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Abstract

Image processing techniques are now widely spread out over a large quan-
tity of domains: like medical imaging, movies post-production, games... Au-
tomatic detection and extraction of regions of interest inside an image, a
volume or a video is challenging problem since it is a starting point for many
applications in image processing. However many techniques were developed
during the last years and the state of the art methods suffer from some
drawbacks: The Level Sets method only provides a local minimum while the
Graph Cuts method comes from Combinatorial Community and could take
advantage of the specificity of image processing problems. In this thesis, we
propose two extensions of the previously cited methods in order to soften or
remove these drawbacks.

We first discuss the existing methods and show how they are related to
the segmentation problem through an energy formulation. Then we intro-
duce stochastic perturbations to the Level Sets method and we build a more
generic framework: the Stochastic Level Sets (SLS). Later we provide a direct
application of the SLS to image segmentation that provides a better mini-
mization of energies. Basically, it allows the contours to escape from local
minimum. Then we propose a new formulation of an existing algorithm of
Graph Cuts in order to introduce some interesting concept for image process-
ing community: like initialization of the algorithm for speed improvement.
We also provide a new approach for layer extraction from video sequence
that retrieves both visible and hidden layers in it.





Résumé

Les techniques de traitement d’image sont maintenant largement répan-
dues dans une grande quantité de domaines : comme l’imagerie médicale, la
post-production de films, les jeux... La détection et l’extraction automatique
de régions d’intérêt à l’intérieur d’une image, d’un volume ou d’une vidéo
est réel challenge puisqu’il représente un point de départ pour un grand
nombre d’applications en traitement d’image. Cependant beaucoup de tech-
niques développées pendant ces dernières années et les méthodes de l’état de
l’art souffrent de quelques inconvénients : la méthode des ensembles de ni-
veaux fournit seulement un minimum local tandis que la méthode de coupes
de graphe vient de la communauté combinatoire et pourrait tirer profit de
la spécificité des problèmes de traitement d’image. Dans cette thèse, nous
proposons deux prolongements des méthodes précédemment citées afin de
réduire ou enlever ces inconvénients.

Nous d’abord discutons les méthodes existantes et montrons comment
elles sont liées au problème de segmentation via une formulation énergé-
tique. Nous présentons ensuite des perturbations stochastiques a la méthode
des ensembles de niveaux et nous établissons un cadre plus générique : les
ensembles de niveaux stochastiques (SLS). Plus tard nous fournissons une
application directe du SLS à la segmentation d’image et montrons qu’elle
fournit une meilleure minimisation des énergies. Fondamentalement, il per-
met aux contours de s’échapper des minima locaux. Nous proposons ensuite
une nouvelle formulation d’un algorithme existant des coupes de graphe afin
d’introduire de nouveaux concepts intéressant pour la communauté de traite-
ment d’image : comme l’initialisation de l’algorithme pour l’amélioration de
vitesse. Nous fournissons également une nouvelle approche pour l’extraction
de couches d’une vidéo par segmentation du mouvement et qui extrait à la
fois les couches visibles et cachées présentes.
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Introduction

Position of segmentation in real life: critical ...

Image and signal processing tools get more and more into every day life: cell-
phones, DVD, digital camera... Image processing aims at extracting mean-
ingful data from image or video. Human watch cannot achieve surveillance
of large areas accurately; computers provide their calculation power to allow
real-time analysis of video and detection of risky situations. Image processing
is more and more used in Medical applications. It can be used for image en-
hancement on noisy image (ultrasound scan image) or volume segmentation
for a given acquisition modality. Image or volume registration of different
modalities is also a considerable challenge since different modalities reveal
different information. Recently, Image Processing community undertakes to
help doctors to diagnosis of diseases and to surgical operations.

In every day life, we use image-processing tools without noticing. Indeed
image or video compression is a build-in part of common products: DVD,
cellphones, digital cameras, video-talk... We could also cite watermarking
technique that was developed to insert undeletable copyright signature di-
rectly inside image and video.

Another challenging application is image classification. Indeed image
databases, even for a holiday photographer, are getting bigger and bigger
and handmaid classification is no more usable. However, automatic image
classification is far from a trivial process but the large number of application
makes it even more attractive.

All those techniques make use of image segmentation during the process,
mostly at the beginning. Segmentation stands for a generic problem that
can be expressed in many different formulations. However, it can be defined
by the following sentence. Segmentation consists into extracting and label-
ing regions inside an image. Many different features can describe regions
depending on the desired application.

Features commonly refer to intensities, colors, textures, shapes, move-
ments or even depth. However, one could design is own feature according to
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the considered segmentation problem.
Usually the problem is posed as an energy minimization problem where

the energy measures how good a given segmentation fits the image. Energies
are designed to take into account the needed features. The generic problem of
segmenting any given image is intractable since it should takes into account
an incredible number of features. However, the generic problem can be ex-
ploded into a bunch of problems, each one segmenting its own restricted class
of images. Then a supervisor process such as an expert system will mutualise
them all in order to produce a robust generic segmentation process.

History of segmentation approaches

We refer the reader to the Computer Vision handbook [133] for any method
cited in the following paragraphs.

Historically, image segmentation was based on local feature extraction
such as corners or T-junctions. Some feature entities in the image are ex-
tracted using generic methods such as Canny filters (points of interest: cor-
ner...) or Hough transforms (lines or circles). By assuming that feature
entities are located on object boundaries, one expected to rebuild contours
of an object by assembling feature data.

Later contour evolution methods were introduced to manage segmenta-
tion without the fastidious assembling of features. Furthermore, the assem-
bling step was quite weak. Those new methods consist into a (parametric)
contour driven by the feature data usually image gradient. Indeed, by defini-
tion object boundaries match high image gradient. However, these methods
depend on the local structure of the image and therefore they may be stuck
on local minima. This problem motivated the use of more global features to
drive contours such as region texture, region colors...

The Level Set method brought a general framework to evolve contours
(in any dimension). With some sacrifices (mainly speed), it removes at lot of
drawbacks of parametric methods. The Level Set method was widely spread
over the community and in a large number of applications. Since it was
widely studied over the years, it comes now with a bunch of stable numerical
schemes. However, a standard gradient descent method is mainly used to
minimize the energies. As many energies are not convex, this minimization
process leads to a local minimum.

Recently Stochastic Active Contour was introduced to improve the ac-
curacy of the minimizer. Stochastic Active Contour consists into bringing
simulated annealing concept into Level Set framework. Even if no theoretic
results are available about the decreasing temperature scheme to apply in

22



Introduction

order to ensure a global minimum, it shows real improvements in practice.
In the same time, Markov Random Field methods were widely developed

but the lack of good minimizer tools limited their application. Recently new
minimizing methods based on Max-Flow/Min-Cut problem received a large
attention from the Computer Vision community. Indeed those algorithms
provide a global minimum in a relative small time for class of energies widely
used in Computer Vision.

Organization

This thesis is organized as follow.

Chapter 1

In chapter 1, we review existing variational approaches for segmentation
based on contour evolution. We mainly present the two main classes of evo-
lution: Boundary [95] and Region [30, 82] based evolution. We also describe
a widely used Bayesian inference scheme to integrate any region feature into
a contour evolution.

In particular Geodesic Active Contour [26, 27, 98] and Geodesic Active
Region [134, 136, 83] are presented for parametric contour model. Advantages
and drawbacks are discussed and some solutions are given.

Chapter 2

In chapter 2, we present the Level Set framework [59, 60, 132] and how it suits
well to contour evolution. Some numerical schemes are provided. We provide
also some tips and tricks to implement Level Set with equanimity. Advan-
tages (mainly build-in change of topology and stable numerical scheme) and
drawbacks (mainly speed) are debated.

We also provide some implementations of classical curve evolutions, such
as Mean Curvature Motion. For comparison, we succinctly describe Geodesic
Active Contour and Region implementation.

Chapter 3

In chapter 3, we present the recently developed Graph Cut framework [18,
109]. This method has two main advantages: speed and Global optimality
for binary segmentation. Indeed, in this chapter segmentation is not defined
by regions interfaces but by pixel labeling. This leads to a Markov Random
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Fields formulation. Then we review the existing minimizing method for MRF
problems.

We present then the class of MRF energies that Graph Cut can minimize
optimally. We also describe how Graph Cut minimization process can be
used to approximate Multi-Way Cuts, a NP-hard problem.

We then review available Max-Flow/Min-Cut algorithms and discuss their
advantages. For comparison, we provide implementations for equivalent
problem of Geodesic Active Contour and Region.

Chapter 4

In chapter 4, we present an extension of the Level Sets: The Stochastic
Level Sets (SLS), resulting of a join work with Gheorghe Postelnicu. It
consists into bringing stochastic motion [90, 91, 92] to Level Set framework.
Not all local perturbations are allowed since they have to fit some Level
Set constraints. We present some theoretic results settling which stochastic
calculus framework should be used for Level Set application. We describe an
implementation for the classical Mean Curvature Motion.

Local perturbations of a Level Set allows in a Simulated Annealing frame-
work to converge towards a better minimum. Even if no proof of global opti-
mum is provided, in practice this method proved its usefulness. See chapter 6
for its application (Sec:6.1).

Chapter 5

In chapter 5, we present an extension of the Graph Cuts algorithm, Active
Cuts (join work with Yuri Boykov [86, 87]). This new algorithm suits partic-
ularly well for Computer Vision problems. It consists into a new Symmetric
Push-Relabel formulation. However, it also comes with a bunch of other in-
teresting features such as initialization and some intermediate segmentation
encountered during the optimization (local minima).

We then provide some proof of convergence and some properties of the
intermediate cuts. We also give another implementation built for speed base
don some Dynamic Tree structure.

Chapter 6

In chapter 6, we present some applications of the previously exposed ex-
tensions to image segmentation. In particular, we present Stochastic Active
Contour [90, 91, 92], an application of the Stochastic Level Sets for region
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based segmentation. In practice, it provides better results than standard
Geodesic Active Region. We also discuss some other advantages.

Then we address a three regions segmentation problem for Digital Matting
initialization [88, 89]. Digital Matting or Alpha Matting stands for extraction
from a static image of foreground, background and alpha a mixing factor.
Most of the available methods need to be initialized by a Trimap. A Trimap
consists into three regions segmentation: Foreground, Background and a
region formed of mixed pixels. A specific probability density function has
been designed for the mixed region.

This problem is addressed with both Level Set [89] and Graph Cut [88].
We also discuss and compare the two methods.

We then propose some applications of the Active Cuts algorithm for im-
age segmentation [87]. In particular, we show how our new algorithm allows
segmenting image by a hierarchical approach without loosing the global op-
timality.

Chapter 7

In chapter 7, we present here some applications in video segmentation [87].
We briefly present the natural application of the Active Cuts algorithm to
video sequence segmentation. Indeed, by using the segmentation result at the
previous frame as an initial segmentation, the Active Cuts algorithm shows
in this case great performance.

Then we proposed a new Motion Layer approach based on both segment-
ing and tracking layers in a video [62, 63]. More than extracting layers, we
also track them behind each other. This means that we obtain both Visible
and Hidden layers of a Video scene.
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Introduction (version française)

Place de la segmentation dans la vie quotidienne :
critique ?

Les outils de traitement du signal et d’image sont de plus en plus pré-
sents dans la vie courante : téléphones portables, DVD, appareil-photo nu-
mérique... Le traitement d’image vise principalement à extraire des données
signicatives d’une image ou d’une vidéo. Par exemple, la surveillance humaine
de larges secteurs est irréalisable convenablement ; les ordinateurs fournissent
leur puissance de calcul et permettent l’analyse en temps réel de vidéos de
surveillance et la détection des situations à risque. Le traitement d’image est
aussi de plus en plus employé pour des applications médicales. Il peut être
employé pour la correction d’images bruitées (image d’échographies) ou la
segmentation de volume pour une modalité d’acquisition donnée. Le recalage
d’image ou de volume de différentes modalités est également un défi considé-
rable puisque les différentes modalités d’acquisition révèlent des informations
différentes. Récemment, La communauté de traitement d’image s’est engagée
dans l’assistance au diagnostic des maladies et aux opérations chirurgicales.

Dans la vie quotidienne, nous utilisons les outils de traitement d’images
sans le savoir. En effet, la compression d’image ou de vidéo fait parti in-
tégrante de produits communs : DVD, téléphone portables, appareils-photo
numériques, vidéo-conférences... Nous peut également citer la technique de
filigrane numérique qui a été développée pour protéger les droits d’auteurs
pour les images et les vidéos en y insérant de manière irrémédiable et invisible
une signature.

Un autre challenge est classification d’image. En effet les bases de don-
nées d’image, même pour un photographe amateur, deviennent de plus en
plus grandes et la classification manuelle n’est plus utilisable. Cependant, la
classification automatique d’image est loin d’être un processus trivial mais le
grand nombre d’application le rend encore plus attrayant.

Toutes ces techniques font appel à la segmentation d’image au cours du
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processus, la plupart du temps au début. La segmentation représente donc
un problème générique qui peut être exprimé de beaucoup de manières diffé-
rentes. Il peut cependant se définir par la phrase suivante : la segmentation
consiste à extraire et marquer les différentes régions d’une image. Beaucoup
de critères peuvent être utilisé pour décrire les différents objets d’une image
et sont à choisir en fonction l’application désirée.

Ces caractéristiques envisagées sont généralement les intensités, couleurs,
textures, formes, mouvements ou même profondeur des objets. Cependant,
on peut être amené à concevoir son propre critère selon le problème considéré.

Habituellement le problème est posé comme problème de minimisation
d’énergie où l’énergie mesure la qualité d’une segmentation donnée par rap-
port à l’image considérée. Les énergies sont conçues pour tenir compte des
critères choisis. Le problème générique de segmentation de n’importe quelle
image donnée est insurmontable puisqu’il devrait tenir compte d’un nombre
incroyable de caractéristiques. Cependant, le problème générique peut être
divisé en une multitude de problèmes, chacun segmentant sa propre classe
restreinte d’images. Puis un processus décideur tel qu’un système expert,
prendra en compte chaque résultat afin de produire un procédé générique
robuste de segmentation.

Historique de la segmentation

Nous renvoyons le lecteur au livre de référence de vision par ordina-
teur [133] pour toute méthode citée dans les paragraphes suivants.

Historiquement, la segmentation d’image était basée sur l’extraction lo-
cale de caractéristiques telles que les coins ou les jonctions en T. Elles étaient
extraites des images en utilisant des méthodes génériques telles que les filtres
de Canny (points d’intérêt : coin...) ou transformée de Hough (lignes ou
cercles). En supposant que les caractéristiques sont situées sur des frontières
des objets, on s’attend à pouvoir reconstruire les contours d’un objet en
assemblant des données issues des détecteurs.

Plus tard, des méthodes d’évolution de contours ont été proposées pour
obtenir une segmentation sans avoir à réaliser la fastidieuse étape d’assem-
blage. En outre, cette étape est très peu robuste. Ces nouvelles méthodes
consistent en un contour (paramétrique) déformé par rapport au critère
choisi : généralement le gradient de l’image. En effet, par définition, les
contours des objets correspondent aux zones de gradient élevé de l’image.
Cependant, ces méthodes dépendent de la structure locale de l’image et donc
elles peuvent être coincées sur des minima locaux. Ce problème a motivé
l’utilisation pour déformer le contour de caractéristiques plus globales telles
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que la texture de la région, les couleurs de la région...
La méthode des Ensemble de Niveaux ont amené un cadre général pour

l’évolution de contours (pour n’importe quelle dimension). Au prix de quelques
sacrifices (principalement la vitesse), cette approche résout la plus part des
désavantages des méthodes paramétriques. La méthode des ensembles de ni-
veaux a été largement rependue dans la communauté et a été largement
utilisée dans toutes sortes d’applications. Puisqu’il a été largement étudié
au cours des années, on possède maintenant un large nombre de schémas
numériques stables. Cependant, on utilise principalement une méthode stan-
dard de descente de gradient pour minimiser les énergies. Comme beaucoup
d’énergies ne sont pas convexes, ce processus de minimisation mène à un
minimum local.

Récemment, les Contours Actifs Stochastiques ont été proposés pour
améliorer les résultats de la minimisation. Les contours actifs stochastiques
consistent à introduire le concept de recuit simulé dans le cadre de la mé-
thode des ensembles de niveaux. Même si aucun résultat théorétique n’est
disponible concernant la décroissance de la température à appliquer pour
obtenir un minimum global, on obtient de réelles améliorations en pratique.

En même temps, les méthodes de champ de Markov aléatoire ont été lar-
gement développées mais le manque de bons outils de minimisation a limité
leur application. Récemment, de nouvelles méthodes de minimisation basées
sur le problème de flot maximal/coupe minimale ont obtenu une grande at-
tention de la part de la communauté de vision par ordinateur. En effet ces
algorithmes fournissent un minimum global pour une classe d’énergies cou-
ramment employées en la vision par ordinateur en un temps relativement
cours.

Organisation

Cette thèse est organisée comme il suit.

Chapitre 1

Dans le chapitre 1, nous passons en revue les approches variationnelles
existantes de segmentation basée sur l’évolution de contours. Nous présen-
tons principalement les deux classes principales d’évolution : les évolutions
basés Contours [95] et Régions [30, 82]. Nous décrivons également comment
une inférence Bayésienne est généralement employée pour tenir compte de
n’importe quelle caractéristique de région dans l’évolution du contour.
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En particulier, nous présentons les Contours Actifs Géodésiques [26, 27,
98] et les Régions Actives Géodésiques [134, 136, 83] pour un modèle pa-
ramétrique de contours. Nous discutons rapidement des avantages et des
inconvénients et nous rappelons quelques solutions.

Chapitre 2

Dans le chapitre 2, nous présentons la méthode des ensembles de ni-
veaux [59, 60, 132] et comment il convient particulièrement à l’évolution de
contours. Nous rappelons quelques schémas numériques. Nous présentons ra-
pidement quelques astuces d’implémentation pour accélérer la méthode puis
nous discutons brièvement des avantages (principalement la gestion intrin-
sèque du changement de topologie et des schémas numériques stables) et des
inconvénients (principalement la lenteur).

Nous décrivons également quelques évolutions classiques de courbes, comme
le mouvement de courbure moyenne. Pour comparaison, nous décrivons suc-
cinctement l’implémentation des Contours et Régions Actifs Géodésiques.

Chapitre 3

Dans le chapitre 3, nous présentons le cadre récemment développé des
Coupe de Graphe [18, 109]. Cette méthode a deux avantages principaux :
vitesse et optimum global pour la segmentation binaire. En effet, dans ce
chapitre la segmentation n’est pas définie par les interfaces entre les diffé-
rentes régions mais par un marquage des pixels. Ceci mène directement à
une formulation par champs de Markov aléatoires. Puis nous passons en re-
vue les méthodes existantes de minimisation pour des problèmes MRF.

Nous présentons alors la classe des énergies MRF que les coupes de graphe
peuvent minimiser de façon optimale. Nous décrivons également comment la
méthode de minimisation par coupes de graphe peut être employée pour
approcher les "Multi-Way Cuts", un problème NP-complet.

Nous passons en revue alors les algorithmes existants de flot maximal/coupe
minimale et discutons de leurs avantages. Pour comparaison, nous décrivons
comment les coupes de graphe peuvent résoudre les problèmes de Contours
et Régions Actifs Géodésiques.

Chapitre 4

Dans le chapitre 4, nous proposons une extension de la méthode des en-
sembles de niveaux : les ensembles de niveaux stochastiques (SLS), résultant
d’une collaboration avec Gheorghe Postelnicu. Cela consiste dans l’ajout de
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mouvements stochastiques [90, 91, 92] au cadre des ensembles de niveaux.
Toutes les perturbations locales ne sont pas permises puisqu’elles doivent vé-
rifier quelques contraintes venant de la méthode des ensembles de niveaux.
Nous présentons quelques résultats théoriques nous permettant de fixer de
manière définitive le cadre de calcul stochastique adéquat à une utilisation
pour la méthode des ensembles de niveaux. Nous décrivons une implémenta-
tion pour le mouvement par courbure moyenne.

Les perturbations locales d’un ensemble de niveau permettent dans un
cadre de recuit simulé de converger vers un meilleur minimum. Même si
aucune preuve quant à l’obtention d’un optimum global n’est fournie, dans
la pratique cette méthode a prouvé son utilité. Voir le chapitre 6 pour son
application (Sec :6.1).

Chapitre 5

Dans le chapitre 5, nous proposons une extension d’un algorithme de
coupes de graphe, les Coupes de Graphe Actives (issu d’un travail commun
avec Yuri Boykov [86, 87]). Ce nouvel algorithme convient particulièrement
bien pour des problèmes de vision par ordinateur. Il consiste en une nouvelle
formulation symétrique du "Push-Relabel". Cependant, il vient également
avec un groupe d’autres propriétés intéressantes telles que l’initialisation ou
encore le fait qu’il produise une succession de la segmentation intermédiaire
pendant l’optimisation (minima locaux).

Nous fournissons alors une preuve de convergence et quelques propriétés
des coupes intermédiaires. Nous donnons également une autre implémenta-
tion plus rapide grâce à l’utilisation d’une structure arborescente dynamique.

Chapitre 6

Dans le chapitre 6, nous présentons quelques applications à la segmen-
tation d’image des extensions précédemment exposées. En particulier, nous
présentons les Contours Actifs Stochastiques [90, 91, 92], une application des
ensembles de niveaux stochastiques pour la segmentation basée régions. Dans
la pratique, il fournit de meilleurs résultats que les régions actives géodésiques
standards. Nous discutons aussi de quelques autres avantages.

Puis nous nous intéressons au problème de segmentation par trois régions
pour l’initialisation du "Digital Matting" [88, 89]. Le Digital Matting ou
Alpha Matting consiste en l’extraction du premier plan, du fond et d’alpha
un facteur de mélange à partir d’une image statique. La plupart des méthodes
disponibles doivent être initialisées par une Trimap. Une Trimap consiste en
une segmentation par trois régions : premier plan, fond et une région formée
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des pixels mélangés. Une densité de probabilité spécifique a été conçue pour
la région mélangée.

Ce problème est traité à la fois avec la méthode des ensembles de ni-
veaux [89] et par coupes de graphe [88]. Nous discutons rapidement de la
comparaison des deux approches.

Nous proposons aussi quelques applications de l’algorithme des coupes
de graphe actives pour la segmentation d’image [87]. En particulier, nous
montrons comment notre nouvel algorithme permet segmenter une image
par une approche multi-échelle sans perdre le l’optimal global.

Chapitre 7

Dans le chapitre 7, nous présentons quelques applications de nos méthodes
à la segmentation vidéo [87]. Nous présentons brièvement l’application évi-
dente de l’algorithme des coupes de graphe actives à la segmentation vidéo.
En effet, en employant le résultat de la segmentation à l’image précédente
comme segmentation initiale, les coupes de graphe actives fournissent de très
bonnes performances.

Puis nous proposons une nouvelle approche de segmentation par extrac-
tion de couches par le mouvement dans une vidéo [62, 63]. Bien plus que
l’extraction des couches, nous les traquons également l’une derrière léautre.
Ceci signifie que nous obtenons à la fois des couches visibles et cachées d’une
scène vidéo.
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1. Active Contours

Chapter 1

Active Contours

In this chapter, we present different standard approaches based on Active
Contours. We first review existing approaches based on a contour formula-
tion Sec:1.1. Indeed the first attempt for image segmentation relied on the
following assumption. Object silhouette matches high image gradient. Based
on this remark, some segmentation methods were proposed, mainly the Snake
model (Sec:1.1.1) and the Geodesic Active Contour framework (Sec:1.1.2).

Historically, the next methods were based on region descriptions of ob-
jects (color, texture, motion,...) (Sec:1.2). This leads to a generalization
of Snake (Sec:1.2.1) to regions and Geodesic Active Regions (Sec:1.2.3) a
generalization of the Geodesic Active Contour formulation.

We then recall a result on Geodesic Active Regions where the descriptors
depend on the segmentation (Sec:1.2.4). Indeed in that case, the energy
gradient also depends on the descriptors gradients. This is particularly useful
to incorporate shape prior into a segmentation process (Sec:1.3).

1.1 Contour based
Objects are usually defined by their boundaries or silhouette. It is commonly
assumed that object boundaries have to coincide with high gradient mag-
nitudes in the image. The problem can be addressed in an energy based
framework in order to access to regular minimizing techniques such as gra-
dient descent :

arg min
Γ∈C

E(Γ) = arg min
Γ∈C

−
∫ 1

0

|∇I (Γ (p))|2 dp (1.1)

where I : Ω ∈ R2 → RN is an image, Γ : [0, 1] → Ω is a parameterized
contour and C is a given class of contours. Usually C corresponds to genus
one closed contours but it could be more or less restrictive.
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1.1.1 Snake Model

The Snake model makes use of internal and external forces to drive a con-
tour (or snake) towards features of interest (usually object boundaries). Kass,
Witkin and Terzopoulos gave its first formulation in [95] as an energy min-
imization problem. The snake functional energy is defined over the contour
Γ as:

E (Γ) = α

∫ 1

0

|Γ′(p)|2 dp+ β

∫ 1

0

|Γ′′(p)|2 dp− λ
∫ 1

0

|∇I (Γ(p))|2 dp (1.2)

The internal properties are embedded in the first two terms while the
third one codes for external forces. In that case, it’s assumed that object
boundaries lie on high image gradients. The internal forces stand for a com-
promise between rigidity and elasticity of the curve while the external force
attempts to lock the contour on object boundaries.

An obvious limitation of this model lies in the data term since one has to
assume images have a constant contrast over the domain Ω. A lot of exten-
sions and generalizations can be found in the literature to avoid this problem.
By introducing in the data term a new decreasing function g from R+ into R+

with lim
x→+∞

g(x) = 0, it becomes possible to increase the robustness and/or
be sensitive to other features:

Edata (Γ) = λ

∫ 1

0

g (|∇I (Γ(p))|)2 dp (1.3)

This formulation presents two main drawbacks: the functional depends on
the curve parameterization and its topology cannot change over the evolution.
If more than one object is present, it will be impossible to segment them with
only one snake. Those problems have been widely discussed in the literature.
However if the curve parameterization is not an insuperable difficulty and
can be addressed by using different function basis like B-splines [50], the
topology change is a more complex issue and cannot be achieved without a
computationally expensive and complex implementation [122].

Another issue as to be considered, the minimization process was firstly
addressed with a gradient descent method. Such a tool is strongly dependent
on the initialization and the user has to provide an accurate initialization in
order to retrieve a good minimum. Moreover, the energy in the equation
(1.2) refers to the second derivative of the contour, which means that its
Euler-Lagrange formulation will depend on the fourth derivative :

∂Γ

∂t
= −∂E

∂Γ
= −α∂

2Γ

∂p2
− β∂

4Γ

∂p4
+∇Edata (1.4)
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1. Active Contours 1.1. Contour based

Evaluating such a derivative on a discrete space always generates insta-
bilities and inaccurate approximations. In order to avoid this problem, one
can use B-splines approximation or some other minimization techniques like
dynamic programming.

By considering only the internal forces, one could easily see that every
curve tends to shrink and vanish. To fix this inclination, L. Cohen in [43]
introduced a "balloon force" - a pressure force - as an antagonistic force. The
balloon force could be seen as an inner area constraint.

E (Γ) = α

∫ 1

0

|Γ′(p)|2 dp+ β

∫ 1

0

|Γ′′(p)|2 dp︸ ︷︷ ︸
internal forces

+µ

∫
Ωint

dx︸ ︷︷ ︸
balloon force

+λ

∫ 1

0

g (|∇I (Γ(p))|)2 dp︸ ︷︷ ︸
data term

(1.5)
Where Ωint is the interior of the contour and the sign of µ allows to select
between a shrink or an expand profile of the contour. Although this extension
increases the robustness of snakes with respect to initialization, images need
stronger features to overcome internal and balloon forces.

Moreover in this approach, only local aspects of the contour can be con-
sidered: curvature, length and local image structure underneath the curve.
Due to those aspects, Snakes are very sensitive to local minima. The first
attempt to avoid this problem was to use an image convoluted by Gaussian
kernel. However if most of local minima are avoided, it results in a lost of
precision of contour localization. This directly leads to a hierarchical formu-
lation (convolution with smaller and smaller kernels).

Nevertheless if one has or can guess a good initial contour, Snake provides
real time segmentation and can be successfully used (ex: for video tracking).

1.1.2 Geodesic Active Contour

Geodesic Active Contour was firstly designed to reconcile Snakes with geo-
metric definition of contours. The main idea is to reformulate equations in an
equivalent intrinsic way in order to escape the parameterization dependency.
Caselles et al. in [26, 27] and Kichenassamy et al. in [98] proposed a similar
formulation using different approaches.

Geodesic active contour model is a particular case of the snake model :
by relaxing constraints on the contour - i.e. no rigidity constraint (β = 0) -
the model becomes to :

E (Γ) = α

∫ 1

0

|Γ′(p)|2 dp︸ ︷︷ ︸
smoothness

+λ

∫ 1

0

g (|∇I (Γ(p))|)2 dp︸ ︷︷ ︸
data term

(1.6)
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This function aims at location a smooth curve following edges (high gradient
spots or more generally g minimum spots).

In order to switch to an intrinsic framework, some hypothesis about the
feature functional g are needed. Under the assumption that g is a strictly de-
creasing positive and asymptotically vanishing function g (x)→ 0 when x→
∞, Caselles, Kimmel and Sapiro in [28] proved equation (1.6) minimization
is equivalent to minimize the following equation :

E (Γ) =

∫ 1

0

g (|∇I (Γ (p))|) |Γ′ (p)| dp (1.7)

where the two parts - smoothness and data term - can be easily recognized.
By re-parameterizing the curve by its arc length, equation (1.7) becomes the
so known Geodesic Active Contour formulation :

E (Γ) =

∫ L

0

g (|∇I (Γ (s))|) ds (1.8)

with the infinitesimal curve length ds = |Γ′ (p)| dp and L is the Euclidian
length of the curve Γ(s). According to equation (1.8), the segmentation
problem comes down to a minimal path search weighted by a metric g (|∇I|)
given by the image.

This new functional is minimized using gradient descent methods. Thus
a (local) minimum is attained by deforming, step by step, using the Euler-
Lagrange equations (see [28, 99, 98] for details) :

∂Γ

∂t
= g (|∇I|)κ−→n −

(
∇g (|∇I|) · −→n

)−→n (1.9)

where −→n is the inward Euclidian unit normal vector of the curve and κ =
div
(
∇Γ
|∇Γ|

)
its Euclidian curvature. The first term only adjusts the curve

where the curvature is not null κ 6= 0 (non straight lines) or where the curve
is not on top of edges g (|∇I|) 6= 0 and can be seen as an attracting force
towards edges. The second term in only effective around image boundaries
∇g (|∇I|) 6= 0 and can be seen as a refinement force as it centralizes the
curve on boundaries and attempts to overcome the smoothing effect of the
curvature. Indeed, an extreme case where g ≡ 1 leads to the so known Mean
Curvature Motion equation :

∂Γ

∂t
= κ−→n (1.10)

In that special case, the curve is firstly deformed to a circle and then tends
to shrink and vanish. The first part of the evolution reveals the smoothing
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profile due to the curvature. The contraction and disappearance of the curve,
as for the snake model, is due to the decrease of the perimeter of a circle with
its radius.

The shrinking effect can be overcome by adding a balloon force as in Snake
model so the evolving equation is easily transformed into :

∂Γ

∂t
= g (|∇I|) (κ+ µ)−→n −

(
∇g (|∇I|) · −→n

)−→n (1.11)

where µ is the balloon force. If µ < 0, the balloon force counteracts the
shrinking tendency while µ > 0 boosts it.

Geodesic Active Contours are usually addressed in a Level Set framework
(see Sections Sec:2 and Sec:2.5.2 for details).

1.2 Region based

The previous discussed Snake model and Geodesic Active Contour (see Sec-
tions Sec:1.1.1 and Sec:1.1.2) suffer both from some drawbacks such as change
of topology. However their main drawback is due to their gist: those methods
only focus on local information (boundary based) to extract contours. This
drawback leads to two disadvantaging consequences: Firstly, the evolving in-
terface gets stuck more easily on local minima. Secondly, as a consequence,
the user may provide a good initial curve.

In order to take into account global information, one should no more
consider a curve just as an interface but as an interface that separate two
regions.

