the total load brought by (external) customgy stationk. Note that

Zi = Zj; = Yi(l) +- Yi(K), Vi
0
(4)
> . <0.
Zin0(Q) = jnax ; v, vn<o0

Lemma 4 of [13] also implies that

. Zn0(Q)
lim —————— =b = max
n—oo n 1<k<K

E [Yf’”] a.s. (4.8)

Assumption 1, on the independence of routing and service tigs
All the sequencegr(¥)} and{o(*)} are mutually independent fdr, &’ ranging over the set of
stations.
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Assumption 2, on the independence of service times

We will assume the service times are independent for diffestations and i.i.d. in each station
with finite mean E(c()) = ﬁ >0forall <j<K.

Assumption 3, on routing

We assume that each of the successful routes used tochigilobtained by a Markov chain on the
state spac¢0, 1,..., K, K + 1} with transition matrix

0 To,1 ce ... ToK 0

i1 T2 ... TILK T1,K+1

R= ro1 122 ... ToK T2 K11
0 ... ... ... 0 1

This is equivalent to assuming that the routing decisi{x@@} in stationk are i.i.d. inj, inde-
pendent of everything else, and such that the routing adeciselects statiom with probability
P =] = rg ;.

The fact that the routes built with this Markovian procedaire successful implies that stdte+ 1

is the only absorbing state of this chain and all other statedransient; we then have the very
same Markovian routing assumptions as in (exponentiaksdacnetworks. More generally, when
denoting byE; the law of the chain with initial conditio#, andV; the number of visits of this
absorbing chain in statg we define :

Eo[Vi]| =1k, PolVi > 1] = pi, Eg[Vj] = mp . (4.9)
We will use the following notation :
Ty

bj - W, bjﬂ -

7T-772

ok

Bj = IIlZaX bj,i'

With this notation, we havé = max; 7; /(Y = max; b;. Let A\~! = E[oo] = a. Throughout this
paper we will assume that the stability condition holds :

b < 1. (4.10)

Theorem 13 of [12] applies so thatib < 1 thenZ < oo a.s.; conversely, ikb > 1, Z = oo a.s.

Example 1. As an example,we will consider a network with the followiogting matrix

0 0

I—p
1—g¢q
1

o O O
oK O
oo O

In this case, we have

T = pP7y. 7T2:1_—.

— =1
{ 7T1—1+q7'('2, :>{ ﬂ-l_l—pq’
pq
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Similarly, we have :
_ q
[mazm T g [0t
1
1,2 = 2. 2,2 = 1 pq- p2 = Pp-
Hence we have

_ 1 1 P 1 q 1
b_Bl_l—pqmaX<M1)7lu(2)> and Bg—l_—pqmax<m,m>.

In particular for p = 1 andq = 0, we are dealing with the case of queues in tandem and we have
b=B; =max(1/pM,1/u®)and By = 1/u).

Assumption 4, on the subexponentiality of service times
The assumptions concerning service times are the followthgre exists a distribution function
F onR, such that :

1. F'is subexponential, with finite first moment.
2. The integrated distributiof'™® is subexponential.
3. The following equivalence holds whertends toco :

IP(UYf) > z) ~ P F(2),
forallk =1,..., K with S5, ¢®) = ¢ > 0.
4.3.2 Main Result

We first introduce some notations ; the intuitive meaninghese quantities will be given later
on.
Let £/ (o, n) be the following piece-wise linear function @f, n), wheres andn are non-negative
real numbers :

: b +
f(o,n) = Ligonay {0 —na +np; B} + 1g<pnay max {pjbjk% + (f — 1> (na — 0)}(4.11)

and for all positive real numbers and allj = 1, ..., K, let A7(z) be the following domain :
AN(z) = {(o,t) € Ri, fi(o,t) > x}. (4.12)

Remarkl3. We may rewrite functiory as follows
. o +
fo,n) = {0' —na + max (nbk = —(bk = pibip); npjbj,k)} :

This is due to the fact that;b; . < by. In particular, we see that

fi(o,n) >0 —na— np;Bj. (4.13)
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Example 2. We continue with previous example and we have :

+
1 _ _ n 1.
flom) = {0 na+1—pqmax<u(1>’u(2>>} ’

+
5 _ B npq . n —
o = {U e ((1 —p)u®’ (1= pgu®’ (1 —pgu®  ap® ) } '

In the specific case of queues in tandemn=(1 andq = 0), these equations reduce to

) B 1 1\
f(o,n) = {a—na—l—nmax <W7ﬁ )
2 n "
[ (o,n) = {a—na—i—um} .

And in this specific case, the corresponding domains are

Al(z) = {0>:U—|—t<a—max <ﬁ7ﬁ>>}, (4.14)
A(z) = {0>$+t<a—%>}. (4.15)
o

Theorem 9. Consider a stable generalized Jackson network with sulve@l service time
distributions satisfying assumptions 1-4. L£tdenote its stationary maximal dater at customer
arrivals. Whenr — oo,

P[Z > 1] Z //Ut e <J> e da] dt. (4.16)

This equation may be rewritten with the constafits, 37,7 }o<;<; that will be calculated in
Lemma 21 below as follows :

, (4.17)

PZ >z ~ Z Z Z ]P’[a(j)>£j+n’yg

J=1 =0 {o] z<n<o’ 7L1:v}

orwith &/ = 1/6/ + al~/ andd") = m;cl9),
l

K
PIZ > 2]~ Y dY) {Z [ 5(5g'x)—?5(5g'+1x)]}. (4.18)
7j=1

ZOfyl

1. fF° e R(—a), witha > 0, we can rewrite Equation (4.18) as :

Z>”” Zd(J {Z [(6]) (5{+1)—a]}. (4.19)

2072
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2. fF° € R(—o0), then, we have

K .
PiZ>a] o~ d9 (4.20)
Fiz) s e—pibB;

Remarkl4. In view of Inequality (4.13), we see théit > = +t(a — p; B;)} € AU)(z), hence,

P[Z > 2] > ZWJZP[ >+ n(a—piBy)| ~ Y

a J—
j=1 n>0 j=1 Pj

Hence in general the asymptotic as described in Equati@@)4s a lower bound. In the rapidly
varying case, this lower bound is tight. In the regularlyyag case, the complete shape of the
domain has to be taken in consideration and indeed the\gdut) \ {c > = +t(a — p;B;)} is not
anymore negligible due to the scale property of regulartying functions. More insights into the
shape of the domain will be given in Section 4.3.6.

Example 3. In the specific case of queues in tandem, thanks to (4.14) 4d8)( we see that
Equation (4.16) reduces to

P[Z > z] ~ ZP[0(1)>x+n<a—maX< ! ”(2>>]+;>:op[ >:E+n< ﬁ)}

1)
n>0 ’u(

which corresponds to the exact asymptotic of Theorem 9 ¢f [14

4.3.3 Technical Conditions

Under Assumption 1-3, the properti@g) and(AA) of [14] which read
— (IA) the sequence of simple Euler networlds(n) }, % consists of i.i.d. random variables.

— (AA) the random variabIeQYi(k)} are independent of the inter-arrival times, and such that
the sequence of random vectc(ﬂts(l), ce Yi(K)) is i.i.d. (general dependences between the

components of the vectc@i&fi(l), .. ,Yi(K )) are allowed),
are both satisfied.

Under Assumption 1, the variablé associated tdIN = {0, v, N} represents the stationary
maximal dater of the generalized Jackson network, namelyitie that it would take in steady
state to clear the workload of all customers present in thteay when stopping future arrivals.
Under Assumption 4, the assumptiqi8E) and(H) of [14] are satisfied :

— (SE)Forallk=1,..., K

PYH > 2) ~ 7 P(e® > 2) ~ dBF (),

with d*) = ) and thend := 3>, d*) > 0.
- (H)

K K
(k) ~ (k) N (k)
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See Sections 4.4.2 and 7.2 of [14].
Under Assumption 4, there exists a non-decreasing inteaed functionN, — oo and such
that, for all finite real numbers,

N,
ZF(QE +nb) =o (fs(a:)) , T — 00 (4.21)

n=0

(see Section 4.1.2 of [14]).

4.3.4 Single Big Event Theorem

As already mentioned, one of the tools we will use within ge#ting is the "single big event
theorem” for generalized Jackson networks. More preciSdhgorems 7 and 8 of [14] give the
following result :

Proposition 14. Let 7 be the stationary maximal dater of the generalized Jacketnwark defined

in (4.6). For anyx and forj = 1,...,r, let {Kﬂ; -} be a sequence of events such that
1. for anyn and j, the eventk? , and the random varlabléf@ Zd’m )( n) are
independent ;

2. for anyj, P(K3,.) — 1 uniformly inn > N, asz — oc.
For all sequences,, — 0, we denoter,, = x + n(a — b+ €,). Then, asc — oo,

P[Z > a] ~ Z ST PIZ >, YY) > 2, KD,
J=1n>Ny

and
P[Z > x] = O(F’(z)).
This property leads to the following and more handy result :

Corollary 1. Take any sequence of eveméj} such that for anyj, K, J and the random variable

Y(J) are independent anB(K3) — 1 asn — oo. Takez, — o0, z; = o(z), such thatF” (z +
zx) ~ F’(x), and denote :

:i > P |2 > @ K YY) > w6 (<n) < L.
j=1n>N,
Then, we have :
(14 ¢e(2)G(x) <P[Z > 2] < (1 +¢(2))G(x — 22) + (L, 2)F(2). (4.22)
If G is long tailed, we have as — ~
P[Z > z] ~ G(z).

The proof is forwarded at the end of the section.
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4.3.5 Fluid Limit

We recall some results from Section 3.1.4. We have to findesezps of event§K? } allowing
one to calculate the sum

Yop [Z[_nm > 2, KL, YD > 4, 60 (—n) < L (4.23)

-n
n>Ny

where as above;, =z +n(a — b+ e€,).

The events in question will be based on the piece-wise lifuwations f7 (o, n) defined in (4.11).
Let us describe the intuitive reason for introducing thisdlion. Assume the big service time is
equal too and takes place on statighand within the set of service times of the simple Euler
network £(—n). Let us look at the maximal datéf;_,, o) in the fluid scale suggested by the a.s.
limit of (4.8) :

— if ¢ > na, then the number of customers blocked in staticat time o is of the order of
np;, whereas the number of customers in the other stations i$. Soaaccording to (4.8),
the time to empty the network from timeon should be of the orderp; B; ; hence, in this
case, the maximal dater in question should be of the ordgéf(ef, ) indeed ;

— if 0 < na, then at timer, the number of customers blocked in statjpis of the order of
i, and the other stations have few customers ; from time the time of the last arrival
(which is of the order ofia), stationk has to serve approximately the load b; , generated
by these blocked customers plus the I¢ad — a)% generated by the external arrivals on
the time interval froms to the last arrival. On this time interval, the service catyas of
the order of(na — o). Hence the maximal dater should again be of the ordg¥ of, n).

We now return to rigor.

Consider a generalized Jackson network built from the. isedjuence of simple Euler networks
{E(k)}. To all simple Euler network€’ and all positive integers, we associate the network
JN"(E) with input { E(k)}2_, whereE(k) = E(k) for all k > —n andE(—n) = E. That s,

if we denote byr(*)-" andy(¥):" the concatenationd o ®) (E)}, {o®) (—n+1)},...,{c®(0)},...)

and({v®)(E)}, {v®) (—n +1)},...,{v*)(0)},...) respectively, then

INY(E) = {o"(E),v"(E),0,N"}, with N"=(n,0,...,0).

The maximal dater of ordéen, 0] in this network will be denoted byg™ (E). Of courseZ™(E(n)) =
Z|_n,0)- More generally, we will add the superscripto any other function associated to a network
to mean that of networBN" (E).

For all simple Euler network& = (o, , 1), let Y 0)(EB) = 97 50,

We are now in a position to state the main result pertainintpeécfuid limit. Lete,,, z, be some
sequences of positive real numbers ; we define :

U’(n) = {Eisasimple Euler network such thet®) (E) < z, Vk # j},
Vi) = {EcUn), YV(E)zn(a-1b), ¢ < L},
. on — £i(y W)
Ki = sup Z"(E) - P(YV)(E),n)
(BEVi(n)} n

< en} N{E(-n) € U/(n)}.(4.24)

We first recall a result that derives directly from PropasitilO and the remark following this
proposition.
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Proposition 15. Under the previous assumptions, there exists a sequgnee oo with 2= — 0,
such that we have

i 5 V)
sup |2 (B) = FPYP(E)n)| nooo o oo

{EeVi(n)} n

Lemma 20. Let{ K7} be the sequence of events defined abieand the random variabla” /)
are independent and there exist sequenges: 0 andz, — oo with 2= — 0, such that we have

P[K}] — 1asn — oc.

Proof.
The left-hand part of the definition dt?, depends od E(k )}o—_ 41 @nd the right-hand part
depends only oi’(—n), hence we have

ZM(E) - Y9 (E),n)

PK)] =P [ sup <e,|P[E(—n) € Ul(n)].

{EEVi(n))

The distribution ofE/(—n) does not depend am, henceY ) (E(—n))/n — 0 a.s. since its mean
is finite. Therefore, there exists a sequenge— oo, z,/n — 0 such that

P(YO(E(—n)) < nzn, Vi # j) =P [E(—n) € U/(n)] — 1

uniformly inn > N, asxz — oc.
The first term derives directly from Proposition 15. Therefdhere exist sequences — 0 and
zn, — 0o and22 — 0, such that we havB[K;] — 1 uniformly inn > N, asz — oc. O

4.3.6 Computation of the Exact Asymptotics

Thanks to Lemma 20, it is easy to see that the sequence ofse{/Kt;it} defined in (4.24)
satisfies assumptions of Corollary 1. Moreover, we will de tve are now able to calculate the
sum in Equation (4.23) which will give the exact asymptoticP[Z > z| in Theorem 9. Before
stating this result, we need to introduce some notation.

On the even&?, N {Y_(Jn) > 2, 0V (=n) < L}, we have

Z o) = fi (Y(J n) + nn,, withn, r.v. such thatn,| < e,.

Then{Z[_no >} = {f (Y_(Jn, n) > x — nn,}. In order to prove equivalence (4.16), we will
first give an explicit form for the domain&’ defined in (4.12).

Lemma 21. There exist constantsa’, 3/, 77 }o<i<; (given in closed form in the proof of the
lemma as function of the quantitips andb; ;. defined in Section 4.3.1) with= aé <a]...<
o, such that :

l
Al(z) = U{afz§t<ag+lz, o> E—i—t’yg}, (4.25)

7=0 %
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with the conventiomr/ 41 = +oo. Moreover, we have

ay=0, of =1/p;B;, B=1, ¥ =a—p;B;
forall 5. In addition,ﬁg < 1 forall ¢, j and the following inclusion holds :
{0 > 2z+tla—p;B;j)} C AI(2). (4.26)

Proof.
The domainA’ may be divided in two parts :

Al(z) = {(o,t), fi(o,t) > 2}

. z+tla—by)
_ > ta, o > tla—p:. B U <ta, o> —_— /.
{o>ta, 0> 2+t(a—p;Bj)} {U— ¢ g amklna—bk + Pjbjk

For the first part, we have (see Figure 4.1) :

{o0 >ta, 0 > z+t(a—p;B;j)} = {O§t<

,a>z+t(a—ijj)}U{ : : §t,a>ta}.

P b p;B;

o o=ta

a:z+t(a—ijj)

zZ
p;B; t

FIG. 4.1 — First part oA/ (z)

For the second part, we have (see Figure 4.2) :

t(a—b ta—1>
ka— b+ pibik < | bk a— (bk — pjbjk)

Now, it is easy to see that the lemma holds (see Figure 4.3).
The inequality on the’s follows directly from the fact thap;b; ;. < by, from which, we have
a

_ > 1.
a —|—pjbj,k — by,
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' g = ta
\\\\\\
\ N
NN “zft(a—by)
a_bk_pjbj,k)
_ax |
atp;bjk—bf
Z t
Pjbjk
FIG. 4.2 — Construction of the second part/sf(z)
0 g = ta

\

g = z+t(a *ijj)

_ ztt(a—bg)
O = OaTp;b,5—by

t

FIG. 4.3 — DomainA/(z)

Lemma 22. Let X be a random variable such that" < 8, €, — 0asn — oo and
——= —a, —> —b Withd<a<basr— .

If F(x) =P[X > x],fora >1, 8> 0, we have ag — o

Y PX>oaz+n@B+e)l— Y PIX>ox+nfl=oF (2)).

a(z)<n<b(x) ar<n<bz

Proof.
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For the simplicity of notation, we assume thdt:) < ax for all x. We have

14+ 6(1’) aztazf
PIX > oz +n(f +en)] = F(u)d
a(x)§<a:c e ‘ p /‘m"‘a(ﬂc)ﬁ v
< 1 +;($) azx ;;(m)FS(CMZE)

sinceF'(z) is non-increasing. Hence, we have only to prove the lemma(foy = ax andb(z) =
bx. We have the following bound with, = sup,,> ., €n

Z PIX >ax+n(f+e,)] —PX >ax+n8] < ZIP[X € (ax +np,axr +n(f + d,)]

ar<n<br

— () (00) (5 - 725 )
= o(F’(ax)) = o(F’(z)).

O
Proof of Theorem 9.
Thanks to Corollary 1, we know that the tail asymptotic of thaximal dater is linked to the
quantity S(j) defined by

SN [Z[_nm > 2, K3 Y9 s g 60 (—n) < L.
n>Ny

On the event), , = K3 N {Y_(Jn) >z, ¢ (—n) < L}, we have

{Zing >a} = {PYY)n) > e —nn)
{(Y5) n) € A (@ = nmn)}.
Clearly A7(z) is a non-increasing function afand we define
D) = N(z —ne,) D AN (z —nmy,) D A (z+ ney) = Di.

For simplicity of notation, we writd” @) = V%) and¢() = ¢() (—n). We assume w.l.o.g. thay,
is a decreasing sequence, henceifor N,, ¢, < ey, = €, and we have fon > N,

Ai(n) = P[(YULn)eDi]

l

- | ' 0> Z nen
=0 ﬁz ﬁ
l
= L : plyW) s L
< ; {az<n<al, | (z+nes)} > ﬁl _|_n% ﬁy
Then we have
Z Ay(n) < Z ]P’[Y(J') >w+n(a_pj3j)+nen]
n>Ny {Nz§n<a{x(1+e(m))}
l ne

i=1 {agx§n<ag+lx(l+5(x))}
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Thanks to Assumption 2, we know thet?) satisfies assumption of Lemma 47 and we have

Z Ai(n) = Z P[Y(j) >:£—|—n(a—ijj)]
n>Ng {0<n<adz}
l
DD DI
i=1 {a7m<n<aj ,z}

= (I+e( Z > EWP

=0 {azx§n<al+1x}

YW > % + ] | + e(z)F ()

%

+ e(m)Fs(:L"),

o) > E + vy

%
where the last equality follows from assumpti@E). But we have

j) < Z Ay (n)

n>Ny

We now look at the lower bound. With the same arguments aseabwoy easily get with
A(n) = P [(Y<J’>,n) e D)
that,

YA ()= Y Ai(n)+e(@)F (x).

n>Ny n>Ny

We now show that

Z A_(n Z P [ ) € DJ_,AQW] + e(z, L)F ().

n>Ny n>Ny

Consider the difference
A_(n)—P [(Y@,n) € Di,Agm} < P [(Y@,n) €D oW (—n)>L
< P [Y(j) >z 4 n(a—p;B; —e,),oV)(—n) > L

where the last inequality follows from inclusion (4.26) oérama 21. With the same kind of
argument as in Corollary 1, we have

Y An [YO) n) € D) ,Ag'w} < ez, L)F’(2).

n>Ny

Hence, we proved that when— oo, we have

l
SH~> . EpUIp [a@ > % + ]

i=0 {agm§n<ag+1:v} i

Now since this quantity is long tailed, we use Corollary 1 évivk the asymptotic foP[Z > z].
O
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4.3.7 Proof of Corollary 1

The proof is based on Proposition 14, which shows that we have

PZ > z] = (1 + e(x (Z Z [Z > x, Y(] >$n,Kﬂ;]).

j=1n>N,

SinceZ > Z|_, o, we have

PIZ > 2, YY) > 2, K] > PlZ_nq >z YY) > e, K
> PZpg > 2, YY) > 2, Ki, 69 (—n) < L].

Hence we have

PZ>z] > (1+e(a (Z S PlZng > 2, YY) > 2, KSL 9 (—n) < L]) .

j=1n>N,

We now derive the upper bound. Take— oo such thaif” (z+z,) ~ F' (), then when: — o,
we have

P[Z[—oo,—n—l} < Zx] = ]P)[Z < Zx] — 1.

We definei = = + z,, and K}, ; = Kj, N {Z|_oo_n_1] < 2.} Observe tha3, , satisfies also
assumptions of Proposition 14. By sub-additivity, we havel Z|_., _,,_1] + Z|_, o] (see [12]),
hence

Y( 7S Tn)

P(Z >z K YY) > i)

n,r’

P(Z-co-n-1) + Zj—ng > T, K},
P(Zi_po > 2, Ki 5, YY) > 2,)

P(Zi_po > o, KD, YY) > 2,).

IN A

IN

We now make the truncation gt
A(n) = P [Z[_nm >, K, yY > xn]
< P [Z[_nvo} >z, K3, Y9 > 2, 09) (—n) < L} P [Y_(Q > 2, 69 (=) > L]
= P[Zng > 2 KL YD(E(n)) > 20,67 (-n) < L] + B(n).
We will use the following result due to Kesten (for a proof #dbreya and Ney [9]) :

Lemma 23. Let X € § and letS,, be the sum of independent copies &f. Then for every > 0,
there existd (¢) > 0 such that

<K(e)(1+¢)", n=1,2,...
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Recall thafP(¢7) (0) = 1) = §'(1—6) for somed < § < 1, hence take such tha{1+¢)s < 1,
and we have

B(n) = Y Plp(- Zak s wn]
[>L+1
< Y da-oK (1+6)]p>[g(>>xn]
I>L+1
< (1- K (PD > 5, LT €)d)r+t

1—(14€d "

Then, we have

S Am) < Y P [Z > 2, K3, YY) 5 2, 60)(—n) < L] +e(z, L)F' ().

