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Résumé 
 

La sécurité des systèmes hétérogènes distribués ouverts à grande échelle d’aujourd’hui 
(tels que les grilles de calcul, les systèmes P2P, l’informatique omniprésente/ubiquitaire, 
etc.) est devenue une préoccupation opérationnelle généralisée. Les services de sécurité de 
pointe et les relations de confiance sont actuellement les caractéristiques les plus 
recherchées de ces systèmes. Nous avons proposé une architecture de sécurité apte à 
répondre aux besoins généraux de sécurité de ces systèmes [1]. Nous avons procédé à 
d’importants travaux de terrain pour déterminer les limitations et les failles des solutions de 
sécurité actuellement proposées pour ces systèmes et pour établir quels sont les véritables 
besoins que doit satisfaire l’architecture de sécurité, de manière à réduire les pertes de 
performances et à assurer une sécurité robuste [2]. Nous avons notamment identifié 
l’analyse des besoins [3], l’analyse du risque [4], la modélisation des menaces [5] et la 
faisabilité de mise en œuvre [6]. 

Le concept de virtualisation des services de sécurité est introduit pour les services en 
question. Il est nécessaire de disposer d’une totale liberté de choix des mécanismes de 
sécurité sous-jacents. Du point de vue de la sécurité, la virtualisation de la définition d’un 
service tient compte des besoins de sécurité qui permettent d’accéder à ce service. La 
virtualisation de la sémantique de sécurité impose d’utiliser des méthodes standardisées de 
segmentation des composantes de la sécurité (par exemple, authentification, contrôle 
d’accès, etc.) et de proposer des méthodes standardisées permettant de fédérer plusieurs 
mécanismes de sécurité. La virtualisation permet à chaque terminaison participante 
d’exprimer la politique qu’elle souhaite voir appliquer lorsqu’elle s’engage dans un échange 
sécurisé avec une autre terminaison [7]. Les politiques peuvent spécifier quels sont les 
mécanismes d’authentification pris en charge, le degré d’intégrité et de confidentialité requis, 
les politiques de confiance et de confidentialité, ainsi que d’autres contraintes de sécurité. Ce 
concept de virtualisation des services de sécurité peut être réalisé au moyen de moteurs 
virtuels distribués qui permettront d’unifier les appels au service de sécurité en fonction des 
besoins et non pas en fonction des technologies à prendre en charge. 

Un mécanisme configurable d’appel des services de sécurité est proposé pour répondre 
aux besoins de sécurité des différentes catégories d’utilisateurs. Cette approche permet de 
faire évoluer l’infrastructure de sécurité avec des effets moindres sur les fonctionnalités de 
gestion des ressources, qui sont encore en pleine phase d’évolution. En outre, elle permet 
aux utilisateurs et aux fournisseurs de ressources de configurer l’architecture de sécurité en 
fonction de leurs besoins et de leur niveau de satisfaction. Cet ensemble de services de 
sécurité comprend des services de sécurité de base (authentification, autorisation, mappage 
des identités, audit, etc.), ainsi que des services de sécurité contemporains (contrôle d’accès 
mobile, signature numérique dynamique, etc.) [8]. 

1. Cadre de recherche 
Depuis le début des années 1980, les entreprises se sont habituées à coopérer à travers 

des réseaux d’ordinateurs. Cette forme de coopération, très statique, prenait à ses débuts la 
forme d’échanges de données électroniques (EDI) [9]. Depuis qu’Internet est utilisé pour les 
transactions commerciales, des formes de coopération plus dynamiques sont rendues 
possibles. Cela étant, les besoins de sécurité des systèmes basés sur Internet sont très 
différents de ceux des réseaux traditionnels. Par exemple, Internet ne propose aucune 
infrastructure centralisée pour assurer la sécurité des réseaux. Les besoins de sécurité sont 
particulièrement critiques en cas d’utilisation de liaisons ultra-rapides visant à combiner des 
ressources de calcul réparties. Le meilleur exemple de ce type d’environnement collaboratif 
distribué est la grille de calcul [10]. Un compte-rendu d’étude publié par Virginia Tech à 
l’automne 2002 indique que plus de la moitié des membres de la communauté de grille 
pensent que les solutions existantes de sécurité de la grille ne constituent pas un service 
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adéquat pour les communautés de grille collaboratives. Les raisons invoquées vont de 
l’absence de modèle de la menace sous-jacente à la complexité et au coût des relations de 
confiance actuellement nécessaires entre sites [11]. Pour Sun Microsystems, l’adoption de 
grilles globales, où les sociétés partagent des ressources matérielles et logicielles pour 
atteindre un objectif de calcul, a été ralentie du fait des problèmes de sécurité et de 
l’absence de standards [12]. 

Au début de notre siècle, plusieurs agences de financement de la recherche ont souligné 
la nécessité d’immenses efforts de recherche visant à aboutir à l’excellence scientifique et 
technique en matière de sécurité, de fiabilité et de résistance des systèmes, des services et 
des infrastructures, tout en répondant aux besoins de confidentialité et de confiance [13, 14]. 
Nous avons répondu à ces appels en entamant un travail sur l’évolution de l’architecture de 
sécurité de pointe des systèmes hétérogènes distribués et ouverts à grande échelle. Ce 
travail de recherche est directement et indirectement soutenu par ces agences de 
financement de la recherche. 

2. Architecture de sécurité 
 
Nous avons identifié les composantes 

logiques, factorisé les caractéristiques 
communes et définies les interfaces 
globales de l’architecture de sécurité que 
nous proposons pour les systèmes 
hétérogènes distribués et ouverts à grande 
échelle [15]. L’architecture globale qui en a 
résulté est représentée en Figure 1. Une 
courte description des différentes 
composantes de notre projet est proposée 
dans la présente section [16]. 
 

 
 

Fig 1 : Architecture globale 

2.1. Architecture à Base de Courtier de Sécurité 

Le Courtier de Sécurité sert de médiateur entre 
les applications (plus précisément, entre les 
applications distribuées) et les services de 
sécurité. Le courtier de sécurité possède un 
gestionnaire des services de sécurité, qui permet 
d’absorber l’hétérogénéité des services de 
sécurité sous-jacents et de fournir une interface 
homogène à la couche supérieure. Des moteurs 
virtuels distribués sont mis en œuvre à l’aide d’un 
agent de courtage des services de sécurité. L’idée 
d’introduire un courtier de services de sécurité est 
en fait inspirée de l’utilisation d’un agent de 
courtage pour l’exploitation des ressources de cal- 

 
 

    Fig 2 : Architecture à base de Courtier 
de Sécurité  

 
cul/stockage adéquates (également appelé « courtier de ressources) dans les applications 
distribuées. L’architecture en couches du courtier de sécurité proposé est représentée en 
Figure 2. Les fonctionnalités associées à ces couches sont les suivantes : 
L’Interface Application/Client authentifie l’utilisateur/l’application et crée le lien entre 
l’utilisateur/l’application et l’infrastructure de courtier de sécurité sous-jacente pour leur 
permettre de communiquer l’un avec l’autre. 
Le Démon de Configuration est un serveur de configuration. Il accepte une demande de 
configuration abstraite, indépendante de la machine, puis interagit avec le service de 
coordination à travers un canal sécurisé. Il signale le moment venu que le service de 
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coordination a approuvé la configuration du service de sécurité. Il peut tenir à jour un journal 
des configurations, voire gérer une configuration de sauvegarde complète. 
Le Gestionnaire des Services de Sécurité absorbe la diversité des mécanismes de sécurité 
pour permettre d’unifier les appels au service de sécurité en fonction des besoins et non pas 
en fonction des technologies à prendre en charge. 
Le Mappage des Protocoles contient la liste complète des protocoles pris en charge par 
l’architecture de sécurité à travers le Gestionnaire des Services de Sécurité. 
L’Interface de l’Architecture de Sécurité est constituée de modules « sockets » permettant de 
« brancher » divers services de sécurité. L’appel à un service de sécurité donné est envoyé 
au gestionnaire des services de sécurité à travers le Démon de Configuration. Le 
gestionnaire des services de sécurité vérifie l’existence du service de sécurité en question à 
partir du mappage des protocoles de sécurité et, s’il existe effectivement, il appelle une 
instance chargée de relier le service de sécurité correspondant à l’interface de l’architecture 
de sécurité. 
Les Algorithmes Temps Réel sont utilisés pour répondre aux problèmes de performances. Ils 
garantissent que la totalité du traitement du courtier de sécurité puisse se faire en temps réel 
et que les utilisateurs/services puissent appeler ces services de sécurité au niveau de la 
couche de sécurité. Ces caractéristiques temps réel sont mises en œuvre au niveau de 
chaque couche. 

2.2. Architecture du Service de Coordination 

Cette composante est chargée de 
garantir l’appel d’un ensemble 
coordonné de services de sécurité aux 
différentes terminaisons du système. 
Comme le montre la Figure 3, cette 
composante contient des traces de 
tous les services appelés au niveau 
des différents nœuds. Lorsqu’un 
utilisateur appelle un ensemble de 
services (ensemble par défaut ou défini 
par l’utilisateur) qui ne correspond pas 
à l’ensemble de services appelé par 
les autres nœuds, le problème est 
considéré comme un conflit entre 
services appelés. Ce conflit est géré en 
fonction de la politique de sécurité. 
Une fois qu’un conflit est résolu, l’appel  

 
 

Fig 3 : Architecture du Service de Coordination 
 

des services de sécurité se fait au niveau du courtier de sécurité. Il convient de souligner ici 
que ce courtier de sécurité ne prend pas part à la gestion des conflits proprement dite. En 
fait, il réachemine l’appel de service effectué par un utilisateur/service, vers le service de 
coordination, qui devra le mapper et vérifier qu’il n’y a pas conflit avec les services de 
sécurité appelés par les autres nœuds. Les services de sécurité ne sont appelés par le 
courtier de sécurité que lorsque ce dernier en reçoit l’ordre du service de coordination. 

Dans l’organisation présentée en Figure 1, le courtier de sécurité est délibérément placé 
entre l’application et le service de coordination, de manière à les isoler l’un de l’autre. L’un 
des objectifs du courtier de sécurité est d’isoler l’architecture de sécurité de base des 
applications, de manière à relever le niveau de protection. La nécessité de protéger le 
service coordonné est évidente puisque, si un utilisateur/une application malveillant(e) 
parvient à l’influencer, la non-correspondance entre les différents services de sécurité 
appelés par les différents nœuds va entraîner l’auto-destruction de l’architecture de sécurité 
toute entière. 
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2.3. Politique de Sécurité 

L’architecture de sécurité que nous proposons est assortie d’une politique de sécurité en 
couches, dont les principales caractéristiques sont les suivantes : 

1. Mécanismes flexibles de contrôle d’accès régis par la politique de sécurité 
2. Politiques de contrôle d’accès inter-domaine 
3. Communication de groupe sécurisée 
4. Mécanismes de délégation visant à prendre en charge l’évolutivité vers différentes 

ressources et différents utilisateurs 
La politique de sécurité est constituée de deux volets bien distincts : la politique de 

sécurité « globale » (PG) et la politique de sécurité « locale » (PL). Les couches de la 
politique de sécurité locale sont la politique d’application, la politique de contrôle d’accès, la 
politique d’intégrité des données, la politique d’authentification et la politique de chiffrement. 
La politique de sécurité globale définit la politique de sécurité générale et constitue 
l’abstraction (la virtualisation) de toutes les politiques de sécurité locales. 

2.4. Modèle de Confiance 

Nous proposons un modèle de confiance dynamique distribué [17] qui constitue un 
mécanisme flexible permettant la délégation de la confiance et le suivi continu des 
changements qui interviennent au niveau de la confiance de chaque nœud. Ce modèle 
présente les avantages suivants : administration hiérarchisée décentralisée ; évolutivité des 
possibilités d’émission de certificats ; flexibilité de délégation. Les services ouverts n’étant 
pas limités à une gamme précise de domaines ou d’organisations, une gestion de la 
confiance distribuée, flexible et généraliste est nécessaire pour permettre l’établissement 
d’une relation de confiance entre des entités susceptibles de ne jamais se rencontrer. Un tel 
système constituerait un mécanisme de contrôle d’accès évolutif et décentralisé sur Internet 
[18]. 

Le modèle de confiance que nous proposons est basé sur une approche en deux temps 
[19] : tout d’abord, définition des relations de confiance directes ou mutuelles entre deux 
nœuds d’un domaine, ainsi que des relations de confiance indirectes entre les 
intermédiaires. Ensuite, du fait du caractère dynamique des collaborations, les relations de 
confiance peuvent également devoir être établies de manière dynamique à l’aide 
d’intermédiaires sur un support distribué. Notamment, ce modèle doit également définir une 
base répondant aux besoins de sécurité pour permettre la signature unique et la délégation. 

2.5. Reconfigurabilité 

Nous avons également étudié la reconfigurabilité/l’adaptabilité des services de sécurité qui 
leur permettrait de prendre en charge la sécurité des systèmes hétérogènes. Dans notre 
proposition, les services de sécurité doivent être capables de s’auto-reconfigurer si un 
nouveau nœud est introduit ou de réagir pour récupérer suite à un quelconque problème 
réseau. Cela peut être obtenu par l’utilisation d’une architecture à base de composantes 
dynamiquement reconfigurables. Cette architecture permet aux nœuds de négocier 
dynamiquement les services de sécurité, les protocoles et la prise en charge 
cryptographique dont ils ont besoin. Notre but ici est de permettre la configurabilité et la 
reconfigurabilité de la fonctionnalité des services de sécurité de base, sans avoir à formuler 
d’hypothèses particulières concernant l’architecture distribuée sous-jacente. 

Cette caractéristique présente plusieurs avantages par rapport aux architectures de 
sécurité classiques : 
1. Elle rend l’architecture de sécurité adaptable aux environnements hétérogènes pour 

lesquels la composition exacte des ressources du système est inconnue au départ. Elle 
prend donc en charge à chaque instant l’ajout et la suppression dynamiques de 
ressources du système général. 

2. Elle rend l’architecture de sécurité résistante et, de ce fait, assure la capacité de survie 
de l’ensemble du système. La reconfigurabilité permet au système de récupérer sa 
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configuration de sécurité d’origine une fois terminé le scénario d’attaque et, par 
conséquent, relève la qualité de service de l’ensemble. 

3. Elle permet au système de supporter les fréquentes évolutions technologiques, ce qui 
permet d’intégrer facilement de nouveaux dispositifs ou de nouvelles ressources dans les 
systèmes existants sans que cela modifie l’architecture de base ni n’affecte la qualité de 
service ou les performances du système. Par exemple, si un utilisateur soumet une 
demande d’analyse de données à une grille, cette dernière doit exécuter la tâche 
rapidement, en environnement sécurisé, de manière à éviter tout piratage et à garantir 
l’exactitude qui s’impose. (Cela étant, cette qualité de service n’était pas une priorité des 
premières générations de grille, dont l’objectif énoncé était la réalisation de toutes les 
tâches demandées). 

3. Mise en Œuvre et Evaluation Fonctionnelle 
Les différents kits d’outils proposés pour la modélisation ou la simulation de systèmes 

distribués à grande échelle ne prennent pas en charge la simulation des fonctionnalités de 
sécurité. Nous avons par conséquent développé des modules simulateurs, sous-produits de 
l’architecture que nous proposons, de manière à en tester et en valider les fonctionnalités 
[20, 21]. Ces modules simulateurs sont ensuite intégrés dans un kit d’outils existant, GridSim 
[22]. Un prototype de démonstration du contrôle d’accès dynamique par utilisation du 
contexte et de l’état des utilisateurs hormis leurs caractéristiques conventionnelles, est 
également mis en œuvre pour démontrer que l’architecture proposée est apte à fonctionner 
dans le monde réel [23, 24, 25]. 

De manière à suivre les pratiques standard en matière d’évaluation de la sécurité, nous 
avons mis au point un profil de protection de notre proposition [26] en utilisant la version 2.1 
des Critères Communs (Common Criteria (CC) version 2.1) avec le Niveau d’Assurance 
d’Evaluation (Evaluation Assurance Level ou EAL) 4 (qui fournit l’assurance par une analyse 
des fonctions de sécurité, en utilisant une spécification d’interface fonctionnelle et complète, 
une documentation explicative, la conception de haut niveau et de bas niveau de l’Objectif 
d’Evaluation (Target of Evaluation ou TOE), ainsi qu’un sous-ensemble de la mise en œuvre, 
de manière à comprendre le comportement de sécurité) et une Puissance de Fonction 
(Strength of Function ou SOF) élevée (cela suppose qu’un agresseur s’attaquant au système 
dispose du potentiel nécessaire pour attaquer ce dernier). 

4. Conclusions et Futures Orientations 
Nous avons proposé une nouvelle approche permettant d’affronter différents défis de 

sécurité présentés par les systèmes hétérogènes distribués et ouverts à grande échelle. La 
caractéristique la plus marquante de notre démarche est le caractère flexible et adaptable 
des services de sécurité. Nous avons recouru à la virtualisation pour proposer une méthode 
standardisée de fédération de plusieurs mécanismes de sécurité hétérogènes.  

Pour assurer une fiabilité minimale des fonctionnalités émergentes de gestion des 
ressources, et pour rendre notre modèle plus adaptable, nous avons étendu le concept de 
sécurité en tant que services à sécurité en tant que services connectables (‘pluggable’). Les 
autres caractéristiques sont l’auto-sécurité de l’architecture de sécurité ; le recours au 
courtier de sécurité qui négocie les services de sécurité ; la description de l’ontologie de 
sécurité, qui permet l’interaction par protocoles standard des services de bootstrapping de la 
sécurité de base ; et les services de sécurité centrés sur l’utilisateur, dont l’objectif principal 
est la possibilité d’utilisation. 

Notre recherche a constitué une première étape vers une approche systématique de la 
conception d’une architecture de sécurité destinée aux systèmes hétérogènes distribués et 
ouverts à grande échelle. Bien que divers systèmes complexes y soient envisagés, nous 
avons centré notre attention sur les systèmes à base de grille de calcul [27]. Ce travail 
pourra être poursuivi en explorant des solutions de sécurité plus spécifiques destinées à 
d’autres systèmes complexes tels que les systèmes ubiquitaires, les systèmes P2P, etc. En 
outre, le concept de virtualisation pourrait être étendu pour s’adapter à la législation des 



 6 

différents pays, aux problèmes éthiques des populations, ou encore aux préoccupations des 
entreprises. En outre, la virtualisation pourrait être utilisée pour atteindre le meilleur 
compromis entre garanties de sécurités et capacités de traitement.  
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Summary 
 

Security of today’s large scale, open, distributed heterogeneous systems (such as 
computational grids, peer-to-peer systems, pervasive/ubiquitous computing, etc.) has 
become a mainstream operational concern. Establishment of in-depth security services and 
trust relationships are the most desirable features for such systems. We have proposed a 
security architecture to address the comprehensive security needs of these systems [1]. 
Extensive groundwork was carried out to determine the limitations and shortcomings of the 
existing security solutions for these systems and to establish the real needs of the security 
architecture in order to reduce performance overheads and to provide robust security [2]. 
These include requirements analysis [3], risk analysis [4], threat modeling [5], and 
implementation feasibility [6]. 

The concept of virtualization of security services is introduced for the security services. It is 
needed to have the absolute freedom to choose the underlying security mechanisms. From 
the security point of view, the virtualization of a service definition encompasses the security 
requirements for accessing that service. The need arises in the virtualization of security 
semantics to use standardized ways of segmenting security components (e.g., 
authentication, access control, etc.) and to provide standardized ways of enabling the 
federation of multiple security mechanisms. Virtualization permits each participating end-
point to express the policy it wishes to see applied when engaging in a secure conversation 
with another end-point [7]. Policies can specify supported authentication mechanisms, 
required integrity and confidentiality, trust, privacy policies, and other security constraints. 
This concept of virtualization of security services can be realized through distributed virtual 
engines that will enable security service calls to be unified according to requirements and not 
according to the technologies to be supported. 

A configurable mechanism for the invocation of security services is proposed to address 
security needs of the different kinds of users. This approach permits the evolution of security 
infrastructure with less impact on the resource management functionalities, which are still on 
the verge of evolution. Moreover, it permits the users and resource providers to configure the 
security architecture according to their requirements and satisfaction level. The set of these 
security services include core security services (such as authentication, authorization, 
identity mapping, audit, etc.) as well as contemporary security services (such as mobile 
access control, dynamic digital signature, etc.) [8]. 

1. Research Context 
Businesses have cooperated via computer networks since the early 1980s. These forms of 

cooperation were very static and took place in the form of electronic data interchange (EDI) 
[9]. Since the opening of the Internet for commercial use, more dynamic forms of cooperation 
are facilitated. However, the security needs of Internet-based systems are very different from 
those of traditional networking. For example, the Internet offers no centralized infrastructure 
to provide responsibility for network security. The security needs are particularly acute when 
high speed internets are used to combine widespread computational resources. The best 
example of such distributed collaborative environment is the computational grid [10]. A 
survey report of Virginia Tech in the fall of 2002 states that more than half of the grid 
community members believe that existing grid security solutions do not provide adequate 
services for collaborative grid communities. The reasons given ranged from the lack of an 
underlying threat model to the complexity and expense of inter-site trust relationships that 
are currently required [11]. Sun Microsystems says adoption of global grids, where 
companies share hardware and software resources to accomplish a computational goal, has 
been slowed because of security concerns and a lack of standards [12]. 

In the beginning of this century, various research funding agencies emphasized the need 
for a comprehensive research efforts of building scientific and technical excellences in 
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security, dependability and resilience of systems, services and infrastructures, whilst meeting 
demands for privacy and trust [13, 14]. We responded to these calls and started working on 
the evolution of in-depth security architecture for large scale, open, distributed 
heterogeneous systems. This research work is directly and indirectly supported by these 
research funding agencies. 

2. Security Architecture 
We have identified logical components, 

factored out common features, and have 
defined general framework interfaces for our 
proposed security architecture for large 
scale, open, distributed heterogeneous 
systems [15]. This devised framework 
architecture is shown in figure 1. A concise 
account of various components of our design 
is provided in this section [16]. 
  

 
Fig 1: Framework Architecture 

2.1. Security Broker Architecture 

The Security Broker mediates between 
applications (more precisely the distributed 
applications) and the security services. The 
security broker has a security services handler, 
which is employed to absorb the heterogeneity of 
the underlying security services and to provide a 
homogeneous interface to the upper layer. 
Distributed virtual engines are implemented by 
using brokering agent for the security services. 
The idea of introducing a security services broker 
is actually inspired by the utilization of a brokering 
agent for the exploitation of suitable 
computing/storage resource (also known as the 

 
 

    Fig 2: Security Broker Architecture 
 

resource broker) in distributed applications. The layered architecture of the proposed security 
broker is shown in figure 2. The functionalities associated with these layers are: 
Application/Client Interface authenticates the user/application and provides the glue between 
the user/application and the underlying security broker infrastructure to facilitate 
communications between them. 
Configuration Daemon is a configuration server. It accepts a machine independent, abstract 
configuration request and then interacts with the coordination service through a secure 
channel. It notifies when the coordination service approves the security service configuration. 
It can keep a log of configurations done or even a complete backup configuration. 
Security Services Handler absorbs the diversity of the security mechanisms to enable 
security service calls to be unified according to requirements and not according to the 
technologies to be supported. 
Protocol Mapping contains a comprehensive list of the protocols supported by the security 
architecture through the Security Services Handler. 
Security Architecture Interface consists of socket modules to plug various security services. 
Call for a particular security service is sent to the security services handler through the 
Configuration Daemon. The security services handler checks the existence of such a security 
service from the security protocol mapping and if it exists then an instance is invoked to hook 
the corresponding security service to the security architecture interface. 
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Real-Time Algorithms are used to address the performance concerns. They assure that the 
entire processing of the security broker takes place in real time and the users/services can 
invoke these security services at the application layer. These real-time features are 
implemented at each layer. 

2.2. Coordination Service Architecture 

This component is responsible for 
the surety that a coordinated set of 
security services are invoked at the 
various ends of the system. As shown 
is figure 3, it contains traces of all the 
services invoked at the various nodes. 
When a user invokes a set of services 
(default or user-defined) and it does 
not match with the set of services 
invoked at the other nodes then the 
mismatch is identified as conflict in the 
invoked services which is managed in 
the light of the security policy. Once the 
conflict is resolved, security services 
invocation is made to the security 
broker. It is worth mentioning here that 
this security broker is not involved in 
the conflict management itself, rather it  

 
 

Fig 3: Coordination Service Architecture 
 

forwards the service invocation, made by a user/service, to the coordination service for its 
mapping and to look for any conflict(s) with the security services invoked at the other nodes. 
The security services are invoked by the security broker only when it receives a command 
from the coordination service. 

In the arrangement shown in figure 1, the security broker is deliberately placed between 
the application and the coordination service so as to isolate the latter from the former. One of 
the objectives of the security broker is to isolate the core security architecture from the 
applications so as to increase the protection level. The need to protect the coordinated 
service is evident from the fact that if some malicious user/application succeeds in 
influencing it then the mismatch of the various security services invoked at the various nodes 
will cause the self-destruction of the entire security architecture. 

2.3. Security Policy 

We propose a layered security policy in our proposed security architecture. The salient 
features of this policy include: 

5. Flexible policy-based access control mechanisms 
6. Inter-domain access control policies 
7. Secure group communication 
8. Delegation mechanisms to support scalability to large numbers of resources and 

users 
The security policy consists of two distinguished parts: Global Security Policy (PG) and 

Local Security Policy (PL). The Local Security Policy layers are application policy, access 
control policy, data integrity policy, authentication policy and encryption policy. The Global 
Security Policy defines general security policy and provides the abstraction (virtualization) of 
all Local Security Policies. 

2.4. Trust Model 

We propose a dynamic distributed trust model [17] that provides a flexible mechanism for 
delegation of trust and continuous monitoring of the changes to the level of trust of each 
node. It has the advantage of decentralized hierarchical administration, scalability of 
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certificate issuing capacity and the flexibility of delegation. Since the open services are not 
limited to a specific range of domains and organizations, a distributed, flexible and general-
purpose trust management is necessary for establishing a trust relationship between entities 
that may never meet with each other to provide a scalable, decentralized access-control 
mechanism over the Internet [18]. 

Our proposed trust model has a two-pronged approach [19]: First, definition of direct or 
mutual trust relationships between two nodes within a domain, as well as indirect trust 
relationships traversing intermediaries. Second, due to the dynamic nature of collaborations, 
trust relationships might also need to be established dynamically using intermediaries in a 
distributed means. Specially, it should also set up the basis satisfying the security 
requirements to achieve single sign-on and delegation. 

2.5. Reconfigurability 

We have also explored the reconfigurability/adaptability of the security services to provide 
security support for the heterogeneous systems. We propose that the security services 
should be capable of reconfiguring themselves if some new node is introduced or to react to 
recover any system problem. It is achieved through the employment of a dynamically 
reconfigurable component-based architecture. This architecture allows nodes to dynamically 
negotiate the security services, protocols, and cryptographic support needed. Our motivation 
here is to enable configurability and reconfigurability of core security services functionality 
without having to make any particular assumptions about the underlying distributed 
architecture. 

This feature has two advantages over the classical security architectures: 
4. It makes the security architecture adaptable to such heterogeneous environments 

where the ultimate composition of the system resources is unknown in the 
beginning. Hence it supports the dynamic addition and suppression of resources 
from the overall system at any time instant.  

5. It makes the security architecture resilient and hence assures survivability of the 
overall system. Reconfigurability makes the system to regain its original security 
configurations after the attack scenario is over and therefore it improves the quality 
of service of the entire system. 

6. It enables the system to cope up with the frequent technology changes so that new 
devices and resources are easily integrated into the existing systems without 
changing the core architecture and without plunging the operation quality of service 
and performance. For example, if a user submits a request for data analysis to a 
grid; the grid should perform the task in a timely manner, in a secure environment 
to avoid tampering, and with all necessary accuracy (though, this quality of service 
was not a priority in the initial generations of the grid, where just getting it all to 
work first was the stated goal). 

3. Implementation and Functional Assessment 
The existing range of toolkits for modeling and simulations of large scale distributed 

systems does not provide any support for the simulations of security functionalities. So we 
developed simulator modules, as a by-product of our proposed architecture, to test and 
validate its functionalities [20, 21]. These simulator modules are then integrated into an 
existing toolkit GridSim [22]. A prototype for the demonstration of dynamic access control by 
using the context and state of the users beside their conventional credentials is also 
implemented to prove the real-world functioning of the proposed architecture [23, 24, 25]. 

In order to follow the standard security evaluation practice, we have prepared a protection 
profile of our proposition [26] by using Common Criteria (CC) version 2.1 with Evaluation 
Assurance Level (EAL) 4 (that provides assurance by an analysis of the security functions, 
using a functional and complete interface specification, guidance documentation, the high-
level and low-level design of the Target of Evaluation (TOE), and a subset of the 
implementation, to understand the security behavior) and minimum Strength of Function 
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(SOF) high (that implies that an attacker to the system has the high potential to attack the 
system). 

4. Conclusions and Future Directions 
We have proposed a new approach to deal with a number of security challenges 

presented by large scale, open, distributed heterogeneous systems. The most salient feature 
of our approach is the flexible and adaptive nature of security services. We have used 
virtualization to provide standardized ways of enabling the federation of multiple 
heterogeneous security mechanisms. To have minimal reliance on the emerging resource 
management functionalities, and to make our model more adaptive, we have extended the 
concept of security as services to security as pluggable services. The other features are the 
self-security of the security architecture; use of security broker that negotiates for security 
services; description of security ontology to enable standard protocol interactions of core 
security bootstrapping services; and user-centered security services where usability is the 
prime motivation. 

Our research has been a first step to come towards a systematic approach in the design 
process of security architecture for large scale, open, distributed heterogeneous systems. 
Although a wide variety of complex systems are considered but more consideration is given 
to the computational grid based systems [27]. This work can be continued to explore more 
specific security solutions for other complex systems such as ubiquitous systems, P2P 
systems, etc. Moreover, the concept of virtualization could be extended to adapt country-
specific legal requirements, population-based ethical issues, and the business-oriented 
interests. Furthermore, virtualization could be used to achieve the best trade-off between 
security guarantees and processing capabilities.  
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Chapter 1  
 

Introduction 
 
 
 
 
 
 

1.1. Research Context 
Businesses have cooperated via computer networks since the early 1980s. These forms of 

cooperation were very static and took place in the form of electronic data interchange (EDI) 
[9]. Since the opening of the Internet for commercial use, more dynamic forms of cooperation 
are facilitated. However, the security needs of Internet-based systems are very different from 
those of traditional networking. For example, the Internet offers no centralized infrastructure 
to provide responsibility for network security. The security needs are particularly acute when 
high speed internets are used to combine widespread computational resources. The best 
example of such distributed collaborative environment is the computational grids [10]. A 
computational grid is a distributed computing infrastructure for advanced science and 
engineering applications. The initial conception and implementation of these distributed 
systems were with the aim of providing global sharing of computing resources. Even though 
the Internet was originally a network built for 'national defense', the security of confidential 
information was considered secondary, because only trusted users had access to it. 
However, to exploit the full potential of the Internet and the associated computing resources, 
they must be made open. This is the point where the in-depth security becomes 
indispensable. 

For example, a survey report, conducted by the Computer Science Department of Virginia 
Tech in the fall of 2002 among members of the grid community, states that more than half of 
the respondents believe that existing grid security solutions do not provide adequate services 
for collaborative grid communities. The reasons given ranged from the lack of an underlying 
threat model to the complexity and expense of inter-site trust relationships that are currently 
required [11]. Sun Microsystems says adoption of global grids, where companies share 
hardware and software resources to accomplish a computational goal, has been slowed 
because of security concerns and a lack of standards [12]. 

1.2. Security Challenges in a Large Scale Heterogeneous 
Distributed Computing Environment 

The security challenges faced in a large scale heterogeneous distributed computing 
environments (such as Grid environment) can be grouped into three categories: integration 
with existing systems and technologies, interoperability with different hosting environments 
(e.g. J2EE servers, .NET servers, Linux systems), and trust relationships among interacting 
hosting environments [31]. 

1.2.1. The Integration Challenge 

For both technical and pragmatic reasons, it is unreasonable to expect that a single 
security technology can be defined that will both address all Grid security challenges and be 
adopted in every hosting environment. Existing security infrastructures cannot be replaced 
overnight. For example, each domain in a Grid environment is likely to have one or more 
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registries in which user accounts are maintained (e.g., LDAP directories); such registries are 
unlikely to be shared with other organizations or domains. Similarly, authentication 
mechanisms deployed in an existing environment that is reputed secure and reliable will 
continue to be used. Each domain typically has its own authorization infrastructure that is 
deployed, managed and supported. It will not typically be acceptable to replace any of these 
technologies in favor of a single model or mechanism. 

Thus, to be successful, Grid security architecture needs to step up to the challenge of 
integrating with existing security architectures and models across platforms and hosting 
environments. This means that the architecture must be implementation agnostic, so that it 
can be instantiated in terms of any existing security mechanisms (e.g., Kerberos, PKI); 
extensible, so that it can incorporate new security services as they become available; and 
integratable with existing security services. 

1.2.2. The Interoperability Challenge 

Services that traverse multiple domains and hosting environments need to be able to 
interact with each other, thus introducing the need for interoperability at multiple levels: 

 
 At the protocol level, we require mechanisms that allow domains to exchange messages. 

This can be achieved via SOAP/HTTP, for example. 
 At the policy level, secure interoperability requires that each party be able to specify any 

policy it may wish in order to engage in a secure conversation – and that policies 
expressed by different parties can be made mutually comprehensible. Only then can the 
parties attempt to establish a secure communication channel and security context upon 
mutual authentication, trust relationship, and adherence to each other’s policy. 

 At the identity level, we require mechanisms for identifying a user from one domain in 
another domain. This requirement goes beyond the need to define trust relationships and 
achieve federation between security mechanisms (e.g. from Kerberos tickets to X.509 
certificates). Irrespective of the authentication and authorization model, which can be 
group-based, role-based or other attribute-based, many models rely on the notion of an 
identity for reasons including authorization and accountability. It would be nice if a given 
identity could be (pre)defined across all participating domains, but that is not realistic in 
practice. For any cross-domain invocation to succeed in a secure environment, mapping 
of identities and credentials must be made possible. This can be enforced at either end of 
a session through proxy servers or through trusted intermediaries acting as trust proxies. 

1.2.3. The Trust Relationship Challenge 

Grid service requests can span multiple security domains. Trust relationships among these 
domains play an important role in the outcome of such end-to-end traversals. A service 
needs to make its access requirements available to interested entities, so that they can 
request secure access to it. Trust between end points can be presumed, based on 
topological assumptions (e.g., VPN), or explicit, specified as policies and enforced through 
exchange of some trust-forming credentials. In a Grid environment, presumed trust is rarely 
feasible due to the dynamic nature of VO relationships. Trust establishment may be a one-
time activity per session or it may be evaluated dynamically on every request. The dynamic 
nature of the Grid in some cases can make it impossible to establish trust relationships 
among sites prior to application execution [28]. Given that the participating domains may 
have different security technologies in their infrastructure (e.g., Kerberos, PKI) it then 
becomes necessary to realize the required trust relationships through some form of 
federation among the security mechanisms. 

The trust relationship problem is made more difficult in a Grid environment by the need to 
support the dynamic, user-controlled deployment and management of transient services [29]. 
End users create such transient services to perform request-specific tasks, which may 
involve the execution of user code. For example, in a distributed data mining scenario, 
transient services may be created at various locations both to extract information from 
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remote databases and to synthesize summary information. Challenges associated with user-
created transient services include the following: 

 Identity and authorization. It must be possible to control the authorization status (e.g., 
identity) under which transient services execute. 

 Policy enforcement. Users may want to establish policies for services that they “own,” to 
control, for example, who can access them and what actions they can perform. However, 
these policies must necessarily be bounded by policies enforced by the service provider 
that hosts the user service. 

 Assurance level discovery. A user may want to take into account the assurance level of a 
hosting environment when deciding where to deploy services. Thus, this information must 
be discoverable. Issues of concern may include virus protection, firewall usage for 
Internet access, and internal VPN usage. One approach to providing this information is to 
use an accreditation mechanism in which a third-party accreditation agency attests to the 
level of security provided [30]. 

 Policy composition. Security policy on instantiated services can be generated dynamically 
from multiple sources: not just the resource owners, but from the entity whose request 
created the service and the VO in which the entity’s membership entitles them to do so. 

 Delegation. Transient services may need to be able to perform actions on a user’s behalf 
without their direct intervention. For example, a computational job running overnight 
might need to access data stored in a different resource. Since there may be no direct 
trust relationship between the VO in which the service is running and the VO in which it 
wishes to make a request, the service needs to be able to delegate authority to act on the 
user’s behalf. 

 A number of secondary issues flow from this requirement. For example: how can a user 
minimize the credentials they delegate to a transient service to reduce their exposure? 
And what happens if the credentials delegated to the service expire before it has 
completed its task? 

 
Controlled access to VO resources and services is clearly a critical aspect of a secure Grid 

environment. 
Given the dynamic nature of Grids and the scale of the environment, serious challenges 

exist and need to be addressed in the area of security exposure detection, analysis, and 
recovery. 

In summary, security challenges in a Grid environment can be addressed by categorizing 
the solution areas: 
 
(a) integration solutions where existing services needs to be used, and interfaces should be 

abstracted to provide an extensible architecture; 
(b) interoperability solutions so that services hosted in different virtual organizations that 

have different security mechanisms and policies will be able to invoke each other; and 
(c) solutions to define, manage and enforce trust policies within a dynamic Grid environment. 
 

A solution within a given category will often depend on a solution in another category. For 
example, any solution for federating credentials to achieve interoperability will be dependent 
on the trust models defined within the participating domains and the level of integration of the 
services within a domain. Defining a trust model is the basis for interoperability but trust 
model is independent of interoperability characteristics. Similarly level of integration implies a 
level of trust as well has a bearing on interoperability. 

In a Grid environment, where identities are organized in VOs that transcend normal 
organizational boundaries, security threats are not easily divided by such boundaries. 
Identities may act as members of the same VO at one moment and as members of different 
VOs the next, depending on the tasks they perform at a given time. Thus, while the security 
threats to OGSA fall into the usual categories (snooping, man-in-the-middle, intrusion, denial 
of service, theft of service, viruses and Trojan horses, etc.) the malicious entity could be 
anyone. An additional risk is introduced, when multiple VOs share a virtualized resource 
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(such as a server or storage system) where each of participating VOs may not trust each 
other and therefore, may not be able to validate the usage and integrity of the shared 
resource. Security solutions that focus on establishing a perimeter to protect a trusted inside 
from an untrusted outside (e.g., firewalls, VPNs) are of only limited utility in a Grid 
environment. 

The size of some Grid environments introduces the need to deal with large-scale 
distributed systems. The number, size, and scalability of security components such as user 
registries, policy repositories, and authorization servers pose new challenges. This is 
especially true in the area of inter-domain operations where the number of domains 
explodes. Many cross-domain functions that may be statically pre-defined in other 
environments will require dynamic configuration and processing in a Grid environment.  

1.3. Security Requirements 
The goal and purpose of Grid technologies is to support the sharing and coordinated use 

of diverse resources in dynamic, distributed VOs: in other words, to enable the creation, from 
distributed components, of virtual computing systems that are sufficiently integrated to deliver 
desired qualities of service. Security is one of the characteristics of an OGSA-compliant 
component. The basic requirements of an OGSA security model are that security 
mechanisms be pluggable and discoverable by a service requestor from a service 
description. This functionality then allows a service provider to choose from multiple 
distributed security architectures supported by multiple different vendors and to plug its 
preferred one(s) into the infrastructure supporting its Grid services. 

OGSA security must be seamless from edge of network to application and data servers, 
and allow the federation of security mechanisms not only at intermediaries, but also on the 
platforms that host the services being accessed. The basic OGSA security model must 
address the following security disciplines: 

 
 Authentication: Provide plug points for multiple authentication mechanisms and the 

means for conveying the specific mechanism used in any given authentication operation. 
The authentication mechanism may be a custom authentication mechanism or an 
industry-standard technology. The authentication plug point must be agnostic to any 
specific authentication technology. 

 Delegation: Provide facilities to allow for delegation of access rights from requestors to 
services, as well as to allow for delegation policies to be specified. When dealing with 
delegation of authority from an entity to another, care should be taken so that the 
authority transferred through delegation is scoped only to the task(s) intended to be 
performed and within a limited lifetime to minimize the misuse of delegated authority. 

 Single Logon: Relieve an entity having successfully completed the act of authentication 
once from the need to participate in re-authentications upon subsequent accesses to 
OGSA-managed resources for some reasonable period of time. This must take into 
account that a request may span security domains and hence should factor in federation 
between authentication domains and mapping of identities. This requirement is important 
from two perspectives: 
a) It places a secondary requirement on an OGSA-compliant implementation to be able 

to delegate an entity’s rights, subject to policy (e.g., lifespan of credentials, 
restrictions placed by the entity) 

b) If the credential material is delegated to intermediaries, it may be augmented to 
indicate the identity of the intermediaries, subject to policy. 

 
 Credential Lifespan and Renewal: In many scenarios, a job initiated by a user may take 

longer than the life span of the user’s initially delegated credential. In those cases, the 
user needs the ability to be notified prior to expiration of the credentials, or the ability to 
refresh those credentials such that the job can be completed. 
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 Authorization: Allow for controlling access to OGSA services based on authorization 
policies (i.e., who can access a service, under what conditions) attached to each service. 
Also allow for service requestors to specify invocation policies (i.e. who does the client 
trust to provide the requested service). Authorization should accommodate various 
access control models and implementation. 

 Privacy: Allow both a service requester and a service provider to define and enforce 
privacy policies, for instance taking into account things like personally identifiable 
information (PII), purpose of invocation, etc. (Privacy policies may be treated as an 
aspect of authorization policy addressing privacy semantics such as information usage 
rather than plain information access.) 

 Confidentiality: Protect the confidentiality of the underlying communication (transport) 
mechanism, and the confidentiality of the messages or documents that flow over the 
transport mechanism in an OGSA compliant infrastructure. The confidentiality 
requirement includes point–to–point transport as well as store-and-forward mechanisms. 

 Message integrity: Ensure that unauthorized changes made to messages or documents 
may be detected by the recipient. The use of message or document level integrity 
checking is determined by policy, which is tied to the offered quality of the service (QoS). 

 Policy exchange: Allow service requestors and providers to exchange dynamically 
security (among other) policy information to establish a negotiated security context 
between them. Such policy information can contain authentication requirements, 
supported functionality, constraints, privacy rules etc. 

 Secure logging: Provide all services, including security services themselves, with facilities 
for time-stamping and securely logging any kind of operational information or event in the 
course of time - securely meaning here reliably and accurately, i.e. so that such collection 
is neither interruptible nor alterable by adverse agents. Secure logging is the foundation 
for addressing requirements for notarization, non-repudiation, and auditing. 

 Assurance: Provide means to qualify the security assurance level that can be expected of 
a hosting environment. This can be used to express the protection characteristics of the 
environment such as virus protection, firewall usage for Internet access, internal VPN 
usage, etc. Such information can be taken into account when making a decision about 
which environment to deploy a service in. 

 Manageability: Explicitly recognize the need for manageability of security functionality 
within the OGSA security model. For example, identity management, policy management, 
key management, and so forth. The need for security management also includes higher-
level requirements such as anti-virus protection, intrusion detection and protection, which 
are requirements in their own rights but are typically provided as part of security 
management. 

 Firewall traversal: A major barrier to dynamic, cross-domain Grid computing today is the 
existence of firewalls. As noted above, firewalls provide limited value within a dynamic 
Grid environment. However, it is also the case that firewalls are unlikely to disappear 
anytime soon. Thus, the OGSA security model must take them into account and provide 
mechanisms for cleanly traversing them—without compromising local control of firewall 
policy. 

 Securing the OGSA infrastructure: The core Grid service specification (OGSI) presumes 
a set of basic infrastructure services, such as handleMap, registry, and factory services. 
The OGSA security model must address the security of these components. In addition, 
securing lower level components (e.g., DNSSEC) that OGSI relies on would enhance the 
security of the OGSI environment. 

  
As Grid computing continues to evolve to support e-business applications in commercial 

settings, the requirements and functions discussed in this roadmap will form the foundation 
for standards-based interoperability not only between real organizations within a VO (intra 
VO) but also across organizations belonging in different VOs (inter VO). On this foundation 
applications and infrastructure can be built to establish trust relationships that are required 
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for commercial distributed computing, enterprise application integration and business-to-
business (B2B) partner collaboration over the Internet.  