1.2.1 Region Snake

One of the first attempt to conciliate interface and region component in a
unique framework was due to Chakraborty, Staib and Duncan in [30]. They
proposed to minimize energy similar to:

E(Γ) = Eshape(Γ) + α

∫ 1

0

|∇I(Γ(p))|dp+ β

∫
Ωin

Reg(I(ω)) dω (1.12)

where Ωin stands for the interior region delimited by Γ. This region is often
referred as the object region or just the object. The first term in (1.12) stands
for Shape prior constraint. In fact, the evolving curve Γt is driven towards a
(predefined) reference curve Γprior and should remain close to it. The second
term is a classical high gradient (or boundary) attractor term. The third
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term is an attempt to add interior region constraint: here, homogeneous
intensity constraint.

Such an energy has some limitations and drawbacks. The region con-
straint is quite restrictive while it is not a very strong constraint. Moreover
one could easily see that the model lacks of symmetry: there is no constraint
for the outer part of the contour. Although this model is the first attempt
to incorporate boundary and region constraints at the same time.

A more general idea based on Snake model was proposed by Ivins and
Porrill in [82]. This new model takes advantage of colors and texture for
partitioning the domain in two parts. Authors proposed to use a pressure
force - like the balloon force (see Section Sec:1.1.1) - in order to drive the
curve with regional information. In that case the pressure force is no more
constant but depends on statistical properties of the inner part of the contour
Ωin.

E(Γ) =

∫ 1

0

|Γ′(p)|2dp+ α

∫ 1

0

|Γ′′(p)|2dp︸ ︷︷ ︸
Internal forces

+β

∫
Ωin

g(I(ω)) dω︸ ︷︷ ︸
Regional Term

(1.13)

One could easily recognize the internal forces formulation of Snake model in
the two first terms of the above equation. If this model makes use of global
information (using the functional g), it does it quite partially since there is
no use of the outer part Ωout. Moreover it does not make use of boundary
information at all. To finish, in order to initialize, the user has to provide
a consistent seed region as representative as possible of the whole object.
This seed region will be then used to build the region functional g which
will expand or shrink the contour when image pixels match or mismatch the
seed’s information.

Zhu and Yuille in [184] proposed an alternative to those models. This
model is also inspired by the Snake model and can also deals with color and
texture segmentation. Its energy can be written as follow:

E(Γ) =

∫ 1

0

|Γ′(p)|2dp+ α

[∫
Ωin

logPin(I(ω)) dω +

∫
Ωout

logPout(I(ω)) dω

]
(1.14)

As one can see, this model does not take into account any boundary infor-
mation. The first term stands for smoothness of the curve and the second
codes for likelihood of the inner region with respect to the inner probability
density function Pin. The third term is similar to the second but for outer
region. If this model takes correctly into account both side of the contour, it
neglects the boundary information.
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Based on those work [30, 82, 184], Geodesic Active Region Sec:1.2.3 was
proposed as an elegant alternative that makes use of both boundary and
region information. As its name indicates, this model is also inspired by
Geodesic Active Contour (see Section Sec:1.1.2). However before giving it a
short description, one should be more familiar with Bayesian calculus.

1.2.2 Bayesian Formulation

This section describes an elegant formulation based on probability and Bayesian
inference [139] to deal with regional information: intensity, color, texture,
shape prior... One should be aware that in the whole section, we will make a
misuse of language by considering equivalent a segmentation/partition and a
contour which separates the domain in two parts. The main idea is to rewrite
the posterior probability of the segmentation Γ knowing the image I using
the Bayes rule:

P (Γ|I) =
P (I|Γ)P (Γ)

P (I)
(1.15)

The left part of the equation could be interpreted as follow: In order to obtain
the optimal contour (or segmentation), one should maximize the posterior
probability with respect to Γ to extract the best interface for a given image.
It can be remarked that for a given image I, the probability P (I) is constant.
So equation (1.15) could be rewritten as:

P (Γ|I) ∝ P (I|Γ)P (Γ) (1.16)

In the right part of equation (1.16), the first term P (I|Γ) stands for the
posterior probability of I given the segmentation Γ while the second term
stands for the prior probability of the contour Γ. Maximizing the functional
in (1.16) with respect to the contour Γ is completely equivalent to minimizing
its loglikelihood:

− logP (Γ|I) = − logP (I|Γ)− logP (Γ) (1.17)

The first term on the right part measures how good the image distribution is
given the contour Γ. This one allows inserting any kind of desired constraint
into the model: intensity, color, texture... The second one allows inserting
prior knowledge on the curve. Commonly this term stands for curve smooth-
ness using the constraint P (Γ) = exp(−αLength(Γ)). Although it can be
a more advanced criterion such as Shape Similarity. See initiated work of
Chakraborty, Staib and Duncan in [30] which makes use of shape constraint.

39



1.2. Region based 1. Active Contours

1.2.3 Geodesic Active Region

Based on encouraging work of [30, 82, 184], Geodesic Active Regions were
firstly introduced by Paragios and Deriche in [134, 136] for texture segmen-
tation, then for image segmentation [138] and tracking [137, 135]. As in
Geodesic Active Contour (see Section Sec:1.1.2), it makes use of bound-
ary information in an intrinsic framework and can be seen as an extension
of Geodesic Active Contour that incorporates region information quite ele-
gantly.

Boundary Term: This term is quite similar to Geodesic Active Contour
and is rewritten here for simplicity:

EB(Γ) =

∫ L

0

g(Pb(I(Γ(s))))|Γ′(s)| ds (1.18)

where L is the Euclidean length of the contour Γ and Γ is parameterized
by its arc length. Pb stands for boundary probability and g is a Gaussian
function. This energy aims at finding the shortest closed curve according the
"metric" g(Pb(I(Γ(s)))). Here the boundary probability should be design to
extract desired boundary features. For more details, see Section Sec:1.1.2.

Region Term: This new term aims at finding a contour that best fits Ωin

and Ωout with respect to two posterior probability of I(Ωin) and I(Ωout) given
a contour Γ. Here the prior probability P (Γ) in equation (1.16) is assumed to
be constant and equal to 1

Z
where Z is the total number of possible contours.

This assumption means that each contour is equiprobable. This leads to the
model:

P (Γ|I) ∝ P (I|Γ) ∝ Pin(I(Ωin))Pout(I(Ωout)) (1.19)

Then the regional term can be now written as follow:

ER(Γ) = −
∫

Ωin

logPin(I(ω)) dω −
∫

Ωout

logPout(I(ω)) dω (1.20)

For a better understanding of the influence of the region term, let consider
its action on a pixel p. The classification rule depends on the ratio r(p) =
Pin

Pout
(I(p)). If r(p) > 1 then the pixel p tends to belong to the inner part of

the contour. Similarly if r(p) < 1 then the pixel p tends to belong to the
outer part. However if r(p) = 1, the two classes are equiprobable and then
it is impossible to distinguish which class it should be assigned to.
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Overall Energy: Then the overall energy is given by:

E = αEB + (1− α)EM = α

Boundary Term︷ ︸︸ ︷∫ L

0

g(Pb(I(Γ(s))))|Γ′(s)| ds

+ (1− α)

[
−
∫

Ωin

logPin(I(ω)) dω −
∫

Ωout

logPout(I(ω)) dω

]
︸ ︷︷ ︸

Region Term

(1.21)

where the value α ∈ [0; 1] adjusts influence between Boundary and Region
terms.

Those two terms are antagonist since the boundary term aims at finding
a smooth curve of minimal length according to the image structure and the
region term tries to find two regions that fit the best the probabilities Pin

and Pout.
The functional (1.21) is minimized using gradient descent method and

one can obtain the following Euler-Lagrange formulation for a given point p
of the curve Γ using the integration by parts formula:

∂p

∂t
= α(g(Pb(I(p)))κ(p)−∇g(Pb(I(p))) · −→n (p))−→n (p)

− (1− α)(logPin(I(p))−→n in(p) + logPout(I(p))
−→n out(p)) (1.22)

However one should consider the normal orientation constraint −→n (p) =
−→n in(p) = −−→n out(p) and then the Euler-Lagrange formulation could be rewrit-
ten as:

∂p

∂t
=

α (g(Pb(I(p)))κ(p) +∇g(Pb(I(p))) · −→n (p))︸ ︷︷ ︸
Boundary component

+(1− α) log

(
Pout(I(p))

Pin(I(p))

)
︸ ︷︷ ︸

Region component

−→n (p) (1.23)

One could easily recognize the previously defined ratio r(p) inside the Re-
gion component. If the pixel underneath the considered point p belongs to
the outer region, then r(p) = Pout

Pin
(I(p)) > 1 and consequently log r(p) =

log Pout

Pin
(I(p)) > 0 which implies a region force in the inward normal direc-

tion. Similarly if the point p belongs to the inner region, then the region
force will point in the opposite direction.

41



1.2. Region based 1. Active Contours

Caselles, Kimmel and Sapiro proposed in [27] a modified equation by
adding λκ(p)−→n (p) in order to enforce more regularity to the curve:

∂p

∂t
=

α (g(Pb(I(p)))κ(p) +∇g(Pb(I(p))) · −→n (p))︸ ︷︷ ︸
Boundary component

+ (1− α) log

(
Pout(I(p))

Pin(I(p))

)
︸ ︷︷ ︸

Region component

+λ κ(p)︸︷︷︸
Regularity

−→n (p) (1.24)

where lambda ∈ [0; 1]. The role of mean curvature motion equation is to
counterbalance the region term and avoid it to rip up the curve.

Since the Level Set method is more robust and combine some advantages,
Geodesic Active Regions are usually implemented using this framework (see
Sections Sec:2 and Sec:2.5.3).

1.2.4 DREAM2S

The Paragios and Deriche model [134, 136] only considers fixed or Static de-
scriptor functions. Indeed, while curve evolution, the descriptors functions
should not be changed. This implies that we have to have access to descrip-
tors that represent the object and the background prior to the segmentation
(1.25).

E(Γ) =

∫
Ωin

kin(ω) dω +

∫
Ωout

kout(ω) dω +

∫
Γ

kb(s) ds (1.25)

where kin, kout and kb are respectively the descriptors for the objects, the
background and the boundaries.

However, this prior knowledge is often inaccessible. In that case, one
usually consider dynamic functions for describing the regions based on the
current segmentation like (1.26). Those descriptors are updated at each step
of the evolution [24, 47].

E(Γ) =

∫
Ωin

kin(ω,Ωin) dω +

∫
Ωout

kout(ω,Ωout) dω +

∫
Γ

kb(s) ds (1.26)

In that typical case, Jehan-Besson, Barlaud and Aubert in [83] made the
following relevant remark. If the descriptors depend on the segmentation,
then the gradient of the energy should also depend on the derivative of those
descriptor functions.
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Since, derivatives with respect to domains cannot be computed, one in-
troduces a dynamical scheme that links continuously an evolution parameter
τ to each domain. Then (1.26) becomes:

E(τ) =

∫
Ωin(τ)

kin(ω, τ) dω +

∫
Ωout(τ)

kout(ω, τ) dω +

∫
Γ(τ)

kb(s) ds (1.27)

Thanks to this formulation, one could now compute the derivative of E
with respect to τ and obtain the following result:

∂E(τ)

∂τ
= F

(
kin, kout, kb,

∂kin

∂τ
,
∂kout

∂τ
,
∂kb

∂τ

)
(1.28)

where F is a linear application.
Moreover by a complex process described in [83], the authors provide a

complete formulation of the gradient. Actually, it amounts to adding a new
correcting term to the gradient of Nikos and Deriche (1.23). Indeed this new
term corresponds to the dependency term of the energy with respect to the
derivative of the descriptors.

Now that the gradient is corrected, the minimizing process (gradient de-
scent) leads to a real (local) minimum. Indeed using a corrupted gradient
does not lead to a minimum of the considered energy. Another method is
proposed in section Sec:4 that allows to minimize an energy based only on
an estimation of the gradient.

However computing this additive term is not an easy process. Jehan-
Besson, Barlaud and Aubert in [83] give a formulation when the descriptors
depend continuously on the mean of the pixels intensities or on the determi-
nant of the color covariance. In [72], they provide a similar result in case of
shape inference.

1.2.5 The Mumford-Shah fonctional

The weak membrane model [126] introduced by Mumford and Shah, assumes
that the image can be approximated by a piece-wise smooth image. In [126,
127], they proposed in order to extract the "closer" representation u of the
image I by minimizing the following functional:

E(u,Γ) =

∫
Ω

|u(ω)− I(ω)|2dω + λ

∫
Ω\Γ
|∇u(ω)|2dω + µ length(Γ) (1.29)

This equation can be interpret as follow: the first term is the standard
data term (mean square sum), while the third one corresponds to the classical
smoothing term (the length of the interface between the regions). The second

43



1.3. Conclusion and discussion 1. Active Contours

term is the key point of the model. Indeed it codes for the smoothness of
the function u everywhere excepts on the contours. If we assume u to be
initialized to I, it will evolve in time toward a smoother version of I while it
remains as close as possible to I. In fact, this evolution scheme corresponds
to the projection of I in the piece-wise constant smooth images. One could
easily link this approach to the total variation minimization functional [154].

A simpler approach proposed by Chan and Vese [33] based on [127] as-
sumes that u should be piece-wise constant during the whole process. By
adding this constraint, they could rewrite the previous equation of Mumford
and Shah (1.29) as follow:

E(u) =
n∑

i=1

∫
Ωi

|ci − I(ω)|2dω + λ length(∂Ωi) (1.30)

Where Ωi, i = 1..n is a partition of the whole domain Ω such that u(ω) =
ci ∈ R if ω ∈ Ωi. The second term in (1.29) vanishes since the function u
is piece-wise smooth by construction. One could easily see the relationship
between this two formulation of the same problem.

In [32, 33, 31], the authors propose a Level Sets (see Sec:2 implementation
of this evolution scheme. For more detail, we refer to those articles.

1.3 Conclusion and discussion

Recent developments in segmentation tend more and more to incorporate
multiple region features [24, 47] such as: color histograms, textures, motion
models, shapes...

Many recent works are focused on integration of shape constraint based
on prior knowledge [35, 49, 83, 112, 141]. Indeed human visual system makes
a large use of prior knowledges. Shape or structure constraints on objects are
a strong information and allows segmenting objects when they are partially
occluded or in presence of strong noise.

The next step is obviously to deal with multiple shapes (from a database).
Indeed using a single shape constraint is too restrictive since it allows re-
trieving only one silhouette. This needs a very strong prior knowledge on the
considered image. However, considering multiple shapes allows recognizing
objects of different classes or of same class.

In order to deal with multiple shapes, standard approaches make use of
shape statistics [34, 46, 47, 151] in a Bayesian Active Contours framework.

Another active domain on segmentation takes advantage of the follow-
ing assumption: motion should be consistent inside a region. This leads
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to the general framework of Motion Layer Extraction [6, 10, 11, 13, 48, 64,
97, 110, 129, 160, 172, 173]. Some new interesting results are presented in
section Sec:7.2.
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2. Level Sets

Chapter 2

Level Sets

This section broached the general problem of evolving a closed initial curve/surface
Γ0 driven by the movement β in the direction of its inward normal vector −→n :{

∂Γ(t)
∂t

= β−→n
Γ(0) = Γ0

(2.1)

The normal part of movement alone counts and the tangential movement
could be neglected since the evolution takes into account only curve corre-
spondence and not point correspondences. In fact the point correspondences
is lost along the evolution nevertheless point correspondences can be kept
using [144].

The Level-set method [59, 60, 132] provides an alternative to the Snake
model and deal elegantly with change of topology. Moreover it solves some
main drawbacks of the Snake model: stability of numerical scheme, parame-
terization...

2.1 Principle

The basic idea is to consider a curve as a zero level of a level-set function u
defined over the whole domain Ω. Then the evolution of a curve is replaced
by a corresponding evolution of the level-set function. If this replacement
introduces more computation by increasing the dimensionality of the prob-
lem, it also has some advantages. Indeed the curve embedded in a level-set
function is represented in an implicit and intrinsic framework. One advan-
tage of an implicit representation of a curve is that it no more depends on
some parameterization. Implicit representation: The level-set function u has
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to be Lipschitz on the domain.

u : Ω× R+ −→ R
(ω, t) 7−→ u(ω, t)

(2.2)

with u(Γt, t) = 0 and Γt = Γ(t) and where the Lipschitz property on the
domain Ω is independent of t:

∃K, ∀t ∈ R+, ∀x, y ∈ Ω |u(x, t)− u(y, t)| 6 K ‖x− y‖ (2.3)

According to this definition, the curve at time t could be retrieved by
slicing at level zero of the function u at time t (with the simplification
u(ω, t) = ut(ω)):

Γt(ω) = {ω ∈ Ω, u(ω, t) = 0} = u−1
t ({0}) (2.4)

A common choice for the level-set function is the signed distance function
to the curve (negative inside, positive outside). This choice is everything
but innocent since it provides nice expressions of geometric properties of the
curve.

u(ω, t) = d(ω,Γt)(1l(Ωout)− 1l(Ωin)) =


0, ω ∈ Γt

d(ω,Γt) > 0, ω ∈ Ωout

−d(ω,Γt) < 0 ω ∈ Ωin

(2.5)

where d(., .) is the Euclidian distance. An example of signed distance is
shown in Fig. (2.1). One should mention that the domain is partitioned in
two parts using only one level set function and it can be shown [183, 169]
that a n parts partition can be achieved using only log n level set functions.

Intrinsic geometric properties: Geometric properties of the curve could be
extracted directly from the implicit function u by nice and easy expressions:

• The inward unit normal vector −→n = ∇u
|∇u|

• The mean curvature is given by: κ = −div
(
∇u
|∇u|

)
Expressing evolution in Level-Set framework: Now that intrinsic geomet-

ric properties of the curve are easily available, one could expressed the evolu-
tion formulation in an implicit framework. Indeed the main problem is: How
should we evolve an implicit function u in time so that u−1

t ({0}) = Γt follows
the evolution defined by (2.1)? The problem was widely discussed in [132].

The constraint contained in the question above could be written as:

u (Γ(t), t) = 0 ∀t > 0 (2.6)
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Using the chain rule, we obtain the following result:

∂u

∂Γ
· ∂Γ

∂t
+
∂u

∂t
= 0 (2.7)

∂u

∂t
= −∇u · ∂Γ

∂t
= −∇u · β−→n
= −β∇u · −→n

= −β∇u · ∇u
|∇u|

∂u

∂t
= −β|∇u| (2.8)

Change of topology: Since the curve in embedded in the level-set function
as its zero level and since it is possible to simulate the curve evolution (2.1)
by evolving its implicit representation using (2.8), the change of topology
of Γt do not require any special treatment. Along iterations, u remains a
function as long as the speed β is continuous over space. However the zero
level of u could change of topology during evolution: the curve could merge
or split. See Fig. 2.1 for an illustration.

The Level-Set method provides other advantages such as:

• Numerical schemes are well studied, stable and can be chosen according
to the needed precision.

• Extension to higher dimension is straightforward.

• This framework could also deal with tangential motion using a projec-
tion on the normal direction. ∂Γ

∂t
=
−→
β is simulated by ∂Γ

∂t
= (
−→
β · −→n )−→n

or ∂u
∂t

= −
−→
β · ∇u.

Recently in [145], Pons et al. provide an elegant method to deal with point
correspondences in a Level Set evolution with a tangential component. Due
to the projection on the normal direction, point correspondences on contours
are corrupted. By tracking them along the evolution using the tangential
component, Pons et al. are able to maintain good point correspondences.
This is useful when the contour or surface carries some data like a texture.
Authors apply this technique to morphing and brain unfolding.
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u(ω, t1)

Γ(t1)

u(ω, t2)

Γ(t2)Γ(t2)

Figure 2.1: Illustration of a topology change. The zero level can, with any
particular treatment, be split or merged.
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2.2 Numerical Schemes

This section will explain and detail the implementation of first and second
derivatives in order to compute the geometric properties of the interface:
normal vector, curvature, gradient...

In [159], Sethian describes many numerical schemes and criteria. The
reader could find in this book numerical schemes to approximate first and sec-
ond order derivatives in case of convex Hamiltonian (noted H with H(∇u) =
β|∇u| in (2.8)). One could also find two numerical schemes in case of non-
convex Hamiltonian.

The most common scheme will be described, based on [159], but let start
by some notations et definitions. In 2D case, equation (2.8) could be rewritten
as follow:

∂u

∂t
+ β|∇u| = ∂u

∂t
+H(ux, uy) = 0 (2.9)

Let us define some operators:

Dx
iju =

ui+1,j−ui−1,j

2∆x
, Dy

iju =
ui,j+1−ui,j−1

2∆y

D+x
ij u =

ui+1,j−ui,j

∆x
, D+y

ij u =
ui,j+1−ui,j

∆y

D−x
ij u =

ui,j−ui−1,j

∆x
, D−y

ij u =
ui,j−ui,j−1

∆y

(2.10)

Convex Hamiltonian: For a convex Hamiltonian, the equation (2.9) can
be approximated using the following functional:

ut+1
ij = ut

ij −∆t
[
max(βij, 0)∇+ + min(βij, 0)∇−

]
(2.11)

where approximations for ∇+ and ∇− are given by:

• In a first order approximation:

∇+ =
[
max(D−x

ij u, 0)2 + min(D+x
ij u, 0)2 + max(D−y

ij u, 0)2 + min(D+y
ij u, 0)2

] 1
2

∇− =
[
max(D+x

ij u, 0)2 + min(D−x
ij u, 0)2 + max(D+y

ij u, 0)2 + min(D−y
ij u, 0)2

] 1
2

• In a second order approximation [161, 85, 159]:

∇+ =
[
max(A, 0)2 + min(B, 0)2 + max(C, 0)2 + min(D, 0)2

] 1
2

∇− =
[
max(B, 0)2 + min(A, 0)2 + max(D, 0)2 + min(C, 0)2

] 1
2
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with:

A = D−x
ij u+

∆x

2
m
(
D−x−x

ij u,D+x−x
ij u

)
B = D+x

ij u−
∆x

2
m
(
D+x+x

ij u,D+x−x
ij u

)
C = D−y

ij u+
∆y

2
m
(
D−y−y

ij u,D+y−y
ij u

)
D = D+y

ij u−
∆y

2
m
(
D+y+y

ij u,D+y−y
ij u

)
where m is the switching function:

m(x, y) =


0, if xy < 0
x, if xy > 0 and |x| 6 |y|
y if xy > 0 and |x| > |y|

Non-convex Hamiltonian: For non-convex Hamiltonian, the reader is in-
vited to look at [161, 159] for details.

Other common values: The curvature of a level could be directly approx-
imate using centered derivative:

κ = −
uxxu

2
y − 2uxuyuxy + uyyu

2
x(

u2
x + u2

y

) 3
2

When the normal vector is needed, it could be approximated by the mean
of all the non-centered derivatives:

−̃→n ij =
(D+x

ij u,D
+y
ij u)∥∥(D+x

ij u,D
+y
ij u)

∥∥ +
(D+x

ij u,D
−y
ij u)∥∥(D+x

ij u,D
−y
ij u)

∥∥
+

(D−x
ij u,D

+y
ij u)∥∥(D−x

ij u,D
+y
ij u)

∥∥ +
(D−x

ij u,D
−y
ij u)∥∥(D−x

ij u,D
−y
ij u)

∥∥
where the potential null vector are forgotten in the previous equation. Then
the vector is normalized to give: −→n ij =

−̃→n ij

‖−̃→n ij‖

2.3 Speeding it up

2.3.1 Narrowband

In [1], Adalsteinsson and Sethian propose a fast algorithm for the Level-Set
method that do not update the whole implicit function but only a band that
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u(t0) = d1

u(t0) = −d2

u(t0) = −d1

u(t) = 0

u(t0) = d2

Figure 2.2: At time t0, The interior and exterior band are initialized at
distance d1 et d2. Then the zero-level evolves by updating the band only
until it reaches the external band. In that case, the bands are reinitialized.

53



2.3. Speeding it up 2. Level Sets

surrounds the zero-level (which is the region of all interest). This band or
narrowband is in fact composed of two bands (B1 and B2 with B2 ⊂ B1).
Those bands are defined according to the following equations (see Fig. 2.2
for details):

B2 = u−1
0 ([−d2; d2]) and B1 = u−1

0 ([−d1; d1]) with d2 < d1

During evolution only points inside B1 are updated until the current zero
level Γt = u−1

t ({0}) reaches the second band B2. One can easily detect it by
watching over sign changes within B1\B2. When that appends, the current
zero level is considered as the new initial curve to redefine the Narrowband
and the distance should be updated within it (see Section Sec:2.4.1).

This modified algorithm is widely used by the community since it greatly
increases performances. Indeed implicit representation allows changes of
topology, provides good numerical scheme and wipes out parameterization
dependency but is also more computationally expensive. Without Narrow-
band, to evolve a curve (dimension 1) one should keep up to date a func-
tional defined on a domain Ω (dimension 2). In fact, the Level Set method
increases the dimensionality of the complexity by one. Nevertheless, the
complexity is reduced back to the curve dimension by using the Narrowband
method. One should notice that even if the complexity is reduced, the Level
Set method with Narrowband is still more expensive than the Snake method
(Section Sec:1.1.1).

2.3.2 Fast Marching

The Fast Marching method should also be mentioned since it is more efficient
than Narrowband implementation. However, this method can only be applied
for some class of PDEs. The motion speed should be of constant sign on
the whole domain (i.e. β is always positive or always negative on Ω). This
approach is based on crossing time of a propagating front Γt. Indeed the sign
constraint on β means that the propagating front will cross only one time
each point of the domain.

In fact, it can be shown that the crossing time T is linked to the motion
speed β by the following PDE:

β|∇T | = 1 with T (Γt) = t (2.12)

The above equation (2.12) means that crossing time is inverse proportional
to motion speed. This method suits particularly well to distance updat-
ing/recomputing (see Section Sec:2.4.1). In [159], Sethian gives the following
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upwind viscosity solution approximation of the gradient of T in (2.12):

1

β2
ij

= max(D−x
ij T, 0)2 + min(D+x

ij T, 0)2 + max(D−y
ij T, 0)2 + min(D+y

ij T, 0)2

(2.13)
For operators Ds definition, see equations (2.10).

One naive solution would have been to remark that the equation (2.13)
is quadratic in T in each point. However a direct approach using iterative
scheme until convergence in each point is way to much expensive compu-
tationally speaking. This method is discussed in [152]. However the Fast
Marching method is much more efficient.

Active

FarAway

Done

Figure 2.3: The Fast Marching method. In each point, we compute the
crossing time of the front. Some of these points belong to a past time (Done),
some others will be crossed in a close future (Active) and some others will
not be crossed before a long time (Far Away).

The algorithm is based on a domain partition in three regions (see Fig.
2.3 for a graphical representation):

• Done: region of Ω where every point is behind the current front. Cross-
ing time is known.

• Active: region of Ω where the front stands and acts. Crossing time is
being estimated.
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• Far: region of Ω where front does not have any influence. Crossing
time is unknown and fixed to +∞.

One important step is to initialize correctly the partition according to the
initial curve Γ0:

1. Every point (or node) is set to Done if the crossing time is negative
(T 6 0) which include also all points of Γ0.

2. Every untagged node is marked to Far and its crossing time sets to
+∞.

3. Every node in the neighborhood of a Done node is set to Active and
its crossing time is updated according to equation (2.13).

The algorithm can then be described by the following three steps:

1. Remove: Take the smallest estimate crossing time point ij in the Ac-
tive Set. Tag it as Done.

2. Update: Tag every Far neighbor node to Active. Update the crossing
time every Active neighbour node using equation (2.13).

3. Loop: Loop to step 1 until there is no more Active node.

The main difficulty is contained in step 1 of the algorithm. Maintaining
a list of node and extracting the one with the smallest crossing time is not
as easy as it seems. One should consider to make use of a min-heap data
structure [157] for speed consideration. This structure is in fact a binary tree
where each node contains a value and each child’s value is greater than its
parent’s. Maintaining such a data structure has a cost. However this one
is minimal for Fast Marching Method. Let assume the min-heap contains n
nodes inside, the cost in mean of each atomic action can be reduced:

• Extract the smallest node: O(1)

• Update the node (value and position): O(log n) since the value could
only decrease.

• Remove the smallest node: O(log n)

• Insert a node: O(log n)

For more details on Fast Marching Methods, the reader is referred to [7,
45, 163] for theoretical concerns and [100, 152] for more practical concerns.
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2.4 Implementation

One of the main problems encountered during a time evolution of an implicit
function u is that u does not remain a perfect distance function and then
one should recompute the sign distance regularly. Moreover using the Nar-
rowband method (see Section Sec:2.3.1) requires recomputing the distance
function every time the contour leave the Narrowband (one could notice that
the sign distance has to be computed only on the narrowband).

Another drawback is inherent to implicit representation. Indeed by con-
sidering this intrinsic representation, one should be able to compute β on the
whole domain Ω. But sometimes this is not possible.

This section will discuss different strategies to deal with sign distances.
Then we will present a method to manage the case where β can only be
estimate on the curve.

2.4.1 Distance Function

In order to correct the distance corruption, one could use naive or intelligent
approaches to restore the signed distance:

Naive method: Recomputing the distance from the zero level. In order
to achieve good precision, one should extract a sub-pixel zero-level using
marching squares (2D) or cubes (3D) [119] and then recompute the distance
using a fast algorithm [52]. This method is quite expansive and becomes
excessively expansive in 3D.

Correct the distance: A better way of doing it is to make use of PDEs.
Indeed using the following PDE [165] on an implicit function

∂u

∂t
= sign(u)(1− |∇u|)

leads to the corrected distance function. However, the zero level is move by
a small displacement.

Recompute using Fast Marching [158]: The best method is based on the
Fast Marching method (see Section Sec:2.3.2) and consists on two evolution
steps using ∂Γ

∂t
= −→n and ∂Γ

∂t
= −−→n respectively. The distance to the zero

level is given by the crossing time of the propagating front. According to
this propagation when a first pixel set to done has a value higher than t, the
front reaches the level set values that corresponds to an absolute distance of
t from the initial front position. This method combines speed and accuracy,
does not move the zero level and suits well to a Narrowband implementation
since it can be easily stopped at time t1 (see Fig. 2.2).
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2.4.2 Preserving Distance Function

One other way to deal with distance function is to try to preserve it over
the evolution. Gomes in [77] proposed to consider the following evolution
equation instead of (2.8):

{
∂u
∂t

= −β0|∇u|
β0(ω) = β(ω0) where ω0 = ω − u(ω)∇u(ω)

(2.14)

This equation means that for every point ω ∈ Ω, we consider the force
β0 of the closest point ω0 on the interface. Preserving sign distance map
allows decreasing sensibly the frequency of correction. Even the Narrowband
method could take advantage of this, since distance will only be recomputed
when the zero-level reaches the boundary of the Narrowband. Another way
to deal with this is discussed in [142].

2.4.3 Extending the speed value

It happens that the speed value β cannot be estimate on the whole domain.
In that special case, the whole Level Set method breaks. However one could
notice the previous equation (2.14) makes use of β on the curve only. This
means that this stabilizing scheme (Section Sec:2.4.2) also deals with those
special cases.

Another method was proposed in [142], the main idea is to propagate the
value β on the curve along its normal. This is obtained by the following PDE
evolution:

∂β

∂t
= −sign(u)∇β · −→n (2.15)

This equation produce a β function on the whole domain that satisfies the
following constraints:{

β(t−→n 0 + ω0) = const ∀t ∈ R
β(ω0) = β0(ω0)

where β0 is the reference speed value defined on the curve and ω0 is a point
on the curve.

These two methods seem to be quite similar however the second one is
more robust in practice.
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2.5 Examples

2.5.1 Mean Curvature Motion

The Mean Curvature Motion is one of the simplest evolutions that can be
addressed in level set framework:

∂u

∂t
= div

(
∇u
|∇u|

)
|∇u| (2.16)

2.5.2 Geodesic Active Contour

Geodesic Active Contours are usually addressed in level set framework. The
Euler-Lagrange formulation (1.9) of the equation (1.8) can be rewritten -
considering the level set function u - as follow:

∂u

∂t
= g(|∇I|)|∇u|div

(
∇u
|∇u|

)
+∇g(|∇I|) · ∇u (2.17)

2.5.3 Geodesic Active Region

Level Set can also implement Geodesic Active Region. However, in that case
the speed value cannot be compute on the whole area. Thus β should be
expand over the whole domain using the method describe in Section Sec:2.4.3.
The speed value on the curve is given by (see Section Sec:1.2.3 for more
details):

β(ω) = α
(
g(Pb(I(ω)))κ(ω) +∇g(Pb(I(ω))) · −→n (ω)

)
+ (1− α) log

(
Pout(I(ω))

Pin(I(ω))

)
(2.18)

After expanding the speed function over the domain, one simply evolves the
curve using the easiest scheme:

∂u

∂t
= −β|∇u|
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Chapter 3

Graph Cuts

In this chapter we present a minimizing tool for Markov Random Fields
(MRF). If this technique was introduced long time ago [69], its application to
Computer Vision community is fairly recent [18]. This new approach receives
recently a lot of attention since it provides a global optimum in relative small
amount of running time. However it cannot deal with every Markov Random
Fields. Indeed its applicability range is limited to binary MRFs and some
other constraint. Currently the Computer Vision community spends a lot of
work to formulates previous work into this framework in order to have access
to a global optimum.