Sincef(,{,m satisfies assumptions of Proposition 14, we have

P(Z>7) = (1+e(# ZZ P(Z > 7 K], YY) > &,)

Hence, we have showed with the notation of the lemma

(1+¢e(z))G(x)
P(Z >z + z;)

P(Z > z)

<
< (1+e(x)G(x) + e(x,L)Fs(ac).

From these inequalities, we directly derive mequallt)QeA} If G is long tailed, we can choose
zy — oo such thatG(z + z,) ~ G(z) andF’(z + 2,) ~ F’(z), and the last statement of the
corollary follows.O

4.4 Tails in GPS Queues with Subexponential Service Time Drsbu-
tions

In this section we look at the impact of priority and schedglmechanisms on long-tailed
traffic phenomena. The importance of scheduling in the pieesef heavy tails was first recognized
by Anantharam in [4]. The present section specifically exasithe effectiveness of Generalized
Processor Sharing. The framework is quit similar to the wafrBBorst, Boxma and Jelenkovic
[21]. We will see how our results complete theirs.
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The GPS system does not fit exactly in the framework of [14jkdfconsider the global work-
load (which is aG/G/1 server queue), we have a monotone separable network, baethiee
times are not i.i.d. and we are unable to apply directly tiseilte of [14]. On the other hand, if
we consider only one queue in isolation, this is not anymamoaotone separable network (the
condition of homogeneity fails and the upper bound of seci®.2 is not anymore available).
Hence we chose to adapt the argument to our framework. Fosplgcific case, it will allow us to
remove the assumption on the subexponentiality’and to extend Veraverbeke’s theorem to a
more general setting.

4.4.1 Stochastic Assumptions

The framework is the same as in Sections 2.4 and 3.2 but wenasguaddition that each
arrival process is a renewal process. We recall briefly thatioms. We consider a GPS system
constituted ofV GI/GI inputs denote({T;f"j, oh nez for j € {1,..., N}. The weight of inputj
is ¢/ and the procesgT?, o,,, ¢, } is the superposition of the process{éﬁ"j, oh, j}. LetB[T{ —
T{ = A"1tandp = AEY., (0] be the traffic intensity. For each renewal process, we denote

) A A 1
E[r] =E[Il77 - T, 7] = N < o0,

andp’ = MEJ., ;[o0]. We havep = Z;-Vzl ©’. We assume moreover that for ainy j, we have

p' # R(j)¢’,

we recall that this is always true in the case j sincep < 1 see (3.39).
The assumptions concerning service times are the followihgre exists a distribution func-
tion F onR, such that :

1. F has finite first momend/.
2. The integrated distributiof'® is subexponential.

3. The following equivalence holds whertends tooo :
P(c) > x) ~ d'F(x),

forall j=1,...,Nwith Y, d > 0.

The notation must be understood as follows in the Palm ggttin
P(o) > 2) = PYa (00 > x) = Pha(00 > 2|co = 7).

Remarkl5. We did NOT assume thdft is subexponential.

We take the notation of Section 3.2.2 to define the followingdins :
AW (z) = {(O’,t) € R, w (o, 1) > w}

We are now able to state the main result



4.4. Tails in GPS Queues with Subexponential Service Tinséributions 89

Theorem 10. Consider a stable GPS system/éfqueues satisfying previous conditions. D&t
be the stationary workload of queueWhenz — oo,

P(W! > z) = ZAJ//W@L{J}@ P (o7 € do)dt + o (F’(z)). (4.27)

In what follows we give an explicit computation of the ingégon the right-hand side of (4.27).
We give here some explicit cases

1. ifd" > 0, then we can replace the equality by an equivalence andeditdeb (F~(z)) term
in the right-hand term of (4.27) ; moreoverit € R(—0o0), then we have
P(Wi > ) Aidi
—3 — —— —.
F(x) A" R(i) = p*)

2. ifd" = 0andF” € R(—o0) or & < min;zR(j), then we hav@(W' > z) = o (F"(z)).

Remarkl6. Note that in case 3, we do not have the exact asymptotics. Weamne back to this
and discuss relations with existing results in the litemin Section 4.4.4.

4.4.2 Big Event Theorem

We first construct an upper bound fdr. We considerV virtual GI/GI/l gueues with res-
pective input proceséTn J , 0 ynez and with server capacity = pJ + =2 We denote by’
the workload at time 0 of these single server queuesi@ng W' + .- + WN. More formally,
we define

0
N i i - i
& =0l -], S, = g &, M =supS’,
i=—n n20

With these definitions, we have
- AT
W’ = (]\4J + Ty )
Thanks to Veraverbeke’s theorem, we have

o i
P(W7 > x) ~ ]Yi(j) F ().

Moreover the random variablé&’ are independent of each other, hence we have

N
x) ~ ZIP’(Wj > x) Z NN F'(x). (4.28)

The following corollary follows the line of Corollary 5 of fi.

Corollary 2. Foranyzandj =1,..., N, let {K£,x} be a sequence of events such that
1. for anyn, the evemK,{@ and the random variablegr_,,, c_,,) are independent ;
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2. inf, >N, P (K,jm> — lasz — oo.

For any sequence,, — 0, let

) . 1-— .
AiL,m = K%,mﬂ{o'—n >z+n <N—)\p+nn> ) C—n:]}
N .
U U 4.
J=1n>Ngy

Then ast — oo,

P(W > z) ~ P(W >z, Ay) ~ P(A,) ~ (4.29)

TMZ
=
;%
K

n>N,

Proof.
The proof follows the one of Corollary 5 of [14]. First noteath

iZ]P’(AJ i\f:Z]P’(Kfl’x)]P’<a_n>w+n<1N;)f)+nn>,c_n:j>

J=1n=Nqy j=1n>N,
N
N < . 1—p
~ Z —P a]_n>x+n<—+77n>>
ey A N
N N
M ONA Aﬂdﬂ—s
~ - J
Z Al— d F Z 1-

J=1 J=1

Thus, if the sequencddy, .} and{n, } are such that, for all sufficiently large
1. the eventsﬁlﬁ;,ac are disjoint for alln > N, ;
2. A, c{W >z} foralln > N,;

then
P(W >z) > P(W >z, A,) =P(A4,)
N . .
: NN s
= P(Agw)wzl_pF(x).
j=1n>Ng j=1

Combining with (4.28), we get the equivalence (4.29).

We now construct two specific sequenddsy, .} and {7, } satisfying points 1 and 2 above
and the conditions of the corollary.

We define the following function

On the even{c_,, = j}, we havel*, = 7 iy (n) Oy = a{cj(n). We can find a non-increasing
sequence,, — 0 such thate,, — oo and such that the probabilities of the following events tend
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to 1 asn — oo,
Sy p—1

Lne = { E NM

M - {‘Cj(n—l) _)\_j

SelmeSkSCj(n—l),lSjSN},

gen}a

Hence the evenk’, . = L, . N M, N N}, satisfy the conditions of the corollary. Moreover on the
event{c_, = j}, we haveC’(n) = C7(n — 1) + 1 and,

n A
N} = {‘T ’J‘<"6"}.

S iy = T-n T 5 iy

Now if we taken,, = /¢, we have

wo > Sjcj(n)

1—0p by p—1
> x+n N—A“‘Tln +n T_En N—M_E()\j/)\)n—l — Nénp,

and we see that for sufficiently large we havelV > z. The fact that the evemi;,x are disjoint
follows from the fact that for sufficiently large, we haveey, < (1 — p)/(NM). Indeed on the
event4’, ., we haves’ iy > @ andSJ_Cj(n)Jrl < (CI(n)—=1)((p—1)/(NN)+en,) <0.The

event{S}, > z} U {S’_, < 0} are clearly disjoint im. With the same kind of argument, we see

that the eventsﬁlﬁl,x_are disjoint inj. The end of the proof, i.e. showing that the corollary is true
for any sequenc&, ., is exactly the same as in the proof of Corollary 5 of [14] anskipped.O
From this corollary we derive the following proposition

NEy,

Proposition 16. Foranyz andj =1,..., N, let {Kﬂ;,x} be a sequence of events such that
1. for anyn, the evemK,{@ and and the random variablgs _,,, c_,,) are independent ;

2. inf, >N, P <Kn x) — lasx — oo.

For any sequence,, — 0, let
i i l—p :
An,m = Kn,m N0 >x+n W + M), C—n =1

N

J=1n>Ng
Then for any random variablé/ < W, we have as: — oo,
P(W >z) = P(W>a,A,)+o0(F(z)) (4.30)

N
= Z P(W>ux,A],)+o (F’(2)). (4.31)
j=1n>Ng

.
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Proof.
We have

P(W>z) = P(W >z, Ay) +P(W >z, AS)
< P(W > a2, 4,) +P(W > 2, AS),

but thanks to previous corollary we have ti&tV > =, AS) = o (F"(z)). Hence we have
P(W > 2, 4;) <PW >2) <PW > 2,4,) +0 (F'(2)),

which gives (4.30). The end of the proof is a repetition offiheof of last corollary and is skipped.
O

At this stage we are able to prove the following propositiohichi extends Veraverbeke’s
theorem to a more general setting.

Proposition 17. Let W be the stationary workload of a single server queue fed bgtiperposi-
tion of N independenti/GI processes. Assume moreover that
P.s(o0 > z) = F(x),

and thatF™* is subexponential. Then we have

Proof.
First note that?’ > . Hence we can apply previous proposition, with

__{‘———-—-———— < €k, A‘f;nen}a

whereS_; = Zl__k o; — 7:. On the eventd?, = We havelV = o_,, +S_,,.1 + T§!, hence we
have

N N
. 1—
SN R e ~ ZZp<a_n>x+n<7f)+zen>,c_n:j>
J=1n>Ng J=1n>Ng
A —s
~ —F .
@)

O

Remarkl7. This result extends Theorem 4.1 of Asmussen, Schmidli aen@it [8], in which
the arrival process is the superposition of renewal pr@sebat the service times are supposed to
be i.i.d.

4.4.3 Computation of the Exact Asymptotics
We have to find a sequence of eveﬁféf;,x} in order to compute the following sum
. 1—p .
SZ7{J} - V[/Z K —-n n —n =
n;\, ( >, nw,o >:L"—|—n<N>\ +77>,c j>

A first case is easy : when quetieemains stable even if queyies continuously backlogged.
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Lemma 24. Assume that
p )
— < R(j). (4.32)

Then we have
st = o (F’(z)) .

Proof.

Under condition (4.32), we know thanks to Proposition 11 kwew that the stationary work-
load of queue exists when queugis continuously backlogged. We dendi€ (;) this workload.
We have

W' < W'(j) < oo,

andWi(j) is clearly independent &ff;"7, o). Hence we have

L 4 . 1—
7‘7{.7} — ? J —p — 9
S g ]P’(W >w,Kn7m,a_n>x+n< 18 —i—nn),c_n ]>
n>Ny
o 1—-p )
< i E _
< P(W'(j) > =) P<U—n>w+n<N/\ +77n>70—n ]>
n>Ny
= o(F’(2)).

We consider now the case

P’ :
pr ()
In this case when queugeexperiences a long backlog (due to a very big service timauei is

no longer stable and the fluid limit corresponding to thiswguis no longer 0. The remaining steps
of the proof of Theorem 10 are similar to those of section64.3.

Lete, be some sequence of positive real numbers, we define

; Wit (o, nt) — wl (o, nt TA
K%: Sup (7 ) (7 ) _ETLv _n_a SETL OHTA.
0>n11\7—f n n o
t<2a

Thanks to the results of Section 3.2.2, we have the follovengma

Lemma 25. Let { K7} be the sequence of events defined abéeand the random variables
o_, andc_,, are independent. There exists a sequence- 0 such that we hav@(K;) — 1 as
n — OoQ.

On the eventk? N {a_n >x+n (%) , Cop = j}, we have (thanks to the continuity of
whlih,
Wi = wi’{j}(a_n, na) + nny,, Wwith n, ar.v. such thap,| < ,.

We will need the following lemma on the shape of the domairi/} ().
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Lemma 26. There exist constantsa;’{j},ﬁi’{j},yz’{j}}ogkg with aé’{j} < o/f{j} < e <
ayV, g U < 1, such that

¢

A {J}(x) — U {akmx <t< akiyl}’ o> ﬁi’{j} _I_t%{J}}’
k=0 k

{7} _

with o -" = +o0. Moreover, we have

AT (z) = {o>a+ (¢'R(i) — p') At} .

This lemma follows directly from the definition of the funmti w®{7}. We will give some
example, to show how to compute the constants of the lemmichwh turn will lead to the
computation of the integral in Theorem 10.

Example 4. 1. CaseN =2

We suppose that
1 2
1 P

p
<?'

E<

The first inequality is imposed by the stability conditipr: 1 and we suppose the second
one in order to be in the following interesting case : a bigvées in queuel induces an
instability of queue. The corresponding fluid limiv !} is depicted on Figure 4.4.

<
\Y <
o v
)
9 —
_o
¢1_p1

FIG. 4.4 — GPS with two classes : big service in class
The corresponding domains are easy to compute and givergurd-4.5,

AMY (@) = {(.t), 0> 2+ (6 - )t}

A2 () = {(a,t), t> p2f7¢27 o>x+(1- P)t}-
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g

¢1 -

21}
Ty t

FIG. 4.5 — GPS with two classes : the domaif{} (z)

12 T T T T T T T T T 0.4

0.81

0.6

041

0.2

-0.2
0

FIG. 4.6 —The casé&V = 3

2. caseN =3

In previous case, once we fixed the traffic intensitieand p?, the behavior of the system
depends only on one parameter, the ratig 2. In the caseV = 3, there are many different
possible cases. We draw with matlab the fluid limits (in theeaaf a big service in queue 1)
and the corresponding domains for parameters such that

namely, the parameters are the following :

pt =02, ¢! =055, p? =05, > =04, p*>=0.1, > =0.05.

We return now to the proof of Theorem 10. Following exactly gteps of the demonstration
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of Theorem 9, we can show that

4
iy x i,{j .
S 7{]}(11) ~ E E ]P (O’_n > W —+ 'n/a/yk{-j}’ Cp = j)

k

;L
Y . T i {5}
_ J J
- N 2 ”P<">ﬁz’{j}+7k )
i,{J

k=0 az{]}m<n<a k

¢
. . :L' :
= N E g P (O’J > Bi’{j} —i—n’yk{J})
1{1}

k=0 i.{i}
Oék 7 k

r<n<oy

This term is of ordet " (/3 1}) and hence/(F°(z)) as soon aF* is rapidly varying. Sum-
ming overj, we obtain the equality (4.27) of the Theorem, which conetuthe proof.

4.4.4 Some Extensions

In the casel’ = 0, there are some cases in which Theorem 10 does not give theasyanp-
totic. The following case is not covered by previous Theorrd follows easily from the same
kind of argument,

Proposition 18. Suppose that’ < ¢’ and thatP(o! > z) = F;(x) is such thatF? is subexpo-
nential, then we have as— oo,

P(W' > x) Z/\J //Ut A (aj € do)dt

ST )

Proof.

The stationary workload of th@/GI/1 queue with input procesl;s ", ¢ },,ez and service
rate ¢’ is clearly a stable upper-bound f&F‘. The proposition follows from exactly the same
arguments as above. O

In general we are unable to give the exact asymptotics ofejLi€the heaviest class sa&ydoes
not contribute to it, i.e. if queuéremains stable even if the heaviest class is backloggedhidn t
case, our upper bound is quite rough and the workload of quetrenk is backlogged (namely
W(k) with our notation) is clearly a better upper bound. Morediés upper bound belongs to
the monotone separable framework but (except if the ampr@iesses are Poisson point processes)
the G/G/1 upper bound used in the proof of Theorem 7 is nGtld G1/1 single server queue.

One can consider a stable feed-forward network of flows whaoh node has a GPS disci-
pline. The same kind of techniques as we did for the singleesarueue apply. Indeed the only
non-trivial thing to find is an upper-bound. To each flow weoagste a system of queues in tan-
dem (and we chose the rate such that each system is stablel&d.felence we associate to the
original network, a network of queues in tandem with a forlthet beginning and a join at the
end. The maximal dater of this virtual network will be an uppeund for the maximal dater of
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the original one (because the virtual network is not worksawving). Moreover this network be-
longs to the (max,plus)-class studied in the second sedtitins chapter, hence we have the exact
asymptotics of its maximal dater and the rest will followdlikn the single server case. This is a
work in progress.

We compare now our results with the results of Borst, BoxnthJatenkovic in [21].

Our theorem deals with instantaneous input but using the &amd of arguments as Jelenkovic
and Lazar in [62], these results should extend to fluid inpith wn-period that are regularly
varying but with some conditions on the rate during on-sio

In [21], the authors deal with a possibly unstable GPS systedderive the tail asymptotic of
the stable queues. Our approach does not cover this case.

Theorem 3.1 of [21] deals with the cage < ¢ which correspond exactly to previous pro-
position. If we havel’ > 0, Theorem 4.1 and 5.1 are somehow extended by our resulsednd
in [21], the authors impose some restrictions on the pammef the system so that the sum in
(4.27) contains each time only one term, and they give thenpgytic of this term.

Note that in [22], Borst, Mandjes and Van Uitert study a GPSeay with 2 classes. One is
light-tailed and the other is heavy-tailed. Moreover tightitailed class is still stable when the
other queue is backlogged. They show that in these condjtatarge workload in the light-tailed
class is due to a large service in the other queue and a chadgé m the light-tailed class.

4.5 Towards an Extension of the Single Big Event Theorem

The single big event theorem is always efficient to obtaimgsptics of first order state va-
riables, like the maximal dater. In some cases, it also givesasymptotics of second order state
variables like the workload at each node. For example, icése of the tandem queues, it allows
to get the exact asymptotics of the delay at the second quieiseis done in [14]. This result
extends to more general (max,plus)-linear networks (thawork in progress with Ton Dieker).
With the results we obtained for the generalized Jacksomarks, it seems that the computation
of the asymptotics of the stationary workload of an indigbgueue in the network is doable. One
has to compute carefully the corresponding fluid limit.

But in some cases, either one big jump is not sufficient to detal instability or the one
big jump scenario has to be compared with other scenaricgdafst is still the most probable
scenario (like in the GPS case). Typically, this situatidees when the fluid limit is zero.

Consider the following framework : we have independent saqes of i.i.d. random variables
{X1, X1}, {X? X2} and{ X3, X3}. We take the following notation

So= ZFX1 X3,

Spo= ZGXQ X9,

Wl = sup Sn,
n>0
W? = supS2,

n>0
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where the functior¥’ andG are deterministic an such that

E[F(X,x*] = —ad' <o,
E[G(X?%X%] = —a*<o.

We are interested in the tail of a random variaBlsuch that
Z < min(W!, w?).

Since—a', —a? < 0, the right hand side is finite and the interpretation is tAatan not be big
through only one big<! or one bigX?.
If one can define a typical event for the random variable(WW!, 1/2), then the same kind of
techniques could apply. Hence the first result to obtaineést#ii asymptotics ofnin(W?, W?2).
It seems that the method given by Zachary [85] to prove Velske's Theorem could extend to
this kind of framework. If so this would give the whole pictunf the asymptotics of GPS queues.
Namely in the GPS framework presented above, we should ba@ptove the following property.
We assume that each input processigGI with the following assumption on the service
times

P(J{ > :L') = Fj(ﬂj‘),
such thatF™; € R(—a;), with 0 < a; < co. We denote
E(i)={DcC{l,...,N}, p' > R(D)¢'} .

For any setD € E(i), the queué is unstable if all queues i are backlogged. We denote

a(t) = min «j,
© {j¥eBG) 7
G(7) = min «
(@) DEBG) £, ¢

|D[>2

The following property might be correct!

Proposition 19. If a(i) < 8(i) < oo, then we have a8 — oo,

N
P(W!>z) ~ Z/\j//
s (o)

P (aj S da) dt
€A 1) (2)}



Chapitre 5

Large Deviations for Monotone
Separable Networks

5.1 Introduction

In this chapter, we consider a monotone separable netwat&szsibed in Section 2.1. We are
interested in large deviation results for such queueintgayin equilibrium. Equilibrium systems
have generally been treated on a case-by-case basis. Foeralgeverview of applications of large
deviations theory to queueing problems we refer to the bddBamesh O’Connell and Wischik
[46].

The case of the single server queue has received extensivii@t in the literature. See for
example the work of Glynn and Whitt in [50] or Duffield and O'@w®ell in [34] which gives results
in a very general framework.

The extension of these ideas to networks appears to be mrtih#éenging problem. Ganesh
and Anantharam in [45] derive large deviations results Yoo tjueues in tandem, with renewal
arrivals and exponential service times. In [31] De Vecid@aurcoubetis and Walrand characterize
the departure process from a sing¥¢ D /1 queue in the large deviation regime. They show that
there is a region over which the large deviation rate fumgtifor the cumulative departures and
arrivals agree and bounds are given outside that regiomd aad Zajic [24] consider the case
of a single arrival stream and stochastic service rate. 6, [@'Connell gives a full description
of the rate function for the cumulative departures underyyothesis that the arrival processes
jointly satisfy a sample path large deviations principlehwinear geodesics. Roughly speaking,
this means that the most likely path to an extreme value isagght line. A natural question is
then : do the departures also satisfy this hypothesis ? thea, one could treat quite complicated
networks by successive iteration of the single-buffer ltesn [76]. Indeed if the service process is
deterministic, then the departure process has linear gexsd&o a recursive analysis of networks
of such queues is possible as in [23]. Even if the servicega®es stochastic, it is shown in [47]
that conditional on the departure rate from a queue excgedimmean, the departure process has
linear geodesics. We are typically interested in the priibalof queue lengths exceeding some
large threshold and in well-designed networks this reguileparture rates exceeding their mean.
Therefore, we have linear geodesics in the region of inteard so the study of networks of
gueues using a recursive approach is again feasible. Withasuapproach Bertsimas, Paschalidis
and Tsitsiklis compute in [18] the decay rate of the statipnaaiting time and queue length

99
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distributions at each node in an acyclic network in the carié quite general arrival and service
processes.

