Mécanisme de corrosion de l’acier T91 par l’eutectique Pb-Bi utilisé comme matériau de cible de spallation. Importance pour les réacteurs hybrides
Laure/l Martinelli

To cite this version:

HAL Id: pastel-00001824
https://pastel.archives-ouvertes.fr/pastel-00001824
Submitted on 12 Jul 2006
Sommaire

Sommaire ... 1

Introduction .. 5

1. Les ADS et le module de spallation MEGAPIE .. 6
2. Le choix de l'alliage Pb-Bi comme matériau pour la cible de spallation 9
3. Le choix de l'alliage de structure pour la "fenêtre" du module de spallation MEGAPIE 10
4. Les modes d'endommagements de l'acier T91 au contact de l'alliage Pb-Bi 12
 4.1. La fragilisation du T91 induite par l'alliage Pb-Bi ... 13
 4.2. La corrosion du T91 au contact de l'alliage Pb-Bi liquide ... 16

Chapitre I : Caractérisation du milieu et des interactions milieu matériau 21

1. Introduction .. 22
2. Symboles utilisés au cours du Chapitre I ... 22
3. Propriétés physico-chimiques de l'eutectique Pb-Bi .. 22
4. Activités des éléments plomb, bismuth et oxygène dans l'alliage liquide Pb-Bi 24
 4.1. Activités du plomb et du bismuth dans l'alliage Pb-Bi ... 24
 4.2. Activité de O dans l'alliage Pb-Bi ... 25
5. Caractérisation du milieu : interaction l'alliage Pb-Bi –oxygène .. 26
 5.1. Oxydes Pb-Bi-O susceptibles de se former ... 26
 5.2. Etat de l'oxygène et solubilité de l'oxygène dans l'alliage Pb-Bi ... 30
6. Interaction Pb-Bi-O/ acier de structure (T91) ... 36
 6.1. Oxydation du T91 : détermination thermodynamique des oxydes susceptibles de se former pendant le processus d'oxydation .. 36
 6.2. Solubilité du fer et du chrome dans l'alliage Pb-Bi .. 43
7. Conclusion .. 47

Chapitre II : Bibliographie sur l'oxydation des aciers Fe-9Cr dans l'alliage Pb-Bi et dans d'autres environnements oxydants .. 49

1. Introduction ... 50
2. Oxydation des aciers Fe-9Cr dans l'alliage Pb-Bi [14] .. 50
 2.2. Cinétique d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C [14] 52
 2.3. Impact de la température et de la pression partielle en oxygène sur la cinétique d'oxydation [14] 54
3. Conclusion sur l'oxydation des aciers Fe-Cr dans l'alliage Pb-Bi saturé en oxygène 59
4. Similitudes morphologiques et cinétiques de l‘oxydation obtenue dans l'alliage Pb-Bi et dans d'autres environnements ... 60
5. Mécanisme de croissance d'une couche duplex .. 61
 5.1. Interface originelle métal/ennvironnement non localisée à l'interface oxyde/oxyde 62
 5.2. Interface originelle métal/environnement localisée à l'interface oxyde 1/oxyde 2 65
6. L'"available space model" : le mécanisme proposé par la littérature pour l'oxydation des aciers Fe-Cr et Ni-Cr dans H2O ou CO2 ... 68
 6.1. Mécanisme de formation des nano-canaux .. 70
 6.2. Mécanisme de ségrégation des lacunes ... 73
 6.3. Le rôle du chrome .. 74
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C. Des essais sous air sec et dans le bismuth pur saturé en oxygène à 470°C

1. Introduction
2. Matériau étudié et conditions expérimentales
3. Nature et structure des couches obtenues dans l'alliage Pb-Bi
4. Nature et structure des couches obtenues par oxydation dans le bismuth pur
5. Nature et structure des couches obtenues par oxydation dans le bismuth pur
6. Discussion sur les couches d'oxyde observées
7. Cinétiques d'oxydation expérimentales obtenues dans l'alliage Pb-Bi et le bismuth pur
8. Localisation des interfaces de croissance dans l'alliage Pb-Bi
9. Expériences effectuées dans l'air sec à 470°C
10. Conclusion

Chapitre IV : Transport de l'oxygène

1. Introduction
2. Diffusion de l'oxygène en volume dans le réseau de l'oxyde
3. Diffusion de l'oxygène par les joints de grains de la couche d'oxyde
4. Diffusion de l'oxygène par voie liquide via des nano-canaux de plomb
5. Conclusion sur le transport de l'oxygène dans la couche d'oxyde

Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

1. Introduction
2. Coefficients de diffusion du fer et du chrome dans les spinelles Fe$_{2.34}$Cr$_{0.66}$O$_4$ et Fe$_5$O$_4$
 1. Evaluation des coefficients de diffusion du fer et du chrome dans Fe$_{2.34}$Cr$_{0.66}$O$_4$ et dans Fe$_5$O$_4$ à 470°C
 2. Conclusion sur les coefficients de diffusion et leur impact sur le mécanisme d'oxydation
1. Introduction .. 247

1.1. Introduction .. 247

1.2. Principe de la mesure du coefficient de diffusion du fer dans Pb-Bi 249

1.3. Montage expérimental et précautions préliminaires à l'expérience 257

1.4. Résultats expérimentaux et discussion ... 262

1.5. Conclusion sur l'expérience de mesure du coefficient de diffusion du fer dans Pb-Bi 271

Annexe 5 : Technique de purification du sel fondu LiCl-KCl ... 273

2. Symboles utilisés dans cette annexe .. 276

3. Présentation de la technique .. 277

4. Résultats expérimentaux et discussion .. 279

5. Conclusion sur la technique de purification à l'aluminium ... 289

Annexe 6 : Schéma de l'installation ... 291

Annexe 7 : Technique d'analyse et d'observation utilisées dans le cadre de ce travail 293

Annexe 8 : Traitement des échantillons après oxydation dans l'alliage Pb-Bi liquide 295

Annexe 9 : Coefficients de diffusion dans le plomb, l'alliage Pb-Bi et le T91 298
Sommaire

1. Coefficients de diffusion dans le Plomb, l'alliage Pb-Bi ... 298
2. Coefficients de diffusions dans le T91 .. 302

Annexe 10 : Coefficients de diffusion dans les spinelles ... 304
1. Coefficients de diffusion de l'oxygène dans les spinelles .. 304
2. Coefficients de diffusion du fer et du chrome dans les spinelles ... 304

Annexe 11 : Variation du paramètre diamètre des nano-canaux de plomb dans la couche de magnétite .. 311
Introduction

De nos jours, 87% de l’électricité française est produite par l’industrie nucléaire dont le parc est constitué de 58 réacteurs à eau sous pression (REP). Après trois à quatre ans de vie au cœur d’un réacteur REP, le combustible UOX (oxyde d’uranium) se retrouve composé, en pourcentage massique, d’environ 94% d’uranium, 1% de plutonium et 5% de déchets radioactifs (radionucléides) \[1\]. Aujourd'hui, ce combustible usé est traité afin de séparer les déchets radioactifs des éléments énergétiquement valorisables (plutonium et uranium), pouvant être recyclés.

Les radionucléides sont répartis selon une quarantaine d’éléments chimiques de la classification périodique. Cependant on distingue principalement trois grandes classes \[1\] :

- Les "produits de fission" issus de la fission des noyaux lourds (uranium, plutonium) et des irradiations des impuretés du combustible.

- Les actinides mineurs formés à l’issue d’une capture neutronique par les noyaux lourds. Ces radionucléides sont principalement le neptunium, l’américium et le curium. La proportion de ces radionucléides ne représente qu’environ 0,1% de la masse du combustible usé mais la gestion de ces déchets est particulièrement préoccupante. En effet, les actinides mineurs possèdent une durée de vie en général plus longue que celle des produits de fission.

- Les "produits d’activation de structure" qui résultent de l’irradiation des matériaux métalliques constitutifs des assemblages (tubes métalliques dans lesquels sont empilées les pastilles de combustible).

Aussi, la question du devenir de ce combustible usé représente un point de sûreté fondamental à résoudre au niveau de l’industrie nucléaire.

Pour cela, la loi prévoit de développer, pendant 15 ans, les recherches sur la gestion des déchets radioactifs et de déterminer, à l’issue de ces 15 années, le mode de gestion des déchets.
Les trois axes de recherches prévus par cette loi sont les suivants (code de l’Environnement, article L542-1 à L542-14) \[1\] :

- Axe 1, piloté par le CEA : étude de "la séparation et la transmutation des éléments radioactifs à vie longue présents dans les déchets". La séparation et la transmutation de ces radionucléides concernent principalement les actinides mineurs.

- Axe 2, piloté par l’Andra : "étude des possibilités de stockage réversible ou irréversible dans les formations géologiques profondes, notamment grâce à la réalisation de laboratoires souterrains".
Introduction

− Axe 3, piloté par le CEA : "étude de procédés de conditionnement et d'entreposage de longue durée en surface".

Notre travail se situe dans le cadre du premier axe de recherche, sur la transmutation des éléments de longue durée de vie. Une "séparation poussée" des déchets radioactifs serait réalisée dans le but de les trier par gamme de nocivité. Ensuite, les éléments de longue durée de vie seraient transmutés dans des réacteurs nucléaires. La transmutation est une réaction nucléaire visant à transformer un élément par modification du nombre de neutrons du noyau de l'atome. L'objectif de la transmutation est alors de transmuter les éléments radioactifs de longue durée de vie, particulièrement les actinides mineurs, américium et curium, en éléments de plus faible radioactivité ou de durée de vie moins longue. Cette transmutation serait réalisée par bombardement des déchets radioactifs par un faisceau de neutrons au sein d'un réacteur nommé "hybride" ou Accelerator Driven System (ADS).

Nous présenterons succinctement les différentes parties constitutantes des ADS et le contexte industriel de notre étude. Puis nous présenterons les avantages d'utilisation de l'alliage Pb-Bi dans le choix de source émettrice de neutrons nécessaires à la transmutation. Nous présenterons alors les éléments qui ont conduit au choix de l'acier T91 comme matériau de structure pour les zones irradiés et les zones en contact avec l'alliage Pb-Bi aux plus hautes températures. Enfin, nous présenterons brièvement les différents modes d'endommagement de l'acier T91 au contact de l'alliage Pb-Bi liquide, sans irradiation.

1. Les ADS et le module de spallation MEGAPIE

Un ADS est composé de trois parties :
− un accélérateur de particules permettant de produire un faisceau de protons d'une énergie voisine de 1 GeV,
− une cible de spallation, bombardée par le faisceau de protons et permettant une émission de neutrons,
− le cœur du réacteur nucléaire comportant les déchets radioactifs en masse sous-critique ce qui permet d'éviter toute réaction nucléaire en chaîne. Ainsi, la réaction nucléaire est contrôlée via l'accélérateur de protons.

Un schéma d'un ADS est représenté sur la Figure 1.
Aussi pour réaliser ce type de transformation, le faisceau de neutrons incident est émis par une source productrice de neutrons. Cette source de neutrons, non radioactive, doit être activée par une réaction de spallation mettant en jeu un faisceau de protons :

\[p + X \rightarrow zn + \text{autre élément} \]

avec \(X \), la source émettrice de neutrons et \(z \) le nombre de neutrons obtenus par interaction entre un proton et la source de neutrons.

De part cette réaction de spallation la source émettrice de neutrons est nommée cible de spallation pour le faisceau de protons.

La cible de spallation est en circulation (vitesse comprise entre 0 et 1 m/s) au contact du cœur sous-critique et peut jouer ainsi le double rôle de cible de spallation et de liquide de refroidissement du cœur du réacteur. La gamme de température de travail du réacteur hybride se situe environ entre 200°C et 400°C.

Le faisceau incident de proton est accéléré dans un conduit sous vide séparé de la cible de spallation par une "fenêtre" en acier. Le bombardement de la cible de spallation s'effectue alors à travers cette "fenêtre".

Il existe actuellement des solutions sans utilisation de "fenêtre" dans lesquelles le faisceau de proton impacte directement la cible de spallation. C'est le cas du concept MYRRHA.

Notre étude est effectuée dans le cadre de projets internationaux fondés sur un concept d'ADS comportant une "fenêtre" de séparation entre la cible de spallation et le faisceau de proton.

Une des premières étapes de validation de la faisabilité d'un système hybride est la construction et la mise en fonctionnement d'un prototype comportant les deux premières parties du réacteur hybride : le faisceau de protons et la cible de spallation.

Ce prototype expérimental, nommé MEGAPIE (MEGAwatt Pilot Experiment) regroupe des centres de recherche français (CEA, CNRS), allemand (FZK), suisse (PSI), italien (ENEA), belge (SCK-CEN) et japonais (JAERI). Ce prototype de module de spallation est en cours de
Introduction

des est sera mis en fonctionnement pendant 6 mois en 2006 dans les laboratoires du Paul Scherrer Institute en Suisse.

La construction d'un tel module de spallation a nécessité, notamment, d'effectuer un choix sur le matériau de la cible de spallation (source émettrice de neutrons) puis sur le matériau de structure du réacteur, contenant cette cible de spallation.

Les alliages liquides sont de bons candidats comme matériaux de la cible de spallation parce qu'ils possèdent des qualités de rendement neutronique et des qualités thermiques (voir paragraphe 2). Actuellement, l'alliage plomb-bismuth dans ses proportions eutectiques est le candidat le mieux considéré comme cible de spallation pour l'émission de neutrons et sera notamment utilisé dans le prototype MEGAPIE. Un schéma de la cible MEGAPIE est donné Figure 2.

Figure 2 : (A) Schéma détaillé du concept de la cible MEGAPIE. (B) Vue d'ensemble et photographie de la cible [2][3].
Introduction

2. Le choix de l'alliage Pb-Bi comme matériau pour la cible de spallation

L'expérience russe, sur la technologie des métaux liquides, a guidé le choix du matériau de la cible de spallation vers l'eutectique Pb-Bi. En effet, les Russes ont abondamment étudié les propriétés physico-chimiques de l'alliage ainsi que ses interactions avec les aciers car l'eutectique Pb-Bi constituait le liquide de refroidissement des sous-marins nucléaires russes.

L'intérêt d'utiliser l'alliage liquide Pb-Bi, comme cible de spallation, résulte de ses bonnes propriétés physico-chimiques et nucléaires :

- Les avantages de l'utilisation de l'alliage Pb-Bi fondés sur ses propriétés physico-chimiques sont les suivants :

 - Les éléments Pb et Bi sont relativement inertes chimiquement et surtout ne réagissent de manière explosive ni avec l'air ni avec l'eau.
 - Le point de fusion de l'eutectique, égal à environ 125°C, est bas pour un métal liquide, ce qui permet de travailler à des températures peu élevées.
 - Le point de vaporisation est au contraire élevé, égal à environ 1670°C, ce qui permet de travailler dans une gamme de température importante sans craindre une évaporation trop forte du métal liquide.
 - La tension de vapeur de l'alliage est d'ailleurs très basse, elle correspond à 6x10⁻⁶ Pa à 470°C.
 - La densité élevée de l'alliage Pb-Bi lui confère une bonne circulation naturelle qui est de plus améliorée par une faible viscosité cinématique, égale à 1,4x10⁻⁷ m²/s à 450°C.
 - Sa bonne capacité calorifique lui permet d'assurer un refroidissement dans le réacteur hybride.

- Les avantages de l'utilisation de l'alliage Pb-Bi fondés sur ses propriétés nucléaires sont les suivants :

 - Le matériau Pb-Bi possède un bon rendement de spallation : 28 neutrons sont produits par réaction de spallation impliquant un proton d'énergie égale à 1GeV.
 - La section efficace d'absorption des neutrons de l'alliage Pb-Bi est très faible et il constitue un matériau de faible pouvoir modérateur.
 - La forte production de neutrons alliée au faible pouvoir modérateur et à la non absorption des neutrons permet de produire un large spectre d'énergie des neutrons afin de transmuter une plus large gamme d'éléments.

Cependant l'utilisation de l'alliage Pb-Bi comme cible de spallation engendre certains inconvénients. D'un point de vue nucléaire, le plomb peut émettre des particules alpha hautement énergétiques et l'irradiation du bismuth conduit à la production de polonium 210 gazeux très fortement radioactif. Dans le concept MEGAPIE, les produits de spallation gazeux sont piégés au dessus du métal liquide (Figure 2). Par ailleurs, l'activité résiduelle de la cible est importante, les durées de vie du plomb 205 et du bismuth 210 sont respectivement de 1,5x10⁷ années et 3,6x10⁶ années [4].
Aussi les ADS ne permettent pas de "détruire" la totalité des déchets radioactifs à vie longue, mais seulement d'en diminuer fortement le volume.

D'un point de vue matériau, la partie la plus critique du module de spallation est la fenêtre qui constitue l'interface entre la cible de spallation et le faisceau de protons. En effet, le matériau est irradié au niveau de la "fenêtre" et corrodé par l'alliage liquide Pb-Bi en circulation au niveau de la "fenêtre" et de la cuve (Figure 2, Figure 4).
Ainsi le choix de l'acier de structure doit être effectué en considérant les propriétés du matériau vis-à-vis de sa tenue à l'irradiation et de sa tenue à la corrosion.

3. Le choix de l'alliage de structure pour la "fenêtre" du module de spallation MEGAPIE

Les alliages à base de nickel et les aciers inoxydables comportant une teneur élevée en nickel ne pouvaient être retenus comme matériau pour la fenêtre de la cible de spallation, pour des raisons de tenue à l'irradiation et à la corrosion :
- Sous irradiation de neutrons (issus de la réaction de spallation) \[5\], le nickel est susceptible de former des précipités intermétalliques.
- La fenêtre est la partie la plus chaude du module de spallation et la forte solubilité du nickel dans l'alliage Pb-Bi empêche l'utilisation d'alliages riches en nickel.

Les alliages à base d'aluminium ont été rejetés car les températures de travail de MEGAPIE sont trop élevées par rapport aux températures acceptables pour la tenue de ces alliages \[5\].

Les alliages à base de zirconium n'ont pas été retenus à cause de leur mauvaise résistance aux effets d'irradiation et leur faible capacité à travailler à une température supérieure à 500-550°C (dans la perspective d'un réacteur européen) \[5\]. Nous pouvons ajouter que l'utilisation d'alliage à base de zirconium est inadaptée au milieu Pb-Bi car la solubilité du zirconium dans l'eutectique Pb-Bi est très élevée (voir Chapitre I).

Finalement les alliages à base de fer semblaient les plus adaptés à la double contrainte de tenue à l'irradiation et à la corrosion par l'alliage Pb-Bi.

Cependant, l'irradiation des aciers induit un durcissement et une diminution de la ductilité \[6\] pouvant entraîner des risques de fissuration de la "fenêtre". De plus, elle peut particulièrement induire un gonflement et une fragilisation du matériau \[6\].

Les aciers austénitiques n'ont pas été sélectionnés comme matériau de fabrication de la "fenêtre" car :
- Leurs taux de gonflement induit par irradiation sont plus élevés que ceux des aciers martensitiques.
- Leurs coefficients de dilatation thermique sont plus élevés que ceux des aciers martensitiques et leur conductivité thermique est plus faible \[5\]. Ainsi ces aciers évacuent moins bien la chaleur et sont amenés à une plus importante dilatation sous l'impact du faisceau de protons. Aussi, les contraintes résultantes dans cette catégorie d'acier peuvent être deux fois supérieures à celles présentes dans un acier martensitique pour une température et une géométrie d'échantillons données.
La limite de solubilité du nickel dans l'alliage Pb-Bi étant très élevée, (voir Chapitre I), les aciers austénitiques présentent une moins bonne tenue à la corrosion par dissolution que les aciers martensitiques.

Ainsi, pour des raisons de tenue à la corrosion et à l'irradiation, les aciers austénitiques n'ont été choisis ni pour la fenêtre, ni pour les parties "chaudes" du réacteur.

Un des endommagements majeurs est lié à la fragilisation induite par l'irradiation : les aciers ferritiques et martensitiques possèdent une zone de transition ductile-fragile pour une température donnée, nommée "Ductile to Brittle Transition Temperature" [6]. Sous irradiation, cette température de transition ductile-fragile (DBTT) peut augmenter très fortement. La Figure 3 présente l'évolution de cette température en fonction de la température d'irradiation de l'échantillon pour quelques aciers ferritiques, martensitiques et ferrito-martensitiques [6]. Notons cependant que cette température n'est pas une propriété intrinsèque au matériau ; elle peut varier en fonction de la géométrie de l'échantillon irradié, de sa taille et des paramètres de l'irradiation [7].

La Figure 3 met en évidence que, pour chaque catégorie d'acier, la DBTT augmente avec l'augmentation de la teneur en chrome dans l'acier. Aussi, le choix du matériau de la "fenêtre" et d’une partie de la cuve de la cible MEGAPIE (Figure 4) s’est porté sur l’acier martensitique T91 (Fe-9Cr-1Mo) pour le bon équilibre entre sa tenue à l’irradiation et ses qualités de tenues à la corrosion en milieu Pb-Bi (absence de nickel et présence de chrome). La tenue à la corrosion de l'acier T91 a été longuement étudiée pour une très faible teneur en oxygène dissous dans le métal liquide, au cours des études sur la corrosion dans l'alliage Pb-Li. Ces études montrent que le T91 résiste bien à la dissolution dans cet alliage de plomb.

Cependant, l'acier 316L, plus facile à souder, est utilisé pour les parties supérieures du container, moins chaudes et éloignées de la zone de spallation [3].
Introduction

4. Les modes d'endommagements de l'acier T91 au contact de l'alliage Pb-Bi

L'acier T91 a été choisi principalement car ses propriétés sous irradiation étaient connues. Il a donc été nécessaire de mettre en place un groupement de recherche, chargé d'étudier les propriétés de tenue du matériau, sans et avec irradiation, au contact avec l'alliage Pb-Bi liquide.

C'est pourquoi, dans le cadre du programme MEGAPIE, un programme de recherche sur la corrosion des matériaux de structure, TECLA, a été lancé avec les participants du projet MEGAPIE et avec la coopération du centre IPPE d'Obninsk. En effet, l'utilisation de l'alliage Pb-Bi, comme liquide refroidisseur pour les sous-marins nucléaires russes, a engendré de nombreuses recherches sur la corrosion des matériaux de structure vis-à-vis de l'alliage liquide. Une technologie russe s'est ainsi développée depuis les années 70.

En effet, les résultats des recherches russes mettent en évidence deux grands modes d'endommagements des matériaux au contact de l'alliage Pb-Bi liquide [8] :

- un mode de fragilisation de l'acier au contact de l'alliage Pb-Bi,
- un mode de corrosion scindé en un régime de dissolution de l'acier dans l'alliage Pb-Bi, et un régime d'oxydation de l'acier, en fonction de la teneur en oxygène dissous dans l'alliage.

Deux paramètres jouent fortement sur ces modes d'endommagements : la température et la teneur en oxygène dissous dans l'alliage liquide.

Aussi, les Russes ont déployé des techniques permettant de contrôler en continu la teneur en oxygène dissous dans l'alliage Pb-Bi. Un fin contrôle de cette teneur permet de protéger l'acier par une couche d'oxyde suffisamment protectrice pour éviter certains phénomènes de fragilisation (voir paragraphe 4.1) ainsi que les phénomènes de corrosion par dissolution (voir paragraphe 4.2).

Dans l'installation MEGAPIE, aucune mesure ni aucun contrôle de l'oxygène n'est envisagé. Aussi, tous les domaines de teneur en oxygène dissous doivent être pris en compte.

Nous allons présenter brièvement les deux modes d'endommagements, fragilisation et corrosion, et préciser l'impact de la température et/ou la teneur en oxygène.
4.1. La fragilisation du T91 induite par l'alliage Pb-Bi

La fragilisation induite par l'eutectique Pb-Bi peut être caractérisée par trois types de phénomènes. Ceux-ci sont définis :

- par une pénétration intergranulaire fragilisante. Ce phénomène peut être observable en présence ou non d'une contrainte extérieure.

- par une diminution de la ductilité du matériau. Quelle que soit la cause microcopique et la nature ductile ou fragile du faciès de rupture, ce mode de fragilisation est défini par une diminution de la ductilité et de la résistance du matériau.

D'un point de vue pénétration intergranulaire, si l'eutectique Pb-Bi pénètre dans les joints de grains lors d'immersions à haute température (supérieure à 600°C), à très faible teneur en oxygène dissous dans l'eutectique Pb-Bi, ce processus est lent ou rapidement arrêté [8]. Ce processus est incapable d'amorcer des fissures lors de tests de traction ex situ, à température ambiante [8]. Le couple T91/eutectique Pb-Bi n'apparaît pas comme un couple fragilisant contrairement aux couples Cu_liquide/Bi_liquide [9] et Al_liquide/Ga_liquide [8].

Le phénomène de fragilisation lié à une transition ductile-fragile du mode de rupture est fortement dépendant de quatre paramètres : la température, la teneur en oxygène dissous dans l'alliage Pb-Bi, la présence de points de concentration de contraintes et l'augmentation de la ductilité de l'acier. Ce phénomène est fortement lié à la réduction de l'énergie de surface de l'acier par adsorption d'atomes du métal liquide à la surface de l'acier. Des calculs ab initio à l'échelle atomique montrent que, lors d'une simulation de l'adsorption d'atomes de Pb-Bi à la surface de grains de fer, la diminution de l'énergie de surface est comprise entre 16 et 35 % (en fonction de l'orientation cristallographique du grain de fer) [10]. La cause de ce type de fragilisation (adsorption du métal liquide à la surface de l'acier) nécessite donc un contact intime entre l'acier et le métal liquide.

Aussi, ce mode de fragilisation est fortement lié au régime de corrosion de l'acier (dissolution ou oxydation), i.e. à la teneur en oxygène dissous dans le métal liquide. En effet, lorsque la teneur en oxygène est élevée, une couche d'oxyde se forme à la surface du matériau et empêche un contact direct entre le métal liquide et l'acier. En revanche, lorsque la teneur en oxygène dissous dans l'eutectique Pb-Bi est faible, la corrosion de l'acier suit un régime de dissolution et un contact intime peut se créer entre les métaux liquides et solides (mouillage).

Une expérience originale a mis en évidence le rôle de la présence d'une couche d'oxyde dans la protection à la fragilisation du T91 par l'eutectique Pb-Bi [11]. La couche d'oxyde native, présente à la surface des échantillons de T91, a préalablement été retirée par bombardement d'ions dans une chambre ultravide. Ce retrait de la couche d'oxyde est suivi d'un dépôt, par PVD, d'atomes de plomb et de bismuth à la surface du T91. Un essai de traction est ensuite réalisé à 340°C sous balayage d'hélium.

Un mode de rupture mixte, fragile-ductile est observable sur le faciès de rupture de l'échantillon. La zone fragilisée ne se situe qu'à la périphérie de l'échantillon alors que la rupture ductile se produit au niveau du cœur du T91. Les auteurs expliquent ce phénomène par une pénétration de l'alliage Pb-Bi liquide dans des fissures formées par l'essai de traction [11]. La quantité d'atomes de plomb et de bismuth déposée à la surface du T91 est cependant faible, elle correspond à une épaisseur de quelques centaines de nanomètres.
Introduction

Aussi le comportement ductile du mode de rupture du T91 est retrouvé lorsque la quantité d'alliage Pb-Bi n'est plus suffisante pour pénétrer jusqu'au front de fissure11.

Un effet de concentration de contraintes facilite aussi l'observation d'une transition ductile-fragile du mode de rupture du T91. Cette concentration de contraintes peut être favorisée par une entaille dans le T9112,13.

La température joue un rôle important dans la transition ductile-fragile du mode de rupture de l'acier ; l'obtention d'un faciès fragile semble favorisé à une température avoisinant 350°C pour le T918. La littérature russe montre que le domaine de fragilisation d'un acier Fe-1Cr-1Mo par l'alliage Pb-Bi se situe entre 350 et 400°C8.

L'augmentation de la dureté de l'acier T91 (par traitements thermiques) semble faciliter la transition ductile-fragile du mode de rupture du T91.
Des expériences de fragilisation de l'acier T91 par le plomb liquide ont été réalisées à 350, 400 et 425 °C sur des échantillons entaillés, durci et non durci. Ces expériences montrent l'impact de la température et du durcissement du matériau vis-à-vis de la fragilisation par le métal liquide. Les échantillons non durcis n'ont présenté que des faciès de rupture ductile, quelle que soit la température d'essai. En revanche, les échantillons durcis ont présenté à 350 et à 400°C des faciès de ruptures fragiles. À 450°C un domaine mixte fragile-ductile est observable sur les échantillons durcis.
Cette expérience montre que le durcissement du T91 favorise la fragilisation par le plomb liquide. De plus, l'augmentation de la température limite la fragilisation par le plomb liquide.

Aussi ce phénomène de fragilisation ne peut se produire que dans des cas bien précis : avec des échantillons durcis et "entaillés" (mécaniquement ou par processus de corrosion), dans un domaine de température avoisinant 350-400°C, lorsque la teneur en oxygène est faible et qu'un contact intime entre le T91 et le métal liquide se produit.

Le dernier mode de fragilisation par les métaux liquide est défini par une diminution de la ductilité du matériau. Cette perte des qualités mécaniques du matériau se caractérise :
\begin{itemize}
 \item Lors de tests de traction effectués en milieu Pb-Bi liquide, par une diminution de l'élongation à rupture, par rapport aux mêmes tests effectués dans l'air (Figure 5 (A))11.
 \item Lors de tests de fatigue effectués in situ dans l'alliage liquide, par une diminution du nombre de cycle à rupture, par rapport aux mêmes tests effectués dans l'air (Figure 5 (B))12.
\end{itemize}
Vogt et al. [12] ont souligné que la durée de vie de l'éprouvette de fatigue dans l'eutectique Pb-Bi diminuait d'un facteur deux environ par rapport à celle de l'éprouvette de fatigue dans l'air.

Les auteurs [12] remarquent, pour les essais de fatigue dans l'air, qu'une multitude de microfissures sont formées parallèlement à la fissure principale provocant la rupture de l'échantillon (Figure 6 (A)). En revanche, lors des essais de fatigue dans l'alliage Pb-Bi une seule fissure se forme (Figure 6 (B)). Aussi, suggèrent-ils une différence de mécanisme d'amorçage des fissures dans l'air et dans l'eutectique Pb-Bi.

Dans l'air les fissures de tailles microscopiques se forment par coalescence de plus petites fissures. En revanche, cette étape ne se produit pas dans l'alliage Pb-Bi.

La fragilisation du T91 induite par l'alliage Pb-Bi liquide peut être observable à des températures plutôt inférieures à 400°C. Nous allons montrer qu'au contraire, la corrosion du T91 est visible pour des températures plutôt supérieures à 400°C.
4.2. La corrosion du T91 au contact de l'alliage Pb-Bi liquide

En ce qui concerne la corrosion du T91 par l'alliage Pb-Bi liquide, deux régimes de corrosion ont été soulignés par la littérature [14][15]. Ces régimes de corrosion dépendent de la teneur en oxygène dissous dans l'alliage Pb-Bi. Ils sont identifiés sur le diagramme d'Ellingham suivant [15].

Pour de faibles teneurs en oxygène, la corrosion se manifeste par dissolution du T91 dans le métal liquide. Ainsi le régime de dissolution est obtenu pour une teneur en oxygène similaire à celle nécessaire à la formation de la magnétite, Fe₃O₄, (Figure 7) : à 470°C la dissolution du T91 apparaît pour une teneur en oxygène dissous dans l'alliage Pb-Bi avoisinant 10⁻⁸ pds % alors que la précipitation de la magnétite se produit pour une teneur en oxygène dissous égale à 10⁻⁹ pds % [14]. Dans le régime de dissolution deux facteurs jouent particulièrement sur la vitesse de corrosion : la température et la vitesse de circulation de l'alliage Pb-Bi.

Afin de mettre en évidence l'impact de la température sur le processus de dissolution, un même échantillon de 56T5 (Fe-10,5Cr) a été corrodé, sous un gradient thermique de 295 à 490°C, dans l'alliage Pb-Bi contenant environ 5x10⁻⁷ pds % d'oxygène dissous. Dans la partie haute température de l'échantillon (T>480°C), l'acier se dissout, présentant des attaques intergranulaires. Dans la partie intermédiaire, dans le domaine de température compris entre 400 et 480°C, un dépôt de cristaux 98Fe-2Cr est observable sur toute la surface de l'échantillon. A températures plus basses, aucun dépôt n'est observé.

Ces résultats mettent en évidence un processus de dissolution/dépôt : à haute température l'acier se dissout et les produits de corrosion vont se redéposer dans les parties froides. En effet, lorsque les limites de solubilité des espèces dissoutes sont atteintes, les produits de corrosion précipitent et forment des dépôts.

Ce type de processus de dissolution/dépôt est prévisible dans la cible MEGAPIE dans laquelle le gradient de température entre la fenêtre et la partie haute est de l'ordre de 150°C.
Par ailleurs, dans la cible MEGAPIE, une vitesse de circulation de l'alliage liquide Pb-Bi maximale de 1m/s est envisagée. Des essais de dissolution de l'acier T91 ont été effectués en milieu circulant et en milieu stagnant, à différentes températures. Plus la température et la vitesse de circulation sont élevées plus la dissolution du T91 est importante.

Les résultats des essais de dissolution de l'acier martensitique 56T5 (Fe-10,5Cr) en milieu Pb-Bi stagnant ont été effectués à 500°C, pour une teneur en oxygène dissous dans l'alliage Pb-Bi égale à 7×10^{-8} pds %. Ils montrent que la vitesse de dissolution de l'acier est de l'ordre de 45 µm/an (en supposant une cinétique linéaire) [16].

Lorsque l'alliage Pb-Bi liquide est en circulation, des équations ont été établies [15], permettant de relier, en fonction de la température, la vitesse de corrosion à la vitesse de circulation de l'alliage Pb-Bi. Lorsque l'alliage Pb-Bi circule à la vitesse v, dans un tube de diamètre d, la vitesse de corrosion du tube, $v_{\text{corrosion}}$, peut s'écrire :

$$v_{\text{corrosion}} = 0,0165 \ v^{0,86} \ D^{0,670} (C_S - C_0)$$

avec C_S et C_0 les concentrations de fer dissous à l'interface T91/Pb-Bi (supposée égale à sa limite de solubilité) et dans le cœur de l'alliage liquide (supposée nulle) ; ν, la viscosité cinématique de l'alliage Pb-Bi liquide et D, le coefficient de diffusion du fer dans l'alliage liquide. Aussi, la vitesse de corrosion est limitée par la diffusion dans l'alliage liquide des éléments majoritaires de l'acier. Dans le cas du T91, la vitesse de corrosion serait limitée par la diffusion du fer dans l'alliage Pb-Bi, ainsi que par sa limite de solubilité.

Des essais de dissolution du T91 dans l'alliage Pb-Bi en circulation ont été réalisés à 400°C et à 470°C [17]. La vitesse de dissolution du fer pur et du T91, à 400°C, est représentée sur la Figure 8 en fonction de la vitesse de circulation de l'alliage Pb-Bi liquide.

Figure 8 : Variation de la vitesse de dissolution du T91 et du fer pur en fonction de la vitesse de circulation de l'alliage liquide Pb-Bi, à 400°C. Les concentrations en oxygène dissous sont comprises entre 7×10^{-8} et 3×10^{-12} pds % [17].
La Figure 8 montre que la vitesse de dissolution simulée est supérieure aux vitesses de dissolutions expérimentales. Cette différence est attribuée par les auteurs [17] aux nombreuses incertitudes concernant les données physicochimiques utilisées pour le calcul, à savoir : la limite de solubilité et le coefficient de diffusion du fer dans l'alliage liquide Pb-Bi à 400°C. Le coefficient de diffusion a été extrapolé à basse température à partir du coefficient de diffusion du fer dans le plomb déterminé à plus hautes températures. De plus, la valeur numérique du facteur (C_S-C_0), utilisée dans la simulation, est maximisée [17]. En effet, les concentrations réelles en fer dissous, au cœur de l'alliage Pb-Bi et à l'interface métal/Pb-Bi, sont inconnues.

Par ailleurs, la vitesse de dissolution du fer pur est plus importante que celle du T91. D'après les auteurs [17], une fine couche d'oxyde de chrome ou de spinelle Fe-Cr peut recouvrir partiellement la surface de l'acier et protéger ainsi le T91 d'une dissolution égale à celle du fer dans l'alliage Pb-Bi.

A partir de ces résultats, la vitesse de dissolution du T91 dans l'installation MEGAPIE (vitesse de circulation l'alliage Pb-Bi environ égale à 1m/s), peut être estimée à 400°C : elle correspond à environ 43 µm/an, en prenant les résultats expérimentaux du T91. Cette vitesse de dissolution est très faible, il peut être supposé que la dissolution du T91 ne constituera pas un inconvénient majeur à l'utilisation du T91 comme matériau de structure de la cuve et de la "fenêtre" de la cible de spallation.

Lorsque la teneur en oxygène est supérieure à la teneur nécessaire à la formation de la magnétite, le T91 s'oxyde. Le régime d'oxydation du T91 est donc relié à une gamme de teneur en oxygène dissous compri, approximativement, entre la teneur nécessaire à la précipitation de la magnétite et celle correspondant à la limite de solubilité de l'oxygène dans l'alliage Pb-Bi (concordant avec la précipitation de PbO) [14].

Dans le cas de l'oxydation du T91, une couche d'oxyde de structure duplex est observable à la surface du T91. Cet oxyde est constitué d'une couche de spinelle Fe-Cr au contact du T91 surmontée d'une couche de magnétite.

A partir de plusieurs centaines d'heures d'oxydation dans l'alliage Pb-Bi saturé en oxygène à 470°C, une couche d'oxyde d'environ 5 µm d'épaisseur est observable.

La teneur en oxygène, la vitesse de circulation de l'alliage Pb-Bi et la température sont des paramètres influant fortement sur le processus de corrosion (voir Chapitre II).

L'interprétation des différents résultats des recherches est difficile à clarifier à cause de la multitude de paramètres variant pour chaque expérience : teneur en oxygène dissous dans l'alliage Pb-Bi, température d'essai, vitesse de circulation de l'alliage Pb-Bi liquide... Aussi le rôle de chaque paramètre n'a pu être éluclidé et le mécanisme d'oxydation n'a pas été découvert.

Dans l'installation MEGAPIE, aucun contrôle de l'oxygène dissous dans l'alliage Pb-Bi n'est prévu. L'importante quantité d'hydrogène générée par les réactions de spallation suggère que la teneur en oxygène soit plutôt faible. Cependant les deux régimes de corrosion, dissolution et oxydation peuvent se produire au sein de la cible de spallation.

Le régime de dissolution étant déjà bien caractérisé, nous avons cherché à étudier l'oxydation du T91 sous des conditions d'essais fixées, sans effectuer de variation de paramètres. Ceci afin d'identifier les phénomènes observés et de mettre en évidence le mécanisme d'oxydation du T91 dans l'alliage liquide Pb-Bi.

L'objectif de notre travail est de comprendre le mécanisme d'oxydation de l'acier et d'en construire un modèle afin de pouvoir prédire la cinétique de corrosion pour de longues durées d'oxydation.
La température d'oxydation sera la même pour tous les essais effectués dans le cadre de cette étude. Le choix de cette température a été fixé à 470°C pour répondre à la double contrainte d'être à la fois réaliste et extrême dans le régime de fonctionnement du démonstrateur MEGAPIE (entre 200°C et 500°C en cas accidentel).

Afin de se situer dans un environnement Pb-Bi le plus oxydant possible et d'assurer un contrôle plus aisé de la teneur en oxygène, les essais réalisés dans le cadre de ce travail sont effectués pour une teneur en oxygène dissous dans l'alliage Pb-Bi égale à sa limite de solubilité à 470°C.

La connaissance de certaines données de bases, liées aux conditions de travail (environnement, matériaux..) est indispensable à la construction d'un modèle d'oxydation permettant de prévoir de manière satisfaisante les cinétiques de croissance des couches d'oxyde. Ces données de base sont principalement les activités de l'oxygène, du plomb, du bismuth dans l'eutectique Pb-Bi, les limites de solubilité des éléments constitutifs du T91 et de l'oxygène dans l'alliage Pb-Bi à 470°C. Celles-ci doivent être les plus réalistes possibles pour permettre une discrimination des modèles élaborés.

Dans un premier chapitre nous nous attacherons à caractériser le milieu Pb-Bi saturé en oxygène et son interaction avec le T91, d'un point de vue physico-chimique et thermodynamique. Ceci nous permettra d'obtenir une première représentation thermodynamique des oxydes susceptibles de se former lorsque le T91 est immergé dans l'alliage Pb-Bi, en fonction des conditions d'essai (température et teneur en oxygène dissous).

Dans un second chapitre nous rassemblerons les données bibliographiques accessibles sur l'oxydation du T91 dans L'alliage Pb-Bi et celle des aciers Fe-9Cr dans d'autres environnements oxydants. En effet, l'oxydation des aciers Fe-Cr à haute température dans certains milieux oxydants est très proche de celle du T91 dans L'alliage Pb-Bi. La nature des couches d'oxyde et parfois leur cinétique de croissance sont similaires. Ces ressemblances peuvent conduire à une similarité de mécanisme d'oxydation.

Dans un troisième chapitre, nous présenterons les résultats expérimentaux obtenus lors de nos essais d'oxydation du T91 dans L'alliage Pb-Bi saturé en oxygène à 470°C. Ces résultats seront discutés et comparés à des essais d'oxydation du T91 dans Bi pur saturé en oxygène à 470°C et dans l'air sec à 470°C. Les essais effectués dans ces deux autres milieux oxydants nous servirons de points de comparaison tout au long de notre étude.

Dans un quatrième chapitre nous chercherons à identifier le transport de l'oxygène au sein de la couche d'oxyde. Le transport de l'oxygène ainsi caractérisé peut être une étape limitante ou non pour la cinétique d'oxydation du T91. A l'aide de simulations nous évaluerons l'aspect limitant de cette étape.

Enfin dans un cinquième chapitre, nous chercherons à comprendre le mécanisme d'oxydation de l'acier T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C. Cette étude du mécanisme d'oxydation sera à la fois phénoménologique et quantitative. Elle nous mènera à évaluer les cinétiques de diffusion des cations pendant le processus d'oxydation. Ces différents paramètres nous conduirons à construire un modèle quantitatif et prédictif de l'oxydation du T91 dans L'alliage Pb-Bi saturé en oxygène à 470°C. Nous tenterons alors d'élargir ces prédictions à d'autres conditions d'essais, pour des teneurs en oxygène et des températures d'oxydation différentes.
Introduction
Chapitre I : Caractérisation du milieu et des interactions milieu matériau
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

1. Introduction

Avant de commencer l'étude de la corrosion de l'acier T91 par l'alliage liquide Pb-Bi, il est indispensable de caractériser le milieu oxydant et son interaction avec l'acier.

Dans ce premier chapitre nous nous attacherons à caractériser le milieu Pb-Bi et le milieu Pb-Bi-O, d'un point de vue physico-chimique et thermodynamique.

Nous nous intéresserons ensuite d'un point de vue thermodynamique aux interactions entre le T91 et l'alliage Pb-Bi.

Ceci nous mènera à regrouper les différentes données sur les limites de solubilité du fer et du chrome dans l'alliage Pb-Bi et à étudier par la thermodynamique les oxydes susceptibles de se former lors de l'oxydation du T91 par l'alliage Pb-Bi liquide.

2. Symboles utilisés au cours du Chapitre I

Les symboles utilisés dans le Chapitre I sont regroupés dans le tableau suivant.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>masse volumique (kg/m(^3))</td>
</tr>
<tr>
<td>(\eta)</td>
<td>viscosité cinématique (m(^2)/s)</td>
</tr>
<tr>
<td>(T)</td>
<td>température (K ou °C)</td>
</tr>
<tr>
<td>(R)</td>
<td>constante des gaz parfaits (J/molK)</td>
</tr>
<tr>
<td>(a_i)</td>
<td>activité de l'élément i</td>
</tr>
<tr>
<td>(\gamma_i)</td>
<td>coefficient d'activité de l'élément i</td>
</tr>
<tr>
<td>(x_i)</td>
<td>fraction molaire de l'élément i</td>
</tr>
<tr>
<td>(P_{O_2})</td>
<td>pression partielle en oxygène (atm)</td>
</tr>
<tr>
<td>(C_O)</td>
<td>concentration en oxygène dissous dans le métal liquide (Pb-Bi, Bi ou Pb) (pds %)</td>
</tr>
<tr>
<td>(S^*_X)</td>
<td>solubilité de l'élément X dans le métal liquide Y (pds %)</td>
</tr>
</tbody>
</table>

Tableau 1 : Symboles utilisés dans le Chapitre I.

3. Propriétés physico-chimiques de l'eutectique Pb-Bi

L'alliage Pb-Bi comporte un point eutectique pour une proportion de bismuth égale à 56,3 %. Ce point eutectique est mis en évidence par le diagramme de phase binaire Pb/Bi ci-dessous.

Il montre que la température de fusion de l'eutectique Pb-Bi (125°C) est nettement inférieure à celle des métaux pur plomb (327°C) et bismuth (271°C). Cette basse température de fusion a été un argument favorable au choix de l'eutectique Pb-Bi pour la cible de spallation.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Figure 9 : Diagramme de phase Pb-Bi.

Les principales propriétés physico-chimiques du plomb pur, du bismuth pur et de l'eutectique Pb-Bi sont rassemblées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Propriétés</th>
<th>Pb</th>
<th>Bi</th>
<th>Eutectique Pb-Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numéro atomique</td>
<td>82</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Masse atomique</td>
<td>207,2</td>
<td>208,98</td>
<td></td>
</tr>
<tr>
<td>Température de fusion (°C)</td>
<td>327,4</td>
<td>271,4</td>
<td>125</td>
</tr>
<tr>
<td>Température de vaporisation (°C)</td>
<td>1745</td>
<td>1552</td>
<td>1670</td>
</tr>
<tr>
<td>Chaleur molaire de fusion (kJ/mol)</td>
<td>5,1</td>
<td>11,4</td>
<td>8,07</td>
</tr>
<tr>
<td>Chaleur molaire de vaporisation (kJ/mol)</td>
<td>178</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>Capacité calorifique (kJ/kgK) à 450°C</td>
<td>147,3</td>
<td>150</td>
<td>146</td>
</tr>
<tr>
<td>Conductivité thermique (W/mK) à 450°C</td>
<td>17,1</td>
<td>14,2</td>
<td>14,2</td>
</tr>
<tr>
<td>Densité (kg/m³) à 20°C et 450°C</td>
<td>10520</td>
<td>9854</td>
<td>10150</td>
</tr>
<tr>
<td>≈ +0,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosité cinématique (m²/s) à 450°C</td>
<td>1,9x10⁻⁷</td>
<td>1,3x10⁻⁷</td>
<td>1,4x10⁻⁷</td>
</tr>
<tr>
<td>Nombre de Prandtl à 450°C</td>
<td>0,0174</td>
<td>0,0135</td>
<td>0,0147</td>
</tr>
<tr>
<td>Tension de surface (mN/m) à 450°C</td>
<td>480</td>
<td>370</td>
<td>392</td>
</tr>
</tbody>
</table>
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Tension de vapeur (Pa)
(eau à 20°C : 2333 Pa)
\[
10^{13.317 \frac{10114}{T} - 0.86 \log T} [19]
\]

Tableau 2 : Principales propriétés physico-chimiques du plomb, du bismuth et de l'eutectique Pb-Bi [4].

Nous pouvons noter que la viscosité de l'alliage Pb-Bi à 470°C est faible par rapport aux liquides non visqueux classiques. Par points de comparaison, celle de l'eau à 20°C est égale à 1,5x10^{-6} m²/s et celle d'un fluide visqueux comme le glycérol est égale à 1,2x10^{-3} m²/s à 20°C alors que celle de l'alliage Pb-Bi à 450°C est égale à 1,4x10^{-7} m²/s.

4. Activités des éléments plomb, bismuth et oxygène dans l'alliage liquide Pb-Bi

Nous présenterons tout d'abord les activités du plomb et du bismuth, dans l'alliage liquide Pb-Bi, en fonction de leur fraction molaire dans l'alliage et ensuite nous étudierons le cas de l'activité de l'oxygène dans l'eutectique Pb-Bi.

4.1. Activités du plomb et du bismuth dans l'alliage Pb-Bi

Comme on a pu le constater, la connaissance de la teneur en oxygène dissous dans l'alliage Pb-Bi est fondamentale pour la caractérisation du mécanisme de corrosion. De plus, c'est l'une des seules grandeurs accessibles directement à la mesure et en continu. Les activités du plomb et du bismuth dans l'alliage Pb-Bi ont été déterminées dans la littérature en fonction de la composition de l'alliage. Elles sont données par les expressions :

\[a_i = \gamma_i x_i \]

avec \[Ln \gamma_i = -\left(\frac{447}{T} + 0.2 \right)(1 - x_i)^2 \] et \(i \) le plomb ou le bismuth.

Sur la Figure 10 les activités sont représentées, à 470°C, en fonction de la fraction molaire de plomb dans l'alliage.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Figure 10 : logarithme de l'activité du plomb et du bismuth en fonction de la fraction molaire de plomb dans l'alliage liquide à 470°C.

Pour l'eutectique 45Pb-55Bi les activités du plomb et du bismuth sont finalement :
\[\log a_{Pb} = -\frac{98}{T} - 0,32 \] \[\log a_{Bi} = -\frac{64}{T} - 0,23 \] Elles sont égales à 0,35 et 0,48 respectivement pour le plomb et le bismuth à 470°C dans l'eutectique Pb-Bi.

4.2. Activité de O dans l'alliage Pb-Bi

L'activité de l'oxygène dissous dans un métal liquide peut être caractérisée par l'équilibre entre l'environnement gazeux au-dessus du bain de métal liquide et l'oxygène dissous dans le bain :
\[\frac{1}{2}O_2(g) = O_{ML} \]

Pour caractériser cet équilibre, la littérature a utilisé différents états de référence (en relation avec l'état standard \(P_{O_2} = 1 \text{ atm} \)) pour l'activité de l'oxygène dissous dans l'alliage Pb-Bi.

Les différents états de référence nécessaires à la compréhension de la littérature sont explicités en Annexe 1 de ce document.

Les valeurs des enthalpies libres \(\Delta G^0 \) nous permettent de calculer la pression partielle en oxygène en équilibre avec le métal liquide en fonction de la teneur en oxygène dissous dans le métal liquide et de la température, selon l'expression :
\[\log P_{O_2} = 2 \log x_O + 2 \log \gamma - 2 \frac{\Delta G^0}{RT} \ln 10 \]

Ces différentes valeurs de \(\Delta G^0 \) ont été obtenues pour le plomb pur, le bismuth pur [21] et l'eutectique Pb-Bi [22]. Elles sont rassemblées dans le tableau suivant.

<table>
<thead>
<tr>
<th>réaction</th>
<th>(\Delta G) (kJ/mol)</th>
<th>(\log P_{O_2}) à 470°C</th>
<th>référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{2}O_2(g) = O^{Pb})</td>
<td>-119,1+14,6T (K)</td>
<td>2LogCo(pds%)-12,8</td>
<td>[21]</td>
</tr>
<tr>
<td>(\frac{1}{2}O_2(g) = O^{Bi})</td>
<td>-99,73+13,2T (K)</td>
<td>2LogCo(pds%)-10,4</td>
<td>[21]</td>
</tr>
<tr>
<td>(\frac{1}{2}O_2(g) = O^{Pb-Bi})</td>
<td>-127,14+27,2T (K)</td>
<td>2LogCo(pds%)-13</td>
<td>[22]</td>
</tr>
</tbody>
</table>

Tableau 3 : Valeurs des enthalpies libres données dans la littérature pour l'équilibre \(\frac{1}{2}O_2(g) = O_{ML} \), en considérant l'état standard \(P_{O_2} = 1 \text{ atm} \) et le coefficient d'activité de l'oxygène dissous \(\gamma \) égal à 100.
Figure 11 : Pression partielle en oxygène en équilibre, à 470°C, avec une concentration en oxygène dissous dans le plomb pur, l’alliage Pb-Bi et le bismuth pur exprimée en poids %. Calculs effectués avec les valeurs des enthalpies libres données dans le Tableau 3.

Le graphique présenté Figure 11 ainsi que les expressions données dans le Tableau 3 permettent de relier la teneur en oxygène dissous dans le métal liquide à la pression partielle en oxygène en milieu gazeux en équilibre avec le métal liquide. Les calculs thermodynamiques de stabilité des oxydes peuvent donc être réalisés dans l'alliage Pb-Bi avec des enthalpies de formation des oxydes connues dans un environnement gazeux.

Au cours de cette étude la pression partielle en oxygène à considérer est celle en équilibre avec l'alliage Pb-Bi saturé en oxygène. C’est-à-dire celle menant à la précipitation de l'oxyde Pb-Bi-O le plus stable à 470°C. Nous allons donc déterminer dans le paragraphe suivant la nature des oxydes formés dans l'alliage Pb-Bi saturé en oxygène à 470°C.

5. Caractérisation du milieu : interaction l’alliage Pb-Bi –oxygène

5.1. Oxydes Pb-Bi-O susceptibles de se former

Nous avons représenté, Figure 12, un diagramme d'Ellingham des oxydes Pb-O et Bi-O, à partir des activités respectives de plomb et de bismuth dans l'alliage Pb-Bi et des enthalpies libres de formation des différents oxydes dont les valeurs sont données par la littérature [23]. Ce diagramme permet de comparer la stabilité relative des différents oxydes. Il montre que l'oxyde le plus stable du système Pb-Bi-O est PbO.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Figure 12 : diagramme d'Ellingham obtenu à partir des enthalpies libres de formation des oxydes \[^{[23]}\] et des valeurs des activités du plomb \[^{[24]}\] et du bismuth \[^{[24]}\] dans l'eutectique Pb-Bi. Les activités des oxydes ont été prises égales à 1 (état de référence choisi pour les oxydes solides).

La pression partielle en oxygène en équilibre avec l'alliage Pb-Bi liquide saturé en oxygène correspond donc à la pression partielle nécessaire à la précipitation de PbO :

\[
\frac{1}{2}O_2(g) + Pb(l) = PbO(s)
\]

\[
P_{O_2} = a_{Pb} \times exp \left(\frac{-\Delta G_f^0(PbO)}{RT} \right)
\]

avec \(\Delta G_f^0(PbO) \) (\(\Delta G_f^0(PbO) = -219000 + 99,8T \) J/mol) l'enthalpie libre standard de formation de PbO et \(a_{Pb} \) l'activité en plomb dans l'alliage Pb-Bi.

A 470°C la pression partielle en oxygène en équilibre au dessus de l'alliage Pb-Bi saturé en oxygène est donc \(3,4 \times 10^{-20}\) atm.

Afin de mettre en évidence les oxydes susceptibles de se former dans l'alliage Pb-Bi saturé en oxygène, l'alliage liquide Pb-Bi a été soumis à un balayage d'air sec (air FID) à une pression de 1 atm. Les oxydes formés à la surface du bain d'alliage fondu, chauffé à 470°C, ont été prélevés et analysés. Ces oxydes (Figure 13 A) sont rouges, translucides et cristallisés. L'analyse par diffraction des rayons X (Figure 14) révèle la présence de PbO sous ses deux formes (litharge et massicot), de Pb\(_3\)O\(_4\) (minium) et d'un oxyde mixte (PbO\(_5\))(Bi\(_2\)O\(_3\))\(_4\).
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Figure 13 : Prélèvement de précipités à la surface du L'alliage Pb-Bi liquide à 470°C.
(A) $P_{O_2}=0.2$ atm, (B) après balayage d'air sec suivi par un balayage d'argon U (1 atm).

![Image A](image1.png)

![Image B](image2.png)

Figure 14 : Diagramme de diffraction R-X obtenu par prélèvement des précipités cristallins à la surface de l'alliage Pb-Bi liquide à 470°C sous balayage d'air sec.

La présence de ces oxydes est en accord avec les diagrammes thermodynamiques (Figure 12 et Figure 15). En effet, selon le diagramme de la Figure 12, l'oxyde le plus stable est PbO. Cet oxyde contenant du plomb à un degré d'oxydation (II) est oxydé au contact avec l'air et forme un oxyde à plus haut degré d'oxydation : Pb$_3$O$_4$ (minium). Aucune présence de Bi$_2$O$_3$ n'a été détectée dans ces prélèvements. Le diagramme de phase Figure 15 explique cette absence par la formation de l'oxyde mixte plus stable (PbO)$_5$(Bi$_2$O$_3$)$_4$. Le deuxième oxyde mixte PbO(Bi$_2$O$_3$)$_6$ (Figure 15) n'a pas été décelé dans notre prélèvement.
Afin d'étudier la réversibilité du système et d'obtenir PbO par réduction des cristaux rouges prélevés à la surface du métal liquide, une seconde expérience a été réalisée. Elle consiste en une oxydation de l'alliage Pb-Bi par balayage d'air sec FID, suivie d'une réduction des oxydes formés par un balayage d'argon U pendant une heure. Notons que la teneur en oxygène dans l'argon U est suffisante pour saturer en oxygène l'alliage Pb-Bi liquide mais insuffisante pour former la totalité des oxydes observés après oxydation sous balayage d'air sec.

A la suite de cette expérience, l'oxyde prélevé à la surface du liquide se présente sous forme d'une fine pellicule transparente verte (Figure 13 B), homogène et non friable.

L'analyse EDX de cette pellicule montre la présence de plomb et d'oxygène mais aucune trace de bismuth n'est observée. Une analyse par diffraction des rayons X a été effectuée afin de mettre en évidence la phase du composé formé. Le spectre est représenté ci-dessous.
Chapitre I : Caractérisation du milieu et des interactions milieu matière

Figure 16 : Diagramme de diffraction des rayons X effectués sur la fine pellicule transparente verte prélevée à la surface du bain de Pb-Bi après réduction des oxydes rouges translucides. Le composé contient les éléments plomb et oxygène mais la phase n'est pas répertoriée dans le logiciel Panalytical d'analyse RX.

Les pics de diffraction du diagramme de la Figure 16, se présentant sous forme de dirac, montrent que la phase obtenue est cristalline. Cependant, ce spectre de diffraction n'est pas répertorié dans la base de donnée du logiciel Panalytical. Il peut donc correspondre à une phase plus rare et non répertoriée ou à une phase métastable. Les investigations n'ont pas été poussées plus loin. Il semblerait cependant intéressant de mettre en évidence les caractéristiques de cette phase, en quantifiant par exemple les teneurs respectives en oxygène et en plomb afin de déterminer la stœchiométrie de ce composé.

Pour conclure, à 470°C dans le mélange Pb-Bi, l'oxyde le plus stable est PbO (litharge). La limite de solubilité de l'oxygène peut être définie par la quantité d'oxygène dissous dans l'alliage Pb-Bi nécessaire pour atteindre la précipitation de PbO. La pression partielle en oxygène en équilibre avec l'alliage Pb-Bi saturé en oxygène a été déterminée par calculs thermodynamiques et vaut 3.4x10^{-20} atm.

5.2. Etat de l'oxygène et solubilité de l'oxygène dans l'alliage Pb-Bi

5.2.1. Etat de l'oxygène dans l'alliage Pb-Bi liquide

L'état de l'oxygène dans l'eutectique Pb-Bi liquide est actuellement inconnu. La détermination de cet état n'est cependant pas indispensable pour les calculs thermodynamiques nécessaires à nos travaux. Dans la littérature certains auteurs considèrent pour leurs calculs que l'oxygène est sous forme d'oxyde libre à un degré d'oxydation zéro \(^{15}\)\(^{26}\). D'autres auteurs considèrent que...
l'oxygène se trouve sous la forme de monoxyde de plomb PbO dissous, notée PbO\textsubscript{d} \cite{27,28}. Cette suggestion est liée au fait que l'oxyde PbO précipite lorsque la limite de solubilité de l'oxygène dans l'alliage Pb-Bi est atteinte.

Les deux formes O et PbO\textsubscript{d} peuvent être utilisées de manière équivalente dans les calculs. Cependant d'un point de vue chimique, il nous paraît plus vraisemblable que l'oxygène, présentant plus d'affinités pour le plomb que pour le bismuth, soit entouré par des atomes de plomb, comme une sphère de solvatation. Dans ce cas, le degré d'oxydation de l'oxygène devrait être supérieur ou égal à (-II).

Cette suggestion est aussi appuyée par les travaux de Naidich \cite{29} qui suppose que l'oxygène dans le métal liquide est entouré par un "nuage" d'atomes dont l'ensemble forme un "complexe". Cette interprétation est renforcée par Chabert \cite{30} par ses études du mouillage de l'argent liquide sur le saphir. Dans ces études, l'oxygène est considéré à l'état d'oxydation (-II) dans l'argent liquide. Ces anions ionisent un "nuage" d'atomes du métal liquide. La charge du nuage est globalement (+II) et la taille de ce nuage est liée à la limite de solubilité de l'oxygène dans le métal liquide. Lorsque cette limite de solubilité est atteinte, les "complexes" sont en contact, l'oxyde précipite et le transfert d'électrons du métal liquide vers l'oxygène se produit de manière effective. En deçà de la limite de solubilité, la charge (-II) de l'anion oxygène est écrasant par le nuage cationique et les "complexes" se repoussent. Sur des considérations thermodynamiques, Chabert \cite{30} propose une structure cristalline pour le "complexe" Ag-O.

Cependant, quel que soit l'état réel de l'oxygène dissous dans l'alliage Pb-Bi, les formes redox O ou PbO\textsubscript{d} peuvent être utilisées indifféremment pour des calculs électrochimiques et thermodynamiques. Pour des raisons de simplicité, nous utiliserons le degré d'oxydation (0) de l'oxygène dans sa forme dissoute (noté O), lors de nos calculs électrochimiques. Remarquons cependant que cette notation ne correspond pas à une réalité chimique, mais à une convention de calcul.

La teneur en oxygène dans le métal liquide est un paramètre déterminant pour le comportement des aciers de structure contenant le métal liquide.

Afin de contrôler la teneur en oxygène dissous dans l'alliage Pb-Bi le mieux possible et de se situer dans un environnement Pb-Bi le plus oxydant possible, les essais réalisés dans le cadre de ce travail sont effectués pour une teneur en oxygène dissous dans l'alliage Pb-Bi égale à sa limite de solubilité.

5.2.2. Limite de solubilité de l’oxygène dans le plomb, le bismuth et l’alliage Pb-Bi

Plusieurs déterminations de la limite de solubilité de l'oxygène ont été réalisées dans l'alliage Pb-Bi liquide. Ces déterminations sont fondées, principalement, sur des expériences utilisant des sondes de zircone. Ces sondes ou électrodes de zircone permettent à la fois de mesurer et de contrôler, par insertion ou par retrait d'oxygène, la teneur en oxygène dissous dans le métal liquide. Le principe de fonctionnement des sondes de zircone est fondé sur des réactions électrochimiques mettant en jeu un électrolyte solide (la zircone) et une électrode constituée du métal liquide dont on cherche à mesurer ou contrôler la teneur en oxygène. Ce principe est présenté en Annexe 2.

5.2.2.1. Données de la littérature
Différentes techniques ont permis d'obtenir la limite de solubilité de l'oxygène dans l'alliage Pb-Bi liquide :

- Des quantités de PbO solide ont été dissoutes dans le métal liquide, la teneur en oxygène dissous étant parallèlement mesurée en continu par une sonde de zircone \[31\].

- Après insertion d'oxygène dans le plomb liquide, un échantillon a été prélevé puis refondu dans un creuset en graphite. La quantité de CO₂ formée a ensuite été analysée \[32\].

- La teneur en oxygène a été déduite de mesures calorimétriques \[33\].

- Des quantités d'oxygène ont été insérées dans le métal liquide par électrochimie à l'aide d'une électrode de zircone. La quantité dissoute dans le métal liquide était suivie en parallèle par une sonde de zircone \[34\][35].

- La limite de solubilité de l'oxygène dans l'alliage Pb-Bi a été déduite des limites de solubilité de l'oxygène dans le plomb pur et le bismuth pur, par calcul thermodynamique à partir des enthalpies libres de formation des oxydes PbO et Bi₂O₃ \[36\].

Toutes les valeurs de limite de solubilité de l'oxygène, dans le plomb pur, le bismuth pur et l'alliage Pb-Bi, obtenues dans la littérature par ces différentes techniques sont rassemblées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Logₜ SOₐ (poids %)</th>
<th>Logₜ SO₃ (poids %)</th>
<th>Logₜ SOₐ₋₃ (poids %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>940°C<T<1240°C</td>
<td>400°C<T<760°C</td>
<td>400°C<T<700°C</td>
</tr>
<tr>
<td>3,2 - 5050 T(°K)</td>
<td>1,48 - 3400 T(°K)</td>
<td>1,2 - 3400 T(°K)</td>
</tr>
<tr>
<td>300°C<T<400°C</td>
<td>320°C<T<920°C</td>
<td>300°C<T<500°C</td>
</tr>
<tr>
<td>3,1 - 4900 T(°K)</td>
<td>2,76 - 4451 T(°K)</td>
<td>3,27 - 4852 T(°K)</td>
</tr>
<tr>
<td>1,64 - 3503 T(°K)</td>
<td>Logₜ SOₐ (470°C) = -3,07</td>
<td>Logₜ SOₐ₋₃ (470°C) = -3,09 [24]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logₜ SO₃ (470°C) = -3,23 [38]</td>
</tr>
<tr>
<td>3,2 - 5000 T(°K)</td>
<td></td>
<td>2,52 - 4803 T(°K)</td>
</tr>
<tr>
<td>T=480°C, Logₜ SOₐ = -1,6 [32]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T=800°C, Logₜ SOₐ = -1,45 [31]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T=840°C, Logₜ SOₐ = -1,25 [31]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4 : Logarithme des limites de solubilité de l'oxygène dans le plomb pur, le bismuth pur et l'alliage Pb-Bi obtenues dans la littérature. Valeurs exprimées en poids pour-cent.

Ces différentes déterminations obtenues dans la littérature \[31\][32][33][34][35][36]\ peuvent être comparées à des calculs réalisés à partir de données thermodynamiques.
5.2.2.2. Détermination de la limite de solubilité par calcul thermodynamique

Nous pouvons calculer la limite de solubilité de l'oxygène dans le plomb pur et le bismuth pur en utilisant les données thermodynamiques issues de la littérature.

Lorsque la limite de solubilité de l'oxygène est atteinte, l'oxyde le plus stable précipite : PbO dans le plomb liquide et Bi₂O₃ dans le bismuth liquide.

Au moment où ces oxydes précipitent, la pression partielle en oxygène en équilibre avec l'oxyde est aussi celle en équilibre avec l'oxygène dissous à saturation.

L'enthalpie libre de formation de l'oxyde PbO ou Bi₂O₃ permet de déterminer la pression partielle en oxygène nécessaire à la précipitation de l'oxyde et donc à l'atteinte de la limite de solubilité de l'oxygène dans le métal liquide.

Or cette pression partielle d'oxygène est liée à la teneur en oxygène dans le métal liquide par la réaction

\[
\frac{1}{2} O_2 (g) = O^{\text{ML}}
\]

dont l'enthalpie standard est connue pour les métaux liquides bismuth pur et plomb pur [41][21].

La concentration en oxygène à saturation peut donc être calculée indirectement à l'aide des enthalpies libres standard des réactions suivantes :

\[
2\text{Pb(l) + O}_2 (g)=2 \text{PbO(s), 4/3 Bi(l)+O}_2 (g)= 2/3 \text{Bi}_2\text{O}_3 (s)
\]

et \(\frac{1}{2} O_2 (g) = O^{\text{ML}}\).

Considérons les deux réactions suivantes : \(2 \text{Pb(l) + O}_2 (g)=2 \text{PbO(s)}\) et \(4/3 \text{Bi(l)+O}_2 (g)= 2/3 \text{Bi}_2\text{O}_3 (s)\).

La pression partielle en oxygène en équilibre au-dessus du métal liquide, à précipitation de l'oxyde, peut s’écrire :

\[
P_{O_2} = P_{O_2}^0 \exp \left(\frac{2 \Delta G^0_{t}(\text{oxyde})}{RT} \right) \quad \text{avec} \quad P_{O_2}^0 = 1\text{atm et } \Delta G^0_{t}(\text{oxyde}) \text{ l'enthalpie libre standard de la réaction. Les activités de l'oxyde précipité (solide) et du métal liquide (solvant) sont considérées comme égales à 1 (état de référence standard).}
\]

La pression partielle en oxygène gazeux en équilibre avec le métal liquide saturé en oxygène permet de déterminer la limite de solubilité de l'oxygène en considérant l'équilibre \(\frac{1}{2} O_2 (g) = O^{\text{ML}}\) à saturation. On obtient :

\[
\ln S^*_{O_2} = \frac{1}{2RT} \left(\Delta G^0_{t}(\text{oxyde}) - 2\Delta G^0_{t}(\text{métal liquide}) \right) - \ln \gamma_O . \quad (1)
\]

avec \(S^*_{O_2}\) et \(\gamma_O\), la concentration en oxygène à saturation dans le métal liquide et son coefficient d'activité.

De nombreuses valeurs d'enthalpie libre standard de formation des oxydes PbO et Bi₂O₃ existent mais seules quelques unes ont été utilisées (celles proposées par les participants du groupement de recherche TECLA). Les différentes valeurs thermodynamiques utilisées sont regroupées dans le Tableau 5.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

<table>
<thead>
<tr>
<th>Réactions</th>
<th>Enthalpie standard de réaction $\Delta G^0=\Delta H^0-T\Delta S^0$ (kJ/mol)</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}O_2(g)=O_{\text{Pb}}$</td>
<td>$-118,600+14,1\times10^{-3}T$</td>
<td>[41]*</td>
</tr>
<tr>
<td>$\frac{1}{2}O_2(g)=O_{\text{Bi}}$</td>
<td>$-119,10+14,610\times10^{-3}T$</td>
<td>[21]*</td>
</tr>
<tr>
<td>$\frac{1}{2}O_2(g)=O_{\text{O}^\text{ML}}$</td>
<td>$-99,73+13,2\times10^{-3}T$</td>
<td>[21]*</td>
</tr>
<tr>
<td>$2\text{ Pb}+O_2=2\text{ PbO}$</td>
<td>$-437,872+198,8\times10^{-3}T$</td>
<td>[24]**</td>
</tr>
<tr>
<td>$2\text{ Pb}+O_2=2\text{ PbO}$</td>
<td>$-436,204+194,78\times10^{-3}T$</td>
<td>[24]**</td>
</tr>
<tr>
<td>$2\text{ Pb}+O_2=2\text{ PbO}$</td>
<td>$-436,360+204,72 \times10^{-3}T$</td>
<td>[42]**</td>
</tr>
<tr>
<td>$2\text{ Pb}+O_2=2\text{ PbO}$</td>
<td>$-441,340+202\times10^{-3}T$</td>
<td>[43]**</td>
</tr>
<tr>
<td>$2\text{ Pb}+O_2=2\text{ PbO}$</td>
<td>$-437,440+198,7\times10^{-3}T$</td>
<td>[44]**</td>
</tr>
<tr>
<td>$2\text{ Pb}+O_2=2\text{ PbO}$</td>
<td>$-436,850+197,991 \times10^{-3}T$</td>
<td>[45]**</td>
</tr>
<tr>
<td>$\frac{4}{3}\text{ Bi}+O_2 = 2/3\text{ Bi}_2\text{O}_3$</td>
<td>$-386,311+188,5\times10^{-3}T$</td>
<td>[24]**</td>
</tr>
<tr>
<td>$\frac{4}{3}\text{ Bi}+O_2 = 2/3\text{ Bi}_2\text{O}_3$</td>
<td>$-394,590+195,06 \times10^{-3}T$</td>
<td>[24]**</td>
</tr>
<tr>
<td>$\frac{4}{3}\text{ Bi}+O_2 = 2/3\text{ Bi}_2\text{O}_3$</td>
<td>$-379,940+184,9 \times10^{-3}T$</td>
<td>[42]**</td>
</tr>
<tr>
<td>$\frac{4}{3}\text{ Bi}+O_2 = 2/3\text{ Bi}_2\text{O}_3$</td>
<td>$-388,047+188 \times10^{-3}T$</td>
<td>[43]**</td>
</tr>
<tr>
<td>$\frac{4}{3}\text{ Bi}+O_2 = 2/3\text{ Bi}_2\text{O}_3$</td>
<td>$-386,790+188,95\times10^{-3}T$</td>
<td>[45]**</td>
</tr>
</tbody>
</table>

* $\frac{1}{2}O_2(g)=O_{\text{O}^\text{ML}}$ avec $a_{O_2}=\frac{P_{O_2}}{P_o^0}$ $P_{O_2}=1\text{ atm}$ et $a_{O_2}=\gamma_{O_2}x_O$ avec $\gamma_{O_2}=100$ pour une concentration d'oxygène x_O calculée en fraction molaire.

** les états de référence sont $a_{\text{metal liquide}}=1$ pour le métal liquide pur et $a_{\text{oxyde}}=1$ pour l'oxyde en phase solide.

Tableau 5 : enthalpies libre standard de réaction pour les équilibres oxygène gazeux/oxygène dissous dans le plomb ou le bismuth et pour les équilibres de formation des oxydes PbO et Bi$_2$O$_3$.

Les limites de solubilité de l'oxygène dans le plomb pur et le bismuth pur peuvent donc être déterminées par la relation (1), en prenant chacune des valeurs des enthalpies libres de réaction du Tableau 5.

Les différentes valeurs de la limite de solubilité de l'oxygène obtenues dans la littérature et par le calcul décrit ci-dessus sont regroupées sur le graphique de la Figure 17.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Figure 17 : Limites de solubilité de l'oxygène dans le plomb pur, le bismuth pur et l'alliage Pb-Bi. Valeurs obtenues dans la littérature et par calcul.

L'ensemble des valeurs présentées sur le graphique de la Figure 17 est cohérent. Les différentes limites de solubilité mesurées et calculées sont proches. Cette constatation se vérifie plus particulièrement pour les faibles températures, incluant notre température de travail, 470°C.

Ces valeurs de limite de solubilité de l'oxygène dans le plomb pur, le bismuth pur et l'alliage Pb-Bi obtenus dans la littérature, sont représentées à 470°C sur le graphique Figure 18, en fonction de la fraction molaire en plomb dans l'alliage Pb-Bi. A cette température, les limites de solubilité de l'oxygène dans le bismuth pur et dans le plomb pur encadrent la limite de solubilité dans l'alliage Pb-Bi.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Dans la suite de notre étude, nous utiliserons une des valeurs de la limite de solubilité de l'oxygène dans l'alliage Pb-Bi de la littérature. Cette valeur a été choisie car elle a été obtenue expérimentalement dans une gamme de températures encadrant 470°C. De plus, elle avoisine la valeur moyenne obtenue par toutes les valeurs de la littérature (Figure 18) :

\[
\log S_{O_{\text{Pb-Bi}}} (\text{pds}%) = 1,2 - \frac{3400}{T(\text{°K})} \text{ pour } 400 < T < 700°C \quad [40].
\]

6. Interaction Pb-Bi-O/ acier de structure (T91)

L'acier retenu pour la cible de spallation MEGAPIE est l'acier martensitique T91 (Fe-9Cr), de nom normatif X10CrMoVNb9-1 [163], dont la composition est présentée en Annexe 3 (avec la composition de l'alliage Pb-Bi).

Dans le paragraphe suivant, nous étudierons thermodynamiquement l'oxydation du T91 par l'alliage Pb-Bi saturé en oxygène afin de présumer le type d'oxyde pouvant se former à la surface du T91 au cours de nos essais.

Enfin nous nous intéresserons à déterminer la limite de solubilité des espèces métalliques fer et chrome dans l'alliage Pb-Bi.

6.1. Oxydation du T91 : détermination thermodynamique des oxydes susceptibles de se former pendant le processus d'oxydation

Afin de caractériser les oxydes pouvant se former par oxydation du T91 dans l'alliage Pb-Bi liquide, il est nécessaire de déterminer dans un premier temps les oxydes susceptibles de se former dans un milieu gazeux dont la teneur en oxygène n'excède pas celle en équilibre avec l'alliage Pb-
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Bi saturé en oxygène. Dans ce but, un diagramme d'Ellingham présentant les différents oxydes permet de mettre en évidence les oxydes plus stables que PbO, dont la précipitation marque la saturation en oxygène dans l'alliage Pb-Bi liquide.

Le diagramme de la Figure 19, issu de la littérature \[15\], montre que les oxydes Fe-Cr susceptibles de se former à 470°C dans nos conditions expérimentales sont la magnétite (Fe₃O₄), la chromite (FeCr₂O₄) et l'oxyde de chrome (Cr₂O₃). L'oxyde de fer FeO se forme à plus haute température (supérieure à 550°C) et l'hématite se forme à partir de la magnétite pour une teneur en oxygène plus élevée que celle menant à la précipitation de PbO.

Le milieu Pb-Bi liquide saturé en oxygène à 470°C restreint donc les possibilités de formation des oxydes Fe-Cr à deux types d'oxyde, le type spinelle (Fe₃O₄ et FeCr₂O₄) et l'oxyde de chrome (Cr₂O₃).

Cependant des oxydes mixtes Fe-Cr-Pb-Bi pourraient éventuellement se former dans les conditions de travail imposées (470°C, Pb-Bi saturé en oxygène). Il est donc nécessaire d'évaluer par mesures ou par calculs thermodynamiques la possibilité de formation d'éventuels oxydes mixtes.

L'oxydation de l'acier T91 dans l'alliage Pb-Bi saturé en oxygène a fait l'objet de peu d'études thermodynamiques à basses températures. Cependant des calculs thermodynamiques ont été réalisés à 470°C pour un environnement Pb-Bi liquide \[46\] et certains travaux à plus hautes températures (600°C notamment) ont été effectués pour un environnement bismuth liquide par calculs et résultats expérimentaux \[34\]. Dans chaque cas, l'objectif était de prévoir les différents oxydes susceptibles de se former lors de l'oxydation du T91 par l'alliage Pb-Bi saturé en oxygène et de vérifier l'absence de formation d'un oxyde à bas point de fusion.
Le diagramme de la Figure 20 montre que des oxydes mixtes Fe-O-Bi peuvent se former à 600°C [34]. Cependant ces oxydes sont des composés \((\text{Bi}_2\text{O}_3)_x(\text{Fe}_2\text{O}_3)_y\) ou \((\text{BiO}_2)_x(\text{FeO})_y\) dont aucun élément séparé (\text{Bi}_2\text{O}_3, \text{Fe}_2\text{O}_3, \text{BiO}_2 \text{ et FeO}) n'est stable dans nos conditions expérimentales.

Il est donc vraisemblable qu'aucun composé mixte Bi-Fe-O ne se forme dans nos conditions de travail même si une étude thermodynamique expérimentale serait nécessaire à 470°C pour le valider.

![Figure 20: Diagramme ternaire Bi-O-Fe réalisé à 600°C (Po2 =10^-8 bar) [34].](image)

De plus, des calculs thermodynamiques ont été effectués à 470°C pour un alliage Fe-Cr-Ni en contact avec l'alliage Pb-Bi [46]. Ces calculs, ont été effectués avec une activité en nickel égale à \(10^{-5}\) (la teneur en nickel dans l'acier est négligeable), une activité en fer égale à 0,25 et une activité en chrome, au contact de l'alliage Pb-Bi, pouvant varier. Il n'est pas considéré dans ces calculs que la teneur en oxygène ne peut dépasser la limite de solubilité de l'oxygène dans l'eutectique Pb-Bi. Aussi les résultats de ces calculs ne sont plus représentatifs de notre étude lorsque la pression partielle en oxygène dépasse celle nécessaire à la précipitation de PbO. Ces calculs, illustrés par le diagramme de la Figure 21, montrent qu'un oxyde mixte \(\text{Pb}_2\text{Fe}_2\text{O}_5\) est stable pour un faible domaine de teneur en oxygène.

Il est donc possible d'obtenir ce type d'oxyde dans le cadre de notre étude. Cependant le domaine d'existence de cet oxyde mixte est pratiquement négligeable dans le cas d'un acier Fe-Cr (Figure 21).
Pour résumer les études précédentes, le T91 en contact avec le métal liquide Pb-Bi saturé en oxygène peut former, selon les lois thermodynamiques : des oxydes de type spinelle comme la magnétite et la chromite (Fe$_3$O$_4$ et FeCr$_2$O$_4$), des oxydes de chrome (Cr$_2$O$_3$) et éventuellement un oxyde mixte Pb$_2$Fe$_2$O$_5$.

Si la couche d'oxyde formée à la surface du T91 est protectrice, un gradient de teneur en oxygène se développe au sein de la couche d'oxyde. Aussi, la teneur en oxygène est faible au contact du T91 et est égale à sa limite de solubilité dans l'alliage Pb-Bi à l'interface oxyde/Pb-Bi. La présence d'un tel gradient peut entraîner la formation stratifiée de différents oxydes dans l'épaisseur de la couche.

Au contact du T91, la pression partielle en oxygène est la plus faible et l'oxyde formé est thermodynamiquement le plus stable. Selon le diagramme d'Ellingham (Figure 19) cet oxyde est l'oxyde de chrome (Cr$_2$O$_3$). En suivant les lois de la thermodynamique cet oxyde de chrome doit être surmonté d'une couche de chromite (FeCr$_2$O$_4$), puis d'une couche de magnétite (Fe$_3$O$_4$), comme le représente le schéma de la Figure 22.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Par ailleurs, Balbaud-Célériére [15] souligne que le régime d'oxydation du T91 est mis en évidence à partir d'une teneur en oxygène dissous dans l'eutectique Pb-Bi environ égale à celle nécessaire pour former la magnétite. Le diagramme d'Ellingham suivant illustre ce propos.

Or nous pouvons remarquer, sur le diagramme de la Figure 23, que thermodynamiquement les oxydes FeCr$_2$O$_4$ et Cr$_2$O$_3$ se forment pour des teneurs en oxygène bien plus faibles.

En ce qui concerne la couche d'oxyde de chrome, il est connu qu'une couche continue ne se forme à la surface d'un acier que lorsque la teneur en chrome dans l'acier dépasse 14%. En dessous de cette teneur (ce qui est le cas pour le T91) cette couche est soit discontinue et des précipités d'oxyde de chrome peuvent être observés, soit inexistante. Dans ce cas, la présence d'oxyde de chrome ne peut faire barrière à la dissolution du T91 et le régime de dissolution est observé même en cas de formation de précipités.

Par ailleurs, les résultats expérimentaux de la littérature stipulent qu'une couche d'oxyde duplex se forme à la surface du T91. Cette couche comporte une première couche de spinelle Fe-Cr en
contact avec le T91 surmontée d'une couche de magnétite en contact avec l'alliage Pb-Bi (voir Chapitre II).

La teneur en chrome dans le T91 est, en effet, suffisante pour former une couche continue de spinelle FeCr$_2$O$_4$. Cet oxyde requiert, pour sa formation, une teneur enoxygène dissous, dans l'alliage Pb-Bi, bien plus faible que celle nécessaire à la formation de la magnétite. Le régime d'oxydation devrait, selon la thermodynamique, être observé lorsque le spinelle FeCr$_2$O$_4$ devient stable. Ceci aurait pour conséquence d'agrandir la zone de régime d'oxydation du point de formation de FeCr$_2$O$_4$ à celui de précipitation de PbO (Figure 23).

Cependant, le diagramme de phase ternaire Fe-Cr-O de la Figure 24 souligne l'existence d'une solution solide (FeCr)$_3$O$_4$ entre la magnétite (Fe$_3$O$_4$) et la chromite (FeCr$_2$O$_4$). Aussi une prédiction thermodynamique plus complète doit être mise en œuvre afin de tenir compte de la solution solide Fe$_3$O$_4$-FeCr$_2$O$_4$.

Figure 24 : Diagramme de phase Fe-Cr-O réalisé à 900°C.

Un diagramme thermodynamique représentant la stabilité des oxydes peut être construit en tenant compte des oxydes intermédiaires Fe$_{3-x}$Cr$_x$O$_4$. Les enthalpies de formation des différents spinelles Fe-Cr doivent alors être calculées en fonction de la stœchiométrie du spinelle Fe$_{3-x}$Cr$_x$O$_4$ et de la teneur en oxygène. Ce calcul est effectué, dans le Tableau 6 suivant, à partir des enthalpies de formation de la magnétite et de la chromite.
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Tableau 6 : Calcul thermodynamique menant à la détermination de l’enthalpie libre de formation du spinelle Fe₃₋ₓCrₓO₄ et à celle de l’activité en oxygène nécessaire à la formation de ce spinelle.

Au sein de la couche d’oxyde, un gradient cationique peut s’établir autant qu’un gradient d’oxygène. A priori ces gradients sont opposés et l’activité des cations fer et chrome est plus importante au contact du T91 qu’à l’interface Pb-Bi/oxide.

De plus, le fer et le chrome ne diffusant pas à la même vitesse (le chrome diffuse plus lentement que le fer dans le réseau spinelle [47]), le gradient cationique est différent pour chaque espèce. C’est pourquoi, la couche d’oxyde formée à la surface du T91 peut être constituée d’un spinelle en solution solide. La stœchiométrie de celui-ci peut varier dans la couche en fonction des gradients d’activité du fer, du chrome et de l’oxygène.

La Figure 25 illustre cette variation de stœchiométrie en considérant que les activités en oxygène et en chrome varient dans la couche d’oxyde alors que l’activité en fer reste constante, égale à sa fraction molaire dans le T91 (0,9) :

- La valeur de la pression partielle en oxygène évolue de la valeur nécessaire à la formation de FeCr₂O₄ à celle nécessaire à la formation de Fe₃O₄.
- L’activité en chrome varie de 0 à sa fraction molaire dans le T91 (0,9).
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Figure 25 : Domaine de stabilité des spinelles Fe$_{3-x}$Cr$_x$O$_4$ en fonction de l'activité du chrome et de l'activité de l'oxygène.

Selon les lois thermodynamiques, une unique couche d'oxyde de structure spinelle pourrait être observée lors du processus d'oxydation. Cette couche en contact avec l'alliage Pb-Bi serait une solution solide entre la chromite FeCr$_2$O$_4$ au contact du T91 et la magnétite Fe$_3$O$_4$ au contact du l'alliage Pb-Bi comme le montre la Figure 25.

Cependant, il est aussi possible que la couche de spinelle Fe-Cr ait une stœchiométrie constante à travers la couche. Dans ce cas, le spinelle Fe-Cr peut être de la forme Fe$_{3-x}$Cr$_x$O$_4$, avec x variant de 0 à 2. Plus la valeur de x est faible, plus la pression partielle en oxygène nécessaire à la formation du spinelle Fe-Cr se rapproche de celle requise pour la formation de la magnétite.

Le régime de dissolution observé pour une teneur en oxygène juste inférieure à celle nécessaire à la formation de la magnétite pourrait alors s'expliquer par la présence d'un spinelle Fe-Cr dont la stœchiométrie se rapproche de celle de la magnétite.

