.. La-triode-À-32ghz, Empire of the Air: The Men Who Made Radio, ] A. V. Haeff, and L. S. Nergaard, Proc. IRE, p.126, 1940.

]. K. Matsugana, A CW 4-W Ka-band power amplifier utilizing MMIC multichip technology, IEEE Journal of Solid-State Circuits, vol.35, issue.9, p.1293, 2000.
DOI : 10.1109/4.868038

. Okamoto, High-Power Recessed-Gate AlGaN???GaN HFET With a Field-Modulating Plate, IEEE Transactions on Electron Devices, vol.51, issue.12, p.2217, 2004.
DOI : 10.1109/TED.2004.838453

]. T. Inoue, 30-GHz-band over 5-W power performance of short-channel AlGaN/GaN heterojunction FETs, IEEE Transactions on Microwave Theory and Techniques, vol.53, issue.1, p.74, 2005.
DOI : 10.1109/TMTT.2004.839333

G. A. Haas, R. E. Thomas, and G. Gärtner, Thermionic emission and work function, Techniques of Metals Research, p.11, 1972.

]. F. Charbonnier, Basic and applied studies of field emission at microwave frequencies, Proceedings of the IEEE, vol.51, issue.7, p.991, 1963.
DOI : 10.1109/PROC.1963.2379

D. R. Whaley, Experimental demonstration of an emission-gated traveling-wave tube amplifier, IEEE Transactions on Plasma Science, vol.30, issue.3, p.998, 2002.
DOI : 10.1109/TPS.2002.801527

J. D. Levine and J. , Statistical analysis of field emitter emissivity: Application to flat displays, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.2, p.553, 1995.
DOI : 10.1116/1.588353

J. O. Choi, Fabrication of 0.1 ??m gate aperture Mo-tip field-emitter arrays using interferometric lithography, Applied Physics Letters, vol.74, issue.20, p.3050, 1999.
DOI : 10.1063/1.124061

C. A. Spindt, Physical properties of thin???film field emission cathodes with molybdenum cones, Journal of Applied Physics, vol.47, issue.12, p.5248, 1976.
DOI : 10.1063/1.322600

A. F. Bernhardt, Arrays of field emission cathode structures with sub-300 nm gates, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, p.1212, 2000.
DOI : 10.1116/1.591363

C. Py and R. Baptist, International Vacuum Microelectronics Conference, pp.12-15, 1993.

J. D. Levine, Field emission from microtip test arrays using resistor stabilization, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.2, p.474, 1995.
DOI : 10.1116/1.588336

C. A. Spindt, Field emitter array development for microwave applications. II, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.2, p.758, 1998.
DOI : 10.1116/1.589898

C. A. Spindt, Field-emitter arrays for vacuum microelectronics, IEEE Transactions on Electron Devices, vol.38, issue.10, p.2355, 1991.
DOI : 10.1109/16.88525

C. O. Bozler, Arrays of gated field-emitter cones having 0.32 ??m tip-to-tip spacing, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.2, p.629, 1994.
DOI : 10.1116/1.587401

S. T. Purcell, Nanoprotrusion model for field emission from integrated microtips, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.5, p.1666, 1997.
DOI : 10.1116/1.589352

F. J. Himpsel, Quantum photoyield of diamond(111)???A stable negative-affinity emitter, Physical Review B, vol.20, issue.2, p.624, 1979.
DOI : 10.1103/PhysRevB.20.624

C. Wang, Cold field emission from CVD diamond films observed in emission electron microscopy, Electronics Letters, vol.27, issue.16, p.1459, 1991.
DOI : 10.1049/el:19910914

M. W. Geis, Diamond cold cathode, IEEE Electron Device Letters, vol.12, issue.8, p.456, 1991.
DOI : 10.1109/55.119164

B. C. Djubua, Emission properties of Spindt-type cold cathodes with different emission cone material, IEEE Transactions on Electron Devices, vol.38, issue.10, p.2314, 1991.
DOI : 10.1109/16.88516

C. Bandis and B. B. Pate, Simultaneous field emission and photoemission from diamond, Applied Physics Letters, vol.69, issue.3, p.366, 1996.
DOI : 10.1063/1.118062

T. Utsumi, Vacuum microelectronics: what's new and exciting, IEEE Transactions on Electron Devices, vol.38, issue.10, p.2276, 1991.
DOI : 10.1109/16.88510