To the best of our knowledge, the large deviations analyfigisieueing systems with any kind
of feedback is restricted to some specific cases. In [5] Areaatm, Heidelberger and Tsoucas use
quasi-reversibility arguments (see Kelly [64]) to studseravent in the case of Jackson networks.
Using a different approach Ignatiouk-Robert derives tie fanction for sample path large devia-
tion of such networks in [59]. In this section we choose aedédht approach inspired from works
of Ganesh [44] and Toomey [83].

In this chapter, we study large deviations asymptotics eftihm

lim 1 logP(Z > z) = -0, (5.1)
T—00 I
where the random variablg corresponds to a "global” state variable of a random procdéfs
only deal with exponentially decaying distributions.
This chapter is made of four parts, each of them building ufhemesults of the previous one.
Here is a brief overview :

— In Section 5.2, we derive tail asymptotics of the form (3vhereZ is the global maxima of
an independent subadditive process. In particular, we shaithe associatedf is positive
and give an explicit way of computing its value.

— In Section 5.3, we derive the tail asymptotics (5.1) wh&reorresponds to the "time to
empty” a queueing network in its stationary regime. Thisrddin will be made precise in
the framework of monotone-separable networks.

— In Section 5.4 , we concentrate on a sub-class of the moadsteparable networks, namely
the (max,plus)-linear networks. We derive for the statigrelution of a (max,plus)-linear
recursion the associatéd in an explicit way.

— In Section 5.5, we concentrate on the case of generalizéddda networks. Our results
are partial in the sense that we obtain sample path largatievé result for the transient
process and the connection with the stationary version tilhtosbe made. However, we
choose to include here these results because they areabiagid the general methodology
could be used for other queueing networks.

Tail asymptotics for the supremum of an independent subaddive process

LetS, = Xi +---+ X, be arandom walk where the sequekég X;, 1 < i} is a sequence
of independent identically distributed (i.i.d) random igétes, whitE[X] < 0. Define M :=
sup,,>1 Sn < oo a.s. Then we have

J:h—>nolo i logP(M > z) = —0*, wheref* = sup {6 > 0, logE [eex] <0}, (5.2)
with the convention that the supremum of the empty setds. Note that this case has been
extensively studied in the literature and much finer eséimate available, see the complementary
works of Iglehart [58] and Pakes [77].

In the first part, we extend this result by considering indtefthe additive procesS,,, a sub-
additive process7; ,,- Our main result is that the tail asymptotics (5.2) remaial&dwhen one
replace the logarithmic moment generating function of Xh&s by the properly scaled logarith-
mic moment generating function of the procéss,,. In particular, all the information needed
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to establish (5.2) is contained in the scaled logarithmicnaiet generating function. We do not

require any large deviation principle for the procésygg}. This is a surprising fact in the field
of large deviations for subadditive processes. Indeedystgdhe random variablé/ is much
simpler than trying to get a large deviations principle foe procesgY}; ,,;/n} (which remains
an open question in the independent subadditive case) amiver&an example of two subaddi-
tive processes with the same scaled logarithmic momentrgimg function but satisfying large
deviation principle with different rate functions.

Large deviations for monotone separable networks

Literature on large deviations of queueing networks withdfgack is rare and confined to
the setting of networks described by finite-dimensional Rdarprocesses, see Dupuis and Ellis
[36], Dupuis, Ellis and Weiss [37] and the recent work of igruk-Robert [59], [60]. Moreover,
these works concentrate on local large deviations and tdvaralle the large deviations of the
network in its stationary regime. The large deviation astgtigs of queueing systems are difficult
to analyze because they are dynamical systems with discitigs. To the best of our knowledge,
there is no rigorous result on the large deviations of ngmegntial networks with feedback in
their stationary regime.

We will show in the second part that the monotone-separahtadwork allows us to derive the
tail asymptotics for "global” variable of the stationaryrsmn of such networks. This framework
was first introduced by Baccelli and Foss [13] to study theikta condition of these networks.
In particular, this framework includes generalized Janksetworks, stochastic Petri Nets and
polling systems. The main theorem of this second part is fdmd.3 that gives the exponential
decay of the stationary maximal dater (which will be defirettelr) for such networks in term of
the asymptotic logarithmic moment generating function.

Case of study | : (max, plus)-linear systems

To apply our Theorem 13 we consider the sub-class of the moroseparable networks
consisting of the (max,plus)-linear networks. From a quayeoint of view, these networks in-
clude for example the single server queue, tandem queudsjofo systems and the maximal
dater corresponds to the end-to-end delay. Our work extiredanalysis of tandem queues done
by Ganesh [44].

More generally we study in the third part the stationary soluof a (max,plus)-linear re-
cursion. Results concerning large deviations of produttamdom topical operators have been
obtained by Toomey in [83]. In rough words, these resultsld/gorrespond to large deviations
of the procesd; ,, (i.e. before taking the supremum). However very restrectionditions are re-
quired on the coefficients of the matrix. Here we do not assiln@se requirements to be fulfilled
but we show that under mild assumptions on the matrix stracthe tail behavior ofup,, Y, ,
is explicitly given and can be computed (or approximatedrarctical cases.

Case of study Il : generalized Jackson networks

This section is independent of the preceding ones. We dars@mple path large deviation
principle for the arrival and departure processes assatiatthe nodes of a generalized Jackson
network. In particular, we obtain an explicit rate functiomder rather weak stochastic assumptions
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(i.i.d.). Even in the exponential case, the formulationtw tate function is original and seems
more explicit than the rate function derived in [59].

5.2 Tail asymptotics for the supremum of an independent suldi-
tive process

5.2.1 Framework and main result

Assume the variable$¢,, } are random variables defined on a common probability space
(Q,F,P,6), whered is an ergodic, measure-preserving shift transformatiaoh ghat,, o =
¢n+1. We assume that there exists a set of functigns, g¢ : K¢ — R, such that :

Y[m,n] = gn-—m+11&e, m <L <n}, (5.3)
for all m < n. The functiong;,, are deterministic and we assume that they are such thatrthky fa
of random variable§” = {Y,, ,;, m < n,m,n € Z} is a subadditive process, i.e. satisfies the
following three conditions :
1. subadditivity Y], n) < Yjm.q + Yieg1,n), forallm <2 <n;
2. stationarity : the joint distributions ¢f,,, ,,;, m < n} are the same as the joint distributions
of {Yjn+1,n11), m < n};
3. moment condition E[|Y)g ,,)|] < oo for eachn > 0 andE[Y|y ,)] > —an for somea € R
and alln > 0.

Under the foregoing ergodic assumption, there exists ataohg such that (see Kingman
[65])

lim M = lim w =u a.s. (5.4)
n—oo n n—oo n
In what follows, we will make the following assumptions :
(A1) the constant defined in (5.4) is negative ;
(A2) the sequencés,,} is a sequence of i.i.d. random variables ;
(A3) There exists; > 0 such that[E [e"" 1] < oo, and ford > 0, if E [¢?"111] = oo,
thenE [¢?111] = oo for all .
In view of assumptiorfAl), one can define the following random variable :

M —squ[ln]<oo a.s.
n>1

Note that the random variablég, ;;, Y. 4 - - -, Y}, 5 @re independent whenever< b < ¢ <
d<---<e< f,we say that the subadditive procésss independent.

We know that a subadditive independent process is supeaskdie and the existence of the
following moment generating function follows [55] (see Leva 27 for a proof),

= — 6)/[1 n
0~ Doz 0]
Let
0" =sup{f >0, A(f) <0}, (5.5)

where the supremum of the empty setiso.
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Theorem 11. Under previous assumptions, we h&e> 0 and

1
lim —logP(M > z) = —6".

r—00 I

Theorem 11 extends a well-known result in the case of randatksato the case of inde-
pendent subadditive processes. One important point issthalo not require any large deviations
principle for the proces$Y; ,;/n}. The existence of the constafiit is ensured by the moment
condition(A3) and its value is explicitly given by (5.5).

Example 5. - Afirstdifference with the additive case is that it is pofesibatP(M > z) > 0
for anyz > 0 while 8* = o : consider the following subadditive process,

Y[m,n]:ZHX,-—(n—m—kl),

where{X;} is a sequence of i.i.d. Bernoulli random variables WithX = 1) = p =
1-P(X =0) < 1landZ ~ Normal(0,1) is independent of everything else. We have
clearly lim,, . Y1 ,,/n = —1 and

log (eey{lv"]> = log (p"(692/2 —-1)+ 1) —nf.

Hence we havé\(§) = —0 < 0, forall § > 0 andP(M > z) > P(X; = 1)P(Z >
x+1) > 0forall x.

— Note that in the additive case, the fact tiafe” 1.1] = oo implies thatE [e?Yi71] = oo
for all n. In the subadditive case, this not anymore true and Assom(Ai3) is needed for
Theorem 11 to hold. Consider a sequence of i.i.d. exporigntiestributed (with mean 1)
random variableg X, },, and consider the subadditive process< m) :

Yv[n,m} = Xn]l{nzm} + (TL - m)]l{n<m}
In this case, we clearly havk/ = X, henceP(M > z) = e~ * and
Vn>1, E [eey{l’“l] =0 = 9 = .

— Consider the cas¥|,,, ,j = Zn,n] — Sim,n)» Where the processeésand S are independent,
S is a non-negative additive process (i.e. a random walk) and a subadditive process
with

0<Zpnn < Zpnty-
Then we have fof > 0,

E [e"Y[LnJ] - E [eezum] E [6—95[1,711}

sfii] (o]

and AssumptiogA3) is satisfied as soon a5 [e"YllalJ] < oo for somen > 0.

v
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To make the connection with the existing literature, weestiag following result (which proof
is given in Section 5.2.3.0) :

Corollary 3. Under previous assumptions and if

1. the sequencgY); ,,;/n} satisfies a large deviation principle (LDP) with a good ratedtion
I
2. there exists > 0 such thatA (6" + €) < oo,
whered* is defined as in (5.5). Then we have

lim 1 logP(M > z) = —0* = — inf @. (5.6)
T—00 I a>0 «

Without the assumption that the procéss,,) is subadditive, this kind of result has been ex-
tensively studied in the queueing literature (we refer ® work of Duffy, Lewis and Sullivan
[35]). However, we see that considering the moment gemgrditinction instead of the rate func-
tion allows us to get a more general result than (5.6) sinceloveot require the assumption on
the tail (see the example of section 5.4.2). Indeed thiswagsan ensures that the tail asymptotics
of P(Y}; ) > nc) for a singlen value cannot dominate those®f) > z). In this case, equation
(5.6) has a nice interpretation : the natural drift of thecessY, ,,) is un, wherep < 0. The
quantity I («) can be seen as the cost for changing the drift of this processst 0. Now in order
to reach level, this drift has to last for a time/«. Hence the total cost for reaching lewelvith
drift o is zI(«) /o and the process naturally choose the drift with the minirsabaiated cost. We
will see how this non-rigorous heuristic can be made moreipean what follows.

5.2.2 Beyond the Grtner-Ellis theorem

In this section, we discuss the relations between TheoreandXGartner-Ellis Theorem.

If the origin belongs to the interior of the domainy, = {0, A(f) < oo} (which is not
required here), we see that Assumption 2.3.2 of [32] isfsadisIn which case, the upper bound
of the Gartner-Ellis Theorem holds (see Theorem 2.3.62f) [®ience forx > 0 we have,

. 1 <}ﬂ1,n} > . % - *
limsup —logP [ —— > a | < — inf A*(z) = —A"(«), (5.7)
n—oo N n >
where A*(z) = supg~q {#z — A(#)} is the Fenchel-Legendre transform &f6). Note that we
restrict the supremum over the $et 0 and the function: — A*(z) is non-decreasing im > 0
(see the following Section 5.2.3.0 for a justification).

We give now an example of a subadditive independent prooesgiich the upper bound (5.7)
given by Gartner-Ellis Theorem is not tight.

Consider the following independent sequentes} and{s?} of i.i.d. random variables :

Plo} =0)=1-p, Ploj=3)=p
For/ = 1,2 andu < v, we denoteSfu’U} =Y., of and we define the random varialdtg ,, =

maxi<p<n{Sf g + Sf. ) With max(1 + p,3p) < a < 3, we can definé/ = sup,(Z[1 ) —
na) < oo which is the supremum of an independent subadditive prosghsegative drift. We



5.2. Tail asymptotics for the supremum of an independeraiddibive process 105

denote the moment generating functions as followg) = logE [eegf]. It is easy to compute
(this will be done in a much more general context in Part 3),

: 1 07,
= — (Lin] | —
A(0) lim - log E [e 1 ] af

= max(AY(6), A%(0)) — aé.
Thanks to Theorem 11, we see that we have
0* = min {0', 6}, whered’ = sup{# > 0,A*(9) < ab}.

Note that our example corresponds to a system of 2 queuesdertaand that this result follows
directly from the work of Ganesh [44].
The rate functions fob“[l1 . andS? . are

[L.n]
I e e
ey — f m/3VRln/30] 4 (1 2/3)logl(3 — )/(3 ~ 3p)]. @€ [0.3]
+00, x ¢ [0,3].

On the exponential scale a deviation happens in the mosy hkay. Hence, we have for alt >
max(1 + p, 3p) :
.1 .
lim —logP (Z[Ln} > n:n) = lim

n—oo N n—00

%logIP> (Y > n(z —a)) = —I(x), (5.8)

wherel (z) = min(J!(x), J?(x)). This function is clearly not convex as shown on Figure 5r1 fo
p=1/3.

0.25 T T T T T T
1(X)

0.2 -

0.15 - —

01 _

0.05 - _

14 15 1.6 1.7 1.8 1.9 2

Fic. 5.1 — Nonconvex rate function

We havel(x + a) > A*(z) and these functions are distinct. Hence, in this case, tpherup
bound given by Gartner-Ellis Theorem is not tight.
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There is no hope to find a general large deviation theory aidditive processes where the rate
function would be given by the convex conjugate of the Idfatic moment generating function.
Another example (leading to the same conclusion) can bedfouf80]. In their work, Seppalainen
and Yukich consider subadditive Euclidean functionals$ #na regular nearly additive processes.
This property allows them to derive a LDP for such functienah our framework, such an ap-
proach is not valid since it cannot handle previous example.

Our example provides a simple illustration of a limitatiohérent in the convex methodology :
the upper rate function is the best possible convex uppendand does not necessary coincide
with the actual rate function. A similar phenomena in thetergnhof mixture of probability mea-
sures was observed by Dinwoodie and Zabell in [33].

We end this section by showing that the information givenh®ygcaled moment generating
function is not enough to prove a LDP. We modify our examplernter to get two independent
subadditive processes with the same scaled moment gengfatiction but with different rate
functions.

Consider the following sequende?} of i.i.d. random variables independent of previously
defined random variables,

Jf’ = k‘Xiq—|—y,

with {X} a sequence of i.i.d. Bernoulli random variablgs{! = 1) = ¢ = 1 — P(X} = 0).

With the same notation as above, we takg,; = max;</<j<n {S[ll’z] +8G+ Sf)j,n}}'
With the following choice of parametersp: = 1/3, ¢ = 1/2, k = 2 andy = 1/5 we have
A?(0) < max(A'(9), A*(6)). Hence the processe%, ,,; andZ}; ,; have the same scaled moment
generating function but they clearly have different ratections as shown on Figure 5.2.

0.25 T T T T T T
1(X)
ix) ——

0.2 -

0.15 -
01 ]

0.05 - [ ]

14 15 1.6 1.7 1.8 1.9 2

FiG. 5.2 — Same moment generating function with different ratefions

This very simple example shows the asymmetry in the largéatlen behavior of the upper
and lower tails of a subadditive process. In particular,fatiewing result follows directly from
Hammersley’'s work [55] :
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Proposition 20. Under assumptioifA2) and if
E [exp(eyr[l,n])] < o9,

for some) > 6 > 7, 7 < 0 and allr. Then the limits,

P(z) = lim %logIP’(Y[l,n] <nz) and, A(f)= lim %logEeXp(QYHM),

n—~o0

exist for allz and all§ < 0 and satisfy
P(z) = iI;f{A(Q) — 0z} and, A(0) =sup{¢y(x)+ Ox}.

This results allows Grossmann and Yakir [54] to prove a simigsult to ours but for the large
deviations of the global maxima of independent super-agdjtrocesses. We should stress that
Proposition 20 leaves open the question : for what values isfit the case that)(x) < 0? In
particular, Grimmett gives in [53], an example of a subaddeliprocess for which it is not the case

thaty (i — €) < 0 (wherey = lim,, @).

5.2.3 Proofs
Moment generating function

Lemma 27. Under the foregoing assumption, the following limit
o1 oY;
= — [1,n]
A(9) nh_)ngo - logE [e 1 } ,
exists inR U {+o0} for all § > 0. A(.) is a proper convex function. Further the domain/ofs
given by{# > 0, A(§) < oo} = {0 >0, E[e”*111] < 00} D [0,7) wheren is defined in(A3).
Proof. Let

Y1,n)

Ay (0) = logE[ee n ] (5.9)

Thanks to the subadditive property Bf we have,
Yinem) < Yiin) + Yint1,nem)s
andY[; ,,) andY}, ;1 1. are independent. Hence fér> 0, we have,
Apim((n4+m)f) < Ap(n) + Ay (m0).
Hence we can define for ay> 0,

1 Ay (nf A, (nf
AO) = lim - logE [¢”t] = lim An(n8) _ g Anlnb),

n—oo N n— o0 n n>1 n

as an extended real number. The fact thi a proper convex function follows from Lemma 2.3.9
of [32]. The last fact follows from AssumptiofA3) and,

1
“logE [JYM} <logE [e‘%u] for 0 > 0.
n
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Lemma 28. Under the foregoing assumptions, we hé&ve> 0 and

AB) <0 if 6€(0,6%),
A@) >0 if >0

Proof. Let
0, = sup{f > 0, A,(nf) < 0}. (5.10)
We fix n such that
E[Y[1,n] <O.
We first show that,, > 0 and

An(nB) <0 it 0 €(0,6,), (5.11)
Ap(n®) >0 it >0, (5.12)

The functiond — A,,(n6) is convex, continuous and differentiable @nn). Hence we have
An(n) = SE[Y]; 5] + 0(3),

which is less than zero for sufficiently smalb> 0. Hence, the set over which the supremum in the
definition of6,, is taken is not empty arg), > 0. Now (5.11) and (5.12) follow from the definition
of 9,,, the convexity o — A,,(nf) and the fact thad,,(0) = 0.

We now show tha#,, — 8* asn — oco. We have fod > 0

lim M — inf M = A(0).
n—oo n n>1 n
Hence forg > 0, we have’="®) > A(6) and
Ay
Vo€ (0,0,), A@) <)

This implies that* > 6,, > 0. If * < oo, we can choose > 0 such that* — ¢ > 0 and then we
haveA, (n(6* —¢))/n — A(0* —e€) < 0. Hence for sufficiently large, we have‘w <0,
henced* — e < 0,,, and we proved that, — 6*. A(.) is a convex function and sinc(0) = 0,
the lemma follows.
If 6* = oo, we still haved,, — oo (that will be needed in proof of Lemma 29) by the same
argument as above witlt — e replaced by any real number.
O

Upper bound

Lemma 29. Under the foregoing assumptions, we have

1
lim sup . logP(M > z) < —0*.

r—00



5.2. Tail asymptotics for the supremum of an independeraiddibive process 109

Proof. For anyL > 1, we denote forn > 0,

VN(L) = max{}/[nL+1,nL+1]7 Yr[nL+1,nL+2]7 s Yr[nL—l—l,(n—l—l)L]}a

and we have, fol, such thatE[Y]; ;] <0,

M < max {VO(L)’SI;I)O (Z Yiirs1,64+1)0) + Vn+1(L)> } =: U(L).
=Y \i=0

and the right-hand term is almost surely finite.
We will show that under previous assumptions, we have

1
limsup — logP(U(L) > z) < —0p, (5.13)

r—oo &

wheredy, is defined as in (5.10).

Thanks to Lemma 28 we know théf — 6* as L tends to infinity, hence the lemma wiill
follow.

We now prove (5.13). We define

n

Sion) (L) = Z Yir41,641)1)-
=0

For all# ande > 0, there is a finite positive constadtsuch that,

E [ees[o,mm] < AetDAL(LO)+e),

The constantd depends ol ande, but this is suppressed in the notation.
Letd € (0,61), we haveA,(L6) < 0 see proof of Lemma 28.
We have (with the convention that the constdndiffers from line to line but is always finite),

E[w] = & _max{eevo(m’Supeesm,nl(LanH(L)H
L n>0
S E _ee‘/O(L)_ + E |:Sup 695[0,7L](L)+Vn+1(l’):|
L 4 n>0
< E[MD] 14 S E [ees[o,n}(m]
B . n>0
< E [ OVO(L)] <1+2A6n(AL(Le)+E)) '

n>1
Sinced € (0,61,), we can choose > 0 such that
AL(LQ) + € <0,

and thanks to Lemma 27, we have

sl <al] s 5[]+ (2] <o
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Therefore E [¢/V(L)] < A for some finite constant. Hence by Chernoff’s inequality,
P(U(L) > z) < e ™K [eGU <L>} < Ae~fo,
Since the above holds for dll< 6 < 6, we get

1
limsup — log P (U(L) > x) < —67.

r—oo &

Lower Bound

We take the following notation?,,(A) = P(Y}; ,,) € A), and the same convention 8.,
defined forg such that\,,(nf) < oo, as the transformed measure :

Py := ePYmleAnmp,

The functiond — A(6) is convex, hence the left-hand derivativ€$6—) and the right-hand
derivativesA’(6+) exist for all6 > 0. Moreover, we have\’(/—) < A’(#+) and the function
0 — 3(A'(6—)+ A’(6+)) is non-decreasing, hendé(d) = A'(—) = A'(6+) except ford € A,
whereA is at most countable.