 

1.4. Problematic 
A large scale distributed computing system has many properties that can not be ignored 

when the issue of security is explored. The population of users and the resources they use 
are assumed to be large and dynamic. Every node in the system could possibly have a 
different administrator that decides when and how much computing power to make available 
to the system as a whole. The computation itself is dynamic in the fact that it can allocate 
resources and spawn other processes during execution, with each resource located at 
different nodes in the distributed architecture. Processes must be able to communicate using 
a variety of communication methods. Resources can require different authentication or 
verification schemes in order to allow use of the system, and can be located in different 
countries. 

 Since a metacomputing system is really the compilation of many administrative domains 
and their computing power a security system for the metacomputing level can not be 
expected, or for that matter allowed, to override local security policies but instead to work 
with them or on top of them. 

At present, the provision of security services to such large scale heterogeneous distributed 
computing system remains very much an open research problem. In this research work, we 
have explored a comprehensive solution to tackle this problem. 

1.5. Motivations and Prospects 
The security and privacy issues are coming to the fore with the growing size and profile of 

the grid community. The forthcoming generations of the computational grid will make 
available a huge number of computing resources to a large and wide variety of users. The 
diversity of applications and mass of data being exchanged across the grid resources will 
attract the attention of hackers to a much higher extent. A comprehensive security system, 
capable of responding to any attack on its resources, is indispensable to guarantee the 
anticipated adoption of grid by both the grid users and the resource providers. In this article, 
we argue that the first brick of an effective plan of countermeasures against these threats is 
an analysis of the potential risks associated with grid computing.  

A pragmatic analysis of the vulnerability of existing grid systems [4] and the potential 
threats posed to their resources once their spectrum of users is broadened. Various existing 
grid projects and their security mechanisms are reviewed. The experience of using common 
grid software and an examination of grid literature served as the basis for this analysis. Legal 
loopholes in the implementation of grid applications across the geopolitical frontiers, and the 
ethical issues that could obstruct the wide acceptance and trustworthiness of grids are also 
discussed. The weaknesses revealed are classified with respect to their sources and 
possible remedies are discussed. The results show that the main reason for the vulnerability 
is the fact that grid technology has been little used except by a certain kind of public (mainly 
academics and government researchers). This public benefit greatly from being able to share 
resources on the grid, and have no intention of harming the resource owners or fellow users. 
Thus there was no need to address security in depth. This is all about to change. The 
number of people who know about the grid is growing fast, as are the worthwhile targets for 
the potential attackers. The security nightmare can not be avoided unless the problem is 
addressed urgently. 

In the evolution of computational grids, security threats were overlooked in the desire to 
implement a high performance distributed computational system. So far, the grid technology 
has been little used except by a certain kind of public (mainly academics and government 
researchers). The growing size and profile of the grid require comprehensive security 
solutions as they are critical to the success of the endeavor. A comprehensive security 
system, capable of responding to any attack on grid resources, is indispensable to guarantee 
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its anticipated adoption by both the users and the resource providers. The prospects of 
designing comprehensive security architecture for these systems are quite fascinating. 
 
 

1.6. Approach and Methodology 
The research method is based on theoretical insight and best practices. It is supplemented 

with practical explorative experience. The research makes use of the following: 
 

 a study of information security literature; 
 a study of system design literature; 
 experience gained while participating in the various EU projects in which information 

security design was the main subject; 
 

The research method consists of six parts, which all contribute to the answering of the 
research problem. These parts are: 
 
1. Identification of the threats posed to the large scale open heterogeneous distributed 

computing systems; 
2. Identification of shortcomings of current security processes when addressing information 

security issues; 
3. Proposition of a security model consisting of supporting means for designers to address 

information security issues in the design process of these systems; 
4. Verification of the proposed model; 
5. Development of a tool for the simulations of the security services and the formulation of 

evaluation criteria. 
6. Description of the applications that can benefit from the proposed security model. 

1.7. Organization of Thesis 
In this section, we give an overview of the rest of the chapters of this thesis. The remaining 

chapters are organized as: 
In Chapter 2 we provide a detailed pragmatic analysis of the threats posed to the various 

existing technologies. 
In Chapter 3 we describe a number of key concepts needed to be elaborated before 

designing a security model. 
In Chapter 4 we provide state of the art security mechanisms in existing systems with 

special emphasis on their security features and shortcomings. 
In Chapter 5 we present our proposed security model to handle the security needs of the 

underlying systems. 
In Chapter 6 we present the salient features of our proposed architecture. 
In Chapter 7 we discuss the assessment of the various security functionalities. It includes 

Common Criteria, a case study and the description of our proposed security simulation tool. 
In Chapter 8 we present a set of applications that can benefit from our current research 

work. 
Finally, in Chapter 9 we give conclusions and suggestions for future research. 
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Chapter 2 
 

Threats Analysis 
 
 
 
 
 

Computer crimes particularly hacking and denial of service have become so ubiquitous 
that they are almost accepted as few of those unavoidable facts of modern life. The statistics 
of such incidents underline the vulnerability of even apparently secure computer systems to 
various attacks [32-34]. We believe that the actual statistics of incidence are higher than the 
reported ones, because the last thing a company wants everybody else to know is that they 
have been attacked. It is certainly embarrassing for them to admit that their IT system was 
not secure enough. These challenging nature of the threats exacerbate the state of the IT 
security: 

• Intruders are prepared and organized. 
• Attacks are getting easier, low risk and hard to trace. 
• Intruder tools are increasingly sophisticated, easy to use (especially by novice 

intruders) and are designed to support large-scale attacks. 
• Source code is no more required to find vulnerabilities. 
• The complexity of the Internet, protocols, and applications are all increasing along 

with our reliance on them. 
• Critical infrastructures increasingly rely upon the connected IT services and products 

for operations. 
 

Besides a number of exploitable vulnerabilities present in technology, lack of awareness 
regarding information security is a great source of exploitation. Most intrusions result from 
exploitation of known vulnerabilities, configuration errors, or virus attacks where 
countermeasures were already available. For example, San Diego Supercomputer Center 
(SDSC) conducted an experiment of Red hat 5.2 installation without any security patches on 
a computer in December 1999. It is amazing that within 8 hours of installation, the system 
was probed! The complete chronology of the events of this experiment is available at [35]. So 
if a system was properly administered with timely installation of proper patches then would 
the great source of exploitation be throttled? The answer could be positive if the 
administrations of computer and network infrastructures are not as complex as they are. 

The complexity administration of computer and network infrastructures of administration of 
computer and network infrastructures makes it difficult to properly manage the security of 
computer and network resources. For example 5500 vulnerabilities reported in 2002 [36]; it 
means an administrator has to read the description of these vulnerabilities – if he takes 20 
minutes for each description, then he requires 229 days just to read the description; if he is 
affected by only 10% of these vulnerabilities and requires 1 hour for the installation of each 
patch, then he requires 69 days to install patches on one machine. So just to read security 
news and patch a single system requires 298 days! Even just 5 minutes to read new 
vulnerability bulletin and only a 1% hit rate costs almost 65 days (or about 25% of a perfectly 
efficient administrator). These problems can be mitigated if a rigorous vulnerability 
assessment is made before the actual installation of these systems. With the ever-increasing 
computing power, conception of robust security simulators is not just a sweet dream. A 
portion of security investments is necessary for the evolution of security simulation tools. 
Network Simulator (NS) is the best-known simulator for various simulations; however, it has 
a number of limitations including the scalability [37]. The scalability is an important factor in 
today’s heterogeneous distributed systems. If a system is floated in the market without its 
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proper testing and simulations then there is no guarantee that its functionality will meet the 
anticipated performance targets. The consequences are obvious – there will remain a 
number of vulnerabilities in the system and there will always be a need to release patches 
and the job of the system administers will remain complex! Apart from this, the losses 
incurred due to the exploitation of these vulnerabilities might not have any remedy; for 
example, there is no way to undo the theft of priceless human data from a medical database. 

Lack of accountability feature in the security models is a matter of great concern. Malicious 
insiders can exploit the information, which lies within their reach. In a survey of 1225 
information security managers, the greatest threat to their networks was virus infections 
followed by abuse of access privileges by employees [38]. Efficient accountability measures 
are particularly needed to tackle the recent technology advancement, which facilitate the 
risks of intellectual property theft. An example is the growing number of low cost high 
capacity portable storage media devices. Such devices bypass traditional safeguards and 
open the enterprise to a range of threats because they remain invisible to normal perimeter-
based security. Flash drives and MP3 players, which many employees bring into the 
organization, can be plugged into any USB port and are automatically recognized by recent 
Windows operating systems. They can transport very large quantities of data and that is why 
they are so dangerous. 

The risks come from the fact that there is no way to control what is already on the devices 
when they are connected to the corporate network, nor is it easy to control what is 
transferred onto them. In the first case such things as Trojans, hacking tools, viruses, worms, 
or any number of other malware infections can easily access the system and bypass 
corporate security systems and procedures. A single infected file on a flash memory stick 
could cause havoc. What is even more concerning is that the huge storage capacity of 
modern MP3 players and other removable storage devices means that they can be used to 
steal considerable quantities of sensitive or propriety information. What's needed is a secure 
solution that manages how, where and when these media devices can be connected to a 
network. 

2.1. Client-Server Architecture 
In client/server systems where the data may be distributed across multiple servers and 

sites, each with its own administrators, centralized security services are impractical as they 
do not scale well and more opportunities are available for intruders to access the system. 
The client PCs often run operating systems with little or no thought to security and the 
network connecting clients to servers is vulnerable. The distribution of services in 
client/server increases the susceptibility of these systems to damage from viruses, fraud, 
physical damage and misuse than in any centralized computer system. With businesses 
moving towards multi-vendor systems, often chosen on the basis of cost alone, the security 
issues multiply. Security has to encompass the host system, PCs, LANs, workstations, global 
WANs and the users. 

Generally, client-server security is deemed to be achieved by encrypting the data flow 
between the server and its clients. Encryption is necessary for client-server data exchange; 
however, it is not sufficient for complete security assurance as there are a number of factors, 
such as availability and covert channels [39], which are not dealt by cryptographic solutions. 
There is no one solution that addresses all security issues raised when implementing a 
client-server system. The view to the users must be that of a single homogeneous system 
when the reality is that it is a system made up of multiple levels and parts, each with its own 
security issues. We have classified the vulnerabilities associated to the client/server 
architecture into the following two categories: 

2.1.1. Mutual Confidence/Trust already exists 

In this case, users already know each other and/or they can identify each other. Also, they 
can determine the confidence level themselves. Although, there exists a mutual confidence/ 
trust among the users; however, the network connecting clients and servers is a less than 
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secure vehicle that intruders can use to break into computer systems and their various 
resources. Using publicly available utilities and hardware an attacker can eavesdrop on a 
network, or "sniff" the network to read packets of information. These packets can contain 
useful information, e.g. passwords, company details, etc, or reveal weaknesses in the 
system that can be used to break into the system. 

Encryption of data can solve the problem of attackers sniffing the network for valuable 
data. Encryption involves converting the readable data into unreadable data. Only those 
knowing the decryption key can read the data. A problem here is that some network 
operating systems don't start encryption until the user has been authenticated (i.e. the 
password is sent unencrypted). Most systems employ re-usable passwords for authenticating 
users, which allows an attacker to monitor the network, extract the login information and 
access the system posing as that user. Even if the password is encrypted the intruder can 
just inject that packet into the network and gain access. The problem is compounded when, 
to maintain that single system illusion, only one login is required to access all servers on the 
network. Customers want a "single system image" of all networked computing resources, in 
which all systems management and administration can be handled within a single pool of 
system resources. 

2.1.2. Mutual Confidence/Trust does not already exist 

In this case, the users do not have previous knowledge/confidence of each other or the 
application they are using does not require such existing familiarity (e.g. electronic 
commerce). In such a situation, the security of client side, server side and their 
communication medium (such as network) are all indispensable. Secure socket layer (SSL) 
that is used for managing the security of a message transmission on the Internet does not 
provide mutual authentication because unlike the enterprises (servers), the customers 
(clients) do not possess digital certificates. The enterprises use their certificates to prove 
their authenticity; whereas the customers provide specific information (credit card number, 
social security number, etc.) to prove their identity; however, in the absence of some mutual 
trust the provision of such information is prone to attacks. This issue is a hot topic of 
Business to Consumer (B2C) systems [40]. 

The network security vulnerabilities have discussed above. The client and server security 
vulnerabilities are described below: 

The Client 
The client machines pose a threat to security as they can connect to the servers, and 

access their data, that are elsewhere in an organization. One large problem is that they are 
easily accessible and easy to use. They are usually located in open plan offices that present 
a pleasant environment for users (and intruders) making it impossible to lock them away 
when unattended. 

One of the greatest risks with the client workstations is that the operating system is easily 
and directly accessible to the end user, which exposes the whole system to a number of 
risks. The workstation operating system assumes that the person who turns it on is the 
owner of all files on the computer, including the configuration files. Even if the client/server 
application has good security, that security might not be able to counteract attacks at the 
operating system level, which could corrupt data passed to other tiers of the client/server 
system. The tighter security now being offered with Windows NT addresses some of these 
issues. 

The Server 
The first line of defense for the server(s) is to have the server center in a secure location 

where access, by authorized personnel only, can be supervised and administration can be 
performed simply. Some database systems, e.g. Oracle, can validate database users without 
database passwords by using information in the host’s operating system authentication 
mechanism. This simplifies the database security administration as it is centralized at a 
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system level. However, the problem with this is that often the database user does not have to 
start a host session on the database server before using the database across the network, 
effectively bypassing the operating system security mechanisms. 

Many client/server database systems do not have adequate password management 
facilities similar to those found in operating systems. This means that there is no easy way 
for the database administrator to ensure that users have chosen good passwords and will 
change them frequently. Most database systems allow users to change their passwords 
using simple SQL utilities. Unfortunately these SQL utilities do not force the user to verify the 
current password prior to changing it. Therefore, it is easy to change another user's 
password. Third party database password management utilities are starting to appear which 
address the above deficiencies. 

2.2. Peer-to-Peer (P2P) 
P2P networking has grown faster than the Internet itself, and has reached a much broader 

audience at this stage of its development. Part of the attraction of P2P networks is their 
dynamic nature. P2P technology creates flexible ad hoc networks that span the globe, 
connecting end users in a peer-wise architecture that is both resilient and efficient. Search 
engines built into P2P clients are powerful and intuitive. They put a staggering volume and 
variety of digital content at a user’s fingertips. But there is a downside to placing such a 
potent technology in the hands of novice users. A P2P client can turn a computer into a 
server, exposing it to a new range of threats. 

Installation and operation is so easy that most do not fully appreciate the risks. And 
deceptive practices of the vendors of P2P file sharing software who are trying to stay one 
step ahead of copyright owners and network administrators have made the situation much 
worse. 

2.2.1. Spyware and Adware 

The prevalence of embedded spyware and adware in P2P clients is but one example. 
Spyware monitors user behavior and tracks web browsing habits. The information collected 
by spyware is typically sold to companies and/or used by adware to conduct targeted web 
marketing. Based on an individual’s browsing patterns, adware opens web pages promoting 
a particular product or service. 

P2P developers bundle spyware and adware in their clients to generate revenue. One P2P 
Company maintains that its embedded spyware is “integral” to the operation of their product. 
Of course, there is no inherent functional dependency between advertising and file sharing. 
In fact, lightweight implementations of P2P software have been developed that leave the 
spyware out. “Integral” means that the P2P software has been deliberately engineered so it 
will not function without the spyware active. 

Spyware and adware are, by construction, difficult to detect and may be impossible to 
disable or remove from a client. Common tactics include hiding in system folders and running 
in the background from system startup. Amazingly, some spyware components remain on a 
system long after the original application is removed, and will even embed themselves in a 
host despite an aborted installation of the carrier application. 

Spyware not only poses a threat to user privacy, it can also create additional vulnerabilities 
on a user’s system. Spyware products embedded in the most popular P2P clients download 
executable code without user knowledge. Even if the code is not malicious, it may contain 
flaws that render a system open to attack. The clandestine nature of the software makes 
detection and remediation extremely difficult. 

2.2.2. Circumventing Security 

P2P software is commonly designed to circumvent network security services. Enterprises 
and institutions wishing to stem the tide of media piracy on their networks often find that P2P 
file sharing traffic is disguised as or hidden amongst normal network activity. Techniques 
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such as tunneling, port hopping and push requests make it difficult to detect and filter P2P 
traffic. That is their intent; to foment user participation in spite of an enterprise’s security 
policy. One consequence (intended or not) is that these techniques dramatically weaken an 
organization’s security posture. 

Tunneling embeds P2P messages within another protocol so that they blend in with other 
traffic, making them more difficult for firewalls and filters to detect. A common scheme is 
HTTP tunneling, in which P2P communications are disguised as web browsing traffic. This 
variation is popular because web traffic is so common and typically travels freely across 
enterprise networks. To this end, tunneling not only helps violate a network security policy by 
enabling forbidden applications but also expands the network security perimeter in ways 
unknown and unpredictable to system administrators. 

Another commonly used trick is for P2P clients to vary their communication ports – a 
technique called port hopping. This thwarts blocking and scanning software that identifies 
network services based on well-known port assignments. Port hopping is built into the latest 
versions of the most popular P2P clients – and there is no reason for it other than to allow 
network software clients to avoid detection. 

Developers of the Gnutella protocol devised a special solution that permits clients to 
circumvent firewalls configured to block its file request messages. In this scheme, a ‘push-
request’ message is sent through the Gnutella network to the system behind the firewall, 
which then knows to initiate a file upload to the requesting host. So instead of a client ‘pulling 
a file to it,’ it asks the serving system to ‘push the file out.’ To the user, the net effect is the 
same – they get the file – but to the firewall, which usually has looser restrictions on out-
bound traffic, it makes all the difference in the world. And once again, an enterprise’s network 
security policy is violated. 

2.2.3. Software Vulnerabilities 

Another major concern is how software flaws in P2P networking clients can greatly 
increase the exposure in a network, leaving it vulnerable to intruders and hackers. All 
software has flaws, and some flaws create exposures that can be exploited to violate the 
security of a system. 

Exploitable weaknesses in P2P software have been identified. Buffer overflow and cross-
site scripting vulnerabilities were reported in early iMesh and Gnutella clients, respectively. 
P2P clients that use the Fasttrack protocol are known to be susceptible to Denial of Service 
attacks due to its client-to-client messaging architecture. Sometimes the shared files 
themselves enable an attack. MP3s contain special meta-data that in the past has been used 
to exploit buffer overflow vulnerabilities in media players. In this particular attack, a P2P 
network is simply a distribution mechanism for the malicious payload, but it is an incredibly 
effective one. 

There is nothing special about P2P software that makes it inherently more flawed than 
other software. It is built for the same platforms and developed in the same programming 
languages as other computer and network applications. However, several factors conspire to 
make the risks induced by security vulnerabilities in P2P file sharing clients much more 
serious. The first factor is that P2P clients engender massive ad hoc connectivity across 
organizational and enterprise domains. P2P file sharing networks are well beyond the 
administrative control of any one company or organization. A system running a P2P client 
may be behind a firewall, but it is exposed through the client to every user on that P2P 
network, regardless of their location. Simply put, P2P clients can dramatically amplify 
exposures to external threats. 

A related factor deals with trust. P2P file trading networks are open environments that 
allow anyone to share files pseudo-anonymously. Trust in this circumstance is hard to come 
by. Users are connected to and download files from hosts they know very little about. In 
many cases, the P2P client itself is installed in a bootstrap process that downloads it from a 
peer on the network. P2P file sharing networks expose systems to untrusted hosts and 
software, and offer little in the way of protection. 
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Enterprise security management in the presence of contraband P2P file sharing software 
is a supreme challenge. The dynamic nature of P2P networks, the stealth tactics employed 
by the software and the tendency of individuals to hide its use makes a complete inventory of 
P2P clients on a large network virtually impossible. This again magnifies any security 
vulnerabilities because inventories are essential for security remediation processes. It is very 
difficult to address problems on a network if you cannot find the software that is causing 
them. 

2.2.4. Worms and Viruses 

No discussion of security threats to P2P networks is complete without covering the 
potential for viruses and worms. Viruses and worms are self-replicating code that may or 
may not contain a malicious payload. The difference between the two is that a virus typically 
requires some form of human participation to propagate while a worm can spread across a 
network without human intervention. Both are viable modes of attack in P2P networks. 

A P2P virus needs a carrier file to contain its payload. The obvious choices are audio, 
video and executable files traded over the network. Buffer overflow vulnerabilities have 
already been exploited in media players by maliciously crafted MP3 files. A virus can 
leverage such a weakness to execute code that replicates itself in the shared folder directory 
of a user. The act of downloading an infected file spreads the virus to a new host. 

The recent integration of executable content in media formats creates a richer 
entertainment experience, but also offers a limitless space for viral code. Likewise, e-mail 
attachments became the preferred mode of virus transmission after the introduction of active 
content in word processing documents and web pages. Scripting means a user no longer 
has to break an application with a buffer overflow attack. Instead, he can exploit weak 
security policies and input validation processes to achieve the same effect. 

Likewise, a self-propagating P2P worm could infect almost every host on the P2P network, 
crossing enterprise network boundaries with blazing speed. More importantly, the previously 
discussed obstacles to efficient remediation indicate that a P2P worm would have 
tremendous staying power, re-infecting unpatched hosts and infecting new ones as they 
came online. 

There is a role for technology to play in addressing these problems. Tools and systems 
can be developed to better monitor and secure hosts running P2P clients. Of course 
technology is only one piece of the solution. Users must be made aware of the risks of 
participating in open P2P file sharing networks. Developers must be held accountable and 
live up to higher standards of integrity and transparency for the P2P software they build. 

In a very real sense, peer-to-peer file trading software exposes individuals and enterprises 
to risks above and beyond those of other software. The technology itself is beautiful in its 
design, but developer and user practices conspire to create a dangerous operational 
environment. On its current evolutionary track, threats to security and privacy posed by P2P 
file sharing technology will get worse, not better. 

2.3. Distributed Applications 

2.3.1. Multiple Application Multiple Users (Videoconferencing) 

Videoconferencing sessions are primarily transmitted using ISDN and IP signaling 
standards. Each signaling standard has its own set of security weaknesses. The brand and 
model of videoconferencing equipment used also contributes in a major way to the 
vulnerability of videoconferencing in general. 

Videoconferencing over IP utilizes the TCP/IP protocol, often the Internet as a 
transmission medium, and can be easily monitored or recorded using any off the shelf 
packet-sniffing tool installed on a computer in the LAN or at a switch. The inherent 
vulnerability of IP video transmissions traveling over the Internet or a private IP network is 
linked to the features of the Internet Protocol. 
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To understand some of the vulnerabilities of an ISDN video call, it is helpful to look at the 
path of an ISDN call. Although the ISDN signal is originally digital, it is soon converted at the 
phone company's switch. There, it may be converted to analogue for routing over 
conventional phone lines or satellite, where it may be reconverted and sent over a fiber optic 
network. Once near its destination, it is converted back to digital at a local switch location, 
where it can be routinely monitored by the owner of the switch. Since ISDN is switched to a 
variety of formats, it is not inherently safer than any other broadband communications. The 
path of the information is uncertain, which also is not conducive to maximum privacy. ISDN 
video calls can also be monitored and recorded with a simple and inexpensive device called 
an ISDN line tester. 

Both IP and ISDN video systems are vulnerable to attacks that can give attackers remote 
control of the videoconferencing device. Through dial-up management hackers can gain 
access to the listen command and monitor calls. This type of remote control can also allow 
unauthorized individuals to gather information about the device, retrieve files, crash the 
device, or stream the video session to another domain on the Internet. 

2.3.2. Single Applications, Multiple Users (Multicasting) 

In addition to the general threats to security (eavesdropping, impersonation, data 
manipulation, denial of submission, denial of receipt, denial of service, repudiation, replay 
attacks, theft of service, theft of content, etc.), multicast communication is subject to some 
additional security threats and vulnerabilities: 

• Uncontrolled Multicast Group Membership: IP multicast protocols provide no 
means to specify, control, or limit the membership of a multicast session group. 

• Leakage of Security State: In multicast environments, the security state of a 
multicast session may be shared among multiple participants, thereby increasing the 
risk of security state leakage. 

• Security State Revocation: There is no simple mechanism to revoke the validity of a 
security state and to notify all multicast participants of the change. This may be 
necessary in order to restrict access of a multicast group member that has left the 
group. 

• Security Management: Multicast protocols do not provide mechanism s for 
managing the security attributes of multicast group members. In particular, the 
problems of key distribution and of re-keying a group are of major concern. Another 
significant problem is the lack of synchronization among the group members. 

• Multi-Point Attacks: In multicast, it is easier for an attacker to pose as one of many 
users, or to attack at several points in the network at the same time, thereby 
increasing the vulnerability of the system. 

2.3.3. Grid Architecture 

The security and privacy issues are coming to the fore with the growing size and profile of 
the grid community. The forthcoming generations of the computational grid will make 
available a huge number of computing resources to a large and wide variety of users. The 
diversity of applications and mass of data being exchanged across the grid resources will 
attract the attention of hackers to a much higher extent. A detailed Grid security risks 
analysis is carried-out in [4]. This analysis is based on the static and fix Grids; however, 
some features of mobile and pervasive Grids (such as Security Gaps) are also considered. 
The threats and vulnerabilities pertaining to the mobility are elaborated in section E. A 
concise account of Grid analysis is presented below: 

Cryptography 
Public key encryption does not depend on keeping the algorithms secret. In fact they are 

public knowledge. One could therefore easily write a program to decrypt a message via the 
brute force cracking method of trying all the possible keys. Although a vast amount of 
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computer power is needed to run such a program. However, computers are getting faster all 
the time, roughly doubling in speed every 18 months (Moore’s Law). Besides this, public-key 
encryption has two major drawbacks: (a) public-key calculations take much longer than 
symmetric key calculations. Public key calculations involve the exponentiation of very large 
numbers, and these operations take a hundred to a thousand times longer to compute than 
symmetric key calculations; and (b) public key encryption lends itself to a cryptographic man-
in-the-middle attack. (where two persons Alice and Bob want to communicate in secret, but 
an attacker Charles pops up between them and convinces Alice that he is Bob and Bob that 
he is Alice.) 

Proxies and Delegation 
There is a private key (for the proxy) that is on a remote system outside the user’s direct 

control, but can be used to sign messages that the grid infrastructure will trust as if coming 
from him. If a remote system were compromised (or spoofed), the user proxy’s private key 
would no longer be private. Even if he becomes aware of this he would not be able to revoke 
the proxy because he doesn’t have a revocation process. 

Authorization 
Most grid systems available today assert that authorization to use a resource should be 

granted by the resource owner, on the basis that the owner should retain full control of what 
happens to their resources. Many grid systems implement this by simply mapping a remote 
grid user identity onto a local account on the resource. The local system administrator can 
then define which resources the local account is able to access. It is obviously right and 
proper that the owner or operator of a resource should be able to control it, but there are 
several problems with the account-mapping approach as a way to achieve this. The obvious 
problem is that the number of grid users is likely to scale with the number of organizations 
participating in the grid, while the number of system administrators at each site does not. At 
some point the number of accounts that need to be created and managed to control access 
by remote users will become too great, and then the system administrator will have no option 
but to give all grid users the same standard access rights. 

Security Gaps 
The security gaps are introduced in any secure path going through one or more 

middleboxes that need to perform some processing on passing data packets. These 
middleboxes include Network Address Translation (NAT) gateways, packet or content filters, 
proxy firewalls, and Wireless Application Protocol (WAP) gateways. 

GSI [28] provides secure authentication and communication for grids, it does not attempt 
to discover middleboxes and negotiate security with them. As a result, security gaps could 
surface, particularly in cases where some grid resources and nodes exist in a local network 
behind a firewall. Further, the adaptability of GSI is limited making it hard to port it to 
lightweight devices (e.g. PDAs) with limited capabilities. 

Grid Applications 
Even if the grid infrastructure is made safe, it is still possible that the underlying 

applications made available to grid users may be insecure. Giving the user access to a 
command shell (even within predefined scripts or applications) is clearly extremely 
dangerous. 

Legal issues 
Wide spread grid applications have raised unique legal concerns. The existing cyber laws 

do not comprehensively address this new range of issues. The spread of various grid 
resources across a number of political frontiers will encourage the potential attackers to 
launch their attacks from safe havens – countries where the corresponding laws are either 
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nonexistent or are comparatively less strict. Examples include inconsistencies in the 
copyright laws, intellectual property laws, personal information confidentiality laws, etc. 

Ethical issues 
Grid computing is not simply a giant leap in technology; it has social and ethical impacts as 

well. Its wide scale acceptance by the general public heavily lies in its ability to convince 
them that their information will not be used (directly or indirectly) for any unsolicited purpose. 
The resource owners would also like to be assured that their resources will not be a part of 
some malicious activity. 

2.4. Mobility 
Security concerns come to the forefront in highly dynamic mobile environments. Threats 

and vulnerabilities associated with the mobility can be broadly classified into physical, 
centralized and decentralized mobility sub-domains. However, in the real world situations, a 
mobile system may consist of several sub-domains. For example, a fleet of robots has 
characteristics of 

• Physical mobility – physical infrastructures of the individual robots, 
• Centralized mobile architecture – connections of various robots at one site to their 

counterparts at some other location through GSM/GPRS/UMTS, and 
• Decentralized mobile architecture – connections of various robots to their host and 

with each other through ad-hoc network. 

Threats and vulnerabilities associated with these mobility sub-domains are described 
below: 

2.4.1. Physical Mobility 

Mobility and ubiquitous computing are key technologies of the decade. But protection of 
mobile systems is not comparable with protection of stationary architectures. The mobility 
aspect implies a lot of new threats and attacks that have to be covered in a security concepts 
and protocols. 

The technical opportunities strengthen the user mobility and encourage the deployment of 
the mobile technologies for the development of various (mobile) applications providing 
information, orientation (routing) and other helpful services. Therefore, mobile users will take 
advantage of multi-interface (e.g. WLAN, Bluetooth, UMTS) PDAs and Smart Phones, 
participating in countless Ad-Hoc networks and using push services for orientation and 
information. Thus the user (and his device) is frequently switching networks, confronting him 
with interchanging security threats in a fast order. Coming home from a longer business trip 
and finally re-entering the home/corporate (W)LAN environment doesn’t mean the user is 
secure – in contradiction to the feeling of entering a save harbor, one must regard the 
homecoming device as a considerable security threat itself being a potential carrier of 
malicious code or Trojans. Such threats dwarf the user acceptance, which is necessary for 
the success of this technology. The fundamental factors to gain and improve the user 
acceptance are e.g. transparent services and security aspects. The very nature of most 
wireless communications makes security a significant factor that must be understood and 
addressed for wireless communication to achieve its vast potential. 

The repeated change of participation of mobile users in un-trusted networks is a challenge 
for both the direct security and integrity of the mobile device (attacks launched directly 
against it, like DoS depletion, misuse of the air interfaces, stealing of computational 
resources etc.) and the security of the home LAN (insertion of Trojans, malicious code and 
viruses behind the firewall and anti-virus gateway). With the increase of information that is 
send to the device, the probability of malicious content being inserted also grows. 

Another example for serious threats that already emerge in today’s GSM/GPRS networks 
is the usage of JAVA enabled phones and the problems arising from the data transfer when 



 28

downloading JAVA content over the air. The JAVA environment on mobile or embedded 
devices, utilizing MIDP, kJAVA or proprietary subsets of the above, makes powerful 
applications, applets and games available to user. Some loopholes have been identified in 
the security of java-enabled phones, which can be exploited by virus-like alterations of code. 
These problems, now being a mere annoyance due to their little impact on usage, can and 
will evolve, when devices become more powerful, networks offer higher bandwidth and 
applications get higher privileges. But devices will still not be capable to provide scan-
engines like the ones offered for desktop machines! Thus, the need for server-based or 
network-based solutions is evident and research has to be conducted to improve the security 
of both networks and end-user devices. 

Besides the security regarding the device itself and it’s associated home LAN, issues of 
privacy vs. authentication have to be taken into account. On the one hand, providers for 
premium services need to be able to identify their customers for billing purposes or provision 
of tailor-made applications and services. On the other hand, user preference profiling and 
location tracing/tracking bring up privacy issues of considerable importance. Some ideas 
regarding the use of multiple pseudonyms have been introduced theoretically circumventing 
the above-mentioned problems but introducing new ones with regard to multi-identity 
management and billing. 

When considering technical solutions for the above introduced set of issues, the user 
himself has to be integrated in each concept right from the start. Security for applications, 
services and devices is mandatory, but the user and his behavior will once again be the 
weakest point. Therefore, easy-to-use mechanism for extra authorization, change of 
pseudonyms etc. have to be implemented, allowing the user to adapt to the more complex 
environment of multi-service (multi-)wireless networks. 

A major challenge for user e.g. SMEs (small and medium enterprises) and vendors of the 
information and communication technology is to implement security in a way that meets 
business needs cost-effectively, both in the short term and as the enterprise needs to 
expand. In order to meet this challenge, the improvement of the existing methods of 
identifying and analyzing threats and security risks, and of specifying, designing and 
implementing security policies. 

2.4.2. Software Mobility 

Software mobility is carried out by the mobile agents. Mobile agents simply offer a greater 
opportunity for abuse and misuse, broadening the scale of threats significantly. An agent is 
comprised of the code and state information needed to carry out some computation. Mobility 
allows an agent to move, or hop, among agent platforms. The agent platform provides the 
computational environment in which an agent operates. The platform from which an agent 
originates is referred to as the home platform, and normally is the most trusted environment 
for an agent. 

Four threat categories for the mobile agents can be identified: threats stemming from an 
agent attacking an agent platform, an agent platform attacking an agent, an agent attacking 
another agent on the agent platform, and other entities attacking the agent system. The last 
category covers the cases of an agent attacking an agent on another agent platform, and of 
an agent platform attacking another platform, since these attacks are primarily focused on 
the communications capability of the platform to exploit potential vulnerabilities. The last 
category also includes more conventional attacks against the underlying operating system of 
the agent platform. 

Agent-to-Platform 
The agent-to-platform category represents the set of threats in which agents exploit 

security weaknesses of an agent platform or launch attacks against an agent platform. This 
set of threats includes masquerading, denial of service and unauthorized access. 

Masquerading 
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When an unauthorized agent claims the identity of another agent it is said to be 
masquerading. The masquerading agent may pose as an authorized agent in an effort to 
gain access to services and resources to which it is not entitled. The masquerading agent 
may also pose as another unauthorized agent in an effort to shift the blame for any actions 
for which it does not want to be held accountable. A masquerading agent may damage the 
trust the legitimate agent has established in an agent community and its associated 
reputation. 

Denial of Service 

Mobile agents can launch denial of service attacks by consuming an excessive amount of 
the agent platform's computing resources. The mobile computing paradigm requires an agent 
platform to accept and execute an agent whose code may have been developed outside its 
organization and has not been subject to any a priori review. A rogue agent may carry 
malicious code that is designed to disrupt the services offered by the agent platform, degrade 
the performance of the platform, or extract information for which it has no authorization to 
access. Depending on the level of access, the agent may be able to completely shut down or 
terminate the agent platform. 

Unauthorized Access 

Access control mechanisms are used to prevent unauthorized users or processes from 
accessing services and resources for which they have not been granted permission and 
privileges as specified by a security policy. Each agent visiting a platform must be subject to 
the platform's security policy. Applying the proper access control mechanisms requires the 
platform or agent to first authenticate a mobile agent’s identity before it is instantiated on the 
platform. An agent that has access to a platform and its services without having the proper 
authorization can harm other agents and the platform itself. A platform that hosts agents 
representing various users and organizations must ensure that agents do not have read or 
write access to data for which they have no authorization, including access to residual data 
that may be stored in a cache or other temporary storage. 

Agent-to-Agent 
The agent-to-agent category represents the set of threats in which agents exploit security 

weaknesses of other agents or launch attacks against other agents. This set of threats 
includes masquerading, unauthorized access, denial of service and repudiation. Many agent 
platform components are also agents themselves. These platform agents provide system-
level services such as directory services and inter-platform communication services. Some 
agent platforms allow direct inter-platform agent-to-agent communication, while others 
require all incoming and outgoing messages to go through a platform communication agent. 
These architecture decisions intertwine agent-to-agent and agent-to-platform security. This 
section addresses agent-to-agent security threats and leaves the discussion of platform 
related threats to sections E.2.1 and E.2.3. 

Masquerade 

Agent-to-agent communication can take place directly between two agents or may require 
the participation of the underlying platform and the agent services it provides. In either case, 
an agent may attempt to disguise its identity in an effort to deceive the agent with which it is 
communicating. An agent may pose as a well-known vendor of goods and services, for 
example, and try to convince another unsuspecting agent to provide it with credit card 
numbers, bank account information, some form of digital cash, or other private information. 
Masquerading as another agent harms both the agent that is being deceived and the agent 
whose identity has been assumed, especially in agent societies where reputation is valued 
and used as a means to establish trust. 
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Denial of Service 

In addition to launching denial of service attacks on an agent platform, agents can also 
launch denial of service attacks against other agents. For example, repeatedly sending 
messages to another agent, or spamming agents with messages, may place undue burden 
on the message handling routines of the recipient. Agents that are being spammed may 
choose to block messages from unauthorized agents, but even this task requires some 
processing by the agent or its communication proxy. If an agent is charged by the number of 
CPU cycles it consumes on a platform, spamming an agent may cause the spammed agent 
to have to pay a monetary cost in addition to a performance cost. Agent communication 
languages and conversation policies must ensure that a malicious agent doesn't engage 
another agent in an infinite conversation loop or engage the agent in elaborate conversations 
with the sole purpose of tying up the agent's resources. Malicious agents can also 
intentionally distribute false or useless information to prevent other agents from completing 
their tasks correctly or in a timely manner. 

Repudiation 

Repudiation occurs when an agent, participating in a transaction or communication, later 
claims that the transaction or communication never took place. Whether the cause for 
repudiation is deliberate or accidental, repudiation can lead to serious disputes that may not 
be easily resolved unless the proper countermeasures are in place. An agent platform cannot 
prevent an agent from repudiating a transaction, but platforms can ensure the availability of 
sufficiently strong evidence to support the resolution of disagreements. This evidence may 
deter an agent that values its reputation and the level of trust others place in it, from falsely 
repudiating future transactions. Disagreements may arise not only when an agent falsely 
repudiates a transaction, but also because imperfect business processes may lead to 
different views of events. Repudiation often occurs within non-agent systems and real-life 
business transactions within an organization. Documents are occasionally forged; documents 
are often lost, created by someone without authorization, or modified without being properly 
reviewed. Since an agent may repudiate a transaction as the result of a misunderstanding, it 
is important that the agents and agent platforms involved in the transaction maintain records 
to help resolve any dispute. 

Unauthorized Access 

If the agent platform has weak or no control mechanisms in place, an agent can directly 
interfere with another agent by invoking its public methods (e.g., attempt buffer overflow, 
reset to initial state, etc.), or by accessing and modifying the agent's data or code. 
Modification of an agent’s code is a particularly insidious form of attack, since it can radically 
change the agent's behavior (e.g., turning a trusted agent into malicious one). An agent may 
also gain information about other agents’ activities by using platform services to eavesdrop 
on their communications. 

Platform-to-Agent 
The platform-to-agent category represents the set of threats in which platforms 

compromise the security of agents. This set of threats includes masquerading, denial of 
service, eavesdropping, and alteration. 

Masquerade 

One agent platform can masquerade as another platform in an effort to deceive a mobile 
agent as to its true destination and corresponding security domain. An agent platform 
masquerading as a trusted third party may be able to lure unsuspecting agents to the 
platform and extract sensitive information from these agents. The masquerading platform can 
harm both the visiting agent and the platform whose identity it has assumed. An agent that 
masquerades as another agent can harm other agents only through the messages they 
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exchange and the actions they take as a result of these messages, but a malicious platform 
that masquerades as an authorized platform can do more harm to the duped agent than a 
single agent can do on its own. The threat of a malicious platform altering an agent's code, 
state, or data is discussed in more detail in section E.2.3.4. 

Denial of Service 

When an agent arrives at an agent platform, it expects the platform to execute the agent's 
requests faithfully, provide fair allocation of resources, and abide by quality of service 
agreements. A malicious agent platform, however, may ignore agent service requests, 
introduce unacceptable delays for critical tasks such as placing market orders in a stock 
market, simply not execute the agent’s code, or even terminate the agent without notification. 
Agents on other platforms waiting for the results of a non-responsive agent on a malicious 
platform must be careful to avoid becoming deadlocked. An agent can also become live-
locked if a malicious platform, or programming error, creates a situation in which some 
critical stage of the agent's task is unable to finish because more work is continuously 
created for it to do. Agent live-lock differs from agent deadlock in that the live-locked agent is 
not blocked or waiting for anything, but is continuously given tasks to perform and can never 
catch up or achieve its goal. 

Eavesdropping 

The classical eavesdropping threat involves the interception and monitoring of secret 
communications. The threat of eavesdropping, however, is further exacerbated in mobile 
agent systems because the agent platform can not only monitor communications, but also 
can monitor every instruction executed by the agent, all the unencrypted or public data it 
brings to the platform, and all the subsequent data generated on the platform. Since the 
platform has access to the agent’s code, state, and data, the visiting agent must be wary of 
the fact that it may be exposing proprietary algorithms, trade secrets, negotiation strategies, 
or other sensitive information. Even though the agent may not be directly exposing secret 
information, the platform may be able to infer meaning from the types of services requested 
and from the identity of the agents with which it communicates. For example, someone's 
agent may be communicating with a travel agent, although the content of the message may 
not be exposed, this communication may indicate that the person on whose behalf the agent 
is acting is planning a trip and will be away from their home in the near future. The platform 
may share this information it has inferred with a suitcase manufacturer that may begin 
sending unsolicited advertisements, or even worse, the platform administrators may share 
this information with thieves who may target the home of the traveler. 

Alteration 

When an agent arrives at an agent platform it is exposing its code, state, and data to the 
platform. Since an agent may visit several platforms under various security domains 
throughout its lifetime, mechanisms must be in place to ensure the integrity of the agent's 
code, state, and data. A compromised or malicious platform must be prevented from 
modifying an agent's code, state, or data without being detected. Modification of an agent's 
code, and thus the subsequent behavior of the agent on other platforms, can be detected by 
having the original author digitally sign the agent's code. Detecting malicious changes to an 
agent's state during its execution or the data an agent has produced while visiting the 
compromised platform does not yet have a general solution. The agent platform may be 
running a modified virtual machine, for example, without the agent's knowledge, and the 
modified virtual machine may produce erroneous results. 

A mobile agent that visits several platforms on its itinerary is exposed to a new risk each 
time it is in transit and each time it is instantiated on a new platform. The party responsible 
for the malicious alteration of an agent's code, state, or data if not immediately detected may 
be impossible to track down after the agent has visited other platforms and undergone 
countless changes of state and data. Although checkpointing and rollback of mathematical 
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computations may be possible in non-agent environments, mobile agent frameworks make 
this task extremely difficult since an agent's final state and data on a platform may be the 
result of a series of non-deterministic events that depend on the behavior of autonomous 
agents whose previous behavior cannot be recreated. 

The security risks resulting from an agent moving from its home platform to another is 
referred to as the "single-hop" problem, while the security risks resulting from an agent 
visiting several platforms is referred to as the "multi-hop" problem. The risks associated with 
the single-hop problem are easier to mitigate than the risks associated with a multihop 
scenario, since the protection mechanisms within the trust environment of the home platform 
are more difficult to use in the latter situation. 

Agent platforms can also tamper with agent communications. Tampering with agent 
communications, for example, could include deliberately changing data fields in financial 
transactions or even changing a "sell" message to a "buy" message. This type of goal-
oriented alteration of the data is more difficult than simply corrupting a message, but the 
attacker clearly has a greater incentive and reward, if successful, in a goal-oriented alteration 
attack. 

Other-to-Agent Platform 
The other-to-agent platform category represents the set of threats in which external 

entities, including agents and agent platforms, threaten the security of an agent platform. 
This set of threats includes masquerading, denial of service, unauthorized access, and copy 
and replay. 

Masquerade 

Agents can request platform services both remotely and locally. An agent on a remote 
platform can masquerade as another agent and request services and resources for which it 
is not authorized. Agents masquerading as other agents may act in conjunction with a 
malicious platform to help deceive another remote platform or they may act alone. A remote 
platform can also masquerade as another platform and mislead unsuspecting platforms or 
agents about its true identity. 

Unauthorized Access 

Remote users, processes, and agents may request resources for which they are not 
authorized. Remote access to the platform and the host machine itself must be carefully 
protected, since conventional attack scripts freely available on the Internet can be used to 
subvert the operating system and directly gain control of all resources. Remote 
administration of the platform's attributes or security policy may be desirable for an 
administrator that is responsible for several distributed platforms, but allowing remote 
administration may make the system administrator’s account or session the target of an 
attack. 