Y. Lee, Tungsten nanowires and their field electron emission properties, Applied Physics Letters, vol.81, issue.4, p.745, 2002.
DOI : 10.1063/1.1490625

S. H. Jo, Field-emission studies on thin films of zinc oxide nanowires, Applied Physics Letters, vol.83, issue.23, p.4821, 2003.
DOI : 10.1063/1.1631735

C. Y. Zhi, Synthesis and field-electron-emission behavior of aligned GaAs nanowires, Applied Physics Letters, vol.86, issue.21, p.213108, 2005.
DOI : 10.1063/1.1938248

M. Ding, Silicon field emission arrays with atomically sharp tips: turn-on voltage and the effect of tip radius distribution, IEEE Transactions on Electron Devices, vol.49, issue.12, p.2333, 2002.
DOI : 10.1109/TED.2002.805230

A. F. Bernhardt, Arrays of field emission cathode structures with sub-300 nm gates, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, p.1212, 2000.
DOI : 10.1116/1.591363

W. P. Kang, Micropattern-gated diamond field emitter array, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.2, p.732, 1998.
DOI : 10.1116/1.589893

S. T. Purcell, Hot Nanotubes: Stable Heating of Individual Multiwall Carbon Nanotubes to 2000 K Induced by the Field-Emission Current, Physical Review Letters, vol.88, issue.10, p.105502, 2002.
DOI : 10.1103/PhysRevLett.88.105502

]. A. Melechko, Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly, Journal of Applied Physics, vol.97, issue.4, p.41301, 2005.
DOI : 10.1063/1.1857591

. Kyang, Size Effects in Carbon Nanotubes, Physical Review Letters, vol.81, issue.9, p.1869, 1998.
DOI : 10.1103/PhysRevLett.81.1869

]. S. Franck, Carbon Nanotube Quantum Resistors, Science, vol.280, issue.5370, p.1744, 1998.
DOI : 10.1126/science.280.5370.1744

S. Lee, Characteristics of multiwalled carbon nanotube nanobridges fabricated by poly(methylmethacrylate) suspended dispersion, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.20, issue.6, p.2773, 2002.
DOI : 10.1116/1.1520569

P. M. Ajayan, Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness, Advanced Materials, vol.12, issue.10, p.750, 2000.
DOI : 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6

R. Martel, Single- and multi-wall carbon nanotube field-effect transistors, Applied Physics Letters, vol.73, issue.17, p.2447, 1998.
DOI : 10.1063/1.122477

URL : http://infoscience.epfl.ch/record/144112

S. J. Wind, Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Applied Physics Letters, vol.80, issue.20, p.3817, 2002.
DOI : 10.1063/1.1480877

R. Saito, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, p.2204, 1992.
DOI : 10.1063/1.107080

X. Blase, Hybridization effects and metallicity in small radius carbon nanotubes, Physical Review Letters, vol.72, issue.12, p.1878, 1994.
DOI : 10.1103/PhysRevLett.72.1878

J. Gavillet, Root-Growth Mechanism for Single-Wall Carbon Nanotubes, Physical Review Letters, vol.87, issue.27, p.275504, 2001.
DOI : 10.1103/PhysRevLett.87.275504

R. T. Baker, Catalytic growth of carbon filaments, Carbon, vol.27, issue.3, p.315, 1989.
DOI : 10.1016/0008-6223(89)90062-6

V. I. Merkulov, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition, Applied Physics Letters, vol.79, issue.18, p.2970, 2001.
DOI : 10.1063/1.1415411

A. G. Rinzler, Unraveling Nanotubes: Field Emission from an Atomic Wire, Science, vol.269, issue.5230, p.1550, 1995.
DOI : 10.1126/science.269.5230.1550

A. G. Rinzler, Field Emission and Growth of Fullerene Nanotubes, MRS Proceedings, vol.359, p.61, 1995.
DOI : 10.1038/367519a0

M. J. Fransen, Field emission energy distributions from individual multiwalled carbon nanotubes, Applied Surface Science, vol.146, issue.1-4, p.312, 1999.
DOI : 10.1016/S0169-4332(99)00056-2

J. Bonard, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism, Applied Physics A: Materials Science & Processing, vol.69, issue.3, p.245, 1999.
DOI : 10.1007/s003390050998