The following lemma is similar to Lemma 10 of Zerner [86],

Lemma 30. Letd > 0, andu < v such that
u<AN(O-) <N(O+) <v< 0.

Then

/Yy
lim P, (% c (u,v)> — 1. (5.14)

n—oo

Proof. First note that\’(f+) is well defined hence there exigts> 0 such that\ (6 + y) < oo,
henceA, (n(6 + y)) < oo, for all n sufficiently large. We have for all < = < v,

l log ]fbe (}/[1771] 2 n'l}) — _M 4+ l 10gE |:e(6+1‘)yv[l,n]e_l‘yv[1,n]’}/[1771] 2 TL'U]
n n n
< Ay (nd) N Ap(n(0 +z)) .
n n

Hence, we have

1 .
lim sup — log Py (Y[Ln} > m)) < -

n—oo N X

(v A0 +z) - A(0)> .,
which is negative for smalt. A corresponding statement holds for the evgYit ,,) < nu}, this
implies (5.14). O

Lemma 31. Under the foregoing assumptions, we have

1
liminf — logP(M > z) > —60*.
x

r—00
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Proof.

We consider first the case where there exists 0* such that\(#) < co. In this case we have
A(6*) = 0andA’(6*+) > 0. To prove this, assume thaf(0*+) = 0. Takef < 6*, thanks to
Lemma 28, we hava () < 0. Choose: > 0 such that) < A(6* + €) < €|A(#)|. We have

A"+ _ —A(®)
€ 0x — 0’

which contradicts the convexity df(6).
Hence, we can find < 8* 4 ¢ such that

0<A(t), téA.

Note that these conditions imply> 6* andA’(t) > A’(6*+) > 0.

Moreover for any > 0, € > 0, we have
Y1)

P (Y[l,n} > na) > eAn(”t)e—nt(a—i-e)]th <
n

€ (a,a—l—e)>.

Fix o := A'(t) — ¢/2 > 0. Givenz > 0, definen := |z/a/. We have

B(M > z) > P(Yjy,) > na),

hence we have

1 1 (Y
—logP(M > z) > — <An(nt) —nt(a+€) + log Py (ﬁ € (o, + e)>>
x na n

Taking the limit inz andn (while « is fixed) gives thanks to Lemma 5.14

Q=

nxnlgf%logp(Mm) > L (A@) —tla+e)
> _(0*+6)(Oé;—6)

We consider now the case where foréal- 6, we haveA(f) = oo
Fix K > 0 and letP} be the law ofy}; ,,; conditioned on{Y; < K, i = 1,...,n}, where we

denoteY; = YJ; ;. Then for alln, we have
P,(A) > PE(A)P(Y; < K)".
Thanks to subadditivity, we ha\}féK(Y[lvn} < nK) = 1 and the following moment generating

function is bounded, fof > 0,
A (f) := log EX [eey{l’nl] < nhK.

Moreover, we have
log E [e%m, Y, <K, i= 1n} ~nlogP(Y; < K)

AK(9) — nlogP(Y; < K).
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Thanks to subadditivity, we have
0Y71,n)

oY: 0Y:
e? ntml ] oy o g i1, nim) S € Yivi<k i=1,..nye T Ly o g imnt1,ntm)

hence thanks to the independence, we can define,
~ K
AK(6) = lim w
K
= lim Ay (n6) —logP(1 < K)
n

n—oo

= AK(0) —logP(V; < K).

Let 0% = sup{f > 0, A% () < 0}.
Thanks to the preceding proof, there exists- 0 such that

lim inf 1 log PE ([or, 00)) > — (0% + €)(a + €).
n—oo n,

Hence we have
(5.15)

hmlnf log P, ([a,00)) > —(6% +¢)(a+¢) +logP(Y; < K).

n—oo 1,

Note that for any fixed), the functionA’ () is nondecresing in K antmg o, A% () =
A(0). Hence we hava X (6* 4+ ¢) — oo asK tends to infinity. Hence for sufficiently large, we
haveAX (0% + ¢) > 0 and this implies tha#® < 6* + «.

Hence dividing by and taking the limit — oo in (5.15) gives

lim inf — logIP’(M >x) > — hmlnf —logP,([a,00)) > —(0" + 2¢)
o n—oo M
O

r— 00

Y

o+ €
o

and the lemma follows.

Proof of Corollary 3
Proof.
We have only to show that* = inf,~ @ Thanks to Varadhan’s Integral Lemma (see

Theorem 4.3.1in [32]), we have

lim — logE [ 01 .m) "} = A(f) = sup{fx — I(x)} =:
n—oo n xT

for g < 0* +e.

Thanks to Lemma 28, we have fepositive,0 > A(6* —¢) > (0* — )z — I(z), from which

we get
inf (@) g
a>0

Ford* +¢ > 6 > 0%, we haveA(f) > 0 thanks to Lemma 28. Hence there existsc R such

thatda™ — I(a*) > 0. Sincel is non-negative and > 0, we haven™ > 0 and
inf L) 1@

a>0 o a*
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Since we took any* + ¢ > 6 > 6*, we proved

inf La) < 0*.
a>0 «

Estimating tails

In this paper, we are interested in estimating tail prolitédsl As in [18], we introduceX*
denotes the convex conjugate /o,

A(9), if0>0,
+ _ )
ATE) = { +oo, ifO<0.

. B A (x), ifz>~(0)—a,
AT (@) = { 0, ifac<’7Y(O)—a.

Lemma 32. We have

A () =sup {0z — AT(0)},
0eR

and the functiom\** (z) is non-decreasing in.

Proof. We show thatA*(y(0) — a) = 0 and for allz > ~(0) — a, we haveA*(z) =
supy>o {0z — A(#)}, from which the lemma follows. Sincg,, (defined in (5.9)) is convex and
differentiable in 0, we havd,,(6) > A/,(0)# and taking the limit on both sides, we get

A(0) = 0(7(0) — a).
Hence for allz > ~(0) — a, we have for) < 0
Oz — A(0) < 0(7(0) —a) = A(f) < A"(7(0) —a) = 0.

The monotonicity ofA** follows from the monotonicity obx — A(6) in x asé is fixed. O

5.3 Large deviations for monotone-separable networks

In this part, we consider a stochastic network describedhéydllowing framework
— The network has a single input point proc@éswith points{7,,}; forallm < n € N, let
Npy,,n) b€ the restriction ofV, namely the point process with poin{®} },, <<
— The network has a.s. finite activity for all finite restricts of NV : forallm < n € N, let
X[m,n () be the time of last activity in the network, when this onetstempty and is fed
by N, We assume that for all finiter andn as above X, ,,) is finite.
We assume that there exists a set of functipfig, f, : R x K — R, such that :

X (V) = frn—m+1{(Te, Ce), m < £ < n}, (5.16)

for all n, m and N, where the sequendg,, } is that describing service times and routing decisions.
We say that a network described as above is monotone-sépérdie functionsf,, are such
that the following properties hold for alV :
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1. Causality : for all m < n,
2. External monotonicity : for all m < n,
X[m,n} (N,) > X[m,n} (N)v

wheneverN’ := {7} is such thatl], > T, for all n, a property which we will write
N’ > N for short;

3. Homogeneity :for all c € R and for allm <n
X[m,n} (N + C) = X[m,n}(N) +q
4. Separability : if forall m < ¢ < n, X[m’g](N) < Ty+1, then

Ximn)(N) = Xjpp1,7)(N).

5.3.1 Tail asymptotics of the maximal dater
Stability and stationary maximal daters

In this section, we summarize the main results of BaccediBoss [13].
By definition, form < n, the|[m, n] maximal dater is

Z[mvn} (N) = X[m»"] (N) —Tn = X[m,n] (N - Tn)'

Note thatZ,, () is a function of{(; }m<e<n @and{7 }in<e<, ONly, Wherer, = Ty, 41 — T, In
particular,Z, := Z, (V) is not a function ofV (which makes the notation consistent).

Under the above conditions, the variablgg, ,,) andZ,, ,,) satisfy the internal monotonicity
property : for allN, m < n,

X[m—l,n] (N)
Z[m—l,n] (N)
In particular, the sequenge”|_,, o (V) } is non-decreasing in. Put

Z = Z(—oo,O] == nh—{{)lo Z[—n,O}(N) § Q.

Lemma 33. [13] Subadditive property of Z
Under the above condition,Z,,, 1} satisfies the following subadditive property : for all <
{ < n,foral N,

Zimn)(N) < Zi g (N) + Zjgg1,)(N)-

Assume the variableér,,, ¢,,} are random variables defined on a common probability space
(Q,F,P,6), whered is an ergodic, measure-preserving shift transformatiooh shat(r,, ¢,,) o
0 = (Tn+1, Crt1). The following integrability assumptions are also assutodubld :

E[r,] == A" =a< o0, E[Z,] < oco.

Denote byQ = {7}, } the degenerate input process with= 0 a.s. for alln.



5.3. Large deviations for monotone-separable networks 115

Lemma 34. [13] Under the foregoing ergodic assumption, there exista-negative constant
~(0) such that

lim
n—oo n n—oo n

The main result on the stability region is the following :

Theorem 12. [13] Under the foregoing ergodic assumptions, eitleE co a.s. orZ < oo a.s.
(@) IfAy(0) < 1,thenZ < o a.s.
(b) If Z < > a.s., themy(0) < 1.

A proof of this result can be found in [10] see Theorem 2.1%8.give in Section 5.3.2 an
upper bound and a lower bound that allow to prove Theorem h2s& bounds will be used for
the study of large deviations.

Moment generating function and tail asymptotics

In the rest of the paper, we will make the following assummi¢that are of course compatible
with previous stationary ergodic assumptions) :
— Assumption(AA) on the arrival process into the netwofk,, } :
{T,.} is a renewal process independent of the service time anéhgoseéquenceg(, }.
Moreover for all reab, the function

Ar(0) = logE[ee(Tl_TO)}

is finite in a neighborhood df.
— Assumption(AZ) : the sequencg(, } is a sequence of i.i.d. random variables, such that the
random variableZ, := Z ¢ is light-tailed, i.e. fory in a neighborhood of,

E[e??°] < 4-o0.

— Stability :v(0) < a := E[T1 — Tp] see Theorem 12.

The subadditive property of directly implies the following property (its proof followthe
lines of the proof of Lemma 27) : for any monotone separabte/ork that satisfies assumption
(AZ), the following limit

Az(#) = lim llogIE [eezll,n]@)] )
n—oo n,
exists inR U {400} for all §. Further, the origin belongs to the interior of its domdn, =
{0, Az(0) < o0}. Az(.) is a proper convex function.
Note that the subadditive property &fis valid regardless of the point proce§s(see Lemma
33). Like in the study of the stability of the network, it tgrout that the right quantity to look at
is Zjm.n) (Q) WhereQ is the degenerate input point process with all its point etp@.

Theorem 13. Under previous assumptions, we have

1
lim —loglP(Z > z) = —0* <0,

T—00 I

wheref* = sup {6 > 0, Ar(—0) + Az(0) < 0}.
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It is relatively easy to see that under our light-tailed agstion the stationary maximal dater
Z will be light-tailed (see Corollary 3 in [14]). Theorem 13osts that the tail distribution of is
indeed exponentially decaying for any monotone-sepanadti@ork. But the main contribution of
this theorem is to give an explicit way of computing this raftelecay. It is the goal of the third part
of this paper to show that it is actually possible to calauldie logarithmic moment generating
function Az for various categories of networks.

In the context of heavy-tailed asymptotics (and more pedgifor subexponential distribu-
tions), the moment generating function is infinite forélt- 0. There is no general result for the
tail asymptotics of the maximal dater of a monotone sepanaéiwork. However the methodology
derived by Baccelli and Foss [14] allows to get exact asytiggdor (max,plus)-linear networks
[16] and generalized Jackson networks [15].

5.3.2 UpperG/G/1/c0 queue and lower bound for the maximal dater

The material of this section is not new and may be found irouerireferences (that are given
in what follows). For the sake of completeness, we includi¢hal proofs. We derive now upper
and lower bounds for the stationary maximal daferrhese bounds allow to prove Theorem 12
and will be the main tools for the study of large deviations.

We first derive a lower bound that will give us part (b) of Therorl2.

Proposition 21. We have the following lower bound

Z 2 sup (Zi_p0)(Q) + T, — Tp) -

Proof.
Forn fixed, let N™* be the point process with poiit" = 7",, — Tp, for all j. Then
Zing = Xino(NV) = To = X[ g (N")
= X_no(Q) +T-pn —To = Z|_ng(Q) + T — To,
where we used external monotonicity in the first inequalitg homogeneity between the first and
second line. O

Proof.of Theorem 12 part (b)
Suppose thakv(0) > 1, then we have

Zi_pol(IN
lim inf ZEn 0T ’O]( )

n—oo n

>7(0) —a>0,

which concludes the proof of part (b). O
We assume now that(0) < a. We pick an integell > 1 such that

E[Z_ 1 Q)] < La, (5.17)

which is possible in view of Lemma 34. Without loss of genéyalve assume thdfy = 0. Part
(a) of Theorem 12 will follow from the following propositiofthat can be found in [14]) :

Proposition 22. The stationary maximal datéf is bounded from above by the stationary response
time R in the G/G/1/00 queue with service times

8n = Z|L(n-1)+1,Ln) (Q)
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and inter-arrival times?,, := Tr, — Tp,—1), WhereL is the integer defined in (5.17). Since
E[31] < E[f1] = La, this queue is stable. With the conventplj ' = 0, we have,

1
Z < 89 +sup Z (85 — Tix1) -

k20,—"k

Proof.

To an input proces#’, we associate the following upper bound proceéés, = {7/} > N,
whereTF = Ty if n = (k—1)L+1,...,kL. Then for alln, since we assumet, = 0, we have
thanks to the external monotonicity,

Xi_n0)(N) = Z1_n)(N) < X[y ) (NT) = Z1_p g)(N'). (5.18)
We show that for alk > 1,
-1
Zi_kr1,0(NT) <8+ sup Z (8 — Tj+1)- (5.19)

—k+1<i<0 /=7,
This inequality will follow from the two next lemmas
Lemma 35. Assuméely = 0. Foranym < n < 0,
Zim 0l (N) < Zp o) (N) + (Zpmn-1)(N) = 1) "
Proof.
Assume first tha,,, ,,_1j(N) — 7,—1 < 0, which is exactlyX{,, ,_1j(N) < T,,. Then by the
separability property, we have
Z[m,O] (N) = X[m,O}(N) = X[n,O] (N) = Z[n,(]} (N)
Assume now tha¥(,,, ,_1j(N) —7,—1 > 0. Let N' = {T}} be the input process defined as follows
Vi<n—1, T, = T
Vizn, Tj = Tj+ Zpmp1(N) — Tt

Then we haveV' > N and X, 1) (N") < T, hence by the external monotonicity, the separa-
bility and the homogeneity properties, we have

Z[m,O] (N) = X[m,O}(N) < X[m,O}(N/)
X[n,O](N/) = X[n,O](N) + Z[m,n—l} (N) — Tn—-1
Z[n,(]} (N) + Z[m,n—l} (N) — Tn—1-

From this lemma we derive directly

Lemma 36. Assuméely = 0. For anyn < 0,

-1
Zin,0)(N) < sup (Z(Zi - Tz’+1)> + Zo,

n<k<0 \ i

with the conventiory ;" = 0
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Applying Lemma 36 taZ|_;1,1,0)(N ™) gives (5.19). We now return to the proof of Proposi-
tion 22. We have

Z = lm Z|_yp41]

k—o00

= sup Z|_r4+1,0/(N)
k>0

< SUp Z[_pr41,0] (N1) thanks to (5.18)
k>0

~1

< sup| S8+ sup Z (5 —Tj+1) | = R, thanks to (5.19).

k>0 —k+1<i<0 7,
from Lemma 36. O

5.3.3 Proofs of the tail asymptotics
Recall that we defined
A(@) = AT(—H) +Az(0).

Note thatA z(.) andAr(.) are proper convex functions, henk¢.) is a well defined convex func-
tion. Itis the scaled moment generating function of the ess¢Y ,,; := Z[_,, (@) + T, —To}
which satisfies the assumptions of the Part 5.2. Note inquéati that by the monotonicity pro-
perty, we have for. > 0,

Zinol(@) Z Zjo,0(Q),
which directly implies AssumptiogA3). The fact that* > 0 follows directly from Lemma 28.

Lower Bound

Lemma 37. Under previous assumptions, we have

1
liminf — logP(Z > x) > —0".

T—00 I

Proof. We have (see Proposition 21)

Z > sup{Z_p, 0)(Q) + T—r, — To } = sup Yjg - (5.20)
Hence the lemma follows directly from Theorem 11. O

Upper bound

Lemma 38. Under previous assumptions, we have

1
limsup —logP(Z > z) < —6*.

Tr—00
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Proof. For L sufficiently large, we have with the conventidn, 1 = 0 (see Proposition 22),

-1
Z < sup ( > s(L) - %Z-+1(L)> + 50(L) =: V(L) + 80(L).

n>0

1=—n

We will show that under previous assumptions, we have

lim sup 1 logP(V(L) + 50(L) > x) < -0y, (5.21)

z—o0 L

wheref, is defined as in (5.10) and the lemma will follow singe — 6* as L tends to infinity
(see Lemma 27).
As in the proof of Lemma 29, for al € (0,6L), we have

max {E [eegO(L)} ,E [eGV(L)}} < 00.

Hence ford € (0,6y,), we havek [ef(W (D) +50(L)] = | [fW (L] E [P50(L)] < A for some finite
constant4. Hence by Chernoff’s inequality,

P (W (L) + é0(L) > z) < e~™E [69<W<L>+50<L>>] < Aeb,
Since the above holds for dll< 6 < 6, we get

1
lim sup — log P (W (L) + 30(L) > z) < —0*.

z—oo L

5.4 Case of study | : (max, plus)-linear systems

5.4.1 (Max, plus)-linear systems and monotone-separabletworks

We now study in more details a specific class of monotonerabfmnetworks.

Framework

The (max, plus) semi-rin@ ..« is the selR U {—oo}, equipped withmax, written additively
(i.e.,a ® b = max(a, b)) and the usual sum, written multiplicatively (i.e.@ b = a + b). The zero
element is—oo.

For matrices of appropriate sizes, we defides B) (/) = A1) @ B(1) .= max (A7), B()),
(A® B)(d) = D, AGR) @ BhD) .= max;, (AGF) 4 BRI,

Let s andm be arbitrary fixed natural numbers such tha s. We assume that two matrix-
valued mapsi andB are given :
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where the matrix4d = A(¢) has the following block structure :

A1) | -0 | —o | —x
A2,1) | A(2,2) | —oo | —00

A= - - - - - - )
A@Y | A@ || Add)

where eactd (4, ¢) is an irreducible matrix.

The (max, plus)-linear system associated td and B

Given a marked point process = {(T}, (u)}—co<ncoo, With G, = (G2, ..., ™) € R,
we can define the sequence of matri¢ds, } and{ B, } by

Ay = A(G), Bni=B(G).

To the sequence$A,,}, {B,}, and{T,}, we associate the following (max, plus)-linear recur-
rence :

xn—i—l = An—l—l ® Xp, ® Bn+1 ® Tn+17 (522)

where{X,,,n € Z} is a sequence of state variables of dimensiofhe stationary solution to this
equation is constructed as follows. We write

Yimn = €D Dipp1,m ©@ Be® Ti = max (Dig+1,m ® Be + Ti) (5.23)

m<k<n

where fork < n, Dy = ®firll Aj = Ay @+ @ Ay and Dy, ) = E, the identity
matrix (the matrix with all its diagonal elements equal tan@d all its non-diagonal elements equal
to —o0). It is easy to check thaf},,, ,,; = By, ® Ty, and for alln > m,

Yv[m,n+1} = An+1 ® Yv[m,n] ® Bpt1 ® Thy1-

In view of (5.23), the sequencgY|_,, o} is non-decreasing in, so that we can define the
stationary solution of (5.22),

}/(_0070} = nh—>H;o }/[_n’o] S Q.

The mappingV = {(T5, (n)} = X (V) = D1<i<s Y[;fb)n} defines a stochastic network. By
definition the[m, n| maximal dater is

— (@)

1<i<s

We give in the next section the assumptions/andB under which this network is monotone-
separable.
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Conditions for a monotone-separable network

We now give the assumptions ghandB :

(MS1) For all i, there exists: such thatt’ = A®**)(¢). And each submatrixl (¢, ¢) has at
least one diagonal coefficient which is neto.

(MS2) Any coefficientA ) (¢) or B (¢) that is not—co is of the form :

P R ™,

u ke,

for some set&C,, C [1,m].
(MS3) We have for al € R,

A)®0=3(¢) &0,

where0 is the vector with all its entries equal @o

We stress that any FIFO event graph with a single input fits auir framework ; see [11] for
details on this class.

Note that the random sequence of matri¢es,, B, } has fixed structure, i.e. for eachy,
Aﬁf’j) (resp.Bﬁf)) is equal to—oo for all n or is non-negative for alk. Moreover, each irreducible
matrix A(¢,¢) is aperiodic, i.e. there existy < oo such thatA(¢, /)" has all entries finite,
because of AssumptigiMS1).

The following lemma shows that the conditions above defin@aatone-separable network.

Lemma 39. The network associated with a (max,plus)-linear recureesrcmonotone-separable
provided{A,,, B, } has fixed structure and,, ® 0 < B,, ® 0 for all n.

Proof.

The first three properties are immediate. Let us prove tharadility holds. IfX,, (V) <
Tiy1,thenYy,, ; < 0@ Ty.

So by monotonicity,

A1 @ Y A1 @0 T4

Bii1®@Ti1 0@ T .

Hence we have

A1 @Y @ Bi1®Ti41 < By ®Ti41©00 T4+
Yimit1 < Yir140® 0@ T4, (5.24)
But max; Bl(_?l > 0, hence we havenax; Y[l(fZLHH > Tj+1. And then

Xima4+1)(N) = max Y[i,?JH] < max Yl@lJH] = Xj41,41] (V).