The chapter is organize as follow. The first section will describe briefly
in which context this method lies and some other older approaches (Sec:3.1).
Then we describe in more details the framework and which class of energies
can be optimally and approximately minimize (Sec:3.2). Then we present
some algorithms already available (Sec:3.3). Finally we propose an imple-
mentation of Geodesic Active Contours and Regions in a Graph Cuts frame-
work (Sec:3.4).

3.1 Introduction

In this section we present the general framework of Graph Cuts. Indeed the
Graph Cuts method comes directly from the Combinatorial community. And
segmentation is now defined differently than in Level Set framework.

The following sections will first describe how segmentation is considered in
this framework Sec:3.1.1. Then we present in more details the mathematical
formulation (Markov Random Fields MRFs) Sec:3.1.2 and some available
approaches in order to minimize MRFs Sec:3.1.3.
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3.1.1 Labeling

Many problems in Computer Vision can be seen as labeling problems. Simply
think about segmentation: segmenting an image in two regions comes down
to assigning a unique label to each pixel (foreground or background, in or
out).

A labeling problem is completely defined by a couple of sets: the site set
and the label set. Sites correspond to features (usually pixels) carrying some
properties which need to be estimated. All those properties lie in the label
set.

Let respectively P and L be those sets:

P = {p1, ..., pn}
L = {l1, ..., lk}

with n sites and k different labels. Usually P is a set of pixels in an image
or voxels in a volume but it can be any other feature such as edges, regions
etc... Labels can be anything; they depend on and are designed for a spe-
cific application. For example, for segmentation it can be ”foreground ” and
”background ”. For Stereo, labels represent disparity...

A labeling problem consists into finding a map M from P into L that
assign for each site p a unique label l = M(lp). LetM = Ln be the map space.
This is a discrete optimization problem since the number of combinations is
finite |M| = kn. However, the number of solutions is excessively big to search
for the optimal solution in an exhaustive manner. Other methods had been
developed by the Combinatorial community to solve some of those problems
quite efficiently.

Many Computer Vision problems can be addressed using this general
framework:

• image segmentation: P = {pixels} and L = {0, 1} (see []).

• image restoration: P = {pixels} and L = {intensities} (see []).

• stereo reconstruction: P = {pixels} and L = {disparities} (see []).

• texture synthesis: P = {pixels} and L = {patches} (see []).

• ...
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3.1.2 Context

Markov Random Fields: this framework was introduced by Geman and Ge-
man [73] and deals elegantly with site interactions. MRF need the addition
of a neighborhood system N defined on P . This neighborhood must satisfy
some constraints. Let p ∈ P be a site and Np its neighborhood such that:

(i) p 6∈ Np

(ii) if p ∈ Nq then q ∈ Np

Let M = (M1, ...,Mn) be a set of random variables defined on P , each taking
its value into L. A realization or configuration of the field M is noted m =
(m1, ...,mn). According to those definitions, M is a Markov Random Field
iif:

(i) P (M = m) > 0 ∀ m ∈M
(ii) P (mp|mP−{p}) = P (mp|mNp)

The first point means that each configuration is probable. This assumption is
needed in order to assert a well-defined joined probability (see [8] for details).
The second point means that a label at a given site p only depends on its
neighborhood.

One should now define cliques, a useful concept for sites interaction. In-
deed, a clique C is a set of sites that verifies the following condition:

∀p, q ∈ C p ∈ Nq

which signifies that each site within a clique is in the neighborhood of each
other site. Let C be the set of all possible cliques. The relationship between
sites is defined using potential functions on cliques. Let VC(m) be a potential
function for the given clique C according to the configuration m. In fact, this
potential function specifies labels relationship within the clique.

Gibbs distributions are defined by:

P (m) = P (M = m) = Z−1exp

(
−
∑
C∈C

VC(m)

)
where Z is a normalizing constant. The Potential functions and the set of
cliques define a Gibbs Random Field according to the Gibbs distribution
P (m).

The theorem of Hammersley-Clifford [8] proves the equivalence of Gibbs
Random Fields and MRFs. This convenient result allows simulating a MRF
using a Gibbs sampler for example.

In the following sections, mainly pair-wise cliques will be considered but
this is not a major restriction since most of the problems can be addressed
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using cliques of order two only. This restriction leads to the following Gibbs
distribution:

P (m) = P (M = m) = Z−1exp

(
−
∑

p,q∈N

V{p,q}(mp,mq)

)
A classical potential function is related to the Potts model:

V{p,q}(mp,mq) = 1l (mp 6= mq) =

{
1 if mp 6= mq

0 otherwise

This simple case enforces neighbor sites to have the same label. This model
is widely use in many applications.

Maximum A Posteriori: The map M is in general not accessible, one
could only estimate its realization m through an observation obs. The con-
ditional probability P (obs|m) is the link between the realization and the
observation. A classical method to estimate the configuration m is to use
Maximum A Posteriori estimation. This method was well studied by Geman
and Geman [73] and aims at maximizing the posterior probability P (m|obs).
This one is related to the previous one by the Bayes rule:

P (m|obs) =
P (obs|m)P (m)

P (obs)
(3.1)

Since the problem consists in maximizing the previous equation with respect
to m, then P (obs) does not act on it. Then the MAP problem is equivalent
to:

arg max
m∈M

P (obs|m)P (m) (3.2)

P (m) is given by the MRF model but one needs to estimate P (obs|m). This
term codes for the relationship between the model and its observation. In im-
age restoration for example, this term controls the noise model (for example,
a Gaussian noise). In order to obtain a convenient expression of P (obs|m),
let us assume that P (obs|m) =

∏
p∈P

P (obsp|mp). This assumption holds when

the noise is independent at each site p. Let us define also the data model
Dobs which links observation and realization:

P (obsp|mp) = K exp
(
−Dobs

p (mp)
)

(3.3)

whereK is a normalizing constant. Unifying those assumptions, the complete
estimation of P (obs|m) is given by:

P (obs|m) ∝ exp

(
−
∑
p∈P

Dobs
p (mp)

)
(3.4)
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The complete MAP-MRF problem can be rewritten as:

arg max
m∈M

exp

(
−
∑
p∈P

Dobs
p (mp)−

∑
p,q∈P

V{p,q}(mp,mq)

)
(3.5)

which is equivalent, in an energy framework, to:

arg min
m∈M

∑
p∈P

Dobs
p (mp) +

∑
p,q∈P

V{p,q}(mp,mq) (3.6)

The whole chapter will focus on such an energy and methods to minimize
it.

3.1.3 Possible Approaches

For any energy like (3.6), a deterministic algorithm will have to explore every
possible configuration in order to find a global optimum. This means that
any deterministic and global minimizer will solve the problem in exponential
time since the number of configurations |M| = kn (where k is the number of
labels and n the number of sites). Exhaustive search cannot be considered
in that case, one needs to switch to different approaches.

A way of coming up to the generic problem is to switch to stochastic algo-
rithms such as Simulated annealing. For deterministic methods, one should
consider constraining the energy expression to reduce the search space.

Simulated Annealing: Simulated Annealing is the most used algorithm for
minimizing such a general energy (3.6). It was proposed simultaneously by
Cerny in [29] and Kirkpatrick et al. in [102] and subsequently introduced in
Computer Vision community by Geman and Geman in [73]. The algorithm
is presented here for Gibbs distributions but it can be used in a large panel
of frameworks (see Section Sec:6.1 for an application to Level Set based
segmentation).

Historically this algorithm was developed to imitate a thermodynamic
procedure: a material annealing. Physical annealing consists in decreasing
gradually temperature (cooling phase) of a metal while sometimes the metal
is heated (annealing phase). The global process consists in an alternation of
those phases. The energy that has to be minimized is inversely proportional
to the regularity of its crystalline structure. Indeed the more regular the
crystalline structure is, the more the metal is hard and resistant. If tem-
perature is lowered according to a predetermined cooling function and the
annealing phase is controlled, then this procedure reaches a global minimum
of the energy.
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Inspired by this process, simulated annealing makes use of a temperature
which is decreased according to a certain scheme. Basically, a change of
label is requested on a given site. Sites are taken one after each other based
on a predefined order or randomly. If by this change, the global energy
decreases, then the change is validated (cooling phase), otherwise it can be
adopted according to a test on the energy variation (annealing phase). This
test is based on a probability function depending on a control parameter:
the temperature. The lower the temperature is, the less often the change
is accepted. Basically, for high temperatures, simulated annealing performs
a random walk and for low temperatures, it acts as a ”gradient descent”
and stops on a local minimum. With that kind of policy, the algorithm is
convergent at least to a local minimum.

However, in some cases if the decreasing of the temperature is chosen
carefully, simulated annealing is ensured to converge to a global minimum.
Nevertheless, a convenient lowering speed is in practice too slow and is never
followed. Actually, the main interest of such a method is not the global
optimality but the capacity of escaping from local minima and reaching a
lower minimum.

Dynamic Programming: For some particular energies, the global min-
imum can by achieved using Dynamic Programming (DP) [4]. The main
advantage of DP is its speed and its main disadvantage is that it has diffi-
culty to solve other energies than one-dimensional functions. However DP is
effective in some widely used vision problems such as Snakes [166] (see Sec-
tion Sec:1.1.1). Moreover, DP principle can be used to reduce the number of
possible configurations to try in a Gibbs random fields [58].

Graph Cut: In the particular case where there are only two labels L =
{0, 1}, the global minimum can be found using the Graph Cut method for a
certain type of energy even if the number of configurations is still 2n. In [78]
Greig et al. shows how to obtain an exact maximum for a binary MAP
problem. However, an exact maximum is achieved only for binary functions.

That is why Ferrari et al. in [66] proposed a method based on Greig’s
one to obtain a strong local minimum for any number of labels. That is to
say, a minimum contained within a factor of two of the global minimum.
This method holds only for a small class of energies. In [67] Ferrari et al.
describes an improved algorithm to obtain a global minimum for an even
smaller sub-class of energies.

The next sections will describe in more details the Graph Cut framework,
how and when it can be used.

66



3. Graph Cuts 3.2. Description

3.2 Description
In this section we will first present the general Graph Cuts framework Sec:3.2.1.
Then we will describe the class of binary energies that can be optimally min-
imize in this framework Sec:3.2.2. Then we present how Graph Cuts can be
used to provide a strong minimum for the general n labels problem (Multiway
Cuts) Sec:3.2.3.

3.2.1 Graph Basics

Let us consider a weighted graph G = 〈V , E〉, V being the set of nodes and E
directed edges connecting them. Two special terminal nodes are present: the
source s and the sink t. Each edge connecting nodes p and q is assigned a non
negative weight w(p, q). Edges are broken in two groups: n-links and t-links.
A n-link is an edge connecting two non-terminal nodes. A t-link connects a
non-terminal node to a terminal node, s or t.

A st-cut C ⊂ E , simply called "a cut" in the following, is a set of edges
that satisfies the following properties:

• the resulting graph G(C) = 〈V , E − C〉 separates the source node from
the sink node such that there is no path linking the terminals.

• there is no subset of C that also separates the two terminals.

Such a cut defines a partition of the nodes of the graph into two disjoint
subsets S et T such that the source s ∈ S and the sink t ∈ T .

Its cost |C| is the sum of the weights of all edges (p, q) such that p ∈ S and
q ∈ T . The reader should be careful and be aware that only edges leaving
the S part are taken into account, no edge from T part to S is considered.

|C| =
∑
p∈S

q∈T

(p,q)∈C

w(p, q)

The minimum cut is the cut with minimal cost. One classical problem is to
find the minimal cost cut in the graph. In order to minimize a given energy,
one could set correctly edge weights on n- and t-links in such a way that the
cost of the minimal cut corresponds to the global minimum of the energy.

Thanks to the Ford and Fulkerson theorem [69], it is proved that the
minimal cut problem is equivalent to the max-flow problem. The max-flow
problem aims at finding the maximal value of flow that could reach the
sink from the source while considering edges as pipes and weights as pipes’
capacities. In fact, the maximal flow value is equal to the minimal cut cost.
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Given for a better understanding, a high-level proof of the Ford and
Fulkerson’s Max-Flow/Min-Cut theorem can be expressed as follow. Let us
consider the set of all possible st-cuts that separate the source from the sink.
One could see those cuts as a set of barriers that the flow has to cross to
reach the sink. As the flow has to cross every barrier, one could easily see
that the maximal flow is bounded by the minimal capacity of the barriers.
Since the barrier of minimal capacity will be saturated first and separates the
source from the sink, the barrier of minimal capacity is exactly the minimal
cost cut.

There are already many algorithms to solve this problem (historically
the first one was proposed by Ford and Fulkerson in their book) we refer
the reader to [2] for more details on common algorithms. Some of these
algorithms will be described briefly in the next sections.

3.2.2 What energy can be optimally minimized

Considering energies from the class (3.6), one should add some constraints
on the second term V{p,q} in order to get access to global optimality. Let us
rewrite this equation for easier reading:

E(m) =
∑
p∈P

Dobs
p (mp) +

∑
p,q∈P

V{p,q}(mp,mq) (3.7)

The Maximal Flow/Minimal Cut method was firstly used in Computer Vision
for binary restoration by Greig in [78]. In this application, the energy was
designed as follow:

E(m) =
∑
p∈P

Dobs
p (mp) + λ

∑
p,q∈P

1l (mp,mq)︸ ︷︷ ︸
Potts model

(3.8)

The first term corresponds to a data consistency criterion while the second
term aims at finding a region of shortest boundaries since the Potts model
penalizes label discontinuities. The goal of this work was to compare sim-
ulated annealing and graph cut on a convenient energy. Authors aimed at
proving that making use of simulated annealing with an incorrect and faster
schedule of cooling leads to a local minimum that can be far from the opti-
mum (provided by graph cut) even in this simple case. Maybe because on
this very restrictive application, this work remained unknown at least for 10
years.

Later, based on the work of Ray and Cox [153], Ishikawa in [81] proposed
a graph design to obtain an exact solution for a specific multi labeled MRF
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(more than 2 labels). Indeed labels have to be linearly ordered which limits
application of this technique to one dimension labels. For example it cannot
make use of this method for optical flow. Moreover the interaction term
should have the shape:

E(m) =
∑
p∈P

Dobs
p (mp) +

∑
p,q∈P

λpq|mp −mq| (3.9)

Here labels are supposed to be integers from {1, . . . , n}.
We describe here the graph construction to minimize energy (3.9). At

each site p are associated k − 1 nodes p1, . . . , pk−1. Edges from source to
sink crossing nodes p1, . . . , pk−1 are noted ep

1, . . . , e
p
k and their capacities are

respectively equal toDobs
p (m1), . . . , D

obs
p (mk). Then edges connecting pj → qj

are set to λpq. Figure 3.1 illustrates the graph for four labels. Any st-cut
has to cut at least one edge ep

j for each site p. To force the minimal cut
to go through only one edge per site, reverse edges of infinite capacity are
superposed (grey links in Figure 3.1). The optimal configuration of the MRF
is obtained by assigning the label mj to p if the edge ep

j is cut.
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Figure 3.1: Ishikawa graph design for exact minimization of equation (3.9)
for multi-label MRF. Here four labels are considered.

This case might be restrictive but Ishikawa generalized later in [80] this
graph construction to any convex function of |mp−mq|. However the exten-
sion to convex potentials is relatively unuseful since such a potential tends
to produce over-smoothed boundaries [156]. Moreover to extend to convex
Vpq one has to introduce many edges into the graph described above which
creates a much more complex graph. Nevertheless this is the only known
case where a multi-label MRF can be solved optimally.

Getting back to binary MRFs, Kolmogorov and Zabih in [108, 109] settle
a class of potential functions that can be minimized using Graph Cut. They
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define for pair-wise interaction the notion of submodular functions. A binary
pair-wise function f is submodular iif:

f(0, 0) + f(1, 1) 6 f(0, 1) + f(1, 0) (3.10)

They prove the following result: any energy given by (3.7) where every Vpq is
submodular can be optimally minimized using graph cuts. They also provide
a similar result for ternary cliques that was used in [107]. Later, Freedman
and Drineas generalized it to any clique [70].

Some interesting results provided by Kolmogorov and Boykov in [16],
show how n-link weights could be set in order to approximate Riemannian
metrics. This result will be more developed in a following section. The same
idea reached its limit in [106] where the same authors proved that by using
only n-links, the submodular constraint limits this approach to Riemannian
metric plus Flux.

3.2.3 Multiway Cut

Multiway Cuts refer to the same problem but generalized to n terminals
{t1, . . . , tn}. The issue is to find the minimal cost cut that separates termi-
nals from each other. However, it is known since [51], that this is a NP-
complete problem as soon as there are more than two labels. The restriction
to two labels corresponds to Graph Cuts. Multiway cuts address the problem
of finding the optimal configuration of a multi-label MRF. In the previous
section, we shown the graph construction proposed by Ishikawa to optimally
solve some particular multi-label MRFs using a simple graph cut approach.
Nevertheless, it cannot address more general MRFs. That is why a large
community had widely studied this issue.

However since the problem is NP-complete and unless it is shown that P =
NP , only approximating algorithms are considered. One simple algorithm
proposed in [51] simply considers n two-way cut problems solved using graph
cut. Each aims at finding the minimal cut that separate a chosen reference
terminal from all others. This leads to n different cuts noted C1, . . . , Cn. A
Multiway Cut is then constructed concatenating every cut except the one
with the maximal cost:

C =
⋃

i=1...n
i6=imax

Ci where imax = arg max
i=1...n

|Ci|

It can be proved that this methods leads to a good approximation of the
minimal energy. It provides a minimum within a factor of 2 − 2

n
. However
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even if this method gives a close minimum with respect to the energy, the
labeling could be far from the optimal one and in practice this is the case.

Based on those observations, two similar algorithms based on graph cuts
were proposed by Boykov, Veksler and Zabih in [19, 20, 21]. Those two
techniques provide a local minimum of the energy with respect to a given set
of transformations. Those methods require the definition of a set of allowed
transformations Tm. A transformation refers to an allowed labeling change
on a given configuration m of the considerer MRF. A local minimum is then
defined by:

∀T ∈ Tm E(T (m)) > E(m)

which means that considering any atomic allowed transformation on the la-
beling, none of them can decrease the energy. This framework suffers from a
common drawback for optimization techniques. Since it needs an initializa-
tion and converges to a local minimum, the result strongly depends on the
initial labeling.

Those techniques can be defined as follow:

• α-expansion: an α-expansion only considers one label (noted α) at a
time. An α-expansion transformation Tα only modifies the current la-
beling such as any label can be changed to α or remains the same (noted
ᾱ). Actually, α-expansion can be seen as a competition between the
proposed new label α and the current label ᾱ at each site. The prob-
lem can be solved as a binary optimization problem and summarized
as follows: which from α or ᾱ should we keep in each site in order to
optimally minimize the energy according to the allowed transformation?

• αβ-swap: an αβ-swap considers a couple of labels (noted α and β) in
the same time. An αβ-swap transformation Tαβ changes the current
labeling such as only labels α or β can be changed respectively to β or
α. αβ-swap can be seen as a competition within the couple of labels.
The problem can also be solved as a binary optimization problem and
summarized as follows: which label from α or β should we have in
sites where those labels are present in the current labeling in order to
optimally minimize the energy according to the allowed transformation?
The main advantage of αβ-swap on α-expansion, is that the resulting
graph is smaller since one does not consider sites where the current
label is different from α or β.

Graph cuts provide the best transformation Tα (respectively Tαβ) that mini-
mizes the energy. However only MRFs with submodular interaction between
labels can be considered here.
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Starting from an initial configuration m, the procedure consists in the
iterative optimization scheme defined above where all the labels are consid-
ered one after each other in a predefined or random order. Each iteration
of this scheme does not produce a configuration of higher energy. For αβ-
swap one should consider every possible couple of labels. Knowing that an
α-expansion cycle is achieved after n iterations while αβ-swap cycle contains
n(n−1)

2
iterations. However, those algorithms need several cycles to converge.

In practice αβ-swap gives better results but needs more iterations and cycles
to converge.

It can be proved that the local minimum is within a factor of two when
considering the Potts model in a four connected neighborhood.

Figure 3.2 illustrates the graph design for both algorithms for a couple of
neighbor sites {p, q}. Let us first consider α-expansion. ᾱp and ᾱq refer to
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p q

α α
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p q

α α
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β β

Figure 3.2: Graph design for α-expansion (Left) and αβ-swap (Right).

the current label of their respective site. For an easy understanding let us
introduce an extra node (noted ε) in the center on the left part of the figure
3.2. For readability, let us assume that Vpq(α, α) = 0. Let us set the links
according to the following table:

T-Links Capacity
s→ p Dobs

p (α)

p→ t Dobs
p (ᾱp)

s→ q Dobs
q (α)

q → t Dobs
q (ᾱq)

ε→ t Vᾱp,ᾱq

N-Links Capacity
p→ ε Vᾱp,α

q → ε Vα,ᾱq

ε→ p +∞
ε→ q +∞

Table 3.1: Link settings for the α-expansion algorithm. See left part of figure
3.2 for correspondences.

In table 3.1, the first t-link measures the likelihood of site p to have label α
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based on data observation. The next three t-links are set similarly. The fifth
t-link codes for interaction between p and q when those two sites are labeled
ᾱp and ᾱq respectively. The two first n-links code for site interaction. The
first one when p is assigned to ᾱp and q to α and similarly for the second one.
Finally the last two n-links ensure some consistency when Vᾱp,ᾱq is lower to
Vα,ᾱq or Vᾱp,α. However note that we still need the submodular constraint on
Vpq which means that Vᾱp,ᾱq 6 Vα,ᾱq + Vᾱp,α. According to this construction,
one could see that the minimal cut will cross the t-links associated to the
optimal label: cutting s → p means that p should be assigned with α while
cutting p→ t means that p should remain with its current label. However it
is possible to free ourself from the extra node, the infinite links and the extra
assumption, namely Vpq(α, α) = 0, and for more details on how to implement
it the reader should refer to [109].

Let us now consider the case of αβ-swap. Let us consider two sites {p, q}
such that p and q in the current configuration are assigned to α or β. The
graph construction is quite simpler to the one for α-expansion. Edge links
are set according to the following table:

T-Links Capacity
s→ p Dobs

p (α)

p→ t Dobs
p (β)

s→ q Dobs
q (α)

q → t Dobs
q (β)

N-Links Capacity
p→ q Vβ,α

q → p Vα,β

Table 3.2: Link setting for the αβ-swap algorithm. See right part of figure
3.2 for correspondences.

The graph can be interpreted similarly to the α-expansion case. For more
details on those algorithms, the reader is invited to read [21].

3.3 Algorithms

During all the previous sections, we had assumed that we had access to an
algorithm for solving the Minimal Cut problem. In this section, we will
describe many available algorithms to solve it.

Finding the minimal cut is not straightforward and since the Min-Cut
problem is known to be equivalent to the Max-Flow problem [69], all those
methods solve this dual problem. This approach was briefly introduced in
Section Sec:3.2.1. We will firstly describe the Max-Flow problem and then
we will make a rough sketch of two classes of algorithms.
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3.3.1 Maximal Flow Problem

This dual problem lies also on a graph G = 〈V , E〉 where V is a set of vertices
(or nodes) and E is a set of directed pipes (or edges) connecting them. Two
special nodes are present in V : the source s and the sink t (where ’t’ means
target). The capacity of a pipe is a function c from V2 into N such that if
(p, q) 6∈ E then c(p, q) = 0.

For a high-level image of the problem, the graph defines a network of
pipes. Let us imagine that the special node ’source’ is connected to an infinite
source of water. The capacity is the quantity of water that could reach the
head of the pipe from the tail. The max-flow problem can be summarize as:
How many water could reach the special node ’sink ’?

Note that the cost of the minimal cut is equal to the maximal flow that
could reach the sink.

A second and dual problem is: where are the bottlenecks in the network?
This can be interpret for a water distribution problem as: where should we
increase pipes’ capacity in order to be able to distribute more water to the
sink? Those pipes of limiting capacity are located on the Minimal Cut. How
convenient!

That kind of problem has many applications such as:

• Electric transportation on an electric line network.

• Data transfers on internet.

• Factory product to sellers.

• Water distribution.

• . . .

Let us define the notion of flow. The flow is a function f from V2 into Z
such that:

∀ (p, q) ∈ V2 f(p, q) 6 c(p, q) Capacity constraint
∀ (p, q) ∈ V2 f(p, q) = −f(q, p) Symmetry
∀ p ∈ V \ {s, t}

∑
q∈V

f(p, q) = 0 Flow conservation
(3.11)

Such a function is also called a feasible flow.
We could now define the residual graph Gf = 〈V , Ef〉 where the capacity

on this graph is given by the residual capacity cf (p, q) = c(p, q)−f(p, q). The
residual graph can be seen as the graph of the remaining available capacity.
Here the symmetry introduced in the flow takes it sense since it allows to
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cancel send of flow through an edge by increasing the capacity of the reverse
edge: if one unit of flow is sent through the pipe (p, q) then its residual
capacity decreases by one while the residual capacity of the reverse edge
increases by one allowing to send this unit flow back to p. Note that an edge
of null residual capacity is called saturated edge.

Two classes of algorithms were proposed to solve this problem. One pro-
posed by Ford and Fulkerson in [69] which preserves flow conservation during
the whole process and another one proposed by Goldberg in [76] which breaks
the flow conservation rule until convergence. Those methods are detailed in
the following sections.

3.3.2 Flow Conservation Preserving

All the algorithms presented here are based on the same idea: augmenting
paths. The augmenting path approach is based on the following remark:
considering a path from s to t on the residual graph of connected nodes by
non-saturated edges, such a path could transport at least one unit of flow
from s to t. Such a path is called an augmenting path since it has the capacity
of augmenting the flow from from s to t.

The first algorithm was proposed by Ford and Fulkerson in [69] and it
was quite simple. It can be written as follow:

Algorithm 1 Ford-Fulkerson Algorithm
Require: G = 〈V , E〉 a graph
Ensure: A maximal flow function f and the residual graph.
f(p, q)← 0 ∀ p, q ∈ V
Gf = 〈V , Ef〉 ← G
while There exists an augmenting path in Gf from s to t do

Take such a path.
Send one flow unit over the path.
Update the residual graph Gf .

end while
Return f and Gf .

Let us define V = |V| the number of nodes in the graph G and E = |E| the
number of edges. Then the complexity of the Ford and Fulkerson algorithm
(Alg:1) is at worst O(E|C|) where |C| is the cost of the cut. Note that when
the algorithm stops there is no more any path from s to t and so s and t are
separated in the residual graph. This means that the residual graph can be
segmented in two parts: the S part and the T part. The boundary between
those two parts is the minimal cost cut. Moreover the total flow sent to the
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sink is equal to the cost of the minimal cut C in the graph. Indeed at each
iteration of the algorithm (Alg:1), the amount of flow that reaches the sink,
increases by one. In addition, the cost of the cut C in the residual graph
decreases by one since every path from s to t crosses the cut C. One could
remark that at convergence, the cost of the cut C in the residual graph is
null since C cuts the residual graph in two disjoined parts.

Later Dinic in [61] and Edmonds and Karp [65] proposed independently
a similar variation of this algorithm. Instead of using any path from s to t,
Edmonds and Karp proposed to use the shortest one. This leads to a more
efficient algorithm of complexity O(V E2). However in his paper [61], Dinic
proposed some other improvements and reduced the complexity to O(V 2E).
The shortest path is found using a breath-first search or a depth-first search
algorithm [44].

Another extension that could be found in the literature [], introduces the
use at each step of the maximal augmenting path1 instead of the shortest.

Recently, Boykov and Kolmogorov in [15, 18], brought a new very efficient
implementation to the Computer Vision community based on a symmetric
approach. They used two trees on the residual graph: the source and the sink
trees. The two trees grow from their respective terminal. When a contact
happens between them, then there is an augmenting path from s to t. The
algorithm is summarized in Alg:2.

Algorithm 2 Boykov-Kolmogorov Algorithm
Require: G = 〈V , E〉 a graph.
Ensure: a maximal flow function f and the residual graph.

Let S − Tree and T − Tree be respectively the source and sink tree.
S − Tree← s
T − Tree← t
while A tree could grow do

Grow alternatively one tree.
while There is a contact between the two trees do

Take the augmenting path.
Send as much flow as possible over the path.
Update the residual graph Gf . At least one edge is saturated.
Fix the trees.

end while
end while
Return f and Gf .

1 the augmenting path that can bring the biggest quantity of flow from s to t
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The critical point of this algorithm lies on the management of the trees
(growing, fixing, ...) to obtain a each contact a quite short augmenting path.
However, this algorithm can be placed between the one of Ford and Fulkerson
(any path) and the one of Dinic (the shortest path) since it does not guarantee
to use the shortest but makes use of heuristics to obtain a short one. This
is a good compromise between efficiency provided by the shortest path and
time spent to search for it. The complexity of this algorithm is given by
O(V E|C|).

The complexity criterion should be taken carefully since it does not reveal
the real speed of an algorithm. For example, the algorithm of Boykov and
Kolmogorov is in practice almost linear. Moreover, the choice of an algo-
rithm must be done according to its use: in case of a complete graph - i.e.
a graph with any possible edge - one should choose an algorithm of minimal
complexity with respect to the number of edges E... In the Combinatorial
community, the encountered graphs are usually very dense however in Com-
puter Vision community, graphs are almost sparse. That is why we do not
have the same ”efficiency criterion”.

3.3.3 Non Flow Conservation Preserving

On the other side, a class of methods are based on the idea of relaxing the
Flow Conservation rule (3.11) during computing. The rule is relaxed to
obtain the following rule:

∀ p ∈ V
∑
q∈V

f(p, q) > 0 (3.12)

This positive value is called, for every node except the terminals {s, t}, the
excess of a node since it represents an excess of flow at a given node. A node
with a positive non-null excess is call excess node. Let us introduce some
other notations that will be useful in this section. Let us call an outgoing
edge of a node p, any edge on the residual graph leaving the node (its tail
is the node p). Similarly an incoming edge of a node is an edge on the
residual graph reaching the node. In the next section, an edge will be named
indifferently edge or arc. According to those notations the excess of a given
node p could be expressed as follow:

excess(p) =
∑

ei an incoming edge
head(ei)=p

f(ei)−
∑

eo an outgoing edge
tail(eo)=p

f(eo) (3.13)

Let us now define the notion of preflow. A preflow is a function from V2
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into N such that: 
∀ (p, q) ∈ V2 f(p, q) 6 c(p, q)
∀ (p, q) ∈ V2 f(p, q) = −f(q, p)

∀ p ∈ V
∑
q∈V

f(p, q) > 0
(3.14)

The first algorithms based on this idea of relaxing the flow conserva-
tion were introduced independently by Cherkassky [38] and by Goldberg and
Tarjan [74, 75]. The most known and accomplished algorithm is the one of
Goldberg and Tarjan: the Push-Relabel algorithm. We will now give a short
description of this algorithm since every other algorithm is similar or based
on this one.

In this method, each node is assigned a label or distance or even height.
The first version of Push-Relabel is quite simple and is formed of two different
steps: Push and Relabel. In order to describe those procedures, one should
introduce some notation. A neighbor node is a node that can be reached
from or can reach a given node in the residual graph along a non-saturated
edge. An admissible edge is a non saturated edge that reaches, from some
node another node of lower height:

neighbor(p) = {q ∈ V / ∃ (p, q) ∈ Ef , cf (p, q) > 0 or cf (q, p) > 0}
reachable(p) = {q ∈ V / ∃ (p, q) ∈ Ef , cf (p, q) > 0}
admissible(p) = {(p, q) ∈ Ef / q ∈ reachable(p), height(p) > height(q)}

The two atomic steps are described in the next two actions (Act:1-2):

Action 1 Push
Applicability: p an excess node and q such that (p, q) is an

admissible edge for p.
Action: Send min(excess(p), cf (p, q)) flow to the node q.

