.. Erreur-de-reprrsentation-du-tourbillon, Temps physique et temps ctif, 1 2 2 4.5.4 Conditions aux limites, pp.2-3

S. Allmaras and M. B. Giles, A second-order ux split scheme for the unsteady 2-D Euler equations on arbitrary meshes, 1987.

D. S. Balsara and C. W. Shu, Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy, Journal of Computational Physics, vol.160, issue.2, p.4055452, 2000.
DOI : 10.1006/jcph.2000.6443

F. Bassi and S. Rebay, A high-order accurate discontinuous nite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., v ol, vol.131, p.2677279, 1997.

C. Benoit, MMthode d'adaptation de maillages au moyen d'algorithmes ggnntiques pour le calcul d''coulements compressibles, Thhse de Doctorat, 1999.

C. Benoit and G. Jeanfaivre, Three-Dimensional Inviscid Isolated Rotor Calculations Using Chimera and Automatic Cartesian Partitioning Methods, Journal of the American Helicopter Society, vol.48, issue.2, p.1288138, 2003.
DOI : 10.4050/JAHS.48.128

B. Berde and M. Borrel, Comparison of high-order Godunov-type schemes for the Euler equations on irregular meshes, pp.288-295, 1994.

C. Bogey and C. Bailly, A family of low dispersive and low dissipative explicit schemes for ow and noise computations, J. Comput. Phys., v ol, vol.194, p.1944214, 2004.

J. C. Boniface, B. Cantaloube, and A. Jollls, Rotorcraft Simulations Using an Object Oriented Approach, 2000.

E. Bouchet, tude du bruit d'interaction pale-sillage d'un rotor principal d'hhlicopttre, Thhse de Doctorat, 2002.

T. F. Brooks and C. L. Burley, Rotor broadband noise prediction with comparison to model data, 7th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2001.
DOI : 10.2514/6.2001-2210

T. F. Brooks, J. R. Jolly, and M. A. Marcolini, Helicopter Main-rotor Noise, 1988.

E. Canonne, MMthode d'adaptation de maillage pour le calcul d''coulements compressibles autour d'un rotor d'hhlicopttre, Thhse de Doctorat, 2004.

B. Cantaloube and S. Huberson, Calcul d''coulements de uide incompressible non visqueux autour de voilures tournantes par une mmthode particulaire, p.4033415, 1984.

B. Cantaloube and C. Rehbach, Numerical simulation of rotor-fuselage interaction, 1994.

F. X. Caradonna and J. J. Philippe, The ow o ver a helicopter blade tip in the transonic regime. Vertica, v ol, p.43360, 1978.

B. Cockburn and C. W. Shu, The Runge???Kutta Discontinuous Galerkin Method for Conservation Laws V, Journal of Computational Physics, vol.141, issue.2, 1998.
DOI : 10.1006/jcph.1998.5892

C. Corre, MMthodes de relaxation par lignes pour des schhmas implicites de type L ax- Wendroo en aarodynamique stationnaire, Thhse de Doctorat, 1995.

C. Corre, G. Hanss, and A. Lerat, A residual-based compact scheme for the unsteady compressible Navier-Stokes equations. Computers and Fluids, v ol, p.5611580, 2005.

C. Corre, K. Khalfallah, and A. Lerat, Line-relaxation methods for a class of centered schemes, Comput. Fluid Dyn. Journal, v ol, vol.5, p.2133246, 1996.

M. Costes and G. Kowani, An automatic anti-diiusion method for vortical ows based on Vorticity Connnement, Aerospace Science and Technology, 2003.
DOI : 10.1016/s1270-9638(02)01180-x

E. Douay-e-t and T. L-e-f-e-b-vre, Schhma de calcul nummrique prrservant l a v orticitt, Rapport de P.F.E, 2000.

R. Eymard, T. Gallouut, and R. Herbin, Convergence of nite volume schemes for semilinear convection diiusion equations, Numer. Math., v ol, vol.82, p.911116, 1999.

D. V. Gaitonde and M. R. Visbal, Further Development o f a N a vier-Sokes Solution Procedure Based on High-Order Formulas, pp.99-0557, 1999.