We show by induction that foratt > [ + 1,

Yimm < Yjig1,n) © 0@ Tiyq. (5.25)
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In view of (5.24), it is true fom = [ + 1. Suppose it is true for, then we have by monotonicity,

< A1 @Y1, ® Bn1 @111 ©0Q@ T
Yimnt1 < Yiginpy® 0@ T4, sincelyiq > Ti4.

Now taking the maximum over the indices in (5.25) givEg,, (V) < Xj41,, (), but the
converse inequality is clearly true in view of the definitiohthe mappingX(.). Hence we have
finally

X[m,n} (N) = X[l—i—l,n} (N)

5.4.2 Tail asymptotics for (max,plus)-linear networks

We consider now a (max,plus)-linear network as describetienabove section (which is a
monotone-separable network). We assume moreover thatdbleastic assumptions of Section
5.3.1.0 are valid. Namely stability holds and we can defimestationary maximal dateby

0<7Z =20 = P Y((j)w} — Ty < 0. (5.26)

1<i<s

Moreover the sequendg,, } is a sequence of i.i.d. random variables and we make theicuialit
assumption that each component of the ve¢tois independent of each other and that for:all
for 6 in a neighborhood of the origin,

E [eegéi)] < 00.
Note that we havely = @;_, Béi) < Co(l) + e+ Co(d), hence this ensures that assump(iaz)

holds. -

Theorem 14. Let Z be the stationary maximal dater of a (max,plus)-linear rekw Associated
to the irreducible matrice$ A,, (¢, ¢) }, we define the following function :

Ag(9) = lim 1 logE [ee(An(M)@vm@Al(M))wm] ’

n—oo N

where the limit exists iR U {oco} and is independent of, v. Then we have

1
lim —logP(Z > z) = —0* < 0, (5.27)

T—00 I
whered* = min{#‘} and thed”’s are defined as follows
0 = sup{f > 0, Ay(0) + Ap(—6) < 0}.

In a queueing context, the sequence of matrigds(4, ¢)} corresponds to a specific "com-
ponent” of the network. It is well-known that the stability such a network is constraint by the
"slowest” component. Here we see that in a large deviatieginre, the "bad” behavior of the
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network is due to a "bottleneck” component (which is not sseeily the same as the "slowest”
component in average).

The computation of the functioh,(6) is not easy in general and will not be discussed here.
One practical question of interest would be to find good waysstimate this function from the
statistics made on the traffic. We should stress that we nfedassumptions that each component
of the vector¢,, are independent of each other. This is of course not reqtorgdt the asymptotics
(5.27), however removing this assumptions will change thenent generating functiohz (given
here in Lemma 42) and hence the valugofsee the example below). Note that if one removes
the assumptions of independencergof the sequence of matricéd,,, B,,), it is still possible to
get some results. In [68], specific techniques on gaussizzepses allow to get some asymptotics
when the sequengg, is driven by a fractional Brownian motion.

Example 6. Consider the (max,plus)-linear recursion associated thth following sequence of
matrices :

(1) —00 —00 —O00 Cr(zl)
T(L1+2) @D oo —o0 }LHZ)
Ay = “ , Bn = (1+3) ’ (528)
T(L1+3) o (3) o n
(289 @ @ g {12e5)

where we used the shorthand notatiogié’” = ¢\ +¢¥ and¢{ %% = ¢V + max{c¥, ¢{P3.

It is clear that these matrices satisfy the required assionptto belong to the monotone-
separable framework. We refer to Section 2.2.4 to see thatsistem corresponds to a tree
queueing network.

The associated irreducible matrices are of size one and dbox€5.28), hence we have for
{=1,2,3,

Au(0) = logE [eefia} ,

and A4(9) = 0. Hence for¢ = 1,2, 3, 6 corresponds to the exponential rate of decay for the
supremum of the random walkup,, >, (g}(f) — m) , i.e. the stationary workload of a single

server queue with arrival process and service times given by the seque{@@}n. As a special
case if eacit(¥) has the same exponential distribution with mégp and if the arrival process is
Poisson with rate\ < p, we haved’ = p — \ = 6*.

Now assume that we haqél) = (,(f) = ,(13) for eachn and the sequenc@,ﬁl)} is a sequence
of i.i.d random variables exponentially distributed witleam1/... We have the same marginal
probabilities as above but we are clearly not anymore in thenework of Theorem 14. However
the system is still monotone separable and we can applytsdfsoin Part 2 but we have to compute
the moment generating functidy; corresponding to these stochastic assumptions. In thigleim
case, it is easy to see that

1
Az(0) =1
z(0) ot

for < u/2 andAz(6) = oo otherwise. Hence if we assume that the arrival process iss@oi
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with rate A < p, then we have
ASp/2 = 0% =p/2,
A>p/2 = 0F=p—\
In particular note that in the casa < /2, the condition on the tail (2) of Corollary 3 fails

whereas Theorem 11 still holds. For small values\pthe tail of the sojourn time is determined
by the total service requirement of a single customer.

5.4.3 Computation of the moment generating function
Auxiliary result

Lemma 40. We have

Zon)(Q) = @ (Dpm ® Bo)(i) .

1<i<s

Proof.
From the definition, we have

Zpn(@ =P P (Dpsim® B)"Y.
1<i<s 0<k<n
We will prove that for allo < k& < n,
B Py ©B0)” > @ (Dprr @ Bi)?, (5.29)

1<i<s 1<i<s

from which the lemma follows.
We have

By
A1 ® By

0
A1 ®0=B;®O0,

A\VARAV]

iterating we get
D[l,n} @By >0® B, ®A,® By 1 ® D[n—l,n] QBp 2@ ® D[2,n] ® Bj.

Taking the supremum of all the components of the vector JiveXD). O

(Max,plus) algebra and computation of the moment generatig function

We begin with a general result showing the existence of thetfon A,. Let {M,,} be an i.i.d.
sequence of irreducible aperiodic (max,plus)-matriceh Wixed structure. We denote

Lemma 41. The following limit exists ifR U {400} and is independent afand j,

1 (i:5)
Ay (0) = lim —logE |:e€M[1,7JL]:| )

n—oo N
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Proof.
We denote

- (i2d)
ACD(G,n) = logE [eeM[lfzJ}

We first taked > 0. We have

[1,n]

= logE

maxe [n+1,n4+m]

. (%,9)
A (@, n+m) = logE [eBM[Liw}
i

o (F) (,M(k,j)]
€

ik

(i) )
> max {logE [eeM[”“v”*m]} +logE [eeM[lv’i] ]}
_ (3,k) (k.3)
- ml?x{A @, m) + A (e,n)}.
In particular forj = i, we have
A O n+m) > AGD(@O,m)+ A9, n).
Moreover thanks to the fixed structure assumption, thergseXi such that fom > N, we have

M[(f’fl}) > —oo for all i andj, henceA7) (9, n) > —oo and we have

lim lA(i’i) (0,n) = sup lA(i’i) (0,n) > —o0.

n—oo N nZN n
For arbitraryi andj, choosen, m > N and note that

AD@ n+m) > A9 n)+ AGD (@, m),
A0 n+m) > ACD(G,n)+ATD(0,m),

where all terms are iR U {+o00}. Lettingn — oo while keepingm fixed, it follows that

1, .. 1 ..
lim —A®)(0,n) = lim —A®D (0, n).
n—oo n n—oon
The arguments for the cage< 0 exactly parallels the one just given, but exploits (mingplu
inequalities rather than (max,plus)-inequalities. O
We now compute\ z(0) for a (max,plus)-linear system. We introduce first some timia,

1
Dun(0) = QA;(6,0) = An(t,0) ® - @ Ay (L, 0)

j=n
1 (i,9)
Af) = lim ElogE[eeDlLiﬂ(z)]’

which does not depend arand; as shown above.
Lemma 42. We have fof > 0

Az(0) = sup Ag(8).
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Proof.
The lower bound follows directly from the following ineqitgl: for all ¢, we have

B |:e€Z[o,n](Q)] > E [J(D{Ln])(i,j)} '

We now derive the upper bound.
We first introduce some notations :

1. LetY = {(ny,...,nq) € N ny+no+---+ng = n+1} and denote(i, j) = n;+- - +n;
fori < j.

2. LetA, denotes the size of the irreducible matdx/, /) andA(i, j) = A; + --- + A for
1< 7.

We take the convention thatif> j + 1 thenn(i,j) = 0, A(4,j) =0 andD[(m )
We decompose the produbk, ,, ® By as follows :

D Dpne Bo)(i) = max {B(()ao) + fo;’f‘i”l] + A+
1<i<s
Dl iy + Aniin ™+
+D[(1féi1+,clzfé{i))+1,n(1,d)]} ;
where the maximum is taken over &fl;, ..., ny) € T and with the following constraints for the

a;'s andg;’s : let j be the smallest integer such thgt# 0, then

ap € [A(Lj—1)+1,A(L7)]
ap € [A(LL—1)+1,A(1,0)], VY,
B € [A(L)+1,A(1L+1)], VL.

Hence we have

@ (D[l,n] ® Bo)(i) < max  max {max B(Z) pueo) 4 max A( J)
S 7

1<i<s (nl,...,nd) [1 ni— 1}
(Bi+1,04) (i,5)
+D[n(1+;)+1 n(1,i+1)—1] + max An(l 1) +.
(Ba+1,a)
D[n(lercll ld)-l-l n(1,d)] }

where the maximum is taken with the same constraints as doovbe «;'s and 5;'s. We can
rewrite it as follows :

Znn(Q) = @ (D ® Bo)(i) <

1<i<s

52+1,C‘fz
<n1,ﬁif)erm?XB° + Zma“n(l nT maxZD[m L+ L(Li1)-1]°
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Hence we have

E [662[0'”](62)] =E {exp {9 max (D[l,n] ® Bo)(i)H

( (/BL 7OCL
< E (nl,].(.l.l,if)e?f exp 0 {maxB + Zmax An(1 0 + max Z D n(1+1 +1,n(1,i+1)— }}]
< Z exp 6 {max B(Z + Z max An(l ¢) T max Z D(f(bfi’ibl n(1,i+1)—1] }]
(n1,...,nd)6T "

B (IB’L 7a’b

_ ( Z exp {GmaXZDn(E +1,n(1,i+1)— 1}}])
(n1,.. Jld)eT
E [exp@ {maxBO + ZmaxA ’j)}

[2¥)

)

4(0)

where we used independence in the last equality. Now obsleat&Y'| = ("1') < (n + 1)? and
that

(IB'L 7al (Z7
max Z D n(ﬁ Fln(litl)— Z maxD n(Jl )+1,n(1i+1)— }(6)'

Hence we have
d
E |:6GZ[o,n](Q)] < 5(0)(n+ 1)d sup HE {exp&max D( )[] (@)]
JETY o=y

{(n1,...,ng b [,

and taking thdog, we obtain

logE [ gzo"](Q)] < log (6(0)(n + 1)d>

+ sup ZlogE [exp@max D[(l n)](ﬁ)}
{(n1,...na)€YT} 4

Assume that\,(f) < oo for all ¢ implieslog(§(#)) < oo. Then for suchy, there are positive
constants such that

logE [exp@max D[(1 n)}(ﬁ)} < ne(Ae(8) +€) + K.
Hence in this case, we have
lim —10gIE [ 02y, nJ(Q)} < supAy(f) < 0.
n—oo N Y
We now show that\,(6) < oo for all £ implieslog((#)) < oc. In this case we have for all
€1,m], E [e"dl)] < oo thanks to(A1), and then thanks tA2), we have

max <maxB£),maxA(aﬁ> ch ,

hence the upper bound follows. a
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5.5 Case of study Il : Large Deviations for generalized Jacksn net-
works

We first introduce some notations.

For (E,d, <) a complete, separable metric space with partial ordewe denote byD(FE)
the space of cadlag non-decreasifigralued functions defined dR, with Skorohod () topo-
logy and byC(FE) the space of continuous non-decreasiiyalued functions defined oR .
Restricted taC(F) the Skorohod topology is just the compact uniform topology.

Forz,y € RX, we writez < y if 2 < ¢ for all i. We denote by\ the minimum and
by Vv the maximum irRX. ForX,Y € D(RK), we writeX < Y if X(¢) < Y(¢)forallt >0
and for mapsF, G € D(R)?, we denoteF’ < G if F(X) < G(X) for all X € D(RX). For
z € R, we denoté|z|| = vE 20 and forX € D(RE), we denotg|X| = sup, |X(¢)||. We
denoteDy(E) = {f € D(E), f(0) =0} andCy(FE) = {f € C(E), f(0) =0}.

A piecewise linear function is a continuous function sucét tthere exists a partition =
(to =0 < t; < ...)with t, — oo and such that the function is linear on each intefvgl ¢ 1).
For any functionf € D(RX), we define the polygonal approximation pfwith step1/n as the
(piecewise linear) function

o0 = (29 gt oy (5 (52) - (120

M¥ is the set of substochastic matrices of sigex K. For M € M¥, we denote by (M)
its spectral radius, by/* its transpose and/() denotes the liné/®) = (MG MK,
In particular, we will identify a functiolP € D(MX) with its K component®® € D(RX),
whereP0(t) = (PG (¢),...PGK)(1)). Note that forM, N € M¥, we haveM < N if
M@3) < NGI) for all + and.

We will use the Kullback-Leibler information divergencehish is a nonsymmetric measure
of distance between distributions in the sense that foramydistributionsP and R on X* where
X is a finite set,

PR = Y Platog (7).

zeXk

is nonnegative and equalsif and only if P = R. We use the standard notational conventions
log 0 = —00, log & = oo and0log 0 = 0log 3 = 0. For any fixedR, the divergence(P||R) is a
continuous function of restricted to{ P, S(P) C S(Q)} whereS(P) denotes the support @f.

For P ¢ M¥, we denote byP the K x (K + 1) stochastic matrix obtained as follows : for all
i,j < K, Pld) = plid) gnd p-K+1) S ). For P, R € M, we will denote

D(P|R) := D(P|R)
_ , _ 7 o 1_2
s Zrem(i) m Loy ()

Z D(PD||RM).
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5.5.1 Generalized Jackson networks
General setting and notation

We recall here the notation introduced in [12] to describemegalized Jackson network with
K nodes.

The networks we consider are characterized by the fact #raice times and routing deci-
sions are associated with stations and not with customénis. mieans that thg-th service on
stationk take50§k) units of time, Where{a](.k)}jzl is a predefined sequence. In the same way,
when this service is completed, the leaving customer is Eestationuj(.k) (or leaves the net-
work if u](.k) = K + 1) and is put at the end of the queue on this station, Wlﬁﬁef@}jzl is

also a predefined sequence, called the routing sequenceeﬁbence$a§k)}j21 and{uj(k)}jzl,
wherek ranges over the set of stations, are called the driving seggeof the network. A ge-

neralized Jackson network will be defined {){/a§k)}j21, {y](.k)}jZl, nk), 0<k< K} where

(@, nM . n(K) describes the initial condition. The interpretation is @lofvs : for k # 0,
at timet = 0, in nodek, there aren®) customers with service times" ... ,afl'?,l) (if appro-

priate,o—ik) may be interpreted as a residual service time). In parti@ailime0, the total number
of customers in the network is>%) = n() 4 .. n(5). Node0 models the external arrival of
customers in the network. Hence,
— if n© = 0 andn(1¥) is positive, there is a bulk arrival at tinfeof (/) customers to node
j, for all j, and no external arrival after tinme
— if oo > n® > 1, then for alll < j < n(©), the arrival time of thex-%) + j-th customer
in the network takes place aﬁo) + -+ a](-o) and it joins the end of the queue of station

Vj(-?r)mwr Henceo](.o) is then (%) 4+ j-th inter-arrival time in the network.
In what follows, we will describe the driving sequences #®to their associated counting
functions. Consider the case?) = oo, we will use the following notation for each of these
counting functions :
~ oM (1) =" oM foro<k < K;
— forn < n(5), we definel;, = 0 and forn > n-%), we definel;, = nH5) 4 6O (1, n).
ThenT, is then-th exogenous arrival time in the network ;

. . . ) . (4)
— forn < n, we definel}\" = 0and forn > n(), we definely”) = n®+35, o171 WOy
. . J =
with k9 = inf{k, Z§:1 1{,/;0):2, >n—n®}, 7" is then-th exogenous arrival time at
nodes.
We define the sequence of Jackson netwdiXs, = {S,,(¢), P, (¢), N,,(¢)} with

}

i 1
STURE SN
i 1
s(t) = - Z Lo ky<nt)
k

i 1
PO (1) = - o1 =gy
k<nt .
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Note thatN{" (0) = n() and that we have for all < u < v,

K
Y PU () =PI (v) < (u—v),
j=1

in particular, we hav@®,, € Dy(M¥X).

We denote the input and output processes of each quefi¢he networks byA () andD(*)
respectively. We will use the following notatich = (A, ..., AF))andD = (DO, ... , D)),
We now describe how the processesandD are obtained fornJIN.

We define the map : Do(RE) x Do(ME) x D(RE) — D(RE) as follows :

K
(X, P,N)D(t) := ND () + Y PO (XU (1)).
j=1

The following lemma is straightforward.

Lemma 43. The mafd" is continuous for the compact uniform topology and non-el@sing in its
first argument.

We define the ma@ : D(RE) x Dy(RE) — Dy(RE) as follows :

() .= j @) ¢y — Y@ (%) (4)
(X, Y)0(t) = inf {Y ) - YO (s) + X (s)} AY O (1),
Lemma 44. The map? is continuous for the compact uniform topology and non-glaging in its
first argument.

Proof. We can clearly consider the mappifigwith K = 1 only. LetR : D(R) — D(R,) be
the one-dimensional reflection map definedR{)X) (t) := supg<<; {X(t) — X(s)} vV X(t). We
have®(X,Y) = X — R(X —Y). Itis easy to see that for arly > 0,

sup |R(X)(t) = R(X) ()] <2 sup [X(t) — X'(t)],
0<t<T 0<t<T

from which the continuity ofP follows. Its monotonicity is obvious. O
Remark18. Consider the mappin@ with K = 1 andY(¢t) = ut, with u > 0. If p = 0,
since®(X,Y) < Y, we have®(X,Y)(¢t) = 0 for all ¢. If u # 0, we have®(X,Y)(t) =
info<s<:{X(s) + pu(t — s)}. Moreover ifX is a concave function, then this equation reduces to
®(X,Y)(t) = X(t) A ut. Hence we can write

Y(t)=pt,withpy >0 = ®X,Y)(t) =ptA Oi<nf<t{X(s) + p(t—s)},
if moreoverX is a concave function = &(X,Y)(t) = pt A X(1).
Proposition 2.1 of [67] shows that the following fixed-po@tfuation :

{An = I(o,,P,,N,) =T(D,,JN,),

D, = ®A,,S, =?A,,JN,), (5.30)

has an unique solution when each component®f, nP,, andnIN,, are counting functions (i.e.
non-decreasing functions &f(RZ) or D(MX) that are piece-wise constant with jumps of size
one). In this case the corresponding functiems,, andnD,, are also counting functions and we
denote the solution of (5.30) b¥(S,,,P,,,N,,) = ¥(JN,,).
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Stochastic assumptions

In what follows, it will be important to distinguish the naglef the network that do not receive
any exogenous customer, i.e. the nodes 8 with § = {i, 3k > 1, V]go) = i}. A generalized
Jackson networdN = {S,P,N} is an object in¢ C Do(RE) x Dy(MEX) x D(RE), with the

additional constrainN( () = 0 for all ¢, for i ¢ 8. Note that€ is closed imD (R ) x Do(MFK) x

D(RE).
We define for(s™), ..., s(5)) € RE and(n), ..., n(%)) € RE, the functions

K .

S, sy = le@)(s(i))’
=1

(%) i

MNEW, ) = S INT0D) + 0ol 050, g8

€8

where eactrS" : R, — R, U {400} (resp.IN" fori € 8) is a0, oo]-valued convex good rate
function, attaining zero o, admitting a unique minimum at the poipt? (resp.\() for i € 8)
and with a domain open on the right.

We assume that the sequenEM,, = {S,(t),P,(t),N,(t)} satisfies a LDP in the space
Do(RE) x Do(ME) x D(RE) with a good rate functiod?™ given by

'N(S,P,N) := I°(N(0)) + /OO IS(S(t)) + D(P(t)||R) + IN(N(¢t))dt, (5.31)
0

if the argument functions are absolutely continuous andleguinfinity otherwise.
Assumptions on the matrik :

1. We assume that R) < 1.
2. We assume that for all < 7 < K, we have

(N+NR+--- +NRF® > 0, (5.32)

whereN® = 17;cq.
We recall here some results of [78] concerning large denatof renewal processes and show
that our assumptions on the rate function (5.31) are satisfithe i.i.d case. Denote Hy;, i > 1}
a sequence of non-negative i.i.d. random variables wititipesnean. Let

ad) = logE [69<l] ,
0" = sup{f >0, a(f) < oo},

o*(x) = sup{lz — a(f)} = sup{fx — a(0)},
0 6<0*

glx) = za*(1/x) = sup{0 — za(0)}.
9<6*
The functiona is a convex function and differentiable ¢r oo, 6*) with o/ (6) = E[¢1] > 0. In
particular, we havéimgg- a(§) = oco. Thanks to [49], we know that* andg are convex rate
functions. Moreover i#* > 0 thena™ is a good rate function. Introduce the sequence of processes

{Cnln:

1
Cn(t) = E Z I{Zj-:l ¢j<nt}"
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Then Theorem 3.1 of [78] gives : K((; > 0) = 1, then the sequencgC,, },, satisfies a LDP in
D(R) with the good rate function

1€(x) = Jo° g(%(t))dt, if x e C(Ry) tends to infinity and is absolutely continuous,
7 o, otherwise.