K. A. Dean, The environmental stability of field emission from single-walled carbon nanotubes, Applied Physics Letters, vol.75, issue.19, p.3017, 1999.
DOI : 10.1063/1.125219

Y. Saito, Field emission from carbon nanotubes and its application to cathode ray tube lighting elements, Applied Surface Science, vol.146, issue.1-4, p.305, 1999.
DOI : 10.1016/S0169-4332(99)00059-8

K. A. Dean, Current saturation mechanisms in carbon nanotube field emitters, Applied Physics Letters, vol.76, issue.3, p.375, 2000.
DOI : 10.1063/1.125758

K. A. Dean, Evaporation of carbon nanotubes during electron field emission, Applied Physics Letters, vol.79, issue.12, p.1873, 2001.
DOI : 10.1063/1.1402157

Y. Wei, Stability of carbon nanotubes under electric field studied by scanning electron microscopy, Applied Physics Letters, vol.79, issue.27, p.4527, 2001.
DOI : 10.1063/1.1429300

L. Nilsson, Collective emission degradation behavior of carbon nanotube thin-film electron emitters, Applied Physics Letters, vol.79, issue.7, p.1036, 2001.
DOI : 10.1063/1.1392982

Z. L. Wang, imaging of field emission from individual carbon nanotubes and their structural damage, Applied Physics Letters, vol.80, issue.5, p.856, 2002.
DOI : 10.1063/1.1446994

J. Bonard, Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope, Physical Review Letters, vol.89, issue.19, p.197602, 2002.
DOI : 10.1103/PhysRevLett.89.197602

S. T. Purcell, Hot Nanotubes: Stable Heating of Individual Multiwall Carbon Nanotubes to 2000 K Induced by the Field-Emission Current, Physical Review Letters, vol.88, issue.10, p.105502, 2002.
DOI : 10.1103/PhysRevLett.88.105502

J. C. She, Vacuum breakdown of carbon-nanotube field emitters on a silicon tip, Applied Physics Letters, vol.83, issue.13, p.2671, 2003.
DOI : 10.1063/1.1614437

P. N. Minh, Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.4, p.1705, 2003.
DOI : 10.1116/1.1580115

J. Bonard, Degradation and failure of carbon nanotube field emitters, Physical Review B, vol.67, issue.11, p.115406, 2003.
DOI : 10.1103/PhysRevB.67.115406

T. Fujieda, observation of field emissions from an individual carbon nanotube by Lorenz microscopy, Applied Physics Letters, vol.85, issue.23, p.5739, 2004.
DOI : 10.1063/1.1834713

N. De-jonge, Carbon nanotube electron sources and applications, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1823, p.2239, 2004.
DOI : 10.1098/rsta.2004.1438

N. De-jonge, Brightness of carbon nanotube electron sources, Journal of Applied Physics, vol.95, issue.2, p.673, 2004.
DOI : 10.1063/1.1632551

N. De-jonge, Characterization of the field emission properties of individual thin carbon nanotubes, Applied Physics Letters, vol.85, issue.9, p.1607, 2004.
DOI : 10.1063/1.1786634

W. A. De-heer, A Carbon Nanotube Field-Emission Electron Source, Science, vol.270, issue.5239, p.1179, 1995.
DOI : 10.1126/science.270.5239.1179

Y. V. Gulyaev, Field emitter arrays on nanotube carbon structure films, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.2, p.435, 1995.
DOI : 10.1116/1.587964

L. A. Chernozatonskii, Influence of external factors on electron field emission from thin-film nanofilament carbon structures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.3, p.2080, 1996.
DOI : 10.1116/1.588989

W. A. De-heer, Carbon nanotubes films: electronic properties and their application as field emitters, Zeitschrift f???r Physik D Atoms, Molecules and Clusters, vol.40, issue.1-4, p.418, 1997.
DOI : 10.1007/s004600050241

P. G. Collins, Unique characteristics of cold cathode carbon-nanotube-matrix field emitters, Physical Review B, vol.55, issue.15, p.9391, 1997.
DOI : 10.1103/PhysRevB.55.9391

J. Bonard, Field emission from single-wall carbon nanotube films, Applied Physics Letters, vol.73, issue.7, p.918, 1998.
DOI : 10.1063/1.122037

X. Xu, A method for fabricating large-area, patterned, carbon nanotube field emitters, Applied Physics Letters, vol.74, issue.17, p.2549, 1999.
DOI : 10.1063/1.123894