Denial of Service 

Agent platform services can be accessed both remotely and locally. The agent services 
offered by the platform and inter-platform communications can be disrupted by common 
denial of service attacks. Agent platforms are also susceptible to all the conventional denial 
of service attacks aimed at the underlying operating system or communication protocols. 

Copy and Replay 

Every time a mobile agent moves from one platform to another it increases its exposure to 
security threats. A party that intercepts an agent, or agent message, in transit can attempt to 
copy the agent, or agent message, and clone or retransmit it. For example, the interceptor 
can capture an agent’s "buy order" and replay it several times, having the agent buy more 
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than the original agent had intended. The interceptor may copy and replay an agent 
message or a complete agent. 

2.4.3. Centralized Mobile Architectures 

This section lists possible security threats to the centralized mobile architectures 
particularly 3G systems, detailing what the threats achieve, how they are carried out and 
where in the system they could occur. Threats are categorized as: 

Unauthorized access to sensitive data (violation of confidentiality) 
• Eavesdropping: An intruder intercepts messages without detection. 
• Masquerading: An intruder hoaxes an authorized user into believing that they are 

the legitimate system to obtain confidential information from the user; or an intruder 
hoaxes a legitimate system into believing that they are an authorized user to obtain 
system service or confidential information. 

• Traffic analysis: An intruder observes the time, rate, length, source, and destination 
of messages to determine a user’s location or to learn whether an important business 
transaction is taking place. 

• Browsing: An intruder searches data storage for sensitive information. 
• Leakage: An intruder obtains sensitive information by exploiting processes with 

legitimate access to the data. 
• Inference: An intruder observes a reaction from a system by sending a query or 

signal to the system. For example, an intruder may actively initiate communications 
sessions and then obtain access to information through observation of the time, rate, 
length, sources or destinations of associated messages on the radio interface. 

Unauthorized manipulation of sensitive data (Violation of integrity) 
• Manipulation of messages: Messages may be deliberately modified, inserted, 

replayed, or deleted by an intruder 

Disturbing or misusing network services (leading to denial of 
service or reduced availability) 

• Intervention: An intruder may prevent an authorized user from using a service by 
jamming the user’s traffic, signaling, or control data. 

• Resource exhaustion: An intruder may prevent an authorized user from using a 
service by overloading the service. 

• Misuse of privileges: A user or a serving network may exploit their privileges to 
obtain unauthorized services or information. 

• Abuse of services: An intruder may abuse some special service or facility to gain an 
advantage or to cause disruption to the network.  

• Repudiation: A user or a network denies actions that have taken place. 

Unauthorized access to services 

• Intruders can access services by masquerading as users or network entities. 
• Users or network entities can get unauthorized access to services by misusing their 

access rights. 

Threats Associated with Attacks on the Radio Interface 
The radio interface between the terminal equipment and the serving network represents a 

significant point of attack in 3G. The threats associated with attacks on the radio interface are 
split into the following categories: 
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Unauthorized access to data 

• Eavesdropping user traffic: Intruders may eavesdrop user traffic on the radio 
interface. 

• Eavesdropping signaling or control data: Intruders may eavesdrop signaling data 
or control data on the radio interface. This may be used to access security 
management data or other information, which may be useful in conducting active 
attacks on the system. 

• Masquerading as a communications participant: Intruders may masquerade as a 
network element to intercept user traffic, signaling data or control data on the radio 
interface. 

• Passive traffic analysis: Intruders may observe the time, rate, length, sources or 
destinations of messages on the radio interface to obtain access to information. 

• Active traffic analysis: Intruders may actively initiate communications sessions and 
then obtain access to information through observation of the time, rate, length, 
sources or destinations of associated messages on the radio interface. 

Threats to integrity 

• Manipulation of user traffic: Intruders may modify, insert, replay or delete user 
traffic on the radio interface. This includes both accidental and deliberate 
manipulation. 

• Manipulation of signaling or control data: Intruders may modify, insert, replay or 
delete signaling data or control data on the radio interface. This includes both 
accidental and deliberate manipulation. 
NB: Replayed data, which cannot be decrypted by an intruder, may still be used to 
conduct attacks against the integrity of user traffic, signaling data or control data. 

Denial of service attacks 

• Physical intervention: Intruders may prevent user traffic, signaling data and control 
data from being transmitted on the radio interface by physical means. An example of 
physical intervention is jamming. 

• Protocol intervention: Intruders may prevent user traffic, signaling data or control 
data from being transmitted on the radio interface by inducing specific protocol 
failures. These protocol failures may themselves be induced by physical means. 

• Denial of service by masquerading as a communications participant: Intruders 
may deny service to a legitimate user by preventing user traffic, signaling data or 
control data from being transmitted on the radio interface by masquerading as a 
network element. 

Unauthorized access to services 

• Masquerading as another user: An intruder may masquerade as another user 
towards the network. The intruder first masquerades as a base station towards the 
user, then hijacks his connection after authentication has been performed. 

Threats Associated with Attacks on Other Parts of the System 
Although attacks on the radio interface between the terminal equipment and the serving 
network represent a significant threat, attacks on other parts of the system may also be 
conducted. These include attacks on other wireless interfaces, attacks on wired interfaces, 
and attacks, which cannot be attributed to a single interface or point of attack. The threats 
associated with attacks on other parts of the system are split into the following categories: 

Unauthorized access to data 
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• Eavesdropping user traffic: Intruders may eavesdrop user traffic on any system 
interface, whether wired or wireless. 

• Eavesdropping signaling or control data: Intruders may eavesdrop signaling data 
or control data on any system interface, whether wired or wireless. This may be used 
to access security management data, which may be useful in conducting other 
attacks on the system. 

• Masquerading as an intended recipient of data: Intruders may masquerade as a 
network element in order to intercept user traffic, signaling data or control data on any 
system interface, whether wired or wireless. 

• Passive traffic analysis: Intruders may observe the time, rate, length, sources or 
destinations of messages on any system interface, whether wired or wireless, to 
obtain access to information. 

• Unauthorized access to data stored by system entities: Intruders may obtain 
access to data stored by system entities. Access to system entities may be obtained 
either locally or remotely, and may involve breaching physical or logical controls. 

• Compromise of location information: Legitimate user of a 3G service may receive 
unintended information about other users locations through (analysis of) the normal 
signaling or voice prompts received at call set up. 

Threats to integrity 

• Manipulation of user traffic: Intruders may modify, insert, replay or delete user 
traffic on any system interface, whether wired or wireless. This includes both 
accidental and deliberate manipulation. 

• Manipulation of signaling or control data: Intruders may modify, insert, replay or 
delete signaling or control data on any system interface, whether wired or wireless. 
This includes both accidental and deliberate manipulation. 

• Manipulation by masquerading as a communications participant: Intruders may 
masquerade as a network element to modify, insert, replay or delete user traffic, 
signaling data or control data on any system interface, whether wired or wireless. 

• Manipulation of applications and/or data downloaded to the terminal or USIM: 
Intruders may modify, insert, replay or delete applications and/or data, which are 
downloaded to the terminal or USIM. This includes both accidental and deliberate 
manipulation. 

• Manipulation of the terminal or USIM behavior by masquerading as the 
originator of applications and/or data: Intruders may masquerade as the originator 
of malicious applications and/or data downloaded to the terminal or USIM. 

• Manipulation of data stored by system entities: Intruders may modify, insert or 
delete data stored by system entities. Access to system entities may be obtained 
either locally or remotely, and may involve breaching physical or logical controls. 

Denial of service attacks 

• Physical intervention: Intruders may prevent user or signaling traffic from being 
transmitted on any system interface, whether wired or wireless, by physical means. 
An example of physical intervention on a wired interface is wire cutting. An example 
of physical intervention on a wireless interface is jamming. Physical intervention 
involving interrupting power supplies to transmission equipment may be conducted on 
both wired and wireless interfaces. Physical intervention may also be conducted by 
delaying transmissions on a wired or wireless interface. 

• Protocol intervention: Intruders may prevent user or signaling traffic from being 
transmitted on any system interface, whether wired or wireless, by inducing protocol 
failures. These protocol failures may themselves be induced by physical means. 

• Denial of service by masquerading as a communications participant: Intruders 
may deny service to a legitimate user by preventing user traffic, signaling data or 
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control data from being transmitted by masquerading as a network element to 
intercept and block user traffic, signaling data or control data. 

• Abuse of emergency services: Intruders may prevent access to services by other 
users and cause serious disruption to emergency services facilities by abusing the 
ability to make USIM-less calls to emergency services from 3G terminals. If such 
USIM-less calls are permitted then the provider may have no way of preventing the 
intruder from accessing the service. 

Repudiation 

• Repudiation of charge: A user could deny having incurred charges, perhaps through 
denying attempts to access a service or denying that the service was actually 
provided. 

• Repudiation of user traffic origin: A user could deny that he sent user traffic. 
• Repudiation of user traffic delivery: A user could deny that he received user traffic. 

Unauthorized access to services 

• Masquerading as a user: Intruders may impersonate a user to utilize services 
authorized for that user. The intruder may have received assistance from other 
entities such as the serving network, the home environment or even the user himself. 

• Masquerading as a serving network: Intruders may impersonate a serving network, 
or part of a serving network’s infrastructure, perhaps with the intention of using an 
authorized user’s access attempts to gain access to services himself. 

• Masquerading as a home environment: Intruders may impersonate a home 
environment perhaps with the intention of obtaining information, which enables him to 
masquerade as a user. 

• Misuse of user privileges: Users may abuse their privileges to gain unauthorized 
access to services or to simply intensively use their subscriptions without any intent to 
pay. 

• Misuse of serving network privileges: Serving networks may abuse their privileges 
to gain unauthorized access to services. The serving network could e.g. misuse 
authentication data for a user to allow an accomplice to masquerade as that user or 
just falsify charging records to gain extra revenues from the home environment. 

Threats Associated with Attacks on the Terminal and UICC/USIM 
• Use of a stolen terminal and UICC: Intruders may use stolen terminals and UICCs 

to gain unauthorized access to services. 
• Use of a borrowed terminal and UICC: Users who have been given authorization to 

use borrowed equipment may misuse their privileges perhaps by exceeding agreed 
usage limits. 

• Use of a stolen terminal: Users may use a valid USIM with a stolen terminal to 
access services. 

• Manipulation of the identity of the terminal: Users may modify the IMEI of a 
terminal and use a valid USIM with it to access services. 

• Integrity of data on a terminal: Intruders may modify, insert or delete applications 
and/or data stored by the terminal. Access to the terminal may be obtained either 
locally or remotely, and may involve breaching physical or logical controls. 

• Integrity of data on USIM: Intruders may modify, insert or delete applications and/or 
data stored by the USIM. Access to the USIM may be obtained either locally or 
remotely. 

• Eavesdropping the UICC-terminal interface: Intruders may eavesdrop the UICC-
terminal interface. 
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• Masquerading as an intended recipient of data on the UICC-terminal interface: 
Intruders may masquerade as a USIM or a terminal in order to intercept data on the 
UICC-terminal interface. 

• Manipulation of data on the UICC-terminal interface: Intruders may modify, insert, 
replay or delete user traffic on the UICC-terminal interface. 

• Confidentiality of certain user data in the terminal or in the UICC/USIM: Intruders 
may wish to access personal user data stored by the user in the terminal or UICC, 
e.g. telephone books. 

• Confidentiality of authentication data in the UICC/USIM: Intruders may wish to 
access authentication data stored by the service provider, e.g. authentication key. 

2.4.4. Decentralized Mobile Architectures 

Decentralized mobile architectures include wireless connected peers using ad-hoc networks. 
Threats to these systems are typically divided into passive and active classes. These two 
broad classes are then subdivided into other types of threats. 

Passive Attack  

An attack in which an unauthorized party gains access to an asset and does not modify its 
content (i.e., eavesdropping). Passive attacks can be either eavesdropping or traffic analysis 
(sometimes called traffic flow analysis). These two passive attacks are described below: 

• Eavesdropping: The attacker monitors transmissions for message content. An 
example of this attack is a person listening into the transmissions on a LAN between 
two workstations or tuning into transmissions between a wireless handset and a base 
station. 

• Traffic analysis: The attacker, in a more subtle way, gains intelligence by monitoring 
the transmissions for patterns of communication. A considerable amount of 
information is contained in the flow of messages between communicating parties. 

Active Attack 

An attack whereby an unauthorized party makes modifications to a message, data stream, 
or file. It is possible to detect this type of attack but it may not be preventable. Active attacks 
may take the form of one of four types (or combination thereof): masquerading, replay, 
message modification, and denial-of-service (DoS). These attacks are defined below: 

• Masquerading: The attacker impersonates an authorized user and thereby gains 
certain unauthorized privileges. 

• Replay: The attacker monitors transmissions (passive attack) and retransmits 
messages as the legitimate user. 

• Message modification: The attacker alters a legitimate message by deleting, adding 
to, changing, or reordering it. 

• Denial-of-service: The attacker prevents or prohibits the normal use or management 
of communications facilities. 

The risks associated with 802.11 are the result of one or more of these attacks. The 
consequences of these attacks include, but are not limited to, loss of proprietary information, 
legal and recovery costs, tarnished image, and loss of network service. 

Loss of Confidentiality 
Confidentiality is the property with which information is not made available or disclosed to 

unauthorized individuals, entities, or processes. This is, in general, a fundamental security 
requirement for most organizations. Due to the broadcast and radio nature of wireless 
technology, confidentiality is a more difficult security requirement to meet in a wireless 
network. Adversaries do not have to tap into a network cable to access network resources. 
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Moreover, it may not be possible to control the distance over which the transmission occurs. 
This makes traditional physical security countermeasures less effective. 

Passive eavesdropping of native 802.11 wireless communications may cause significant 
risk to an organization. An adversary may be able to listen in and obtain sensitive information 
including proprietary information, network IDs and passwords, and configuration data. This 
risk is present because the 802.11 signals may travel outside the building perimeter or 
because there may be an “insider.” Because of the extended range of 802.11 broadcasts, 
adversaries can potentially detect transmission from a parking lot or nearby roads. This kind 
of attack, performed through the use of a wireless network analyzer tool or sniffer, is 
particularly easy for two reasons: 1) frequently confidentiality features of WLAN technology 
are not even enabled, and 2) because of the numerous vulnerabilities in the 802.11 
technology security, as discussed above, determined adversaries can compromise the 
system. 

Wireless packet analyzers are readily available on the Internet today. They are commonly 
used for breaking into wireless networks. They can take advantage of flaws in the key-
scheduling algorithm that was provided for implementation of RC4, which forms part of the 
original WEP standard. To accomplish this, they require only a computer running the Linux 
operating system and a wireless network card. The software passively monitors the WLAN 
data transmissions and computes the encryption keys after at least 100 MB of network 
packets have been sniffed. On a highly saturated network, collecting this amount of data may 
only take three or four hours; if traffic volume is low, it may take a few days. For example, a 
busy data access point transmitting 3,000 bytes at 11 Mbps will exhaust the 24-bit IV space 
after approximately 10 hours. If after ten hours the attacker recovers two cipher texts that 
have been using the same key stream, both data integrity and confidentiality may be easily 
compromised. After the network packets have been received, the fundamental keys may be 
guessed in less than one second. Once the malicious user knows the WEP key, that person 
can read any packet traveling over the WLAN. 

Another risk to loss of confidentiality through simple eavesdropping is broadcast 
monitoring. An adversary can monitor traffic, using a laptop in promiscuous mode, when an 
access point is connected to a hub instead of a switch. Hubs generally broadcast all network 
traffic to all connected devices, which leaves the traffic vulnerable to unauthorized 
monitoring. Switches, on the other hand, can be configured to prohibit certain attached 
devices from intercepting broadcast traffic from other specified devices. For example, if a 
wireless access point was connected to an Ethernet hub, a wireless device that is monitoring 
broadcast traffic could intercept data intended for wired and wireless clients. Consequently, 
agencies should consider using switches instead of hubs for connections to wireless access 
points. 

WLANs risk loss of confidentiality following an active attack as well. Sniffing software as 
described above can obtain user names and passwords (as well as any other data traversing 
the network) as they are sent over a wireless connection. An adversary may be able to 
masquerade as a legitimate user and gain access to the wired network from an access point 
(AP). Once “on the network,” the intruder can scan the network using purchased or publicly 
and readily available tools. The malicious eavesdropper then uses the user name, password, 
and IP address information to gain access to network resources and sensitive corporate 
data. 

Lastly, rogue APs pose a security risk. A malicious or irresponsible user could, physically 
and surreptitiously, insert a rogue AP into a closet, under a conference room table, or any 
other hidden area within a building. The rogue AP could then be used to allow unauthorized 
individuals to gain access to the network. As long as its location is in close proximity to the 
users of the WLAN, and it is configured so as to appear as a legitimate AP to wireless 
clients, then the rogue AP can successfully convince wireless clients of its legitimacy and 
cause them to send traffic through it. The rogue AP can intercept the wireless traffic between 
an authorized AP and wireless clients. It need only be configured with a stronger signal than 
the existing AP to intercept the client traffic. A malicious user can also gain access to the 
wireless network through APs that are configured to allow access without authorization. It is 
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also important to note that rogue access points need not always be deployed by malicious 
users. In many cases, rogue APs are often deployed by users who want to take advantage of 
wireless technology without the approval of the IT department. Additionally, since rogue APs 
are frequently deployed without the knowledge of the security administrator, they are often 
deployed without proper security configurations. 

Loss of Integrity 
Data integrity issues in wireless networks are similar to those in wired networks. Because 

organizations frequently implement wireless and wired communications without adequate 
cryptographic protection of data, integrity can be difficult to achieve. A hacker, for example, 
can compromise data integrity by deleting or modifying the data in an e-mail from an account 
on the wireless system. This can be detrimental to an organization if important e-mail is 
widely distributed among e-mail recipients. Because the existing security features of the 
802.11 standard do not provide for strong message integrity, other kinds of active attacks 
that compromise system integrity are possible. As discussed before, the WEP based integrity 
mechanism is simply a linear CRC. Message modification attacks are possible when 
cryptographic checking mechanisms such as message authentication codes and hashes are 
not used. 

Loss of Network Availability 
A denial of network availability involves some form of DoS attack, such as jamming. 

Jamming occurs when a malicious user deliberately emanates a signal from a wireless 
device in order to overwhelm legitimate wireless signals. Jamming may also be inadvertently 
caused by cordless phone or microwave oven emissions. Jamming results in a breakdown in 
communications because legitimate wireless signals are unable to communicate on the 
network. Non-malicious users can also cause a DoS. A user, for instance, may 
unintentionally monopolize a wireless signal by downloading large files, effectively denying 
other users access to the network. As a result, agency security policies should limit the types 
and amounts of data that users are able to download on wireless networks. 

Other Security Risks 

With the prevalence of wireless devices, more users are seeking ways 
to connect remotely to their own organization’s networks. One such method is the use 
of untrusted, third party networks. Conference centers, for example, commonly provide 
wireless networks for users to connect to the Internet and subsequently to their own 
organizations while at the conference. Airports, hotels, and even some coffee franchises are 
beginning to deploy 802.11 based publicly accessible wireless networks for their customers, 
even offering VPN capabilities for added security. 

These untrusted public networks introduce three primary risks: 1) because they are public, 
they are accessible by anyone, even malicious users; 2) they serve as a bridge to a user’s 
own network, thus potentially allowing anyone on the public network to attack or gain access 
to the bridged network; and 3) they use high-gain antennas to improve reception and 
increase coverage area, thus allowing malicious users to eavesdrop more readily on their 
signals. 

Lastly, by connecting to their own networks via an untrusted network, users may create 
vulnerabilities for their company networks and systems unless their organizations take steps 
to protect their users and themselves. 
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2.5. Applications 

2.5.1. Synchronous Applications 

File Transfer Protocol (FTP) – an example of synchronous applications is considered in 
this section. A variety of FTP servers incorrectly manage buffers in a way that can lead to 
remote intruders executing arbitrary code on the FTP server. Currently, many of the most 
common FTP vulnerabilities are using the FTP Bounce Attack. The Bounce attack involves 
the user (attacker) opening a control connection with an FTP server. 

FTP Bounce Attack 
One of the most alarming things about a Bounce Attack is that it is RFC complaint, as FTP 

was initially promoted to be easy and robust to use, not secure. By allowing the user (in this 
case attacker) to define the parameters of the data connection, the writers of the RFC (and 
many subsequent programs implementing FTP) have left themselves open to this attack. 

Bounce Attacks occur when a user (attacker) is connected to an FTP server by his control 
connection and uses the ftp PORT command to get the FTP server to open what the FTP 
server believes is a data connection on the specified port. Any other machine receiving a 
data connection on TCP port 23, however, will probably believe that it is receiving a telnet 
request. Also, it should be kept in mind that FTP was specifically written to allow transfer 
between two hosts, both remote to the user. So, the RFC clearly explains that a compliant 
implementation will allow for redirection of the data connection to a different host than the 
one that initiated the control connection! 

PORT Command 
The PORT command in Active FTP connections is perhaps the biggest problem with any 

FTP server. According to RFC959: 
If this command is used, the argument is the concatenation of a 32-bit Internet host 

address and a 16-bit TCP port address. This address information is broken into 8-bit fields 
and the value of each field is transmitted as a decimal number (in character string 
representation). 

A logical extension of the above leads us to understand that simply by connecting to an 
FTP server, one can tell that FTP server to connect to another host, and on what port to 
connect. In the RFC, there are NO restrictions on this behavior. For this reason, FTP PORT 
command will be filled with vulnerabilities in the future. It is easy to see, for example, how 
easy it would be to complete a port scan of a network by using an FTP server that was 
strictly following the RFC. Or how a server on a LAN might be convinced to respond to a 
connection from an external host. By providing us with functionality that is simple and robust, 
the RFC has provided almost all networks with big holes in security. 

GLOB Vulnerability 
Filename “globing” is the common practice of using wildcard characters (like “*” in 

Unix/Linux) to perform operations on lots of files with common strings in their names. The 
essence of this problem is that, although not required by the RFC, many FTP 
implementations allow for file name “globing.” While in itself this is not a bad thing, it can be 
exploited by creating very large amounts of data being passed to the main command 
processing routines. This can lead to buffer overflows. Depending on how the system is 
trained to handle the overflow, arbitrary code can be run on the server at this time. (Using the 
permissions of the FTP process daemon) 

While this vulnerability has been fixed on a large amount of FTP packages at the time of 
this writing, it illustrates another vulnerability commonly found in FTP software – the software 
itself. Again, this demonstrates the need to keep the servers well patched. 
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Stateful Firewalls and FTP 
CheckPoint Firewall-1 is of particular interest, as it operates on the “stateful inspection” 

principle, which commonly examines the source and destination addresses and port 
numbers. In the case of PASV FTP, CheckPoint is required to keep track of another bit of 
information: the PASV port number sent to the client from the FTP server. 

During a normal PASV-FTP connection, the user (client) sends the FTP server a PASV 
command. This is related to the PORT command in that it is used to determine which TCP 
port the data connection will be established on. The difference here is that when the PASV 
command is issued, the SERVER now is responsible to identify a non-default data port. In a 
common FTP situation, the client (on TCP port 21) initiates the control connection. The client 
then proceeds (on TCP port 20) to open the data transfer connection. It is perhaps easier to 
think of active FTP sessions as “Client-Driven” and PASV-FTP sessions as “Server-Driven”. 
Normally, the client creates all connections, and a stateful inspection type firewall can 
“watch” the source port in the first packet the firewall lets through. In any event, with PASV-
FTP the CheckPoint firewall must watch for the PASV port that is passed from the server to 
the client, and dynamically allow that port number through. This behavior is on by default in 
Checkpoint 4.0, as many common programs (like Microsoft Internet Explorer and Netscape 
Communicator) use PASV-FTP in their FTP implementations. 

CheckPoint Firewall-1, then, looks for the string “227” (an FTP message code meaning 
“Entering Passive Mode”) and extracts the destination IP and port given in the packet 
payload. The issue is that the destination IP and port can be that of the firewall and there is 
no logic in the firewall to prevent this. A crafty person, therefore, can take control of firewall 
by using this vulnerability to run arbitrary code on it. 

Again, the blame for this PASV-FTP problem is perhaps half CheckPoint, half RFC, but 
that will not help users with FTP servers on their networks. It should also be pointed out that 
there are various patches for CheckPoint, Operating systems as well as FTP 
implementations that will reduce or eliminate this particular vulnerability. 

2.5.2. Asynchronous Applications 

Asynchronous web services (WS) are considered in this section. In order to illustrate the 
nature of the threat, it is worthwhile discussing some of the types of attacks that are likely as 
Web Services architectures get deployed. Here are ten of the most likely techniques, 
employing multiple classes of input or target vulnerabilities, which will be used to attack the 
technology: 

Coercive Parsing 
XML is already recognized as a standard file format for many applications. As the obvious 

successor to legacy ASCII and presentation-oriented html, its position is unchallenged. This 
is easily seen by the number of grammars that claim XML as their parent. 

The basic premise of a coercive parsing attack is to exploit the legacy bolt-on - XML-
enabled components in the existing infrastructure that are operational. Even without a 
specific Web Services application these systems are still susceptible to XML based attacks 
that whose main objective is either to overwhelm the processing capabilities of the system or 
install malicious mobile code. 

Parameter Tampering 
Parameters are used to convey client-specific information to the Web service in order to 

execute a specific remote operation. Since instructions on how to use parameters are 
explicitly described within a WSDL document, malicious users can play around with different 
parameter options in order to retrieve unauthorized information. For example by submitting 
special characters or unexpected content to the Web service can cause a denial of service 
condition or illegal access to database records. An attacker can embed, for example, 
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command line code into a document that is parsed by an application that can create a 
command shell to execute the command. 

Recursive Payloads 
One of the strengths of XML is its ability to nest elements within a document to address 

the need for complex relationships among elements. The value is easy to see with forms that 
have a form name or purpose that contains many different value elements, such as a 
purchase order that incorporates shipping and billing addresses as well as various items and 
quantities ordered. One can intuitively acknowledge the value of nesting elements three or 
four levels, perhaps more. An attacker can easily create a document that attempts to stress 
and break an XML parser by creating a document that is 10,000 or 100,000 elements deep. 

Oversize Payloads 
XML is verbose by design in its markup of existing data and information, so file size must 

always be considered. While an enterprise’s programmers and analysts will work to limit the 
size of a document, there are a number of reasons to have XML documents that are 
hundreds of megabytes or gigabytes in size. Sometimes this is a function of converting a 
batch file transfer process into real-time. It may also be anticipated in the multimedia (e.g. 
digital video) world where gigabyte files are the norm. Or, it could be an attacker again 
exercising the parser to execute a denial-of-service attack. Parsers based on the Document 
Object Model (DOM) are especially susceptible to this attack given its need to model the 
entire document in memory prior to parsing 

Schema Poisoning 
XML Schemas provide formatting instructions for parsers when interpreting XML 

documents. Schemas are used for all of the major XML standard grammars coming out 
susceptible to poisoning. An attacker may attempt to compromise the schema in its stored 
location and replace it with a similar but modified one. 

Denial-of-service attacks against the grammar are straightforward if the schema is 
compromised. In addition, the door is open to manipulate data if data types are 
compromised, like changing dates to numbers when the application is performing arithmetic 
operations, or modifying the encoding to allow for data obfuscation that eventually gets 
through to a parser and re-formed into an attack, in the same way a Unicode attack can 
traverse directories through web servers. 

WSDL Scanning 
Web Services Description Language (WSDL) is an advertising mechanism for web 

services to dynamically describe the parameters used when connecting with specific 
methods. These files are often built automatically using utilities. These utilities, however, are 
designed to expose and describe all of the information available in a method. 

In addition, the information provided in a WSDL file may allow an attacker to guess at 
other methods. For example, a service that offers stock quoting and trading services may 
advertise query methods like requestStockQuote, however also includes an unpublished 
transactional method such as tradeStockQuote. It is simple for a persistent hacker to cycle 
thru method string combinations (similar to cryptographic cipher unlocking) in order to 
discover unintentionally related or unpublished application programming interfaces. 

Routing Detours 
The WS-Routing specification provides a way to direct XML traffic through a complex 

environment. It operates by allowing an interim way station in an XML path to assign routing 
instructions to an XML document. If one of these web services way stations is compromised, 
it may participate in a man-in-the-middle attack by inserting bogus routing instructions to 
point a confidential document to a malicious location. From that location, then, it may be 
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possible to forward on the document, after stripping out the malicious instructions, to its 
original destination. 

External Entity Attack 
Another benefit of XML is its ability to build documents dynamically at the time of insertion 

by pointing to a uniform resource identifier (URI) where the actual data exists. These external 
entities may not be trustworthy. An attacker can then replace the data being collected with 
malicious data. 

SQL Injection 
Database parsers are aimed at native database languages in the same fashion as SQL 

injection, SQL injection could allow an attacker to execute multiple commands in an input 
field by using native command separators like ‘;’ or pipes. This capability may allow an 
attacker to execute native stored procedures or invalidated SQL commands. 

Replay Attack 
Similar to the “network ping of death” a hacker can issue repetitive SOAP message 

requests in a bid to overload a Web service. This type of network activity will not be detected 
as an intrusion because the source IP is valid, the network packet behavior is valid and the 
HTTP request is well formed. However, the business behavior is not legitimate and 
constitutes an XML-based intrusion. In this manner, a completely valid XML payload can be 
used to issue a denial of service attack. 
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Chapter 3 
 

Towards a Comprehensive Security Services Model 
 
 
 
 
 
 
During the course of this chapter, we will be going over many important security terms. While 
some of the terms covered provide the background as to how security works, there are some 
important concepts that should be highlighted. This is due to the fact that some areas within 
security require a precise understanding of their concepts. Also, some security components 
may work slightly different within a large-scale environment as opposed to a standard 
network.  

3.1. Fundamental Concepts 
Below are some important security concepts that will be described in greater detail 
throughout the chapter. 
 

• Symmetric encryption: Using the same secret key to provide encryption and 
decryption of data. 

• Asymmetric encryption: Using two different keys for encryption and decryption. The 
public key encryption technique is the primary example of this using a “public key” 
and a “private key” pair. 

• Secure Socket Layer/Transport Layer Security (SSL/TLS): These are essentially 
the same protocol, but are referred to one another differently. TLS has been renamed 
by the IETF, but they are based on the same RFC. 

• Public Key Infrastructure (PKI): The different components, technologies, and 
protocols that make up a PKI environment. 

• Mutual Authentication: Instead of using an LDAP repository to hold the public key 
(PKI), two parties who want to communicate with one another use their public key 
stored in their digital certificate to authenticate with one another. 

 
These are all important concepts to remember and will give you a head start in 
understanding how grid security works. 

3.1.1. Symmetric Key Encryption 

Symmetric key encryption is based on the use of one shared secret key to perform both the 
encryption and decryption of data. To ensure that the data is only read by the two parties 
(sender and receiver); the key has to be distributed securely between the two parties and no 
others. If someone should gain access to the secret key that is used to encrypt the data, they 
would be able to decrypt the information. This form of encryption is much faster than 
asymmetric encryption. 
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Figure 3.1: Symmetric key encryption using a shared secret key 
 
 
 
 
Here are some commonly used examples of a symmetric key cryptosystem: 
 

• Data Encryption Standard (DES): 56-bit key plus 8 parity bits, developed by IBM in 
the middle 1970s 

• Triple-DES: 112-bit key plus 16 parity bits or 168-bit key plus 24 parity bits (that is, 
two to three DES keys) 

• RC2 and RC4: Variable-sized key, often 40 to 128 bits long 
 

To summarize, secret key cryptography is fast for both the encryption and decryption 
processes. However, secure distribution and management of keys is difficult to guarantee. 

3.1.2. Asymmetric Key Encryption 

Another commonly-used cryptography method is called public key cryptography. The RSA 
public key cryptography system is a prime example of this. In public key cryptography, an 
asymmetric key pair (a so-called a public key and a private key) is used. The key used for 
encryption is different from the one used for decryption. Public key cryptography requires the 
key owners to protect their private keys while their public keys are not secret at all and can 
be made available to the public. Normally, the public key is present in the digital certificate 
that is issued by the Certificate Authority. 

The computation algorithm relating the public key and the private key is designed in such a 
way that an encrypted message can only be decrypted with the corresponding other key of 
that key pair, and an encrypted message cannot be decrypted with the encryption key (the 
key that was used for encryption). Whichever (public/private) key encrypts your data, the 
other key is required to decrypt the data. A message encoded with the public key, for 
instance, can only be decoded with the private key. One of the keys is designated as the 
public key because it is made available, publicly, via a trusted Certificate Authority, which 
guarantees the ownership of each of the public keys. The corresponding private keys are 
secured by the owner and never revealed to the public. 

The public key system is used twice to completely secure a message between the parties. 
The sender first encrypts the message using his private key and then encrypts it again using 
the receiver’s public key. The receiver decrypts the message, first using his private key and 
then the public key of the sender. In this way, an intercepted message cannot be read by 
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anyone else. Furthermore, any tampering with the message will make it not decrypt properly, 
revealing the tampering. 

The asymmetric key pair is generated by a computation which starts by finding two vary 
large prime numbers. Even though the public key is widely distributed, it is practically 
impossible for computers to calculate the private key from the public key. The security is 
derived from the fact that it is very difficult to factor numbers exceeding hundreds of digits. 
This mathematical algorithm improves security, but requires a long encryption time, 
especially for large amounts of data. For this reason, public key encryption is used to 
securely transmit a symmetric encryption key between the two parties, and all further 
encryption is performed using this symmetric key. 

3.1.3. The Certificate Authority 

A properly implemented Certificate Authority (CA) has many responsibilities. These should 
be followed diligently to achieve good security. The primary responsibilities are: 
 

• Positively identify entities requesting certificates 
• Issuing, removing, and archiving certificates 
• Protecting the Certificate Authority server 
• Maintaining a namespace of unique names for certificate owners 
• Serve signed certificates to those needing to authenticate entities 
• Logging activity 

 
Within some PKI environments, a Registrant Authority (RA) works in conjunction with the 

CA to help perform some of these duties. The RA is responsible for approving or rejecting 
requests for the certificate of public keys and forwarding the user information to the CA. The 
RA normally has the responsibility of validating that the user’s information is correct before 
the signed digital certificate is sent back to the user. 

One of the critical issues within a PKI environment is guaranteeing the system’s 
trustworthiness. Before a CA can sign and issue certificates for others, it has to do the same 
thing to itself so that its identity can be represented by its own certificate. That means a CA 
has to do the following: 
 

1. The CA randomly generates its own key pair. 
2. The CA protects its private key. 
3. The CA creates its own certificate. 
4. The CA signs its certificate with its private key. 

The CA’s Private Key 
The CA’s private key is one of the most important parts in the whole public key 

infrastructure. It is used, for example, by the CA to sign every issued digital certificate within 
the system. Thus, it is especially susceptible to attacks from hackers. If someone were to 
gain access to the CA’s private key, they would be able to impersonate anyone within the 
environment. Therefore, it is very important to protect this key. Knowing how sensitive the 
private key is to the rest of environment, it is important to provide CA server with any 
available security measures. This includes restricting physical and remote access and 
monitoring and auditing of the server. 

CA Cross Certification 
Generally within a single environment, a CA will provide certificates to a fixed group of 

users. If two companies or virtual organizations (VOs) need to communicate and trust one 
another, this may require that both CAs trust one another or participate in cross certification. 
For example, Alice, an employee belonging to an organization with its own CA, may want to 
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run a job on grid computer Mike, who is outside the organization, and who belongs to a 
different CA. 

In order to do so, the following should be considered: 
 

• Alice and Mike need a way to obtain each other’s public key certificates. 
• Mike needs to be sure that he can trust Alice’s CA. Alice needs to be sure that she 

can trust Mike’s CA. 
 

Resources from different security domains or VOs will need to trust each others’ 
certificates, so the roles and relationships between CAs have to be defined. The purpose of 
creating such trust relationships is to eventually achieve a global, interoperable PKI and 
enlarge the distributed infrastructure. Once the relationship is established, both of the CA’s 
can be configured to work with the entire system. 

3.1.4. Digital Certificates 

Digital certificates are digital documents that associate a resource with its specific public 
key. A certificate is a data structure containing a public key and pertinent details about the 
key owner. A certificate is considered to be a tamper-proof electronic ID when it signed by 
the Certification Authority for the grid environment. 

Digital certificates, also called X.509 certificates, act very much like passports; they 
provide a means of identifying resources. Unlike passports, digital certificates can (and 
should) be distributed and copied without restriction, while people are normally very 
concerned about handing their passports to someone else. Certificates do not normally 
contain any confidential information and their free distribution does not create a security risk. 

The important fact to know and understand about digital certificates is that the CA certifies 
that the enclosed public key belongs to the entity listed in the certificate. The technical 
implementation is such that it is considered extremely difficult to alter any part of a certificate 
without easy detection. The signature of the CA provides an integrity check for the digital 
certificate. 

When a client wants to start a session with a resource, he/she does not attach the public 
key to the message, but the certificate instead. The recipient receives the communication 
with the certificate and then checks the signature of the Certificate Authority within the 
certificate. If the signature was signed by a certifier that he/she trusts, the recipient can safely 
accept that the public key contained in the certificate is really from the sender. This prevents 
someone from using a fraudulent public key to impersonate the public key owner. 

Digital certificate contains the information about its user and his/her public key. When the 
user communicates with another party, the recipient will use his/her public key (contained in 
his/her digital certificate) to decrypt the SSL session ID, which is used to encrypt all data 
transferred between the nodes. 

A digital certificate is made up of a unique distinguished name (DN) and certificate 
extensions that contain the information about the individual or host that is being certified. 
Some information in this section may contain the subject’s e-mail address, organizational 
unit, or location. 

Figure 3.2 is a graphical depiction of the digital certificate. 
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Figure 3.2: Digital certificate 
 
 

Obtaining a client or a server certificate from a CA involves the following steps: 
 
1. The user requiring certification generates a key pair (private key and certificate 

request containing the public key). 
2. The user signs its own public key and any other information required by the CA. 

Signing the public key demonstrates that the user does, in fact, hold the private key 
corresponding to the public key. 

3. The signed information is communicated to the CA. The private key remains with the 
client and should be stored securely. For instance, the private key could be stored in 
an encrypted form on a Smartcard, or on the user’s personal computer. 

4. The CA verifies that the user does own the private key of the public key presented. 
5. The CA (or optionally an RA) needs to verify the user’s identity. This can be done 

using out-of-band methods, for example, through the use of e-mail, telephone, or 
face-to-face communication. A CA (or RA) can use its own record system or another 
organization’s record system to verify the user’s identity. 

6. Upon a positive identity check, the CA creates a certificate by signing the public key 
of the user, thereby associating a user to a public key. The certificate will be 
forwarded to the RA for distribution to the user. 

Verification of the User 
The authentication described above is a one-time authentication for the purpose of 

certificate issuance. This can be compared to the process when a government authority 
issues a passport to an individual. The passport then serves as an authentication mechanism 
when this individual travels to foreign countries. Just like passports, digital certificates can 
subsequently be used in daily operations for authenticating subjects to other parties that 
require authentication. 

Certificate Revocation List 
In other PKI environments that use directory services to store the public key, a certificate 

revocation list (CRL) is a means of notifying clients who wish to verify the revocation of 
certificates. CRLs are issued to mark some certificates unusable, even though their 
expiration has not come yet. 
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Path Validation 
In order to verify that a certificate is valid, a check must be done to ensure that whoever 

signed the certificate is valid. This is how the path validation of a certificate is done. This is 
done to verify that the certificate path from the Root CA is valid and up the chain between the 
CA and client/server. This is especially important when explaining why delegated certificates 
are valid within the environment. This delegation is an extension to PKI and is not normally 
allowed [43]. As long as the path is valid within the delegated certificate, the certificate will 
not be rejected. 

PKI Directory Services 
Within some PKI environments, the signed keys are published to a public directory for 

easy retrieval. Instead of having the clients handle the mutual authentication, an external 
server is responsible for handling the authentication process. A good example of this process 
is the MyProxy server [44]. In this example, the user would authenticate to the Web portal, 
which would request the user’s online credentials that are stored in the directory. Upon this 
authentication, the proxy would extract the DN within their digital certificate and match their 
credentials with the public key stored within the directory. If they two keys matched up, the 
user would be given access to resources within the system. 

3.2. Security Objectives 
They reflect the stated intent to counter identified threats and/or comply with any 

organizational security policies and usage assumptions. 

3.2.1. Availability 

It is the property of being accessible and useable upon demand by an authorized entity 
[41]. Availability functionality of security is responsible for ensuring that the system is 
available to authorized users. Availability is sometimes confused with reliability. The latter is 
a measure of how few failures happen to the system components. Naturally, the more 
reliable system components are the higher availability of the system. The reverse is not 
always true because availability can be (and usually is) achieved by other means than 
increase of reliability. Availability is a functionality of system security because most of 
security breaches potentially decrease overall system availability. 

3.2.2. Confidentiality 

It is the property that information is not made available or disclosed to unauthorized 
individuals, entities or processes [41]. Information confidentiality functionality is responsible 
for protecting information from unauthorized disclosure. Sending letters in sealed envelopes 
as opposed to postcards is a well known computer unrelated example of confidentiality 
services. By enclosing a letter in an envelope, one protects its contents from being accessed 
by anyone else but its intended reader. In computer communications, confidentiality is 
usually achieved by encrypting information and making only sender in a position of 
decrypting the received data. Making sure that information left in a system after an 
application is not read by any other application is also responsibility of confidentiality 
services.  

Confidentiality function of security services is sometimes confused with confidential. They 
are not equivalent! Confidential is used to express the sensitivity level of particular 
information. Many with the healthcare background use terms privacy and confidentiality 
interchangeably. It is due to the fact that the healthcare domain puts very different meaning 
in the word confidentiality than the technically oriented computer security world.  The 
Massachusetts Medical Society Policy on Patient Privacy and Confidentiality explains the 
difference in [42]: 
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Although the words privacy and confidentiality often are used interchangeably, 
they are related but not synonymous terms. Privacy derives from the concepts of 
personal freedom and autonomy, and involves the ability of an individual to 
control the release or dissemination of information that relates to him/herself. 
Confidentiality, on the other hand, arises in a relationship, when an individual 
gives private information to another on the condition of or with the understanding 
that the other will not further disclose it, or will disclose it only to the extent that 
the individual directs.  

 
In this thesis, we will use the term confidentiality only in the context of distributed system 

security. To avoid any confusion, we do not use the terms privacy or confidentiality in the 
healthcare domain meanings. 

3.2.3. Integrity 

It is the property that data has not been altered or destroyed in an unauthorized manner 
[41]. Integrity service is responsible for providing the protection of data from unauthorized 
modifications. Since it is almost impossible to enforce access control over information 
traveling through multiple intermediate hops in inherently insecure networks, integrity 
becomes a very important asset of secure communications in distributed systems. In most of 
traditional systems that provide secure communications, integrity is achieved by signing 
messages digitally. The idea of digital signatures comes from check-sum computation in 
communication protocols. The main difference between check-sums and digital signatures is 
the ability to ensure that the signature was generated by the original sender. 

3.3. Security Functions 
They are the implementation of security policies defined to withstand certain security 

threats and risks. 

3.3.1. Authentication 

It is the evidence that an entity is the one claimed [41]. Authentication functionality of 
system security is responsible for making sure that a user or a service is who they claim to 
be. Sometimes, the word identification is used instead of authentication to mean the same. 
Authentication part of security deals only with user or service identities. It is not responsible 
for access control, confidentiality or any other security functionalities. Though, it might use 
confidentiality and integrity to protect information exchanged between the system and say 
the user during the authentication phase. 

3.3.2. Authorization 

It is the granting of rights, which includes the granting of access based on access rights 
[41]. Authorization functionality is responsible for making decisions about what users and 
what services can access what system services and for endorsing those decisions. 
Authorization cannot be enforced without reliable authenticating functionality of a system. 
Before access rights decisions can be made, it is critical to identify a user or a service. 
Authorization decisions are based on access control policies. Such policies can be very 
rudimentary ("grant access to anyone") or very complex ("Give access to HIV information of 
patient X only to a user who has status of 'Attending physician for patient X' when such a 
user is located at her hospital office and only if the patient X gave a consent to disclose her 
HIV information and when it is before 2 weeks after the patient X was discharged").  

3.3.3. Access Control 

It is often interchanged with the term authorization. Access control policies are expressed 
in the form of access control rules. A set of access control rules constitute access control 
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language that allows mapping of the application system business model into the access 
control model supported by the particular distributed system authorization services.  

UNIX access control rules are a good example of a basic access control language. In 
UNIX, each resource including processes, files and devices is owned by some user (owner) 
and group. UNIX access rules specify what type of access right (read, write, execute) is 
granted to the resource owner, group, and the rest of the world in regard to this resource. In 
order for a user to perform access operations granted to its owner, the user has to have the 
same identity as the resource owner; to perform group access operations, the user has to be 
a member of the same group as the resource; to perform operations allowed to "the rest of 
the world" the user does not have to have any special rights. UNIX access rules are therefore 
simple:  

If you are the owner this what access operations you can invoke,  
   otherwise  
       if you are a member of the same group, this is what access operations you can 
invoke,      
          otherwise 

      you have the same access rights as anyone else in the system. 