S. Galichet and T. S. Martin, Dveloppement d'un schhma de calcul prrservant l a v orticitt, Rapport de P.F.E, 2001.

P. M. Gresho, S. T. Chan, R. L. Lee, and C. D. Upson, A modiied nite element method for solving the time-dependent incompressible Navier-Stokes equations. Part 1 : Theory, Int. J. Num. Meth. Fluids, v ol, vol.4, p.5577598, 1984.

R. Guenann, Couplage instationnaire Navier-Stokes/Euler pour la ggnnration et le rayonnement des sources de bruit arodynamique, Thhse de Doctorat, 2004.

G. Hanss, Schhmas nummriques compacts basss sur le rsidu en maillage irregulier pour les quations de Navier-Stokes en compressible, Thhse de Doctorat, 2002.

A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order essentially non-oscillatory schemes, J. Comput. Phys, p.2311303, 1987.
DOI : 10.1007/978-3-642-60543-7_12

A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Num. Anal., v ol, vol.24, p.2799309, 1987.
DOI : 10.1007/978-3-642-60543-7_11

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA158177

C. W. Hirt, Heuristic Stability Theory for Finite Diierence Equations, J. Comput. Phys, vol.2, p.3399355, 1968.
DOI : 10.1016/0021-9991(68)90041-7

G. Hu, B. Grossman, and J. Steinhoo, Numerical Method for Vorticity Connnement i n Compressible Flow, AIAA Journal, v ol, vol.40, p.194551953, 2002.

Y. Huang, DDcentrement par matrice d e p as de temps caracttristique pour le calcul d''coulements compressibles instationnaires dans les turbomachines, Thhse de Doctorat, 1995.

Y. Huang and A. Lerat, Second-Order Upwinding through a Characteristic Time-Step Matrix for Compressible Flow Calculations, Journal of Computational Physics, vol.142, issue.2, pp.4455-472, 1998.
DOI : 10.1006/jcph.1998.5935

O. P. Jacquotte, F. Montigny, and G. Coussement, Generation, optimisation, and adaptation of multiblock structured grids for complex conngurations, Surveys on Mathmatics for Industry, v ol, vol.4, p.2677277, 1995.

A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, 10th Computational Fluid Dynamics Conference, pp.91-1596, 1991.
DOI : 10.2514/6.1991-1596

A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, 14th Fluid and Plasma Dynamics Conference
DOI : 10.2514/6.1981-1259

G. S. Jiang and C. W. Shu, EEcient implementation of weighted ENO schemes, J. Comput. Phys., v ol, vol.126, p.2022228, 1996.

C. Johnson and J. Pitkranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Mathematics of Computation, vol.46, issue.173, p.126, 1986.
DOI : 10.1090/S0025-5718-1986-0815828-4

S. Lee and D. Bershader, Head-on parallel blade-vortex interaction, AIAA Journal, vol.32, issue.1, p.16622, 1994.
DOI : 10.2514/3.11945

S. K. Lele, Compact nite diierence schemes with spectral-like resolution, J. Comput. Phys., v ol, vol.103, p.16642, 1992.
DOI : 10.1016/0021-9991(92)90324-r

A. Lerat, Sur le calcul des solutions faibles des systtmes hyperboliques de lois de conservation l'aide de schhmas aux diiirences, Thhse de Doctorat d''tat, 1981.

A. Lerat, Sur l'analyse de schhmas implicites de type lax-wendroo pour un nombre quelconque de dimensions d'espace. La R echerche Arospatiale, v ol, p.3733387, 1995.

A. Lerat and C. Corre, A Residual-Based Compact Scheme for the Compressible Navier???Stokes Equations, Journal of Computational Physics, vol.170, issue.2, p.6422675, 2001.
DOI : 10.1006/jcph.2001.6755

A. Lerat and C. Corre, Residual-Based Compact Schemes for Multidimensional Hyperbolic Systems of Conservation Laws. Computers and Fluids, v ol, p.6399661, 2002.

A. Lerat and R. Peyret, Sur le choix de schhmas aux diiirences du second ordre fournissant des prools de choc sans oscillation, Comptes Rendus Acad. Sc, p.3633766, 1973.

A. Lerat and R. Peyret, Sur l'origine des oscillations apparaissant dans les prools de choc calculls par des mmthodes aux diiirences, Comptes Rendus Acad. Sc, p.7599762, 1973.