6.2. Solubilité du fer et du chrome dans l'alliage Pb-Bi

Dans le cas d'une corrosion par dissolution, la nécessité d'avoir de faibles limites de solubilité pour les éléments constitutifs du matériau de structure paraît évidente. Cette contrainte est aussi présente dans certains cas de corrosion par oxydation.

En effet, Lister [48], lors de ses études sur l'oxydation d'aciers inoxydables dans l'eau, a mis en évidence des phénomènes de dissolution des éléments de l'acier suivis d'une précipitation de ces éléments à la surface de la couche d'oxyde. Ce type de phénomène est lié à la solubilité des cations dans l'environnement oxydant. La croissance de la couche d'oxyde par précipitation était d'autant plus importante que le milieu contenait des cations fer et nickel. L'importante solubilité de ces éléments dans le milieu oxydant pouvait conduire, en solution saturée en cations, à positionner ce phénomène de dissolution/précipitation comme facteur prédominant pour le mécanisme de croissance de la couche d'oxyde.
En revanche, dans le cas d'une faible limite de solubilité des éléments métalliques dans le milieu oxydant, ce phénomène n'a pas été observé.

Les limites de solubilité, dans le plomb pur, l'alliage Pb-Bi et le bismuth pur, des principales espèces métalliques présentes dans les alliages de structure sont données par la littérature et regroupées dans le Tableau 7 ci-dessous.

<table>
<thead>
<tr>
<th>Elément</th>
<th>Solubilité (pds %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
</tr>
<tr>
<td>Cu</td>
<td>$\log(S) = 2.8717 - \frac{2542.6}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\log(S) = -1.173 - \frac{1325}{T}$</td>
</tr>
<tr>
<td>Mo</td>
<td>$\log(S) = 6 \cdot \frac{6000}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\log(S) = -6 \cdot \frac{600}{T}$</td>
</tr>
<tr>
<td>Mn</td>
<td>$\log(S) = 2.32 - \frac{2600}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\log(S) = 3.045 - \frac{3272}{T}$</td>
</tr>
<tr>
<td>α-Fe</td>
<td>$\log(S) = 3.67 - \frac{2450}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\log(S) = 1.83 - \frac{4800}{T}$</td>
</tr>
<tr>
<td>γ-Fe</td>
<td>$\log(S) = 7.66 - \frac{7100}{T}$</td>
</tr>
<tr>
<td>Fe</td>
<td>$\log(S) = 0.34 - \frac{3450}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\log(S) = 2.53 - \frac{5314}{T}$</td>
</tr>
<tr>
<td>Zr</td>
<td>$\log(S) = 2.15 - \frac{3172}{T}$</td>
</tr>
<tr>
<td>Cr</td>
<td>$\log(S) = 3.7 - \frac{6720}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\log(S) = 3.75 - \frac{6800}{T}$</td>
</tr>
</tbody>
</table>
Chapitre I : Caractérisation du milieu et des interactions milieu matériau

Tableau 7 : solubilité des différentes espèces métalliques dans le plomb pur, l’alliage Pb-Bi et le bismuth pur.

La valeur de la limite de solubilité d’un élément X dans le métal liquide est généralement obtenue par la dissolution d’une éprouvette métallique (constituée de X) dans le métal liquide. Ainsi des échantillons de métal liquide sont prélevés à intervalles de temps réguliers puis dissous dans une solution d’acide nitrique. La teneur en éléments métalliques X présents dans cette solution est dosée par spectroscopie d’absorption atomique ou par une méthode colorimétrique utilisant de l’ortho-phénantroline (pour le fer).

La limite de solubilité est alors obtenue lorsque la quantité en élément métallique n’évolue plus au cours du temps.

Pour les éléments métalliques dont la limite de solubilité est élevée, un échantillon est immergé dans le métal liquide puis retiré à intervalles de temps réguliers. La perte de masse globale de l’échantillon est liée à la limite de solubilité de l’élément dans le métal liquide lorsque la masse de l’éprouvette n’évolue plus au cours du temps [162].

La Figure 26 représente les limites de solubilité du fer et du chrome dans le plomb pur, l’alliage Pb-Bi et le bismuth pur, en fonction de la température.
La Figure 26 montre que les différentes lois de solubilité concordent pour un même élément dans un milieu considéré. Nous pouvons noter que les limites de solubilité du fer et du chrome dans les métaux liquides plomb pur, bismuth pur et l'alliage Pb-Bi sont proches. Toutefois les limites de solubilité du fer sont légèrement inférieures à celles du chrome excepté pour celle dans le plomb pur [63].

Pour chaque élément métallique, fer et chrome, les limites de solubilité dans l'alliage Pb-Bi sont inférieures à celles dans le bismuth pur et supérieures à celle dans le plomb pur. Un facteur trois environ sépare les limites de solubilité obtenues dans les milieux Pb-Bi et plomb puis dans les milieux bismuth et Pb-Bi (sauf pour celle du chrome dans le plomb pur [63]).

A titre indicatif, la limite de solubilité du nickel dans l'alliage Pb-Bi a été représentée sur le graphique Figure 26. Cette limite de solubilité est environ 300 fois plus importante que celles du fer et du chrome dans l'alliage Pb-Bi. C'est pourquoi l'utilisation de nickel était proscrite dans le choix de l'acier de structure.

Les limites de solubilités du fer obtenues vers 550°C peuvent être extrapolée à 470°C. Principalement dans le but de déterminer le coefficient de diffusion du fer dans l'alliage Pb-Bi à 470°C, nous avons cherché à mettre au point une méthode permettant de mesurer, au cours de la même expérience, la limite de solubilité du fer et son coefficient de diffusion. En effet, le coefficient de diffusion du fer dans l'alliage Pb-Bi est inconnu excepté pour trois températures et nous avons cherché à déterminer une loi en fonction de la température. La concordance entre les valeurs de limite de solubilité obtenues par notre méthode et celles de la littérature devait nous permettre de valider la technique.

Notons que les mesures de limites de solubilité et de coefficients de diffusion d'éléments métalliques dans un alliage liquide sont obtenues à partir d'expériences compliquées mettant en œuvre des appareillages lourds et onéreux. De plus, ces techniques sont lentes car elles nécessitent l'atteinte de la limite de solubilité par dissolution d'éprouvettes de fer dans l'alliage liquide. Ces expériences prennent en général plusieurs milliers d'heures pour aboutir à des résultats qui ne sont pas toujours reproductibles.

En raison de ces différentes contraintes de temps et de complexité des expérimentations, une technique originale et à priori plus aisée à mettre en œuvre a ainsi été développée. Cette technique repose sur des suivis potentiométriques, dans un électrolyte sel fondu LiCl-KCl, d'une électrode de Pb-Bi dans laquelle est ajouté progressivement du fer métallique. Le détail et les résultats obtenus par cette méthode sont présentés en Annexe 4.

Cette méthode a nécessité la mise au point d'un procédé de purification du sel fondu LiCl-KCl, utilisable pour d'autres expériences. Ce procédé de purification, dont le détail figure en Annexe 5 de ce document, a permis de déterminer des constantes de réactions chimiques dans les sels fondu.

Cependant, le manque de reproductibilité des résultats nous a amené à interrompre le développement de cette technique de mesure de la limite de solubilité et de coefficient de diffusion.

Nous prendrons donc comme valeur de limite de solubilité du fer dans l'alliage Pb-Bi à 470°C, la valeur russe extrapolée à 470°C [59] (voir Chapitre V).

Les limites de solubilité des éléments majeurs présents dans le T91, le fer et le chrome étant relativement faible, nous pouvons supposer que les phénomènes de dissolution/précipitation sont négligeables face à l'oxydation du matériau.
7. Conclusion

Ce premier chapitre nous a permis de caractériser le milieu oxydant, l'alliage Pb-Bi saturé en oxygène. Certaines données de base nécessaires au développement de notre étude ont été obtenues par la littérature ou par calcul :

- les activités du plomb et du bismuth dans l'eutectique Pb-Bi,
- la pression partielle en oxygène en équilibre avec l'alliage Pb-Bi chargé contenant une teneur donnée en oxygène,
- la limite de solubilité de l'oxygène dans l'alliage Pb-Bi, le plomb et le bismuth,
- la limite de solubilité des éléments métalliques dans l'alliage Pb-Bi.

La littérature [15] souligne que lorsque la teneur en oxygène dissous dans l'alliage Pb-Bi est égale à sa limite de solubilité, la corrosion du T91 suit un régime d'oxydation.

Une analyse thermodynamique du système T91/Pb-Bi, ainsi que des considérations cinétiques, prédisent la formation d'une couche d'oxyde ou d'un empilement de couches de type spinelle. La stœchiométrie Fe$_{3-x}$Cr$_x$O$_4$ du spinelle peut varier de FeCr$_2$O$_4$ au contact du T91 à Fe$_3$O$_4$ au contact de l'alliage Pb-Bi.

Nous avons vu dans ce chapitre que ces considérations thermodynamiques ont permis d'identifier la nature de la couche d'oxyde obtenue expérimentalement par oxydation du T91 dans l'alliage Pb-Bi.

Si la stœchiométrie de ces spinelles est proche de celle de la magnétite, l'observation du régime de dissolution du T91, pour une teneur en oxygène dissous de l'ordre de celle nécessaire à la formation de la magnétite, pourrait être expliquée.

Les lois thermodynamiques permettent d'identifier le type d'oxyde formé lors du processus d'oxydation mais elles ne suffisent pas pour expliquer l'ensemble du processus.

En effet, le système n'étant pas globalement à l'équilibre, des facteurs cinétiques interviennent nécessairement. Aussi, un mécanisme plus compliqué semble régir la croissance de la couche d'oxyde.
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

Chapitre II : Bibliographie sur l'oxydation des aciers Fe-9Cr dans l'alliage Pb-Bi et dans d'autres environnements oxydants
1. Introduction

Peu de données expérimentales sont disponibles dans la littérature sur l'oxydation des aciers Fe-9Cr dans l'alliage Pb-Bi.
Cependant, des informations générales concernant la cinétique d'oxydation et la nature de la couche d'oxyde ont été obtenues dans la littérature.
Une étude bibliographique sur l'oxydation d'aciers martensitiques et austénitiques dans l'alliage Pb-Bi statique ou en circulation a été récemment réalisée [14]. Cette étude rassemble des résultats d'expériences d'oxydation d'aciers Fe-9Cr dans l'alliage Pb-Bi et dans le plomb pur réalisées sous métal liquide statique. Nous les présenterons dans la première partie de ce chapitre.

Nous détaillerons en premier lieu les caractéristiques morphologiques des couches d'oxyde obtenues. Puis nous exposerons les caractéristiques cinétiques de l'oxydation : la cinétique d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C puis les évolutions de cette cinétique en fonction de la température d'essai et de la teneur en oxygène dissous dans l'alliage Pb-Bi. Nous ne présenterons pas immédiatement les deux mécanismes d'oxydation d'acier dans le plomb pur et dans l'alliage Pb-Bi proposés par la littérature car ils se fondent sur des mécanismes existant déjà dans d'autres milieux oxydants.

En effet, nous comparerons les résultats expérimentaux d'oxydation du T91 obtenus dans l'alliage Pb-Bi à ceux obtenus par l'oxydation d'aciers Fe-9Cr dans d'autres milieux oxydants. La similitude entre les résultats expérimentaux en milieu métal liquide, en milieu gazeux et en milieu eau liquide nous amènera à considérer les mécanismes proposés par la littérature dans les différents milieux.

2. Oxydation des aciers Fe-9Cr dans l'alliage Pb-Bi [14]

2.1. Nature de la couche d'oxyde [14]

La nature de la couche d'oxyde formée par oxydation d'aciers martensitiques dans l'alliage Pb-Bi est, selon la littérature [14], très proche de celle observée sur des aciers Fe-Cr oxydés sous environnements gazeux ou dans le plomb pur.

La littérature [14][64][65][66][68][67] souligne les caractéristiques de la couche d'oxyde formée dans l'alliage Pb-Bi ou dans le plomb pur :

- La couche présente une microstructure duplex constituée (voir Figure 27) :
 - d'une première couche de spinelle Fe-Cr au contact de l'acier,
 - d'une deuxième couche de magnétite au contact de l'environnement oxydant.

- La couche de magnétite semble poreuse et des pénétrations de plomb sont observables par Microscopie Electronique à Balayage (MEB).

- Lorsque la température est supérieure à 550°C, une oxydation interne se produit avec des précipités d'oxyde enrichis en chrome localisés le long des joints de grains. Ces précipités sont observables sous la couche de spinelle Fe-Cr et parfois sous la couche de magnétite (voir Figure 28).
La couche de spinelle Fe-Cr et celle de magnétite ont une épaisseur semblable quelles que soient la température, la teneur en oxygène et la durée d'oxydation (voir Figure 27) \[14\][15].

La nature de la couche d'oxyde formée à 470°C est visualisable sur l'image MEB suivante.

![Figure 27 : Image MEB (A) et cartographies X (B) d'une coupe transverse d'un échantillon de T91 oxydé à 470°C pendant 1000 heures dans l'alliage Pb-Bi, en circulation, contenant 10^{-6} poids \% d'oxygené dissous (inférieur à la saturation), la vitesse de circulation de l'alliage Pb-Bi est égale à 1,9 m/s \[15\].](image)

Les oxydations internes observées à plus haute température sont mises en évidence par les images MEB d'un échantillon oxydé 1000 heures à 600°C, présentées sur la figure ci-dessous.
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

2.2. Cinétique d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C [14]

Quelques essais d'oxydation d'aciers Fe-9Cr (T91) [65] et Fe-10,3Cr (Manet II) [65][64] ont été réalisés à 470°C [65] et à 476°C [65][64] dans l'alliage Pb-Bi, statique, saturé en oxygène. Les résultats obtenus sont regroupés sur la Figure 29.
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

Figure 29 : Cinétique d'oxydation du T91 et de Manet II à 470-476°C dans l'alliage Pb-Bi saturé en oxygène. Une loi parabolique, de constante parabolique K_p égale à $4,5 \times 10^{-13} \text{cm}^2/\text{s}$, est ajustable sur les points expérimentaux [14][64][65].

Ces premiers résultats d'oxydation sont cohérents entre eux et soulignent la forte oxydation des aciers Fe-9Cr dans l'alliage Pb-Bi saturé en oxygène : l'épaisseur de la couche d'oxyde est de l'ordre de 10 µm après 650 heures d'oxydation à 470°C.

De plus, on considère souvent que la cinétique de croissance d'une couche d'oxyde épaisse et compacte est limitée par la diffusion des cations ou des anions à travers la couche lorsque l'évolution de l'épaisseur de la couche d'oxyde au cours du temps suit une allure parabolique :

$$h^2 = K_p t$$

avec h l'épaisseur de la couche d'oxyde, K_p la "constante parabolique" et t, la durée d'oxydation.

Wagner [69] met en évidence ce phénomène par la construction d'un modèle dont les hypothèses sont les suivantes :

- La croissance de la couche d'oxyde est limitée par la diffusion des espèces cationiques ou anioniques à travers la couche.
- La couche d'oxyde est compacte et adhère au substrat. Elle est suffisamment épaisse pour que les effets de charge aux interfaces soient négligeables.
- Un équilibre thermodynamique s'établit localement en chaque point de l'oxyde.
- La solubilité de l'oxygène est négligeable dans le métal.

Selon l'hypothèse d'un équilibre thermodynamique au sein de la couche d'oxyde, les gradients d'activité du métal et de l'oxygène sont liés en chaque point de la couche. La vitesse de croissance a été calculée en considérant que la force motrice régissant la diffusion des espèces n'est liée qu'au gradient de potentiel chimique au sein de la couche d'oxyde.

Il résulte de ces hypothèses que le gain de masse Δm de l'échantillon oxydé suit la loi parabolique $\Delta m^2 = K_p t$ au cours du temps. Ce gain de masse est proportionnel à l'épaisseur de la couche d'oxyde. La constante parabolique K_p est donnée par la relation :
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

\[K_p = \frac{1}{4} \int_{a_o}^{a_o^*} \left(\frac{Z_c}{Z_o} D_c + D_o \right) d \ln a_o \]
avec : \(Z_c \) et \(Z_o \) les charges respectives des cations et de l'oxygène,
\(D_c \) et \(D_o \) les coefficients de diffusion intrinsèque des cations et de l'oxygène dans la couche d'oxyde
\(a_o^{int} \) et \(a_o^{ext} \) les activités en oxygène à l'interface métal/oxyde et à l'interface oxyde/milieu oxydant.

La dimension de la constante parabolique est exprimable :
- en \(M^2 T^{-1} \) si elle correspond à la loi parabolique donnée en fonction du gain de masse \(\Delta m^2 = K_p t \)
- en \(L^2 T^{-1} \) dans le cas d'une expression en fonction de l'épaisseur de la couche d'oxyde \(h^2 = K_p t \)
Le gain de masse et l'épaisseur de la couche d'oxyde sont liés proportionnellement par l'intermédiaire de la densité de la couche d'oxyde.

Balbaud-Célérier [14] constate qu'une loi parabolique (\(h^2 = K_p t \)), de constante \(K_p \) égale à \(4.5 \times 10^{-13} \) cm\(^2\)/s, est ajustable sur les épaisseurs de la couche d'oxyde mesurées au cours du temps à partir de l'oxydation d'échantillons d'acier Fe-9Cr dans l'alliage Pb-Bi saturé en oxygène à 470°C et 476°C.
En considérant les hypothèses de Wagner, cet ajustement met en évidence l'aspect diffusionnel qui caractérise le processus d'oxydation des aciers (T91 et Manet II) dans l'alliage Pb-Bi saturé en oxygène à 470-476°C.

Cet ajustement d'une loi parabolique sur les cinétiques expérimentales concerne aussi l'oxydation des aciers martensitiques dans le plomb pur à partir de 500°C [14]. Cependant, cette évolution parabolique n'est, selon la littérature [14], qu'une supposition car peu de données expérimentales sont disponibles et particulièrement sur les longues durées d'oxydation. Une cinétique expérimentale complète doit être réalisée afin de s'assurer de cette évolution.

2.3. Impact de la température et de la pression partielle en oxygène sur la cinétique d'oxydation [14]

2.3.1. Dépendance en fonction de la température [14]

La température joue un rôle fondamental dans la cinétique d'oxydation des aciers martensitiques dans l'alliage Pb-Bi.
En fonction de la gamme de température considérée, les cinétiques d'oxydation expérimentales suivent différentes évolutions [14][65] :
- pour une température comprise entre 300 et 350°C : la cinétique d'oxydation a une allure logarithmique, bien que difficilement identifiable,
- pour 350°C<T<400°C : une zone de transition est identifiée,
- pour 400°C<T<480°C : la cinétique d'oxydation est parabolique,
- pour 480°C<T<550°C : une nouvelle zone de transition est observée,

La figure suivante regroupe des résultats d'essais d'oxydation effectués dans l'alliage Pb-Bi saturé en oxygène à différentes températures [14].
Les courbes de la Figure 30 mettent en évidence l'impact de la température sur la cinétique d'oxydation :

- La cinétique d'oxydation est plus rapide lorsque la température augmente.
- À 300°C, dans l'alliage Pb-Bi saturé en oxygène, aucune couche d'oxyde n'est mesurable par observation MEB.
- À 400°C, l'oxydation du T91 est discernable mais le mode de croissance ne peut être défini à cause du manque de données expérimentales.
- À 600°C, la vitesse de croissance est conséquente : l'épaisseur de la couche d'oxyde dépasse 60 µm pour 1000 heures d'oxydation. Cette cinétique d'oxydation peut être ajustée par une loi parabolique de constante $1,2 \times 10^{-11}$ cm2/s. Cependant, des points expérimentaux supplémentaires sont nécessaires pour confirmer cette tendance.

En supposant une cinétique d'oxydation régie par un processus diffusionnel, en accord avec les hypothèses de Wagner, la constante parabolique dépend de la température selon une équation de type Arrhénius [14] :

$$K_p = K_p^0 \exp \left(- \frac{Q}{RT} \right)$$

avec K_p la constante parabolique, K_p^0 le terme pré-exponentiel, R la constante des gaz parfaits, T la température en Kelvin et Q l'énergie d'activation caractéristique du mode de diffusion.
Les constantes paraboliques obtenues par ajustement, par la méthode des moindres carrés, d'une loi parabolique sur les points expérimentaux de la littérature \cite{14} sont représentées en fonction de la température sur la Figure 31.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig31.png}
\caption{Dépendance des K_p obtenus par ajustement d'une loi parabolique sur les points expérimentaux de la littérature, en fonction de la température.}
\end{figure}

Pour conclure, nous pouvons souligner l'importante vitesse de croissance observée à partir de 470°C. La cinétique d'oxydation semble parabolique pour des températures égales à 470°C et 600°C. L'énergie d'activation obtenue, à partir des deux constantes paraboliques expérimentales, est égale à 136 kJ.

Néanmoins ces premières observations ne permettent pas de conclure sur le caractère diffusionnel du processus contrôlant la cinétique d'oxydation en raison du manque de données expérimentales. Une cinétique complète doit être obtenue pour de plus longues durées afin de vérifier cette hypothèse.

2.3.2. Dépendance vis-à-vis de la pression partielle en oxygène \cite{14}

La cinétique d'oxydation dépend de la teneur en oxygène dissous dans le bain de Pb-Bi \cite{14} (ou de la pression partielle en oxygène en équilibre avec l'alliage Pb-Bi chargé en oxygène). Cette dépendance est mise en évidence sur la Figure 32. Cette figure représente les épaississeurs de la couche d'oxyde d'échantillons de T91 oxydés 1000 heures dans l'alliage Pb-Bi pour différentes teneurs en oxygène dissous \cite{15,14,65}.

Balbaud-Célérier[14] précise les quelques remarques suivantes, concernant la cinétique d'oxydation vis-à-vis de la teneur en oxygène :

− À 470°C :
 Une couche d'oxyde protectrice apparaît pour une teneur en oxygène, dissous dans l'alliage Pb-Bi, supérieure à 10-6 pds % (correspondant à une pression partielle en oxygène, en équilibre avec l'alliage Pb-Bi, égale à 1,5x10-25atm)[14].
 A partir d'une teneur en oxygène de 10-6 pds % (1,5x10-25atm), l'épaisseur de la couche d'oxyde évolue peu avec l'augmentation de la teneur en oxygène [14] (cf Figure 32).

− À 600°C :
 Lorsque la teneur en oxygène est inférieure à celle correspondant à la précipitation de la magnétite à 600°C, i.e. 10-8 pds % (7x10-27atm), le T91 se dissout dans l'alliage Pb-Bi[14].
 Lorsque la teneur en oxygène est comprise entre 10-8 et 10-6 pds % (7x10-27 atm et 7x10-23 atm), une épaisse couche d'oxyde se forme à la surface de l'acier (cf Figure 32). Cependant une perte de masse, traduisant un phénomène de dissolution, est aussi mesurée [14].
 Pour des teneurs en oxygène supérieures à 10-6 pds % (7x10-23 atm), l'oxydation devient très importante. Le T91 n'est alors plus utilisable pour cette gamme de teneur en oxygène à cette température [14] (cf Figure 32).

Pour conclure, la littérature montre qu'à 470°C, la cinétique d'oxydation n'évolue pas notablement lorsque la teneur en oxygène augmente (à partir de 10-6 pds % ou 1,5x10-25atm). En revanche à 600°C l'épaisseur de la couche d'oxyde, après 1000 heures d'immersion dans l'alliage Pb-Bi, est fortement liée à la teneur en oxygène dissous dans l'alliage liquide.
Une expérience originale, caractérisant l'impact de la teneur en oxygène sur la cinétique d'oxydation, a récemment été réalisée sur un échantillon d'acier martensitique de type ODS dans l'alliage Pb-Bi à 550°C [66].

Le principe de l'expérience était d'immerger la moitié d'un échantillon d'acier dans l'alliage Pb-Bi liquide. Ainsi la moitié de l'échantillon était oxydée par l'alliage Pb-Bi tandis que l'autre moitié l'était par l'environnement gazeux en équilibre thermodynamique avec le bain de l'alliage Pb-Bi. La cinétique d'oxydation est suivie sur les deux moitiés de l'échantillon. Les conditions de l'expérience et les résultats obtenus sont regroupés sur la Figure 33.

Figure 33 : (a) Schéma du montage d'une expérience d'oxydation d'un acier martensitique dans l'alliage Pb-Bi et dans l'environnement gazeux en équilibre avec l'alliage Pb-Bi.
(b) Cinétique d'oxydation des moitiés immergées dans l'alliage Pb-Bi et dans le milieu gazeux. Les épaisseurs des couches de spinelles sont équivalentes dans les deux milieux oxydants. Aussi les auteurs n'ont représenté que celles obtenues dans l'alliage Pb-Bi. La température d'essai est 550°C et la pression partielle en oxygène est égale à 1,93x10⁻⁲ atm obtenue par un mélange gazeux Ar-H₂/H₂O tel que le rapport H₂/H₂O soit égal à 4x10⁻² [66].

Les couches d'oxyde formées dans le gaz et dans l'alliage Pb-Bi sont duplex, constituées d'une couche de spinelle Fe-Cr au contact de l'acier et d'une couche de magnétite, au contact de l'environnement oxydant.

Les auteurs ajoutent les remarques suivantes :
- La cinétique d'oxydation semble parabolique à 550°C.
- La croissance de la couche d'oxyde globale obtenue dans l'alliage Pb-Bi est plus faible que celle obtenue dans l'environnement gazeux, à la même température et au même potentiel chimique d'oxygène.
- En revanche, la vitesse de croissance de la couche de spinelle Fe-Cr, est identique dans les deux environnements.

La différence de cinétique d'oxydation entre les deux milieux (alliage Pb-Bi et gaz) est attribuée selon les auteurs [66] à un décollement de la couche d'oxyde formée dans l'alliage Pb-Bi. Ce décollement est observable sur l'image MEB de la Figure 34.
Figure 34 : Image MEB d'une coupe transverse, à l'interface Pb-Bi/gaz, d'un échantillon oxydé 5000 heures à 550°C à moitié dans l'alliage Pb-Bi et à moitié dans un milieu gazeux en équilibre thermodynamique avec l'alliage Pb-Bi contenant 10⁻⁶ pds % d'oxygène dissous [66].

Lors de la mesure de l'épaisseur de la couche d'oxyde formée dans l'alliage Pb-Bi au cours du temps (Figure 33), la partie décollée de la couche n'ayant pas été comptabilisée, la vitesse de croissance présentée sur la Figure 33 est inférieure à la vitesse réelle.

D'après les auteurs [66], la cinétique d'oxydation de l'acier est en réalité identique dans les deux environnements. La vitesse de croissance de la couche de spinelle, au contact de l'acier, est en effet semblable dans les deux milieux oxydants (Figure 33).

Cette expérience nous permet de supposer que la nature du milieu oxydant est moins responsable de la cinétique d'oxydation que ne le sont les conditions d'essai (température, potentiel chimique de l'oxygène).

3. Conclusion sur l'oxydation des aciers Fe-Cr dans l'alliage Pb-Bi saturé en oxygène

Pour résumer, l'ensemble des informations expérimentales accessibles actuellement sur l'oxydation des aciers martensitiques dans l'alliage Pb-Bi sont les suivantes :

- La couche d'oxyde a une structure duplex constituée d'une couche de spinelle Fe-Cr au contact du T91 et d'une couche de magnétite.

- La couche de spinelle Fe-Cr semble compacte alors que la couche de magnétite est poreuse. Une présence de plomb au sein de la couche de magnétite a été détectée.

- A partir de 550°C une oxydation interne est observable au MEB. Des précipités d'oxyde enrichis en chrome sont distinguables au niveau des joints de grains de l'acier.

- La cinétique de croissance est rapide à 470°C (9 µm d'épaisseur après 650 heures d'oxydation). Elle semble correspondre à une évolution parabolique traduisant un mécanisme d'oxydation contrôlé par un processus diffusionnel.

- A 470°C, la cinétique d'oxydation dépend peu de la teneur en oxygène dissous dans l'alliage Pb-Bi alors qu'elle en est fortement dépendante à 600°C.
La structure et la cinétique de croissance des couches d'oxyde formées sont très proches de celles obtenues dans d'autres milieux oxydants. Nous expliciterons ces principales similitudes dans le paragraphe suivant.

4. Similitudes morphologiques et cinétiques de l'oxydation obtenue dans l'alliage Pb-Bi et dans d'autres environnements

Nous pouvons remarquer que les couches d'oxyde, formées par oxydation des aciers Fe-Cr (comportant de 3 à 15 poids % de chrome dans l'alliage) dans les environnements oxydants CO₂ et H₂O (liquide ou vapeur), sont similaires à celles obtenues dans l'alliage Pb-Bi et dans le plomb pur :

− Pour chaque environnement oxydant, une couche externe de magnétite et une couche interne d'un spinelle Fe-Cr se forment.

− Comme dans les métaux liquides Pb-Bi et plomb pur, les épaisseurs des deux couches sont toujours quasi équivalentes.

Une image MEB représentant la couche d'oxyde formée à la surface d'un acier Fe-Cr dans un milieu gazeux est reproduite Figure 35.

Figure 35 : (A) Image MEB d'une couche d'oxyde formée à la surface d'un acier Fe-9Cr-1Mo dans la vapeur d'eau à 450°C [71]. (B) Image MEB d'une coupe transverse d'un échantillon de T91 oxydé à 470°C pendant 1000 heures dans l'alliage Pb-Bi, en circulation, contenant 10⁻⁶ poids % d'oxygène dissous (inférieur à la saturation), la vitesse de circulation de l'alliage Pb-Bi est égale à 1,9 m/s [15].

Par ailleurs, dans le cas des milieux eau liquide et vapeur d'eau, la cinétique d'oxydation est comparable à celle obtenue dans l'alliage Pb-Bi liquide saturé en oxygène.

Le Tableau 8 résume les caractéristiques et les résultats des essais d'oxydation menant à une constante parabolique de croissance proche de celle obtenue dans l'alliage Pb-Bi saturé en oxygène.
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Environnement</th>
<th>Température (°C)</th>
<th>(K_p) (\text{cm}^2/\text{s})</th>
<th>Structure et nature de la couche d'oxyde</th>
<th>Mécanisme proposé</th>
<th>Références</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-9Cr-1Mo</td>
<td>Vapeur d'eau</td>
<td>450</td>
<td>1,64x10^{-13}</td>
<td>Duplex, (h_{\text{magnétite}} \approx h_{\text{spinelle Fe-C}})</td>
<td>"available space model"</td>
<td>[72]</td>
</tr>
<tr>
<td>Fe-9Cr</td>
<td>Vapeur d'eau</td>
<td>501</td>
<td>7,4x10^{-13}</td>
<td>Duplex, (h_{\text{magnétite}} \approx h_{\text{spinelle Fe-C}})</td>
<td>"available space model"</td>
<td>[71]</td>
</tr>
<tr>
<td>Fe-9Cr-1Mo</td>
<td>Vapeur d'eau</td>
<td>501</td>
<td>9,3x10^{-14}</td>
<td>Duplex, spinelle Fe-Cr poreux, magnétite compacte</td>
<td>"available space model"</td>
<td>[73]</td>
</tr>
<tr>
<td>Fe-Cr</td>
<td>Eau</td>
<td>450</td>
<td>(~10^{-13})</td>
<td>Couche duplex</td>
<td>"available space model"</td>
<td>[74]</td>
</tr>
<tr>
<td>T91 Pb-Bi</td>
<td></td>
<td>470-476</td>
<td>4,5x10^{-13}</td>
<td>Duplex, (h_{\text{magnétite}} \approx h_{\text{spinelle Fe-Cr}})</td>
<td>[14][64][65].</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 8 : Résumé des différentes références bibliographiques qui présentent des essais d'oxydation d'acier Fe-Cr menant à des structures et des natures de couches d'oxyde ainsi qu'à une constante parabolique \(K_p\) similaires à celles obtenues par oxydation du T91 et de Manet II dans l'alliage Pb-Bi saturé en oxygène à 470°C et 476°C.

Le Tableau 8 montre que les essais d'oxydation dans les environnements eau liquide/vapeur d'eau et alliage Pb-Bi donnent des résultats très proches :
- La nature des couches d'oxyde obtenues dans les métaux liquides de l'alliage Pb-Bi et de plomb pur est identique à celle obtenue par oxydation d'acier dans des milieux gazeux (CO₂ et H₂O) ou d'eau liquide sous pression.
- La cinétique d'oxydation obtenue à 470°C dans l'alliage Pb-Bi est similaire à celles obtenues dans des environnements eau et vapeur d'eau entre 450 et 501°C.

Toutes ces similitudes mènent à suggérer qu'un même mécanisme d'oxydation se produit dans ces différents milieux oxydants.

Or l'oxydation des aciers Fe-Cr et des alliages Ni-Cr a été largement étudiée dans la littérature dans les milieux gazeux, comme la vapeur d'eau et le CO₂, ainsi que dans l'eau liquide pressurisée.

Le mécanisme d'oxydation proposé pour les environnements eau liquide et vapeur d'eau, nommé l'"available space model", est toujours le même que soit l'auteur considéré [72][71][73][74]. Ce modèle d'oxydation sera donc particulièrement détaillé.

Cependant nous présenterons d'autres mécanismes afin d'avoir une vue plus générale sur la croissance des couches duplex.

5. Mécanisme de croissance d'une couche duplex

Dans la littérature, plusieurs mécanismes ont été développés afin de rendre compte de la croissance d'une couche duplex formée par sulfuration ou par oxydation. Pour un mécanisme donné, les éléments apportés par chaque étude seront considérés de manière équivalente quel que soit le milieu oxydant S, CO₂, H₂O (vapeur ou liquide) et O₂.

Les principales hypothèses de ces mécanismes portent sur :
- les zones de localisation des interfaces de croissance,
- la localisation de l'interface originelle métal/milieu oxydant,
- la nature des espèces diffusantes, contrôlant la cinétique de croissance, et leur mode de transport.
Nous avons divisé en deux grandes catégories les mécanismes de formation des couches d'oxyde duplex, selon le lieu de localisation de l'interface originelle métal/environnement :

− Dans la première catégorie, l'interface originelle métal/milieu oxydant n'est pas spécifiquement localisable au cours du processus d'oxydation. Peu de mécanismes proposés pour l'oxydation d'alliages binaires Fe-Cr appartiennent à cette catégorie.

− En revanche, les mécanismes localisant l'interface originelle métal/milieu oxydant à l'interface entre les deux oxydes de la couche duplex sont largement détaillés dans la littérature. Ils sont souvent considérés dans les cas de la formation d'une couche d'oxyde duplex à partir de l'oxydation des alliages Ni-Cr et Fe-Cr et des métaux purs Ni et Fe. Les mécanismes proposés dans la littérature pour l'oxydation des aciers Fe-Cr dans l'eau et la vapeur d'eau étant inclus dans cette dernière catégorie, nous nous attacherons particulièrement à l'expliciter.

5.1. Interface originelle métal/environnement non localisée à l'interface oxyde/oxyde

La première catégorie de mécanismes ne localisant pas spécifiquement l'interface originelle métal/milieu oxydant après oxydation rend compte de certains cas d'oxydation d'un alliage AB menant à une couche d'oxyde duplex.

Les mécanismes suivants peuvent être observables lorsque :

− l'élément d'alliage B, qui est minoritaire dans le matériau, est thermodynamiquement moins stable que l'élément principal A,
− B diffuse moins vite que A dans la couche d'oxyde.

Si la diffusion de l'élément d'alliage B dans l'alliage AB n'est pas limitante, trois cas peuvent se produire :

− A et B diffusent simultanément dans la couche d'oxyde, les deux couches se distinguent donc par la présence de l'élément B qui diffuse moins vite que A.
Une solution solide d'un oxyde \(A_xB_yO_z \) existe et A et B diffusent via le réseau de cet oxyde. La différence de coefficient de diffusion entre les éléments A et B conduit à une variation de la stœchiométrie de l'oxyde au sein de la couche. Ainsi, à l'interface métal/oxyde, la couche est enrichie en B qui diffuse lentement alors qu'à l'interface oxyde/environnement l'oxyde ne contient que l'élément A.

Le profil de concentration de B peut être schématisé sur la Figure 36.

![Figure 36 : Profil de concentration de B dans la solution solide ABO.](image)
Finalement tout se passe comme s'il n'existait qu'une seule couche d'oxyde, non duplex, comportant un gradient de concentration de l'élément B. Ce mécanisme a été proposé par Brückman [75] pour expliquer la sulfuration de certains alliages.

Dans le cas de la croissance des couches d'oxyde dans l'eutectique Pb-Bi, les couches de spinelle Fe-Cr et de magnétite semblent nettement séparées. Cependant, la stœchiométrie du spinelle Fe-Cr n'est pas précisée dans la littérature et cette stœchiométrie peut varier au sein de la couche d'oxyde. Le mécanisme pourrait correspondre à celui régissant la croissance des couches d'oxyde dans l'alliage Pb-Bi. Toutefois, ce mécanisme n'explique pas l'égalité d'épaisseur entre la couche de spinelle Fe-Cr et la couche de magnétite. Ce mécanisme supposerait que le chrome diffuse deux fois moins vite que le fer dans la couche d'oxyde. Cette faible différence de vitesse de diffusion nous semble peu réaliste sachant que trois ordres de grandeur séparent les coefficients de diffusion du fer et du chrome dans le réseau du spinelle Fe-Cr (voir Chapitre V).

Le deuxième cas est proposé par Whittle et Wood [76] pour l'oxydation d'un acier Fe-18Cr dans l'oxygène. L'élément minoritaire de l'alliage, le chrome, est thermodynamiquement moins stable et diffuse moins vite que le fer dans la solution solide FeFe2-xCrxO4.

Le processus d'oxydation est représenté Figure 37.

![Figure 37 : mécanisme de Whittle et Wood][76].

Aux premiers temps de l'oxydation, un spinelle Fe-Cr se forme à la surface de l'acier (Figure 37 (a)).

En raison de la diffusion plus lente du chrome dans le spinelle, un gradient de teneur en chrome se développe dans le spinelle Fe-Cr et une couche duplex se forme (Figure 37 (b)).

La lente diffusion du chrome dans la couche d'oxyde conduit à une augmentation de la teneur en chrome à l'interface métal/oxyde. Ainsi le spinelle s'enrichi en chrome au voisinage du
métal. Comme le coefficient de diffusion du fer dans le spinelle Fe-Cr diminue avec l'augmentation de la teneur en chrome, la diffusion du fer est ralentie dans la zone enrichie en chrome. Il s'ensuit une augmentation de la teneur en fer à l'interface métal/oxyde et la formation d'une couche de spinelle enrichie en fer sous la couche enrichie en chrome (Figure 37 (c)).

La concentration en chrome augmente alors à l'interface métal/oxyde : une deuxième couche enrichie en chrome se développe (Figure 37 (d)).

Par conséquent des zones enrichies en chrome et en fer s'alternent dans la couche de spinelle Fe-Cr (Figure 37 (e)).

Ce mécanisme n'explique pas l'égalité d'épaisseur entre la couche de magnétite et la couche de spinelle Fe-Cr. A la lumière des deux mécanismes précédents, une identification de la stœchiométrie du spinelle Fe-Cr formé dans l'alliage Pb-Bi nous semble nécessaire pour proposer un modèle de croissance. L'évolution de cette stœchiométrie au sein de la couche doit aussi être déterminée.

– Maak et Wagner [77] proposent un modèle d'oxydation ou de sulfuration d'une couche duplex formée sur un alliage binaire AB générique.

Selon ce modèle, la couche d'oxyde externe AX (avec X l'élément oxydant) croît à l'interface externe par diffusion des cations A²⁺ à travers la couche d'oxyde.
La couche interne, composée des deux phases AX et BX, croît par dissociation de la couche supérieure, libérant des cations qui migrent vers l'interface externe et de l'oxygène qui diffuse dans la couche interne jusqu'au métal.
Ce mécanisme d'oxydation est présenté Figure 38.

![Figure 38 : Mécanisme d'oxydation proposé par Maak et Wagner pour la croissance d'une couche de sulfure ou d'oxyde duplex sur un alliage binaire AB (B étant l'élément d'alliage) [78].](image)

Pour conclure sur les trois mécanismes présentés :

A priori, aucune différence de microstructure ne peut être mise en évidence par le modèle de Bruckman. En effet celui-ci correspond finalement à la croissance d'une monocouche d'oxyde de stœchiométrie variable dans l'épaisseur de la couche.
Ni le modèle de Bruckman ni celui de Whittle et Wood ne permet d'expliquer la constance du rapport d'épaisseur entre les deux couches d'oxyde observée sur les essais d'oxydation effectués dans l'alliage Pb-Bi. Cependant il nous semble nécessaire de déterminer précisément la stœchiométrie du spinelle Fe-Cr ainsi que son évolution au sein de la couche. Ceci nous permettrait de conclure sur la vraisemblance d'une croissance de la couche d'oxyde dans l'alliage Pb-Bi régie par de tels mécanismes.

Le modèle de Maak et Wagner relie la croissance de la couche externe à celle de la couche interne, ce qui permettrait d'expliquer la constance du rapport d'épaisseur entre ces deux couches.

D'autres modèles ont été développés, ayant comme caractéristique commune la localisation de l'interface originelle métal/milieu oxydant à l'interface entre les deux oxydes de la couche duplex. Ces modèles sont présentés dans le paragraphe suivant.

5.2. Interface originelle métal/environnement localisée à l'interface oxyde 1/oxyde 2

Pour tous les mécanismes présentés par la suite, l'interface entre les deux oxydes de la couche duplex est attribuée, par rapport à un référentiel situé au cœur du métal, à l'interface originelle métal/environnement.

Cette interface ne peut être nettement délimitée que si la couche interne croît à l'interface métal/oxyde et la couche externe à l'interface oxyde/environnement. Il en résulte que l'oxygène doit être transporté jusqu'à l'interface interne afin de permettre la croissance de la couche au contact du métal.

Le schéma suivant illustre ce mécanisme d'oxydation.

![Figure 39: Schéma de croissance de la couche d'oxyde.](image)

Deux grands types de modèles s'opposent concernant le mode d'apport de l'oxygène à l'interface interne :
- apport de l'oxygène par dissociation uniforme de la couche,
- apport de l'oxygène par diffusion via des courts-circuits dans la couche d'oxyde.

Nous détaillerons chacun de ces deux modes de formation de la couche duplex.
5.2.1. Apport de l'oxygène par dissociation uniforme de la couche

Kofstadt [79], au cours d'études sur l'oxydation de l'alliage binaire Co-Cr par l'oxygène, propose un mécanisme fondé sur un apport d'oxydant par dissociation de la couche d'oxyde.

*Figure 40 : Mécanisme de formation d'une couche duplex à partir d'un alliage Co-Cr fondé sur une dissociation de la couche d'oxyde à l'interface interne [79].

Selon son mécanisme, dans les premiers stades de l'oxydation le cobalt et le chrome s'oxydent pareillement et forment des amas de CoO et Cr₂O₃ à la surface de l'alliage (Figure 40 (a)). Si la teneur en chrome dans l'alliage n'est pas suffisante pour former une couche continue d'oxyde de chrome (teneur inférieure à 30%), les amas de CoO et Cr₂O₃ réagissent pour former une couche interne composée de CoO et de CoCr₂O₄ et une couche externe de CoO (Figure 40 (b)).

Au cours de cette oxydation trois phénomènes ont lieu, en parallèle, à l'interface interne :
- Le cobalt diffuse en continu à travers la couche d'oxyde pour faire croître la couche externe de CoO à l'interface CoO/atmosphère.
- Le chrome dans l'alliage diffuse vers l'interface métal/oxyde, réduit l'oxyde CoO en cobalt métallique et forme Cr₂O₃.
- L'oxygène, présent dans CoO, se dissout dans l'alliage, diffuse et réagit avec le chrome. Ils forment ainsi des précipités de Cr₂O₃ sous l'interface métal/oxyde constituant ainsi une zone d'oxydation interne.

Un point fondamental de ce modèle est la diffusion en volume du cobalt à travers la couche d'oxyde. En effet, la consommation de cobalt métallique (par diffusion des cations vers l'interface CoO/O₂) mène à la formation de pores à l'interface métal/oxyde.
L'oxyde, situé au dessus du pore nouvellement formé, se dissocie dans cet espace vide et remplit le pore en oxygène. L'oxygène, issu de cette dissociation, oxyde ensuite le métal entourant le pore et mène à la formation d'un nouvel oxyde qui remplit le volume du pore.

Selon ce mécanisme, la couche d'oxyde interne croît dans le volume des pores (formés par la consommation du métal) sous la surface originelle métal/oxyde.

Kofstadt considère que la couche d'oxyde se dissocie ainsi uniformément conformément au modèle de Maak et Wagner, mais que l'interface oxyde 1/oxyde 2 reste fixe par rapport au référentiel du cœur du métal et qu'il correspond à l'interface originelle métal/oxyde.

5.2.2. Diffusion de l'oxygène via des courts-circuits de diffusion

Mrowec [78] oppose à tout type de dissociation uniforme des études de sulfuration effectuées sur différents alliages avec du soufre radioactif 65S [75]. Lors de ces études, des séquençages
d'oxydation ont été réalisés : une première oxydation réalisée sans soufre radioactif est suivie d'une deuxième oxydation marquée par la présence de soufre radioactif. Après analyse de la couche d'oxyde, le soufre radioactif a été retrouvé à l'interface interne.

Ces expériences montrent que la couche interne croît par diffusion de l'oxydant jusqu'à l'interface interne et non par dissociation de la couche la plus ancienne qui ne contenait pas de soufre radioactif.

Mrowec considère que la diffusion anionique de l'oxydant à travers le réseau cristallin de l'oxyde n'est pas assez rapide pour rendre compte des croissances expérimentales. Il suggère donc que l'oxydant pénètre par des porosités sous forme moléculaire jusqu'à l'interface métal/oxide.

D'autres expériences similaires ont été menées avec des éléments radioactifs ^{65}S et ^{14}C liés à l'oxygène dans l'atmosphère oxydante CO_2 [80] ou SO_2 [81]. Pour chaque essai, l'élément radioactif était détecté jusqu'à l'interface métal/oxide démontrant ainsi que le transport de l'oxygène s'effectuait sous forme moléculaire jusqu'à l'interface interne.

De plus, au cours de ses études sur l'oxydation d'acier Fe-Cr dans l'eau à haute température (300°C), Tomlison [82] a mesuré la quantité d'hydrogène formée à l'interface métal/oxide et celle formée à l'interface oxyde/eau.

Ainsi la fraction d'hydrogène mesurée à l'interface métal/oxide est telle que les auteurs concluent que l'oxygène diffuse, à travers la couche d'oxyde, sous forme moléculaire H_2O et se dissocie en oxygène et hydrogène au niveau de l'interface métal/oxide.

Il résulte de ces différentes expériences dans l'eau et sous traceurs radioactifs que l'oxydation à l'interface métal/oxide n'est ni due à une dissociation de la couche d'oxyde ni à une diffusion de l'oxygène par voie anionique dans le réseau de la couche d'oxyde.

En effet, l'oxygène traverse la couche sous forme moléculaire via des courts circuits de diffusion.

Pour chacune de ces expérimentations les auteurs [72][82][80][81] considèrent la diffusion de l'oxygène dans les courts circuits de diffusion comme beaucoup plus rapide que celle du cation, quel que soit le cation envisagé et son mode de transport. Le transport de l'oxygène est aussi considéré comme trop rapide pour rendre compte de la croissance de la couche interne.

La diffusion de l'oxygène ne constitue donc pas une étape limitante pour la croissance de la couche interne.

Par ailleurs, ces auteurs [72][82][80][81] soulignent que le rapport d'épaisseur entre les deux couches d'oxyde de la structure duplex est constant au cours de l'oxydation. Ils en concluent que les mécanismes de croissance des deux couches sont liés et que la cinétique de croissance des couches d'oxyde n'est pas limitée par le transport de l'oxygène.

Un mécanisme d'oxydation, plus complet, nommé "available space model" (le modèle de l'espace disponible), a été développé pour rendre compte des trois phénomènes suivants :

- L'agent oxydant diffuse sous forme moléculaire via des courts circuits de diffusion jusqu'à l'interface métal/oxide.
- Les deux couches d'oxyde ont une croissance liée.
- La croissance de la couche d'oxyde interne n'est pas contrôlée par le transport de l'oxydant.

Ce mécanisme est souvent considéré dans les cas d'une croissance de couches duplex formées sous environnement oxydant SO_2, H_2O (liquide ou vapeur) ou CO_2, à partir des métaux purs Ni et Fe ou des alliages Ni-Cr et Fe-Cr.

Ce mécanisme sera particulièrement détaillé car les couches d'oxyde formées sous ces environnements à partir des alliages Ni-Cr et Fe-Cr sont très proches de celles observées dans le plomb et l'alliage Pb-Bi. De plus, les constantes paraboliques obtenues pour l'oxydation des aciers
Fe-9Cr dans l'eau et la vapeur d'eau entre 450 et 500°C avoisinent celle déterminée à partir de la cinétique d'oxydation d'aciers Fe-9Cr14 dans l'alliage Pb-Bi saturé en oxygène à 470°C.

6. L'"available space model" : le mécanisme proposé par la littérature pour l'oxydation des aciers Fe-Cr et Ni-Cr dans H\textsubscript{2}O ou CO\textsubscript{2}

Les mécanismes d'oxydation, proposés par la littérature dans le cas de l'oxydation des aciers Fe-Cr et des alliages Ni-Cr dans différents environnements, H\textsubscript{2}O, CO\textsubscript{2} et SO\textsubscript{2}, pour une température comprise entre 400 et 550°C, sont similaires. En effet, la couche d'oxyde obtenue a une structure duplex et le rapport d'épaisseur entre les deux oxydes est constant.

Ce mécanisme considère que :

- La croissance des couches d'oxyde est effectuée à l'interface métal/oxyde pour la couche d'oxyde interne et à l'interface oxyde/environnement pour celle de l'oxyde externe.
- L'interface originelle métal/environnement originelle correspond à l'interface oxyde 1/ oxyde 2.

Les différents auteurs proposent des solutions plus ou moins abouties mais le concept global, nommé "available space model" reste identique.

Ce modèle de croissance a été suggéré la première fois en 1965 par Brückman et Romanski83. Il a été repris par différents auteurs pour expliquer la croissance d'une couche duplex lorsque la croissance de la couche interne n'est pas limitée par le transport de l'agent oxydant. Celui-ci est supposé diffuser sous forme moléculaire via des courts-circuits de diffusion84,83,75,85,73,86,87,81,88,89,74,72.

Prenons le cas de l'oxydation d'un acier Fe-Cr. Le mécanisme de formation des couches de spinelle Fe-Cr et de magnétite proposé par l'"available space model" est le suivant :

- La croissance de la couche de magnétite a lieu à l'interface externe, magnétite/milieu oxydant, suggérant un transport du fer à travers la couche d'oxyde jusqu'à l'interface externe. Le mode de transport du fer a été attribué, quand il a été précisé, à une diffusion par les joints de grains75,72, par le réseau de l'oxyde85 ou par les mêmes courts-circuits de diffusion que l'oxygène90,91.

- Quel que soit le mode de transport du fer, la diffusion du fer à travers la couche d'oxyde provoque une consommation de l'acier et laisse ainsi une place vacante ("l'espace disponible") à l'interface acier/spinelle Fe-Cr. Cette place vacante est ensuite remplie par la croissance à l'interface interne de la couche de spinelle Fe-Cr.

En d'autres termes, à l'échelle nanoscopique, le mécanisme s'explique par les phénomènes suivants (voir Figure 41) :

- La diffusion du fer à travers les deux couches d'oxyde mène à la formation de lacunes au sein du métal. Ces lacunes s'accumulent à l'interface métal/oxyde et forment des nano-cavités qui correspondent aux places vacantes précédemment évoquées.

- L'oxygène diffuse dans l'oxyde par des courts-circuits de diffusion. Ces courts-circuits sont des porosités connectées formant des canaux de diamètres nanométriques. L'oxygène est ainsi transporté à l'intérieur de ces nano-canaux, sous forme moléculaire dans son milieu originel (H\textsubscript{2}O, CO\textsubscript{2}, SO\textsubscript{2})73,82,80,81.
Par ces courts-circuits de diffusion, l'oxygène diffuse rapidement jusqu'aux nano-cavités dans lesquelles l'oxydation des atomes métalliques Fe et Cr se produit. Le spinelle Fe-Cr croît ainsi à l'interface métal/oxyde par remplissage de ces nano-cavités.

L'hypothèse de base du modèle est que le spinelle Fe-Cr ne peut pas croître plus que l'espace disponible à sa croissance. Cet espace est constitué du volume des nano-cavités ajouté au volume des atomes de fer et de chrome oxydés pour former le spinelle Fe-Cr. L'interface originelle métal/oxyde correspond ainsi à l'interface spinelle Fe-Cr/magnétite.

Dans ce mécanisme, l'étape limitante pour la croissance du spinelle Fe-Cr est le transport du fer à travers la couche d'oxyde. En effet, il mène à la formation de l'espace disponible nécessaire à la croissance du spinelle Fe-Cr à l'interface interne.

L'étape limitante pour la croissance de la couche de magnétite est aussi la diffusion du fer à travers la couche d'oxyde. Ainsi, les deux couches d'oxyde ont une cinétique de croissance liée.

L'ensemble du mécanisme est résumé sur le schéma suivant, Figure 41.

\[Figure 41 : \text{mécanisme de formation des couches d'oxyde fondé sur l'"available space model".} \]

Notons cependant que les nano-cavités ne sont jamais observables. En effet, elles se remplissent dès leur formation car ni l'apport d'oxydant ni la réaction d'oxydation ne sont limitants pour le mécanisme.

Ce modèle de croissance nécessite une coalescence des lacunes à l'interface métal/oxyde pour la formation des nano-cavités ainsi que la formation de nano-canaux nécessaires à la diffusion de l'oxygène. Ces nano-canaux n'ont pourtant jamais été observés par imagerie. Leur taille est, selon la littérature, trop faible pour empêcher une observation et suffisamment élevée pour permettre le transport de l'oxydant. La taille de ces nano-canaux a été estimée inférieure à 1nm par certains auteurs \cite{72,82} et par un autre à environ 200 nm \cite{80}.

Plusieurs mécanismes ont été proposés dans la littérature afin d'expliquer les possibilités d'accumulation de lacunes (menant à la création des nano-cavités) et de formation des nano-canaux. Ils sont explicités dans les paragraphes suivants.
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

6.1. Mécanisme de formation des nano-canaux

La formation des nano-canaux a été expliquée par deux mécanismes :

- la théorie de la croissance dissociative ou perforative \(^{75}[85][83][80][86]\),
- la fissuration de la couche d’oxyde par un champ de contrainte interne \(^{80}[81][84]\).

6.1.1. Théorie de croissance dissociative ou perforative \(^{75}[85][83][80][86}\)

En raison de la diffusion du fer vers l'interface oxyde/environnement, des lacunes se forment dans le métal à l'interface métal/oxyde.

Aussi, pour conserver une adhérence métal/oxyde, le volume de métal consommé peut être compensé par un rétrécissement plastique du métal. Si cette déformation plastique ne peut avoir lieu, des nano-cavités se forment à l'interface métal/oxyde.

Les grains d'oxyde situés au-dessus de ces cavités se dissocient afin d'équilibrer le potentiel chimique de l'oxygène entre l'oxyde et l'intérieur des cavités sous-jacentes, comme le montre la Figure 42.

![Figure 42 : Théorie de croissance dissociative\(^{86}\), développement des nano-canaux au-dessus de cavités interfaciales. Une dissociation anisotrope des grains permet la création des nano-canaux (1), (2). Le diamètre du canal s'équilibre (3), (4).](image)

La dissociation des grains se produit préférentiellement au niveau des joints de grains ; on parle donc d'une dissociation anisotrope du grain.

Dans un premier temps, l'oxygène est fourni par cette dissociation et réagit avec le métal sous-jacent pour former le nouvel oxyde interne.
Parallèlement, la dissociation des grains d'oxyde, remplissant les nano-cavités en oxygène, crée un excès de cations métalliques dans les joints de grains. Cet excès de cations entraîne un gradient de concentration cationique suivi d'une diffusion des cations à travers la couche d'oxyde. Les lignes équipotentielles de l'oxygène évoluent dans la couche d'oxyde comme le représente le schéma de la Figure 42.

Au fur et à mesure de la dissociation des grains au niveau de leurs joints de grains, un nano-canal se construit (Figure 42 (1) et (2)).

Lorsque le nano-canal atteint l'interface externe, l'environnement oxydant peut pénétrer dans le canal, traverser la couche d'oxyde par diffusion dans son milieu original et oxyder directement le métal au niveau de la cavité sous jacent.

Le diamètre du nano-canal se stabilise dans le temps. Il varie à travers la couche d'oxyde afin d'obtenir, à chaque profondeur de la couche, un équilibre des potentiels chimiques de l'oxygène entre l'intérieur du canal et la paroi des grains d'oxyde entourant le canal (Figure 42 (3) et (4)) [86].

Ce mécanisme de formation des nano-canaux est ainsi fondé sur des considérations thermodynamiques et chimiques.

Nous pouvons remarquer que ce schéma de croissance [86] présenté sur la Figure 42, ainsi que celui que nous présenterons ultérieurement Figure 44 [84] suggèrent que l'oxyde interne ne croît que dans le volume des nano-cavités formées par l'accumulation des lacunes. Or, le remplissage des nano-cavités par oxydation du métal mène à une nouvelle consommation de métal (ou création de lacunes). L'oxyde interne croît donc dans l'espace délimité par le volume de la nano-cavité et par le volume de métal oxydé pour remplir le volume de la nano-cavité (voir Figure 41).

Un autre mécanisme de formation des nano-canaux, proposé dans la littérature, se fonde sur des considérations mécaniques de champs de contraintes internes [81] [84].

6.1.2. Formation des nano-canaux liée à un champ de contrainte interne à la couche d'oxyde

Selon Kofstad [81], quel que soit le processus de croissance, cationique ou anionique, une contrainte de compression s'établit au sein de la couche en croissance :

– Si la croissance de la couche est contrôlée par un transport anionique, elle se produit à l'interface métal/oxyde. Le volume de métal consommé étant souvent plus faible que celui d'oxyde formé (i.e. pour un rapport de Pilling-Bedworth * >1 ce qui est le cas pour tous les métaux de transition), une contrainte de compression se développe dans la couche.

– Si la croissance de la couche d'oxyde est régie par un processus cationique, l'oxyde formé à l'interface externe est considéré non contraint.

* Le rapport de Pilling-Bedworth est défini par le volume d'oxyde formé sur le volume de métal consommé pour la formation de l'oxyde.
Cependant, la diffusion des cations métalliques depuis le métal jusqu'à l'interface externe mène à une consommation du métal pouvant entraîner une décohésion de la couche d'oxyde sur le substrat. Afin de sauvegarder l'adhésion métal/oxyde, un champ de contraintes de tension s'élabore perpendiculairement à l'interface métal/oxyde. Par conséquent, un champ de compression résultant du champ de tension s'établit à l'intérieur de la couche d'oxyde, parallèlement à l'interface métal/oxyde.

Comment la couche d'oxyde peut-elle réagir à ces champs de contraintes, en tension et en compression ?

- Les contraintes de tension, perpendiculaires à l'interface métal/oxyde, peuvent générer un fluage de la couche d'oxyde qui peut être lié : au glissement des grains les uns par rapport aux autres, à la diffusion des lacunes le long des joints de grains ("Coble creep") ou dans le volume du grain ("Nabarro-Herring creep").

Selon Kofstad [81], le simple glissement des grains les uns par rapport aux autres se produit lorsque des irrégularités sont présentes dans les joints de grains. Ces irrégularités peuvent être des irrégularités géométriques, une seconde phase plus visqueuse ou un enrichissement local d'atomes étrangers (par exemple le chrome dans le cas de l'oxydation des aciers Fe-Cr).

Toutes les déformations qui sont liées à une diffusion de matière ne peuvent pas être homogènes dans la couche car les coefficients de diffusion évoluent au sein de la couche. Ces hétérogénéités de déformation conduisent à développer des porosités et des fissures. Les nano-canaux sont des fissures formées par les déformations internes dans la couche d'oxyde. Les contraintes de compression, à l'intérieur de la couche d'oxyde, ont tendance à refermer ces nano-canaux en rapprochant les parois de la fissure.

Cependant, selon Atkinson et Smart [84], un champ de compression global provoque un champ de tension local lorsque le champ de contrainte est hétérogène ou lorsque le milieu est géométriquement hétérogène. Or, le champ de contrainte et le milieu géométrique sont toujours hétérogènes dans une couche d'oxyde en croissance, des contraintes locales de tension se développent donc au sein de la couche.

La Figure 43 schématise comment un champ de contrainte de compression peut engendrer des contraintes locales de tension et provoquer la formation de fissures susceptibles de former des nano-canaux.

![Figure 43 : Formation de fissures sous un champ de contrainte de compression](image-url)
Selon Atkinson et Smart [84], les nano-canaux formés à partir des fissurations de la couche d'oxyde peuvent permettre la pénétration du milieu oxydant dans la couche d'oxyde. L'oxydation du métal entraîne ensuite un rebouchage progressif des nano-canaux par croissance de l'oxyde. Ce rebouchage par les produits d'oxydation mène à augmenter le champ de contraintes de compression au sein de la couche et à créer d'autres fissures qui peuvent être remplies à leur tour. De cette manière, les fissures (ou nano-canaux) peuvent se former et se reboucher continuellement en un processus infini. Ce mécanisme est représenté Figure 44.

Figure 44 : Le cation responsable de la croissance de la couche externe diffuse à travers la couche d'oxyde et laisse ainsi un espace vacant à l'interface interne métal/oxyde permettant à la couche d'oxyde interne de croître. L'apport d'oxydant est réalisé par transport via des nano-canaux. L'oxyde interne croît dans l'espace vacant [84].

Atkinson et Smart [84] concluent en précisant qu'il est difficile de savoir si les nano-canaux se forment par processus de dissociations des grains (processus thermodynamique) ou par fissuration de la couche via un champ de contraintes (processus mécanique). Cependant, même si le mécanisme de dissociations se produit, la composante mécanique du processus a nécessairement lieu parce qu'un champ de contraintes est inévitablement généré au sein d'une couche d'oxyde en croissance.

6.2. Mécanisme de ségrégation des lacunes

Le modèle de l'"available space" nécessite aussi une accumulation des lacunes à l'interface métal/oxyde pour former des nano-cavités remplies par la croissance du spinelle Fe-Cr. Certains auteurs [86][87] ont discuté de la faisabilité de formation de ces nano-cavités interfaciales au cours d'études concernant l'oxydation d'alliages Ni-Cr.

Hales et Hill [87] proposent que les cavités interfaciales se forment selon une théorie nommée "voids nucleation theory" : la diffusion des cations vers l'interface externe provoque la création de lacunes dans le métal.

S'il n'y a pas de puits de lacunes, la concentration de lacune augmente au sein du métal jusqu'à dépasser l'équilibre thermodynamique. L'énergie libre du métal augmente avec la teneur en lacune jusqu'à l'atteinte du seuil de saturation pour lequel les lacunes coalescent.
Cependant, selon Gibbs et Hales \cite{86}, la ségrégation des lacunes ne peut pas être liée uniquement à l'atteinte du taux de saturation car les métaux contiennent de nombreuses dislocations qui sont autant de puits de lacunes.

En revanche, un champ de contrainte peut favoriser cette ségrégation. La nucléation des cavités est donc engendrée par une forte teneur en lacune ajoutée à une contrainte mécanique critique. Dans ce cas, l'énergie libre du métal peut être suffisamment élevée pour permettre une nucléation des cavités. Pour cette raison, des cavités se forment préférentiellement à des interfaces caractérisées par une forte adhésion car elles induisent un important champ de contraintes.

6.3. Le rôle du chrome

Quel que soit le mécanisme de formation des nano-canaux, l'annihilation des lacunes dans le métal doit être évitée :

- L'hypothèse de base de l'"available space model" est en effet fondée sur la croissance de la couche d'oxyde interne par remplissage de cavités. Ces cavités sont issues de l'accumulation de lacunes. L'annihilation des lacunes empêche la formation des nano-cavités et donc la croissance de la couche interne de la couche duplex.

- Dans la théorie dissociative, la formation des nano-canaux, permettant le transport de l'oxygène, nécessite une première étape de dissociation des grains. Cette dissociation ne peut être effective que par remplissage en oxygène d'une nano-cavité sous-jacente formée par une accumulation de lacunes. C'est pourquoi l'annihilation des lacunes sur les dislocations du métal doit être évitée.

- Dans le processus de champ de contrainte, les contraintes ne doivent pas se relaxer par déformation plastique du métal, i.e. par annihilation des lacunes sur les dislocations.

Certains auteurs \cite{86,89,73,72} proposent que l'élément d'addition du métal et spécialement le chrome perturbe la montée des dislocations d'interface métal/oxyde par annihilation des lacunes du métal (Figure 45).
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

Figure 45 : Processus de Robertson et Manning [89].
Arrivée de la lacune métallique à proximité de la dislocation coin; (b) Déplacement du coin par annihilation de la lacune de l'oxyde; (c) Les atomes de Cr peuvent entourer la dislocation et empêcher sa montée; (d) L'arrivée d'autres lacunes nucléant au même endroit induit la formation d'une boucle de dislocation, i.e. d'une nano-cavité.

La Figure 45 explicite ce phénomène :

Prenons d'abord le cas d'une couche d'oxyde simple ne contenant que des atomes de fer et d'oxygène. Lorsqu'une lacune de fer, située dans l'oxyde, arrive à l'interface oxyde/métal (cf Figure 45 (a)), elle traverse directement l'interface et s'annihile sur une dislocation du métal à l'interface (cf Figure 45 (b)). Ce processus ne mène donc pas à la formation de nano-cavités. Toutes les lacunes peuvent être annihilées sur les dislocations d'interface du métal.

En revanche, dans le cas d'une couche d'oxyde contenant des atomes de fer, de chrome et d'oxygène, la présence de chrome dans l'oxyde perturbe le processus d'annihilation des lacunes. En effet, les atomes de chrome diffusent beaucoup plus lentement dans l'oxyde que les atomes de fer. En raison de cette différence de coefficients de diffusion, les lacunes ont tendance à sauter d'un site de fer à un autre.

Aussi une lacune atteignant le deuxième plan d'atome d'oxyde (cf Figure 45 (c)) ne peut pas sauter dans le premier plan, au niveau d'un site cristallin occupé par un atome de chrome. Les lacunes vont alors contourner tous ces sites pour traverser l'interface préférentiellement au niveau de sites occupés par des atomes de fer.

C'est pourquoi le flux de lacunes ne gagne pas l'interface de manière homogène sur la surface de l'échantillon mais sur des localisations préférentielles marquées par la présence d'atomes de fer. Elles accèdent ainsi toutes aux mêmes endroits, les premières sont annihilées sur les dislocations et les suivantes coalescent (cf Figure 45 (d)).

Par conséquent, les atomes de chrome permettent l'accumulation des lacunes à l'interface métal/oxyde et la formation de nano-cavités dans lesquelles peut croître la couche de spinelle Fe-Cr.
Pour conclure sur le rôle du chrome dans le processus d'oxydation : selon la littérature, une telle structure duplex peut être observée dans le cas de l'oxydation d'un alliage Fe-Cr car les atomes de chrome peuvent à la fois inhiber la montée des dislocations à l'interface métal/oxyde [86][89][73][72] et prévenir la déformation plastique de l'oxyde en ségrégeant aux joints de grains [81].

6.4. Conclusion sur l'"available space model"

L'"available space model" est un modèle de croissance qualitatif supposant que l'oxygène est transporté jusqu'à l'interface métal/oxyde sous forme moléculaire dans des nano-canaux. Ce transport ne limite pas la cinétique de croissance de la couche d'oxyde. Seule la diffusion des cations conduisant à la croissance de la couche externe limite la croissance des deux couches d'oxyde de la structure duplex.

En effet, la couche externe croît à l'interface externe par transport des atomes métalliques à travers la couche d'oxyde. Ce transport peut suivre différents modes de diffusion : par les joints de grains [74][72], par le réseau de l'oxyde [85] ou par les mêmes courts-circuits de diffusion que l'oxygène [90][91].

Cette diffusion conduit à la formation de lacunes qui coalescent, à l'interface métal/oxyde, sous forme de nano-cavités. La couche d'oxyde interne est contrainte de croître dans un espace limité. Cet espace correspond au volume des nano-cavités ajouté à celui de métal consommé pour remplir ces nano-cavités. Finalement, la cinétique de croissance des deux couches d'oxyde est limitée par le transport des cations dans la couche d'oxyde duplex.

Ce mécanisme explique ainsi la constance du rapport d'épaisseur entre les deux couches d'oxyde de la couche duplex.

Cependant, le postulat de base de l'"available space model" n'est pas expliqué. Il est fondé sur la limitation de la croissance de la couche d'oxyde interne dans le volume qui lui est alloué. Nous pouvons cependant nous demander pourquoi, sachant que l'apport d'oxygène n'est pas limitant et que la source de métal est "semi-infinie", la couche d'oxyde interne ne croît pas en repoussant les couches d'oxyde supérieures.

Nous discuterons ce phénomène dans la suite de l'étude (voir Chapitre V) ainsi les autres phénomènes liés à l'"available space model" :
- la localisation des interfaces de croissance (voir Chapitre III),
- le transport de l'oxygène, sous forme moléculaire dans des nano-canaux (voir Chapitre IV),
- l'accumulation des lacunes à l'interface métal/oxyde (voir Chapitre V),
- la croissance de l'oxyde interne dans le volume des nano-cavités ajouté à celui de métal consommé pour remplir les nano-cavités (voir Chapitre V).

7. Les mécanismes proposés par la littérature pour l'oxydation des aciers Fe-Cr dans l'alliage Pb-Bi

Actuellement, peu de modèles ont été détaillés dans la littérature pour expliquer la croissance des couches d'oxyde formées dans le plomb et l'alliage Pb-Bi. Ceci est dû à la diversité des paramètres caractérisant les essais d'oxydation (température, teneur en oxygène dissous, vitesse de circulation du métal liquide) ainsi qu'à la faible quantité de données expérimentales obtenues dans les mêmes conditions d'oxydation.
Cependant, nous avons montré la similitude entre la cinétique de croissance et la nature des couches d'oxyde obtenues par oxydation des aciers Fe-Cr en milieu Pb-Bi et en milieu gazeux. Cette similitude a suggéré aux auteurs [14][67][92] de s'inspirer des mécanismes régissant l'oxydation des aciers Fe-Cr dans les milieux gazeux afin d'expliquer les phénomènes observés dans les métaux liquides.

7.1. Mécanisme d'oxydation dans le plomb pur [67]

Le mécanisme proposé pour expliquer l'oxydation d'aciers Fe-Cr dans le plomb pur se rapproche d'un mécanisme d'oxydation d'aciers Fe-Cr dans l'air à des températures inférieures à 570°C [67][93][92][94].

Selon ce mécanisme, la diffusion de l'oxygène et du fer limite la cinétique de croissance des couches d'oxyde :

- Le mode de diffusion de l'oxygène n'est pas précisé, cependant les auteurs [67] supposent que l'oxygène diffuse facilement jusqu'à l'interface métal/oxyde où croît le spinelle Fe-Cr. Cependant la totalité du flux d'oxygène n'est pas utilisée à la croissance du spinelle Fe-Cr car une partie diffuse dans le métal, conduisant à une oxydation interne.

- L'interface originelle métal/oxyde coïncide avec l'interface spinelle Fe-Cr/magnétite, par rapport à un référentiel situé au cœur du métal.

- Parallèlement, la couche de magnétite croît simultanément à l'interface spinelle Fe-Cr/magnétite et à l'interface magnétite/Pb. En effet, les cations fer diffusent dans la couche de spinelle Fe-Cr et réagissent, à l'interface spinelle Fe-Cr/magnétite, avec l'oxygène diffusant en sens inverse : une partie de la couche de magnétite est alors formée à cet interface. La totalité du flux cationique n'est cependant pas oxydée par l'oxygène au sein de la couche d'oxyde, une partie diffuse jusqu'à l'interface magnétite/environnement et permet ainsi une croissance de la couche de magnétite à l'interface externe.

Ce mécanisme d'oxydation est représenté sur la Figure 46.

![Figure 46 : Mécanisme d'oxydation des aciers Fe-Cr dans le plomb pur [67].](image)
Le flux d’oxygène permet :
- la croissance de la magnétite à l’interface spinelle Fe-Cr/magnétite,
- la croissance du spinelle Fe-Cr à l’interface métal/spinelle Fe-Cr,
- la formation de précipités de spinelle Fe-Cr au sein de l’acier, par oxydation interne.

Le flux de fer permet :
- la croissance de la magnétite à l’interface spinelle Fe-Cr/magnétite,
- la croissance de la magnétite à l’interface magnétite/environnement.

Le mécanisme d’oxydation ainsi suggéré se fonde uniquement sur des similitudes de faciès de couche d’oxyde avec les couches obtenues à l’air. Cependant, les différentes propositions ne sont appuyées ni par des expérimentations ni par des simulations.

7.2. Mécanisme d’oxydation dans l’alliage Pb-Bi [92]

Le deuxième mécanisme d’oxydation proposé concerne l’oxydation d’aciers D-9 (Fe-15Cr-15Ni-2Mo) et HT-9 (Fe-12Cr), à 550°C, dans un environnement Pb-Bi contenant entre 3x10⁻⁶ et 5x10⁻⁶ poids % d’oxygène dissous (teneur inférieure à la saturation). Lors de ces expériences, l’alliage Pb-Bi est en circulation, sa vitesse est égale à 1,9 m/s et un phénomène d'oxydation-érosion se produit.

Les auteurs [92] proposent un modèle de corrosion fondé sur une croissance parabolique d’oxydation, ajoutée à une érosion limitée par un transfert de masse. Cette érosion est supposée ne pas influencer le mécanisme d’oxydation.

La croissance de la couche d’oxyde est alors modélisée par la relation suivante :

\[h = \sqrt{K_p t} - \frac{2}{3} K_r t \] \hspace{1cm} (1)

avec \(h \) l’épaisseur de la couche d’oxyde, \(K_p \) la constante parabolique d’oxydation et \(K_r \) la constante cinétique d’érosion.

L’ajustement de cette loi d’oxydation sur les points expérimentaux obtenus après 1000, 2000 et 3000 de corrosion est présenté sur la Figure 47.
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

Figure 47 : Épaisseur de couche d'oxyde obtenue par oxydation des acier HT-9 et D-9 à 550°C dans l'alliage Pb-Bi en circulation (v=1,9m/s). La teneur en oxygène dissous est comprise entre 3×10^{-6} et 5×10^{-6} pds%. Ajustement d'une loi $h = \sqrt{K_p t}$ conduisant à des constantes paraboliques égales à $4,48 \times 10^{-12} \text{cm}^2/\text{s}$ pour l'acier HT-9 et $6,872 \times 10^{-13} \text{cm}^2/\text{s}$ pour l'acier D-9. La moyenne des deux constantes est obtenue pour avoir un seul ajustement pour les deux nuances d'acier. Cet ajustement est comparé à la cinétique d'oxydation calculée selon la théorie de Wagner$^{[92]}$.

Zhang et Li$^{[92]}$ remarquent que l'oxydation de l'acier HT-9 est plus forte que celle de l'acier D-9 (Figure 47). Ils attribuent cette différence à la teneur en chrome et en nickel plus élevée dans l'acier D-9.

Pour chacun des deux aciers D-9 et HT-9, la loi de corrosion (1) est ajustée sur les mesures d'épaisseurs expérimentales donnant ainsi une valeur de constante parabolique : $1,48 \times 10^{-12} \text{cm}^2/\text{s}$ pour HT-9 et $6,87 \times 10^{-13} \text{cm}^2/\text{s}$ pour D-9. Les auteurs soulignent que les constantes paraboliques obtenues sont peu fiables en raison du peu de points expérimentaux. Des tests d'oxydation de longues durées sont nécessaires afin de les vérifier.

Parallèlement aux essais expérimentaux, les auteurs$^{[92]}$ calculent une constante parabolique qu'ils comparent aux valeurs trouvées expérimentalement.

Le calcul de la constante parabolique est fondé en considérant les hypothèses de l"available space model" et lié à la conclusion que l'ensemble du processus est contrôlé par la diffusion du fer à travers les deux couches d'oxyde.

La constante parabolique a été calculée à partir de la théorie de Wagner, en considérant la diffusion du fer en volume dans le réseau de l'oxyde. Le coefficient de diffusion du fer dans la spinelle Fe-Cr n'étant pas déterminé à basse température, les auteurs ont considéré une diffusion du fer à travers une monocouche de magnétite. La simulation correspond donc à l'oxydation de fer pur.

Les conditions aux limites considérées pour ce problème sont :
- une pression partielle d'oxygène égale à celle en équilibre avec le bain de Pb-Bi à l'interface magnétite/Pb-Bi,
- une pression partielle en oxygène négligeable à l'interface spinelle Fe-Cr/acier.

Ce calcul mène à une constante parabolique égale à $3.2 \times 10^{-13} \text{ cm}^2/\text{s}$ \cite{92}.

Cette valeur est trois fois inférieure à la valeur moyenne obtenue par ajustement de la loi de corrosion sur les points expérimentaux. Zhang et Li \cite{92} concluent que la différence entre les valeurs ajustées et celle calculée est relativement faible au regard des nombreuses incertitudes dont dépendent les unes et les autres.

Ils en déduisent que le modèle est acceptable mais qu'il ne correspond qu'à une évaluation préliminaire du mécanisme d'oxydation \cite{92}. Une vérification expérimentale sur de longues durées d'oxydation est aussi indispensable pour une validation du modèle \cite{92}.

Nous pouvons ajouter, au bénéfice de cette étude, que la valeur de la constante parabolique obtenue par ajustement d'une loi parabolique sur les points expérimentaux d'essais d'oxydation dans l'alliage Pb-Bi saturé en oxygène à 470°C (cf Figure 29) est égale à $4.5 \times 10^{-13} \text{ cm}^2/\text{s}$. Cette valeur est très proche de la valeur calculée par Zhang et Li ($3.21 \times 10^{-13} \text{ cm}^2/\text{s}$) \cite{92}.

Cependant, le modèle proposé dans cette étude ne considère pas la présence de chrome dans l'alliage, or Zhang et Li ont souligné l'importance de la teneur en chrome dans la cinétique d'oxydation : l'acier HT-9 s'oxyde plus rapidement que l'acier D-9 qui contient plus de chrome.

De plus, le coefficient de diffusion du fer dans le spinelle Fe-Cr est, à haute température, inférieur de plus d'un ordre de grandeur par rapport à celui du fer dans la magnétite \cite{47}. Ceci implique que la valeur de la constante parabolique calculée en tenant compte de la couche de spinelle Fe-Cr doit être encore plus faible que celle calculée en considérant une monocouche de magnétite.

Par ailleurs, le coefficient de diffusion du fer diminue avec la température : le même calcul de la constante parabolique effectué à 470°C au lieu de 550°C mène encore à la diminution de la valeur obtenue.

Finalement, la constante parabolique calculée est plus faible que celles mesurées mais elle reste dans le même ordre de grandeur. Nous pouvons considérer que ces premiers calculs sont une bonne approximation, compte tenu de la simplicité des hypothèses considérées.

8. Conclusion

Les expériences d'oxydation du T91 réalisées dans l'alliage Pb-Bi à 470°C ont apportés des renseignements utiles sur la nature et la cinétique de croissance des couches d'oxyde : la couche d'oxyde a une structure duplex constituée d'une couche interne de spinelle Fe-Cr et d'une couche externe de magnétite.

La cinétique d'oxydation semble parabolique, ce qui laisse supposer, en considérant les hypothèses de Wagner, une croissance de la couche d'oxyde globale contrôlée par un processus diffusionnel.

Les cinétiques d'oxydation et la nature des couches d'oxyde sont en tous points similaires à celles obtenues dans la littérature par oxydation d'acières Fe-9Cr dans l'eau et la vapeur d'eau. Cette similitude laisse présumer un même mécanisme d'oxydation pour les trois milieux oxydants (eau, vapeur d'eau et alliage Pb-Bi).

Les mécanismes d'oxydation suggérés pour le plomb pur et l'alliage Pb-Bi sont donc fondés sur des mécanismes proposés par la littérature pour l'oxydation des aciers Fe-Cr dans des environnements
Chapitre II : Bibliographie sur l'oxydation des aciers Fe-Cr

gazeux ou d'eau liquide sous pression. Les mécanismes proposés dans l'eau et la vapeur d'eau
[72][71][73][74] sont identiques et fondés sur l'"available space model" sur lequel se fonde aussi le
mécanisme proposé dans l'alliage Pb-Bi [92].

Nous ne fonderons pourtant pas notre étude sur l'hypothèse que l'"available space model" est le
processus contrôlant la croissance de la couche d'oxyde dans le milieu Pb-Bi. En effet, ce modèle
est principalement qualitatif et nous cherchons à obtenir une simulation quantitative permettant de
prévoir l'évolution de croissance des couches d'oxyde.

Pour cela une étude expérimentale globale doit être réalisée. En effet, les résultats expérimentaux
obtenus dans l'alliage Pb-Bi demeurent peu nombreux et doivent être vérifiés. Au niveau
expérimental, il reste encore à :

− réaliser une cinétique expérimentale précise sur de longues durées d'oxydation,
− déterminer la nature de l'étape limitant le processus d'oxydation (étape diffusionnelle, réaction
d'interfaces…),
− caractériser finement la nature et la structure des couches obtenues (stœchiométrie du spinelle
Fe-Cr, morphologie des grains d'oxyde…),
− localiser expérimentalement les interfaces de croissance des couches.

A partir de cette étude expérimentale globale, un mécanisme de croissance des couches d'oxyde
pourra être élaboré.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C. Des essais sous air sec et dans le bismuth pur saturé en oxygène à 470°C
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

1. Introduction

Ce chapitre rassemble la plus grande partie des résultats expérimentaux obtenus au cours de cette étude. En effet, certaines expériences spécifiques ont été réalisées dans le but de mettre en évidence certains phénomènes précis. Ces expériences seront présentées dans les chapitres suivants.

Des expériences générales sont exposées et analysées au cours de ce chapitre. Ces expériences ont pour objectif :

− de caractériser précisément les oxydes obtenus par oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène, à 470°C,
− d'obtenir une cinétique d'oxydation sur de longues durées d'oxydation,
− d'identifier les interfaces de croissance des oxydes formés.

Chaque expérience sera discutée et analysée.

La littérature [14] souligne que les résultats des essais d'oxydation dans le plomb pur et dans l'alliage Pb-Bi sont très proches. Afin d'illustrer globalement l'oxydation d'acier Fe-9Cr dans le plomb, le bismuth et l'alliage Pb-Bi nous avons brièvement caractérisé l'oxydation du T91 dans le bismuth pur saturé en oxygène à 470°C.

Nous présenterons donc en parallèle des essais d'oxydation effectué dans le bismuth pur saturé en oxygène à 470°C.

Afin de réaliser certaines expériences spécifiques, nous avons cherché un milieu oxydant, simple d'utilisation dans lequel la cinétique d'oxydation du T91 à 470°C est très différente de celle obtenue dans l'alliage Pb-Bi.

C'est pourquoi des essais d'oxydation du T91 dans l'air sec à 470°C ont été réalisés et seront présentés dans ce chapitre. Aucun mécanisme de croissance ne sera approfondi, cependant une cinétique d'oxydation sera exposée et la localisation des interfaces de croissance sera recherchée.

Nous présenterons tout d'abord les caractéristiques du T91, puis les conditions expérimentales des essais d'oxydation effectués.

La nature et la structure des oxydes formés dans l'alliage Pb-Bi et dans le bismuth pur seront ensuite détaillées et discutées.

Les cinétiques d'oxydation dans les deux milieux métaux liquides seront alors présentées et comparées.

Les interfaces de croissance des couches d'oxyde seront localisées via des expériences spécifiques de traceurs et de séquençages d'oxydation.

Enfin, l'oxydation du T91 dans l'air sera brièvement caractérisée.
2. Matériau étudié et conditions expérimentales

2.1. Matériau étudié : le T91

Le T91 est un acier Fe-9Cr martensitique dont la composition est présentée en Annexe 3. Les lattes de martensites ont été mises en évidence par révélation des joints de grains par une solution d'acide oxalique (Figure 48 A).

Le matériau est homogène, contenant cependant quelques inclusions, de taille micrométrique, d'un composé comportant de l'aluminium, du fer, du chrome et de l'oxygène (Figure 48 B). Une analyse microsonde (Figure 49) sur plusieurs inclusions a permis d'identifier leur nature. La présence de fer et de chrome dans ces inclusions est attribuée à une analyse partielle de la matrice de T91 car les concentrations de fer et de chrome détectées mènent à un rapport proche de celui du fer et du chrome dans le T91. De plus, ces concentrations varient entre chaque inclusion de manière incohérente.

Dans ces inclusions, le rapport de la concentration en oxygène sur la concentration en aluminium est relativement constant et égal en moyenne à 1,4 (Figure 49). Les inclusions sont donc des précipités d'alumine Al₂O₃. Ces inclusions apparaissent peu nombreuses mais leur distribution sur la surface d'une coupe transverse semble homogène.

Figure 48 : (A) photographie effectuée au microscope optique d'une coupe transverse polie d'un échantillon de T91 dont les joints de grains ont été révélés par une solution d'acide oxalique. Cette image met en évidence la structure martensitique. L'ancienne structure austénitique est encore visible. (B) Image MEB en électrons rétrodiffusés d'une coupe transverse polie d'un échantillon de T91. Des inclusions de composés Al-O-Fe sont observées sur l'ensemble de la couche.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Les échantillons de T91 sont des plaquettes de dimensions 30 mm x 10 mm x 1 mm. Avant oxydation les échantillons subissent tous un polissage mécanique jusqu'au papier SiC 1200. L'objectif de ce polissage est à la fois d'obtenir une surface d'échantillon reproductible et un polissage suffisamment grossier pour se rapprocher des conditions industrielles.

2.2. Conditions d'essai des expériences réalisées dans l'alliage Pb-Bi et dans le bismuth pur

Les tests d'oxydation ont été effectués par immersion des échantillons de T91 dans l'alliage Pb-Bi ou dans le bismuth pur, saturé en oxygène à 470°C.

Les expériences d’oxydation dans l'alliage Pb-Bi se sont déroulées dans une cuve fermée d'une contenance d'environ 20 litres, comportant 10 litres de métal liquide (environ 100 kg). Une photographie et un schéma de l'installation sont présentés en Annexe 6.