3.3.4. Accountability 

It is the property that ensures that the actions of an entity can be traced [41]. 
Accountability functionality is responsible for making users accountable for their security-
relevant actions. Accountability service is an important part of any security system since it 
provides virtually the only way to monitor security activities in the system and to detect 
security breaches as well as to provide proof that a particular action was requested and/or a 
particular message was sent/received later in court. Accountability requires authentication to 
have reliable information about identity of involved parties. 

Accountability is generally achieved via security audit and non-repudiation functionalities. 
Security audit is to facilitate an independent review and examination of system records and 
activities in order to test for adequacy of system controls, to ensure compliance with 
established polices and operational procedures, to detect security breaches and to 
recommend any indicated changes in control policy and procedures [41]. Non-repudiation 
functionality is to protect against originator of a message or action denying that it originated 
the message or the action as well as against the recipient of a message or action denying 
that he or she has received the message or was requested action.  

3.4. Contemporary Issues 
These issues have been raised due to the big scale, heterogeneous and mobile nature of 

the modern days systems and applications. These factors exacerbate the state of security 
and hence they should be adequately addressed to triumph over the security chinks in the 
system’s armor. 

3.4.1. Interoperability 

Services that traverse multiple domains and hosting environments need to be able to 
interact with each other, thus introducing the need for interoperability at multiple levels: 
 

• At the protocol level, some mechanisms are required to allow domains to exchange 
messages. This can be achieved via SOAP/HTTP, for example. 

• At the policy level, secure interoperability requires that each party be able to specify 
any policy it may wish in order to engage in a secure conversation – and that policies 
expressed by different parties can be made mutually comprehensible. Only then can 
the parties attempt to establish a secure communication channel and security context 
upon mutual authentication, trust relationship, and adherence to each other’s policy. 
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• At the identity level, mechanisms are required for identifying a user from one domain 
in another domain. This requirement goes beyond the need to define trust 
relationships and achieve federation between security mechanisms (e.g., from 
Kerberos tickets to X.509 certificates). Irrespective of the authentication and 
authorization model, which can be group-based, role-based or other attribute-based, 
many models rely on the notion of an identity for reasons including authorization and 
accountability [31]. 

3.4.2. Extensibility 

A security policy model always evolves; accordingly, the design of a security system using 
that policy model should reflect the changes. Using role-based access control (RBAC) as an 
example, currently it supports role hierarchy, static separation of duty relations, and dynamic 
separation of duty relations. As research on RBAC progresses, more concerns have been 
and will be covered. So the model hierarchy of RBAC is quickly becoming more and more 
complicated, which requires that the security system supporting RBAC be flexible and 
extensible. To address this issue at the design level, we propose an aspect-oriented 
approach to designing flexible and extensible security systems where the user is provided 
with future proof functionality in the form of an extensible security architecture that allows 
alternative security services to be plugged-in as required. A unique feature is that 
communities of users with different security services will be able to securely interact/ 
collaborate with each other. 

3.4.3. Adaptability 

In the today’s security architectures, it is getting indispensable to implement dynamically 
adaptable security services, where the security mechanisms are changed at runtime in 
reaction to changed security requirements (e.g., suspected intrusion) or changes in available 
resources. The security framework should make it easy to activate and deactivate micro-
protocols at runtime, and the coordination mechanisms should allow adaptations across 
machines and across system layers to occur smoothly without interrupting normal operation. 
Our proposed security model use fine-grain configurability and fast adaptation ability as the 
basis for an inherently survivable security architecture that can automatically react to threats 
in the execution environment. 

3.4.4. Mobility 

The promise of anywhere, anytime access to critical information and the adoption of 
mobile data devices are propelling the development of mobile applications. As businesses 
begin extending information to the mobile channel, they seek guarantees that the information 
will be transmitted securely to the end user. Highly sensitive information, such as financial 
and proprietary, will form the foundation of successful mobile applications on the mobile 
Internet. Security, therefore, is an essential element for the continued adoption of mobile 
applications. It should scale security levels to satisfy today’s needs, incorporate new 
standards that will be adopted by the mobile market and make secure access to the mobile 
devices through encryption depending upon the memory limitation of the mobile device. For 
example, the level of security on the mobile devices is bound to increase with higher versions 
of WAP that support new innovative encryption technology and improve the level of security 
currently on the WTLS. Figure 3.3 depicts the zone to be covered by the security of mobility. 
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Figure 3.3: Mobility Security Zone 
 

3.4.5. Abstraction 

In the modern days heterogeneous systems, an abstraction layer is needed on the top of 
the security architecture to provide homogeneous and harmonized access to various security 
functionalities irrespective of the underlying technologies. We have proposed the idea of 
virtualization of security services to handle the complex problem of security in the large scale 
open heterogeneous distributed systems and applications. The virtualization of a service 
definition encompasses the security requirements for accessing that service. The need 
arises in the virtualization of security semantics to use standardized ways of segmenting 
security components (e.g., authentication, access control, etc.) and to provide standardized 
ways of enabling the federation of multiple security mechanisms. This concept is discussed 
in details in chapter 5. 

3.4.6. Scalability 

Scalable security is a vital issue for large-scale wide-area systems. There are several 
issues to be solved for scalable security architecture such as mapping from global subjects 
to local subjects, centralized certificate authority center, large number of users, many 
heterogeneous security policies. Generally proxies are used to handle the problem of 
scalability; however, the proxies are themselves prone to some security risks as there is a 
private key (for the proxy) that is on a remote system outside the user’s direct control, but 
can be used to sign messages that the overall infrastructure will trust as if coming from him. 
If a remote system was compromised (or spoofed), the user proxy’s private key would no 
longer be private. Even if he becomes aware of this he would not be able to revoke the proxy 
because he doesn’t have a revocation process. In the absence of some rigorous mechanism 
of revocation of proxies, the security risks are minimized by making proxies short-lived, so if 
compromised they cannot be misused for long. Nevertheless, this represents another way in 
which authentication may be temporarily unreliable. 

3.4.7. Resilience 

There is a need of self-healing security mechanisms to assure the survivability of the 
overall system. Resilient security architecture makes the system to regain its original security 
configurations after the attack scenario is over and therefore it improves the quality of service 
of the entire system. Current research focuses on system research, development, and use-
case expansion to adaptive, real-time, and resilient security systems enabled by new 
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technologies, services, and methods targeted at improving the survivability and 
trustworthiness of the IT infrastructure at high operational capacity. 

3.5. Security Policy 
Before investigating the specifics of a security architecture, it is important to identify the 

security objectives, the participating entities, and the underlying assumptions. In short, we 
must define a security policy, a set rules that define the security subjects (e.g., users), 
security objects (e.g., resources) and relationships among them. While many different 
security policies are possible, we present a specific policy that addresses the security 
requirements of large-scale systems. A set of common terminologies that is used in the 
policy description is given below: 

• A subject is a participant in a security operation. A subject is generally a user, a 
process operating on behalf of a user, a resource (such as a computer or a file), or a 
process acting on behalf of a resource. 

• A credential is a piece of information that is used to prove the identity of a subject. 
Passwords and certificates are examples of credentials. 

• Authentication is the process by which a subject proves its identity to a requestor, 
typically through the use of a credential. Authentication in which both parties (i.e., the 
requestor and the requestee) authenticate themselves to one another simultaneously 
is referred to as mutual authentication. 

• An object is a resource that is being protected by the security policy. 

• Authorization is the process by which we determine whether a subject is allowed to 
access or use an object. 

• A trust domain is a logical, administrative structure within which a single, consistent 
local security policy holds. Put another way, a trust domain is a collection of both 
subjects and objects governed by single administration and a single security policy.  

 
An example security policy for the Grid is defined in [28]. The key features of this policy are 
quoted here: 
 

1. The grid environment consists of multiple trust domains. 

Remark: This policy element states that the grid security policy must integrate a 
heterogeneous collection of locally administered users and resources. In general, the 
grid environment will have limited or no influence over local security policy. Thus, we 
can neither require that local solutions be replaced, nor are we allowed to override 
local policy decisions. Consequently, the grid security policy must focus on controlling 
the inter-domain interactions and the mapping of inter-domain operations into local 
security policy. 

 
2. Operations that are confined to a single trust domain are subject to local security 

policy only. 

Remark: No additional security operations or services are imposed on local 
operations by the grid security policy. The local security policy can be implemented by 
a variety of methods, including firewalls, Kerberos, and SSH. 

 
3. Both global and local subjects exist. For each trust domain, there exists a partial 

mapping from global to local subjects. 

Remark: In effect, each user of a resource will have two names, a global name and a 
potentially different local name on each resource. The mapping of a global name to a 
local name is site-specific. For example, a site might map global user names to: a 
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predefined local name, a dynamically allocated local name, or a single \group" name. 
The existence of the global subject enables the policy to provide single sign-on. 

 
4. Operations between entities located in different trust domains require mutual 

authentication. 
 

5. An authenticated global subject mapped into a local subject is assumed to be 
equivalent to being locally authenticated as that local subject. 

Remark: In other words, within a trust domain, the combination of the grid 
authentication policy and the local mapping meets the security objective of the host 
domain. 

 
6. All access control decisions are made locally on the basis of the local subject. 

Remark: This policy element requires that access control decisions remain in the 
hands of the local system administrators. 

 
7. A program or process is allowed to act on behalf of a user and be delegated a subset 

of the user's rights. 

Remark: This policy element is necessary to support the execution of long-lived 
programs that may acquire resources dynamically without additional user interaction. 
It is also needed to support the creation of processes by other processes. 

 
8. Processes running on behalf of the same subject within the same trust domain may 

share a single set of credentials. 

Remark: Grid computations may involve hundreds of processes on a single resource. 
This policy component enables scalability of the security architecture to large-scale 
parallel applications, by avoiding the need to create a unique credential for each 
process. 

3.6. Security Models 
Security models are often regarded as a formal presentation of the security policy enforced 

by the system and are used to test a policy for completeness and consistency. They describe 
what mechanisms are necessary to implement a security policy and deal with the 
fundamental security functionalities of a particular system or application. However, they are 
yet to be fully developed and assessed for their effectiveness and feasibility to support open 
large-scale IT architectures. A range of these models for different systems are discussed in 
detail in chapter 4. 
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Chapter 4 
 

State-of-the-Art Security Mechanisms in Existing 
Systems 

 
 
 
 
 
 

4.1. Grid Computing 
The vision of the computational Grid [10] is to provide high performance computing and 

data infrastructure supporting flexible, secure and coordinated resource sharing among 
dynamic collections of individuals and institutions known as virtual organizations (VO) [45]. 
Grid computing is rapidly emerging from the scientific and academic area to the industrial 
and commercial world. It is intended to offer seamless and uniform access to substantial 
resources without having to consider their geographical locations. Resources can be high 
performance supercomputers, massive storage space, sensors, satellites, software 
applications, and data belonging to different institutions and connected through the Internet. 
Grids can enable collaboration between several organizations. The Grid provides the 
infrastructure that enables dispersed institutions (commercial companies, universities, 
government institutions, and laboratories) to form virtual organizations (VOs) that share 
resources and collaborate for the sake of solving common problems. 

4.1.1. Introduction to Grid Security Problems 

Grid applications are characterized by the coordinated use of resources from different 
administrative domains. Figure 4.1 depicts a Grid environment. Each site in the VO is 
independently administered and has its own local security solutions such as Kerberos and 
PKI. These solutions are built on top of different platforms such as UNIX, Windows and OS2. 
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Figure 4.1: A Grid Computing Scenario 
When these companies/institutions are brought together to collaborate on a common 

project in this heterogeneous environment, many security problems arise: 

Interoperability  
It is a key issue on the Grid. It is impractical to change the security mechanisms at each 

site in the VO due to technical, financial and political reasons. Thus, the security of the Grid 
project must be able to interoperate with the local security solutions at different levels: 
 
Policy level 

Each partner in the VO has its own security policy, which is carefully tailored to maximize 
the protection of its valuable resources. The main issues to be addressed are: 
 

 Reconciliation of global security policy with local security policy. 
 Solution of conflicts between local and global policy. 

 
Authentication level 

VO sites require mechanisms for identifying users from one security domain to another. 
For example, the identity of a user from company A (U.A) and his credential as expressed in 
Policy A are meaningless in the other VO sites. Therefore, how does U.A authenticate (e.g. 
UNIX login) to site B to access resource (R.B) (e.g. Kerberos)? 
 
Authorization level 

Access control mechanisms used vary from one VO site to another depending on the type 
and value of the resource accommodated. For example, site A may use an Access Control 
List (ACL) or a Role Based Access Control (RBAC) as mechanisms in order to gain access 
to its resources. The first problem is how to determine whether a user, U.A, authenticated in 
site B, is allowed access to resource, R.B in B. The second is who decides what the access 
rights of U.A are? 

Scalability 
The number of users and resources in the VO is dynamic. New users/resources can be 

added/removed to the project as required. A scalable way to dynamically manage users’ 
authentication and their access rights to access project resources is required. 

Confidentiality and integrity issues 
On the Grid, users transmit data over the Internet and access remote data resources that 

may be very sensitive. Moreover, Grid users can run programs on remote sites. Therefore, 
confidentiality and integrity are required to: 
 

 Protect transmitted data over a public network such as the Internet 
 Ensure the privacy and accuracy of the results of programs executed on remote sites. 
 Ensure the secrecy and correctness of the shared data resources. 

Trust 
Scientists and commercial companies want to know whom they are trusting with their data 

and commodities. The question that arises: Who to trust individuals/sites/third parties? 

Usability 
Grid users are from different types of organizations such as academic, government and 

financial institutions. Thus, they may not be security experts. Therefore, usability is required 
so that access to the VO resources is as smooth and seamless as access to local resources. 
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Firewall 
A frequently encountered problem on the Grid is firewalls. VO members want to share 

resources with other partners but also, want to keep their other resources private. 
Collaborating partners on the Grid have to allow requests from and replies to jobs initiated 
from other sites to pass through their firewall to access their resources. This requires 
opening a port in the firewall to access those resources, which could introduce another 
vulnerability to the local security of the VO partner’s organization. For commercial 
companies, it is unthinkable to compromise local security so they may end up without 
collaboration! 

4.1.2. Grid Security – State-of-the-Art 

In this section, prominent grid projects are examined with special considerations of their 
security mechanisms. 

Globus 

Globus [46] is the best known and probably the most widely-used end-to-end grid 
infrastructure available today. The philosophy of Globus is to enable sharing of 
computational resources across sites that have a relatively high level of trust in each other. 
To this end, the default security model in Globus provides rather large privileges to remote 
users, and depends heavily on authentication (‘the only authenticated user is a good user’). 
The Toolkit, developed by the Globus Project, offers authentication, authorization, and 
secure communications through its Grid Security Infrastructure (GSI) [28]. The GSI uses 
public key cryptography, specifically public/private keys and X.509 certificates, as the basis 
for creating secure grids. 

A time-stamped proxy, based on the user's private key is created in GSI for a secure 
authentication. Users cannot submit jobs to run or transfer data without creating the proxy. 
This proxy is used to grant or deny access to the grid resources. The user authorization in 
GSI is handled by mapping the user to a local user on the system being accessed. The 
system receiving the request reads the user's name from the proxy, and then accesses a 
local file to map that name to a local user. System administrators can assign users to virtual 
groups to avoid creating scores of extra user IDs on various grid systems. All users from a 
particular domain can be mapped to a single, common user ID when accessing a given grid 
resource. GSI is designed this way to help administrators separate outside users running grid 
computations from local users in need of local administration and support. 

GSI uses digital certificates for mutual authentication and SSL/TLS for data encryption. 
The Toolkit contains OpenSSL, which it uses to create an encrypted tunnel between grid 
clients and servers, whereas GSI-Enabled OpenSSH is suggested for secure remote access 
to the grid. Secure Shell (SSH) establishes an encrypted session between the user's client 
and the grid server. 

UNiform Interface to COmputing REsources (UNICORE) 
The goal of UNICORE [47] is to deliver software that allows users to submit jobs to remote 

high performance computing resources without having to learn details of the target operating 
system, data storage conventions and techniques, or administrative policies and procedures 
at the target site. Fujitsu originally developed this, with contributions from commercial 
partners and the European academic and government research community. 

UNICORE provides access to heterogeneous resources at remote sites through internet. 
This allows switching between the systems without changing the job. Another function is to 
perform synchronization and switching without any user intervention. UNICORE implements 
the same architecture as that of the web. In this way, UNICORE brings the power of 
supercomputing and the data resources involved, made available through World Wide Web 
(WWW).  
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The major concern while accessing resources via the web is security. UNICORE users 
and servers are authenticated by means of certificate (X509 compliant) issued by the 
UNICORE Certification Authority (CA). It also uses Secure Socket Layer (SSL) to provide 
network integrity for all control mechanisms and optionally for confidential data transfer. 

Overall security within UNICORE heavily depends on: 
 

 the security within the UNICORE PKI (CA security and RA authentication policy), 
 the security of the private key-stores within the user clients and servers, and 
 the diligence with which the individual certificates and certificate chains are validated 

before trust is granted. 
 
The current PKI model is based upon a single central CA which signs the certificates of all 

UNICORE users. This model is good for a limited number of users. As soon as the number of 
users increases, the load for the CA steps up too. A higher CA load means: 

 
 increasing delays in issuing certificates 
 increasing number of RAs which results in a higher administrative load and possible 

security problems due to more frequent RA status changes (new RAs, diminishing 
RAs, changing RA representatives, etc.) 

 in case the CA certificate expires or gets compromised (stolen private key) all 
subordinated certificates have to be exchanged against new ones. This would cause 
a total freeze of the whole UNICORE sphere. This would be a knock-out criterion for 
commercial, high availability applications. 

 a single CA leaves no space for redundancy (no backup certificates from a separate 
CA).  

 
In a distributed environment normally only partial outages occur. For commercial and/or 

very important applications there could be backup certificates from a different CA, so that 
those jobs could be re-submitted immediately. 

Secure Highly Available Resource Peering (SHARP) 
SHARP [48] tries to define new ways to share grid resources and delegate authority for 

using those resources. It proposes a new type of grid security infrastructure, a policy server, 
which controls when, where, and to what extent users can access grid resources. These 
policy servers issue a ticket to users that prove to a resource owner that this particular 
authorized policy server has granted access. 

One of the key features of SHARP is its method for making secure sharing possible 
without creating a central authority to manage resource requests. Valid principals within a 
SHARP grid obtain claims to control a share of grid resources; varied principals can 
exchange claims in the same manner that Internet Service Providers (ISPs) do in exchanging 
network bandwidth for routing. Within the SHARP model, each site acts as a central authority 
to certify keys, validate signatures, and detect conflicts for claims on its local resources. 
Claims are cryptographically signed to make them unforgeable, nonrepudiable, and 
independently verifiable by third parties. Once established, the claims are managed by 
agents, pluggable modules which subdivide the claims and allocate them to their clients. 
These agents are designed to make the resource claim process more efficient. To avoid 
tying up excess system resources, these claims are timed, and expire after a specified 
period, so the system can recover the resource if the claim holder doesn't exercise their 
option. In some situations, agents may oversubscribe resources with extra claims, a method 
which makes sure that the resource pool is fully used even with some claims failing to 
materialize or timing out [49].  
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Condor and Condor-G Systems 
Condor [50] is a software system that creates a High-Throughput Computing (HTC) 

environment by harnessing the power of clusters and workstations. It can manage dedicated 
clusters. However its main appeal is that it can make use of pre-existing resources which 
may be computers sitting on people’s desks. When jobs are submitted to Condor, it finds an 
available machine in its organization’s pool to run the job. Machines become available once 
they have been idle for a specified period of time. Jobs are migrated over the network to the 
machine. If the machine becomes unavailable and the job has not finished, Condor 
checkpoints it and either migrates the job to another machine or queues it to disk until a 
machine becomes free. 

Whilst Condor can be treated as a resource provider at the lowest level of the grid, its 
overall architecture fits into the component layers of the grid model. There are however some 
fundamental differences between Condor and the grid. As a project it began development 
before the concept of the grid came into existence. Therefore some parts of the system (e.g. 
the communication system), use older technologies (RPC: Remote Procedure Call) and 
Condor uses its own proprietary systems for resource description, discovery and integration. 

The inter-domain resource management protocols of the Globus Toolkit and the intra-
domain resource management methods of Condor are combined in Condor-G System. 
Condor-G gets its name from how it talks to the resource management part. Condor-G uses 
the Globus Toolkit to start the job on a remote machine instead of using the Condor-
developed protocols to start running a job on the remote machine. Condor-G provides a 
window to the grid for users to both access resources and manages jobs running on remote 
resources. In other words, Condor-G allows the user to harness multi-domain resources as if 
they all belong to one personal domain [51]. 

Condor-G incorporates GSI to answer its security needs. We have already discussed the 
GSI in the preceding Globus section.  

Legion 
Legion [52] is an object-based grid system developed at the University of Virginia. Its 

architecture was designed to address the challenges of using and managing wide-area 
resources. The Legion system is an implementation of a software architecture for grid 
computing. The basic philosophy underlying this architecture is the presentation of all grid 
resources as components of a single, seamless, virtual machine. 

Legion programs and objects run on top of host operating systems, in user space. They 
are thus subject to the policies and administrative control of the local Operating System. The 
Legion objects running on a particular host must trust that host. This trust does not 
necessarily extend to objects running elsewhere, however. A critical aspect of Legion 
security is that the security of the overall Legion system cannot rely on every host being 
trustworthy. A large Legion system will span multiple trust domains, and even within one trust 
domain, some of the hosts may be compromised or may even be malicious.  

There are two main types of credentials in Legion: delegated credentials, and bearer 
credentials. A delegated credential specifies exactly who is granted the listed rights, whereas 
simple possession of a bearer credential grants the rights listed within it. A Legion credential 
specifies the period the credentials are valid, who is allowed to use the credential, and the 
rights. The credential also includes the identity of its maker, who digitally signs the complete 
credential. 

The Globus and Legion share a common base of target environments, technical 
objectives, and target end users, as well as a number of similar design features. Both 
systems abstract access to processing resources: Legion via the host object interface; 
Globus through the Globus Resource Allocation Manager (GRAM) interface. Both systems 
also support applications developed using a range of programming models, including popular 
packages such as Message Passing Interface (MPI). Despite these similarities, the systems 
differ significantly in their basic architectural techniques and design principles. Whereas 
Legion builds higher-level system functionality on top of a single unified object model, the 
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Globus implementation is based on the combination of working components into a composite 
meta computing toolkit for low-level services. 

4.1.3. Open Grid Services Architecture (OGSA) 

During the past years, Grid Computing and Web Services have started to merge and to 
benefit from the synergy of both paradigms. The Global Grid Forum (GGF) presented 
Open Grid Services Architecture (OGSA) as the fusion between Grid Computing and Web 
Services. Moreover, Grid Services require security mechanisms. The OGSA Security 
Architecture identifies the security requirements in a Grid environment, and based on 
them the Web services security model, defines a security model to secure Grid services. 

Grids, as any computing environment, require some degree of system management, 
and especially security management. It is a potentially complex task given that resources 
are often heterogeneous, distributed, and cross multiple management domains. Currently, 
the Common Management Model Work Group (CMM-WG) is working on the specification 
of a management framework for OGSA. CMM-WG points to Common Information Model 
(CIM) as an interesting model for the management of the security services, but it does not 
include any further work in this line.  

OGSA Security MODEL 
The Security Model for OGSA is formed by the set of security components shown in 

figure 4.2. 
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Figure 4.2: Components of the OGSA Security Model 
 
 
In this layering, top components such as secure conversation, credential and identity 

translation, access control enforcement, and audit and non-repudiation, are application-
specific components that depend on rules and policies for authorization, privacy, 
identity/credential mapping, and service/end-point provision. These grid policies are 
specified and defined based on a language for policy expression and exchange. In the 
bottom layer, the security of the bindings is based on the security characteristics of the 
used transport protocol and message format. On the right-hand side, the trust model 
component defines and establishes trust relationships for the grid environment, i.e. 
defining VO membership. The secure logging component is a requirement for the auditing 
of any policy decision. Finally, the left box groups all security management functions such 
as key management for cryptographic functions, user registry management, authorization, 
privacy and trust policy management and management of mapping rules. It also includes 
the management of anti-virus and intrusion detection services. 
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The OGSA security model is a framework that is extensible and flexible enough to allow 
the use of existing security technologies and standards, such as IPsec or SSL/TLS in the 
case of the network and transport layer, HTTPS in the binding layer, or security standards 
based on use of XML and assertion languages (e.g., SAML) in the message-level. 
Therefore, given that OGSA is a service-oriented architecture based on Web services (i.e. 
WSDL-based service definitions), the OGSA security model needs to be consistent with 
Web services security model that is currently being defined for the Web services 
framework. Figure 4.3 shows the set of Web services security specifications. 
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Figure 4.3: Web Services Security Specifications 

 
 
In the bottom layer, several technologies such as SOAP, WSDL, XML Digital 

Signatures, XML Encryption and SSL/TLS are the core of the Web services model. Built 
upon this, the message security model (WS-Security) provides the base for the other 
security specifications, which include a Web service endpoint policy (WS-Policy), a trust 
model (WS-Trust), a privacy model (WS-Privacy), a model for secure conversations (WS-
SecureConversation), a federated trust model (WS-Federation), and an authorization 
model (WS-Authorization). 

These specifications serve as building blocks for the OGSA security specifications and 
can be used to implement the OGSA security model.  

Shortcomings of OGSA 
The OGSA is a novel initiative and there is a long way to go before we have a complete 

architecture specification where all of the desired properties of Grids are addressed. This 
can only happen by having reference implementations and deployments of OGSA-
compliant Grid middleware that will eventually expose the strengths and weaknesses of 
the architecture [53]. Some shortcomings of the OGSA model are summarized below: 

 
Availability and Robustness 

The mechanisms of OGSA might greatly improve on the availability of services by 
introducing the Factory pattern but there needs to be further discussion of services that 
deal with failing or unavailable instances and start up new ones automatically. By 
introducing Factories OGSA lays the ground for automated service startup and thus 
increases robustness and availability. However, it would greatly enhance this aspect of 
OGSA if some service data elements were defined in the Factory that would deal with 
failing instances and policies on how to restart them. More discussion is needed on how 
the Grid Services should behave if some kind of failure occurs. What happens if a service 
has been unavailable for a given time? How to deal with service overload? What if the 
network of a Virtual Organization (VO) becomes partitioned? What happens if the Factory 
or the Registry is suddenly unavailable? This also touches a bit on the desired property of 
scalability. 
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Measurability 
In the OGSA model, each VO needs certain levels of QoS to be achieved and that they 

may be measured in many different ways. The ability to set up VOs fulfilling many different 
QoS requirements is highlighted as one of the most desirable properties of Grids. OGSA 
does not elaborate further on QoS metrics. There need to be not just agreed metrics of 
QoS but each Grid Service needs to define how it enhances or decreases certain QoS 
metrics. There might be the need to define a QoS namespace to be able to query this 
property of services more easily. Each Service also needs to declare its own internal QoS 
metrics and give a value in a specific instance if different instances of the same service 
can be set up such that the given metrics can change. Measurability is also very important 
when a VO defines its own set of necessary services or when it analyzes its own state 
and optimizes its performance due to changes in its nature or requirements. In order to 
define, bootstrap and optimize a VO it is essential to have QoS metrics by which the VO 
can measure itself. 

 
Integration 

OGSA starts out with this point on integration of services. There is a need to integrate 
services not just within but also across VOs. OGSA solves this problem by defining the 
Grid Service interface and requiring all services to implement it. But how this is achieved 
with OGSA in detail and especially across VO boundaries is not detailed. A lot of effort still 
needs to be put into the exact mechanisms and definition of common semantics that 
integration of services (across VOs) may be achieved.  

 
Interoperability and Compatibility 

Interoperability is explicitly mentioned as a requirement and it is one of the driving 
concepts behind OGSA. Web Services, including Grid Services, are designed such that 
the modules are highly interoperable. There is no uniform protocol required that each 
service has to speak. Web Services Resource Framework (WSRF) descriptions are there 
to ensure interoperability. Interoperability is very closely related to discovery because 
services that need to interoperate have to discover among other things which common 
protocols they can use and whether there are issues of compatibility. OGSA addresses 
compatibility by having Service Description elements that declare compatibility to past 
versions. What is missing is the capability to declare forward compatibility, not just 
backward (in)compatibility. 

 
Service Discovery 

Users of many services and services that want to interoperate need to get hold of the 
service descriptions to discover which services meet their needs or which services are still 
missing to achieve a given QoS. But how does the user know how to get hold of these 
descriptions? The answer of OGSA is the Registry and the HandleMap. The Registry 
needs to be searched to find the Grid Service Handles of the services that fulfill the user 
requirements – formulated in a query if necessary. The HandleMap then can be contacted 
to retrieve the detailed description of the services in question. But more fundamentally, 
this touches again on unified QoS metrics and Service Data elements. How is it possible 
to get the handles of the registries that we can query to get a set of services that we might 
be interested in i.e. how do we find the registry or registries relevant for a given query? 
How is a query formulated to do so? OGSA briefly mentions the use of XQuery [54] to 
query the Service Data of the Registry. In a large Grid spanning administrative domains, 
service data is partitioned over one or more registries nodes, for reasons including 
autonomy, scalability, availability, performance and security. This needs to be clarified in 
the future. 

Another interesting design decision of OGSA is that the Grid Service Handle is strongly 
coupled to the home HandleMap. This has several implications. The home HandleMap 
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needs to point to a valid URL at all times. If the service is moved then all GSH will have to 
deal with the update latency in the DNS that might also impact on service discovery 
(mapping of GSH into GSR). It is amazing why the GSH is a restricted URL and may not 
have extensions (i.e. point to a server page or have predefined HTTP GET options). 

 
Manageability 

Manageability is also just touched upon as a desired element, but is deferred to a later 
time. The idea of unified monitoring and controlling mechanisms is there but not further 
exploited. Higher-level services are supposed to deal with this, but how are they to 
interact and be integrated with each other? Having uniform monitoring and control 
mechanisms might impose stricter requirements on the architecture so this is worth giving 
more thought. The questions one might ask include: 

 
 How can a VO be created and bootstrapped? 
 How can it be changed? 
 How can individual users monitor and control their Grid sessions? 
 

Security 
This issue is touched but not elaborated on sufficiently. The hosting environment gets 

the burden of authentication, which is reasonable; but there is no discussion on how local 
and VO-wide security policies are enforced also on authentication. Is there the need for a 
Grid Service that deals with these issues or should each of the services have an interface 
addressing this, making it part of the GridService base interface? New developments in 
this area are necessary. 

For Data Grids, authorization and accounting will be particularly complex for certain 
VOs. In this context, global authorization schemes don't work because local resources 
refuse to trust the global authorization authority to perform the authorization in accordance 
with the local policies – which may change over time. Also for logging, auditing and 
accounting purposes the local resource managers will always want to know exactly who 
has done what to their resource. An issue is how to delegate rights to automated Grid 
services that need to use the resources on behalf of the user even if the user did not 
initiate their usage explicitly. 

Security has to be dealt with within OGSA since it will depend on the success of the 
underlying security framework. Open questions include: How are VO-wide policies 
applied? How is local security policies enforced? What is the role of hosting 
environments? How is an audit performed? Can a user belong to more than one VO and 
use both resources even if the security mechanisms differ? 

 
Support for the Mobile Devices 

There has been no considerable contribution on actual approaches to accommodate 
mobile and wireless smart devices such as PDAs and smart phones in the computational 
Grids. Mobile electronic devices and wearable computers are increasingly common. 
Individuals will frequently own a collection of these mobile devices. Yet, these devices are 
often resource limited: processing power is low, battery life is finite, and storage space is 
constrained. These restrictions slow application execution, and hinder operability. 
Arguably, applications executing on devices must be made aware of concurrently-
executing applications in order to optimally use the limited resources. 

Currently, OGSI implementations exist for several platforms, or runtimes. Sandholm et 
al. implement OGSI for the Java Virtual Machine runtime [55]. Humphrey et al. implement 
OGSI for the Microsoft .NET Framework runtime [56]. However, very few mobile devices 
can support either of these runtimes. Rather, many mobile devices run Windows CE with 
the .NET Compact Framework, a substantially stripped-down version of the .NET 
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Framework. In addition, neither of these implementations considers the addition of mobile 
device constraints, such as limited resources and intermittent network connectivity. 

Several efforts combine grid computing and mobile devices. Gonzalez-Castano 
incorporates mobile devices into Condor as client front-ends for job submission and job 
querying to traditional supercomputer grids [57]. Phan et al. suggest proxy based cluster 
architecture for introducing mobile devices into traditional grids [58], though provides no 
implementation for evaluation. Clarke and Humphrey investigate the challenges of 
integrating mobile devices into the Legion grid computing system [59]. While addressing 
some of the particular concerns of mobile devices, none of these efforts embraces the 
community-adopted OGSI specification. 

The characteristics of wireless and mobile devices must be considered if these devices 
are to be integrated in the Grid world. The system must have the ability to operate on 
power-, memory-, and even bandwidth-constrained hardware. The software must be 
sensible to resource consumption in these environments. Moreover, the sporadic and 
dynamic network environment must be handled gracefully. These concerns imply several 
capabilities that are useful in a Grid system, such as a Grid system should be both flexible 
and reflective, allowing users to make tradeoffs and select the combination of services 
that is best suited for their purpose. The ability to dynamically query and adjust, at 
runtime, the implementation and execution characteristics of the system software is 
important when dealing with these devices. 

4.2. Cluster Computing 
Cluster is a collection of interconnected computers working together as a single system. 

The initial idea leading to cluster computing was developed in the 1960s by IBM as a way of 
linking large mainframes to provide a cost-effective form of commercial parallelism. However, 
cluster computing did not gain momentum until three trends converged in the 1980s: high 
performance microprocessors, high-speed networks, and standard tools for high 
performance distributed computing. A possible fourth trend is the increased need of 
computing power for computational science and commercial applications coupled with the 
high cost and low accessibility of traditional supercomputers. These building blocks are also 
known as killer-microprocessors, killer-networks, killer-tools, and killer-applications, 
respectively. The recent advances in these technologies and their availability as cheap and 
commodity components are making clusters or networks of computers (PCs, workstations, 
and SMPs) an appealing vehicle for cost-effective parallel computing. 

4.2.1. Introduction to Clusters Security 

Cluster systems are finding increasing deployment in academic, research, and commercial 
settings. Over the last several years, the trend has been towards an increase in both the 
absolute number of cluster installations and in the average number of nodes per cluster. The 
increase in the average sizes of clusters introduces a new set of challenges for system 
administrators. While a great deal of effort has been expended in creating tools to aid in the 
installation, administration, and monitoring of clusters, very little effort has been expended in 
creating tools that address the unique issues of cluster security, particularly for very large 
cluster installations. 

When commodity clusters were still a new technology, most of the development focus was 
centered on simply getting them to work; the issue of cluster security was given relatively 
little consideration for at least two reasons. First, many people thought it was unlikely that 
hackers would disrupt scientific systems and jobs. Second, many people believed that the 
issues related to cluster security were the same as for general computer security. (“What 
works for one system should work for a collection of 100 systems”) [81]. However, as cluster 
systems have become more widespread and powerful, they have become increasingly 
desirable targets to attackers due to a few functional characteristics: 
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1. High bandwidth connections – To facilitate its computational goals, a cluster must 
have high bandwidth connections to the outside world, allowing interactive use by 
many users, transfer of large datasets into and out of the cluster, and fast inter-node 
communication. These high bandwidth connections are attractive to attackers 
because the attacker can subsequently leverage them for purposes such as 
launching denial-of-service flood attacks against other sites. 

2. Extensive computational power – Legitimate cluster users marshal the aggregate 
processing power of multiple machines with the goal of solving grand challenge 
scientific problems. In contrast, this computational power could be used by an 
attacker for purposes such as carrying out brute-force attacks against authentication 
mechanisms on other network resources to which the attacker wishes to gain 
unauthorized access. 

3. Massive storage capacity – Many high-performance cluster environments include 
storage capacity measured in terabytes, used for storing large scientific datasets and 
the results produced by computations involving these datasets. To a hacker, large-
capacity disk storage is an attractive target for use in creating repositories of stolen 
copyrighted software and multimedia files. 

 
The issues related to cluster security are not the same as those related to general 

computer security. Even though the behavior of individual nodes may be simple and could be 
approached with traditional computer security techniques, effective security management in 
the context of cluster systems requires tools that evaluate the state of the cluster as a whole. 
(“A 100-node cluster is different from 100 standalone systems”). For example, a traditional 
security monitoring tool, that examines the flow of communication into and out of individual 
cluster nodes, is limited to evaluating security based only on streams of data that it considers 
independently of any cluster-specific context. On the other hand, a cluster-aware security 
monitoring tool could evaluate whether a given node should even be communicating at all, 
based on information from sources such as the cluster’s job management system. That is, if 
no job is currently scheduled for execution on a given node, that node should most likely not 
be sending or receiving data on the network. 

The idea that cluster security must be considered as a whole is further underscored by 
realizing that while the behavior of individual cluster components may be simple, the 
combined interactions of multiple components may result in complex, unintended, and non-
intuitive behaviors that are difficult or impossible to predict. That is, even if certain hardware 
or software components that make up a cluster are certified as assured, these components 
must co-exist in a cluster environment that most likely consists of non-assured components. 
Furthermore, even if a cluster was built entirely from certified components, it is unlikely that 
the entire cluster, considered as a single entity, would have been evaluated in any kind of 
certification process. Simple combinatorics makes it infeasible to use formal methods to 
identify and protect against all known vulnerabilities from component interactions. For 
example, attack trees [82] are a good technique for prioritizing risks from known attacks. 
However, despite work that generates attack trees for limited, and some would say artificial, 
scenarios, attack trees have been shown not to scale to practical environments where new 
attacks cannot be modeled in advance and where the scale of components and their 
interactions are intractable for realistic computation [83]. 

4.2.2. Cluster Security – State-of-the-Art 

This section provides a list of presently used techniques used to guard high-performance 
clusters. 

Network Considerations 
To reduce the risk of unauthorized access, a site can adopt an enclosed cluster design. In 

extreme cases, this can be achieved by keeping a cluster on a physically isolated network. A 
more common and convenient approach is to limit direct user access to dedicated login or 
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head nodes. The compute nodes can then be placed in a private non-routable address 
space, or alternately kept behind a firewall. In situations where it is feasible, this approach 
limits the scope of outside threats, and correspondingly lessens the work of administrators. A 
Grid computing environment can present problems with this type of enclosed cluster, 
however, as Grid jobs can be allocated nodes on multiple clusters, all of which may have to 
intercommunicate. A more open design, with all nodes Internet accessible, is necessary to 
support this functionality. 

To prevent a potentially compromised machine from sniffing cluster communications, no 
unmanaged machines or machines with different security models should be allowed on the 
same network segments as any cluster computers. 

Centralized Software Configuration 
A tightly-constrained software environment on clusters is important for both performance 

and security. Only specific software should be installed on clusters and permitted programs 
must be current and patched. Recognizing the distinct types of cluster nodes as equivalence 
classes with regards to their configuration can ease administration and bolster cluster 
security. By restricting the available software on a given node type, fewer computers may be 
affected by the update of a given package. Moreover, certain classes of cluster nodes may 
receive higher priority based on the security impact of a compromise on them. Central 
configuration management can be implemented by either network mounting common files or 
by utilizing a mechanism for automatic distribution of such files to various subsets of the 
cluster as needed. Tools such as Cfengine [84], which exist for the purpose of centralized 
configuration management and repair in a general network setting, have been adapted for 
use in a cluster environment. 

Authentication 
Authentication on cluster machines is another area of security concern. Traditional means 

of authentication, like /etc/passwd and shadow files, present some configuration issues in 
any distributed system. The number of machines in a large cluster can create a problem with 
synchronizing these files in a timely manner. Therefore, when new users are added, or 
someone has a password change, all machines need to be updated. 

Public key mechanisms such as RSA authentication using SSH provide another means of 
security. Here the user manages their own keys which are kept in their home directories. 
Public key systems such as these, while cryptographically secure, rely on the users 
protecting their private key, and adding additional protection with the use of a passphrase on 
their key. Many users will forego this last step, instead preferring the ease of a passwordless 
login. 

Centralized authentication methods like Kerberos are typically used in cluster 
environments. Using a service like Kerberos users can authenticate once and then have 
access to any cluster resource they are authorized to use. Kerberos and related systems 
also provide better protection of user authenticators and can enforce varying policies on 
passwords for users (length, character classes, expiration, etc.). 

PKI systems provide another means for maintaining cluster security. It is becoming more 
common in cluster environments for users to authenticate with something like X.509 
certificates to authenticate to services. One of the current drawbacks of PKI is that you are 
placing the responsibility on the users to protect their keys, and users may not be very 
security conscious. 

It is always possible for an intruder to masquerade as an authorized user. This can be 
achieved by exploiting protocol flaws, or by local keyboard sniffing for passwords. Thus root 
access to a cluster should demand a higher standard of security. Under no circumstances 
should remote root logins be permitted, only direct console access. 
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Intrusion Detection Systems 
Host-Based Intrusion Detection Systems (HIDS) such as Tripwire [85] are commonly used 

to monitor high-value assets such as clusters. Tripwire is typically configured to report file 
and operating systems changes once every 24 hours. While Tripwire is reliable, it has 
usability problems due to the cryptic nature of its reports as well as false positives. In the 
context of clusters, Tripwire makes no priority distinctions between different nodes, so that 
security staff has a difficult time obtaining situational awareness of file/operating system 
changes when considering a cluster as one system. Since Tripwire reports all file/operating 
system changes, many of the alerts it generates are actually legitimate user or system 
administration activity. Faced with a large volume of false positives, a cluster administrator 
making changes across a large number of nodes will often disable an HIDS for significant 
periods of time. 

While an HIDS is capable of detect signs of intrusion, ultimately their reports must be 
validated since it is possible (and likely) that upon a successful root-level compromise, an 
intruder will replace the binaries used by that system. Network-based Intrusion Detection 
Systems (NIDS) can be used to verify the output from individual hosts, in addition to 
scanning for generally suspicious traffic. NIDS passively monitor network flows, and can be 
configured to send alerts if traffic matching attack signatures are detected. Neither HIDS or 
NIDS have been adapted for the unique cluster environment. 

Packet Filtering 
It is possible to individually firewall each host to specifically tailor cluster node access. 

Pfilter [86] compiles security policies into either iptables or ipchains rule sets for Linux. While 
the advantages in using an automated tool like Pfilter in larger cluster environments may be 
clear, cluster administrators are often reluctant to firewall cluster nodes aggressively due to 
concerns of either performance or user inconvenience. In a Grid-enabled cluster, or a cluster 
where the policy is to allow users relatively free reign in the used of allocated nodes, 
firewalling individual nodes may be unacceptable without some provision for dynamically 
adjusting firewall rules on a per-host basis. 

4.2.3. Cluster Security – Open Challenges 

A cluster encompasses a collection of distributed resources: multiple layers including 
applications, middleware, operating systems, and network interconnects must all be 
coherently protected. While locking down a cluster by disabling services is desirable from a 
security perspective, cluster resources are meant to be used, so there is the resource 
management challenge of allowing users to consume resources in an authorized way. 

Clusters represent a heterogeneous management environment composed of different 
hardware and software node configurations, presenting the challenge of integrating different 
security solutions (vendor or open source) with a goal of comprehensive security solutions 
across the entire cluster. Further, there are large scale management requirements. As the 
size of clusters continues to increase, installing, monitoring, and maintaining clusters 
becomes a challenge since any misconfiguration or inconsistency potentially becomes an 
exploitable vulnerability. We are beyond the point where typically-sized clusters can be 
managed manually without automation support. The current state-of-the-art has automated 
cluster tools available for performance management; the challenge is developing automated 
cluster tools for security management. 

Distributed Security Infrastructure (DSI) 
The DSI project [87] targets the distributed access control service. DSI began as a 

research project to support different security mechanisms to address the needs of 
telecommunications applications running on carrier-class Linux clusters. For the time being, 
DSI provides distributed mechanisms for access control, security management, and 
authentication. 
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The Distributed Security Infrastructure contains one security server (SS) and a security 
manager (SM) on the remaining cluster nodes. The SS is responsible for distributed security 
management of the cluster. It will propagate the security policy and communicate via alarms 
and messages with the SMs on the nodes. Communication is done over the Secure 
Communication Channel (SCC). The SCC communications are encrypted using SSL/TLS 
over CORBA. 