Action 2 Relabel
Applicability: p a non terminal excess node such that

admissible(p) = ∅.
Action: Relabel p according to:

height(p)← min
q∈reachable(p)

height(q) + 1

At the initialization, the preflow is set to be null everywhere excepted at
the source terminal where an infinite excess is set. Such a preflow is in fact
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a flow according to its definition (3.11). The labels are initialized according
to the distance to the sink excepted for the source. The source is labeled
|V| since it can easily be proved that it is an upper bounding value of the
distance to the sink.

The Push-Relabel algorithm can be now written as follow:

Algorithm 3 Push-Relabel Algorithm
Require: Gf = 〈V , Ef〉 a graph.
Ensure: a maximal flow function f and the residual graph.

while There is an applicable action (push or relabel) do
Do it.

end while
Return f and Gf .

The algorithm is convergent since the maximal height in the graph is
2|V|−1 = 2V −1. At convergence all the excess flow is located at the source
and at the sink and the preflow is corrected into a feasible flow. In fact, the
overflow is pushed back to the source. Moreover, the amount of excess at the
sink is equal to the maximal flow. Furtherover the graph can be segmented
in two parts by thresholding the height at level |V| = V . The part where
nodes are upper than the source, corresponds the S-part and all others to
the T -part.

The algorithm implemented according to the scheme defined above (Alg:3)
has a complexity at worst equal to O(EV 2). However, the Push-Relabel al-
gorithm has a high degree of freedom such as: priority of actions, schedule
of relabeling, choice of excess node etc... A lot of extensions take advantage
of this freedom.

The first extension was proposed by Goldberg and Tarjan in [74, 76] and
is also known as the Relabel-to-front algorithm. This modified algorithm only
adds a new rule of action ordering. The basic idea is to never leave an excess
node until there is no more excess in it. This new rule is implemented in the
following procedure called discharge:

This variation is more efficient and has a complexity of O(V 3) [74, 76].
This confers a very good performance in case of complete or dense graph.

The next natural improvement concerns the choice of a strategy for or-
dering the push step. The main idea is to define an ordering policy to select
the current active excess node. Following this idea, two main strategies come
out: First-In/First-Out (FIFO) or Highest Label (HL). Those two are dis-
cussed in a paper of Cherkassky and Goldberg [39]. The FIFO algorithm
works at worst in O(V 3) [75, 76] and the HL algorithm in O(V 2

√
E) [42].
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Algorithm 4 Discharge procedure
Require: p be a excess node with reachable(p) = ∅.

repeat
while Push action is applicable do

Push.
end while
if excess(p) > 0 and p is not a terminal then

Relabel.
end if

until excess(p) = 0 or p is a terminal

The main drawback of the Push-Relabel algorithm, whatever implemen-
tation is used, happens when the minimal cut is saturated. At this moment
every excess nodes that are located above, have to go back to the source.
Since the source height is |V| = V , excess nodes trapped above the minimal
cut have to raise up the height above the source in each node of the S-part
in order to be able to reach the source. However using the Relabel scheme
to raise up a complete zone is inefficient. In order to improve performance,
one can introduce some heuristics in the algorithm to deals with those cases.

The first and simplest one is called Global Relabeling and consists in
updating each label according to the distance to the sink in the residual
graph. This can be done in linear time by a backwards breadth-first search.
Compared to the Relabel step, this heuristic is computationally expensive.
Such a heuristic is performed periodically (after every n Relabel steps) and
can improve the performance drastically.

The second and more tricky one is called Gap Relabeling. It was proposed
independently by Cherkassky [38] and Derigs and Meier [56]. This heuristic
is based on the following remark: if there is a gap in the label histogram,
then there are two unconnected regions in the graph. Indeed let us consider
a path joining the source to the sink in the graph. The labels along such a
path are decreasing by one at each step. This proves that if a gap appears
in the label histogram, then no path from the source to the sink exists in the
graph. This means that the graph is partitioned in two unconnected parts.

Let us consider a label 0 < g < V such that no node in the graph is
labeled g but there are some nodes carrying a higher label, then g forms a
gap in the label histogram and then the sink is not reachable from those
nodes. Then the labels of nodes with label higher than g may be increased
by V . The performance improvement using this heuristic is more variable.
If Gap Relabeling improves significantly the performance, Global Relabeling
is usually more efficient. However, in some cases, Gap relabeling discovers
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many gaps and provides better running times but this is usually not the case
for typical graph designs in Computer Vision.

The best implementation of Push Relabel makes use of Dynamic Trees
rather than labels. The more efficient implementations of Push Relabel are
as follows. In [76] Goldberg and Tarjan proposed an implementation that
runs in O(V E log(V 2/E)) time. An algorithm of King at al. in [101] runs
in O(V E + V 2+ε). An algorithm of Cheriyan et al in [37] runs in O(V E +

(V log V )2) and an algorithm of Ahuja et al. in [3] runs inO
(
V E log

(
V

E
√
|C|

+ 2

))
.

As explained in the previous section, one should consider complexity very
carefully since it does not reflect the real speed of an algorithm. For a
comparison of those two techniques for Computer Vision problems, one could
read [18].

Actually, it is very difficult to extract rules that link performance to graph
shape. However, it seems that sparse graphs are the domain of augmenting
path algorithms while dense or complete graphs belong to Push-Relabel al-
gorithms. Nevertheless, this cannot be taken a honest truth and one has to
test on is own graphs.

3.4 Examples

In this section, one will found an implementation of ’Geodesic Active Con-
tour ’ (Sec:1.1.2) and ’Geodesic Active Region’ (Sec:1.2.3) in a graph cut
framework.

3.4.1 Geodesic Active Contour

Let I be an image and consider the graph G = 〈V , E〉. Each pixel is as-
signed to a node. Let us consider a local neighborhood N around each node
which defines the set of edges. Typically N corresponds to a 4-connected,
8-connected or even 16-connected neighborhood. Figure 3.3 illustrates those
neighborhoods.

In [16], Boykov and Kolmogorov describe how to set the edge weights in
order to minimize the Geodesic Active Contour energy (1.8). However, an
Euclidian or Riemanian metric can be approximated only and this approx-
imation is related to the neighborhood complexity. A 4-connected neigh-
borhood corresponds to the Manhattan distance but using a 16-connected
neighborhood produces a quasi-perfect Euclidian distance (See Fig:3.3).

Let us assume that the object contour does not intersect the border of the
image. In that case the sink is connected to each node of the border with an
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Figure 3.3: First Row: 4, 8 and 16-connex regular neighborhood. - Second
Row: The unit sphere associated to their corresponding metric. In red, length
of edges and in blue, weight of edges.

infinite link. The user has to give some tips by selecting some pixels inside
the object (something like a seed). The corresponding nodes are connected to
the source by infinite links. Now one should correctly set the n-links weights
so that the minimal cut will separate the graph in two parts: object and
background. According to [16], n-links have to be set using the following
scheme:

∀p, q ∈ V , (p, q) ∈ E , c(p, q) =
g(|Ip − Iq|)
length(p, q)

(3.15)

After running a graph cut algorithm, the nodes connected to the source
(S-part) are assigned to the object, the other ones to the background.

Using Graph Cuts to minimize such an energy provides some advantages:

• Global minimum: Obviously. This is a property of graph cuts.

• Multi object segmentation: If more than one object is present in the
image, the user just has to provide more than one seed (at least per
object one).

• Interactive correction: If the user, after segmentation, finds that the
object is not correctly labeled, he could correct some labels by adding
some infinite t-links in the residual graph (the source for the object,
the sink for the background) and relaunch the algorithm on this mod-
ified residual graph. This approach allows to interactively correct the
partition and to take advantage of the previous run to speed it up [14].
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However, this methods needs to be initialized by hand (t-links) and the
resulting partition depends on the initialization. The next section will show
a way to avoid that.

3.4.2 Geodesic Active Region

The ’Geodesic Active Region’ can be solved in the same context. The graph
design is the same as above concerning the n-link connection (links and
weights). However the t-links are set differently and there is no need of the
user intervention anymore. Geodesic Active Region differs from Geodesic Ac-
tive Contour only by this additive term (1.20). Since the common part (1.8)
is already encoded in n-links according to scheme (3.15) and since graphs are
additive [108, 109], one should only implement the remaining part.

Equation (1.20) is encoded in the graph using n-links by applying the
following rule at each node:

∀p ∈ V , r(p) = λ log

(
Pout(I(p))

Pin(I(p))

)
,

r(p) > 0 add a t-link from p to the sink of weight r(p).
r(p) < 0 add a t-link from the source to node p of weight r(p).
r(p) = 0 nothing.

Similarly to the Geodesic Active contour case, after running a graph cut
algorithm, nodes connected to source (S-part) are assigned to the object,
others to the background.

This method does not make use of user initialization any more and always
provides the global minimum of the energy.
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Chapter 4

Stochastic Level Sets: an
extension

This chapter presents a new extension of Level Set based on Stochastic Par-
tial Derivative Equation (SPDE). Basically, it introduces the concept local
random perturbations into the Level Set framework. This allows building a
more generic framework: the Stochastic Level Sets.

This allows, for example, the use of more interesting minimizer than the
straightforward gradient descent method. Combined with a Simulated An-
nealing minimization process, it allows obtaining a better minimum than with
a standard gradient descent. Moreover it can also deal with the case where
an accurate gradient is intractable or inaccessible (see section Sec:1.2.4).

This work stems from a join work with Gheorghes Postelnicu and is pub-
lished in proceedings of the second VLSM workshop [90] and in a special
issue of IJCV [92].

4.1 Introduction

4.1.1 Why adding noise?

Shape optimization techniques are a common framework to address various
applications in Computer Vision, like segmentation, tracking, stereo vision
etc. The objective of our approach is to improve these methods through the
introduction of stochastic motion principles. These problems are most of the
time stated as the minimization with respect to some hyper-surface Γ of RN

of some objective function E(Γ). This is usually achieved using a gradient-
descent method. Yet, in complex cases, E does not have any computable
gradient with respect to Γ. In other cases, the minimization process gets
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stuck into some local minimum, while no multi-resolution approach can be
invoked1. To deal with those two frequent problems, one can naturally turn
to a stochastic optimization approach. Even a simple Simulated Annealing
method might be powerful enough to escape from local minima and to cope
with an approximation of the shape gradient. Indeed, adding noise to the
motion of a curve is a prerequisite to developing this idea.

4.1.2 Context

We are interested in letting Γ(t) evolve according to the equation

∂Γ

∂t
(t, p) = β(t, p)−→n (t, p) + η̇(t, p)−→n (t, p) (4.1)

where p is some parameterization of Γ, −→n the normal to Γ(t) at point Γ(t, p)
and where the normal velocity β depends on some stochastic perturbation
η̇ - here, the notation η̇, standing for the "derivative" of the noise η w.r.t.
time, will become clear further. The mean curvature motion β = κ as well
as many other problem oriented choices of β and their implementation with
the Level Sets method [132] are well known. The novelty in our work is the
implementation of the recently proposed stochastic flow (4.1) (see [171]) and
its application to Computer Vision.

Stochastic dynamics of interfaces have been widely discussed in later years
in the physics literature. The work in fields like front propagation or front
transition is aimed at modeling and studying the properties of a moving
frontier between two media that is subject to macroscopic constraints and
random perturbations (which are due to the bulk). The natural translation
of this dynamic in mathematical language is done through Stochastic Partial
Differential Equations (SPDEs). These equations were introduced by Walsh
in [171] and their mathematical properties were studied using mostly partial
differential equations tools. Nevertheless, the problems researchers have to
deal with are various and there is more than one way to add a stochastic
perturbation to a PDE. An up to date survey of the existing models on
stochastic motions by mean curvature can be found in [180]. It was only in
recent years that the notion of viscosity solution for a SPDE was developed
by Lions and Souganidis in a series of articles [113, 114, 116, 117]. Their
notion of weak viscosity solution is very attractive for numerical applications,
since they define the solution as a limit in a convenient space for a set of

1E.g., when using some statistical region model, a change in resolution may result in
smoothing out the difference between the statistics of the interior and the ones of the
exterior.
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approximations. Since their pioneering work, related work has been done
by Yip [179] and by Katsoulakis et al [96]. Another independent approach
concerned with viscosity solutions of stochastic partial differential equations
is due to Buckdahn and Ma [25]. Their approach is not well suited for
Level Sets evolutions, though, since they do not allow certain functional
dependencies that are common to all Level Sets evolutions.

4.2 Mathematics

4.2.1 Some Notions of Stochastic Calculus

This section is meant to offer the reader an intuition of the notion of Stochas-
tic Calculus and of the supplementary challenges it poses. Focusing on the
definition of the integral itself, we suppose the reader is familiar with the
Brownian otion. We shall equally use the idea of a standard probability
space, martingale, quadratic variation. Rigorous and complete introductions
of Stochastic Calculus can be found in [94], [71] or [111]. Let (Ω,F ,Ft,P) be
a standard probability space. We will consider that W = (W 1

t , . . . ,W
m
t )t>0 is

a standard m-dimensional Brownian motion issued from 0. We are interested
in finding an appropriate way of introducing the notion of stochastic differen-
tial with respect to the process W . To better understand the difficulty here,
it is worth while mentioning that the paths of the Brownian motion are only
1
2
-Holder continuous, so they are nowhere differentiable. Hence, in order to

give a meaning to what the term dWt might mean, one can first define an
integral with respect to W - the stochastic integral. Once this integral is
defined, the differential is obtained using the integral defined. To keep the
presentation as clear as possible, we suppose that m = 1 and all our pro-
cesses are real-valued. The considered approach for the construction of such
an integral is to define it as an isometry in the appropriate functional space.
Indeed, consider a square integrable process Φ = (Φ(t, ω))t>0. Trying to
define the stochastic integral

∫ T

0
Φ(t, ω)dWt, one would start with Riemann

approximations

I∆(Φ)(T ) =
n−1∑
i=1

Φ(ti, ω)
(
Wti+1

−Wti

)
(4.2)

with ∆ = {0 = t0 < t1 < · · · < tn = T} and hope to find a suitable
space where the above sum would converge when |∆| → 0. By proving
some completeness results, one can show that every square integrable con-
tinuous process is integrable w.r.t. the Brownian motion and one can obtain
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the Ito stochastic integral as the unique, square integrable martingale
I(Φ) = (I(Φ)(t))t>0 which is the limit of (I∆(Φ)(t))t>0 when |∆| → 0. The

convergence happens in the pseudo-metric ‖X‖ =
∑∞

n=1

min(1,
√

E(X2
n))

2n .
The price to pay for the convergence of the Riemann sums is that it hap-

pens in a process space, hence the limit, which is denoted as the stochastic
integral

∫ T

0
Φ(s)dWs, does not hold a meaning path-wise, but only as a pro-

cess. This means that the set of events ω ∈ Ω where the Riemann sums
mentioned above do not converge to the above introduced integral is of null
measure. In the sequel, the convergence suggested above can be extended to
an arbitrary dimension. Moreover, the extension can be taken with respect
to local continuous martingales. For details, the reader is referred to one
of the references above. Once this integral is defined, it is imperative one
is given some chain rule formula. This is where the Ito lemma comes in.
Consider a process X = (Xt)t>0 where:

Xt = X0 +

∫ t

0

HX
s dWs︸ ︷︷ ︸

Martingale

+

∫ t

0

KX
s ds︸ ︷︷ ︸

Increasing Process

(4.3)

with
∫ T

0
|H2

s |dWs < +∞ and
∫ T

0
|Ks|ds < +∞. The Ito lemma states that for

all function α : R→ R of class C2 that Y = (α(Xt))t>0 verifies the dynamics:

α(Xt) = α(X0) +

∫ t

0

α′(Xs)dXs +
1

2

∫ t

0

α′′(Xs)d〈X,X〉s (4.4)

dYt = α′(Xt)dXt +
1

2
α′′(Xt)d〈X,X〉t (4.5)

where dXt = HX
t dWt +KX

t dt.
The main difference when compared to the regular chain rule is the ap-

pearance of an extra term in (4.5), also called Ito term, or drift, which in-
volves the second derivative of α and the quadratic form 〈X,X〉, also known
as the quadratic variation of the process X. The quadratic variation is not
zero when X has some dependence upon a stochastic process and can be
computed in the following manner. Suppose that Xt and Yt are two Ito
processes defined as in (4.3). Then

〈X,Y 〉t =

∫ t

0

HX
s H

Y
s ds

Note that 〈X,X〉, depends solely on the stochastic part of the dynamics
and is independent of the bounded variation part. When HX ≡ 0, then the
classical chain rule is obtained in (4.5).
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Now, using the Ito formula, a variation of the stochastic integral intro-
duced above can be obtained so that the classical chain rule is satisfied.
Consider a process Xt and Yt two Ito processes defined as above. Then the
Stratonovich integral of Y with respect to X is then given by the formula∫ t

0

Ys ◦ dXs =

∫ t

0

Ys dXs +
1

2
〈HX , HY 〉t (4.6)

Suppose now α is of class C3 and apply the Ito formula (4.4) to α′(X). Then

α′(Xt) = α′(X0) +

∫ t

0

α′′(Xs) dXs +
1

2

∫ 1

0

α(3)(Xs) d < X,X >s

and consequently d〈α′(X), X〉t = α′′(Xt)d〈X,X〉t. Hence,

α(Xt) = α(X0) +

∫ t

0

α′(Xs) ◦ dXs (4.7)

by noticing that the quadratic variation term that we obtained is equal to
the Ito term in equation (4.4).

We conclude this section by the approximation of the stochastic integral
mentioned above. For the Ito integral, we saw that, if ∆ = {0 = t0 < t1 <
· · · < tn = T}, then

lim
|∆|→0

n−1∑
i=0

Yti(Xti+1
−Xti) =

∫ T

0

Ys dXs

For the Stratonovich case, it can be proved that we have the two equally
useful limits:

lim
|∆|→0

n−1∑
i=0

Yti + Yti+1

2
(Xti+1

−Xti) =

∫ T

0

Ys ◦ dXs (4.8)

lim
|∆|→0

n−1∑
i=0

Y ti+ti+1
2

(Xti+1
−Xti) =

∫ T

0

Ys ◦ dXs (4.9)

One could remark that Ito integral is approached using a piecewise constant
approximation of the process Y while Stratonovish integral by a piecewise
linear approximation. As an example that is meant to emphasize the differ-
ence between the two integrals previously introduced, consider as before a
Brownian motion W and λ ∈ [0, 1]. Let ∆ = {a = t0 < t1 < · · · < tn = b},
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∆Wi = Wti+1
−Wti and consider φλ(ti) = (1 − λ)Wti + λWti+1

. It can be
proved that∫ b

a

Ws ◦ dWs = lim
|∆|→0

φ
1
2 (ti)∆Wi =

1

2

[
W 2

b −W 2
a

]
∫ b

a

WsdWs = lim
|∆|→0

φ0(ti)∆Wi =
1

2

[
W 2

b −W 2
a

]
− 1

2
(b− a)

Note also that one should be careful when simulating ∆Wi. A common
mistake would be to implement it as ∆Wi = ∆tN(0,1) giving the scheme:

u(t+ ∆t, ω) = u(t, ω) + ∆tN(0,1)(t)

This would be incorrect, since the statistical properties of the evolution would
then depend upon the discretization of the time grid. To see this, consider
independent variables xi ∼ N(0,1) and notice that the previous evolution at
time T would amount to

∑n
i=1 xi∆t =

∑n
i=1

T
n
xi where ∆t = T/n is the

discretization step. Given the independence of the xi, the previous sum is a
Gaussian variable N(0,T 2/n), thus depending upon the discretization n of the
time interval [0, T ]. The correct scheme involves

√
∆t instead of ∆t:

u(t+ ∆t, ω) = u(t, ω) +
√

∆tN(0,1)(t) (4.10)

Indeed ∆Wi should be equal to
√

∆tN(0,1):

∆Wi ∼ N(0,ti+1−ti) ∼
√
ti+1 − tiN(0,1) (4.11)

4.2.2 Proposed Model for the Stochastic Curve Evolu-
tion

In applications, the stochastic term will add to a deterministic force F (D2u,Du, x, t)
(one of the simplest examples, analyzed in detail in [181], is concerned with
the coupled evolution du = κ|Du|dt+Ẇ |Du|dt). Hence, a naive way to write
down the coupled evolution is

du = F |Du|dt+ Ẇ |Du|dt

The above equation will have a meaning if written as

du = F |Du|dt+ |Du|dWt (4.12)

Concentrating on the stochastic part again, we remark that we made
an implicit choice by considering the Ito integral in the above formula, but
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we could have decided to go for the Stratonovich integral. So what is the
difference between the two integrals from a Level Sets point of view? Let
us consider the following invariance property that is required when working
within a Level Sets framework: consider just a random evolution of the type

du = |Du|dWt with u(0, ·) = u0 (4.13)

where W is a one-dimensional Brownian motion. Then this evolution codes
for the corresponding contour evolution

∂Γ

∂t
= Ẇn with Γ(0) = Γ0 (4.14)

where Ẇ is Gaussian white noise and Γ0 is the zero-level of u0. The idea
behind the Level Sets evolution framework is to have all the level sets of
the implicit function given by (4.13) evolve according to the same dynamics
(4.14). A smooth change of scale of a function satisfying (4.13) that leaves
the zero-level unchanged should not influence the dynamics of the level sets
contour - since the corresponding contour evolution (4.14) is not affected by
this change of scale. Consider then a function α : R → R such that α′ > 0
and α(0) = 0 and the initial value problem

du = |Du|dWt with u(0, ·) = u0(·) (4.15)

If we consider u the solution of (4.15), then v = α(u) should verify the same
dynamics, but with a different initial condition

dv = |Dv|dWt with v(0, ·) = α(u0(·))

as is the case in the deterministic framework. Nevertheless, one can apply
the Ito rule to the dynamics (4.13) and see that

dv = dα(u) = α′(u)du = |Dv|dWt +
1

2
α′′(u)|Du|2dt

and the assertion is not verified due to the additional Ito term. Hence, the
problem (4.13) is ill-posed from a Level Sets point of view: for a given
initial curve Γ(0), the choice of the initial implicit function u0 mod-
ifies the solution of the equation!. However, as observed by Lions and
Souganidis, this invariance condition is verified if one replaces the Ito integral
with the Stratonovich integral, since the latter does not include any addi-
tional term anymore. Hence, the right way to insert stochastic evolutions in
the Level Sets framework is through the Stratonovich integral. We rewrite
(4.13) accordingly

du = |Du| ◦ dWt with u(0, ·) = u0(·) (4.16)
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Then, if we consider v = α(u) (hence the corresponding initial condition will
be α(u0)) the dynamics verified by v are

dv = α′(u) ◦ du = α′(u)|Du| ◦ dWt = |Dv| ◦ dWt

and the invariance property is verified this time. Now, given the previous
ingredient, the proposed random curve evolution model is given by

du = Fdt+ |Du| ◦ dWt (4.17)

Here, we used the Stratonovich integral, as opposed to (4.12).
A second example that suggests Stratonovich integration should be used

when working with stochastic partial differential equations is concerned with
the 1-dimensional perturbed heat equation du = uxdWt + λuxxdt. It can be
shown that this equation reduces to a backward heat equation when consider-
ing Ito integration for λ ∈ (0, 1

2
) - hence ill-posed. Once again, the extra term

Stratonovich integration solves this problem (for more details, see [115]).
What is the difference between the evolution (4.17) and a classical Level

Sets evolution such as du = Fdt? Suppose the initial condition function is a
signed distance function. Since the stochastic term only depends upon |Du|
(which equals 1 in this case) and the time parameter, all the points of the
contour will have an extra random force which will be the same on the entire
contour at each time step. This type of perturbation is indeed very important
from a theoretical point of view, but we would like something more flexible
in our applications. Typically, we would be interested in having white noise
in both the time and spatial parameters. Nevertheless, white noise in space
appears to add a lot of technical difficulties to the problem and the return
on investment is quite small, since most of our models will evolve on discrete
grid spaces. That is why we have opted for colored spatial noise, that is
typically given by

W (t, x) =
m∑

i=1

φi(x)W
i
t

where φi : RN → R are smooth functions with compact support. Note that
other choices of colored spatial noise are possible. The final evolution model
we propose is thus

du = F |Du|dt+ |Du|
m∑

i=1

φi(x) ◦ dW i
t (4.18)

As a simplification, in practice we choose the functions with the same profile,
but centered around a number of points xi, that we call noise sources. Thus,
our typical choice is

φi(x) = φ(x− xi)
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where φ is some convenient regular function.

4.2.3 Stochastic Viscosity Solutions

The theory developed earlier needs some sort of convergence results. As
mentioned before, the proper type of solutions need to be used, so that
the previous results from the Level Sets theory apply here. The notion of
stochastic viscosity solution for fully nonlinear, second-order, possibly de-
generate, stochastic partial differential equations such as the ones considered
previously is put forward in a series of articles: [113], [114], [116] and [117].
Their theory is meant to apply precisely to equations such as (4.18), with
F = F (D2u,Du, x, t). So far, a limit of their theory, which stands even to-
day as an open question, is that they do not treat equations where the noise
depends upon the space parameter (they only treat the case φi ≡ 1, with our
previous notation). However, experimental data suggests that their theory
applies in cases like ours as well (see section Sec:4.3). Precisely, consider the
equations

du = F (D2u,Du, x, t)dt+ ε|Du| ◦ dWt with u(·, 0) = u0(·) (4.19)

du = F (D2u,Du, x, t)dt+ |Du|ξ̇α(t) with u(·, 0) = uα(·) (4.20)

where ε > 0 and ξα is a family of smooth functions ξα : R+ → R. Then we
can cite the following theorem, summarizing their results:

Theorem 1 The following hold a.s. in ω:

1. There exists a unique solution to (4.19).

2. Let {ξα(t)}t>0 and {ηβ(t)}β>0 be two families of smooth functions such
that as α and β → 0, ξα and ηβ converge to W uniformly on any
compact in t and a.s. in ω. Let {uα}α>0 and {vβ}β>0 in BUC(R+ ×
RN)2 be the solutions of (4.20). If limα,β→0 ‖uα(·, 0)−vβ(·, 0)‖C(RN ) = 0,
then, for all T > 0, limα,β→0 ‖uα − vβ‖C([0,T ]×RN ) = 0. In particular,
any smooth approximations of W produce solutions converging to the
unique function stochastic viscosity solution of (4.19).

3. As ε → 0, the solution uε of (4.19) converges in C(R+ × RN) to the
solution of (4.19) with ε = 0.

2the space of Bounded Uniformly Continuous functions
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Consequently, their result allows us to simulate the solutions of such
equations and be sure that the result of our computer simulation
is what we expect it to be. Furthermore, we mention that according
to Lions, the convergence takes place in C(R+ × RN), which means that
the numerical solutions we develop will be continuous and that they will be
converge uniformly almost surely in ω ∈ Ω.

We end this theoretical part with an example by Souganidis on the explicit
solution of the equation

du = |Du|η̇dt with u(0, x) = |x| (4.21)

where η : R+ → R is a function of class C1 such that η(0) = 0. The explicit
viscosity solution of this equation is given by

u(t, x) = max

[
(|x|+ η(t))+ , max

s∈[0,t]
(η(s))+

]
where (x)+ = max(0, x) (for a simple proof of the statement above, consider
the case when η(t) ≡ 1 and compute the viscosity solution of the equation in
that case); then, one can see that uniform convergence of η → W is sufficient
to obtain the solution of the associated SPDE. Moreover, this simple case
allows one to see that the random path η has a different effect on the solution
that depends mainly on its sign. Indeed, as it can be observed from formula
(4.21), there is a qualitative difference between the behavior of the solution
depending on whether η̇ > 0 or η̇ < 0. This can be better understood
watching a sample evolution in figure (4.1). Moreover, numerical artifacts
will develop due to very frequent changes of sign of η̇, since the use of η is
only for heuristic purpose (the Brownian motion is nowhere differentiable).
As a result, the regular reinitialization of the implicit function – a standard
technique of the Level Set framework – is indispensable in the stochastic case.

4.2.4 Numerical scheme

The main problem when implementing Stratonovich evolutions is that they
amount often to implementing implicit numerical schemes. Consider again
the simple evolution du = |Du| ◦ dW (t). According to the approximating
scheme (4.8), the direct way of simulating such a process is through the
following implicit scheme:

ui+1 = ui +
1

2
(|Dui|+ |Dui+1|) ∆Wi
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u(x)

x

T = 0 T = T1 > 0

ξ̇ > 0 u(x)

x

T = T2 > T1

ξ̇ < 0 u(x)

x

T = T3 > T2

u(x)

x

ξ̇ > 0

Figure 4.1: Examples of a typical evolution following the dynamics of equa-
tion (4.21). The extremely frequent changes of sign of the increments will
alter the profile of the implicit function which does not remain a distance
function. Hence, from an implementation point of view, some regular reini-
tialization of u is advisable.

To avoid working with an implicit scheme, notice that the schema presented
for the simulation of the Ito integral is an explicit one and use the fact that
the Stratonovich integral is equal to the Ito integral plus an additional drift.
Consider the evolution

du = H(Du, x) ◦ dWt (4.22)

where we have compacted the notation used previously. Here H(p, x) is a
function from RN × R with real values. The typical example is H(p, x) =
|p|φ(x), where, φ is some convenient regular function which is smooth enough.
Such an evolution is equivalent, according to the definition of the Stratonovich
integral, with the Ito evolution given by

du = H(Du, x)dWt +
1

2
d〈H(Du, x), W 〉t (4.23)

To compute the drift, we start by rewriting the above dynamics in an integral
form

u(t, x) = u0(x) +

∫ t

0

H(Du(s, x), x) ◦ dWs
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We can then take the derive with respect to the spatial parameter x and
obtain

Du(t, x) = Du0(x)+

∫ t

0

[
D2u(s, x)DpH(Du(s, x), x) +DxH(Du(s, x), x)

]
◦dWs

where DpH (resp. DxH) denotes the gradients of H w.r.t. p (resp. x) and
D2u denotes the spatial Hessian. Then, applying the Ito rule, we have

H(Du(t, x), x) = H(Du0(x), x)+

∫ t

0

[
DpH · (D2uDpH) +DpH ·DxH

]
◦dWs

Finally, if we consider the simplifying notation A[u] = A(u, u), when A is
some quadratic form, then the drift from equation (4.23) can be written as

1

2
〈H(Du, x), W 〉t =

1

2

∫ t

0

(D2u(s, x) [DpH(Du(s, x), x)]

+DpH(Du(s, x), x) ·DxH(Du(s, x), x))ds

When H = |p|φ(x), the previous formula becomes

〈H(Du, x), W 〉t =

∫ t

0

[
φ2(x)D2u(s, x)

[
Du(s, x)

|Du(s, x)|

]
+ φ(x)Dφ(x) ·Du(s, x)

]
ds

We can remark that the second order term in the above formula is a smooth-
ing term. It can also be written

D2u

[
Du

|Du|

]
= ∆u− |Du|div

(
Du

|Du|

)
= ∆u− |Du|κ

where κ denotes the mean curvature of the level set at point x. One can
be alarmed by the presence of −|Du|κ. Nevertheless, the overall term is
positive, since D2u is a positive semi-definite matrix.

The above calculation remains valid if the dynamics depends on more
than one Brownian motion. In conclusion, to simulate an evolution of the
type

du = F |Du| dt+ |Du|
m∑

i=1

φi(x) ◦ dW i
t (4.24)

we use

du =F |Du| dt+ |Du|
m∑

i=1

φi(x)dW
i
t (4.25)

+
1

2

(
(

m∑
i=1

φ2
i (x))D

2u

[
Du

|Du|

]
+ (

m∑
i=1

φi(x)Dφi(x)) ·Du

)
dt
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or, in the general case when the stochastic Hamiltonian is given by H(p, x):

du = F |Du| dt+H(Du, x)dWt +
1

2

(
D2u [DpH] +DpH ·DxH

)
dt

4.3 Implementation

In this section, we test our scheme and investigate some simple geometrical
properties the evolution that could guide the user toward a correct choice of
noise.