Y. Saito, Field emission from carbon nanotubes and its application to cathode ray tube lighting elements, Applied Surface Science, vol.146, issue.1-4, p.305, 1999.
DOI : 10.1016/S0169-4332(99)00059-8

W. B. Choi, Fully sealed, high-brightness carbon-nanotube field-emission display, Applied Physics Letters, vol.75, issue.20, p.3129, 1999.
DOI : 10.1063/1.125253

A. N. Obraztsov, Aligned carbon nanotube films for cold cathode applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.2, p.1059, 2000.
DOI : 10.1116/1.591328

H. Murakami, Field emission from well-aligned, patterned, carbon nanotube emitters, Applied Physics Letters, vol.76, issue.13, p.1776, 2000.
DOI : 10.1063/1.126164

F. G. Tarntair, High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, p.1207, 2000.
DOI : 10.1116/1.591362

A. M. Rao, -grown carbon nanotube array with excellent field emission characteristics, Applied Physics Letters, vol.76, issue.25, p.3813, 2000.
DOI : 10.1063/1.126790

URL : https://hal.archives-ouvertes.fr/hal-00159700

M. Chhowalla, Field emission from short and stubby vertically aligned carbon nanotubes, Applied Physics Letters, vol.79, issue.13, p.2079, 2001.
DOI : 10.1063/1.1406557

O. Gröning, Field emission properties of carbon nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.2, p.665, 2000.
DOI : 10.1116/1.591258

J. Bonard, Tuning the Field Emission Properties of Patterned Carbon Nanotube Films, Advanced Materials, vol.13, issue.3, p.184, 2001.
DOI : 10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I

H. Sugie, Carbon nanotubes as electron source in an x-ray tube, Applied Physics Letters, vol.78, issue.17, p.2578, 2001.
DOI : 10.1063/1.1367278

Y. Cho, Patterning technology of carbon nanotubes for field emission displays, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.3, p.1012, 2001.
DOI : 10.1116/1.1373638

Y. J. Yoon, Synthesis of carbon nanotubes by chemical vapor deposition for field emitters, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.1, p.27, 2001.
DOI : 10.1116/1.1340667

K. B. Teo, Field emission from dense, sparse, and patterned arrays of carbon nanofibers, Applied Physics Letters, vol.80, issue.11, p.2011, 2002.
DOI : 10.1063/1.1461868

O. Zhou, Materials Science of Carbon Nanotubes:?? Fabrication, Integration, and Properties of Macroscopic Structures of Carbon Nanotubes, Accounts of Chemical Research, vol.35, issue.12, p.1045, 2002.
DOI : 10.1021/ar010162f

G. Z. Yue, Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode, Applied Physics Letters, vol.81, issue.2, p.355, 2002.
DOI : 10.1063/1.1492305

H. Sato, Vertically aligned carbon nanotubes grown by plasma enhanced chemical vapor deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.6, p.2564, 2003.
DOI : 10.1116/1.1627332

S. H. Jo, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes, Applied Physics Letters, vol.84, issue.3, p.413, 2004.
DOI : 10.1063/1.1642272

J. Han, High field-emission current of carbon nanotubes grown on TiN-coated Ta substrate for electron emitters in a microwave power amplifier, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.4, p.1636, 2004.
DOI : 10.1116/1.1759345

S. Kita, Characterization of field-electron emission from carbon nanofibers grown on Pd wire, Applied Physics Letters, vol.85, issue.19, p.4478, 2004.
DOI : 10.1063/1.1814424

M. Sveningsson, Highly efficient electron field emission from decorated multiwalled carbon nanotube films, Applied Physics Letters, vol.85, issue.19, p.4487, 2004.
DOI : 10.1063/1.1819521

Y. B. Zhang, Carbon nanotubes synthesized by biased thermal chemical vapor deposition as an electron source in an x-ray tube, Applied Physics Letters, vol.86, issue.12, p.123115, 2005.
DOI : 10.1063/1.1891299

Y. Chen, Field emission of different oriented carbon nanotubes, Applied Physics Letters, vol.76, issue.17, p.2469, 2000.
DOI : 10.1063/1.126379

Z. F. Ren, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass, Science, vol.282, issue.5391, p.1105, 1998.
DOI : 10.1126/science.282.5391.1105