La cuve, contenant l'alliage Pb-Bi liquide, avait été conçue antérieurement afin d'effectuer des essais de corrosion, en régime de dissolution et en régime d’oxydation. C’est pourquoi, le matériau utilisé pour sa fabrication est l’acier 316L aluminisé. L'aluminisation (Chromaloy) permet d'éviter toute dissolution du matériau, si les essais de corrosion sont réalisés en domaine de dissolution. En domaine d’oxydation, l’aluminisation n’est pas nécessaire, mais elle ne perturbe pas non plus les essais.

La cuve est chauffée à 470°C par des colliers céramiques (Type 270, Bassompierre, Scientase) dont la température maximale de chauffe est 700°C. Les colliers chauffants sont asservis en température par un régulateur.

La cuve est chauffée à 470°C par des colliers céramiques (Type 270, Bassompierre, Scientase) dont la température maximale de chauffe est 700°C. Les colliers chauffants sont asservis en température par un régulateur.

Le suivi de la température est assuré par des thermocouples de régulation et de mesure de type K, en contact avec la cuve, situés sur le côté extérieur à deux niveaux différents.

Un calorifuge entourant la totalité de la paroi extérieure de la cuve, permet de réduire les échanges calorifiques et de maintenir une température homogène à l’intérieur de la cuve de Pb-Bi.

Au cours de tous les essais d'oxydation, la teneur en oxygène dans l'alliage Pb-Bi est égale à sa limite de solubilité à 470°C.

Cette saturation en oxygène dans l'alliage Pb-Bi est obtenue :
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

– soit par surpression, dans un volume d'environ 10 litres, de 0,5 bar d'air synthétique reconstitué (FID),
– soit balayage d'air synthétique reconstitué (FID).

Les deux façons de saturer le métal liquide ont été testées, les résultats d'oxydation obtenus dans les deux cas (cinétique et structure des couches d'oxyde) sont équivalents.

La concentration en oxygène dans le métal liquide a été mesurée à intervalles de temps réguliers afin de vérifier que la teneur restait constante et toujours égale à la limite de solubilité de l'oxygène dans l'alliage Pb-Bi à 470°C.
La mesure de cette teneur a été réalisée par l'intermédiaire de sondes à oxygène en zircone yttrée, confectionnées au laboratoire.
Le principe de mesure et l'étalonnage de ces sondes sont détaillés en Annexe 2.

La réalisation des essais d'oxydation dans l'alliage Pb-Bi s’est effectuée en boîte à gant.
L'atmosphère de la boîte à gant est inerte et contrôlée par une surpression d'argon d'environ 1 mbar, régulée par un pressiostat.
Le travail en boîte à gant pour des essais d'oxydation en milieu saturé en oxygène est justifié pour des raisons de sécurité afin d'éviter la contamination de l'atmosphère du laboratoire par des vapeurs de plomb et de bismuth. Aussi peut on retirer les échantillons de la cuve d'alliage Pb-Bi, à chaud, sans figer l'alliage liquide.

La réalisation des essais dans le bismuth pur s'est effectuée en partie en boîte à gant et en partie, dans le laboratoire, dans un four Pyrox asservi en température par un régulateur. Dans ce dernier cas, pour retirer les échantillons du métal liquide sans contaminer l'atmosphère de la pièce, les échantillons sont remontés préalablement en phase vapeur puis le métal liquide est figé avant retrait des échantillons du four.

Le bismuth liquide est aussi saturé en oxygène pendant tous les essais d'oxydation :
– par surpression de 0,5 bar d’air synthétique reconstitué (FID) pour les essais effectués dans le four,
– par mise en contact entre le métal liquide et l’atmosphère de la boîte à gant pour les essais effectués en boîte à gant.
La teneur en oxygène de la boîte à gant était toujours suffisante pour saturer en oxygène le métal liquide et les résultats obtenus par les deux méthodes de saturation sont identiques.

2.3. Techniques de caractérisation utilisées et traitement des échantillons oxydés

Afin d'obtenir une cinétique de croissance des couches d'oxyde, les échantillons sont immergés dans l'alliage liquide puis retirés à intervalles de temps réguliers :
– 13 durées d'oxydation différentes ont été réalisées, jusqu'à 7800 heures d'oxydation.
– Pour chaque durée d'immersion, au moins trois échantillons de T91 ont été utilisés. Chacun des trois échantillons subit un traitement différent afin d'être analysé par une technique spécifique :
 o Un échantillon est destiné aux observations par MEB sur une coupe transverse polie, aux analyses par EDS et éventuellement aux analyses par microsonde.
 o Un échantillon est fracturé puis observé par MEB.
 o Un échantillon est gardé intact et éventuellement destiné à d'autres types d'analyse (SDL, RX, SIMS).
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

- D'autres échantillons ont été oxydés pour la réalisation d'expériences spécifiques qui seront explicitées dans la suite de ce document.

Les expériences d'oxydation dans le bismuth pur ont été effectuées dans le but de comparer les cinétiques d'oxydation du T91 dans les deux milieux Pb-Bi et bismuth pur. Une cinétique globale d'oxydation dans le bismuth pur n'a donc pas été poursuivie : seules quatre durées d'immersion ont été réalisées. Pour chaque durée d'immersion, un ou deux échantillons ont été oxydés.

Le travail en milieu métal liquide nécessite un traitement des échantillons avant analyse ou observation. L'objectif de ce traitement est de retirer les gouttes d'alliage Pb-Bi figées à la surface de la couche d'oxyde lors du retrait l'échantillon de la cuve de l'alliage Pb-Bi liquide. Ce traitement dépend de la technique d'analyse envisagée.

Les techniques d'analyse utilisées lors de cette étude sont précisées en Annexe 7. Le traitement des échantillons après oxydation est explicité en Annexe 8.

3. Nature et structure des couches obtenues dans l'alliage Pb-Bi

Les couches d'oxyde obtenues par oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C présentent toutes une structure duplex observable sur l'image MEB présentée Figure 50. Cette image d'un échantillon de T91 oxydé 7800 heures dans l'alliage Pb-Bi, est celle d'une coupe transverse polie sur laquelle une partie de la couche s'est fracturée. Sur la même image, une partie est donc fracturée et l'autre polie.

La partie fracturée est observée en électrons secondaires afin de mettre en relief la topographie de la couche et la partie polie est observée en électrons rétrodiffusés afin de mettre en évidence la nature chimique de la couche.

Figure 50 : Images obtenues par MEB d'un échantillon de T91 oxydé 7800 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C. La couche est fracturée à un endroit et polie à un autre. La partie fracturée accolée à la partie polie est observée en électrons secondaires et la partie polie en électrons rétrodiffusés. La microstructure duplex de la couche d'oxyde est observable dans les deux modes d'observation.
La Figure 50 montre que les deux couches ont une structure et une composition chimique différentes. La couche interne, au contact du T91, est composée d'éléments plus légers que la couche externe. Tous les spécimens oxydés dans l'alliage Pb-Bi présentent cette microstructure duplex, mise en évidence par les observations MEB. La structure duplex observée lors de nos expérimentations est en accord avec celle observée pour toutes les expériences de la littérature réalisées dans l'alliage Pb-Bi et dans le plomb pur (Chapitre II, paragraphe 2.1). Afin de différencier les phases cristallines présentes, l'échantillon a été analysé par DRX.

3.1. Caractérisation des phases présentes dans les couches d'oxyde formées dans l'alliage Pb-Bi

Afin de mettre en évidence les phases cristallines présentes dans les deux couches d'oxyde, une analyse par diffraction des rayons X a été effectuée sous différents angles d'incidence de faisceau. Le principe de la technique est le suivant : L'échantillon est analysé par diffraction des rayons X sous incidence normale. Le signal obtenu par diffraction des rayons X est dû en grande partie à la diffraction de la matrice de T91 et en second lieu à la diffraction de la globalité de la couche d'oxyde. Afin de s'affranchir du signal de la matrice, l'angle d'incidence α est diminué jusqu'à un angle α_1 correspondant à la disparition du signal de la matrice (voir Figure 51).

Afin de séparer le signal correspondant à la couche supérieure de l’oxyde par rapport à la couche inférieure, l’angle d’incidence est alors encore diminué jusqu’à obtenir une différence de spectre correspondant au signal de la couche externe uniquement.

![Figure 51 : principe de l'analyse DRX, à angle d'incidence variable.](image)

La Figure 52 représente les spectres DRX effectués sous un angle d'incidence égal à 2,3° correspondant à l'angle α_1 de disparition du signal de la matrice et un angle α_2 égal à 0,5°. Ce deuxième angle α_2 correspond à l'angle minimal pour lequel le signal est encore identifiable.

La structure révélée par l’analyse DRX est la même pour l’ensemble de la couche d’oxyde. En effet, mise à part l'atténuation du signal, impliquant une disparition des pics les plus faibles, le spectre RX est identique quel que soit l’angle d’incidence α. Les deux couches d'oxyde ont une structure spinelle identifiée comme étant de la magnétite Fe_3O_4 et/ou de la chromite FeCr_2O_4, les spectres des deux phases étant très proches (Figure 52).
Figure 52 : Spectres RX obtenus par diffraction pour un angle d’incidence de 2,3° et de 0,5° sur un échantillon de T91 oxydé 500 heures dans l’alliage Pb-Bi liquide saturé en oxygène à 470°C.

Il est donc impossible, à partir de cette analyse, de distinguer un changement de phase entre les deux couches d'oxyde.
Cependant, les deux couches d'oxyde sont identifiées comme étant de structure spinelle.

3.2. Caractérisation chimique et structurale des couches d'oxyde formées dans l'alliage Pb-Bi

L'analyse par diffraction des rayons X montre que les deux couches d'oxyde ont une structure spinelle Fe_{3-x}Cr_xO_4 (avec x=0 ou 2). L'analyse chimique de la couche permet d'identifier les spinelles en fonction de leur teneur en chrome. La cartographie MEB de la Figure 53 confirme les résultats obtenus par DRX sur la présence de fer et d'oxygène dans chaque couche d'oxyde.
Cependant, les deux couches se différencient par la localisation des atomes de chrome. Ils se situent uniquement dans couche interne : la couche externe est donc un spinelle de fer pur, appelé magnétite, alors que la couche interne contenant du chrome est un spinelle Fe-Cr.

Figure 53 : Image MEB en électrons rétrodiffusés et cartographies MEB d'un échantillon immergé 3700 heures dans l'alliage Pb Bi. La couche interne au contact du T91 est un oxyde Fe-Cr et la couche externe un oxyde de fer.
Une analyse chimique des couches d’oxyde a ensuite été effectuée par différents types de technique : EDS/MEB, microsonde de Castaing (Figure 62, Figure 66), SDL (Figure 69) et SIMS (Figure 68). Toutes ces techniques sont en accord, la couche interne, au contact du T91, est constituée de fer, de chrome et d’oxygène alors que la couche externe ne comporte que du fer et de l’oxygène.

Le couplage entre la diffraction des rayons X et les techniques d’analyse chimique permet d’identifier les deux couches d’oxyde : la couche interne au contact du T91 est un spinelle Fe$_3$Cr$_x$O$_4$ et la couche externe est la magnétite Fe$_3$O$_4$.

Les deux couches peuvent être caractérisées en détail d’un point de vue structural et chimique.

3.2.1. La couche de magnétite

La couche externe de magnétite est d’une épaisseur attendue par rapport aux épaisseurs obtenues dans la littérature : son épaisseur atteint 16 µm après 7800 heures d’oxydation dans l’alliage Pb-Bi. Visuellement, les deux couches d’oxyde se séparent très distinctement car l’interface spinelle Fe-Cr/magnétite est très régulière et très nette. De plus, les microstructures des deux couches sont très différentes.

La couche de magnétite est constituée de longs grains colonnaire, peu épais, d’une largeur d’environ 1 µm, comme le montre l’image MEB de la Figure 54 réalisée au MEB-FEG.

La microstructure de la couche de magnétite n’est cependant pas homogène sur l’ensemble de la couche. En effet après 270 heures d’oxydation, une double microstructure peut être observée à l’échelle du MEB (Figure 54).

Cette double microstructure comporte :
- de longs grains colonnaire observés sur toutes les imageries MEB à toutes les durées d’immersion,
- de plus petits grains, situés à l’interface spinelle Fe-Cr/magnétite, observables par MEB après de 270 heures d’oxydation.

La Figure 54 met en relief le faciès de ces plus petits grains qui semblent colonnaire mais plus épais, moins longs et qui forment une couche plus dense que celle composée par les longs grains colonnaire.
Cette double microstructure a aussi été mise en évidence par microscopie électronique à transmission sur un échantillon immergé 500 heures dans l'alliage Pb-Bi. Les observations au MET ont été fortement perturbées par la friabilité de la couche d’oxyde empêchant la réalisation d’une lame suffisamment mince pour obtenir une transparence aux électrons sur l’intégralité de la couche.

Deux microstructures de la magnétite ont toutefois été mises en évidence comme le montre la Figure 55.

![Figure 55 : Structure de la couche de magnétite. Image MET d’un échantillon oxydé 500 heures dans l’alliage Pb-Bi liquide à 470°C.](image)

A l’interface spinelle Fe-Cr/magnétite, les grains de magnétite sont équiaxes, d’un diamètre de 50 à 200 nm. Au-dessus de cette fine couche de grains équiaxes, la couche de magnétite à longs grains colonnaire est aussi visualisable sur la Figure 55.

Pour les deux modes d'observation utilisés, deux microstructures sont observables dans la couche de magnétite bien que la plus grande partie de la couche soit constituée de longs grains colonnaire.

Cependant les résultats des observation MEB et MET sont sensiblement différents vis-à-vis de la géométrie des petits grains de magnétite situés au contact du spinelle Fe-Cr. Ces grains semblent équiaxes par observation MET et colonnaire par observation MEB.

Trois arguments nous mènent à considérer que les observations MEB sont plus réalistes que celles effectuées au MET :
- La friabilité de la couche d'oxyde a perturbé notre observation au MET.
- Un seul échantillon a été observé par MET alors que de nombreux échantillons ont été fracturés puis observés par MEB, donnant toujours la même microstructure.
- Contrairement à l'image MET, l'image MEB, effectuée sur une fracture de la couche d'oxyde, met en évidence le relief des grains. Cette mise en relief permet de mieux visualiser la géométrie des grains.
Nous pouvons donc supposer que les deux microstructures sont constituées de grains colonnaire.

Des porosités intragranulaires sont observables dans les longs grains colonnaire (Figure 56 A) et dans les petits grains de magnétite au contact du spinelle Fe-Cr (Figure 56 B).

De plus, la couche de magnétite n’est pas compacte, elle contient de nombreuses cavités (Figure 57). Ces cavités, au sein de la couche, sont observables sur toute la surface de l’échantillon. Elles semblent prendre naissance à l’interface spinelle Fe-Cr/magnétite puis croître dans l’épaisseur de la couche. Ces cavités, dont la taille caractéristique est de l’ordre de quelques microns, n’ont jamais été aperçues dans la couche de spinelle Fe-Cr.

La présence de cavités dans la couche externe de magnétite d’une structure duplex a déjà été observée dans la littérature lors de l’oxydation de fer sous un environnement de O₂ et de CO₂ à 550°C [95]. Les auteurs concluent que ces cavités ne sont ni inter-connectées ni ouvertes sur le milieu oxydant. Ces cavités ne peuvent donc pas former de réseau de courts-circuits de diffusion pour permettre à l’oxydant de diffuser plus rapidement dans la couche.
Nos observations sont en accord avec ces conclusions car ces cavités ne contiennent ni plomb ni bismuth : le milieu oxydant n'a donc pas pénétré à l'intérieur des cavités.

La porosité de la couche de magnétite est aussi mise en évidence par une pénétration de plomb. En effet, des pénétrations de plomb sont révélées par la multitude de points blancs visualisables dans la couche de magnétite sur l'image MEB en électrons rétrodiffusés de la Figure 58. La présence de plomb à l'intérieur de la couche a été mise en évidence via différentes techniques et fait l'objet du paragraphe 5.

Figure 58 : Image MEB en électrons rétrodiffusés d'une coupe transverse polie d'un échantillon de T91 oxydé 3700 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C.

Parfois des nodules de plusieurs microns comportant de l'aluminium, du silicium et de l'oxygène sont observés dans la couche de magnétite (Figure 59). Aucun nodule n'a été remarqué dans la couche de spinelle Fe-Cr.

Ces nodules sont sphériques. Leur géométrie, leur taille et leur composition sont différentes des inclusions d'alumine observées dans le T91 (voir paragraphe 2.1). Les rapports de concentration moyens, obtenus par analyse microsonde, sont de 3,6 entre l'oxygène et le silicium, 3,9 entre l'oxygène et l'aluminium et 1,1 entre le silicium et l'aluminium (Figure 60). Le seul oxyde connu dont la stoïchiométrie est proche des ces rapports est l'oxyde Al₂Si₂O₇.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Figure 59 : Fracture observée au MEB-FEG en électrons secondaires d'un échantillon de T91 immergé 3700 heures dans l'alliage Pb Bi.

Figure 60 : Analyse par microsonde électronique de Castaing des nodules Al-O-Si présents au sein de la couche de magnétite. L'analyse quantitative met en évidence la présence de l'oxyde $\text{Al}_2\text{Si}_2\text{O}_7$.

3.2.2. La couche de spinelle Fe-Cr

L'épaisseur de la couche de spinelle Fe-Cr est du même ordre de grandeur que celle de la magnétite. Cette épaisseur est environ égale à 14 µm après 7800 heures d’immersion dans l’alliage Pb-Bi. Le rapport d'épaisseur de la couche de magnétite sur celle de spinelle Fe-Cr est relativement constant sur l'ensemble des essais d'oxydation réalisés et égal à 1,25.

La couche de spinelle Fe-Cr est constituée de petits grains équiaxes d'environ 30 nm de diamètre comme le montre l'image réalisée au MEB-FEG à fort grandissement, présentée Figure 61.
La couche de spinelle Fe-Cr semble dense, exempte de porosités et de fissures (Figure 58, Figure 54). Mais cette homogénéité n’est qu’apparente car des pénétrations de plomb ont été observées sur les profils microsonde (Figure 62, Figure 66). Cette pénétration d’éléments métalliques du milieu oxydant dans la couche de spinelle Fe-Cr jusqu’à l’interface interne sera détaillée dans le paragraphe 5.

L’imagerie MEB et l’analyse chimique par microsonde permettent de détailler la morphologie de la couche de spinelle Fe-Cr. La stœchiométrie de la couche interne de spinelle Fe-Cr, qui a été déterminée par microsonde, est en moyenne Fe$_{2.34}$Cr$_{0.66}$O$_4$ (Figure 62). Elle reste constante à travers la couche de spinelle et au cours du temps pour tous les essais d’oxydation.

Figure 61 : Fracture observée par MEB-FEG en électrons secondaires. Structure de la couche de Fe-Cr spinelle : petits grains équiaxes d’environ 30 nm de diamètre.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Figure 62 : Profil de concentrations obtenu par analyse microsonde sur section transverse polie d'un échantillon de T91 immergé 6500 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C. La stoechiométrie du spinelle Fe-Cr calculée à partir des données de ce profil et des autres, obtenus dans les mêmes conditions pour différentes durées d'immersions, est $\text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4$.

Des ségrégations de chrome sont observées dans la couche de spinelle Fe-Cr. Sur les images MEB en électrons rétrodiffusés (Figure 63), ces ségrégations sont représentées par les lignes noires dans la couche de spinelle Fe-Cr. Elles semblent prendre naissance à l'interface T91/spinelle Fe-Cr et restent présentes dans la couche de spinelle Fe-Cr bien que leur importance diminue à l'approche de la couche de magnétite.

Une analyse EDS de ces ségrégations montre aussi la présence d'oxygène. Cependant, la poire d'analyse étant plus large que la taille de ces ségrégations, la présence d'oxygène peut être due à l'oxyde environnant.

Toutefois, la formation, dans une couche d'oxyde, de ségrégations de chrome non oxydée, alors que l'oxyde de chrome et les spinelles Fe-Cr sont stables, semble improbable. Nous pouvons donc attribuer ces ségrégations à un oxyde de chrome ou un oxyde fer-chrome riche en chrome.

Une légère oxydation interne peut être supposée car l'interface T91/spinelle Fe-Cr est fortement irrégulière et recouverte d'une même ligne noire discontinue, attribuée par les analyses EDS à des précipitations d'oxyde enrichi en chrome. De plus une nette oxydation interne a été mise en évidence par la littérature [15] lors d'essais d'oxydation du T91 à 600°C.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Figure 63 : Image MEB en électrons rétrodiffusés d'une coupe transverse polie d'un échantillon de T91 oxydé 3700 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C.

Ces ségrégations ont aussi été mises en évidence par cartographies EDS (Figure 64) dans la partie du spinelle Fe-Cr proche du T91.

Figure 64 : Cartographie MEB d'une section polie transverse d'un échantillon de T91 immergé 3700 heures dans l'alliage Pb-Bi saturé en oxygène. Des précipitations d'oxyde enrichi en chrome sont observables dans la couche de spinelle Fe-Cr.
Les cartographies de la Figure 64 montrent en effet que les lignes noires de l'image en électrons rétrodiffusés correspondent à des zones enrichies en chrome et appauvries en fer. La cartographie de l’oxygène est homogène. On peut donc supposer que ces lignes noires enrichies en chrome correspondent à des précipitations d’oxyde enrichi en chrome. Toutefois, l’oxygène étant un élément nettement plus léger que les autres, sa détection est moins précise et la taille des précipités pourrait être inférieure à la précision latérale de l’analyse.

La présence de chrome non oxydé à l’intérieur d’une couche d’oxyde étant cependant improbable, les lignes noires observées sur les images MEB en électrons rétrodiffusés peuvent être attribuées à des précipitations d’oxyde enrichi en chrome.

Tous nos essais d’oxydation dans l’alliage Pb-Bi mènent à des couches d’oxyde identiques à celles décrites dans la littérature pour l’oxydation du T91 dans l’alliage Pb-Bi à 470°C et très similaires à celles obtenues par oxydation d’aciers Fe-Cr dans les environnements gazeux CO₂ et vapeur d’eau ainsi que dans l’eau sous pression, aux mêmes températures.

4. Nature et structure des couches obtenues par oxydation dans le bismuth pur

Les oxydations du T91 dans un environnement bismuth liquide mènent à la même microstructure et à la même nature des couches d’oxyde que celles formées dans l’alliage Pb-Bi.

La couche d’oxyde est duplex, constituée d’une couche de spinelle Fe-Cr au contact du T91 et d’une couche externe de magnétite. Le rapport d’épaisseur des deux couches est égal à 1 et reste constant tout au long du processus d’oxydation.

La couche de magnétite est constituée des mêmes longs grains colonnaires et l’ensemble des caractéristiques de la couche de magnétite formée dans l’alliage Pb-Bi sont aussi observables pour la couche de magnétite formée sous bismuth pur.

Cependant, certaines différences sont notables dans le cas de l’oxydation dans un environnement bismuth pur :

− La couche de magnétite semble encore moins compacte que celle formée dans l’alliage Pb-Bi.
− Les cavités visualisées dans la couche de magnétite, formée dans l’alliage Pb-Bi, sont aussi observables dans la couche de magnétite formée dans le bismuth pur. Elles sont cependant plus nombreuses mais de plus petite taille. Un chapelet de ces petites cavités se forme ainsi à l’interface spinelle Fe-Cr/magnétite.
− Les nodules d’oxyde Al₂Si₂O₇ sont aussi observés dans la couche de magnétite formée dans le bismuth pur. Cependant, leur apparition est plus rapide et ils sont moins nombreux.
− Une pénétration de bismuth est observable dans la couche (zones blanches sur la Figure 65 A et B)
− La pénétration de bismuth est encore plus visible que celle de plomb dans la couche de magnétite dont la croissance s’est effectuée dans un milieu Pb-Bi.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

La couche de spinelle Fe-Cr formée dans le bismuth pur présente les mêmes caractéristiques que celle formée dans l'alliage Pb-Bi. Elle est constituée de petits grains équiaxes. La stœchiométrie du spinelle Fe-Cr est la même, Fe$_{2.34}$Cr$_{0.66}$O$_4$ (Figure 66), et reste aussi identique pour tous les essais d'oxydation.

De mêmes précipitations d'oxyde enrichi en chrome sont observables dans la couche de spinelle Fe-Cr et à l'interface spinelle Fe-Cr/T91.

Pour conclure, les couches d'oxyde formées dans le bismuth pur sont en tous points similaires à celles formées dans l'alliage Pb-Bi à l'exception que seule une pénétration de plomb est observable dans les couches formées dans l'alliage Pb-Bi alors qu'une pénétration de bismuth est observable dans les couches formées sous bismuth pur.
5. Pénétration de plomb et de bismuth dans les couches d'oxyde

Comme il a été présenté précédemment, des pénétrations de plomb ont été observées par MEB (Figure 58) dans la couche de magnétite et ont été détectées par microsonde (Figure 62) dans la couche de magnétite mais aussi dans la couche de spinelle Fe-Cr. La photographie MEB de la Figure 67 montre des pénétrations microscopiques de plomb dans la couche de magnétite.

![Image MEB en électrons secondaires d'une fracture transverse d'un échantillon de T91 oxydé 270 heures dans l'alliage Pb-Bi saturé en oxygène.](image)

L'analyse SIMS des couches (Figure 68) montre que dans le cas des échantillons oxydés dans l'alliage Pb-Bi, une pénétration de plomb est aussi détectée dans la couche de spinelle Fe-Cr, jusqu'à l'interface T91/spinelle Fe-Cr. Toutefois aucune présence de bismuth n'est décelée ni dans la couche de magnétite, ni dans la couche de spinelle Fe-Cr lors de l'oxydation dans l'alliage Pb-Bi.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Dans le cas des essais réalisés en milieu bismuth pur, les analyses SDL des échantillons oxydés (Figure 69) révèlent la présence de bismuth dans la couche de magnétite mais aussi dans la couche de spinelle Fe-Cr jusqu'à l'interface T91/spinelle Fe-Cr.

Lors des essais d'oxydation dans l'alliage Pb-Bi, l'alliage liquide ne pénètre donc pas uniformément dans la couche d'oxyde : seul le plomb pénètre dans la couche (voir Figure 62 et Figure 68). Pourtant lors des essais d'oxydation dans le bismuth pur, une pénétration de bismuth (Figure 69) est observée dans les deux couches.
On peut donc conclure que le bismuth pénètre à l'intérieur des couches d'oxyde lorsqu'il n'est pas allié avec le plomb. Ce phénomène sera discuté au paragraphe 4.1 du quatrième chapitre de cette étude.

6. Discussion sur les couches d'oxyde observées

6.1. Traçage d'un diagramme d'Ellingham

La détermination de la stœchiométrie du spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$, formé par oxydation du T91 dans l'alliage Pb-Bi et le bismuth, permet de le situer dans un diagramme d'Ellingham.

Dans le but de tracer un diagramme d'Ellingham correspondant à nos conditions d'étude, les activités des espèces métalliques seront considérées égales à leur fraction molaire (convention en solution idéale) dans le T91 (Tableau 9), exceptées pour le plomb et le bismuth dont les activités seront prises égale à celles dans l'eutectique Pb-Bi et données par la littérature [19].

<table>
<thead>
<tr>
<th>Elément</th>
<th>Fe</th>
<th>Cr</th>
<th>Si</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction molaire dans de T91</td>
<td>0,9</td>
<td>0,09</td>
<td>0,014</td>
<td>2x10^{-4}</td>
</tr>
</tbody>
</table>

Tableau 9 : Fraction molaire des constituants du T91 obtenus par le rapport d'analyse du fournisseur Creusot-Loire ou par les analyses microsonde.

Déterminons dans un premier temps l'enthalpie libre de formation du spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$. Dans la couche de spinelle Fe-Cr, le spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$ est en équilibre avec les phases Fe$_3$O$_4$ et FeCr$_2$O$_4$. Considérons ainsi les réactions suivantes :

$$0,67Fe_3O_4+0,33FeCr_2O_4 = Fe_{2.34}Cr_{0.66}O_4$$

$$0,66Cr+2,34Fe+2O_2 = Fe_{2.34}Cr_{0.66}O_4$$

A l'équilibre, la réaction (1) donne :

$$\Delta G_f^0(Fe_{2.34}Cr_{0.66}O_4) + RT \ln(Fe_{2.34}Cr_{0.66}O_4) = 0,33\Delta G_f^0(FeCr_2O_4) + 0,67\Delta G_f^0(Fe_3O_4)$$

$$+ RT(0,33\ln(FeCr_2O_4) + 0,67\ln(Fe_3O_4))$$

L'activité de Fe$_{2.34}$Cr$_{0.66}$O$_4$ est égale à 1 dans la couche d'oxyde constituée du spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$, et les activités respectives de Fe$_3$O$_4$ et FeCr$_2$O$_4$ sont prises égales à leurs fractions molaires (0,67 et 0,33) en supposant une solution idéale. La relation devient donc :

$$\Delta G_f^0(Fe_{2.34}Cr_{0.66}O_4) = -1219,6 + 0,319T(\degree K) \text{ kJ/mol}$$

L'équilibre (2) permet de calculer, en fonction des activités des différents constituants, l'activité en oxygène nécessaire pour que le spinelle Fe-Cr se forme :

$$RT \ln(a_{O_2}) = \frac{1}{2}(\Delta G_f^0(Fe_{2.34}Cr_{0.66}O_4) - 0,66RT \ln(a_{Fe}) - 2,34RT \ln(a_{Cr}))$$

avec $a_{O_2} = \frac{P_{O_2}}{P_o^0}$ et $P_o^0 = 1 \text{ atm}$.

L'activité en oxygène en équilibre avec la formation des autres oxydes M_xO_{2y} présentés sur le diagramme d'Ellingham est obtenue par la relation générique suivante :

$$xM+yO_2 \rightleftharpoons M_xO_{2y}$$
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

\[RT \ln(a_{O_2}) = \frac{1}{y} (\Delta G_f^0 (M_xO_{2y}) - xRT \ln(a_{O_2})) \]

Les enthalpies de formation des oxydes sont données par la littérature \[23\][40].

Le diagramme d'Ellingham représenté sur la Figure 70 peut être tracé par l'intermédiaire du calcul des différentes activités en oxygène nécessaires à la formation des différents oxydes.

![Figure 70 : Diagramme d'Ellingham réalisé à partir des données de la littérature][23][40] et considérant les activités des espèces métalliques égales à leur fraction molaire dans l'acier T91 exceptées pour le plomb et le bismuth dont les activités sont celle dans l'eutectique Pb-Bi et données par la littérature \[19\].

Ce diagramme d'Ellingham met en évidence l'activité de l'oxygène nécessaire à la formation des différents oxydes à partir des éléments présents et de leurs concentrations dans le T91 et le milieu oxydant.

Nous avons précédemment noté (Introduction, paragraphe 4.2) que le régime d'oxydation du T91 dans l'alliage Pb-Bi commence pour une teneur en oxygène correspondant à celle nécessaire à la formation de la magnétite. Cependant, la présence d'une couche de spinelle Fe_{2,34}Cr_{0,66}O_{4} en contact avec le T91 suppose que l'activité en oxygène à l'interface T91/oxyde est supérieure ou égale à la valeur calculée thermodynamiquement, nécessaire à la formation de notre spinelle Fe-Cr (P_{O_2}=5,4x10^{-36} atm). Ceci n'explique pas l'obtention du régime d'oxydation à partir de la formation de magnétite car six ordres de grandeur séparent encore la valeur de la pression partielle en oxygène nécessaire à la formation de la magnétite (P_{O_2}=7,5x10^{-31} atm) à celle nécessaire à la formation du spinelle Fe_{2,34}Cr_{0,66}O_{4} (P_{O_2}=5,4x10^{-36} atm). Il semblerait donc qu'une formation de magnétite précède, ou au moins, est nécessaire à la formation du spinelle Fe_{2,34}Cr_{0,66}O_{4}. Afin de comprendre en quoi le seuil du régime d'oxydation est lié à la pression partielle en oxygène nécessaire la formation de magnétite, une ébauche d'explication sera donnée au Chapitre V, paragraphe 3.3.3.1.2.

Par ailleurs, au sein du T91 l'activité de l'oxygène doit être comprise entre l'activité de l'oxygène nécessaire à la précipitation de l'alumine et celle nécessaire à la formation du composé Al_2Si_2O_7 qui n'est pas observé dans la matrice de T91.
6.2. Présence de nodules Al-O-Si dans la couche de magnétite

Des nodules de l'oxyde Al$_2$Si$_2$O$_7$ ont été observés dans la couche externe de magnétite à partir de 3700 heures d'immersion dans l'alliage Pb-Bi. Pour les essais de plus courte durée, aucun nodule n'est observé par MEB. Leur formation à l'échelle microscopique a donc nécessairement eu lieu entre 2400 heures d'immersion (durée de l'essai le plus long pour lequel on n'observe pas encore de nodule) et 3700 heures d'immersion.

L'apparition tardive de ces nodules et leur absence dans la couche de spinelle Fe-Cr permet de supposer le processus de formation suivant :

Les inclusions d'alumine présentes dans le T91 (voir paragraphe 2.1) peuvent se dissoudre dans la couche de spinelle Fe-Cr par incorporation d'ions Al$^{3+}$ dans les sites cationiques (III) du réseau spinelle. Parallèlement le silicium présent dans le T91, sous forme SiO$_2$ ou Si en solution solide, diffuse dans la couche de spinelle.

Cette dissolution de l'alumine suivie d'une diffusion du silicium et de l'aluminium dans la couche de spinelle Fe-Cr est possible si le système est thermodynamiquement plus stable en solution solide que par précipitation de Al$_2$Si$_2$O$_7$ ou si la vitesse de précipitation est très lente.

Supposons que le phénomène soit régi par les lois thermodynamiques (toutes les réactions sont considérées comme rapides et donc à l'équilibre). L'oxyde Al$_2$Si$_2$O$_7$ ne précipite pas dans la couche de spinelle Fe-Cr si le système Fe$_{3-x-y}$Cr$_y$Al$_x$O$_4$ + SiO$_2$ est plus stable que le système Fe$_{2,34}$Cr$_{0,66}$O$_4$ + Al$_2$Si$_2$O$_7$.

En revanche, l'oxyde Al$_2$Si$_2$O$_7$ précipite dans la couche de magnétite si le système Fe$_{3}$O$_4$ + Al$_2$Si$_2$O$_7$ est plus stable qu'une solution solide Fe$_{3-x}$Al$_x$O$_4$ + SiO$_2$. Dans ce cas, l'aluminium et le silicium dissous dans le spinelle Fe-Cr précipitent lorsqu'ils parviennent à l'interface spinelle Fe-Cr/magnétite.

Cette proposition permettrait d'expliquer la présence de ces nodules seulement dans la couche de magnétite, dont la stabilité thermodynamique est moindre que celle de spinelle Fe-Cr. De plus le retard d'apparition des nodules correspondrait au temps nécessaire à la diffusion de l'aluminium et du silicium à travers la couche de spinelle Fe-Cr.

La stabilité relative des systèmes peut être calculée à partir de données thermodynamiques de la littérature et de celles calculées dans le paragraphe précédent. L'enthalpie libre de chaque système peut être calculée.

Considérons pour chaque élément ou chaque phase que leur activité correspond à leur fraction molaire en solution (convention en solution idéale).

Le calcul de la stabilité relative du système Fe$_{2,34}$Cr$_{0,66}$O$_4$ + Al$_2$Si$_2$O$_7$ par rapport au système Fe$_{3-x-y}$Cr$_y$Al$_x$O$_4$ + SiO$_2$ est effectué dans le Tableau 10.

Celui de la stabilité du système Fe$_{3}$O$_4$ + Al$_2$Si$_2$O$_7$ par rapport au système Fe$_{3-x}$Al$_x$O$_4$ + SiO$_2$ est réalisé dans le Tableau 11.
Des analyses microsonde du T91 quantifient à 2×10^{-4} la fraction molaire de l'aluminium. Cette valeur est en accord avec la valeur (6×10^{-5} % massique) donnée par l'expertise du fournisseur (Creusot-Loire).

Considérons d'abord que l'aluminium présent initialement dans le T91 sous forme Al_2O_3 se dissout en solution solide dans le spinelle Fe-Cr. La réaction de dissolution est donc :

$$x\text{Al}_2\text{O}_3 + y\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4 + z\text{Fe} = \text{Fe}_{2.34y+z}\text{Cr}_{0.66y}\text{Al}_{2x}\text{O}_4$$

avec $x=10^{-4}$; $y=0.999925$ et $z=2.5 \times 10^{-5}$

L'enthalpie libre standard de formation du composé $\text{Fe}_{2.34y+z}\text{Cr}_{0.66y}\text{Al}_{2x}\text{O}_4$ peut donc se déduire des enthalpies libre de chaque composé :

$$\Delta G_f^o(\text{Fe}_{2.34y+z}\text{Cr}_{0.66y}\text{Al}_{2x}\text{O}_4) = z\Delta G_f^o(\text{Fe}) + y\Delta G_f^o(\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4) + x\Delta G_f^o(\text{Al}_2\text{O}_3)$$

+RT($z\ln(z)+x\ln(x)$)

Les valeurs des enthalpies libres à 470°C des composés définis sont données par la littérature [23] :

$$\Delta G_f^o(\text{Fe})=-26,78 \text{ kJ/mol}$$
$$\Delta G_f^o(\text{Al}_2\text{O}_3)=-1441,927 \text{ kJ/mol}$$

L'enthalpie libre du spinelle Fe-Cr a été calculée dans le paragraphe précédent (6.1) :

$$\Delta G_f^o(\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4)=-948,25 \text{kJ/mol}$$

Il en résulte :

$$\Delta G_f^o(\text{Fe}_{2.34y+z}\text{Cr}_{0.66y}\text{Al}_{2x}\text{O}_4)=-984,402 \text{kJ/mol}$$

L'aluminium se dissout effectivement dans le spinelle Fe-Cr sans précipitation de $\text{Al}_2\text{Si}_2\text{O}_7$ si l'énergie du système $\text{SiO}_2 + \text{Fe}_{2.34y+z}\text{Cr}_{0.66y}\text{Al}_{2x}\text{O}_4$ est inférieure à celle du système $\text{Al}_2\text{Si}_2\text{O}_7 + \text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4$. Calculons donc la différence d'enthalpie libre pour la réaction suivante :

$$2\text{SiO}_2 + \text{Fe}_{2.34y+z}\text{Cr}_{0.66y}\text{Al}_{2x}\text{O}_4 = x\text{Al}_2\text{Si}_2\text{O}_7 + z\text{Fe} + \text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4$$

La différence d'enthalpie libre entre les deux systèmes est :

$$\Delta G = z\Delta G_f^o(\text{Fe}) + \Delta G_f^o(\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4) + x\Delta G_f^o(\text{Al}_2\text{Si}_2\text{O}_7) - 2x\Delta G_f^o(\text{SiO}_2)$$

$$\Delta G_f^o(\text{Al}_2\text{Si}_2\text{O}_7)=-2846,258 \text{kJ/mol}$$

$$\Delta G_f^o(\text{Al}_2\text{Si}_2\text{O}_7)=-775,509 \text{kJ/mol}$$

Il en résulte :

$$\Delta G = 27 \text{ J/mol}.$$
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Tableau 11 : Calcul de la stabilité du système Fe₃O₄ + Al₂Si₂O₇ par rapport au système Fe₃₋₂ₓAlₓO₄ + SiO₂.

La différence d'enthalpie libre entre Fe₃₋₂ₓAlₓO₄ + SiO₂ et Fe₃O₄ + Al₂Si₂O₇ est sensiblement négative (ΔG= -34.5 J/mol). La précipitation du nodule Al₂Si₂O₇ est donc à priori favorisée face à la formation d'un spinelle Fe-Al (dissolution de Al dans la magnétite). La précipitation de l'oxyde Al₂Si₂O₇ dans la couche de magnétite est ainsi justifiée.

Il est important de noter que les différences d'enthalpies libres (ΔG= 27 J/mol et ΔG= -34.5 J/mol) entre chacun des deux systèmes sont très faibles. Nous ne pouvons donc pas certifier la non précipitation du composé Al₂Si₂O₇ dans la couche de spinelle Fe-Cr ainsi que sa précipitation dans la couche de magnétite. Il est possible que d'autres données thermodynamiques inversent la conclusion de ce calcul. De plus, ces hypothèses ne reposent que sur des considérations thermodynamiques sans prise en compte des facteurs cinétiques.

Même si ces résultats sont équivoques, ces considérations thermodynamiques corroborent la proposition suggérée : les nodules de Al₂Si₂O₇ peuvent se former dans la couche de magnétite car le système semble légèrement plus stable lorsque Al₂Si₂O₇ précipite. En revanche, pour la raison inverse, l'aluminium pourrait resté dissous dans le spinelle Fe-Cr sans précipitation de Al₂Si₂O₇. La durée d'oxydation correspondant à l'apparition microscopique des premiers nodules serait alors équivalente à la durée nécessaire à la diffusion de l'aluminium et du silicium à travers la couche de spinelle Fe-Cr.
7. Cinétiques d'oxydation expérimentales obtenues dans l'alliage Pb-Bi et le bismuth pur

Les épaisseurs de couche d'oxyde obtenues expérimentalement par oxydation du T91 dans l'alliage Pb-Bi et dans le bismuth pur saturés en oxygène à 470°C sont représentées, en fonction du temps, sur la Figure 71. Ces épaisseurs ont été déterminées par observation MEB. Chaque point du graphique correspond à l'oxydation d'un échantillon. Sur chaque échantillon plusieurs mesures sont réalisées dont la moyenne est présentée sur le graphique Figure 71.

Ce graphique montre que la vitesse d'oxydation des échantillons de T91 oxydés dans le bismuth pur est supérieure à deux fois celle obtenue dans l'alliage Pb-Bi.

Les épaisseurs des couches d'oxyde sont égales à 15 µm pour 310 heures d'oxydation dans le bismuth pur et à 14 µm pour 2400 heures d'oxydation dans l'alliage Pb-Bi. Les épaisseurs des couches obtenues dans l'alliage Pb-Bi sont conformes à celles de la littérature (Chapitre II paragraphe 2.2).

L'erreur effectuée sur la mesure correspond à l'erreur de mesure effectuée sur les images MEB. Nous estimons à 5% la valeur de cette erreur. Cette valeur prend en considération l'utilisation du MEB-FEG pour l'observation des couches de faibles épaisseurs et le MEB "classique" pour les couches d'épaisseurs plus importantes.

Figure 71 : Cinétique de croissance des couches d'oxyde formées sous environnement Pb-Bi et le bismuth pur saturés en oxygène à 470°C. Une loi parabolique peut être ajustée sur ces points expérimentaux. La constante parabolique obtenue vaut $3 \times 10^{-13} \text{ cm}^2/\text{s}$ pour une oxydation dans l'alliage Pb-Bi et $1,7 \times 10^{-12} \text{ cm}^2/\text{s}$ pour une oxydation dans le bismuth pur.

Une dispersion relativement importante est observable sur les points expérimentaux de la Figure 71.
Pour chaque milieu oxydant, Pb-Bi et bismuth pur, une loi parabolique \((h^2 = K_p t) \), est ajustable sur les points expérimentaux.

Les constantes paraboliques \(K_p \), obtenues par ajustement de la loi parabolique sur les points expérimentaux par la méthode des moindres carrés, sont égales à :
- \(3 \times 10^{-13} \text{ cm}^2/\text{s} \) pour la cinétique de croissance de la couche globale formée par oxydation du T91 dans l'alliage Pb-Bi,
- \(1,7 \times 10^{-12} \text{ cm}^2/\text{s} \) pour celle obtenue dans le bismuth pur.

La constante parabolique obtenue dans l'alliage Pb-Bi est proche de celle de la littérature pour l'alliage Pb-Bi saturé en oxygène à 470°C (\(4,5 \times 10^{-13} \text{ cm}^2/\text{s} \)).

Cette valeur est aussi très proche de celles obtenues par oxydation d'aciers Fe-9Cr dans l'eau et la vapeur d'eau. Ces valeurs sont comprises entre \(9,3 \times 10^{-14} \) et \(7,4 \times 10^{-13} \text{ cm}^2/\text{s} \) pour un intervalle de températures de 450 à 500°C [72][71][73][74].

En considérant les hypothèses de Wagner, l'ajustement d'une loi parabolique sur les points expérimentaux peut correspondre à un contrôle de la cinétique d'oxydation par un processus diffusionnel.

La globalité de ce processus peut donc être régie par la diffusion des espèces oxygène, fer et chrome.

Cependant, le mécanisme d'oxydation peut être différent pour la couche de magnétite et pour la couche de spinelle Fe-Cr. La cinétique de croissance propre à chaque couche d'oxyde doit donc être caractérisée.

La Figure 72 présente les cinétiques expérimentales de croissance des couches de spinelle Fe-Cr et de magnétite dans les environnements Pb-Bi et bismuth pur.

Pour les points expérimentaux de chaque couche, nous estimons à 10% l'erreur effectuée sur la mesure. En effet, toutes les épaisseurs ont été mesurées à partir d'images MEB en électrons rétrodiffusés. Sur ces images, la nuance de gris de la couche de spinelle Fe-Cr dépasse parfois la limite de cette couche et la base de la couche de magnétite peut être sensiblement de la même nuance. Aussi pour de longues durées d'oxydation l'épaisseur de la couche de spinelle Fe-Cr est-elle légèrement surestimée.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Les graphiques de la Figure 72 montrent que chaque couche d'oxyde, spinelle Fe-Cr et magnétite, suit une croissance parabolique quel que soit le milieu métal liquide oxydant, Pb-Bi ou bismuth pur.

Les constantes paraboliques obtenues par la méthode des moindres carrés sont :
- \(4,2 \times 10^{-13} \text{ cm}^2/\text{s}\) pour les deux couches d'oxyde formées dans le bismuth pur,
- \(6,5 \times 10^{-14} \text{ cm}^2/\text{s}\) et \(8 \times 10^{-14} \text{ cm}^2/\text{s}\) pour la couche de spinelle Fe-Cr et la couche de magnétite formées dans l'alliage Pb-Bi.

Les constantes paraboliques des couches de spinelle Fe-Cr et de magnétite obtenues lors de ces essais sont très proches.

En effet le rapport d'épaisseur expérimental de la couche de magnétite sur celle de spinelle Fe-Cr est égal à 1,25 pour l'environnement oxydant Pb-Bi et 1 pour le bismuth pur. Ce rapport est sensiblement constant tout au long du processus d'oxydation.

Ces différentes observations permettent de souligner les deux points essentiels suivants :

- La croissance de chacune des couches, spinelle Fe-Cr et magnétite, formées en milieu Pb-Bi ou bismuth pur, semble être régie par un processus diffusionnel.

Le mécanisme global d'oxydation du T91 dans l'alliage Pb-Bi et dans le bismuth pur peut être contrôlé par un processus diffusionnel qui peut être séparé en deux processus diffusionnels distincts :

- processus diffusionnel gouvernant la croissance du spinelle Fe-Cr,
- processus diffusionnel gouvernant la croissance de la magnétite.
Les vitesses de croissance voisines ou égales de la couche de spinelle Fe-Cr et de la couche de magnétite nous conduisent à penser que les mécanismes d'oxydation de ces deux couches sont similaires ou liés.

En conclusion, la compréhension globale du mécanisme d'oxydation nécessitera donc une compréhension du mécanisme de croissance de chaque couche d'oxyde indépendamment l'une de l'autre. Plus précisément, elle revient à déterminer l'espace diffusante responsable de la cinétique de croissance de chaque couche, spinelle Fe-Cr et magnétite, et à caractériser le mode de diffusion de cette espèce.

8. Localisation des interfaces de croissance dans l'alliage Pb-Bi

Dans le but de localiser les interfaces de croissance de la couche d'oxyde dans un environnement Pb-Bi, des oxydations ont été effectuées sous traceur 18O et des oxydations successives ont été effectuées dans différents métaux liquides, Pb-Bi puis bismuth.

Les expériences réalisées sous traceurs d'oxygène 18 seront présentées dans une première partie. Les résultats obtenus par ces expériences seront ensuite vérifiés par des expériences d'oxydation successives effectuées dans l'alliage Pb-Bi puis dans le bismuth pur.

8.1. Expériences de traceurs 18O -16O

Des oxydations successives sont réalisées sur un même échantillon de T91 avec des isotopes différents de l'oxygène. L'oxyde croissant dans le milieu oxydant est marqué par la présence de l'isotope de l'oxygène du milieu correspondant. Sachant que deux oxydations sont réalisées, la couche d'oxyde formée peut être "découpée" en plusieurs parties, chacune marquée par un isotope de l'oxygène. En fonction de l'ordre des oxydations puis de l'ordre dans lequel on retrouve, par analyse SIMS, les différents isotopes de l'oxygène, les interfaces de croissance des oxydes peuvent être localisés.

Les isotopes de l'oxygène utilisés sont les isotopes 16 et 18. Deux séquences d'oxydation successives ont été réalisées dans des environnements Pb-Bi saturés en oxygène 16O (saturation de l'alliage à l'air sec reconstitué FID) ou saturés par un mélange 18O -16O.

8.1.1. Résultats expérimentaux

Les deux séquençages effectués sont représentés sur la Figure 73 : pour chaque séquence, deux oxydations en milieux Pb-Bi saturé en oxygène 16 ou 18 se suivent. Les échantillons sont refroidis entre les deux oxydations. Afin d'évaluer l'influence du refroidissement sur la cinétique d'oxydation, des essais d'oxydations successives, séparées par une étape de refroidissement sous argon U, ont été réalisés dans le même alliage Pb-Bi liquide saturé à l'air sec reconstitué FID. Ces expériences ont montré que le refroidissement des échantillons n'impacte pas la cinétique d'oxydation. C'est pourquoi nous pouvons considérer que le mécanisme d'oxydation du T91 ne sera pas perturbé par le refroidissement des échantillons.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Les séquences sont les suivantes :

- La première séquence d'oxydation consiste à oxyder le même échantillon de T91 successivement dans un environnement Pb-Bi saturé en oxygène par un mélange $^{18}O - ^{16}O$ puis dans un environnement Pb-Bi saturé en oxygène ^{16}O :
 - La première oxydation a été réalisée dans l'alliage Pb-Bi saturé en oxygène par le mélange $^{18}O - ^{16}O$ pendant 25 heures à 470°C.
 - La deuxième oxydation a été réalisée avec le même échantillon de T91 pendant 50 heures à 470°C dans l'alliage Pb-Bi saturé en oxygène ^{16}O. L'échantillon a ensuite été analysé par SIMS (Figure 74).

- La deuxième séquence est réalisée en inversant l'ordre des oxydations :
 - La première oxydation a été réalisée dans l'alliage Pb-Bi saturé en oxygène ^{16}O, pendant 50 heures, à 470°C.
 - La deuxième oxydation a été menée avec le même échantillon dans l'alliage Pb-Bi saturé en oxygène par le mélange $^{18}O - ^{16}O$, pendant 25 heures, à 470°C. Les résultats SIMS de cette deuxième séquence sont présentés sur la Figure 75.
Figure 74 : Analyse SIMS de la séquence 1 d’oxydation successives menée dans l’alliage Pb-Bi à 470°C. Une première oxydation dans l’alliage Pb-Bi saturé en oxygène par un mélange 18O-16O pendant 25 heures est suivie d’une deuxième oxydation dans l’alliage Pb-Bi saturé en oxygène 16 pendant 50 heures. Echelle logarithmique.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

8.1.2. Analyse des résultats

La Figure 74 montre que l'oxyde formé en premier, dans l'alliage Pb-Bi saturé en mélange 18O - 16O, est marqué par un enrichissement en 18O : il se situe dans la partie centrale de la couche d'oxyde. Inversement, l'oxyde le plus "jeune", formé pendant la deuxième phase de la séquence, est marqué par une diminution de l'intensité du signal correspondant à l'oxygène 18O et une augmentation de l'intensité du signal correspondant à la masse d'oxygène 16O : cet oxyde est localisé à l'interface T91/spinelle Fe-Cr pour le spinelle Fe-Cr et à l'interface magnétite/Pb-Bi pour la magnétite.

L'expérience inverse (séquence 2) confirme les résultats : l'oxyde le plus "ancien", oxydé dans l'alliage Pb-Bi saturé en 16O, est localisé dans la partie centrale de l'oxyde alors que l'oxyde le plus "jeune", oxydé dans l'alliage Pb-Bi saturé en 18O - 16O, se situe à l'interface interne pour le spinelle Fe-Cr et à l'interface externe pour la magnétite (Figure 75).

Ces expériences de traceurs montrent que la couche de magnétite croît à l'interface externe, magnétite /Pb-Bi, alors que la couche de spinelle Fe-Cr croît à l'interface interne, spinelle Fe-Cr/T91.

Nous pouvons cependant remarquer, sur la Figure 75, l'existence d'un faible épaulement d'oxygène 18 à l'interface spinelle Fe-Cr/magnétite.
Deux arguments différents peuvent expliquer cet épaulement :

- Par l'intermédiaire de la pénétration du plomb dans la couche de magnétite (voir le paragraphe 5), l'oxygène dissous dans l'alliage Pb-Bi peut aussi pénétrer dans la couche de magnétite et s'accumuler à l'interface spinelle Fe-Cr/magnétite. Dans ce cas, la présence d'oxygène 18 ne traduit plus une croissance de la couche d'oxyde mais simplement une pénétration du milieu oxydant dans la couche de magnétite.

- La présence d'oxygène 18 peut traduire une croissance de la couche de magnétite à l'interface spinelle Fe-Cr/magnétite. Nous pouvons remarquer que cette croissance est moins importante que celle observée à l'interface magnétite/Pb-Bi et, de plus, elle n'est pas observée pour chaque séquence. Dans ce cas, la couche de magnétite est caractérisée par une croissance secondaire à l'interface spinelle Fe-Cr/magnétite ajoutée à une croissance prépondérante à l'interface externe.

Cette double croissance de la couche de magnétite pourrait ainsi expliquer la double microstructure de la couche observée au MEB et au MET (voir paragraphe 3.2).

Dans ce cas, la croissance prépondérante peut correspondre à la croissance des longs grains colonnaires et la croissance secondaire à celle des petits grains colonnaires à l'interface spinelle Fe-Cr/magnétite.

L'hypothèse d'une croissance secondaire de la magnétite à l'interface spinelle Fe-Cr/magnétite est possible mais elle ne sera pas prise en compte dans la suite de cette étude, pour les deux raisons suivantes :

- Les deux explications précédentes (accumulation de plomb à l'interface spinelle Fe-Cr/magnétite ou croissance de la couche de magnétite) nous paraissent de vraisemblance équivalente.

- Si une fraction de la couche de magnétite croît à l'interface oxyde/oxyde, cette croissance est mineure par rapport à celle observée à l'interface externe. Cette croissance peut être négligée quantitativement face à la croissance prépondérante à l'interface externe.

La localisation des interfaces de croissance, externe pour la couche de magnétite et interne pour celle de spinelle Fe-Cr, peut être confirmée par une autre séquence d'oxydation réalisée dans deux environnements oxydants successifs : Pb-Bi puis bismuth pur.

8.2. Séquence d'oxydation successives dans l'alliage Pb-Bi puis le bismuth

Dans le but de confirmer les résultats expérimentaux des expériences sous traceurs d'oxygène 18, une autre séquence d'oxydation a été menée dans deux milieux métaux liquides successifs :

- Une première oxydation a été réalisée pendant 200 heures à 470°C dans l'alliage Pb-Bi saturé en oxygène.

- Une deuxième oxydation a été effectuée avec le même échantillon pendant 50 heures à 470°C dans le bismuth saturé en oxygène.

Les échantillons ont été refroidis entre chaque étape d'oxydation.
Les échantillons ont été analysés par SDL ; les résultats d'analyse sont représentés sur la Figure 76 (A).
D’après les analyses des couches d'oxyde (voir paragraphe 5), l'étape d'oxydation dans le milieu Pb-Bi est marquée par une présence de plomb au sein des couches alors que celle effectuée dans le milieu bismuth pur est marquée par une présence de bismuth.

La Figure 76 (B) montre une image MEB d'une coupe transverse polie de cet échantillon après les deux étapes d'oxydation. La différence de microstructure entre les couches d'oxyde formées sous environnement Pb-Bi et sous environnement bismuth (couche plus poreuse, voir paragraphe 3.2.1) permet de distinguer chaque étape d'oxydation sur l'image MEB, Figure 76 (B).

Comme il a été précédemment remarqué (voir paragraphe 5, Figure 67, Figure 68, Figure 69), une pénétration de plomb, sans présence de bismuth est observée dans la couche d'oxyde croissant dans le milieu Pb-Bi (Figure 67, Figure 68) alors que l'oxyde formé dans le bismuth pur est caractérisé par une pénétration de bismuth (Figure 69).

C'est pourquoi, lors de cette séquence d'oxydation, dans l'alliage Pb-Bi puis dans le bismuth pur, la couche d'oxyde marquée par une présence de plomb a été formée dans l'environnement Pb-Bi.

La Figure 76 montre que cette couche d'oxyde est localisée dans la partie centrale de la couche. L'oxyde le plus "jeune", marqué par une absence de plomb, se situe donc à l'interface métal liquide/magnétite pour la couche de magnétite et à l'interface spinelle Fe-Cr/T91 pour la couche de spinelle Fe-Cr.

Nous pouvons donc en conclure que la couche de magnétite croît à l'interface magnétite/métal liquide et la couche de spinelle Fe-Cr croît à l'interface T91/spinelle Fe-Cr, ce qui confirme les résultats précédemment observés.
8.3. Conclusion sur la localisation des interfaces de croissance

Les deux séries d'expériences réalisées sont en accord pour localiser la croissance de la couche de magnétite à l'interface magnétite/métal liquide et celle de la couche de spinelle Fe-Cr à l'interface spinelle Fe-Cr/ T91.

La croissance de la spinelle Fe-Cr à l'interface T91/spinelle Fe-Cr implique que l'oxygène traverse la couche d'oxyde jusqu'à l'interface interne. Réciproquement, la croissance de la magnétite à l'interface magnétite/métal liquide implique que le fer diffuse du T91 jusqu'à l'interface externe.

Cette conclusion de transport de l'oxygène jusqu'à l'interface interne et de diffusion du fer jusqu'à l'interface externe est fondamentale pour la construction d'un mécanisme de croissance des couches d'oxyde.

9. Expériences effectuées dans l'air sec à 470°C

Afin de comparer les cinétiques d'oxydation du T91 dans différents environnements oxydants, des essais d'oxydation ont aussi été effectués sous atmosphère d'air sec reconstitué (FID) à 470°C. Ces essais ont été réalisés sous débit constant d'air sec, dans un four pyrox, dans un réacteur en acier inoxydable 316L (Fe-17Cr-13Ni-3Mo).

9.1. Cinétique d'oxydation obtenue dans l'air sec

Afin d'obtenir une cinétique d'oxydation dans l'air sec, les échantillons de T91 sont oxydés à 470°C puis retirés à intervalles de temps réguliers : huit durées d'oxydation, comprises entre 120 et 3300 heures, ont été réalisées. Pour chaque durée d'oxydation, un ou plusieurs échantillons (jusqu'à 7) ont été oxydés, afin d'évaluer la reproductibilité de l'expérience.

La couche d'oxyde obtenue présente une cinétique très différente de celle obtenue dans l'alliage Pb-Bi.

La couche d'oxyde est en effet beaucoup plus fine : son épaisseur n'excède pas 0,2 µm après 3300 heures d'oxydation. L'évolution de l'épaisseur de cette couche n'a donc pas pu être évaluée par observation MEB-FEG dont la limite de détection est de l'ordre de 10 nm.

L'épaisseur de la couche a donc été estimée par gain de masse en considérant que l'oxyde formé est constitué de magnétite. Dans ce cas, l'épaisseur de la couche d'oxyde formée lors du processus d'oxydation est liée à son gain de masse par la relation suivante :

\[h_{\text{oxyde}} = \frac{\Delta m}{4S\rho} \frac{M_{\text{Fe}_3\text{O}_4}}{M_O} \]

avec :

- \(h_{\text{oxyde}} \) : épaisseur de la couche d'oxyde
- \(\Delta m \) : gain de masse
- \(S \) : surface totale de l'échantillon
- \(\rho \) : densité de la magnétite
- \(M_{\text{Fe}_3\text{O}_4} \) : masse molaire de la magnétite
- \(M_O \) : masse molaire de l'oxygène

La Figure 77 présente les résultats des tests d'oxydation réalisés dans l'air sec reconstitué (FID).
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

Figure 77 : Cinétique de croissance des couches d'oxyde obtenues par oxydation du T91 dans l'air sec à 470°C.

L'épaisseur de la couche d'oxyde, évaluée à partir du gain de masse, présente une grande dispersion (Figure 77).
Afin d'évaluer la dispersion des résultats, sept échantillons ont été oxydés pendant 720 heures. Les épaisseurs des couches varient de 0,09 à 0,14 µm.
Cette dispersion n'est pas uniquement explicable par les 10 µg d'incertitude de la balance (METLER Toledo AT20) qui mènent à une incertitude d'environ 0,01 µm sur l'évaluation de l'épaisseur de la couche d'oxyde.
Cette dispersion pourrait en revanche être expliquée par le traitement des échantillons de T91 avant oxydation. En effet, le polissage des échantillons (polissage jusqu'au papier SiC 1200) est assez grossier. Ceci implique que la surface des échantillons avant oxydation n'est pas totalement reproductible et peut impacter dans notre cas, pour lequel la couche d'oxyde est fine, sur la cinétique d'oxygenation.

9.2. Nature des couches d'oxyde obtenues par oxydation dans l'air

A cause de leurs faibles épaisseurs, les échantillons oxydés sous air sec n'ont pas pu être analysés par microsonde et observés par MEB. Une analyse XPS, par érosion de la couche et analyse au cours de l'érosion (Figure 78), a permis de révéler trois couches d'oxyde de natures distinctes.

La première couche d'oxyde, au contact du T91, est celle d'un oxyde de chrome, la seconde est celle d'un oxyde fer-chrome et la troisième, au contact de l'air, est celle d'un oxyde de fer (Figure 78).
La structure de la couche obtenue par oxydation du T91 sous air semble différente de celle obtenue dans l'alliage Pb-Bi car une couche d'oxyde de chrome ou une zone d'oxydation interne est identifiable sur l'analyse XPS dans le cas de l'oxydation sous air (Figure 78).

9.3. Localisation des interfaces de croissance dans l'air

Dans le but de localiser les interfaces de croissance lors de l'oxydation du T91 dans l'air sec à 470°C, des expériences de traceurs à l'oxygène 18 ont aussi été réalisées dans un environnement gazeux.

Un échantillon de T91 a subi une première oxydation dans un mélange 18O-16O à 470°C pendant 25 heures puis une seconde oxydation pendant 25 heures dans l'air ne comportant que l'isotope 16 de l'oxygène. L'échantillon a ensuite été analysé par SIMS (Figure 79).
La Figure 79 montre que les isotopes 16 et 18 de l'oxygène sont répartis uniformément dans la couche d'oxyde : aucun appauvrissement en oxygène 18 n'est particulièrement remarqué. Cette observation mène aux conclusions :

− que la couche d'oxyde formée par oxydation du T91 sous air croît en continu, dans l'épaisseur de la couche. Cette croissance, dans l'épaisseur de la couche dénoterait une croissance mixte : les atomes métalliques diffuseraient à l'intérieur de la couche d'oxyde, de même que l'oxygène, afin de faire croître la couche dans son épaisseur.

− ou que le temps de l'expérimentation n'est pas adapté à la vitesse d'oxydation et qu'un échange se produit entre les isotopes 16 et 18 de l'oxygène, comme le suggèrent Mishin et Borchardt [159]. En effet, cette expérimentation a été effectuée en adaptant, selon Mishin et Borchardt [159], le temps de l'expérience utilisant le traceur d'oxygène 18 à la vitesse d'oxydation du T91 dans l'alliage Pb-Bi (et non dans l'air sec). C'est-à-dire que cette durée d'oxydation en présence du traceur d'oxygène 18 convenait aux expériences effectuées en milieu Pb-Bi mais pas à celle effectuée sous air sec.

Aussi il est vraisemblable que les analyses SIMS ne soit pas à l'image du régime de diffusion de l'oxygène mais à celui de ses échanges isotopiques.

Par ailleurs, sachant qu'une concentration nulle en oxygène correspond à une intensité du signal inférieure à environ 1000 coups, la teneur en oxygène au sein du T91 est encore importante, même en profondeur, dans le cœur du matériau.

Cette diffusion de l'oxygène dans le T91 se produit pendant la durée de l'oxydation car le rapport isotopique de la teneur en oxygène 16 sur celle en oxygène 18, qui est égale à 500 en atmosphère naturelle, est égale à 10 dans le cœur du T91 (voir Figure 79). Le T91 est donc chargé en oxygène 18.

Cette pénétration de l'oxygène correspond soit à une dissolution de l'oxygène dans le T91 soit à une oxydation interne du matériau. Les activités du fer et du chrome étant importantes dans le matériau, il semble plus probable qu'une oxydation interne se produise.
Chapitre III : Expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C

9.4. Mécanisme de croissance des oxydes formés par oxydation du T91 sous air sec

Pour résumer les caractéristiques de l'oxydation du T91 dans l'air sec obtenues lors de nos essais à 470°C :

- La cinétique d'oxydation est lente (Figure 77), l'épaisseur des couches ne dépasse pas 0,2 µm après 3700 heures d'oxydation.

- La Figure 78 montre que la couche d'oxyde est formée d'une première couche d'un oxyde de chrome, au contact du T91, suivie d'une couche d'un oxyde fer-chrome puis d'un oxyde de fer au contact de l'air.

Pour conclure sur le mécanisme d'oxydation du T91 sous air sec, la cinétique de croissance des couches d'oxyde est bien plus faible que la cinétique de croissance dans les métaux liquides. Cependant, la pression partielle d'oxygène dans l'air est bien plus importante que la pression partielle correspondant à la limite de solubilité de l'oxygène dans l'eutectique Pb-Bi ou dans le bismuth pur à 470°C. Il semblerait donc que les mécanismes d'oxydation soient différents entre les deux milieux oxydants.

La cinétique de croissance obtenue est fortement perturbée par une importante dispersion des résultats. Par conséquent, le mécanisme contrôlant l'oxydation n'a pu être déterminé : il peut être réactionnel ou diffusionnel.

L'objectif de cette étude n'étant pas la compréhension du mécanisme d'oxydation du T91 dans l'air mais dans l'alliage Pb-Bi, les investigations n'ont pas été poussées plus loin. L'intérêt, dans le cadre de notre étude, de caractériser brièvement l'oxydation du T91 dans un environnement comme l'air est de trouver un milieu oxydant, simple d'utilisation, dans lequel la cinétique d'oxydation du T91 est négligeable par rapport à celle obtenue sous milieu Pb-Bi à la même température. En effet, cette différence de cinétique d'oxydation sera utilisée indirectement, lors d'expériences d'oxydation successives réalisées dans les environnements Pb-Bi puis air, dans le but de comprendre le mécanisme de diffusion de l'oxygène dans la couche d'oxyde formée dans l'alliage Pb-Bi (Chapitre IV, paragraphe 4.2.3).

10. Conclusion

Les expériences présentées dans ce chapitre permettent de compléter et de confirmer les données de la littérature sur l'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 470°C :

- La couche d'oxyde a une structure duplex constituée d'une couche de spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$, au contact du T91 et d'une couche de magnétite au contact de l'alliage Pb-Bi.

- Ces couches ont des microstructures différentes : la couche de spinelle Fe-Cr est composée de petits grains équiaxes et celle de magnétite, de longs grains colonnaires.

- Des pénétrations de plomb sont observées dans les deux couches jusqu'à l'interface T91/spinelle Fe-Cr. Aucune trace de bismuth n'est observable dans les couches.
La cinétique d'oxydation semble parabolique pour les deux couches. La constante globale est similaire à celle obtenue dans l'alliage Pb-Bi saturé en oxygène à 470°C dans la littérature ainsi qu'à celles obtenues par oxydations d'acier Fe-9Cr dans l'eau et la vapeur d'eau pour des températures comprises entre 450 et 500°C.

Le rapport d'épaisseur de la couche de magnétite sur celle de spinelle Fe-Cr est environ égal à 1,25 pour l'oxydation dans l'alliage Pb-Bi et à 1 dans le bismuth pur. Ce rapport concorde avec celui de la littérature (environ égal à 1) sur les couches d'oxyde croissant dans les milieux gazeux ou dans l'eau liquide. Ces environnements oxydants mènent par ailleurs aux mêmes structures de couches.

Les couches d'oxyde obtenues par oxydation dans le bismuth pur sont similaires à celles obtenues dans l'alliage Pb-Bi et leurs cinétiques de croissance sont environ deux fois supérieures à celles dans l'alliage Pb-Bi. Une pénétration de bismuth est observable au sein des deux couches d'oxyde.

La couche de magnétite croît à l'interface magnétite/Pb-Bi tandis que celle de spinelle Fe-Cr croît à l'interface spinelle Fe-Cr/T91.

La cinétique de croissance de la couche d'oxyde formée dans l'air est environ 100 fois plus lente à celle de la couche formée dans l'alliage Pb-Bi.

Nous avons remarqué que les résultats obtenus dans l'alliage Pb-Bi, le bismuth pur au cours de nos essais et dans les environnements eau et vapeur d'eau sont très proches (ils sont, en revanche, différents de ceux effectués dans l'air sec). Cette proximité est notable autant d'un point de vue cinétique de croissance de couche que d'un point de vue morphologie des couches d'oxyde. Cette similitude nous permet de supposer que l'oxydation des aciers Fe-9Cr se déroule dans ces différents milieux selon le même mécanisme d'oxydation.

C'est pourquoi, des rapprochements entre les résultats obtenus dans notre étude et dans la littérature seront fréquemment effectués dans le double objectif :
- de comprendre qualitativement le plus précisément possible le mécanisme d'oxydation dans l'alliage Pb-Bi et le bismuth pur,
- d'obtenir une simulation quantitative à la cinétique de croissance observée dans l'alliage Pb-Bi et le bismuth mais aussi dans les environnements eau et vapeur d'eau, à 470°C.

Finalement, en supposant une croissance de couches d'oxyde régie par un processus diffusionnel, la compréhension du mécanisme d'oxydation revient :
- d'une part à déterminer l'espèce diffusante et le mode de diffusion, responsables de la cinétique de croissance de chacune des couches,
- d'autre part à quantifier la diffusion de l'espèce afin d'obtenir une simulation du processus de diffusion.

Les espèces diffusantes étant le fer pour la couche de magnétite et le fer, l'oxygène et le chrome pour la couche de spinelle Fe-Cr, la diffusion de chacune de ces espèces sera envisagée quantitativememt.
Chapitre IV : Transport de l'oxygène
1. Introduction

Les résultats expérimentaux de localisation des interfaces de croissance des couches d'oxyde montrent que la couche de spinelle Fe-Cr croît à l'interface T91/spinelle Fe-Cr. Cette croissance à l'interface interne suggère que l'oxydant diffuse à travers les deux couches d'oxyde. A l'interface interne, l'oxygène réagit avec le T91 pour former le spinelle Fe-Cr. En supposant la réaction d'oxydation instantanée par rapport au processus de transport, la cinétique de croissance de la couche de spinelle Fe-Cr peut être liée à la vitesse de diffusion de l'oxygène à travers la couche d'oxyde.

Aussi, nous simulons la cinétique de croissance de la couche de spinelle Fe-Cr afin d'étudier la validité de cette hypothèse de contrôle de la croissance de la couche de spinelle Fe-Cr par la diffusion de l'oxygène. Cette simulation sera ensuite comparée aux résultats expérimentaux.

Différents modes de diffusion peuvent caractériser le transport de l'oxygène à travers la couche d'oxyde :

- diffusion en volume dans le réseau de l'oxyde,
- diffusion par les joints de grains de l'oxyde,
- diffusion par voie liquide dans des pénétrations de plomb.

Ces trois modes de transport seront étudiés dans ce chapitre.

Nous supposerons dans un premier temps que le transport de l'oxygène est réalisé par diffusion anionique dans le réseau de la couche d'oxyde (voir paragraphe 2) puis, dans un second temps, par diffusion dans les joints de grains (voir paragraphe 3) et enfin par diffusion dans les pénétrations de plomb liquide (voir paragraphe 4). Ce dernier mode de transport est suggéré par les analyses SIMS, SDL et microsonde mettant en évidence une présence de plomb au sein des deux couches d'oxyde (voir Chapitre III). Nous discuterons de la faisabilité de ce mode de transport à partir de données de la littérature sur le mouillage du plomb, du bismuth et de l'alliage Pb-Bi sur les oxydes de fer.

Une simulation nous permettra ensuite de discuter le caractère limitant du transport de l'oxygène, par diffusion dans les pénétrations de plomb liquide, vis-à-vis de la croissance de la couche de spinelle Fe-Cr.

2. Diffusion de l'oxygène en volume dans le réseau de l'oxyde

La croissance du spinelle Fe-Cr peut être simulée en considérant qu'elle est proportionnelle à la quantité d'oxygène arrivant à l'interface T91/spinelle Fe-Cr. Dans ce cas, l'épaisseur de la couche de spinelle Fe-Cr est directement liée au flux d'oxygène traversant l'interface spinelle Fe-Cr/T91.

Cette épaisseur peut être calculée à partir des hypothèses suivantes :

- Le coefficient de diffusion de l'oxygène dans le réseau du spinelle Fe-Cr est supposé identique à celui de l'oxygène dans le réseau de la magnétite.

Le coefficient de diffusion de l'oxygène dans la magnétite est égal à 3x10^{-19} cm²/s à 470°C [96], il est donc considéré constant à travers toute la couche d'oxyde (voir Annexe 9).

- L'activité de l'oxygène est constante aux interfaces externe et interne et linéaire dans la couche d'oxyde.
Chapitre IV : Transport de l’oxygène

− L’activité de l’oxygène à l’interface magnétite/Pb-Bi est prise égale à la concentration de l’oxygène dans l’alliage Pb-Bi liquide à saturation :

\[
\log S_O^{\text{Pb-Bi}} \left(\text{mol/cm}^3 \right) = -1 \times \frac{3400}{T} \left(\text{K} \right), \text{ pour } 400^\circ\text{C} < T < 700^\circ\text{C} \quad [40].
\]

− L’activité de l’oxygène à l’interface T91/spinelle Fe-Cr est négligeable devant l’activité de l’oxygène à l’interface externe.

En accord avec les hypothèses ci-dessus et la théorie de Wagner, l’épaisseur de la couche de spinelle Fe-Cr est simulée en fonction du temps par l’expression suivante :

\[
C_{O(M,O)} \frac{dh_{\text{spinelle Fe-Cr}}}{dt} = D_{O(Fe,O)} \left(h_{\text{spinelle Fe-Cr}} + h_{\text{magnétite}} \right) S_O^{\text{Pb-Bi}}
\]

Or les épaisseurs des couches de spinelle et de magnétite sont du même ordre de grandeur pour chaque essai d’oxydation effectué, nous pouvons donc faire l’approximation

\[h_{\text{spinelle Fe-Cr}} + h_{\text{magnétite}} = 2h_{\text{spinelle Fe-Cr}}\]

et résoudre l’équation précédente :

\[\Rightarrow h_{\text{spinelle Fe-Cr}} \approx \sqrt{\frac{D_{O(Fe,O)} S_O^{\text{Pb-Bi}}}{C_{O(M,O)}}} t.
\]

Les symboles utilisés et leur signification sont regroupés dans le Tableau 12.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{\text{spinelle Fe-Cr}})</td>
<td>épaisseur totale de la couche de spinelle Fe-Cr</td>
</tr>
<tr>
<td>(h_{\text{magnétite}})</td>
<td>épaisseur totale de la couche de magnétite</td>
</tr>
<tr>
<td>(C_{O(M,O)})</td>
<td>concentration de l’oxygène dans la structure spinelle</td>
</tr>
<tr>
<td>(S_O^{\text{Pb-Bi}})</td>
<td>limite de solubilité de l’oxygène dans l’alliage Pb-Bi à 470°C</td>
</tr>
<tr>
<td>(D_{O(Fe,O)})</td>
<td>coefficient de diffusion de l’oxygène dans le réseau de la magnétite à 470°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C_{O(M,O)}) (mol/cm³)</th>
<th>(S_O^{\text{Pb-Bi}}) (mol/cm³)</th>
<th>(D_{O(Fe,O)}) (cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9x10⁻²</td>
<td>2,65x10⁻⁶</td>
<td>3x10⁻¹⁹</td>
</tr>
</tbody>
</table>

Tableau 12 : Liste des symboles et valeurs numériques utilisés dans les calculs.

La simulation de la cinétique de croissance est représentée sur la Figure 80 avec les points expérimentaux.
La Figure 80 montre que la vitesse de croissance expérimentale est supérieure à celle simulée par plus de quatre ordres de grandeur. La diffusion de l'oxygène dans le réseau est donc beaucoup trop lente pour décrire la cinétique de croissance expérimentale.

Cependant, l'apport d'oxygène est nécessaire à la croissance de la couche de spinelle Fe-Cr à l'interface interne. Aussi un autre mode de transport doit permettre à l'oxygène de diffuser plus rapidement à travers la couche d'oxyde.

Un mécanisme diffusionnel via des chemins préférentiels de diffusion doit être envisagé afin de rendre compte de la vitesse importante de croissance du spinelle Fe-Cr.

3. Diffusion de l'oxygène par les joints de grains de la couche d'oxyde

La cinétique de croissance du spinelle Fe-Cr peut être simulée en considérant que la croissance du spinelle est liée à la vitesse de diffusion de l'oxygène par les joints de grains de la couche d'oxyde. Aussi, la géométrie de la couche d'oxyde doit être schématisée :

- Les grains de la couche de spinelle Fe-Cr et de la couche de magnétite sont représentés respectivement par des hexagones et des rectangles en raison de leur microstructure équiaxe et colonnaire.

- La simulation est réalisée en deux dimensions.

- Les grains de magnétite et de spinelle Fe-Cr étant de tailles différentes, le nombre de joints de grains est différent dans chaque couche.

Le schéma illustrant la géométrie du système est représenté sur la Figure 81.
Chapitre IV : Transport de l’oxygène

Les significations de tous les symboles utilisés dans ce paragraphe sont regroupées dans le Tableau 13.

Figure 81 : Transport de l’oxygène par les joints de grains à travers la couche d’oxyde.
Chapitre IV : Transport de l’oxygène

Tableau 13 : Signification des symboles utilisés.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\text{spinelle Fe-Cr}}$</td>
<td>nombre de joints de grains dans le spinelle Fe-Cr</td>
</tr>
<tr>
<td>$N_{\text{magnétite}}$</td>
<td>nombre de joints de grains dans la magnétite</td>
</tr>
<tr>
<td>$J_{\text{spinelle Fe-Cr}}$</td>
<td>flux de diffusion de l’oxygène dans chaque joints de grains situé dans le spinelle Fe-Cr</td>
</tr>
<tr>
<td>$J_{\text{magnétite}}$</td>
<td>flux de diffusion de l’oxygène dans chaque joints de grains situé dans la magnétite</td>
</tr>
<tr>
<td>$\delta_{\text{magnétite}}$</td>
<td>largeur des joints de grains dans la magnétite</td>
</tr>
<tr>
<td>$\delta_{\text{spinelle Fe-Cr}}$</td>
<td>largeur des joints de grains dans le spinelle Fe-Cr</td>
</tr>
<tr>
<td>L</td>
<td>longueur de l’échantillon</td>
</tr>
<tr>
<td>S</td>
<td>surface de l’échantillon</td>
</tr>
<tr>
<td>$S_{\text{spinelle Fe-Cr}}$</td>
<td>surface de la couche de spinelle Fe-Cr</td>
</tr>
<tr>
<td>$S_{\text{magnétite}}$</td>
<td>surface de la couche de magnétite</td>
</tr>
<tr>
<td>$h_{\text{spinelle Fe-Cr}}$</td>
<td>épaisseur de la couche de spinelle Fe-Cr</td>
</tr>
<tr>
<td>$h_{\text{magnétite}}$</td>
<td>épaisseur de la couche de magnétite</td>
</tr>
<tr>
<td>$C_{\text{spinelle(O)}}$</td>
<td>concentration en oxygène dans la structure spinelle</td>
</tr>
<tr>
<td>n_{O}</td>
<td>quantité d’oxygène accumulée à l’interface interne</td>
</tr>
<tr>
<td>$D_{O_{470}}^{\ell}$</td>
<td>coefficient de diffusion de l’oxygène les joints de grains à 470°C</td>
</tr>
<tr>
<td>$S_{O_{470}}^{\text{Pb-Bi}}$</td>
<td>limite de solubilité de l’oxygène dans l’alliage Pb-Bi à 470°C</td>
</tr>
<tr>
<td>$C_{O_{470}}^{\alpha_1/\alpha_2}$</td>
<td>concentration de l’oxygène dans les joints de grains, à l’interface magnétite/spinelle Fe-Cr</td>
</tr>
<tr>
<td>$l_{\text{spinelle Fe-Cr}}$</td>
<td>diamètre d’un grain de spinelle Fe-Cr</td>
</tr>
<tr>
<td>$l_{\text{magnétite}}$</td>
<td>largeur d’un grain de magnétite</td>
</tr>
</tbody>
</table>

Afin de simuler la croissance de la couche de spinelle Fe-Cr, certaines hypothèses de calcul doivent être avancées :

− Hypothèse (H1) : il n’y a ni accumulation ni perte de matière à l’intérieur de la couche d’oxyde. Le flux d’oxygène ne dépend pas de la variable d’espace.
 En particulier, $J_{\text{spinelle Fe-Cr}}dS_{\text{spinelle Fe-Cr}}$ est égal à $J_{\text{magnétite}}dS_{\text{magnétite}}$ (la simulation étant réalisée en deux dimensions, $dS = dL$).

− Hypothèse (H2) : la couche de spinelle Fe-Cr croît à l’interface T91/spinelle Fe-Cr. Tout l’oxygène réagit à l’interface, le flux d’oxygène est nul dans le métal.

− Hypothèse (H3) : la concentration en oxygène est constante aux interfaces :
 À l’interface interne, elle est considérée comme nulle.
 À l’interface spinelle Fe-Cr/magnétite, elle est constante et la valeur est déterminée par la simulation.
 À l’interface externe, elle est égale à la limite de solubilité de l’oxygène dans l’alliage Pb-Bi à 470°C :
 $2,65 \times 10^{-6} \text{ mol/cm}^3 \left(\log C_{O_{470}}^{\alpha_1/\alpha_2} = -1 - \frac{3400}{T_{(K)}} \right)$ pour $400°C < T < 700°C^{[40]}$.
Hypothèse (H4) : le profil de concentration de l'oxygène est linéaire dans chaque couche d'oxyde.

Compte tenu de ces hypothèses, simulons la croissance de la couche de spinelle Fe-Cr.

D'après l'hypothèse (H1), le scalaire JdL est constant à travers la couche d'oxyde et notamment entre la couche de spinelle Fe-Cr et celle de magnétite. Les flux d'oxygène traversant la couche de spinelle Fe-Cr et celle de magnétite sont donc reliés par l'expression (voir Figure 81 (B)) :

$$ N_{\text{spinelle Fe-Cr}} \delta_{\text{spinelle Fe-Cr}} J_{\text{spinelle Fe-Cr}} = N_{\text{magnétite}} \delta_{\text{magnétite}} J_{\text{magnétite}} $$

(1)

Par ailleurs, la longueur L de l'échantillon permet de relier le nombre de joints de grains présents dans le spinelle Fe-Cr, $N_{\text{spinelle Fe-Cr}}$, à ceux présents dans la magnétite, $N_{\text{magnétite}}$. Cette longueur est égale à :

$$ L = N_{\text{spinelle Fe-Cr}} \left(\delta_{\text{spinelle Fe-Cr}} + \frac{3}{2} l_{\text{spinelle Fe-Cr}} \right) = N_{\text{magnétite}} (\delta_{\text{magnétite}} + l_{\text{magnétite}}) $$

(2)

Le coefficient $3/2$ ajouté dans le cas de la couche de spinelle Fe-Cr dépend de la géométrie des grains de spinelle Fe-Cr (voir Figure 81 (C)).

Le spinelle Fe-Cr croît à l'interface T91/ spinelle Fe-Cr. L'augmentation d'épaisseur de la couche de spinelle Fe-Cr, par unité de temps, est liée à la quantité d'oxygène accumulée à l'interface par unité de temps. Cette quantité d'oxygène est égale à l'intégralité du flux d'oxygène atteignant l'interface T91/spinelle Fe-Cr pendant le temps dt :

$$ \frac{dn_O}{dt} = C_{\text{spinelle Fe-Cr}} (O) L \frac{dh_{\text{spinelle Fe-Cr}}}{dt} = N_{\text{spinelle Fe-Cr}} \delta_{\text{spinelle Fe-Cr}} J_{\text{spinelle Fe-Cr}} $$

(3)

Le flux d'oxygène peut être explicité dans chaque couche d'oxyde en considérant l'hypothèse (H5) :

$$ J_{\text{magnétite}} = D_O^{JG} S_O^{Ph-Bi} - C_O^{ox/ax} \frac{h_{\text{magnétite}}}{h_{\text{magnétite}}} $$

$$ J_{\text{spinelle Fe-Cr}} = D_O^{JG} \frac{C_O^{ax/ax}}{2} \frac{h_{\text{spinelle Fe-Cr}}}{h_{\text{spinelle Fe-Cr}}} $$

(4)

Le rapport $2/\sqrt{3}$ dans l'expression du flux d'oxygène dans les joints de grains du spinelle Fe-Cr est dû à la longueur du chemin de diffusion de l'oxygène à l'intérieur des nano-canaux. Celui-ci est supérieur à l'épaisseur de la couche de spinelle $h_{\text{spinelle Fe-Cr}}$ à cause de la tortuosité des canaux situés dans la couche de spinelle Fe-Cr (voir Figure 81 (A)).

Les équations (1), (2) et (4) permettent de calculer la concentration en oxygène dans les joints de grains à l'interface spinelle Fe-Cr/magnétite :

$$ C_O^{ox/ax} = \left(\sqrt{3} S_O^{Ph-Bi} \frac{\delta_{\text{magnétite}} + l_{\text{magnétite}}}{2 \delta_{\text{spinelle Fe-Cr}} + \frac{3}{2} l_{\text{spinelle Fe-Cr}}} \frac{h_{\text{magnétite}}}{h_{\text{spinelle Fe-Cr}}} + 1 \right) $$

(5)
Chapitre IV : Transport de l'oxygène

Le rapport d'épaisseur de la couche de magnétite sur l'épaisseur de la couche de spinelle Fe-Cr est constant : il est égal à 1,25 d'après les résultats expérimentaux.

Les facteurs géométriques $\delta_{\text{magnétite}}$, $\delta_{\text{spinelle Fe-Cr}}$, $l_{\text{magnétite}}$ et $l_{\text{spinelle Fe-Cr}}$ sont considérés comme constants au cours du processus d'oxydation.