General methodology

As in [67], we see a generalized Jackson network as a solotitire fixed point equation
A = T'(D,JN), o
{ D — &(A,JN) (A,D) =: U(JN). (5.33)

It is known that¥ is well defined for counting processes, see [26] or [67]. hdtural to ask
whetherV¥ is well defined for processes I or at least for absolutely continuous processes. If
this was true, and i was shown to be continuous, then we would get thanks to thieamion
principle that the procegA, D) satisfies a LDP with good rate function

"T4P(A,D) = inf {"N(IN), ¥(IN) = (A, D)}~ (5-34)

However, the mapl turns out not to be well defined for all possible limits of a s&oce of
Jackson network§JIN,, },, as defined previously. In particular, the fixed point equaf®33) can
very well be stated for processeslinbut then may have several different solutions. We refer to
the appendix for a simple example.

To circumvent this difficulty, we adopt the following strgie We find a domairDjyn C
Do (RE) x Do(ME) x D(RE) satisfying the following constraints :

— the map?¥ is well defined oDy ;

— any solution(A, D) of the fixed point equation (5.33) associated with a "cordgusf Jack-

son networkIN can be approximated by a sequeRd&N,,} € D?N such that

JN,, — JN,
Y(IN,) — (A,D),
NN, — PNAN).

Hence in order to remove the quote from (5.34), we follow degsiandard method of proofs
for large deviations of stochastic processes analogue tvititheory of weak convergence : it
consists of first verifying a compactness condition and #f@wing that there is only one possible
limit. In our context, we proceed as follows :

1. we show that our sequence of processes is exponentigtly; ti
2. we us€eD N to determine the rate function.

In Section 5.5.2, we give the theoretical framework thatnghbow DN determines the rate
function. This result is stated in great generality (withany reference to our specific problem)
and could be of independent interest since this method of pauld be applied to other dynamical
systems, with discontinuous statistics.



5.5. Case of study Il : Large Deviations for generalized danknetworks 133

5.5.2 An extension of the contraction principle

Let £, F be complete separable metric spaces.&etE x F — R be a continuous function.
We assume that there exishs C &, such that for allz € D, there exists an uniqug € F such
thatG(z,y) = 0. We denote it byy = H(z) whereH : D — J,

VeeD, Gx,y)=0 < y=H(x).

Proposition 23. Let{ X,, },, be a sequence éfvalued random variables and’, },, be a sequence
of F-valued random variables, whefeand F are metric spaces. We assume that each sequence
is exponentially tight.

Assume that the sequenic®,, },, satisfies a LDP with good rate functidr® and thatG (X,,, Y;,) =
0 a.s. for alln.

We assume that for aflr, ) such thatG(z,y) = 0 and ¥ (z) < oo, there exists a sequence
r,, — z, such thate,, € D for all n, H(x,) — y andIX(z,) — I*X(x). We denote b§(z,y) =
{x,}, this sequence. Ifi(x,y) # 0 or I*(x) = oo, we takeS(x,y) = () and we denot&(y) =

U {S(, )}
Then the sequendgeX,,, Y, },, satisfies a LDP with good rate function :
IX(z), G(z,y)=0
XY L ) ) )
(@) '_{ 0, otherwise. (5-39)

In particular, if X,, € D for all n and if the sequencéH (X,,)},, is exponentially tight, then
it satisfies a LDP irtF with good rate function :

Ty := inf{ lim I*(x,), {an}n € S()}. (5.36)
Remarkl9. — There are alternative ways of expressing the rate function

" (y) = mf{1¥ (), y € HY,

where H* = {y € F, 3z, — z, H(z,) — y}. I"X) is the lower semicontinuous
regularization of the following function defined fore H(D) C &,

"N(y) == t{I¥(z), y = H(x)}.

— The main interest of the definition (5.36) is that the ratecfion is computed only thanks
to the sequence’y(z, y) € DN.

— Note that if we assume thaf (D) is closed (in particular ifD = £) then this proposition
follows from the contraction principle (for an extensivedission of this principle, see the
work of Garcia [48]).

Proof. Thanks to Lemma 3.6 of [42], the sequengc¥,,, Y, } is exponentially tight. Then
by Theorem 3.7 of [42], there exists a subsequefigg; along which the sequendeX,,,, Y, }
satisfies a LDP with a good rate function. If we can prove thatd is a unique possible rate
function (that does not depend on the subsequéngé) then the proposition will follow.

Hence, for simplicity of notations, we still denote the exted subsequence HyX,,,Y,}
and we assume th4dtX,,,Y;} satisfies a LDP with good rate functidn*". We will show that
IXY = %Y given by (5.35).
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Consider the continuous mappings and H, from € x Fto & x F x R,

Hl(l’,y) = ($>y> G(m,y)), H2(x>y) = (m,y,O).

We have clearly; (X,,, Y,,) = H2(X,,Y,) a.s. Moreover thanks to the contraction principle,
{H1(Xn,Yn)}n and{H2(X,,Y,)}, satisfy LDPs with the good rate functions

'z y, 2) = inf{I%Y (2,9),2 = G(x,y)} I"2(z,y,2) = inf{I%Y (2,y), 2 = 0},
whereinf () = co. SinceH (X, Y,) = Ha(X,,Y,), we havel 't = 12, Now we have,

I*Y (@,y) = mf {1 (2,y, 2)} = nf{I (z,y), G(z,y) = 0},

r]encevaY(;n,y) = oo as soon agi(z,y) # 0. It remains to show tha(z,y) = 0 implies
IXY (z,y) = IX(z). We have clearlyf X (z) < Y (x,y) for all (x,y) since{X,} satisfies a
LDP with good rate function

I (z) = inf{I*Y (z,y), y € F, G(z,y) = 0}.

In particular, the definition oD implies IX () = IXY (x, H(z)) for z € D.
Take (x,y) such thatG(z,y) = 0 andI¥(x) < oo. There existst;, — x with z7, € D,
H(z}) — yandIX(z}) — IX(x). Thanks to the lower semicontinuity propertyiaf-¥’, we can

n

find for anyd > 0, ane > 0 such that

1 /- _
A (T5Y ~§) < inf XY
A (P @) o) < mt PG,

whereB(y, ¢) is the closed ball i of centery and radius.
Thanks to the lower semicontinuity of the function— inf, ¢, o /¥ (z, z), we have

inf 1Y (z,2) < liminf inf

Y
z€B(y,€) In—T 2€B(y,c)

T, 2)
< liminf inf I%Y(2%,2)
n—0o0 zeB(y,e)

lim I (zF) = I* (),

n—oo

IN

becauseH ( € ) for sufficiently largen. Hence we proved that for any > 0, 1 A

(IXY ) ) for (z,y) such thatG(z,y) = 0 andI¥ (z) < oo, this concludes the

proof of (5 35)
The various expressions &f'(X) are now quite easy to obtain from

17X () = inf{I¥ (), G(z,y) = 0}. (5.37)

For (5.36), note that since the det, G(z,y) = 0} is closed the minimum in (5.37) (if it is finite)
is attained for a certain* with G(z*,y) = 0 andI* (z*) < oo.
We prove now that

inf{I*(z), y € H*} = inf{I* (), G(z,y) = 0}.
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If y € H*, then there exists,, — = such thatH (x,,) — y. Hence by continuity o7, we have
G(x,y) = 0. Now if G(x,y) = 0 andI¥ (x) < oo, it follows from the assumptions thate H<.
To see that the last assertion is true, we show that for any sgg) C ¥, we have,
inf 77X (y) = inf {1¥ = H(z)}. 5.38
Jnf (y) = mf{I" (@), y = H(2)} (5.38)
Fory € O and anyz such thatG(z,y) = 0, there exists:,, — =, such thatH(z,) — y and
IX(z,) — I*(x). Hence fom sufficiently large, we havél (x,) € O and then
in(f;{IX(ac), y = H(x)} <inf I*(z,) < I*(x).
ye n

Taking the minimum over alt such thatz(z, y) = 0 gives the> inequality in (5.38), the converse
inequality is obvious. O

5.5.3 Extension of¥ to piece-wise linear Jackson networks

In this section we consider processes that are continuaisiniC(E), hence topological
concepts refer to the compact uniform topology.
We first recall Proposition 3.2 of [67],

Proposition 24. Given aK x K substochastic matri® with p(P) < 1 and vectorga, y) € R2X,
the fixed point equation

20— a0 1 EK: pii) (xm A ym) ,
j=1

has a unique solutior(y, P, o). Moreover,(y, «) — z(y, P, «) is a continuous non-decreasing
function.

We first consider a linear Jackson netwdiN and show that the mapping is well defined
for such a network. By linear, we mean the followidg? (t) = N® + A(®¢, with () > 0 and
NO e Ry, SO(t) = p@t, with @ > 0, andP ) (t) = P3¢, We assume that(P) < 1.

Lemma 45. Under previous assumptions, the fixed point equation ($hd8)an unique solution
X ¢, P, N, A|(t) = a(ut, P, N + \t), wherep = (u®);, N = (N®); and A = (\®),.

Proof. Sincepu, P, N, A are fixed here, we omit to explicitly write the dependencehiese
variables. In this case, the fixed point equation (5.33) ceduo (see Remark 18)

{A@(t) = NO 404 YK puIDO)(3), (5.39)

DO@) = pWtAinfocs<i{AD (s) + pO(t - s)}.

Thanks to Proposition 24 ¢(t) = x(ut, P, N + At) is the unique solution of the fixed point
equation

{Au)(t) = NO 4O 4 3K pGIDO)(1), (5.40)

DO@) = AO@) A pt.
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We prove now thaX ; is the unique solution of the fixed point equation (5.39).

For simplicity, we denote the fixed point equation (5.393prg5.40), byA = F(A), resp. by
A = F(A). Note that these functions are non-decreasing, continaodsuch thaf” < F.

From0 < X;, we get0 < F(0) < F(0) < F(X;). HenceF™(0) / L < X; and
F(L) = L. Moreover for any solutiofY’ of the fixed point equation (5.39), we halie< Y < Xy
becaus& = F(Y) < F(Y) andEF™(Y) / X;.

Since0 is a concave function, we hav&(0) = F(0) and hence it is still a concave function.
Hence we havé™(0) = F(0) since the image by of a concave function is a concave function
andF = F on the subspace of concave functions. Hence we haveX ; which concludes the
proof. O

In order, to extendl to piece-wise linear Jackson networks, we proceed stepepyost each
interval where the driving functionS, P, N are linear. The following lemma allows to glue the
constructed solution on each adjacent interval. In a qungueontext, this lemma says that the
output of a single server queue fed by the arrival procksand service time process viewed
from timew is just the same as the output process of a single server tjo@ime start at time
with arrival processA (t) = A (t+u) — A(u) + A(u) — D(u) (i.e. with the same increment as the
original process on this period of time plus an additiondk lmeorresponding to the queue length
at timew) and with service time proce$t).

Lemma 46. LetA,S € D(R,) x Dy(Ry) andD = ®(A, S). DefineA, S € D(R,) x Dy(R,)
as follows

A(t) = A(t+u)—D(u),
S(t) = S(t+u)—S(u).

LetD = ®(A, S), then we have
D(t) = D(t + u) — D(u).
Proof. We show that foD = ®(A, S), we have

D(t+u) —D(u) = inf {S(t+u)—S(s)+A(s) — D(u)} A {S(t +u) — S(u)},

u<s<t+u

from which the lemma follows.

We write
D(t+u)—D(u) = Ogig;b{s(t +u) — 8(s) + A(s) — D(u)}
A ugifgﬂ{s(t +u) —S(s)+ A(s) —D(u)} A{S(t + u) — D(u)},

SinceD(u) < S(u), we have to prove that

S(t+u)—S(u) > inf {S(t+u)—S(s)+ A(s) —D(u)} A{S(t+u) —D(u)}.

T 0<s<u
This will follow from,

inf {S(t+u)—S(s)+ A(s) —D(u)} = S(t+u)—S(u)+ inf {S(u)—S(s)+ A(s)} — D(u)

0<s<u 0<s<u

S(t 4+ u) — S(u).

IN



5.5. Case of study Il : Large Deviations for generalized danknetworks 137

=

We consider now piece-wise linear Jackson networks : thetifums u — N (u),u +—
S®(u) andu — P (u) are continuous piece-wise linear functions such &t (0) € R,
andS™(0) = P9 (0) = 0 andp(P(t)) < 1 for all t > 0.

Proposition 25. For a piece-wise linear Jackson network, there exists aquaisolution of the
fixed point equation (5.33). We still denotedbyhe mapping that to any piece-wise linear Jackson
networkJIN associates the corresponding couple, D).

Proof. The existence is a direct consequence of monotonicity ptiegeand continuity of
the mapsl’” and ®. We define the sequence of proces$agk], D[k]}r>o with the recurrence
equation :

{ Alk + 1] = T(D[k], IN),
D[k + 1] = ®(A[k + 1], IN),

and with initial conditionD[0] = 0. By the monotonicity properties @ andI’, we have

0<A[l] = ®0,JN)=0=D]

0] <
— T(D[0],JN)=A[1] <T

®(A[1],JN) = D[1]
(D[1],JN) = A[2],

and the sequencgA [k], D[k]}x>0 is increasing. Note thdD[k] < S and hence the following
limits are well defined

kli»Hc;lo Akl = A and, klggo D[k] = D.
Sincel and® are continuous,A, D) is a solution of the fixed point equation (5.33).

We now prove uniqueness. First recall that we aakh partition ofR , , any sequence of points
a = {ay }n, With ag = 0 anda,, — co. For two partitionsy = {a,, }, ands = {b, },, we say that
~v = {gn}n is the union ofa and 3 if ~ is a partition such that for alk there existsn such that
eitherg,, = a,, Or g, = by,

LetT = {t¢,},, be the union of the partitions associated with each fun@idf, N. We define
forz € Ry, d(z,7) = min, {t, — z, t, >z} > 0.

Assume that we are given two solutions of the fixed point eqoaf5.33) :(A;,D;) and
(A2, Dy). First note that thanks to Lemmas 49 and 50, any solution.88}5s absolutely conti-
nuous. Let = inf{¢, A1 (t) # Ax(t)}, in particular, we have\; (t) = A, (t) andD () = Dy(t)
forall ¢t < z. 4

Defineu = min; d(DS’)(z),T) Ad(z,7) > 0, where the notatiog can be replaced either by
1 or by . We have that fot € [0, u],

SO@) = SOz +1t)—SD(2) =tu®,
PE () = PENDY(2) +1t) — PEI(D(2)) = PO,
NO = NOG+1) - NO) + AV () - DO (2) =D + AP (2) - DU (2),

Let A(t) = X;[u, P, Ae(2)—Ds(2), N (t) be the unique solution associated to the infinite horizon
linear Jackson network defined above. The associated deparocess i®)(t) = A(t) A ut. Let
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v = inf{t, inf; DO (t) = wu}, in particular sinceD®(t) < pt, we havev > 0. In view of
Lemma 46, we have fare (0,v),

AJ(t+2)=A(t) +D(z), Di(t+2)=D(t)+D(z)

this contradicts the fact that< oo and concludes the proof. O
Let & = Do(RE) x Do(ME) x D(RE) andF = D(RE) x Do(RE).
ForJN € € and(A, D) € F, we define the function

The functionG is continuous and such that

A = I'(D,JN),

G(JN,A,D)ZO@{D N

Let Dy be the subspace éfof piecewise linear Jackson networks : namBENy = (S,P,N) €
D if the functionsu +— N (u), u +— S (u) andu — P®9) (v) are piecewise linear functions
such thap(P(t)) < 1forallt > 0 andN® = 0 for i ¢ 8. We denoteJN = (S, P, N).

We proved that

VIN € Dyn, GIN,A,D)=0< (A,D) = V(JIN),
where ¥ has been explicitly defined above. In the next section we dgfine the mapping
EXTF — fD?N.
5.5.4 Sample path large deviations

In order to simplify the notations, we assume thgf(0) = 0 for all n. This condition can be
weakened to the standard condition :

1
lim —log P(N,(0) >¢€) =0,

n—oo N

for all € > 0. In this case, we havE (z) = oo for all z # 0 andI°(0) = 0.

Construction of the approximating sequence

Proposition 26. We considedN = (S, P, N) € & such that/’N(JN) < oo and such that there
exists(A, D) € F that satisfies the fixed point equation (5.33),

{A = I'(D,JN),
D = &(A,JN).

There exists a sequen¢dN,, },, = S(JN, A, D) such that

JN, € Dyn foralln; (5.41)
JN, — JN; (5.42)
¥(JN,) — (A,D); (5.43)
P’NON,) — PPYIN). (5.44)
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First note that sincé?™N (JN) < oo, each procesS, P, N is absolutely continuous arkiN
is well-defined. Moreover thanks to Lemma 51, the procedsasdD are absolutely continuous
too.

The idea to construct the sequerddadN,, },, is to consider the piecewise approximation of the
fixed point equation (5.33). First consider the routing ¢igmaA = I'(D, JN) for times¢ such
thatnt € N,

K
At 4+1/n)—AD@) = NO@E+1/n) - Z +)) (DY) (¢t +1/n) — DY) (1)),
INQIONIO) INRISTO! g A9 D))

where we define the piece-wise linear procBs&’ () as follows, fors € (DU (¢), DU (¢ +

1/n)),

PUD(DW (¢ + 1/n)) — PG (DU (1))
D) (t +1/n)) — DU (t) 7

].é’glj’i)(s) =

if DU)(¢ + 1/n) # DU (1), and we takeP? (DU (t)) = 0 otherwise. In other words, we have

PUIDO(t+1/m) ~ PEIDY (1) = PTIDY(t4))(DY) (¢t +1/n) — DV (1))
— P(j’i)(D(j)(t +1/n)) — P(j’i)(D(j)(t))

Note that{f’,(f’i) (t)}i; € M since

Z PUIDU (¢ +1/n)) — PUIDU (1)) < DY (¢t + 1/n) — DY (2).

%

but the matrix(f’g’i)(D(j)(t+))),-7j may not be of spectral radius less thiarTo circumvent this
difficulty, we will modify slightly the processes as follow&he variables), ¢, will be made
precise latter)

| () 0
ADA)+ 1 = AON) 42 (5.45)
n n
S BU 4 (R (A0 D)4 1
+;( +eROD) (AP D)+ T )

where we omit to write the timeand use the simplified notatidpy"”) = f’,(f’i)(D(j)(tJr)).

We have to findy, e,,, § such that (5.45) holds with®, ¢!, §@) non-negative and® = 0 for
i ¢ 8. These constraints are satisfied by the following choicst fitkes such that® > 0 for all
i € $andd® = 0fori ¢ 8. Letn(5) = n be the unique solution iR of the following equation
(recall thatp(R) < 1),

K
7 = 60 1+ 3 @ RUD.
j=1
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Note thatp® > 0 for all i thanks to (5.32). Finally let defing,(5) = ¢, as followse!) =

19 £ (0,1] (note that? = 1iff AY(D) = 0).
NAn (D)“l‘U(L) i
It is easy to see that (5.45) holds since we have

. . ) . . . ©)) ()
1) (0@ + ) 200, o (a9 4 ) -1

which imply that

‘ ‘ K N . ()
AD(A) = ADN) 131 - )BG <Ag><n>+”_> and,
n
j=1
(4) s Koo . ()
o _ 27 S RO [ AY) n
- - +j:1en R (An (D) + - ),

and summing these two equalities gives (5.45).
For g fixed, we define fos € (DY (¢) + tn(8), DY (t + 1/n) + (t + 1/n)n(d)),

P () = (1= )PEI(s) + R,

wheree,, (0) is defined as above. In view of Lemma 52, the mamgé ) is of spectral radius
less than one smoéf > 0 for all j. Then as a direct consequence of (5.45), we havefar N,

AD () + () = NO@) + 5 + Z PUI (DI (t) + tn(9)). (5.46)

If Ny, s is the polygonal approximation df — N(t) + tJ with step1/n, we have clearly
Nn s — N + § asn tends to infinity. Similarly, we have astends to infinity,
- (1 — D) (2))PUd (D(j)(t))w
P (DY (1) - +eD) (RGDDO (1) + () if DO(K) >0,
RUAn(5) otherwise,

whereel) (t) = ) (8)/(n9) (§) + DY (t)) < 1. Hence whem tends to infinity and tends to 0,
we haveN,, ; — N andP(J D, pli),

We consider now the queuemg equatbn= ®(A,S) and construct the approximating se-
quence forS.

We begin with a first general lemma : given two proces&emndD, we construct a piecewise
linear functionS,, (with step1/n) as follows (withnt € N) :

— if A(t) =D(t) andA(t+1/n) = D(t+1/n), thenS, (t+1/n) — S, (t) = S(t+1/n) —

S(t);

— otherwiseS,,(t + 1/n) — S, (t) = D(t + 1/n) — D(¢).

We will write in shortS,, = 1,,(A, D, S).

Lemma47.Let(A, D, S) be absolutely continuous functionsipfR% ) x Do (REX ) x Do (RE )such
that®(A,S) = D. We denotsS,, = T,,(A, D, S). We haveD,, = ®(A,,, S,,) where(A,,, D,,) is
the polygonal approximation ¢fA, D) with stepl/n and we haves,, — S asn tends to infinity.
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Proof. We denoteD,, = ®(A,,S,). From the proof of Lemma 46, we have

f)n(t + 1/”) - f)n(t) = inf {Sn(t + 1/77‘) - Sn(s) + An(s) - f)n(t)} A {Sn(t + 1/77‘) - Sn(t)} )

t<s<t+1/n

since all the functions are linear on the inter¢alt + 1/n), we have
Dy(t+1/n) = Du(t) = {Au(t+1/n) = Dy(t)} A{Sult +1/n) - Su(0)}

If D,,(t) = D,(t), then we have clearl,,(t + 1/n) = D, (t + 1/n) since
— if A, (t) = Dy,(t) andA,(t + 1/n) = D, (t + 1/n), then we haveS(t + 1/n) — S(t) >
D, (t +1/n) — D, (t) = A, (t + 1/n) — D,(t) see (5.52) for the inequality ;
— otherwiseS,,(t+1/n) — S, (t) = D, (t+1/n) — D, (t) by definition andA,,(t +1/n) >
D, (t+1/n).
This proves the first part of the lemma.
To see that the second part holds,det= {t, A(t) = D(¢)}. C'is a closed set and according
to Lemma 51, we have for all € C¢, S(t) = D(t). For sucht € C¢, we have fore > 0
sufficiently small and for sufficiently large, A,,(v) # D,,(u) for all |u — t| < e. Hence we have
S, (t) = D, (t) — D(t).
Now for t € C° in the interior ofC, we have clearlys,,(t) — S(t). Hence we havé,, (t) —
S(t) for t € C° U C*° which concludes the proof. O
We define the sequenddN,, ; = (S, 5, Py 5, Ny, 5) WhereS,, 5(t) = Y, (A(t) + nt,D(t) +
nt,S(t) + nt). Note that we hav® (t) +nt = ®(A(t) +nt, S(t) + nt), hence Lemma 47 applies,
in particular, we havé,, s(t) — S(t) 4 n(d) asn tends to infinity.
We havelN,, ; € Dyn by construction and the sequencEN,, 5, }, satisfies (5.42) for some
4, — 0. Moreover, we have thanks to (5.46) and Lemma 47,

{An,6 = F(Dn,éyJNn,é)y

Dn,(S = (I)(An,(S»JNn,(S)» < (An,é, Dn’é) = \II(JNM(S)v

whereA,, ; andD,, 5 are the polygonal approximation af(¢) + nt andD(t) + nt with stepl/n.
Forn — oo andd — 0, we have(A, 5,D,,s) — (A,D), hence we hava&(JN,, ;) —
(A,D), i.e. the sequencgIN,, 5, },, satisfies (5.43).
The following lemma shows that (5.44) is satisfied too.