The versatility of DSI is in fine-grained control that can be enforced on the node by the 
SMs. Various structures in the kernel such as sockets and processes can be assigned a 
security context identifier (ScID). ScIDs are global over the cluster and persistent. ScIDs are 
meant to group together processes that have the same security context. So, contrary to 
PIDs, SsIDs do not uniquely identify processes but security contexts. Similarly, each node is 
assigned a security node identifier SnID. Hence, the distributed security policy (DSP) 
consists of a list of rules to be applied to (SnID, ScID) pairs. 

For security mechanisms to be effective, users should not be able to bypass them. Hence, 
the best place to enforce security is at kernel level. Therefore, when necessary, all security 
decisions are implemented at kernel level, in the DSI Security Module (DSM). DSM is a set 
of kernel functions enforcing distributed security policy, and is implemented using LSM [88] 
as a Linux kernel module. As future work, in order to use the mainstream Linux tools, we 
consider using SELinux instead of our internally developed DSM Linux kernel module. 

As presented in Section 3, there is need for compartmentalization in large distributed 
applications. In order to compartmentalize large applications, DSI uses ScIDs to implement 
different virtual security zones. These security zones are defined with a process level 
granularity across the entire cluster. They are based on the process type and the node on 
which they are executing. A process instance can belong to different security zones. For 
example, the instances of the same process type can be defined in different security zones 
depending on which cluster node they are running. ScIDs do not identify different instances 
of a process type, but rather define the security zone they belong to. The security rules are 
defined in a central security policy file: Distributed Security Policy (DSP). They define the 
possible interactions between different security zones in the entire cluster. The DSP file can 
be used by the administrator to define a homogeneous view of the cluster. This is particularly 
convenient for the carrier-class clusters which are not running a wide range of applications – 
this makes it possible to predefine interactions between different zones. This flexible 
mechanism can be used to confine untrusted software or in an extreme case run them inside 
a sandbox. DSP changes are automatically propagated to all nodes of the cluster. The 
security managers are in charge of communicating these new rules to the local DSM 
providing a dynamic evolution of security behavior of the cluster. 

4.3. Peer-to-Peer (P2P) Computing 
A peer-to-peer system is defined as a distributed system in which network-addressable 

computing elements called peers have comparable roles and responsibilities, communicate 
information, share or consume services and resources between them. The ability of peer-to-
peer systems to harness vast amounts of storage from a scalable collection of autonomous 
peers and its emphasis on de-centralization and lack of a central authority have made it an 
attractive systems solution to everyday home computer users, who seem empowered by the 
ability to independently select and change their own policies, roles, and responsibilities. By 
allowing peers to share a portion of the authority, these systems also possess other 
interesting technical characteristics such as self-organization and adaptation. 

Peer-to-peer communities provide a method for arranging large numbers of peers in a self 
configuring peer relationship based on declared attributes (or interests) of the participating 
peers. This method is expected to have an impact on sharing of resources, pruning of search 
spaces, and trust relationships amongst peers in the network. 
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4.3.1. Introduction to P2P Security Problems 

Security is one of most important considerations when architecting, deploying, or 
integrating P2P applications or products. The very nature of P2P indicates that nodes are 
organized in a flat structure. This means that there is no one single fixed super-server that is 
responsible for routing or servicing calls and requests from client applications. In the 
conventional setting, as is in the current web application model, a variety of security means 
and tools can be applied on the super-server, such as logging, filtering – both IP and domain 
level, authentication – username/password, token level, reciprocal, PKI, challenge keys, etc, 
OS hardening, and frozen image – like Tripwire, etc. However, it will be much more difficult to 
apply similar measures to a P2P environment, since there is no one single fixed super-server 
or a guaranteed repository of metadata. Similarly, the difficulty to set up a uniform security 
policy and/or security standard makes P2P computing even more prone to security issues 
and hacking. Therefore, P2P security issues must analyzed with utmost care. 

 
 

First to understand how data is transferred on the 
internet, we need to look at the SS7 (Signaling 
System 7) stack and protocol widely used by the 
telecommunication industry. As shown in figure 4.4, 
the SS7 separates data communication into 7 layers 
namely Physical, Data, Network, Transport, 
Session, Presentation, and Application. 

The Physical layer depends on the underlying 
hardware and network connections like wiring and 
switches. The Data Link layer talks about packet 
specifications and issues, such as packet format, 
header, CRC checks (Cyclic Redundancy Code), 
error handling, data flow control, etc. The Network 
layer talks about message routing and control. For 
majority of P2P application developers and users, 
what’s more interesting are the 4 upper layers which 
sit on the top of the network layer.  

 
Figure 4.4: SS7 layers architecture 

 
There are a variety of transport protocols available to guarantee the data integrity and 

validity. For example, there are HTTPS (secure hyper-text transfer protocol), SSL (secure 
socket layer), TLS (transport layer security), etc. Majority of which uses encryption to protect 
the data. A decision to use which or to not even use encryption will be up to the P2P 
application designer. Management of encrypted data requires more resources and 
consequently, performance penalty could be the counterweight to use encryption. 

At the session level, a channel between P2P endpoints must be established, identified, 
and authenticated to the network. How long to keep a session valid or a connection alive will 
depend on the nature of the protocol running, the network refresh rate, availability and cost of 
other system resources, as well as fluctuation in the number of concurrent connections. 

At the presentation and application layers, security requirements become more desirable 
as there are user interactions. An important point to consider for a P2P system is that nodes 
are transient and not constant meaning that peer and peer-groups can come and go as wish. 
The storage of the authentication tokens and user-identities is a complex issue, whether they 
should be stored locally, on the super-peer, broadcasted regularly, or even to be defined by 
default. 
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4.3.2. P2P Security – State-of-the-Art 

Secure nodeId Assignment 
In the original design of Pastry [60], and in many other P2P systems [61-63], nodeIds are 

chosen at random from the space of all identifiers (i.e., for Pastry, a randomly chosen 128-bit 
number). The problem with such a system is that a node might choose its identifier 
maliciously. A coalition of malicious nodes that wishes to censor a specific document could 
easily allocate itself a collection of nodeIds closer to that document’s key than any existing 
nodes in the system. This would allow the coalition to control all the replica roots for that 
document, giving them the ability to censor the document from the network. Likewise, a 
coalition could similarly choose nodeIds to maximize its chances of appearing in a victim 
node’s routing tables. If all the outgoing routes from a victim point to nodes controlled by the 
coalition, then all of the victim’s access to the overlay network is mediated (and possibly 
censored) by the coalition. It’s necessary, therefore, to guarantee that nodeIds are assigned 
randomly. 

The simplest design to perform secure nodeId assignments is to have a centralized 
authority that produces cryptographic nodeId certificates, a straightforward extension to 
standard cryptographic techniques: rather than binding an e-mail address to a public key, 
these certificates instead bind a nodeId, chosen randomly by the server, to a public key 
generated by the client machine. The server is only consulted when new nodes join and is 
otherwise uninvolved in the actions of the P2P system. As such, such a server would have 
no impact on the scalability or reliability of the P2P overlay. 

Regardless, to make such a design work, we must concern ourselves with Sybil attacks 
[64], wherein a hostile node or coalition of nodes might try to get a large number of nodeIds. 
Even if those nodeIds are random, a large enough collection of them would still give the 
attackers disproportionate control over the network. The best solution we currently have to 
this problem is to moderate the rate at which nodeIds are given out. Possible solutions 
include charging money in return for certificates or requiring some form of external 
authentication. While it may be possible to use some form of cryptographic puzzles [65], 
these still allow attackers with large computational resources to get a disproportionate 
number of nodeIds. 

An open problem is assigning random nodeIds without needing a centralized authority. We 
considered a number of possibilities, including variations on cryptographic puzzles and multi-
party bit-commitment schemes. Unfortunately, all such schemes appear to open the 
possibility that an attacker can rejoin the network, repeatedly, and eventually gain an 
advantage. 

Ejecting Misbehaving Nodes 
Existing models and simulations show Pastry can route successfully when as many as 

30% of the nodes in the P2P overlay network are malicious. However, it would be preferable 
to have mechanisms to actively remove malicious nodes when they are detected. An 
interesting open problem is how to remove a malicious node from the overlay. While all P2P 
overlays must have provisions for recovering when a node fails, we would like these 
mechanisms to be invocable when a node is still alive and functioning. When one node 
accuses another of cheating, there needs to be some way that it can prove its accusation, in 
order to convince other nodes to eject the malicious node from the network. 

While such a proof may be generated at the application layer, it’s not clear how such a 
proof could be generated at the routing layer. If a node is simply dropping messages with 
some probability or is pretending that perfectly valid nodes do not exist, such behavior could 
also be explained by failures in the underlying Internet fabric. Addressing this, in general, is 
an interesting open problem. 
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Trust in P2P Overlays 
P2p systems generally require a remarkable amount of trust from their participants. A node 

must trust that other nodes implement the same protocols and will respect the goals of the 
system. In previous sections, we have discussed how mechanisms can be developed to 
work around a certain percent of the nodes violating the rules, but there are many other 
aspects where trust issues arise. 

Popularity When documents are requested based on keywords, rather than 
cryptographically strong hashes, it becomes possible for an adversary to spoof the results. 
The recording industry, in particular, has apparently been deploying “decoy” music files in 
p2p networks that have the same name as music files by popular artists. The decoy files 
have approximately the correct length, but do not contain the desired music. Similar issues 
have traditionally hurt search engines, where any page with a given search term inside it had 
an equal chance of appearing highly on the search results. The best solution to the search 
engine problem, as used by Google’s PageRank technology, has been to form a notion of 
popularity. For Google, pages that are linked from “popular” pages are themselves more 
popular. An interesting issue is how to add such a notion of popularity into a p2p storage 
system. It might be possible to extend the audit logs, from Section 4.2, to allow nodes to 
indicate the value, or lack thereof, of a given file. If users can then rank each others rankings, 
this could potentially allow the creation of a system comparable to Google’s PageRank. 

Code Fundamentally, p2p systems require the user to install a program on their computer 
that will work with other p2p nodes to implement the system. Since many applications can be 
built on a generic p2p substrate, an interesting issue becomes how to distribute the code to 
support these p2p applications. Users should not necessarily trust arbitrary programs, written 
by third parties, to run on their system. Recently, some commercial p2p systems were 
discovered to redirect sales commissions from online purchases to the P2P developers [66] 
and might also sell the use of CPU cycles on a user’s computer to third parties, without the 
user getting any reimbursement [67]. Why should a user arbitrarily grant such privileges to 
P2P code? In many respects, this same problem occurred with active networks [68], except, 
in those systems, the computational model could be restricted [69]. For P2P systems, where 
applications can perform significant computations and consume vast amounts of disk 
storage, it would appear that a general-purpose mobile code security architecture [70] is 
necessary. 

Other Works 
P2P systems have been designed in the past to address numerous security concerns, 

providing anonymous communication, censorship resistance, and other features. Many such 
systems, including onion routing [71], Crowds [72], Publius [73], and Tangler [74], 
fundamentally assume a relatively small number of nodes in the network, all well-known to 
each other. To scale to larger numbers of nodes, where it is not possible to maintain a 
canonical list of the nodes in the network, additional mechanisms are necessary. Some 
recent P2P systems have also been developed to support censorship resistance [75] and 
anonymity [76, 77]. 

Sit and Morris [78] present a framework for performing security analyses of P2P networks. 
Their adversarial model allows for nodes to generate packets with arbitrary contents, but 
assumes that nodes cannot intercept arbitrary traffic. They then present a taxonomy of 
possible attacks. At the routing layer, they identify node lookup, routing table maintenance 
and network partitioning / virtualization as security risks. They also discuss issues in higher-
level protocols, such as file storage, where nodes may not necessarily maintain the 
necessary invariants, such as storage replication. Finally, they discuss various classes of 
denial-of-service attacks, including rapidly joining and leaving the network, or arranging for 
other nodes to send bulk volumes of data to overload a victim’s network connection (i.e., 
distributed denial of service attacks). 

Dingledine et al. [79] and Douceur [64] discuss address spoofing attacks. With a large 
number of potentially malicious nodes in the system and without a trusted central authority to 
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certify node identities, it becomes very difficult to know whether you can trust the claimed 
identity of somebody with whom you have never before communicated. Dingledine proposes 
to address this with various schemes, including the use of micro-cash that allow nodes to 
build up reputations. 

Bellovin [80] identifies a number of issues with Napster and Gnutella. He discusses how 
difficult it might be to limit Napster and Gnutella use via firewalls, and how they can leak 
information that users might consider private, such as the search queries they issue to the 
network. Bellovin also expresses concern over Gnutella’s “push” feature, intended to work 
around firewalls, which might be useful for distributed denial of service attacks. He considers 
Napster’s centralized architecture to be more secure against such attacks, although it 
requires all users to trust the central server. 

4.4. Pervasive/Ubiquitous Computing 
Marc Weiser [89] painted a picture of computing technology weaving itself in to the very 

fabric of everyday life, to the point where it is impossible to define the boundaries of 
computing technology. Weiser’s argument was that we need to get rid of the box to see a 
truly seamless integration of computing in people’s working, domestic, and leisure lives. He 
put forward the view that ubiquity will have been achieved only when computing has become 
invisible (i.e., microprocessors are embedded in the everyday object we use but we are 
largely unaware of it) and there is “intelligent”communication between the objects that 
“anticipate” our next move. After that, technology has advanced along many dimensions, 
especially in hardware progress and wireless communication technologies. A number of 
leading technological organizations are exploring Pervasive Computing. But it is far from 
Weiser’s vision become reality. Pervasive Computing will be the future. Pervasive computing 
will be a fertile source of challenging research problems in computer systems for many years 
to come. 

4.4.1. Introduction to Security 

The security of pervasive/ubiquitous computing refers to establish mutual trust between 
infrastructure and device in a manner that is minimally intrusive. In such environment, a 
smart device can recognize the user through a sort of Universal Remote Control which the 
user keeps secured. Secure transient association is used when the user is deploying devices 
and imprinting can be used to establish shared secret. 

There are interesting and challenging problems in providing consistency in the 
management of security and in specifying authorization policies for pervasive/ubiquitous 
computing environments. Security can be implemented in heterogeneous components such 
as firewalls, different computer operating systems and multiple databases. The 
pervasive/ubiquitous computing system should support secure sensitive or high-value 
transactions and verifies that messages were not modified while in transit from queue to 
queue.  

Authentication is one of the most important characteristics of ubiquitous computing 
security. Authentication provides confirmation of user access rights and privileges to the 
information to be retrieved. During the authentication process, a user is identified and then 
verified not to be an imposer. The authentication process is the assurance process that a 
party to some computerized transaction is not an impostor. 

4.4.2. Pervasive/Ubiquitous Computing Initiatives 

Both academia and industry have recently advanced pervasive/ubiquitous computing 
projects. Although our selection is far from exhaustive, it suggests the current state of the art 
in pervasive computing. 
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Aura 
Carnegie Mellon University characterizes its Aura project [91] as “distraction free 

ubiquitous computing.” The project aims to design, implement, deploy, and evaluate a large 
scale computing system demonstrating a “personal information aura” that spans wearable, 
handheld, desktop, and infrastructure computers. 

Aura is a large umbrella project with many individual research thrusts. Darwin is an 
intelligent network at Aura’s core. Coda is a distributed file management system that 
supports nomadic file access, and Odyssey provides operating system support for resource 
adaptation. 
These products and others are evolving within the Aura project, which emphasizes pervasive 
middleware and application design. 

Endeavour 
The University of California at Berkeley’s Endeavour project [92] is an academic effort that 

focuses on the specification, design, and prototype implementation of a planet scale, self-
organizing, and adaptive “information utility.” This smart environment is pervasive – 
everywhere and always there – with components that flow through the infrastructure, shape 
themselves to adapt to their usage, and cooperate on tasks. 

Endeavour’s key innovative technological capability is its pervasive support for fluid 
software. It includes processing, storage, and data management functionality to arbitrarily 
and automatically distribute itself among pervasive devices and along paths through scalable 
computing platforms that are integrated with the pervasive networking infrastructure. The 
system can compose itself from pre-existing hardware and software components to satisfy a 
service request while advertising the services it can provide to others. 

Oxygen 
The Oxygen project [93], an MIT initiative, envisions a future in which computation will be 

freely available everywhere, like oxygen in the air we breathe. The project rests on an 
infrastructure of mobile and stationary devices connected by a self-configuring network. This 
infrastructure supplies abundant computation and communication, which are harnessed 
through system, perceptual, and software technologies to meet user needs. 

The Oxygen project is focusing on eight environment-enabling technologies. Its emphasis 
is on understanding what turns an otherwise dormant environment into an empowered one to 
which users shift parts of their tasks. 

Portolano 
In its Portolano project [94], the University of Washington seeks to create a test-bed for 

investigating pervasive computing. The project emphasizes invisible, intent-based 
computing, which infers users’ intentions via their actions in the environment and their 
interactions with everyday objects. 

Project devices are highly optimized to particular tasks so that they blend into the world 
and require little technical knowledge on the user’s part. In short, Portolano proposes an 
infrastructure based on mobile agents that interact with applications and users. Data-centric 
routing automatically migrates data among applications on the user’s behalf. Data thus 
becomes “smart,” and serves as an interaction mechanism within the environment. 

Sentient Computing 
AT&T Laboratories, Cambridge, UK, is collaborating with the Cambridge University 

Engineering Department on the Sentient Computing project [95]. The project explores user 
interfaces that employ sensors and resource status data to maintain a world model shared by 
users and applications. 

The world model for the Sentient Computing project covers an entire building. Interfaces to 
programs extend seamlessly throughout the building. Computer desktops follow their owners 
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and reflect real-time updates for object locations. This project has led to some new kinds of 
applications, like context-aware filing systems and smart posters. 

Cooltown 
Hewlett-Packard’s pervasive computing initiative, Cooltown [96], focuses on extending 

Web technology, wireless networks, and portable devices to create a virtual bridge between 
mobile users and physical entities and electronic services. 

Cooltown uses URLs for addressing, physical beaconing and sensing of URLs for 
discovery, and localized Web servers for directories to create a location-aware system that 
supports nomadic users. It leverages Internet connectivity on top of this infrastructure to 
support communications services. 

EasyLiving 
The EasyLiving project [97] of Microsoft Research’s Vision Group is developing an 

architecture and related technologies for intelligent environments. The project supports 
research addressing middleware, geometric world modeling, perception, and service 
description. Key system features include computer vision, multiple sensor modalities, 
automatic and semiautomatic sensor calibration, and device-independent communication 
and data protocols. 

WebSphere Everyplace 
IBM’s pervasive computing work focuses on applications and middleware that extend its 

WebSphere software platform (www-3.ibm.com/software/pervasive/). The company is 
spearheading consortia and initiatives for open standards to support pervasive computing 
applications. It is also working with hardware vendors such as Palm (www.palm.com), 
Symbol Technologies (www.symbol.com), and Handspring (www.handspring.com) to 
develop a new generation of devices. 

4.4.3. Issues and Challenges 

As a superset of mobile computing, pervasive/ubiquitous computing subsumes mobile 
computing research issues while opening up new ones unique to itself. In all cases, 
pervasive applications should disappear into the environment. 

Privacy  
Protecting the privacy of users is of central importance. In a ubiquitous computing 

environment, sensors are actively collecting user data, much of which can be very sensitive 
and valuable. The data collected will often be streaming at high rates (video and audio) and it 
must be dealt with in real-time. In addition, there could be hundreds of tiny computers in 
every room, all capable of sensing people near them.  

How is privacy maintained when location and activity are tracked (and predicted) by the 
environment? Imagining that there many computers linked by high-speed networks where 
messages can be intercepted and recorded by unauthorized people. Effective solutions for 
controlling access to data in such technology-rich environments remain to be a challenge for 
some time to come.  

Scalability 
Future pervasive/ubiquitous computing environments will likely face a proliferation of 

users, applications, networked devices, and their interactions on a scale never experienced 
before. As environmental smartness grows so will the number of devices connected to the 
environment and the intensity of human-machine interactions. 

Traditional development requires recreating the application for each new device. Even if 
an enterprise could generate new applications as fast as it adds new devices, writing 
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application logic only once – independent of devices – would have tremendous value in 
solving the applications scalability problem.  

Furthermore, applications typically are distributed and installed separately for each device 
class and processor family. As the number of devices grows, explicitly distributing and 
installing applications for each class and family will become unmanageable, especially 
across a wide geographic area. 

Heterogeneity 
Conversion from one domain to another is integral to computing and communication. 

Assuming that uniform and compatible implementations of smart environments are not 
achievable, pervasive computing must find ways to mask this heterogeneity – or uneven 
conditioning,3 as it has been called – from users. For instance, a sophisticated laboratory 
and a department store may always differ in their infrastructural smartness. Pervasive 
computing must fill this gap at some level, say middleware, to smooth out “smartness jitter” in 
the user’s experience. 

For networking, developers have faced protocol mismatch problems and learned how to 
tackle the large dynamic range of architectural incompatibilities to ensure trans-network 
interoperability. Mobile computing has already achieved disconnected operation, thereby 
hiding the absence of wireless coverage from the user. Middleware may borrow similar 
concepts to dynamically compensate for less smart or dumb environments so that the 
change is transparent to users. 

But the real difficulty lies at the application front. Today, applications are typically 
developed for specific device classes or system platforms, leading to separate versions of 
the same application for handhelds, desktops, and cluster-based servers. As heterogeneity 
increases, developing applications that run across all platforms will become exceedingly 
difficult. 

Integration 
Though pervasive computing components are already deployed in many environments, 

integrating them into a single platform is still a research problem. The problem is similar to 
what researchers in distributed computing face, but the scale is bigger. As the number of 
devices and applications increases, integration becomes more complex. For example, 
servers must handle thousands of concurrent client connections, and the influx of pervasive 
devices would quickly approach the host’s capacities. We need a confederation of 
autonomous servers cooperating to provide user services. 

Integrating pervasive computing components has severe reliability, quality of service, 
invisibility, and security implications for pervasive networking. The need for useful 
coordination between confederation components is obvious. This coordination might range 
from traditional areas such as message routing or arbitrating screen usage to new 
challenges such as deciding which application can use a room’s light intensity to 
communicate with the user. For a wide area federation, message access is the primary 
requirement. Routing between servers introduces the possibility of messages from a single 
producer using multiple paths and, hence, arriving at a consumer out of order or duplicated. 

Invisibility 
A system that requires minimal human intervention offers a reasonable approximation of 

invisibility. Humans can intervene to tune smart environments when they fail to meet user 
expectations automatically. Such intervention might also be part of a continuous learning 
cycle for the environment. To meet user expectations continuously, however, the 
environment and the objects in it must be able to tune themselves without distracting users at 
a conscious level. 

A smart environment can implement tuning at different system levels. For example, 
network-level devices will require auto-configuration. Current manual techniques for 
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configuring a device with addresses, subnet masks, default gateways, and so on are too 
cumbersome and time-consuming for pervasive computing. 

Automated techniques to dynamically reconfigure the network when required are also 
crucial to realizing the pervasive computing vision. 

Perception: Context awareness 
Most computing systems and devices today cannot sense their environments and 

therefore cannot make timely, context-sensitive decisions. Pervasive computing, however, 
requires systems and devices that perceive context. Mobile computing addresses location- 
and mobility-management issues but in a reactive context – responding to discrete events. 
Pervasive computing is more complex because it is proactive. Intelligent environments are a 
prerequisite to pervasive computing. 

Perception, or context-awareness, is an intrinsic characteristic of intelligent environments. 
Implementing perception introduces significant complications: location monitoring, 
uncertainty modeling, real-time information processing, and merging data from multiple and 
possibly disagreeing sensors. The information that defines context awareness must be 
accurate; otherwise, it can confuse or intrude on the user experience. 

ComMotion, a location-aware computing environment that addresses these issues for 
mobile users, is under development at the MIT Media Lab [90] Microsoft Research is 
investigating Radar7 an in-building location-aware system. 

Smartness: Context management 
Once a pervasive computing system can perceive the current context, it must have the 

means of using its perceptions effectively. Richer interactions with users will require a deeper 
understanding of the physical space. 

Smartness involves accurate sensing (input) followed by intelligent control or action 
(output) between two worlds, namely, machine and human. For example, a pervasive 
computing system that automatically adjusts heating, cooling, and lighting levels in a room 
depending on an occupant’s electronic profile must have some form of perception to track 
the person and also some form of control to adjust the ventilation and lighting systems. 

4.5. Mobile Computing 
Mobile computing, that is the ability of having computing and communication abilities on 

the move, depends on the existence of a suitable distributed systems infrastructure. So, 
security considerations of mobile computing can be seen as extensions to those of 
distributed computing. The security issues in mobile computing are therefore examined on 
the basis of known security issues of information systems. 

Security of distributed systems  
Security of distributed systems is a critical issue, as it is difficult to provide in such an 

environment physically secure communication and to co-ordinate multiple management 
policies. A distributed system is susceptible to a number of threats both from legitimate users 
of the system and from intruders. Two general types of security threats are the host 
compromise and the communication compromise. Host compromise security threats refer to 
various degrees of subversion of individual hosts. Possible attack categories are the 
followings: 
 

• Masquerading: when a user is masquerading as another to gain access to a system 
object to which he is not authorized. 

• Unauthorized use of resources: when a user is accessing system object without 
having authorization. This situation may lead to theft of computing resources or 
improper use of information.  

• Disclosure of information: unauthorized reading of stored information.  
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• Alteration of information: unauthorized writing into stored information.  
• Denial of service: the attacker acts to deny resources or services to entities which are 

authorized to use them, e.g. by locking a file.  
 

The communication compromise security threats refer to threats associated with message 
communication. Possible attacks can be categorized as follows: 
  

• Masquerading: when a user is deceiving about its real identity. Masquerading may 
lead to impersonation.  

• Unauthorized use of resources: when a user is accessing a network component 
without have being authorized. This situation may lead to theft or improper use of 
communication resources.  

• Interception: The opponent gains access to the data transmitted over the 
communication link. Two types of interception are distinguished: disclosure of 
information (the opponent obtains information transmitted over the link), and traffic 
analysis (the opponent observes the message patterns and derives information about 
the identities and locations of the communicating parties, the message frequency and 
length, etc.).  

• Alteration of resources and information: The opponent modifies the messages 
transmitted, alters their sequence or delays them. Unauthorized alteration of 
information may occur through active wire-tapping. This threat may also involve 
unauthorized introduction (removal) of resources into (from) a distributed system.  

• Fabrication: The opponent inserts information into the communication link. A special 
type of this attack is replay of old messages in order to mislead the communicating 
parties.  

• Repudiation of actions: This is a threat against accountability. A repudiation attack 
may occur whereby the sender (receiver) of a message denies having sent (received) 
it. 

• Denial of service/Interruption: The attacker prevents the easy transmission of 
information.  

 
Finally, the security functions and controls that can be used in distributed systems include:  

 
• Identification and Authentication: Authentication information and mechanisms that 

involve trusted third parties (passwords, cryptographic techniques, challenge-
response techniques).  

• Access control and Authorization: Access control information, access control rules, 
delegation.  

• Information confidentiality: Confidentiality mechanisms (encryption) and attributes 
(secret keys, public and private keys).  

• Information integrity: Integrity mechanisms that provide generation and verification of 
integrity checks.  

• Non-repudiation: (e.g. through digital signatures).  
• Auditing and Accountability.  
• Availability and Prevention of Denial of Service. 

Security in mobile unit extensions  
When distributed systems include mobile parts, we face several additional security 

problems. Usually those that stream from distributed systems gain interest, for example 
delegation, while others, as for example authentication and encryption, must eliminate the 
system load they produce as a result of their completeness. Some properties of mobile 
computing systems that also affect security are broadcast base communications (ease 
accessible to eavesdroppers), crossing boundaries of administration domains with high 
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heterogeneity, disconnections, physical constraints of mobile devices, high dependence on 
the infrastructure, highly distributed environment, etc.  

Security and delegation  
The security provisions used in mobile computers must operate in a dynamic and fluid 

communication environment. Furthermore, the sub-networks may be physically distributed 
and may not geographically overlap. Thus, a computer may have to switch communications 
between different kinds of sub-networks and it may become disconnected as it moves. The 
ability to delegate limited authority is essential to realize security in a ubiquitous computing 
environment. A delegation is a temporary permit issued by the delegator and given to the 
delegate who becomes limited authorized to act on the delegator's behalf.  

Delegation is a well understood problem but there are special considerations for mobile 
systems that these existing approaches do not address. The usual requirements for a 
general delegation scheme include:  
 

• Revocation: the delegator must have the ability to cancel delegations it has issued.  
• Cascading: the delegate must have the option to create delegations on the 

delegator's behalf.  
• Restriction: The delegator must be able to limit the rights granted by any delegation.  

 
The delegation for mobile computers has, however, the following additional requirements:  

 
• Disconnected Delegates: Since a client may disconnect after issuing a delegation, 

delegations must succeed even if the delegator is currently not attached.  
• Low Resource Usage: It is crucial that bandwidth and host resource usage be 

minimized.  
• Frequent Creation and Revocation: Delegations may be issued and revoked 

frequently as mobile hosts detach and reattach to the system. 
• Interoperability: Delegation should be as independent of the underlying protocols and 

system software as possible to promote interoperability. 

Security and mobility  
In mobile computing it is sometimes difficult to achieve the required isolation and self-

efficiency due to the relatively limited resources available to a mobile unit, which makes it 
necessary to communicate with the mobile support station. The mobility of users and data 
that they carry introduces, therefore, security problems from the point of view of the location 
of a user and the secrecy and authenticity of the data exchanged. A user on a mobile 
wireless network may choose, for example, to have the information concerning his existence 
treated as being confidential. That is a user may choose to remain anonymous to the 
majority of other users on the network, with the exception of a select number with whom the 
user often interacts.  

Another potential security problem lies in the possibility of information leakage, through the 
inference made by an attacker masquerading as a mobile support station, who may issue a 
number of queries to the database at the user's home node or to database at other nodes, 
with the aim of deducing parts of the user's profile containing the patterns and history of the 
user's movements.  

Related to the management of these databases is the issue of replication of certain 
parameters and user profiles with the aim of replicating the environments surrounding the 
user. Thus, as the user roams across zones, the user must not experience degradation in the 
access and latency times.  

In general, as sensitive data is replicated across several sites, the security risks are also 
increased due to the multiplication of the points of attack.  
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Security and disconnections  
Differing levels of disconnection may be introduced, ranging from the normal connection to 

connections using low bandwidth channels. A crucial aspect of disconnection is the elective 
or non-elective nature of a disconnection. Security and integrity problems may occur in the 
case of frequent disconnections caused by hand-offs that occur when the mobile unit crosses 
zones/cells. 

The transition from one level of disconnection to another may present an opportunity for an 
attacker to masquerade either the mobile unit or the mobile support station. An attacker 
should not be able to 'hijack' the communications of a mobile unit which is stepping-down its 
level of connection and then masquerading as the mobile unit. Similarly, an attacker must not 
masquerade as a mobile support station to a mobile unit that is about to step-up its level of 
connection.  

4.6. Security Shortcomings in Existing Systems 
 The severe problem in the various security mechanisms, described in the previous 
sections, is the non-existence of the consideration of all the typical parameters of large scale 
open networked systems. These security solutions are generally inherited from the previous 
technologies and the designers and developers have tried to adapt them to these 
contemporary computing systems. 
 Our vision to handle the security issues of the emerging large scale open networked 
systems and applications is to develop a comprehensive security architecture based on the 
specific security requirements of these systems. The characteristics of these systems 
include: 
 

1. Heterogeneity of the system components 
2. Diversity of the set of security services 
3. Large set of users with varied security requirements 
4. Extensive negotiations between the applications and the resources/stakeholders 
5. Establishment of security relations without relying on central infrastructure 
6. Etc. 

 
Based on these specific characteristics, we have proposed a security architecture 

(described in chapter 5) that employs the concept of virtualization of security services to 
handle the problem of heterogeneity of the system components and diverse nature of the 
security services. A security handler is used to absorb the heterogeneity of the underlying 
architecture and to provide a homogeneous interface to the user applications. The varied 
security requirements of the users are satisfied by the configurable/pluggable nature of the 
security services so that different kind of users can invoke the set of services they are 
interested in. We have proposed the concept of ‘Security broker’ that performs the security 
negotiations like a resource broker in a distributed system dispatches various jobs to the 
most suitable resource of the system. We have also employed security bootstrapping to 
setup security relations in these environments without requiring the user to be an expert and 
without relying on central infrastructure. 

The details of our proposed security architecture and its salient features are elaborated in 
the following chapter. 
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Chapter 5 
 

Proposed Architecture 
 
 
 
 
 
 

5.1. Overview 
In the large scale distributed systems, like computational Grid, the need for efficient and 

secure data transportation over potentially insecure channels creates new security and 
privacy issues, which are exacerbated by the heterogeneous nature of the collaborating 
resources. Traditional security approaches require adequate overhauling to address these 
paradigms. In this thesis, we propose a new two-pronged approach to address these security 
issues – VIPSEC: Virtualized and Pluggable Security Services Architecture. First, the 
virtualization of security services provides an abstraction layer on the top of the security 
infrastructure, which harmonizes the heterogeneity of underlying security mechanisms. 
Second, the configurable/pluggable nature of the various security services permits the users 
and resource providers to configure the security architecture according to their requirements 
and satisfaction level. This approach allows the security infrastructure to develop with 
minimal impact on the resource management functionalities. 

Since security implementations are more and more numerous and complex, it has become 
almost impossible for an inexperienced user to understand their meaning and especially how 
they should be used. Additionally, the heterogeneity of networks does not simplify the 
understanding and definition of a security system. Therefore, it is currently impossible to 
establish a security policy for a communication by using the low level properties of the 
different networks that are being crossed. The classical solution to this problem consists in 
setting up a secured high-level ciphered tunnel from end to end. This is acceptable in some 
situations, but it may not satisfy future evolutions of networks. The goal of virtualization is to 
reinstate security principles (transparency, responsibility, traceability, etc.), security 
objectives (integrity, availability, confidentiality, etc.), security policies (protection, deterrence, 
vigilance, etc.) and security functions (identification, authentication, access control, 
management of secret elements, privacy, etc.) in their rightful place. Virtualization aims at 
describing a policy and at refining it. Actually, a unique security policy cannot be 
implemented on several heterogeneous networks, architectures or environments. The 
current complexity of networks comes from the fact that on the one hand each element 
defines its own security policy in accordance with the security domain to which it pertains (a 
priori…), and on the other hand each security domain has its own security policy. In the 
virtual paradigm, the policy of the element (wherever it may be) shall be merged with the 
policy of the domain to which it belongs. Then, this policy will be automatically implemented 
depending on the available security functions. 

Virtualization is a powerful principle used in Computer Science to conceive of a 
heterogeneous computerized reality in a different manner by reducing its visible complexity. 
Indeed, virtualization enables attaching physical or logical resources that are incompatible, 
heterogeneous and exploded in order to render their heterogeneity invisible to certain 
subjects (such as the users), while at the same time, rendering them more attachable to 
other subjects, especially to the security hooks that will be able to capture these resources 
and handle them more efficiently. In practice, virtualization is created by adapted 
mechanisms that are distinctive every time. 
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 In general, it is achieved by masking a variety of dissimilar worlds or mechanisms. This 

veil erases the roughness of the computerized reality and enables the creation of logical 
hooks to get hold of the system components in a different and more efficient manner. 

 This could also take the form of a short-circuit. In this case, it will be an autonomous 
logical device superimposed on the existing system, enabling to smooth out or divert the 
normal functioning of the system. 

 
Virtualization is not only an abstraction since it also implements appropriate security 

functions (at the lowest level possible). Security policies of communicating elements will 
possibly be merged and implemented independently on every security domain along the 
communication path. This must be carried out without disturbing the existing structures and 
without creating a unique and inflexible world. Thanks to virtualization, security becomes 
conformable, slipped into the existing systems by adapting to it each time. Therefore, 
security must be tailored according to risk-taking (following the mission that one has set), i.e., 
the potential threats versus the decisions that we take. 

A virtualization engine is a black box, a “virtual machine” containing a mechanism that 
hides and dissimulates the complexity of several distinctive physical and logical IT resources. 
These virtual devices will operate on the original operating system. The virtual machines 
should be designed based on a “sandbox” security model, like the Java virtual machine. 

5.2. Virtualization 
The concept of virtualization in information technology finds its roots in the very earliest 

software. The first programmable digital computers dealt in the world of 0s and 1s – 
Programs were 0s and 1s, output consists of 0s and 1s. As a result, programming was very 
difficult and programs were quite opaque. Then the compiler programs came into existence 
that let programmers work with English-like (high-level) languages like COBOL. The compiler 
took the COBOL code, crunched it, and spit out the 0s and 1s object code that the computers 
actually understood. The COBOL compiler, therefore, virtualized the object code.  

As computers grew more powerful and complex, virtualization and encapsulation 
techniques continued to provide additional levels of abstraction. Timesharing mainframe 
computers allowed users to have virtual control of the machines. Another example is the 
graphical user interface, which provided virtual access to underlying system resources. 
Component architectures also provide virtual representations of distributed computing 
infrastructures. At every step, software allowed people to work with relatively simple tools 
that accessed complex systems behind the scenes. 

Service orientation, then, is an evolutionary step in this inexorable progression to the next 
level of abstraction for distributed computing. By encapsulating software components, 
applications, and underlying systems with Web Services Interfaces and then virtualizing 
these fine-grained functional Web Services into coarse-grained business Services, 
companies have agile IT infrastructures that provide business agility. 

5.2.1. Virtualization in the Context of Security Architecture 

From the security point of view, the virtualization of a service definition encompasses the 
security requirements for accessing that service. The need arises in the virtualization of 
security semantics to use standardized ways of segmenting security components (e.g., 
authentication, access control, etc.) and to provide standardized ways of enabling the 
federation of multiple security mechanisms. The benefits of having a loosely-coupled, 
language-neutral, platform-independent way of linking and securing applications within 
organizations, across enterprises, and across the Internet is fundamental to the problem set 
addressed by the large scale open services architecture. 
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5.2.2. Need of Virtualization 

The secure interoperability between virtual 
organizations demands interoperable 
solutions using heterogeneous systems. 
Virtualization permits each participating end-
point to express the policy it wishes to see 
applied when engaging in a secure 
conversation with another end-point. Policies 
can specify supported authentication 
mechanisms, required integrity and 
confidentiality, trust policies, privacy policies, 
and other security constraints. A security 
services handler is shown in figure 5.1 

 

 
 

Figure 5.1 : Security Services Handler 

The concept of virtualization of security services is needed to have the absolute freedom 
to choose the underlying security mechanisms. It could be extended to adapt country-specific 
legal requirements, population-based ethical issues, and the business-oriented interests. 
Moreover, virtualization could be used to achieve the best trade-off between security 
guarantees and processing capabilities.  

5.2.3. Advantages of Virtualization 

From a user’s point of view, usability is a decisive factor [98]. Hence, security architecture 
must provide a way that the user merely needs to have technical knowledge of the 
underlying security infrastructure. Virtualization facilitates the development of flexible, 
custom-designed hierarchical security model that responds to the security needs. It 
dynamically delivers high performance and statistically consistent level of the accessibility to 
security services. Virtualization introduces an abstraction layer to manage the complexity by 
defining security rules for the system that are applied whenever needed. 

In a virtualized security services environment, a user does not need to know which 
authentication mechanism (such as X.509 certificate, Kerberos ticket, etc.) he requires for 
accessing a remote node. If he is authorize to perform some operation(s) at the remote site 
then the security architecture will take care of the interpretation of credentials for the various 
sites. 

Virtualization is a gimmick, an artifice enabling to keep the standards in place and improve 
them by providing additional functions, without, however changing anything in the existing 
setup. Virtualization makes it possible to coexist with the pre-existing structures that will be 
utilized by default, utilizing the diverted systems only by request. Virtualization also enables 
to act in the opposite way, by subordination to the additional functions by default, while 
relegating the normal and standard functions to exception status, somewhat like traffic relief 
using a bypass road on a holiday route on which those in seasonal migration naturally follow 
the added traffic signs to avoid traffic jams, while the natives follow the normal signs to travel 
locally. The existing architecture, still operating by default, is thus preserved while being 
outfitted with an add-on smart design and not with an add-on module. 

Virtualization enables slipping into any system irrespective of its architecture without 
defacing it. It is a guarantee of fluidity and upgradeability. If more ambitious, this approach is 
not incompatible and does not conflict with the previous approaches based on addition of 
specific devices (firewall, intrusion detection, specific cryptographic module) intended to take 
charge of certain security functions within a known domain or to perform a very specific and 
proprietary security function of a component (secure operating system, GSM security, etc.). 

It is clear that large-scale virtualization is an important lock. If classical abstraction such as 
XML is rapidly deployable, the case of virtualization is different, as it requires installation of 
specific virtual machines for all of those heterogeneous environments. 

Universal types of virtualization (Java Virtual Machine, etc.) are usually heavy. The internal 
mechanism required to perform such virtualization may be quite voluminous (VPNs, 
distributed operating systems, etc.). 
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The cost of this approach undoubtedly involves additional computing resources needed to 
implement the virtualization engines in all the existing hosts (terminals, servers, routers, 
gateways). Moreover, additional entities will ultimately have to be created to perform this 
virtualization by means of virtualization gateways between two widely different adjoining 
networks. 

Virtualization is abstract, but each time it is the implemented mechanism and not the 
concept that will have to prove itself. Virtualization must remain simple and effective. 

5.2.4. Feasibility of Implementation  

The virtualization framework can employ existing security techniques, protocols and 
models in a common way, by adapting/masking them through virtualization. True 
virtualization would allow the behaviors that exist in ‘real life’ to exist for the virtual world, 
without the people involved needing to be specialists. Finally, the framework can support the 
security principles, security objectives, security policies and the security functions in the 
evolving digital world. 

 

 
 

Figure 5.2: Virtualization of communities 
 
 
Security in distributed systems is a field where virtualization seems to have untapped 

potential. If we want to use virtualization mechanisms, they will be an integral part of security 
and it will be necessary to make them secure. 

To secure systems and/or objects, we introduce lightweight infrastructures (or middleware) 
in these systems and will inject objects for virtual machines (in a very general sense) to 
provide a different vision of things to foreign systems or external entities. 

We use security functions (identification of a system or an object, authentication of a 
subject, key management, cryptographic protocols, etc.) by masking the heterogeneous 
architectures of the systems and networks, the complexity of services, etc. with other virtual 
concepts. Thus a system can have a group identity that appears in several machines or 
objects, without necessarily using a label (a name). 

 

A virtual community 

 

Logical entities with different granularities 

and different levels of abstractions 

 

Physical entities with different granularities 
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Figure 5.3: Security of Ambient Intelligence is split at 2 levels. 

 
 
For example, security of Ambient Intelligence is split at 2 levels (figure 5.3). Security of non 

functional properties and security of functional properties. Security of non functional 
properties is rather placed at the articulation of the virtual mechanisms 

Infospheres need to be mapped to the virtual paradigm. More has to be given to the 
individual, the organization and the state (rather than to devices or infrastructures). Each 
infosphere comprises a virtual ring. Two ‘Virtual shields’ can thus create a controlled zone 
that enhances infosphere security, not infrastructure security. A pervasive policy is simply 
expressed in high level, but refined in many dimensions to map to specific infrastructures, 
organizational or individual needs and real world events. 

5.2.5. Examples of Virtualization 

Virtuality is already present in computer systems, networks and distributed systems. 
Therefore, security must not be tied up with technology maturity as it is for the moment in 
GSM, or WiFi, in order to facilitate technology migration. 

IPSec: An Example of Virtualization 
IPSec is an example of interoperable authentication, integrity and encryption (Figure 5.4). 

However it is too static and does not provide security customization. Many fields in the IP 
header can be used to customize security and use these fields as a vehicle through 
heterogeneous worlds. 

