On some extensions of the level sets and the graph cuts towards their application to image and video segmentation - Archive ouverte HAL Access content directly
Theses Year : 2006

On some extensions of the level sets and the graph cuts towards their application to image and video segmentation

Quelques extensions des level sets et des graph cuts et leurs applications à la segmentation d'images et de vidéos

Olivier Juan
  • Function : Author

Abstract

Image processing techniques are now widely spread out over a large quantity of domains: like medical imaging, movies post-production, games... Automatic detection and extraction of regions of interest inside an image, a volume or a video is challenging problem since it is a starting point for many applications in image processing. However many techniques were developed during the last years and the state of the art methods suffer from some drawbacks: The Level Sets method only provides a local minimum while the Graph Cuts method comes from Combinatorial Community and could take advantage of the specificity of image processing problems. In this thesis, we propose two extensions of the previously cited methods in order to soften or remove these drawbacks. We first discuss the existing methods and show how they are related to the segmentation problem through an energy formulation. Then we introduce stochastic perturbations to the Level Sets method and we build a more generic framework: the Stochastic Level Sets (SLS). Later we provide a direct application of the SLS to image segmentation that provides a better minimization of energies. Basically, it allows the contours to escape from local minimum. Then we propose a new formulation of an existing algorithm of Graph Cuts in order to introduce some interesting concept for image processing community: like initialization of the algorithm for speed improvement. We also provide a new approach for layer extraction from video sequence that retrieves both visible and hidden layers in it.
Les techniques de traitement d'image sont maintenant largement répandues dans une grande quantité de domaines: comme l'imagerie médicale, la post-production de films, les jeux... La détection et l'extraction automatique de régions d'intérêt à l'intérieur d'une image, d'un volume ou d'une vidéo est réel challenge puisqu'il représente un point de départ pour un grand nombre d'applications en traitement d'image. Cependant beaucoup de techniques développées pendant ces dernières années et les méthodes de l'état de l'art souffrent de quelques inconvénients: la méthode des ensembles de niveaux fournit seulement un minimum local tandis que la méthode de coupes de graphe vient de la communauté combinatoire et pourrait tirer profit de la spécificité des problèmes de traitement d'image. Dans cette thèse, nous proposons deux prolongements des méthodes précédemment citées afin de réduire ou enlever ces inconvénients. Nous discutons d'abord les méthodes existantes et montrons comment elles sont liées au problème de segmentation via une formulation énergétique. Nous présentons ensuite des perturbations stochastiques a la méthode des ensembles de niveaux et nous établissons un cadre plus générique: les ensembles de niveaux stochastiques (SLS). Plus tard nous fournissons une application directe du SLS à la segmentation d'image et montrons qu'elle fournit une meilleure minimisation des énergies. Fondamentalement, il permet aux contours de s'échapper des minima locaux. Nous proposons ensuite une nouvelle formulation d'un algorithme existant des coupes de graphe afin d'introduire de nouveaux concepts intéressant pour la communauté de traitement d'image: comme l'initialisation de l'algorithme pour l'amélioration de vitesse. Nous fournissons également une nouvelle approche pour l'extraction de couches d'une vidéo par segmentation du mouvement et qui extrait à la fois les couches visibles et cachées présentes.
Fichier principal
Vignette du fichier
these_papier.pdf (11.65 Mo) Télécharger le fichier

Dates and versions

pastel-00001855 , version 1 (18-07-2006)

Identifiers

  • HAL Id : pastel-00001855 , version 1

Cite

Olivier Juan. On some extensions of the level sets and the graph cuts towards their application to image and video segmentation. Mathematics [math]. Ecole des Ponts ParisTech, 2006. English. ⟨NNT : ⟩. ⟨pastel-00001855⟩
260 View
414 Download

Share

Gmail Facebook Twitter LinkedIn More