Lemma 48. For any JN such that/"N(JN) < oo, if JN,, — JN asn tends to infinity and
{IN,,}, € D}y, then we havé?N(IN,,) — I"N(IN).

Proof. Let {JN,, = (S,, P, N,,)},, be a sequence B}y such thatTN,, converges taN.

We consider the case of the sequence of proces$ef, in details (we can restrict ourselves
to the one dimensional case).

We first takeT” > 0. We defines = esssup{S(t), t < T} = inf{a, leb[t < T, S(t) > o] =
0}, whereleb is for the Lebesgue measure. Silj{gzéls(S(t))dt < 00, ¢ belongs to the domain of
IS which is open on the right. Hence we can find 0 such that + e still belongs to this domain.
Moreover, sincdS is conve, it is uniformly continuous 00, s + ¢]. Hence, fors > 0, we can
assume that

Yo,y €[0,c + ¢, [z —yl < e=|I5(2) — I°(y)| < 6.
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There existsV(e, T') such that fom > N, we have
sup|S,, (1) — S(1)] < e,
t<T

wheree has been chosen above.

Let {z7'}; be the partition associated 8, (in which for simplicity we addl’ € Uj{z}}).
Then we have

T . 1 TR,
[ rGaoa = 5 - aprs (— / sn<t>dt>

xp = xl
{k, xZ<T} k+1 k -'EZ

Now we have for each term in the sum of the right-hand term,

I8 %/ L) = 18 %/ ‘““%mw%/ S — St | |
L1 — Lk Jap Lht1 — Lk Jap L1 — Lk Jap

k

hence we have

LTpp1 = Tk Jap LTpp1 = Tk Jap

1 k :
7/ IS Sw)dt + 5,

Thyr — T Jan
where the last inequality follows from Jensen’s inequalitgnce for anyy > 0, we showed that
for sufficiently largen, we have,

T T
/ 15(8,,(1))dt < / 15(S(t))dt + T,
0 0

hence we have for ariy > 0

lim sup /0 ! I5(S,(t))dt < /0 ! IS(S(t))dt, (5.47)

n—oo
and then the result is true f@f = oo by monotonicity. The converse inequality follows from

lim inf / I5(S,(t)dt > / lim inf I5(S,,(t))dt
0 0

n—oo n—~o0

o0 S .
> /O 15(8(t))dt,

where the first inequality is due to Fatou’s Lemma and thersttobe to the lower semicontinuity
of IS. Hence we proved that

lim OOIS(Sn(t))dt:/OO I5(S(t))dt.
n=ee Jo 0

The same argument can be repeatedNgr Note that{JN,, },, € DYy implies thatN{” (t)=0
foralli ¢ S. Fori € §, we can use the fact tha the domair/ " is open as previously. In the case
of P,,, we can not use the argument on the openness of the domaimetaveD (R || R(™) = 0
and then the convexity db directly implies thatD(P{ || R®) < D(P®||R(®), from which we
derive an equivalent of (5.47). a
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Exponential tightness

We first recall some definitions (see [42]). A sequence of samdariables{ X,,},, € (R¥)N
is exponentially tight if

1
lim limsup —log P(|| X,|| > M) = —cc.
n

M—00 n—oo
Ford > 0 andT > 0, define the modulus of continuity iB(E) by

w'(X,6,T) :=infmax sup  d(X(s),X(t)),
{t’i} g S,te[ti,hti)

where the infimum is oveft;} satisfying
O=to<ti < - <t <T<t,

andminlgign(ti — ti—l) > 4.

Theorem 4.1 of [42] tells us : 16Xy be a dense subset Bf, . Suppose that for eaghe Ty,
{X,.(t)} is exponentially tight. Thed X, },, is exponentially tight inD(E) if and only if for
eache > 0 andT" > 0,

1
%ir% lim sup — log P(w' (X, 6,T) > €) = —o0. (5.48)
-0 n—oo N
A sequence of stochastic proces§s, },, that is exponentially tight i) ( E') is C-exponentially
tight if for eachn > 0 andT > 0,

lim sup % log P(sgg d(X,(s),Xp(s—)) >n) = —oc0. (5.49)

Then Theorem 4.13 of [42] gives : an exponentially tight seme {X,,}, in D(E) is C-
exponentially tight if and only if each rate functiahthat gives the LDP for a subsequence
{ X (k) n(r) satisfiesl (x) = oo for eachx € D(£) such thatx ¢ C(E).

The stochastic assumptions of Section 6.2 ensure that theesee of processeSIN,, },
satisfies a LDP with good rate function (this implies that seguence is exponentially tight)
giving an infinite mass to discontinuous path. Hence the esgepi of processeSIN, },, is C-
exponentially tight.

We have to show that the sequence of proce$§&as, D,,)},, is exponentially tight. The fact
of dealing with non-decreasing processes simplifies thaitiefis. ForX € D(]R{ff ) (or D(MX))
non-decreasingj > 0 and7" > 0, we definew; (X, T') = supycjo 11 [ X (¢ + ) — X(t)||. We have
clearlyw(X,4,T) = ws(X,T) and if {X,,(0)},, is exponentially tight then (5.48) implies that
{X,.(t)} is exponentially tight for each > 0. Lemmas 49 and 50 show that conditions (5.48)
and (5.49) are satisfied for the sequence of procegses, D,,) },.. The exponential tightness of
{(A,(0),D,(0))}, is clear sinceA,,(0) = D, (0) = 0.

Large deviations results

Proposition 27. The sequence of processgA,,, D,,)},, satisfies a LDP ilD(RE) x D(RE)
with good rate functiod-P. For A, D absolutely continuous and such th&t0) = D(0) = 0,
I4D s given by

IAP(A, D) = /OOO H(A(s),D(s), A(s),D(s))ds, (5.50)
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whereH (A, D, A, D) := infpy h(A, D, A, D, P, N), with h given by,

h(A,D,A,D,P,N) :=

(4) , (©) 7 i 7
Yo TN posey+ >, 15T (DY +ZD (PO RDY) + IN(N)
i€E(A,D) i¢E(A,D)

whereE(A, D) = {i, A = D@} and with the infimum taken over the se{Bf N) € MK xRE
such that

A = N+ P'D.

For all other A, D, we havel4P (A, D) = cc.
Proof. We define
AP(A,D) = inf{ lim PN(IN,), {IN,}, € S(A,D)}, (5.51)

where we recall tha8(A, D) = UsjnS(JN, A, D), whereS(JN, A, D) is defined in Proposition
26. We have to show thdt*? = 12D given by (5.50).

ConsiderJN € Djn and let(A,D) = ¥(JN). Let7 = {0 =ty < t; < ...} be such
that the processes&, D, S, N andD o P have a constant derivative on ed¢p, t;.+1). Then from
A =T'(D,JN), we derive

AD ) =NO @) + Z DY) (¢ DY) (t)).

FromD = ®(A, S), get the following constraints : _ _
— it AO(t,) > DO () or AD(tp41) > DO (t4), then we haveDd @ (t) = S (t) for

te (tk7tk+1)! ) .. .o ..
— otherwiseA () (t) = DO (¢) for t € (tx, try1) and we have® (t) > A©) () = DO(¢) for

t € (trythst)-
Now we can computé’™ (JIN) as follows

PNIN) / S B0+ Y 5D (s))ds

i€cE(A,D) i¢E(A,D)

+/ > DY (s)DPY (s)|[RY)) + TN(N(s))ds
0

/OOO h(A(s),D(s), A(s), D(s), P(s), N(s))ds > IAD(W(IN)),

since fori € E(A(s),D(s)), we haverS” (50)(s)) > 15” (D0 (s))1 1 (y),0) because
SO (s) > DO(s) and 15" is non-negative, convex with(®) as unique zero. Hence, we have
I~A D > IA D
Consider now(A, D) such that/4-P(A, D) < oo, then we denote byp(s),n(s)) the ar-
gument that achieves the mlnlmum }ﬂ( (s),D(s), A(s), ( )) for any fixeds (note thath
is a good rate function). LeP(D(t)) = [ p(s)ds andN(t) = [In(s)ds. We haveA =
I'(D,P,N). Now defines(s) as follows



5.5. Case of study Il : Large Deviations for generalized danknetworks 145

— if A(s) = DO (s) thens®(s) = DO (s) v @ ;
— it AO(s) > DO (s) thens((s) = DO(s).
We haveD = ®(A, S) with S(¢) = fg s(s)ds. Hence we havéA, D) = (I'(D,JN), ®(A,JN))

A
for IN = (S,P,N) and "N(JN) = /4P (A, D) < oo by construction. Hence the sequence
S(JN,A,D) = {JN,,},, is well-defined and we havE*P (A, D) < lim,_ . "N(IN,,) =
IJN(JN) IAP(A, D).
From this proposition, itis quite easy to derive a LDP forpineces,,(t) := A, (t)—D,(¢t)
counting the number of customer in each queue.

O

Corollary 4. The sequence of proces{&3,, }, satisfies a LDP ifD(R ) with good rate function
that is finite forQ absolutely continuous and such th@f0) = 0 and given by :

= = Q S .S S
)—/OH(Q(),Q())d,

whereHQ is given by,

() (©) 7 ) i 7
HQ(Q, 1nf{ S PO po 0+ Y, 187 (DY +ZD( ()R())+IN(N)}

1€EE(Q) i¢E(Q)

whereE(Q) = {i, Q%) = 0} and the infimum is taken over the setbf, P, N) € RE xM* xRE
such that

Q=N+ (P - Id)D.
Proof. Thanks to the contraction principle, we have
1%(Q) = nf{I*P(A,D),Q = A - D},

which gives directly the corollary. O

5.5.5 Appendix
Properties of the mapI’ and
ForX € D(E), 6 > 0 andT > 0, we definews (X, T') = sup;¢(o 7 d(X(t + 6), X(2)).
Lemma 49. We have
ws(P(X,Y),T) <ws(Y,T).
Proof. It is clearly sufficient to consider the case= 1. We will prove that
(X, Y)(t+0) —B(X,Y)(t) < Y(t+6) —Y(b), (5.52)

from which the lemma follows.
If (X,Y)(t) =Y(t), then we haved(X,Y)(t +
Assume now tha® (X, Y)(t) = info<s: {Y(t) — Y(s) + X(s)} < Y(¢). We have
X

Y(t+0)—Y(s)+X(s)=Y(#) —Y(s)+X(s) +Y(t+5) —Y(1),
[

and (5.52) follows by taking the minimum in € [0,¢] and observing tha®(X,Y)(t + J) <
infocs<e {Y (¢ +6) — Y(s) + X(s)}. =
The following lemma is clear :

9) <Y(t+0)and (5.52)is clear.
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Lemma 50. We have
ws(T'(X,P,N),T) < ws(N,T) + ws(P, | X(T)|).

Lemma 51. AssumeS € Dy(R.) is absolutely continuous, then for ady € D(R. ), we have
D := ®(A,S) is absolutely continuous and,

— for all ¢t such thatA (t) > D(t), we haveD(t) = S(t);

— if A(t) = D(t) for t € (u,v) withu < v, then we hav&(t) > A(t) = D(t) fort € (u,v).

Proof. It follows directly form (5.52) that ifS is absolutely continuous, thel(X, S) is abso-
lutely continuous for anX. The rest of the lemma is obvious. O

Auxiliary results

Lemma 52. Given a substochastic matri® such thatp(R) < 1 and a substochastic matrik
such that the support aP is included in the support ok, i.e. R#1) = 0 = P{3) = (. Then
for any e such thatd < () < 1 for all 4, the matrix with coefficient8/ (1) = (1 — ) p(-3) 4
¢ R(1:3) s of spectral radius less thah

Proof. By a suitable permutation of rows and columns, we can asshatditis given in its
canonical form

S1(R) * * *
0 So(R)  * *
R = 2(R) : (5.53)
0 0 *
0 0 0 Sp(R)

where eachs;(R) is an irreducible matrix. We havg R) < 1 if and only if eachS;(R) is not a
stochastic matrix.

In view of the assumption on the support®f the matrixP has the same structure as (5.53)
and we have with the same notation as ab&yé)/) which is an irreducible and not stochastic
matrix. 0

An example

In this section, we construct 2 different sequences of dacketworksIN. and JN?2 such
that their fluid limits are the same

JN! - JN and JN? — JN,
but such that

(A;,D,) =P(IN,) — (A',D)),
(A7,D7) =T(IN7) — (A D?),

with (A1, D1) # (A2, D?).
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We consider a toy example with only one node. Once a custeregrived, he can either go
out of the network or go back to this same node. We define thaafirig driving sequences :

cmn = a(l,1,...),

with @ < 1. We define now two different routing sequences

v = (2,...,21,...1.),
N —
n+1 n+1
vy = (2,...,2,1,2,...,2,1,...,1,2,1,...,1,..),
—_——— e e N

wherex < 1. We denote byN! = {¢™ v" 0} andIN2 = {o™,v"(z),0}. v"(x) is obtained
from v™ by only interchanging a 1 and a 2. Hence we have

JN, - JN and JNZ? — JN.
Indeed the fluid Jackson netwalN is given on Figure 5.3.

s P12

P

FiG. 5.3 — Fluid Jackson networkdIN

The fluid limit of the departure processes are given on Figutdfor 2 different values o).

FIG. 5.4 — Departure processés
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To explainD?, we write for each arrival (number on the left) the coupleresponding to :
the inter-arrival time the routing decision means that the customer exits the network) :

1 — 1

2 — 1

3 — 1

|xn | — 1
lzn] +1 — 1

lzn]+2 — 1

n 1
n+1 n
n-4 2 — 1
n+3 — 1

n+lzn]+1 — 1

n+lzn]+2 — 1
n+lzn|+3 — 1
2n+1 — 1
2(n+1) — n

2
2
2
2
1,2
2
2
1,...,1,2
N—_——
L]
1,...,1,2
N—_——
n—|an]
2
2
1,2
2
2
1,...,1,2



Chapitre 6

Asymptotics of Fractional Brownian
Max Plus Networks

6.1 Introduction

Recall that a standard fractional Brownian motion (FBM)gass with Hurst parametéf <
[1/2,1) is a Gaussian centered process with stationary incrememtinuous paths and such that

E[F(s)F(t)] = % (s*H + 21 —|s — 1?7,

forall s,t € R.

Queues with FBM input process has received much attentidheariterature. Studies [74,
34, 73, 75] have focused primarily on the worklo#d of a single server queue, wherd” :=
sup;~o(pt +0Z; —t), with mean input rate, standard deviatiosr, and server capacity. A lower
boundP(W > x) was first obtained by Norros in [74], this lower bound has ble¢er shown
by Duffield and O’Connell in [34] to be asymptotically exantlogarithm using large deviation
principle, further extensions on deriving exact expressiad stronger asymptotic estimates are
developed in [75] and [73]. All these studies assert thainbekload W of a single server queue
is asymptotically Weibullian, namely,

1 L20-H) (1—p)*H(1 — H)*H-D

logP(W > x) ~ ~552 2 . (6.1)

In this paper, we focus on the end-to-end delay in a netwdtihge

To the best of our knowledge, there exist few results on theasgmptotic of the end-to-
end delay in a network setting. Under the assumptions opieléent and identically distributed
(i.i.d.) service times and of the existence of moment gdmgrdunctions, large deviation results
were derived in [83] and [44] for stochastic event graphsdse when the service times are i.i.d.
and subexponential, exact asymptotics were obtained ipt€h& for stochastic event graphs,
where the end-to-end delay has subexponential tail digtoitr. In the current section, we focus
on another cause of heavytailness for the end-to-end dedayely LRD, what has not been done
in a network context.

We consider the steady state distribution of the end-todmhaly of a tagged flow in queueing
networks where some of the queues have self-similar craffictirWe assume that such cross

149
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traffic, say at queue, is modeled by Fractional Brownian Motion (FBM) with Hursirameter
H; € [1/2,1), and is independent of other queues. Note that whigs- 0.5, we have an ordinary
Brownian motion model. We assume that at least one of theeguieave the Hurst parameter that
is strictly greater than 0.5. The arrival process of the éalgigpw is renewal. Two types of queueing
networks are considered.

We show that the end-to-end delay of the tagged flow in a targlegneing network is com-
pletely dominated by one of the queues. The dominant quethe isne with the maximal Hurst
parameter. If several queues have the same maximal Hueshpger, then we have to compare the

ratio % to determine the dominant queue, whetig the load of the queue. We have then
logP(D > z) ~ logP(W > x),

wherelV is the steady-state workload of a single server queue wilséme FBM inputs as the
dominant queue, which is known to be asymptotically Weiball

We also consider general structure of networks that beltmtige event graph framework. We
show that the end-to-end delay is still asymptotically Wéian with the same shape parameter.
We also provide upper and lower bounds on the constant thetndiees the scale parameter of
the corresponding Weibull distribution.

This section is based on [68].

6.2 Stochastic Assumptions

6.2.1 Taking Cross Traffic into Account

Consider a network of queues with cross traffic, the case efigsi in tandem is illustrated
in Figure 6.1. We assume that the service times of custonfetsedagged flow are negligible
compared to the queueing delays. We see that the time spasirver is mainly due to the cross
traffic. Thus, in our model, in order to analyze the delay &f tligged customers, we define the
virtual service times for each tagged customer to be the atmaficross traffic arrived between
two successive arrivals of the tagged customers. Thisu@lirservice time is denoted a$ (for
serveri). The resulting queueing system (with such virtual sertices) is a single class FIFO
queueing networks. In the sequel, we shall thus considgrsaah FIFO queues, with the (virtual)
service times to be possibly self-similar.

1001 - cross traffic —]|[]]

1 -- 000 —-1-IND-—n

\

- S

FIG. 6.1 — Queues with cross traffic

6.2.2 Model

For now on, we consider an event graph as described in Sez#op, withm < K timed
transitions, namel§gy;,.a = {t(1),...,t(m)}, satisfying the assumptions in Property 3, and with
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associated recursion :

of dimensions < K L. This means that the matric¢sl,,, B,,} and vectors that are used in the
recursion are obtained via two applicatiohsandg such that :

A . RT — M(s’s) (Rmax)
o= (c%...,0™m) Alo),
B RT - M(s,l) (Rmax)
o= (0% 0™ - Bo),
via the formula
B(Cn) = Bn
with ¢, = (oi, ..., oil™).

In what follows by feed-forward network, we will understaad event graph such that each com-
munication class is made of only one timed transition.

6.2.3 Model Description and Stochastic Assumptions

We always implicitly assumed that tiaé were non-negative to get a dynamical interpretation
of the (max,plus) equations. Nevertheless, the construaf recurrence (2.5) does not require
any assumption on the sign of thé. We will use the notatio{ 3’} instead of{c? } to make a
clear difference if the3!, do not have to be non-negative.

In what follows, we will consider :

— a sequence of arrival time§8 = {7}, },cy that is a renewal process : inter-arrival times
{Tn = Tp+1 — T),} are i.i.d. We assume moreover tfigity] = 1 and7y = 0 (under Palm
probability).

— sequence$f: },.cn, i € T that are constructed as follows

B = Si(Tny1) — Si(Ty), with  Si(t) = pit + o F'(t), (6.2)
whereF" is a FBM with Hurst parametelr/2 < H; < 1. The FBMF" are independent of

each other and/ = max{H;} > 1/2. If i is an untimed transition, we takg = o; = 0.

Remark20. The condition on the mean af, is not restrictive, we can take any renewal process
with positive intensity. Moreover, we see that our virtuahsce timess?, are not non-negative but
each sequence is self-similar and long range dependé&htf 1/2.

Stability of the system :
Each sequencg3’ },.cn is stationary and ergodic (see [28] Theorem 14.2.1), herechave :

i (Di—k1,0) . (D_j11,0 ® B-i)®)
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where~ is the top Lyapunov exponent of the sequekigg, } (see [11]). We will always assume
that

v <1 (6.4)

Under this condition we know that the maximal dater of thenégeaph is finite a.s. sinG&|_j.1,0)®
B_k)(s) + T — —oco a.s. We refer to [11] for the following lemma :

Lemma 53. Consider the matrix? = A(p), with p = (py1),...,pe(m)). We denote by the
maximal (max, plus)-eigenvalue Bf We have :

max(py()) <P <7

6.3 Logarithmic Tail Asymptotic : the General Case

6.3.1 Main result

Theorem 15(Main Result) Let Z be the stationary maximal dater of the event graph.
Consider the set of transitions with maximal Hurst paramdenotedH,,

8 := argmax{H,},

now define the subset of dominant transitions as follows

D argmm{w}.

i€8 g;

We denote byV the workload of a single server queue with the same paranasteme of the
transitions inD, then we have

C(1 —~)? < lim logP(Z > x) < T logP(Z > x) <1, (6.5)

= logP(W >z) — lmlog]P’(W' > )

where-~ is the top Lyapunov exponent associated to the network,6s8¢ &nd the constant’

satisfies :
(=" (9:)”
—_——max —————— < C.
dojes(a)? i (L—pi)2H

6.3.2 First result with deterministic arrival times

In this section we construct a graghwhich is slightly different from the grap§4up of
Section 2.2.3. Moreover we introduce weights that are rawicsird.