M. Chhowalla, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, Journal of Applied Physics, vol.90, issue.10, p.5308, 2001.
DOI : 10.1063/1.1410322

K. B. Teo, Uniform patterned growth of carbon nanotubes without surface carbon, Applied Physics Letters, vol.79, issue.10, p.1534, 2001.
DOI : 10.1063/1.1400085

Y. Chen, Field emission of different oriented carbon nanotubes, Applied Physics Letters, vol.76, issue.17, p.2469, 2000.
DOI : 10.1063/1.126379

C. Bower, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Applied Physics Letters, vol.77, issue.17, p.2767, 2000.
DOI : 10.1063/1.1319529

S. Y. Chou, Imprint of sub???25 nm vias and trenches in polymers, Applied Physics Letters, vol.67, issue.21, p.3114, 1995.
DOI : 10.1063/1.114851

Z. F. Ren, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot, Applied Physics Letters, vol.75, issue.8, p.1086, 1999.
DOI : 10.1063/1.124605

V. I. Merkulov, Patterned growth of individual and multiple vertically aligned carbon nanofibers, Applied Physics Letters, vol.76, issue.24, p.3555, 2000.
DOI : 10.1063/1.126705

R. S. Wagner, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, p.89, 1964.
DOI : 10.1063/1.1753975

F. Tuinstra, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, p.1126, 1970.
DOI : 10.1063/1.1674108

D. S. Knight, Characterization of diamond films by Raman spectroscopy, Journal of Materials Research, vol.4, issue.02, p.385, 1989.
DOI : 10.1557/JMR.1989.0385

J. Goma, Graphitization of thin carbon films, Thin Solid Films, vol.65, issue.2, p.221, 1980.
DOI : 10.1016/0040-6090(80)90256-4

R. Martel, Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes, Physical Review Letters, vol.87, issue.25, p.256805, 2001.
DOI : 10.1103/PhysRevLett.87.256805

Y. Zhang, Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods, Science, vol.285, issue.5434, p.1719, 1999.
DOI : 10.1126/science.285.5434.1719

J. W. Gadzuk, Field Emission Energy Distribution (FEED), Reviews of Modern Physics, vol.45, issue.3, p.487, 1973.
DOI : 10.1103/RevModPhys.45.487

W. P. Dyke, Field Emission, Adv. Electron. Phys, vol.8, p.89, 1956.
DOI : 10.1016/S0065-2539(08)61226-3

N. De-jonge, Characterization of the field emission properties of individual thin carbon nanotubes, Applied Physics Letters, vol.85, issue.9, p.1607, 2004.
DOI : 10.1063/1.1786634

O. Gröning, Field emission properties of carbon nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.2, p.665, 2000.
DOI : 10.1116/1.591258

R. Gao, Work function at the tips of multiwalled carbon nanotubes, Applied Physics Letters, vol.78, issue.12, p.1757, 2001.
DOI : 10.1063/1.1356442

M. J. Fransen, Field emission energy distributions from individual multiwalled carbon nanotubes, Applied Surface Science, vol.146, issue.1-4, p.312, 1999.
DOI : 10.1016/S0169-4332(99)00056-2

K. Hata, Field emission microscopy of adsorption and desorption of residual gas molecules on a carbon nanotube tip, Surface Science, vol.490, issue.3, p.296, 2001.
DOI : 10.1016/S0039-6028(01)01338-3

J. Bonard, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism, Applied Physics A: Materials Science & Processing, vol.69, issue.3, p.245, 1999.
DOI : 10.1007/s003390050998

K. A. Dean, Nanotube electronic states observed with thermal field emission electron spectroscopy, Applied Physics Letters, vol.75, issue.18, p.2773, 1999.
DOI : 10.1063/1.125145

S. T. Purcell, 64 meV measured energy dispersion from cold field emission nanotips, Applied Physics Letters, vol.67, issue.3, p.436, 1995.
DOI : 10.1063/1.114624

K. A. Dean, Field emission microscopy of carbon nanotube caps, Journal of Applied Physics, vol.85, issue.7, p.3832, 1999.
DOI : 10.1063/1.369753

D. L. Carroll, Electronic Structure and Localized States at Carbon Nanotube Tips, Physical Review Letters, vol.78, issue.14, p.2811, 1997.
DOI : 10.1103/PhysRevLett.78.2811