A virtual community 

 

Logical entities 

 

Physical entities 

 

Security of functional objects: centralized trusted infrastructures (PKI, DNS, 

…)  Responsibility, Accountability 

 

Security of non functional properties: architecture, mobility, configurability, QoS, … 

 

Security of the Ambient Intelligence: ecology of virtual ontologies 

  Management of global security, Transparency 
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Figure 5.4: IPSec (from CISCO) 
 
 
 
 

 
Figure 5.5: IPSec Tunnel and Transport Mode (from Cisco) 

 

MPLS: An Example of Virtualization 
MPLS (Multi-Protocol Label Switching), MPLS and GMPLS implement a virtualization of 

circuits with packet networks. The paradigm is a technology that integrates the label 
swapping forwarding paradigm with network layer routing. Label swapping is expected to 
improve the price/performance of network layer routing, improve the scalability of the network 
layer, and provide greater flexibility in the delivery of (new) routing services (by allowing new 
routing services to be added without a change to the forwarding paradigm). Packet 
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forwarding is based on labels (not IP information). It is based on the concept of label 
swapping similar to other layer-2 forwarding mechanisms (VPI/VCI). MPLS provides ability to 
have multiple labels (label stack). Other paradigms like destination based unicast routing, 
TE, QoS, or VPN may also be used to classify and forward packets. Once a packet is labeled 
it cannot be reclassified. Labels are assigned on entry into the MPLS domain. MPLS 
performs ingress classification function - referred to as label imposition and the location of 
the label within the packet/cell will depend on MPLS mode of operation 

 

 
Figure 5.6: An MPLS network 

 

Ad-hoc Networking 
Ad hoc network are spontaneous wireless networks. By nature, wireless networks do not 

have routes, and implementing other functions like access control is not simple especially in 
a mesh network. Some major issues, such as service discovery, spectrum coexistence, 
management, and security are to be solved. 
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Figure 5.7: An example of ad-hoc network 

 
 
There are 2 types of Ad-hoc routing algorithms that virtualize the non existing network 

layer either within layer 4 (robustness of the overall nodes morphology) or within the layer 2 
(high mobility in the overall morphology of the graph of nodes) 

5.3. Configurability 
We propose a configurable mechanism for the invocation of security services to address 

security needs of the different kinds of users. This approach permits the evolution of security 
infrastructure with less impact on the resource management functionalities, which are still on 
the verge of evolution. Moreover, it permits the users and resource providers to configure the 
security architecture according to their requirements and satisfaction level. The set of these 
security services include core security services (such as authentication, authorization, 
identity mapping, audit, etc.) as well as contemporary security services (such as mobile 
access control, dynamic digital signature, etc.). 

5.3.1. Pluggable Security Services (PSS) 

Authentication Service is concerned with verifying proof of an asserted identity.  
Authorization Service is concerned with resolving a policy based access control decision. 
Identity Mapping Service provides the capability of transforming an identity that exists in 
one identity domain into an identity within another identity domain. This service is not 
concerned with the authentication of the service requestor; rather it is strictly a policy driven 
name mapping service. 
Credential Conversion Service provides credential conversion between one type of 
credential to another type or form of credential. This service facilitates the interoperability of 
differing credential types, which may be used by services. 
Policy Service is concerned with the management of policies. The policy service may be 
thought of as another primitive service, which is used by the authorization, audit, identity 
mapping and other services as needed. 
Audit Service is responsible for producing records, which track security relevant events. The 
resulting audit records may be reduced and examined to determine if the desired security 
policy is being enforced. 
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Profile Service is concerned with managing service requestor’s preferences and data which 
may not be directly consumed by the authorization service. This data will primarily be used 
by applications that interface with a person. 
Privacy Service is primarily concerned with the policy driven classification of personally 
identifiable information (PII). Such a service can be used to articulate and enforce a privacy 
policy. 
Encoded Communication Service is concerned with ciphering the data before it leaves the 
resource terminal. Participating nodes mutually agree on the encoding technique being 
employed to encrypt the data.  
Nonrepudiation Service ensures that a party to a contract or a communication cannot deny 
the authenticity of their signature on a document or the sending of a message that they 
originated. 
Encrypted Data Storage Service is concerned with ciphering the data before it is stored in 
a storage repository. Authorized retrieving entities are aware of the encoding technique being 
employed to encrypt the data. 
Communication Channels Service facilitates lossless transfer of communication 
parameters to a stand-by or a secondary communication channel in the case of main 
communication channel failure. 

5.3.2. Requirements for Configurable/Pluggable Services 

Definition of standard and flexible interfaces: To assure its proper functioning in various 
heterogeneous environments, PSS should define a set of standard, yet flexible, interfacing 
protocols. Most applications need not use these interfaces directly. Therefore, the PSS 
protocols interface should be exposed only to application developers interested in defining 
new protocols or in configuring them in novel ways. 
Integration at application layer: To enable a user to invoke his desired set of security 
services in the beginning of a task session, PSS should offer its integration at application 
layer without requiring any low-level programming knowledge. 
Coordinated invocation of Services: To assure secure links among the various nodes, 
there is a need for an identical set of invoked security services at all the ends. This 
coordination is important for flushing out any vulnerability that may be introduced due to 
mismatched services. 
Usability by users and services: To assure the adaptability of the security architecture in 
the various operational situations, the security services invocation should be possible by not 
only the users but also by the appropriate computing services. 
Simultaneous use of multiple services: To assure security in depth, various security 
services are needed simultaneously. Moreover, certain security services are dependent on 
other services; e.g., Invocation of Authorization service requires invocation of Authentication 
service. In such a situation, prerequisite services of a certain invoked service should be 
activated automatically. 
Support for future enhancements: To maintain its usability, PSS should accommodate 
forthcoming enhancements to the Grid security infrastructure, such as allowing integration of 
semantic firewall, etc. 
Optimization for various communication links: To ensure sustained communications, 
PSS should automatically adapt the current communication channel like wired network or 
wireless network (Bluetooth, 802.11, …). 
Providing real-time invocation features: To make the security architecture flexible and 
adaptable to the needs of Grid users and services, real-time invocation and de-invocation of 
security services are indispensable.   
Using standard programming interface: To allow the integration of security services with 
the various Grid systems, it should use standard programming interface. It will further enable 
the Grid programmers to extend it to meet their specific needs. 
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5.3.3. Description of the Architecture 

To meet the requirements outlined in the 
section 5.3.2, we identified logical 
components, factored out common features, 
and defined general framework interfaces. 
Figure 5.8 depicts the PSS framework 
architecture. The security policy provides the 
fundamental guidelines for the various 
security operations. The Security Broker 
interacts between applications (more 
precisely the distributed applications) and 
the security services. The security broker 
has a security services handler (cf. figure 
5.1), which is employed to absorb the 
heterogeneity. The layered architecture of 
the security broker is presented in the 
section 5.4. Invocation of various security 
services at one site requires coordination 

 
 

Figure 5.8: PSS Framework Architecture 

with the set of the services invoked at the other sites. This coordination is carried out by a 
special service called Coordination Service. The functioning of the coordination service is 
elaborated in section 5.4. However, it is worth mentioning here that the coordination service 
is guided by the security policy especially for the resolution of conflicts that arises if various 
grid sites try to invoke a dissimilar set of security services. 

5.3.4. Addition and Deletion of Security Services 

Adding New Services Transparently 
To add new services without making any changes to the rest of the system, a registry is 

used to maintain a collection of abstract factories. In the abstract factory pattern, a single 
class defines an interface for creating families of related objects, without specifying their 
concrete types. Subclasses of an abstract factory are responsible for creating concrete 
classes that collaborate among themselves. In the context of pluggable services, each 
abstract factory can create the Connector, Acceptor, Profile, and Transport classes for a 
particular service. 

Adding New Services Dynamically 
to configure new services dynamically, even while the system is running, a configurator is 

used that can decouple the implementation of a service from its configuration into the 
application. This configurator can be applied in either of the following ways: 

a) The configurator can be used to dynamically load the registry class. This facade 
knows how to configure a particular set of services. To add new services, one must 
either implement a new registry class or derive from an existing one.  

b) The configurator can be used to load the set of entries in a registry dynamically. For 
example, a registry can simply parse a configuration script and link the services listed 
in it dynamically. This is the most flexible design, but it requires more code to parse 
the configuration script and load the objects dynamically. 

Services Synchronization  
If the various communicating nodes invoke different sets of security services, a 

coordination service, as shown in figure 5.4, is used to resolve the invocation of unpaired 
services. A log of the services invoked at the various nodes is maintained and if a conflict is 
found in the set of invoked services in the collaborating nodes then it is resolved according to 
the rules set forth in the security policy. For example, if the security policy permits the 
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automatic invocation of corresponding services then if a VO member wishes to invoke Audit 
Service whereas the other prefers Profile Service then the coordination service will invoke 
the two services at both places. 

5.3.5. Example Scenarios 

In this section, we present two scenarios that depict the usefulness of our proposed 
security architecture. This state of security is otherwise unachievable with the existing 
security solutions presented in chapter 4.  

These scenarios revolve around a number of parties who collaborate to create a 
distributed session: 
 
Scenario 1: This scenario involves initiator-specified computation: in particular, grid-style 
computational offloading. In this scenario the initiator wishes to run an extensive but sensitive 
data mining query over a confidential data set, requiring computational and storage 
resources beyond those the initiator has available. For example, a pharmaceutical company 
wishes to measure the death rate in patients that are prescribed an experimental drug mix: 
the query is sensitive, in that there should be no external indication of the search parameters; 
and the patient data must remain confidential. Computational offloading scenarios are ideally 
suited for grid computing environments, where a goal is to create homogeneous, widely-
available, distributed processing nodes to absorb excess local computational needs. 
However, although grid servers are gaining in popularity and popular usage, they currently 
offer few if any remotely verifiable guarantees about the security and integrity of their 
operating environments, making them unsuitable for application in this scenario. Our 
proposed security model eliminates this barrier, enabling such offloading scenarios to 
become commonplace for anyone who could benefit from them, while simultaneously 
addressing any security concerns. At role-acquisition time, the initiator might specify that it 
requires attestations to the effect of processing-time reservations, memory and 
communication isolation (with respect to other processes or entities running on the 
responder’s system), encrypted on-disk storage of any swapped memory or source data, and 
confirmation that the responder’s execution environment will be reset and zeroed upon 
completion of the service. The responder’s virtual machine would then believably attest or 
assert that it will enforce each of these requirements. In an expanded scenario, the query 
may be provided by the initiator, who specifies one set of security requirements regarding the 
query text, whereas the patient data may come from a third-party source with much stricter 
requirements of verifying identity and ensuring confidentiality. 
 
Scenario 2: This scenario involves responder-specified computations: in particular, online 
business services. The initiator identifies a responder who advertises that it is programmed 
and willing to accomplish the initiator’s high level task. For example, a consumer wishes to 
order a book from an online broker, but desires to prevent the distributor of the book from 
learning any information about the consumer other than his or her address – in particular, 
preventing the exposure of bank or financial information that the consumer discloses in order 
to pay the broker. Online business services are in widespread use today, but suffer in that 
their usage is ad-hoc, with consumers relying only on past experience or reputation when 
verifying the expected behavior of different brokers, and in that users encounter different 
interfaces for each different broker for a given requested service. In this scenario, the 
consumer may desire to securely audit the broker’s communications – in essence, obtaining 
a guarantee that the consumer will have knowledge of any unauthorized exposure – in lieu of 
specifying security parameters for each responder. 

5.4. Security Brokering 
The Security Broker mediates between applications (more precisely the distributed 

applications) and the security services. The security broker has a security services handler, 
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which is employed to absorb the heterogeneity of the underlying security services and to 
provide a homogeneous interface to the upper layer.  

5.4.1. An Analogy of Resource Brokering 

The idea of introducing a security services 
broker is actually inspired by the utilization of a 
brokering agent for the exploitation of suitable 
computing/storage resource (also known as the 
resource broker) in distributed applications. 

The virtual security services handler shown in 
figure 5.1 could be seen as a part of the security 
broker (as shown in figure 5.9) that interacts 
between the core security architecture and the 
applications. Such an arrangement with no 
direct interaction between applications and core 
security architecture will raise the protection 
level of the security infrastructure from the 
malevolent applications. 
 

 
 

Figure 5.9 : Induction of a Security Broker 

5.4.2. Distributed Virtual Engine 

This concept of virtualization of security services can be realized through distributed virtual 
engines that will enable security service calls to be unified according to requirements and not 
according to the technologies to be supported. 

Distributed virtual engines are implemented by using brokering agents for the security 
services. 

5.4.3. Coordination between Applications and Core Security Architecture 

This component of PSS is responsible for the surety that a coordinated set of security 
services are invoked at the various sites of the VO. It contains traces of all the services 
invoked at the various nodes (cf. figure 5.10). When a user invokes a set of services (default 
or user-defined) and it does not match with the set of services invoked at the other nodes 
then the mismatch is identified as conflict in the invoked services which is managed in the 
light of the security policy. Once the conflict is resolved, security services invocation is made 
to the security broker. 

It is worth mentioning here that this 
security broker is not involved in the 
conflict management itself, rather it 
forwards the service invocation, made by 
a user/service, to the coordination service 
for its mapping and to look for any 
conflict(s) with the security services 
invoked at the other nodes. The security 
services are invoked by the security 
broker only when it receives a command 
from the coordination service. 

In the arrangement shown in figure 4, 
the security broker is deliberately placed 
between the application and the 
coordination service so as to isolate the 
latter from the former. One of the 
objectives of the security broker is to 
isolate the core security architecture from 

 
 

Figure 5.10: Coordination Service Architecture 
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the applications running over the grid to increase the protection level. The need to protect the 
coordinated service is evident from the fact that if some malicious user/application succeeds 
in influencing it then the mismatch of the various security services invoked at the various 
nodes will cause the self-destruction of the entire security architecture. 

5.4.4. Layered Architecture 

The layered architecture of the proposed security broker is shown in figure 5.11. The 
functionalities associated with these layers are: 
 

1. Application/Client Interface authenticates 
the user/application and provides the glue 
between the user/application and the 
underlying security broker infrastructure to 
facilitate communications between them. 

2. Configuration Daemon is a configuration 
server. It accepts a machine independent, 
abstract configuration request and then 
interacts with the coordination service 
through a secure channel. It notifies when 
the coordination service approves the 
security service configuration. It can keep a 
log of configurations done or even a 
complete backup configuration. 

 
 

 
 

Figure 5.11: Security Broker Architecture 

3. Security Services Handler absorbs the diversity of the security mechanisms to 
enable security service calls to be unified according to requirements and not 
according to the technologies to be supported (cf. figure 5.1). 

4. Protocol Mapping contains a comprehensive list of the protocols supported by the 
security architecture through the Security Services Handler. 

5. Security Architecture Interface consists of socket modules to plug various security 
services. Call for a particular security service is sent to the security services handler 
through the Configuration Daemon. The security services handler checks the 
existence of such a security service from the security protocol mapping and if it exists 
then an instance is invoked to hook the corresponding security service to the security 
architecture interface. 

6. Real-Time Algorithms, similar to real-time operating system, are used to address 
the performance concerns. When building components in a layered architecture, 
efficiency of interactions among the various layers is of prime importance. These 
algorithms assure that the entire processing of the security broker takes place in real 
time and the users/services can invoke these security services at the application 
layer. These real-time features are implemented at each layer. 

 

5.5. Other Features 

5.5.1. Security Policy 

We propose a layered security policy in our proposed security architecture. The salient 
features of this policy include: 

9. Flexible policy-based access control mechanisms 
10. Inter-domain access control policies 
11. Secure group communication 
12. Delegation mechanisms to support scalability to large numbers of resources and 

users 
The security policy consists of two distinguished parts: Global Security Policy (PG) and 

Local Security Policy (PL). The Local Security Policy layers are application policy, access 
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control policy, data integrity policy, authentication policy and encryption policy. The Global 
Security Policy defines general security policy and provides the abstraction (virtualization) of 
all Local Security Policies. 

5.5.2. Reconfigurability 

We have also explored the reconfigurability/adaptability of the security services to provide 
security support for the heterogeneous systems. We propose that the security services 
should be capable of reconfiguring themselves if some new node is introduced or to react to 
recover any system problem. It is achieved through the employment of a dynamically 
reconfigurable component-based architecture. This architecture allows nodes to dynamically 
negotiate the security services, protocols, and cryptographic support needed. Our motivation 
here is to enable configurability and reconfigurability of core security services functionality 
without having to make any particular assumptions about the underlying distributed 
architecture. 

This feature has following advantages over the classical security architectures: 
7. It makes the security architecture adaptable to such heterogeneous environments 

where the ultimate composition of the system resources is unknown in the 
beginning. Hence it supports the dynamic addition and suppression of resources 
from the overall system at any time instant.  

8. It makes the security architecture resilient and hence assures survivability of the 
overall system. Reconfigurability makes the system to regain its original security 
configurations after the attack scenario is over and therefore it improves the quality 
of service of the entire system. 

9. It enables the system to cope up with the frequent technology changes so that new 
devices and resources can be easily integrated into the existing systems without 
changing the core architecture and without plunging the operation quality of service 
and performance. For example, if a user submits a request for data analysis to a 
grid, the grid should perform the task in a timely manner, in a secure environment 
to avoid tampering, and with all necessary accuracy. (though, this quality of service 
was not a priority in the initial generations of the grid, where just getting it all to 
work first was the stated goal). 

5.5.3. How the Proposed Architecture Responds the Security 
Requirements 

Figure-3 shows various entities of a user and his target domains including auxiliary pluggable 
security services. User domain consists of user, local resources (both computational and 
storage), an authentication server (that authenticates the user and delivers credentials), and 
an attribute server (that delivers user’s privilege attributes and sends the assertions with 
service requests). Target domain consists of target resources (both computational and 
storage), an authorization server (that validates the certificates), a local CA, and Access 
policy (that makes authorization decisions). 
 
Any interaction between the user domain and his target domain requires some intermediary 
architecture that can convert the assertions into a form understood by the target domain –  
for example conversion of authentication credentials (e.g. Kerberos ticket) into a credential 
form that target domain can work with (e.g. X.509 certificates). This intermediary architecture 
can also offer a number of pluggable security services to the user. These services are 
discussed in detail in the second part of this document. Moreover, this intermediary 
architecture can honor a set of policies when forwarding the request (including the mapping 
rules and delegation policies. This mapping server, pluggable security services and the 
various security units of user and his target domains are grouped together in figure-3 as 
Security Services that virtualizes the security dialogues between these domains. 
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Figure 5.12: Virtual security interaction between a user and his target domains 
 
 
In such architecture  
 

 New users or groups may be introduced quickly (scalability) as the security services 
layer harmonizes (virtualizes) the diverse security mechanisms of participating nodes 
and there is no restriction of specific communication or security requirement.  

 The handling of privileges provided to a group or individual can be easily managed as it 
employs role based access control (RBAC). 

 Isolation of applications layer from the core security architecture layer (figure 5.9) 
enhances the protection of the private data including authentication data. 

 Agreed security features could be implemented by making corresponding adjustments 
in the security broker layer (figure 5.9). 

 The intermediary architecture (figure 5.12) could be employed to delegate actions; 
however, there is a need to shun the cloning of credentials as they could be exploited. 

 The attribute server (figure 5.12) could be employed to place limits on the overall 
amount of resources consumed by particular user or group. These limits are generally 
defined in the access policy of the target domain (figure 5.12). 

 The confidence of the resource providers can be gained by offering them a number of 
pluggable security services. They can easily incorporate additional security features 
that assure them that their resources could neither be exploited nor be misused; and in 
the case of any misuse a chain of accountability could be established. 

5.5.4. Performance Evaluations 

Validation of the VIPSEC is the focal point of its applicability. We have developed a 
pervasive grid prototype to validate our propositions. An example scenario of the system is 
described in this section: 
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All the teachers and students of our department are supposed to use their PDAs to gain 
access to the pedagogic resources. Wireless access points are provided in every room of the 
department. These access points are also used to determine the context of the users. In the 
library, students can read e-books but can not read their examination paper; whereas in the 
examination hall, from 9 am to noon, the students can read the examination paper, write the 
answers file, but can not read books. The teachers can read and write the examination paper 
from both library and from the exam hall. A PDA is placed in the quarantine zone if its user: 

 
1. tries more than three unsuccessful log-in attempts as student or more than two 

unsuccessful log-in attempts as teacher, as he/she may be a potential intruder; 
2. is using too much bandwidth, as he/she may be trying to cause the Denial of Service 

(DoS) attack; 
3. is seeking unauthorized privileges. 

 
Placement in a quarantine zone implies that: 
 

1. other users are informed of his/her presence, as a troublemaker; 
2. he/she is asked to behave normally otherwise he/she will be expelled; 
3. after some time ∆t it is evaluated whether to clear him/her out the quarantine zone or 

disconnect him/her from the system. This decision will be based on the close observation 
of his/her activities during the quarantine period ∆t. 

 
 

 
 

Fig. 5.13: Prototype setup 
 
As shown in figure 5.13, two different Wi-Fi access points at our department building are 

used to model library and exam hall. PDAs with embedded Wi-Fi card are used to model 
students (S), teacher (T) and potential attacker (encircled). One PC is used (to be connected 
from the third Wi-Fi access point) to act as the CA. The overall happening of the system is 
displayed on its screen including the log of the various actions taken by these PDAs and the 
time taken by each operation. 

We consider a bunch of heterogeneous nodes containing some malicious nodes. These 
nodes are considered mutually trusted until an attack is detected. A malicious node regularly 
tries to attack the other nodes. Each attack has a probability p of success.  This probability 
depends on the target node type. A successful attack turns the victim node into a new 
attacking node for the others. However, in the contrary case the attacker is blocked in its 
firewall and an alert concerning this node is transmitted in the system. 
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The results obtained from this grid setup show that there is no considerable overhead on 
the overall performance of the system due to the consideration of context and state of the 
mobile nodes. Figure 14 shows few screen shots of this experimental set-up: 

 
 

 
 

Figure 5.14 (a) : CPU Performance 
 

The performance of the entire 
system is of prime consideration. 
We carried out a study to observe 
the impact of the dynamic conside-
ration of the access privileges. 
Figure 5.14(a) provides a screen 
shot of the CPU performance 
graph. 

 

 
 

Figure 5.14 (b) : CPU Load Monitor 
 

 
Figure 5.14(b) shows a screen shot 
of the CPU load monitoring. It 
shows the normal behavior of CPU 
even during the execution of 
dynamic privileges management. 
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Figure 5.14 (c) : A mobile node 
 

 
Figure 5.14(c) shows a screen shot 
of the network configuration 
settings of a mobile node. 

 

 
 
Figure 5.14 (d) : Selection of Encrypted communication 
 

 
As shown in figure 5.14(d), a 
mobile user can activate or 
deactivate the encrypted 
communications mode. One of the 
objectives of providing this feature 
was to study the impact of 
encryption on the overall 
performance of the system. 
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Figure 5.14 (e) : Connection to the Grid 
 

Figure 5.14(e) provides the screen 
shot of the mobile node which is in 
the process of establishing 
connection with the Grid. 

 

 
 

Figure 5.14 (f) : Log file 
 

 
Figure 5.14 shows a glimpse of the 
log file that contains all the actions 
took place with the entire Grid 
system. 
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Figure 5.14 (g) : Modifications of the Security 
parameters in the real time 

 

Figure 5.14(g) shows the screen 
shot of the options of modifying the 
security parameters in the real 
time. 

 

5.6. Trust Management 
Establishment of security services and trust relationships are the most desirable features 

for large scale open heterogeneous systems. They are in need of a consistent security 
architecture that is sufficiently efficient and scalable. Security of large numbers of users and 
resources, without relying on a centralized and integrated security infrastructure, should have 
to move towards the concepts of spontaneous recognition and dynamic trust establishment. 

The problem addressed in this section is how different nodes can trust unknown 
infrastructure with their private data and vice versa i.e. how a computing infrastructure can 
trust a node which is seeking access to its resources. In particular, our trust establishment 
approach gives greater protection to data and information that may need to be revealed to a 
third party’s computing platform during the process of a transaction. In such computing 
system, certain number of mutually distrustful participants with varying degree of priori 
relationships (or perhaps not at all) may want to share resources in order to perform some 
tasks. In this situation we envisage the trust reflection will provide a means for these 
participants to evolve the trust relationships quickly and accurately via limited iterations. This 
will provide an opportunity for the collaborating participants to either achieve full cooperation 
or to remove untrustworthy participants depending on the result of trust evaluation. 

The collaborating members are from different security domains, they may not adhere to 
the same security policy. The decentralized nature of administration makes it difficult to 
establish and propagate trust. A distributed trust evaluation scheme is therefore required for 
these environments. Trust can be based on a history of interactions where credentials can be 
shown to demonstrate some previous relationships. Such mechanism is called history-based 
trust establishment [99]. However, a challenging situation arises if there is no trust among 
parties and there is no mechanism to build some trust based on a history of previous 
interactions. New solutions addressing these issues are required both for the protection of 
users, including privacy measures, and for controlling the access to valuable resources like 
commercial services. 

 
We propose dynamic distribution of trust. Our proposed scheme provides a mechanism for 

delegation of trust and continuous monitoring of the changes to the level of trust of each 
node. It has the advantage of decentralized hierarchical administration, scalability of 
certificate issuing capacity and the flexibility of delegation. Since the open services are not 
limited to a specific range of domains and organizations, we propose a distributed, flexible 
(adaptable to different security domains) and general-purpose trust management for 
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establishing a trust relationship among entities, which have no previous interaction, to 
provide a scalable and decentralized access-control mechanism over the Internet. 

To establish trust among the different nodes, we show that instead of having a single value 
representing the trustworthiness of a node, the value should be broken into separate 
attributes. These attributes are presented to exemplify how to break trust into separate 
confidences. Each attribute represents a confidence, and each confidence represents a 
characteristic of a node from which trust can be synthesized. There are varying forms of 
trust. We can trust a node to be accurate (this is important for data integrity). We can trust a 
node to complete tasks reliably. We can trust nodes to return data quickly, or always in a 
guaranteed time, so on and so forth. Like people trust physicians for medical advice and 
stock brokers for financial advice, attributes should be viewed as foundational characteristics 
used to build particular types of trust. 

These attributes form a virtual plane to link the resources, users (individuals and services), 
and the applications. This relationship signifies that there is not a fix form of trust among the 
various entities. Using a virtual and extensible basis for synthesizing varying types of trust 
allows for the greatest flexibility from one entity to the other. Flexibility is essential as 
anything too rigid cannot be easily adopted in a grid environment. 

From the functional point of view, these attribute certificates will be used in compliment 
with identity certificates provided by the existing infrastructure [28, 100]. Where the identity 
certificates are used to verify the identity of an entity in a highly anonymous environment 
(e.g. the Internet), the attribute certificates will be used to determine the trustworthiness of an 
entity in an uncertain environment (such as the pervasive grid). 

Our proposed model comprises of: 
1. definition of trust relationships between two nodes when there exist: 

a. direct trust relationships within a single domain – although there exist a unique CA 
or authorization policy, still an invalid proxy certificate generated by a malicious host 
can run a faked sub-process to accomplish a malicious task. So a node should 
estimate the trustworthiness of the node it is going to interact. Our trust model 
handles this scenario by using the centralized credentials (X509 or Kerberos) 
architecture to determine the trust values of the individual nodes by maintaining a 
trust table of the domain. 

b. indirect trust relationships across multiple domains – crossing the domains further 
complicate the problem described in part 1a. In this scenario, for a successful 
interaction, a node has to trust all the intermediate hosts along the path that it has 
traversed before arriving to the second node (with which it will interact). Our trust 
model evaluates the trust degree along the whole path keeping in mind that the 
security policies in different domains as well as in VO may be different. Thus, the 
trust relationship between a set of nodes is establish. 

2. dynamic establishment of trust relationships (using intermediaries in a distributed 
means) where any node can join and leave anytime and anywhere. As the nodes may 
belong to different security domains, they may not share the same security policy. The 
decentralized structure makes it difficult to establish trust in the grid. Our trust model 
employs a distributed trust evaluation scheme to fit the large scale heterogeneous 
distributed environments and also supports the basis for satisfying the security 
requirements to achieve single sign-on and delegation. 

5.7. Salient Features of the Proposed Architecture 

5.7.1. Security of the Security Architecture 

The security of the security architecture determines if it can meet the security demands of 
an active and determined attack. A secure security system can be viewed as a classical 
security system that possesses supplementary capabilities, such as the capability of 
intelligently detecting certain faults, the capability of learning from detected faults, the 
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capability of taking into account the knowledge issued by security experts without 
compromising the dependability of the whole security system. 

We have given special importance to the security of our proposed security architecture. In 
this section, we mention the various steps taken to assure the security of the security 
architecture. 

Basic Design and Documentation 
We have provided adequate documentation that gives sufficient information about the 

various components of the security architecture. The boundaries of various modules are 
clearly demarcated. The documentation also includes block diagrams showing all of the 
major components and their interconnections. One of the most important parts of the 
documentation though is the identification of any module parts that were excluded from the 
security requirements and why. Thus, if questioned it can be plainly seen why these parts 
were not viewed as a security risk. 

Module Interfaces 
One of the most important requirements in the secure architectures is the restriction 

placed on the modules interface. The security gaps are introduced in any secure path going 
through one or more middleboxes that need to perform some processing on passing data 
packets. These middleboxes include Network Address Translation (NAT) gateways, packet 
or content filters, proxy firewalls, and Wireless Application Protocol (WAP) gateways. We 
have separated the interfaces from each other so as to limit the chances that they could 
cause a breaking point - a place that is more vulnerable to attack. 

Authorized Roles and Services 
In our proposed model, modules are designed so that they can only perform certain tasks 

for certain people depending on the privileges that they are allowed. That is, they are 
designed such that they support authorized roles and the corresponding services that can be 
performed within those roles. Also, if a module can support multiple simultaneous operators, 
then the module should internally maintain the separation of the roles and services 
performed by each operator. This means that operators using the software at the same time 
should still be restricted to the access that they would have had supposing they were the 
only one using the module. Furthermore, depending on the security level, all modules are 
required to make use of access control mechanisms to authenticate an operator accessing 
the module and to verify that the operator is authorized to perform the desired roles and to 
perform the desired services within that role. 

Physical Security 
Physical security of the IT components is an important topic. The overall system should be 

made attacks resistant. It should be designed to make use of physical security system in 
order to limit unauthorized physical access to the various system components and to 
discourage their unauthorized use or unauthorized modification. The idea is that the entire 
physical setup, including all hardware, firmware, software and data should be protected. 

Moreover, the physical security systems are created such that unauthorized attempts at 
access, use or modify will either have a very good chance of being detected after the attempt 
has been made by leaving some sort of visible signs, or even better have a very good 
chance of being detected during the attempt so that appropriate actions can be taken by the 
module to protect itself. 

Software Security 
We have used pre and post conditions for each software module, software function and 

software procedure. The source code listing explains with comments that clearly identify the 
pre-conditions necessary upon entry into the module, function or procedure in order for it to 
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execute correctly, and the post-conditions expected to be true when execution of the module, 
function or procedure is finished. 

Operating System Security 
The operating system security requirements are necessary when a general-purpose 

computer running security software as well as some untrusted user-supplied software. We 
propose that all software be installed only as executable code in order to dissuade analysis 
and modification by users. The idea is that if the software is only in its executable format, 
then it will be more difficult for it to be tampered with or analyzed. We also recommend that 
all security software, encryption keys and other critical security parameters, should be 
handled by the operating system that provides some sort of controlled access protection. 
Finally, the operating system needs to provide the means by which to specify a set of users 
who are authorized to enter encryption keys and other critical security parameters. That way 
not everybody has access to critical sections and it further limits the chances that there might 
be an information leak. 

Self Testing 
A system must be able to perform self-tests in order to ensure that it is functioning 

properly. We specify that certain self-tests need to be performed whenever the system is 
powered up. It also states that there are other self-tests that can be performed under various 
conditions, typically when a particular function or operation is performed. Additionally, the 
system can optionally perform other self-tests in addition to the tests specified here if they so 
choose. 

Whenever a module fails a self-test, it must enter an error state and output an error 
indicator via the status interface. That is, the module must notify the user, security officer, or 
maintenance personnel that some sort of internal error or malfunction has occurred. 
Essentially then the module goes into a lockdown state and will not perform any operations 
while in the error state and no data shall be output via the data output interface while the 
error condition exists. 

5.7.2. Security Negotiations Features 

Our proposed security infrastructure supports advance negotiation and establishment of a 
secure session between the endpoints that allows the endpoint to negotiate security 
requirements. Further, it features support for negotiating and establishing end-to-end and/or 
hop-to-hop security associations. Such a security infrastructure has broader applicability to 
general networked environments. 

In our proposed security model, the security negotiations are carried out by the Security 
broker that mediates between applications (more precisely the distributed applications) and 
the security services. The security broker has a security services handler, which is employed 
to absorb the heterogeneity of the underlying security services and to provide a 
homogeneous interface to the upper layer. The security broker is discussed in details in 
section 5.4. 

5.7.3. Security Bootstrapping 

It is important to setup security relations in an environment of networked devices without 
requiring the user to be an expert and without relying on central infrastructure. A security 
relation between two devices can be a common shared cryptographic key, or an authentic 
copy of a public key. It allows the two entities to exchange messages in an authentic and/or 
confidential way. However, security relations need to be bootstrapped, that is, keys have to 
be generated, distributed, and authenticated. These operations cannot be expected to be 
done by an average user, in particular not on devices with a limited user interface. 

Because it is not realistic and necessary to predefine security relations between all 
devices, other alternatives are deemed necessary. The common way is to use trust to reduce 



 104

the number of initially required security relations. A trusted entity T can, for example, create a 
bilateral key for two devices A and B if both, A and B have a bilateral key with T and trust T 
to generate random keys and to forward only authentic information. Unfortunately, it is not 
practical to find one single entity T that is trusted by all other entities. Using a web of trusted 
entities would solve at least this concern, but is a delicate process because two devices that 
want to build a relation must find a path through the web on which they trust every single 
entity.  

Bootstrapping is a process to build security relations between devices that want to interact 
with one another without relying on predefined relations, central services (e.g., an 
administrator), or the availability of dedicated entities such as a trusted third party. 

The Resurrecting Duckling Policy Model 
Ross Anderson and Frank Stajano were the first who recognized the importance for 

security relations between networked devices. In their Resurrecting Duckling Policy Model 
[101, 102], they propose two basic elements: 
 

 Secure Transient Association: exchange of a shared secret during physical contact 
(pairing) representing a master-slave relation between the devices. 

 Default policy: the master device can access all services of the slave device; no other 
device is allowed to use services. One of the services accepts policy updates. 

 
While the relation between devices is a static master-slave relation in the original paper 

[101], an extension to peer-to-peer relations is presented in [102] by describing relations to 
other devices in the security policy. 

The pair-wise master-slave relations between devices introduce dependencies between 
devices that limit the usability and are prone to loss of devices. Although peer-to-peer 
relations partially address this shortcoming, the model does not suggest how the credentials 
(i.e., keys and certificates) to represent these relations could be described in the policy in an 
authentic way. Further, the lifecycle of a security association is rather static: Delegation and 
exception handling (i.e., loss of devices) are not supported. 

Our Approach 
Our approach to address the shortcomings of the Resurrecting Duckling Policy Model 

includes the ownership model that builds real peer-to-peer security relations between all 
devices owned by the same user and thereby strictly defines what devices those are trusted. 
The security policy defines relations to other devices, assigns rights to security relations, and 
supports authentic key exchange. 

When two devices from the same user get paired, one device creates a certificate for the 
other device by signing the identifier (i.e., the public device key) of the other device. The 
resulting certificate chain leads towards one of the user’s devices and is used to recognize 
other devices owned by the same user (i.e., siblings). The default security policy of a device 
defines the same rights as the Resurrecting Duckling Policy Model. 

The advantage of this approach is that a new device has to be paired only with one device 
to build up authentic relations to all other devices of that user. These relations provides 
redundancy to cope in situations where devices get lost or delegated, because a device is 
not dependent on a dedicated other device such as in master-slave models. 

The devices are described with credentials such as keys (i.e., the device identifier) or 
certificates for expressing roles that a device assumes. Instead of configuring these 
credentials in the security policy, it allows to set a wildcard specifying the conditions to 
accept the credential of the next device that gets paired with the target device. The involved 
devices thus exchange their credentials themselves without requiring the user to cope with 
cryptographic material. 

Privacy gets increasingly important in the context of networked devices because personal 
and private information and resources are exposed to an open and unknown environment. 
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Besides of the information stored on the devices itself, also meta information such as the 
user’s identity and location needs to be protected. The use of pseudonyms and secure 
service discovery protocols are emphasized in our work to provide the presence of devices 
only on a need-to-know basis. 

Most of the devices that we intend to connect will be personal and private devices of our 
daily life. Security aspects are therefore important. However, the most important aspect is the 
ease-of-use because the user cannot be expected to configure anything. However, we 
consider the security bootstrapping as a first step towards the ambitious goal of self-
configuration in dynamic networks. 

5.7.4. Modifications Proposed in the Existing Systems 

Extension of Open Grid Services Architecture (OGSA) 
OGSA security model casts security functions as OGSA services [103]. This strategy 

allows well-defined protocols and interfaces to be defined for these services and permits an 
application to outsource security functionality by using a security service with a particular 
implementation to fit its current need. We extend the concept of security as services to 
security as pluggable services. This extension permits the evolution of security infrastructure 
with less impact on the resource management functionalities, which are still on the verge of 
evolution. Moreover, it permits the users and resource providers to configure the security 
architecture according to their requirements and satisfaction level. 

We add some handler modules into OGSA container to extend its functionalities. First the 
service request comes into the container through service interface, and then passes the 
security services handlers one after another until it invokes the implementation of that 
security service. After service executing, the response also may tunnel through some other 
security services handlers before it gets to client side. A handler may communicate with a 
corresponding Grid Monitoring and Managing Services (GMMS) during the procedure and 
send monitoring information to that GMMS according to Web Services Level Agreement 
(WSLA).  

The handler modules are developed as plug-ins for OGSA container, which means those 
handlers can be inserted into or removed from the container at any moment. That plug-in 
mechanism brings high flexibility. Firstly, we can customize needed handlers in the container 
to fit different scenarios. Secondly, we can specify different handlers in service deployment 
stage in order to do different monitoring functions. The handler may be bound to an existing 
GMMS in Grid which can do workload analysis. 

Extension of Grid Security Infrastructure (GSI) 
The Grid Security Infrastructure (GSI) [28] does not attempt to discover middleboxes and 

negotiate security with them. As a result, security gaps could surface, particularly in cases 
where some grid resources and nodes exist in a local network behind a firewall. Further, the 
adaptability of GSI is limited making it hard to port it to lightweight devices with limited 
capabilities.  

We propose that the security architecture deployed must be able to adapt to environments 
with varying conditions that incorporates greater flexibility, adaptability, and customizability. 
When it comes to security, one size does not fit all. Hence, the security architecture deployed 
must be able to adapt to environments with varying conditions. Further, with many different 
security technologies surfacing and being deployed, the assumption that a particular security 
mechanism will eventually prevail is flawed. For that reason, it is necessary to support 
multiple security mechanisms and negotiate security requirements. We also aim to reduce or 
eliminate security gaps. 
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Chapter 6 
 

Assessment of Security Functionalities 
 
 
 
 
 
 

6.1. Common Criteria (CC) [104] 
The Common Criteria for Information Technology security evaluation is a relatively new 

program, which seeks to establish an internationally agreed-upon language for specifying 
security functionality, as well as an evaluation methodology to assess the strength of security 
implementations. We have used Common Criteria (CC) version 2.0 for the evaluation of our 
proposed security model. CC version 2.0 has following three sections: General Model 
(section one), Security Functional Requirements (section two), and Security Assurance 
Requirements (section three).  

The CC general audience, groups who would apply CC standards, is comprised of IT 
system or product consumers, developers, and evaluators. The three CC sections provide 
guidance on how CC establishes baseline security requirements for buying, developing, or 
evaluating an IT system or product. 

The Common Criteria Evaluation and Validation Scheme (CCEVS) Security Framework 
[105] is shown in figure 6.1. The first step of evaluating of a system or application using 
common criteria methodology is to identify a Target of Evaluation (TOE.) The TOE is a 
system, application, or IT product that is selected to be evaluated according to CC standards. 
The second step is to develop a set of Security Targets (ST). The ST is the set of criteria to 
be applied for the evaluation of the TOE. For specific technologies or IT products, previously 
established protection profiles may be used as the ST criteria. With each step of the security 
framework, the CC evaluation process requires increasingly detailed information regarding 
the application or system security profile. The resulting product of progressing through the 
CC Security Framework steps is an IT product or system that meets a baseline set of 
security criteria and/or processes that institute fundamental security techniques. Specific 
security mechanisms or techniques for IT products and technology are addressed through 
the Common Criteria Protection Profiles.  

We have prepared a protection profile of Health Grid. The complete PP is provided in 
appendix B. However, its concise account and salient features are provided in this section. 

6.1.1. Health Grid [106] 

Health grids are Grid infrastructures comprising applications, services or middleware 
components that deal with the specific problems arising in the processing of medical data. 
Resources in health grids are databases, computing power, medical expertise and even 
medical devices. The vision of the health grid is to create an environment where information 
at the five levels (molecule, cell, tissue, individual, population) can be associated to provide 
individualized healthcare. 

6.1.2. Security Architecture for Health Grid 

Security is one of the most important features of a heath grid. Personal data (any piece of 
information in which its owner can be identified, either directly or in combination with 
information that is available or can be available) is confidential, so access to the information 
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must be performed only by authorized and authenticated persons, and data must be 
encrypted to guarantee its confidentiality and integrity. We have used our proposed security 
architecture for Health Grid [8] to produce protection profile. 
 
Security Environment 
Laws, organizational security policies, etc, which define the context in which the TOE is to be used. 
Threats present in the environment are also included. 
TOE – 
Target of 
Evaluation 

An Information Technology (IT) product or system and its associated 
administrator and user guidance documentation that is the subject of an 
evaluation 

Security Objectives 
A statement of intent to counter the identified threats and/or satisfy intended organizational 
security policies and assumptions. 
ST – 
Security Target 

Set of security requirements and specification to be used as the basis for 
evaluation of an identified TOE. The ST may claim conformance to one or 
more Protection Profiles (PPs) and forms the basis of the evaluation. 

TOE Security Requirements 
The refinement of the IT security objectives into a set of technical requirements for 
security functions and assurance, covering the TOE and its IT environment. 
TSP –  
TOE Security Policy 

A set of rules that regulate how assets are managed, protected, 
and distributed within a TOE. 

SF –  
Security Function 

A part or parts of the TOE that have to be relied upon for 
enforcing a closely related subset of the rules from the TSP. 

SFP –  
Security Function 
Policy 

The security policy enforced by a SF. 

TOE Security Specifications 
Define an actual or proposed implementation for the TOE. 
TSF –   
TOE Security 
Functions 

As set security functions for all hardware, software, and firmware of 
the TOE that must be relied upon for the correct enforcement of the 
TSP. 

SOF –  
Strength 
of Functions 

Qualification of a TOE security function expressing the minimum 
efforts assumed necessary to defeat its expected security behavior 
by directly attacking its underlying security mechanisms. 

TSC –  
TSF Scope of 
Control 

The set of interactions that can occur with or within a TOE and are 
subject to the rules of the TSP. 

TSFI –  
TOE 
Interface 

Set of interfaced, whether interactive (man-machine interface) or 
programmatic (application programming interface), through which 
TOE resources are accessed, mediated by the TSF, or information 
is obtained from the TSF. 

TOE Implementation 
The realization of a TOE in accordance with its specifications. 

 
Figure 6.1: Common Criteria Evaluation and Validation Scheme (CCEVS) Security Framework 

 

6.1.3. Protection Profile 

 
Protection Profile (PP): The intent of this Protection Profile is to specify functional and 
assurance requirements applicable to Health Grid. Security requirements are viewed from 
the various angles including users, resource providers, and developers’ views. 
 
Target of Evaluation (TOE): This section describes the TOE as an aid to the understanding 
of its security requirements and addresses the product type, the intended usage and the 
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general IT features of the TOE. The TOE is the Health Grid, independent of the application(s) 
being run over it. 
 
TOE Security Environment: This section describes the security aspects of the environment 
in which the TOE is intended to be used and addresses the description of the assumptions, 
the threats and the organizational security policies. 
Assets are security relevant elements of the TOE that are classified as: data and information 
across the TOE, applications running over the TOE, computing resources constituting the 
TOE, storage repositories of the TOE, communication links (wired and/or wireless) within the 
TOE. 
Assumptions include a small community of active users (A.ActiveUsers), a large community 
of public users (A.PublicUsers), and a provision of periodic revision of the security 
architecture (A.TechnologyUpdates).  
Threats are divided in the two broad categories: Threats to Information (T.I) and Threats to 
Resources (T.R). 
 
Security Objectives: This section defines the security objectives for the TOE (O.T) and for 
its environment (O.E) with an emphasis on the use of state of art technologies to achieve 
these IT security objectives. 
 
TOE Security Requirements: This section defines the functional and assurance security 
requirements that the TOE and the supporting evidence for its evaluation need to satisfy in 
order to meet the security objectives for the TOE. 
TOE Security Functional Requirements define the functional requirements for the TOE 
using functional requirements components drawn from the Common Criteria part 2. The 
minimum strength of function (SOF) level for the TOE security requirements is high – 
SOFhigh. SOF-high is a level of the TOE strength of function where analysis shows that the 
function provides adequate protection against deliberately planned or organized breach of 
TOE security by attackers possessing a high attack potential. 
TOE Security Assurance Requirements define the assurance requirements for the TOE 
using functional requirements components drawn from the Common Criteria part 3. The 
evaluation assurance level (EAL) is 4 – EAL4. EAL4 provides assurance by an analysis of 
the security functions, using a functional and complete interface specification, guidance 
documentation, the high-level and low-level design of the TOE, and a subset of the 
implementation, to understand the security behavior. 
 