L'équation (5) montre alors que la concentration en oxygène à l'interface magnétite/spinelle Fe-Cr, $C^{ox/ax}_O$, est constante au cours du temps.

L'épaisseur de la couche de spinelle Fe-Cr est alors calculée analytiquement, par l'intermédiaire des relations (3), (4) et (5), selon l'expression :

$$h_{\text{spinelle Fe-Cr}} = \sqrt{3} D_{JG} \frac{C^{ox/ax}_O}{C_{\text{spinelle}}(O) (\delta_{\text{spinelle Fe-Cr}} + 3/2 l_{\text{spinelle Fe-Cr}})} t$$

Pour simuler la croissance de la couche de spinelle Fe-Cr, les valeurs des différents facteurs géométriques intervenant dans l'expression (5) sont choisies pour être le plus représentatives possibles des observations expérimentales :

- Les largeurs des grains de magnétite et de spinelle Fe-Cr sont prises égales à 1 µm et 30 nm respectivement (voir Chapitre III, paragraphes 3.2).
- La largeur des joints de grains est supposée égale à 1 nm dans la couche de spinelle Fe-Cr et dans la couche de magnétite, comme le suggère la littérature [97][98].
- À notre connaissance, le coefficient de diffusion de l'oxygène par les joints de grains n'a pas été déterminé dans les oxydes magnétite et spinelle Fe-Cr. Aussi, nous prendrons la valeur du coefficient de diffusion de l'oxygène dans les joints de grains de la mullite [99]. En effet, une loi en fonction de la température nous permet d'extrapoler les valeurs de coefficient de diffusion mesurées à 820°C. Un calcul de ce coefficient de diffusion à 1100°C donne 9×10^{-13} cm2/s (pour une largeur de joints de grains de 1 nm) alors qu'à la même température le coefficient de diffusion de l'oxygène dans les joints de grains de l'oxyde de chrome Cr$_2$O$_3$ est égal à 7×10^{-14} cm2/s [100] (pour une largeur de joints de grains de 1 nm). La mesure effectuée dans l'oxyde de chrome est donc inférieure d'un ordre de grandeur par rapport à celle obtenue dans la mullite. En utilisant la mesure du coefficient de diffusion de l'oxygène dans les joints de grains de la mullite, nous espérons majorer la vitesse de diffusion de l'oxygène dans les joints de grains de notre spinelle.

Les valeurs des paramètres utilisés sont récapitulées dans le tableau suivant :

<table>
<thead>
<tr>
<th>$h_{\text{magnétite}}$ (µm)</th>
<th>$l_{\text{magnétite}}$ (nm)</th>
<th>$l_{\text{spinelle Fe-Cr}}$ (nm)</th>
<th>$\delta_{\text{magnétite}}$ (nm)</th>
<th>$\delta_{\text{spinelle Fe-Cr}}$ (nm)</th>
<th>D_{JG} (cm2/s)</th>
<th>$\delta'_{\text{Pb-Bi}}$ (mol/cm3)</th>
<th>$C_{\text{spinelle}}(O)$ (mol/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>2×10^{-24}</td>
<td>$2,65 \times 10^{-6}$</td>
<td>$1,1 \times 10^{-7}$</td>
</tr>
</tbody>
</table>

Tableau 14 : Récapitulatif des valeurs des paramètres utilisés pour la simulation.

Les résultats de la simulation sont présentés sur la figure suivante.
Chapitre IV : Transport de l'oxygène

La simulation montre que la diffusion de l'oxygène par les joints de grains de l'oxyde est trop lente pour rendre compte de la croissance expérimentale. Cependant, cette simulation dépend fortement de la valeur du coefficient de diffusion de l'oxygène dans les joints de grains de la magnétite et du spinelle Fe-Cr. Cette valeur n'étant pas connue, elle a été considérée égale à celle du coefficient de diffusion de l'oxygène dans les joints de grains de la mullite obtenue à 820 °C et extrapolée à 470°C. Des données plus justes seraient nécessaires pour conclure sur ce mode de transport.

4. Diffusion de l'oxygène par voie liquide via des nano-canaux de plomb

La diffusion de l'oxygène à travers la couche d'oxyde peut s'effectuer selon d'autres courts-circuits de diffusion. Notamment l'oxygène peut diffuser par voie liquide à travers des nano-canaux de plomb liquide.

En effet, ce mode de transport se justifie par des observations expérimentales de nos couches d'oxyde et par la littérature :

– Des analyses chimiques de la couche d'oxyde montrent que du plomb, dans le cas de l'oxydation du T91 dans l'alliage Pb-Bi, et du bismuth, dans le cas de l'oxydation dans le bismuth pur, sont retrouvés dans la couche d'oxyde jusqu'à l'interface spinelle Fe-Cr/T91.

Il semble vraisemblable que l'oxygène diffuse à travers la couche d'oxyde, sous forme dissoute dans le métal liquide puisqu'il se trouve dissous dans le métal liquide dans l'environnement oxydant.

De plus, la taille des atomes de plomb étant plus importante que celle des atomes d'oxygène, si le métal liquide peut pénétrer dans la couche d'oxyde, l'oxygène doit également y pénétrer.

– Cette proposition est appuyée par des résultats de la littérature. En effet, comme nous l'avons vu précédemment, un phénomène similaire est observé lorsqu'un acier Fe-Cr est oxydé par un agent oxydant, composé d'oxygène et d'un élément d'addition (H pour H₂O [82][72], C pour CO₂ [80], S pour SO₂ [81]). L'élément d'addition est retrouvé dans la couche d'oxyde jusqu'à l'interface interne (voir Chapitre II paragraphe 5.2.2).
Les auteurs ont donc suggéré que l'oxygène pénètre dans la couche d'oxyde, jusqu'à l'interface métal/oxyde, sous forme moléculaire dans des nano-canaux contenant le milieu oxydant [72][82][80][81].

La taille de ces nano-canaux a été estimée par certains auteurs à moins de 1 nm [72] et par un autre à environ 200 nm [80].

La pénétration de métal liquide est observée par MEB dans la couche de magnétite mais pas dans la couche de spinelle Fe-Cr. La largeur de canal maximale proposée par la littérature, 200 nm, étant visible au MEB, elle nous semble trop importante pour correspondre à la largeur des nano-canaux situés dans la couche de spinelle Fe-Cr.

Pour les nano-canaux de plomb situés dans la couche de spinelle Fe-Cr, une taille comprise entre le nanomètre et la dizaine de nanomètre semble convenir à la double contrainte d'être à la fois supérieure au rayon atomique des atomes de plomb (0,15 nm) et inférieure à la limite de détection du MEB-FEG (10 nm).

La taille des nano-canaux de plomb dans la couche de spinelle Fe-Cr pourrait être, dans le cas de notre étude, de l'ordre du nanomètre. Dans la magnétite, les nano-canaux semblent de largeur plus importante : une dizaine ou une centaine de nanomètre peut être supposée.

Cependant ce mode de transport dépend de la faisabilité de pénétration du plomb liquide dans des canaux de diamètre nanométrique. Cette possibilité de pénétration du métal liquide dans un capillaire d'oxyde doit donc être évaluée. Elle repose sur les propriétés de mouillage du métal liquide sur l'oxyde.

Une simulation de la cinétique de croissance du spinelle Fe-Cr pourra ensuite être envisagée en considérant que la croissance du spinelle Fe-Cr dépend de la vitesse d'apport de l'oxygène. Enfin, si le transport de l'oxygène est effectué par diffusion dans les nano-canaux de plomb, le mécanisme d'oxydation dépend du mécanisme de formation et d'évolution de ces canaux. La littérature propose deux types d'évolution (voir Chapitre II, paragraphe 6.1) :
- Les nano-canaux se bouchent et se ré-ouvrent en permanence, selon un processus dynamique.
- Les nano-canaux restent continuellement ouverts. Un équilibre thermodynamique local conduit à une stabilisation de la taille des nano-canaux.

Une étude expérimentale permettra de discuter les deux modèles proposés par la littérature.

4.1. Étude de la pénétration du métal liquide dans la couche d'oxyde : une nécessité de mouillage

L'hypothèse d'existence des nano-canaux de plomb repose sur la possibilité de pénétration de plomb dans les nano-canaux. Ces parois étant constituées de magnétite ou de spinelle Fe-Cr, la mouillabilité du plomb et du bismuth liquides sur les oxydes de fer et de Fe-Cr doit être estimée.

Par ailleurs, nos essais d'oxydation révèlent que l'alliage Pb-Bi ne pénètre pas de manière uniforme dans la couche d'oxyde : seul le plomb pénètre dans la couche (voir Chapitre III, paragraphe 5). Pourtant, les expériences effectuées dans l'environnement bismuth pur montrent que le bismuth pénètre dans la couche d'oxyde lorsqu'il n'est pas allié avec du plomb. Ce phénomène pourra être discuté par rapport aux propriétés de mouillage des deux métaux liquides.
4.1.1. Faisabilité de pénétration du plomb et du bismuth dans la couche d'oxyde

Une condition suffisante à la pénétration de plomb et de bismuth dans les nano-canaux est la mouillabilité du métal liquide sur les parois du canal.

En effet, comme l'illustre la Figure 83, si le métal liquide mouille l'oxyde, aucune autre condition n'est nécessaire pour permettre sa pénétration dans le nano-canal. Dans ce cas, l'apport d'oxygène par le processus de diffusion à travers des nano-canaux peut être retenu dans notre simulation.

En revanche, si le métal liquide ne mouille pas l'oxyde, des conditions de pression (hauteur le la colonne de métal liquide au dessus du nano-canal) sont nécessaires pour faire pénétrer le métal liquide dans le capillaire (voir Figure 83).

- **Système non mouillant** : l'alliage Pb-Bi pénètre dans les nano-canaux si
 \[h > \frac{2 \gamma_{\text{Pb-Bi}/\text{Gaz}}}{\rho g R} \]
 avec
 \[\gamma_{\text{Pb-Bi}/\text{Gaz}} \]
 l'énergie de surface du système Pb-Bi/Gaz, \(\rho \) la densité de l'alliage Pb-Bi, \(g \) la constante gravitationnelle et \(R \) le rayon de courbure de la goutte dans le nano-canal.

- **Système mouillant** : l'alliage Pb-Bi pénètre dans le nano-canal.

Le système métal liquide/substrat est considéré comme mouillant si l'angle de mouillage \(\theta \) (Figure 84) est inférieur à 90° et non mouillant s'il est supérieur à cette valeur.

Des expériences de mouillage du plomb\[97][102][103], de l'alliage Pb-Bi\[103\] et de bismuth\[104\] ont été réalisées dans la littérature sur du fer, un acier Fe-7Cr et du T91.

Ces expériences ont été réalisées selon différentes variantes de la technique de la goutte posée. Toutes les techniques utilisées sont schématisées sur la Figure 85.
Chapitre IV : Transport de l’oxygène

Figure 85 : Différentes techniques utilisées pour mesurer la mouillabilité. (A) technique de la goutte posée, (B) technique de la goutte dispensée, (C) technique de la goutte posée modifiée, (D) technique de la goutte transférée.

Toutes ces expériences, effectuées dans la littérature, ont été réalisées sous hélium ou sous vide à 10^{-5}Pa. Seules les expériences exploitant le système Bi/Fe se sont déroulées sous un environnement réducteur H_2. La teneur en oxygène dans le milieu n’est pas précisée pour les expériences effectuées dans le plomb pur et dans l’alliage Pb-Bi.

Les résultats de ces expériences sont rassemblés sur la Figure 86.

Figure 86 : Récapitulatif des résultats de mouillage des métaux liquides plomb, bismuth et alliage Pb-Bi sur les substrats Fe, Fe-7Cr et T91, obtenus dans la littérature [97] [102] [104] [103].
Chapitre IV : Transport de l'oxygène

La Figure 86 montre que l'angle de mouillage diminue avec l'augmentation de la température.

Les différents paliers observés sur ces courbes sont attribués par les auteurs [97][102][104][103] à un changement de nature du substrat ou du métal liquide.

Reprenons les caractéristiques de chaque palier :

− Le palier A (Figure 86) correspond à un système métal liquide/substrat non mouillant : l'angle de mouillage est supérieur à 90°.
 Ce palier est observé pour chaque utilisation d'une technique similaire à celle de la goutte posée (goutte posée ou goutte posée modifiée). Ce palier disparaît lorsque la technique utilisée est celle de la goutte transférée ou celle de la goutte dispensée (Figure 85).

 Certains auteurs [97][102][103] attribuent donc ce palier à la présence d'une fine pellicule de PbO (pour l'alliage Pb-Bi et le plomb) ou de Bi₂O₃ (pour le bismuth) recouvrant la surface du métal liquide.

 Cette fine pellicule d'oxyde retient le métal liquide et augmente la valeur de l'angle de mouillage. Lorsque la température augmente, les oxydes PbO et Bi₂O₃ se dissolvent dans le métal liquide.

 A une certaine température, la dissolution est telle que la pellicule se rompt et le métal liquide se déverse sur le substrat. Un brusque changement d'angle de mouillage se produit : l'angle de mouillage passe de celui du palier A à celui du palier B.

 La technique de la goutte transférée et celle de la goutte dispensée permettent de rompre cette pellicule avant le contact entre la goutte de métal liquide et le substrat. Le palier B est ainsi directement obtenu.

− Le palier B correspond à un système mouillant : l'angle de mouillage est inférieur à 90°.
 Ce palier est observé quelle que soit la technique utilisée.

 Cependant, des traitements thermiques des échantillons permettant la sublimation de la couche d'oxyde native, mènent à la disparition de ce palier.

 Les auteurs [97][102][103] ont donc attribué à ce palier le système métal liquide/couche d'oxyde native du substrat métallique.

− Le palier C correspond au système métal liquide/substrat métallique. Ce système est mouillant : l'angle de mouillage est inférieur ou égal à 60°.

Nous observons que les angles de mouillage du palier B, attribués au système métal liquide (plomb, bismuth, alliage Pb-Bi) sur oxyde, sont toujours inférieurs à 90° : le métal liquide mouille toujours l'oxyde.

Nous pouvons donc considérer que les métaux liquides plomb, alliage Pb-Bi et bismuth mouillent l'oxyde natif du fer (pouvant être Fe₃O₄) et l'oxyde natif des aciers fer-chrome (pouvant être un spinelle Fe-Cr).

Le plomb et le bismuth peuvent donc pénétrer au sein de la couche d'oxyde, dans des nano-canaux, sans autre condition nécessaire. La diffusion de l'oxygène par voie liquide à travers des nano-canaux de plomb (pour le cas de l'oxydation dans l'alliage Pb-Bi) et de bismuth (pour le cas de l'oxydation dans le bismuth pur) semble donc une proposition vraisemblable.
Cependant, la pénétration de l’alliage Pb-Bi au sein de la couche d’oxyde ne concerne que le plomb puisque aucune trace de bismuth n'a été détectée lors de l'analyse des couches d'oxyde. Les expériences de mouillage précédentes, en accord avec les expériences d'oxydation dans le bismuth pur, montrent pourtant que le bismuth mouille aussi bien l'oxyde que le plomb et l'alliage Pb-Bi. Nous pouvons proposer une explication, fondée sur les propriétés de mouillage des métaux liquides.

4.1.2. Pénétration inhomogène d'alliage Pb-Bi dans les nano-canaux : une conséquence du mouillage ?

Pourquoi le bismuth ne pénètre-t-il pas à l'intérieur des couches d'oxyde formées dans l'alliage Pb-Bi liquide ?

Nous pouvons soulever trois remarques afin de proposer une explication à ce phénomène :

− Les expériences de mouillage de la littérature, concernant le plomb et l'alliage Pb-Bi, se sont déroulées sous He ou sous vide à 10^{-5} Pa. La pression partielle en oxygène n'était pas mesurée dans l'enceinte mais une pression de 10^{-5} Pa d'air suffit largement à saturer en oxygène l'alliage Pb-Bi liquide. En effet, la limite de solubilité de l'oxygène est atteinte pour une pression partielle en oxygène égale à environ 10^{-11} Pa à 750°C. De plus, l'existence de la fine pellicule de PbO à la surface du métal liquide en début d'expérience témoigne de la présence d'oxygène dans le métal liquide. Le mouillage caractérisé lors de ces expériences est donc celui du système Pb-Bi-O ou Pb-O sur le substrat. Ces expériences ont donc montré que les systèmes Pb-Bi-O et Pb-O mouillent les oxydes de fer et de Fe-Cr. En revanche, nous ne connaissons pas les propriétés de mouillage de l'alliage Pb-Bi sur le T91 ou ses oxydes.

− Nous avons suggéré que l'oxygène dissous dans l'alliage Pb-Bi était entouré d'une sphère de solvatation constituée d'atomes de plomb (voir Chapitre I, paragraphe 5.2).

− Par ailleurs, certains auteurs [104] ont réalisé des expériences de mouillage du bismuth sur le fer en augmentant progressivement la pression partielle en oxygène dans l'enceinte. Ces auteurs ont remarqué que l'angle de mouillage diminuait avec l'augmentation de la teneur en oxygène. La présence d'oxygène augmenterait donc la mouillabilité du fer par le bismuth (Figure 87).

En effet l'oxygène peut jouer un rôle important dans les propriétés de mouillage du métal liquide sur le substrat.

Sachant que les limites de solubilité du fer, du chrome et de leurs oxydes sont faibles dans l'alliage Pb-Bi (voir Chapitre I, paragraphe 6.2), le mouillage de la magnétite par l'alliage Pb-Bi, ou du T91 par l'alliage Pb-Bi, ne constitue pas un mouillage réactif : aucune réaction chimique ne facilite le mouillage du substrat par l'alliage liquide. En revanche un ajout d'oxygène dans l'alliage Pb-Bi liquide change les propriétés du métal liquide : le système devient Pb-Bi-O. Ce dernier système réagit avec le T91 ou la magnétite puisqu'il mène à la croissance de la couche d'oxyde. Le mouillage non réactif du système Pb-Bi/oxyde peut alors devenir un mouillage réactif pour le système Pb-Bi-O/oxyde.
Un apport d'oxygène semble donc améliorer les propriétés de mouillage du substrat par le métal liquide. Cette propriété a été vérifiée par Chabert \cite{30} pour le cas du mouillage des saphirs par l'argent liquide. Il a été montré que les propriétés de mouillage s'améliorent lorsque le métal liquide et le substrat sont de nature similaire : le métal liquide mouille mieux le substrat métallique lorsqu'il ne contient pas d'oxygène dissous alors qu'il mouille mieux les oxydes lorsqu'il contient de l'oxygène (voir Chapitre I, paragraphe 6.2).

Par ailleurs, en considérant que l'oxygène, dissous dans l'alliage Pb-Bi, est entouré d'une sphère de solvatation d'atomes de plomb, il semble vraisemblable que le plomb liquide mouille plus facilement que le bismuth.

En effet, les forces régissant les phénomènes de mouillage étant principalement des forces à courtes portées, le mouillage par plomb peut être favorisé par son affinité avec l'oxygène et peut ainsi perturber le mouillage par bismuth.

Ainsi, selon ces hypothèses, il semble vraisemblable qu'un film de métal liquide enrichi en plomb pénètre dans les nano-canaux de la couche d'oxyde lors de nos essais d'oxydation dans l'alliage Pb-Bi.

De manière similaire dans les essais d'oxydation dans le bismuth pur, l'oxygène est entouré par une sphère de solvatation d'atomes de bismuth. Le bismuth peut alors pénétrer dans les nano-canaux de la couche d'oxyde.

Cependant, nous devons émettre certaines réserves sur les expériences montrant l'amélioration des propriétés de mouillage du bismuth avec l'augmentation de la teneur en oxygène \cite{104}.

Les résultats de ces expériences sont représentés sur la Figure 87. Sur cette figure les pressions partielles d'oxygène correspondant aux équilibres avec les phases spinelle Fe-Cr (Fe_{2.34}Cr_{0.66}O_{4}), magnétite et Bi_{2}O_{3} ont également été reportées.

\begin{center}
\includegraphics[width=\textwidth]{Figure87.png}
\end{center}

\textit{Figure 87 : Angle de mouillage du système Bi/Fe lors d'une augmentation de la pression partielle en oxygène dans l'enceinte. Expérience réalisée à 600°C \cite{104}.}
Dans l'intervalle de pression partielle d'oxygène compris entre celle correspondant à l'équilibre de formation de la magnétite et celle correspondant à l'équilibre de précipitation de Bi$_2$O$_3$, le système liquide/substrat est alors Bi/Fe$_3$O$_4$ et n'évolue pas.

Pour une pression d'oxygène inférieure, le système peut évoluer vers le système Bi/Fe et pour une pression d'oxygène supérieure, le système Bi/Fe$_3$O$_4$ peut évoluer vers le système Bi$_2$O$_3$/Fe$_3$O$_4$.

Afin d'évaluer la mouillabilité par le bismuth sur la magnétite, la pression partielle en oxygène doit évoluer sans changer la nature du système mouillant Bi/Fe$_3$O$_4$.
Or une seule mesure issue de cette étude 104 correspond à ce domaine de stabilité du système Bi/Fe$_3$O$_4$ (Figure 87).
L'augmentation de la mouillabilité du bismuth avec l'augmentation de la teneur en oxygène n'est donc pas clairement démontrée pour le système Bi/Fe$_3$O$_4$.
Une étude plus approfondie sur l'évolution de la mouillabilité du plomb, de l'alliage Pb-Bi et du bismuth, en fonction de la pression d'oxygène, est nécessaire pour vérifier la proposition d'augmentation de la mouillabilité avec la teneur en oxygène.

Cette proposition de sphère de solvatation et de mouillage réactif concorde avec les observations expérimentales. Cependant, pour confirmer cette hypothèse, des expériences de mouillage sous environnement contrôlé en oxygène sont nécessaires.

Des essais d'oxydation avec d'autres alliages liquides doivent aussi être réalisés afin de déterminer si la pénétration non uniforme de l'alliage Pb-Bi se reproduit pour d'autres systèmes.

Pour conclure :
- La littérature montre que le plomb et le bismuth mouillent les oxydes de fer et de Fe-Cr. La pénétration de plomb et de bismuth dans les nano-canaux est donc possible.
- Les résultats d'étude de mouillabilité issus de la littérature permettent de proposer une explication pour le phénomène de l'unique pénétration du plomb lors de nos essais effectués dans l'alliage Pb-Bi. Un mécanisme est avancé mais certaines conclusions, émises par les études sur lesquelles il s'appuie, nécessitent d'autres validations expérimentales.

4.2. Simulation de la diffusion de l'oxygène via des nano-canaux de plomb

L'hypothèse de transport de l'oxygène par diffusion dans les nano-canaux paraît vraisemblable car le métal liquide peut pénétrer dans les nano-canaux.

La cinétique de croissance du spinelle Fe-Cr peut être simulée en considérant que la croissance du spinelle est liée à la vitesse de transport de l'oxygène : l'épaisseur de la couche de spinelle est donc proportionnelle à la quantité d'oxygène apportée à l'interface interne.

Il résulte que la cinétique de croissance dépend du diamètre des nano-canaux : plus les nano-canaux sont larges, plus la quantité d'oxygène accédant à l'interface interne par unité de temps est importante et plus la cinétique de croissance du spinelle Fe-Cr est rapide.
Cependant, le diamètre et la distribution des nano-canaux sont inconnus dans le spinelle Fe-Cr et dans la magnétite. Le choix de ces paramètres et l'effet de leur variation sur la simulation seront discutés.

La même simulation que celle mise en place pour les joints de grains peut convenir à une diffusion dans les nano-canaux de plomb (voir paragraphe 3). Cependant, dans cette simulation, la largeur
des nano-canaux de plomb (remplaçant la largeur des joints de grains) est différente dans la couche de spinelle Fe-Cr et dans la couche de magnétite. Par ailleurs, la distribution des nano-canaux (nombre de nano-canaux dans la couche) est indéterminée. Aussi, une discussion sur les paramètres inconnus, largeur et distribution des nano-canaux, sera effectuée.

4.2.1. Simulation

L'hypothèse de contrôle de la cinétique d'oxydation par la diffusion de l'oxygène à travers les nano-canaux de plomb peut être évaluée à partir d'une simulation, même si le diamètre et la distribution des nano-canaux sont inconnus.

Pour étudier la vraisemblance de ce mécanisme, nous allons rechercher le diamètre des nano-canaux qui permet d'obtenir une cinétique de croissance simulée identique à celle obtenue expérimentalement.

La couche de magnétite étant particulièrement poreuse, la taille des nano-canaux est relativement importante dans cette couche (des pénétrations de plomb ont d'ailleurs été observées par MEB dans la couche de magnétite, Figure 58). Le facteur discriminant est alors la taille des nano-canaux de plomb situés dans la couche de spinelle Fe-Cr. Sachant que les nano-canaux situés dans le spinelle Fe-Cr ne sont pas décelables au MEB, leur diamètre doit être inférieur à 10 nm.

Afin de simuler la croissance de la couche de spinelle Fe-Cr en fonction de la taille des nano-canaux, la géométrie de la couche d'oxyde est schématisée de la même manière que pour la diffusion dans les joints de grains (voir paragraphe 3). Cependant, la distribution des nano-canaux étant inconnue dans les couches d'oxyde, la simulation est construite en considérant un canal par grain.

Le schéma illustrant la géométrie du système est représenté sur la Figure 88. Les significations de tous les symboles utilisés dans ce paragraphe sont regroupées dans le Tableau 15.
Chapitre IV : Transport de l'oxygène

Les équations (1), (2) et (4) permettent de calculer la concentration en oxygène dissous dans les nano-canaux de plomb à l'interface spinelle Fe-Cr/magnétite :

Tableau 15 : Signification des symboles utilisés.
Chapitre IV : Transport de l'oxygène

\[C_{O}^{\alpha / \alpha} = \frac{S_{O}^{\text{Pb-Bi}}}{\left(\frac{1}{2} \delta_{\text{magnétite}}^{\text{Fe-Cr}} + \frac{1}{2} l_{\text{magnétite}}^{\text{Fe-Cr}} \right) \delta_{\text{magnétite}}^{\text{Fe-Cr}} + \frac{1}{2} l_{\text{magnétite}}^{\text{Fe-Cr}} + 1} \]

(5)

Similairement à la simulation effectuée pour les joints de grains, la concentration \(C_{O}^{\alpha / \alpha} \) est constante au cours de l'oxydation. L'épaisseur de la couche de spinelle Fe-Cr est alors calculée analytiquement, par l'intermédiaire des relations (3), (4) et (5), selon l'expression (voir paragraphe 3) :

\[h_{\text{spinelle Fe-Cr}}^{2} = \sqrt{3} D_{O}^{\text{Pb}} C_{O}^{\alpha / \alpha} \left(\delta_{\text{spinelle Fe-Cr}}^{O} (O) + \frac{3}{2} l_{\text{spinelle Fe-Cr}}^{O} \right) t \]

(6)

Pour simuler la croissance de la couche de spinelle Fe-Cr, les valeurs des différents facteurs géométriques intervenant dans l'expression (5) sont choisies pour être le plus représentatives possibles des observations expérimentales :

- Les largeurs des grains de magnétite et de spinelle Fe-Cr sont prises égales à 1 µm et 30 nm respectivement (voir Chapitre III, paragraphe 3.2).

- Le diamètre des nano-canaux situés dans la couche de magnétite est considéré égal à 10 nm. Cette valeur est fondée sur une approximation vraisemblable de la largeur d'un nano-canal visible au MEB.

Cependant, la simulation de l'épaisseur de la couche de spinelle Fe-Cr n'est pas fortement sensible à ce paramètre : une différence supérieure ou inférieure d'un ordre de grandeur ne modifie pas notablement la croissance de la couche de spinelle Fe-Cr simulée. La conséquence de la variation de ce paramètre sur la simulation de la croissance de la couche de spinelle Fe-Cr est observable sur les graphiques de l'Annexe 11.

Les valeurs des paramètres utilisés sont récapitulées dans le tableau suivant :

<table>
<thead>
<tr>
<th>(h_{\text{magnétite}} / h_{\text{spinelle Fe-Cr}}) (µm)</th>
<th>(l_{\text{magnétite}} / l_{\text{spinelle Fe-Cr}}) (nm)</th>
<th>(\delta_{\text{magnétite}} / \delta_{\text{spinelle Fe-Cr}}) (nm)</th>
<th>(D_{O}^{\text{Pb}}) (cm²/s)</th>
<th>(S_{O}^{\text{Pb-Bi}}) (mol/cm³)</th>
<th>(C_{\text{spinelle}} (O)) (mol/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>1</td>
<td>30</td>
<td>10</td>
<td>4x10⁻⁶</td>
<td>2,65x10⁻⁶</td>
</tr>
</tbody>
</table>

Tableau 16 : Récapitulatif des valeurs des paramètres utilisés pour la simulation.

La croissance de la couche de spinelle Fe-Cr est particulièrement sensible au diamètre des nano-canaux de plomb situés dans la couche de spinelle Fe-Cr. Ceux-ci sont déterminés par ajustement de la simulation sur la cinétique de croissance expérimentale.

4.2.2. Résultats et discussion

Une valeur précise des nano-canaux dans la couche de spinelle Fe-Cr peut être déterminée par ajustement de la cinétique de croissance simulée sur les points expérimentaux de l'épaisseur de la couche de spinelle Fe-Cr (Figure 89).
Chapitre IV : Transport de l'oxygène

4.2.2.1. Vraisemblance du diamètre obtenu

On observe que la valeur du diamètre obtenu par la simulation est très faible. Cela implique que la diffusion de l'oxygène par voie liquide dans les canaux de plomb est suffisamment rapide pour obtenir une croissance importante de la couche, même en considérant des nano-canaux de très faible section.

La simulation montre que le diamètre d'un nano-canal doit être égal à 0,12 Å pour que l'apport d'oxygène limite la croissance de la couche de spinelle Fe-Cr. Or le diamètre d'un atome de plomb est dix fois supérieur à cette valeur : un diamètre de 0,12 Å est donc impossible pour un canal de plomb.

Si les nano-canaux de plomb existent, leur diamètre est donc supérieur à 0,12 Å, valeur nécessaire pour obtenir un ajustement de la courbe simulée sur la courbe expérimentale.

La simulation doit cependant tenir compte du diamètre réel des nano-canaux. Pour un diamètre de canal supérieur à 0,12 Å, la cinétique simulée devient plus rapide que la cinétique expérimentale. Dans ce cas, la quantité d'oxygène accédant à l'interface interne (représentée par la simulation) est supérieure à la quantité nécessaire (représentée par l'expérience). Cela sous-entend que si le transport de l'oxygène est assuré par la diffusion dans les nano-canaux, la croissance réelle de la couche de spinelle Fe-Cr n'est pas proportionnelle à la quantité d'oxygène accédant à l'interface interne (donnée par la simulation).

Le transport de l'oxygène par cette voie est alors possible mais il est trop rapide pour limiter la croissance de la couche de spinelle Fe-Cr.

Les remarques précédentes nous amènent à considérer que l'apport d'oxydant est suffisamment important pour permettre la croissance de la couche. Cependant, il ne constitue pas un facteur limitant le processus d'oxydation.
4.2.2.1.1. Réévaluation de la distribution des nano-canaux

Notons cependant que le diamètre des nano-canaux déterminé par la simulation dépend de la distribution des canaux dans la couche de spinelle Fe-Cr. En effet, la valeur 0,12 Å pour le diamètre des nano-canaux est liée à une distribution d'un canal par grain.

La distribution des nano-canaux peut alors être réévaluée afin d'augmenter le diamètre des nano-canaux estimé par la simulation. Ainsi, nous pouvons considérer une valeur de diamètre de nano-canal satisfaisant les contraintes expérimentales (inférieure à 10nm et supérieure au rayon atomique de l'atome plomb) puis chercher la distribution correspondante, permettant un ajustement sur la cinétique de croissance expérimentale.

La même simulation est en effet obtenue en considérant un canal 100 fois plus grand irriguant, non plus 1 grain, mais 100 grains.

Dans ce dernier cas, les nano-canaux sont suffisamment larges pour permettre une pénétration d'atomes de plomb.

Ainsi cette nouvelle distribution revient à considérer l'existence de canaux de 1nm de diamètre tous les 3 µm.

Cependant cette distribution ne paraît pas très réaliste : il est difficilement imaginable qu'un canal puisse "irriguer" une largeur de grains aussi importante.

En effet, cela suppose que chaque nano-canal soit espacé de 3 µm et que le plomb et l'oxygène diffusent à l'interface entre les nano-canaux.

Entre chaque nano-canal de 1 nm de diamètre, l'interface T91/spinelle Fe-Cr doit alors être recouverte par un fin film de plomb liquide. La présence de ce film liquide doit perturber, en théorie, l'adhésion métal/oxyde. Les observations MEB effectuées sur des fractures transverses montrent pourtant que même si la couche d'oxyde se décolle du T91 pendant la fracture, une fine couche de spinelle Fe-Cr adhère encore au T91, traduisant une bonne adhésion métal/oxyde. Cette adhésion ne paraissant pas perturbée, une répartition de un canal tous les trois microns semble peu vraisemblable.

4.2.2.1.2. Interprétation de la simulation par rapport aux résultats expérimentaux de la littérature

De plus, comme on l'a vu précédemment, la même cinétique de croissance est obtenue pour une oxydation dans l'alliage Pb-Bi et dans l'eau, montrant à priori un mécanisme d'oxydation similaire pour les deux milieux (voir Chapitre II, paragraphe 4).

Or, le coefficient des ions hydroxyde OH dans l'eau à 300°C est de l'ordre de 4×10^{-4} cm2/s, c'est-à-dire qu'il est environ 100 fois plus élevé que celui de l'oxygène dans le plomb à 470°C. La concentration en oxygène dans l'eau est aussi nettement plus élevée que celle obtenue par la saturation de l'alliage Pb-Bi en oxygène.

La même simulation réalisée dans l'eau conduirait à une cinétique de croissance encore plus rapide ou à un diamètre de nano-canaux encore plus faible.

Cette considération montre, là encore, le peu de vraisemblance de l'hypothèse d'une limitation de la croissance de la couche de spinelle Fe-Cr par la diffusion de l'oxygène dans les nano-canaux de l'alliage Pb-Bi.
4.2.2.2. Conclusion sur le transport de l'oxygène par les nano-canaux

Le transport de l'oxygène est nécessairement réalisé par les nano-canaux de plomb, car seule cette explication semble justifier la croissance importante de la couche de spinelle Fe-Cr. Cette explication est en effet en accord avec toutes nos connaissances sur la cinétique de croissance du spinelle Fe-Cr :

- Elle est l'alternative quantifiable la plus vraisemblable à la diffusion de l'oxygène par le réseau de la couche d'oxyde.

- Elle est en accord avec la localisation de la croissance du spinelle Fe-Cr à l'interface interne.

- Elle est justifiée par l'observation de la pénétration de plomb dans les deux couches d'oxyde.

- Elle concorde avec la littérature.

En revanche le diamètre des nano-canaux obtenus par la simulation, reliés à une distribution réaliste, montre que ce transport est trop rapide pour limiter la croissance de la couche. De plus, la même simulation, effectuée pour analyser les résultats de la littérature, mènerait à une cinématique de transport encore plus rapide. Ainsi l'apport d'oxydant n'est pas le facteur limitant pour la croissance de la couche de spinelle Fe-Cr.

A la suite de cette discussion, nous pouvons conclure que l'oxygène semble effectivement diffuser par voie liquide à travers des nano-canaux de plomb, mais que ce processus ne limite pas la croissance de la couche de spinelle Fe-Cr.

Un autre facteur limitant doit être considéré pour rendre compte des résultats expérimentaux. Le facteur contrôlant la croissance de la couche de spinelle Fe-Cr peut être la diffusion du chrome ou celle du fer à travers la couche d'oxyde. Ces deux cas seront envisagés.

Quel que soit le facteur contrôlant la croissance de la couche d'oxyde, l'apport de l'oxydant est effectué par les nano-canaux de métal liquide. La mise en place d'un mécanisme d'oxydation de la couche de spinelle Fe-Cr comporte donc la compréhension de l'évolution de ces nano-canaux au cours du temps. La littérature propose des scénarii différents qui seront discutés à l'aide d'expériences spécifiques.

4.2.3. Evolution des nano-canaux de Pb au cours du processus d'oxydation : expériences d'oxydation successives

L'étude de l'évolution des nano-canaux de métal liquide au cours du temps est nécessaire à la compréhension du mécanisme de croissance de la couche de spinelle Fe-Cr.

Ce problème de formation des nano-canaux a été soulevé dans la littérature et deux processus d'évolution ont été proposés (Chapitre II, paragraphe 6.1.) :

- Processus A : les nano-canaux se rebouchent lors du processus d'oxydation. Ils se créent et se rebouchent continuellement en un cycle infini ([84] Figure 90 A) selon un processus dynamique.
Chapitre IV : Transport de l’oxygène

- Processus B : les nano-canaux sont continuellement ouverts. Le métal liquide dans le nano-canal est en équilibre thermodynamique avec l’oxyde environnant (Figure 90 B). L’état des nano-canaux reste statique au cours du temps.

![Figure 90 : Évolution des nano-canaux au cours du processus d’oxydation. (A) Premier processus, les canaux se rebouchent et se créent continuellement. (B) Deuxième processus, un équilibre thermodynamique permet une ouverture continue des nano-canaux.](image)

Le détail de ces processus est explicite dans le paragraphe 6.1 du Chapitre II.

Afin de caractériser le processus se produisant au sein des couches d’oxyde, trois expériences d’oxydation spécifiques ont été réalisées.

Le principe de ces trois expériences est le même :
Il consiste à oxyder successivement un même échantillon de T91 dans différents milieux : l’air, l’alliage Pb-Bi et le bismuth pur. Après chaque essai l’échantillon est observé et caractérisé. Chaque milieu d’oxydation est caractérisable par la cinétique de croissance et/ou par la morphologie des couches d’oxyde qu’il forme au contact du T91 :

- L’oxydation du T91 dans l’air est caractérisée par une faible vitesse de croissance des couches d’oxyde (Chapitre III, paragraphe 7). Cette vitesse est négligeable par rapport à celles obtenues dans l’alliage Pb-Bi ou dans le bismuth.

- L’oxydation dans l’alliage Pb-Bi est caractérisée par la présence de plomb dans les couches d’oxyde.

- L’oxydation dans le bismuth pur est caractérisée par une plus forte vitesse d’oxydation que celle observée dans l’alliage Pb-Bi mais surtout par la présence de bismuth dans les couches d’oxyde.

Aussi une expérience de longue durée d’oxydation a été réalisée afin de proposer un mécanisme global d’évolution des nano-canaux. Quant aux deux autres expériences, elles sont effectuées sur de plus courtes durées d’oxydation pour permettre de préciser cette évolution.
4.2.3.1. Longues durées d'oxydation : environnement Pb-Bi puis air

Pour réaliser cette expérience, un échantillon de T91 a été préoxydé 260 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C puis refroidi sous une atmosphère d'argon et enfin ré-oxydé 1100 heures dans l'air sec à 470°C (voir Figure 91).

Figure 91 : Schéma de la séquence d'oxydation.

Après les 1360 heures d'oxydation, l'épaisseur de la couche d'oxyde mesurée expérimentalement est égale à 5 µm.

La cinétique de croissance de la couche d'oxyde dans l'alliage Pb-Bi (Figure 92) et dans l'air (Figure 77) permet de calculer l'épaisseur attendue de la couche d'oxyde après 260 heures, après 1100 heures d'oxydation dans l'air à 470°C et après 1360 heures (260+1100) d'immersion dans l'alliage Pb-Bi à 470°C :
- 4,5 µm pour 260 heures dans l'alliage Pb-Bi,
- 11 µm pour 1360 heures dans l'alliage Pb-Bi,
- 0,12 Å pour 1100 heures dans l'air.
La différence d'épaisseur entre la valeur estimée après 260 heures d'oxydation (4,5 µm) et l'épaisseur mesurée après ces 1360 heures d'oxydation (5 µm) est suffisamment faible pour considérer que la cinétique de croissance de la couche d'oxyde a été modifiée lors du changement de milieu oxydant.

Cette expérience peut être interprétée au regard des deux processus d'évolution des nano-canaux proposés par la littérature :

- Si le processus B se produit, l'état des nano-canaux reste statique. Lors de l'oxydation à l'air, le plomb liquide à l'intérieur des nano-canaux reste saturé en oxygène à l'interface externe de la couche d'oxyde, similairement à une oxydation dans l'alliage Pb-Bi. La croissance de la couche d'oxyde ne doit pas évoluer, l'oxydation de l'échantillon continue comme si l'oxydation se produisait dans un milieu Pb-Bi (Figure 93 (A)). Aucun phénomène de continuité de l'oxydation n'a été observé lors de cette expérience, l'évolution des nano-canaux ne semble donc pas suivre le processus B.

- En revanche, si le processus A se produit, les nano-canaux sont dans un état dynamique. Les nano-canaux se rebouchent et s'ouvrent en continu. Quand un nano-canal se rebouche, un champ de contrainte se développe dans la couche d'oxyde et de nouvelles fissures sont créées à d'autres endroits de la couche. Lors de l'oxydation à l'air, le métal liquide ne pénètre pas dans les nouvelles fissures puisque le milieu oxydant a changé. L'air sec pénètre donc dans ces fissures (Figure 93 (B)). La couche d'oxyde est alors en contact avec l'air et le processus d'oxydation devient celui régissant la croissance de la couche d'oxyde dans l'air sec. La cinétique de croissance de la couche d'oxyde sous air est très ralentie par rapport à celle dans l'alliage Pb-Bi. Le processus de croissance semble s'arrêter.

Ce phénomène d'arrêt de la croissance de l'oxyde a été observé lors de cette expérience. Le processus A semble donc régir l'évolution des nano-canaux pour une longue durée d'oxydation.

Figure 93 : Évolution des nano-canaux lorsqu'un échantillon de T91 est pré-oxydé dans l'alliage Pb-Bi saturé en oxygène à 470°C puis ré-oxydé sous air sec à 470°C. Selon le processus A (A), selon le processus B (B).

Cependant, le rebouchage des nano-canaux doit prendre un certain temps. Ce temps peut correspondre au temps nécessaire pour faire croître la couche d'oxyde de 4,5 à 5 µm. Pour cette expérience, le temps de bouchage des nano-canaux est alors estimé à 90 heures à partir d'une épaisseur de couche préexistante de 4,5 µm (selon l'ajustement parabolique sur la cinétique de croissance expérimentale, Figure 92).

Il est toutefois difficile de préciser l'épaisseur de la couche d'oxyde, formée pendant la durée de rebouchage des nano-canaux, car la différence d'épaisseur (5-4,5 µm) est comprise dans la dispersion expérimentale.
Cette expérience permet donc de supposer que l'état des nano-canaux suit un processus dynamique. Le temps de rebouchage des nano-canaux a pu être estimé mais avec une importante incertitude car les cinétiques d'oxydation ne sont pas suffisamment précises pour quantifier cette durée.

D'autres essais ont été réalisés, pour de plus faibles durées d'oxydation, afin d'estimer le temps nécessaire au rebouchage des nano-canaux.

4.2.3.2. Faibles durées d'oxydation : environnement Pb-Bi/air puis Bi/Pb-Bi

Deux séries d'expériences ont été effectuées afin d'obtenir une cinétique de rebouchage des nano-canaux :

− Une première série d'expériences a été réalisée, d'abord dans l'alliage Pb-Bi puis sous air pour de faibles durées d'oxydation (75 heures).

− Une deuxième série d'expériences a ensuite été réalisée dans l'alliage Pb-Bi puis dans le bismuth pur, pour des durées d'oxydation intermédiaires (290 heures).

4.2.3.2.1. Expérience d'oxydation successives dans l'alliage Pb-Bi puis sous air

La même expérience que celle présentée précédemment a été réalisée pour de plus faibles durées d'oxydation. Cependant, pour distinguer la part d'oxyde formée dans l'air de celle formée dans l'alliage Pb-Bi, les deux milieux oxydants ont été marqués par un traceur d'oxygené.

Dans cette expérience, un échantillon a été pré-oxydé 50 heures dans l'alliage Pb-Bi saturé en oxygène 16 à 470°C. Il a ensuite été refroidi sous argon puis ré-oxydé 25 heures à l'air chargé en oxygène 18, à 470°C. L'oxydation dans l'air est donc marquée par une présence d'oxygené 18.

Figure 94 : Schéma de la séquence d'oxydation.

Après ces deux étapes d'oxydation l'échantillon a été analysé par SIMS (Figure 95).
L'analyse du profil SIMS (Figure 95) mène aux résultats suivants :

- L'isotope 18 de l'oxygène est localisé aux interfaces interne et externe de la couche d'oxyde. Ces interfaces de croissance ne sont pas les interfaces de croissance mises en évidence lors de l'oxydation du T91 dans l'air seul mais celles obtenues lors des expériences de traceur 18O effectuées dans l'alliage Pb-Bi (voir Chapitre III, paragraphe 8).

Cette observation implique donc une continuité dans le processus d'oxydation même après changement du milieu oxydant.

- Un appauvrissement en oxygène 16 est observé à l'interface externe. Cette partie de la couche de magnétite marquée par l'oxygène 18 correspond à la magnétite formée pendant les 25 heures d'oxydation sous air.

La Figure 95 montre que l'épaisseur de magnétite formée sous air (marquée par l'oxygène 18) n'est pas négligeable devant l'épaisseur de magnétite formée dans l'alliage Pb-Bi.

La croissance de la couche d'oxyde ne s'est donc pas arrêtée pendant l'oxydation sous air sec et la cinétique de croissance n'est pas modifiée par le changement de milieu oxydant.

Lors de cette expérience, aucune rupture du mécanisme d'oxydation n'a été observée. Le processus d'oxydation s'est déroulé en suivant la cinétique de croissance obtenue dans l'alliage Pb-Bi, comme si l'échantillon n'avait jamais été oxydé sous air.

Les nano-canaux de plomb ne se sont donc pas rebouchés au cours de l'expérience. Ces faibles durées d'oxydation sont donc caractérisées par un processus statique d'évolution des nano-canaux.

A partir des deux expériences d'oxydation successives dans l'alliage Pb-Bi puis dans l'air sec, nous pouvons conclure que :

- les canaux se bouchent et s'ouvrent selon un processus dynamique,
- l'étape de bouchage des nano-canaux dure un certain temps.
Ce temps de rebouchage des nano-canaux est au moins égal à 25 heures pour reboucher les canaux sur une épaisseur de couche d'oxyde de 1-2µm (épaisseur correspondant à 50 heures d'immersion dans l'alliage Pb-Bi).

Afin de préciser le temps de rebouchage des nano-canaux, une troisième expérience est nécessaire. La durée d'oxydation de cette expérience doit être comprise entre celles des deux expériences précédentes.

**4.2.3.2.2. **Expériences d'oxydation successives dans le bismuth pur puis dans l'alliage Pb-Bi

Pour cette expérience, les milieux oxydants ont été modifiés afin d'éviter l'étape de refroidissement intermédiaire aux étapes d'oxydation dans l'alliage Pb-Bi puis dans l'air.

Pour cela, l'échantillon est immergé dans le bismuth pur. Puis une quantité appropriée de plomb est ajoutée afin d'obtenir un alliage liquide Pb-Bi dans les proportions de l'eutectique. La croissance de l'oxyde formé dans le bismuth pur est marquée par une présence de bismuth au sein de la couche d'oxyde et la croissance de l'oxyde formé dans l'alliage Pb-Bi est marquée par une présence de plomb. Le marquage est donc effectué par les éléments plomb et bismuth.

Ce protocole expérimental permet ainsi d'éviter :

- L'étape de refroidissement entre les deux oxydations successives, afin de s'affranchir de toute perturbation éventuelle pouvant impacter le processus d'oxydation.

- L'utilisation d'oxygène 18 pour marquer les interfaces de croissance des oxydes. En effet, l'utilisation d'oxygène 18 nécessite de travailler dans une installation spécifique. L'oxydation dans le métal liquide est donc à la fois plus simple et moins coûteuse.

Au cours de cette expérience, les échantillons de T91 ont d'abord été immergés entre 22 heures et 26 heures dans le bismuth saturé en oxygène. Puis, sans retirer les échantillons, une quantité appropriée de plomb a été ajoutée au bismuth liquide. L'échantillon a ensuite été oxydé pendant 265 heures dans le nouveau milieu oxydant : l'alliage Pb-Bi saturé en oxygène.

![Figure 96 : Schéma de la séquence d'oxydation.](image)

Après oxydation, l'échantillon a été observé par MEB et analysé par SDL :
L'observation MEB de l'échantillon oxydé montre qu'après ces 290 heures d'oxydation, l'épaisseur de la couche d'oxyde est environ égale à 15 µm. Cette épaisseur correspond à la cinétique de croissance du T91 dans le bismuth pur pendant 290 heures.

Le profil SDL (Figure 97) montre que le bismuth est retrouvé dans toute l'épaisseur de la couche d'oxyde, même si un enrichissement en bismuth est observé dans la partie centrale de la couche (partie formée sous bismuth pur).

L'épaisseur de la couche mesurée au MEB montre que le nouvel environnement oxydant n'a pas perturbé la cinétique de croissance originelle. Ce résultat concorde à priori avec le processus B : un état statique des nano-canaux.

Les résultats de l'analyse SDL peuvent être interprétés en fonction des processus d'évolution des nano-canaux :

- Si le processus A se produit, l'état des nano-canaux suit un processus dynamique (voir Figure 98 (B)). Dans ce cas, le bismuth doit être retrouvé dans la partie centrale de la couche d'oxyde puisque le nouvel oxyde formé dans l'alliage Pb-Bi croît aux interfaces interne et externe. En revanche, le plomb doit être retrouvé dans l'intégralité de la couche d'oxyde. La cinétique de croissance doit être celle obtenue dans le bismuth pur pendant 26 heures suivie de celle obtenue dans l'alliage Pb-Bi pendant 265 heures (à partir d'une couche d'oxyde de 4 µm d'épaisseur : épaisseur estimée par la loi parabolique, Figure 71, pour 26 heures d'oxydation dans le bismuth).

Les phénomènes attendus en considérant le processus A ne correspondent donc pas aux résultats obtenus lors de cette expérience.

Figure 97 : Echantillon de T91 immergé 22 heures dans le bismuth saturé en oxygène, puis 265 heures dans l'alliage Pb-Bi saturé en oxygène.
Chapitre IV : Transport de l'oxygène

− Si le processus B se produit, l’état des nano-canaux suit un processus statique (voir Figure 98 (A)) : le changement de milieu oxydant entraîne une pénétration de plomb dans les mêmes nano-canaux que ceux contenant initialement le bismuth pur. Dans ce cas, le plomb et le bismuth doivent être mélangés dans les canaux et une présence de bismuth doit être retrouvée dans l’intégralité de la couche d’oxyde, jusqu’à l’interface spinelle Fe-Cr/T91. Le mélange des deux métaux liquides dans les nano-canaux se produis par diffusion de plomb dans le bismuth. Ce mélange n'est pas perturbé par la viscosité de l'alliage Pb-Bi car l'alliage Pb-Bi est non visqueux à cette température (viscosité inférieure à celle de l'eau à 25°C, voir Chapitre I, paragraphe 3).

A cause des phénomènes de mouillage, la cinétique de croissance peut être identique à celle obtenue dans le bismuth pur, pour les deux étapes d'oxydation. En effet, si le métal liquide mouillant l'oxyde se comporte de la manière que nous avons suggérée précédemment (voir paragraphe 4.1.2), un fin film de bismuth liquide recouvre la surface de l'oxyde lors de l’étape d’oxydation dans le bismuth pur. Les forces régissant les phénomènes de mouillage étant des forces à courtes portées, l'interaction entre l'oxyde et le fin film de bismuth est susceptible de ne pas être perturbée par l'ajout de plomb. Ainsi, la couche d'oxyde, restant au contact du milieu bismuth pur, suit la cinétique de croissance obtenue dans le bismuth.

Les résultats de l'analyse SDL montrent que le bismuth et le plomb sont présents dans la totalité de la couche d'oxyde. Ces éléments se sont donc mélangés dans les nano-canaux qui n'ont pas été bouchés pendant le processus d'oxydation. Ce deuxième résultat est aussi en accord avec un état statique des nano-canaux.

Figure 98 : Évolution des nano-canaux lorsqu’un échantillon de T91 est pré-oxydé dans le bismuth saturé en oxygène à 470°C puis ré-oxydé dans l’alliage Pb-Bi saturé en oxygène à 470°C. Selon le processus A (A), selon le processus B (B).
Pour conclure :
- L'observation MEB montre que la cinétique de croissance de la couche n'est pas modifiée lors du changement de milieu oxydant. Ce phénomène concorde avec un processus statique d'évolution des nano-canaux.
- L'analyse SDL montre que le bismuth n'est pas juste localisé au centre de la couche. En accord avec une ouverture constante des nano-canaux, on retrouve une présence de plomb et de bismuth dans l'intégralité de la couche d'oxyde.

Les deux résultats s'accordent pour montrer que l'état des nano-canaux suit un processus statique : les nano-canaux sont continuellement ouverts.

4.2.3.3. Conclusion sur l'évolution des nano-canaux lors du processus d’oxydation

L'expérience d'oxydation successives de longues durées montre que les nano-canaux se bouchent lors du processus d'oxydation. Cette expérience laisse supposer que les nano-canaux se bouchent après 90 heures d'oxydation à partir d'une couche d'oxyde épaisse d'environ 4 µm.

Cependant, les résultats des deux expériences de courtes durées d'oxydation s'accordent pour justifier un état statique des nano-canaux.
Les résultats de la dernière expérience montrent que les nano-canaux ne se sont pas bouchés après 260 heures d'oxydation à partir d'une couche d'oxyde de 4 µm d'épaisseur (épaisseur correspondant à 26 heures d'oxydation dans le bismuth pur).
Pourtant, ce dernier milieu oxydant (bismuth pur) mène à une cinétique de croissance plus élevée supposant un rebouchage plus rapide des nano-canaux par rapport à la cinétique de rebouchage attendue pour un environnement Pb-Bi (1ère expérience).

Nous pouvons donc en conclure que les nano-canaux finissent par se boucher au cours du processus d'oxydation (1ère expérience). Toutefois ce rebouchage prend un certain temps :
- d'après la deuxième expérience, plus de 25 heures pour une couche d'oxyde de 1 à 2 µm d'épaisseur,
- d'après la dernière expérience, plus de 260 heures pour une couche d'oxyde de 4 µm d'épaisseur.

Ces temps sont bien plus importants que ceux nécessaires à boucher des canaux de diamètres nanométriques sur l'épaisseur de la couche.

Les nano-canaux ne semblent donc pas être de simples fissures se rebouchant en suivant la cinétique de croissance de l'oxyde. Un équilibre thermodynamique doit se produire, au moins pendant un certains temps, entre la partie interne (métal liquide) et la partie externe (couche d'oxyde) du nano-canal.

Ces expériences d'oxydation successives doivent être poursuivies pour des durées d'oxydation croissantes afin d'aboutir à une cinétique de rebouchage des nano-canaux.

L'obtention d'une cinétique de rebouchage des nano-canaux permettrait de mieux comprendre les mécanismes de formation des nano-canaux dans les milieux Pb-Bi et bismuth pur mais aussi dans les autres milieux oxydants menant au même mécanisme d'oxydation.

Actuellement, les expériences réalisées dans le cadre de cette étude nous permettent de conclure que l'état des nano-canaux reste statique pendant un certain temps. L'équilibre thermodynamique
semble cependant instable, un lent rebouchage des canaux doit finalement se produire au sein de la couche d'oxyde.

5. Conclusion sur le transport de l'oxygène dans la couche d'oxyde

Nous avons montré que le transport de l'oxygène à travers le réseau de la couche d'oxyde est trop lent pour permettre une croissance de la couche de spinelle Fe-Cr telle qu'elle est observée expérimentalement.

Le transport de l'oxygène à travers des nano-canaux de plomb liquide semble l'hypothèse la plus vraisemblable car :
− Elle permet un apport suffisant d'oxygène pour faire croître la couche de spinelle Fe-Cr.
− Elle est justifiée par les pénétrations de plomb observées dans la couche de magnétite et supposées présentes dans la couche de spinelle Fe-Cr par leur mise en évidence sur les analyses SIMS et SDL.
− Elle est aussi en accord avec les résultats de la littérature.

Cependant, l'hypothèse selon laquelle les pénétrations de plomb ne sont pas interconnectées ne peut pas être écartée. Dans ce cas, il n'y a pas de nano-canaux mais seulement des porosités localisées. Aussi, pour accéder à l'interface interne, l'oxygène doit utiliser un autre type de court-circuit de diffusion. Celui-ci peut alors diffuser par les joints de grains des oxydes.

Dans ce cas, les expériences effectuées pour étudier l'évolution des nano-canaux doivent être interprétées différemment :
− Le changement de cinétique d'oxydation observé pour la première expérience peut s'expliquer en considérant un changement de microstructure de la couche d'oxyde pendant l'oxydation sous air. Ce changement aurait pour conséquence de perturber la diffusion de l'oxygène par les joints de grains.
− L'expérience sous oxygène 18 montre alors que l'évolution de la microstructure de la couche n'est pas instantanée et révèle la mise en place d'un régime transitoire.
− En revanche, la dernière expérience, effectuée dans le bismuth puis l'alliage Pb-Bi, ne peut pas s'expliquer sans interconnections des pénétrations de métal liquide. En effet, sans interconnection, les porosités contenant le bismuth, formées pendant la première étape d'oxydation, restent localisées uniquement dans la partie centrale de la couche. Seule l'existence des nano-canaux peut expliquer la diffusion du bismuth jusqu'à l'interface interne.

Par ailleurs, lors de sa croissance à l'interface magnétite/Pb-Bi, la couche de magnétite peut piéger des gouttes d'alliage Pb-Bi et former ainsi des porosités fermées, remplies d’alliage Pb-Bi liquide. En revanche, le spinelle Fe-Cr ne peut pas piéger des gouttes de métal liquide lors de sa croissance puisqu'il croît à l'interface interne. La présence sur les analyses SIMS et SDL d'atomes de plomb dans la couche de spinelle Fe-Cr implique une diffusion de cet élément à travers la couche.

Il semble donc probable que des porosités de plomb soient interconnectées sous forme de nano-canaux et qu'ainsi l'oxygène puisse diffuser jusqu'à l'interface interne.
Une évolution des nano-canaux de plomb au cours du mécanisme d'oxydation a été proposée : une étape d'équilibre thermodynamique entre l'intérieur du nano-canal et la couche d'oxyde voisine semble précéder un lent rebouchage du nano-canal. Cependant, des expériences complémentaires sont nécessaires pour valider cette proposition et pour construire une cinétique de rebouchage des nano-canaux.

L'ensemble des expériences réalisées lors de cette étude concorde pour supposer l'existence des nano-canaux de plomb ainsi que pour considérer le transport de l'oxygène par diffusion dans les nano-canaux. Cependant, une simulation nous a montré que ce transport ne semble pas limiter la croissance de la couche de spinelle Fe-Cr.

Les diffusions du chrome et du fer à travers la couche d'oxyde doivent donc être envisagées afin de construire un mécanisme de croissance de la couche d'oxyde rendant compte de tous nos résultats expérimentaux.
Chapitre IV : Transport de l'oxygène
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation
1. Introduction

Le chapitre précédent nous permet de supposer que :
− L’apport d’oxygène nécessaire à la croissance de la couche de spinelle Fe-Cr à l’interface interne est effectué par diffusion de l’oxygène à travers la couche d’oxyde dans des nano-canaux de plomb liquide.
− Ce transport ne limite pas la croissance de la couche de spinelle Fe-Cr.

Cependant, la croissance du spinelle Fe-Cr a une allure parabolique. Cette évolution suggère que la croissance du spinelle Fe-Cr est limitée par la diffusion de l’oxygène, du fer ou du chrome (voir Chapitre III). Le transport de l’oxygène n’étant pas limitant, la diffusion d’une autre espèce, le fer ou le chrome, contrôle la cinétique de croissance du spinelle Fe-Cr. Aussi, afin de déterminer l’espèce dont la diffusion limite la cinétique de croissance, nous envisagerons la diffusion de chaque espèce (fer et chrome).

Aussi nous déterminerons, tout d’abord, les coefficients de diffusion des espèces chrome et fer dans le spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$ et dans la magnétite Fe$_3$O$_4$ à 470°C (voir paragraphe 2).

En second lieu nous pourrons étudier le mécanisme de croissance du spinelle Fe-Cr (paragraphe 3). Nous montrerons que la croissance du spinelle Fe-Cr ne peut pas être limitée par la diffusion du chrome qui semble négligeable par rapport aux cinétiques contrôlant la croissance de l’oxyde (voir paragraphe 3.1). Une limitation de la croissance du spinelle Fe-Cr par la diffusion du fer devra donc être envisagée. Cependant, la croissance du spinelle Fe-Cr s’effectuant à l’interface T91/spinelle Fe-Cr (au niveau d’une source "semi-infinie" de fer), la régulation de la croissance du spinelle Fe-Cr par la diffusion du fer ne paraît pas immédiate.

C’est pourquoi nous chercherons à caractériser de manière factuelle la croissance de cette couche. Nous montrerons que le volume de spinelle Fe-Cr formé semble être égal au volume de T91 consommé par l’oxydation (voir paragraphe 3.2). Ce mode de croissance étant celui décris par l’"available space model", nous reprendrons chaque hypothèse de ce model que nous discuterons. Cette discussion nous permettra de proposer un mécanisme qualitatif et quantitatif pour la croissance de la couche de spinelle Fe-Cr dont la limitation serait effectuée par la diffusion du fer (voir paragraphe 3.2).

Enfin, nous simulerons la croissance de la couche de magnétite et celle de la couche de spinelle Fe-Cr sur la base du mécanisme proposé (voir paragraphe 4). Nous avons précédemment montré (voir Chapitre III) que la croissance de la couche de magnétite s’effectuait à l’interface externe. Aussi, la cinétique de croissance de cette couche sera modélisée en supposant que sa croissance est contrôlée par le transport du fer dans la couche d’oxyde duplex. Ce modèle sera alors validé par une comparaison entre la simulation et les points expérimentaux obtenus dans le cadre de cette étude. Enfin, dans l’objectif de tester notre simulation pour des conditions d’essai plus larges, nous ferons varier les paramètres, température et teneur en oxygène. Une comparaison avec des données de la littérature nous permettra de discuter notre simulation et par conséquent notre mécanisme d’oxydation.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

2. Coefficients de diffusion du fer et du chrome dans les spinelles Fe$_{2.34}$Cr$_{0.66}$O$_4$ et Fe$_3$O$_4$

Les cations fer et chrome diffusent au sein des couches d'oxyde via les défauts cristallins présents dans les spinelles. Aussi nous présentons un résumé de la structure de la magnétite, précisant le lien entre les défauts, lacunes et interstitiels, et la diffusion des cations en Annexe 10.

En supposant un équilibre thermodynamique local au sein des couches d'oxyde, le lien entre les coefficients de diffusion et la pression partielle en oxygène est aussi expliqué en Annexe 10.

Nous ne présenterons donc, dans le corps du document, que les valeurs des coefficients de diffusion extrapolés à notre température de travail.

2.1. Evaluation des coefficients de diffusion du fer et du chrome dans Fe$_{2.34}$Cr$_{0.66}$O$_4$ et dans Fe$_3$O$_4$ à 470°C

La diffusion des cations fer s'effectue par sauts dans les sites inoccupés du réseau. D'après cette structure spinelle, un cation fer peut donc diffuser via les sites interstitiels normalement inoccupés, notés V_I ou via les sites lacunaires, notés V_{Fe} (voir Annexe 10).

Dans le cas d'une diffusion interstitielle, le coefficient de diffusion intrinsèque du fer, $D_{Fe^{n+}}$, est lié au coefficient de diffusion du fer dans les sites interstitiels, $D_{Fe^{n+}}$, selon :

$$ D_{Fe^{n+}} [Fe^{n+}] = D_{Fe^{n+}} [Fe^{n+}] $$

en notant Fe^{n+} un cation fer localisé dans un site normal du sous-réseau cationique et Fe^{n+}_I, un cation fer localisé dans un site interstitiel normalement inoccupé. Les symboles $[Fe^{n+}]$ et $[Fe^{n+}_I]$ concernent les concentrations volumiques des espèces Fe^{n+} et Fe^{n+}_I.

De la même manière, le coefficient de diffusion d'un cation fer diffusant via les sites lacunaires V_{Fe} (sites vides du réseau cationique) occupés est exprimé selon :

$$ D_{Fe^{n+}} [Fe^{n+}] = D_{V_{Fe}} [V_{Fe}] $$

Dans le cas général, le coefficient de diffusion intrinsèque du fer $D_{Fe^{n+}}$ s'écrit :

$$ D_{Fe^{n+}} [Fe^{n+}] = D_{V_{Fe}} [V_{Fe}] + D_{Fe^{n+}} [Fe^{n+}] $$

Afin de déterminer le coefficient de diffusion intrinsèque du fer, les concentrations des lacunes et des interstitiels ont été estimées dans la littérature en fonction de l'activité en oxygène.

Les coefficients de diffusion du fer et du chrome dans la magnétite et dans le spinelle Fe$_{2.4}$Cr$_{0.6}$O$_4$ peuvent être estimés à partir :

- de mesures effectuées à 1200°C pour la magnétite et le spinelle Fe$_{2.4}$Cr$_{0.6}$O$_4$,
- de mesures effectuées entre 900 et 1400°C pour le fer dans la magnétite et entre 1210 et 1410°C pour le chrome dans la magnétite.

Le coefficient de diffusion du fer dans la magnétite a été mesuré en fonction de l'activité en oxygène et de la température pour des température comprises entre 900 et 1400°C.
Atkinson [70] a vérifié la justesse d’une extrapolation de ce coefficient de diffusion du fer dans la magnétite à 500°C lors d’études sur l’oxydation du fer.

Nous utiliserons donc une extrapolation, à 470°C, du coefficient de diffusion du fer et du chrome dans la magnétite, à partir des valeurs de la littérature [106][107] obtenues pour la gamme de température 900-1400°C pour le fer et 1210-1410°C pour le chrome. Soit \(a_{O_2} \), l’activité en oxygène dans la couche de magnétite, les coefficients de diffusion du fer \(D_{Fe} (Fe_3O_4, T) \) et du chrome \(D_{Cr} (Fe_3O_4, T) \) dans la magnétite à la température \(T \) s’écrivent :

\[
- D_{Fe} (Fe_3O_4, T) = \frac{A a_{O_2}^{2/3}}{(1 + 2 K_v a_{O_2}^{2/3})} + B a_{O_2}^{-2/3} \quad \text{avec} \quad A = \frac{D_v K_v}{12} \quad \text{et} \quad B = \frac{4}{3} D_v K_f.
\]

\[
- D_{Cr} (Fe_3O_4, T) = \frac{K_f a_{O_2}^{2/3}}{4(1 + 2 K_v a_{O_2}^{2/3})} + 4 K_f a_{O_2}^{-2/3}
\]

Le Tableau 17 rassemble les valeurs numériques des paramètres \(D_v \) et \(D_f \), les coefficients de diffusion des lacunes et des interstitiels ainsi que \(K_v \) et \(K_f \), les constantes de réaction menant à la création d’une lacune et d’un interstitiel.

Le coefficient de diffusion du fer et du chrome dans la magnétite et dans le spinelle \(Fe_{2.4}Cr_{0.6}O_4 \) ont aussi été mesurés en fonction de l’activité en oxygène à 1200°C [47].

En supposant une même dépendance en température pour les diffusions du fer et du chrome dans la magnétite et dans le spinelle Fe-Cr, la même extrapolation peut être réalisée de 1200°C à 470°C :

\[
D_X (Fe_{2.4}Cr_{0.6}O_4, 470°C) = \frac{D_X (Fe_{2.4}Cr_{0.6}O_4, 1200°C)}{D_X (Fe_3O_4, 1200°C)}
\]

L’indice \(X \) correspond à l’élément diffusant : le fer ou le chrome. Les éléments entre parenthèses correspondent au type de spinelle (magnétite ou spinelle Fe-Cr) dans lequel diffuse l’élément \(X \) et à la température.

Notons \(D_{Fe} (Fe_{2.4}Cr_{0.6}O_4, 1200°C) = 0.24 \) et \(D_{Cr} (Fe_{2.4}Cr_{0.6}O_4, 1200°C) = 0.74 \), d’après les données de la littérature [47].
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Tableau 17 : Liste des valeurs des différents paramètres nécessaires au calcul des coefficients de diffusion du fer et du chrome dans la magnétite et dans le spinelle Fe-Cr, Fe$_{2.4}$Cr$_{0.6}$O$_{4}$ \cite{106,107}.

La Figure 99 et la Figure 100 représentent les coefficients de diffusion du fer et du chrome dans la magnétite et dans le spinelle Fe-Cr calculés à 470°C, à partir des données regroupées dans le Tableau 17, en fonction de l'activité en oxygène au sein de l'oxyde.

Les deux régimes diffusionnels (voir Annexe 10), interstitiels et lacunaires, sont mis en évidence sur ces figures.

Les activités en oxygène aux interfaces externe et interne de la couche d'oxyde duplex, calculées aux chapitres précédents (Chapitre I, paragraphes 4.2 et 5.2.2, Chapitre III, paragraphe 6.1), sont aussi représentées sur le graphique de la Figure 99. Leur localisation met en évidence le domaine de variation du coefficient de diffusion dans la couche d'oxyde. En effet, l'activité de l'oxygène varie dans la couche d'oxyde de sa valeur à l'équilibre à l'interface T91/oxyde à sa valeur à l'équilibre à l'interface oxyde/Pb-Bi. De plus, au sein de la couche d'oxyde, le coefficient de diffusion du fer varie avec l'activité en oxygène. Dans la couche d'oxyde, les coefficients de diffusion varient sur plusieurs ordres de grandeur.

\begin{align*}
\text{Coefficient de diffusion du fer (exprimé en cm}^2/\text{s}) : \\
D_v &= 0,177 \eta \exp\left(-\frac{14600}{T}\right) + 1,16 \times 10^{-3} (1 - \eta) \exp\left(-\frac{8670}{T}\right) \\
\eta &= \frac{1}{1 + 3 \times 10^{-3} \exp\left(\frac{11900}{T}\right)} \\
\text{Coefficient de diffusion des lacunes : } D_v &= 1,22 \times 10^4 \exp\left(-\frac{27700}{T}\right) \\
&= 1 + 1,56 \times 10^4 \exp\left(-\frac{20100}{T}\right) \\
K_v &= 2,04 \times 10^{-7} \exp\left(\frac{27170}{T}\right) \text{ et } K_v = 1,93 \times 10^3 \exp\left(-\frac{43140}{T}\right) + 3,01 \times 10^9 \exp\left(-\frac{63270}{T}\right) : \text{ constantes de réactions menant à la formation réciproquement d'une lacune (équilibre (2)) et d'un interstitiel (équilibre (3)).}
\end{align*}

\begin{align*}
\text{Coefficient de diffusion du chrome (exprimé en cm}^2/\text{s}) : \\
D_v &= 5,12 \times 10^{-9} \exp\left(-\frac{880}{T}\right) \\
K_v &= 2,04 \times 10^{-11} \exp\left(\frac{27170}{T}\right) \text{ et } K_v = 1,93 \times 10^3 \exp\left(-\frac{43140}{T}\right) + 3,01 \times 10^9 \exp\left(-\frac{63270}{T}\right) : \text{ constantes de réactions menant à la formation réciproquement d'une lacune et d'un interstitiel.}
\end{align*}

avec T en K et $a^0_{O_2} = \frac{P_{O_2}}{P^0_{O_2}}$ avec $P^0_{O_2} = 1$ bar.

\begin{align*}
\text{Coefficient de diffusion des lacunes : } D_v &= 3,84 \times 10^9 \exp\left(-\frac{90500}{T}\right) \\
K_v &= 2,04 \times 10^{-11} \exp\left(\frac{27170}{T}\right) \text{ et } K_v = 1,93 \times 10^3 \exp\left(-\frac{43140}{T}\right) + 3,01 \times 10^9 \exp\left(-\frac{63270}{T}\right) : \text{ constantes de réactions menant à la formation réciproquement d'une lacune et d'un interstitiel.}
\end{align*}

avec T en K et $a^0_{O_2} = \frac{P_{O_2}}{P^0_{O_2}}$ avec $P^0_{O_2} = 1$ bar.
La Figure 99 montre l'évolution du coefficient de diffusion du fer en fonction de l'activité en oxygène dans la couche d'oxyde. Elle met en évidence un changement de régime de diffusion, de lacunaire à interstitiel, lors de la diffusion du fer dans la couche duplex de notre oxyde.

En effet, au contact du T91, l'activité en oxygène est faible et le régime de diffusion est interstitiel, le coefficient de diffusion du fer suit l'évolution de celui qui correspond au spinelle Fe-Cr puisque le fer commence à diffuser dans la couche de spinelle Fe-Cr. A l'interface entre les deux oxydes, le coefficient de diffusion du fer change, le fer diffuse alors dans la magnétite.

Ne connaissant pas la pression partielle en oxygène à l'interface spinelle Fe-Cr/magnétite, nous ne pouvons pas savoir si le changement de régime (interstitiel à lacunaire) se produit dans la couche de spinelle Fe-Cr (parcours A, Figure 99) ou dans la couche de magnétite (parcours B, Figure 99). Toutefois, au contact de l'alliage Pb-Bi, l'activité en oxygène est plus élevée et le régime de diffusion est lacunaire.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

2.2. Conclusion sur les coefficients de diffusion et leur impact sur le mécanisme d'oxydation

Pour résumer les informations obtenues sur les coefficients de diffusion du fer et du chrome dans la couche de magnétite et celle de spinelle Fe-Cr, rappelons certains points essentiels :

Le fer et le chrome peuvent diffuser dans le réseau de l'oxyde selon un régime interstitiel ou un régime lacunaire. Ils suivent un régime interstitiel lorsque la teneur en oxygène est faible et un régime lacunaire lorsqu'elle est plus élevée. La Figure 99 et la Figure 100 montrent que dans notre intervalle de pression partielle d'oxygène, le chrome ne diffuse que par un processus lacunaire alors que le processus de diffusion du fer change dans la couche d'oxyde globale. La localisation de ce changement de régime ne peut actuellement pas être identifiée (dans la couche de magnétite ou dans la couche de spinelle Fe-Cr).

Les coefficients de diffusion du fer dans la magnétite et dans le spinelle Fe-Cr sont fortement dépendants de l'activité en oxygène. Aussi, leur valeur évolue de plusieurs ordres de grandeur au sein de la couche d'oxyde.

Trois ordres de grandeur séparent les coefficients de diffusion du fer et du chrome dans les réseaux spinelle ($D_{Cr} < D_{Fe}$).
Un ordre de grandeur sépare les coefficients de diffusion du fer dans la magnétite et dans le spinelle Fe$_{2,34}$Cr$_{0,66}$O$_4$ ($D_{Fe}(\text{magnétite}) > D_{Fe}(\text{spinelle Fe-Cr})$).

Les valeurs obtenues pour les coefficients de diffusion des différentes espèces dans les deux oxydes nous permettront d'étudier quantitativement le mécanisme d'oxydation.

3. Mécanisme de croissance du spinelle Fe-Cr

Tout d'abord nous étudierons la possibilité de contrôle de la cinétique de croissance de la couche de spinelle Fe-Cr par la diffusion du chrome.

Puis, nous chercherons à proposer un mécanisme de croissance du spinelle Fe-Cr à partir de l'analyse de nos résultats expérimentaux.

Nous discuterons par la suite de la faisabilité de ce mécanisme d'oxydation par rapport à nos résultats expérimentaux.

Cette discussion nous conduira à détailler le mécanisme préalablement suggéré afin de conclure par la proposition d'un mécanisme global rendant compte de l'ensemble de nos résultats et de ceux de la littérature.

3.1. Une croissance limitée par la diffusion du chrome ?

Le chapitre précédent nous a montré que l'apport d'oxydant à l'interface interne n'est pas limitant dans le mécanisme de croissance de la couche de spinelle Fe-Cr.

Si la croissance de la couche de spinelle Fe-Cr était limitée par la diffusion du chrome dans le T91, nous devrions observer au moins l'un des deux phénomènes suivants :
− une zone d'oxydation interne conséquente,
− la formation d'une couche de magnétite à l'interface interne.

En effet, si l'apport de chrome n'était pas suffisant à la croissance de la couche de spinelle Fe-Cr, l'oxygène diffuserait dans l'acier afin d'oxyder le chrome au cœur du matériau et une oxydation interne se produirait. Par ailleurs, l'apport d'oxygène n'étant pas limitant et la réserve de fer étant "semi-infinie" à l'interface métal/oxyde, rien n'empêcherait la formation d'une couche de magnétite à l'interface interne en cas d'absence de chrome à l'interface.

Finalement, on observerait par SDL et/ou SIMS un gradient de concentration en chrome dans le T91 traduisant une diffusion du chrome dans le métal.

Une limitation de la croissance de la couche de spinelle Fe-Cr par diffusion du chrome dans le T91 nous paraît donc improbable.

La couche de spinelle Fe-Cr croît, d'après les expériences de localisation des interfaces de croissance, à l'interface T91/spinelle Fe-Cr. Aussi, un contrôle de la croissance de la couche de spinelle Fe-Cr par diffusion du chrome à travers la couche de spinelle nous semble peu probable : ce mode de limitation implique une croissance de la couche de spinelle Fe-Cr à l'interface spinelle Fe-Cr/magnétite.
Cependant, afin de vérifier l'impossibilité de cette limitation, une simulation de la croissance de la couche de spinelle Fe-Cr peut être réalisée. Cette simulation se fonde sur l'hypothèse que la croissance de la couche de spinelle Fe-Cr est limitée par la diffusion du chrome dans la couche de spinelle.

3.1.1. Simulation de la diffusion du chrome dans le spinelle Fe-Cr

Dans le but de simuler la croissance de la couche de spinelle Fe-Cr par la diffusion du chrome dans la couche de spinelle Fe-Cr, posons les hypothèses de simulation :

- Hypothèse (H1) : Le chrome diffuse en volume à travers le réseau de la couche de spinelle Fe-Cr.
- Hypothèse (H2) : La couche de spinelle Fe-Cr croît à l'interface spinelle Fe-Cr/magnétite. Aucune accumulation de matière ne se produit autre part (Figure 101).
- Hypothèse (H3) : Il n'y a pas de croissance latérale de la couche d'oxyde. Aussi la simulation est effectuée selon une dimension.
- Hypothèse (H4) : Il n'y a ni accumulation ni perte de matière à l'intérieur de la couche. Le flux de chrome est donc constant, il ne dépend donc pas de la variable d'espace.
- Hypothèse (H5) : Les activités en oxygène sont constantes aux interfaces interne et externe.
- Hypothèse (H6) : Un équilibre thermodynamique local existe au sein de la couche d'oxyde.
- Hypothèse (H7) : Un état pseudo-stationnaire est atteint. Cette hypothèse implique qu'il existe un système de coordonnées (0 ; y) dans lequel l'activité en oxygène dans la couche d'oxyde n'évolue pas dans le temps \([161]\).

Le schéma de croissance de la couche de spinelle Fe-Cr est représenté sur la Figure 101.

![Figure 101 : Schéma de diffusion du chrome à travers le réseau du spinelle Fe-Cr.](image)
Tableau 18 : Symboles utilisés dans le calcul de la cinétique de croissance de la couche de spinelle Fe-Cr.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{\text{spinelle Fe-Cr}})</td>
<td>épaisseur de la couche de spinelle Fe-Cr (L)</td>
</tr>
<tr>
<td>(J_{\text{spinelle Fe-Cr}})</td>
<td>flux de chrome traversant la couche de spinelle Fe-Cr (NL(^{-2})T(^{-1}))</td>
</tr>
<tr>
<td>(C_{Cr}^{\text{spinelle Fe-Cr}})</td>
<td>concentration en chrome dans la couche de spinelle Fe-Cr (NL(^{-3}))</td>
</tr>
<tr>
<td>(D_{\text{magnétite}}^{Cr})</td>
<td>coefficient de diffusion du chrome dans le spinelle Fe-Cr (L(^{2})T(^{-1}))</td>
</tr>
<tr>
<td>(\mu_X)</td>
<td>potentiel chimique de l'élément X dans le spinelle Fe-Cr (ML(^2)T(^{-2}))</td>
</tr>
<tr>
<td>(a_{O_2})</td>
<td>activité de l'oxygène</td>
</tr>
<tr>
<td>(a_{O_2}^{\text{int}})</td>
<td>activité de l'oxygène à l'interface spinelle Fe-Cr/magnétite</td>
</tr>
<tr>
<td>(a_{O_2}^{\text{tot}})</td>
<td>activité de l'oxygène à l'interface spinelle Fe-Cr/T91</td>
</tr>
<tr>
<td>(x_{\text{spinelle Fe-Cr}})</td>
<td>abscisse dans la couche de spinelle Fe-Cr (L)</td>
</tr>
<tr>
<td>(n)</td>
<td>quantité de cation Cr(^{3+}) atteignant l'interface spinelle Fe-Cr/magnétite pendant un temps (dt) (N)</td>
</tr>
<tr>
<td>(y)</td>
<td>(x_{\text{spinelle Fe-Cr}} / h_{\text{spinelle Fe-Cr}}) (paramètre adimensionnel)</td>
</tr>
</tbody>
</table>

Le flux de chrome à travers la couche de spinelle Fe-Cr est déterminé par la première loi de Fick [117] :

\[
J_{\text{spinelle Fe-Cr}} = \frac{D_{Cr}^{\text{spinelle Fe-Cr}}}{RT} \frac{C_{Cr}^{\text{spinelle Fe-Cr}}}{\partial \mu_{Cr}^{\text{spinelle Fe-Cr}}/\partial X} \tag{1}
\]

En supposant l'hypothèse (H6), la réaction suivante est à l'équilibre au sein de la couche de spinelle Fe-Cr :

\[
0,66\text{Cr} + 2,34\text{Fe} + 2\text{O}_2 \rightarrow \text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4
\]

il s'en suit :

\[
0,66d\mu_{Cr} + 2,34d\mu_{Fe} + 2d\mu_{O_2} = 0 \text{ et par conséquent } |d\mu_{Cr}| < \frac{2}{0,66} |d\mu_{O_2}| \tag{2}
\]

Les équations (1) et (2) nous permettent de majorer le flux de chrome à travers la couche de spinelle Fe-Cr et d'exprimer cette majoration en fonction du gradient d'activité en oxygène dans l'oxyde :

\[
J_{\text{spinelle Fe-Cr}} < \frac{2}{0,66} \frac{D_{Cr}^{\text{spinelle Fe-Cr}}}{a_{O_2}} \frac{C_{Cr}^{\text{spinelle Fe-Cr}}}{\partial a_{O_2}^{\text{tot}}/\partial X_{\text{spinelle Fe-Cr}}} \tag{3}
\]

La couche de spinelle Fe-Cr croît à l'interface oxyde/oxyde en \(x = h_{\text{spinelle Fe-Cr}} \) (H2) :

\[
\frac{dn}{dt} = J_{\text{spinelle Fe-Cr}} (h_{\text{spinelle Fe-Cr}}) S = C_{Cr}^{\text{spinelle Fe-Cr}} S \frac{dh_{\text{spinelle Fe-Cr}}}{dt}
\]

Effecutons le changement de variable suivant : \(y = \frac{x_{\text{spinelle Fe-Cr}}}{h_{\text{spinelle Fe-Cr}}} \). Dans le système de coordonné \((0 ; x, y) \), l'activité en oxygène dans la couche de spinelle Fe-Cr n'évolue pas dans le temps (H7) et

\[
\frac{\partial a_{O_2}}{\partial y} = \frac{da_{O_2}}{dy}.
\]

L'expression précédente devient alors :

\[
\frac{dn}{dt} = J_{\text{spinelle Fe-Cr}} (h_{\text{spinelle Fe-Cr}}) S = C_{Cr}^{\text{spinelle Fe-Cr}} S \frac{dh_{\text{spinelle Fe-Cr}}}{dt}
\]
Chapitre V : Mécanisme de croissance des couches d’oxyde et simulation

\[C_{\text{Cr}} \frac{dh_{\text{spinelle Fe-Cr}}}{dt} < \frac{2}{0.66} D_{\text{Cr}} \frac{C_{\text{Cr}}}{a_{O_2}} \frac{1}{h_{\text{spinelle Fe-Cr}}} \frac{da_{O_2}}{dy} \]

(4)

En intégrant l’équation (4) :

\[\int_{y=0}^{y=y_1} h_{\text{spinelle Fe-Cr}} \frac{1}{0.66} \frac{D_{\text{Cr}}}{a_{O_2}} \frac{da_{O_2}}{dy} \int_{0}^{t} dt < \int_{0}^{y=0} h_{\text{spinelle Fe-Cr}} \frac{dh_{\text{spinelle Fe-Cr}}}{dy} \int_{0}^{t} dt \]

(5)

La résolution de l’équation (5) permet d’obtenir une majoration de l’épaisseur de la couche de spinelle Fe-Cr en fonction du temps et de l’activité de l’oxygène aux interfaces spinelle Fe-Cr/T91 et spinelle Fe-Cr/magnétite :

\[h_{\text{spinelle Fe-Cr}}^2 < \frac{1}{0.66 \times 0.74} \left[\frac{3D_{v}}{K_{v}} \ln \left(\frac{1 + 2K_{v}a_{O_2}^{\text{ext}}}{1 + 2K_{v}a_{O_2}^{\text{int}}} \right) - 6D_{l} \left(a_{O_2}^{\text{ext}} - a_{O_2}^{\text{int}} \right) \right] t \]

(6)

L’activité en oxygène à l’interface interne \(a_{O_2}^{\text{int}} \) est choisie égale à la pression partielle en équilibre avec le système T91/Fe_{2.34}Cr_{0.66}O_{4}. En revanche, la pression partielle en oxygène à l’interface spinelle Fe-Cr/magnétite, \(a_{O_2}^{\text{ext}} \), n’est pas connue. Elle peut être choisie de sorte à majorer davantage l’inégalité précédente. Elle est donc prise égale à la pression partielle en oxygène en équilibre avec l’activité en oxygène dans l’alliage Pb-Bi saturé en oxygène à 470°C. Ainsi on considère, pour le calcul et afin de majorer le gradient de pression partielle dans la couche de spinelle Fe-Cr, que le gradient de pression partielle en oxygène de la couche d’oxyde est regroupé uniquement dans la couche de spinelle Fe-Cr.

L’ensemble des données numériques utilisées pour ce calcul est rassemblé dans le tableau ci-dessous.