4.3.1 One Gaussian noise simulation

Let us begin with the simple case of a Gaussian noise constant in space. We
thus consider du = |Du| ◦ dWt and implement:

du = |Du|dWt +
1

2
D2u(t, x)

[
Du(t, x)

|Du(t, x)|

]
We use a standard WENO3 scheme [84] in space with step ∆x and a first
order explicit scheme in time with step ∆t and verify the convergence of the
approximation when the space step and/or the time step tend to zero. Again,
please recall the use of

√
∆t:

u(t+ ∆t, x) = u(t, x) + |Du(t, x)|
√

∆tN(0,1)(t) +
1

2
D2u(t, x)

[
Du(t, x)

|Du(t, x)|

]
Because of the stochastic character of the evolution, one can only compare
the different approximations through some statistical quantity3. For a given
initial condition and a given final time T , the variance of the area of the
interior of the final curve provides a simple and meaningful way to compare
two approximations. The left part of figure 4.2 shows, for different values of
∆x, the convergence of this variance when 1/∆t increases. As a reminder to
avoid a naive mistake, we also implemented the evolution with ∆t instead of√

∆t and verify that the variance of the area tends to zero!
As a test of the invariance of the Stratonovich differential, we compare,

for a given initial curve Γ(0), the mean of the area of the curve at a given final

3Actually, for a given time step ∆t, we might fix the event ω and compare the approx-
imations for different ∆x but with the same Brownian. We also successfully used such a
path-wise comparison when testing the invariance property of our scheme.
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Figure 4.2: One Gaussian source. Left: convergence of the variance of the
area at a given time T when ∆t tends to 0 (plus the erroneous case when
using ∆t). Right: invariance of Stratonovich w.r.t. the choice of the initial
implicit function.

time T for different choices of the initial implicit function u(0) (namely the
signed distance function dΓ(0) to Γ(0) and α(dΓ(0)) with α(x) = ex − 1). The
right part of figure 4.2 shows, for different values of T and different initial
curves, the relative difference between the means of the final area for the
initial conditions dΓ(0) and for α(dΓ(0)) in both the Ito and the Stratonovich
cases . Note how the Stratonovich scheme is much more insensitive with
respect to the choice of u(0).

It could be proved [91, 92] that, for a given initial curve, the variance of
the area of the curve at time T is a polynomial of degree N in T where N
is the space dimension. In practice, for reasonable values of T , the relation
between T and this variance is linear. As a final test, the left part of figure 4.3
shows, for N = 1 and N = 2, how this relation is respected by our scheme.

4.3.2 Several Gaussian noise sources simulation

Having the whole curve shrink or grow at the same time is not very useful. We
will use a spatially dependent noise although the viscosity solution result is
still an open question in this case. For a given number m of random sources,
we implement the evolution (4.24) with F = 0 using the scheme (4.25).
The m sources are equally distributed on a grid {xi} and φi(x) = φ(x− xi)
where φ is such that φi(xj) = δij and φi decreases smoothly from xi to its
neighbors. In practice, although not derivable in xi, the classical multi-linear
interpolation functions are sufficient. Note also that

∑m
i=1 φi(x)dW

i
t is no

longer of variance 1 for all x, so that the stochastic motion would be weaker
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Figure 4.3: Left: Linear dependency between the final time and the variance
of the area (one Gaussian). Right: invariance of Stratonovich wrt to the
choice of the implicit function (several Gaussian sources).

between two sources. Using φi(x)/(
∑m

j=1 φ
2
j(x))

1/2 instead of φi(x) recovers
a constant variance 1.

The drift will have a spatial derivative term (see (4.25)). Like figure 4.2
for one noise, the right part of figure 4.3 shows, for different values of m, how
the Stratonovich scheme makes the evolution invariant with respect to the
choice of u(0).

With more than one source of noise, the points of the curve do not move at
the same speed anymore, leading to the desired stochastic global deformation.
As one should expect, with a large number of sources, the deformation is very
noisy but the contributions of the sources tend to annihilate one each other.
Thus, the curve does not move very far from its initial position. On the
contrary, with a medium number of sources, the deformation is smoother but
with ampler motions (see figure 4.4). Depending on his/her own application,
the user might want to choose the optimal number of sources. As a first
attempt to quantify the phenomenon, we measure how long it takes to the
curve to move away from its initial position. For a given distance δ, we call the
expected exit time the quantity T (δ) = E(inf{t : ∃x ∈ Γ(t), d(x,Γ(0)) > δ})
where E denotes the expectation. For a Brownian motion, the expected exit
time from a ball is a quadratic function of the radius of the ball. In our
case, such a result would be certainly hard to prove. Yet, our experiments
show a similar relationship T (δ) ≈ ξ(m)δ2: (see the left part of figure 4.5).
This useful relationship indicates clearly how long the user has to wait to
see his/her curve getting away from its initial position. The right part of
figure 4.5 plots ξ as a function of the number of sources. As expected, a large
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Figure 4.4: Different number of Gaussian noise sources. Top row: starting
from the initial curve (top left), three time steps of the evolution with a large
number of Gaussian sources. Middle row: from the same initial curve, four
time steps of the evolution with a spatially smoother noise (small number of
sources). Bottom row: a 3D example starting from the cortex of a monkey.
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number of sources m induces a larger exit time, thus a larger ξ. Surprisingly,
the smallest values of m give also a large ξ. We do not have any satisfactory
explanation for this phenomenon... Anyway, these are only some very first
step toward the understanding of the geometric properties of this kind of
stochastic motion and many other quantities would be of great interest: the
variations of the curvature, the time to get the curve split, etc.
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Figure 4.5: Several Gaussian sources. Left: Quadratic relation between the
distance δ and the expected exit time from the band of thickness δ. Right:
variation of the exit time w.r.t. the number of sources.

4.3.3 Stochastic Active Contour

Given some Computer Vision problem in a variational framework where we
have to find the contour Γ that minimizes an energy E(Γ) = E(u), we use
the following simple Simulated Annealing decision scheme:

1. Start from some initial guess u0

2. compute un+1 from un using some dynamics, e.g. du = |Du|
m∑

i=1

φi(x)◦

dW i
t

3. compute the energy E(un+1)

4. accept un+1:

• if E(un+1) < E(un)

• otherwise, accept un+1 with probability exp
(
−E(un+1)−E(un)

T (n)

)
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5. loop back to step 2, until some stopping condition is fulfilled

Here, T (n) is a time-dependent function that plays the same role as a de-
creasing temperature. Its choice is not obvious. If the temperature decreases
too fast, the process may get stuck in a local minimum; on the contrary,
decreasing too slowly, it may postpone convergence. A classical choice is
T (n) = T0/

√
n. The classical way to solve the previous minimization prob-

lem is to use a gradient descent method. The Euler-Lagrange equation is
computed, leading to some evolution ∂Γ/∂t = βc

−→n , or equivalently, in the
Level Set framework, to ∂u/∂t = βc|Du|. We will actually use the classical
motion as heuristics that drive the evolution faster toward a minimum, and
replace the dynamics of step 2, by

du = βc|Du|dt+ |Du|
m∑

i=1

φi(x) ◦ dW i
t (4.26)

As often with genetic algorithms, the proof of the convergence of this algo-
rithm toward a global minimum is still an open problem. However, we use
numerical experiments to show how this algorithm performs better by avoid-
ing some local minima that are problematic in the deterministic case. This
is our main motivation, since local minima are the major problem of classical
approaches. Note also, as already mentioned, that our framework can be
used in cases when the shape gradient is too complex from a mathematical
or computational point of view, or even impossible to compute.
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Chapter 5

Active Cuts: a Graph Cuts
extension

This work is a result of a join work with Yuri Boykov1 and it is published
in [87].

In this chapter, we add a number of novel concepts into global st-cut
methods improving their efficiency and making them relevant for a wider
class of applications in vision where algorithms should ideally run in real-
time. The new Active Cuts method has three major properties, which are
fairly unique for st-cuts algorithms.

• Initial Cut: Usually, min-cut/max-flow algorithms compute global op-
tima solutions which do not depend on any initialization. This explains
why standard combinatorial techniques do not really use a concept of
initial cut. However, applications in vision often give some reasonable
initial guess. Active Cuts is a new approach to solving max-flow/min-
cut problems that can start from any initial cut. Its running time
directly correlates with a Hausdorff distance between the initial cut
and the globally optimal cut it computes.

• Intermediate Cuts: Standard combinatorial optimization algorithms
generate only one good solution (one global optimum cut) computed
at termination. In contrast, the proposed method outputs a sequence
of cuts of decreasing cost as it converges to a global minimum. In com-
puter vision, it is often beneficial to have a multitude of good solutions,
which could be used for learning and robustness analysis. Intermediate
cuts can be efficiently used in dynamic applications. They can also im-

1yuri@csd.uwo.ca, http://www.csd.uwo.ca/faculty/yuri, Department of Computer
Science, University of Western Ontario, London, Ontario , Canada

mailto:yuri@csd.uwo.ca
http://www.csd.uwo.ca/faculty/yuri
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prove interactivity and visual perception of the real-time performance
of graph cuts on large data sets.

• Symmetry: Active Cuts approach adds symmetry into standard com-
binatorial optimization algorithms for st-cuts [75, 79]. We use pseud-
oflow [79] allowing nodes with positive flow excesses and negative
deficits. However, our algorithm takes a symmetric approach comple-
mentary to [79]. Both excesses and deficits are actively pushed/pulled
in the opposite directions away from a given initial cut towards the
terminals s and t.

Recently, significant research efforts were devoted to efficiency of max-
flow/min-cut methods in image segmentation [18, 105, 118]. The Active
Cuts method will be tested in some basic applications of graph cuts like
object/background extraction [14]. Despite polynomial complexity of graph
cuts, computing globally optimal solutions for large images or volumes in real-
time is still a challenge. Narrow bands can be used to improve efficiency [118,
178] by sacrificing global optimality. In contrast, we demonstrate a number of
different ways where unique properties of Active Cuts allow achieving much
better practical efficiency without loosing globally optimality.

Even in tests with poor initialization Active Cuts gave either comparable
or better speed than the max-flow technique in [18] which is widely used in
vision. If a good initial solution is provided then Active Cuts compute the
globally optimal cut 2-10 times faster than [18], as an initial solution is of no
help to previous st-cut algorithms. The theoretical worst case complexity of
Active Cuts is similar to [18].

We also demonstrate applications of Active Cuts to other problems where
an initial solution is naturally available: dynamic video segmentation, object
tracking, and hierarchical segmentation of large images/volumes.

Earlier methods for accelerating graph cuts in video were reusing flows
from previous frames [105]. They use [18] as a basic algorithm but "recycle"
flow and other data structures from frame-to-frame. Instead of recycling
flows, the Active Cuts algorithm can recycle cuts from previous frames. We
show that Active Cuts running time is proportional to the amount of motion
between two consecutive frames. In tests Active Cuts gave significantly better
speed-up ratios with respect to [18] than the ratios reported in [105]. More
importantly, in addition to recycling cuts, the Active Cuts algorithm can
also recycle flows and other internal data structures, which will likely give
even stronger speed-up, but this is left for conclusion. In other words, it is
possible to combine the flow recycling of [105] and our cut recycling.

Active Cuts are also tested for hierarchical image segmentation, which is
important for large data sets. An initial cut for Active Cuts at a fine scale
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can be obtained from an optimal solution at a coarse scale. In contrast to
earlier multilevel graph cut methods [118], we preserve global optimality.

The chapter is organized as follows. We first present our motivations in
Section Sec:5.1. Our Active Cuts method was inspired by a number of recent
ideas and Sections Sec:5.2 and Sec:5.3 explain how we combine them in a
novel way based on our motivation to efficiently solve problems in computer
vision. Sections Sec:5.4 and Sec:5.5 present in detail a first sketch and an
advanced version of the Active Cuts algorithm and some theoretical results.

The next chapter 6 and Sec:7 present some results of our experimental
evaluation of Active Cuts on a number of generic problems in static or hier-
archical image segmentation and dynamic segmentation.

5.1 Motivations

In this section, we will present the motivations that lead us to the creation
of this new algorithm. This work is based on the following observations.

First of all, augmenting path algorithms are known to be the most efficient
algorithms for solving Max-Flow/Min-Cut problem. Dinic [61] is considered
as the most efficient algorithm for Combinatorial community and Boykov and
Kolomogorov [15, 18] is the fastest algorithm brought to the Computer Vision
community. However recent studies shows that Push-Relabel approach is
more powerful and has promising potential [5, 56, 57, 128, 40, 36]. This
remark directs this work on Push-Relabel methods.

The second observation is more empirical and for the beauty’s sake of
the algorithm: Symmetry. Neither Goldberg and Tarjan and other Push-
Relabel algorithms are symmetric, nor are Ford and Fulkerson, Dinic and
other augmenting path algorithms, except the Boykov and Kolmogorov al-
gorithm.

In this particular algorithm, one indisputable source of performance is
the use of Dynamic Tree and its sharp management. Dynamic tree allows
avoiding searching for the shortest path and provides along the tree short
enough paths. However, an important milestone was passed by the use of
two symmetric dynamic trees. This observation reinforces us in the idea that
symmetry supplies real speed improvements and motivated the development
of a symmetric Push-Relabel-like algorithm.

The last but not least, in Computer Vision many different algorithms
need an initialization (Gradient descent methods) or can take advantage
of an initialization to speed up the convergence. Ideally, we would like to be
able to initialize a max-flow algorithm. This was already proposed by Kohli
and Torr in [105] but in a restrictive approach. This will be discussed more

105



5.2. Symmetrization 5. Active Cuts: a Graph Cuts extension

widely in the next sections.

5.2 Symmetrization
In order to definite a symmetric version of Push-Relabel, we need to intro-
duce some new concepts. Let us track the dissymmetry in the Push-Relabel
algorithm and propose new entities to fix it. First, let us describe in a high
level what should be a Symmetric Push-Relabel-like algorithm.

In standard Push-Relabel, particles of positive excess flow are sent from
the source towards the sink. Depending on the ordering policy (Sec:3.3.3)
and the pushing policy (Standard or Discharging), excess is moving in front
towards the sink. One could imagine dual particles moving in the graph
from the sink towards the source. Drawing a parallel with particles is not
innocent.

The Push-Relabel algorithm is dissymmetric in multiple points. It only
considers positive excess nodes and flow is only moving from the source to
the sink. As described above Push-Relabel only implements particles from
the source while the first symmetrization should add particles from the sink.
This may be done by the use of negative flow particles. The Relabel policy
for those new particles should also be discussed.

5.2.1 Deficit node

According to the preflow definition (3.12), only positive value are allowed.
The particles moving inside the graph are positive: they are positrons. As in
particle physics, let introduce their twin particles: electrons. In this frame-
work, electrons represent negative value of flow. That is to say lack of flow
or even deficit of flow.

One could define the notion of pseudoflow as a relaxation of flow or even
preflow functional. A pseudoflow functional is defined by:

∀ (p, q) ∈ V2 f(p, q) 6 c(p, q)
∀ (p, q) ∈ V2 f(p, q) = −f(q, p)

∀ p ∈ V
∑
q∈V

f(p, q) ∈ Z
(5.1)

This definition allows the existence of deficit nodes. When
∑
q∈V

f(p, q) is

positive, it is called excess else it is called deficit. Hochbaum in [79] already
introduced those concepts. However, she stops here the symmetrization pro-
cess and does not attempt to move the negative particles. In order to be
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consistent with our goal of symmetry and since excesses are moving along
the graph, one should also consider moving deficits.

Before giving a definition of deficit moves, let first discuss some possible
interpretation of excesses and deficit. This is necessary and will help to
understand those moves. So the main question is: what are excesses?

A first and trivial answer is overflow of water. However, excesses are also
equivalent to t-links from the source with a capacity equal to the amount of
excess flow on the node. Indeed every excess node can be converted back to
a t-link. Left part of Figure 5.1 illustrates the conversion. Let consider such
a t-link. It can be obviously convert to an excess node since a push step over
one of this t-link will recreate it. To conclude with excess nodes, they can be
replaced by t-link from the source.

Similarly deficit nodes can also be converted to t-link but t-link to the
sink (see right part of Fig:5.1).

S

T

S

T

∞∞

∞ ∞

e

e ⇔

S

T

S

T

∞∞

∞ ∞

d ⇔

|d|

Figure 5.1: Left: Equivalence between excess and t-link from the source. -
Right: Equivalence between deficit and t-link to the sink.

Nevertheless, what should be done when some excess reaches a deficit
node (or vice versa)? Annihilation. Just like what happens when positrons
meet electrons. We provide here an intuitive proof. When such a thing
happens, the value of the flow at this node is equal to the sum of excess and
deficit. Indeed, by assuming possible to have the two entities on the same
node at the same time, one could give the following explanation. Figure 5.2
illustrates the process:

1. Let us consider such a node carrying both excess and deficit (left part
of the figure).

2. Both excess and deficit are convert to t-links (middle part of the figure).
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3. Then by considering the augmenting path source ; node ; sink
of capacity δ = min(|e|, |d|), we send δ units of flow from the source
towards the sink (right part of the figure). Note that depending on the
value δ, at least one t-link is saturated by the process.

4. Reconverting back the remaining t-link, we obtain:

• If e+ d > 0 then excess node with e+ d overflow.

• If e+ d < 0 then deficit node with e+ d lack of flow.

• If e+ d = 0 then an empty node.

S

T

S

T

∞∞

∞ ∞

d ⇔e

e

⇔

S

T

∞

∞

e
−
δ

|d|

|d
|−
δ

Figure 5.2: Left: Excess e and deficit d are present on the same node. -
Middle: Excess and deficit are converted to t-links. Right: δ = min(|e|, |d|)
units of flow are sent from the source to sink generating a saturation: source
and/or sink t-link depending on the value δ.

The sum rule of excess and deficit is quite simple but completely describe
what should be done in that case.

One could remark that a contact between excess and deficit is similar
to a contact between the two trees present in the Boykov and Kolmogorov
algorithm Sec:3.3.2. Indeed when a contact occurs, by looking retrospec-
tively at the path followed by the excess starting from the source and at the
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path followed by the deficit, one obtains an equivalent augmenting path 2

of capacity equal to the minimum between excess and deficit flow. This is
exactly the same when the two trees used in the Boykov and Kolmogorov al-
gorithm meet. This observation reinforces our confidence in this proposition
of a symmetric Push-Relabel.

Push-Relabel methods are very self-confident in the sense that they send
some flow over the graph before knowing if it could reach the sink. The
notion of deficit allows here a generalization by also grabbing preventively
flow from the graph (deficit). In fact, deficit can be seen as an expectation
of flow and simulates a quantity of flow already sent to the sink. Thus deficit
should act and move from a node p to q like if the same quantity of excess
had move from q to p. The standard push movement is illustrates on left
part of figure Fig:5.3 and the new pull movement in the right side.

a

b
e

e

a−e

b+ e

a

b
d

d

a−|d|

b+ |d|

Figure 5.3: Moves between two nodes and their corresponding modifications
of n-link weights. - Left Column: Push of excess from left to right node. -
Right Column: Pull of deficit from right to left.

Now that nodes with negative flow are defined and their movement in the
graph is described, one should focus on their label and as a consequence to
their Relabel step.

5.2.2 Relabeling

In standard Push-Relabel algorithm, labels help to drive excess flow towards
the sink and avoid them to be stuck into loops. With this aim in view, labels
are initially defined as the distance to the sink in the graph. However the
push or even the discharge procedure (see Sec:3.3.3 - Act:1 Alg:4) change the
graph’s topology by saturating edges in the graph.

2This path can be more complex than paths defined in Sec:3.3.2. In particular, they
can have junctions.
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The Relabeling procedure is a simple and local method to correct the
labels in order to maintain a distance map to the sink. Ideally, one would
keep labels equal to distance every time but this is too expensive. The
Relabeling method corrects locally the distance (by above) and allows excess
flow to move to another node. Nevertheless, if the sink is no more reachable
from a part of the graph, Relabeling corrects the labels to match the distance
to the source in this part.

For excesses, everything is fine with the standard definition of labels and
Relabeling. But concerning deficits, this strategy does not suit. Deficits have
to be attracted by the source. According to this observation, labels should
be set as the distance to the source.

As no elegant combination of both distances (to the sink and to the
source) could define a unique label that agrees the two particles’ strategies,
one should consider using two labels per node: one for excess height+ = h+

and one for deficit height− = h−.
However, this is not satisfying since the Relabeling of both labels cannot

be treated simultaneously and two different Relabeling procedures have to
be defined. In fact, if those labels are updated independently, it should not
be the case since both of them are linked by the graph topology.

5.2.3 Algorithm

In this section, we present a basic symmetric Push-Pull-Relabels algorithm
based on the two different labels as proposed above.

Initially those two labels (h+ and h−) are set according to the distance
to their respective terminal: sink for h+ and source for h−. But with two
exceptions: h+(source) ← |V| and h−(sink) ← |V| but this is very similar
to the label initialization in standard Push-Relabel. Source and sink are also
respectively set as infinite source of excess flow and deficit flow.

Before defining every procedures, let generalize some notations introduced
in section Sec:3.3.3. First for excesses:

reachable+(p) = {q ∈ V / ∃ (p, q) ∈ Ef , cf (p, q) > 0}
admissible+(p) = {(p, q) ∈ Ef / q ∈ reachable+(p), h+(p) > h+(q)}

And for deficits:

reachable−(p) = {q ∈ V / ∃ (p, q) ∈ Ef , cf (q, p) > 0}
admissible−(p) = {(p, q) ∈ Ef / q ∈ reachable−(p), h−(p) > h−(q)}

The Push-Pull step, or moving step, for both excess and deficit is de-
scribed in the algorithm (Alg:5) based on the standard version. A modified
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Algorithm 5 Push-Pull
Require: p an excess node and q such that (p, q) ∈ admissible+(p).
Require: or p a deficit node and q such that (p, q) ∈ admissible−(p).

if p is an excess node then
Send min(excess(p), cf (p, q)) flow to the node q.

else
Grab min(|deficit(p)|, cf (q, p)) flow from the node q.

end if

Algorithm 6 Relabels
Require: p a non terminal excess node such that admissible+(p) = ∅.
Require: or p a non terminal deficit node such that admissible−(p) = ∅.

if p is an excess node then
Relabel p according to: h+(p)← min

q∈reachable+(p)
h+(q) + 1

else
Relabel p according to: h−(p)← min

q∈reachable−(p)
h−(q) + 1

end if

version of relabeling for both excess and deficit nodes is given in the algorithm
(Alg:6).

A symmetric version of the standard Push-Relabel is straightforward.
One just has to replace Push step by Push-Pull step and Relabel by Relabels.
We present here a symmetric version of the discharge algorithm since its is
more efficient (Alg:7).

Algorithm 7 Symmetric Discharge procedure
Require: p be an excess with reachable+(p) = ∅.
Require: or p is a deficit node with reachable−(p) = ∅.

repeat
while Push-Pull action is applicable do

Push-Pull.
end while
if excess(p) 6= 0 and p is not a terminal then

Relabels.
end if

until excess(p) = 0 or p is a terminal

After convergence, every node with label h+ higher than |V| is assigned
to source and every node with label h− higher than |V| is assigned to sink.
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None of them could be assigned to the two terminals. But some of them
could be orphans, in that case two different cuts of same cost are extracted
C+ and C− (see Fig:5.4).

S T

C+ C−

Figure 5.4: Illustration of a result given by the proposed symmetric Push-
Pull-Relabels algorithm (Alg:7). Here C+ and C− are respectively the cut
from the source and from the sink. They have exactly the same cost. The
gray part is separated from the the two terminals. This illustrates the case
where more than one optimal cut are available. If only one is available, C+

and C− are equal.

However no proof of this algorithm is provided, but it can be achieved
using the standard Push-Relabel proof as a template to drive it.

This algorithm works perfectly but is not satisfying since it needs to
introduce two independent labels per node. The next section will provide
a way to initialize the graph and in the same time remove elegantly this
drawback.

5.3 Initialization

A lot of optimization techniques needs to be initialized: Gradient descent,
Dynamic programming, Simulated annealing, ... However initializing an al-
gorithm usually comes with some drawbacks. The main one: dependency of
the result with respect to the initialization. However initialization provides
an interesting property since it can also be considered as a prior knowledge
on the solution (the solution will remain close to the initialization).

Nevertheless using initialization on a global optimizer is meaningless con-
sidering this property. Indeed the solution is a global minimum and does
not depend on the initialization. However one could expect to speed up the
convergence if the initialization is close to the solution.
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In this section, we present a method of Kohli and Torr [105] and then we
propose a more general method of initialization.

5.3.1 Flow initialization

The first idea that comes out to anyone accustomed to Max-Flow/Min-Cut
algorithms is to initialize the graph with a given flow functional. Indeed any
max-flow algorithm is initialized with a null flow function, but one could
easily use any flow function as soon as it verify the definition (3.11). This
idea is developed in [105].

The main application is for video segmentation since you should possess
a flow function that is consistent with the graph. However enforcing a given
flow to a graph may cause problems. Indeed a flow stemmed from a graph,
may not verify the flow definition for another graph. Basically, let consider
two nodes p and q, the flow f(p, q) crossing the edge (p, q) may overflow the
edge capacity on the new graph: f(p, q) > c(p, q).

In that case, the flow should be corrected. Kohli and Torr provide some
tricks to do it. The first one allows removing every edge overflow in the
graph. Let consider two nodes p, q such as the given f(p, q) is overflooding
the capacity of the link c(p, q): f(p, q) > c(p, q). In fact there is too much
flow inside the graph and a correcting method should decrease this flow.

In order to correct this violation of the capacity constraint (3.11), one
should consider the latent infinite t-links. Indeed adding infinite t-links (from
the sink to a node and from a node to the source) does not change the problem
definition since a cut is oriented from the source to the sink (see left part of
Fig:5.5).

Considering the path P defined as sink ; q ; p ; source, we obtain
a decreasing path of capacity cf (q, p) = c(p, q) + f(p, q) (see middle part of
Fig:5.5). This path allows to decrease the flow in the graph which is what
we need. Let define δ = f(p, q) − c(p, q) the overflow inside the pipe (p, q).
Thus to correct the overflow, one have to send back only δ unit of flow along
the decreasing path P . Note that the resulting edge (p, q) is saturated.

This method allows to correct the overflow on edges and create two cor-
responding t-links of capacity δ (see right part of Fig:5.5).

This method is very powerful. The more the flow comes from a similar
graph, the more it will saturate edges and the more the algorithm is fast.
But since a coherent flow function must be available, this method is only
applicable to a limited number of cases.

Note that Push-Relabel based methods provide a more suitable frame-
work due to a more flexible notion: preflow. In fact using Push-Relabel
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Figure 5.5: Fixing tricks. From left to right, this figure illustrates how one
could send back some flow from the sink to the source in order to satisfy
the capacity constraint. This results into the creation of two t-links of equal
capacity δ. Thick edges stand for over-flooded edges. Dotted edges stand for
saturated edges.

framework, the correction is even more simple. The correction comes down
to remove the overflow by creating an excess node (see Fig:5.6)

0/a+f

f/b

⇔

pq pq b/b

0/a+b

δ

Figure 5.6: This figure illustrates the fixing tricks (Fig:5.5) in a preflow
formulation like in a Push-Relabel algorithm. In this formulation, one does
not have to add some new t-links. Thick edges stand for over-flooded edges.
Dotted edges stand for saturated edges.

In next section, we will provide another less restrictive method of initial-
ization.

5.3.2 Cut initialization

The main idea presented here is based on the following observation. Given
a graph and a maximal flow function, one could easily find the minimal cut.
By applying the flow on the graph, the residual graph is separated in two
parts by a cut of null cost. This is minimal cost cut of the graph. But given
a minimal cost cut, finding a flow functional is not trivial.
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We deduce from this observation that a flow function provides more in-
formation that a simple cut. Yet initializing the graph using a cut is less
restrictive. This initial cut can be the result of any segmentation algorithm
or prior information.

One may want to initialize the algorithm with any arbitrary cut. This cut
C0 could be stemmed from a previous frame in case of video segmentation,
or from a coarse level for hierarchical segmentation, or even from the user.
Following the definition of a cut, we have to saturate every edges going from
the source part to the sink part. Those edges are drawn in green in the figure
Fig:5.7.

S T

C0

Figure 5.7: Illustration of initialization. C0 corresponds to the initial cut
provides to the algorithm. The red and blue parts correspond respectively
to the Source and Sink part of the tree after cutting. The green arrows
correspond to links that have to be saturated in order to produce a cut in
C0.

In order to saturate those edges, we use the same trick used by Kohli and
Torr in [105] for correcting the overflow (see Sec:5.3.1). However as we will
lie in a symmetric Push-Pull-Relabel framework, the notion of pseudoflow is
available and we could transform the new t-links into excess and deficit node
(see Fig:5.8).

Now we have obtain a graph split in two parts: the source where lie the
deficit nodes and the sink part where lie the excess nodes (see Fig:5.9). This
is very convenient since now deficits and excesses do not lie on the same
graph. This allows us to remove the redundant label and use only one per
node. Note that if the cut C0 is the minimal cut then every excess and deficit
nodes will be able to make its trip to its respective terminal.
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Figure 5.8: We illustrate here how we could saturate a given edge of any
capacity by using the tricks described in the figure Fig:5.5. In the middle,
we present the result in a feasible flow framework and in the right side, in a
pseudoflow formulation. Dotted edges stand for saturated edges.
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Figure 5.9: We show here the resulting graph after saturating green edges
(Fig:5.7) in a pseudoflow formulation. Dotted edges stand for saturated
edges.
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5.4 Active Cuts algorithm

5.4.1 Algorithm outlines

In this section, we will draw a rough sketch of the proposed algorithm. Given
a weighted graph G = 〈V , E〉 and a given initial cut C0, the algorithm pre-
sented here makes use of a pseudoflow formulation and returns a minimal
cut.

The graph is first initialized using the method described above (see Sec:5.3.2).
This results in a graph formed of two parts (source and sink part) only con-
nected by edges oriented from sink to source. This very convenient since
excesses lie in the sink part and are attracted by the sink terminal and sym-
metrically for the deficit. Even if the graph is not exactly separated in two
distinct graphs, we can consider it for some times.

Then the standard Push-Relabel is launched on the sink-part. A Pull-
Relabel algorithm is considered for the other part based on the Push-Pull-
Relabels algorithm (see Alg:7). Those two algorithms are very similar. In-
deed the Pull-Relabel algorithm works exactly like a Push-Relabel algorithm
on a reverse graph. A reverse graph is a graph where every edge is turn
over and deficit transformed into excess. Moreover, each t-link is changed of
terminal: source t-link becomes sink t-link...

At convergence, some excesses (respectively deficits) may be stuck in the
sink part (respectively source part) of the graph. In fact by running these two
algorithms, we obtain two minimal cuts C+ and C−. C+ is the minimal cut
of the sink part and similarly for the C− min-cut. Figure Fig:5.10 illustrates
such a case.

We give here a first result related to the cost of cuts C+ and C−.

Theorem 1 The cost of C+ is equal to the cost of C0 minus the stuck excess
flow. Similarly the cost of C− is equal to the cost of C0 minus the stuck
deficit flow.

This result is almost trivial.
Proof : Let describe the proof for C+ since it can be transcribed identically
for C−.

Before running the Push-Relabel algorithm on the sink part, there were
exactly |C0| units of excess flow in this part of the graph. By definition of C+,
only |C+| units of flow can reach the sink. Thus |C0| − |C+| units of excess
flow remain stuck between C0 and C+ after convergence of the algorithm.
�

We give here a first result related to position of the minimal cut of the
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Figure 5.10: In this figure, we illustrate a possible resulting graph after
convergence of both Push-Relabel and Pull-Relabel algorithms on their re-
spective part. In this case, both excesses and deficits remain stuck. However
this algorithm already provides two new cuts C+ and C− of lower cost than
C0.

whole graph with respect to the number of deficit and excess stuck by the
two minimal cuts C+ and C−.

Theorem 2 At convergence, four different cases emerge:

• If no excess nor deficit remains, then the initial cut C0 is the minimal
one. If neither excess nor deficit remains, then it means that no cut in
the source nor the sink part has a lower cost than the initial cut. Thus,
it can be easily shown that the initial cut is the minimal cut.

• If only excesses are stuck and all the deficits reach the source, then the
minimal cut C+ of the sink part is the minimal cost cut of the whole
graph. The result comes from the same argument. One could note that
the cost of the minimal cut is equal to the cost of the initial cut minus
the total excess flow remaining.

• Similarly if only deficits get stuck and all the excesses reach the sink,
then the minimal cut C− of the source part is the minimal cost cut of
the whole graph.

• If both excesses and deficits get stuck, then this is the more complex
case where the minimal cost cut is on both part.

We provide here the proof of the first case. The same argument is appli-
cable to the other cases (the last case except) and its adaptation is almost
straightforward. This following proof is done by reductio ad absurdum.
Proof :
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Let consider the initial cut C0 and the minimal cut Cmin. Four different
cases are feasible; we will prove that three of them are absurd:

• The minimal cut completely lies on the source part, and |Cmin| < |C0|.
Since there is |C0| deficits and that they have to cross Cmin to reach the
source and only |Cmin| can cross it, it results that at least |C0|− |Cmin|
deficit should get stuck. This is in contradiction with our assumption.