Security Rationale: This section presents the evidence used in the PP evaluation. This 
evidence supports the claims that the PP is a complete and cohesive set of requirements 
and that TOE would provide an effective set of IT security countermeasures within the 
security environment. Security Objectives Rationale demonstrates that the stated security 
objectives are traceable to all of the aspects identified in the TOE security environment and 
are suitable to cover them. Security Requirements Rationale demonstrates that the set of 
security requirements (TOE and environment) is suitable to meet and traceable to the 
security objectives. 

6.2. Case Study: Grid Computing Simulations 
The range of available grid simulation tools, such as Bricks [107], SimGrid [108], GridSim 

[22], GangSim [109], OptorSim [110] etc., does not provide any support for the simulations of 
grid security functions. The deployment of a grid infrastructure without proper simulations of 
its various defense capabilities will certainly be an invitation to disaster. One can not remove 
all the vulnerabilities from a design, no matter how analytically good it is, unless the design 
has undergone a series of ‘real-application-specific’ tests. In the absence of a proper 
validation mechanism, security designers risk wasting time and effort implementing 
safeguards that do not address any realistic threat to the grid. Or, just as dangerously, they 
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run the risk of concentrating their security measures on one threat while leaving the grid 
architecture dangerously exposed to others. We have faced the same problem while working 
on the virtualization of security services for the grid. This situation obliged us to develop a 
tool to perform grid security simulations – Grid Security Services Simulator (G3S). 

6.2.1. G3S: Grid Security Services Simulator 

Motivations The prime motivations behind the design and development of G3S was to lay 
the foundation of a simulations tool for the grid security services as none of the existing grid 
simulators provides any support for the security functionalities. It was felt imperative to 
provide a Graphics User Interface (GUI) so that even non-computer professionals (such as 
health grid users) can benefit from this tool by interactively simulating various grid security 
features (such as secure exchange of documents, attack patterns, etc). 
Principles G3S models security functionalities of a grid. The grid nodes may be static or 
mobile. For the mobile nodes, it also considers the mobility-related security issues such as 
security gaps. It is designed to support multiple authentication mechanisms such as X.509 
certificates and Kerberos tickets. Role-Based Access Control (RBAC) is used for the 
authorization purposes – work is underway to support the Community Access System (CAS) 
[100]. G3S supports Bell-LaPadula Model for the assurance of grid data confidentiality and 
the Watermarking technique is used to assure the integrity of the data flowing across the grid 
resources. G3S is designed in user-friendly way, so that even a user with a shallow 
knowledge of security services may equally use it. For example, a user may intend to 
simulate confidentiality features without knowing that confidentiality requires access control 
mechanism. G3S automatically invokes the prerequisite security services so that a true 
scenario can be simulated even if its user does not know all of its parameters. 

Simulations of different attack patterns is provided so that the designers can see if their 
design can deter the security threats and can survive after the attack. G3S has a mechanism 
for threats dissemination. If a node attempts to cross its defined privileges then an alert 
signal about the presence of a malicious node is sent to all the relevant nodes. 
Implementation G3S is written in Java. It is lightweight and can be installed and executed 
from a single PC. An easy-to-use graphics user interface (GUI) is provided. Detailed log of 
the various operations is maintained to facilitate the auditability. This log file can be accessed 
by any querying program for swift access to some particular event as it is very difficult to find 
the trace of certain activity by general observation of a huge audit trail. Nodes have different 
geometrical shapes (such as circular, square, triangular, etc.) to graphically exhibit their 
heterogeneous nature. These shapes correspond to the nature of the participating nodes 
(e.g. their communication mechanisms, their static or mobile nature, etc.) These nodes can 
be grouped together to form virtual organizations (VOs) at any instant. A number of VOs may 
be created simultaneously and their transactions are consequently simulated. A different 
color is allocated for each VO. 
Applications G3S can be used to simulate the working and efficiency of a grid security 
model. The alpha version of G3S can simulate the security services of a grid of maximum 
100 nodes; however, the next release will be able to handle 1000 nodes. These nodes are 
not necessarily the fixed resources – mobile grid nodes can also be simulated with their 
corresponding mobility features and constraints. 
 
G3S Structure 

G3S is composed of five main components (as shown in figure 6.2): Core, 
DocumentExchange, SecurityPolicy, TrustManger and Attack. 
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Figure 6.2: G3S main components 

 
 

Interdependencies of various G3S components are summarized in the table 6.1. The Core 
uses Security Policy; the Document Exchange uses Core, Security Policy, and Trust 
Management; the Security Policy is totally independent of other components; the Trust 
Management uses Core; and the Attack uses Core, Security Policy, and Trust Management.  
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Table 6.1: Interdependencies of the G3S components 
 
 

Various relationships of the table 1 are described below: 
 
R1.3: A VO has one Security Policy (characteristic feature of VOs) 
R2.1: A document exchange requires 2 G3SNodes (which exchange the document) 
R2.3: A document exchange takes place according to the rules set forth in the security 

policy of the VO 
R2.4: A document exchange needs to check the current trust value of the sending and 

receiving nodes 

R4.1: Trust Management deals with the trust level of each node 
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R5.1: An attack may result in several victim nodes 
R5.3: Success or failure of an attack depends on the strength of the VO security policy 
R5.4: If an attack is detected, the trust levels of the attacker and the attacked nodes are 

changed 
   

These relationships of the various components are not rigid. The existing functions can be 
easily extended. Likewise, more security functions can also be easily added. 
 
Graphics User Interface (GUI) of G3S 

G3S has a graphics window for user interaction. As shown in figure 6.3, buttons for various 
simulation features (such as adding new users, resources, creation of VOs, security policy 
configuration, documents exchange, attack pattern, etc.) are provided on the left side of the 
window beside in the pull-down menus. The central zone is the area where the results of 
simulations are graphically displayed. A list of different symbols used by the G3S is given on 
the right side. 
 
 

 
 

Figure 6.3: G3S Graphics User Interface (GUI) 
 
 

In the G3S Graphics User Interface (GUI), new users (individuals or groups) can be 
dynamically introduced (cf. figure 6.3) at any time instant. Apart from the fundamental 
parameters, such as name, confidentiality level, etc., specific authentication parameters can 
be provided after choosing the desired authentication mechanism (Kerberos ticket or X.509 
certificate). As soon as a certain authentication mechanism is chosen, G3S GUI 
automatically asks for the corresponding parameters. 
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Figure 6.4: Adding new resources 
 
Similarly, new computing resources can be dynamically added (cf. figure 6.4). 
New VOs can be created anytime by choosing the participating nodes (users and 

resources). A unique name is required for each VO (cf. figure 6.5) and the security policy for 
each VO is configured. A number of VOs may be created simultaneously and their 
transactions are consequently simulated. 

 
 

 
 

Figure 6.5: Creation of a VO 
 

As shown in figure 6.6, various nodes have different colors and geometrical shapes (such 
as circular, square, triangular, etc.) to graphically exhibit their heterogeneous nature. These 
shapes correspond to the nature of the participating nodes (e.g. their communication 
mechanisms, their mobility mechanism, etc.). A different color is allocated for each VO. 

The various nodes of these VOs can collaborate and share resources according to their 
roles and privileges. All the exchange of data is recorded and the current status of each 
transaction is graphically displayed. Apart from the collaborations among a VO’s nodes, the 
VOs themselves can collaborate for certain jobs.  
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Figure 6.6: G3S entities 
 
 
Simulations of Attacks Patterns 

G3S can also simulate various attack situations such as denial-of-service, man-in-the-
middle, relay, and wormhole (cf. figure 6.7). It can also simulate the survivability feature of a 
security design. 
 
 

 
 

Figure 6.7: Attacks simulations 
 
 

As an example of attack simulations, we consider a bunch of heterogeneous nodes 
containing some malicious nodes. These nodes are mutually trusted nodes until an attack is 
detected. A malicious node regularly tries to attack the other nodes. Each attack has a 
probability p of success.  This probability depends on the target node type. A successful 
attack turns the victim node into a new attacking node for the others. However, in the 
contrary case the attacker is blocked in its firewall and an alert concerning this node is 
transmitted in the system. 
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Figure 6.8: Grid nodes 

 
Figure 6.8 shows a graphics display of the Grid nodes. Each node has xy-coordinates and 

its class is determined by its shape (e.g. a triangular shape corresponds to a PDA; a round 
shape corresponds to a PC, etc.). The color coding used in this scheme is as follows: A node 
is gray if it does not know about the presence of the malicious node, blue if it is informed of 
malicious node, and white if it knows all the malicious nodes in the system. 

A red halo around a node indicates that it is a victim node (which has become a malicious 
node itself), blue if the attack was foiled by the security architecture and yellow if the attack 
failed due to some other reason. 

The triangles in the display show the attack propagation whereas the arrows correspond to 
the distribution of trust among the nodes. The calculation of the distribution of trust is based 
on a trust table. A trust table is shown in figure 6.9. The left entry A is the node that evaluates 
the entry of the node B from the top side. A color code is employed to quickly determine if 
there remains a danger of attack in the system: green, if A relies on B, and that A and B are 
indeed trustworthy; red, if A relies on B, and that B belongs to the attacker or is an attack 
victim; blue, if A does not rely on B and that B is indeed untrustworthy due to the reasons 
described in the previous case; white, if A’s confidence in B has no importance. 
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Figure 6.9: Trust table 
 
 

Figure 6.10 presents the collective defense behavior of the nodes with the described 
infrastructure of confidence.  If the attacker fails in its first attempt, it will be difficult for it to 
take control of the other nodes. Here node 0 escapes an attack from node 1 and blocks its 
transmissions. The other nodes are promptly informed of the threat so that they do not 
remain confident in node 0; and hence the overall system is protected (cf. corresponding 
values in the trust table).  
 
 

 
 
Figure 6.10: Failed attack paradigm 
 
 

But if the node 0 fell prey to the attack of node 1 (figure 6.11) and then manages to take 
control of node 3 all the other nodes will soon be affected resulting in the successful 
endeavor of the attacker. 
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Figure 6.11: Successful attack paradigm 
 
 
Integration of G3S with GridSim 

We interacted with the developers of GridSim during the development phase of the alpha 
version of G3S so as to give a broader scope to G3S. Moreover, the integration of security 
services simulations into GridSim will provide a comprehensive simulations tool for the grid 
community; and hence the users of GridSim can also simulate security functionalities beside 
scheduling and resource management parameters. 

The users and resources defined for the G3S are the GridUser and GridResource of 
GridSim, and the actions (such as the exchange of document) are Gridlets of GridSim. A 
Gridlet is a package that contains all the information related to the job and its execution 
management details such as job length expressed in MI (Millions Instruction). For example, 
the exchange of document is defined as a DocumentGridlet which extends to 
gridsim.GridSim class. 

In the G3S Core module, we have defined G3SUser, G3SResource, and G3Slink classes. 
These classes inherit (extend) following GridSim functions: 

  
G3SUser extends gridsim.GridUser 
G3SResource extends gridsim.GridResource 
G3Slink extends gridsim.net.Link 
 
These classes are harnessed together by a superclass called G3SNode. 
 
There exist some redundancies of code between G3S and GridSim, such as simJava 

classes. It is in fact required so that G3S can be executed independently without GridSim. 
 

6.2.2. GridSim: A Toolkit for Modeling and Simulation of Grid 

The GridSim toolkit provides a comprehensive facility for simulation of different classes of 
heterogeneous resources, users, applications, resource brokers, and schedulers. It can be 
used to simulate application schedulers for single or multiple administrative domains 
distributed computing systems such as clusters and grids. Application schedulers in grid 
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environment, called resource brokers, perform resource discovery, selection, and 
aggregation of a diverse set of distributed resources for an individual user. That means, each 
user has his own private resource broker and hence, it can be targeted to optimize for the 
requirements and objectives of its owner. Whereas schedulers, managing resources such as 
clusters in a single administrative domain, have complete control over the policy used for 
allocation of resources. That means all users need to submit their jobs to the central 
scheduler, which can be targeted to perform global optimization such as higher system 
utilization and overall user satisfaction depending on resource allocation policy or optimize 
for high priority users. 
 
Features 

Salient features of the GridSim toolkit include the following: 
 

 It allows modeling of heterogeneous types of resources. 
 Resources can be modeled operating under space- or time -shared mode. 
 Resource capability can be defined (in the form of MIPS as per SPEC benchmark). 
 Resources can be located in any time zone. 
 Weekends and holidays can be mapped depending on resource’s local time to model 

non-Grid (local) workload. 
 Resources can be booked for advance reservation. 
 Applications with different parallel application models can be simulated. 
 Application tasks can be heterogeneous and they can be CPU or I/O intensive. 
 There is no limit on the number of application jobs that can be submitted to a resource. 
 Multiple user entities can submit tasks for execution simultaneously in the same 

resource, which may be time -shared or space-shared. This feature helps in building 
schedulers that can use different market-driven economic models for selecting services 
competitively. 

 Network speed between resources can be specified. 
 It supports simulation of both static and dynamic schedulers. 
 Statistics of all or selected operations can be recorded and they can be analyzed using 

GridSim statistics analysis methods.  
 
System Architecture 

A layered and modular architecture is employed for grid simulations to leverage existing 
technologies and manage them as separate components. A multi-layer architecture and 
abstraction for the development of GridSim platform and its applications is shown in Figure 9. 
The first layer is concerned with the scalable Java’s interface and the runtime machinery, 
called JVM (Java Virtual Machine), whose implementation is available for single and 
multiprocessor systems including clusters. The second layer is concerned with a basic 
discrete-event infrastructure built using the interfaces provided by the first layer. One of the 
popular discrete-event infrastructure implementations available in Java is SimJava. Recently 
a distributed implementation of SimJava is also made available. The third layer is concerned 
with modeling and simulation of core Grid entities such as resources, information services, 
and so on; application model, uniform access interface, and primitives application modeling 
and framework for creating higher level entities. The GridSim toolkit focuses on this layer that 
simulates system entities using the discrete-event services offered by the lower-level 
infrastructure. The fourth layer is concerned with the simulation of resource aggregators 
called grid resource brokers or schedulers. The final layer focuses on application and 
resource modeling with different scenarios using the services provided by the two lower-level 
layers for evaluating scheduling and resource management policies, heuristics, and 
algorithms. 
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Figure 6.9: A modular architecture for GridSim platform and components 

 

6.2.3. Optimized Network Engineering Tool (OPNET) [111] 

In this section, we explore why a commercially available powerful simulation tool OPNET 
remains inadequate for the simulations of the security services of large scale open 
heterogeneous distributed systems like Grid. However, before exploring the shortcomings, 
we present an overview of the architecture and simulation mechanism of OPNET. 

OPNET provides a comprehensive development environment for the specification, 
simulation and performance analysis of communication networks. A large range of 
communication systems from a single LAN to global satellite networks can be supported. 
Discrete event simulations are used as the means of analyzing system performance and 
their behavior. The key features of OPNET are summarized here as: 
 

 Modeling and Simulation Cycle OPNET provides powerful tools to assist user to go 
through three out of the five phases in a design circle (i.e. the building of models, the 
execution of a simulation and the analysis of the output data). 

 Hierarchical Modeling OPNET employs a hierarchical structure to modeling. Each level 
of the hierarchy describes different aspects of the complete model being simulated. 

 Specialized in communication networks Detailed library models provide support for 
existing protocols and allow researchers and developers to either modify these existing 
models or develop new models of their own. 

 Automatic simulation generation OPNET models can be compiled into executable 
code. An executable discrete-event simulation can be debugged or simply executed, 
resulting in output data. 

  
This sophisticated package comes complete with a range of tools which allows developers 

specify models in great detail, identify the elements of the model of interest, execute the 
simulation and analyze the generated output data: 
 

 Hierarchical Model Building 
 Network Editor - network topology models 
 Node Editor - data flow models define 
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 Process Editor - control flow models 
 

 Running Simulations 
 Simulation Tool - define and run simulation 
 Debugging Tool - interact with running simulations 

 

 Analyzing Results 
 Probe Editor –data need to be collected 
 Analysis Tool – statistical results 
 Filter Tool – date processing 
 Animation Viewer – dynamic behavior 

 
Hierarchical Modeling 

OPNET provides four tools called editors to develop a representation of a system being 
modeled. These editors, the Network, Node, Process and Parameter Editors, are organized 
in a hierarchical fashion, which supports the concept of model level reuse. Models developed 
at one layer can be used by another model at a higher layer. Figure 10 portrays this 
hierarchical organization. The following sections introduce each of the modeling domains. 
The Parameter Editor is always seen as a utility editor, and not considered a modeling 
domain.  
 

 
 

Figure 6.10: Hierarchical Organization of Editors 
 
 
Network Model 

Network Editor is used to specify the physical topology of a communications network, 
which define the position and interconnection of communicating entities, i.e., node and link. 
The specific capabilities of each node are realized in the underlying model. A set of 
parameters or characteristics is attached with each model that can be set to customize the 
node's behavior. A node can either be fixed, mobile or satellite. Simplex (unidirectional) or 
duplex (bi-directional) point-to-point links connects pairs of nodes. A bus link provides a 
broadcast medium for an arbitrary number of attached devices. Mobile communication is 
supported by radio links. Links can also be customized to simulate the actual communication 
channels. 

The complexity of a network model would be unmanageable where numerous networks 
were being modeled as part of a single system. This complexity is eliminated by an 
abstraction known as a subnetwork. A subnetwork may contain many subnetworks, at the 
lowest level, a subnetwork is composed only of nodes and links Communications links 
facilitate communication between subnetworks. 
 
Node Model 
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Communication devices created and interconnected at the network level need to be 
specified in the node domain using the Node Editor. Node models are expressed as 
interconnected modules. These modules can be grouped into two distinct categories. The 
first set is modules that have predefined characteristics and a set of built-in parameters. 
Examples are packet generators, point-to-point transmitters and radio receivers. The second 
group contains highly programmable modules. These modules referred to as processors and 
queues, rely on process model specifications. 

Each node is described by a block structured data flow diagram. Each programmable 
block in a Node Model has its functionality defined by a Process Model. Modules are 
interconnected by either packet streams or statistic wires. Packets are transferred between 
modules using packet streams. Statistic wires could be used to convey numeric signals. 
 
Process Model 

Process models, created using the process editor, are used to describe the logic flow and 
behavior of processor and queue modules. Communication between process is supported by 
interrupts. Process models are expressed in a language called Proto-C, which consists of 
state transition diagrams (STDs), a library of kernel procedures, and the standard C 
programming language. The OPNET Process Editor uses a powerful state-transition diagram 
approach to support specification of any type of protocol, resource, application, algorithm, or 
queuing policy. States and transitions graphically define the progression of a process in 
response to events. Within each state, general logic can be specified using a library of 
predefined functions and even the full flexibility of the C language. Process may create new 
processes (child process) to perform sub-tasks and thus is called the parent process. 
 

Running Simulation 
 

Simulation Editor 
After defining all the models of the network system, we can exercise them in a dynamic 

simulation in order to study system performance and behavior. Generally, there are three 
steps for simulations execution and information collection:  
 
1. Specifying Data Collection: Model developers always need to decide which information 

should be extracted from the simulation, such as application-specific statistics, behavioral 
characterizations, and sometimes application-specific visualization. These can take on 
several different forms including visual animations, time-dependent series of values 
(vector), and parametric relationships (scalar). 

2. Simulation Construction: OPNET simulations are obtained by executing a simulation 
program, which is an executable file in the host computer's file system. 

3. Simulation Execution: Simulation execution is the final step in an "iteration" of a modeling 
experiment. In general, based on the results observed during this step, changes are 
made to the model's specification or to the probes, and additional simulations are 
executed. OPNET provides a number of options for running simulations, including 
internal and external execution, and the ability to configure attributes that affect the 
simulation's behavior. This section introduces concepts, techniques, and features that 
support simulation execution. 

 
OPNET simulations can be run independently from the OPNET graphical tool by using the 

op_runsim utility program. However, you can also run simulations from the Simulation Tool 
within OPNET, which offers the convenience of a graphical interface. The Simulation Tool 
provides the following services: 1) specification of simulation sequences consisting of an 
ordered list of simulations and associated attribute values 2) execution of simulation 
sequences 3) storage of simulation sequences in files for later use. 
 
Data Generation 
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Probe Editor 
Most OPNET models that contain objects that are capable of generating vast amounts of 

output data during simulations. The sources of output data include pre-defined and user 
defined statistics, automatic animation, and custom programmed animation. Users can use 
Probe Editor to specify which data to collect. A probe is defined for each source of data that 
the user wishes to enable. Probes are grouped into a probe list which, allowing them to be 
collectively applied to a model when a simulation is executed. Several different probe types 
are provided by OPNET in order to capture different types of output data. These are: 
 

 Statistic Probe This type of probe can be applied to predefined, standard statistics 
monitoring characteristics such as bit error rates or throughput. 

 Automatic Animation Probe This type of probe is used to generate animation 
sequences for a simulation. 

 Custom Animation Probe Process and link models also support the creation of custom 
animations. The actual specification of the animation's characteristics is defined within 
the user's code. 

 Coupled Statistic Probe This type of probes generates output data as the statistic probe 
does but, in addition, a primary module and a coupled module need to be defined. Some 
statistical data is generated at the primary module. This data is only generated when 
changes to the statistic are due to interactions with the coupled module. This type of 
probe is only used for radio receiver. 

 
Analysis Tool 

Simulations can be used to generate a number of different forms of output, as described 
above. These forms include several types of numerical data, animation, and detailed traces 
provided by the OPNET debugger. In addition, because OPNET simulations support open 
interfaces to the C language, and the host computer's operating system, simulation 
developers may generate proprietary forms of output ranging from messages printed in the 
console window, to generation of ASCII or binary files, and even live interactions with other 
programs. However, the most commonly used forms of output data are those that are directly 
supported by Simulation Kernel interfaces for collection, and by existing tools for viewing and 
analysis. Both animation data and numerical statistics fall into this category. Animation data 
is generated either by using automatic animation probes or by developing custom animations 
with the KP's of the Simulation Kernel's Anim package; the m3_vuanim utility is then used to 
view the animations. Similarly, statistic data is generated by setting statistic probes, and/or 
by the KP's of the Kernel's Stat package; OPNET's Analysis Tool can then be used to view 
and manipulate the statistical data. 

The service provided by the Analysis Tool is to display information in the form of graphs. 
Graphs are presented within rectangular areas called analysis panels. A number of different 
operations can be used to create analysis panels, all of which have as their basic purpose to 
display a new set of data, or to transform an existing one. An analysis panel consists of a 
plotting area, with two numbered axes, generally referred to as the abscissa axis (horizontal), 
and the ordinate axis (vertical). The plotting area can contain one or more graphs describing 
relationships between variables mapped to the two axes. For example, the graph in the panel 
below shows how the size of a queue varies as a function of time. 
 
Filter Tool 

OPNET's Analysis Tool allows the user to extract data from simulation output files and to 
display this data in various forms, as described in Chapter Datan of the OPNET Modeling 
Manual. The Analysis Tool also supports several mechanisms for numerically processing the 
data and generating new data sets that can also be plotted. These include computing 
probability density functions and cumulative distribution functions, as well as generating 
histograms. The data presented in the Analysis Tool may also be operated on by numeric 
filters. These are constructed from a pre-defined set of filter elements in the Filter Editor. 
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Filter models are represented as block diagrams consisting of interconnected filter 
elements. Filter elements may be either built-in numeric processing elements, or references 
to other filter models. Thus, filter models are hierarchical, in that they may be composed of 
other filter models. However, all filter models must be composed at the lowest level of pre-
defined filters discussed in Chapter Datan of the OPNET Modeling Manual. 

Filters operate on vectors. Vectors are discrete and ordered sets of numeric data which 
consist of entries, as discussed in Chapter Datan of the OPNET Modeling Manual. Each 
entry consists of an abscissa and an ordinate value. These are double-precision floating 
point numbers. A filter model may operate on one or more vectors and combine them to form 
its output, which must consist of just one vector. The vectors that are fed into the filter are 
called input vectors; the result of the filter‘s processing is called the filter‘s output vector. 
 
Problems with the Simulations of Security Services of Distributed Systems 
 OPNET, as the name implies, is a tool for network simulations. However, it is still 
being used by the distributed system’s community mainly due to its fame and ease of use. 
The general practice is to convert a distributed system into a corresponding network model; 
carry out the simulations; and translate back to the distributed model to evaluate the results 
obtained. This approach is fairly workable with a limited size of the distributed systems where 
the scalability factors and the ‘open’ nature are not of paramount importance. In our case, 
especially with the consideration of the heterogeneity of the large scale systems, it is too 
risky to have a ‘perfect’ translation of the security architecture of a large scale open 
heterogeneous distributed system into a corresponding network model and vice versa. 
Moreover Opnet has some problems when more than one application had to be used on a 
workstation. For some reason, there was always a workstation that received no traffic of the 
server. We had several tasks which we called in several applications and put into different 
profiles. But when we tried to simulate this model, there was always a workstation that did 
not receive any traffic from the appropriate server, whatever adjustments we introduced to 
the model. 

There also seemed to be quite some bugs in Opnet. For example when starting the 
simulation, Opnet always gave some 'recoverable errors', though they didn't seem to have 
any affect on the results. Moreover, it is difficult to simulate a lot of traffic. 

We have kept in mind all these problems while designing G3S and that’s why G3S 
provides better environment than OPNET for the simulations of the security services of large 
scale open heterogeneous distributed applications and systems. Moreover, it’s successful 
integration with the GridSim has also resulted in the provision of a tool capable of providing a 
complete set of simulations for a large system like computational grids. 

6.3. Quality of Protection (QoP) 
Our approach compliments the weakness in current security evaluation mechanisms that 

do not provide a discreet quality of protection (QoP) parameter. The Quality of Protection 
(QoP) is a criterion that includes security bindings supported by the service, confidentiality 
and integrity requirements It is an essential parameter, as well as security attributes (service 
identity...), that has to be defined by a service. Service requestors are therefore able to 
evaluate their invocation policies, discover a service based on their security characteristics. 
At the other end, service providers can be sure that service requestors are subject to policy 
checks defined by the access policies attached to the service. For example, some policies 
may require that the service provider will only allow the invocation of a service after the 
service requestor has authenticated itself first, and provides an appropriate credential when 
invoking the service. 

A Grid (or any other large scale distributed heterogeneous system) service must be able to 
define or publish the Quality of Protection (QoP) it requires and the security attributes of the 
service Aspects of the QoP include security bindings supported by the service, the type of 
credential expected from the service requestor, integrity and confidentiality requirements, etc. 
The security attributes of the service can include information such as service identity. This 
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enables service requestors to discover a service based on the requestor’s security 
characteristics. Additionally, service requestors will be able to evaluate their invocation 
policies based on the security attributes of the service. Note that that there may be policy 
restrictions on the visibility of the service’s security attributes. 

From the service provider’s point of view requests to invoke Grid services by service 
requestors are subject to policy checks defined by the service’s access policies. For 
example, some policies may require that the service provider will only allow the invocation of 
a service after the service requestor has authenticated itself first, and provides an 
appropriate credential when invoking the service. 

These requirements highlight the need for establishing standard mechanisms for 
conveying and enforcing the quality of protection, security attributes and access policies 
associated with services and requesters. 

The attack simulations provided by the G3S help its users to evaluate the QoP parameter 
to examine the trade-offs in terms of system performance and security services. 

6.4. Quality of Security Services (QoSS) 
To handle changing security requirements in the distributed environments, we strongly 

recommend the use of Quality of Security Service (QoSS). It governs security technologies 
and protocols to be used as requested by the application and governed by existing policies, 
rules, history and trust. Different systems and communications require different levels of 
security applied to them. This means different security services, policies and processes 
should be able to dynamically discovered and used. Dynamic composition of these security 
services to create higher-level composite services is a feature of our proposed security 
architecture. Based on a predefined request for a certain security level from the application 
service layer, certain services are negotiated by using the security broker as a security agent 
between the core security architecture and the applications. It can be imagined as a security 
stack that is composed dynamically based on certain requirements and requests from the 
application. We strongly believe that both fine and coarse grain security services and every 
thing in between should be available to the application layer. In order to pick and choose 
what components and protocols to be used the application needs to be able to discover what 
services are available to it at a given time. It also needs to be aware of the network 
connectivity and network layer security services that are available to it for a certain request. 
QoSS agreements would be negotiated dynamically. An association control service needs to 
provide the service elements for establishing, handshaking and agreement on security level 
and termination of such association. The association could be long lived or short lived 
depending on the nature of the request. 

For a Quality of Service (QoS) dimension to be supported means that users can request or 
specify a level of service for one or more attributes of this dimension, and the underlying QoS 
control mechanism is capable of entering into an agreement to deliver those services at the 
requested levels. Therefore, the control mechanism must be able to modulate the level of the 
service to individual subscribers (e.g., users). 

Users may have expectations (i.e., functional and assurance requirements) with respect to 
the security services they are provided. Quality of Security Service (QoSS) has the meaning 
that security and security requests can be managed as a responsive service for which 
quantitative measurement of service efficiency is possible. 

QoS mechanisms can be more effective with security appearing as a QoS dimension: 
when variable levels of security services and requirements are presented to users or network 
tasks, the underlying system can adapt more gracefully to changes in resource availability 
during the execution of a task, and thereby do a better job at maintaining requested or 
required levels of service in all of its dimensions. 

The enabling technology for both QoSS and a security adaptable infrastructure is variant 
security, or the ability of security mechanisms and services to allow the amount, kind or 
degree of security to vary, within predefined ranges. This notion of network Quality of 
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Security Service has the potential to provide administrators and users with more flexibility 
and potentially better service, without compromise of network and system security policies.  

To be general, we will define that all security requirements have a range of permissible 
behavior. In some cases, a range may be unitary, or degenerate, in which case it represents 
no choice. Where a range represents a choice, the requirement is termed security variant. In 
the same sense all system security services can be considered as having a range: since they 
are invoked at the discretion of the user or application, the range is at least binary (i.e., 
invoked or not invoked). 

This notion of variant requirements and security ranges may, at first, seem strange. For 
many, either you have security or you don’t. This is true on a gross scale, since without some 
minimum level of security, a system will be considered inadequate for user requirements. But 
if a user’s minimum requirements are met, there can be some choice with respect to what is 
adequate. 

Some examples in which security ranges and choices could be available: 
 collaborative applications, such as video teleconferencing with shared electronic boards 

and application suites: if a group member is participating in the collaboration from a hotel 
room in a foreign country known for government support of corporate espionage, his 
security requirements and choices will be quite different than if he were in “friendly” 
territory. These security choices may form a range from which the user or application can 
select, and can include different levels of authentication, confidentiality and integrity. 

 a variable packet authentication scheme [112]: the recipient might be satisfied if a certain 
percentage of each packet in an image stream was authenticated (e.g., 80% to 100%); 
this might have applicability for image display, especially considering that the low order 
bits of each byte are not very significant visually, in some display protocols. 

 an Intrusion Detection System (IDS): an administrator may choose to run the IDS within a 
range rather than a fixed level. There would be a minimal level of IDS processing below 
which the system would not be permitted to fall, but the IDS would be balanced against 
performance requirements of the organization’s tasks. Thus the IDS might perform more 
thoroughly (with deeper histories) when the system is lightly loaded than during peak 
hours. The administrator might also choose to set an upper limit to IDS performance. 

 
The following are some example security variables, with characterizations of how they 

could be specified or measured: 
 Strength of cryptographic algorithm, e.g., RSA, DES: measured in terms of the work 

factor associated with a brute force attack 
 Length of cryptographic key: characterized by bit length  
 Percentage of packets authenticated: characterized by percentage of total (e.g., a 

multimedia environment might tolerate a percentage of data modification or loss) 
 Security functions present in destination job execution environment: characterized by 

operating system or boundary control security policy enforcement mechanisms. 
 Confidence of policy-enforcement in remote login environment: characterized by third 

party evaluation  
 Robustness of authentication mechanism: here the range might span weak password, 

strong password, biometric, and smart cards with on-board display and input interfaces. 
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Chapter 7 
 

Applications 
 
 
 
 
 
 
 

7.1. Overview 
In this chapter, a list of potential systems that can benefit from the security model 

proposed in this thesis. They are the contemporary, large scale, open, distributed, and 
heterogeneous systems. The need of a suitable security architecture for these systems is 
keenly felt in the recent literature [122-125]. In the following sections, a description of these 
systems is given with special emphasis on their specific security requirements. As our 
proposed security model is specifically designed for such kind of systems and we have 
shown in chapter 5 that how its various units tackle the overall security requirements of these 
systems and its evaluation is presented in chapter 6. In this chapter, we elaborate a set of 
real life applications of our proposed security model that justifies its significance in the 
contemporary large scale open distributed heterogeneous systems. 

7.2. Life Sciences 
Information technology has dramatically reduced the costs, increased the speed, and 

improved the productivity of life sciences research and development (R&D). Life sciences 
R&D, in turn, have opened up new challenges and opportunities for IT applications. This 
virtuous cycle has contributed to a whole new frontier for knowledge generation. For 
example, the confluence of IT and biological advances made possible the mapping of the 
entire human genome and genomes of many other organisms in just over a decade. These 
discoveries, along with current efforts to determine gene and protein functions, have 
improved our ability to understand the root causes of human, animal and plant diseases and 
find new cures. Furthermore, many future IT innovations will likely be spurred by the data 
and analysis demands of the life sciences. 

Health Grid 
Based on the grid technologies, the vision of Health 

Grid is to create an environment where information at 
the 5 levels (molecule, cell, tissue, individual, 
population) can be associated to provide individualized 
healthcare.  

Already today, the availability of large amount of data 
(clinical, genomic, proteomic, etc) in heterogeneous 
sources and formats, and the rapid progress in fields 
such as computer based drug design, medical imaging 
and medical simulations have lead to a growing 
demand for large computational power and easy 
accessibility to heterogeneous data sources in the 
Health domains. 
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Health Grid Security Requirements 
Health Grid does not intend to restrict to the use of Grid technology for distributed 

computing only. Eventually, Health Grid should offer a generic platform for all e-Health 
actors. Sharing of large amounts of distributed heterogeneous (on various levels) data is 
therefore an important point of attention. 

It is clear that the linkage of several distributed data sources bound to a single individual 
on a data Grid opens up a range of security concerns. The (virtual) federation of a large 
amount of personal medical data is not the only risk at hand. Grid technology will 
undoubtedly further stimulate the use of genomic data in research. However, this particular 
type of data has a number of specific characteristics related to security which are not found 
in any other type of (medical) information: 

 
 Genetic data not only concerns individuals, but also their relatives. A person’s 

consent to release his or her genetic information constitutes a de facto release of 
information about other individuals, i.e. his or her relatives. In the case of genomic 
medicine, there is a complex interaction between individual rights and collective 
requirements; 

 Medical data deal with past and current health statuses of persons, whereas genetic 
information can also give indications about future health or disease conditions; 

 An individual person’s genotype is almost unique and stable, hence it can become 
the source of an increasing amount of information; 

 The full extend of the information included in the genomic data is not known yet, 
hence it is difficult to assess the full extent of disclosure; 

 Genomic data is easily wrongly interpreted by non-professionals; susceptibility to 
diseases can easily be mistaken with certainty of illness. 

 
The above clearly indicates that the reconciliation of two seemingly conflicting objectives: 

on the one hand, the maximization of medical research productivity and efficiency in data 
handling; on the other, the protection of the human privacy rights; is the challenge at hand. 

A couple of basic approaches to safeguarding confidentiality have been identified in the 
past in healthcare practice. The first approach focuses on the creators and maintainers of the 
information, prohibiting them from disclosing the information to inappropriate parties. 
Basically, this comes down to the deployment of classical security measures (access 
control, authorization). 

With the introduction of a Health Grid, the need for confidentiality and data protection is 
more real than ever. The Grid promises access to heterogeneous resources, which means 
that in a Health Grid environment remote resources will be storing and processing sensitive 
personal data. These resources should thus be trusted by the end-user. But how can one 
know? Who can be the judge of trustworthiness of a Grid resource? A simple and 
straightforward solution is to use closed systems, which means that any resource in the Grid 
is well known and specified in advance. This however conflict with the vision of the dynamic 
nature of Grid technology. 

Solutions should rather be searched in the area of policy advertising and negotiation. 
Resources should be able to inform a candidate user on how the data dealt with will be 
treated, which policies are applied, what PETs are used, who can have access to the data, 
etc. These methods are sometimes referred to as not being genuine Privacy Enhancing 
Techniques, as they do not actually limit collection of personal identifiable data and do not 
give any guarantees about the actual processing. A resource can claim to adhere to strict 
rules, but in practice this can not be verified. 

The first steps in the direction of policy management have already been taken by Grid 
developers. The development of standards such as WS-Privacy, WS-Policy and EPAL 
(Enterprise Privacy Authorization Language) is an effort in the good direction. However, 
implementation till this day is rather limited, and the full possibilities of the technology will not 
be researched unless effort is spent here from the healthcare area (the main application 



 127

domain). A Health Grid would be the ideal environment where such PETs can be tested and 
further developed. 

The above directly impacts typical Grid mechanisms such as data replication. Replication 
mechanisms automatically copy data on a resource in order to increase efficiency (e.g. to 
avoid transfer delays). With medical data, this might however not be allowed. The site on 
which the data will be replicated should at least be as trustworthy as the data source and 
should adhere to the same strict policies. A Health Grid should be able to handle such cases 
autonomously in order not to loose its dynamic nature and hence its efficiency. Another 
example is delegation. Delegation of rights is fundamental in a Grid environment, however in 
the medical world, this is far from obvious. If one passes on rights to others (resources), one 
becomes liable for actions performed on one’s behalf. In a healthcare environment this has 
serious implications on liability. Auditability and accountability features offer a path to a 
solution suitable for medical applications. 

Policy management will be an important topic in Health Grid, both for security (e.g. 
authorization policies) as for data protection (privacy policies). A difficult problem in this 
context is the one of policy enforcing and assuring that a certain policy is followed. 

Equally important and closely related to this subject, is the implementation of auditing 
mechanisms. All actions in a medical context should be logged in a trustworthy way. Non-
repudiation combined with a legal framework could help solve liability issues in healthcare. 

Next to the areas of interest mentioned in this text, there exist several other healthcare 
needs for Grid applications that could be developed at e.g. upper middleware level for the 
benefit of a large community within a Health Grid context. Among those: encrypted storage 
for medical data (a far from obvious problem) and trustworthy federation of research 
databases – virtual federation of small “cells” of de-identified data (e.g. geographical area, 
hospital, …) can decrease the re-identification risk (by increasing the anonymity set). Finally 
a range of PETs which are well suited for distributed environments is emerging (Private 
Information Retrieval and Storage, privacy preserving data mining, processing of encrypted 
data, ...). However the road to an advanced generic privacy preserving framework for e-
Health is still long and littered with technical difficulties which should be tackled one at a time. 

It is however a fact that Grid technology can only be successful in a biomedical 
environment if the ethical guidelines and legal requirements are adequately met by 
technological solutions which are continuously evaluated and updated as new needs arise. 

7.3. Critical Infrastructures 
Critical Infrastructures are large scale distributed systems that are highly interdependent, 

both physically and in their greater reliance on the information and communication 
technologies (ICT) infrastructures, which logically introduce vulnerabilities that make them 
increasingly complex and fragile. Failures, accidents, physical or cyber attacks can provoke 
major damages which can proliferate by cascading effects and then can severely affect a 
part or the whole society. Because of their interdependencies and their increasing reliance 
on open systems, critical infrastructures constitute an unbounded system where faults may 
occur and proliferate in a severe way and where security represents a real challenge and 
requires new methodologies and tools. Securing the communications is an essential task. 
However, it is necessary to protect the infrastructures themselves (especially critical 
infrastructures) so that they become self-healing, fault tolerant, fault resistant, and resilient 
architectures. 

New Paradigms in ICTs 

In the ICT domain, new paradigms are emerging that comply with the complex demands of 
proximity and use, and that encourage the IT and telecom industries to prefer specific 
solutions that reconcile technology and markets with geography and users. Among these 
ideas, the concept of ambient intelligence points to the filling of geographical space with 
dynamic digital content (either information or computer programs). The concept of grids for 
intensive computation and the birth of pervasive computing means global and local 
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computation are becoming omnipresent. The planet will be covered with enormous 
middleware systems which will communicate two by two with variable granularity. Grids are 
dynamic virtual organizations for performing huge computations, with networks of clustered 
computers, scalable to enable massive distributed computation. Outsourced computing 
infrastructures will become semi-public resources and will be separated from their owner-
users. This freedom to share computational infrastructures raises several questions such as 
ethical issues that are not easily solved. Finally, the urbanization of heterogeneous 
interconnected networks proclaims the ubiquity of communications and universal access to 
telecommunication infrastructures. The planet will soon be covered by these enormous fixed 
or movable structures, enabling local access to a digital infrastructure that can interoperate 
with all the other digital structures. Here again, the granularity and size of autonomous 
networks are very different depending if we consider a PAN, WLAN, WAN, or the Internet. 

At the same time, the widespread of wireless infrastructures makes it almost impossible to 
delineate the contours of an information system. Not only has radio enabled building wireless 
networks, but also using the resurrected distributed computing, we are able, based on a 
standard resource available in proximity, to weave and configure in space a real and 
enormously powerful machine performing computation for its own sake. With the 
standardization of interconnections, it has become impossible to trace connecting wires or 
interoperating lines between several computers (running sometimes into the millions 
worldwide). This capability will become a permanent threat, as it will enhance the strength of 
the individual in relation to the State. 

Because of their interdependencies and their increasing reliance on open systems, critical 
infrastructures constitute an unbounded system where faults may occur and proliferate in a 
severe way and where security represents a real challenge and requires new methodologies 
and tools [113]. Modern enterprises adapt quickly with short-decision cycles, fast-reaction 
loops and just-in-time procurement cycles. This results in chain reactions and/or hazardous 
automatic decisions when gaps appear in the behavior of systems and organizations, 
following inventory shortages, insufficient time, or shortages in logistics with unexpected 
consequences. 

Potential threats to the normal functioning of infrastructures are both natural (“Murphy’s 
Law and Mother Nature”) and man-made. Individual outages can be serious enough, but this 
growing degree of interconnectedness can make possible a whole new scale of synergistic, 
nonlinear consequences. 

System Requirements 

The goals of a security management model are to be able to foresee the development 
flaws, detect anomalous behaviors to proactively manage the system in order to prevent 
serious problems, install prevention measures, and reactively control the system by making 
adjustments in response to changes (that may be sudden as when following an attack) within 
the system or its environment. 

Even if it is almost impossible to prevent attacks, it is really important to be able to act 
quickly within the system to stop a potential proliferation of the problem. Consequently, two 
correlated works of modeling can be distinguished: one concerning CIs and one concerning 
security management. 

Therefore, the basic requirements of the system are motivated by the following security 
functional requirements: prediction and scenario simulation (development, proactive 
management, etc.), prevention, monitoring (global view, reactive and proactive management, 
real-time), distributed intelligence and autonomy. 

Security Requirements 

When regarding the protection of the essential information infrastructures (and especially 
critical infrastructures), most of the time one concentrates on the availability subject. 
However, we put emphasis on not forgetting to protect integrity of provided services as well. 
Moreover, Service availability may conflict with other security goals that can be more 



 129

fundamental in some infrastructure cases; when integrity and confidentiality are the main 
goals, the most secure system is often one that does nothing. Therefore, protection against 
DoS often requires architectural changes to the system, which may prove expensive. 

Another challenge for securing infrastructures is to make a trade-off between security and 
privacy. Technological developments and the needs of law enforcement provide increased 
opportunities for surveillance in cyberspace. Better managing and strengthening the 
infrastructure would make it more efficient and resilient without the need for unnecessary 
surveillance. A typical aspect of this issue is the problem of attack trace-back in Internet 
between the security (detecting the attacker) and the privacy (protecting the anonymity of 
Internet users). 

7.4. Environmental/Meteorological Systems 
While distributed sensor networks have great potential for advancing science, distributed 

collections of environmental data carry significant security implications. Sensor network 
architects and users must address security issues from the initial system design, and 
continue to do so with the data collected well after the network is dismantled. In a general 
sense, most security problems found in distributed sensor networks are also found in other 
distributed computer systems. However, the embedded nature and scale of distributed 
sensor networks pose novel security threats and exacerbate others. 

Examples from the Internet motivate the need for investment in privacy and security. 
Consider the large amount of data generated and posted publicly on the Internet in the 
1990s, without concern for security or privacy. At the time, lack of explicit control was of 
limited risk because data were transient, difficult to search, and seen by relatively few 
people. However, the data were archived, and are now indexed and easily searchable by 
today’s search engines. Similarly, in the 1980s and early 1990s, systems attached to the 
Internet were rife with security vulnerabilities, but exploitation of these holes was rare and 
piecemeal. Today, in contrast, even a single vulnerability can cause widespread economic 
disruption. 