<table>
<thead>
<tr>
<th>(D_{v}) (cm²/s)</th>
<th>(D_{l}) (cm²/s)</th>
<th>(K_{v})</th>
<th>(a_{O_2}^{\text{ext}}) (atm)</th>
<th>(a_{O_2}^{\text{int}}) (atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,67x10⁻⁸</td>
<td>4,8x10⁻⁴⁴</td>
<td>1,5x10³</td>
<td>3,5x10⁻²⁰</td>
<td>5,4x10⁻³⁶</td>
</tr>
</tbody>
</table>

Tableau 19 : Données numériques utilisées pour la simulation de la croissance du spinelle Fe-Cr par la diffusion du chrome via le réseau de l’oxyde.

Nous avons tracé la courbe simulée et représenté l’épaisseur expérimentale de la couche de spinelle Fe-Cr sur le même graphique, Figure 102.
La Figure 102 nous montre que la courbe simulée correspond à une cinétique de croissance bien plus lente que celle des points expérimentaux. Un changement d'échelle est d'ailleurs nécessaire afin de visualiser une évolution de l'épaisseur simulée de la couche de spinelle Fe-Cr.

La cinétique de croissance simulée est environ 800 fois plus lente que la cinétique de croissance expérimentale. La conclusion de cette simulation est donc sans équivoque : la croissance de la couche de spinelle Fe-Cr ne peut être contrôlée par la diffusion du chrome à travers la couche d'oxyde.

Par ailleurs, nous remarquerons qu'une simple analyse des profils microsonde effectués sur des échantillons oxydés dans l'alliage Pb-Bi et dans le bismuth pur nous permettent d'aboutir aux mêmes conclusions.

3.1.2. Analyse microsonde et diffusion du chrome

Les caractéristiques de la diffusion du chrome dans la couche de spinelle Fe-Cr peuvent être déduites des profils microsonde de la Figure 103 ci-dessous.

Les concentrations des éléments sont généralement présentées en atome pour-cent ou en poids pour-cent sur les profils des analyses microsonde. Elles ont été volontairement présentées en mol/cm3, sur la Figure 103. Ce changement d'unité a été réalisé en considérant un volume molaire de 44,6 cm3/mol pour le spinelle Fe-Cr et pour la magnétite. L'objectif de ce changement d'unité est de mettre en valeur les différences de concentration volumique des éléments lors des changements de milieux (T91, spinelle Fe-Cr, magnétite).
Figure 103 : (A) Profil microsonde d'une section transverse polie d'un échantillon de T91 immergé 3700 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C. (B) Profil microsonde d'une section transverse polie d'un échantillon de T91 immergé 310 heures dans le bismuth saturé en oxygène à 470°C.

Les profils présentés Figure 103 laissent apparaître que les rapports \(\frac{[Cr]}{[Mo]} \) de concentration de chrome sur celle de molybdène sont identiques dans le T91 et dans le spinelle Fe-Cr :

\[
\frac{[Cr]_{\text{spinelle Fe-Cr}}}{[Mo]_{\text{spinelle Fe-Cr}}} = \frac{[Cr]_{T91}}{[Mo]_{T91}}
\]

Ceci implique que :
- soit le chrome et le molybdène ont des vitesses de diffusion significatives et dans ce cas elles sont similaires,
- soit leurs vitesses de diffusion sont suffisamment faibles pour être considérées comme négligeables face aux vitesses de transport des espèces régissant le processus d'oxydation.

De plus, si l'on considère le chrome, plusieurs points sont à noter :
- Les profils de concentration de chrome observés sur les analyses microsonde et SIMS (Figure 62, Figure 66, Figure 74) sont raides et délimitent très nettement la couche de spinelle Fe-Cr de la couche de magnétite.
- Ces profils dont l'allure n'est pas diffusionnelle, suggèrent que la couche de spinelle Fe-Cr ne progresse pas par diffusion de chrome dans le réseau spinelle.
La diffusion du chrome n'est pas nécessaire au processus d'oxydation puisque la couche de spinelle Fe-Cr croît à l'interface T91/spinelle Fe-Cr. Le chrome peut donc rester immobile dans le processus d'oxydation sans perturber la croissance de la couche de spinelle Fe-Cr.

Ainsi, la diffusion similaire du molybdène et du chrome, les profils de concentration (microsonde et SIMS) non diffusionnels et la croissance du spinelle Fe-Cr à l'interface interne montrent que la diffusion du chrome est à priori très lente dans le spinelle Fe-Cr.

3.2. Modèle de croissance du spinelle Fe-Cr

Les conclusions des études précédentes suggèrent que la croissance du spinelle Fe-Cr n'est limitée ni par l'apport d'oxygène ni par la diffusion du chrome. Pourtant sa cinétique de croissance parabolique mène à penser que sa cinétique d'oxydation est régie par un processus diffusionnel. Le dernier élément dont la diffusion peut contrôler la croissance du spinelle Fe-Cr est le fer.

Dans un premier temps nous ne considérerons aucun mécanisme, nous chercherons juste à caractériser factuellement la croissance du spinelle Fe-Cr ; puis, dans un second temps, nous chercherons quel type de mécanisme peut engendrer de tels phénomènes.

3.2.1. Caractérisation du mode de croissance du spinelle Fe-Cr

Comme nous l'avons souligné dans le deuxième chapitre de cette étude, deux catégories de mécanisme sont proposées dans la littérature pour décrire la croissance d'une couche duplex :

- la catégorie pour laquelle l'interface originelle métal/environnement correspond à l'interface actuelle oxyde/oxyde, par rapport à un référentiel fixe situé au cœur du métal,
- la catégorie pour laquelle l'interface originelle n'est pas localisable.

Aussi pour caractériser au mieux, de manière purement factuelle, le mode de croissance du spinelle Fe-Cr, il semble important d'identifier la catégorie à laquelle notre mode de croissance correspond. Cherchons tout d'abord à localiser l'interface originelle T91/Pb-Bi.

Puis nous identifierons plus finement le mode de croissance du spinelle Fe-Cr par la loi de la conservation de la matière adaptée à nos résultats expérimentaux.

3.2.1.1. Localisation de l'interface originelle T91/Pb-Bi

Comme nous l'avons précisé dans le Chapitre II, pour la plupart des cas d'oxydation des aciers Fe-Cr la littérature localise l'interface originelle métal/environnement à l'interface spinelle Fe-Cr/magnétite. Cette localisation s'appuie sur l'observation de la régularité de l'interface entre les deux oxydes de la couche duplex.

Une distinction très nette entre les oxydes 1 et 2 de la couche duplex est observable sur la micrographie ci-dessous réalisée par Hersubeno dans le cadre de l'étude sur l'oxydation d'un acier inoxydable à 600°C dans la vapeur d'eau [108].
Sur cette micrographie, il semble que l'oxyde 1 croît, sous l'interface originelle métal/environnement, dans l'épaisseur d'acier consommé. Il semble aussi que le volume de métal consommé est entièrement rempli par le volume d'oxyde 1 (Figure 105). Nous reconsidérerons cette caractéristique dans la suite du paragraphe.

Dans notre cas, la régularité de l'interface spinelle Fe-Cr/magnétite, observable sur les images MEB de la Figure 105, rappelle aussi la régularité de l'interface T91/Pb-Bi, due au polissage de l'échantillon.

Par ailleurs nous avons précédemment suggéré que les atomes de chrome ne diffusaient pas dans la couche de spinelle Fe-Cr pendant le processus d'oxydation.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Ainsi la proportion d'oxyde qui croît sous l'interface originelle T91/Pb-Bi (dans l'épaisseur de T91 consommé) est marquée par une présence de chrome. Réciproquement, la proportion d'oxyde qui croît au dessus de l'interface originelle T91/Pb-Bi est marquée par l'absence d'atomes de chrome.

L'apparition d'atomes de chrome dans la couche d'oxyde marque donc l'ancienne interface T91/Pb-Bi. L'interface originelle T91/Pb-Bi coïncide alors avec une nouvelle interface, caractérisée par l'apparition de chrome sur le profil de concentration des échantillons, c'est-à-dire l'interface actuelle spinelle Fe-Cr/magnétite.

Cet argument est acceptable à condition que le gonflement lié à l'oxydation du T91 en spinelle Fe-Cr n'implique pas que le volume de spinelle Fe-Cr formé soit supérieur à celui de T91 consommé. Dans ce cas, l'absence de diffusion des atomes de chrome dans la couche d'oxyde, la régularité de l'interface spinelle Fe-Cr/magnétite et le rapprochement de notre étude avec celles de la littérature permettent de supposer que l'interface originelle T91/Pb-Bi correspond à l'interface actuel spinelle Fe-Cr/magnétite.

Cette première caractéristique de la croissance de la couche de spinelle Fe-Cr peut être représentée par le schéma suivant.

![Figure 106 : Schéma de croissance de la couche de spinelle Fe-Cr.](image)

A la lumière de ces considérations, il semble vraisemblable que l'interface originelle métal/Pb-Bi corresponde à l'interface spinelle Fe-Cr/magnétite. Cependant, comme nous l'avons précisé, cette caractéristique est fondée sur l'hypothèse que le volume de spinelle Fe-Cr formé ne dépasse pas celui de T91 consommé.

Cette supposition de croissance du spinelle Fe-Cr dans le volume de T91 consommé peut être soutenue par les résultats des profils de concentration microsonde de la Figure 103. En effet, on remarque que les concentrations en chrome, en mole par unité de volume, sont égales dans le T91 et dans le spinelle Fe-Cr : $[\text{Cr}]_{\text{spinelle Fe-Cr}}(\text{mol/cm}^3) = [\text{Cr}]_{\text{T91}}(\text{mol/cm}^3)$.

L'intérêt du changement d'unité des concentrations est de mettre en évidence cette égalité qui est différente pour un autre système d'unité. On peut remarquer sur le profil microsonde de la Figure 62, exprimé en poids pour-cent, que dans ce système d'unité l'égalité précédente devient $[\text{Cr}]_{\text{spinelle Fe-Cr}}(\text{pds %}) \approx 2[\text{Cr}]_{\text{T91}}(\text{pds %})$.

L'égalité $[\text{Cr}]_{\text{spinelle Fe-Cr}}(\text{mol/cm}^3) = [\text{Cr}]_{\text{T91}}(\text{mol/cm}^3)$ prouve que les atomes de chrome sont globalement espacés de la même manière dans le spinelle Fe-Cr et dans le T91 (de même que les atomes de molybdène pour lesquels l'égalité précédente est aussi vérifiée).
La non diffusion du chrome dans la couche d'oxyde, ajoutée à l'égalité \[[\text{Cr}]_{\text{spinelle Fe-Cr}}(\text{mol/cm}^3) = [\text{Cr}]_{T91}(\text{mol/cm}^3) \] mène à penser que les atomes de chrome restent globalement fixes (par rapport à un référentiel situé au cœur du métal) au cours du processus d'oxydation.

Cette constatation suppose que le volume de T91 consommé corresponde, au moins en partie, au volume de spinelle Fe-Cr formé et que l'interface originelle coïncide avec l'interface spinelle Fe-Cr/magnétite.

Ce mode de croissance du spinelle Fe-Cr est représenté sur la Figure 107 suivante.

Finalement, en supposant que l'interface originelle corresponde à l'interface spinelle Fe-Cr/magnétite, la mise en évidence expérimentale de l'immobilité des atomes de chrome, pendant le processus d'oxydation, mène à considérer que le spinelle Fe-Cr croît dans une partie du volume de T91 consommé.

La loi de la conservation de la matière, ajoutée à nos résultats expérimentaux, va nous permettre de préciser la constatation précédente.

3.2.1.2. Loi de conservation de la matière et croissance du spinelle Fe-Cr dans la totalité du volume de T91 consommé

La loi de la conservation de la matière nous permet de calculer le volume de T91 consommé ainsi que la stœchiométrie du spinelle Fe-Cr. Les valeurs ainsi obtenues seront comparées au volume de spinelle Fe-Cr formé et à la stœchiométrie du spinelle Fe-Cr déterminée expérimentalement précédemment.

En ne supposant aucune dissolution de matière, la loi de la conservation de la matière peut être écrite pour l'ensemble du processus d'oxydation :

- Tout le fer provenant de la consommation du T91 se retrouve dans la couche de spinelle Fe-Cr et dans la couche de magnétite.
- Tout le chrome provenant de la consommation du T91 se retrouve dans la couche de spinelle Fe-Cr.
Les symboles utilisés dans ce paragraphe sont regroupés avec leur signification dans le Tableau 20.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_{Fe\ (T91)}$</td>
<td>quantité de fer consommée, provenant initialement du T91 (N)</td>
</tr>
<tr>
<td>$n_{Fe\ (spinelle\ Fe-Cr)}$</td>
<td>quantité de fer, provenant du T91, se retrouvant dans le spinelle Fe-Cr (N)</td>
</tr>
<tr>
<td>$n_{Fe\ (magnétite)}$</td>
<td>quantité de fer, provenant du T91, se retrouvant dans la magnétite (N)</td>
</tr>
<tr>
<td>$n_{Cr\ (T91)}$</td>
<td>quantité de chrome consommée, provenant initialement du T91 (N)</td>
</tr>
<tr>
<td>$n_{Cr\ (spinelle\ Fe-Cr)}$</td>
<td>quantité de chrome, provenant du T91, se retrouvant dans le spinelle Fe-Cr (N)</td>
</tr>
<tr>
<td>$h_{spinelle\ Fe-Cr}$</td>
<td>épaisseur de la couche de spinelle Fe-Cr formée (L)</td>
</tr>
<tr>
<td>$h_{magnétite}$</td>
<td>épaisseur de la couche de magnétite formée (L)</td>
</tr>
<tr>
<td>h_{T91}</td>
<td>épaisseur de T91 consommée (L)</td>
</tr>
<tr>
<td>S</td>
<td>surface de l'échantillon (L2)</td>
</tr>
<tr>
<td>$C_{Fe\ (T91)}$</td>
<td>concentration de fer dans le T91 (NL$^{-3}$)</td>
</tr>
<tr>
<td>$C_{Fe\ (spinelle\ Fe-Cr)}$</td>
<td>concentration de fer dans le spinelle Fe-Cr (NL$^{-3}$)</td>
</tr>
<tr>
<td>$C_{Fe\ (magnétite)}$</td>
<td>concentration de fer dans la magnétite (NL$^{-3}$)</td>
</tr>
<tr>
<td>$C_{Cr\ (T91)}$</td>
<td>concentration de chrome dans le T91 (NL$^{-3}$)</td>
</tr>
<tr>
<td>$C_{Cr\ (spinelle\ Fe-Cr)}$</td>
<td>concentration de chrome dans le spinelle Fe-Cr (NL$^{-3}$)</td>
</tr>
<tr>
<td>V_{FeO_x}</td>
<td>volume molaire de la magnétite et du spinelle Fe-Cr (L3N$^{-1}$)</td>
</tr>
</tbody>
</table>

La conservation de la matière s'écrit donc :

$$
\begin{align*}
 n_{Fe\ (T91)} &= n_{Fe\ (spinelle\ Fe-Cr)} + n_{Fe\ (magnétite)} \\
 n_{Cr\ (T91)} &= n_{Cr\ (spinelle\ Fe-Cr)}
\end{align*}
$$

La quantité molaire n_{T91} de T91 consommé est directement liée à la concentration des espèces dans le T91 et au volume consommé.

Le système (7) devient le système (8) suivant :

$$
\begin{align*}
 C_{Fe\ (T91)} \times h_{T91} &= C_{Fe\ (spinelle\ Fe-Cr)} \times h_{spinelle\ Fe-Cr} + C_{Fe\ (magnétite)} \times h_{magnétite} \\
 C_{Cr\ (T91)} \times h_{T91} &= C_{Cr\ (spinelle\ Fe-Cr)} \times h_{spinelle\ Fe-Cr}
\end{align*}
$$

Le volume de T91 consommé et les volumes d'oxyde formés sont directement liés à leurs épaississeurs car toutes les interfaces ont la même surface. Celle-ci n'évolue pas au cours du processus d'oxydation (pas de croissance latérale de l'oxyde). Aussi, les notions de volume peuvent se ramener à des notions d'épaisseur.

Toutes les concentrations impliquées dans le système (8) doivent être connues pour déterminer l'épaisseur h_{T91} de T91 consommée :

- Les paramètres cristallins de la magnétite et du spinelle Fe-Cr étant proches, le volume molaire du spinelle Fe-Cr est considéré égal à celui de la magnétite.
- Les concentrations de fer et de chrome dans le spinelle Fe-Cr dépendent de la stœchiométrie du spinelle Fe-Cr, Fe$_{3-x}$Cr$_x$O$_4$ (avec $0<x<2$), et du volume molaire du spinelle Fe-Cr, selon l'expression suivante :
 $$
 C_{Fe\ (spinelle\ Fe-Cr)} = \frac{3-x}{V_{FeO_4}} \text{ et } C_{Cr\ (spinelle\ Fe-Cr)} = \frac{x}{V_{FeO_4}} \text{ avec } 0<x<2
 $$
- Les concentrations de fer et de chrome dans le T91 sont données par leurs proportions dans l'alliage (90% de fer et 9% de chrome en pourcentage massique).
La concentration en fer dans la magnétite est liée à son volume molaire selon l'expression :

\[C_{Fe(\text{magnétite})} = \frac{3}{V_{FeO_4}} \]

En remplaçant les différentes concentrations par leurs valeurs, la résolution du système (8) mène aux égalités suivantes :

\[
x = 3 \left(1 + \frac{h_{\text{magnétite}}}{h_{\text{spinelle Fe-Cr}}} \right) \quad \text{avec } 0 < x < 2
\]

\[h_{T91} = \frac{1}{C_{Fe(T91)} V_{FeO_4}} \left[(3 - x) h_{\text{spinelle Fe-Cr}} + 3 h_{\text{magnétite}} \right]
\]

L'épaisseur de T91 consommée \(h_{T91} \) et la valeur \(x \) caractérisant la stœchiométrie \(\text{Fe}_{3-x}\text{Cr}_x\text{O}_4 \) du spinelle Fe-Cr peuvent être évaluées à partir des épaisseurs de spinelle Fe-Cr, \(h_{\text{spinelle Fe-Cr}} \), et de magnétite, \(h_{\text{magnétite}} \), mesurées expérimentalement (Figure 108 et Figure 109).

3.2.1.2.1. Comparaison entre les valeurs calculées et mesurées des épaisseurs de couches et de la stœchiométrie du spinelle Fe-Cr

L'épaisseur de T91 consommé, évaluée à partir de l'équation (10) est représentée sur la figure suivante avec l'épaisseur de spinelle Fe-Cr obtenue expérimentalement.

![Figure 108 : Épaisseur de T91 consommé, calculée en fonction du temps pour chaque point expérimental et comparée à l'épaisseur de spinelle Fe-Cr mesurée au cours du temps.](image)

La Figure 108 montre que l'épaisseur de T91 consommé au cours du temps est égale à celle de spinelle Fe-Cr formé au cours du temps.
Cette égalité confirme notre supposition de croissance du spinelle Fe-Cr dans l'épaisseur de T91 consommé. De plus, les résultats de la Figure 108 montrent que la totalité du volume de métal consommé est remplie par la croissance du spinelle Fe-Cr.

De la même manière, la valeur x, caractérisant la stœchiométrie $Fe_{3-x}Cr_xO_4$ du spinelle Fe-Cr, peut être calculée à partir de la relation (9), pour chaque point expérimental.

Cette valeur est représentée en fonction du temps sur le graphique de la Figure 109.

![Figure 109: Calcul de la valeur x caractérisant la stœchiométrie du spinelle $Fe_{3-x}Cr_xO_4$ avec x compris entre 0 et 2. La stœchiométrie ainsi calculée correspond en moyenne à $x \approx 0,62$. Cette valeur peut être comparée à la valeur expérimentale $x \approx 0,67$ (Chapitre III, Figure 62).](image)

Les valeurs de x obtenues par calcul (Figure 109) ne varient pas au cours du temps. Cette constatation est en accord avec les résultats expérimentaux pour lesquels la stœchiométrie du spinelle Fe-Cr reste constante au cours de l'oxydation (Chapitre III, paragraphe 3.2.2.).

La valeur moyenne obtenue par calcul est de 0,62. Cette valeur est très proche de la valeur expérimentale, 0,67, déterminée d'après les profils de concentration microsonde.

Pour résumer :
- la stœchiométrie calculée est proche de celle mesurée,
- les stœchiométries calculées et mesurées sont constantes au cours du processus d'oxydation.

Finalement, la stœchiométrie calculée correspond à celle mesurée expérimentalement et l'épaisseur calculée de T91 consommé coïncide avec l'épaisseur mesurée de spinelle Fe-Cr formé. Ces rapprochements entre calculs et expériences confirment que le mode d'oxydation du spinelle Fe-Cr est fondé sur une croissance du spinelle Fe-Cr dans la totalité du volume de T91 consommé.

3.2.1.2.2 Conservation de la matière pour les données de la littérature

Le même calcul de stœchiométrie que celui présenté dans le paragraphe précédent peut être effectué à partir de l'équation (9) et des données de la littérature.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Dans leur étude sur l'oxydation d'aciers Fe-Cr dans un environnement CO2-1%, Cox, McEnaney et Scott [109] précisent la stœchiométrie des différents spinelles obtenus. La nature des alliages permet de connaître la concentration de fer et de chrome au sein du métal. Le rapport $h_{magnétite}/h_{spinelle Fe-Cr}$ a été mesuré par les auteurs et déclaré égal à 1 environ [109].

Les valeurs de x ($Fe_{3-x}Cr_xO_4$) obtenues par calcul (par l'équation (9)) peuvent être comparées aux stœchiométries obtenues expérimentalement [109].

Les valeurs expérimentales et les valeurs calculées sont rassemblées dans le Tableau 21.

<table>
<thead>
<tr>
<th>Cr dans l'alliage Fe-Cr (poids%)</th>
<th>x calculé</th>
<th>x mesuré</th>
<th>$h_{magnétite}/h_{spinelle Fe-Cr}$ mesuré</th>
<th>Conditions d'oxydation</th>
<th>Modèle de croissance proposé</th>
<th>références</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0,30</td>
<td>0,3</td>
<td>~1</td>
<td>CO2-1% gas, 600°C</td>
<td>"Available space model"</td>
<td>[109]</td>
</tr>
<tr>
<td>9</td>
<td>0,54</td>
<td>0,6</td>
<td>~1</td>
<td>CO2-1% gas, 600°C</td>
<td>"Available space model"</td>
<td>[109]</td>
</tr>
<tr>
<td>9</td>
<td>0,62</td>
<td>0,67</td>
<td>1,25</td>
<td>Pb-Bi 470°C</td>
<td>Cette étude</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0,72</td>
<td>0,8</td>
<td>~1</td>
<td>CO2-1% gas, 600°C</td>
<td>"Available space model"</td>
<td>[109]</td>
</tr>
<tr>
<td>20</td>
<td>1,20</td>
<td>1,3</td>
<td>~1</td>
<td>CO2-1% gas, 600°C</td>
<td>"Available space model"</td>
<td>[109]</td>
</tr>
</tbody>
</table>

*Tableau 21 : Stœchiométrie d'un spinelle Fe-Cr, $Fe_{3-x}Cr_xO_4$, obtenue expérimentalement par oxydation d'un alliage Fe-Cr dans CO2-1% gazeux à 600°C [109]. Cette stœchiométrie est comparée à celle obtenue dans cette étude et avec la stœchiométrie calculée à partir de la relation :

$$x = 3 \left(\frac{1}{1 + \frac{C_{Fe(T91)}}{C_{Cr(T91)}}} \right).$$

Le Tableau 21 montre que la stœchiométrie calculée est en accord avec la stœchiométrie expérimentale non seulement pour les alliages Fe-9Cr (pour notre étude et pour celle de Cox, McEnaney et Scott [109]) mais aussi pour les alliages Fe-Cr dont la teneur en chrome est comprise entre 5 et 20 % massique [109].

Notre constatation de croissance du spinelle Fe-Cr dans la totalité du volume de métal consommé se vérifie aussi dans cette étude, non seulement pour les aciers Fe-9Cr mais aussi pour les autres nuances d'acier.

Nous remarquerons que le mécanisme de croissance de la couche duplex proposé par Cox, McEnaney et Scott [109] est celui de l'"available space model".
3.2.1.3. Egalité entre volume de spinelle Fe-Cr formé et volume de T91 consommé : une non annihilation des lacunes métalliques?

La constatation de l'égalité entre le volume de spinelle Fe-Cr formé et le volume de T91 consommé ajouté à la localisation de l'interface originelle T91/métal liquide à l'interface spinelle Fe-Cr/magnétite suggère que le spinelle Fe-Cr croît en remplissant le volume de T91 consommé.

Ce mode de croissance du spinelle Fe-Cr peut être rapproché de celui de l'"available space model" décrit dans notre deuxième chapitre (paragraphe 6).

Ce schéma de croissance est relié au processus nanoscopique dont les hypothèses proposées par la littérature sont les suivantes :
– Le transport de l'oxygène est assuré par courts-circuits à travers des nano-canaux. Il ne limite pas la croissance de la couche de spinelle Fe-Cr.
– La diffusion du fer vers l'interface externe, pour faire croître la couche de magnétite, crée des lacunes à l'interface métal/oxyde.
– Ces lacunes peuvent coalescer à l'interface métal/spinelle Fe-Cr et former des nano-cavités.
– L'oxygène pénètre dans ces nano-cavités et oxyde les atomes métalliques (Fe et Cr).
– Le nouvel oxyde, issu de cette réaction d'oxydation, croît sous l'interface métal/oxyde et remplit le volume disponible.

Dans ce mode de croissance, les deux hypothèses les plus fortes qui ne sont pas démontrées dans la littérature sont :
– La localisation de l'interface originelle métal/environnement à l'interface entre les deux oxydes de la couche duplex.
– L'impossibilité pour le spinelle Fe-Cr de croître dans un espace supérieur à celui qui lui est accordé par la consommation du métal.

La première hypothèse ne sera pas discutée dans cette étude alors que la deuxième fera l'objet d'une discussion dans la suite du chapitre.

Par ailleurs, ce modèle suppose un apport d'oxydant par des courts-circuits de diffusion constitués de nano-canaux présents dans la couche, ce que nous avons également proposé comme mode de transport de l'oxygène.
Enfin, ce modèle suppose également une coalescence des lacunes de fer pour permettre au spinelle Fe-Cr de croître.

Afin de mettre en évidence la nécessité de coalescence des lacunes pour permettre une croissance du spinelle Fe-Cr sous l'interface originelle métal/environnement, nous pouvons rappeler les déplacements de cette interface en fonction du devenir des lacunes créées dans le métal.

Les lacunes, créées à l'interface métal/spinelle Fe-Cr par la diffusion des atomes de fer, peuvent suivre différentes évolutions dont nous allons présenter les cas extrêmes. Nous déduirons de ces différents cas quel doit être le devenir des lacunes pour rendre compte de l'égalité observée : volume de T91 consommé égal au volume de spinelle Fe-Cr formé.

3.2.1.3.1. Devenir des lacunes formées à l'interface métal/oxyde : trois cas extrêmes
L'évolution la plus couramment considérée est une annihilation de toutes les lacunes à l'interface métal/spinelle Fe-Cr. L'annihilation des lacunes est effectuée par "montée" (négative) des différents types de dislocation d'interfaces ("misfits dislocations", "misoriented dislocation", "disconnection") comme le suggèrent Pieraggi, Rapp et al [110][111][112]. Dans ce cas, l'annihilation des lacunes à l'interface entraîne un déplacement (par rapport à un référentiel situé au cœur du métal) de la totalité de la couche d'oxyde vers le cœur du métal. Ce déplacement est illustré sur la Figure 110.

Par conséquent, l'interface originelle métal/environnement a été déplacée au cours du processus d'oxydation et ne peut plus être localisée à l'interface entre les deux oxydes.

Le deuxième cas de figure est l'injection de toutes les lacunes au cœur du métal. Dans ce cas, représenté Figure 111, l'interface métal/oxyde reste fixe par rapport à un référentiel du cœur du métal. Elle coïncide avec l'interface originelle métal/environnement.

De plus, l'injection des lacunes dans le métal doit mener à la formation de pores au cœur du métal ou à l'annihilation des lacunes dans le cœur du métal.
Le dernier cas de figure est l'accumulation des lacunes à l'interface sous forme de cavités. Cette accumulation peut entraîner un décollement de la couche d'oxyde ou un remplissage des cavités par l'oxyde, si l'oxydant peut pénétrer jusqu'à l'interface métal/oxyde. Cette configuration est représentée sur le schéma ci-dessous.

![Diagramme de l'accumulation des lacunes à l'interface métal/oxyde.](image)

Figure 112 : Accumulation des lacunes à l'interface métal/oxyde.

Si la diffusion du fer à travers la couche mène à la formation d'un oxyde 1 et que la cavité interfaciale est remplie par la formation d'un oxyde 2, l'interface originelle métal/environnement coïncide avec l'interface oxyde 1/oxyde 2.

Les trois cas présentés sont des cas extrêmes, ils peuvent se produire au cours d'un même mécanisme d'oxydation, comme le suggèrent Desgranges et al. [113]. Notons que, d'un point de vue énergétique, si les dislocations d'interfaces ne subissent aucun blocage, l'annihilation des lacunes est favorisée [110] [111] [112].

3.2.1.3.2. Devenir des lacunes dans nos essais d'oxydation

Nous avons constaté que l'interface originelle T91/Pb-Bi correspondait à l'interface spinelle Fe-Cr/magnétite et que le volume de spinelle Fe-Cr remplissait le volume de T91 consommé par l'oxydation.

Cette observation peut être liée, comme le suggère l'"available space model" et comme le montre le troisième cas de figure précédent, à une conservation i.e. une accumulation des lacunes issues du départ du fer.

Dans ce cas, le mode de croissance de la couche de spinelle Fe-Cr nécessite au moins l'accumulation partielle des lacunes à l'interface T91/spinelle Fe-Cr.

De plus, le rapport de Pilling Bedworth (PBR), défini comme étant le volume d'oxyde formé sur le volume de métal consommé pour la formation de cet oxyde, est égal à 2,1 pour le couple spinelle Fe-Cr/acier Fe-Cr [114]. Cette valeur du PBR implique que le volume de spinelle Fe-Cr est environ égal au double du volume des atomes oxydés pour le former.

C'est-à-dire que pour croître exactement dans le volume de T91 consommé, sans dépasser la limite de l'interface T91/spinelle Fe-Cr, le volume d'atomes oxydés pour former le spinelle Fe-Cr ne peut pas être supérieur au volume des nano-cavités formées par l'accumulation des lacunes.

Notons $V_{\text{spinelle Fe-Cr}}$, $V_{\text{T91 consommé pour former le spinelle Fe-Cr}}$ et $V_{\text{nano-cavités}}$ les volumes respectifs de spinelle Fe-Cr formé, de T91 consommé pour former uniquement le spinelle Fe-Cr et des nano-cavités.
La valeur du PBR implique que $V_{\text{spinelle Fe-Cr}} = 2,1V_{T91}$ consommé pour former le spinelle Fe-Cr et l"available space model" suggère une limitation de croissance du spinelle Fe-Cr selon des critères de restriction volumique : $V_{\text{spinelle Fe-Cr}} = V_{T91}$ consommé pour former le spinelle Fe-Cr $+ V_{\text{nano-cavités}}$.
Il en résulte que le volume des atomes oxydés pour former le spinelle Fe-Cr doit être de l’ordre du volume des nano-cavités.

Aussi, le volume de spinelle Fe-Cr formé consommé correspond : au volume de lacunes créées par le départ des atomes de fer, ajouté au volume d'atomes de fer et de chrome oxydés menant à la croissance de la couche de spinelle Fe-Cr.

Si aucune lacune, issue du départ du fer, n'est annihilée à l'interface métal/oxyde, le volume des nano-cavités correspond exactement à la quantité de fer oxydé pour former la couche de magnétite et le spinelle Fe-Cr peut croître dans la totalité du volume de T91 consommé.

Dans ce cas, comme le PBR du système magnétite/Fe est aussi égal à 2,1, le volume de la couche de magnétite est environs le double de celui des atomes oxydés pour la former, i.e. des nano-cavités s'il n'y a aucune annihilation de lacunes.

Il en résulte que l'épaisseur de la couche de magnétite est de l'ordre de celle du spinelle Fe-Cr, ce qui est observé expérimentalement.

Cette remarque est illustrée par le schéma suivant :

Figure 113 : Relation entre les épaisseurs d'oxydes formés et l'épaisseur de T91 consommé dans les cas d'annihilation ou non d'une partie des lacunes.

$h_{T91 \text{ consommé (magnétite)}}$: épaisseur de T91 consommé pour former la magnétite.

$h_{T91 \text{ consommé (spinelle Fe-Cr)}}$: épaisseur de T91 consommé pour former le spinelle Fe-Cr.
Nous pouvons conclure de ces considérations que le volume de spinelle Fe-Cr se restreint effectivement au volume de T91 consommé. C'est-à-dire que le volume de spinelle Fe-Cr est limité par le volume des lacunes, dont aucune n'est annihilée, ajouté au volume des atomes oxydés pour former le spinelle Fe-Cr.

Par ailleurs, s'il se produisait une annihilation partielle des lacunes, la concentration en chrome augmenterait à l'interface métal/oxyde impliquant une concentration volumique du chrome dans le spinelle Fe-Cr supérieure à celle du T91, ce qui est contraire à nos observations expérimentales. En revanche, en adéquation avec les résultats expérimentaux d'analyse microsonde (Figure 103), ces concentrations sont exactement égales si aucune lacune n'est annihilée. Dans ce cas, il y a encore égalité entre le volume de spinelle Fe-Cr formé et celui de T91 consommé.

Cette proposition est illustrée sur la Figure 114.

Les auteurs [81][83][84][75][85][86][87][89][96] de l"available space model" ont utilisé la formule de nanocavité afin d'imager le phénomène d'accumulation des lacunes. Cependant, nous pouvons souligner que ces nano-cavités de lacunes sont constamment remplies par le spinelle Fe-Cr puisque ni la diffusion de l'oxygène (cf Chapitre IV) ni les réactions interfaciales (à cause de la cinétique d'oxydation parabolique) ne limitent la croissance de la couche de spinelle Fe-Cr. Aussi, dès l'accumulation nanométrique de quelques lacunes, le spinelle Fe-Cr se forme et remplit la "nanocavité".

Le processus d'oxydation semble se dérouler comme l"available space model" le décrit : comme si la croissance du spinelle Fe-Cr était limitée au volume de T91 consommé et comme s'il n'y avait aucune annihilation des lacunes formées par le départ du fer. Expérimentalement nous constatons cette limitation de la croissance du spinelle par le volume de T91 consommé ; cependant, toutes les hypothèses sur lesquelles se fonde l'interprétation de notre constatation doivent être discutées.
3.3. Discussion : faisabilité d'une croissance restreinte dans un volume défini et d'une non-annihilation des lacunes dans le T91

Le phénomène régissant la croissance expérimentale du spinelle Fe-Cr coïncide en tous points avec l'hypothèse d'une croissance du spinelle Fe-Cr dans le volume de T91 consommé.

Selon cette hypothèse, la totalité des lacunes créées dans le T91 par diffusion des atomes de fer vers l'interface externe s'accumule à l'interface T91/spinelle Fe-Cr pour former des nano-cavités. Le spinelle Fe-Cr croît ainsi dans le volume délimité par ces nano-cavités et par le volume d'atomes métalliques oxydés.

Ce mécanisme implique que :

− L'espace formé par l'accumulation des lacunes limite la croissance de la couche de spinelle Fe-Cr. Celle-ci ne peut donc pas croître librement à l'interface interne, plan-par-plan, en repoussant les couches d'oxyde supérieures.

− Le spinelle Fe-Cr ne peut pas croître dans le volume des cavités autant que le lui permet l'apport d'oxydant, en repoussant les couches d'oxyde supérieures (en considérant une croissance dans les nano-cavités d'interface et non une croissance plan par plan). Aucune autre régulation n'est nécessaire.

− Les lacunes créées dans le T91 doivent coalescer à l'interface spinelle Fe-Cr/T91. Cette coalescence des lacunes est rendue possible, selon certains auteurs, par la non-annihilation des lacunes sur les dislocations d'interface du métal.

Ces différents aspects, croissance du spinelle plan par plan, coalescence de toutes les lacunes à l'interface T91/spinelle Fe-Cr et absence d'un système de régulation, peuvent être discutés dans le cadre de notre étude, en relation avec nos résultats expérimentaux.

3.3.1. Une croissance du spinelle Fe-Cr plan par plan serait-elle possible ?

L'égalité entre le volume de spinelle Fe-Cr formé et celui de T91 consommé sous entend que la couche de spinelle Fe-Cr ne peut pas croître uniformément, plan par plan, à l'interface interne en repoussant progressivement les couches supérieures. Cette croissance est pourtant habituelle lorsque la couche interne croît par diffusion des anions oxygène par le réseau de la couche d'oxyde.

L'impossibilité d'une croissance plan-par-plan doit donc être discutée.

Si une faible adhésion lie le métal à l'oxyde, l'interface T91/spinelle Fe-Cr peut être sévèrement perturbée. Dans ce cas, l'oxygène transporté dans les nano-canaux peut facilement diffuser le long de l'interface. Le spinelle Fe-Cr peut alors croître sans requérir la présence de nano-cavités, en repoussant progressivement les couches d'oxyde supérieures.
En revanche, si une forte adhésion relie le métal à l'oxyde, la croissance plan par plan de la couche de spinelle Fe-Cr devient impossible car l'oxygène ne parvient pas uniformément à l'interface, mais localement, par les nano-canaux de métal liquide. Les nano-cavités et les nano-canaux sont répartis sur l’ensemble de l’interface de façon homogène mais non continue (Figure 115). Une forte adhésion entre le métal et l'oxyde, entre chaque cavité, perturbe la diffusion de l'oxygène le long de l'interface métal/oxyde et empêche par conséquent une croissance plan par plan de la couche de spinelle Fe-Cr, comme l'indique le schéma de la Figure 115.

![Figure 115 : Croissance de la couche de spinelle Fe-Cr limitée par le volume des nano-cavités dans le cas d'une forte adhésion T91/spinelle Fe-Cr.](image)

Ainsi, l'étude de la possibilité d'une croissance plan par plan pour la couche de spinelle Fe-Cr revient à évaluer l'adhésion de la couche de spinelle sur le T91.

L'énergie d'adhésion spinelle /T91 doit donc être quantifiée. Cependant les mesures d'énergies d'adhésion d'une couche sur un substrat sont difficiles à effectuer. Elles sont encore plus compliquées dans notre cas pour lequel une couche non homogène adhère sur un substrat plastique.

Toutefois l'énergie d'adhésion de l'oxyde sur le métal peut être comparée aux énergies d'adhésion entre les différents plans de l'oxyde :

- Nous considérerons que l'adhésion spinelle Fe-Cr/T91 est forte s'il existe au sein de la couche d'oxyde un plan pour lequel l'adhésion oxyde/oxyde est plus faible. Dans ce cas, la croissance plan par plan du spinelle n'est pas favorisée.
- Nous considérerons que l'adhésion est faible s'il n'existe, dans la couche d'oxyde, aucune interface oxyde/oxyde moins adhérente que l'interface T91/spinelle Fe-Cr. Dans ce cas, la croissance plan par plan du spinelle doit être envisagée.

Ces énergies d'adhésion spinelle Fe-Cr/T91 et oxyde/oxyde peuvent être comparées par observation MEB de fractures transverses d'échantillons oxydés. Lors de la fracture, la couche d'oxyde subissant de fortes contraintes, se décolle par endroits du substrat de T91. Ce décollement se localise à l'interface de plus faible adhésion :

- Si cette interface est localisée exactement à l'interface T91/spinelle Fe-Cr, l'adhésion de l'oxyde sur le substrat peut être considérée comme faible.
- Si l'interface de décollement est localisée dans la couche d'oxyde, l'adhésion T91/oxyde peut être considérée comme forte.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Figure 116 : Fracture transverse d'un échantillon de T91 oxydé 200 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C.

L’image MEB ci-dessus montre que l'interface de plus faible adhésion n'est pas localisée exactement à l'interface T91/spinelle Fe-Cr. En effet, une fine couche d'oxyde tapisse encore la surface de T91 aux endroits de décollement de la couche d'oxyde.

L'adhésion de la couche de spinelle Fe-Cr semble donc plus forte à l'interface T91/spinelle Fe-Cr qu'au sein de la couche de spinelle Fe-Cr.

Une forte contrainte, engendrant une fracture et une décohésion de la couche d'oxyde, ne suffit donc pas à décoller la couche d'oxyde à l'interface T91/spinelle Fe-Cr. L'adhésion T91/spinelle Fe-Cr peut donc être considérée comme forte.

La forte adhésion entre le métal et l'oxyde est souvent due à un lien d'épitaxie entre les deux phases. Les paramètres cristallins étant souvent plus faibles dans les métaux que dans leur oxyde, l'épitaxie peut être réalisée par une accommodation via des dislocations d'interfaces ("misfit dislocations") [110], comme l'illustre le schéma suivant.

Figure 117 : Epitaxie possible entre métal et oxyde par la présence de dislocations d'interfaces [110].
Pour conclure, l'adhésion T91/spinelle Fe-Cr semble plus forte que celle de certains plans oxyde/oxyde. Il paraît donc improbabl que l'oxygen puisse diffuser sur toute la longueur de l'échantillon, de manière continue, permettant une croissance plan par plan de la couche de spinelle Fe-Cr.

La croissance plan par plan du spinelle Fe-Cr semble donc peu probable ; cependant, de réelles mesures d’adhéson devraient être réalisées afin de vérifier cette suggestion.

3.3.2. La croissance du spinelle Fe-Cr peut-elle être réellement limitée par une contrainte de volume disponible

L'hypothèse fondatrice de l"available space model" est la suivante : le spinelle Fe-Cr ne peut pas croître plus que l'espace qui lui est accordé par le volume des lacunes ajouté à celui des atomes de métal oxydés pour le former.

Cette hypothèse n'a pourtant jamais été expliquée.

En effet, la croissance du spinelle Fe-Cr dans le volume de métal consommé a été constatée expérimentalement dans le cadre de cette étude.

Un mécanisme d'accumulation des lacunes, proposé par la littérature (Chapitre II, paragraphe 6.3), expliquerait la coïncidence de l'interface originelle par rapport à l'interface spinelle Fe-Cr/magnétite (la faisabilité de cette accumulation de lacune sera, de plus, discutée dans le paragraphe suivant).

En revanche, l'hypothèse de base de l"available space model" n'est pas discutée dans la littérature, il nous semble cependant nécessaire de chercher à discuter de son réalisme.

En effet, nous pouvons nous demander pourquoi l'oxyde ne croît pas autant que le lui permet l'apport d'oxygène et la présence de métal à oxyder. C'est-à-dire, pourquoi le nouvel oxyde ne se forme-t-il pas en repoussant les couches d'oxyde supérieures, comme l'illustre le schéma ci-dessous ?

![Figure 118 : Croissance du spinelle limitée par un volume ?](image_url)
Le phénomène de "denting" observé dans les générateurs de vapeur des centrales électricques met en évidence l'impressionnante contrainte que peut engendrer la croissance d'un oxyde lorsque l'apport d'oxydant et de métal est illimité.

Après présentation de ce phénomène, nous chercherons un mécanisme rendant compte des résultats de croissance de l'oxyde dans le volume de métal consommé. Ce mécanisme ne doit pas considérer la restriction volumique (conséquence du mécanisme mais non cause du mécanisme) comme moyen de limitation de la croissance de l'oxyde. En revanche, il doit conduire au phénomène observé : le spinelle Fe-Cr croît dans le volume de T91 consommé.

3.3.2.1. Le phénomène de "denting"

Le phénomène de "denting" [115] a été observé au niveau des générateurs de vapeur des centrales électricques.

Les tubes des générateurs de vapeur (GV) étaient maintenus par des entretoises métalliques qui se sont oxydées au contact de l'eau environnante en circulation.

Supposons qu'une restriction volumique puisse empêcher la croissance d'un oxyde lorsque les apports d'oxydant et de métal sont "infinis". Dans ce cas, l'oxyde formé au contact de l'entretoise doit remplir le trou par lequel passent les tubes, puis contourne le tube et enfin, par manque de place, la croissance latérale doit s'arrêter d'elle-même.

En effet, une fois ces trous bouchés, l'oxyde n'a théoriquement plus la place de croître.

Cependant, le résultat est tout autre : la croissance de l'oxyde bouchant les trous de l'entretoise ne s'est pas arrêtée au contact du tube.

Il s'est alors produit un phénomène catastrophique pour les générateurs de vapeur : l'oxyde a continué à croître alors qu'il ne restait plus aucun volume disponible à sa croissance. Aussi la contrainte engendrée par sa croissance était telle qu'elle a conduit à une constriction du tube, puis à un gondolement de l'entretoise.

Au regard de ce type de phénomène, il peut paraître difficile à croire que le spinelle Fe-Cr ne puisse pas croître simplement en repoussant la couche d'oxyde supérieure, tant que l'apport d'oxydant et l'apport de cations métalliques le lui permette.

C'est pourquoi il nous semble improbable que la croissance du spinelle Fe-Cr soit limitée au niveau de l'interface métal/oxyde.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

3.3.2.2. La nécessité d'une autre régulation

La limitation de la croissance du spinelle Fe-Cr par le volume qui lui est accordé par la consommation du métal nous semble peu vraisemblable. Cependant, nous avons effectivement constaté que le volume de spinelle Fe-Cr formé ne dépassait pas le volume de métal consommé.

Nous pouvons alors supposer que cette croissance dans le volume de T91 consommé est la conséquence, d'un autre mécanisme limitant, et non la cause de cette limitation.

Le phénomène de "denting" nous suggère que tant que les apports d'oxydant et de métal sont non limités, l'oxyde va croître continûment.

Un mécanisme conduisant à une limitation de l'apport d'oxydant ou de cation pourrait être avancé. La réaction d'oxydation s'effectuant à l'interface T91/spinelle Fe-Cr, au niveau d'une source "illimitée" de métal, il semble improbable que l'apport de métal limite la croissance de la couche de spinelle Fe-Cr.

Dans ce cas, seul l'apport d'oxygène doit réguler la croissance de la couche de spinelle Fe-Cr.

Or, nous avons montré dans le Chapitre IV de cette étude que l'apport d'oxygène n'était pas une étape limitante du processus d'oxydation du spinelle Fe-Cr.

Nous avons par ailleurs mis en évidence que les nano-canaux de plomb, permettant le transport d'oxygène, se trouvaient dans un état statique dans un premier temps (voir Chapitre IV, paragraphe 4.2.3). C'est-à-dire qu'un équilibre thermodynamique local se développait entre l'intérieur et l'extérieur du nano-canal.

Ce type de mécanisme est relié à la théorie de croissance dissociative de Gibbs et Hales \[86\]. Selon ce mécanisme, représenté Figure 42, l'accumulation des lacunes à l'interface métal/spinelle Fe-Cr crée des nano-cavités.

Afin d'équilibrer le potentiel chimique de l'oxygène entre les cavités et l'oxyde, les grains de spinelle Fe-Cr, surplombant les nano-cavités, se dissocient.

La dissociation des grains se produit de manière anisotrope, i.e. préférentiellement au niveau des joints de grains du spinelle Fe-Cr.

Ainsi le nano-canal se creuse progressivement jusqu'à atteindre l'interface oxyde/environnement. L'environnement oxydant pénètre alors dans le nano-canal et oxyde directement le métal dans la nano-cavité sous jacent.

Si ce mécanisme se déroule effectivement dans notre cas, les nano-canaux ne peuvent se former que par dissociation du spinelle Fe-Cr dans les nano-cavités et donc nécessairement par accumulation de lacunes sous l'oxyde.

En considérant ce mécanisme, nous pouvons continuer le scénario proposé par Gibbs et Hales \[86\] : lorsque le milieu oxydant pénètre dans les nano-canaux, il oxyde le métal dans la nano-cavité sous jacent (Figure 120 (A)).

La base du nano-canal, débouchant sur la cavité, se retrouve alors obstruée lorsque la cavité devient entièrement remplie par le nouvel oxyde (rappelons que le volume de l'oxyde est supérieur à celui de la cavité puisqu'il comporte aussi celui des atomes oxydés pour le former) (Figure 120 (B)).

L'oxygène ne pouvant plus oxyder le T91, la croissance du spinelle Fe-Cr s'arrête. Cette croissance a été stoppée lorsque la totalité de la nano-cavité a été bouchée et que l'oxygène n'a plus pu accéder au T91. Ainsi, la croissance de la couche de spinelle Fe-Cr a été limitée au volume de T91 consommé en raison d'un arrêt brutal d'apport d'oxydant et non pas à cause d'une restriction volumique.
Cependant, l'apport d'oxydant n'est pas l'étape limitant le processus de croissance du spinelle Fe-Cr. L'étape limitante peut être, comme le propose l'"available space model", le départ des atomes de fer. En effet, nous pouvons supposer que le processus de dissociation du spinelle Fe-Cr est très rapide par rapport au processus de diffusion des atomes de fer dans les deux couches d'oxyde. Dans ce cas, la croissance de la couche de spinelle Fe-Cr devient limitée par la formation des nano-cavités à l'interface T91/spinelle Fe-Cr.

Une fois la première nano-cavité bouchée par la croissance du spinelle Fe-Cr, l'apport d'oxydant est interrompu, comme nous l'avons précédemment suggéré. La croissance du spinelle Fe-Cr s'arrête. Le fer diffusant parallèlement à travers ce nouvel oxyde formé va permettre la formation d'une nouvelle nano-cavité sous-jacente à la première (Figure 120 (C)).

Cette nano-cavité va conduire à la dissociation anisotrope du nouveau spinelle Fe-Cr formé, conduisant à l'ouverture du précédent nano-canal jusqu'à l'interface T91/spinelle Fe-Cr (Figure 120 (D)).

Le milieu oxydant (plomb dans notre cas) pénètre alors jusqu'à cette seconde cavité et oxyde le T91 (Figure 120 (E)).

Le processus de départ du fer pour former la magnétite à l'interface externe s'opérant en continu, d'autres cavités se forment simultanément en chaque point de l'interface et la croissance du spinelle Fe-Cr est ainsi réalisée de manière discontinue (il n'y a pas de croissance plan par plan du spinelle Fe-Cr) mais uniforme sur l'ensemble de l'interface.

La croissance de la couche de spinelle Fe-Cr peut alors être schématisée par la figure suivante.

Figure 120 : Mécanisme régulant la croissance du spinelle Fe-Cr. (A) Une nano-cavité est formée à l'interface T91/spinelle Fe-Cr, l'oxygène pénètre jusqu'à l'interface par diffusion dans un nano-canal de plomb. (B) L'apport d'oxygène dans la cavité mène à la formation d'un nouvel oxyde remplissant le volume de la cavité ajouté au volume d'atomes oxydés pour le former. Une fois ce volume rempli, la base du nano-canal est obstruée, l'oxygène n'a plus accès au T91 et l'oxydation s'arrête. (C) D'autres nano-cavités se forment par accumulation des lacunes issues de la diffusion du fer vers l'interface externe. (D) La dissociation de l'oxyde entraîne l'ouverture du nano-canal.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

(E) Les nouvelles nano-cavités se remplissent d'un nouvel oxyde rebouchant la base du nano-canal.

Au cours du processus proposé, la cinétique de croissance de la couche de spinelle Fe-Cr est limitée par la diffusion du fer à travers la couche d'oxyde. En effet, cette diffusion mène à la formation des nano-cavités responsables (par dissociation de l'oxyde) de l'apport d'oxydant à l'interface T91/spinelle Fe-Cr. Cependant, même si la cinétique de croissance du spinelle Fe-Cr est limitée par la diffusion du fer dans la couche d'oxyde, la croissance du spinelle Fe-Cr est physiquement régulée par l'apport d'oxydant à l'interface interne. Un processus d'autorégulation se produit : lorsque la croissance du spinelle accède au seuil de bouchage du nano-canal, elle s'arrête par manque d'oxydant.

Le mécanisme proposé expliquerait la globalité des résultats et des observations obtenus dans le cadre de cette étude et dans le cadre des études menant à la formation d'une couche duplex similaire. Il propose une alternative plus réaliste, car fondée sur un processus de régulation de l'apport d'oxydant, que celle supposant la possibilité d'une croissance limitée par une restriction volumique. Cette dernière peut en effet être contestée par les phénomènes montrant les contraintes induites par la croissance d'un oxyde, comme le "dентing".

Aussi, le mécanisme proposé est en accord avec l'ensemble des phénomènes observés. Toutefois il correspond à une interprétation, fondée sur de nombreuses suppositions et discussions, et n'exclue pas la possibilité d'autres mécanismes. Notamment ce mécanisme suppose la possibilité de coalescence des lacunes à l'interface T91/spinelle Fe-Cr.

3.3.3. Possibilité de coalescence des lacunes à l'interface T91/spinelle Fe-Cr

Le mécanisme d'oxydation proposé suppose que les lacunes créées à l'interface métal/oxyde coalescent pour former des nano-cavités. Comme nous l'avons souligné précédemment, les lacunes, formées à l'interface T91/spinelle Fe-Cr, peuvent s'annihiler sur les dislocations, être injectées dans le métal ou s'accumuler à l'interface et former des nano-cavités.

Pour obtenir la coalescence de toutes les lacunes formées par le départ du fer, l'annihilation des lacunes sur les dislocations à l'interface et dans le métal doit être inhibée et l'accumulation des lacunes doit être favorisée.

Dans notre cas, les trois facteurs suivants pourraient éventuellement favoriser la coalescence des lacunes et/ou inhiber leur annihilation :
- La présence de chrome dans l'oxyde peut inhiber, d'après la littérature [86][89][73][72], l'annihilation des lacunes sur les dislocations d'interface.
- L'augmentation des défauts d'interface conduisant à un accroissement de l'énergie de surface de l'interface T91/spinelle Fe-Cr pourrait favoriser l'accumulation des lacunes à l'interface.
- La présence de précipités d'oxyde à l'interface pourrait éventuellement à la fois bloquer les dislocations et favoriser l'accumulation des lacunes.

Une discussion peut être menée afin d'évaluer le poids de chaque facteur proposé par rapport à nos résultats expérimentaux.
3.3.3.1. **Le rôle du chrome : inhibiteur de l'annihilation des lacunes**

Certains auteurs \cite{86,89,73,72} travaillant sur l'"available space model" considèrent que les atomes de chrome sont responsables de la croissance duplex de la couche d'oxyde (voir Chapitre II, paragraphe 6.2).

La faible mobilité des atomes de chrome dans la couche d'oxyde conduit à un enrichissement en chrome au niveau du premier plan d'oxyde à l'interface métal/oxyde. En raison de cette présence d'atomes de chrome à l'interface, le flux de lacunes de fer est dévié. Il se concentre aux endroits où la teneur en chrome est plus faible. Cette concentration du flux de lacune mène à une augmentation locale de la teneur en lacunes, conduisant à leur coalescence. Les premières lacunes vont, à priori, s'annihiler sur les dislocations présentes à cet endroit, permettant aux autres de coalescer dans un lieu exempt de dislocation. Ce mécanisme est détaillé dans le Chapitre II de cette étude (paragraphe 6.2).

3.3.3.1.1. L'augmentation des défauts géométriques : une aide à l'accumulation des lacunes ?

Gibbs et Hales \cite{86} proposent que la coalescence des lacunes nécessite, en plus d'une teneur importante en lacune, la présence d'un champ de contrainte interne augmentant l'énergie du système. La coalescence des lacunes à l'interface métal/oxyde est alors favorisée par une forte adhésion métal/oxyde qui génère un champ de contrainte élevé dans le système (voir Chapitre II, paragraphe 6.2).

Cette coalescence n'est cependant pas forcément localisée à l'interface T91/spinelle Fe-Cr car la faible énergie d'interface T91/spinelle Fe-Cr (caractérisée par la forte adhésion) diminue la possibilité d'accumulation de lacunes à l'interface. Elle peut alors se localiser sur d'autres types de défauts : des défauts géométriques d'interface (rayure) ou des précipités.

En effet, la présence de défauts géométriques d'interface (rayures) peut conduire à :
- augmenter l'énergie du système, facteur nécessaire à la coalescence des lacunes,
- piéger durablement les lacunes.

Une interface contenant suffisamment de défauts pour permettre la ségrégation de la totalité des lacunes à l'interface devrait conduire à une maximisation de la croissance de la couche de spinelle Fe-Cr.

Afin de valider cette hypothèse, une expérimentation a été réalisée en effectuant un fin polissage du matériau visant à diminuer le nombre de rayures d'interface.

La surface d'un échantillon de T91 a donc subi un traitement de polissage hétérogène : une face de l'échantillon a été polie mécaniquement au papier SiC jusqu'à 1 µm tandis que l'autre face est restée non polie, brute d'usinage.

Après 260 heures d'oxydation dans l'alliage Pb-Bi, cet échantillon est observé par MEB sur une coupe transverse. L'observation MEB révèle les résultats suivants :
- La face non polie est caractérisée par une augmentation de l'oxydation interne (voir Figure 121).
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

- La face polie à 1 µm est caractérisée par une forte hétérogénéité de l'épaisseur de la couche d'oxyde. L'épaisseur de la couche d'oxyde est globalement similaire à celle de l'autre face mais, par endroits, elle peut être localement très faible (voir Figure 121).

![Figure 121 : Image MEB en électrons rétrodiffusés de la face polie et de la face brute d'usinage d'un échantillon immergé 260 heures dans l'alliage Pb-Bi. Notons que la face polie n'est pas uniformément oxydée, certaines zones présentent une oxydation aussi importante que celle de la face brute d'usinage.](image)

Nous déduisons de cette expérience que la face non polie, comportant de nombreux défauts de surface, permet une accumulation de la totalité des lacunes à l'interface T91/spinelle Fe-Cr. Sa cinétique de croissance est identique à la cinétique de croissance normalement observée sur les échantillons polis jusqu'au papier SiC 1200 (polissage effectué sur tous les échantillons oxydés lors de cette étude).

En revanche, de nombreux défauts de surface sont éliminés sur la face polie à 1 µm, diminuant ainsi le nombre de pièges à lacune. Au regard du mécanisme proposé, la diminution de la croissance de la couche peut être attribuée à une accumulation moins importante des lacunes à l'interface et donc à la création d'un volume moins important de nano-cavités.

D'après cette expérience, nous pouvons supposer que le traitement de surface usuel des échantillons (polissage jusqu'au papier SiC 1200), relativement grossier, laisse de nombreuses irrégularités de surface. Ces irrégularités sont réparties de manière homogène sur la globalité de l'échantillon, permettant une accumulation systématique des lacunes à l'interface spinelle Fe-Cr/T91.

Cependant, même si les défauts géométriques d'interface peuvent favoriser l'accumulation des lacunes, ils ne garantissent pas la totale accumulation des lacunes à l'interface.

En effet, l'accumulation de la totalité des lacunes suppose d'inhiber l'activité des dislocations d'interface (à priori inhibées par les ions Cr³⁺ dans l'oxyde) ainsi que celles situées sur des plans sous-jacents, proches de l'interface.

Cependant l'hypothèse de croissance du spinelle Fe-Cr dans la totalité du volume de T91 consommé nécessite que la totalité des lacunes puisse coalescer à l'interface T91/spinelle Fe-Cr. Cette condition n'est remplie que si aucune lacune n'est annihilée.

Le mécanisme proposé nécessite donc la présence d’un facteur empêchant l’annihilation, même partielle, des lacunes sur les dislocations du T91 proches de l’interface.
3.3.3.1.2. Les dislocations dans le volume de T91, inhibées par la présence de précipités d'oxyde enrichi en chrome à l'interface T91/spinelle Fe-Cr

Une présence de précipités, situés à l'interface T91/spinelle Fe-Cr, permettrait l'inhibition des dislocations d'interface et celle des dislocations situées sur les plans sous-jacents, dans le T91. Par ailleurs, cette présence de précipités faciliterait aussi la coalescence des lacunes de la même manière que les défauts géométriques.

La formation de précipités à l'interface T91/spinelle Fe-Cr est donc, en tous points, favorable à l'accumulation des lacunes sous forme de nano-cavités.

Or, des observations et des analyses effectuées au MEB et au MET mènent à suggérer la présence de précipités enrichis en chrome tapissant l'interface T91/spinelle Fe-Cr (Chapitre III, paragraphe 3.2.2).

En effet, les observations MET montrent la présence, à l'interface T91/spinelle Fe-Cr, de petits grains équiaxes (d'environ 10-20 nm de diamètre) d'oxyde enrichi en chrome.

De plus, l’image MEB de la Figure 122 montre la présence, sur toute la longueur de l'interface T91/spinelle Fe-Cr, de précipités enrichi en chrome, attribués à un oxyde enrichi en chrome. Ces précipités sont de tailles multiples allant d'une dizaine de nanomètre d'après les analyses MET à plusieurs centaines de nanomètre selon les images MEB (Figure 122). Une ségrégation de chrome au sein de la couche d'oxyde étant peu probable et les analyses MET mettant en évidence une présence de petits précipités d'oxyde enrichi en chrome, nous pouvons considérer que ces précipités sont effectivement un oxyde riche en chrome. Quelque fois une légère oxydation interne est aussi observable.

Balbaud-Célériér [116][115] identifie clairement l'apparition d'une oxydation interne à des températures d'oxydation plus élevées.

Figure 122 : Image en électrons rétrodiffusés d'une coupe transverse polie d'un échantillon de T91 oxydé 3700 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C.

Balbaud-Célériér [116][115] identifie clairement l'apparition d'une oxydation interne à des températures d'oxydation plus élevées.
Considérons par la suite que ces précipités correspondent donc à un oxyde enrichi en chrome. La stœchiométrie de cet oxyde enrichi en chrome, visualisé par MEB et par MET n'a pas été mesurée expérimentalement. Il est donc impossible de déterminer la nature précise de cet oxyde.

De plus, la précipitation d'oxyde enrichi en chrome mène forcément à une diminution locale de l'activité en chrome au voisinage des précipités. Or, nous avons montré que la concentration en chrome dans le spinelle Fe-Cr est identique à celle du chrome dans le T91 et que globalement les atomes de chrome ne diffusaient pas au cours du processus d'oxydation. La diminution locale d'activité en chrome n'est donc à priori pas compensée par la diffusion du chrome dans le T91.

Remarquons d'ailleurs que les coefficients de diffusion du fer et du chrome dans le T91 sont plus faibles que celui du fer dans le spinelle Fe-Cr (voir paragraphe 2 et Annexe 10). La diffusion d'atomes de chrome dans le T91 serait donc l'étape limitante, si la croissance du spinelle Fe-Cr nécessitait leur transport jusqu'à l'interface métal/oxyde.

Finalement, la diminution locale d'activité en chrome due à la précipitation d'oxyde enrichi en chrome à l'interface ne semble pas être équilibrée par un apport de chrome du T91. Dans ce cas, un spinelle enrichi en fer (par rapport au spinelle Fe$_{2.34}$Cr$_{0.66}$O$_{4}$) se forme nécessairement au voisinage de ces précipités.

Nous pouvons remarquer cependant qu'aucun oxyde enrichi en fer n'est visualisable au MEB au niveau de l'interface T91/spinelle Fe-Cr. Ceci s'explique par le fait que l'environnement de l'interface T91/spinelle Fe-Cr est très enrichi en fer. En effet, la teneur en fer est dix fois plus élevée dans le T91 que celle en chrome et le spinelle Fe$_{2.34}$Cr$_{0.66}$O$_{4}$ constitutif de la couche interne est déjà fortement enrichi en fer (par rapport au spinelle FeCr$_{2}$O$_{4}$). Le contraste visualisé sur l'image MEB dépendant du changement de chimie du milieu, il semble normal qu'à cette interface, un précipité enrichi en chrome soit visualisable bien plus distinctement qu'un oxyde enrichi en fer.

Cependant des analyses EDS locales effectuées par MET sur des grains de spinelle Fe-Cr montrent que le cœur de la couche interne de spinelle Fe-Cr n'est pas constituée de grains d'oxyde enrichi en fer et d'oxyde enrichi en chrome. Une solution solide d'un spinelle Fe-Cr se forme effectivement au sein de la couche interne. Cette constatation issue d'analyses MET suggère que les précipités d'oxyde enrichi en chrome réagissent avec les précipités enrichis en fer devant se former à leur voisinage, pour donner le spinelle Fe$_{2.34}$Cr$_{0.66}$O$_{4}$.

Cet argument peut être appuyé par un calcul thermodynamique mettant en relief la stabilité plus importante de la solution solide spinelle Fe-Cr face au système Cr$_{2}$O$_{3}$+Fe$_{3}$O$_{4}$ (et par conséquent, face au système FeCr$_{2}$O$_{4}$ + Fe$_{3}$O$_{4}$, moins stable).

- Considérations thermodynamiques : évolution du système Cr$_{2}$O$_{3}$ + Fe$_{3}$O$_{4}$

Ne connaissant pas la stœchiométrie des oxydes enrichis en chrome et en fer formés dans un premier temps à l'interface T91/spinelle Fe-Cr, nous considérerons pour les calculs que ces oxydes sont l'oxyde de chrome Cr$_{2}$O$_{3}$ et la magnétite Fe$_{3}$O$_{4}$.

L'oxyde de chrome formé à l'interface T91/spinelle Fe-Cr se transforme par réaction avec la magnétite avoisinante si le système Cr$_{2}$O$_{3}$ + Fe$_{3}$O$_{4}$ est moins stable que la solution solide spinelle Fe-Cr, Fe$_{2.34}$Cr$_{0.66}$O$_{4}$.

Afin de calculer les stabilités relatives des deux systèmes, considérons que l'oxyde de chrome et la magnétite formés dans une première étape réagissent ensemble pour donner le spinelle Fe-Cr.
L'enthalpie libre standard de cette réaction permet de calculer la pression partielle d'oxygène maximale pour former le spinelle Fe-Cr.

La réaction s'écrit :

\[0,33 \text{Cr}_2\text{O}_3 + 0,78 \text{Fe}_3\text{O}_4 = \text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4 + 0,055\text{O}_2 \]

Les enthalpies libres standard nécessaires au calcul de l'enthalpie libre standard de réaction sont données par la littérature [23] :

\[\Delta G_f^0(\text{Cr}_2\text{O}_3)= -941,252 \text{kJ/mol} \]
\[\Delta G_f^0(\text{Fe}_3\text{O}_4) = -869,207 \text{kJ/mol} \]
\[\Delta G_f^0(\text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4)=-984,252 \text{kJ/mol} \]

Calculé en considérant l'hypothèse de solution idéale, par la réaction :

\[0,33\Delta G_f^0(\text{FeCr}_2\text{O}_4) + 0,67\Delta G_f^0(\text{Fe}_3\text{O}_4) + RT(0,33\ln(0,33) + 0,67\ln(0,67)) \]

L'enthalpie libre standard résultante est donnée par :

\[\Delta G_r^0 = \Delta G_f^0(\text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4)-0,33\Delta G_f^0(\text{Cr}_2\text{O}_3)-0,78\Delta G_f^0(\text{Fe}_3\text{O}_4)=4,343\text{kJ/mol.} \]

L'équilibre de la réaction est atteint lorsque l'activité en oxygène à l'interface T91/spinelle Fe-Cr est égale à :

\[a_{\text{O}_2}^{\text{équilibre}} = \exp\left(\frac{-\Delta G_r^0}{0,055RT} \right) = 2,79 \times 10^{-6} \text{(avec } a_{\text{O}_2} = \frac{P_{\text{O}_2}}{P_{\text{O}_2}^0} \text{ et } P_{\text{O}_2}^0 = 1 \text{ atm).} \]

Lorsque l'activité de l'oxygène à l'interface est inférieure à l'activité de l'oxygène à l'équilibre de la réaction précédente (\(a_{\text{O}_2} < a_{\text{O}_2}^{\text{équilibre}} \)), la réaction se produit dans le sens de formation du spinelle Fe-Cr.

Par ailleurs, l'activité de l'oxygène dans le système Pb-Bi-T91 est toujours inférieure à celle correspondant à la saturation de l'alliage Pb-Bi à 470°C : \(3,46 \times 10^{-20} \) [40].

Cette activité étant déjà inférieure à l'activité nécessaire à l'équilibre précédent (0,33 \(\text{Cr}_2\text{O}_3 + 0,78 \text{Fe}_3\text{O}_4 = \text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4 + 0,055\text{O}_2 \)), celui-ci ne sera jamais atteint dans nos conditions expérimentales : le spinelle Fe-Cr se forme inévitablement à partir de \(\text{Cr}_2\text{O}_3 \) et \(\text{Fe}_3\text{O}_4 \).

La plus grande stabilité thermodynamique de la solution solide de spinelle Fe-Cr est prévisible car, dans le cas contraire, il n'existerait pas de solution solide de spinelle Fe-Cr. Cependant, nous pouvons noter que l'enthalpie libre standard de réaction \(\Delta G_r^0 \) est assez faible, traduisant un système proche de l'équilibre.

Si ces précipités ont une structure spinelle de type chromite \(\text{FeCr}_2\text{O}_4 \), l'équilibre du système \(\text{FeCr}_2\text{O}_4 + \text{Fe}_3\text{O}_4 \) se déplace aussi dans le sens de la formation de la solution solide \(\text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4 \). En effet, la chromite est thermodynamiquement moins stable que l'oxyde de chrome et le diagramme de phase ternaire représenté Figure 24 (Chapitre I, paragraphe 6) montre la plus grande stabilité de la solution solide face au système défini \(\text{FeCr}_2\text{O}_4 + \text{Fe}_3\text{O}_4 \).

Quelle que soit la nature des précipités d'oxyde enrichi en chrome, observés à l'interface T91/spinelle Fe-Cr (Figure 122), ils réagissent avec l'oxyde enrichi en fer (magnétite), qui devrait croître au voisinage, pour former le spinelle Fe-Cr.
Conclusion sur l'observation des précipités d'oxyde enrichi en chrome

Nous avons constaté par observations MEB et MET la présence de ségrégations attribuées à des précipités d'oxyde enrichis en chrome à l'interface T91/spinelle Fe-Cr. Or, la formation de ces précipités entraîne nécessairement une diminution locale d'activité en chrome dans le métal avoisinant. L'oxydation de ce métal conduit alors à la formation d'un oxyde enrichi en fer.

Nous pouvons considérer, après considérations thermodynamiques, que ces précipités d'oxyde enrichi en chrome ne sont pas stables et qu'ils réagissent avec les précipités enrichis en fer formés dans leur voisinage.

Nous pouvons alors nous demander pourquoi un oxyde enrichi en chrome se formerait préférentiellement à l'interface T91/spinelle Fe-Cr puisqu'un spinelle Fe-Cr est plus stable au système Cr₂O₃ + Fe₃O₄. Le mécanisme de croissance du spinelle Fe-Cr exposé dans le paragraphe précédent pourrait expliquer ce phénomène. En effet, supposons que le spinelle Fe-Cr croisse dans les nano-cavités : dans ce cas, la croissance du spinelle Fe-Cr rempli la nano-cavité jusqu'à boucher la base du nano-canal alimentant la nano-cavité en oxygène. A ce moment là, la réaction d'oxydation s'interrompt brutalement et la croissance du spinelle Fe-Cr s'arrête. Au cours de la croissance du spinelle Fe-Cr la teneur en oxygène diminue dans la nano-cavité. La pression partielle en oxygène peut diminuer progressivement jusqu'à empêcher la croissance d'un spinelle riche en fer mais non celle d'un oxyde riche en chrome.

Aussi, cette diminution locale de la teneur en oxygène peut conduire à l'impossibilité momentanée de croissance du spinelle Fe-Cr.

La formation des deux oxydes qui réagissent à l'interface T91/spinelle Fe-Cr pour former le spinelle Fe-Cr mène à une formation séquencée du spinelle Fe-Cr.

Le mécanisme d'oxydation pourrait alors être le suivant :

− Des précipités d'oxyde enrichi en chrome sont formés, en premier lieu, à l'interface T91/spinelle Fe-Cr, à cause de la diminution de la pression partielle d'oxygène en raison du bouchage du nano-canal.

La formation de cet oxyde empêche la montée des dislocations (dislocations d'interface et dislocations présentes dans les plans sous-jacents). En effet, les dislocations ne peuvent traverser les précipités : elles se retrouvent bloquées par leur présence.

Par ailleurs, la diffusion du fer vers l'interface magnétite/Pb-Bi crée des lacunes dans le T91. Ces lacunes, ne pouvant s'annihiler sur les dislocations, s'accumuleraient sur le défaut accessible le plus proche, à savoir : l'interface T91/spinelle Fe-Cr, un défaut géométrique d'interface ou un précipité d'oxyde enrichi en chrome.

Des nano-cavités sont ainsi créées, à l'interface T91/spinelle Fe-Cr, par l'accumulation des lacunes.

− Dans un second temps, l'oxygène, dont le transport n'est pas limitant, peut réagir à l'intérieur de ces nano-cavités avec le T91.

Cependant, la précipitation d'oxyde enrichi en chrome conduit à une diminution locale de l’activité en chrome à l’interface et l'oxydation du T91 mène à la formation de magnétite ou de spinelle fortement enrichi en fer.
La cinétique de croissance de cette magnétite, à l'interface T91/spinelle Fe-Cr, est limitée par le volume des atomes oxydés et des cavités provenant de la ségrégation des lacunes (Figure 123).

- L'oxyde de chrome et la magnétite peuvent ensuite réagir pour former le spinelle Fe-Cr $\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4$ observé par microscopie.

![Figure 123 : Schéma de croissance de l'oxyde à l'interface spinelle Fe-Cr/T91.](image)

La présence de cet oxyde enrichi en chrome permet d'expliquer l'inhibition de la montée des dislocations par annihilation des lacunes créées à l'interface T91/spinelle Fe-Cr. L'impossibilité d'annihilation de ces lacunes conduit à l'accumulation de la totalité des lacunes au niveau de l'interface T91/spinelle Fe-Cr. Le processus d'oxydation du T91 ne subit ainsi aucune perte de volume de métal consommé dont l'intégralité est remplie par la formation de l'oxyde interne.

De plus, nous avons souligné dans le Chapitre I de cette étude que le T91 au contact de l'alliage Pb-Bi ne formait de couche d'oxyde que si la concentration en oxygène dissous dans le bain de Pb-Bi liquide était de l'ordre de celle nécessaire à la précipitation de la magnétite (régime d'oxydation en opposition au régime de dissolution du T91). Or, la solution solide $\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4$, de même que le spinelle FeCr$_2$O$_4$, se forme, d'après les principes de la thermodynamique, pour une teneur en oxygène moins élevée (voir Chapitre III, paragraphe 6.1).

Plaçons nous dans le cas où la teneur en oxygène dissous dans l'alliage Pb-Bi est comprisée entre celle nécessaire à la formation du spinelle $\text{Fe}_{2.34}\text{Cr}_{0.66}\text{O}_4$ et celle nécessaire à la formation de la magnétite. Le régime de dissolution est alors observé expérimentalement. Un mécanisme semble donc empêcher la formation de ces spinelles Fe-Cr, même lorsque la teneur en oxygène est suffisante pour les former.

Ce mécanisme peut être expliqué par le processus précédemment proposé. Le bouchage des nanocanaux par la croissance de l'oxyde interne dans les nano-cavités mène à une diminution de l'activité en oxygène à l'interface T91/spinelle Fe-Cr. Cette diminution de l'activité en oxygène conduit à la formation de précipités d'oxyde enrichi en chrome. Leur formation engendre une diminution locale de l'activité en chrome empêchant la formation de spinelle Fe-Cr. Par ailleurs, la présence de ces précipités n'empêche pas la dissolution du matériau car la teneur en chrome dans le T91 est insuffisante (teneur inférieure à 14%) pour permettre la formation d'une couche continue d'oxyde de chrome, hypothétique barrière à la dissolution.
3.4. Conclusion sur la croissance du spinelle Fe-Cr

Les discussions précédentes nous permettent de proposer le mécanisme suivant pour la formation du spinelle Fe-Cr :

− L'oxygène est transporté par voie liquide à travers des nano-canaux de plomb jusqu'à l'interface T91/spinelle Fe-Cr. Cependant, à cause du coefficient de diffusion élevé de l'oxygène dans le plomb à cette température, ce transport ne peut limiter le processus de croissance du spinelle Fe-Cr.

− A l'interface T91/spinelle Fe-Cr, le fer diffuse vers l'interface externe pour faire croître la couche de magnétite. Cette diffusion entraîne la formation de lacunes à l'interface spinelle Fe-Cr/T91. Celles-ci peuvent s'accumuler et former des nano-cavités, si elles ne sont pas annihilées sur les dislocations du métal. La non annihilation des lacunes sur les dislocations peut être due à un ensemble de facteurs : la présence de chrome dans l'oxyde, la présence de défauts géométriques d'interface et la présence de précipités d'oxyde enrichi en chrome.

− L'oxygène, accédant à l'interface interne par les nano-canaux, réagit avec le T91 et forme le spinelle Fe-Cr. Cependant, la croissance de ce spinelle Fe-Cr s'arrête lorsque le volume de T91 consommé est rempli et que la base du nano-canal est bouchée. À ce moment là, l'apport d'oxydant est stoppé et le volume du spinelle Fe-Cr formé est égal à celui des nano-cavités ajouté à celui des atomes métalliques oxydés pour le former. La teneur en oxygène diminuant, le pouvoir oxydant du milieu n'est plus assez important pour former le spinelle Fe\textsubscript{2,34}Cr\textsubscript{0,66}O\textsubscript{4} et un oxyde enrichi en chrome se forme. À son voisinage, l'activité en chrome a diminué dans le métal.

− Parallèlement, d'autres nano-cavités se développent sous l'oxyde nouvellement formé. La dissociation anisotrope de ses grains permet de creuser, dans l'épaisseur de spinelle Fe-Cr nouvellement formé, un canal débouchant sur le canal anciennement obstrué. L'oxygène peut ainsi, de nouveau, accéder au T91 qui cette fois est enrichi en fer (dû à la formation des précipités d'oxyde enrichi en chrome). L'oxyde se formant dans la nano-cavité est alors un oxyde enrichi en fer.

− La présence simultanée des deux oxydes, l'un enrichi en fer, l'autre en chrome, est thermodynamiquement instable. Ces oxydes réagissent donc pour former le spinelle Fe-Cr Fe\textsubscript{2,34}Cr\textsubscript{0,66}O\textsubscript{4}. Ainsi, la solution solide Fe\textsubscript{2,34}Cr\textsubscript{0,66}O\textsubscript{4} est-elle formée en deux étapes.

Un schéma global de formation du spinelle Fe-Cr est présenté sur la Figure 124.
Le mécanisme proposé précédemment est fondé sur une discussion alimentée par la littérature et nos expérimentations. Il rend compte de la globalité des phénomènes observés. Cependant, il correspond à une interprétation. De nombreuses hypothèses ont été avancées afin de construire le mécanisme proposé.
Aussi, pour consolider ces différentes suggestions, il serait nécessaire de valider une à une toutes les hypothèses préconisées.
Cependant, il semble fortement probable que la cinétique de croissance du spinelle Fe-Cr soit liée à celle de la couche de magnétite et qu'elle ne dépende ni de la diffusion du chrome ni de celle de l'oxygène comme nous avons pu le montrer précédemment.
Nous avons constaté que le volume du spinelle Fe-Cr était égal à celui du T91 consommé. La cinétique de croissance du spinelle Fe-Cr est alors liée à celle de la couche de magnétite d'après la loi de la conservation de la matière.
Aussi, afin de simuler la cinétique de croissance du spinelle Fe-Cr, l'épaisseur de la couche de spinelle Fe-Cr peut être calculée à partir de celle de la couche de magnétite. Ce calcul est possible par résolution du système d'équation (8), ajoutée à l'hypothèse que l'épaisseur de la couche de spinelle Fe-Cr formée correspond à l'épaisseur de T91 consommé ($h_{\text{spinelle Fe-Cr}} = h_{\text{T91}}$).
La résolution du système mène à la relation suivante :

\[
h_{\text{spinelle Fe-Cr}} = \frac{C_{\text{Fe}\text{(magnétite)}}}{C_{\text{Fe}(\text{T91})} - C_{\text{Fe}(\text{spinelle Fe-Cr})}} h_{\text{magnétite}} \tag{11}
\]

en considérant un spinelle Fe-Cr de stoichiométrie Fe$_{2.34}$Cr$_{0.66}$O$_4$.

Figure 124 : Processus de formation du spinelle Fe-Cr.
Cette relation nous permettra de simuler la croissance du spinelle Fe-Cr, à partir du mécanisme proposé, grâce à la simulation de la croissance de la couche de magnétite.
4. Modèle de croissance pour la magnétite : diffusion du fer à travers les deux couches d'oxyde

Les résultats expérimentaux de localisation des interfaces de croissance des couches d'oxyde montrent que la couche de magnétite croît à l'interface magnétite/Pb-Bi (Chapitre III, paragraphe 8). Cette croissance à l'interface externe suggère que le fer diffuse à travers les deux couches d'oxyde. A l'interface externe, le fer réagit avec l'oxygène dissous dans l'alliage Pb-Bi pour former la magnétite.

Contrairement à la couche de spinelle Fe-Cr, la couche de magnétite peut croître librement à l'interface externe. En effet, cette interface est une surface libre. La cinétique de croissance de la couche de magnétite est donc nécessairement liée à la vitesse de diffusion du fer à travers la couche d'oxyde. La vitesse de diffusion du fer va ainsi limiter la croissance de la couche de magnétite.

Identifions le mode de transport du fer à travers la couche d'oxyde :

- Le fer peut diffuser par le réseau de la couche d'oxyde.
- Le fer peut diffuser par les joints de grains de la couche d'oxyde.
- Le fer peut diffuser par voie liquide, comme l'oxygène, à travers les nano-canaux de plomb.

Cependant, contrairement au transport de l'oxygène, le transport du fer est un facteur limitant la croissance des couches. Ce transport doit, à priori, être identique pour toutes les expériences réalisées dans des environnements différents menant à des cinétiques de croissance similaires (eau, vapeur d'eau, alliage Pb-Bi, bismuth).

Or, le coefficient de diffusion de Fe²⁺ dans l'eau à 300°C est de l'ordre de 10⁻⁴cm²/s, c'est-à-dire qu'il est environ 100 fois plus élevé que celui du fer dans le plomb à 470°C (voir Annexe 8). De plus, la solubilité du fer dans l'eau est aussi nettement plus élevée que celle du fer dans le plomb. La similarité de mécanisme d'oxydation dans les deux paraît incompatible avec une limitation de la croissance de l'oxyde par la diffusion du fer par voie liquide dans deux liquides différents.

L'observation d'une vitesse d'oxydation similaire quel que soit le milieu oxydant, eau (liquide ou vapeur) ou métal liquide, mène à penser que le fer diffuse plus vraisemblablement par le réseau de la couche d'oxyde ou par les joints de grains.

Tenant compte de ces modes de transport, la croissance de la couche de magnétite peut être simulée. D'après la partie précédente, cette simulation doit aussi permettre de représenter la croissance de la couche de spinelle Fe-Cr.

Nous chercherons à identifier, via une analyse de la simulation, la couche d'oxyde, spinelle Fe-Cr ou magnétite, protectrice pour le matériau. Une expérience d'oxydation spécifique permettra d'appuyer cette analyse et ainsi de confirmer la vraisemblance de notre simulation.

La simulation sera ensuite utilisée afin de représenter la cinétique de croissance des couches d'oxyde obtenues dans le bismuth pur.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Enfin, les résultats expérimentaux de la littérature dans les environnements Pb-Bi non saturés en oxygène et dans l'eau et la vapeur d'eau seront commentés en regard de notre simulation.

4.1. Simulation de la croissance de la magnétite par diffusion dans les joints de grains

La simulation est identique à celle présentée pour la diffusion de l'oxygène par les joints de grains de l'oxyde (voir Chapitre IV, paragraphe 3).

Cependant, la croissance de la couche de magnétite est effectuée à l'interface magnétite/Pb-Bi, la concentration en fer, C_{Fe}^{T91}, à l'interface T91/spinelle Fe-Cr est celle du fer dans le T91 et le coefficient de diffusion du fer dans les joints de grains est noté D_{Fe}^{JG}.

La concentration en fer dans les joints de grains, $C_{Fe}^{ox/ox}$, entre la magnétite et le spinelle Fe-Cr s'écrit :

$$C_{Fe}^{ox/ox} = \frac{\sqrt{3}}{2} \frac{C_{Fe}^{T91}}{\left(\frac{h_{magnétite}}{h_{spinelle Fe-Cr}} + \frac{\sqrt{3}}{2} \delta + \frac{1}{2} l_{spinelle Fe-Cr} \right)}$$

avec δ, la largeur des joints de grains (supposée égale dans la magnétite et dans le spinelle Fe-Cr), $l_{magnétite}$ et $l_{spinelle Fe-Cr}$, les diamètres des grains de magnétite et de spinelle Fe-Cr et $h_{magnétite}$ et $h_{spinelle Fe-Cr}$, les épaisseurs des couches de magnétite et de spinelle Fe-Cr réciproquement.

Le rapport d'épaisseur de la couche de magnétite sur l'épaisseur de la couche de spinelle Fe-Cr est constant : il est égal à 1,25 d'après les résultats expérimentaux.

Les facteurs géométriques δ, $l_{spinelle Fe-Cr}$ et $l_{magnétite}$ sont considérés comme constants au cours du processus d'oxydation.

La concentration en fer à l'interface magnétite/spinelle Fe-Cr, $C_{Fe}^{ox/ox}$, est donc constante au cours du temps.

L'épaisseur de la couche de magnétite est alors calculée analytiquement, de la même manière que pour la simulation de la diffusion de l'oxygène dans les joints de grains (Chapitre IV, paragraphe 3) :

$$h_{magnétite}^2 = 2D_{Fe}^{JG} \frac{C_{magnétite}}{C_{Fe}^{oxide}} \frac{\delta}{(\delta + l_{magnétite})} t$$

avec $C_{magnétite}$, la concentration en fer dans la couche de magnétite.

Pour simuler la croissance de la couche de spinelle Fe-Cr, les valeurs des différents facteurs géométriques intervenant dans l'expression précédente sont récapitulées dans le tableau suivant:
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

<table>
<thead>
<tr>
<th>$h_{\text{magnérite}}$</th>
<th>$h_{\text{spinelle Fe-Cr}}$</th>
<th>$l_{\text{spinelle Fe-Cr}}$</th>
<th>δ</th>
<th>D_{Fe}^{JG}</th>
<th>$C_{\text{Fe}}^{\text{magnérite}}$</th>
<th>$C_{\text{Fe}}^{\text{ox/ox}}$</th>
<th>C_{Fe}^{T91}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>10^{-20}</td>
<td>6,7x10$^{-2}$</td>
<td>22,9</td>
<td>23,9</td>
</tr>
</tbody>
</table>

Tableau 22 : Récapitulatif des valeurs des paramètres utilisés pour la simulation.