• The same argument applies if the minimal cut lies on the sink part.

• The minimal cut lies on both parts and |Cmin| < |C0|. Reader should
refer to the figure Fig:5.11 for an illustration. The assumption |Cmin| <
|C0| can be rewritten with the notation of the figure as c + d < a + b.
Let now consider the cut formed of the part c and b. Since no deficit
remains, we have c + b > a+ b and by symmetry, a + d > a+ b. This
gives the contradiction c+ d > a+ b.

• The minimal cut is C0.

The study of all those cases can be summarized as follow. Either the minimal
cut is C0 or C0 has the same cost as the minimal cut. Thus C0 is a minimal
cut. �

S T

a

d
b

c

C0Cmin

Figure 5.11: This figure illustrates a graph with an initial cut C0 in black
and a minimal cut Cmin in green. It is assumed that these cuts cross each
others. This leads to a partition of the cuts. (a, b) ; C0 and (c, d) ; Cmin.
For readability, the red part or source part is in pink, and the sink part in
light blue.

Concerning the first three cases, the proposed algorithm clearly solve the
min-cut problem. The special case where some deficit and excess remain
after convergence is more problematic and is widely discussed in the next
section.
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5.4.2 Special case

We now focus on the special case where some excesses and deficits remain
stuck in the graph after convergence.

Let first define some notations before providing a theoretical result on the
position of the minimal cut and then we settle the issue and give a complete
algorithm.

The reader is invited to refer to the figure Fig:5.12 for an easier under-
standing. Let call right side the part of the graph on the right side of the
initial cut C0. Similarly, we also define the left side. Let call C+ the minimal
cut of the right side and C− the minimal cut of the left side. Let also consider
the minimal cut Cmin of the whole graph.

On figure Fig:5.12, the cut C0 is formed of four parts a, b, c and d. Sim-
ilarly C+ is formed of a, f and g, C− of e, c and d and Cmin of h, i and j.

The red art is in this section called the source part since this part of the
graph is still connected to the source terminal and symmetrically for the blue
part. Furthermore, the gray part is the part where lie the remaining excesses
and deficit.

C+

C−Cmin C0

a

b

c

d

e

f

g

h

i
j

S T

Figure 5.12: Similarly to Fig:5.11, we illustrate here a more complex case.
The cuts positions are chosen in order to represent some typical cases. On top
of Cmin and C0, we add the two cuts C+ and C− as illustrate in Fig:5.10. This
leads to the following partition of cuts. (a, b, c, d) ; C0, (h, i, j) ; Cmin,
(a, f, g) ; C+ and (e, c, d) ; C−.

Now we can express the result as follow.

Theorem 3 When both excess and deficit remain after convergence then a
minimal cut of the graph lies in the gray part.

120



5. Active Cuts: a Graph Cuts extension 5.4. Active Cuts algorithm

Proof : Let assume that the minimal cut (in green on the figure Fig:5.12)
does not lie on the gray part. We will prove that this is impossible. First,
let move apart some basic cases.

• Cmin is not completely on the left side: Indeed, this contradicts the
definition of C−.

• Cmin is not completely on the right side: Indeed, this contradicts the
definition of C+.

Thus the only possibility is that the minimal cut lies on both sides. There
are three different cases that completely describe the position of Cmin.

• One side, at least, of Cmin completely lies in red or blue part. This case
is illustrated in the left side of figure Fig:5.12.

• One side, at least, of Cmin lies in the gray part and cross the minimal
cut C+ or C− to reach the red or blue part. This case is illustrated in
the right side of figure Fig:5.12.

• Cmin lies in the gray zone.

We will now prove that the two first cases are impossible unless a minimal
cut lies in the gray part.

Let consider the first case. Let consider the cut C−′ defined by the curves
h and d in the figure Fig:5.12. According to the definition of C− we have
|C−′| > |C−| which means that h + d > e+ c+ d. This is equivalent to
|Cmin| = h+ i+ j > e+ c+ i+ j but this is impossible due to the definition
of Cmin unless |C−′| = |C−|. In that case the cut composed of the curves
e, c, i, j is also a minimal cut of the graph and its left part lies in the gray
part.

The second case is quite similar. Let consider the cut C+′ defined by the
curves a, f, j in the figure Fig:5.12. According to the definition of C+ we have
|C+′| > |C+| which means that a+ f + j > a+ f + g. This is equivalent to
|Cmin| = h+ i+ j > h+ i+ g but this is impossible due to the definition of
Cmin unless |C+′| = |C+|. In that case the cut composed of the curves h, i, g
is also a minimal cut of the graph and its right part lies in the gray part.

Combining those results allows us to conclude. �

Now let summarize the situation. We know that the minimal cut is inside
the gray part. Moreover, every remaining excesses and deficits are inside
the gray part. Both excesses and deficits are stuck in the gray part since
boundaries are saturated cuts. This indicates that all the remaining work
will takes place in the gray part and that the next step of the algorithm will
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focus only on the gray part. Note that left and right side of the gray zone are
not disconnected since it exists n-links from right to left part (reverse n-links
are saturated by construction of the initialization). By converting back every
excess and deficits into t-links, one could clearly see that source and sink are
not separated yet.

The next step the algorithm consists into alternatively converting back
every excesses or every deficits into t-links and relaunching the algorithm
until convergence (see Fig:5.13). At convergence, the boundary between red
and blue part is the minimal cost cut Cmin of the graph.

S T

+

C0
C1

Figure 5.13: This figure shows how we should get rid of remaining excesses
and deficits. In that case, more deficits that excesses were remaining. So
deficits are convert back to t-links (blue links) and the gray zone is repainted
in blue. The initial cut C0 is dotted this it does not correspond anymore to
the current cut between the source and sink part . C1, the old C−, is the
new current cut since in that case we have |C−| < |C+| < |C0|.

In fact a better strategy can be used by counting the number excess flow
and deficit flow. Indeed based on the sign of δ =

∑
p∈Gray

excess(p)+deficit(p)

(remember that deficit(p) 6 0), one could define the more efficient strategy
on conversion.

In fact if δ < 0 then there are more deficits than excesses and converting
back deficits to t-links will lead to less moving particles (excesses in that
case). Moreover, this choice is also motivated by the fact that it will connect
the gray zone to the sink and paint the gray zone in blue. Therefore in that
case, |C−| < |C+| 6 |C0| and the new cut separating the red part from the
blue part is the minimal one. This choice sets the minimal cost cut between
C+ and C− as the new cut C1 (see Fig:5.13). By doing so, one obtain a series
of decreasing cost cuts C0, C1, Cmin (see Fig:5.14).
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And similarly if delta > 0.

S T

C0

Cmin

C1

Figure 5.14: We illustrate here a resulting graph at convergence. C0 and
C1 are the past cuts (in dots). The minimal and last cut Cmin separate the
graph in two unconnected parts (red and blue). Some t-links remain (red
and blue links).

Property 1 The Active Cuts algorithm provides a series of decreasing cuts
where the last one is the minimal cost cut of the graph. Moreover, the second
cut is a local minimum a string way since it is a global minimum on half the
graph.

This leads to a complete definition of the algorithm.

5.4.3 Algorithm

We give here the complete description of the algorithm, namely Active Cuts
algorithm (see Alg:8).

We could discuss a little bit the complexity of this algorithm. Let assume
that the initial cut splits the graph in two parts of same number of nodes.
Then let note Cx(|V|, |E|) the complexity of the Push-Relabel algorithm used
in Active Cuts. In that case the complexity of the first part of the algorithm
is 2Cx

(
|V|
2
, |E|

2

)
. Concerning the second part of the algorithm, at worst the

complexity is equal to Cx(|V|, |E|).
Thus in that case, the total complexity at worst is equal to 2Cx

(
|V|
2
, |E|

2

)
+

Cx(|V|, |E|). One could easily see that this worst that the standard Push-
Relabel algorithm. But if the Active Cuts algorithm is more complex, it also
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Algorithm 8 Active Cuts
Require: G = 〈V , E〉 a weighted graph.
Require: An initial cut C0.

Initialize according the initial cut C0 (see Sec:5.3.2 for details).
Run the Push-Relabel algorithm on sink part.
Run the Pull-Relabel algorithm on source part.
Paint in gray nodes with height higher than |V| on the whole graph.
δ ←

∑
p∈Gray

excess(p) + deficit(p).

if δ < 0 then
C− is renamed as C1.
Set the working part as the gray part.
Convert back deficits into sink t-links (see Fig:5.1 for details).
Paint in blue every gray node.
Run the Push-Relabel algorithm on the working part.
Paint in red nodes with height higher than |V| on the working part.

else
C+ is renamed as C1.
Set the working part as the gray part.
Convert back excesses into source t-links (see Fig:5.1 for details).
Paint in red every gray node.
Run the Pull-Relabel algorithm on the working part.
Paint in blue nodes with height higher than |V| on the working part.

end if
Every red node is assigned to the source.
Every blue node is assigned to the sink.
Minimal cut Cmin is the boundary between red and blue nodes.
return C0, C1 and Cmin.
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provides more information: series of cuts. Moreover this complexity is for the
worst case, that is to say when the gray part of the gray is the complete graph,
which is highly improbable. The complexity of this algorithm is strongly
correlated to the size of the gray zone.

By assuming a worthwhile case where the gray zone is small, one could
approximate the complexity of the algorithm by 2Cx

(
|V|
2
, |E|

2

)
. If we make

use of the Discharge version of Push-Relabel (see Alg:4 in Sec:3.3.3), we
obtain a complexity of 1

4
Cx(|V|, |E|).

5.5 Implementation

When it comes to performance, standard implementations of Push-Relabel,
even the Discharge version, are not fast enough.

The critical part of the algorithm lies in the management of connectivity
inside the graph. Indeed if labels are reliable at the beginning of the algo-
rithm, this is no more the case after some times. Some basic improvements
like Global Relabel or Gap Relabel [38, 56], allows some speed improvement.

However the real performances of the algorithm are revealed when we
make use of Dynamic Tree. The best implementations of Push Relabel relie
on Dynamic Trees instead of labels to drive excesses in the graph [76, 101,
37, 3].

In the next section, we will first describe our dynamic tree design. Then
we propose a modified version the Active Cuts algorithm. And, in the end,
we will focus on some interesting properties of this new algorithm.

5.5.1 Dynamic Tree

Based on work of Goldberg and Trajan [76] and Hochbaum [79], we pro-
posed here a new Dynamic Tree structure in order to get access to higher
performance.

We make use of two dynamic trees like in the Boykov and Kolmogorov
algorithm [18]: a source tree (red) directs deficits to the source and a sinks
tree (blue) directs excesses to the sink. Those two trees are illustrated in the
figure Fig:5.15. Note that the source tree connects nodes to the source via
edges (red) that are non-saturated in the direction from the terminal towards
the leaf nodes. The sink tree connects nodes to the sink via edges (blue) that
are non-saturated in the direction from leafs towards the terminal. Due to
saturated edges on the initial cut C0, the source and the sink trees can never
overlap.
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- +

- +

- +

- +

S T

C0

Figure 5.15: This figure illustrates the initialization step sauch as in Fig:5.9.
The initial cut C0 is shown in black. However we also show the tree structure
underneath. Thick red and blue edges represent connectivity along the two
trees: source tree (red) and sink tree (blue).

As excesses and deficits move along the edges on the trees, we maintain
short paths on both trees dynamically mainly based on ideas described in [18].
Both trees maintain the following properties:

• A tree is rooted at a terminal.

• A tree spans all nodes ’reachable’ from a root.

• Each node in the tree has only one parent.

• All edges included in a tree are non-saturated.

Let describe now more precisely how to fix the tree. A tree becomes
corrupted when some flow moves along the tree and saturates one edge. Let
consider a node p inside the sink tree. This node carries some excess flow and
by push some flow to its parent q, the edge linking them (p, q) get saturated.
Figure Fig:5.16 illustrates it.

We call this fixing action Fast Adoption if the node p may find a new
reachable parent in its neighborhood that is not one of its descendant (like
shown in the right side of figure Fig:5.16). This case is quite simple and very
fast.

However, it may happen that no other node can be become its new parent.
This case is more complex and two different situations may happen. Whether
it cannot be found a connection from the subtree of p to the sink tree and in
that case the subtree is isolate from the sink terminal, whether the subtree
of p can be connected to the sink tree.
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+ +

+

leavesleaves

p

root root

parent of p

parent of p

Figure 5.16: We describe here a Fast Adoption step. The light blue cone
stands for the descendants of the node p in the Dynamic Tree. Thick edges
represent parental connectivity while dotted edges represent saturated edges.
- Left Side: some excess is present on node p. By pushing excess to its parent,
the parent edge is saturated. - Right Side: the parental connectivity of p is
restored since another node is reachable from p.
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In the first situation, the subtree of p is isolated from the terminal. That
is to say there is no non-saturated edge from a node of the subtree to a node
of the sink tree. This means that we have a new cut separating the subtree
from the sink. The subtree has to be painted in gray. This action is called
Orphanize since we cannot find a new parent for the subtree.

root

+

+ +

leaves

root
of the

subtree
p

q

r

root

+ +

leaves

p

q

r

root

+ +

leaves

p

q

r

new root of the subtree

parent of p

+ +

connect

Figure 5.17: We describe here a Slow Adoption step. The light blue cone
stands for the descendants of the node p in the Dynamic Tree. Thick edges
represent parental connectivity while dotted edges represent saturated edges.
- Left Side: some excess is present on node p and by pushing excess to its
parent, the parental edge is saturated. However no node is directly reachable
from p - Middle Side: a node q is found inside the children, that could reach a
node r outside the cone. This node q is set to be the new parent of the whole
cone. - Right Side: the r is set as the new parent of q and the Dynamic Tree
is restored. - Two possible problems can occurr: First, there is no node like q
available, in that case we have a new cut since the cone cannot reach another
node. Second, setting q as the root is possible only if there is no saturated
reverse edges from p ; q, in that case, more than one slow adoption step
may be necessary.

An illustration for a second situation is provided by the figure Fig:5.17.
This fixing action is called Slow Adoption and consists into three steps:

1. Find a descendant q of p with a non-saturated edge that links to a node
r of the sink tree outside of the subtree of p (left part of Fig:5.17).

2. Set q as the new root of the subtree by reversing parent/child relation-
ship on the path q ; p (middle part of Fig:5.17).

3. Set r as the new parent of q (right part of Fig:5.17).
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If the first step does not succeed, then we are in fact in the first situation.
Nevertheless in the second step, by reverting the relationship on the path
q ; p, we assume that we do not use any saturated edge. This is not all the
time true. If such a case happens, then the subtree is split into two subtrees
and the fixing process is re-launched on the unfixed subtree.

5.5.2 Algorithm

We will now present a modified version of the Active Cuts algorithm (Alg:8)
that takes advantage of the dynamic tree structure.

Before discussing an implementation on the dynamic tree defined in sec-
tion Sec:5.5.1, one should define some notations. Let call orphan node any
node that belongs to a subtree isolated from its corresponding terminal. In-
deed this is the case when the tree root of the considered node is not a
terminal.

The fixing operation described in the second part of the section Sec:5.5.1
is the corresponding implementation of Relabel step on a dynamic tree.
This operation is called adoption and could succeed (fast-adoption or slow-
adoption) or failed (orphanize).

Let now adapt the push step to the dynamic tree. Indeed, it is replaced
by the following implementation. We also give the pull step implementation
to fix minds.

Algorithm 9 Push on Dynamic Tree
Require: p a non-orphan excess node.
q ← parent(p).
Send min(excess(p), cf (p, q)) flow to the node q.
return cf (p, q) == 0.

Algorithm 10 Pull on Dynamic Tree
Require: p a non-orphan deficit node.
q ← parent(p).
Grab min(deficit(p), cf (q, p)) flow from the node q.
return cf (q, p) == 0.

Let now define a Push-Pull step based on the two previous (see Alg:11).
We could know define the complete Active Cuts algorithm on dynamic trees.

The proposed algorithm is able to take advantage of the dynamic tree in
order to speed up the algorithm but also to improve its result pertinence.
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Algorithm 11 Push-Pull on Dynamic Tree
Require: p a non-orphan excess or deficit node.

if p is a excess node then
saturated← push(p).

else
saturated← pull(p).

end if
state← succeed.
if satured == true then
state← adoption(p).

end if
if state == succeed then

return DONE.
else

return STUCK.
end if

This improvement is based on the following observation. Since we can detect
easily when some part of the graph is isolated from the targeted terminal
(Orphanize proceduce), we can detect excesses and deficits that cannot reach
their terminal before convergence of the algorithm.

Thus we do not wait for convergence to convert back stuck excesses and
deficits to t-links. This allows increasing the number of intermediate cuts
returned by the algorithm. Yet the number of returned cuts depends on
the graph but also on the strategy for active node selection. Note that
the returned series is a non strictly decreasing cuts series. Figure Fig:5.18
illustrates a cycle of the Active Cuts algorithm on Dynamic Trees on a simple
graph.

Complexity of such an algorithm also depends on the selecting order for
push-pull as discuss in [39, 75, 76, 42]. This will be discussed later.

The next section will provide some interesting properties of the proposed
algorithm.

5.5.3 Properties

The first properties discussed here is the decreasing cost of cuts in the re-
turned series of the algorithm. Next, we will provide a result related to the
cost and the relative position of two successive cuts. But first, let give a
trivial lemma.

Lemma 1 It cannot happen that two successive cuts intersect each other.
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Algorithm 12 Active Cuts
Require: G = 〈V , E〉 a weighted graph.
Require: An initial cut C0.
n← 0.
Initialize according the initial cut C0 (see Sec:5.3.2 for details).
Paint every node in Gray.
repeat
n← n+ 1.
Grow the trees into Gray nodes.
repeat

Push-Pull().
until STUCK is returned
Paint the isolated subtree in Gray.
δ ←

∑
p∈Gray

excess(p) + deficit(p).

if δ < 0 then
Let note Cn the boundary between red nodes and other nodes.
Convert back deficits of the Gray zone into sink t-links (see Fig:5.1
for details).

else
Let note Cn the boundary between blue nodes and other nodes.
Convert back excesses of the Gray zone into source t-links (see Fig:5.1
for details).

end if
until there is no more excess and deficit nodes
Every red node is assigned to the source.
Every blue node is assigned to the sink.
Minimal cost cut of the graph is Cn = Cmin.
return (C0, C1, · · · , Cmin).
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Figure 5.18: This figure illustrates a cycle of the Active Cuts algorithm on
Dynamic Trees on a simple graph. - Top: Ci is the current cut. - Middle:
Some excesses or deficits (here deficits) get stuck, a new cut appears Ci+1. -
Bottom: The stuck excesses or deficits are converted back into t-links.
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Proof : This is due to the construction of the algorithm. The new cut
lies on the boundary of the isolated subtree. Since we only move one node
(excess or deficit) at a time and since the two trees are unconnected, the
subtree belonged to one side of the graph only. These two observations lead
to the result. �

Property 2 The proposed algorithm, namely Active Cuts on Dynamic Trees,
produce a series of cuts of decreasing cost.

Proof : Let assume that it exists i ∈ {0 · · ·n} such that the cost of two
successive cuts is increasing |Ci| < |Ci+1|. Let define Ii the part of the graph
between Ci and Ci+1 (in fact the gray part).

Due to the orientation of the cut, we have to distinguish the two possible
relative positions of the cut Ci+1 with respect to Ci. Ci+1 could be on the
source side or on the sink side of Ci. And that’s all since two successive cuts
do not cross each other (see Lem:1).

Using divergence theorem on Ii we obtain the following result:∫
Ii

∇ · flow =

∫
∂Ii

flow · −→n

=

{
|Ci+1| − |Ci| if Ci+1 is in the source side.
|Ci| − |Ci+1| if Ci+1 is in the sink side.

This tells us that if Ci+1 is in the source side, then
∫

Ii

∇· flow > 0 which

means that some excesses are stuck in Ii and may be already converted into
t-links. Thus Ii is painted in red and then even if Ci+1 is saturated, it does
not separate the source from the sink. Thus Ci+1 is a not a valid cut for the
algorithm. The same argument can be used if Ci+1 is in the sink side. �

We only provide the following proposition without any proof but it can
be achieve using a similar approach.

Property 3 If the cut jumps from Ci to Ci+1, then every cut C between Ci

and Ci+1 is such that:
|Ci+1| < |C|

Proof : This comes from the fact that if there is a cut C such that
|C| 6 |Ci+1| in the area delimited by Ci and Ci+1, then it should have be
saturated before Ci+1. �
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5.5.4 Ordering active nodes

In this section, we compare two standard orders used to process active nodes
(node where the flow is non-null). The First-In/First-Out (FIFO) and High-
est Label (HL) strategies are described in [39, 75, 76, 42]. The table Tab:5.5.4
gives some counting of atomic operations on two 2D segmentations.

We also introduce two variants of the Active Cuts algorithm:

• Active Cuts with Adoption After All (AC + AA): this variant consists
into postponing Adoption until no excess nor deficit can move.

• Active Cuts with Fast Adoption and Adoption After All (AC + FA+AA):
this variant consists into postponing Slow Adoption and Orphanize un-
til no excess nor deficit can move.

AC AC + FA+AA AC + AA
Ordering FIFO HL FIFO HL FIFO HL

Face

Move 9987 9601 11797 10241 11243 9546
Adoption 6468 6487 7221 6837 5570 5785
Fast rate 51 49 44 48 42 40

Cuts 280 326 4 4 11 11

Lung

Move 329864 147789 240117 157389 255599 x
Adoption 589966 797692 982476 446172 495188 x
Fast rate 11 7 3 10 6 x

Cuts 298 291 18 15 23 x

Table 5.1: This table shows the counting statistics on two image segmenta-
tions (face and lung) for every variant of the algorithm. We count: Move
(push and pull), Adoptions, Fast rate corresponds to percentage of Fast adop-
tion with respect of all adoptions and number of generated intermediate cuts.

It turns out that we obtain a result comparable to standard Push-Relabel.
If counting is better for HL strategy, HL is more difficult to implement and
takes more time to maintain than a FIFO list. The best compromise for
speed is to use standard Active Cuts with FIFO strategy.

Nevertheless, we introduce another trick to improve performance. In
order to push or grab flow by only one-step, we push or pull the flow until
an edge is saturated. Moreover in order to use a Discharge implementation
(see Sec:3.3.3), after a moving step if some flow (or deficit) remains, the node
is not put at the end of the list but at the front. This trick allows the best
performance so far.
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5.6 Conclusion
We present a new Active Cuts approach for maxflow/min-cut problems that
significantly improves practical efficiency (2-6 times) and applicability of
graph cuts to many problems in image analysis (see sections Sec:6.3 and Sec:7.1).
The method can effectively use initial solutions that are often available in
dynamic and hierarchical set-ups in vision. Such an initial solutions are also
available in iterative multilabel optimization techniques like α-expansions [21].

Before converging to a global minima, Active Cuts outputs a multitude
of intermediate solutions that, for example, can be used be accelerate itera-
tive learning-based methods, e.g. [148]. It can also be combined with other
methods for accelerating graph cuts in dynamic [105] and hierarchical [118]
fashion.

However C++ code of [105] was not available at that time and those
results should be carefully considered until a complete comparison is done.
Nevertheless one can note that techniques describe in [105] can also be inte-
grated to the Active Cuts algorithm.
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Chapter 6

Applications to image
segmentation

In this chapter, we present some results based on the Stochastic Level Set
technique described in section Sec:4. This work stems from a join work with
Gheorghes Postelnicu and is published as a conference paper at VLSM’03 [90]
and as a journal paper in a special issue of IJCV [92].

Then we proposed a new segmentation procedure to initialize Digital
Matting methods [162, 155, 41, 174, 143, 164, 12]. This work is broached
using both Level Set (see section Sec:2) and Graph Cuts (see section Sec:3)
formulations. This allows us to illustrate a case of obvious superiority of
Graph Cuts in comparison to Level Set approach. This work is published
as a technical report [89] (for the Level Set approach) and as a conference
paper at VLSM’05 [88].

Finally, we present some applications of The Active Cuts algorithm to im-
age segmentation. We show here some interesting aspects of Active Cuts in
comparison to standard Graph Cuts on both standard and hierarchical seg-
mentation approaches. This work stems from a join work with Yuri Boykov
and will be published as a conference paper at CVPR’06 [87] and is also
available as a technical report [86].

6.1 Stochastic Active Contours

Stochastic Active contour (Sec:4.3.3) could be used in the Geodesic Ac-
tive Contours framework [27] where segmentation is based upon gradient
intensity variations. Yet, a multiscale approach is often used successfully
in that context to overcome the local minimum problem. Other segmenta-
tion schemes [140] use a region model (eg. texture, statistics) that is less
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adapted to multiscale. We will first focus on one such a case, namely the
single Gaussian statistics model in [150].

6.1.1 Single Gaussian model

In their unsupervised segmentation framework [150], the authors model each
region of a gray-valued or color image I by a single Gaussian distribution of
unknown mean µi and variance Σi. The case of two regions segmentation
turns into minimizing the following energy:

E(Γ, µ1,Σ1, µ2,Σ2) =

∫
Ω1

e1(x) +

∫
Ω2

e2(x) + νlength(Γ)

where Ω1 is the region inside Γ, Γ2 the outside, and ei(x) = − log pµiΣi
(I(x))

with pµiΣi
(I(x)) = C|Σi|−1/2e−(I(x)−µi)

T Σ−1
i (I(x−µi)/2 being the conditional

probability density function of a given value I(x) with respect to the hy-
pothesis (µi,Σi). The parameters (µi,Σi), estimated from the pixel actually
inside and outside Γ, are functions of Γ. Thus, the energy is a function
of Γ only: E(Γ, µ1,Σ1, µ2,Σ2) = E(Γ). Its Euler-Lagrange equation is not
obvious, but finally simplifies into the minimization dynamics

βc = e2(x)− e1(x) + ν div

(
du

|du|

)
The authors successfully segment two regions, even when they have the same
mean but only different variances. However, the evolution could easily be
stuck into some local minimum while a multiscale approach might mod-
ify the statistics so that no segmentation would be possible anymore. As
demonstrated figure 6.1, a simple Simulated Annealing scheme with dynam-
ics (4.26) overcomes this problem. Figure 6.2 shows the same phenomenon on
a real image. Note that this image was successfully segmented by the authors
of [140]. Yet, they used an adapted model of texture. Here, the Stochastic
Active Contours framework succeeds in making a simple unsupervised single
Gaussian model recover the correct regions.

6.1.2 Gaussian mixtures

As an illustration of the case when the Euler-Lagrange equation cannot be
computed, we extend the previous method to region statistics modeled by a
mixture of Gaussian distributions of parameters Θi = (π1

i , µ
1
i ,Σ

1
i , ..., π

ni
i , µ

ni
i ,Σ

ni
i ).

with
∑

j π
j
i = 1. The conditional probability density function of a given value
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Figure 6.1: Segmentation of two regions modeled by two unknown Gaussian
distributions (same mean, different variances). Top row: the initial curve,
the final state of the classical approach stuck in a local minimum, and the
final state of this method. Bottom row: evolution of the energy (dashed:
deterministic method, solid: this method)
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Figure 6.2: Segmentation of two regions modeled by two unknown Gaussian
distributions. Top row: the initial curve, the final time step of the classical
method, again stuck in a local minimum and the final step of this method.
Bottom row: evolution of the energy (dashed: deterministic method, solid:
stochastic method)
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I(x) becomes:

pΘi
(I(x)) =

ni∑
j=1

πjpµj
i Σ

j
i
(I(x))

The number of Gaussian distributions can be given, estimated at the initial
time step, or dynamically evaluated using a Minimum Description Length
criterion[146] or the Minimal Message Length method [170]. A large litera-
ture is dedicated to the problem of estimating Θi from input samples. We
have used the original K-Means algorithm pioneered by MacQueen [120],
although we have tested extensions like the Fuzzy-K-Means [9, 53], the K-
Harmonic-Means [182], and the Expectation-Maximization algorithm (EM),
first proposed in [55]. The latter solves iteratively

Θ̂i = arg max
Θi

∫
x∈Ωi

log pΘi
(I (x)) dx

(Please refer to appendix for details and references).
The segmentation problem still consists in minimizing the same energy,

with now ei(x) = − log pΘi
(I(x)). Unfortunately, we now have to deal with a

complex dependency of Θi with respect to Γ. In fact, the learning algorithm
acts as a “black box” implementing Γ → Θi(Γ). As a consequence, the
Euler-Lagrange equation of the energy E(Γ,Θ1(Γ),Θ2(Γ)) = E(Γ) cannot
be computed. A deterministic contour evolution driven by βc = e2 − e1 +
νκ may get stuck just because βc

−→n is not the exact gradient. Yet, the
Stochastic Active Contours can still be used, with βc as heuristics. As a
simple illustration of this, let us consider the synthetic example of figure
6.3. The region to segment is a square. The square and the background are
each modeled by a mixture of two equally weighted Gaussian distributions:
Θi = (1

2
, µ1

i ,Σ,
1
2
, µ2

i ,Σ). As an initial guess, we shift the square toward
the bottom-right corner. Although a bit of the background is in Ω1, Θ1 is
correctly estimated. Yet, for some reason, the K-Means algorithm estimates
Θ2 approximatively by (1− ε, µ1

2+µ2
2

2
,Σ′, ε,

µ1
1+µ2

1

2
,Σ′′). During its convergence,

the deterministic method keeps such an incorrect Θ2 and finally gets stuck
at a roughly correct place but with an incorrect model, leaving some interior
pixels outside (especially in the corners, because of the smoothing term of
the energy). The colored hexagons below the images indicate the means and
variances of the mixtures components and their respective weights. See also
how the energy increases in the end! On the contrary, this method does not
rely completely on the incorrect gradient only and finally "discovers" the
correct model, leading to a somehow better fit. Notice the energy level drop-
down when the K-Means algorithm ejects the interior pixels as negligible and

141



6.1. Stochastic Active Contours 6. Applications to image segmentation

0 20 40 60 80 100 120
460

465

470

475

480

485

490
Convergence stuck because of an incorrect gradient

t

E

Classical method
Stochastic Active Contours

K−means finally finds
correct model parameters 

0 10 20 30 40 50 60 70 80
455

460

465

470

475

480

485

490

495
One possible path toward the global minimum

upper−diagonal shift Δx

E

K−means finally finds
correct model parameters 

Figure 6.3: A case where the gradient is not correct (see text). Top row,
from left to right: initial position, final position with the classical method
(the model is not correctly recovered - see percentages in the hexagons),
leading to rounded corners), final position with this method (the model is
correctly recovered). Bottom left: evolution of the energy in both cases.
Bottom right: energy for a translation of the curve that goes through the
correct segmentation.
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shifts to the correct model. The last graph of figure 6.3 is a plot of the energy
when the initial square is manually translated from the bottom-right corner
to the upper-left one, going through the correct position. It clearly shows
that the heuristic gradient by itself gets stuck in a local minimum, whereas
this method comes much closer to the desired minimum.

6.1.3 Results

Even when the deterministic scheme converge more or less, this method shows
a better ability to overcome local minima: figure 6.4 shows how Γ can be stuck
leading to a dramatic evolution toward completely false regions. Finally,
figure 6.5 shows some more examples on other real images. Animations
corresponding to all the presented examples can be seen on internet website
located at http://cermics.enpc.fr/~juan/IJCV.

6.1.4 Conclusion

Based on recent work on Stochastic Partial Differential Equations by Lions
and Souganidis, we have a simple and well-founded method to implement
the stochastic motion of a surface in a Level Set framework. This method is
used as the key point of a stochastic extension to standard shape optimiza-
tion methods in Computer Vision. In the particular case of segmentation,
we introduced the Stochastic Active Contours, a natural extension of the
well-known active contours. Our method overcomes the local minima prob-
lem and can also be used when the Euler-Lagrange equation of the energy
is out of reach. This extension is not time consuming: the only computa-
tional effort is computing the energy . Convincing results are presented with
the segmentation of regions modeled by unknown statistics, namely single
Gaussian distributions or mixtures of Gaussian distributions.