Applications.A andB of section 6.2.3 can be viewed as purely algebraic objecttoing
Section 2.3 of [11], we can associate to each applicaiand B a directed graph, respectively
G4 andGp. For f, the set of nodes i$1,...,s} and an arc from to j is introduced inG 4 if
A(0)U7) £ ¢, Forg, the set of nodes i§0,1,...,s} and an arc fornd to i is introduced inGz
if B(O)(") # ¢. We denote§ = G4 U Gp. Each coefficient oA and B is a (max,plus)-expression
expr = @?zl ®keg<j (%, and we put irg, d copies of the original arc and give to each of them
a weight that is the associated $&t We obtain a weighted graggh,. For each are € G,,, W(e)
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FiG. 6.2 — Graplj,, for Tandem Queueing Network with Fixed Window Control

denotes the weight of (i.e. a set of indices). We give here the graph corresponidirggieues in
tandem with window control (section 2.2.4.0), line styleresponds to the mark : dashgds,
dotted<{2}, solid={1, 2} and dash-dotf (observe that in this case= L).

We denote byE the set of paths i§,, going from nodé) to nodes. For{ = (eg,e1,...,¢) € E,
we denote :

l
e = 1+1 pO) = > i

i=0 jEW(e:)
l
FE) = D Y oj(Fii+1) - Fi(i)),
1=0 jeW(e;)
€lw = E[F(E)?].

In the special casg,, = n, the maximal dater can be expressed as :

zZ = I?gX[(D[ko}(@B W) © —k

dist sup [p(§) + F (&) — ([&l1 — 1)] -

First we rewrite the everftZ > z} :
{Z>2} = {HeE pO)+F(E) - +1>x}

F(©)
= {sup > 1} (6.6)
T = M
To consider the evedtZ > x} or {Z > x+ 1} does not change the asymptotic. For the simplicity

of notations, we consider the latter in what follows.
Based on (6.6), to study the tail asymptotic oy it suffices to focus on the supremum of the

following centered Gaussian process :
F() }
Xf=———— .
{ w4 El—p(6) S eex

sungl, and o —supE(Xg) . (6.7)
§€E ge=

Define :

myg = E
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Notice that
2 ‘ﬂw

o, =Ssu

T el @+ el - p(O)

We claim the following logarithmic tail asymptotic fdf.

Proposition 28. ConsiderZ the stationary maximal dater of the event graph. We assurieg-de
ministic arrival times, T}, = n. Then we have

(1-7)? <lim(-207)log P(Z > ) < Tim(—207)log P(Z > z) <1, (6.8)
where~ is the top Lyapunov exponent associated to the network.

Remark2l. We will show that for feed-forward networks, the upper boismuhdeed tight.

To prove the above main result, we shall need the so-calledelBs inequality”[1, p.43,p.47] for
the supremum of a Gaussian process which we recall below.

6.3.3 Borell's Inequality

In what follows, we shall always assume tfahas a countable dense subset and the processes
we consider are always separable. We recall that a realastictprocesg X, }.cr is separable
if there is a sequencf; } of parameter values and a sebf probability 0 such that, if A is any
closed interval and is any open interval, the sets

{Xi(w)e At eInT}, {Xy(w)eAt;elnT,

differ by at most a subset df.
The following property can be found in [1], Theorem 2.1 :

Proposition 29. Let{ X, };cr be a centered Gaussian process with sample paths boundddet.s
I|.X || = sup,er X¢. ThenE|| X || < oo, and for allA > 0

1
PUIX] - BT > A < 2exp (<3020 ), 69
wherec? := sup,.p EX?. In particular, for all A > E||X||, equation (6.9) may be rewritten as
follows :
A —E||X]))?
P{||X| > A} < 2exp <—¢> (6.10)
207

The only assumption made on the parameter sflaisethat?’ is totally bounded in the canonical
metric. We recall that the canonical metric is defined a®¥adl

d(s,t) == VE(X, — X;)2. (6.11)

We denote byN (¢) the smallest number of closetiballs of radiuse that coverT'. T' is totally
bounded if the functionV (¢) is finite for alle > 0.
In fact, following proof of theorem 2.1 in [1], we see thatslissumption may be relaxed.
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Consider a centered Gaussian process with sample pathddsbars{ X, };cr. Let{T},},>1 be
an increasing sequence of subset§’dhat tends to a dense subsetibtontaining the sequence
{t;} of points satisfying the conditions of the separability digibon. We suppose that eadh,

is totally bounded in the canonical metric, and we denofd|,, = sup,cr;, X;. Then for anyn,
thanks to property 29, we hal&| X ||,, < oo, and for allA > 0

1
PUIX L~ EIXIL] > 3} < 2emp (32702 ). 612

whereo? := sup,., EX?. Moreover, we have? | o%. We consider the casel. < oo and first
show thatE|| X || < oo like in [1].
Supposél|| X || = oo and choose; > 0 such that

e~ N/297 < 1/4, P [supXt < )\0] > 3/4.
teT
Such a constant exists sinee is finite and the random variabiep, ., X; is finite a.s.
Now sinceE|| X ||, T E||X|| = oo, we can findn such thatE|| X||,, > 2)\,. Borell's inequality on
the spacd’, then gives

% S 90 W/20% 5 9e-M/203
> PllIX]n = E[X][n| > o]
> PE[X[ln — [IX[] > Aol
> Pl > [IX]] = 3/4.

This proved the required contradiction, andBpX || < co. Since|| X]||,, T || X|| a.s.(separability
condition), we have for al\ > 0

1
PUIX] - BIXI| > A < 2exp (53203 ). (6.13)

Application 1. Consider the procesgG; = %}té[opo)' Sincelim;_,~, Z(t)/t = 0, this process
is a.s. bounded. Here we taltg = [0,n], andT = [0, o). EachT, is totally bounded (see [73])
ando? = sup,»EG? = H2H (1 — H)*1~H) Hence Borell's inequality applies for this process
on the whole interval0, co).

Application 2. If T is countable, then Borell's inequality applies. Just t&kefinite and hence
totally bounded.
6.3.4 Auxiliary Results

In this section, we derive some necessary auxiliary rebelisre we prove the main results as
claimed in Property 28. Recall that

{xe- %}@’

and

my = E

sup X¢'| , and 02 = supE(Xg)2. (6.14)
ex ¢es



156 Chapitre 6. Asymptotics of Fractional Brownian Max Plus Wertks

The process{Xg‘} is a centered Gaussian process. The stability conditi@) {6< 1 ensures that
Z < oo almost surely, from which the boundedness of the sampleqiqih)cess{Xg} follows.
In our context, the parameter sétis countable as the countable union of the finite s&ls =
{¢£ € E, [¢|; = n}. Hence Borell's inequality applies (see Application 2 ieyous section) and
if m, < 1 (which is shown in the next lemma), we will have

P (sung > 1) < 2exp <—M> (6.15)

ceE 202

Lemma 54. We havdim sup,_,,, m, <y < 1.

Proof.
+

The functionz — sup, % IS non-increasing since

FOr . FE*
4+ & —p&) — v+l — p(§)
M (3
TP e @)~ Py el - pe)

TSy

Thanks to Borell's inequality, we haue [Sup5€5 Xgl} < +oo and by symmetryP(sup, |X§1| >

A) < 2P(supy X§1 > \), hence we hav& supgea(Xg)Jf} <E [Sup5€5 |X§1|} < +o0. Then we
can use monotone convergence to derive

lim E [sup(Xg”)Jr =E llim SUP(XEC)Jr] .

T=00 | geE T g

Thanks to (6.3), we know that for afly< € < 1 — ~, there exists a finite random varialdle such
that

=L = F(&)+p&) < (v + Ll

Hence for such a path, we have

TOT  _ (G+oleh - ()

e+ Ei—p€) T z+El—p©)
< v+

We define the random variable = supj,<;, F(£)". We haveM < +oo a.s. and

M
Sup(ch)Jr < —+9+e
£€E T

Hence we havéim, o supgc=(XF) " < v, and the result follows since, < E [Supgeg(Xg)+] .
O
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Remark22. The bound of Lemma 54 is tight in the sense that there are éasehich we have
lim m, = ~.

Tr—00

We take the example of two queues in tandem with window coofreize I, = 1. We recall the
recursion equations with the notation of sectiomkz(: vl 402

1 1 1 1 1

X v v v
<§>=<{fz 172>®<31>@<1">®T

xn Un Un nl ’Un

Takep; = o1 = 0 (service in station is instantaneous) ang, = 0. We have

k
(Dicrrg © Boe)® E N on (F2 i+ 1) — F2(1) "
=0
Hence we have
v =k [(F2(1) ] > 0.

We haveE [(Fz(l))ﬂ < E[1+ (F%(1))*] = 2, hence we can choose = 1/3 and we have
v < 1. Now we see that fof € =,,, we have

S (F2(i+ 1) — F2(i) "

xTr+n

)

X¢>1/3

hence

S (F2(i+1) — F2(i)

supXg > supl/3
13 n

xTr+n
R4+ 1) — F2() 7T
o i 13 (264D~ F20)
n—00 T+n
= 7>0.

In this specific case, thanks to Lemma 54, we Have. .., m, = 7.

If X andY are centered Gaussian random variables with respectii@neass3, ando?., we will
write X <varY & ox < oy.

Lemma 55. We have

Xe svar T

Proof.
We first prove that

§) <var ZUZ (1€]0)- (6.16)
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Taket; < t9 < t3 < t4, we use the notation A = to — t1, Ay = t3 — to, Az = t4 — t3,
A =ty —t;andF(Ay) = F(t2) — F(t1),... We haveF(As) + F(A;1) <var F(A). This
follows from the following inequalities with /2 < H < 1 (recall thata®” + b2 < (a + b)) :

E(F(A3) + F(A1))? = EF(A3)* +EF(A))? +2EF(A3)F(A))

A AH p APH (A 4 Ag)PH  AZE  (Ag - AG)PH
AP AT+ NS+ AT — AR — AST - AST— AZT
A —EF(A)2

IAINA

We have thed ",/ 1jew(e,) (F (i+1)~F7 (i) <var F(€]1), henceF(€) <var Yo, i ([¢:)-
By definition, we havep(¢) < [¢);p < [€]iy for any & € =, and we getr + [£]; — p(§) >
z + [€];(1 — 7). Now thanks to (6.16), we have

F() <var >y o F (1)
z+ €l —p&) T z+[EL(1—7)

From lemma 55, we derive

Lemma 56. We haver? := sup,cz IEJ(X%‘:)2 — 0 asz — oo. If we denotef] := max{H,}, we
haves? = O(z2(H-1),

Proof. ,
Consider the process) = #Fw(t) by a change of variable, we have
\ X oiFi(at/(1— 7))
wt/(1=y) T + at ’

and the self-similarity of the FBM™(¢) ensures that the proc
bution as the process

mooi(z/(1—y)HiFi(t L oyptiTl
>y oi(a/(1— )" Z

ot/ (1=) } has the same distri-

T+ at —
with Gi = 1J£t) Thanks to previous lemma, we haiZéX¢ )2 < E(Cfgl )2, hence
sup E(X{)? < sup E(CY)?,
¢eE >0
but we have
m )22(Hi=1) .
sup E(CY)? Z SupE(Gi)2.
>0 — >0
A simple calculation givessup,. o E(G%)? = (H;)?H: (1 — H;)?0~H:) then

m H;—1)
o7 < Z (H;)?Hi (1 — H;)?(0 ),
i=1



6.3. Logarithmic Tail Asymptotic : the General Case 159

Thanks to Lemma 3 of [16], we know that ea@h is on the diagonal of the matrit,,. Hence for
any!l > 1, there exists a path @& such thatéo|, = 1, p(&) > pjil,  [€olw > ()22,
Hence we have
(0))*12M
(z + 11— pj)*

Taking an indey, such thatfl; = H, we have

E(Xgo)2 >

g 2l2H
0920 > sup (lj)— NV
i>1 (T + 11— pj))
2H
_ N\2,.2(H-1) (l/z)
o a1 = )P
2 2(H-1) 2
oS T )
H2H
= (0j)?a*Y 2H 2H-1)"
(1= p))?H (1~ H)
This gives the last result. O

6.3.5 Proof of Property 28

Upper bound :
Taking the logarithm of equation (6.15), we obtain

202 logP(Z > ) < 2021log(2) — (1 — my,)?.
Thanks to lemmas 54 and 56, we have

limsup 202 logP(Z > x) < —(1 — )2 (6.17)

T— 00

L ower bound :
We denote :

We have :

P(Z>z) = P supp<s>+9<s>—\srl>x>

£e=

P(F(&) >z + (€l = p(8))

T <x+ <l —p(&))
EF )

like] PN

u
S

MmN

Il
m<

&e

(. x4+ —p(§)
= &|inf ————22].
(= )
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Using the approximatiotog ®(y) ~ —y?/2, we obtain

logP(Z > z) > — inf
e

hence

hm mf 202logP(Z > z) > —1. (6.18)

Equations (6.17) and (6.18) give the desired asymptotidéterministic arrival times.
O

Remark23. The fact that the bound of Lemma 54is tight, shows the linfitsus approach. Even
if we can compute the varianeg, the technique used here can not give an exact asymptotic for
the quantitylog P(Z > z) in these particular cases.

From Property 28, we need, in order to prove Theorem 15, tqpotenthe asymptotic of2 and
to show that the result still holds with random arrival timé&kis is done in the two next sections.

6.3.6 Bounds ony?

To prove Theorem 15 (first with deterministic arrival timesg derive from Property 28,

i inf logP(Z > x) lim inf —202log P(Z > )
iminf ————~+ =
logP(W > x) lim sup —202log P(W > x)
(1-1%)
limsup —202log P(W > z)’
and similarly,
P logP(W >2) — liminf —202logP(W > z)’

We have now to compare the quantity andlog P(W > z) whenz tends to infinity. We recall
that
1 oaem(d— p)*H (1 — H)*H

logP(W >x) ~ ~552% - Tom )

where(1=2% _ (= ”J) foranyj € S.
Thanks to Lemma 56 we know that for an index 8, for sufficiently larger,

H2H

2 _ N2, 2(H-1)
L (e (i

xT

Hence we have
liminf —202 log P(W > z) > 1. (6.19)

In proof of Lemma 56, we showed that

o2 < Em: far D (H;)?Mi(1 — Hy) 2=,
1=1
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Hence, we have
(1= p)* 3 es(0))?
(1—=v)2Ho?

Thanks to inequalities (6.20) and (6.19), we have provedidra 15 in the specific case of deter-
ministic arrival times.

lim sup —202log P(W > z) < (6.20)

6.3.7 From deterministic times to random arrival times

We prove now that the result extends to random arrival times.
We denotel (¢) = sup,,(T—,, + n(1 — €)). There existx” and A such that for sufficiently large,
we have

P[U(e) > 2] < Ke 2.

We have the following decomposition :
Z = Slgp {p(&) +F(E) + T, }
< sup {p(€) +3(&) = [€h(1 = )} +sup{Tn + n(l — )}
= Z079 1 W(e).
Notice that provided that < 1 — ~, we haveZ(!1~¢ < 40 a.s. Therefore,
P[Z >z] < P27 +W(e) > ]

= P[Z07) 4 U(e) > z,U(e) < ax] + P[Z17) + U(e) > z, U(e) > oz
< Pl¥(e) < az]P[Z2179 > (1 — a)z] + Ke o7,

Hence fore < 1 — v, we have
logP[Z > xz] < log {IP’[\IJ(E) < az]P[Z079) > (1 — a)z] + Ke_mx} . (6.21)

We can writeZ (1= = (1—¢) sup; {p()/(1 — €) + F(€)/(1 — €) — |¢];}. We can apply Property
28 to Z(1=<) provided that we take for the definition of thi¥s the processSZ.(l_E)(t) = £t —

() F'(t) in equation (6.2). Hence we have :

P(ZU0=9) > (1 — a)x) -1

lim sup
U(x) -

with U (z) = [1=24]20-1) ((1—0/2((10—/6()1)?:)(;;{1;'212“{71) . SinceH > 1/2, we have thanks to (6.21)

. P(Z > $) 2(1—H) 1—€—p 2H
o< (11— —r .
hmsup]P)(W>x) <(1-a) T

Letting o ande go to0, we get the desired asymptotic.
Now due to the strong law of large number, we can ch@@se G(¢), such that

P(T_, > —n(l+¢)—G,Vn>0)>1—c¢
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We denote this event bi{.. Then, on the everk'., we have
Z = sup{p(€) + ) ~ €1 +¢)

+T g, — 1Eh(L+e)}

> sgp{p(é’) +F(E) - i1+ e} -G
= 709 _q.
Then we have
P(Z>zx) > P(Z>aK,)
> P(Z0) > 24+ G)(1—e).

and using the same kind of technique as before, we obtairother Ibound. This concludes the
proof of Theorem 15.
O

6.4 Logarithmic Tail Asymptotic : the Feed-Forward Case

6.4.1 Main result

Theorem 16(Main Result) Let Z be the stationary end-to-end delay associated to a treearktw
Consider the set of transitions with maximal Hurst paramdenotedH,

8 := argmax{H,},
now define the subset of dominant transitions as follows
1—p)H
D= argmin{ﬂ} .
€8 g;

We denote byV the workload of a single server queue with the same paranasteme of the
transitions inD, then we have

logP(Z > z) ~ logP(W > x). (6.22)

Note that the tandem queueing network is a special caseaafiétevorks. The result of Theorem 16
thus holds for tandem queueing network as well.

Lemma 57. In the case of tree networks, we hdua,_ .., m, = 0.

Proof.
For any pattt = (e, ..., e), we writet? = 0 andtd = t-=1 + =L 15 cyp0y, then we
have
|F(©)] _ [y ok (PR () — FE (")
z + 1€l — p(§) z + 1€l — p(§)
> ok FE(tF) = R
B z+ (1 =2l

okl F*(t*) — FR(* 1))
Z z+ (1—p)(tk —tk=1)”’
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where first inequality follows fronv¢, p(¢) < p|¢|;. Hence, we have

E |sup Xg <
£e=

E [sup | X{|
£e=
Fk tk Fk tk 1
supz 0k| ( ))|

th — ¢k=T)
 pebe ]

But we know thalim,, ., F*(u)/u = 0, hence

Fk
sup o F" (u))|

—————— — 0 asz — oo,
v T+ (1—=Pu

and each term of the sum goes to zerazas oo by monotone convergence.

6.4.2 Computation ofo?
The case of Single Server Queue

Equation (6.8) takes the simple from :

(= pl©)?

£eE 2|€|w

(@40 -p)?

i

_ L en-m . (1+n/x(1 —p))*
~ 202" rlféfl (n/z)*H

1 oa-my. A+t - p))?
252" o e

The infimum is attained in*

H
single — (1—p)(1—H) and we have

1

iy (=) (1 — 7)2H-)
log P(W > 2) ~ =% w1 =p) ;{ZH )

The case of 2 Queues in Tandem

Foré = (e, ...,e) € 2, we define :

!
m= Z Liew(eny Z Lroewie)-
=0

Then we have

(01)?m2M 4 (09)2n2H2

E(X?)? = .
() (x +m+n—p1m — pan)?

(6.23)
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We first suppose thdi; > H,, then we have

0'323 _ g2
. (00)2(2)2H 4 (02)2(%)21{%2(1{2—1{1)
mn (L 25— p 2 gy 2]
2D g (o1)?(ut)?™

t>0uefo,1] (1 + (1= p(u))t)?

with p(u) = pru + p2(1 — u). The supremum is attained in= 1 andt* = ——y, and we
obtain

02 ~ g2H-D o’ H*!
' (1= (1~ H)0T0

with H := Hy, p := p; ando := o7.
The casefls > H, is exactly the same. Hendé := Ho, p := ps ando := 0.
We suppose now thdi; = Hy, = H, then we have

(01)2m2H + (02)2n2H
sup
mn (T +m+n—pim — pan)
L2(H-1) (01)?(2)*H + (09)?(2)?"

su
o, (L 22— By B2

20D g (o1)2(ut)? + (02)2((1 — u)t)2H
>0,ue0,1] (14 (1 = p(u))t)?

000 sup {[(010 4 (2271~
uel0,1

t2H
€£u+u—mmm*

= @D sup {[(00* + (021 - 0]
ue|0,

2

H2H
Kl—mmvHu—fUW*D}

But the functionu (‘”)2“25:)((0;)))22(1}_“)211 is either monotone of, 1], or non-increasing on

[0, w*] and non-decreasing dn*, 1] for a certainu*. Thus the supremum is attained either at O or
at 1, and we have

02 ~ g2H-D) o’ H*M
(1= ) (1 = 5D

T

with

(L—p _ { (1—=p)*" (1- p2)2H}
o2 (01)2 7 (02)? '

This gives the desired result for 2 queues in tandem.
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Remark24. We recall that we always assume tifat> 1/2. Nevertheless, for now on, we never
use this assumption and in fact for deterministic arrivalets, Theorem 1 is still true withl =
1/2. This corresponds to Brownian queues and in the case ofradeues the large deviation
technic used in [44] apply and it is straightforward that diteen 1 of [44] gives exactly the same
result as our Theorem 1 for deterministic arrival times.

General Tree Networks

First observe that previous result holds truefajueues in tandem and then we have

2172H
207\ _ o 2(H-1) (0j)°H
T S T

whereH is the maximal Hurst parameter afit is defined as in Theorem 15 for thequeues.

But for a general tree network, the variancgis the maximum of the variance corresponding to a
path going from the root of the tree to any leaf, i.e. a netwadrjueues in tandem, hence we have
directly

2 2(H-1) (Uk)QHzH
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