A notre connaissance, le coefficient de diffusion du fer dans les joints de grains n'a pas été déterminé dans les oxydes magnétite et spinelle Fe-Cr. Aussi, nous prendrons la valeur du coefficient de diffusion du fer dans les joints de grains de l'oxyde de chrome $^{[97]}$.

Les résultats de la simulation sont présentés sur la figure suivante.

![Figure 125 : Simulation de la diffusion du fer par les joints de grains de a couche d'oxyde et épaisseur de la couche de magnétite expérimentale.](imageURL)

La simulation montre que la diffusion du fer par les joints de grains de l'oxyde est trop faible pour rendre compte de la croissance expérimentale. Cependant, cette simulation dépend fortement de la valeur du coefficient de diffusion du fer dans les joints de grains de la magnétite et du spinelle Fe-Cr. Cette valeur n'étant pas connue, elle a été considérée égale à celle du coefficient de diffusion du fer dans les joints de grains de l'oxyde de chrome Cr$_2$O$_3$ obtenue à 740 °C et extrapolée à 470°C. Des données plus justes seraient cependant nécessaires pour conclure sur ce mode de transport.

4.2. Simulation de la croissance de la magnétite par diffusion du fer dans le réseau de la couche d'oxyde

La simulation développée dans ce chapitre est fondée sur la proposition suivante : la cinétique de croissance de la couche de magnétite dépend de la vitesse de diffusion du fer dans le réseau de la couche d'oxyde.

La cinétique de croissance de la couche de spinelle Fe-Cr dépend aussi de la vitesse de diffusion du fer, comme il a été conclu au chapitre précédent.
Aussi, la cinétique de croissance des deux couches d'oxyde peut être simulée.

Les hypothèses de la simulation, leur mise en équation puis leur résolution analytique, seront présentées dans une première partie.

Les résultats de la simulation seront ensuite comparés à la cinétique expérimentale, analysés et discutés.

4.2.1. Hypothèses de simulation et résolution analytique

Afin d'obtenir une simulation représentant la cinétique de croissance des couches d'oxyde, certaines hypothèses de calcul sont posées.

La méthodologie du calcul sera ensuite explicitée.

Enfin, la mise en équation et la résolution du calcul seront effectuées.

Les symboles utilisés dans cette partie sont rassemblés dans le tableau suivant.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{\text{magnétite}}$</td>
<td>épaisseur de la couche de magnétite (L)</td>
</tr>
<tr>
<td>$h_{\text{spinelle Fe-Cr}}$</td>
<td>épaisseur de la couche de spinelle Fe-Cr (L)</td>
</tr>
<tr>
<td>$J_{\text{spinelle Fe-Cr}}$</td>
<td>flux de fer traversant la couche de spinelle Fe-Cr (molT⁻¹L⁻¹)</td>
</tr>
<tr>
<td>$J_{\text{magnétite}}$</td>
<td>flux de fer traversant la couche de magnétite (molT⁻¹L⁻¹)</td>
</tr>
<tr>
<td>$C_{\text{Fe}}^{\text{spinelle Fe-Cr}}$</td>
<td>concentration en fer dans la couche de spinelle Fe-Cr (molL⁻³)</td>
</tr>
<tr>
<td>$C_{\text{Fe}}^{\text{magnétite}}$</td>
<td>concentration en fer dans la couche de magnétite (molL⁻³)</td>
</tr>
<tr>
<td>C_{Fe}^{T91}</td>
<td>concentration en fer dans le T91 (molL⁻³)</td>
</tr>
<tr>
<td>$D_{\text{spinelle Fe-Cr}}$</td>
<td>coefficient de diffusion du fer dans le spinelle Fe-Cr (L²T⁻¹)</td>
</tr>
<tr>
<td>$\mu_{\text{Fe}}^{\text{spinelle Fe-Cr}}$</td>
<td>potentiel chimique du fer dans le spinelle Fe-Cr (MT⁻²L²)</td>
</tr>
<tr>
<td>μ_X</td>
<td>potentiel chimique de l'élément X dans le spinelle Fe-Cr (MT⁻²L²)</td>
</tr>
<tr>
<td>a_{O_2}</td>
<td>activité de l'oxygène</td>
</tr>
<tr>
<td>$a_{\text{O}_2}^{\alpha/\alpha}$</td>
<td>activité de l'oxygène à l'interface spinelle Fe-Cr/magnétite</td>
</tr>
<tr>
<td>$a_{\text{O}_2}^{\alpha}$</td>
<td>activité de l'oxygène à l'interface Pb-Bi/magnétite</td>
</tr>
<tr>
<td>n</td>
<td>quantité de matière de fer accédant à l'interface magnétite/Pb-Bi (mol)</td>
</tr>
<tr>
<td>$a_{\text{O}_2}^{\text{int}}$</td>
<td>activité de l'oxygène à l'interface spinelle Fe-Cr/T91</td>
</tr>
<tr>
<td>$x_{\text{spinelle Fe-Cr}}$</td>
<td>abscisse dans la couche de spinelle Fe-Cr (L)</td>
</tr>
<tr>
<td>$x_{\text{magnétite}}$</td>
<td>abscisse dans la couche de magnétite (L)</td>
</tr>
<tr>
<td>y</td>
<td>$x_{\text{spinelle Fe-Cr}} / h_{\text{spinelle Fe-Cr}}$ (paramètre adimensionnel)</td>
</tr>
</tbody>
</table>
4.2.1.1. Hypothèses de simulation

Dans le but de simuler la croissance de la couche de magnétite, posons les hypothèses de simulation :

- Hypothèse (H1) : Le fer diffuse en volume à travers les réseaux des deux couches d'oxyde.

- Hypothèse (H2) : La couche de spinelle Fe-Cr croît à l'interface T91/spinelle Fe-Cr et sa croissance dépend de celle de la couche de magnétite selon l'expression :

\[
h_{\text{spinelle Fe-Cr}} = \frac{C_{Fe(\text{magnétite})}}{C_{Fe(T91)} - C_{Fe(\text{spinelle Fe-Cr})}} h_{\text{magnétite}}
\]

(11)

- Le flux de fer (\(J_{\text{spinelle Fe-Cr}}\)) traversant le spinelle Fe-Cr ne participe qu'à la croissance de la couche de magnétite.

- Hypothèse (H3) : La couche de magnétite croît à l'interface magnétite/Pb-Bi. Aucune accumulation de matière ne se produit autre part (Figure 126).

- Hypothèse (H4) : Il n'y a pas de croissance latérale de la couche d'oxyde. Aussi la simulation est effectuée selon une dimension.

- Hypothèse (H5) : Il n'y a ni accumulation ni perte de matière à l'intérieur de la couche. Le flux de fer ne dépend donc pas de la variable d'espace. En particulier le flux de fer traversant la couche de magnétite (\(J_{\text{magnétite}}\)) est égal à celui qui traverse la couche de spinelle Fe-Cr (\(J_{\text{spinelle Fe-Cr}}\)). Cette hypothèse est motivée par les expériences de marqueur à l'oxygène 18 qui montrent que la croissance de l'oxyde est localisée uniquement aux interfaces internes et externes.

- Hypothèse (H6) : Les activités en oxygène sont constantes aux interfaces interne et externe.

- Hypothèse (H7) : Un équilibre thermodynamique local existe au sein de la couche d'oxyde.

- Hypothèse (H8) : L'écart à la stœchiométrie reste faible. Le nombre total d'anions et de cation, par unité de volume, ne varie donc pas dans la couche.

- Hypothèse (H9) : Un état pseudo-stationnaire est atteint. Cette hypothèse implique qu'il existe un système de coordonnées (0 ; y) dans lequel l'activité en oxygène dans la couche d'oxyde n'évolue pas dans le temps [161].

Le schéma de croissance de la couche de magnétite est représenté sur la Figure 126.
La diffusion du fer s'effectue en premier à travers la couche de spinelle Fe-Cr puis à travers celle de magnétite. Les expressions des coefficients de diffusion du fer étant différentes dans les deux couches, la simulation ne peut pas être construite en une seule partie (voir paragraphe 2). Une méthodologie de simulation a dû être adaptée pour palier au problème de discontinuité du coefficient de diffusion dans la couche d'oxyde et afin d'obtenir une cinétique de croissance globale.

4.2.1.2. Méthodologie de la simulation

La méthodologie de la simulation est la suivante :

Selon l'hypothèse (H5), le flux de fer ($J_{\text{spinelle Fe-Cr}}$) traversant la couche de spinelle Fe-Cr entre l'interface interne et l'interface spinelle Fe-Cr/magnétite est égal au flux de fer ($J_{\text{magnétite}}$) entre l'interface spinelle Fe-Cr/magnétite et l'interface externe.

La cinétique de croissance de la couche de magnétite ($h_{\text{magnétite}}=f(t)$) peut donc être calculée par deux voies similaires :
- par l'intermédiaire du flux $J_{\text{spinelle Fe-Cr}}$, entre les interfaces interne et spinelle Fe-Cr/magnétite, conduisant à l'expression $h_{\text{magnétite}} 1=f_1(t)$,
- ou par l'intermédiaire du flux $J_{\text{magnétite}}$, entre les interfaces spinelle Fe-Cr/magnétite et externe, conduisant à l'expression $h_{\text{magnétite}} 2=f_2(t)$.

Les deux flux étant identiques, les deux modes de calcul sont équivalents et :

\[h_{\text{magnétite}} 1 = h_{\text{magnétite}} 2. \]

Nous avons souligné précédemment la forte dépendance des coefficients de diffusion du fer, dans la magnétite et dans le spinelle Fe-Cr, vis-à-vis de l'activité en oxygène dans les oxydes (voir paragraphe 2). Le flux de diffusion du fer dans chaque couche est alors lié à l'activité en oxygène à chaque interface.

Pour résumer, l'épaisseur de la couche de magnétite peut être simulée par deux voies différentes :

A partir du flux traversant le spinelle Fe-Cr. Ce calcul mène à une première détermination de l'épaisseur de la couche de magnétite en fonction de l'activité en oxygène aux interfaces :

\[h_{\text{magnétite}} 1(a_{O_2}^{\text{int, O}_2}, a_{O_2}^{\text{oxyde/oxyde}}, t). \]
A partir du flux traversant la magnétite. Ce calcul mène à une deuxième détermination de l'épaisseur de la couche de magnétite en fonction de l'activité en oxygène aux interfaces :
\[h_{\text{magnétite}}^1 (a_{O_2}^{\text{oxyde/oxyde}}, a_{O_2}^{\text{externe}}, t) \].

Les activités en oxygène aux interfaces interne et externe étant fixées par des équilibres thermodynamiques extérieurs, la seule inconnue est l'activité en oxygène à l'interface oxyde/oxyde.

L'hypothèse (H5) permet d'estimer cette valeur :

Les deux manières de calculer l'épaisseur de la couche de magnétite étant identiques, les épaisseurs
\[h_{\text{magnétite}}^1 (a_{O_2}^{\text{externe}}, a_{O_2}^{\text{oxyde/oxyde}}, t) \] et
\[h_{\text{magnétite}}^2 (a_{O_2}^{\text{oxyde/oxyde}}, a_{O_2}^{\text{externe}}, t) \] sont égales.

L'activité
\[a_{O_2}^{\text{oxyde/oxyde}} \] étant la seule inconnue, l'égalité entre les deux épaisseurs
\[h_{\text{magnétite}}^1 (a_{O_2}^{\text{externe}}, a_{O_2}^{\text{oxyde/oxyde}}, t) = h_{\text{magnétite}}^2 (a_{O_2}^{\text{oxyde/oxyde}}, a_{O_2}^{\text{externe}}, t) \] conduit à déterminer la valeur de l'activité en oxygène
\[a_{O_2}^{\text{oxyde/oxyde}} \] à l'interface oxyde/oxyde.

Chaque épaisseur
\[h_{\text{magnétite}}^1 (a_{O_2}^{\text{externe}}, a_{O_2}^{\text{oxyde/oxyde}}, t) \] et
\[h_{\text{magnétite}}^2 (a_{O_2}^{\text{oxyde/oxyde}}, a_{O_2}^{\text{externe}}, t) \] est donc d'abord calculée indépendamment. Puis la valeur
\[a_{O_2}^{\text{oxyde/oxyde}} \] est estimée à partir de l'égalité entre les deux expressions précédentes.

La substitution de cette valeur dans l'une ou l'autre des expressions
\[h_{\text{magnétite}}^1 (a_{O_2}^{\text{externe}}, a_{O_2}^{\text{oxyde/oxyde}}, t) \] ou
\[h_{\text{magnétite}}^2 (a_{O_2}^{\text{oxyde/oxyde}}, a_{O_2}^{\text{externe}}, t) \] conduit à l'obtention de la simulation de la cinétique de croissance de la couche de magnétite.

Selon cette méthodologie, la croissance de la couche de magnétite peut être évaluée sans ajustement, afin d'être directement comparable aux résultats expérimentaux.

4.2.1.3. Mise en équation et résolution

Le même calcul étant réalisé dans les deux couches d'oxyde, seul celui impliquant la diffusion du fer dans le spinelle Fe-Cr sera détaillé.

L'épaisseur de la couche de magnétite est donc simulée à partir du flux de fer traversant la couche de spinelle Fe-Cr.

Celui-ci dépend principalement du coefficient de diffusion et du potentiel chimique du fer dans la couche.

Le flux de diffusion du fer sera exprimé en fonction de l'activité en oxygène dans la couche, pour les deux raisons suivantes :

- Le coefficient de diffusion du fer est lié à l'activité en oxygène. Il varie dans la couche.
- Le potentiel chimique du fer peut être traduit en potentiel chimique d'oxygène car un équilibre thermodynamique local est considéré au sein des couches (H7).

Calcul du potentiel chimique du fer :

En supposant un équilibre chimique local au sein de la couche (H7) et un faible écart à la stœchiométrie (H8), l'activité en oxygène est liée à celle en fer par la réaction chimique suivante :

Chapitre V : Mécanisme de croissance des couches d’oxyde et simulation

\[0,66\text{Cr} + 2,34\text{Fe} + 2\text{O}_2 = \text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4 \]

L’équilibre chimique est atteint lorsque la somme des potentiels chimiques des réactifs est égale à celle des potentiels chimiques des produits. Cette égalité peut être écrite localement à chaque endroit de l’oxyde (H7).

Le spinelle Fe-Cr \(\text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4 \) étant le solvant et le chrome ne diffusant pas au sein du spinelle, il peut être considéré que leurs potentiels chimiques sont constants à travers la couche d’oxyde : \(d\mu_{\text{Fe}_{2,34}\text{Cr}_{0,66}\text{O}_4} = 0 \) et \(d\mu_{\text{Cr}} = 0 \).

L’égalité suivante peut donc être écrite en chaque point de la couche puisque l’écart à la stœchiométrie est faible :

\[2,34d\mu_{\text{Fe}} + 2d\mu_{\text{O}_2} = 0 \] \(\text{(12)} \)

- **Calcul du flux de fer à travers le spinelle Fe-Cr :**

 Le flux de fer à travers la couche de spinelle Fe-Cr est déterminé par la première loi de Fick :

 \[
 J_{\text{spinelle Fe-Cr}} = -\frac{D_{\text{Fe}}}{RT} \frac{C_{\text{Fe}}^{\text{spinelle Fe-Cr}}}{a_{\text{Fe}}} \frac{\partial \mu_{\text{Fe}}^{\text{spinelle Fe-Cr}}}{\partial x} \] \(\text{(13)} \)

 A partir des équations (12) et (13), le flux de fer à travers la couche de spinelle Fe-Cr peut être exprimé en fonction du gradient d'activité en oxygène dans l’oxyde :

 \[
 J_{\text{spinelle Fe-Cr}} = \frac{2}{2,34} \frac{D_{\text{Fe}}^{\text{spinelle Fe-Cr}}}{C_{\text{Fe}}^{\text{spinelle Fe-Cr}}} \frac{\partial a_{\text{O}_2}}{\partial x_{\text{spinelle Fe-Cr}}} \] \(\text{(14)} \)

- **Calcul de l’épaisseur de la couche de magnétite par le flux de fer à travers le spinelle Fe-Cr :**

 La couche de magnétite croît à l’interface externe en \(x=h_{\text{magnétite}} \) (H3) :

 \[
 \frac{dn}{dt} = C_{\text{Fe}}^{\text{magnétite}} \frac{dh_{\text{magnétite}}}{dt} = J_{\text{magnétite}}(h_{\text{magnétite}},t)S \] \(\text{(15)} \)

 Le flux de fer traversant la couche de spinelle Fe-Cr est égal à celui traversant la couche de magnétite (H5) :

 \[
 J_{\text{magnétite}}(h_{\text{magnétite}},t)S = J_{\text{magnétite}}(x,t)S = J_{\text{spinelle Fe-Cr}}(x,t)S \] \(\text{(16)} \)

 Les relations (15) et (16) permettent d'exprimer la vitesse de croissance de la couche de magnétite en fonction du flux de fer dans la couche de spinelle Fe-Cr.

 \[
 C_{\text{Fe}}^{\text{magnétite}} \frac{dh_{\text{magnétite}}}{dt} = J_{\text{spinelle Fe-Cr}}(x,t) = \frac{2}{2,34} \frac{D_{\text{Fe}}^{\text{spinelle Fe-Cr}}}{C_{\text{Fe}}^{\text{spinelle Fe-Cr}}} \frac{\partial a_{\text{O}_2}}{\partial x_{\text{spinelle Fe-Cr}}} \] \(\text{(17)} \)
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Effectuons le changement de variable suivant :

\[y = \frac{x_{\text{spinelle Fe-Cr}}}{h_{\text{spinelle Fe-Cr}}} \]

Dans le système de coordonnées (0 ; y), l'activité en oxygène dans la couche de spinelle Fe-Cr n'évolue pas dans le temps (H9) et

\[\frac{\partial a_{O_2}}{\partial y} = \frac{da_{O_2}}{dy}. \]

L'expression (17) devient alors :

\[C_{Fe}^{\text{magnétite}} \frac{d h_{\text{magnétite}}}{d t} = \frac{2}{2,34} \frac{D_{Fe}^{\text{spinelle Fe-Cr}} C_{Fe}^{\text{spinelle Fe-Cr}}}{a_{O_2}} \frac{1}{h_{\text{spinelle Fe-Cr}}} \frac{da_{O_2}}{dy} \]

\[\Rightarrow \int_{0}^{h_{\text{spinelle Fe-Cr}}} dh_{\text{magnétite}} \int_{0}^{y} dy = \int_{0}^{a_{O_2}^{\text{int}}} \int_{0}^{a_{O_2}^{\text{as}}} \frac{2}{2,34} \frac{D_{Fe}^{\text{spinelle Fe-Cr}} C_{Fe}^{\text{spinelle Fe-Cr}}}{C_{Fe}^{\text{magnétite}} a_{O_2}} da_{O_2} \int_{0}^{\text{int}} dt \]

Finalement, en intégrant la relation (19) par l'intermédiaire de la relation (11) exprimant la valeur de l'épaisseur de la couche de spinelle Fe-Cr en fonction de celle de magnétite, l'épaisseur de la couche de magnétite peut s'écrire :

\[h_{\text{magnétite}} \int dh_{\text{magnétite}} = \int_{0}^{a_{O_2}^{\text{as}}} \int_{0}^{a_{O_2}^{\text{int}}} \frac{2}{2,34} \frac{D_{Fe}^{\text{spinelle Fe-Cr}} C_{Fe}^{\text{spinelle Fe-Cr}}}{C_{Fe}^{\text{magnétite}} a_{O_2}} da_{O_2} \int_{0}^{\text{int}} dt \]

Les concentrations en fer peuvent être considérées comme constantes à travers la couche de spinelle Fe-Cr et celle de magnétite (H8).

La résolution de l'équation (20) permet d'obtenir une expression analytique de l'épaisseur de la couche de magnétite en fonction du temps et de l'activité de l'oxygène aux interfaces spinelle Fe-Cr/T91 et spinelle Fe-Cr/magnétite :

\[h_{\text{magnétite}} = \frac{2}{2,34} \left[\frac{Dv}{8} \ln \left(1 + 2K_a a_{O_2}^{2/3} \right) - 4D_{Fe} C_{Fe}^{\text{spinelle Fe-Cr}} \left(C_{Fe}^{T91} C_{Fe}^{\text{spinelle Fe-Cr}} \right) \right] dt \]

avec

\[A = \frac{D_{Fe} (Fe_{2.4}Cr_{0.6}O_4, 1200°C)}{D_{Fe} (Fe_{2.4}O_4, 1200°C)} \]

et

\[\frac{D_{Fe} (Fe_{2.4}Cr_{0.6}O_4, 1200°C)}{D_{Fe} (Fe_{2.4}O_4, 1200°C)} = 0,24 \]

Le même calcul est ensuite effectué avec le flux de fer traversant la couche de magnétite.

- **Calcul de l'épaisseur de la couche de magnétite par le flux de fer à travers la magnétite** :

La démarche de calcul étant similaire au cas précédent, le détail du calcul n'est pas donné pour le second cas.

L'épaisseur de la couche de magnétite est exprimable, en fonction du temps et de l'activité en oxygène aux interfaces magnétite/Pb-Bi et spinelle Fe-Cr/magnétite, par la relation :
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

\[
h_{\text{magnétite}} = \left(\frac{D_T}{12} \ln \left(\frac{1 + 2K_c a_{O_2}^{\alpha-2/3}}{1 + 2K_c a_{O_2}^{\alpha-2/3}} \right) \right) - \frac{8}{3} D_I K_I \left(a_{O_2}^{\alpha-2/3} - a_{O_2}^{\alpha-2/3} \right) t
\]

(22)

- **Estimation des activités aux interfaces :**

Les activités de l'oxygène aux différentes interfaces peuvent être évaluées comme il suit :

- L'activité \(a_{O_2}^{\text{ext}}\) à l'interface externe : cette activité correspond à un équilibre thermodynamique entre une atmosphère gazeuse \(O_2\) et l'alliage \(Pb-Bi\) saturé en oxygène. Cette activité a déjà été calculée dans le paragraphe 5.2.2. Elle est égale à \(3,46 \times 10^{-20}\) pour l'état de référence : \(a_{O_2}^{0} = \frac{P_{O_2}}{P_{O_2}^0}\) et \(P_{O_2}^0 = \text{1 atm}\).

- L'activité \(a_{O_2}^{\text{int}}\) à l'interface interne : cette activité correspond à un équilibre entre le T91 et l'oxyde le moins stable se formant à l'interface interne. En effet, nous avons discuté dans la partie précédente des possibilités de formation des différents oxydes, magnétite, oxyde enrichi en chrome et spinelle Fe-Cr, à l'interface T91/spinelle Fe-Cr. En raison de l'observation de précipités enrichis en chrome à cette interface, nous avons émis l'hypothèse de la formation du spinelle Fe-Cr en deux étapes : formation préalable d'un oxyde riche en chrome et d'un autre riche en fer (voir paragraphe 3.4). Si les trois oxydes sont présents à l'interface, la pression partielle en oxygène est suffisante pour former la magnétite. Nous considérerons donc comme valeur de l'activité en oxygène à l'interface interne celle en équilibre avec le système T91/magnétite. Cette activité a aussi été calculée précédemment. Elle est égale à \(7,5 \times 10^{-31}\) (\(a_{O_2}^{0} = \frac{P_{O_2}}{P_{O_2}^0}\) et \(P_{O_2}^0 = \text{1 atm}\)).

- L'activité \(a_{O_2}^{\alpha/\alpha}\) à l'interface spinelle Fe-Cr/magnétite : cette activité est obtenue par l'égalité des équations (21) et (22). Elle est égale à \(2,26 \times 10^{-20}\) (\(a_{O_2}^{0} = \frac{P_{O_2}}{P_{O_2}^0}\) et \(P_{O_2}^0 = \text{1 atm}\)).

Nous pouvons remarquer que cette activité est très proche de l'activité en oxygène à l'interface externe. C'est-à-dire que le gradient d'oxygène n'est pas divisé égalitaiirement entre la couche de spinelle Fe-Cr et celle de magnétite. Ceci s'explique par la différence de coefficient de diffusion du fer dans le spinelle Fe-Cr et dans la magnétite (voir Figure 99). En effet, afin d'obtenir le même flux cationique dans les deux couches d'oxyde, la différence de coefficient de diffusion est compensée par une différence de gradient d'activité en oxygène. Nous rediscuterons ce phénomène par la suite.

Les épaisseurs des couches de magnétite et de spinelle Fe-Cr peuvent donc être simulées à partir des données numériques suivantes.

<table>
<thead>
<tr>
<th>(D_V) (cm(^2)/s)</th>
<th>(D_I) (cm(^2)/s)</th>
<th>(K_V)</th>
<th>(K_I)</th>
<th>(a_{O_2}^{\alpha/\alpha}) (atm)</th>
<th>(a_{O_2}^{\text{ext}}) (atm)</th>
<th>(a_{O_2}^{\text{int}}) (atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9,9 \times 10^{-9})</td>
<td>(7,8 \times 10^{-13})</td>
<td>(1,5 \times 10^7)</td>
<td>(1,2 \times 10^{-22})</td>
<td>(2,26 \times 10^{-20})</td>
<td>(3,5 \times 10^{-20})</td>
<td>(7,5 \times 10^{-31})</td>
</tr>
</tbody>
</table>

210
Tableau 24 : Données numériques utilisées pour la simulation de la croissance de la magnétite par la diffusion du fer via le réseau de l’oxyde.

4.2.2. Résultats et analyse de la simulation

La croissance de la couche de magnétite est simulée par les relations (21) ou (22).

La croissance de la couche de spinelle Fe-Cr est simulée par l'expression (11) :

\[
h_{\text{spinelle Fe-Cr}} = \frac{C_{\text{Fe(magnétite)}}}{C_{\text{Fe(T91)}} - C_{\text{Fe спинelle Fe-Cr}}}
\]

Ces expressions sont représentées avec les points expérimentaux sur la Figure 127. Elles mènent à des constantes paraboliques égales à :
- 5,0x10^{-14} \text{ cm}^2/\text{s}, pour la couche de spinelle Fe-Cr,
- 6,6x10^{-14} \text{ cm}^2/\text{s}, pour la couche de magnétite,
- 2,3x10^{-14} \text{ cm}^2/\text{s}, pour la couche d'oxyde globale.

Figure 127 : Simulation des cinétiques de croissance de la couche de spinelle Fe-Cr et de la couche de magnétite. Comparaison avec les points expérimentaux.

La Figure 127 montre que la simulation est en bon accord avec les points expérimentaux : les épaisseurs des couches de magnétite et de spinelle Fe-Cr simulées correspondent aux épaisseurs observées expérimentalement.

Le paramétrage de la simulation n’est fondé que sur des données thermodynamiques et de diffusion du système et aucun ajustement n’a été effectué. La bonne concordance entre les points expérimentaux et la simulation issue de notre modèle prouve donc que :
- La limitation de la croissance de la couche de magnétite par la diffusion du fer via le réseau est possible. Cette proposition semble la plus vraisemblable.

- La diffusion du fer peut contrôler la cinétique de croissance de la couche de spinelle Fe-Cr selon une hypothèse de croissance du spinelle Fe-Cr dans le volume de T91 consommé.

Par ailleurs, la simulation montre que pour obtenir une égalité de flux de fer au sein des deux couches d'oxyde, le gradient d'activité d'oxygène doit être beaucoup plus important dans la couche de spinelle Fe-Cr que dans la couche de magnétite. En effet, les valeurs des activités à chaque interface sont :
- $7,5 \times 10^{-31}$ pour l'activité de l'oxygène $a_{O_2}^{\text{int}}$ à l'interface T91/spinelle Fe-Cr.
- $2,26 \times 10^{-20}$ pour l'activité de l'oxygène $a_{O_2}^{\text{int}/\text{ox}}$ à l'interface spinelle Fe-Cr/magnétite.
- $3,46 \times 10^{-20}$ pour l'activité de l'oxygène $a_{O_2}^{\text{ext}}$ à l'interface magnétite/Pb-Bi.

Les activités aux interfaces oxyde/oxyde et magnétite/Pb-Bi sont très proches alors que 11 ordres de grandeur séparent ces activités de celle à l'interface interne, comme le montre la figure suivante.

![Figure 128 : Gradient d'activité en oxygène au sein des couches de spinelle Fe-Cr et de magnétite.](image)

L'affin d'obtenir le même flux de fer dans le spinelle Fe-Cr et dans la magnétite, le déséquilibre de gradient d'activité d'oxygène dans chaque couche doit compenser, dans l'autre sens, le déséquilibre de coefficient de diffusion du fer entre magnétite et spinelle Fe-Cr.

Finalement, l'absence ou la présence de la couche de magnétite impacte faiblement sur le gradient d'activité d'oxygène dans la couche de spinelle Fe-Cr. Cette remarque sous-entend que la présence ou l'absence de couche de magnétite ne détermine pas fondamentalement la cinétique d'oxygenation. La couche de magnétite ne contribuerait donc pas à ralentir la diffusion du fer dans le processus d'oxygenation.

En d'autres termes, la couche d'oxyde, protégeant le T91, est celle qui comporte le plus grand gradient d'activité d'oxygène et le plus faible coefficient de diffusion du fer.

Nous pouvons donc conclure que, d'après la simulation, la couche de spinelle Fe-Cr est seule à constituer une barrière à la diffusion du fer dans le processus d'oxygenation. Elle correspond donc à la seule couche protectrice pour l'oxygenation du T91.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

Une expérience spécifique d'ablation de la couche de magnétite permet de juger la validité de cette conclusion.

4.3. Identification de la couche protectrice : expérience d'ablation de la magnétite

Nous pouvons évaluer les qualités protectrices, relatives, des deux couches d'oxyde vis-à-vis de l'oxydation du T91. Cette estimation est fondée sur une expérience d'ablation de la couche de magnétite.

Le principe de l'expérience est d'oxygener un échantillon de T91 pendant une durée déterminée puis de retirer sélectivement la couche de magnétite formée à sa surface. La couche de spinelle Fe-Cr reste indemne à la surface du T91.

L'échantillon est ensuite ré-oxydé dans l'alliage Pb-Bi sans sa couche de magnétite. Après l'étape de ré-oxydation, les épaisseurs des deux couches d'oxyde sont mesurées par MEB. La cinétique de croissance des couches d'oxyde pendant la deuxième étape d'oxydation est alors comparée à la cinétique de croissance que nous aurions obtenue sans étape préalable d'ablation de la couche de magnétite.

L'absence de couche de magnétite n'a pas modifié la cinétique de croissance des couches si, pendant la deuxième étape d'oxydation, la cinétique de croissance suit la cinétique "normale". Dans ce cas, la couche de spinelle Fe-Cr est l'unique couche protectrice.

En revanche, la couche de magnétite participe à la protection du T91 si la cinétique de croissance des couches d'oxyde est accélérée pendant l'étape de ré-oxydation.

Le principe de l'expérience est détaillé, puis les résultats sont présentés.

4.3.1. Principe de l'expérience et protocole expérimental

Un échantillon de T91 a été oxydé 2400 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C. La couche de magnétite (épaisseur environ égale à 7,5 µm) formée lors de cette oxydation est ensuite retirée sélectivement par décapsulation ionique par la technique SDL (voir Annexe 7).

Dans cette technique, un faisceau d'ions argon bombarde la surface de l'échantillon de T91 oxydé, provoquant une érosion du matériau et la formation d'un cratère. La surface de ce cratère, reproduisant la surface de contact faisceau d'ions argon/échantillon a un diamètre limité à environ 5 mm.

L'érosion de l'échantillon entraîne un décapsulation progressif des couches d'oxyde, puis du T91. Ce décapsulation commence dès la première couche d'oxyde : la couche de magnétite.

Le but est d'arrêter le décapsulation lorsque toute la couche de magnétite est érodée et qu'il ne reste que la couche de spinelle Fe-Cr.

Ceci est rendu possible par le couplage faisceau d'ions argon/spectromètre de masse qui caractérise la technique SDL. En effet, les éléments issus de la matière érodée sont analysés simultanément par un spectromètre de masse.

Toute la couche de magnétite est donc érodée lorsque des atomes de chrome commencent à être analysés par le spectromètre de masse. L'arrêt du faisceau d'ions argon, à ce moment précis, met fin à l'érosion de la couche d'oxyde, de manière à laisser la couche de spinelle Fe-Cr indemne.

Cette simultanéité entre l'érosion de la couche d'oxyde et l'analyse de la matière érodée permet donc de retirer sélectivement la couche de magnétite (Figure 129).
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

L'échantillon a ensuite été ré-imméré, pendant 1500 heures, dans l'alliage Pb-Bi saturé en oxygène à 470°C.
Après ces deux étapes d'oxydation, l'échantillon est observé par MEB sur une coupe transverse polie et les épaisseurs de couche d'oxyde sont mesurées.

4.3.2. Résultats et conclusion

En considérant une cinétique de croissance "normale" pour les couches d'oxyde :
La simulation suggère que la couche de magnétite augmente de 2 µm entre 2400 heures et 3900 heures d'immersion dans l'alliage Pb-Bi (Figure 129).
De même, après 3900 heures d'immersion, la couche de spinelle Fe-Cr devrait avoir, d'après la simulation, une épaisseur de l'ordre de 8,5 µm.

Les résultats expérimentaux obtenus après ces 3900 heures d'oxydation, interrompues par l'étape d'ablation de la couche de magnétite, sont :
– une épaisseur de 1,5 µm pour la couche de magnétite,
– et de 8 µm pour la couche de spinelle Fe-Cr.

Le protocole expérimental et les résultats expérimentaux sont résumés sur la Figure 129 ci-dessous.

Figure 129 : Expérience d'ablation de la magnétite
(a) L'échantillon subit une première étape d'oxydation dans l'alliage Pb-Bi saturé en oxygène pendant 2400 heures. Après retrait du l'alliage Pb-Bi liquide, l'échantillon subit une ablation de sa couche de magnétite par décapage ionique. (b) L'échantillon est ensuite ré-imméré 1500 heures dans l'alliage Pb-Bi saturé en oxygène. L'épaisseur de la couche obtenue est mesurée par MEB sur une coupe transverse et comparée à l'épaisseur normale obtenue après 3900 heures d'oxydation dans l'alliage Pb-Bi liquide saturé en oxygène. La cinétique normale de croissance prédit une épaisseur égale à 8,5 µm pour la couche de spinelle Fe-Cr et à 2 µm pour la couche de magnétite.
L'épaisseur de la couche de spinelle Fe-Cr obtenue expérimentalement est 8 µm, et celle de la couche de magnétite est comprise entre 1,5 et 2 µm.

Les résultats obtenus sont très proches des valeurs estimées en considérant une cinétique de croissance normale : aucune accélération de cinétique de croissance n'a été observée. L'absence de couche de magnétite n'a donc pas perturbé la cinétique d'oxydation.

Cette expérience confirme donc les conclusions de la simulation :
- La présence ou l'absence de la couche de magnétite ne modifie pas la cinétique de croissance des couches d'oxyde.
- La couche de spinelle Fe-Cr semble être la seule couche barrière à la diffusion du fer, la seule couche protectrice pour le T91.

Simulation et expérience s'accordent donc pour considérer que la couche de spinelle Fe-Cr est la seule couche protectrice pour le T91.

Cependant, nous avons utilisé, pour cette expérience, des échantillons pré-oxydés 2400 heures. Pour cette durée d'oxydation, l'épaisseur de la couche d'oxyde est déjà suffisamment importante pour que la vitesse d'oxydation soit faible. Il serait intéressant de réaliser une cinétique de ré-oxydation à partir d'échantillons pré-oxydés pendant 50 ou 100 heures par exemple. Ces faibles durées de pré-oxydation permettraient de mettre en évidence plus facilement le phénomène observé.

D'un point de vue pratique pour les réacteurs hybrides, une remarque peut être retenue de la conclusion précédente : une éventuelle érosion de la couche de magnétite, due à la circulation de l'alliage Pb-Bi dans le réacteur hybride, ne devrait pas affecter la protection du T91. En revanche, l'érosion de la couche de magnétite par l'alliage Pb-Bi en circulation peut mener à un bouchage des pompes ou de certaines canalisations si ces produits de corrosion (magnétite) se re-déposent dans les zones froides de MEGAPIE.

4.4. Croissance dans le bismuth pur et sensibilité de la cinétique de croissance de la couche d'oxyde vis-à-vis de l'activité en oxygène et de la température

Le bon accord, entre la simulation de la cinétique d'oxydation et les points expérimentaux obtenus par oxydation dans l'alliage Pb-Bi, nous conduit à effectuer la même simulation dans l'environnement bismuth pur.

Dans l'environnement bismuth pur, l'activité en oxygène à l'interface externe est différente. La comparaison entre les simulations, effectuées dans les deux métaux liquides différents, nous permet de discuter de la sensibilité du modèle proposé vis-à-vis de l'activité en oxygène aux interfaces.

Par ailleurs, Balbaud-Célérier [118] donne quelques points expérimentaux de cinétique d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 600°C. Ces points seront comparés à la simulation calculée pour une température de 600°C.

4.4.1. Simulation de la cinétique de croissance dans le bismuth pur et conclusion sur la simulation
Réalisons dans l'environnement bismuth pur la même simulation que dans l'alliage Pb-Bi. Tous les paramètres sont identiques excepté la valeur de l'activité en oxygène à l'interface externe et par conséquent celle à l'interface spinelle Fe-Cr/magnétite. L'activité en oxygène à l'interface externe correspond à l'activité en oxygène dans un environnement gazeux en équilibre avec un bain de bismuth saturé en oxygène. Elle correspond donc à l'activité en oxygène nécessaire à la précipitation de Bi₂O₃.

L'enthalpie libre de formation de cet oxyde étant -374,49 kJ/mol [40], l'activité en oxygène nécessaire à sa précipitation est égale à 2,8x10⁻¹⁸ (\(a_{O_2}^0 = \frac{P_{O_2}}{P_{O_2}^0} \) et \(P_{O_2}^0 = 1 \text{ atm} \)).

La méthode de détermination de l'activité \(a_{O_2}^{\alpha/\alpha} \), utilisée pour la simulation dans l'alliage Pb-Bi, permet aussi de déterminer l'activité \(a_{O_2}^{\alpha/\alpha} \) pour l'oxydation dans le bismuth pur.

La simulation de la cinétique de croissance de la couche de spinelle Fe-Cr et celle de la couche de magnétite sont ainsi effectuées et représentées avec les points expérimentaux sur la Figure 130.

![Figure 130](image)

Figure 130 : Simulation de la croissance des couches de spinelle Fe-Cr et de magnétite pour une oxydation dans le bismuth pur. Comparaison avec les points expérimentaux.

La Figure 130 montre que la simulation concorde relativement bien avec les résultats expérimentaux, d'une part pour la couche de magnétite et d'autre part pour la couche de spinelle Fe-Cr.

Deux points essentiels peuvent être retenus de la comparaison entre simulations et expériences dans l'alliage Pb-Bi et le bismuth pur :
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

- La simulation est en assez bon accord avec les points expérimentaux pour les deux environnements, l'alliage Pb-Bi et le bismuth pur.

- La simulation représente avec succès la différence expérimentale de cinétique d'oxydation observée entre les deux environnements.

Les deux remarques précédentes nous permettent de valider notre simulation qui, non seulement représente le phénomène d'oxydation dans l'alliage Pb-Bi, mais aussi dans un autre environnement menant à une cinétique différente, à partir d'un mécanisme à priori similaire.

A partir des deux remarques précédentes, nous pouvons conclure que le mécanisme proposé, traduit mathématiquement par la simulation, est vraisemblablement le mécanisme responsable de la croissance des couches d'oxyde.

La cinétique de croissance entre l'alliage Pb-Bi et le bismuth ne variant que par une différence d'activité d'oxygène dans le milieu oxydant, une discussion sur la sensibilité de la croissance des couches d'oxyde par rapport à l'activité en oxygène peut être effectué.

4.4.2. Sensibilité de la cinétique de croissance de la couche d'oxyde vis-à-vis de l'activité en oxygène

La sensibilité de la cinétique de croissance de la couche d'oxyde vis-à-vis de l'activité en oxygène concerne l'activité en oxygène à chaque interface.

Considérons d'abord un changement d'activité en oxygène à l'interface externe puis à l'interface interne.

- Sensibilité face à l'activité en oxygène à l'interface externe

La comparaison entre la cinétique de croissance dans l'alliage Pb-Bi et dans le bismuth pur montre qu'une différence notable de cinétique d'oxydation est observée lorsque l'activité en oxygène à l'interface externe est modifiée de 3x10^{-20} (l'alliage Pb-Bi) à 3x10^{-18} (bismuth pur) (Figure 130).

Par ailleurs, Fazio et al. [158] ont effectué des essais d'oxydation de l'acier Mod F82H (Fe-7,8Cr) dans le plomb pur et l'alliage Pb-Bi. Ils ont obtenu une cinétique de croissance légèrement plus faible dans le plomb pur par rapport à celle obtenue dans l'alliage Pb-Bi. Au regard de notre simulation, ces résultats peuvent s'expliquer par la plus importante activité de plomb dans le plomb pur par rapport à celle dans l'eutectique Pb-Bi. En effet, l'augmentation de l'activité de plomb mène à une diminution de la pression partielle en oxygène nécessaire à l'atteinte de la limite de solubilité

\[
(Po_2)_{Pb} = a_{Pb}^{-2} \exp\left(\frac{\Delta G_f(PbO)}{RT}\right).
\]

Aussi la plus faible cinétique de croissance serait due à une plus faible pression partielle en oxygène à l'interface externe.

Ce phénomène peut être expliqué par la forme de la courbe \(\log D_{Fe}-\log Po_2\) représentée sur la Figure 99.

En effet, le coefficient de diffusion du fer varie particulièrement dans la gamme de teneur en oxygène dans laquelle nos essais sont effectués.

De plus, l'activité en oxygène à l'interface interne est fixée par un équilibre T91/oxyde. Elle ne varie donc pas lorsque le milieu extérieur est modifié. En revanche, la valeur de l'activité en
oxygène à l'interface externe varie en fonction du milieu extérieur. Cette teneur joue donc un rôle particulièrement important dans la cinétique d'oxydation.

Selon la simulation, le milieu extérieur influe sur la cinétique de croissance des couches d'oxyde uniquement parce qu'il impose une activité en oxygène spécifique à l'interface externe. La comparaison entre la cinétique de croissance dans l'alliage Pb-Bi et dans le bismuth pur confirme cette proposition pour les deux raisons suivantes :

- En accord avec les predictions de la simulation, la vitesse de croissance dans le bismuth pur est plus élevée que celle dans l'alliage Pb-Bi.

- La seule différence entre la simulation effectuée pour l'alliage Pb-Bi et celle effectuée pour le bismuth pur réside dans le changement de l'activité en oxygène à l'interface externe (et donc à l'interface spinelle Fe-Cr/magnétite). Pourtant, la simulation représente aussi bien l'évolution de l'oxydation dans le bismuth pur que celle dans l'alliage Pb-Bi.

D'après la simulation, le milieu extérieur ne semble impacter sur la cinétique d'oxydation qu'en imposant l'activité en oxygène à l'interface externe.

Les résultats de la simulation sont donc en accord avec les conclusions émises à la suite des expériences de Furukawa et al (Chapitre II, paragraphe 2.3.2) : les cinétiques de croissance de la couche d'oxyde sont similaires dans le milieu Pb-Bi et dans l'atmosphère environnante en équilibre chimique avec le bain d'alliage liquide. Ces expériences suggèrent, pareillement à la simulation, que la cinétique de croissance des oxydes ne dépend que de l'activité en oxygène dans l'environnement oxydant.

- **Sensibilité face à l'activité en oxygène à l'interface interne**

La courbe logD$_{Fe}$-logP$_{O_2}$, représentée sur la Figure 99, suggère que la valeur de l'activité en oxygène à l'interface interne est tout aussi déterminante pour la cinétique d'oxydation que celle à l'interface externe.

En effet, le coefficient de diffusion varie de plus de trois ordres de grandeur lorsque l'activité de l'oxygène évolue de l'équilibre T91/Fe$_{2.34}$Cr$_{0.66}$O$_4$ à l'équilibre T91/Fe$_3$O$_4$ (Figure 99).

La nature des oxydes au contact du T91 à l'interface interne joue donc un rôle primordial dans la cinématique de croissance des couches d'oxyde.

Pour notre simulation, l'activité de l'oxygène à l'interface interne correspond à celle en équilibre avec le système T91/magnétite.

Le choix de cet équilibre (par rapport à l'équilibre T91/spinelle Fe-Cr) provient du processus de formation du spinelle Fe-Cr pour lequel nous suggérons une croissance en deux étapes :
- première étape : formation d'oxyde enrichi en chrome et d'un oxyde enrichi en fer (magnétite),
- deuxième étape : réaction entre l'oxyde enrichi en fer et l'oxyde enrichi en chrome pour former un spinelle Fe-Cr.

Ce processus suppose donc que l'activité en oxygène à l'interface T91/oxyde est suffisante pour permettre la formation de l'oxyde enrichi en fer. C'est pourquoi l'activité en oxygène choisie pour la simulation est celle en équilibre avec le système T91/magnétite.

L'impact de cette hypothèse sur la simulation de la cinématique d'oxydation peut être visualisable.
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

En effet, nous pouvons effectuer la même simulation avec une activité en oxygène à l'interface interne correspondant à celle en équilibre avec le système T91/Fe$_{2.34}$Cr$_{0.66}$O$_4$ (5,4x10$^{-36}$). Cette simulation est représentée, avec les points expérimentaux, sur la Figure 131.

Figure 131 : Simulation de la couche d'oxyde globale en croissance dans l'alliage Pb-Bi, en considérant à l'interface interne un équilibre T91/spinelle Fe-Cr et un équilibre T91/magnétite.

La Figure 131 montre que la vitesse de croissance simulée, en considérant l'équilibre T91/Fe$_{2.34}$Cr$_{0.66}$O$_4$ à l'interface interne, est plus de dix fois plus importante que la cinétique de croissance expérimentale.

Ce résultat met en évidence deux points essentiels :

- La nature des oxydes en contact avec le T91 joue un rôle prépondérant dans la cinétique de croissance des couches d'oxyde : une précipitation de grains de magnétite à l'interface T91/oxyde semblerait modifier considérablement la croissance des couches d'oxyde.

- Le mécanisme d'oxydation proposé pour la croissance du spinelle Fe-Cr semble appuyé par la comparaison simulation/expérience : des précipités de magnétite (et donc d'oxyde enrichi en chrome) peuvent se former au contact du T91.

Différents résultats, émanant de la simulation et de l'observation de l'interface spinelle Fe-Cr/magnétite, semblent concorder pour émettre la supposition que des précipités de magnétite se forment, préalablement à la croissance du spinelle Fe-Cr, à l'interface T91/spinelle Fe-Cr.

En effet, la littérature souligne qu'un régime d'oxydation du T91 est observable pour une teneur en oxygène égale à celle nécessaire à la précipitation de la magnétite (voir Chapitre I, paragraphe 6). L'observation des précipités riches en chrome à l'interface T91/spinelle Fe-Cr, suppose l'existence avoisinante de précipités de magnétite (voir paragraphe 3.3.3.1.2).

La simulation est en très bon accord avec l'expérience lorsque l'on considère une pression partielle en oxygène, à l'interface T91/spinelle Fe-Cr, égale à celle en équilibre avec le système T91/magnétite. En revanche, elle ne concorde absolument plus avec les points expérimentaux.
lorsque l'on considère une pression partielle en oxygène en équilibre avec le système T91/spinelle Fe-Cr (Figure 131).

4.4.3. Sensibilité de la cinétique de croissance de la couche d'oxyde vis-à-vis de l'augmentation de température

La littérature [118] donne l'épaisseur de la couche d'oxyde globale pour quelques durées d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène à 600°C. Ces épaisseurs obtenues expérimentalement peuvent être comparées aux épaisseurs simulées via nos hypothèses et notre méthodologie de calcul. Les données numériques utilisées sont regroupées dans le Tableau 25 et la comparaison entre les épaisseurs expérimentales et la simulation est observable sur la Figure 132.

<table>
<thead>
<tr>
<th>D_v (cm2/s)</th>
<th>D_l (cm2/s)</th>
<th>K_v</th>
<th>K_l</th>
<th>$a_{O_2}^{ex}$ (atm)</th>
<th>$a_{O_2}^{in}$ (atm)</th>
<th>$a_{O_2}^{int}$ (atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5,6 \times 10^{-8}$</td>
<td>$2,0 \times 10^{-10}$</td>
<td>$6,7 \times 10^6$</td>
<td>$6,7 \times 10^{-19}$</td>
<td>$2,0 \times 10^{-17}$</td>
<td>$4,7 \times 10^{-16}$</td>
<td>$1,7 \times 10^{-25}$</td>
</tr>
</tbody>
</table>

Tableau 25 : Données numériques utilisées pour la simulation de la croissance de la couche d'oxyde à 600°C.

La Figure 132 montre qu'il y a un très bon accord entre les épaisseurs expérimentales obtenues à 600°C et notre simulation. A cette température, la constante parabolique obtenue par la simulation est de $1,2 \times 10^{-11}$ cm2/s. Les constantes paraboliques obtenues par notre simulation à 470°C ($2,3 \times 10^{-11}$ cm2/s) et à 600°C ($1,2 \times 10^{-11}$ cm2/s) sont représentées en fonction de l'inverse de la température sur la figure suivante.
La valeur de l'énergie d'activation Q ainsi obtenue (voir Chapitre II, paragraphe 2.3.1) est de 172 kJ ce qui est en accord avec les résultats de la littérature pour l'oxydation du fer dans d'autres environnements oxydants (145 kJ [73], 152 kJ [72], 163 kJ [70]). Ainsi, non seulement la simulation concorde avec les points expérimentaux à 470°C et à 600°C mais les résultats de la variation en température (énergie d'activation) sont aussi en accord avec la littérature pour l'oxydation du fer. Cependant, seuls trois points expérimentaux sont comparés à notre simulation. Aussi, une cinétique expérimentale plus complète est nécessaire pour conclure sur la capacité de prédiction de la simulation vis-à-vis de l'augmentation en température. Nous pouvons donc seulement supposer que le mécanisme d'oxydation du T91 dans l'alliage Pb-Bi n'évolue pas entre 470°C et 600°C.

4.4.4. Conclusion

La vraisemblance de notre mécanisme est confirmée car :
- La simulation rend compte de la cinétique de croissance de la couche d'oxyde dans l'environnement Pb-Bi mais aussi dans le bismuth pur.
- La variation de la cinétique d'oxydation entre les milieux Pb-Bi et bismuth, observée expérimentalement, est aussi mise en évidence par la simulation.
- La simulation est en accord avec les trois épaisseurs expérimentales de la couche d'oxyde obtenues dans l'alliage Pb-Bi à 600°C [118].
- L'énergie d'activation obtenue par la simulation est similaire à celles de la littérature pour une diffusion du fer dans le réseau de la couche d'oxyde.

Ces quatre points nous permettent de conforter les hypothèses de la simulation, c'est-à-dire le mécanisme d'oxydation proposé.

Une de ces hypothèses réside dans le choix de l'activité en oxygène à l'interface interne, impliquant l'identification de l'oxyde le moins stable formé au contact du T91 : la magnétite.

Supposons que le même scénario se produise à l'interface interne lors de l'oxydation des aciers Fe-Cr dans les autres environnements oxydants, le seul paramètre différent régissant la cinétique d'oxydation doit être l'activité en oxygène à l'interface externe.
4.5. Généralisation de notre mécanisme aux oxydations dans l'alliage Pb-Bi à plus faible teneur en oxygène et dans d'autres milieux oxydants

En supposant une activité en oxygène à l'interface interne égale à celle en équilibre avec le système acier/Fe₃O₄, nous pouvons réaliser la même simulation que précédemment, adaptée aux expériences de la littérature. Dans ce cas, l'activité de l'oxygène à l'interface externe devient le principal facteur dont dépend la cinétique d'oxydation.

La simulation fondée sur cette proposition peut être comparée aux points expérimentaux de la littérature :
- obtenus par oxydation d'aciers Fe-9Cr dans l'alliage Pb-Bi non saturé en oxygène, à 470°C et à d'autres températures \[15\][118],
- obtenus par oxydation d'aciers Fe-9Cr dans l'eau et la vapeur d'eau \[73\][71].

4.5.1. Comparaison entre la simulation et les résultats expérimentaux de la littérature effectués dans l'alliage Pb-Bi non saturé en oxygène à 470°C et à 600°C

La littérature présente quelques expériences d'oxydation à 470°C et à 600°C dans l'alliage Pb-Bi non saturé en oxygène \[18\][15].

Les valeurs des teneurs en oxygène dissous étant indiquées, la simulation a pu être effectuée. L'activité en oxygène à l'interface externe est considérée, pour la simulation, égale à l'activité en oxygène dans un environnement gazeux en équilibre avec l'oxygène dissous dans l'alliage Pb-Bi lors de ces expériences.

La Figure 134 regroupe les épaisseurs de couches d'oxyde obtenues expérimentalement après 1000 heures d'oxydation dans l'alliage Pb-Bi et les résultats issus de la simulation réalisée pour 1000 heures d'oxydation, à 470 et 600°C.

![Figure 134 : Épaississeurs expérimentales, issues de la littérature, obtenues après 1000 heures d'oxydation d'aciers Fe-9Cr dans l'alliage Pb-Bi contenant différentes teneurs en oxygène, à](image-url)
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation

470°C et 600°C\cite{15,118}. Comparaison avec la simulation effectuée aux mêmes températures avec les mêmes teneurs en oxygène imposées à l'interface externe.

La Figure 134 montre que la simulation est en relativement bon accord avec les expériences non seulement lorsque l'activité en oxygène varie dans l'alliage Pb-Bi mais aussi lorsque la température augmente.

Les écarts observés entre simulation et expériences peuvent être attribués à la difficulté d'obtenir une teneur constante en oxygène dissous dans l'alliage Pb-Bi, lorsque cette teneur n'est pas celle à saturation. Cette remarque suggère qu'à 600°C, pour de faibles teneurs en oxygène, la vitesse d'oxydation expérimentale obtenue doit être plus faible que celle calculée par le modèle.

De plus, à 600°C, les couches d'oxyde peuvent être très épaisses pour une teneur en oxygène dissous de 10^{-6} pds % et au contraire, le régime de dissolution commence pour une teneur en oxygène de 10^{-7} pds %. Un détachement partiel de la couche de magnétite est alors possible dans le premier cas et une dissolution partielle de la couche peut se produire dans le deuxième.

Pour conclure, les résultats de la simulation et de l'expérience sont en assez bon accord pour les deux températures, aux différentes teneurs en oxygène. Ces résultats confortent les hypothèses avancées pour la simulation.

4.5.2. Comparaison entre la simulation et les résultats expérimentaux de la littérature effectués sous eau et vapeur d'eau entre 450 et 500°C

Il a été observé précédemment que la constante parabolique K_p obtenue dans l'alliage Pb-Bi est très proche de celle obtenue dans l'eau et la vapeur d'eau (Chapitre II, paragraphe 4). Cette proximité de cinétique, ajoutée à celle de la nature et de la structure des couches formées, nous a suggéré que les mécanismes d'oxydation étaient semblables.

D'après les conclusions précédentes, la cinétique d'oxydation est identique si la valeur de l'activité en oxygène à l'interface externe est la même. Cependant, l'activité en oxygène en équilibre avec l'alliage Pb-Bi saturé en oxygène est différente de celle en équilibre avec l'eau ou la vapeur d'eau. La similitude entre les deux cinétiques d'oxydation suggère donc que, dans le cas de l'oxydation sous eau, l'activité en oxygène à l'interface externe soit imposée par un autre facteur.

En effet, nous pouvons noter que la présence d'une fine couche d'hématite a été observée par certains auteurs lors d'oxydation dans l'eau \cite{82}. Dans ce cas, l'activité en oxygène à l'interface externe est celle en équilibre avec le système Fe$_3$O$_4$/Fe$_2$O$_3$. Elle est égale à environ 10^{-20} à 450°C et 2×10^{-18} à 500°C \cite{23}, ce qui est très proche de l'activité en oxygène en équilibre avec l'alliage Pb-Bi saturé en oxygène ($3,5 \times 10^{-20}$) et le bismuth saturé (3×10^{-18}) en oxygène à 470°C.

L'utilisation dans la simulation de la valeur de l'activité en oxygène en équilibre avec le système Fe$_3$O$_4$/Fe$_2$O$_3$ comme valeur d'activité en oxygène à l'interface externe mène aux constantes paraboliques K_p suivantes :

\begin{itemize}
 \item $2,5\times10^{-13}$ cm2/s à 450°C,
 \item $1,5\times10^{-12}$ cm2/s à 500°C.
\end{itemize}
Ces valeurs de K_p calculées sont très proches des valeurs expérimentales mesurées lors d'essais d'oxydation dans l'eau et la vapeur d'eau. Ces valeurs varient entre 10^{-13} [73] et $7,4 \times 10^{-13}$ cm2/s [71] pour des températures d'oxydation comprises entre 450°C et 500°C.

Les cinétiques d'oxydation expérimentales et simulées sont représentées sur la Figure 135.

![Figure 135](image_url)

Figure 135 : Cinétique d'oxydation expérimentale, obtenue dans la littérature, dans l'eau ($K_p=10^{-13}$ cm2/s) à 450°C et la vapeur d'eau ($K_p=7,4 \times 10^{-13}$ cm2/s) à 500°C. Simulation de la cinétique d'oxydation pour une activité en oxygène correspondant à l'équilibre Fe$_3$O$_4$/Fe$_2$O$_3$ à l'interface externe et à l'équilibre Fe-9Cr/Fe$_3$O$_4$ à l'interface interne, pour des températures de 450°C ($K_p=2,5 \times 10^{-13}$ cm2/s) et de 500°C ($K_p=1,5 \times 10^{-12}$ cm2/s).

La Figure 135 montre que, dans l'ensemble, les simulations rendent bien compte des cinétiques expérimentales.

Cependant, la vitesse d'oxydation simulée est toujours environ deux fois plus forte que celle expérimentale.

Cette différence entre la simulation et les valeurs expérimentales peut être attribuée à :

− La valeur choisie pour l'activité en oxygène à l'interface externe : la valeur de l'activité en oxygène pour l'équilibre Fe$_3$O$_4$/Fe$_2$O$_3$ varie d'une référence à une autre et le choix de cette valeur peut avoir un impact important sur la cinétique simulée.

− L'incertitude sur les valeurs des températures expérimentales : les températures expérimentales sont de l'ordre de 450°C et 500°C mais la valeur doit être connue précisément pour obtenir un bon accord entre simulation et expérience.

Pour conclure, cette simulation est en relativement bon accord avec nos valeurs expérimentales dans l'alliage Pb-Bi et dans le bismuth et les valeurs expérimentales obtenues dans d'autres environnements oxydants comme l'eau et la vapeur d'eau.

Le mécanisme global d'oxydation semble donc être confirmé non seulement pour l'oxydation dans l'alliage Pb-Bi et le bismuth pur, à teneur en oxygène et températures variables, mais aussi dans l'eau et la vapeur d'eau.
4.6. Conclusion sur la simulation et son accord avec les expériences

La simulation concernant la diffusion du fer par le réseau de la couche d'oxyde concorde avec les résultats expérimentaux de croissance des couches de spinelle Fe-Cr et de magnétite dans l'alliage liquide Pb-Bi à 470°C. Par ailleurs, cette simulation rend compte aussi de la croissance des couches dans le milieu bismuth pur à 470°C et de la différence de cinématique de croissance entre les deux milieux Pb-Bi et bismuth.

Une adaptation de notre simulation aux cas expérimentaux de la littérature pour différentes teneurs en oxygène dissous dans l'alliage Pb-Bi et pour une autre température (600°C) a été effectuée avec succès. De plus, une autre adaptation a été réalisée pour rendre compte des cinétiques d'oxydation de la littérature dans les milieux eau et vapeur d'eau entre 450 et 500°C [73][71]. Un assez bon accord a été obtenu entre les cinétiques simulées et les cinétiques expérimentales.

Nous pouvons donc considérer que nos hypothèses de simulation sont validées par la grande conformité entre notre simulation et les résultats expérimentaux, obtenus notre étude et dans la littérature.

A la suite de ces considérations, nous pouvons conclure que la cinématique de croissance de la couche de magnétite semble être limitée par la diffusion du fer dans le réseau de la couche d'oxyde. La cinématique de croissance de la couche de spinelle Fe-Cr paraît liée à celle de la couche de magnétite et, par conséquent, limitée elle aussi par la diffusion du fer via le réseau de l'oxyde.

En effet, les résultats expérimentaux semblent montrer que la couche de spinelle Fe-Cr croît dans le volume de T91 consommé. Afin d'expliquer ce phénomène, un mécanisme fondé sur une régulation de l'apport d'oxygène a été proposé. Selon ce mécanisme, le départ des atomes de fer vers l'interface magnétite/Pb-Bi crée des lacunes dans le T91. Ces lacunes peuvent s'accumuler à l'interface T91/spinelle Fe-Cr et former des nano-cavités. Si la totalité de ces lacunes s'accumule sous forme de nano-cavités, le volume des nano-cavités est égal au volume de T91 consommé par la croissance de la couche de magnétite.

L'apport d'oxygène se produit par diffusion via des nano-canaux de plomb à travers les deux couches d'oxyde. Lorsque l'oxydant pénètre dans les nano-cavités, le T91 s'oxyde et le spinelle Fe-Cr commence sa croissance dans les nano-cavités. Lorsque la nano-cavité est remplie par la croissance du spinelle Fe-Cr, la base du nano-canal de plomb est bouchée. Aussi, l'apport d'oxydant est stoppé et la croissance du spinelle Fe-Cr s'arrête.

A ce moment là, le volume de spinelle Fe-Cr formé est égal au volume des nano-cavités ajouté au volume des atomes métalliques oxydés pour remplir ces cavités. Ce volume est alors égal au volume de T91 consommé si la totalité des lacunes créées par le départ du fer pour faire croître la couche de magnétite s'est acumulée sous forme de nano-cavités.

Selon cette explication la croissance du spinelle Fe-Cr est limitée au volume de T91 consommé mais, contrairement aux propositions de l'"available space model", elle n'est pas limitée par ce volume. La croissance du spinelle Fe-Cr est régulée par l'apport d'oxygène à l'interface T91/spinelle Fe-Cr et limitée par la diffusion du fer dans le réseau de la couche d'oxyde.

Ce mécanisme permet aussi d'expliquer la cinématique de croissance obtenue par la littérature dans d'autres environnements oxydants [73][71].
Chapitre V : Mécanisme de croissance des couches d'oxyde et simulation
Conclusion générale

Au cours de nos travaux, nous avons réalisé une étude expérimentale de l'oxydation du T91 dans l'alliage Pb-Bi à 470°C. Les résultats, issus de cette étude, permettent de compléter les données de la littérature et de proposer un ensemble expérimental, cohérent et global, sur l'oxydation du T91 dans l'alliage liquide Pb-Bi saturé en oxygène à 470°C.

L'objectif premier de notre étude était :

− de tester la tenue du T91 à l'oxydation en milieu Pb-Bi saturé en oxygène à 470°C,
− de construire un modèle d'oxydation permettant de prédire la cinétique d'oxydation du T91 dans l'alliage Pb-Bi pour de longues durées d'immersion.

Nous avons tout d'abord caractérisé chimiquement le milieu oxydant, l'alliage Pb-Bi saturé en oxygène. Les données physicochimiques et thermodynamiques présentées dans ce chapitre sont à la base de notre travail expérimental et calculatoire vis-à-vis de l'oxydation du T91 dans l'alliage Pb-Bi liquide. Une étude thermodynamique des oxydes susceptibles de se former dans un tel milieu à la température de 470°C a montré la possibilité de formation d'un spinelle Fe-Cr, solution solide entre la chromite et la magnétite (voir Chapitre I).

Une étude bibliographique sur l'oxydation du T91 dans l'alliage Pb-Bi liquide saturé en oxygène a montré qu'une couche duplex se formait au contact du T91. Cette couche était constituée d'une couche de spinelle Fe-Cr, de stœchiométrie non définie, surmontée par une couche de magnétite au contact de l'alliage liquide. Les deux couches d'oxydes sont d'épaisseurs égales quelles que soient la durée d'oxydation, la température et la teneur en oxygène dissous dans l'alliage Pb-Bi.

La cinétique de croissance de cette couche d'oxyde semblait suivre une évolution parabolique suggérant une limitation de la croissance par un processus diffusionnel. La proximité de la cinéti que de croissance et de la morphologie des couches d'oxyde obtenues par l'oxydation d'aciers Fe-9Cr dans l'alliage Pb-Bi et dans l'eau et la vapeur d'eau nous a conduit à supposer que les mécanismes de croissance de ces couches devaient être similaires. C'est pourquoi nous avons alors présenté les différents mécanismes de croissance des couches duplex quel que soit le type d'environnement oxydant.

Le mécanisme principalement proposé dans la littérature pour expliquer l'oxydation des aciers Fe-Cr est nommé "available space model" (modèle de l'espace disponible). Ce mécanisme suggère que la couche de magnétite croît à l'interface magnétite/milieu oxydant par diffusion du fer au sein de la couche d'oxyde. La couche de spinelle Fe-Cr croît à l'interface acier/spinelle Fe-Cr.

L'oxygène diffuse à travers la couche sous forme moléculaire dans le milieu oxydant dans des nano-canaux. Cependant ce transport n'est pas un processus limitant la croissance de la couche de spinelle Fe-Cr.

En effet, la croissance de la couche de magnétite conduit à créer des lacunes de fer à l'interface acier/oxyde. Ces lacunes s'accumulent et forment des nano-cavités. Le mécanisme stipule que le spinelle Fe-Cr ne peut croître que dans le volume de ces nano-cavités (voir Chapitre II).

Le Chapitre III regroupe la plupart des expérimentations effectuées dans le cadre de ce travail. Des expériences d'oxydation du T91 dans l'alliage Pb-Bi saturé en oxygène, à 470°C, ont été présentées. Elles montrent que la couche d'oxyde formée à la surface du T91 est une couche duplex constituée d'un spinelle Fe-Cr à petits grains équiaxes et de magnétite à longs grains colonnaux. Une présence de plomb a été détectée dans la couche de magnétite et dans la couche de spinelle Fe-Cr jusqu'à l'interface T91/spinelle Fe-Cr. Cependant, aucune trace de bismuth n'est observable au sein des couches.
La stœchiométrie du spinelle Fe-Cr a été identifiée : Fe\textsubscript{2.34}Cr\textsubscript{0.66}O\textsubscript{4}. Cette stœchiométrie est constante dans la couche de spinelle Fe-Cr et ne varie pas en fonction de la durée d'oxydation. Le rapport de l'épaisseur de la couche de magnétite sur celle de spinelle Fe-Cr est constant au cours de l'oxydation et environ égal à 1,25.

La même nature et la même structure des couches d'oxyde sont observées lors de l'oxydation du T91 dans le bismuth liquide saturé en oxygène à 470°C. Le spinelle Fe-Cr formé possède la même stœchiométrie Fe\textsubscript{2.34}Cr\textsubscript{0.66}O\textsubscript{4}. Les couches de spinelle Fe-Cr et de magnétite semblent être de même épaisseur. Contrairement aux observations des couches d'oxyde formées dans l'alliage Pb-Bi, une présence de bismuth a été détectée dans la totalité de la couche d'oxyde formée dans le bismuth pur.

Une cinétique de croissance des couches de spinelle Fe-Cr et de magnétite a été obtenue dans l'alliage Pb-Bi pour de longues durées d'immersion et dans le bismuth pur pour de courtes durées d'immersion. Toutes les cinétiques obtenues ont une évolution parabolique suggérant une limitation de la croissance des couches régie par un processus diffusionnel (en considérant les hypothèses de Wagner).

Des expériences d'oxydation successives effectuées avec différents isotopes de l'oxygène ont montré que la croissance de la couche de magnétite s'effectuait à l'interface magnétite/Pb-Bi alors que la couche de spinelle Fe-Cr croissait à l'interface T91/spinelle Fe-Cr. Les résultats de ces expériences ont été validés par d'autres expériences d'oxydations successives dans les milieux Pb-Bi, puis bismuth pur.

Ces expériences de traceurs ajoutées à l'observation d'une cinétique parabolique pour chacune des couches nous ont permis de considérer que :

- la croissance de la couche de magnétite était effectuée à l'interface externe par la diffusion du fer à travers la couche d'oxyde,
- la croissance de la couche de spinelle Fe-Cr se produisait à l'interface interne par transport de l'oxygène à travers la couche d'oxyde.

Le Chapitre IV a donc consisté en l'étude du transport de l'oxygène à travers la couche d'oxyde. Des simulations ont montré que la vitesse de diffusion de l'oxygène à travers le réseau de l'oxyde ou par les joints de grains ne semblait pas suffisante pour permettre la croissance expérimentale observée.

Aussi, conformément aux propositions de l'"available space model", nous avons suggéré un transport de l'oxygène par voie liquide à travers des nano-canaux de plomb. Une interprétation fondée sur un mouillage préférentiel du plomb par rapport au bismuth a été proposée afin d'expliquer l'observation expérimentale de la pénétration de plomb lors de l'oxydation du T91 dans l'alliage Pb-Bi et de bismuth lors de l'oxydation dans le bismuth pur.

Une simulation nous a permis de montrer que la diffusion de l'oxygène pouvait s'effectuer par cette voie. En revanche, ce processus semblait trop rapide pour limiter la croissance de la couche de spinelle Fe-Cr. Un autre processus limitant devait alors être trouvé afin d'expliquer la cinétique de croissance de la couche de spinelle Fe-Cr.

Le Chapitre V est consacré au mécanisme de croissance des couches de spinelle Fe-Cr et de magnétite.

Une analyse de nos expériences d'oxydation a montré que le spinelle Fe-Cr semblait croître dans le volume de T91 consommé par l'oxydation.

Nous avons proposé un mécanisme de croissance, rendant compte de cette constatation, fondé sur un système de régulation de l'apport d'oxygène à l'interface interne.

Le mécanisme proposé est le suivant. La couche de magnétite croît à l'interface externe grâce à la diffusion du fer à travers la couche d'oxyde. Le départ de ces atomes de fer vers l'interface externe crée des lacunes dans le T91. Ces lacunes peuvent s'accumuler à l'interface T91/spinelle Fe-Cr.
sous forme de nano-cavités. Si la totalité des lacunes s'accumulent, le volume de T91 consommé
pour la formation de la couche de magnétite est égal au volume des nano-cavités.
L'oxygène, dont le transport n'est pas limitant, pénètre dans ces nano-cavités afin d'oxyder
directement le T91. Aussi, une fois formées ces nano-cavités se remplissent du produit de la
réaction entre le T91 et l'oxygène, c'est à dire le spinelle Fe-Cr. Lorsqu'une nano-cavité est
remplie, l'oxygène ne peut plus pénétrer jusqu'au T91 et la réaction d'oxydation est interrompue.
Aussi, la croissance du spinelle Fe-Cr s'arrête. A ce moment là, le volume de spinelle Fe-Cr formé
est égal au volume des nano-cavités ajouté à celui des atomes oxydés pour produire le spinelle Fe-
Cr.
Ce volume est donc égal à celui de T91 consommé.
Le fer continue à diffuser vers l'interface externe et d'autres nano-cavités se forment sous les
cavités nouvellement remplies. Une dissociation anisotrope des grains de spinelle Fe-Cr dans les
nouvelles nano-cavités permet de creuser un nano-canal pouvant rejoindre les nano-canaux déjà
ouverts sur le milieu oxydant. De cette manière l'oxygène pénètre dans les nouvelles nano-cavités
et réagit avec le T91.
Ainsi progressivement, des nano-cavités se forment et se remplissent. La croissance du spinelle
Fe-Cr est ainsi scannée par la possibilité de pénétration de l'oxygène jusqu'au T91. Aussi cette
croissance est régulée par un apport d'oxydant. Cependant, la cinétique du processus est contrôlée
par la formation des nano-cavités qui permettent un creusement des nano-canaux jusqu'au T91. Si
la cinétique d'accumulation des lacunes est nettement supérieure à celle de diffusion du fer, la
croissance de la couche de spinelle Fe-Cr est contrôlée par la diffusion du fer dans la couche
d'oxyde.
Enfin, nous avons réalisé une simulation de la croissance des couches de magnétite et de spinelle
Fe-Cr, fondée sur une diffusion des cations fer à travers le réseau des deux couches d'oxyde. Cette
simulation concorde bien avec les résultats expérimentaux obtenus pour l'oxydation du T91 dans
l'alliage Pb-Bi. D'autre part, elle rend compte de la différence de cinétique d'oxydation observée
expérimentalement dans les milieux Pb-Bi et bismuth pur. De plus, cette simulation concorde
relativement bien avec les épaisseurs de couches d'oxyde obtenues dans le bismuth pur.
Notre simulation rend compte aussi des résultats de la littérature vis-à-vis de l'évolution de
croissance des couches d'oxydyle formées :
 − dans un environnement d'eau liquide ou de vapeur d'eau entre 450°C et 500°C,
 − dans l'alliage Pb-Bi contenant différentes teneurs en oxygène dissous, à différentes
 températures.

Aussi, le mécanisme que nous avons proposé rend compte à la fois qualitativement et
quantitativement de nos résultats expérimentaux et de ceux de la littérature.
Cette étude a donc permis d'élargir notre compréhension sur le phénomène de croissance d'une
couche d'oxyde duplex.

En perspective de ce travail, quelques expériences seraient nécessaires à l'obtention d'une étude
expérimentale plus complète :
 − Le marquage de l'interface originelle T91/Pb-Bi. Cette expérience pourrait s'accomplir en
effectuant un dépôt métallique local à la surface du T91, avant immersion dans l'alliage Pb-Bi.
 Ce dépôt doit comporter les caractéristiques suivantes : il doit être compact et adhérent au T91
 afin de faire barrière à tout type de corrosion du T91 situé sous le dépôt. De plus, il ne doit ni
 être oxydable ni être soluble dans l'alliage Pb-Bi.

Aussi, un dépôt partiel sur la surface d'un échantillon de T91 permettrait d'obtenir, après
immersion dans l'alliage Pb-Bi, des zones oxydées et des zones non oxydées. Les zones
oxydées seraient caractérisées par l'absence de dépôt, alors que celles non oxydées devraient être protégées par le dépôt. Ainsi l'interface originelle T91/Pb-Bi des zones oxydées doit correspondre à l'interface T91/dépôt des zones non oxydées. Ce type d'expérience permettrait de valider l'hypothèse, non démontrée jusqu'à présent, de la localisation de l'interface originelle T91/Pb-Bi à l'interface spinelle Fe-Cr/magnétite.

− L'observation des nano-canaux de plomb pourrait être envisagée par cartographie d'un échantillon de T91 oxydé dans l'alliage Pb-Bi. Ces cartographies, réalisées au nano-SIMS en érodant progressivement la surface, donneraient des informations locales en trois dimensions (plusieurs cartographies réalisées au cours de l'érosion) sur la chimie de la couche d'oxyde. Ce type de détection pourrait révéler la présence de nano-canaux.

− La quantité de métal liquide pénétrant dans la couche d'oxyde pourrait être évaluée par une analyse SDL quantitative. Cette mesure donnerait une idée de la porosité, connectée à l'environnement oxydant, de la couche d'oxyde.

− Une cartographie au nano-SIMS ou en microscopie Auger, aux abords de l'interface T91/spinelle Fe-Cr, permettrait de vérifier l'hypothèse d'une formation de précipités d'oxyde enrichi en fer à proximité des précipités d'oxyde enrichi en chrome.

− Des observations MET des interfaces et des couches d'oxyde permettraient éventuellement de révéler les différents aspects évoqués précédemment. Elles donneraient, par clichés de diffraction RX, des informations sur l'orientation des grains. Elles mettraient en relief une éventuelle texturation des grains au sein des couches et au niveau des interfaces.

− La même expérience d'oxydation devrait être réalisée dans le plomb pur saturé en oxygène à 470°C, afin de vérifier nos prévisions d'une croissance légèrement plus faible dans le plomb pur par rapport à l'alliage Pb-Bi.

− Les mêmes expériences peuvent être réalisées à différentes températures et différentes teneurs en oxygène. Notamment, il serait intéressant de caractériser le phénomène d'oxydation/dissolution qui peut se produire lorsque la teneur en oxygène est juste suffisante pour entraîner une légère oxydation du T91.
Références

[4] IAEA-TECDOC-1289, Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors, June 2002
[18] Materials Data for Particle Accelerator Applica Chapter 22. Design Properties of Lead-Bismuth Eutectic
[22] V.Ghetta, communication privée
[23] Chemical reaction and equilibrium software with extensive thermochemical database, Outokumpu HSC Chemistry for Windows version 4.1
[31] A.Taskinen, Scand. J. Met, 8, 1979, 185
[34] V. Ghetta, A. maître, J.C. Gachon, *Communication orale*, MEGAPIE, Nantes 2004
[40] Proceedings of the Heavy Liquid Metal Coolants in Nuclear Technology conference, held in Obninsk, Russian Federation, on October 5-9, 1998
[46] G. Picard, S. Sanchez, *Communication orale*, Réunion Paris 02/12/03 collaboration CEA-CNRS
Références

Références

[118] F.Balbaud-Célérier, *communication privée*

[127] A.N'Gomsik, F.Balbaud-Célérier, Rapport Technique CEA, RT-SCCME, à paraître

[128] E.Cotes, F.Balbaud-Célérier, L.Martinelli, Rapport Technique CEA, RT-SCCME, à paraître

234
Références

Annexe 1 : États de référence de l'oxygène dans l'alliage Pb-Bi

Les différents états de référence sont les suivants :

− Le premier état de référence, noté référence 1, a été couramment choisi dans les métaux liquides [15][1][25] pour caractériser la réaction $\frac{1}{2}O_2(g) = O^{ML}$. L'activité de l'oxygène est considérée égale à 1 ($a^{°}O=1$) pour l'état fictif et extrapolé d'un équilibre entre l'oxygène dissous dans l'alliage Pb-Bi et l'oxygène gazeux à la pression partielle de 1 atmosphère ($P_{O_2} = 1 atm$).

Cet état de référence est fictif car le métal liquide n'est jamais à l'équilibre sous une pression partielle d'oxygène de 1 atmosphère : la limite de solubilité de l'oxygène dans le métal liquide est atteinte pour des pressions partielles en oxygène bien inférieures. Cependant, l'intérêt de cet état de référence ne consiste pas en sa réalité chimique mais en sa simplicité : il implique une constante d'équilibre $Kd^{(1)}$ égale à 1.

L'activité en oxygène dissous s'écrit $a^{°}_O = x_O$ et la fraction molaire en oxygène dissous est liée à la pression partielle en oxygène en équilibre au dessus du métal liquide par : $x_O = Kd^{(1)} P_{O_2}^{1/2}$ avec $Kd^{(1)}=1$.

− Le deuxième état de référence, noté référence 2, a été choisi par Chang [15] pour comparer les enthalpies standards de réaction $\frac{1}{2}O_2(g) = O^{ML}$ pour différents métaux liquides. Pour cela, il fallait utiliser un état de référence pour lequel la fraction molaire en oxygène est la même quel que soit le métal liquide considéré.

L'état choisi est celui d'une activité unitaire ($a^{°}O=1$) pour une fraction molaire d'oxygène dissous dans le métal liquide égale à 0,01 ($x_O=0,01$). L'activité de l'oxygène dans cet état s'écrit $a^{°}_O = x_O$, ce qui implique un coefficient d'activité $\gamma^{(2)}$ égal à 100.

Pour cet état de référence, la constante d'équilibre de la réaction $\frac{1}{2}O_2(g) = O^{ML}$ s'écrit : $x_O = Kd^{(2)} P_{O_2}^{1/2}$ avec une enthalpie libre standard de réaction ($\Delta G^{0}^{(2)}=-RT\ln Kd^{(2)}$) qui a été déterminée dans la littérature pour les métaux liquides bismuth pur [15], plomb pur [15] et alliage Pb-Bi [22].

− Le troisième état de référence pour la réaction $\frac{1}{2}O_2(g) = O^{ML}$ est noté référence 3, il a été choisi par les auteurs russes et par les participants des groupements de recherche TECLA et MEGAPIE. L'intérêt de l'utilisation de cet état de référence est lié au sens chimique qu'il représente.

En effet l'activité de l'oxygène dissous $a^{°}O$ est égale à 1 pour une teneur en oxygène dissous égale à sa limite de solubilité x^{sat}_O à la température considérée ($a^{°}O=1$ pour $x_O=x^{sat}_O$).

A l'atteinte de la limite de solubilité de l'oxygène dans le métal liquide M, l'oxyde MO le plus stable précipite : les activités de l'oxyde et de l'oxygène dissous sont alors toutes les deux égales à 1.

Le coefficient d'activité de l'oxygène s'écrit $\gamma^{(3)} = 1/x^{sat}_O$.

Cet état de référence nécessite de connaître la limite de solubilité de l'oxygène dans le métal liquide et la constante de réaction $Kd^{(3)}$ alors que l'état de référence 1 ne nécessite de connaître
Annexes

que la constate \(\gamma^{(1)} \). Le premier état de référence est donc plus simple, il permet d'éviter certaines erreurs de calcul.

Pour une pression partielle en oxygène \(P_{O_2} \) donnée, en équilibre au dessus du métal liquide, la fraction molaire d'oxygène dissous est fixe et ne dépend pas du système de référence choisi.

Nous en déduisons que \(\frac{\gamma^{(i)}}{\gamma^{(j)}} = \frac{Kd^{(i)}}{Kd^{(j)}} \) avec \(\gamma^{(i)} x_O = Kd^{(i)} P_{O_2} \).

L'état de référence 1 est donc relié à l'état de référence 2, dans lequel sont exprimées certaines données pour le plomb pur, le bismuth pur et l'alliage Pb-Bi par l'expression :

\[
\frac{\gamma^{(1)}}{\gamma^{(2)}} = \frac{Kd^{(1)}}{Kd^{(2)}} = \gamma^{(2)} \left(\frac{P_{O_2}}{P_{O_2}^{(2)}} \right) = \frac{\Delta G^{0(2)}}{RT} + \ln \gamma^{(2)}.
\]

Sachant que l'on connaît les enthalpies libres \(\Delta G^{0(2)} \) pour le plomb pur et le bismuth pur [15] (avec des coefficients d'activité \(\gamma^{(2)} \) égaux à 100), le passage d'un système de référence à un autre est immédiat.

Comme précédemment les états de référence 3 et 2 peuvent être reliés par la relation suivante :

\[
\frac{\gamma^{(3)}}{\gamma^{(2)}} = \frac{Kd^{(3)}}{Kd^{(2)}} = \frac{\Delta G^{0(2)}}{RT} - \ln \gamma^{(2)} x_O^{\text{sat}}.
\]
Annexe 2 : Principe de fonctionnement d'une sonde de zircorne

La cinétique d’oxydation dépend fortement de la teneur en oxygène dans l'alliage Pb-Bi. Le contrôle et la mesure de l’oxygène sont donc un point capital à la caractérisation des essais de corrosion.

La mesure de la teneur en oxygène dissous dans le métal liquide est obtenue par mesure de potentiel d’une électrode de zircorne. Ce type d’électrode de zircorne yttriée stabilisée (fournie par la société DEGUSSA) est largement utilisé dans les métaux liquides [119][120][121][122][123][28][124].

Le principe électrochimique de l'électrode est explicité puis la méthode d'étalonnage de la sonde est décrite.

- **Principe de la sonde à oxygène** [119][122][123][28][124] :

Cette sonde de mesure de l'oxygène (Figure 136 (A)) repose sur une mesure électrochimique par le biais d’un électrolyte solide, la zircone yttriée [28].

La zircone est une céramique dont le réseau anionique est fortement lacunaire. Le dopage à l'yttrium permet de stabiliser une sursaturation de lacunes anioniques permettant ainsi une grande mobilité des ions oxyde dans son réseau cristallin.

À haute température cette céramique est un conducteur purement ionique utilisé comme électrolyte solide permettant de mesurer la teneur en oxygène.

Le principe de cette sonde de mesure est le suivant :
- L’électrolyte zircone sépare deux milieux liquides : l’alliage liquide Pb-Bi dont on cherche à connaître la teneur en oxygène et un milieu bismuth liquide saturé en oxygène.
- Les deux métaux liquides, de part et d’autre de l’électrolyte constituent deux électrodes, dont le contact à l’appareillage de mesure est effectué par l’intermédiaire d’un fil de tungstène ou d’un fil en acier inoxydable.
- La différence de potentiel, à courant nul, entre les deux électrodes de métal liquide dépend de la teneur en oxygène de part et d'autre de l'électrolyte solide.

La teneur en oxygène dans le milieu bismuth pur est constante et égale à la limite de solubilité de l'oxygène dans le bismuth pur à la température de travail. Cette limite de solubilité est atteinte par dissolution d'oxyde Bi₂O₃ dans le métal liquide.

L'ensemble du montage électrochimique est représenté sur la Figure 136.
Une différence de potentiel est mesurée entre l'électrode de Pb-Bi et l'électrode de bismuth. Montrons que cette différence de potentiel est liée à l'activité de l'oxygène dissous dans l'électrode de Pb-Bi.
L'ensemble des symboles utilisés est regroupé dans le Tableau 26.

Tableau 26 : Symboles utilisés dans ce paragraphe.

Les équilibres électrochimiques peuvent s'écrire à chaque interface sous la forme :

- A l’interface Pb-Bi/zircone : \(O^{\text{Pb-Bi}} + 2e^- = O^{2-} \).

 A l’équilibre, les potentiels électrochimiques peuvent s’écrire :
 \[
 \mu^{\text{Pb-Bi}}_O + 2\mu^{\text{Pb-Bi}}_{e^-} = \mu^{\text{Zr}}_{O^{2-}}
 \]
 (1)

 Or \(\mu^{\text{Pb-Bi}}_{e^-} = \mu^{\text{max}}_{e^-} = \mu^{\text{Cu}}_{e^-} \) et \(\mu^{\text{Cu}}_{e^-} = \mu^{\text{Cu}}_{e^-} - F\phi^{\text{Cu}} \).

 Le potentiel chimique des électrons est considéré égal à son potentiel standard car l’activité des électrons dans le métal peut être considérée égale à 1.