6.2 Trimap Segmentation

Given an image, digital matting consists in extracting a foreground element
from the background. Standard methods are initialized with a trimap, a
partition of the image into three regions: a definite foreground, a definite
background, and a blended region where pixels are considered as a mixture
of foreground and background colors. Recovering these colors and the pro-
portion of mixture between both is an under-constrained inverse problem,
sensitive to its initialization: one has to specify an accurate trimap, leaving
undetermined as few pixels as possible.
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Figure 6.4: Segmentation of two regions modeled by two unknown Gaussian
mixtures. Top row: the initial curve, the final state of the deterministic
method, stuck in a local minimum and the final state of this method. Bottom
row: evolution of the energy.
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Figure 6.5: Segmentation of two regions modeled by two unknown Gaussian
mixtures. Left column: the initial states. Right column: the corresponding
final states of this method.
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First, we propose a new segmentation scheme to extract an accurate
trimap from just a coarse indication of some background and/or foreground
pixels. Standard statistical models are used for the foreground and the back-
ground, while a specific one is designed for the blended region. The seg-
mentation of the three regions is addressed for comparison by both Level
Set method and by an iterative Graph Cut based optimization scheme. This
user-friendly trimap is similar to carefully hand specified ones.

As a second step, we take advantage of our blended region model to design
an improved matting method coherent. Based on global statistics rather than
on local ones, our method is much faster than standard Bayesian matting,
without quality loss, and also usable with manual trimaps.

6.2.1 Introduction

The commonly used model of digital or alpha matting is the following. An
image I is considered as a mixture between a foreground IF and a background
IB, mixture quantified by an alpha mask α ∈ [0, 1]. For each pixel x, this
writes

I(x) = α(x)IF (x) + (1− α(x))IB(x) (6.1)

Such a blending has multiple reasons: transparent objects, aliasing, blur or
motion blur. The problem is to recover IF , IB and α from I.

This inverse problem is under-constrained and can not be solved without
priors. Historically, a solution was proposed in the case of a known constant
background, e.g. a blue screen [162]. Recently, inspired by computer vision
techniques, methods based on a model of the foreground and of the back-
ground were proposed that greatly improve the matte quality, even without
a blue screen. Since the pioneering work of Ruzon and Tomasi [155], several
methods have been proposed [41, 174, 143, 164].

As a prerequisite of any method, the user has to specify a so-called trimap,
partitioning the image into three regions: a set ΩF of definitely foreground
pixels (where α will always be 1), a set ΩB of definitely background pixels
(α = 0), and a blended region ΩM where α, IF and IB are unknown. ΩM has
to be an intermediate region, separating ΩF from ΩB. Matting methods suffer
from sensitivity to this initial condition and one has to specify it accurately,
leaving undetermined as few pixels as possible. Moreover, when too small
ΩF and ΩB are given, the matting process generally does not work at all.

Digital matting was primitively developed for movie production. For a
specialist, carefully specifying a trimap is a long but feasible process (actually
faster and easier than alpha masking). Today, extracting a subject from a
picture for editing purpose becomes a standard in a non professional context.
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Speed becomes also an issue, particularly with the ever increasing resolution
of digital cameras.

This paper addresses both user-friendly trimap design and speed. First,
we propose a trimap segmentation scheme from just a small subset of the
background and/or foreground, that can be for instance specified by the user
with a brush-like tool. Standard Gaussian Mixture Models (GMMs) are used
for foreground and background modeling, while a specific statistical model
is proposed for the blended region. To save the user from specifying some
obscure number of components, the GMMs parameters are determined with
a coupled Expectation Maximization (EM) / Minimum Description Length
(MDL) scheme. For the sake of speed, the segmentation of the three regions
is conducted simultaneously by an iterative Graph Cut based optimization.
The resulting trimap proves to be similar to carefully hand specified ones.

As a second step, we take advantage of our blended region model to design
an improved matting method. Based on global statistics rather than on local
ones, our method is much faster than the original Bayesian matting, although
without quality loss. It can also be used with manually designed trimaps.

6.2.2 Related work

The original work of Ruzon and Tomasi [155] laid the foundations of most
of the actual methods, for which the key point consist in modeling the back-
ground and the foreground with some statistical model. In their famous
Bayesian Matting, Chuang et al. [41] improved both the statistical model
and the way to use it to recover the alpha mask and the original background
and foreground colors. Since then, Rother et al. proposed GrabCut [12, 147],
a method inspired by Boykov and Jolly work [14], where the image is actu-
ally segmented into two regions using an iterated Graph Cuts [109] scheme.
A smooth alpha mask is then modeled as a ramp of variable width to be
estimated. As a result, it is unadapted to non smooth objects like hairs or
trees. The GrabCut method does not need a trimap. It can be seen more as a
two regions segmentation with a smooth transition between the two regions,
than as a strictly speaking digital matting method. However, as another
member of iterated Graph Cuts methods [14], our trimap segmentation has
similarities with the segmentation step of GrabCut.

In their Poisson Matting, Sun et al. propose another prior on α, based
on its gradient and Poisson equations, already used in image editing [143].
Their method supply different modes, refinements and filters, manually in-
voked by the user. Again, priors on α or its gradient can be questionable as
the blending might have different origins and the blended objects different
scales with respect to pixels size. Moreover, manual decisions might limit
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Figure 6.6: Sensitivity of Bayesian matting [41] to the trimap. First row: the
original image, an accurate trimap and its corresponding alpha. Second row:
a coarse trimap and its alpha. Third row: same as rows 1 and 2 for another
image.

the usability of this technique for non specialists. In conclusion, Bayesian
matting can be considered as the less ad-hoc method so far. Its weak points
are the need of an accurate trimap (a problem common with other matting
techniques) and its slowness due to many local statistics estimations. Figure
6.6 demonstrates how a coarse trimap affects digital matting.

To our knowledge, the only works addressing trimap design are video
oriented. Following the original work by Mitsunaga et al. [125], one can
specify trimaps for some key frames and interpolate them in the intermediate
frames. In their recent work, Xiao and Shah [176] proposed an occlusion
based trimap extraction couple with motion layer segmentation. However, it
is unusable not only for still pictures but also in real film production where
motion is often fast and/or heavily blurred.

This section is organized as follows. First, section Sec:6.2.3 exposes the
background-foreground model and our parameters estimation method. Then,
section Sec:6.2.4 introduces the trimap segmentation, details its implementa-
tion, and compares it with manual segmentations. Finally, section Sec:6.2.5
proposes an improved fast, global and accurate matting method, and shows
results.

6.2.3 Two Regions Segmentation

As a first step toward our trimap segmentation, we first focus on segment-
ing an image into two regions, each of them having its own characteristics,
a-priori unknown. This often called Unsupervised Segmentation has recently
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received a lot of attention from the Computer Vision community. Many ap-
proaches have been proposed, among which some Level Set [132, 131] based
methods (e.g. [24, 93]). More recently, using the Graph Cuts framework,
Boykov and Jolly initiated an iterated method [14], further developed by
Rother et al. in [12] and in their GrabCut scheme [147].

In this section, we briefly describe the segmentation part of the Grab-
Cut scheme. Already known to the GrabCut aware reader, the content of
this section introduces definitions and notations. The slight difference with
the original work is that we plead for a more sophisticated parameter es-
timation method, EM + MDL based, mathematically more justified, more
user-friendly, and yielding somehow better results.

Let I be a color image defined over a domain Ω. For all x ∈ Ω, I(x) is
a pixel defined in a color space (e.g. RGB or CieLab). Let ΩU be a part of
Ω specified by the user. Our goal here is to segment Ω into two "coherent"
regions that we will abusively still call the background and the foreground,
respectively still denoted by ΩB ΩF , such that ΩU ⊂ ΩB.

Region Modeling

Following previous work and using a statistical approach, each region ΩX

(X = F or B) is modeled by a Probability Density Function (PDF) approx-
imated by a Gaussian Mixture Model (GMM):

pX(I) =

NX∑
i=1

πX
i GµX

i ,ΣX
i
(I) with

NX∑
i=1

πX
i = 1 and πX

i ∈ [0, 1]

Each component is represented by a Gaussian of mean µX
i and covariance ΣX

i :
Gµ,Σ(I) = |Σ|1/2

(2π)3/2 e
−(I−µ)T Σ−1(I−µ)/2 and πX

i is the prior of the ith component
with respect to all components, i.e. its proportion in the mixture.

Estimating the parameters ΘX = {NX , (π
X
i , µ

X
i ,Σ

X
i )i=1..NX

} is a widely
studied problem. For a given NX , one can use the K-Means algorithm
(see [121]), a fast but approximate method. This method is widely sensi-
tive to its initialization. Moreover it does not provide a likelihood maximum,
which is not appropriate for a segmentation based on likelihood maximiza-
tion. Indeed the K-Means just solves:

(µX
i ,Σ

X
i ) = arg min

(µi,Σi)

∑
x∈ΩX

∥∥I(x− µk(I(x))

∥∥2

Σk(I(x))

with k(I) = arg mink ‖I − µk‖2Σk
, ‖I − µ‖Σ being the Mahalanobis distance

between I and µ with respect to Σ. Note that [12] suggests [175] as a variant
and that [41] uses the method in [130]. We prefer the EM algorithm [124, 123].
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It is much more robust with respect to the initial parameters and provides a
likelihood maximum, solving:

(πX
i , µ

X
i ,Σ

X
i ) = arg min

(πi,µi,Σi)

∑
x∈ΩX

p(I(x))

Finally, we combine the EM algorithm with a MDL [68] estimation of NX ,
saving the user from manually adjusting the number of Gaussian components.
Note that we have also tested more recent algorithms like Split and Merge
EM [167], without any significant improvement.

Energy Design

Let γ be the partition function of Ω into ΩF and ΩB: γ (x) = F if x ∈ ΩF ,
γ (x) = B otherwise. Under the hypothesis that regions are independent
with respect to their color distribution, it is natural to use the posterior
probability of the pixels as a segmentation criterion, thus stating the problem
as minimizing an energy:

Edata(γ) =

∫
Ω

−log pγ(x) (I (x)) dx (6.2)

An extra control term should be added to constrain the smoothness of the
solution. However since this term depends on the chosen framework, we will
give them in the next sections.

Level Set

Unsupervised Segmentation of an image has recently received a lot of at-
tention from the Computer Vision community. Many approaches have been
proposed, the majority of them are Level Set [132, 131] based (e.g. [24, 93]).
We will follow this track and refer the reader to [24] for details.

Modeling the pixel colors in each region by some statistical model, the
unsupervised segmentation problem can be formulated as the minimization
of the energy:

E = Edata + ν length (Γ)

If we assume the PDFs fixed and E depending only on Γ (contour of γ), it
can be shown that the shape gradient (see [54]) leads to the following steepest
gradient descent minimization scheme:

Γ(p, 0) = Γ0(p)

dΓ(p, t)

dt
= [p2(C(Γ))− p1(C(Γ)) + νκ]−→n

150



6. Applications to image segmentation 6.2. Trimap Segmentation

where Γ0(p) is some initial guess, Γ(p, t) the contours evolving toward the
minimum of E, κ their curvature and n their unit normal.

The resulting segmentation is said unsupervised because the PDFs are
not fixed but considered unknown and thus re-estimated at each time step
using the current position of the contour. In some cases (depending on how
the PDFs are estimated), the previous shape gradient is exact, even when
taking into account the dependency of the PDFs upon Γ.

Graph Cut

When minimizing E either with a Level Sets Method approach [149, 92]
or with a Graph Cuts one [14], one should be aware of the dependency of
the PDFs upon γ. This leads to an iterated process that is usual in the
Level Sets gradient descent, but is not in the case of Graph Cuts. As we
do not need sub-pixel accuracy, we opt for a Graph Cuts approach, mainly
for speed reasons. Using EM instead of K-means is theoretically important:
the algorithm consists in alternately updating the PDFs according to the
segmentation and in segmenting according to the PDFs. At each step, the
energy decreases:

• Updating the PDF using EM ensures that Edata decreases, Esmooth be-
ing fixed.

• The Graph Cuts step ensures that E decreases.

The smoothing term in a graph cut framework is often addressed as a local
smoothness constrain: neighbor pixels should belong to the same region. This
yields an additional smoothness energy:

Esmooth(γ) =

∫
Ω

(∫
y∈N (x)

V (x, y) dy

)
dx

where N (x) is a local neighborhood of x and V (x, y) = V0 (x, y) if γ (x) 6=
γ (y) with V (x, y) = 0 otherwise.

Under the assumption that the frontier between the two regions corre-
sponds to high image gradients, a frequent choice is V0 (x, y) = λ exp(−‖I(x)−I(y)‖2

2σ2 )
where λ is some positive constant controlling the degree of smoothness and
σ is set as in [14]. The global energy to minimize ends to:

E (γ) = Edata (γ) + Esmooth (γ)

Let us just recall useful notations [22]. We consider a graph G = 〈V , E〉
that is a set of nodes V and directed edges E connecting them. Two special
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terminal nodes are present: the source s and the sink t. Each edge (p, q)
connecting a node p to a node q is assigned a weight tp,q. Edges are broken
in two groups: n-links and t-links. A n-link is an edge connecting two non-
terminal nodes. A t-link connects a non-terminal node to a terminal node.
A cut C is a partitioning of the nodes of the graph into two disjoint subsets
S et T such that the source s ∈ S and the sink t ∈ T . Its cost is the sum
of the weights of all edges (p, q) such that p ∈ S and q ∈ T . A minimum
cut is a cut with minimal cost and one minimum cut can be determined in
polynomial time with a max-flow extraction algorithm.

Here, each pixel of the image is associated to a node and to edges for each
of its neighbors. Each node is also connected to the sink and the source.
The weights on the t-links deal with data constrain and those on the n-
links account for smoothness. For a pixel x associated to node p, let DX

be the negative logarithm of the probability density function associated to
region ΩX : DX(p) = − log pX (I (x)). The Graph is built according to
table 6.2.3. After the cut, the nodes that are still connected to the source,
are assigned to ΩF , the others to ΩB. Figure 6.7 shows the result of this
segmentation process on some test image using both the method in [12] and
a method using an EM/MDL estimation. Note that some details misclassified
by the original method are correctly handled by the EM/MDL approach. Yet,
these improvements are not decisive. More important is the fact that the
MDL based estimation of NX proves to be reliable and masks one annoying
parameter from the user.

link weight for
ts,p 0 p ∈ ΩU

tp,t ∞ p ∈ ΩU

ts,p DB(p) p 6∈ ΩU

tp,t DF (p) p 6∈ ΩU

tp,q V(p, q) q ∈ N (p)

Table 6.1: Weights associated to a node p in the graph

6.2.4 Trimap

Assuming that the blended region will also be modeled by a PDF pM(I), still
to be modeled, the data driven part of the energy is unchanged and given by
equation (6.2) with a new partition function that reflects the 3 regions.

However, keeping the same smoothing term is a nonsense. A high image
gradient does not indicate a frontier between two regions anymore. Instead,
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Figure 6.7: Importance of then EM estimation and reliability of the MDL
criterion. Original image with background specification in red (left) and the
corresponding segmentations using the method in [12] with fixed NF = NB =
5 (middle) and our EM/MDL approach (right)

we use the length of the frontiers separating the regions as a smoothing
energy. Classical in the Level Set framework and inducing mean curvature
motion, this can also be handled rigorously in an Markov Random Field
framework (see [17]). Here, we will restrict ourselves to an approximation,
just replacing the previous V0(x, y) to a decreasing function of the distance
between x and y (e.g. V0(x, y) = λ/(1 + d(x, y))).

Keeping the same GMM models for pB and pF , we still have to design a
model for pM in order to define the energy to minimize.

PDF

A straightforward solution would be to take a third GMM for pM and to
estimate its parameters ΘM = {NM , (π

M
i , µ

M
i ,Σ

M
i )i=1..NM

} via the same
EM/MDL scheme as for pB and pF . It would be a mistake. Indeed, pM

is not independent from pB and pF : in ΩM , I, IF and IB are related by
equation (6.1). Despite this, one could willingly ignore this dependency and
try to segment (ΩB,ΩM ,ΩF ) as three regions with each one its own inde-
pendent GMM. Unfortunately, it is not obvious that the resulting iterated
minimizing process will converge to the desired regions without a very ac-
curate initialization, specifying pixels of the three regions. On the contrary,
making pM depend on pB and pF will turn out to be sufficient to keep a
coarse initialization ΩU .

Let us examine equation (6.1). We will assume for simplicity that both
IF and IB come from one single Gaussian of the respective GMMs pF and
pB. In their Bayesian estimation of layers from multiple images, Wexler et
al. [174] assume that α follows a Beta law. Yet, they choose the parameters
of the Beta distribution by estimating them on some reference image. Thus,
although Kitamoto gives in [103, 104] a Gaussian approximation of a mixture
of two Gaussian distributions when the mixture coefficient follows a Beta
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Law, we prefer to simply consider that α follows a uniform law. In that
case, if IF comes from GµF

i ,ΣF
i

and IB from GµB
j ,ΣB

j
, the distribution of I

can be approximated by another Gaussian GµM
ij ,ΣM

ij
, given also by Kitamoto

in [103, 104] as:

µM
ij =

µF
i + µB

j

2
and ΣM

ij =
1

3

(
ΣF

i + ΣB
j

)
+

1

12

(
µB

j − µF
i

) (
µB

j − µF
i

)T
(6.3)

Note that this is, again, an approximation and that more sophisticated mod-
els could be investigated. Actually, our simple assumption of a uniform
α, and of a Gaussian approximation for I, will turn out to give good re-
sults. With this choice, it is natural to model pM with another GMM, whose
NM = NFNB components are now fixed and dependent on pF and pB:

pM(I) =

NF∑
i=1

NB∑
j=1

πM
ij GµM

ij ,ΣM
ij

(I)

where
∑

ij π
M
ij = 1 and where the (µM

ij ,Σ
M
ij ) are given by equation (6.3).

The only free parameters are the (πM
ij ), and we estimate them with an EM

algorithm on ΩM .

Implementation

Level Set: For a level set implementation the reader is refereed to Sec:2
and Sec:6.2.3.

Graph Cut: As we assume that the blended region ΩM separates ΩF from
ΩB, we can use the Graph Cuts implementation described in [80] which is
simpler than the usual α-expansion based algorithm and provides a global
minimum. Each pixel x is represented by two nodes p0 and p1. The graph
is built according to figure 6.8. After the cut, each node is labeled according
to the following rule:

• If the link between {s, p0} is cut, the node is assigned to the foreground.

• If the link between {p0, p1} is cut, the node is assigned to the blended
region.

• If the link between {p1, t} is cut, the node is assigned to the background.

Here we use the method described by Kolmogorov and Zabih in [109] to force
the algorithm to cut one and only one of the three links {s, p0}, {p0, p1} and
{p1, t}. It consists in adding infinite reverse edges on the graph (see red
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link weight for
ts,p0 ∞ p ∈ ΩU

tp0,p1 ∞ p ∈ ΩU

tp1,t 0 p ∈ ΩU

ts,p0 DF (p) p 6∈ ΩU

tp0,p1 DM(p) p 6∈ ΩU

tp1,t DB(p) p 6∈ ΩU

tpi,qi
V(p, q) q ∈ N (p)

Figure 6.8: Trimap segmentation. Graph representation for two nodes p and
q and associated weights.

links on figure 6.8). Like in the two regions case, we use an iterative scheme.
However we found that using the two regions segmentation as a first step
gives good initial estimates for pB and pF and speeds up the convergence.

First results

Level Set: As we want the image to be segmented in three regions, we use
two level sets, following the work in [168]. The energy for this segmentation
is similar to the two regions segmentation one:

E = Edata + ν (length (ΓFM) + length (ΓMB))

where the PDF for the three regions (Foreground, Mixed and Background
region) are three GMM such as in two regions segmentation. Here we do not
make use of the new designed PDF.

We see from the Figure 6.9 on the right, that optimizing the contour
using standard unsupervised segmentation is not appropriate as the contour
penetrate too much in the Mixed region (motion blur wing of the Butterfly).

In fact by using GMM for the Mixed region, we have assume all the
regions to be independent. However that’s not the case for the Mixed region
and the new model must be used to describe this one.

Graph Cut: Figure 6.10 shows the trimap obtained for the reference
image in [41] from just a coarse indication of the background. It is similar to
the hand designed one used in the original work. For comparison purposes,
we show also the poor trimap obtained when naively modeling the blended
region with an independent GMM, even when starting from a more accurate
initialization. This confirms the result obtained with levelset implementation
and shows also that the problem detected using level set methods is not based
on the local optimality of the provide solution. Indeed even a global optimum
(a teach iteration) by using graph cut leads to a poor segmentation.
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Figure 6.9: Unsupervised three regions segmentation - Upper left: initializa-
tion (Foreground in white, Background in gray) - Lower left: final segmen-
tation - Right: Zoom on the wing segmentation
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Figure 6.15a and 6.15b in next section show many other automatic trimaps.
Table 6.2.4 gives the running times of the trimap extraction (and of the first
step of two regions segmentation) for some of our test images, on a standard
2.4GHz PC without any specific optimization. These are the times for a
complete convergence and the process might be stopped before. A multi-
scale approach would also improve speed significantly. Anyway, these are
to be compared with the times needed for a cautious manual segmentation,
depending on the user’s ability and/or equipment. Note that the more com-
plex a manual segmentation would be, the more the automatic segmentation
seems to require time to converge (see images on figures 6.15a and 6.15b).

Figure 6.10: Automatic trimaps. First column: the original image and the
hand designed trimap used in [41]. Second column: background/foreground
initialization (in red/white) and the obtained trimap, naively considering pM

as an independent GMM. Third column: background only initialization (in
red) and the trimap obtained with our method

Image First step Total time
Teddy Bear 36s 94s
Butterfly 14s 28s

Light 48s 133s

Table 6.2: Running times for trimap segmentation on some test images.

6.2.5 New Matting Algorithm

In this section, we propose a new matting algorithm taking advantage of our
blended region model. Based on global statistics rather than on local ones,
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it is faster than the original Bayesian matting, although without quality loss.
Chuang et al.’s Bayesian matting algorithm is based on estimating local

statistics of the foreground and of the background. For each pixel in the
blended region, a neighborhood is considered, where the foreground and the
background are respectively modeled by two Gaussian distributions GµF

loc,ΣF
loc

and GµB
loc,ΣB

loc
.

Estimating a local mean and covariance for each pixel is inefficient from
a computational point of view. Moreover, limiting the distribution of the
neighborhood of a pixel to one single Gaussian may sometimes be a too coarse
approximation. We propose to take advantage of our global GMM analysis
of the foreground and the background carried out during the segmentation
process. Keeping the assumption that IF and IB come from one Gaussian
each, we choose these two Gaussian distributions respectively among the
components of pF and pB. We use πM

ij GµM
ij ,ΣM

ij
(I) to measure which Gaussian

distributions most probably explain I. Thus, we simply:

1. choose the pair (i0, j0) that maximizes πM
ij GµM

ij ,ΣM
ij

(I)

2. use Chuang et al.’s solving scheme with GµF
i0

,ΣF
i0

and GµB
j0

,ΣB
j0

as priors
for IF and IB instead of the local estimations GµF

loc,ΣF
loc

and GµB
loc,ΣB

loc
.

The resulting process turns out to be faster than the original method and
the results are similar. Note that it is essential that the GMMs have enough
components to explain all the colors/textures locally present in the image.
Our EM/MDL estimation ensures this.

6.2.6 Results

Level Set

On synthetic images (Figure 6.11), we show that our algorithm converge
toward a good estimation of the real trimap although the initial segmentation
is quite far from the solution. Moreover when adding additive Gaussian noise,
the algorithm still converges to a trimap not close to the reel one and the
Mixed region does not vanish because noisy data.

We used here a bench image given by Chuang et al. On the first row of
the figure 6.12, we see the initial image and the initial segmentation where
the Foreground is displayed in white and the Background in gray. On the
second row, on the left we see the user defined trimap used by Chuang et al,
on the right the reconstruct trimap from the initial segmentation using our
algorithm. On the third row, on the left we see the true Alpha Matte and on
the right the alpha estimation using Chuang algorithm with a bad initialized
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Figure 6.11: First row: initial image, noisy initial image (gaussian blur σ =
20) - Second row: initial segmentation (foreground in white, background in
gray) - Third row: final trimap segmentation (foreground in white, Mixed
region in gray, background in black) - Fourth row: Alpha estimation
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Figure 6.12: Teddy Bear bench - First row: initial image & initial segmen-
tation - Second row: High quality user maid trimap by Chuang et al & final
trimap obtained by our algorithm - Third row: True Alpha Matte & Alpha
Estimation using a rough trimap and Chuang et al algorithm - Fourth row:
Alpha Estimation using our final trimap and Chuang et al algorithm & Alpha
Estimation using our final trimap and our Alpha Matting algorithm
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trimap. As this technique uses a local estimation of the foreground and
background statistics, the quality of the alpha estimation is directly linked
to the quality of the initialization. In fact, on the fourth row, on the left,
we see the Chuang’s alpha estimation using our generated trimap and the
result is clearly better than with a rough initialization. On the right, we
see our alpha estimator using our trimap. The quality is obviously improved
by using our method however our trimap evolution algorithm penetrate too
much in the Mixed Region.

Figure 6.13: Real Image Samples - First column: image - Second Column:
Initial segmentation - Third Column: final trimap segmentation - Fourth
Column: Alpha Estimation using Chuang Algorithm

If we look attentively to the real images on figure 6.13, we can see that the
antenna of the butterfly is not correctly segmented by our algorithm. This is
due to the smoothing term of our energy. Such a term is quite unavoidable
when using a level set implementation. This should be solved by using the
Graph-Cut implementation.
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Graph Cut

In their original work on Bayesian matting, Chuang et al. proposed a real
bench image, supplying a ground truth for the alpha mask (see [41]). Fig-
ure 6.12 shows this true mask, compared those obtained with their and our
matting algorithm, using our automatic trimap in both cases. The result are
similar and the relative errors, in L2 norm in region ΩM , respectively gives
1.5% and 1.4% errors.

As expected, the main advantage of our method is its computational
efficiency. Table 6.3 gives the running times of both methods for some of
our test images, under the same conditions as previously (standard 2.4GHz
PC, no specific optimization). We observed a speedup of about 100. Please
note that this would also stand when starting from a manual trimap. The
only overhead for our matting would be to estimate the global statistics from
this trimap before running, which is actually negligible with respect to the
matting process.

Finally, figures 6.15a and 6.15b show the complete process of our method
on several test images: the original images (figure 6.15a only), the user’s ini-
tialization, the segmented trimap, the mask obtained with Bayesian matting
(fig. 6.15a only), the one obtained with our method, and a recompositing
from our (α, IF , IB) estimation. It demonstrates how a simple initialization
without any additional parameter (e.g. number of Gaussian distributions)
is enough to get accurate trimaps, and how our fast matting method gives
results similar to the ones obtained with the original but slower Bayesian
matting.

Image Bayesian Our
matting matting

Teddy Bear 47s 0.36s
Butterfly 2.7s 0.027s

Light 37s 0.27s

Table 6.3: Running times for the standard Bayesian matting and for our
method on some test Trimap/Images.

6.2.7 Conclusion

In this section, we proposed a segmentation method aimed at extracting
an accurate Trimap for the digital matting problem. A statistical model is
specifically designed for the blended region and both Level Set and iterative
Graph Cut based optimization schemes are used. This allows retrieving a
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Figure 6.14: From top to bottom, left to right: three alpha masks (ground
truth, Bayesian matting using our trimap, our method using our trimap), a
recompositing using our mask and foreground estimations

Figure 6.15: a. For each image, in reading order: original image, user’s ini-
tialization, automatic trimap, Bayesian matting, our matting, recompositing.
b. On each line, from left to right: user’s initialization, automatic trimap,
our matting, recompositing.
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Trimap segmentation from just a coarse specification of some background
and/or foreground pixels. It also proved in this case the superiority of the
Graph Cuts based method with respect to the Level Set implementation.
This is a nice result since Graph Cut approach runs sightly faster than Level
Set approach.

The resulting Trimap is similar with those obtained by a meticulous hand
drawing. Finally, taking advantage of this blended region model, we describe
a improved digital matting method, based on global statistics, much faster
than the original Bayesian matting, although without quality loss. This
method is also usable starting from a manual Trimap.

6.3 Active Cuts for Image Segmentation

6.3.1 Static Segmentation

Figure Fig:6.19 clearly shows that the Hausdorff distance between initial
and optimal segmentation is strongly correlated to the running time of the
algorithm. We therefore expect that a "closer" initial cut will yield greater
performance. Our experiments show, however, that for static segmentation
an initial cut based on a Voronoï partition still gives good results. The
more closely the initial cut corresponds to the optimal cut, the faster the
convergence.

For image segmentation, one should provide initialization for our algo-
rithm. This could be Voronoï partitioning (like in Figure Fig:6.18), a circu-
lar area provided by the user (like in Figure Fig:6.16 and Figure Fig:6.17)
or some other prior (shape, color, texture...). However this initialization
should be carefully chosen as the speed of our algorithm is correlated to the
Hausdorff distance between initial and optimal segmentation as shown in the
graph of Figure Fig:6.19.

We remarked that successive cuts often appear to carve the initial seg-
mentation towards the global minima. In that case, successive cuts near the
global optima can be viewed as good local minima and may be used in third
party algorithm as highly confident cuts. These cuts may prove useful as
shape priors or for updating statistical properties of regions on the fly in
applications such as GrabCuts [148].

The speed of our algorithm is typically twice as fast as [18]. However
on some "difficult" segmentations, these two algorithms run in comparable
time.
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(a) Active Cuts (b) Cost of intermediate cuts

Figure 6.16: Active cuts in image segmentation (a). Initial cut is shown in
red color. Intermediate cuts (displayed in different colors) gradually "carve"
out the global minima solution that accurately follows object boundary. The
cost of intermediate cuts and their Hausdorff Distance to the global optima
decrease in time (b).

(a) Active Cuts (b) Cost of intermediate cuts

Figure 6.17: Clown fish segmentation over structured background. (a). Ini-
tial cut, shown in red color, is a round area given by the user (b). The
final cut (global minima, shown in green) accurately follows the fish exter-
nal contours without becoming stuck on local minima in the clown disguise.
The cost of cuts (blue plot) and their Hausdorff distance (red plot) from the
global optima decrease in time. Active cuts converge to a globally minimal
cut almost twice as fast (4.4ms) as the state of the art max-flow/min-cut
algorithm in [18] (7.7ms).
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Figure 6.18: Lung lobe segmentation is difficult due significant image clutter
(a) that generates a large number of strong local minima. Initial cut is shown
in purple color (b). The final cut (global minima, shown in yellow) accurately
follows a faint fissure boundary between two lobes. The cost of cuts (blue
plot) and their Hausdorff distance (red plot) from the global optima decrease
with time. Starting from a remote initial solution Active Cuts converges to
a globally minimal cut twice as fast (33ms) as the state of the art max-
flow/min-cut algorithm in [18] (69ms).

(a) Initial cuts (b) Run time

Figure 6.19: Active cuts can start from any initial cut (green circles) in (a).
Plots (b) show that the running time until convergence to a global minima
strongly correlates with a Hausdorff distance between initial cut and the
actual minimum cut. The horizontal axis in (b) shows the radius of initial
solution.

166



6. Applications to image segmentation6.3. Active Cuts for Image Segmentation

Algorithm Time
MaxFlow (BK) 18.15ms

ActiveCut 18.52ms

Hierarchical
ActiveCut

Level 2 : 0.70ms
Level 1 : 0.61ms
Level 0 : 8.59ms

Total : 9.90ms

Figure 6.20: Hierarchical segmentation using 16-Neighborhood. For each
level, initial cut is set to an optimal cut/segmentation from the previous
level, the deepest level is initialized using some image partition (like Voronoï
partition). Speed of our algorithm is achieved when good initializations are
provided. Hierarchical segmentation is an elegant way to estimate a min-
imum st-cut. Table gives timing comparison for the Boykov-Kolmogorov
maxflow/mincut algorithm and our method using standard initialization
(Voronoï partition) and Hierarchical initialization with only 2 levels of deci-
mation. One can see a speed improvement around an order of 2.

6.3.2 Hierarcical Segmentation

For static segmentation, ideally one should use prior knowledge to estimate
the segmentation (shape, color, texture...). However, if no prior is available,
a hierarchical approach provides an elegant way to initialize our algorithm by
using segmentation of sub-sampled data. Such "coarse cuts" have recently
been used to accelerate graph cuts, but the narrow band technique of [118]
sacrifices global optimality by limiting the scope of the solution. In contrast,
we simply use the coarse cut as our initial cut on the full graph, thereby
retaining global optimality. Figure Fig:6.20 shows an example of hierarchical
initialization on large neighborhood using only two levels of decimation. In
this example, speed is improved by an order of two even though our hierar-
chical implementation itself is not optimized.