P. Kim, Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States, Physical Review Letters, vol.82, issue.6, p.1225, 1999.
DOI : 10.1103/PhysRevLett.82.1225

K. A. Dean, Three behavioral states observed in field emission from single-walled carbon nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.17, issue.5, p.1959, 1999.
DOI : 10.1116/1.590856

C. J. Edgcombe, Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters, Journal of Microscopy, vol.203, issue.2, p.188, 2001.
DOI : 10.1046/j.1365-2818.2001.00890.x

G. C. Kokkorakis, Local electric field at the emitting surface of a carbon nanotube, Journal of Applied Physics, vol.91, issue.7, p.4580, 2002.
DOI : 10.1063/1.1448403

O. Groening, Field emission properties of carbon nanotubes, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.2, p.665, 2000.
DOI : 10.1116/1.591258

L. Nilsson, Characterization of thin film electron emitters by scanning anode field emission microscopy, Journal of Applied Physics, vol.90, issue.2, p.768, 2001.
DOI : 10.1063/1.1379559

S. T. Purcell, Hot Nanotubes: Stable Heating of Individual Multiwall Carbon Nanotubes to 2000 K Induced by the Field-Emission Current, Physical Review Letters, vol.88, issue.10, p.105502, 2002.
DOI : 10.1103/PhysRevLett.88.105502

P. R. Schwoebel, Spindt cathode tip processing to enhance emission stability and high-current performance, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.1, p.433, 2003.
DOI : 10.1116/1.1527954

K. A. Dean, Current saturation mechanisms in carbon nanotube field emitters, Applied Physics Letters, vol.76, issue.3, p.375, 2000.
DOI : 10.1063/1.125758

V. Semet, Field electron emission from individual carbon nanotubes of a vertically aligned array, Applied Physics Letters, vol.81, issue.2, p.343, 2002.
DOI : 10.1063/1.1489084

J. Bonard, Degradation and failure of carbon nanotube field emitters, Physical Review B, vol.67, issue.11, p.115406, 2003.
DOI : 10.1103/PhysRevB.67.115406

Y. Y. Wei, Stability of carbon nanotubes under electric field studied by scanning electron microscopy, Applied Physics Letters, vol.79, issue.27, p.4527, 2001.
DOI : 10.1063/1.1429300

Z. L. Wang, imaging of field emission from individual carbon nanotubes and their structural damage, Applied Physics Letters, vol.80, issue.5, p.856, 2002.
DOI : 10.1063/1.1446994

J. Bonard, Degradation and failure of carbon nanotube field emitters, Physical Review B, vol.67, issue.11, p.115406, 2003.
DOI : 10.1103/PhysRevB.67.115406

J. C. She, Vacuum breakdown of carbon-nanotube field emitters on a silicon tip, Applied Physics Letters, vol.83, issue.13, p.2671, 2003.
DOI : 10.1063/1.1614437

N. Y. Huang, Mechanism Responsible for Initiating Carbon Nanotube Vacuum Breakdown, Physical Review Letters, vol.93, issue.7, p.75501, 2004.
DOI : 10.1103/PhysRevLett.93.075501

W. Yi, Linear specific heat of carbon nanotubes, Physical Review B, vol.59, issue.14, p.9015, 1999.
DOI : 10.1103/PhysRevB.59.R9015

P. G. Collins, Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes, Physical Review Letters, vol.86, issue.14, p.3128, 2001.
DOI : 10.1103/PhysRevLett.86.3128

E. Minoux, Achieving high-current carbon nanotube cathodes, 2006.

. Milne, Achieving high-current carbon nanotube emitters, Nano Lett, vol.5, issue.11, p.2135, 2005.

K. B. Teo, E. Minoux, L. Hudanski, F. Peauger, J. Schnell et al., Microwave devices: Carbon nanotubes as cold cathodes, Nature, vol.362, issue.7061, p.968, 2005.
DOI : 10.1063/1.126258

P. Legagneux, E. Minoux, L. Hudanski, K. B. Teo, O. Groening et al., GHz modulation of carbon nanotube cathodes for microwave amplifiers, 5th IEEE Conference on Nanotechnology, 2005., p.867, 2005.
DOI : 10.1109/NANO.2005.1500670

J. Amaratunga, W. I. Milne, and P. Legagneux, Self-aligned, gated arrays of individual nanotube and nanowire emitters, Nano Lett, vol.4, issue.9, p.1575, 2004.