 L’équation (1) devient :
 \[
 \mu^{\text{Pb-Bi}}_O + 2(\mu^{\text{Cu}}_{e^-} - F\phi^{\text{Cu}}) = \mu^{\text{Zr}}_{O^{2-}} - 2F\phi^{\text{Zr}}
 \]
 (2)

- De même à l’interface Bi/zircone : \(O^{\text{Bi}} + 2e^- = O^{2-} \).
A l'équilibre, les potentiels s'écrivent :
\[
\frac{\mu_{\text{Bi}}^{\text{Bi}}}{O} + 2\mu_{\text{e}}^{\text{Bi}} = \mu_{\text{O}}^{Zr}.
\]
(1')
Or
\[
\mu_{\text{e}}^{\text{Bi}} = \mu_{\text{e}}^{\text{max}} = \mu_{\text{e}}^{\text{Cu}} = \mu_{\text{e}}^{\text{Cu}} - F\phi^{\text{Cu}} = \mu_{\text{e}}^{\text{Cu}} - F\phi^{\text{Cu}}
\]
\[
\Rightarrow \mu_{\text{O}}^{\text{Bi}} + 2(\mu_{\text{e}}^{0\text{Cu}} - F\phi^{\text{Cu}}) = \mu_{\text{O}}^{Zr} - 2F\phi^{Zr}
\]
(2')

Considérons que la zircone est un conducteur ionique pur dont la conduction est effectuée par les ions O\(^{2-}\).
A l’équilibre, les potentiels électrochimiques des ions O\(^{2-}\) sont égaux aux deux interfaces électrode/électrolyte.

Les relations (2) et (2’) nous permettent d'obtenir :
\[
\mu_{\text{O}}^{\text{Bi}} + 2(\mu_{\text{e}}^{0\text{Cu}} - F\phi^{\text{Cu}}) = \mu_{\text{O}}^{\text{Bi}}^{\text{Bi}} + 2(\mu_{\text{e}}^{0\text{Cu}} - F\phi^{\text{Cu}})
\]
(3)

Le matériau de conduction électronique final, le cuivre, étant identique pour chaque électrode métallique, les potentiels chimiques standards \(\mu_{\text{e}}^{0\text{Cu}}\) et \(\mu_{\text{e}}^{0\text{Cu}}\) sont identiques.

La différence de potentiel entre chaque électrode s'exprime donc selon :
\[
\phi^{\text{Cu}} - \phi^{\text{Cu}} = \frac{H_{\text{O}}^{\text{Bi}} - H_{\text{O}}^{\text{Bi}} + H_{\text{O}}^{\text{Bi}} - H_{\text{O}}^{\text{Bi}} - R_{\text{Bi}}^{\text{Bi}}}{2F} - RT\ln \frac{a_{\text{O}}^{\text{Bi}}}{a_{\text{O}}^{\text{Bi}}}\text{ avec } \phi^{\text{Cu}} - \phi^{\text{Cu}} = \Delta E
\]
(4)

\[
\Delta E = \frac{1}{2F}(H_{\text{O}}^{\text{Bi}} - H_{\text{O}}^{\text{Bi}} - R_{\text{Bi}}^{\text{Bi}}) + \frac{T}{2F}(S_{\text{O}}^{\text{Bi}} - S_{\text{O}}^{\text{Bi}} + Ra_{\text{Bi}}^{\text{Bi}}) - RT\ln a_{\text{O}}^{\text{Bi}}
\]
(5)
en notant \(\ln a_{\text{O}}^{\text{Bi}} = a_{\text{O}}^{\text{Bi}} - \frac{b_{\text{Bi}}^{\text{Bi}}}{T}\)

Soit C\(_O\) la concentration en oxygène dans l’alliage Pb-Bi, l’activité \(a_{\text{O}}^{\text{Bi}}\) s’écrit \(a_{\text{O}}^{\text{Bi}} = \gamma C_{\text{O}}\).
La relation (5) devient alors :
\[
\Delta E = \frac{1}{2F}(H_{\text{O}}^{\text{Bi}} - H_{\text{O}}^{\text{Bi}} - R_{\text{Bi}}^{\text{Bi}}) + \frac{T}{2F}(S_{\text{O}}^{\text{Bi}} - S_{\text{O}}^{\text{Bi}} + Ra_{\text{Bi}}^{\text{Bi}} - R\ln \gamma_{\text{O}}^{\text{Bi}}) - RT\ln C_{\text{O}}^{\text{Bi}}
\]
(6)

La relation (6) montre la dépendance de la différence de potentiel vis-à-vis de la teneur en oxygène dissous dans l’alliage Pb-Bi.

L’étalonnage des sondes de zircone permet de déterminer quantitativement les différents facteurs \((H_{\text{O}}^{\text{Bi}} - H_{\text{O}}^{\text{Bi}} - R_{\text{Bi}}^{\text{Bi}})\) et \((S_{\text{O}}^{\text{Bi}} - S_{\text{O}}^{\text{Bi}} + Ra_{\text{Bi}}^{\text{Bi}} - R\ln \gamma_{\text{O}}^{\text{Bi}})\) intervenant dans l’expression (5).
Aussi, l’activité en oxygène dissous dans l’alliage Pb-Bi peut se déduire de la valeur de la différence de potentiel entre l’alliage Pb-Bi et le bismuth.

- **Etalonnage des sondes de zircones** [27][123][124] :

L’étalonnage des sondes zircone s'effectue en boîte à gant avec le matériel suivant :
- Un creuset en acier inoxydable rempli d’alliage Pb-Bi, initialement sous forme solide.
- Le creuset est chauffé par un collier en céramique d’une puissance de 1000 W, alimenté par l’intermédiaire d’un régulateur, équipé d’un limiteur de puissance.
- Le suivi de la température est assuré par des thermocouples de régulation et de mesure de type K, l’un plaqué contre la paroi du creuset, l’autre immergé dans l’alliage Pb-Bi liquide et protégé du métal liquide par un doigt de gant en pyrex.
La mesure de la température et des potentiels des électrodes est assurée par un système d’acquisition avec une impédance d’entrée supérieure à 1GΩ.

Le montage expérimental est représenté sur la figure suivante.

![Figure 137 : schéma du montage de l'étalonnage d'une sonde à oxygène.](image)

L’écriture théorique de la différence de potentiel entre l’électrode de Pb-Bi et la sonde de zircone a été déterminée dans le paragraphe précédent :

\[
\Delta E = \frac{1}{2F} (H^\text{Bi} - H^\text{Pb-Bi} - Rb^\text{Bi}) + \frac{T}{2F} (S^\text{Pb-Bi} - S^\text{Bi} + Ra^\text{Bi} - R \ln \gamma^\text{Pb-Bi}) - \frac{RT}{2F} \ln C^\text{Pb-Bi}
\]

en notant \(\ln a^\text{Bi}_O = a^\text{Bi} - \frac{b^\text{Bi}}{T} \)

La différence de potentiel entre les deux électrodes s’écrit différemment lorsque la saturation est atteinte dans l’alliage Pb-Bi et lorsqu’elle ne l’est pas :

- Lorsque l’alliage Pb-Bi n’est pas saturé en oxygène, la différence de potentiel est donnée par la relation :

\[
\Delta E = \frac{1}{2F} (H^\text{Bi} - H^\text{Pb-Bi} - Rb^\text{Bi}) + \frac{T}{2F} (S^\text{Pb-Bi} - S^\text{Bi} + Ra^\text{Bi} - R \ln \gamma^\text{Pb-Bi}) - \frac{RT}{2F} \ln C^\text{Pb-Bi}
\]

- Lorsque l’alliage Pb-Bi est saturé en oxygène, la concentration en oxygène suit l’évolution suivante

\[
\ln C^\text{Pb-Bi} (\text{saturation}) = a^\text{Pb-Bi}_O - \beta^\text{Pb-Bi}_O \left(\ln C^\text{Pb-Bi} (\text{sat, pds} \%) = 1,2 - \frac{3400}{T} \right) \quad [28].
\]

La relation (6) devient alors :

\[
\Delta E = \frac{1}{2F} (H^\text{Bi} - H^\text{Pb-Bi} - Rb^\text{Bi} - R \beta^\text{Pb-Bi}_O) + \frac{T}{2F} (S^\text{Pb-Bi} - S^\text{Bi} + Ra^\text{Bi} - R \ln \gamma^\text{Pb-Bi} - Ra^\text{Pb-Bi})
\]

L’étalonnage de la sonde à oxygène consiste à déterminer les constantes \((H^\text{Bi}_O - H^\text{Pb-Bi}_O - Rb^\text{Bi})\) et \((S^\text{Pb-Bi}_O - S^\text{Bi}_O + Ra^\text{Bi} - R \ln \gamma^\text{Pb-Bi})\) de la relation (6).

Aussi pour effectuer l’étalonnage, le montage de la Figure 137 est réalisé.
L’alliage Pb-Bi est rapidement porté à haute température en boîte à gant sous atmosphère inerte.
Si la montée en température est suffisamment rapide, la concentration en oxygène dissous dans l'alliage Pb-Bi varie peu au cours de l'expérience. Lorsque la température atteint environ 450°C, la consigne de température est diminuée et la variation du potentiel de l'électrode de zircone (électrode de bismuth contenue dans le tube en zircone, cf Figure 137) est enregistrée au cours du temps par rapport à celle de l'alliage Pb-Bi.

Si l'électrode de l'alliage Pb-Bi liquide ne se charge pas en oxygène pendant son refroidissement, la concentration en oxygène \(C^{O}_{\text{BiPb}} (i) \) est constante dans l'alliage Pb-Bi liquide et la variation de potentiel suit la relation (6) :

\[
\Delta E = \frac{1}{2F} (H^{Bi}_{O} - H^{Pb-Bi}_{O} - Rb^{Bi}) + \frac{T}{2F} (S^{Pb-Bi}_{O} - S^{Bi}_{O} + Ra^{Bi} - R \ln \gamma^{Pb-Bi}_{O} - R \ln C^{Pb-Bi}_{O})
\]

La valeur à l'origine donne la première constante, \((H^{Bi}_{O} - H^{Pb-Bi}_{O} - Rb^{Bi})\), à déterminer.

A l'atteinte de la température pour laquelle la concentration \(C^{O}_{\text{BiPb}} (i) \) est la limite de solubilité de l'oxygène dans l'alliage Pb-Bi, la variation du potentiel de l'électrode subit un changement de pente et suit alors la relation (7).

En effet, la température continuant à diminuer, la concentration en oxygène dissous dans l'alliage Pb-Bi ne peut plus être \(C^{O}_{\text{BiPb}} (i) \) : elle devient égale à la limite de solubilité de l'oxygène dans l'alliage Pb-Bi à la température de l'alliage.

Connaissant la loi de dépendance de la limite de solubilité avec la température \((\ln C^{O}_{\text{BiPb}} (sat, pds\%) = 1,2 - \frac{3400}{T})\), la concentration initiale en oxygène dans l'alliage Pb-Bi, \(C^{O}_{\text{BiPb}} (i) \), peut être calculée.

Cette concentration correspond à la limite de solubilité de l'oxygène à la température au point de changement de pente de la courbe \(\Delta E=f(t) \).

Lorsque le refroidissement continue, la teneur en oxygène dans l'alliage Pb-Bi liquide évolue : elle est pour chaque température égale à la limite de solubilité de l'oxygène à la température considérée.

Le potentiel suit la relation (7) qui est aussi linéaire en fonction de la température (Figure 138). Les constantes \((H^{Bi}_{O} - H^{Pb-Bi}_{O} - Rb^{Bi})\) et \((S^{Pb-Bi}_{O} - S^{Bi}_{O} + Ra^{Bi} - R \ln \gamma^{Pb-Bi}_{O})\) sont déduites de la pente de la droite et de sa valeur à l'origine à partir de la loi de solubilité en fonction de la température (cf relation (7)).

Les résultats expérimentaux d'une série d'étalonnage de quatre sondes de zircone sont représentés sur la Figure 138.
Selon les calculs précédents, le potentiel des sondes, dont l'étalonnage est présenté sur la Figure 138, est lié à la concentration en oxygène dans l'alliage Pb-Bi par la relation suivante :

$$\Delta E(mV) = -325 - 0,0017T + \frac{RT}{2F} \ln C_{\text{O}}^{\text{Pb-Bi}} (\text{pds}%)$$

Afin de contrôler l'état de saturation dans nos essais d'oxydation, une sonde de zircone est immergée dans le liquide à intervalles de temps réguliers. La teneur en oxygène peut ainsi être contrôlée par ce système de sonde à oxygène.

Nos mesures de sonde, effectuées à intervalles de temps régulier, ont montré que le milieu restait constamment saturé en oxygène durant le processus d'oxydation.
Annexe 3 : Composition des matériaux utilisés

- Composition du T91 (X10CrMoVNb9-1[163]) :

Le T91 est un acier Fe-9Cr dont la composition est retranscrite dans le tableau suivant :

<table>
<thead>
<tr>
<th>Elément</th>
<th>Fe</th>
<th>Cr</th>
<th>Mo</th>
<th>Mn</th>
<th>Si</th>
<th>V</th>
<th>Ni</th>
<th>Cu</th>
<th>C</th>
<th>Nb</th>
<th>N</th>
<th>Al</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teneur (pds%)</td>
<td>88.8</td>
<td>8.98</td>
<td>0.962</td>
<td>0.393</td>
<td>0.19</td>
<td>0.125</td>
<td>0.089</td>
<td>0.086</td>
<td>0.075</td>
<td>0.036</td>
<td>0.006</td>
<td>0.006</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 27 : Composition du T91 obtenus par le rapport d'analyse du fournisseur Creusot-Loire.

- Composition de l'alliage Pb-Bi :

Le Pb-Bi délivré par le fournisseur METALEUROP a la composition suivante :

<table>
<thead>
<tr>
<th>Bi</th>
<th>Pb</th>
<th>Sn ppm(pds)</th>
<th>Ag ppm(pds)</th>
<th>Cu ppm(pds)</th>
<th>Ni ppm(pds)</th>
<th>As ppm(pds)</th>
<th>Sb ppm(pds)</th>
<th>Se ppm(pds)</th>
<th>Te ppm(pds)</th>
<th>Co ppm(pds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.2</td>
<td>44.8</td>
<td><0.5 ppm(pds)</td>
<td>5 ppm(pds)</td>
<td>0.7 ppm(pds)</td>
<td><0.5 ppm(pds)</td>
<td><0.5 ppm(pds)</td>
<td><0.5 ppm(pds)</td>
<td><0.2 ppm(pds)</td>
<td><0.2 ppm(pds)</td>
<td><0.5 ppm(pds)</td>
</tr>
</tbody>
</table>

Tableau 28 : Composition de l'alliage Pb-Bi obtenus par le rapport d'analyse du fournisseur Metaleurop.
Annexe 4 : méthode de détermination du coefficient de diffusion et de la limite de solubilité des éléments métalliques dans l'alliage Pb-Bi

1. Introduction

Une technique a été conçue pour déterminer la limite de solubilité et le coefficient de diffusion du fer dans l'alliage Pb-Bi mais elle peut être utilisable pour d'autres éléments métalliques dans d'autres métaux liquides.

Cette technique repose sur un principe électrochimique dans un milieu sel fondu : une quantité de fer, connue avec précision, est insérée dans l'alliage Pb-Bi liquide. La diffusion de cette quantité de fer au sein du métal liquide peut être caractérisée par chronopotentiométrie ou par spectroscopie d'impédance.
La méthode réalisée par spectroscopie d'impédance a fait l'objet d'un stage de DEA [124] mais elle a été abandonnée, au profit de la méthode chronopotentiométrique, car elle nécessitait la connaissance de nombreux paramètres difficiles à déterminer avec précision : épaisseur de couche de diffusion du fer métallique dans l'alliage Pb-Bi et du fer (II) dans l'électrolyte, coefficient de diffusion du fer (II) dans l'électrolyte…

La méthode chronopotentiométrique a été mise au point, en premier lieu, lors d'un stage de DEA [126] puis retravaillée dans le cadre de cette thèse ainsi que dans un stage de DESS [127]. Les expériences obtenues lors de ces stages sont les expériences numérotées 7, 8, 9, 10 [126] et 6 [127] dans l'étude suivante.

Les symboles utilisés dans cette annexe sont regroupés dans le Tableau 29.
Annexes

Tableau 29 : liste des symboles utilisés dans cette annexe.

- \(n_{Fe} \) : quantité de fer déposée sur l'électrode de Pb-Bi au cours d'une réduction (mol)
- \(Q \) : quantité d'électricité traversant l'interface Pb-Bi/sel fondu pendant le dépôt de fer (C)
- \(\Delta t \) : durée d'une réduction (s)
- \([Fe^{2+}]_{LiCl-KCl/\text{Pb-Bi}} \) : valeur de la molalité des ions ferreux présents en solution dans LiCl-KCl à l'interface sel/Pb-Bi (mol.kg\(^{-1}\))
- \([Fe^{2+}]_{LiCl-KCl/\text{Fe}} \) : valeur de la molalité des ions ferreux présents en solution dans LiCl-KCl à l'interface sel/Fe (mol.kg\(^{-1}\))
- \(a_{\text{Fe}}^{\text{Pb-Bi}} \) : activité du fer métallique dissous dans l'électrode de Pb-Bi à l'interface sel/Pb-Bi
- \(a_{\text{Fe}}^{\text{LiCl-KCl/Fe}} \) : activité du fer métallique dans l'électrode de fer pur à l'interface sel/Fe. Cette activité est considérée égale à 1.
- \(E^0_{Fe^{2+}/Fe} \) : potentiel standard du couple Fe\(^{2+}\)/Fe dans LiCl-KCl à la température de travail (V)
- \(E_{\text{Pb-Bi}/\text{Ref}} \) : potentiel de l'électrode de Pb-Bi par rapport à une référence quelconque notée Ref (V)
- \(E_{\text{Fe}/\text{Ref}} \) : potentiel de l'électrode de fer par rapport à une référence quelconque notée Ref (V)
- \(E_{\text{Pb-Bi}/\text{Fe}} \) : potentiel de l'électrode de Pb-Bi par rapport à l'électrode de fer (V)
- \(a_{\text{Fe}}^{\text{équilibre}} \) : activité en fer dans l'électrode de Pb-Bi, à l'équilibre, après une réduction
- \([Fe^{2+}]_{\text{Pb-Bi}}^{\text{équilibre}} \) : concentration en fer dans l'électrode de Pb-Bi, à l'équilibre, après une réduction (mol.cm\(^{-3}\))
- \(E_{\text{Pb-Bi}/\text{Fe}}^{\text{équilibre}} \) : potentiel d'équilibre de l'électrode de Pb-Bi, après une réduction de fer à la surface de l'électrode (V)
- \([Fe^{2+}]_{\text{Pb-Bi}} \) : concentration en fer métallique dans le volume de l'électrode de Pb-Bi, en équilibre (mol.cm\(^{-3}\))
- \(\gamma_{Fe} \) : coefficient d'activité du fer métallique dissous dans l'électrode de Pb-Bi (cm\(^3\).mol\(^{-1}\))
- \(C_{\text{total}}^{Fe} \) : teneur en fer présente dans l'électrode de Pb-Bi avant dépôt de fer métallique (mol.cm\(^{-3}\))
- \(C_{\text{an}}^{Fe} \) : concentration en fer dans le dépôt, à la surface de l'électrode de Pb-Bi (mol.cm\(^{-3}\))
- \(h \) : épaisseur du dépôt (cm)
- \(L \) : profondeur de l'électrode de Pb-Bi (cm)
- \(D_{\text{Pb-Bi}}^{Fe} \) : coefficient de diffusion du fer dans l'alliage Pb-Bi liquide (cm\(^2\).s\(^{-1}\))
- \(D_{\text{LiCl-KCl}}^{Fe} \) : coefficient de diffusion du fer dans le sel LiCl-KCl (cm\(^2\).s\(^{-1}\))
- \(S_{\text{Pb-Bi}} \) : surface de contact életrode de Pb-Bi/électrolyte sel fondu (cm\(^2\))
- \(M_{Fe} \) : masse molaire du fer (g.mol\(^{-1}\))
- \(\rho \) : masse volumique du fer pur (g.cm\(^{-3}\))
- \(R \) : constante des gaz parfaits (J.K\(^{-1}\))
- \(T \) : température (K)
- \(F \) : constante de Faraday (J.V\(^{-1}\))
- \([Fe^{2+}]_{\text{inoxéré}} \) : concentration de fer présente dans l'électrode de Pb-Bi après cumul de toutes les insertions (mol.cm\(^{-3}\))
- \([Fe^{2+}]_{\text{impureté}} \) : concentration de fer présente dans l'électrode de Pb-Bi, comme impureté, avant l'expérience (mol.cm\(^{-3}\))
- \(E^0(\text{Ag}^+/\text{Ag}) \) : potentiel standard du couple Ag/Ag\(^+\) dans LiCl-KCl à 450°C (V)
2. Principe de la mesure du coefficient de diffusion du fer dans Pb-Bi

Le principe de l’expérience est le suivant : une quantité, finement contrôlée, de Fe$^{2+}$ est réduite par voie électrochimique à la surface d’une électrode liquide de Pb-Bi. Cette réduction mène à la formation d’un dépôt de fer métallique qui diffuse au sein de l’électrode de Pb-Bi. Pendant cette diffusion de fer métallique, le potentiel de l’électrode de Pb-Bi est suivi au cours du temps. L’évolution de ce potentiel répond à l’évolution chimique de la surface de l’électrode de Pb-Bi sur laquelle la couche de fer a été déposée. Cette évolution chimique correspond à une diminution de l’activité en fer à la surface de l’électrode due à la diffusion du fer au sein de l’électrode. L’évolution de potentiel de l’électrode de Pb-Bi caractérise alors la diffusion du fer dans l’alliage Pb-Bi.

L’électrode liquide de Pb-Bi est constituée d’un petit bécher en pyrex, contenant l’alliage liquide. Le contact à l’appareillage électrochimique est assuré par une tige en tungstène. Cette électrode est immergée dans un électrolyte sel fondu.

L’électrolyte sel fondu LiCl-KCl en proportions eutectoïdes (LiCl 58,5% - KCl 41,2% en pourcentages molaires) a été choisi pour l’élaboration de ces expériences pour les quatre raisons suivantes :

- Le sel LiCl-KCl permet de travailler à hautes températures (nos températures de travail sont comprises entre 400°C et 500°C) car sa température de fusion est de 352°C [15].

- La littérature contient de nombreuses données thermodynamiques sur ce sel [15][128].

- Le domaine d’électroactivité du sel, compris entre -2,5 V et 1V environ par rapport à une électrode d’argent Ag/AgCl correspond à nos domaines de travail.

- Les propriétés physiques, viscosité et conductivité ionique, du sel fondu à cette température sont adaptées à nos expérimentations. En effet la viscosité est suffisamment faible pour ne pas gêner le transport par diffusion et convection des espèces ioniques dans le sel et la conductivité ionique est suffisamment importante pour ne pas affecter les mesures électrochimiques.

Le montage électrochimique est représenté sur la Figure 139.
2.1. Procédure de mesure du coefficient de diffusion du fer dans l'alliage Pb-Bi

Des ions fer (II) sont dissous dans le sel fondu par ajout d’une quantité appropriée de FeCl₂. Une fine couche de fer métallique est déposée à la surface de l'électrode de Pb-Bi. Pour ce faire, le potentiel de réduction du fer (II) est imposé à l'électrode de Pb-Bi pendant une durée Δt choisie par l'expérimentateur. La quantité de fer métallique déposée, n_{Fe^0}, est déterminée par la mesure du courant traversant l'électrode de Pb-Bi pendant le temps Δt de la réduction du fer, selon la formule :

$$
\int_i dQ = \frac{n_{Fe^0}}{2F} \int_i dt .
$$

La valeur n_{Fe^0} est alors obtenue expérimentalement par chronoampérométrie lors de l'étape de réduction du fer (II). Cette technique permet d'insérer dans l'électrode de Pb-Bi une très petite quantité de fer métallique. Cette quantité est, de plus, déterminée avec une grande précision. En effet, la précision de l'appareillage électrochimique permet d'insérer une quantité de fer métallique de l'ordre de 2×10^{-9} mol, par imposition d'un courant de l'ordre du microampère pendant une durée d'une demi seconde. La limite de solubilité du fer dans l'alliage Pb-Bi étant de l'ordre de $1,5 \times 10^{-7}$ mol/cm³ [60][59], travailler avec de très petites quantités de fer est nécessaire.

L'intérêt de cette technique par rapport aux autres techniques de détermination de la limite de solubilité et de coefficient de diffusion d'éléments métalliques dans les métaux liquides est double :
- Le temps d'expérimentation est inférieur à la durée d'expérience des techniques usuelles.
- La quantité de fer insérée est connue avec une grande précision. En effet, comme nous l'avons précisé précédemment, la technique permet d'insérer dans l'alliage liquide, et par conséquent de détecter, une quantité de fer de l'ordre de quelques 10^{-9} mol. Cette quantité, dissoute dans environ 1 cm³ de Pb-Bi est difficilement décelable par des techniques d'analyses chimiques.
classiques, permettant une analyse globale de l'échantillon (ICP). Les analyses plus précises sont des analyses locales (spectromètre de masse) qui ne peuvent pas être utilisées car elles nécessitent un refroidissement de l'échantillon de Pb-Bi. Celui-ci peut conduire à des ségrégations locales de fer. La concentration en fer n'est donc plus homogène dans l'échantillon et les analyses sont faussées.

Après un premier dépôt de fer, le potentiel de l'électrode de Pb-Bi est suivi à courant nul par rapport à une électrode de fer immergée dans le sel fondu. La courbe représentant l'évolution du potentiel de l'électrode de Pb-Bi au cours du temps (Figure 140) peut être divisée en quatre parties significatives, identifiées sur la courbe de la Figure 140 par les lettres A, B, C et D.

Figure 140 : Schéma des différentes étapes caractérisant l'évolution du potentiel de l'électrode de Pb-Bi suite à la diffusion d'une fine couche de fer métallique déposée à la surface de l'électrode de Pb-Bi liquide. Évolution du potentiel de l'électrode de Pb-Bi au cours du temps. Expérience n°5.

La forme de la courbe de la Figure 140 peut être expliquée de la manière suivante.

Le potentiel de l'électrode de Pb-Bi, par rapport à une référence quelconque, après le premier dépôt de fer est fixé par le couple Fe métallique /Fe²⁺, à l'interface Pb-Bi/LiCl-KCl, selon la relation de Nernst :

\[
E_{Pb-Bi/Re} = E_{Fe^2+/Fe}^0 + \frac{RT}{2F} \ln \left(\frac{\left[Fe^{2+}\right]_{electrode}}{\left[Fe^{2+}\right]_{sel}} \right)
\]

De la même manière, le potentiel d'une électrode de fer (fil de fer plongé dans l'électrolyte) par rapport à la même référence s'exprime :

\[
E_{Fe/Re} = E_{Fe^2+/Fe}^0 + \frac{RT}{2F} \ln \left(\frac{\left[Fe^{2+}\right]_{LiCl-KCl/Fe}}{\left[Fe^{2+}\right]_{LiCl-KCl/Fe}} \right)
\]

L'activité du fer pur est considérée égale à l’unité et l’activité du fer métallique en solution dans l'alliage Pb-Bi liquide est considérée proportionnelle à sa concentration. Ainsi le coefficient d'activité du fer métallique est supposé constant quelle que soit la quantité de fer dissous dans l'alliage Pb-Bi (convention en solution infiniment diluée). Les activités des espèces dissoutes dans le sel sont considérées égales à leur molalité (hypothèse de solution idéale).

D’une manière générale, en considérant que le système du fer est rapide, le potentiel de l’électrode de Pb-Bi par rapport à l’électrode de fer s'exprime selon :

\[
\]
Annexes

\[E_{\text{Pb-Bi}/\text{Fe}} = \frac{RT}{2F} \ln \left(\frac{\text{[Fe}^{2+}\text{]}_{\text{LlCl}-\text{KCl1/Fe}}}{a_{\text{Fe}}^{\text{Ph-Bi}} \text{[Fe}^{2+}\text{]}_{\text{LlCl}-\text{KCl1/Ph-Bi}}} \right) \tag{2} \]

Après dépôt de fer (Figure 140), l’évolution du potentiel de l’électrode de Pb-Bi, par rapport à l’électrode de fer, peut être justifiée par la relation de Nernst (2).

En effet, immédiatement après insertion de fer dans l’électrode de Pb-Bi, le potentiel expérimental de cette électrode suit une asymptote verticale (partie A sur la courbe de la Figure 140). A la suite du dépôt de fer à la surface de l’électrode, la teneur en ions ferreux a diminué à l’interface Pb-Bi/sel fondu. Cette valeur peut tendre vers zéro, si l’apport d’ions fer (II), par diffusion dans le sel, ne compense pas la disparition de celui-ci par réduction à la surface de l’électrode de Pb-Bi. Le potentiel de l’électrode de Pb-Bi, à t=0, immédiatement après un dépôt de fer, s’exprime alors :

\[E_{\text{Pb-Bi}/\text{Fe}} = \frac{RT}{2F} \ln \left(\frac{\text{[Fe}^{2+}\text{]}_{\text{LlCl}-\text{KCl1/Fe}}}{a_{\text{Fe}}^{\text{Ph-Bi}} \text{[Fe}^{2+}\text{]}_{\text{LlCl}-\text{KCl1/Ph-Bi}}} \right) = -\infty \]

Cette expression justifie l'observation de l'asymptote verticale sur la partie A de la courbe de la Figure 140.

Puis la concentration en ions fer (II) à la surface de l’électrode augmente jusqu’à atteindre la teneur en ions fer (II) en solution dans le sel fondu. À ce moment, et pendant la suite du processus, la teneur en ions fer (II), à la surface de l’électrode de Pb-Bi, est égale à celle en solution dans le sel fondu. Par conséquent cette teneur est aussi égale à celle en ions fer (II) à la surface de l’électrode de fer. A partir de ce moment, le potentiel de l’électrode de Pb-Bi s’écrit :

\[E_{\text{Pb-Bi}/\text{Fe}} = -\frac{RT}{2F} \ln a_{\text{Fe}}^{\text{Ph-Bi}} \text{[Fe}^{2+}\text{]}_{\text{LlCl}-\text{KCl1/Ph-Bi}} \]

Si tout le fer réduit à la surface de l’électrode de Pb-Bi n’a pas encore diffusé au sein de l’alliage Pb-Bi liquide, une fine couche de fer peut subsister à l’interface électrode de Pb-Bi/sel. Dans ce cas, l'activité de fer à l'interface est égale à 1 puisque le fer est sous forme métallique solide. Le potentiel de cette électrode de Pb-Bi est donc nul par rapport à l’électrode de référence en fer, expliquant ainsi le palier à potentiel nul observé sur la partie B de la courbe expérimentale (Figure 140).

Le fer continue à diffuser progressivement dans le volume de Pb-Bi jusqu’à ce que la fine couche de fer, à la surface de l’électrode, ne soit plus continue. À partir de ce moment l’activité en fer à la surface de l’électrode n’est plus égale à 1 et le potentiel de l’électrode de Pb-Bi décolle du palier \(\Delta E=0 \) (partie C de la courbe, Figure 140). Au fur et à mesure de la diffusion du fer dans l’électrode de Pb-Bi, l’activité en fer à la surface de l’électrode diminue et le potentiel de l’électrode augmente comme il peut être observé sur la partie C de la courbe expérimentale de la Figure 140. L’activité du fer à la surface de l’électrode diminue ainsi jusqu’à sa valeur d’équilibre correspondant à une concentration homogène de fer dans l’électrode de Pb-Bi dont le potentiel est stabilisé (partie D, Figure 140).

A l’équilibre, après diffusion totale du fer dans le volume de Pb-Bi, le potentiel de l’électrode peut se traduire par l’expression :

\[E_{\text{Pb-Bi}/\text{Fe}} = -\frac{RT}{2F} \ln a_{\text{Fe}}^{\text{équilibre}} \]

Le potentiel de l’électrode de Pb-Bi est lié directement à la concentration en fer \([Fe^\circ]\)_{Pb-Bi} à la surface de l’électrode par l’intermédiaire de son activité et de son coefficient d'activité \(\gamma_{Fe} \):

\[E_{\text{Pb-Bi}/\text{Fe}} = -\frac{RT}{2F} \ln [Fe^\circ]_{\text{Pb-Bi}} = \frac{RT}{2F} \ln \gamma_{Fe} \]
La concentration de fer métallique à la surface de l'électrode peut ainsi, par l'intermédiaire du potentiel de l'électrode de Pb-Bi, être mesurée expérimentalement si le coefficient d'activité du fer dans l'alliage Pb-Bi est connu.
Par ailleurs, la connaissance du coefficient d'activité γ_{Fe} du fer métallique dans Pb-Bi est nécessaire pour la détermination du coefficient de diffusion.

En effet, la concentration en fer à la surface de l'électrode de Pb-Bi, obtenue expérimentalement par l'intermédiaire du potentiel de l'électrode de Pb-Bi et par la connaissance du coefficient d'activité du fer dans Pb-Bi, peut être comparée à une simulation analytique.

Le problème de diffusion du fer dans l'électrode de Pb-Bi peut être résolu, simplement, en deux dimensions. Il consiste à calculer la concentration au cours du temps d'un élément déposé en fine couche (dont la concentration initiale C_0 dans la fine couche est connue) à la surface d'une boîte (électrode de Pb-Bi) de longueur L finie. Le schéma illustrant les conditions initiales du problème est représenté sur la Figure 141 et la résolution analytique de la concentration de fer à la surface de l'électrode de Pb-Bi est la suivante [117] :

$$[Fe^0]_{Pb-Bi}(0,t) = C^{Fe}_{init} + \frac{(C^{Fe}_{déposé} - C^{Fe}_{init})}{L} [1 + 2 \sum_{k=1}^{\infty} \exp \left(- \left(\frac{k\pi}{L} \right)^2 D^{Fe}_{Pb-Bi}t \right)]$$

(4)

Les paramètres, épaisseur du dépôt h et concentration en fer dans le dépôt C^{Fe}_0 sont évalués par la mesure de la surface S_{Pb-Bi} de contact électrode de Pb-Bi/électrolyte, de la profondeur L de l'électrode de Pb-Bi et par le contrôle de la quantité de fer n_{Fe}^0 déposée par voie électrochimique :

- $h = \frac{n_{Fe}^0 M_{Fe}}{\rho S_{Pb-Bi}}$ avec $M_{Fe}=56$g/mol et $\rho=8$g/cm3

- $C^{Fe}_0 = \frac{n_{Fe}^0}{h S_{Pb-Bi}}$

La concentration initiale, C^{Fe}_{init}, de fer contenu dans l'alliage Pb-Bi, avant dépôt de fer, est aussi déterminée par mesure électrochimique comme nous le montrerons par la suite.
Chaque dépôt de fer est suivi par une mesure de potentiel de l'électrode de Pb-Bi au cours du temps, jusqu'à stabilisation du potentiel. Aussi, l'activité en fer à la surface de l'électrode (en $x=0$ sur la Figure 141) est mesurable au cours du temps. Cette mesure conduit à une détermination du coefficient de diffusion par ajustement de la simulation, réalisée à partir de l'équation (4), sur la valeur expérimentale de la concentration en fer métallique à l'interface Pb-Bi/sel fondu. Cette concentration expérimentale en fer est déduite du potentiel de l'électrode de Pb-Bi via la détermination du coefficient d'activité du fer dans l'alliage Pb-Bi.

Plusieurs dépôts peuvent être effectués les uns après les autres afin de juger de la reproductibilité de l'expérience.

Cependant, plusieurs phénomènes doivent être vérifiés ou déterminés afin de valider ce protocole expérimental :

- Le fer déposé à la surface de l'électrode ne doit pénétrer au sein de l'électrode de Pb-Bi que par un phénomène de diffusion. La présence d'un phénomène convectif empêche la validation de la technique expérimentale.

Dans le but de s'affranchir au maximum de toute convection parasite, la taille de l'électrode de Pb-Bi est minimisée : le volume de l'électrode est de l'ordre de 1,5 cm3. La température est maintenue, de manière isotherme dans l'alliage Pb-Bi liquide car l'électrode est immergée dans l'électrolyte liquide. Celui-ci garantit une constance thermique pour l'alliage Pb-Bi liquide par sa régulation en température et par son volume beaucoup plus important que celui de l'électrode (250 cm3). Des phénomènes de convection, engendrés par un gradient de température dans la profondeur de l'électrode sont ainsi à priori exclus.

Afin de vérifier que le transport de fer métallique n'est effectué que par diffusion, des quantités différentes de fer métallique seront déposées à la surface de l'électrode. Le transport n'est effectué que par diffusion (selon l'équation (4)) que si le même coefficient de diffusion est obtenu par ajustement de la courbe simulée sur les points expérimentaux quelle que soit la quantité de matière déposée à la surface de l'électrode (quel que soit le couple (C_{Fe}^0, h)).
La totalité de la quantité de fer, déposée sur la surface de l'électrode de Pb-Bi, doit diffuser dans l'électrode. En effet, la quantité de fer insérée dans l'électrode n'est connue qu'en supposant qu'elle est égale à la quantité de fer déposée par réduction à la surface de l'électrode de Pb-Bi. Si une partie diffuse dans sel, la détermination du coefficient de diffusion n'est plus possible puisque la quantité effectivement insérée C_{Fe} n'est pas connue.

Afin de vérifier que tout le fer déposé diffuse au sein de l'électrode, des dépôts consécutifs de fer peuvent être effectués sur la même électrode de Pb-Bi jusqu'à atteinte de la limite de solubilité du fer dans l'alliage Pb-Bi. La quantité cumulée de fer déposé à la surface de l'électrode, jusqu'à saturation en fer de l'électrode de Pb-Bi, peut ensuite être comparée à la limite de solubilité du fer dans Pb-Bi (voir paragraphe 2.2).

Nous considérerons que tout le fer déposé diffuse dans l'électrode de Pb-Bi si la quantité de fer déposée à la surface de l'électrode jusqu'à saturation est égale à la valeur de la limite de solubilité du fer dans l'alliage Pb-Bi donnée par la littérature (1.5×10^{-7} mol/cm3, à 450°C [60][59]).

Dans le cas contraire, une partie du fer déposé diffuse dans l'électrolyte au lieu de diffuser dans l'électrode de Pb-Bi et la technique ne peut pas être validée.

Cette technique expérimentale permet ainsi, à la fois de mesurer le coefficient de diffusion du fer dans Pb-Bi et de vérifier les mesures de limite de solubilité proposées dans la littérature.

Le coefficient d'activité du fer dans l'alliage Pb-Bi doit être déterminé puisque la concentration en fer à la surface de l'électrode est liée au potentiel de l'électrode de Pb-Bi par l'intermédiaire de son coefficient d'activité. Par ailleurs, la quantité de fer déposée à la surface de l'électrode est une quantité connue, contrôlée par l'expérimentateur et qui correspond à une quantité de matière en mole. Afin de lier la quantité de matière déposée à l'activité du fer, le coefficient d'activité du fer doit être évalué (et doit être le même pour chaque expérience).

Suite aux considérations précédentes, la technique de mesure du coefficient de diffusion du fer dans Pb-Bi est validée si et seulement si :

- Le coefficient d'activité du fer est déterminé avec reproductibilité.
- Tout le fer déposé diffuse dans l'électrode de Pb-Bi. Cette hypothèse sera validée si la mesure de la limite de solubilité du fer dans Pb-Bi est reproductible et concorde avec les données de la littérature.
- Le transport du fer est régi uniquement par un phénomène de diffusion.

Les limitations et les performances de l'expérience étant présentées, le détail de l'expérimentation peut être explicité.

2.2. Mesure de la limite de solubilité du fer dans Pb-Bi

Plusieurs dépôts de fer peuvent être réalisés les uns à la suite des autres. Après chaque dépôt, le potentiel de l'électrode de Pb-Bi est suivi au cours du temps. Ainsi, une valeur du coefficient de diffusion du fer dans l'alliage Pb-Bi peut être obtenue pour chaque dépôt. Ces différentes déterminations témoigneront de la reproductibilité de l'expérience.

Le potentiel d'équilibre de l'électrode de Pb-Bi après chaque insertion de fer s'exprime par la relation de Nernst :
\[E_{\text{Pb-Bi}/\text{Fe}}^{\text{équilibre}} = -\frac{RT}{2F} \ln[Fe^{\text{équilibre}}_{\text{Pb-Bi}}] - \frac{RT}{2F} \ln \gamma_{\text{Fe}} \] (partie D de la courbe Figure 140) \hspace{1cm} (5)

Au fur et à mesure des dépôts successifs, le potentiel de l'électrode diminue suite à l'augmentation de la quantité de fer insérée. Cette diminution est linéaire par rapport au logarithme de la concentration en fer inséré dans l'électrode depuis le début de l'expérience (équation (5)) si la concentration de fer initialement présente dans l'alliage Pb-Bi (due aux impuretés de fabrication du Pb-Bi) est nulle. Dans ce cas le coefficient d'activité du fer \(\gamma_{\text{Fe}} \) est obtenu par la constante à l'origine de la droite \(E_{\text{Pb-Bi}/\text{Fe}}^{\text{équilibre}} = f(\ln[Fe^{\text{équilibre}}_{\text{Pb-Bi}}]) \).

En revanche, si les impuretés en fer sont présentes en quantité non négligeable au sein de l'électrode de Pb-Bi avant le commencement de l'expérience, l'activité en fer, présente dans l'électrode de Pb-Bi à l'équilibre, peut s'écrire :

\[a^{\text{équilibre}}_{\text{Fe}} = \exp\left(-\frac{RT}{2F} E_{\text{Pb-Bi}/\text{Fe}}^{\text{équilibre}}\right) = \gamma_{\text{Fe}}[Fe^{\text{inséré}}] + \gamma_{\text{Fe}}[Fe^{\text{impureté}}]. \] \hspace{1cm} (6)

L'activité obtenue via le potentiel de l'électrode de Pb-Bi à l'équilibre peut être tracée en fonction de la concentration en fer métallique inséré dans l'alliage Pb-Bi depuis le début de l'expérience (relation (6)). La droite reliant l'activité en fer à la concentration en fer a pour coefficient directeur, le coefficient d'activité du fer dans l'alliage Pb-Bi et pour constante à l'origine, l'activité en fer due aux impuretés de fabrication de l'alliage Pb-Bi.

Les deux constantes, coefficient d'activité du fer et concentration de fer en impureté, peuvent ainsi être obtenues.

Pour les différentes expériences réalisées, le coefficient d'activité du fer dans Pb-Bi doit rester constant, en revanche la concentration en impureté peut changer fortement d'une expérience à l'autre. C'est pourquoi les courbes \(E_{\text{Pb-Bi}/\text{Fe}}^{\text{équilibre}} = f(\ln[Fe^{\text{équilibre}}_{\text{Pb-Bi}}]) \) obtenues par différentes expériences n'ont pas nécessairement la même pente.

La limite de solubilité du fer correspond à la quantité de fer inséré jusqu'à ce que le potentiel d'équilibre de l'électrode de Pb-Bi ne varie plus suite aux insertions successives de fer dans l'électrode. Aussi, après atteinte de la limite de solubilité du fer dans l'électrode, le potentiel de l'électrode de Pb-Bi peut suivre deux types de réponse :

- Le fer, ne pouvant plus diffuser dans le volume de l'électrode de Pb-Bi saturé, reste en fine couche continue à la surface de l'électrode. Le potentiel de l'électrode de Pb-Bi est alors nul et ne varie plus, même à la suite d'autres dépôts de fer à la surface de l'électrode.

- Le fer, ne pouvant plus diffuser dans l'alliage Pb-Bi saturé, diffuse dans le sel fondu et le potentiel d'équilibre de l'électrode de Pb-Bi ne varie plus à la suite d'autres dépôts de fer. Il reste constant et égal à celui correspondant à la saturation en fer dans l'alliage Pb-Bi.

Quelle que soit le type réponse du potentiel de l'électrode de Pb-Bi, la limite de solubilité est obtenue graphiquement. En effet, elle correspond au point de changement de pente de la droite expérimentale \(E_{\text{Pb-Bi}/\text{Fe}}^{\text{équilibre}} = f(\ln[Fe^{\text{équilibre}}_{\text{Pb-Bi}}]) \) qui devient constante ou nulle à l'atteinte de la saturation.

La détermination de la limite de solubilité est une étape primordiale dans la mesure du coefficient de diffusion du fer dans Pb-Bi. En effet, la validation de cette première étape permet d'assurer que l'intégralité du fer déposé à la surface de l'électrode diffuse dans le volume de Pb-Bi.
3. Montage expérimental et précautions préliminaires à l'expérience

3.1. Le montage expérimental

Les mesures potentiométriques ont été réalisées avec l'aide d'un potentiostat-galvanostat EG&G Princeton Applied Research de modèle 273 couplé à un ordinateur. Une cellule électrochimique classique (Figure 142) est utilisée dans le cadre d'un montage électrochimique à trois électrodes :
- une électrode de travail à nappe de Pb-Bi,
- une électrode auxiliaire en fer,
- une électrode de référence qui change au cours de l'expérience : dans les premiers temps le potentiel de référence est fixé par le couple Ag/Ag⁺ puis par le couple Fe/Fe²⁺.

Les essais électrochimiques sont réalisés dans un réacteur en pyrex (Figure 142) sous balayage d'argon U purifié en oxygène par passage à travers une cartouche OXISORB fixant les impuretés en oxygène du gaz.

Figure 142 : Cellule électrochimique. Trois électrodes sont immergées dans un sel fondu LiCl-KCl : deux électrodes constituées d'un fil de fer (électrode auxiliaire et électrode de référence) et une électrode à nappe de Pb-Bi (électrode de travail) dont le contact à l'appareillage électrochimique est assuré par un fil de tungstène gainé par un tube en pyrex.

Le matériel de chauffage de la cellule est un four pyrox. Le suivi de la température est assuré par un thermocouple de régulation, de type K, situé au niveau du four et un thermocouple de mesure, de type K, immergé dans le sel fondu et protégé par un doigt de gant en pyrex. La cellule électrochimique admet huit passages étanches permettant l'insertion des différentes électrodes tout en conservant une atmosphère de cellule inerte, non polluée par l'oxygène environnant.

3.1.1. L'électrode à nappe de plomb bismuth liquide

L'électrode à nappe de Pb-Bi liquide est constituée d'un petit bécher de pyrex, d'un volume d'environ 1,5 cm³, dans lequel des petits lingots d'alliage Pb-Bi sont déposés. L'insertion de ce
bêcher dans la cellule fait fondre les lingots. Ainsi la fonte du métal liquide est effectuée sous argon. Le contact électrique est assuré par un fil de tungstène rectifié, isolé par une gaine de pyrex soudée en extrémité basse pour éviter les échanges entre le métal liquide et l’atmosphère environnante.

3.1.2. L’électrode auxiliaire

L’électrode auxiliaire, est constituée d'un fil de fer. L'intérêt d'utiliser une électrode non inerte est de maintenir constante la composition de l’électrolyte lors d’une réduction d’ions fer (II) à la surface de l’électrode de Pb-Bi. En effet, la réduction d’ions fer (II) à la cathode de Pb-Bi entraîne une oxydation à l’anode. L’intérêt d'utiliser une anode en fer est de compenser exactement la perte en ions fer (II), consommés à la cathode, par un gain en ions fer (II), dû à l'oxydation de l'anode. Aussi, la concentration en ions fer (II) est constante dans le sel au cours de l'expérience.

3.1.3. Les électrodes de référence: Ag/AgCl et Fe/FeCl₂

A début de l'expérience, l'électrode de référence est une électrode Ag/AgCl (Figure 143). Elle est constituée d'un fil d'Ag plongeant dans une solution tampon d'un sel LiCl-KCl-AgCl (proportions eutectoïde pour le sel avec 0,75 mol.kg⁻¹ de chlorure d'argent).

Nous considérerons que le sel est une solution idéale dans laquelle l'activité des espèces en solution est égale à leur molalité et que le potentiel standard du couple Ag/Ag⁺, \(E^o(\text{Ag}+/\text{Ag}) \), est égal à -1,033V \(^{[15]}\) par rapport à une électrode normale à chlore Cl₂ (1atm)/Cl⁻. Le couple Ag/Ag⁺ fixe donc, à 450°C, le potentiel de cette électrode de référence à -1,051 V par rapport au système Cl₂ (1atm)/Cl⁻.

Pour empêcher une pollution de la totalité de l'électrolyte LiCl-KCl par les ions Ag (I), le mélange de référence Ag/AgCl-LiCl-KCl est contenu dans un doigt de gant en pyrex. La conduction ionique, à haute température (au-delà de 350°C), du pyrex est suffisante pour conduire le courant ionique tout en isolant matériellement le mélange.

Pour des questions de simplicité, une électrode de référence Fe/Fe²⁺ est utilisée dans la suite de l'expérience.

En effet, nous avons souligné précédemment que la concentration en ions fer (II) ne change pas au cours de l'expérience par l'utilisation d'une électrode auxiliaire en fer (voir paragraphe 3.1.2). Un
fil de fer plongeant dans le mélange électrolytique contenant cette concentration constante d'ion fer (II) possède un potentiel fixe et constitue ainsi une deuxième électrode de référence.

L'utilisation de l'électrode Ag/AgCl dans les premiers temps permet de déterminer la quantité d'ions Fe²⁺ à ajouter, sous forme de FeCl₂, à l'électrolyte LiCl-KCl. Cette quantité d'ions ferreux introduite doit être d'une part suffisamment importante pour que le potentiel de l'électrode de référence reste stable au cours de la manipulation et d'autre part suffisamment basse pour qu'initialement le potentiel de l'électrode de Pb-Bi soit positif par rapport à l'électrode de fer. Dans le cas contraire, une réduction spontanée des ions ferreux se produit, de manière totalement incontrôlable, à la surface de l'électrode de Pb-Bi. Ce phénomène fait l'objet du paragraphe suivant.

3.2. Précautions préliminaires à l'expérience

Quelques précautions préliminaires à l'expérience doivent être entreprises :

- Le principe de l'expérience repose sur la réalisation d'une réduction contrôlée d'ions fer (II) à la surface de l'électrode de Pb-Bi. Aussi, le potentiel de l'électrode de Pb-Bi doit initialement être plus oxydant que celui de réduction du fer (II) en fer métallique. Pour cela, le potentiel de l'électrode de Pb-Bi doit être simplement supérieur à celui de l'électrode de fer immergée dans le même sel. La quantité de chlorure de fer, FeCl₂, à ajouter au sel, doit être telle que le potentiel de l'électrode de Pb-Bi reste toujours supérieur à celui de l'électrode de fer.

- Une purification des deux milieux, sel et métal liquide doit être réalisée avec une grande précaution. En effet le Pb-Bi peut être chargé en impuretés et notamment en oxygène dont la limite de solubilité est bien supérieure à celle du fer. Si le fer métallique déposé à la surface de l'électrode réagit avec l'oxygène présent dans l'alliage Pb-Bi, le fer inséré va, en premier lieu, titrer l'oxygène présent avant de pénétrer sous forme métallique au sein de l'électrode. Dans ce cas, la mesure de la limite de solubilité du fer dans Pb-Bi est surestimée de plus d'un ordre de grandeur par rapport à la valeur proposée par la littérature. Le profil de diffusion du fer ne peut non plus être simulé car le fer diffuse sous forme d'oxyde. L'évolution de l'activité en fer métallique à la surface de l'électrode de Pb-Bi ne correspond plus à une simple cinétique diffusionnelle mais aussi à une cinétique de réaction Fe°+O=Fe-O. Le sel LiCl-KCl doit pareillement être purifié en ions oxyde afin de ne pas polluer l'électrode de Pb-Bi à son contact.

Ces différentes précautions sont détaillées dans les paragraphes suivants.

3.2.1. Quantité de FeCl₂ ajoutée

Le dépôt de fer métallique à la surface de l'électrode de Pb-Bi n'est possible que si le potentiel de l'électrode de Pb-Bi est supérieur à celui d'une électrode de fer, en équilibre avec des ions fer (II) dissous dans le sel. En effet, dans le cas contraire, les ions Fe (II) ajoutés sous forme de FeCl₂ dans le sel se réduisent spontanément et de manière incontrôlable à la surface de l'électrode de Pb-Bi jusqu'à saturation de l'électrode en fer métallique.

Avant ajout de FeCl₂, le potentiel de l'électrode de Pb-Bi est de l'ordre de -0,5/-0,6V par rapport à l'électrode de référence Ag/Ag⁺. Ce potentiel est à priori fixé par le couple Pb/PbO car le potentiel
standard du couple Pb/Pb\(^{2+}\) est de l'ordre de -0,374V \(^{[15]}\) par rapport à l'électrode de référence Ag/Ag\(^+\) alors que celui du couple Bi/Bi\(^{3+}\) est égal à 0,087V. Le potentiel de l'électrode de fer est légèrement inférieur à celui de l'électrode de Pb-Bi, sa valeur est certainement fixée par le couple Fe/Fe\(_3\)O\(_4\) car une fine pellicule d'oxyde natif recouvre la surface de l'électrode. En effet la valeur du potentiel avant tout ajout de FeCl\(_2\) dans le sel est proche de celle de son potentiel standard égal à -0,445V \(^{[15]}\) par rapport à l'électrode de référence Ag/Ag\(^+\). La valeur des potentiels des deux électrodes est représentée sur le schéma (I) de la Figure 144.

Figure 144 : Détermination de la quantité de FeCl\(_2\) à insérer dans le sel avant expérimentation. (I) Avant ajout de FeCl\(_2\) les potentiels de l'électrode de Fe et de l'électrode de Pb-Bi sont inférieurs à -0,445V et -0,374V respectivement. Ces valeurs correspondent à leur potentiel standard par rapport à une électrode de référence Ag/AgCl. (II) L'ajout de FeCl\(_2\) doit être calculé de sorte que le potentiel de l'électrode de fer reste inférieur à celui de l'électrode de Pb-Bi (cas A). Dans le cas contraire (cas B) le FeCl\(_2\) dissous se réduit spontanément, de manière incontrôlée à la surface de l'électrode de Pb-Bi.

Lorsque l'ajout de FeCl\(_2\) est effectué, le potentiel de l'électrode de fer va augmenter suivant la loi de Nernst :

\[
E_{Fe/Ag} = E_{Fe^{2+}/Fe}^0 + \frac{RT}{2F} \ln[FeCl_2].
\]

En revanche le potentiel de l'électrode de Pb-Bi n'évolue pas lors de l'ajout de FeCl\(_2\) car son potentiel initial est fixé par le couple PbO/Pb. La quantité de FeCl\(_2\) ajoutée doit donc être calculée en fonction des potentiels des deux électrodes de telle sorte à ce que le potentiel de l'électrode de Pb-Bi reste supérieur à celui de l'électrode de fer.

Cependant, après le premier dépôt de fer à la surface de l'électrode de Pb-Bi, le potentiel de cette électrode n'est plus fixé par le couple Pb/PbO mais par le couple Fe/Fe\(^{2+}\). Une augmentation de potentiel de l'électrode de Pb-Bi est d'ailleurs souvent observée après le premier dépôt de fer à sa surface.

3.2.2. Purification de l'alliage Pb-Bi

La présence d’oxygène dans l’eutectique Pb-Bi, perturbe fortement la reproductibilité et la fiabilité des mesures électrochimiques, comme il a été précisé précédemment.
Afin de limiter la teneur en oxygène présent dans le système électrochimique, il est nécessaire d’utiliser un alliage liquide Pb-Bi initialement très pur. Les petits lingots de Pb-Bi utilisés pour l'électrode de Pb-Bi, doivent être purifiés, avant insertion dans le sel fondu LiCl-KCl. Cette purification est réalisée par le suivi d'une procédure de prélèvement des lingots sous atmosphère contrôlée. Pour cela, un volume de Pb-Bi est chauffé à 200°C dans un becher exposé à l’atmosphère d’argon de la boîte à gants. Une fois totalement fondu, la plus grande partie du PbO solide, surnageant à la surface, est retirée par écrémage de l'alliage Pb-Bi. Des échantillons d'alliage Pb-Bi sont alors prélevés et stockés en boîte à gant.

Lors de l'expérimentation, ces petits lingots sont disposés dans le récipient en pyrex constitutif de l'électrode de Pb-Bi. Ils sont fondues en quelques secondes, sous argon, dans la cellule électrochimique, puis introduits dans le sel à 450°C. On peut considérer ainsi que la quantité d'oxygène dissous dans l'alliage Pb-Bi n'a pas beaucoup augmenté entre l'étape de prélèvement et l'étape d'insertion dans le sel. La concentration en oxygène dans Pb-Bi est alors de l'ordre de 10^{-5} at %, correspondant à sa limite de solubilité à 200°C.

Une expérience a été réalisée avec des lingots d'alliage Pb-Bi purifié par un balayage gazeux d'un mélange Ar-H₂ (5%) (fourni par la société Messer) faisant chuter la teneur en oxygène à moins de 10^{-13} at % dans l'alliage Pb-Bi. La limite de solubilité du fer à 450°C étant de l'ordre de 10^{-4} at %, on peut considérer que la concentration en oxygène présente dans le Pb-Bi liquide ne perturbera que très peu la détermination de la limite de solubilité du fer dans Pb-Bi si l'électrode de Pb-Bi. Cette perturbation peut, en revanche être très importante si l'électrode de Pb-Bi se charge en oxygène au cours des manipulations.

3.2.3. Purification de LiCl-KCl (voir Annexe 5)

Ces mesures électrochimiques nécessitent une très faible teneur en ions oxyde dans l’électrolyte. En effet les ions oxyde peuvent réagir avec la surface des électrodes métalliques et avec les ions métalliques, incorporés dans le sel pour les besoins expérimentaux. Ces réactions peuvent parasiter les mesures ou empêcher les expérimentations. Afin de réduire la concentration en ions oxyde dans le sel fondu, deux méthodes de purification du sel ont été utilisées :
− La méthode traditionnelle impliquant un bullage d’HCl pur gazeux. Ce procédé est délicat à mettre en place en raison des exigences de sécurité. De plus il conduit à ne faire diminuer que d'un facteur 100 la teneur en ions oxyde présents dans le sel fondu sous argon.
− C’est pourquoi une technologie différente a été développée. Celle-ci consiste en un titrage des ions oxyde du sel par une série d’ajouts contrôlés d’ions aluminium (III). Cette méthode de titrage permet un piégeage durable des ions oxyde par la formation d’un précipité d’alumine insoluble dans le sel.

Cette méthode de purification par l'aluminium a été validée par l'expérience : il y a formation d’un précipité Al₂O₃ stable et insoluble dans le sel, pour des teneurs initiales en ions oxyde dissociés dans le sel encadrant la valeur initiale moyenne de la concentration en ions oxyde dans le sel LiCl-KCl fondu sous argon à 450°C.

Cette technique de titrage présente un intérêt à la fois théorique et pratique :
− théorique par l’identification des composés formés au cours du titrage et la détermination de leur constante de réaction de dissociation en milieu sels fondues ;
pratique par la simplicité de mise en œuvre et d'utilisation, la faible durée de l'étape de purification et sa très grande efficacité. En effet cette purification permet de réduire la molalité des ions oxyde de 10^{-3} mol/kg avant purification à environ 10^{-8} mol/kg après précipitation de l’alumine.

Le détail de cette technique est présenté en Annexe 5.

4. Résultats expérimentaux et discussion

4.1. Mesure de la limite de solubilité

Dans un premier temps les expériences ont été réalisées à 450°C. Dix expériences sont présentées dans cette annexe, dont 5 (numéros 6, 7, 8, 9, 10) ont été réalisées dans le cadre de stages de troisième cycle 126127.

Entre chaque dépôt de fer, la diffusion totale de fer dans l’électrode de Pb-Bi est attendue. Elle correspond à l’atteinte du potentiel d’équilibre de l’électrode de Pb-Bi (Figure 145).

![Figure 145 : Potentiel à courant nul après chaque dépôt de fer métallique à la surface de l’électrode de Pb-Bi. Expérience n°5.](image)

Après chaque dépôt de fer, le potentiel de l’électrode de Pb-Bi, par rapport à l’électrode de fer, est suivi au cours du temps, jusqu’à atteinte de l’équilibre. Le potentiel d'équilibre est alors représenté en fonction du logarithme de la quantité cumulée de fer inséré dans l’électrode de Pb-Bi, depuis le début de l'expérience (Figure 146).

Comme il a été précisé précédemment, selon la relation (5), ce potentiel d’équilibre $E_{Pb-Bi/Fe}$ est relié à la quantité de fer inséré $Log([Fe^0]_{ajouté})$ par une relation affine dont la pente théorique est
égale à \(-2,3 \frac{RT}{2F}\) si la teneur en fer due aux impuretés de l'alliage Pb-Bi avant expérience est négligeable :

\[
E_{\text{équilibre}}^{\text{Pb-Bi}/\text{Fe}} = -\frac{RT}{2F} \ln\left([\text{Fe}^{\circ}]_{\text{Pb-Bi}} + [\text{Fe}^{\circ}]_{\text{impuretés}}\right) - \frac{RT}{2F} \ln \gamma_{\text{Fe}}
\]

A 450°C, cette pente a pour valeur \(-0,072\) V.

Les résultats obtenus à la suite des réductions successives sur l'électrode à nappe de Pb-Bi sont représentés Figure 146, pour l'ensemble des expériences réalisées dans cette étude et dans les stages de troisième cycle \([126][127]\).

![Figure 146](image)

Figure 146 : Potentiels d'équilibre après chaque dépôt de fer en fonction de la quantité de fer ajouté au cours de l'expérience. Dix expériences sont représentées. Chaque expérience est identifiable par un numéro (de 1 à 10).

Sur les dix expériences présentées sur la Figure 146, seules deux présentent une pente correspondant à la valeur attendue de \(-0,072\) V.

Trois groupes coexistent :
- pour certaines expériences les pentes sont plutôt de l'ordre de \(-0,17\) V (expériences 7 et 9, droites en pointillés sur la Figure 146),
- pour un deuxième groupe la pente est la valeur attendue à 450°C, \(0,072\) V (expériences 1 et 10 en trait noir épais sur la Figure 146),
- pour un troisième groupe, les pentes sont de l'ordre de 0,01-0,02 (expériences 2, 3, 4, 5, 6 en trait noir fin sur la Figure 146).
La valeur de la pente n'étant à la fois ni reproductible ni égale à la valeur attendue, une quantité de fer, différente et non négligeable, peut être présente, au sein de l'électrode de Pb-Bi, avant chaque expérimentation. Cette quantité peut être déterminée à l'aide de la relation (6) :

\[
a_{Fe}^{équilibre} = \exp\left(-\frac{RT}{2} E_{Pb-Bi/Fe}^{équilibre}\right) = \gamma_{Fe}[Fe^0]_{inséré} + \gamma_{Fe}[Fe^0]_{impureté}
\]

Nous pouvons tracer la droite représentant l'activité de fer à l'équilibre, après chaque dépôt de fer, en fonction de la quantité cumulée de fer déposé à la surface de l'électrode. La constante à l'origine de cette droite permet de déterminer la concentration en impureté de fer présente initialement dans l'électrode de Pb-Bi avant la première insertion de fer. Le coefficient directeur de la droite est égal au coefficient d'activité du fer dans l'alliage Pb-Bi.

Ces droites sont représentées sur la Figure 147, pour les dix expériences citées précédemment.

![Graphique des activités du fer dans l'électrode de Pb-Bi en fonction de la quantité de fer insérée. Les dix expériences sont représentées (numérotées de 1 à 10).](image)

Figure 147 : Activité du fer dans l'électrode de Pb-Bi en fonction de la quantité de fer insérée. Les dix expériences sont représentées (numérotées de 1 à 10).

A l'aide du graphique de la Figure 147 les coefficients d'activités du fer et la concentration en impureté de fer, présente initialement dans l'électrode de Pb-Bi, sont calculés pour chaque expérience. Les résultats de ces calculs sont rassemblés dans le Tableau 30.
Tableau 30 : détermination des coefficients d'activité du fer dans Pb-Bi et de la teneur en fer métallique présent initialement dans l'alliage Pb-Bi. Ces quantités sont obtenues à partir des points expérimentaux de la Figure 147.

<table>
<thead>
<tr>
<th>N° d'expérience</th>
<th>Méthode de purification du sel</th>
<th>première droite</th>
<th>deuxième droite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>γ_{Fe} (cm3/mol)</td>
<td>$[Fe^0]_{initial}$ (mol/cm3)</td>
</tr>
<tr>
<td>1 (435°C)</td>
<td>HCl</td>
<td>891124</td>
<td>-4x10^{-9}</td>
</tr>
<tr>
<td>2 (450°C)</td>
<td>HCl</td>
<td>152713</td>
<td>2x10^{-6}</td>
</tr>
<tr>
<td>3 (450°C)</td>
<td>HCl</td>
<td>169824</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>4 (450°C)</td>
<td>HCl</td>
<td>108073</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>5 (450°C)</td>
<td>HCl</td>
<td>20901</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>6 (450°C)</td>
<td>Al [127]</td>
<td>21966</td>
<td>5x10^{-6}</td>
</tr>
<tr>
<td>7 (400°C)</td>
<td>Al [126]</td>
<td>200000</td>
<td>-8x10^{-9}</td>
</tr>
<tr>
<td>8 (480°C)</td>
<td>Al [126]</td>
<td>516615</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>9 (450°C)</td>
<td>Al [126]</td>
<td>692397</td>
<td>6x10^{-7}</td>
</tr>
<tr>
<td>10 (450°C)</td>
<td>Al [126]</td>
<td>779229</td>
<td>-3x10^{-7}</td>
</tr>
</tbody>
</table>

Dans-ce-cas,-la-rupture-de-pente-correspond-à-l'atteinte-de-la-limite-de-solubilité-du-fer-dans-l'électrode-de-Pb-Bi. La-valeur-de-la-limite-de-solubilité-obtenue-par-intersection-entre-les-deux-droites,-correspondant-l'une-à-la-droite-d'insertion-de-fer-et-l'autre-à-la-droite-de-saturation-en-fer,-est-égale-à-environ-4x10^{-6}-mol/cm3-pour-l'expérience-5-et-7,6x10^{-6}-mol/cm3-pour-l'expérience-6. Ces-valeurs-sont-nettement-supérieures-à-la-valeur-proposée-par-la-littérature:-1,5x10^{-7}-mol/cm3-

[60][59].

Pour-les-autres-expériences-aucun-changement-de-pente-n'a-été-observé-sachant-qu'à-chaque-fois-la-quantité-de-fer-insérée-a-largement-dépassé-la-limite-de-solubilité-attendue.

Cependant-pour-les-quatre-dernières-expériences-(7,-8,-9,-10),-l'activité-finale-du-fer-dans-l'électrode-de-Pb-Bi-est-égale-à-1-(Figure-147). Cette-valeur-de-l'activité-du-fer-traduit-la-présence-d'une-couche-continue-de-fer-métallique-à-la-surface-de-l'électrode. En-effet,-à-l'atteinte-de-la-limite-de-solubilité,-la-couche-de-fer-métallique-déposée-à-la-surface-de-l'électrode,-ne-pouvant-plus-diffuser-dans-l'électrode-de-Pb-Bi,-peut- rester-à-la-surface-de-l'électrode-sans-diffuser-dans-le-sel. La-saturation-en-fer-est-donc-obtenue-lorsque-l'activité-de-fer-à-l'équilibre-est-juste-inférieure-à-1. Ceci-correspond-aux-valeurs-4x10^{-8},-4x10^{-7},-1,2x10^{-6}-et-6,6x10^{-7}-mol/cm3-pour-les-expériences-n°-7,-8,-9-et-10.

Dans-ce-cas,-la-rupture-de-pente-correspond-à-l'atteinte-de-la-limite-de-solubilité-du-fer-dans-l'électrode-de-Pb-Bi. La-valeur-de-la-limite-de-solubilité-obtenue-par-intersection-entre-les-deux-droites,-correspondant-l'une-à-la-droite-d'insertion-de-fer-et-l'autre-à-la-droite-de-saturation-en-fer,-est-égale-à-environ-4x10^{-6}-mol/cm3-pour-l'expérience-5-et-7,6x10^{-6}-mol/cm3-pour-l'expérience-6. Ces-valeurs-sont-nettement-supérieures-à-la-valeur-proposée-par-la-littérature:-1,5x10^{-7}-mol/cm3-[60][59].

Pour-les-autres-expériences-aucun-changement-de-pente-n'a-été-observé-sachant-qu'à-chaque-fois-la-quantité-de-fer-insérée-a-largement-dépassé-la-limite-de-solubilité-attendue.

Cependant-pour-les-quatre-dernières-expériences-(7,-8,-9,-10),-l'activité-finale-du-fer-dans-l'électrode-de-Pb-Bi-est-égale-à-1-(Figure-147). Cette-valeur-de-l'activité-du-fer-traduit-la-présence-d'une-couche-continue-de-fer-métallique-à-la-surface-de-l'électrode. En-effet,-à-l'atteinte-de-la-limite-de-solubilité,-la-couche-de-fer-métallique-déposée-à-la-surface-de-l'électrode,-ne-pouvant-plus-diffuser-dans-l'électrode-de-Pb-Bi,-peut- rester-à-la-surface-de-l'électrode-sans-diffuser-dans-le-sel. La-saturation-en-fer-est-donc-obtenue-lorsque-l'activité-de-fer-à-l'équilibre-est-juste-inférieure-à-1. Ceci-correspond-aux-valeurs-4x10^{-8},-4x10^{-7},-1,2x10^{-6}-et-6,6x10^{-7}-mol/cm3-pour-les-expériences-n°-7,-8,-9-et-10.
Pour conclure, 6 expériences aboutissent à une détermination de la limite de solubilité. Les limites de solubilité mesurées sont regroupées dans le tableau suivant.

<table>
<thead>
<tr>
<th>N° d'expérience</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>[60] [59]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limite de solubilité (mol/cm³)</td>
<td>4x10⁻⁶</td>
<td>7,6x10⁻⁶</td>
<td>4x10⁻⁸</td>
<td>4x10⁻⁷</td>
<td>1,2x10⁻⁶</td>
<td>6,6x10⁻⁷</td>
<td>1,5x10⁻⁷</td>
</tr>
</tbody>
</table>

Tableau 31 : limites de solubilités mesurées et données de la littérature.

Plus d’un ordre de grandeur sépare les valeurs extrêmales mesurées. La reproductibilité de la technique n’est donc pas vérifiée, quelle que soit la méthode de purification du sel utilisée (voir Tableau 2).

Cependant, sachant que la limite de solubilité attendue à 450°C est de l’ordre de 1,5x10⁻⁷ mol/cm³, un excès apparent de fer a été inséré dans l’électrode pour chaque expérience. Cet excès de fer peut être interprété de deux manières différentes que nous discuterons ultérieurement.

Le Tableau 30 regroupe les différents coefficients d'activité du fer dans Pb-Bi obtenus pour les 10 expériences.

![Figure 148](image)

Figure 148 : Coefficient d’activité du fer dans Pb-Bi pour chaque expérience obtenu par la relation (6) et la Figure 147. Le coefficient d’activité du fer est représenté en échelle logarithmique.

Les coefficients d'activité du fer dans Pb-Bi regroupés dans le Tableau 30 sont présentés sur le graphique de la Figure 148. Ce graphique met en évidence la non reproductibilité de l'expérience : pas plus de deux expériences ont des coefficients d'activité similaires et deux ordres de grandeurs séparent les coefficients les plus éloignés.

Ces expériences ne permettent donc ni de déterminer la limite de solubilité du fer dans Pb-Bi (et donc de valider la technique de détermination du coefficient de diffusion) ni de mesurer le coefficient d'activité du fer dans l'alliage Pb-Bi.
Le non fonctionnement de la technique et la non reproductibilité des résultats peuvent être dus à deux types de phénomènes dont la conséquence est l'observation de l'excès apparent de fer pénétrant dans l'électrode :

- Le fer déposé sur l'électrode de Pb-Bi diffuse dans l'électrode mais réagit avec les impuretés présentes dans l'alliage liquide.
- Une partie du fer déposé diffuse dans le sel LiCl-KCl tandis qu'une autre diffuse dans l'alliage liquide Pb-Bi.

Chacune de ces deux causes peut être discutée plus en détail.

4.2. Titrage des impuretés de l'alliage Pb-Bi par ajout de fer métallique

L'expérience n° 5 présente une rupture de pente pour la droite $E^{équilibre}_{Pb-Bi/Fe} = f(\log[Fe^o]_{ajouté})$ (Figure 146). La première partie de la courbe correspond à l'insertion de fer alors que la deuxième partie de la courbe correspond à une lente dérive de potentiel alors que l'activité de fer reste constante dans l'électrode.

La première partie de la courbe, représentant le potentiel d'équilibre de l'électrode de Pb-Bi après chaque ajout de fer en fonction de la concentration en fer ajoutée, présente une évolution similaire à celle d'un titrage (Figure 149).

![Figure 149](image)

Figure 149 : Expérience n°5. Potentiel d'équilibre de l'électrode de Pb-Bi après chaque dépôt de fer en fonction de la concentration en fer métallique ajouté au sein de l'électrode.

Le fer déposé à la surface de l'électrode de Pb-Bi peut en effet réagir avec les différentes impuretés présentes dans l'alliage Pb-Bi. Le titrage par le fer des différentes impuretés peut expliquer la non reproductibilité des résultats de limite de solubilité et la non saturation de l'électrode de Pb-Bi même après une importante quantité de fer déposée à la surface de l'électrode.

De nombreuses impuretés peuvent, en effet, réagir avec le fer afin de former des précipités inter métalliques ou des oxydes.
En supposant une mauvaise purification préalable de l'alliage Pb-Bi ou une pollution de l'alliage lors des manipulations, la teneur en oxygène dans l'électrode de Pb-Bi peut atteindre sa limite de solubilité à 450°C : 2x10^{-6} mol/cm^3 (voir Chapitre I). Le titrage de l'oxygène par le fer déposé à la surface de l'électrode de Pb-Bi nécessite dans ce cas un apport de fer de 1,5x10^{-6} mol/cm^3 pour atteindre le point d'équivalence, dans le cas de la formation d'un précipité de magnétite (oxyde de fer le plus stable à cette température).

Si la courbe de la Figure 149 correspond à une réaction de titrage, le point d'équivalence se produit pour une teneur en fer ajouté égale à environ 2x10^{-6} mol/cm^3. Cette valeur est en accord avec les 1,5x10^{-6} mol/cm^3 nécessaires pour atteindre le point d'équivalence dans le cas d'une formation de magnétite.

En supposant une précipitation de magnétite, la différence de potentiel entre le début et la fin du titrage peut être calculée.

Considérons que la teneur en oxygène soit celle à saturation dans l'alliage Pb-Bi à 450°C, ce qui correspond à 2x10^{-6} mol/cm^3. Cette teneur correspond à une pression partielle d'oxygène en équilibre au dessus de l'alliage liquide égale à 3,5x10^{-20} atm. Supposons la formation de la magnétite selon les deux réactions suivantes :
- 3Fe+2O_2=Fe_3O_4 dont la constante d'équilibre K est égale à 2x10^{63} à 450°C.
- 3Fe+4O_{dissous}=Fe_3O_4 dont la constante d'équilibre est notée K'.

Au début du titrage, tout le fer réagit avec l'oxygène dissous dans l'alliage Pb-Bi pour former la magnétite. Le potentiel de l'électrode de Pb-Bi peut s'écrire :

\[E_{\text{Pb-Bi}}^{\text{i}} = \frac{RT}{2F} \ln K + \frac{RT}{2F} \ln \gamma_{Fe^2+}^{\text{i}} \]

A la fin du titrage, tout l'oxygène a été consommé pour former la magnétite et un excès de fer se retrouve en solution dans l'électrode de Pb-Bi, le potentiel peut donc s'écrire :

\[E_{\text{Pb-Bi}}^{\text{f}} = \frac{RT}{2F} \ln \left([Fe^{2+}]_{\text{ajouté}} - \frac{1}{4}[O]_{\text{initial}} \right) - \frac{RT}{2F} \ln \gamma_{Fe^{2+}}^{\text{f}} \]

La différence de potentiel entre le début et la fin du titrage s'exprime donc par la relation suivante :

\[E_{\text{Pb-Bi}}^{\text{i}} - E_{\text{Pb-Bi}}^{\text{f}} = \frac{RT}{6F} \ln K + 2 \ln a_{O_2} - \frac{RT}{2F} \ln \left([Fe^{2+}]_{\text{ajouté}} - \frac{1}{4}[O]_{\text{initial}} \right) = 0,17V \]

or la variation expérimentale entre les potentiels de début et de fin de titrage est égale, pour l'expérience n°5, à 0,01 V.

Il ne paraît donc pas vraisemblable qu'un précipité de magnétite se forme dans les conditions présentées précédemment.

Cependant d'autres oxydes peuvent se former ou d'autres impuretés peuvent être titrées par ajout de fer métallique dans l'électrode de Pb-Bi.
4.3. Diffusion du fer métallique dans LiCl-KCl après dépôt sur l'électrode de Pb-Bi

Le fer métallique déposé à la surface de l'électrode peut diffuser partiellement dans le sel LiCl-KCl, faussant ainsi les résultats obtenus pour la détermination de la limite de solubilité et du coefficient d'activité du fer dans l'alliage Pb-Bi.

Deux arguments permettent de proposer cette hypothèse :

− Une certaine symétrie est observable entre les parties A et C de la courbe de la Figure 140. En effet, la partie A correspondant à la diffusion de Fe\(^{2+}\) dans le sel LiCl-KCl possède le même profil de diffusion que la partie C correspondant théoriquement à la diffusion de fer métallique dans l'électrode de Pb-Bi. Une symétrie centrale dont le centre serait le milieu de la partie B (pour laquelle le potentiel est nul) semble lier les deux profils diffusifs suggérant que le fer (II) et le fer métallique diffusent dans le même milieu ou de la même manière dans chaque milieu.

− Les potentiels d'abandon de l'électrode de Pb-Bi après chaque dépôt de fer sont représentés en fonction du temps sur la Figure 145, pour l'expérience n°5. Nous pouvons constater que :
 o le profil de diffusion du fer métallique dans Pb-Bi (partie C de la courbe de la Figure 140) est toujours raide, suggérant une diffusion rapide du fer dans l'alliage Pb-Bi,
 o en revanche, le palier à potentiel nul (partie B sur la courbe de la Figure 140) peut durer longtemps (plusieurs heures), suggérant une diffusion lente du fer dans l'alliage Pb-Bi.

Les deux parties de la courbe ne semblent donc pas correspondre à la diffusion d'une même espèce dans le même milieu.

Suite à ces observations, nous pouvons envisager que le fer diffuse dans le sel LiCl-KCl.

Dans ce cas la diffusion d’un élément déposé en couche mince à la surface d’une plaque de longueur \(L\) ne représente pas l’expérience. Le schéma de diffusion est plutôt celui d’un dépôt de fer en couche mince sur un milieu semi infini (le sel fondu).

La résolution analytique de l'évolution de la concentration à l'interface Pb-Bi/sel (en \(x=0\) sur la Figure 141) s'exprime alors :

\[
[Fe^0](0, t) = \frac{n_{Fe}}{2S\sqrt{2}\Pi D_{LiCl-KCl}t} \quad [117]
\]

Le rapport \(\frac{n_{Fe}}{\sqrt{t}}\) doit donc être constant à chaque dépôt de fer, pour une concentration \([Fe^0]\) donnée.

Supposons que lorsque le palier B de la Figure 140 prend fin, i.e. lorsque le potentiel décolle du palier \(\Delta E=0\), la concentration de fer à l'interface Pb-Bi/sel soit identique pour chaque expérience.

Dans ce cas, le rapport \(\frac{Q}{\sqrt{t_{décollage de ΔE=0}}}\) doit être constant pour chaque insertion de fer (avec \(Q=2n_{Fe}F\) et \(t_{décollage de ΔE=0}\), le temps pour lequel le potentiel n'est plus nul).
Ces rapports sont rassemblés, pour toutes les insertions de fer de l'expérience n°5, dans le tableau suivant.

<table>
<thead>
<tr>
<th>réductions</th>
<th>$\frac{Q}{\sqrt{t_{\text{décollage de } \Delta E=0}}}$ (C/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,5x10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>4,3x10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>4,6x10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>6,16x10^{-3}</td>
</tr>
<tr>
<td>5</td>
<td>1,40x10^{-2}</td>
</tr>
<tr>
<td>6</td>
<td>5x10^{-3}</td>
</tr>
<tr>
<td>7</td>
<td>5x10^{-3}</td>
</tr>
<tr>
<td>8</td>
<td>4x10^{-3}</td>
</tr>
<tr>
<td>10</td>
<td>1,2x10^{-2}</td>
</tr>
<tr>
<td>11</td>
<td>8x10^{-3}</td>
</tr>
<tr>
<td>12</td>
<td>1x10^{-2}</td>
</tr>
<tr>
<td>13</td>
<td>1,2x10^{-2}</td>
</tr>
<tr>
<td>14</td>
<td>1,35x10^{-2}</td>
</tr>
<tr>
<td>15</td>
<td>1,35x10^{-2}</td>
</tr>
</tbody>
</table>

Tableau 32 : calcul du rapport $\frac{Q}{\sqrt{t_{\text{décollage de } \Delta E=0}}}$ pour chaque réduction de l'expérience n°5.

Le Tableau 32 montre que le rapport $\frac{Q}{\sqrt{t_{\text{décollage de } \Delta E=0}}}$ est constant au fur et à mesure des insertions de fer mais cette constante peut prendre deux valeurs très distinctes : 0,01 et 5x10^{-3} C/s².

Pour les dépôts de fer épais (Q élevé), le rapport $\frac{Q}{\sqrt{t_{\text{décollage de } \Delta E=0}}}$ est de l’ordre de 0,01 C/s² alors qu’il est d’environ 5x10^{-3} C/s² pour les dépôts de fer peu épais.

Cette différence de rapport de l’ordre de 10^{-2} implique, d’après l’équation (7), que le coefficient de diffusion régissant la diffusion d’un dépôt épais est 10^4 fois plus grand que celui régissant la diffusion d’un dépôt fin.

Cette importante différence de coefficient de diffusion entre les cas où le dépôt de fer est épais par rapport aux cas où le dépôt de fer est mince permet de supposer que pour chaque cas le dépôt de fer diffuse dans un environnement différent.

Dans ce cas, nous pouvons supposer que lorsque le dépôt de fer est mince, le fer diffuse dans le milieu Pb-Bi car la réduction du fer (II) à la surface de l’électrode tend à engendrer une adhésion entre la couche métallique et le métal liquide sous-jacent.

Le fer métallique, déposé par réduction à la surface de l’électrode, peut alors réagir avec les impuretés de l’alliage Pb-Bi et notamment avec l’oxygène. Il peut est consommé par réaction au fur et à mesure qu’il diffuse dans l’électrode.

Lorsque le dépôt est épais, plusieurs centaines de distances interatomiques peuvent séparer la partie externe du dépôt de la surface de l’alliage liquide Pb-Bi. Le fer peut ainsi diffuser dans le sel.
Le coefficient de diffusion ne peut pas être évalué dans les deux cas précédents en raison du trop grand nombre de données inconnues.

5. Conclusion sur l'expérience de mesure du coefficient de diffusion du fer dans Pb-Bi

Afin de conclure sur cette expérience de mesure de coefficient de diffusion, résumons les différentes hypothèses qui peuvent expliquer l'invalidité de la technique dans les conditions actuelles d'utilisation :

− Le fer déposé à la surface de l'électrode diffuse en partie dans le sel LiCl-KCl, empêchant ainsi de déterminer la quantité de fer insérée dans l'électrode. Le suivi de potentiel de l'électrode ne correspond plus à une diffusion en milieu Pb-Bi mais à une diffusion mixte dans les deux milieux.
− Le fer déposé à la surface de l'électrode diffuse dans l'alliage Pb-Bi mais réagit avec les différentes impuretés présentes dans l'alliage. Un titrage de chaque impureté réactive avec le fer peut être envisagé.

Les deux phénomènes précédents peuvent expliquer chacun séparément la non reproductibilité de l'expérimentation. Cependant, les deux phénomènes peuvent avoir lieu simultanément.

En supposant que le fer déposé à la surface de l'électrode diffuse dans son intégralité au sein de l'électrode, le titrage des impuretés présentes dans l'alliage Pb-Bi empêche la reproductibilité des résultats de détermination de la limite de solubilité, de mesure du coefficient d'activité et de celle du coefficient de diffusion du fer dans l'alliage Pb-Bi.

L'utilisation de l'alliage Pb-Bi et de sel fondu ultra purs, ne devrait pas changer les résultats obtenus si les pollutions se produisent pendant les manipulations des milieux. Notamment, la limite de solubilité de l'oxygène dans l'alliage Pb-Bi est suffisamment basse pour que toute manipulation, hors environnement réducteur, entraîne une pollution du métal liquide. Cependant un travail en milieu réducteur est proscrit car le milieu extérieur ne doit pas entraîner une réduction incontrôlée du fer.

Dans ce cas, la technique ne peut être envisageable que pour d'autres éléments dont la limite de solubilité est largement supérieure à la teneur en impuretés réactives dans l'alliage Pb-Bi. Ainsi la quantité d'élément métallique inséré pour titrer les impuretés peut devenir négligeable face à sa limite de solubilité.

Pour travailler exactement dans les conditions citées, le potentiel standard du couple oxydant/réducteur doit être inférieur à celui du couple Pb/Pb²⁺ afin de ne pas réduire spontanément l'élément oxydé à la surface de l'électrode de Pb-Bi (voir le paragraphe 3.2.1). Dans ce cas le couple Cr/Cr³⁺ peut être envisagé \(E^{0}_{Cr^3+/Cr^2+} = -0.403 V \) par rapport à l'électrode de référence Ag/AgCl \([15] \). En effet la limite de solubilité du chrome à 450°C dans Pb-Bi est supérieure à celle du fer de pratiquement un ordre de grandeur : elle est égale à 1,3x10⁻⁶ mol/cm³ (voir Chapitre I). Cependant la limite de solubilité de l'oxygène dans Pb-Bi (2x10⁻⁶ mol/cm³) n'est pas négligeable devant celle du chrome, la présence d'oxygène peut entraîner les mêmes inconvénients pour le chrome que ceux observés pour le fer.

En revanche, la limite de solubilité du nickel dans l'alliage Pb-Bi (4x10⁻³ mol/cm³) est supérieure, de plus de trois ordres de grandeur, à celle de l'oxygène. Un titrage de l'oxygène et des autres impuretés présentes dans l'alliage liquide ne perturberait pas de manière notoire l'insertion du
nickel dans l'électrode de Pb-Bi. Le potentiel standard du couple Ni/Ni$^{2+}$ dans LiCl-KCl à 450°C est $-0,068 \text{ V}^{[15]}$ par rapport à l'électrode de référence Ag/AgCl. Cette valeur étant supérieure à celle du couple Pb/Pb$^{2+}$, le nickel (II) ajouté au sel fondu peut se réduire spontanément à la surface de l'électrode de Pb-Bi.

Le même concept de mesure de coefficient de diffusion peut être adapté à cette inversion de potentiel de la manière suivante : une plaque de nickel peut être utilisée comme générateur d'ions nickel (II) par oxydations successives et contrôlées de la plaque. En disposant cette plaque à proximité de l'électrode de Pb-Bi, les ions nickel (II) devraient avoir tendance à se réduire spontanément à la surface de l'électrode de Pb-Bi dont le potentiel serait enregistré en continu à courant nul. De la même manière que pour la technique présentée dans le cadre de ce travail, des insertions successives de l'élément métallique (dont on cherche le coefficient de diffusion) peuvent être réalisées les unes après les autres après atteinte à chaque insertion du potentiel d'équilibre de l'électrode de Pb-Bi.