A. Lerat and R. Peyret, Noncentered Schemes and Shock Propagation Problems. Computers and Fluids, v ol, p.25552, 1974.
DOI : 10.1016/0045-7930(74)90004-8

A. Lerat and R. Peyret, Propriitts dispersives et dissipatives d'une classe de schhmas aux difffrences pour les systtmes hyperboliques non linnaires. La R echerche Arospatiale, v ol, p.61179, 1975.

A. Lerat and R. Peyret, The problem of spurious oscillations in the numerical solution of the equations of gas dynamics, Lectures Notes in Physics, vol.35, p.2511256, 1975.
DOI : 10.1007/BFb0019759

A. Lerat and J. Sidds, EEcient solution of the steady Euler equations with centered implicit method. in Numerical Methods for Fluid Dynamics 3, p.65, 1988.

A. Lerat and J. Sidds, Numerical Simulation of Unsteady Transonic Flows Using the Euler Equations in Integral Form, 21 e Conffrence A nnuelle sur l'Aviation et l'Astronautique Mars, 1979.

A. Lerat, J. Sidds, and V. Daru, An Implicit Finit-Volume Method for Solving the Euler Equations, Lecture Notes in Physics, vol.170, p.3433349, 1982.

P. Lesaint and P. A. , On a nite element method for solving the neutron transport equation, Math. Aspects of Finite Elements in PDE, p.899123, 1974.

S. Mallat, Une exploration des signaux en ondelettes. Les ditions de l''cole Polytechnique, 2000.

R. Meakin, An eecient means of adaptive reenement within systems of overset grids, AIAA Paper, pp.95-1722, 1995.

F. Montigny-rannou and O. P. Jacquotte, mesh3d : un outil pour la construction de maillages tridimensionnels, AAAF : 29 e Colloque d'AArodynamique Appliquue, C.E.L. Biscarosse (France), 1992.

K. W. Morton and P. L. , Vorticity-Preserving Lax-Wendroo-Type Scheme for the System Wave Equation, SIAM J. Sci. Comput., v ol, vol.23, p.1700192, 2001.

R. Morvant, The Investigation of Blade-Vortex Interaction Noise Using Computational Fluid Dynamics, 2004.

R. Morvant, K. J. Badcock, G. N. Barakos, and B. E. Richards, Airfoil-Vortex Interaction Using the Compressible Vorticity Connnement Method, AIAA Journal, v ol, vol.43, p.63375, 2005.
DOI : 10.2514/1.5177

V. Nastasi, tude nummrique du tourbillon d'extrmitt de pale de rotor d'hhlicopttre e n rgime compressible, Thhse de Doctorat, 1997.

V. Nastasi, A. Lerat, and E. J. Sidds, Couplage de reprrsentation eullrienne et lagrangienne pour le calcul d'un coulement a vec choc et nappe tourbillonnaire autour d'une aile, 13 e Congrs Frannais de Mcanique, p.999102, 1997.

N. Ng and R. Hillier, Numerical investigation of the transonic blade-vortex interaction, 28th Fluid Dynamics Conference, pp.97-1846, 1997.
DOI : 10.2514/6.1997-1846

R. H. Ni, A multiple grid scheme for solving the Euler equations, 5th Computational Fluid Dynamics Conference, 1981.
DOI : 10.2514/6.1981-1025

R. H. Ni, A multiple grid scheme for solving the Euler equations, 5th Computational Fluid Dynamics Conference, p.156551571, 1982.
DOI : 10.2514/6.1981-1025

W. S. Oh, J. S. Kim, and O. J. Kwon, An Unstructured Dynamic Mesh Procedure for 2-D Unsteady Viscous Flow S i m ulations, 2002.

W. S. Oh, J. S. Kim, and O. J. Kwon, Numerical Simulation of Two-Dimensional Blade- Vortex Interactions Using Unstructured Adaptative Meshes, AIAA Journal, v ol, vol.40, p.4744480, 2002.

W. S. Oh, J. S. Kim, and O. J. Kwon, Time-Accurate Navier-Stokes Simulation of Vortex Convection Using an Unstructured Dynamic Mesh Procedure, Computers and Fluids, vol.32, p.7277749, 2003.

H. Pailllre, E. Van-der-weide, and H. Deconinck, Multidimensional upwind methods for inviscid and viscous compressible ows. VKI Lecture Series, 1995.