L. Vila, P. Vincent, L. Dauginet-de-pra, G. Pirio, E. Minoux et al., Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays, Nano Letters, vol.4, issue.3, p.521, 2004.
DOI : 10.1021/nl0499239

M. Kim, Carbon nanotube display, Lasers and Electro-Optics Society, vol.1, p.252, 2004.

G. A. Hasko and . Amaratunga, Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers, J. Vac. Sci. Technol. B, vol.24, p.345, 2006.

S. M. Vieira, L. Gangloff, O. Groening, K. B. Teo, E. Minoux et al., Nanoimprint lithography for the fabrication of carbon nanotube emitter array

E. Minoux, P. Vincent, L. Hudanski, J. Schnell, P. Legagneux et al., High current/high current density carbon nanotube cold cathodes, 2005 International Vacuum Nanoelectronics Conference, p.70, 2005.
DOI : 10.1109/IVNC.2005.1619489

W. I. Milne, K. B. Teo, N. L. Rupesinghe, L. Gangloff, E. Minoux et al., Carbon nanotubes and their potential field emission applications, Quantum Sensing and Nanophotonic Devices II, p.45, 2005.
DOI : 10.1117/12.583352

K. B. Teo, R. G. Lacerda, M. H. Yang, A. S. Teh, L. A. Robinson et al., Carbon nanotube technology for solid state and vacuum electronics, Circuits, Devices, and Systems IEE Proc. 151, p.443, 2004.
DOI : 10.1049/ip-cds:20040408

F. , L. Normand, C. S. Cojocaru, B. Vigolo, E. Minoux et al., Single oriented carbon nanotubes growth on array of processed microelectrodes, Semiconductor Conference CAS Proc. 1, p.127, 2004.

H. Hasko, G. A. Ahmed, W. I. Amaratunga, and . Milne, High current density nanofilament cathodes for microwave amplifiers, Technical Digest of the 17th International Vacuum Nanoelectronics Conference IVNC, p.278, 2004.

P. Legagneux, E. Minoux, L. Gangloff, J. Schnell, P. Vincent et al., Carbon nanotubes for field emission applications: microwave amplifiers and parallel e-beam lithography, The Third International Seminar on Advances in Carbon Electronics, p.91, 2004.
DOI : 10.1049/ic:20040538

P. Vincent, L. Gangloff, E. Minoux, G. Pirio, J. Schnell et al., Carbon nanotubes/nanofibers for microwave amplifiers and parallel ebeam lithography, Technical Digest of the 17th International Vacuum Microelectronics Conference IVMC, p.73, 2003.

E. Minoux, Multiwall carbon nanotubes for microwave vacuum devices and parallel e-beam lithography " , Ecole "nanotubes: sciences et applications" organisée par le GDR nanotubes sous l'égide du CNRS, 2003.

E. Minoux, Multiwall carbon nanotubes for microwave vacuum devices and parallel e-beam lithography, Trends in Nano Technology TNT 2003, Salamanques (Spain)

E. Minoux, Multiwall carbon nanotubes for microwave vacuum devices, 2004.

E. Minoux, Multiwall carbon nanotubes for microwave vacuum devices and parallel e-beam lithographyElectronique à l'échelle moléculaire, 2004.

E. Minoux, Multiwall carbon nanotubes for vacuum microelectronics devices, European Materials Research Society E-MRS 2004

E. Minoux, Designable carbon nanotubes for field emission applications, 2004.

E. Minoux, Arrays of carbon nanotubes/nanofibers and metallic nanowires for field emission applications Batz-sur-mer (France), présentation orale invitée, Nanotec, vol.2004

E. Minoux, High current density carbon nanotube cathodes for microwave amplifiers, 2nd Ecole polytechnique-Kyung Hee University Joint Symposium, 2005.

E. Minoux, High current density carbon nanotube cathodes for microwave amplifiers, IVNC, 2005.

:. L. Dépositaires, E. Gangloff, P. Minoux, and J. Legagneux, Schnell Titre : «Procédé de fabrication de nanofilaments à contact électrique renforcé» 2, 2004.

:. P. Dépositaires, E. Legagneux, L. Minoux, and J. Gangloff, Schnell Titre : «Procédé de fabrication de plots catalytiques de volume très bien contrôlé» Dépositaires