Le profil du potentiel de l'électrode de Pb-Bi après insertion de nickel devrait permettre d'obtenir le coefficient de diffusion du nickel dans l'alliage Pb-Bi. Les insertions successives de nickel dans l'alliage Pb-Bi seraient ainsi effectuées jusqu'à obtention de la saturation (voir paragraphe 4.1). L'accord entre la limite de solubilité obtenue expérimentalement et celle de la littérature permettrait de valider la technique.

En revanche dans le cas contraire d'un non accord entre la littérature et l'expérience, dans le cas où une non reproductibilité des résultats persiste, un autre phénomène doit se produire. Ce phénomène pourrait être une diffusion du nickel dans le sel. Il pourrait être mis en évidence par analyse chimique du sel.

Dans ce cas, l'utilisation de la technique devient impossible exceptée par l'emploi d'un autre sel fondu.
Annexe 5 : Technique de purification du sel fondu LiCl-KCl

1. Introduction

Pour mesurer la limite de solubilité et le coefficient de diffusion du fer dans l’alliage liquide, une quantité appropriée de fer métallique doit être insérée dans une électrode de Pb-Bi liquide. En présence d’oxygène, une couche de monoxyde de plomb se forme à la surface de l’électrode de travail et empêche l’insertion de fer.

En effet, le fer métallique est inséré dans l’électrode de Pb-Bi par réduction, à la surface de l’électrode, d’ions Fe (II) introduits sous forme de chlorure de fer dans le sel fondu. En présence de monoxyde de plomb PbO, le fer métallique Fe° déposé à la surface de l’électrode peut réagir pour former du plomb Pb° et de la magnétite Fe₃O₄, oxyde thermodynamiquement plus stable. Expérimentalement on observe une couche épaisse et noire à la surface de l’électrode de Pb-Bi après plusieurs coulométries effectuées à l’électrode de Pb-Bi au potentiel de réduction du fer (II).

Une visualisation au microscope électronique à balayage (MEB) ainsi qu’une analyse par diffraction des rayons X (DRX) de cette couche montrent la présence de cristaux octaédriques de magnétite (Figure 150).

![Figure 150](image.png)

Figure 150 : (A) Image MEB d’un prélèvement d’une couche noire formée à la surface de l’électrode de Pb-Bi après plusieurs réduction effectuées au potentiel de réduction des ions fer (II). (B) Spectre DRX de la couche noire visualisée en (A).

L’existence de cette couche présente deux inconvénients majeurs :
− Elle perturbe, voire fait barrière, à la diffusion du fer métallique au sein de l’électrode de Pb-Bi.
− La quantification in situ des proportions de fer pénétrant dans l’électrode et de fer réagissant avec PbO est impossible : la limite de solubilité du fer dans le Pb-Bi ne peut être déterminée.

Aussi, pour éviter la formation de cette couche noire, l’alliage Pb-Bi est purifié en oxygène (voir Annexe 4, paragraphe 3.2.2) ainsi que le sel fondu.
De plus, le sel LiCl-KCl est extrêmement hydroscopique et la présence d’ions oxyde et hydroxyde en quantité non négligeable perturbe les mesures électrochimiques.
Une purification très poussée du sel vis-à-vis des ions oxyde semble donc indispensable. Cette purification doit permettre d’obtenir une pénétration totale du fer réduit dans l’électrode de Pb-Bi.

Plusieurs méthodes sont utilisées pour purifier le sel LiCl-KCl fondu dont la teneur moyenne initiale en ions oxyde est de l’ordre de 10^{-3} mol/kg à 450°C [128][129][130][131][132][133][135][136]. Parmi celles-ci, la plus répandue est la purification sous bullage de HCl ou de Cl$_2$ gazeux suivi d’un bullage d’argon.

Cette méthode a été utilisée de nombreuses fois lors de nos expérimentations de détermination de la limite de solubilité et du coefficient de diffusion du fer dans l’alliage Pb-Bi. Cependant, la non reproductibilité des résultats nous a conduit à changer de méthode de purification du sel fondu. En effet, cette méthode semblait peu efficace : la teneur en ions oxyde présents initialement dans le bain ne diminue au mieux que d’un facteur 100 [128][129][130][131][132][133][135][136].

De plus les expériences mettant en jeu l’acide chlorhydrique gazeux nécessitent de lourdes mesures de sécurité : réalisation des expériences sous boîte à gants (pouvant entraîner une corrosion rapide de l’enceinte et une dégradation du matériel électrochimique), évacuation des gaz, mise en place d’un système d’alerte…

Ainsi, une autre technique de purification a été envisagée, principalement dans l'objectif d'abaisser "au maximum" la teneur finale en ions oxyde dans le sel : la précipitation d’alumine par ajouts successifs d’ions aluminium (III). Le but de cette technique de purification est de piéger durablement les ions oxyde dissous dans le sel, dans un composé oxyde solide et insoluble. Un titrage des ions oxyde par ajout progressif d’ions aluminium (III) doit permettre de piéger les ions oxyde en précipités d’alumine.

Le choix de l’alumine comme composé solide repose sur trois spécificités :

− L’alumine est un composé chimiquement inerte : cet oxyde ne perturbera pas les expériences réalisées après purification du sel.

− L’alumine est un composé à priori stable et insoluble (permettant un piégeage durable) [137] dans le sel LiCl-KCl à 450°C. Un diagramme d’Ellingham [138] montre que l’alumine est un oxyde extrêmement stable (permettant un piégeage maximal) par rapport aux autres oxydes susceptibles de se former lors de nos expérimentations.

− Des expériences de titrage d’ions aluminium (III) par des carbonates [128] ont permis de déterminer les constantes de dissociation des composés aluminium-oxygène apparaissant dans l'eutectique LiCl-KCl à 470°C. A la suite de ces déterminations, un diagramme potentiel-pO$_2$ (Figure 151) a pu être établi montrant que l'alumine est le composé aluminium-oxygène le plus stable pour des molalités en ions oxyde de 10^{-8} à 1 mol/kg.
Cependant, Séon [128] a réalisé le titrage inverse : celui des ions aluminium par insertions successives de Na\textsubscript{2}CO\textsubscript{3} sous une pression partielle de CO\textsubscript{2} contrôlée. Elle a mis en évidence la formation de trois composés : AlO+, Al\textsubscript{2}O\textsubscript{3} et AlO\textsubscript{2}-. Les deux composés ioniques étant soluble dans LiCl-KCl, un piégeage durable des ions oxyde ne peut être achevé si le titrage des ions oxyde par les ions aluminium mène à la formation du composé AlO+ ou AlO\textsubscript{2}-.

Aussi, quels que soient les composés formés au cours du titrage, notre technique de purification du sel fondu ne peut être validée que si le dernier composé formé est l'alumine.

A priori, le titrage des ions oxyde par les ions aluminium mène, en premier lieu, à la formation du composé AlO\textsubscript{2}-, puis de l'alumine et enfin du composé AlO+, si une dissociation de l'alumine se produit. Cependant, en considérant un équilibre thermodynamique dans le sel, la molalité des espèces solubles Al-O est liée à la molalité en ions oxyde dans le sel, par l'intermédiaire des constantes de dissociation des réactions de dissociation des composés Al-O. Ces constantes, qui ont été déterminées par Séon [128], sont rassemblées dans le Tableau 33.

Aussi la formation des différents composés dépend fortement de la teneur en ions oxyde présents dans le sel et tout particulièrement de la teneur initiale en ions oxyde dans le sel.

C'est pourquoi, nous avons réalisé deux expériences pour lesquelles la teneur initiale en ions oxyde encadre la teneur en ions oxyde obtenue habituellement après fusion du sel LiCl-KCl sous balayage d'argon à 450°C : 10^{-3} mol/kg.

<table>
<thead>
<tr>
<th>Température (°C)</th>
<th>AlO+=Al3++O2- (pKd)</th>
<th>AlO\textsubscript{2}-=Al3++2O2- (pK\textprime d)</th>
<th>Al\textsubscript{2}O\textsubscript{3}=2Al3++3O2- (pKs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td>10,7</td>
<td>14,6</td>
<td>27,4</td>
</tr>
</tbody>
</table>

Tableau 33 : Constantes de dissociation des complexes Al-O obtenus par titrage d'ions aluminium par Na\textsubscript{2}CO\textsubscript{3} [128].

Aussi, après une brève présentation de l'expérimentation, nous présenterons deux expériences de titrages réalisées avec deux teneurs initiales en ions oxyde différentes.
Les constantes de réactions déterminées à partir des courbes de titrage seront comparées à celles obtenues par Séon [128]. Elles nous permettrons ainsi d'identifier le composé formé.

La technique est validée si l'alumine est le dernier composé formé à la suite du titrage pour les expériences réalisées à partir d'une teneur initiale en ions oxyde encadrant la teneur habituelle (10^{-3} mol/kg) : pour des teneurs égales à $2,7\times10^{-2}$ mol/kg et $4,4\times10^{-4}$ mol/kg.

2. Symboles utilisés dans cette annexé

pK_d: cologarithme de la constante de dissociation du composé AlO^+. (exprimé en molalité)

pK_d': cologarithme de la constante de dissociation du composé AlO_2^-. (exprimé en molalité)

pK''': cologarithme de la constante de dissociation du composé $\text{Ba}_3\text{AlO}_6^{3-}$. (exprimé en molalité)

pK_s: cologarithme du produit de solubilité de l'alumine (exprimé en molalité)

K: constante de réaction. (exprimée en molalité)

$\Delta H^o(T)$: enthalpie de réaction. (J/mol)

E_{Zr}: potentiel de l'électrode de zircone (V)

$E_{Zr, initial}$: potentiel initial de l'électrode de zircone, avant premier ajout d'ions aluminium dans le sel (V)

$E_{Zr, final}$: potentiel final de l'électrode de zircone, obtenu à la fin de l'expérience de titrage (V)

E_{Zr}^0: potentiel "standard" de l'électrode de zircone (V)

$[X]$: molalité de l'élément X dissous dans le sel fondu (mol/kg)

$[\text{Al}^{3+}]_{aj}$: cumul des molalités en ions aluminium (III) ajoutées par toutes les coulométries effectuées au cours d'une expérience de titrage (mol/kg)

$n_{\text{Al}_x\text{O}_y^{3x-2y}}$: quantité de l'espèce $\text{Al}_x\text{O}_y^{3x-2y}$ présente dans le sel (mol)

$M_{\text{LiCl-KCl}}$: masse de sel fondu (kg)

$\frac{n_{\text{Al}_x\text{O}_y^{3x-2y}}}{M_{\text{LiCl-KCl}}}$: molalité des l'espèces $\text{Al}_x\text{O}_y^{3x-2y}$ solubles ou insolubles dans le sel (mol/kg)

$[\text{Al}_x\text{O}_y^{3x-2y}]$: molalité des l'espèces $\text{Al}_x\text{O}_y^{3x-2y}$ solubles dans le sel (mol/kg)

$[O^{2-}]$: molalité initiale en ions oxyde dissous dans le sel fondu, avant expérimentation (mol/kg)

pO^{2-}: cologarithme de la molalité des ions oxyde dissous dans le sel

R: constante des gaz parfaits (J/K.mol)

T: Température (K)

F: constante de Faraday

Q: quantité de courant traversant l'interface électrode/électrolyte durant une coulométrie effectuée à l'électrode de travail (C)

I_{imp}: valeur du courant imposé à l'électrode de travail lors d'une coulométrie (A)

Δt: durée d'une coulométrie (s)

$n_{\text{Al}^{3+}}$: quantité d'ions aluminium (III) insérés dans le sel au cours d'une coulométrie (mol)

$\frac{[\text{Al}^{3+}]_{aj}}{[O^{2-}]}$: degré d'avancement de la réaction de titrage. Rapport de la molalité en ions aluminium ajoutés au sel depuis le début du titrage sur la molalité en ions oxyde présents initialement dans le sel.
3. Présentation de la technique

Les expériences de purification du sel par apport d'ions aluminium (III) ont été réalisées pour des teneurs initiales en ions oxyde égales à 4.4×10^{-4} et 2.7×10^{-2} mol/kg. Pour cette dernière expérience un ajout d'oxyde de baryum a permis l'augmentation de la molalité initiale en ions oxyde.

3.1. Montage expérimental

Les mesures électrochimiques présentées dans cette étude ont été réalisées à l'aide d'un potentiostat-galvanostat EG&G mod 273.

La cellule d’essai est représentée sur la figure suivante.

![Schéma de la cellule électrochimique.](image)

Les expérimentations ont été menées sous légère surpression d'argon, dans un four pyrox réglé en température par des thermocouples de type K. Un thermocouple de mesure, de type K, est immergé dans le sel fondu, protégé d'un doigt de gant en pyrex.

La technique de purification nécessite l’utilisation de quatre électrodes :
- une électrode de zircone permettant la mesure de la teneur en ions oxyde dans le sel (Figure 153),
- une électrode de travail en aluminium,
- une contre électrode en aluminium,
- une électrode de référence (Figure 153).
3.1.1. Electrode de zircone

L'électrode de zircone, à membrane indicatrice de l’activité des ions oxyde (Figure 153), est utilisée afin de connaître la teneur initiale en ions oxyde ainsi que son évolution au cours du titrage. Ce type d’électrode de zircone yttrée stabilisée (fournie par la société DEGUSSA) est largement utilisé dans les sels fondu. Son principe de fonctionnement est explicité en Annexe 2.

![Figure 153 : Schéma d'une électrode de zircone et de l'électrode de référence Ag/AgCl.](image)

L’ion oxyde est le seul capable de diffuser à travers l’épaisseur du tube de zircone grâce à la sursaturation et à l’importante mobilité des lacunes anioniques dans le réseau cristallin de la zircone. Il s’établit ainsi un potentiel de membrane, entre la paroi interne et la paroi externe du tube de zircone, correspondant à une réponse spécifique à l’ion oxyde (pour un large intervalle de valeurs de pO₂⁻). La réponse théorique de ce type d’électrode, vis-à-vis des ions oxyde, est donnée par la relation de Nernst :

$$E_Z = E_Z^0 - \frac{2.3RT}{2F} \log [O^{2-}] = E_Z^0 + \frac{2.3RT}{2F} pO^{2-} \quad [158].$$

L’étalonnage de l’électrode de zircone est effectué par ajout de quantités connues d’oxyde de baryum anhydre. Cependant cet étalonnage, utilisé lors de ces expériences, est délicat à réaliser car le BaO dissocié dans le sel fondu semble parfois se recombiner à d’autres espèces.

D’autres types d’étalonnages sont préconisés : du carbonate de lithium anhydre peut être employé à la place de l’oxyde de baryum mais l’étalonnage est limité par la faible solubilité de ce composé dans le sel et par le temps nécessaire à la solubilisation. Des échantillons de sel peuvent aussi être prélevés, trempés puis dissous dans l’eau. Un dosage acide-base permet la détermination de la teneur initiale en ions oxyde menant à l’étalonnage de la sonde\(^{[139]}\).

Dans cette étude, des étalonnages ont été réalisés avec de l’oxyde de baryum anhydre.

Cependant, un autre moyen d’estimation du "potentiel standard" \(E_Z^0\) de la zircone a également été utilisé : en attribuant le plus grand saut de potentiel au point d’équivalence correspondant à la formation de chacun des composés aluminium-oxygène connu (\(\text{AlO}_2^-, \text{AlO}^+, \text{Al}_2\text{O}_3\)). La comparaison entre les constantes de dissociation déterminées par un tel saut de potentiel, en
supposant la formation de chaque composé et celles de la littérature128 (Tableau 33) permet à la fois d'identifier le composé formé et d'en déduire la valeur du "potentiel standard" E_{Zr^0}.

3.1.2. Electrode de travail

L’électrode de travail est constituée d’un barreau d’aluminium (de diamètre égal à 10 mm) : les ions aluminium (III) sont introduits dans le sel fondu par oxydation de l’électrode. Connaissant le courant anodique imposé à l’électrode ainsi que la durée de l’oxydation, on peut déterminer, par la relation $Q = I_{imp} \Delta t = 3n_{Al^3^+} F$, la quantité d’ions aluminium (III) introduits dans le sel.

3.1.3. Contre électrode

Un barreau d’aluminium est aussi utilisé pour la contre électrode.

Lorsque le courant d'oxydation imposé à l'électrode de travail est suffisamment important, les ions lithium présents en grand excès dans le sel vont se réduire à la surface de la contre électrode. Si le lithium Li° ainsi formé ne peut diffuser au sein de la contre électrode, il est susceptible de réagir avec l’alumine présente dans le sel pour donner Li$_2$O, oxyde thermodynamiquement plus stable que Al$_2$O$_3$, selon la réaction : $\text{Al}_2\text{O}_3 + 6\text{Li}^0 = 2\text{Al}^0 + 3\text{Li}_2\text{O}$.

Cette réaction empêche la purification car l’oxyde de lithium, très soluble dans le sel (pKs ≈ -4 à 450°C)140, se dissout en libérant les ions lithium (I) et les ions oxyde. Pour cette raison on utilise une contre électrode en aluminium qui permet la diffusion du lithium métallique au sein de la contre électrode du fait de l'existence d’alliages lithium-aluminium. Ce processus empêche ainsi la réaction entre le lithium métallique formé à la surface de la contre électrode et l’alumine formée à l’électrode de travail.

Par précaution supplémentaire, la contre électrode peut être isolée dans un compartiment séparé constitué d’un creuset en alumine de porosité appropriée (FRIALIT-Degussit AL24).

3.1.4. Electrode de référence

L’électrode de référence (couple Ag/Ag⁺) se compose d’une tige en argent métallique et d’un doigt de gant en pyrex (conducteur ionique à la température de travail) dans lequel un sel de chlorure d’argent (0,75 mol/kg, concentration tampon) est ajouté au sel fondu LiCl-KCl (proportion eutectoïde) comme le montre la Figure 153.

4. Résultats expérimentaux et discussion

Après fusion du sel sous argon, l’expérience consiste à réaliser des oxydations successives, de l'électrode de travail en aluminium, à courant I_{imp} et durée Δt imposés.

Aussi la quantité d’ions aluminium (III) incorporés au sel est connue avec précision.

L’ajout progressif d’ions aluminium dans le sel permet de titrer les ions oxyde dissous dont la teneur diminue au cours du titrage. Cette teneur est déterminée en continu par la mesure in situ du potentiel de l’électrode de zircone.
Annexes

Les courbes de titrage expérimentales représentent la diminution de la molalité en ions oxyde en fonction de la molalité en ions aluminium ajoutés au sel. Les courbes obtenues sont comparées à des courbes simulées tenant compte de chaque composé aluminium-oxygène connu. Les valeurs des constantes de réaction obtenues par ajustement des courbes simulées aux points expérimentaux sont ensuite comparées à celles obtenues dans la littérature \[128\]; la proximité entre la valeur obtenue par ajustement et celle de la littérature permet l’identification du composé formé.

Dans ce chapitre, seules les simulations correspondant à un ajustement cohérent sur les points expérimentaux seront présentées. Cependant toutes les possibilités comportant les trois composés aluminium-oxygène connus ont été considérées.

Le traitement mathématique des courbes de titrage consiste à résoudre le système d’équation correspondant à la conservation molaire de chaque élément, associé à la loi d’action de masse pour chaque équilibre de dissociation :

\[
\begin{align*}
[Al^{3+}]_{\text{ajouté}} &= \sum_j x_j \frac{n_{Al,O_j^{1-x-y}}}{M_{LiCl-KCl}} \\
[O^{2-}]_i &= \sum_j y_j \frac{n_{Al,O_j^{1-x-y}}}{M_{LiCl-KCl}} \\
K &= \frac{[Al^{3+}]^y [O^{2-}]^y}{[Al,O_j^{3x-3y}]} \text{ et } K_s = [Al^{3+}]^2 [O^{2-}]^3
\end{align*}
\]

4.1. Forte teneur initiale en ions oxyde : \([O^{2-}]_i=2,7\times10^{-2} \text{ mol/kg}, T=460°C\)

Afin d’obtenir une teneur élevée en ions oxyde dans le bain, un ajout de 1,04x10\(^{-2}\) mol/kg d’oxyde de baryum a été préalablement effectué. La molalité en ions oxyde présents initialement dans le sel est donc égale à celle présente initialement dans le sel ajoutée à celle insérée via l'addition d'oxyde de baryum. Ainsi la teneur initiale est égale à 2,7x10\(^{-2}\) mol/kg.

Nous présenterons les résultats expérimentaux obtenus par le titrage des ions oxyde par les ions aluminium.

Puis nous chercherons à identifier les composés formés, par ajustement d'une simulation sur les points expérimentaux.

4.1.1. Résultats expérimentaux

La courbe expérimentale de titrage des ions oxyde par les ions aluminium (III) à 460°C pour une teneur initiale en ions oxyde égale à 2,7x10\(^{-2}\) mol/kg est représentée sur la figure suivante.
Points expérimentaux

Simulation tenant compte de la formation des composés AlO$_2^-$ et Al$_2$O$_3$

Simulation tenant compte de la formation des composés Ba$_3$AlO$_6^-$, AlO$_2^-$ et Al$_2$O$_3$

Figure 154 : Titrage des ions oxyde par les ions aluminium pour une teneur initiale en ions oxyde dissous dans le sel égale à 2,7x10$^{-2}$ mol/kg. T=460°C.

Appelons "facteur de purification", le rapport entre la molalité des ions oxyde après et avant purification ($10^{\frac{2F}{2.3RT}(E_f,\text{initial}−E_f,\text{final})}$). Le "facteur de purification" obtenu par ce procédé de titrage est égal à 2x10$^{-7}$. En comparaison avec le "facteur de purification" (égal à 10$^{-2}$) de la technique classique, la purification par l’aluminium est 100 000 fois plus efficace que la technique classique.

Cependant même si la purification à l’aluminium est pus efficace, elle ne peut être validée que si l’alumine reste le seul composé aluminium-oxygène présent à la fin du procédé.

Pour cette expérience à forte teneur initiale en ions oxyde, deux points d’inflexion sont observés, ce qui correspond à la formation de deux composés aluminium-oxygène.

Deux réactions se produisent, deux composés aluminium-oxygène Al$_x$O$_y^{3x-2y}$ se forment successivement avec un rapport x/y croissant au cours du dosage. Les réactions successives mises en jeu lors de ce dosage sont alors :
- $2\text{Al}^{3+}+3\text{O}^2-=\text{Al}_2\text{O}_3$ suivi de $\text{Al}^{3+}+\text{Al}_2\text{O}_3=3\text{AlO}^+$,
- ou $\text{Al}^{3+}+2\text{O}^2-=\text{AlO}_2^-$ suivi de $\text{Al}^{3+}+3\text{AlO}_2^-=2\text{Al}_2\text{O}_3$.

A la suite de cette expérience, des particules grises flottant à la surface du sel ont été prélevées, filtrées puis analysées par microanalyse X par spectroscopie d’énergie (EDS) et par diffraction des rayons X. Le spectre de diffraction des rayons X (Figure 155) montre la présence d’alumine et d’un composé LiAl$_2$O$_8$ pouvant correspondre à une recombinaison Li$^+\text{AlO}_2(\text{Al}_2\text{O}_3)_2$. La formation du composé AlO_2^- suivie de celle de Al_2O_3 sera donc proposée préférentiellement dans l’analyse des résultats.
4.1.2. Simulation et discussion

Supposons dans un premier temps que les deux réactions de titrage successives sont : \(\text{Al}^{3+} + 2\text{O}^{2-} = \text{AlO}_2^- \) suivi de \(\text{Al}^{3+} + 3\text{AlO}_2^- = 2\text{Al}_2\text{O}_3 \).

Le degré d’avancement \(\alpha \) de la réaction, correspondant au rapport \(\frac{[\text{Al}^{3+}]_{\text{ajouté}}}{[\text{O}^{2-}]_{\text{initial}}} \), peut être déterminé par l’intermédiaire des expressions (1), (2), (3) adaptées à chaque composé :

- pour la première réaction, \(\text{Al}^{3+} + 2\text{O}^{2-} = \text{AlO}_2^- \) :
 \[
 \alpha = \frac{1}{2} - \frac{[\text{O}^{2-}]}{2[\text{O}^{2-}]} + K'd \left(\frac{1}{[\text{O}^{2-}]^2} - \frac{1}{[\text{O}^{2-}][\text{O}^{2-}]} \right) \quad (4)
 \]
 avec \(K'd = \frac{[\text{Al}^{3+}][\text{O}^{2-}]^2}{[\text{AlO}_2^-]} \)

- pour la deuxième réaction, \(\text{Al}^{3+} + 3\text{AlO}_2^- = 2\text{Al}_2\text{O}_3 \) :
 \[
 \alpha = \frac{K_s^{1/2}}{[\text{O}^{2-}]^{1/2}} - \frac{K_s^{1/2}}{[\text{O}^{2-}]^{1/2}}\frac{[\text{O}^{2-}]}{3} - 2 \frac{[\text{O}^{2-}]}{3} \frac{1}{[\text{O}^{2-}]} + \frac{2}{3} \quad (5)
 \]
 avec \(K_s = [\text{Al}^{3+}]^2[\text{O}^{2-}]^3 \)

Le tracage puis l’assemblage des courbes représentatives des deux expressions (4) et (5) permettent de proposer une courbe unique représentant l’ensemble du titrage. Cette courbe peut être comparée aux points expérimentaux (courbe rouge, Figure 154).
L’ajustement des courbes simulées aux points expérimentaux permet de déterminer la constante de dissociation $K'd$ et le produit de solubilité K_s de l’alumine.

Pour cette expérience (courbe rouge, Figure 154) à 460°C, les courbes se superposent convenablement aux points expérimentaux pour des constantes de réactions égales à 28,9 pour pK_s et 14,6 pour $pK'd$. Ces valeurs sont proches de celles de la littérature à 470°C (pK_s=27,4 et $pK'd$=14,6).

La variation du pK_s en fonction de la température est conforme à la loi de Van't Hoff (augmentation du pK_s lors d'une diminution de la température), ce qui montre une cohérence des résultats.

Cependant, la courbe simulée ne se confond pas avec les premiers points expérimentaux. Le premier saut de potentiel correspond à un degré d'avancement α égal à environ 0,17 pour les points expérimentaux alors qu'il se situe, pour la simulation, au point d'équivalence de la réaction $\text{Al}^{3+}+2\text{O}^2- = \text{AlO}_2^{-}$, pour α égal à 0,5.

En revanche, la deuxième partie de la courbe simulée représentant le titrage des ions AlO_2^{-} par Al^{3+} pour former Al_2O_3 se superpose très convenablement aux points expérimentaux.

Le premier saut de potentiel, observé à α de l'ordre de 0,17, pourrait s’expliquer par la formation d'un composé aluminium-oxygène nettement avant le point d'équivalence correspondant à la formation de AlO_2^{-}. Dans ce cas, le saut de potentiel témoin du point d'équivalence fixe la stoichiométrie de ce composé Al_xO_y telle que $\frac{x}{y} = 0,17$, le composé ainsi formé devrait donc être de la forme AlO_6^{9-}.

La formation d'un tel composé semble peu vraisemblable. Cependant un oxyde mixte $\text{Ba}_3\text{AlO}_6^{3-}$ pourrait être envisagé. La structure proposée pour ce composé est représentée sur la Figure 156.

![Figure 156 : structure imaginée pour un composé $\text{Ba}_3\text{AlO}_6^{3-}$](image)

La courbe simulant le titrage peut être recalculée en tenant compte du nouveau composé $\text{Ba}_3\text{AlO}_6^{3-}$.

Néanmoins aucune mise en évidence d’un tel composé n’a été trouvée dans la littérature et les calculs effectués ci-dessous ne sont présentés que pour illustrer cette hypothèse. En effet, aucune
autre explication ne semble pouvoir répondre à ce phénomène qui, de plus, a été observé sur toutes les expériences réalisées à forte teneur initiale en ions oxyde et en présence d’oxyde de baryum. Un certain nombre d'autres réactions ont été envisagées : le titrage d’un composé baryum-oxygène par les ions aluminium (III), une dissociation partielle de l'oxyde de baryum etc. Seule l'existence de l'oxyde mixte $\text{Ba}_3\text{AlO}_6^{3-}$ permet un ajustement des courbes simulées sur les points expérimentaux.

Supposons maintenant que les apports successifs d’ions aluminium (III) dans le sel engendrent la formation de $\text{Ba}_3\text{AlO}_6^{3-}$ puis l'apparition de AlO_2^{-} suivi de la précipitation de Al_2O_3.

Suivons le dosage des composés par les ions aluminium (III) lors des réactions :

$3\text{Ba}^{+}+\text{Al}^{3+}+6\text{O}_2^{2}= \text{Ba}_3\text{AlO}_6^{3-}$, suivie de $3\text{Al}^{3+}+2\text{Ba}_3\text{AlO}_6^{3-}=6\text{AlO}_2^{-}+6\text{Ba}^{+}$ puis $\text{Al}^{3+}+3\text{AlO}_2^{-}=2\text{Al}_2\text{O}_3$.

Le degré d’avancement α de la réaction s’écrit :

- Pour la première réaction, $3\text{Ba}^{+}+\text{Al}^{3+}+6\text{O}_2^{2}= \text{Ba}_3\text{AlO}_6^{3-}$:

$$
\alpha = \frac{1}{6} \frac{[\text{O}_2^{2-}]}{6[\text{O}_2^{2-}]} + \frac{K''d}{6[\text{Ba}^{2+}]} \left(\frac{1}{[\text{O}_2^{2-}]^6} - \frac{1}{[\text{O}_2^{2-}]^2[\text{O}_2^{2-}]^3} \right)
$$

avec $K''d = \frac{[\text{Al}^{3+}][\text{O}_2^{2-}]^6[\text{Ba}^{2+}]^3}{[\text{Ba}_3\text{AlO}_6^{3-}]}$ la constante de dissociation du composé $\text{Ba}_3\text{AlO}_6^{3-}$.

- Pour la seconde réaction, $3\text{Al}^{3+}+2\text{Ba}_3\text{AlO}_6^{3-}=6\text{AlO}_2^{-}$:

$$
\alpha = \frac{1}{[\text{O}_2^{2-}]} \left[\frac{K'd}{[\text{O}_2^{2-}]^2} \right] \frac{K''d \left[\text{Ba}^{2+} \right]}{3 \left[\text{Ba}_3\text{AlO}_6^{3-} \right]} - \frac{\left[\text{Ba}^{2+} \right]}{3 \left[\text{Ba}_3\text{AlO}_6^{3-} \right]} \right]
$$

(7)
with

\[[Ba^{2+}] = \frac{1}{8} \left(2[Ba^{2+}]_i + [O^{2-}]_i - [O^{2-}]_j \right) \]

\[-\frac{1}{16} \left(2[Ba^{2+}]_i + [O^{2-}]_i - [O^{2-}]_j \right) + \frac{1}{2} \left(2^{1/3} K^{d} d \left([O^{2-}] - 6[Ba^{2+}]_i - [O^{2-}]_j \right) - \frac{A}{2^{1/2} 18 K^{d} d [O^{2-}]^4} \right) \]

\[+ \frac{1}{2} \left(\frac{8 K^{d} d}{3 K^{d} d [O^{2-}]^4} + \frac{1}{8} \left(2[Ba^{2+}]_i + [O^{2-}]_i - [O^{2-}]_j \right) \right) \]

\[= \frac{1}{16} \left(2[Ba^{2+}]_i + [O^{2-}]_i - [O^{2-}]_j \right) + \frac{1}{2} \left(2^{1/3} K^{d} d \left([O^{2-}] - 6[Ba^{2+}]_i - [O^{2-}]_j \right) \right) \]

\[+ \frac{1}{2} \left(\frac{8 K^{d} d}{3 K^{d} d [O^{2-}]^4} + \frac{1}{8} \left(2[Ba^{2+}]_i + [O^{2-}]_i - [O^{2-}]_j \right) \right) \]

\[\left[486 \left(\frac{4}{3} K^{d} d - K^{d} d [Ba^{2+}]_i, [O^{2-}^2] \right) (2[Ba^{2+}]_i, [O^{2-}]_i, [O^{2-}]_j + [O^{2-}]_j)^3 \right] \]

\[= \left(K^{d} d K^{d} d [O^{2-}]^4 \right)^{1/3} \left[\frac{81}{8} \left(\frac{4}{3} K^{d} d - K^{d} d [Ba^{2+}]_i, [O^{2-}^2] \right) \right] ^2 \]

\[+ 23328 \left(\frac{4}{3} K^{d} d - K^{d} d [Ba^{2+}]_i, [O^{2-}]_i, [O^{2-}]_j + [O^{2-}]_j \right)^3 \]

and \(A = \left(K^{d} d K^{d} d [O^{2-}]^4 \right)^{1/3} \)

\(-\frac{1}{3} \left[2[O^{2-}]_i + 3 \left(K^{d} d [O^{2-}]^2 \right)^{1/3} - 2[O^{2-}] - 9 \left(Ba^{3+}, AlO_6^{3-} \right) \right] \]

(8)

with

\[[Ba^{3+}, AlO_6^{3-}] = \frac{1}{3} \left(Ba^{2+} \right) + \frac{21}{312} \left(K^{d} d [O^{2-}]^3 \right)^{1/3} \]

\[+ \frac{91}{496} \left(K^{d} d [O^{2-}]^3 \right)^{1/3} \left[\left(Ba^{2+} \right)^2 K^{d} d [O^{2-}]^{1/2} - \left(Ba^{2+} \right) K^{d} d [O^{2-}] \right]^{1/3} \]

De la même manière que précédemment, le tracé puis l’assemblage des courbes représentatives des expressions (6), (7) et (8) permet de proposer une courbe unique représentant l’ensemble du titrage (courbe noire, Figure 154).

Les superpositions des courbes simulées aux points expérimentaux permettent l’évaluation du produit de solubilité de l’alumine \(Ks \), de la constante de dissociation \(K^{d} d \) de AlO_2 et de la
constante de dissociation \(K''d\) de \(\text{Ba}_3\text{AlO}_6^{3-}\). Les valeurs obtenues pour \(pKs\), \(pK'd\) et \(pK''d\) sont respectivement 28,9, 14,6 et 36,5 à 460°C.
Ces valeurs sont très proches de celles de la littérature à 470°C : 27,4 pour \(pKs\) et 14,6 pour \(pK'd\) (récapitulatif des valeurs des constantes de réaction dans le Tableau 34).

De multiples autres possibilités de réactions (\(\text{Al}^{3+} + \text{O}_2^- = \text{Al}_2\text{O}_3\) suivie de \(\text{Al}_2\text{O}_3 + \text{Al}^{3+} = 3\text{AlO}^+\), réactions engendrant la formation d’autres complexes, suites de réactions concurrentes etc.) ont été envisagées pour l’analyse de cette dernière expérience mais seules les interprétations présentées permettent un bon ajustement des courbes simulées sur l’expérimentation.

Des considérations d’ordre cinétique ne pouvant expliquer l’apparition prématurée du premier saut de potentiel, la formation d’un composé \(\text{Ba}_3\text{AlO}_6^{3-}\) a été proposée.
La simulation de formation de ce composé permet d’obtenir une courbe théorique superposable à l’ensemble de la courbe expérimentale (Figure 154).

Dans le but de caractériser précisément les composés formés dans le sel au cours de ce titrage, trois expériences supplémentaires devraient être réalisées :
- Il serait intéressant de réaliser la même expérience dans laquelle la teneur initiale en ions oxyde serait augmentée par un apport d'ions oxyde de nature différente, par ajout d'oxyde de lithium par exemple. Le rôle de l'oxyde de baryum reste en effet hypothétique.
- Une caractérisation chimique du composé Ba-Al-O pourrait être réalisée en faisant varier la quantité d'ions baryum (I) incorporé au sel.
- Une analyse par spectroscopie de résonance magnétique nucléaire (RMN) d'échantillons de sel prélevés après chaque saut de potentiel permettrait de déterminer la valence des atomes d'aluminium au cours du titrage et d'en déduire le type de composé formé.

Cependant, notre objectif étant d'obtenir un meilleur "facteur de purification" que celui obtenu par la technique de purification habituelle, la diminution en ions oxyde correspondant à notre cahier des charges initial, d'autres expérimentations n'ont pas été menées.

La bonne superposition des courbes simulées sur les points expérimentaux ainsi que la cohérence des valeurs des constantes de réactions \((pKs \text{ et } pK'd)\) comparées à celles données par la littérature \([128]\) à une température voisine permettent de valider notre interprétation de la deuxième partie de la courbe (concernant \(\text{AlO}_2^-\) et \(\text{Al}_2\text{O}_3\)).
Cette expérience de titrage montre que l’alumine précipite et ne se dissocie pas en \(\text{AlO}^+\).

La technique de purification à l’aluminium est donc validée pour une teneur initiale en ions oxyde égale à 2,7x10⁻² mol/kg. La comparaison entre la valeur finale en ions oxyde de 5x10⁻⁹ mol/kg obtenue lors de cette expérience et celle de 10⁻⁵ mol/kg obtenue à la suite d'une purification classique prouve la très grande efficacité de la nouvelle technique.

4.2. Faible teneur initiale en ions oxyde : \([\text{O}_2^-]_i = 4,4 \times 10^{-4} \text{ mol/kg}, T = 437°C\)

4.2.1. Résultats expérimentaux

La courbe expérimentale de titrage des ions oxyde par les ions aluminium (III) à 437°C pour une teneur initiale en ions oxyde de l'ordre de 10⁻⁴ mol/kg est représentée sur la Figure 157.
Annexes

Figure 157 : titrage des ions oxyde par les ions aluminium pour une teneur initiale en ions oxyde dissous dans le sel égale à 4,4x10^{-4} mol/kg. T=437°C.

Le "facteur de purification" obtenu par cette réaction de titrage est égal à 1,5x10^{-4}. En comparaison avec le facteur de purification (égal à 10^{-2}) de la technique classique, la purification par l’aluminium est 100 fois plus efficace que la technique classique.

Cependant même si la purification à l’aluminium est plus efficace, elle ne peut être validée que si l’alumine reste le seul composé aluminium-oxygène présent à la fin du procédé. La détermination des composés aluminium-oxygène formés pendant le processus de titrage est donc nécessaire pour valider la technique de purification.

4.2.2. Simulation et discussion

Au cours de cette expérience de titrage, on observe un seul saut de potentiel correspondant à la formation d’un seul composé aluminium-oxygène stable (Figure 157). Une seule réaction semble se produire au cours des ajouts des ions Al^{3+} :

\[2Al^{3+} + 3O_2^- \rightarrow Al_2O_3,\]
\[Al^{3+} + O_2^- \rightarrow AlO^+,\]
\[Al^{3+} + 2O_2^- \rightarrow AlO_2^-.

D’après le diagramme Potentiel-pO_2- de la littérature (Figure 151), l’alumine est l’espèce aluminium-oxygène thermodynamiquement stable, pour une teneur en ions oxyde égale à 10^{-4} mol/kg. Nous supposerons donc en premier lieu que les apports successifs d’ions aluminium (III) dans le sel engendrent la précipitation d’alumine selon la réaction suivante : 2Al^{3+} + 3O_2^- = Al_2O_3.

La relation de Van’t Hoff permet d'évaluer le produit de solubilité de l’alumine à 437°C à partir des produits de solubilité obtenus par la réaction de titrage précédente à 460°C et dans la littérature à 470°C.

La relation de Van't Hoff se définit par l'égalité suivante :
Annexes

\[\frac{d \ln K^0(T)}{dT} = \frac{\Delta H^0(T)}{RT^2} \]

(9)

Supposons que l'enthalpie de solubilisation de l'alumine, \(\Delta H^0(T) \), ne varie pas avec la température dans le faible intervalle de température étudié. Dans ce cas la relation (9) devient :

\[\ln K^0(T) = - \frac{\Delta H^0(T)}{RT} + \text{cste} \]

(10)

La constante de dissociation de l'alumine est reliée à l'inverse de la température par une relation affine dont le coefficient directeur est proportionnel à l'enthalpie de la réaction de solubilisation de l'alumine.

Sur la Figure 158 sont représentés les couples \((pKs; 1/\text{T})\) obtenus dans la littérature à 470°C [128] et expérimentalement à 460°C.

A l'aide des valeurs du coefficient directeur (égal à 81515) et de la constante à l'origine (égale à -82,309) de la droite \(pKs = f \left(\frac{1}{T} \right) \), le \(pKs \) est évalué à notre température de travail, 437°C, égal à 32,5.

La formation du composé Al\(_2\)O\(_3\) est simulée, à l'aide des expressions (1), (2), (3), puis comparée aux résultats expérimentaux.

Les équations (1), (2) et (3) permettent d'obtenir :

\[\frac{[\text{Al}^{3+}]}{[\text{O}^{2-}]}_{\text{ai}} = \frac{Ks^{1/2}}{[\text{O}^{2-}],[\text{O}^{2-}]}^{3/2} + \frac{2}{3} \left(1 - \frac{[\text{O}^{2-}]}{[\text{O}^{2-}]} \right) \]

(11)

La quantité d’ions aluminium (III) ajoutés peut donc être exprimée en fonction de la molalité initiale en ions oxyde, de la molalité en ions oxyde présents dans le sel ainsi que du produit de solubilité de l'alumine.

L’ajustement de la courbe simulée, par l’équation (11), sur les points expérimentaux permet de déterminer le produit de solubilité \(Ks \) de l’alumine.
Pour cette expérience (Figure 157) à 437°C, les courbes se superposent convenablement aux points expérimentaux pour un produit de solubilité de l'alumine égal à 32,5. Cette valeur est en parfait accord avec la valeur prédite par la relation de Van't Hoff et les produits de solubilité de la littérature et de l'expérience à 460°C.

L'obtention, par ajustement de la courbe simulée sur les points expérimentaux, de la valeur 32,5 pour le produit de solubilité de l'alumine à 437°C et la présence d'un seul point d'inflexion à la courbe expérimentale montrent que :
- l'alumine précipite et ne se dissocie pas en AlO⁺,
- l'approximation d'une enthalpie $\Delta H^\circ(T)$ constante, sur l'intervalle de température étudié, est justifiée. Ceci nous permet d’en déduire une enthalpie de réaction pour la solubilisation de l'alumine égale à −294,659 kJ/mol dans l’intervalle de température étudié.

L'objectif de cette technique étant à la fois d'obtenir une très grande purification et une précipitation d'alumine : la technique de purification par l'aluminium, aboutissant à un facteur de purification de $1,5 \times 10^{-4}$ et à une précipitation d'alumine est donc validée pour une teneur initiale en ions oxyde égale à $4,4 \times 10^{-4}$ mol/kg, à 437°C.

5. Conclusion sur la technique de purification à l'aluminium

Les courbes issues des simulations proposées pour l'analyse des courbes de titrage se superposent correctement aux points expérimentaux pour les deux concentrations initiales en ions oxyde.

Les composés AlO₂⁻ et Al₂O₃ ont, par cette méthode, été mis en évidence et les constantes de formation de ces composés ont été ainsi déterminées. En revanche le composé AlO⁺ n’a jamais été mis en évidence lors de nos expérimentations ; il n’y a pas de dissociation de l’alumine en AlO⁺ même si cette réaction est thermodynamiquement possible, à nos températures de travail, pour des teneurs en ions oxyde faible (à la fin des titrages).

Les constantes de dissociation des composés identifiés au cours de nos expériences de titrage, ainsi que celles de la littérature sont récapitulées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Température (°C)</th>
<th>$\text{AlO}^+ = \text{Al}^{3+} + \text{O}^{2-}$ pKd</th>
<th>$\text{AlO}_2^- = \text{Al}^{3+} + 2\text{O}^{2-}$ $\text{pK}'d$</th>
<th>$\text{Al}_2\text{O}_3 = 2\text{Al}^{3+} + 3\text{O}^{2-}$ $\text{pK}s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>470 [128]</td>
<td>10,7</td>
<td>14,6</td>
<td>27,4</td>
</tr>
<tr>
<td>460 cette étude</td>
<td>14,6</td>
<td>28,9</td>
<td>32,5</td>
</tr>
<tr>
<td>437 cette étude</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 34 : récapitulatif des valeurs des constantes de dissociation des complexes Al-O obtenus dans cette étude et dans la littérature.

Une forte incertitude repose néanmoins sur l’expérience à forte teneur en ions oxyde : le premier saut de potentiel observé sur la courbe de titrage ne présente pas d’explication simple. En effet, des suppositions d’ordre cinétique ne permettent pas d’expliquer le saut de potentiel à un degré d’avancement égal à 0,17. Une considération d’ordre thermodynamique permettrait une analyse du phénomène mais elle suppose l’apparition d’un composé Ba₃AlO₆³⁻ de configuration peu probable et jusqu’alors jamais observé dans la littérature.

Cependant, notre objectif premier n’est pas la détermination de toutes les espèces aluminium-oxygène présentes dans le sel mais d'aboutir à la précipitation d'alumine à l'issue du titrage quels que soient les composés pouvant apparaître au cours du titrage.
Dans ces conditions et d’après nos expériences de titrage, l’alumine précipite et reste la seule espèce aluminium-oxygène en solution en fin de purification, même si au cours du dosage d’autres espèces peuvent apparaître temporairement.

De plus, un léger excès en ions Al$^{3+}$ permet de précipiter en alumine tout apport d’ions oxyde survenant après la purification. Ce dernier aspect est rendu impossible dans le cas d’une purification par bullage gazeux et permet une durabilité et une stabilité de la purification au cours des expériences postérieures.

La technique de purification est donc validée pour des valeurs de teneurs initiales en ions oxyde supérieures à $4,4 \times 10^{-4}$ mol/kg. En effet, pour ces teneurs, le titrage aboutit à la précipitation d’alumine, composé stable et inerte qui ne doit pas réagir avec les produits créés par d’autres réactions après purification. Ces expériences de titrage montrent que la teneur en ions oxyde après purification dépend fortement de leur teneur initiale. En effet, plus la teneur initiale en ions oxyde est forte (plus le bain est "sale"), meilleur est le "facteur de purification" ($1,5 \times 10^{-4}$ pour $[O^2^-]=4,4 \times 10^{-4}$ mol/kg et 2×10^{-7} pour $[O^2^-]=2,7 \times 10^{-2}$ mol/kg).

Un ajout préalable d’ions oxyde (Li$_2$O par exemple) avant toute purification permettrait de se situer dans une gamme de teneur initiale en ions oxyde telle que la précipitation d’alumine serait certaine et permettrait d’aboutir ainsi à une purification optimale.

La purification par l’aluminium permet donc d’obtenir un "facteur de purification" au moins 100 fois supérieur à celui obtenu par la technique classique de bullage d’HCl.

La simplicité de mise en œuvre et d’utilisation de ce procédé, la faible durée de l’étape de purification et l’efficacité de la technique, tant au niveau de la teneur très faible en ions oxyde atteignable qu’au niveau de la stabilité de cette faible teneur, montrent le grand intérêt d’une telle méthode.
Annexe 6 : Schéma de l'installation

Figure 159 : Schéma de principe du dispositif des essais de corrosion dans le bismuth pur.
Figure 160 : Schéma de principe de la boîte à gant dans laquelle sont effectués les essais de corrosion dans l’alliage Pb-Bi.
Les échantillons oxydés dans un environnement métal liquide (alliage Pb-Bi, bismuth) ont été observés et analysés selon différentes techniques.

Des analyses et des observations ont été réalisées par MEB-FEG (MEB à effet de champ Karl Zeiss 1525) sans EDS ou par MEB (Léo VP 1450) avec EDS (microanalyse par spectrométrie de rayon X à dispersion d'énergie), sur des fractures transverses ou sur des coupes transverses polies.

Cette technique d'imagerie permet de mettre en contraste la topographie de la surface observée pour une image en électrons secondaires ou de mettre en contraste le numéro atomique des éléments présents pour une image en électrons rétrodiffusés. Dans ce dernier cas, les éléments présents dont le numéro atomique est faible, sont représentés par des nuances de gris foncées alors que les éléments de numéro atomique élevé sont représentés par des nuances de gris claires.

Des analyses ont été effectuées par microsonde électronique (CAMECA SX50) sur des coupes transverses polies.

Des analyses par diffraction des rayons X (Panalytical, modèle X'Pert MPD) ont été effectuées sur la surface des échantillons.

Des analyses par SIMS (MIQ 256 Cameca Riber) et SDL (Jobin Yvon JYS 50S-GDS) ont été obtenues par érosion de la surface de l'échantillon (Figure 161).

Figure 161 : (A) Schéma d'une technique d'analyse par érosion (SDL, SIMS). (B) Image en trois dimensions, d'un cratère SDL, obtenue par profilométrie. (C) Profil d'un cratère SDL.
Annexes

Une observation par microscopie électronique à transmission (MET de modèle JEOL JEM 2010) a été effectuée sur un échantillon oxydé 500 heures dans l'alliage Pb-Bi saturé en oxygène à 470°C.
Annexe 8 : Traitement des échantillons après oxydation dans l'alliage Pb-Bi liquide

Pour la plupart des analyses en coupes transverses (MEB, microsonde) ainsi que pour toutes les analyses SIMS et certaines analyses SDL les échantillons ont subi un traitement de "déplombage" avant découpe de l'échantillon (MEB, microsonde) ou avant analyse directe par SIMS ou SDL.

Le traitement de "déplombage" est effectué dans un bain chimique spécifique, composé d'un tiers d'acide acétique, d'un tiers d'eau oxygénée et d'un tiers d'éthanol. L'objectif de ce "déplombage" est de dissoudre les gouttes et la pellicule, d'épaisseur variable, de l'alliage Pb-Bi figées à la surface de l'échantillon lors du refroidissement de l'échantillon, après son retrait du bain de l'alliage Pb-Bi. Ces gouttes et cette couche de l'alliage Pb-Bi à la surface des échantillons sont mises en évidence sur les images MEB présentées Figure 162.

![Image MEB-FEG de fractures d'échantillons oxydés 150 h dans l'alliage Pb-Bi (A) et 270 h dans l'alliage Pb-Bi (B).](image)

L'étape de "déplombage" est requise pour estimer l'épaisseur de la couche d'oxyde à partir du gain de masse de l'échantillon. En effet, cette estimation ne doit pas être perturbée par la masse de l'alliage Pb-Bi figée à la surface de l'échantillon.

Le même échantillon est ensuite découpé puis poli afin de mesurer sur le même échantillon l'épaisseur de la couche d'oxyde par observation MEB.

Une comparaison entre l'épaisseur estimée par le gain de masse et l'épaisseur mesurée a ainsi été réalisée pour chaque durée d'immersion. Pour chaque d'urée d'immersion, un échantillon a donc subi cette étape de "déplombage".
Aussi, afin de vérifier que la couche d'oxyde n'était pas attaquée par le bain de "déplombage", certains échantillons oxydés dans l'alliage Pb-Bi ont été découpé puis polis, sans étape de "déplombage", puis comparés à des échantillons "déplombés". Aucune dissolution de la couche d'oxyde n'a été constatée : le bain de "déplombage" n'attaque pas l'échantillon, ni sa couche d'oxyde.

Cependant, après "déplombage " préalable, nous avons remarqué que l'estimation de l'épaisseur de la couche d'oxyde était systématiquement supérieure à l'épaisseur de la couche mesurée sur les images MEB. Cette majoration de l'épaisseur par estimation à partir du gain de masse peut être attribuée à une pénétration du métal liquide dans la couche d'oxyde.

En effet, d'après la littérature (Chapitre II, paragraphe 2.1), une présence de plomb est observée dans la couche supérieure de magnétite. Il sera montré ultérieurement que le plomb pénètre en effet dans la couche d'oxyde. Ces pénétrations ne sont pas éliminées par le bain de "déplombage".

Elles participent donc à l'estimation de l'épaisseur de la couche d'oxyde par le gain de masse.

La cinétique de croissance des couches d'oxyde obtenue expérimentalement ne tiendra donc pas compte de l'estimation de l'épaisseur par le gain de masse qui est faussée par la présence de plomb dans la couche. Seules les épaisseurs de couche observées par MEB, sur coupe transverse polie, seront représentées.

Dans le cas des échantillons subissant une découpe et un polissage (MEB, microsonde), l'intérêt de dissoudre le surplus de l'alliage Pb-Bi à la surface de l'échantillon est aussi d'éviter l'étirement de l'alliage Pb-Bi lors du polissage de l'échantillon. Celui-ci peut gêner l'interprétation des analyses chimiques de l'échantillon.

Afin de mettre en évidence ce dernier point, un échantillon oxydé dans l'alliage Pb-Bi a été coupé puis poli sans "déplombage" préalable. L'échantillon a ensuite été partiellement décapé par décapsulation ionique (Balzers SCD020). Le but de ce décapsulation partiel est de mettre en évidence un éventuel étirement de l'alliage Pb-Bi lors du polissage de l'échantillon.

Les résultats de l'analyse chimique de l'échantillon, par MEB/EDX et par microsonde, n'ont montré aucune différence entre la partie décapée et la partie non décapée. Le métal figé à la surface de l'échantillon ne s'est donc pas étalé lors du polissage de l'échantillon.

Les échantillons, oxydés dans l'alliage Pb-Bi puis déplombés pour l'estimation, par gain de masse, de l'épaisseur de la couche, étaient ensuite découps puis polis, destinés à une observation MEB et une analyse microsonde.

Tous les échantillons observés sur coupe transverse polie, ont donc été systématiquement déplombés.

Les échantillons oxydés dans le bismuth pur n'ont pas subi ce traitement car le bismuth ne se dissout pas dans le bain de "déplombage".

Les échantillons destinés à une observation MEB sur une fracture transverse n'ont pas été préalablement déplombés afin de visualiser la zone d'interaction entre la couche d'oxyde et le métal liquide figé à sa surface.

La cinétique de croissance expérimentale n'a pas toujours tenu compte des mesures de couches d'oxyde, obtenues par observation MEB sur les fractures, car la délimitation entre la couche d'oxyde et le métal liquide figé n'était pas toujours aisée.
Dans le cas d'échantillons ne subissant ni découpe ni polissage (analysés par SIMS, SDL ou DRX), l'intérêt du "déplombage" repose sur trois paramètres :

− Le signal obtenu par diffraction des rayons X sur les couches d'oxyde ne doit pas être caché ou perturbé par la présence de l'alliage Pb-Bi en surface.

− Les techniques d'érosion (SDL, SIMS) requièrent une surface plane afin d'analyser plan par plan l'épaisseur de la couche d'oxyde. Les irrégularités de surface provoquent des irrégularités dans la géométrie du fond de cratère d'érosion engendrant un moyennage de l'analyse sur plusieurs niveaux (Figure 161).

− Les techniques d'érosion sont fondées sur un bombardement de la surface de l'échantillon par un plasma d'ions argons qui chauffe la surface de l'échantillon à quelques centaines de degrés Celsius. Le point de fusion de l'alliage Pb-Bi étant bas (125°C), la couche superficielle de l'alliage Pb-Bi est fondu lors du processus d'érosion. Cette fusion provoque un encrassement accéléré de la source émettrice du plasma.

Pour ces trois raisons, l'étape de "déplombage" a été effectuée avant toute analyse SDL et SIMS.
Annexe 9 : Coefficients de diffusion dans le plomb, l'alliage Pb-Bi et le T91

1. Coefficients de diffusion dans le Plomb, l'alliage Pb-Bi

1.1. Coefficient de diffusion de l'oxygène dans le Plomb, l'alliage Pb-Bi

Les coefficients de diffusion de l'oxygène dans le métal liquide ont été déterminés dans la littérature par trois méthodes :

- par mesure électrochimique à partir d'une électrode de zircone \[145\][146][147] : le principe est de réaliser des ampérométries au potentiel de réduction de l'oxygène. L'évolution au cours du temps de l'intensité mesurée est liée au coefficient de diffusion de l'oxygène dans l'électrode de plomb.

- par mesure électrochimique à partir d'une électrode de zircone \[19\] : le principe est de positionner deux sondes à oxygène de part et d'autre d'une colonne horizontale de plomb liquide. Une sonde à oxygène sert à insérer de l'oxygène dans le plomb liquide, à une extrémité de la colonne. L'autre sonde à oxygène située de l'autre côté de la colonne de plomb permet de mesurer la concentration en oxygène au cours du temps : le potentiel de cette électrode de zircone, suite à l'introduction d'oxygène effectuée de l'autre côté de la colonne, mène à la détermination du coefficient de diffusion de l'oxygène dans le plomb.

- par mesure de la perte de masse d'un disque de PbO tournant dans le métal liquide \[19\] : la cinétique de dissolution du disque est liée à la limite de solubilité de l'oxygène dans le plomb ou l'alliage Pb-Bi, à la vitesse angulaire de rotation du disque, la viscosité cinématique du métal liquide à la température considérée et au coefficient de diffusion de l'oxygène dans le plomb ou l'alliage Pb-Bi.

Aucune valeur du coefficient de diffusion de l'oxygène dans le bismuth pur n'a été trouvée dans la littérature. Seuls les coefficients de diffusion de l'oxygène dans l'alliage Pb-Bi et dans le plomb pur seront présentés.

Ces valeurs sont regroupées dans le Tableau 35.

<table>
<thead>
<tr>
<th>Environnement, domaine de température (°C)</th>
<th>Coefficient de diffusion de l'oxygène (cm²/s)</th>
<th>R (J.mol⁻¹K⁻¹)</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>9,65×10⁻⁵ Exp(\frac{-20084}{RT})</td>
<td>5,9×10⁻⁶</td>
<td>[147]</td>
</tr>
<tr>
<td>Pb (T=750)</td>
<td>1,43×10⁻⁵</td>
<td></td>
<td>[146]</td>
</tr>
<tr>
<td>Pb (900<T<1100)</td>
<td>1,48 ± 0,6×10⁻³ Exp(\frac{-4660 ± 2560}{RT})</td>
<td></td>
<td>[148]</td>
</tr>
<tr>
<td>Pb (740<T<1080)</td>
<td>1,44×10⁻³ Exp(\frac{-25942}{RT})</td>
<td></td>
<td>[19]</td>
</tr>
<tr>
<td>Pb (400<T<1000)</td>
<td>6,6·10⁻⁵· Exp(\frac{-16158}{RT})</td>
<td></td>
<td>[19]</td>
</tr>
</tbody>
</table>
Annexes

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Pb-Bi (200<T<1000) & $2,39 \cdot 10^{-2} \cdot \exp\left(-\frac{43073}{RT}\right)$ \cite{19} \\
\hline
\end{tabular}
\caption{Valeurs des coefficients de diffusion de l'oxygène dans le plomb et l'alliage Pb-Bi.}
\end{table}

La Figure 163 présente l'évolution de ces coefficients de diffusion en fonction de la température.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure163.png}
\caption{Coefficient de diffusion de l'oxygène dans l'alliage Pb-Bi et le plomb \cite{145,146,147,19}.}
\end{figure}

La Figure 163 montre la cohérence des valeurs des coefficients de diffusion de l'oxygène dans le plomb : seulement deux lois diffèrent des autres \cite{146,148,19}. Ces deux lois ne concordent pas très bien, leurs méthodes de détermination sont différentes. Aussi environ un ordre de grandeur sépare les valeurs obtenues par chacune de ces deux lois.

La méthode de détermination du coefficient de diffusion de l'oxygène est similaire pour les références \cite{19,147}, cependant une différence existe entre les expériences de Szarc \cite{146} et celles de Bandyopadhyay \cite{146,147} et Honma \cite{19}. Cette différence porte sur la nature du matériau de référence utilisé dans la sonde de zircone. Un schéma de cette sonde est illustré sur la Figure 164.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure164.png}
\caption{montage électrochimique réalisé pour mesurer le coefficient de diffusion de l'oxygène dans le plomb.}
\end{figure}
Annexes

Szarc[146] a utilisé le couple Pt/air et Bandyopadhyay[146][147] et Honma[19], le couple Ni/NiO, comme matériau de référence. Théoriquement le choix de la référence ne doit pas influencer le résultat du coefficient de diffusion obtenu, cependant l'utilisation à haute température d'une référence Pt/air est plus compliquée que l'utilisation du métal Ni saturé en oxygène, en équilibre avec son oxyde NiO.

Aussi la différence de résultat obtenue peut être due à l'utilisation d'une référence Pt/air.

Les résultats obtenus avec le matériau de référence Ni/NiO sont proches pour les deux expériences[147][19] et sont similaires à ceux obtenus par la méthode du disque tournant[19].

Nous choisissons comme coefficient de diffusion de l'oxygène dans le plomb celui donné par Gromov et Shmatko[19] qui est intermédiaire entre ceux mesurés par Bandyopadhyay[147][19] et par Honma[19].

À 470°C le coefficient de diffusion de l'oxygène dans le plomb est alors de l'ordre de 4x10⁻⁶ cm²/s[19].

Les valeurs des coefficients de diffusion de l'oxygène dans l'alliage Pb-Bi et dans le plomb pur liquide diffèrent d'environ un ordre de grandeur : le coefficient de diffusion de l'oxygène dans l'alliage Pb-Bi est égal à 2x10⁻⁵ cm²/s à 470°C.

La diffusion de l'oxygène dans chacun des deux métaux liquides correspond à une diffusion classique dans un liquide non visqueux (∼10⁻⁵ cm²/s).

1.2. Coefficient de diffusion du fer dans l'alliage Pb-Bi

Les coefficients de diffusion des espèces métalliques sont peu connus dans les métaux liquides.
Le coefficient de diffusion du fer est inconnu dans l'alliage Pb-Bi, excepté pour trois températures :

- 400°C : 3,5x10⁻⁷ cm²/s[116],
- 470°C : 7,6x10⁻⁶ cm²/s[116],
- 750°C : 2,27x10⁻⁵ cm²/s[27].

Ces coefficients ont été obtenus par des expériences d'éprouvettes tournantes. La perte de masse d'un disque en fer[27] ou d'un cylindre en T91[116] a été mesurée après essais de dissolutions. La vitesse de dissolution de l'éprouvette est liée au coefficient de diffusion du fer et dépend des paramètres suivants : vitesse angulaire de rotation de l'éprouvette, limite de solubilité du fer dans l'alliage Pb-Bi liquide et viscosité cinématique de l'alliage Pb-Bi liquide à la température considérée.

Le coefficient de diffusion du fer dans le plomb a été mesuré par gravage des joints de grains de l'alliage par le métal liquide[149].

Le principe de cette méthode est le suivant : le métal liquide, au contact du solide, dissout les joints de grains creusant ainsi des sillons. La largeur de ces sillons est liée au coefficient de diffusion des éléments du solide dans le métal liquide.

Le graphique de la Figure 165 regroupe les différentes déterminations du coefficient de diffusion du fer dans le plomb pur[149] et dans l'alliage Pb-Bi[116][27].

300
La Figure 165 montre que les valeurs des coefficients de diffusion dans l'alliage Pb-Bi et dans le plomb sont voisines. Toutes les valeurs sont proches de l'extrapolation à basses températures de la loi de diffusion du fer dans le plomb pur, obtenue à hautes températures (700°C-1000°C)\[^{149}\].

C'est pourquoi le coefficient de diffusion du fer dans l'alliage Pb-Bi est en général approximé à sa valeur dans le plomb et extrapolée à basses températures :

\[
\log(D_{cm^2/s}) = -2.31 - \frac{2295}{T} \quad (700°C<T<1000°C)
\]

Cependant le coefficient de diffusion du fer dans le plomb extrapolé à 470°C est deux fois plus faible que la valeur proposée dans l'alliage Pb-Bi à 470°C\[^{116}\]. Pour préciser la valeur de ce coefficient de diffusion dans l'alliage Pb-Bi, nous avons cherché à le mesurer à 470°C et à plus basses températures.

En effet, les mesures obtenues à 400°C et à 470°C sont fondées sur des expériences de dissolution d'échantillons cylindriques de T91 en rotation dans un pot d'alliage de Pb-Bi liquide. Ces expériences ne sont pas toujours reproductibles et une seule détermination a été effectuée à 470°C.

Afin de valider les données de la littérature du coefficient de diffusion du fer dans l'alliage Pb-Bi et de mesurer le coefficient de diffusion du fer et celle d'autres espèces métalliques à faibles températures (400°C-500°C), une technique simple et nécessitant de faibles durées d'expérimentations a été recherchée.

Les coefficients de diffusion des espèces métalliques dans les alliages liquides sont généralement obtenus par différentes techniques expérimentales :

- Par mesures de dissolution d'éprouvettes tournantes\[^{116}\][\[^{162}\] :
 Cette technique n'a pas été envisagée car elle nécessite un appareillage expérimental lourd et onéreux. De plus les expérimentations durent plusieurs milliers d'heures, surtout aux basses températures (400°C-500°C).
− Par gravage des joints de grains de l'alliage par le métal liquide[149] :
L'intérêt de cette technique repose sur son apparente simplicité de mise en œuvre.
En fonction du mécanisme de gravage, le coefficient de diffusion peut être, soit un coefficient de diffusion volumique (qui est le coefficient de diffusion recherché), soit un coefficient de diffusion interfacial.
La cinétique de croissance de la largeur des sillons peut suivre différentes évolutions au cours du temps. Ces évolutions identifient le type de mécanisme responsable du gravage des sillons ($t^{1/3}$ diffusion volumique ou $t^{1/4}$ diffusion interfaciale)[149].

Cependant à faibles températures le gravage des sillons est très lent et l'obtention d'une cinétique de gravage nécessite, pour la gamme de température étudiée (400°C-500°C) plusieurs milliers d'heures d'expérience pour chaque température.

A cause de ces différentes contraintes de temps et de faisabilité des expérimentations, une technique originale et à priori plus aisée à mettre en œuvre a été développée.
Cette technique repose sur des suivis potentiométriques, dans un électrolyte sel fondu LiCl-KCl, d'une électrode de Pb-Bi dans laquelle est ajouté progressivement du fer métallique.
Le détail et les résultats obtenus par cette méthode sont présentés en Annexe 4.

Cette méthode a nécessité la mise au point d'un procédé de purification du sel fondu LiCl-KCl, utilisable pour d'autres expériences. Ce procédé de purification, dont le détail figure en Annexe 5 de ce document, a permis de déterminer des constantes de réactions chimiques dans les sels fondu.

Cependant le manque de reproductibilité des résultats nous a amené à interrompre provisoirement le développement de la technique. Par conséquent, les valeurs des coefficients de diffusion du fer dans le plomb et l'alliage Pb-Bi, utilisées lors de cette étude sont les valeurs de la littérature : 7,6x10^{-6} cm^2/s [116] dans l'alliage Pb-Bi et 4x10^{-6} cm^2/s dans le plomb pur [149] à 470°C.

2. Coefficients de diffusions dans le T91

Les coefficients de diffusion du chrome et du fer dans le fer et l'acier Fe-10Cr ont été obtenus en suivant la pénétration de radio-isotopes du fer et du chrome dans les matériaux étudiés. Les coefficients de diffusion du chrome [152] dans un acier Fe-10Cr et du fer [152] et du chrome [151] dans le fer α sont représentés sur la figure suivante.
Annexes

Figure 166 : coefficients de diffusion du fer et du chrome dans le fer pur et dans un acier Fe-10Cr \[126\].

Le graphique de la Figure 166 montre que les coefficients de diffusion du chrome, dans l'acier Fe-10Cr et dans le fer pur, sont très proches. En effet, une étude \[124\] sur la diffusion du chrome dans les alliages Fe-Cr a montré que la valeur du coefficient de diffusion ne dépendait pas de la teneur en chrome dans l'acier. De plus les coefficients de diffusion du fer et du chrome dans le fer α sont similaires. Ceci conduit à conclure que les coefficients de diffusion du fer et du chrome dans le T91 doivent être du même ordre de grandeur : de l'ordre de 10^{-18} cm2/s à 470°C.
Annexe 10 : Coefficients de diffusion dans les spinelles

1. Coefficients de diffusion de l'oxygène dans les spinelles

Castle et Surman [96] ont mesuré le coefficient de diffusion de l'oxygène dans la magnétite par micro analyse isotopique de l'oxygène 18. Son évolution en fonction de la température est donnée par la relation :

\[D_o(T) = 3,2(\pm 1,6) \times 10^{-14} \exp \left(-\frac{8555 \pm 831}{T(\degree K)} \right) \text{cm}^2/\text{s} \text{ pour } 302\degree\text{C}<T<550\degree\text{C} \]

A 470°C, la valeur du coefficient de diffusion de l'oxygène dans la magnétite est donc égal à 3x10^{-19} cm^2/s.

Nous considérerons que le diffusion de l'oxygène dans le spinelle Fe-Cr est identique à celui dans la magnétite. En effet la structure anionique est peu changée lorsque des cations Cr^{3+} se substituent aux cations Fe^{3+} pour transformer la magnétite en spinelle Fe-Cr.

2. Coefficients de diffusion du fer et du chrome dans les spinelles

Les coefficients de diffusion du fer et du chrome dans la magnétite et dans le spinelle Fe_{2,34}Cr_{0,66}O_4 peuvent être évalués à partir de données de la littérature mesurées à hautes températures. Toutes ces mesures ont été réalisées par Töpfer [47] et Dieckmann [106][153][105][107] via des mesures de pénétrations d'isotopes radioactifs dans les spinelles. Les coefficients de diffusion déterminés dépendent fortement de l'activité en oxygène dans l'oxyde.

Cette dépendance est liée à un équilibre chimique entre l'activité en oxygène dans l'oxyde et la quantité de lacune et de sites interstitiels dont dépend le coefficient de diffusion du cation dans l'oxyde.

Aussi nous montrerons qualitativement comment varie le coefficient de diffusion du fer dans la magnétite en fonction de l'activité en oxygène.

Cela nous conduira à considérer la structure cristallographique du réseau spinelle.

Nous chercherons ensuite à identifier les sites cristallins responsables de la diffusion du chrome et du fer dans les spinelles Fe-Cr.

Enfin les coefficients de diffusion du fer et du chrome dans la magnétite et dans le spinelle Fe_{2,34}Cr_{0,66}O_4 seront évalués, à 470°C, en fonction de l'activité en oxygène dans la couche d'oxyde.

2.1. Régime de diffusion du fer : une dépendance en fonction de l'activité de l'oxygène

Afin d'étudier qualitativement la variation du coefficient de diffusion du fer dans la magnétite en fonction de l'activité en oxygène, la structure cristallographique du réseau doit être abordée.
Annexes

En effet, cette structure met en évidence deux régimes de diffusions possibles pour les cations fer.
Ces régimes de diffusion imposent la loi de dépendance du coefficient de diffusion du fer en fonction de l'activité en oxygène.

2.1.1. Structure cristallographique de la magnétite

La magnétite cristallise dans le système cubique. Le système cristallin de la magnétite comporte deux sous-réseaux : l'un anionique, l'autre cationique.
- Le sous-réseau anionique des ions d'oxygène est cubique face centré.
- Au sein de ce sous-réseau anionique, des interstices en position tétraédrique et octaédrique peuvent être occupés par des ions plus petits [105]. Ces interstices appartiennent donc au sous-réseau cationique.

La Figure 167 met en évidence qu'une sous cellule de réseau anionique contient 12 interstices :
- 1+12/4=4 interstices octaédriques
- 8 interstices tétraédriques.

Le nombre d'atomes d'oxygène est de 4 ce qui implique que le nombre de cation dans une sous cellule du réseau anionique doit être égal à 3 (en raison de la formule chimique M₃O₄ des spinelles).

Ces trois cations sont donc localisés dans 3 des 12 interstices possibles [105] (Figure 167).
Il reste donc 9 interstices vides, appelés sites interstitiels, dans le sous-réseau cationique.

Un interstice vide, normalement inoccupé est noté V_I et nommé interstitiel et un interstice vide, normalement occupé, est noté V_{Fe} et nommé lacune.

![Figure 167 : réseau de la magnétite][105]: sous-réseau anionique cubique face centré. Les ions oxygènes sont représentés par les gros cercles. Le sous-réseau cationique est représenté par les petits cercles avec les interstices tétraédriques (petits cercles blancs) et les interstices octaédriques (petits cercles noirs).

2.1.2. Les deux régimes de diffusion du fer : interstitiel et lacunaire

La diffusion des cations fer s'effectue par sauts dans les sites inoccupés du réseau.
Annexes

D’après cette structure spinelle, un cation fer peut donc diffuser via les sites interstitiels normalement inoccupés, notés V_i ou via les sites lacunaires, notés V_{Fe}.

Dans le cas d’une diffusion interstitielle, le coefficient de diffusion intrinsèque du fer, $D_{Fe^{n+}}$, est lié au coefficient de diffusion du fer dans les sites interstitiels, $D_{Fe^{n+}_i}$, selon :

$$D_{Fe^{n+}}[Fe^{n+}] = D_{Fe^{n+}_i}[Fe^{n+}_i],$$

en notant Fe^{n+}_i un cation fer localisé dans un site normal du sous-réseau cationique et Fe^{n+}_l, un cation fer localisé dans un site interstitiel normalement inoccupé. Les symboles $[Fe^{n+}]$ et $[Fe^{n+}_i]$ concernent les concentrations volumiques des espèces Fe^{n+} et Fe^{n+}_i.

De la même manière, le coefficient de diffusion d’un cation fer diffusant via les sites lacunaires V_{Fe} (sites vides du réseau cationique) occupés est exprimé selon :

$$D_{Fe^{n+}}[Fe^{n+}] = D_{r_{Fe}}[V_{Fe}]$$

Dans le cas général, le coefficient de diffusion intrinsèque du fer $D_{Fe^{n+}}$ s’écrit :

$$D_{Fe^{n+}}[Fe^{n+}] = D_{r_{Fe}}[V_{Fe}] + D_{Fe^{n+}_i}[Fe^{n+}_i] \quad (1)$$

Afin de déterminer le coefficient de diffusion intrinsèque du fer, les concentrations des lacunes et des interstitiels doivent être estimées en fonction de l’activité en oxygène.

2.1.3. Variation du coefficient de diffusion du fer dans la magnétite, en fonction de l'activité en oxygène

Evaluons les concentrations des sites lacunaires et interstitiels en fonction de l'activité en oxygène.

D’après les notations précédentes et en supposant un équilibre chimique local au sein de l'oxyde, la formation d'une molécule de magnétite à partir d'un ion fer (II) mène à la formation d'une lacune selon la réaction :

$$3Fe^{2+} + 2/3O_2 = 2Fe^{3+} + V_{Fe} + 1/3Fe_{3}O_4 \quad (2)$$

La concentration en lacune à l'équilibre chimique peut être évaluée en considérant une hypothèse de solution idéale dans la magnétite :

$$[V_{Fe}] = \alpha a_{Fe^{2+}}^{2/3} a_{Fe^{3+}}^{-2/3} a_{O_{2}}^{-3} a_{FeO_{4}} a_{Fe^{3+}}^{2/3} \quad \text{avec } a_X \text{ l'activité de l'élément } X \text{ dans le réseau de la magnétite.}$$

La matière étant globalement électriquement neutre, les ions fer (II) et fer (III) ont une activité à peu près constante au sein de la couche d'oxyde. L'activité de $Fe_{3}O_{4}$ dans la magnétite est égale à 1 et la concentration en lacune ne dépend plus que de $a_{Fe^{2+}}^{2/3}$:

$$[V_{Fe}] = \alpha a_{O_{2}}^{2/3} a_{Fe^{2+}} \quad (3)$$

La formation d'un cation fer occupant un site interstitiel peut se produire selon la réaction :

$$Fe^{n+} + V_{j} = Fe^{n+}_i + V_{Fe} \quad \text{de constante d'équilibre } K_f$$

(3)
La concentration en cations fer dans les sites interstitiels est :

\[[Fe^{n+}a] = \frac{\alpha V_{\text{Fe}}}{[V_{\text{Fe}}]} \]

Dans la réaction ci-dessus, les couples (site, espèce) \(Fe^{n+} \) et \(V_{i} \) sont les couples (site, espèce) normaux et \(Fe^{n+} \) et \(V_{Fe} \) sont les défauts cristallins. Comme \(Fe^{n+} \) et \(V_{i} \) sont les couples (site, espèce) normaux, leur concentration n'évolue pas sensiblement dans la couche d'oxyde et la concentration en cations fer dans les sites interstitiels est inversement proportionnelle à celle des lacunes et à \(a_{O_{2}}^{2/3} \) :

\[[Fe^{n+}] = \alpha a_{O_{2}}^{2/3} \] [105].

Le coefficient de diffusion intrinsèque du fer dans la magnétite peut donc s'écrire sous la forme :

\[
D_{Fe}^{\alpha} [Fe^{n+}] = D_{r_{Fe}}^{0} \exp \left(\frac{-Q_{r}}{RT} \right) a_{O_{2}}^{2/3} + D_{i}^{0} \exp \left(\frac{-Q_{i}}{RT} \right) a_{O_{2}}^{2/3}
\] (4)

\(D_{r_{Fe}}^{0} \) et \(Q_{r}^{0} \) sont respectivement les termes pré-exponentiel et les énergies d'activation (termes exponentiels) pour les coefficients de diffusion intrinsèque des lacunes et des interstitiels.

L'équation précédente montre que le coefficient de diffusion intrinsèque du fer dépend fortement de l'activité en oxygène, \(a_{O_{2}}^{2/3} \), au sein de l'oxyde :

- Si l'activité de l'oxygène est élevée, le premier terme de l'équation (4) est dominant et la diffusion du fer suit un régime lacunaire.
- En revanche si l'activité en oxygène est faible, le second terme de l'équation (4) devient dominant et la diffusion du fer suit un régime interstitiel.

Les deux régimes de diffusion diffèrent par une loi de dépendance du coefficient de diffusion du fer en fonction de l'activité en oxygène. Cette loi de dépendance propre à chacun de ces deux régimes les caractérise.

Le coefficient de diffusion du fer suit l'expression \(\log D_{Fe}^{\alpha} \alpha - \frac{2}{3} \log a_{O_{2}} \) pour un régime interstitiel et l'expression \(\log D_{Fe}^{\alpha} \alpha - \frac{2}{3} \log a_{O_{2}} \) pour un régime lacunaire.

La diffusion du fer dans les spinelles Fe-Cr suit le même type de processus que dans la magnétite. En revanche le régime de diffusion lacunaire ou interstitiel peut être éventuellement perturbé par la présence de chrome dans le réseau. Cette perturbation a lieu si le défaut responsable de la diffusion du fer est localisé sur les mêmes sites cristallins que les cations chrome (III).

Une étude sur les sites de diffusion du fer et de localisation des cations chrome(III) dans le réseau spinelle Fe$_{2.34}$Cr$_{0.66}$O$_{4}$ a été effectuée à l'aide de données de la littérature.

2.2. Sites cristallins responsables de la diffusion du fer et du chrome

Les coefficients de diffusion du chrome et du fer dans les structures spinelles ont été mesurés dans la littérature à 1200°C [47]. Ces coefficients de diffusion seront comparés en fonction de la quantité de chrome présente dans la molécule de spinelle Fe-Cr.
La diffusion des cations fer peut être affectée par la présence d'atomes de chrome dans le réseau du spinelle en fonction du site de localisation (octaédrique ou tétraédrique) du défaut responsable du régime de diffusion et du site de localisation des cations Cr	extsuperscript{3+}.

A faible température, le spinelle a une structure nommée structure spinelle inverse : les sites tétraédriques sont occupés par des cations M	extsuperscript{3+} alors que les sites octaédriques sont occupés alternativement par un cation M	extsuperscript{3+} et un cation M	extsuperscript{2+}.

Pour un spinelle Fe-Cr, cela mène à la structure (Fe	extsuperscript{II}, Fe	extsuperscript{III}/Cr	extsuperscript{III})	extsubscript{0}(Fe	extsuperscript{III}/Cr	extsuperscript{III})	extsubscript{T}O	extsubscript{4} dont les termes entre parenthèses ()	extsubscript{O} et ()	extsubscript{T} représentent les cations situés respectivement dans les sites octaédriques et tétraédriques.

Dans la structure spinelle inverse les ions chrome (III) peuvent être localisés dans les sites octaédriques et/ou tétraédriques selon la quantité de chrome dans la molécule de spinelle Fe-Cr.

Des expériences de Töpfer \[47\] et Dieckmann \[106\][105][153] ont été analysées dans le but d'identifier :

- les sites de localisation (tétraédrique ou octaédrique) des cations chrome (III),
- les sites de localisation (tétraédrique ou octaédrique) des défauts interstitiels et lacunes dont dépend la diffusion du fer dans chaque régime.

Ces expériences regroupent des mesures de coefficients de diffusion :

- des lacunes de fer et des cations fer interstitiels dans la magnétite à plusieurs températures comprises entre 1150°C et 1450°C\[153\],
- du fer et du chrome, à 1200°C, dans les spinelles Fe-Cr en fonction de l'activité en oxygène et de la quantité en cation Cr	extsuperscript{3+} présente dans une molécule de spinelle \[47\].

La Figure 168 représente les évolutions des coefficients de diffusion des lacunes et des interstitiels pour le fer et le chrome à 1200°C en fonction de la stœchiométrie du spinelle Fe-Cr.
Annexes

Figure 168 : Coefficient de diffusion du fer et du chrome dans (Fe\(_{1-x}\)Cr\(_x\))\(_3\)O\(_4\) en fonction de x. Dans le cas d’un régime lacunaire (\(a_{O_2} = 10^{-4}\)) et dans le cas d’un régime interstitiel (\(a_{O_2} = 10^{-10}\)) à 1200°C [47].

Suite à leurs mesures, les auteurs ont abouti aux conclusions suivantes :

- Conclusion 1 : à 1200°C, la diffusion du fer dans la magnétite, dans un régime lacunaire (activité en oxygène élevée), est effectuée par des sauts prenant place dans les sites octaédriques du sous-réseau cationique [153].

- Conclusion 2 : à 1200°C en régime lacunaire, le coefficient de diffusion du fer ne dépend pas de la teneur en chrome dans la molécule de spinelle Fe-Cr (voir Figure 168) [47].

- Conclusion 3 : en revanche à 1200°C en régime interstitiel, le coefficient de diffusion du fer est affecté par la teneur en chrome dans la molécule de spinelle Fe-Cr (voir Figure 168) [47].

- Conclusion 4 : le rapport \(D_I/I\) du coefficient de diffusion des cations interstitiels sur la concentration en cations interstitiels \(I\) reste constante quand la concentration en chrome augmente dans la molécule de spinelle Fe-Cr : la mobilité des cations interstitiels n’est donc pas affectée par la teneur en chrome (III) dans la molécule de spinelle Fe-Cr dans le cas du régime interstitiel [47].

A partir de ces différentes conclusions, issues de la littérature, nous pouvons proposer les remarques suivantes :

- Remarque 1 : Les conclusions 1 et 2 montrent que les sites octaédriques qui gouvernent à 1200°C le régime lacunaire ne sont pas affectés par la présence de chrome : les ions chrome (III) sont alors certainement localisés dans des sites tétraédriques.
− Remarque 2 : La remarque précédente, ajoutée à la conclusion 3, laisse présupposer que les sauts effectués par les cations interstitiels doivent concerner les sites tétraédriques dans lesquels les ions chrome (III) sont localisés.

− Remarque 3 : Pour résumer les conclusions 3 et 4 : la diffusion des cations interstitiels diminue quand la teneur en chrome augmente alors que leur mobilité $D_I/I[I]$ ne dépend pas de la teneur en chrome (Figure 168).
La teneur en ions interstitiels doit donc diminuer lorsque la teneur en cations chrome (III) augmente. Ceci implique que les cations interstitiels se situent dans les mêmes sites que les ions chromes (III). Cette conclusion valide donc les deux remarques précédentes.

En conséquence de ces différentes remarques, l'évolution du coefficient de diffusion, en régime interstitiel, devrait changer quand tous les sites tétraédriques seront occupés par des cations Cr$^{3+}$.

Considérons que les cations Cr$^{3+}$ commencent à substituer les sites tétraédriques. Dans la structure spinelle inverse, un site octaédrique et un site tétraédrique sont consacrés aux cations M$^{3+}$. Quand le rapport cationique molaire de chrome dans la molécule spinelle devient égal à 1/3, tous les sites tétraédriques devraient être occupés par des cations Cr$^{3+}$ qui commencent alors à substituer les sites octaédriques.

Si le type de diffusion des cations interstitiels ne change pas, i.e. s'il implique toujours les sites tétraédriques, le coefficient de diffusion des cations interstitiels ne doit plus évoluer quand le rapport molaire de chrome dans la molécule spinelle devient égal à 1/3.
La Figure 168 montre que le coefficient de diffusion du fer, en régime interstitiel, se stabilise lorsque le rapport molaire de chrome dans la molécule de spinelle devient égal à 1/3.
Ceci permet de faire l'hypothèse que la diffusion du fer est liée aux sites tétraédriques, en régime interstitiel.

En revanche le coefficient de diffusion du chrome continue à diminuer lorsque le rapport molaire de chrome dans la molécule spinelle devient égal à 1/3.
La diffusion du chrome, en régime interstitiel, n'est donc plus liée aux sites tétraédriques lorsque le rapport molaire de chrome devient égal à 1/3.
Cependant seulement deux valeurs sont données pour des rapports molaires en chrome égaux à 1/3 et plus. Afin de valider ces propositions, d'autres expériences devraient être réalisées en augmentant jusqu'à 2/3 le rapport molaire de chrome dans la molécule de spinelle.

De cette discussion nous pouvons retenir comme hypothèse pour un spinelle Fe$_{2.34}$Cr$_{0.66}$O$_4$ à 1200°C :
− Les cations Cr$^{3+}$ sont localisés dans des sites tétraédriques.
− En régime interstitiel, la diffusion du fer est effectuée par les sites tétraédriques.
− En régime lacunaire, la diffusion du fer est effectuée par les sites octaédriques.

Les processus de diffusion dépendant fortement de la température, il serait intéressant de déterminer si les sites de diffusion des cations sont identiques à 1200°C et à 470°C.
Cependant, le coefficient de diffusion de la magnétite ayant été extrapolé avec succès par Atkinson, de l'intervalle de température 900°C-1400°C à 500°C, pour expliquer des cinétiques d'oxydation $^{[70]}$, les mécanismes de diffusion devraient être les mêmes.
Toutefois d'autres expériences de mesure de coefficient de diffusion sont nécessaires pour extrapoler ces propositions à plus basse température.

Annexes
Annexe 11 : Variation du paramètre diamètre des nano-canaux de plomb dans la couche de magnétite

Figure 169 : Simulation de la croissance de la couche de spinelle Fe-Cr en considérant un contrôle de la cinétique par la diffusion de l’oxygène via les nano-canaux de plomb. Effet de la variation du diamètre du nano-canal dans la couche de magnétite sur la cinétique de croissance du spinelle Fe-Cr. Diamètre du nano-canal dans le spinelle Fe-Cr est égal à 0,12 Å.