R. Peyret, Unsteady evolution of a horizontal jet in a stratiied uid, J. Fluid Mech., v ol, vol.78, p.49963, 1976.

R. Peyret and T. D. Taylor, Computional Methods for Fluid Flow, 1983.

J. J. Philippe and C. Armand, ONERA Aerodynamic Research W ork on Helicopters, AGARD Symposium on Rotorcraft Design, 1977.

J. J. Philippe and C. Armand, Recherche de l'ONERA sur l'aarodynamique des hhlicopttres. La R echerche Arospatiale, v ol, p.2877304, 1978.

J. J. Quirk, An alternative to unstructured grids for computing gas dynamic ows around arbitrarily complex two-dimensional bodies. Computers and Fluids, v ol, p.1255142, 1994.

S. Redonnet, Simulation de la propagation acoustique en prsence d ' coulements quelconques et de structures solides par rsolution nummrique des quations d'Euler, Thhse de Doctorat, 2001.

A. Rezgui, An analysis of accuracy and convergence of nite volume schemes for euler computations on curvilinear meshes, CFD Journal, v ol, vol.8, p.3699377, 1999.

R. D. Richtmyer, A Survey of Diierence Methods for Non-Steady Fluid Dynamics, National Center for Atmospheric Research, 1962.

P. L. Roe, Approximate Riemann Solvers, Parameter Vectors and Diierence Schemes, J. Comput. Phys., v ol, vol.43, p.3577372, 1981.

M. P. Scully, Computation of Helicopter Rotor Wake Geometry and Its Innuence on Rotor Harmonic Loads, Massachusetts Inst. of Technology, 1975.

C. W. Shu and S. Osher, EEcient implementation of essentially non-oscillatory shockcapturing schemes, J. Comput. Phys., v ol, vol.77, p.4399471, 1988.

W. Y. Soh and J. W. Goodrich, Unsteady solution of incompressible Navier-Stokes equations, Journal of Computational Physics, vol.79, issue.1, p.1133134, 1988.
DOI : 10.1016/0021-9991(88)90007-1

G. R. Srinivasan, W. J. Mccroskey, and J. D. Baeder, Aerodynamics of Two-Dimensional Blade-Vortex Interaction, AIAA Journal, v ol, vol.24, p.156991576, 1986.

J. Steinhoo, J. Wenren, T. Mersch, and H. Senge, Computational vorticity capturing : application to helicopter ow, pp.92-0056, 1992.

R. C. Swanson and E. Turkel, On Central Diierence and Upwind Schemes, J. Comput. Phys., v ol, vol.101, p.2922306, 1992.
DOI : 10.1007/978-3-642-60543-7_10

M. R. Visbal and D. V. Gaitonde, High-Order-Accurate Methods for Complex Unsteady Subsonic Flows, AIAA Journal, v ol, vol.37, p.123111239, 1999.
DOI : 10.2514/3.14313

M. R. Visbal and D. V. Gaitonde, On the Use of High-Order Finite-Diierence Schemes on Curvilinear and Deforming Meshes, J. Comput. Phys., v ol, vol.181, p.1555185, 2002.

M. C. Wilder and D. P. Elionis, PARALLEL BLADE???VORTEX INTERACTION, Journal of Fluids and Structures, vol.12, issue.7, p.8011838, 1998.
DOI : 10.1006/jfls.1998.0172

N. N. Yanenko and Y. I. Shokin, Correctness of First Diierential Approximations of Diierence Schemes Traduction anglaise : Soviet, Dokl. Akad. Nauk SSSR Math. Dokl, vol.1829, pp.1215-1217, 1968.

N. N. Yanenko and Y. I. Shokin, On the Approximation Viscosity of Diierence Schemes Traduction anglaise : Soviet, Dokl. Akad. Nauk SSSR Math. Dokl, vol.1829, pp.1153-1155, 1968.

N. N. Yanenko and Y. I. Shokin, First Diierential Approximation Method and Approximate Viscosity of Diierence Schemes. Phys. of Fluids, v ol, p.28833, 1969.

H. C. Yee, N. D. Sandham, and M. J. Djomehri, Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters, Journal of Computational Physics, vol.150, issue.1, 1999.
DOI : 10.1006/jcph.1998.6177

H. C. Yee, M. Vinokur, and M. J. Djomehri, Entropy Splitting and Numerical Dissipation, Journal of Computational Physics, vol.162, issue.1, p.33381, 2000.
DOI : 10.1006/jcph.2000.6517