Analogues to these and other problems exist in sensor networks. Data collected from a 
sensor network today may be difficult to exploit and seemingly innocuous. However, future 
improvements in programmability and data mining may result in unintended consequences. It 
is also clear that sensor networks can be attacked, which will result in erroneous data being 
saved. Future networks comprised of millions of embedded sensors might even provide a 
platform for a network or physical attack. 

Users of sensor networks have security needs that are similar to users of traditional 
systems. They need data integrity and authentication: they want to know that the data they 
receive are uncorrupted, and know where they came from and when. Networks must 
maintain availability and be resilient to disruption; sensor networks that do not produce data 
are not useful. Privacy is needed, both for the scientists and the objects being observed. For 
reasons of correct attribution of work, scientists must be able to perform experiments 
confidentially, prohibiting others from viewing experiments in progress. There is also an issue 
of privacy regarding certain data that may inadvertently contain information beyond what the 
experimenters sought to gather. And while these needs fit into well-understood security 
categories, their threats and the means to neutralize those threats do not. 

Key sensor network vulnerabilities include denial of service attacks, passive listening, and 
data insertion or corruption. Denial of service [114] can occur in many ways (e.g., by 
physically inserting a device that jams the wireless communications). Since a distributed 
sensor network may be deployed in remote regions, an adversary may physically destroy 
some subset of the devices. The wireless communication also permits passive listening by 
unauthorized individuals. Even worse, the insertion of corrupt sensor or control data could 
cause the system to stop operating, operate dangerously, make the collected data 
meaningless, or cause incorrect data to retard or wrongly direct scientific investigation. 

Data collection on a large scale can have unintended consequences that can cause 
security risks. For example, a large system deployed in the ocean, such as NEPTUNE 
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(http://www.neptune.washington.edu/), can use microphones and sonar to monitor fish 
migrations. However, these raw data may unintentionally record faint traces of the U.S. 
submarine fleet; an adversary may be able to mine the raw data to learn valuable military 
intelligence. 

The issue of data mining also poses threats to people’s privacy. For example, once many 
sensor networks exist, data from different systems might be merged and assessed to acquire 
unexpected information about individuals, corporations, or governments. People need some 
degree of understanding and control over how they are observed by such networks, allowing 
them to make informed decisions about their privacy. 

7.4.1. Challenges and Solutions 
Three key factors pose significant security issues and challenges distinct from those found 

in traditional Internet-based systems: scale, embedment, and privacy [115]. As scientists and 
researchers deploy greater numbers of large-scale sensor networks, the security 
requirements of these systems and their impact on these three factors will become clearer. 
Identifying and characterizing these new security models is a significant task. 

Sensor networks exist at many scales, from the 50-node NEPTUNE network to mote-
based networks with thousands of nodes. Even larger systems and systems-of-systems will 
exist in the future. This wide range of scale imposes a correspondingly wide range of security 
challenges and required solutions. 

Challenges 
Modern computing systems such as laptops and desktops are typically rich in 

computational resources: they use billions of CPU cycles and hundreds of megabytes of 
memory to edit text or view images. This growth in power has allowed what were once 
computationally taxing operations to become commonplace. For example, when Adelman, 
Shamir and Rivest first proposed RSA encryption in 1978, encryption with a cutting-edge 
VAX computer took on the order of 30 seconds. Today, RSA encryption is used every time a 
secure website is accessed, taking a few milliseconds. These techniques may be applied to 
wired, resource rich nodes such as NEPTUNE. 

In contrast, mote-based sensor networks are resource limited. With processors only 
marginally faster than those of a 1978 VAX and a few kilobytes of memory, they cannot 
afford to use the same algorithms and mechanisms that have become commonplace on 
personal computers. Since 1978, however, the importance of security in computing systems 
has increased greatly. For example, the first Internet worm was ten years later, in 1988. Mote 
based sensor networks must meet modern security needs but have available only limited 
resources, e.g., current motes must solve security problems with resource capacities similar 
to those available in general purpose processors twenty years ago. 

In addition, mote-based networks are composed of large numbers of devices. A mote 
network administrator may be responsible for thousands of devices, and keeping track of 
each individual node is not feasible. As the scale of the network increases, this decreases 
the mean-time-to-failure of a node from the network. In networks with a large number of 
nodes that can readily fail, the administrator focuses on maintaining operation of the network 
as a whole even with these problems. The security model of a mote-based network must be 
similarly resilient to failure. This broad range of scales for networks results in a spectrum of 
security approaches, and heterogeneous networks must deal with many points on that 
spectrum simultaneously. 

Unlike traditional computing systems, sensor networks are embedded in uncontrolled 
environments. For example, in Internet-based systems such as Web severs, physical 
compromise is rarely an issue, as the computers are in dedicated and locked server rooms. 
In sensor networks, however, the opposite conditions generally prevail, and nodes are not 
similarly protected. Instead, the network is often deployed in remote locations, far from easy 
visual observation. Under such conditions, an adversary can physically compromise nodes 
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even if the network communication is secure, and systems must be able to continue to 
operate in the presence of compromised nodes. 

Not only does embedment pose security risks to a sensor network, it also raises questions 
on security implications for the collected data. Monitoring the environment can lead to 
gathering data on unsuspecting (or unwilling) subjects. For example, as mentioned above, 
the U.S. military has recently been concerned with NEPTUNE’s deployment of 
seismographic and acoustic sensors in the deep ocean. Although the sensors are intended 
for geological, chemical, and biological research, the same data could be used to monitor 
ship and submarine movements. Protection against unintended uses of data is a very 
challenging problem. 

As a result of the special needs of sensor networks, new security models must be 
developed. New metrics for assessing the security and safety of these systems are required. 
Fundamental questions that relate the lower bound on resource requirements necessary to 
meet various types and degrees of security need to be answered. Means to assess the 
impact of compromised nodes on the final accuracy of the collected data must be developed. 

Solutions 
The following proposed solutions are not meant to be exhaustive, but rather to illustrate 

directions that can provide some immediate solutions. 
Many nodes used in sensor networks provide limited resources for computation and 

communication. These limitations severely hinder the use of widely available 
implementations of cryptographic algorithms that have driven security solutions in the 
broader community [116]. Research aimed at developing light-weight implementations of 
cryptographic algorithms [117] could enable for sensor networks a large collection of 
techniques that have been tested and evaluated in a broader community. 

Given a sensor network consisting of thousands of nodes operating in a harsh 
environment, node failures due to factors such as hardware errors, software bugs, or attack 
are inevitable. In addition to securing individual nodes, it is necessary to design systems that 
are resilient to attacks and other forms of node failure. The concept of graceful degradation 
has been a cornerstone of distributed and fault tolerant systems, and the applicability of this 
approach to sensor networks and security should be explored. In particular, systems should 
be able to continue to operate in the presence of compromised nodes. The broader 
community has developed a number of approaches for detecting intrusions and network 
anomalies. These approaches may be fruitfully adapted to the environment presented by a 
sensor network. Such approaches should make it possible to identify compromised nodes 
and revoke any rights they may have within the network. As an example, work in wireless ad 
hoc networks that enable each node to actively overhear the wireless channel, identifying 
anomalies of its neighbors’ transmissions, has demonstrated the capability of such active 
defense to be an effective counter to attacks [118, 119]. 

Physical compromise of a sensor node could reveal critical information (e.g., encryption 
keys) that could be used to impersonate the compromised node. Special, tamper resistant 
nodes that destroy their storage upon physical tampering would defeat such an attack. 

Characteristics of the deployed network and the subjects being sensed can be used to 
validate the authenticity of collected data. As an example, identifying the presence of an 
automobile in one location at one instance followed immediately by an indication that the 
automobile had moved a great distance or that the automobile was following a physically 
impossible path could be an indication that the network is being spoofed. Also, given the high 
density of sensors in networks, the inherent redundancy can be exploited to solve some of 
these security problems. 

The correct operation of middleware services such as the localization of nodes, time 
synchronization, data routing [117], and self-calibration are essential to the functioning of 
many sensor networks. When necessary, these middleware services should be secured 
against attack. A number of proposals [117, 120, 121] have begun to address these issues, 
but the broader space of such problems remains largely unexplored. 
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Attacks can be launched against different levels of a system. A malicious “black-hole” 
node might try to attract data from nodes throughout the network, interfering with the data-
collecting ability of a real base station. A “jammer” might transmit noise to disable the 
communication in its vicinity. Multiple layers of defense not only protect the network from a 
diverse spectrum of attacks, but also ensure that a breach of one line of defense does not 
compromise the entire system. 

Sensor network users are likely to perceive security as an absolute, i.e., they are likely to 
believe that the system is either secure or not secure. As with other systems, the reality is 
not so well-defined. A sensor network may be protected from some security violations while 
being vulnerable to others. Specific issues include the degree of trust and the potential for 
social impact (e.g., invasion of privacy) of the sensing and data collection activities. 
Scientists and the public need to be informed about the complex consequences associated 
with deployment of sensor networks. This aspect of security is best addressed through 
education. 

In practice, sensor networks are likely to be deployed by scientists who are not security 
experts. A composable security infrastructure which supports the construction of sensor 
networks from smaller parts that are secure and trusted will be invaluable to the future 
deployment of sensor networks. As an example that works for the Internet, SSL (Secure 
Sockets Layer) provides an infrastructure that allows individual machines to be added to the 
Internet while retaining the desired security properties. 

Future sensor networks may require large numbers of heterogeneous nodes. 
Authentication schemes will need to be able to scale to the magnitude required to support 
such large-scale systems. The building blocks of authentication should have sufficient 
modularity to easily enable interoperation among heterogeneous software and hardware 
components for a coherent system. 

Basic Research in Cyber Security 
While it is clear that the security challenges introduced by sensor networks will benefit 

from general research in cyber security, sensor networks present four research opportunities 
that are unlikely to arise in other contexts. First, the security of sensor networks should take 
advantage of properties of the physical environment in which they are deployed. This 
exploitation of physical properties to enhance network security is a fertile ground for novel 
techniques and mechanisms. Second, security mechanisms of sensor networks should self-
organize to minimize human intervention. Because of the potentially large scale of sensor 
networks, autonomic approaches such as self-diagnosis and self-healing are necessary to 
relieve the user from the burden of attending large numbers of nodes individually. Third, 
research should identify the extent to which not just individual nodes but overall system 
architectures can be secured. 

Because many sensor networks will be constructed from sensors with severely limited 
resources, traditional approaches that emphasize the security of individual nodes may not be 
appropriate. System level approaches, including resilience techniques that ensure operation 
of the network in the presence of a certain percentage of compromised nodes, should be 
investigated. Finally, because sensor networks rely on the correct operation of specific 
services such as routing, localization, etc., research should investigate the degree to which 
the security of these “middleware services” can be enhanced, in light of the limited resources 
available on a sensor node. 

Testbed Sensor Network Systems 
While many of the issues related to security in sensor networks can be studied in isolation, 

design and implementation will need to be examined in a more complete context. To ensure 
the validity of approaches to network security, funds are needed to support the development 
of fairly large testbed/prototype sensor network systems that involve multidisciplinary teams 
from both science and technology. These systems should be driven by scientific exploration 
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of a specific phenomenon where security is an explicit requirement. Security must also be an 
integrated part of the design from the beginning. 

7.5. Collaborative Distance Learning 
In order to support ubiquitous, collaborative, experiential and contextualized learning in 

dynamic virtual communities a learning environment should provide the following features for 
learners: 

 
 Collaboration; Socio-constructivist: group working should be routinely supported as 

well as the more traditional model of the solitary learner – this includes support for 
self-organizing online communities who share common educational goals 

 Experiential; Active Learning: learning resources should be interactive, engaging, and 
responsive – active learning and knowledge formation should be emphasized above 
simple information transfer 

 Realism: real-world input should be easy to incorporate, as should simulations, 
ranging from simple interactive animations to immersive VR 

 Personalized: students should find themselves at the centre of their online 
environment, with their individual needs addressed - the quality of the learning 
experience should be continually validated and evaluated 

 Ubiquity and accessibility:  
o wider, more flexible access to educational resources should be provided, often 

referred to as “anytime/anywhere” learning. 
o multiple different types of devices, interfaces, and network connection types 

should be supported where possible 
 Contextualized; Adaptive: appropriate learning contexts may be naturally be short-

lived, as well as the more traditional static situations such as the classroom and the 
library – this calls for dynamicity in the creation of contexts 

 
The pedagogical goals outlined above have highly demanding technical requirements, 

many of which are also the concerns of distributed systems research. Group working implies 
shared interactive resources, necessitating both concurrency control and awareness of 
others activities. Active learning requires interactive resources, many of which will only be 
engaging if they are suitably responsive – a quality of service (QoS) issue that depends on 
many components of a distributed system – the low-level infrastructure (hardware, OS, 
network), the middleware and the interface software. Concurrency control and interactive 
responsiveness can make conflicting demands on a system. Real world input, such as live 
stock market prices, or remote sensing data, makes a network connection mandatory, and 
this again raises QoS issues such as fault detection, masking and tolerance for the learning 
environment. Accessibility, as in anytime/anywhere, requires availability, which may be 
supported through replication of resources, but this creates further tensions with 
responsiveness and concurrency control due to the need to maintain state across replicas. 
Accessibility also means adapting to available capabilities. For example: can the same 
learning environment be delivered through low-bandwidth mobile devices and high-
bandwidth multimedia workstations? Accessibility also means supporting special needs of 
the individual, such as disabilities. More generally, the individual user should be recognized 
and catered for, and this personalization requires semantic tagging and profiling that can be 
difficult to formulate, both conceptually and in terms of machine representation. Standards 
efforts have been particularly slow in addressing this problem. Finally, contextualization 
requires a move from the traditional view of an online learning environment as a stable long-
lived entity (e.g. during the lifetime of a teaching module) – to one where the environment 
may evolve and change much more frequently, perhaps even several times a day – a 
dynamicity that is alien to current e-Learning products. 
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Chapter 8 
 

Conclusions 
 
 
 
 
 

Managing security in large scale heterogeneous distributed computing systems is a non-
trivial problem. In such systems, the relationships are dynamic in nature which requires 
dynamic and adaptable security modules. Due to these reasons, currently available solutions 
usually lead to heavy administrative burden or weak security. 

In this thesis, a new approach is proposed to deal with a number of security challenges 
presented by large scale, open, distributed heterogeneous systems. The most salient feature 
of our approach is the flexible and adaptive nature of security services. We have used 
virtualization to provide standardized ways of enabling the federation of multiple 
heterogeneous security mechanisms. To have minimal reliance on the emerging resource 
management functionalities, and to make our model more adaptive, we have extended the 
concept of security as services to security as pluggable services. The other features are the 
self-security of the security architecture; use of security broker that negotiates for security 
services; description of security ontology to enable standard protocol interactions of core 
security bootstrapping services; and user-centered security services where usability is the 
prime motivation. 

Our research has been a first step to come towards a systematic approach in the design 
process of security architecture for large scale, open, distributed heterogeneous systems. 
Although a wide variety of complex systems are considered but more consideration is given 
to the computational grid based systems. This work can be continued to explore more 
specific security solutions for other complex systems such as ubiquitous systems, P2P 
systems, etc. Moreover, the concept of virtualization could be extended to adapt country-
specific legal requirements, population-based ethical issues, and the business-oriented 
interests. Furthermore, virtualization could be used to achieve the best trade-off between 
security guarantees and processing capabilities. 

8.1. Recommendations for the Future Research 
This work has laid a foundation for the comprehensive security services concept for the 

large scale open heterogeneous distributed computing systems and it opens up several 
avenues for future work. Even though our work covers security services required for a large 
scale heterogeneous distributed computing systems, there are other areas of research that 
can provide additional features into this work. Such as fault tolerant mechanisms can be 
developed and deployed, use of more advanced methodologies to provide automated 
updation of trust values, features supported for other information services (such as Globus 
Toolkit) can be exploited to support policy publishing and parameters retrieval. 

Another important and interesting area of research as an extension to this work is 
designing an automated security services selection system based on the history, context and 
state of the system. Several challenges related to these factors needed to be addressed in 
such systems. If selection is merely based on reputation, then the services with high 
reputations will always suffer from heavy load. Robust algorithms can be developed to 
handle such issues in developing automated security services selection systems. Such work 
would greatly enhance the current state of this model. 
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Within the Grid community, there is a great interest in building an accounting model and 
infrastructure. Integration of some accounting mechanism similar to the concept of Grid 
Market Directory, Grid Bank (GB) [126] will be of great interest. 
An addition to any comprehensive security policy is the inclusion of an intrusion detection 
system, either signature- or anomaly-based. The benefits of a good anomaly-based system 
are obviously great and are preferred to those of a signature. Unfortunately, anomaly-based 
IDSs are still in their infancy and, therefore, beginning with a signature-based IDS to provide 
known intrusion detection would be a lower risk approach. 

Along with an intrusion detection capability, the system should possess an effective and 
efficient response capability in order to effectively protect the system and minimize effects of 
an attack. Responses could take the form of denial of future connectivity to a malicious 
application, dynamic key changes in response to a discovered compromise of the symmetric 
keys, or even the use of software decoys in order to learn more information about the 
attacker and the nature of the intrusion. 

The G3S toolkit is rapidly evolving. The security model needs to be enhanced by 
supporting various types of other functionalities such as delegation of rights, networks with 
different static and dynamic configurations and cost-based QoS services. 

8.2. Final Comments 
It is important to remember that security is a process, the threat picture is always 

changing, and threat analysis needs to be continuously updated. In other words, grid 
infrastructure should be subject to constant review and upgrade, so that any security 
loophole can be plugged as soon as it is discovered. The growth in the users community 
should lead to improvements as larger number of users will find the loopholes faster, and 
more developers will be available to fix them and release patches. 
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Glossary 
 
ACL Access Control List 
AD Actuator Dispatcher 
AMS Archive Management System 
API Application Programming Interface  
BIOS Basic Input/Output System 
BOOTP Bootstrap Protocol  
BS Bootstrap Service 
CA Certificate Authority 
CAS Community Authorization Service 
CCM Configuration Cache Manager 
CDB Configuration Database 
CDP Configuration Distribution Protocol 
CDR Central Data Recording 
CE Computing Element; a Grid-enabled computing resource. 
CERT Computer Emergency Response Team 
CLI Command Line Interface 
CMP Cache Manager Protocol 
CORBA Common Object Request Broker Architecture 
COTS Commercial Off-The-Shelf 
CPU Central Processing Unit 
CVS Concurrent Versioning System 
DAQ Data Acquisition 
DBMS Data Base Management System 
DHCP Dynamic Host Configuration Protocol 
FabNAT Fabric Network Address Translation service 
FLIDS Fabric-Local Identity Service 
FMFT Fabric Monitoring and Fault Tolerance 
FR Federation Representative 
FSM Finite State Machine 
FTA Fault Tolerance Actuator 
FTDU Fault Tolerance Correlation Engine 
FTP File Transfer Protocol  
GGF Global Grid Forum 
GIF Graphics Interchange Format  
GIS Grid Information Service 
GMA Grid Monitoring Architecture; monitoring architecture defined by GGF 
GRAM Grid Resource Allocation Management  
GriFIS Grid Fabric Information Service  
GSI Grid Security Infrastructure 
GUI Graphical User Interface  
HDF Hierarchical Data Format  
HEP High Energy Physics  
HLD High-Level Description  
HTML Hyper Text Markup Language  
HTTP Hyper Text Transfer Protocol  
HW Hardware  
I/O Input/Output  
IDL Interactive Data Language  
ISDN Integrated Services Digital Network  
JDL Job Description Language 
LB Logging and Bookkeeping  
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LCAS Local Centre Authorization Service  
LCMAPS Local Credential MAPping Service  
LDAP Lightweight Directory Access Protocol  
LLD Low-Level Description  
LON Logical Object Name  
LSF Load Sharing Facility  
MDS Globus Meta-computing Directory Service  
MLD Machine Level Description  
MR Monitoring Repository  
MS Monitoring Sensor  
MSA Monitoring Sensor Agent  
MSS Mass Storage System  
MUI Monitoring User Interface  
MySQL Widely distributed SQL database open source implementation 
NFS Network File System  
NIS Network Information System  
NMA Node Management Agent  
OS Operating System  
PDS Payload Data Segment  
PFN Physical File Name 
PKI Public Key Infrastructure 
PXE Preboot eXecution Environment  
QoS Quality of Service  
QoSS Quality of Security Service 
RB Resource Broker  
RC Replica Catalog 
RDBMS Relational Database Management System  
Replica A copy of a file that is managed by the Grid middleware 
RM Replica Manager 
RMS Resource Management Subsystem  
RPC Remote Procedure Call  
RSL Resource Specification Language  
SAN Storage Area Network 
SE Storage Element 
SLA Service Level Agreement 
SMTP Simple Mail Transfer Protocol  
SNMP Simple Network Management Protocol  
SP Software Package  
SSL Secure Sockets Layer  
SW Software 
TFN Transport File Name 
TFTP Trivial File Transfer Protocol  
UI User Interface  
UML Unified Modeling Language 
URL Uniform Resource Locator  
VO Virtual Organization 
VPN Virtual Private Network  
VRML Virtual Reality Modeling language  
WM Workload Management  
WWW World Wide Web  
XML eXtensible Markup Language  
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1. Naqvi S., Riguidel M., ‘Dynamic Access Control for Pervasive Grid 

Applications’, IEEE International Conference on Computational Intelligence 
and Security 2005 (IEEE-CIS05), Xi’an, China, December 15-19, 2005 

 
The current grid security research efforts focus on static scenarios where access 
depends on the identity of the subject. They do not address access control issues for 
pervasive grid applications where the access privileges of a subject not only depend on 
their identity but also on their current context (i.e. current time, location, system 
resources, network state, etc). Our approach complements current authorization 
mechanisms by dynamically granting permission to users based on their current context. 
The underlying dynamic and context aware access control model extends the classic role 
based access control, while retaining its advantages (i.e. ability to define and manage 
complex security policies). The major strength of our proposed model is its ability to make 
access control decision dynamically according to the context information. Its dynamic 
property is particularly useful for pervasive grid applications. 

 
 
2. Naqvi S., Riguidel M., ‘Grid Security Services Simulator (G3S) – A 

Simulation Tool for the Design and Analysis of Grid Security Solutions’, 
IEEE International Conference on e-Science and Grid Computing 2005 (e-
Science 2005), Melbourne, Australia, December 5-8, 2005 
 
Security services are one of the most desirable characteristics of the computational grids. 
Nowadays the swelling number of applications and consequent increase in the amount of 
critical data over the grids has considerably raised the stakes for efficient security 
architecture. Establishing security solutions for computational grid remains in its initial 
stages, as there are a number of impediments in the way of successful implementation of 
these security designs on a real grid. Absence of suitable mechanism to simulate the 
various functionalities of grid security models is a major concern for security designers. A 
reliable simulator for the grid security services is indispensable so that the grid security 
solutions can be adequately tested before their implementation on a real grid. The 
available range of grid simulators does not provide any support for the security functions. 
This vacuity has overwhelmingly motivated us to develop the Grid Security Services 
Simulator (G3S). 

 
 

3. Naqvi S., Riguidel M., ‘Trust Establishment in Pervasive Grid Environments’, 
Cracow Grid Workshop 2005 (CGW’05), Krakow – Poland, November 20-23, 
2005. 
 
Pervasive grids are characterized by their global mobility feature that enable them to 
hook anywhere at anytime to the computing resources. Therefore, providing a dynamic 
and adaptive security model that overlays a secure framework over an untrustworthy 
network is one of the biggest challenges in Pervasive Grids. Current grid security 
enforcement and policy maintenance models are generally based on the assumption of a 
stable, static, and long-term grid establishment with a small set of seldom-changing 
users. Hence, these frameworks cannot be directly applied to the pervasive grid 
framework. Ad-hoc and federated grids require an adaptive security model that 
incrementally builds a secure grid community based on the notion of trust. In this paper, 
we have outlined our approach to handle the challenging problem of establishing trust in 
the pervasive grid environments  where there is no a priori trust among its entities and no 
mechanism to build some trust based on a history of previous interactions. 
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4. Naqvi S., Riguidel M., ‘Security and Trust Assurances for Smart 
Environments’, IEEE International Workshop on Resource Provisioning and 
Management in Sensors Network 2005 (RPMSN05), Washington DC, USA, 
November 7-10, 2005 
 
Smart sensor networks increasingly become viable solutions to many challenging 
problems and will successively be employed in many areas in the near future. However, 
deploying a new technology without security and trust issues in mind has often proved to 
be unreasonably dangerous. We propose a security and trust vision for these smart 
environments. This paper provides the details of the concepts of Infospheres and 
Security Domains which lead to the phenomenon of virtualization of security services. We 
propose Virtual-to-Virtual (V2V) paradigm to solve the security and trust problems of the 
smart environments. 
 
 

5. Naqvi S., Riguidel M., ‘Dynamic Distribution of Trust in the Grid 
Environments’, The e- 2005 eChallenges Conference, Ljubljana, Slovenia, 
October 19-21 2005 
 
The Grid vision is to allow computing resources to be shared and utilised globally, with 
these distributed resources belonging to the same Virtual Organisation (VO). These 
resources execute jobs submitted by users, who are not in the resources’ local domain 
and hence have no control over these resources. Conversely these users are not 
controlled by the resource owners. Certificates provide a common, useful security 
mechanism to overcome these barriers and set out access rights, but they do not 
guarantee that the resources, or users, can be trusted. Resources and users may be 
unreliable; this situation may not be reflected in the users’ perception of the reliability of 
the resource owner as a whole or vice versa. 
This paper describes a trust framework model for Grid computing, which enables users to 
execute their jobs on reliable and efficient resources, thereby satisfying clients’ quality-of-
service (QoS) requirements. We propose an optimistic trust model that provides 
probabilistic guarantees based on the status of the nodes. Nodes have the ability to 
revoke their relationships with malicious nodes and thus cause the trust values of wrong-
doers to be reduced. The accuracy of the guarantee depends on how thoroughly each 
node can discover and validate the trust values of other nodes. 
 
 

6. Naqvi S., Riguidel M., ‘Security Challenges for Highly Available Systems’, 
IEEE International Carnahan Conference on Security Technology 2005 (IEEE 
ICCST2005), Las Palmas, Spain, October 11-14, 2005. 
 
Nowadays Highly Available (HA) systems are a must for almost any business process. 
More recently, the need for HA systems has increased as electronic commerce and other 
internet-based applications have become widely used with the growing web usage. 
Security is a major concern for these systems. Companies want to make sure that their 
security systems are working flawlessly and efficiently. Making sure that these systems 
are available to allow the right people access to the right areas of the company is 
imperative. Traditionally, HA systems consist of proprietary hardware and software 
components. However, the price/performance advantages of commercial-off-the-shelf 
(COTS) based clusters have had a compelling affect on HA vendors and their 
marketplace. The emergence of Computational Grids makes it feasible to develop cost-
effective, large-scale geographically distributed HA systems. Making sure that critical 
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applications on this new generation of HA systems are secured is a challenging 
proposition. 
In this article, we have identified a list of challenges for the next generation of Grid-based 
HA systems. We have explored the virtualization of security services with their pluggable 
implementation to address the security needs of these Grid-based HA systems. The main 
advantages of this solution include independence with respect to the underlying security 
mechanisms; best trade-off between security guarantees and processing capabilities; 
configurability of security architecture; better portability across heterogeneous platforms; 
and a smaller application development cycle for the HA functionality in the system. 
 
 

7. Naqvi S., Riguidel M., 'Impact of Comprehensive Security Services on Grid 
Computing Performance', IEEE International Conference on Dependable 
Systems and Networks 2005 (IEEE-DSN2005), Yokohama, Japan, June 28 - 
July 1, 2005 (ISBN 0769522823) 
 
The grid is no longer just a synonym for networked high performance computing. It is 
emerging as a bigger vision of flexible, secure, coordinated resource-sharing among 
dynamic collections of individuals, institutions, and resources. In the evolution of 
computational grids, security features were overlooked in the desire to implement a high 
performance distributed computational system. Thus there was no need to investigate the 
impact of in-depth security on the grid performance. But now the growing size and profile 
of the grid require comprehensive security solutions as they are critical to the success of 
the endeavor. Currently the real meaning of grid security performance is being explored 
as different research communities introduce novel approaches to the security 
performance monitoring and evaluation. With the emerging grid security solution comes 
the question how to measure the quality. This information is essential for the entire grid 
community. Yet, there is no widely accepted and deployed technique that can solve this 
problem. In this paper we have presented a study of the effects of in-depth security 
services on the performance of computational grids. 
 
 

8. Naqvi S., Riguidel M., ‘Securing Grid-Based Critical Infrastructures’, The 
IEEE Symposium on Intelligence and Security Informatics (IEEE ISI-2005), 
Atlanta, Georgia, USA, May 19-20, 2005 (ISBN 3540259996) 
 
As the computing world has grown more dependent on the communications networks, 
the Grid computing is increasing the visibility of computer systems in the running of 
businesses, boosting the cost of system downtime; even short interruptions in the 
functioning of the Internet and other networks have become unacceptable. Consequently, 
Denial of Service (DOS) attacks that prevent access to online services are one of the 
greatest threats to the information infrastructure. 
When regarding the protection of the essential information infrastructures (and especially 
critical infrastructures), most of the time one concentrates on the availability subject. 
However, we put emphasis on not forgetting to protect integrity of provided services as 
well. Moreover, Service availability may conflict with other security goals that can be 
more fundamental in some infrastructure cases; when integrity and confidentiality are the 
main goals, the most secure system is often one that does nothing. Therefore, protection 
against DoS often requires architectural changes to the system, which may prove 
expensive. 
Another challenge for securing infrastructures is to make a trade-off between security and 
privacy. Technological developments and the needs of law enforcement provide 
increased opportunities for surveillance in cyberspace. Better managing and 
strengthening the infrastructure would make it more efficient and resilient without the 
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need for unnecessary surveillance. A typical aspect of this issue is the problem of attack 
trace-back in Internet between the security (detecting the attacker) and the privacy 
(protecting the anonymity of Internet users). 
 
 

9. Naqvi S., Riguidel M., 'Designing Security Architecture for Large Scale, 
Open, Distributed Heterogeneous Systems', IEEE Symposium on Security 
and Privacy 2005 (IEEE-SP2005), Berkeley/Oakland, California - USA May 8-
11, 2005. 
 
In this work, we have proposed a security architecture to address the comprehensive 
security needs of today’s large scale, open, distributed heterogeneous systems. 
Extensive groundwork was carried out to establish the real needs of the security 
architecture in order to reduce unnecessary overheads and to create robustness. These 
include requirements analysis, risk analysis, threat modeling, and implementation 
feasibility. 
The concept of virtualization is introduced for the security services. This concept of 
virtualization of security services is needed to have the absolute freedom to choose the 
underlying security mechanisms. From the security point of view, the virtualization of a 
service definition encompasses the security requirements for accessing that service. The 
need arises in the virtualization of security semantics to use standardized ways of 
segmenting security components (e.g., authentication, access control, etc.) and to 
provide standardized ways of enabling the federation of multiple security mechanisms. 
Virtualization permits each participating end-point to express the policy it wishes to see 
applied when engaging in a secure conversation with another end-point. Policies can 
specify supported authentication mechanisms, required integrity and confidentiality, trust 
policies, privacy policies, and other security constraints. This concept of virtualization of 
security services can be realized through distributed virtual engines that will enable 
security service calls to be unified according to requirements and not according to the 
technologies to be supported. 
A configurable mechanism for the invocation of security services is proposed to address 
security needs of the different kinds of users. This approach permits the evolution of 
security infrastructure with less impact on the resource management functionalities, 
which are still on the verge of evolution. Moreover, it permits the users and resource 
providers to configure the security architecture according to their requirements and 
satisfaction level. The set of these security services include core security services (such 
as authentication, authorization, identity mapping, audit, etc.) as well as contemporary 
security services (such as mobile access control, dynamic digital signature, etc.).  
The concept of virtualization could be extended to adapt country-specific legal 
requirements, population-based ethical issues, and the business-oriented interests. 
Moreover, virtualization could be used to achieve the best trade-off between security 
guarantees and processing capabilities. 
 
 

10. Naqvi S., Riguidel M., ‘Addressing Secure Access Challenges for Nomadic 
Grid: A Hospital Case Study’, Grid Asia Conference 2005, Biopolis, 
Singapore, May 2-6, 2005. 
 
Despite the sensitivity of the health data and the growing threat, relatively little attention 
has been paid to the complexities of grid access constraints in middleware development. 
The scope of access control lists (ACLs) is limited and is inflexible in the mobile arena. 
Much attention has been given to encryption techniques but, while encryption is certainly 
important, it protects only the communication and authentication in the system. It 
provides only the basis for a secure access control mechanism. 
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We present a detailed examination of the dynamic access control challenges for a 
nomadic health grid with the aim of achieving optimal access rights for each of the 
involved principals. We show that the designing challenges are very complex and cannot 
be expressed easily or clearly using the static per-method access control lists generally 
supported by component-based software. We derive general requirements for the 
expressiveness of access challenges and propose criteria for a more suitable access 
control mechanism in the context of nomadic health grid applications. The results are 
based on a hospital case study. It first provides an overview of requirements for access 
control in a hospital environment. We proceed by superposing the requirements resulting 
from each paradigm. Conflicts are solved by giving priority to the functional requirements. 
The paper further presents our initial results and briefly discusses how it meets the 
requirements. 
 
 

11. Naqvi S., Riguidel M., ‘G3S: Grid Security Services Simulator’, Health Grid 
Conference 2005 (HG2005), Oxford, UK, April 7-9, 2005 
 
Security services are one of the most desirable characteristics of health grid. Nowadays 
the swelling number of applications and consequent increase in the amount of critical 
data over health grid has considerably raised the stakes for efficient security architecture. 
Establishing in-depth security solutions for health grid remains in its initial stages, as 
there are a number of impediments in the way of successful implementation of these 
security designs on a real grid. Absence of some suitable mechanism to simulate the 
various functionalities of grid security models is a major concern for security designers. 
The available range of grid simulators does not provide any support for the security 
functions. This vacuity has overwhelmingly motivated us to develop the grid security 
services simulator – G3S. Traditionally, system developers periodically release patches 
to overcome the shortcomings of their previous release. These patches are generally 
released when some vulnerability present in their product is successfully exploited. The 
same practice is, however, not feasible for health grid due to the scope of the 
applications and the nature of the stored data. Hence a reliable simulator for the security 
services is indispensable so that the grid security solutions be adequately tested before 
their implementation on a real health grid. G3S is the first milestone in this direction. 
 
 

12. Naqvi S., Riguidel M., ‘Performance Measurements of the VIPSEC Model’, 
High Performance Computing Symposium (HPC 2005), San Diego, California 
- USA, April 3-7, 2005. 
 
The grid computing paradigm offers both the availability of abundant computing 
resources, and the storage of increased amounts of valuable data. Such information 
systems heavily rely on the provision of adequate security. It is imperative that 
techniques be developed to assure trustworthiness of these environments. While security 
performance evaluation of parallel and distributed systems is well investigated and there 
exist practical solutions, in most cases these techniques cannot be transferred directly to 
the grids. Currently the real meaning of grid security performance is being explored as 
different research communities introduce novel approaches to the security performance 
monitoring and evaluation. With the emerging grid security solution comes the question 
how to measure the quality. This information is essential for the entire grid community. 
Yet, there is no widely accepted and deployed technique that can solve this problem. The 
authors have developed a basic simulator for their proposed grid security model VIPSEC: 
Virtualized and Pluggable Security Services. This article presents the preliminary 
simulation results of this model. 
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13. Naqvi S., Riguidel M., ‘Secure Data Exchange Between Intelligent Devices 
and Computing Centers’, SPIE Defense and Security Symposium 2005 
(SPIE-DSS2005), Orlando, Florida - USA, March 28-April 01, 2005. 
 
The advent of reliable spontaneous networking technologies (commonly known as 
wireless ad-hoc networks) has ostensibly raised stakes for the conception of computing 
intensive environments using intelligent devices as their interface with the external world. 
These smart devices are used as data gateways for the computing units. These devices 
are employed in highly volatile environments where the secure exchange of data 
between these devices and their computing centers is of paramount importance. 
Moreover, their mission critical applications require dependable measures against the 
attacks like denial of service (DoS), eavesdropping, masquerading, etc. 
In this paper, we propose a mechanism to assure reliable data exchange between an 
intelligent environment composed of smart devices and distributed computing units 
collectively called ‘computational grid’. The notion of infosphere is used to define a digital 
space made up of a persistent and a volatile asset in an often indefinite geographical 
space. We study different infospheres and present general evolutions and issues in the 
security of such technology-rich and intelligent environments. It is beyond any doubt that 
these environments will likely face a proliferation of users, applications, networked 
devices, and their interactions on a scale never experienced before. It would be better to 
build in the ability to uniformly deal with these systems. As a solution, we propose a 
concept of virtualization of security services. We try to solve the difficult problems of 
implementation and maintenance of trust on the one hand, and those of security 
management in heterogeneous infrastructure on the other hand. 
 
 

14. Naqvi S., Riguidel M., ‘Threat Model for Grid Security Services’, European 
Grid Computing Conference 2005 (EGC2005), Amsterdam, Netherlands, 
February 14-16, 2005. 
 
The grid computing paradigm involves both the availability of abundant computing 
resources, and the storage of increased amounts of valuable data. Such information 
systems heavily rely upon the provision of adequate security. It is imperative that 
techniques be developed to assure the trustworthiness of these environments. 
Formal verification provides the tools and techniques to assess whether systems are 
indeed trustworthy, and is an established approach for security assurance. When using 
formal verification for security assessment one of the most important concerns should be 
to be precise about the threat model. A comprehensive threat model is indispensable for 
the simulations of a grid security model. This article presents a survey of the various 
threat models and discusses how and when these threat models may be inappropriate for 
use in the grid computing environments. Then a fine-grained threat model for grid 
computing is presented. 
 
 

15. Naqvi S., Riguidel M., ‘Problems in the Implementation of Grid Security 
Services’, Cracow Grid Workshop 2004 (CGW’04), Krakow – Poland, 
December 12-15, 2004. 
 
Security services were overlooked in the early stages of the grid evolution when the grid 
community was composed of dedicated computing researchers and the data was non-
critical. Nowadays the swelling number of grid applications and consequent increase in 
the amount of critical data over grid has considerably raised the stakes for an efficient 
security architecture. Establishing in-depth security solutions for grid remains in its initial 
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stages, as there are a number of impediments in the way of successful implementation of 
these security designs on a real grid. These problems have to be overcome in order to 
make the grid endeavor successful. 
System developers periodically release patches to overcome the shortcomings of their 
previous release. These patches are generally released when some vulnerability present 
in their product is successfully exploited. The same practice is, however, not feasible for 
the grids due to the scope of the applications and the nature of the data stored over it. 
Certain grid applications like healthcare, where a patient’s data has to be protected 
throughout its lifecycle, require a truly dependable security mechanism. In such 
applications the loss of information is irreversible and hence a well-designed security 
mechanism is required to persuade the already sceptical potential users to participate in 
the global computing environment. 
This article presents a thorough analysis of the various problems faced by the designers 
and developers of grid security solutions. These problems range from the non-availability 
of an adequate mechanism to simulate the grid security services to the grid specific 
constraints for the implementation of rigorous security solutions. The impact of these 
problems on the pace of the development of the grid security technologies is outlined and 
subsequently some remedial solutions are presented. Grid community’s lack of 
experience in the exercise of the Common Criteria (CC), which was adopted in 1999 as 
an international standard for security product evaluation is also discussed, as the 
evaluation of grid security solutions requires excellent criteria to assure sufficient security 
to meet the needs of its users and resource providers. 
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Distributed systems face a proliferation of users, applications, networked devices, and 
their interactions on a scale never experienced before. The advent of reliable 
spontaneous networking technologies has ostensibly raised the stakes for the design of 
computing intensive environments using intelligent devices. As environmental intelligence 
grows so will the number of heterogeneous devices connected to the environment. The 
creation of security and trust paradigms for such technology rich environments is today’s 
great challenge. If the intelligent devices present in a smart environment act as gateways 
to some huge distributed computing system, then it is indispensable to sweep the threats 
out from these smart environments, so as to protect not only the local environment, but 
also the entire distributed system. 
This article proposes a design of consistent but fine-grained levels of trust and security in 
distributed systems, open to pervasive, mobile, heterogeneous networks featuring 
ambient intelligence by gradually virtualizing their security functions. These systems 
interact in various ways, with floating semantic interoperability between applications, 
interoperability of communications depending on shared links between those systems, 
and versatile interconnections. Threats and vulnerability vary according to different 
systems, objects, applications, and communication links. The salient features of this 
design include: consideration of duration and time factors in cryptographic protocols by 
introducing a trusted clock in the network; space for the security of distributed 
environments by context awareness in the system; mobility (security of mobile code, 
mobile agents and speed of movement); virtualization of security services. 
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In the evolution of computational grids, security threats were overlooked in the desire to 
implement a high performance distributed computational system. But now the growing 
size and profile of the grid require comprehensive security solutions as they are critical to 
the success of the endeavor. A comprehensive security system, capable of responding to 
any attack on grid resources, is indispensable to guarantee its anticipated adoption by 
both the users and the resource providers. Some security teams have started working on 
establishing in-depth security solutions. The evaluation of their grid security solutions 
requires excellent criteria to assure sufficient security to meet the needs of its users and 
resource providers. Grid community’s lack of experience in the exercise of the Common 
Criteria (CC), which was adopted in 1999 as an international standard for security 
product evaluation, makes it imperative that efforts be exerted to investigate the 
prospective influence of the CC in advancing the state of Grid security. This article 
highlights the contribution of the CC to establishing confidence in grid security, which is 
still in need of considerable attention from its designers. The process of security 
evaluation is outlined and the roles each part of the evaluation may play in obtaining 
confidence are examined. 
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Large scale distributed systems like the computational Grid combine network access with 
multiple computing and storage units. The need for efficient and secure data 
transportation over potentially insecure channels creates new security and privacy 
issues, which are exacerbated by the heterogeneous nature of the collaborating 
resources. Traditional security approaches require adequate overhauling to address 
these paradigms. In this paper, we propose a new two-pronged approach to address Grid 
security issues. First, the virtualization of security services provides an abstraction layer 
on the top of the security infrastructure, which harmonizes the heterogeneity of 
underlying security mechanisms. Second, the pluggable nature of the various security 
services permits the users and resource providers to configure the security architecture 
according to their requirements and satisfaction level. This approach allows the security 
infrastructure to develop with minimal impact on the Grid resource management 
functionalities, which are still being developed. 
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Security concerns are severely impeding the grid community effort to spread its wings in 
health applications. In this paper, we have proposed a high level approach to incorporate 
ambient intelligence for health grid security architecture and have argued that this will 
significantly improve the current state of the grid security paradigm with an enhanced 
user-friendly environment. We believe that the time is ripe to shift the onus of traditional 
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security mechanisms onto the new technologies. The incorporation of ambient 
intelligence in the security architecture of a grid will not only render a security paradigm 
robust but also provide an attractive vision for the future of computing by bringing the two 
worlds together. 
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The security and privacy issues are coming to the fore with the growing size and profile of 
the grid community. The forthcoming generations of the computational grid will make 
available a huge number of computing resources to a large and wide variety of users. 
The diversity of applications and mass of data being exchanged across the grid 
resources will attract the attention of hackers to a much higher extent. A comprehensive 
security system, capable of responding to any attack on its resources, is indispensable to 
guarantee the anticipated adoption of grid by both the grid users and the resource 
providers. In this article, we argue that the first brick of an effective plan of 
countermeasures against these threats is an analysis of the potential risks associated 
with grid computing. 
This article presents a pragmatic analysis of the vulnerability of existing grid systems and 
the potential threats posed to their resources once their spectrum of users is broadened. 
Various existing grid projects and their security mechanisms are reviewed. The 
experience of using common grid software and an examination of grid literature served 
as the basis for this analysis. Legal loopholes in the implementation of grid applications 
across the geopolitical frontiers, and the ethical issues that could obstruct the wide 
acceptance and trustworthiness of grids are also discussed. The weaknesses revealed 
are classified with respect to their sources and possible remedies are discussed. The 
results show that the main reason for the vulnerability is the fact that grid technology has 
been little used except by a certain kind of public (mainly academics and government 
researchers). This public benefit greatly from being able to share resources on the grid, 
and have no intention of harming the resource owners or fellow users. Thus there was no 
need to address security in depth. This is all about to change. The number of people who 
know about the grid is growing fast, as are the worthwhile targets for the potential 
attackers. The security nightmare can not be avoided unless the problem is addressed 
urgently. This detailed taxonomy of potential threats and the sources of vulnerability in 
the existing grid architectures is the first milestone on the road to a robust grid security 
system. It provides a comprehensive overview which shall enable us to effectively plan 
the countermeasures against the existing risk. Our future direction includes the definition 
of a Protection Profile (Common Criteria) followed by the formulation of a comprehensive 
security policy and finally its implementation. 

 
 