Our hierarchical algorithm does, on occasion, provide no significant speed
up. Figure Fig:6.21 shows a case were a Voronoï initial cut gives convergence
as quickly as an initial cut generated by our hierarchical approach. By looking
at the table, one can see that most time is spent in the "Level 0" step. The
cluttered patterns inside the lung lobe makes segmentation more difficult
because there are many strong local minima in the problem and the algorithm
must explore all of them to find the global optima.
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Algorithm Time
MaxFlow (BK) 26.47ms

ActiveCut 19.98ms

Hierarchical
ActiveCut

Level 2 : 0.45ms
Level 1 : 2.14ms
Level 0 : 16.95ms

Total : 19.54ms

Figure 6.21: Hierarchical segmentation using 4-Neighborhood and directed
edges (dark object prior). Optimal segmentation from coarse scale is to ini-
tialize finer scale. Speed of the Hierarchical approach is better but deceiving
in this case. However the internal structure on the lung lobe makes it difficult
to segment and the timing table confirms that the more torn level ("Level
0") is main time-consumer.
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Chapter 7

Applications to video
segmentation

In this chapter, we present an application of Active Cuts for Video segmen-
tation. We briefly compare it to Dynamic Graph Cut [105]. This work we
be published as a conference paper at CVPR’06 [87].

Then we present a recent development on Motion Layer Extraction. We
propose a new method based on a Graph Cut formulation that allows seg-
menting objects on a video sequence and tracking them even when they are
partially occluded. Indeed this technique provides both visible and hidden
layers. This work stems from a join work with Romain Dupont and was
submitted at ICPR’06 [62] and is also available as a technical report [63].

7.1 Active Cuts for Video Segmentation

Given that our algorithm can take advantage of a close initial cut, one natural
application is that of video segmentation (or dynamic segmentation). When
there is enough spatio-temporal consistency between frames of a video, one
can assume that the optimal segmentations will be also spatially similar and
therefore the cut from the previous frame will make a good initial cut for
the current frame. This kind of consistency assumption is widely used in the
vision community and was recently applied to graph cuts [105].

Figure Fig:7.1 shows an example of video segmentation for hand tracking.
The graph shows that our algorithm is in an average of 5 times faster than
the standard maxflow algorithm of [18]. Moreover this graph confirms the
observation in Figure 2 that the time of convergence is correlated to the
change between two consecutive segmentations.

It is interesting to note that we could also integrate the flow and tree re-
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cycling proposed by Kohli and Torr in [105] into our method in order squeeze
more performance out of dynamic segmentation.

We were not able to do a complete and careful comparison of [105] since
their code was not available at that time. But this should be done in a close
future.

7.2 Motion Layers

We consider the extraction of the layers composing a video sequence, each
of them being approximated by a planar set of objects having the same
parametric motion. This well studied representation (see [6, 10, 11, 13, 64, 97,
110, 129, 160, 172, 173]) offers a good trade-off between low- and high-level of
information for numerous applications, such as robust motion segmentation,
efficient video compression, 3D reconstruction of urban scenes, etc. The
main issues addressed in this context are the estimation of the motion of the
layers, the outliers and occlusion detection, the determination of the number
of layers, the choice of regularization criteria and the accuracy and robustness
of the segmentation.

In [177], Xiao and Shah present a method based on temporal constraints
between a frame and its successors (1 7→ 2, 1 7→ 3, 1 7→ 4, ...) that takes into
account what they call occlusions (actually, point modeling two distinct phe-
nomenons: (i) objects becoming hidden and (ii) noisy point with impossible
tracking). Their method does not intrinsically give smooth segmentations
from one frame to the other as frames are processed independently.

On the contrary, our method takes advantage of temporal information
for the whole sequence. Indeed, it simultaneously processes all the sequence
considering temporal constraints between successive frames 1 7→ 2 7→ 3 7→
4 7→ ..., guaranteeing a smooth labeling. Furthermore, it explicitly recovers
the hidden parts of the layers, that can disappear behind an another one and
re-appear a few frames later: a disappearing point is not only detected like
in [177] but also tracked while being hidden until it re-appears ! Finally, track-
ing both visible and hidden parts of layers reduces segmentation ambiguities,
namely the number of undefined points (see further).

Hidden layers. For each pixel, we consider its corresponding visible
layer and all hidden layers if any. Given n, the number of layers, we associate
each pixel x with its label lx = (vx,hx) ∈ L, with L = (V ×H) \ F , where
V = [1, n] ∪ {∅V} is the visible space, H = {false, true}n is the hidden
one and F refers to forbidden combinations (see further). The special label
∅V corresponds to an indetermination on the visible layer choice (undefined
pixels or "outliers"). The ith coordinate hi

x of vector hx indicates the hidden
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Figure 7.1: Dynamic segmentation of a video sequence. The Active cuts
algorithm (yellow) runs 2-6 times faster than the state-of-the-art max-flow
algorithm in [18] (red). In each new frame initial cut for our algorithm is set
to an optimal cut/segmentation from the previous frame. The speed of our
algorithm almost linearly proportional to the magnitude of motion shown
by the plot of the Hausdorff distance between the segments in consecutive
frames (blue). Note that active cuts can be further accelerated in dynamic
applications by "recycling" flow computed in the previous frame [105].
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Caption for layer i

Visible : vx= i

Hidden : hix = true and vx 6= i

Nothing : hix= false and vx 6= i

Undef : vx = ∅V

Figure 7.2: Example of labeling. Note that these images are not the results
obtained by our algorithm but an example of what could be a reasonable
segmentation.

state of the ith layer (true if hidden, false if visible or non present). For a
given pixel, a layer cannot be both visible and hidden, i.e. h

vx
x 6= true: F is

the set of such forbidden cases. Figure 7.2 illustrates such a labeling.
The reminder of this paper is organized in the following way. section 2

presents the energy used for classification. section 3 provides some important
information about the implementation and shows results on both synthetic
and real data. The last section gives some conclusion and future directions.

Motion model. We note T t
v the parametric motion of layer v be-

tween frames t and t + 1. No motion is associated to layer ∅V . Our ex-
periments use classical projective motions, thus approximates the scene by
three-dimensional plane objects, although any other model could be used
(e.g. affine). Motion estimation follows our previous work [64] and will not
be detailed here, though any other equivalent method could be used.

Initialization. Our method is initialized with n pre-computed layers
(accurate or not), obtained through pre-existent methods like the ones in [64,
177]. When the correspondences between the layers of successive frames is not
explicitly given by this initial segmentation, we recover it easily, associating
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a layer v at time t to the one at time t + 1 that most overlaps its image
through T t

v .
Overall process. Our method consists in alternating, until some stabi-

lization: (i) layer segmentation and (ii) refinement of the motion parameters
from the visible part of the layers (which, again, will not be detailed here).

7.2.1 Classification

Given T frames, n layers, and T t
v (v ∈ [1, n], t ∈ [1, T ]) their motion models

1, we consider the labeling problem consisting in determining a function
L : (x, t) 7→ ltx = (vt

x,h
t
x) ∈ L. We plug the problem into a variational

framework and will design in the sequel an energy that L should minimize.
Note that we consider a constant number of layers throughout the sequence.
Such a limitation could be relaxed through appropriate methods.

Motion energy

The motion energy is based on visible parts of the layers and is indeed related
to the images ("data term"). The forward motion residual rv(x) for the pixel
x under motion Tv is defined by:

rt
v(x) =

∥∥I t(x)− I t+1(T t
v (x))

∥∥ (7.1)

where I t is the image at time t. To reduce the influence of high motion
residuals, we apply a smoothed Heaviside operator ψ (Fig. 7.3) given by:

ψ(rv) = tan−1
(
r2
v − τ

)
+ π/2 (7.2)

We define a labeling cost function dI by:

dI(lx,x) =

{
ψ
(
rvx (x)

)
if vx ∈ [1, n]

ψundef if vx = ∅V
(7.3)

where the parameter ψundef adjusts the classification of pixels as undefined.
The forward motion energy Et

FM is then, for a given frame t:

Et
FM(L) =

∫
Ω

dI(l
t
x,x)dx (7.4)

where Ω is the image domain. To increase robustness, we also consider
the backward motion residual (as in [129]) and its associated energy noted
Et

BM(L). It is defined similarly, considering frame t − 1 instead of frame
1when explicitly needed, the frame number t will be indicated by a superscript
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0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
0,

0,5

1,

1,5

2,

2,5

3,

3,5

Figure 7.3: Smoothed Heaviside operator ψ shape (with τ = 50).

t+ 1 and the reverse motion (T t
v )
−1 instead of T t

v . Moreover, we embed this
criterion into a temporal-multiscale framework, considering also the motion
residuals between frame t and frames t+1, t+2, t+3, · · · , t−1, t−2, t−3, · · ·
to handle small motion cases.

Spatial regularization

As in every noisy and under-constrained problem, spatial regularization has
to be introduced. Both visible and hidden parts of the layers are regularized
through the following energy:

Et
S(L) =

x

Ω2

φ(||x− y||)dt
S

(
ltx, l

t
y

)
dydx (7.5)

where φ is some kernel (e.g Gaussian) and dt
S(., .) is a dissimilarity measure

between two labels. Discontinuous labels for both visible and hidden layers
must be penalized. We encourage also the frontier of the layer to belong to
pixels with high image gradient. This gives the following function:

dt
S(lx, ly) = µV I

(
vx 6= vy

)
exp

(
−‖I

t(x)− I t(y)‖2

2σ2

)
+ µH

n∑
i=1

I
(
hi

x 6= hi
y

) (7.6)

where I(i) equals 1 if i is true, 0 otherwise, σ is the standard deviation of the
norm of the gradient of the images, and (µV , µH) some constants adjusting
spatial regularization with respect to the other energy terms.

Temporal constraints

Temporal constraints are designed for both temporal smoothness and tempo-
ral consistency between visible and hidden layers. To this end, using motion
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information, we penalize discontinuous labeling between frames. To simplify
notations, we note xi = T t

i (x) the image of x in frame t + 1 through the
motion of layer i at time t. Our forward temporal energy is written as follows:

Et
FT (L) =

∫
Ω

[
I(vx 6= ∅V)dV

(
ltx, l

t+1
xvx

)
+

n∑
i=1

I(hi
x = true)di

H

(
ltx, l

t+1
xi

) ]
dx (7.7)

where dV (., .) and di
H(., .) are dissimilarity measures given by:

dV (lx, ly) =


0 if vx = vy
λH if h

vx
y = true

λD otherwise
(7.8)

and:

di
H(lx, ly) =


0 if hi

y = hi
x

λV if vy = i
λD otherwise

(7.9)

where λH , λV and λD respectively penalize the following events: hiding, re-
appearing, and completely disappearing. It can be shown that λD has to be
chosen greater than λV and λH (see section Sec7.2.2) and that the following
inequality λH + λV 6 λD must be respected.

As in the data term, we also consider backward constraints, leading to
a symmetric temporal energy Et

BT . Moreover, similarly as for the motion
residual, we also embed these temporal constraints into a temporal multi-
scale framework to increase robustness (especially in cases of slow motions)
considering also constraints between frame t and frames t+ 1, t+ 2, t+ 3, t−
1, t− 2, t− 3, · · · and so on.

Overall energy

Our overall energy to extract the optimal partition of the T images is finally:

E(L) =
T∑

t=1

Et
FM(L) + Et

BM(L)︸ ︷︷ ︸
data term (motion)

+ Et
S(L)︸ ︷︷ ︸

spatial regularization

+Et
FT (L) + Et

BT (L)︸ ︷︷ ︸
temporal constraints

(7.10)
Next section will describe the optimization process used to minimize this

global energy.
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7.2.2 Energy minimization

We plug our spatially continuous energy minimization problem into a discrete
Markov Random Field framework [73]. The global energy (Eq. 7.10) is
discretized considering a 4- or 8- neighborhood for the spatial constraints.
Due to its efficiency, we use the alpha-expansion algorithm [23, 108] provided
that distance function dS is sub-modular (easy to verify) and that temporal
constraints fit also submodularity requirement.

About the submodularities of the temporal constraints

First, we remind what a submodular function is.

Definition 1 A sub-modular function D(., .) verifies D(lx, ly) +D(lα, lα) 6
D(lx, lα)+D(lα, ly) for two given pixels x and y (see [108] for more details).

To demonstrate that the temporal constraints fit the submodularity re-
quirement, we introduce these two following functions V and H (which de-
pend on dV and dH) :

Vx,y(lx, ly) = I
(
y = Tvx(x) ∧ vx 6= ∅V

)
· dV (lx, ly) (7.11)

H i
x,y(lx, ly) = I

(
y = Ti(x) ∧ hi

x = true
)
· di

H(lx, ly) (7.12)

Theorem 1 The function (V +
∑

iH
i) is submodular if λD is greater than

λV and λH .

Proof :
Summary of the proof: we will show that functions D and H i are sub-

modular providing λV = λH = λD. However, considering some particular
cases, we will also show that the function (D +

∑
iH

i) is submodular pro-
viding λV 6 λD and λH 6 λD. For the other cases, we use the fact that the
sum of two submodular functions is submodular.

First, we consider the function D(): the table 7.1 shows all the cases
which give information about the constraints between λH and λD. Cases V5
and V8 are impossible as a change of visible labeling to vα implies a change
of projected pixel Tvα

to consider: as a consequence, the requirement y = Tvα

will not then be satisfied anymore except if α = vx
2. Valid cases V3 and V6

show that the following equality λD = λH must be respected. And similarly
for H i as shown in table 7.2 : valid cases H3 and H6 constrain the following
equality λD = λV .

2We consider here that all motion models have different parameters.
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case V (lx, ly) 6 V (lx, lα) obtained if state
+V (lα, ly)

V1 λH 6 0 + 0 {vx 6= vy} ∧ {vx = vα = vy} ⇒ impossible

V2 λD 6 0 + 0 equiv. to previous case ⇒ impossible

V3 λD 6 λH + 0 {vx 6= vy ∧ h
vx
y = false}

∧{vx 6= vα ∧ h
vx
α = true}

∧{vα = vy} ⇒ possible !

V4 λD 6 0 + λH {vx 6= vy ∧ h
vx
y = false}

∧{vx = vα}
∧{vα 6= vy ∧ h

vα
y = true} ⇒ impossible

V5 λD 6 λH + λH {vx 6= vy ∧ h
vx
y = false}

∧{vx 6= vα ∧ h
vx
α = true}

∧{vα 6= vy ∧ h
vα
y = true}

∧{vα = vx} ⇒ impossible

V6 λH 6 λD + 0 {vx 6= vy ∧ h
vx
y = true}

∧{vx 6= vα ∧ h
vx
α = false}

∧{vα = vy} ⇒ possible !

V7 λH 6 0 + λD {vx 6= vy ∧ h
vx
y = true}

∧{vx = vα}
∧{vα 6= vy ∧ h

vα
y = false} ⇒ impossible

V8 λH 6 λD + λD {vx 6= vy ∧ h
vx
y = true}

∧{vx 6= vα ∧ h
vx
α = false}

∧{vα 6= vy ∧ h
vα
y = false}

∧{vα = vx} ⇒ impossible

Table 7.1: Cases considered for the submodularity of D().
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case H i(x, y) 6 H i(x, α) obtained if, state
+H i(α, y)

H1 λV 6 0 + 0 {hi
x 6= hi

y} ∧ {hi
x = hi

α = hi
y} ⇒ impossible

H2 λD 6 0 + 0 equiv. to previous case ⇒ impossible

H3 λD 6 λV + 0 {hi
x 6= hi

y ∧ vy 6= i}
∧{hi

x 6= hi
α ∧ vα = i}

∧{hi
α = hi

y} ⇒ possible !

H4 λD 6 0 + λV {hi
x 6= hi

y ∧ vy 6= i}
∧{hi

x = hi
α}

∧{hi
α 6= hi

y ∧ vy = i} ⇒ impossible

H5 λD 6 λV + λV {hi
x 6= hi

y ∧ vy 6= i}
∧{hi

x 6= hi
α ∧ vα = i}

∧{hi
α 6= hi

y ∧ vy = i}
∧{hi

α = hi
x} ⇒ impossible

H6 λV 6 λD + 0 {hi
x 6= hi

y ∧ vy = i}
∧{hi

x 6= hi
α ∧ vα 6= i}

∧{hi
α = hi

y} ⇒ possible !

H7 λV 6 0 + λD {hi
x 6= hi

y ∧ vy = i}
∧{hi

x = hi
α}

∧{hi
α 6= hi

y ∧ vy 6= i} ⇒ impossible

H8 λV 6 λD + λD {hi
x 6= hi

y ∧ vy = i}
∧{hi

x 6= hi
α ∧ vα 6= i}

∧{hi
α 6= hi

y ∧ vy 6= i}
∧{hi

α = hi
x} ⇒ impossible

Table 7.2: Cases considered for the submodularity of H().
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However, for the cases V3 and H3 (which force λH and λV to be greater
than λD), one can see that the function (D+

∑
iH

i) is actually submodular
without any constraints on λH , λV and λD (as shown in figure 7.4).

x y

0

λH

λD

λD

vy hx
α
= true

vy

vy

vx

hx
α
= true

hxy = falsehx
x
= false

Case V 3

x y

0

λD

λD
vyvx

Case H3

λV

ii hiα = false hiα = false

hix = true hiy = false

Figure 7.4: Cases V3 and H3 (with resp. y = Tvx(x) and y = Ti(x)) . Both
cases are graph-representable as the inequalities λD 6 λD + λH for case V3
and λD 6 λD +λV for case H3 are respected ∀λD, λH and λV > 0 (see tables
7.1 and 7.2 for details) .

For the other valid cases, D() and H i() (and so D+
∑

iH
i) are submod-

ular providing that λV 6 λD and λH 6 λD.
�

Furthermore, one can see that the following inequality λH+λV 6 λD must
be respected if we want hidden parts of the layers to be recovered. Indeed,
if not, the cost of a disparition to a hidden layer (cost : λH) followed by an
apparition to a visible layer (cost : λV ) would be coster than a disparition
to ’nothing’, i.e. to any hidden layer, which would only cost λD (indeed, in
such a case, there is no apparition constraint, so no apparition cost).

Minimization process

Even then, labeling cannot be achieved in reasonable time using a straight-
forward alpha-expansion since the number of possible labels (v,h) increases
dramatically with the number of layers: (n + 2)2n−1 possible expansions!
However the problem could be circumvented limiting alpha-expansions to a
sub-space of L.

First minimization method:
One can consider only a change of the visible layer and one hidden layer,

i.e. (v,hi)-expansions for successive choices of i. Using this approach, we
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reduce the number of optimization steps to 2n2: for each visible layer j (so
n iterations), we process 2n (vj,h

i)-expansions, testing in same time if the
j-th layer is visible and if the i-th layer is hidden or not (with i 6= j).

However, some labelings are impossible to obtain. Consider the following
example (figure 7.5): the optimal solution should be vx = 0, vx′ = 1, vx′ = 2
and h0

x′ = h0
x′′ = true (all other hidden layers set to false). If we consider

initial labelings such as vx = 0, vx′ = 1, vx′ = 2 but h0
x′ = h0

x′′ = false,
there is any (vj,h

0)-expansion which could give the optimal solution. Indeed,
neither the (v1,h

0 = true)-expansion, nor the (v2,h
0 = true)-expansion

could change the labels of x′ and x′′. Note that such a limitation is also
encountered even if we change not only one hidden layer but also all the
other ones at same time.

Image t − 1 Image t +1Image t

L1

x
′′

LL

x
′

L1

L

x

L1

Figure 7.5: Example of sequence where optimal solution could not be ob-
tained through (vj,h

i)-expansions. Here, there are three layers L0,L1,L2

(resp. in blue, red and green), the white pixel x and the projected ones
x′ = T0(x) and x′′ = T0(x′).

Only a change of hidden labeling without modifying any visible labeling
could handle such a case. Hence, we propose a second minimization process
to solve the problem.

Second minimization method:
One can consider alternatively

• only a change of the visible layer without modifying the hidden layer
states (except for the corresponding hidden layer hv which is set to
false) ⇒ (v,hv = false)-expansions for successive choices of v.

• and only a change of one hidden layer, without modifying visible layer
⇒ (hi = false/true)-expansions for successive choices of i.

Using this approach, we reduce the number of optimization steps to 3n: we
process each visible layer (so n iterations) and 2n (hi)-expansions, testing if

180



7. Applications to video segmentation 7.2. Motion Layers

the i-th layer is hidden or not. This yields in practice to acceptable mini-
mization times, without modifying noticeably the segmentation.

But such an approach has also some drawbacks: some labelings can be
unreachable. For example, if a pixel x is currently labeled as (vx = 1,h0

x =
h1

x = false) and if the optimal label is (vx = 0,h1
x = true), it is not yet guar-

anteed that a (v = 0)-expansion will decrease the overall energy, changing
the label of x to (vx = 0,h1

x = false).
The corresponding graph is a three-dimensional one, the third dimension

being time. The data and spatial regularization terms of the energy are
standard in the graph-cut framework. During a v− or hi−expansion, the
backward and forward spatial constraints yield links between each pixel x at
time t and 2(2 + n) other pixels: xv or xh , xvx and xhi

x
(i ∈ [1, n]) at time

t+ 1 and similarly at time t− 1 (see figure 7.6).

7.2.3 Results

Synthetic sequence

Figure 7.7 shows the results obtained on a synthetic sequence (n = 3).
Throughout the sequence, the proportion of misclassified visible pixels is
0.06% and the proportion of pixels where the complete label l (visible and
hidden parts) is incorrect is also 0.06%: for each pixel, classification fails or
succeeds globally. Note that in this particular sequence, no pixel is classi-
fied as undefined. Indeed, only noise or aliasing could generate such pixels.
Because hidden parts are modelized, the undefined label do not account any-
more for points that become hidden like in [177].

Real sequences

As a first step3 toward comparing our results to state of the art method
like [64, 177], we show the results obtained for a real sequence (fig. 7.8).
One can see that the segmentation of the visible layers is comparable to the
usually obtained segmentation. Note that the wheels of the car are sometime
classified as undefined because the number n of layers is fixed too small (the
wheels have their own motion). A splitting/merging approach could be used
to choose n dynamically. We are in the process of implementing this.

Moreover, our goal was to extract the hidden parts of the layers and this
is correctly done. Continuous labeling between frames is obtained, providing
non-disrupted segmentation throughout the sequences. Again, note that the
number of undefined pixels is rather small: unlike in [177] where these pixels

3No ground truth is provided here!
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source

source

source

source

sink

sink
sink

sink

frame t − 1

frame t +1

frame t

Figure 7.6: Graph construction: Source t-links are shown in red, sink t-
links in green. Considering a (V,hV = false)-expansion (or hH-expansion),
temporal n-links are shown in black and link the pixel x (frame t) to pixels
xvx ,xhi

x
,xV (or xH) of frames t− 1 and t+1. Note: for clarity, only the links

relative to the i-th hidden layer are shown.

code also for points that are going to be hidden, in our method vx = ∅V only
stands for a lack of image information (e.g. too much noise).

7.2.4 Conclusion and discussion

We have presented a novel global optimization process for motion layer seg-
mentation in a video sequence. Considering the hidden parts of the layers,
we achieve a continuous labeling, even is case of occlusion: when hidden,
a point is tracked until reappearance. Ongoing work includes dealing with
(i) processing longer sequences through shifting windows, (ii) more robust-
ness thanks to multi-scale analysis in time and (iii) coping with a robust
determination of a variable number of layers.
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Figure 7.7: A synthetic sequence. From top to bottom, left to right: original
sequence, layers 1, 2 and 3 (white=visible, grey=hidden) (Note: on this
particular image of the sequence, no pixel is classified as undefined)
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Figure 7.8: Carmap sequence. From top to bottom, left to right: origi-
nal sequence, undefined pixels (in red), layers 1, 2 and 3 (white=visible,
grey=hidden).
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Born of a join work with Gheorghes Postelnicu, we presented the Stochastic
Level Sets, a general framework to introduce random perturbations in the
Level Set method. This could be applied to a minimization process that per-
forms better minimization by avoiding local minima: the Stochastic Active
Contours. Moreover, it also provides a minimizing technique in Level Set
formulation for energies with inaccessible or intractable gradient.

We successfully apply it to unsupervised image segmentation based on
region information. Even if no theoretic result about global optimum con-
vergence is provided, in practice this method greatly improves the results.

In the future, we would be interested into bring some theoretic results
about the convergence of the Stochastic Active Contours. Since the Stochas-
tic Active Contours are only one application of the Stochastic Level Sets
(SLS), providing new applications of SLS to Computer Vision problems is a
promising research domain.

We also provide a new user-friendly segmentation technique for Digi-
tal Matting. Indeed Digital Matting’s first application is special effects for
movies. Having an easy and almost automatic tool is necessary since special
effects are omnipresent in movies nowadays. Most recent Digital Matting
methods need to be initialized by a Trimap segmentation. By automatiz-
ing this process or in that case, making it as easy as possible, one could
reduce sensitively post-production time. Our segmenting method proved to
be robust, fast and easy to use.

Graph Cut clearly shows here its superiority in comparison to Level Set.
However, one should note that Level Set can minimize a wider class of ener-
gies than Graph Cut.

We would like to bring those results to video in order to produce more
applicable result for post-production.

We then proposed a new max-flow/min-cut algorithm based on a sym-
metric formulation: the Active Cuts. This led us to a more efficient algorithm
with interesting properties especially for Computer Vision community: Ini-
tialization by a cut and providing a succession of intermediate decreasing
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cuts during optimization.
We provided some applications of Active Cuts for segmentation. In par-

ticular, Active Cuts showed to be applicable to hierarchical segmentation
without loosing global optimality. It also provided great performance for
video segmentation. Not all its possible applications and properties have
been prospected yet and it should be studied more (for example usefulness
of intermediate cuts).

It would be good to continue the Dynamic Tree exploration for Ac-
tive Cuts since it was a critical source of performance for our algorithm.
Hochbaum [79] and Goldberg and Tarjan [75, 76] use more complex Dynamic
Trees and are able to reduce the algorithm complexity.

It would also be nice to spend some time on a complexity evaluation of the
Active Cuts algorithm. Indeed complexity of the state of the art algorithm
for Computer Vision community [18] is not even polynomial. It may be
possible to obtain a polynomial complexity for the Active Cuts algorithm
since it is very similar to the Push-Relabel algorithm. However, the key for
this problem might be hidden in a different Dynamic Tree structure.

Then it would be greatly appreciate to make a careful comparison with
other techniques such as Level Set. Indeed a lot of Level Set users do not
clearly understand and often underestimate Graph Cut techniques. On video
segmentation, one should carefully compare the Active Cuts algorithm with
Dynamic Cuts [105]. One can also imagine merging them in order to obtain
an Active Dynamic Cuts with even higher performance on video segmenta-
tion.

We then proposed a robust layer extraction method based on a Graph Cut
formulation that provide both Visible and Hidden layers in the same time
by tracking then along the video sequence. This leads directly to a future
work: integrating Digital Matting in this application like in [176]. Another
direction would be to incorporate colors and texture to the object tracking
in order to be more robust to motion estimation.
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Conclusion (version française)

Issu d’une collaboration avec Gheorghes Postelnicu, nous avons présenté
les "Ensembles de Niveaux Stochastiques", un cadre générique qui permet
d’introduire élégamment le concept de perturbations aléatoires à la méthode
dites des "Ensembles de Niveaux". Cette nouvelle approche a été appliquée
avec succès au problème des "Contours Actifs". Les ensembles de niveaux
stochastiques permettent l’utilisation de méthodes de minimisation plus ro-
bustes telles que le recuit simulé. En les associant, nous avons obtenu une
méthode de contours actifs plus robuste et moins sensible aux minima locaux :
les "Contours Actifs Stochastiques". De plus, les contours actifs stochastiques
ne nécessitent qu’une estimation du gradient de l’énergie à minimiser : ce qui
permet son utilisation même lorsque le gradient ne peut pas être calculé de
manière exacte car trop complexe ou inaccessible.

Nous avons par la suite appliqué avec succès les contours actifs stochas-
tiques à la segmentation région non supervisé d’images. Même si aucun ré-
sultat théorique concernant une convergence vers un minimum global n’est
fourni, on peut observer qu’en pratique cette méthode améliore de manière
significative les résultats.

Deux directions pour compléter ces recherches peuvent être entreprises.
Tout d’abord, d’un point de vu théorique, obtenir des résultats de conver-
gence vers un optimum global. Ensuite le cadre des ensembles de niveaux
stochastiques est suffisamment vaste pour laisser espérer d’autres applica-
tions que les contours actifs stochastiques.

Nous avons aussi décrit une nouvelle technique rapide de "Digital Mat-
ting" simple d’utilisation. En effet sa première et principale application concerne
les effets spéciaux de films. Les effets spéciaux sont omniprésents dans les pro-
ductions cinématographiques contemporaines et l’utilisation d’outils simple
et quasi-automatique est devenue nécessaire afin de réduire les temps de
post-traitement. La plus part des méthodes existantes font appel à une ini-
tialisation par une "Trimap" ou segmentation trois régions. En automatisant
la génération de cette trimap - ou en la simplifiant autant que possible - il est
possible de réduire significativement le temps et le coût de post-production.
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Notre algorithme est robuste, rapide et facile d’utilisation.
Les "Coupes de Graphe" ont ici montré leur supériorité par rapport aux

méthodes des ensembles de niveaux bien que ces dernières permettent de
minimiser une plus grande classe d’énergies que les coupes de graphe.

Nous aurions voulu appliquer ca la vidéo pour fournir un outil plus apte
à être utiliser en post-production. Cela reste à faire.

Nous avons exposé un nouvel algorithme de flot maximal/coupe minimale
basé sur une formulation symétrique : les "Coupes de Graphe Actives". Cet
algorithme est plus efficace et fourni de nouvelles propriétés particulièrement
intéressantes pour la communauté de Vision par Ordinateur : initialisation
par une coupe et retourne une succession de coupes intermédiaires de coût
décroissant au cours de l’optimisation.

Nous avons exploré quelques applications des coupes de graphe actives
pour la segmentation. Cet algorithme convient tout particulièrement aux ap-
proches multi-résolutions et cela sans perdre l’optimum global. Il permet aussi
d’obtenir des performances très intéressantes pour la segmentation vidéo. Si
toutes les applications possibles n’ont pas encore été explorées, il apparaît
clairement que les coupes de graphe actives doivent encore être étudiées : par
exemple, quelle utilité pour les coupes successives ?

Un aspect des coupes de graphes actives qui mérite une attention par-
ticulière concerne le choix de la structure d’arbre dynamique utilisé dans
notre implémentation. En effet, Hochbaum [79], ainsi que Goldberg et Tar-
jan [75, 76] utilisent des arbres dynamiques plus complexes qui permettent
de réduire la complexité de leur algorithme.

De plus, l’évaluation de la complexité de l’algorithme des coupes de graphe
actives n’a pas été réalisée. Cependant les similarités avec l’algorithme dit
de "Push-Relabel" nous permettent d’espérer une complexité polynomiale
(peut-être au prix de quelques petits changements dans l’algorithme). Ce
problème apparaît être clairement relié au précédent.

Une comparaison attentive avec d’autres techniques comme celle des en-
sembles de niveaux, peut s’avérer très utile. En effet beaucoup d’utilisateurs
de la méthode des ensembles de niveaux n’entrevoient pas toujours le po-
tentiel et sous-estiment souvent les coupes de graphe. Cependant ces deux
techniques de minimisation d’énergies n’ont pas les mêmes domaines d’ap-
plicabilité et fournissent des résultats très différents. Le choix de l’une de ces
techniques par rapport à une autre doit se faire en connaissance de cause et
en fonction de l’application souhaitée.

Concernant la segmentation vidéo, une comparaison des coupes de graphe
actives avec l’algorithme des "Coupes de Graphe Dynamiques" [105] doit
être effectué. On peut aussi très bien imaginer de les associer pour obtenir
un algorithme de "Coupes de graph Actives et Dynamiques" avec de plus
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grande performance encore pour la segmentation vidéo.
Nous avons aussi proposé une méthode robuste d’estimation de couches

basé sur une formulation par coupes de graphe qui permet d’extraire les
couches visibles ainsi que les couches cachées en même temps en les traquant
au cours de la séquence vidéo. On peut clairement imaginer intégrer un al-
gorithme de "Digital Matting" dans cet application à la manière de Xiao et
Shah [176]. Une autre direction pourrait être d’incorporer l’information de
couleur et de texture pour amélioré le suivi d’objets et obtenir une estimation
du mouvement plus robuste.
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