. Le-programme-contient-quatre-répertoires and . Le-répertoire, contient les scripts et programmes qui vont lancer des tâches (lancement d'une simulation, récupération des résultats, arrêt d'une simulation, calcul de température, visualisation de trajectoires ou tracé d'une courbe Le répertoire d'exécution, comme son nom l'indique, est le répertoire o` u les simulations vontêtrevontêtre lancées/motorsimulation " nous stockons les moteurs de simulation que nous souhaitons utiliser pour faire nos calculs, comme une simulation de trajectoires avec l'algorithme de Gear, etc ... . Enfin

. De-cette-façon, En modifiant un fichier du répertoire par incrémentation, une variable d'un des fichiers du répertoire " ./template " , nous pouvons effectuer une expérience numérique sur n'importe quelle variable. Des scripts du répertoire /bin vont lancer des simulations dans le répertoire approprié inclus dans le répertoire " ./simulation " . Ces simulations seront lancées avec les exécutables des moteurs de simulations contenus dans " ./motor-simulation

W. E. Spear and P. G. Comber, Substitutional doping of amorphous silicon, Solid State Communications, vol.17, issue.9, p.1193, 1975.
DOI : 10.1016/0038-1098(75)90284-7

Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel et al., Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots, Science, vol.296, issue.5571, p.1293, 2002.
DOI : 10.1126/science.1069336

W. L. Wilson, P. F. Szajowski, and L. E. Brus, Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals, Science, vol.262, issue.5137, p.1242, 1993.
DOI : 10.1126/science.262.5137.1242

S. Tiwari, F. Rana, H. Hanafi, A. Harstein, E. F. Crabbe et al., A silicon nanocrystals based memory, Applied Physics Letters, vol.68, issue.10, p.1377, 1996.
DOI : 10.1063/1.116085

A. N. Goldstein, C. M. Echer, and A. P. , Melting in Semiconductor Nanocrystals, Science, vol.256, issue.5062, p.1425, 1992.
DOI : 10.1126/science.256.5062.1425

L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, vol.57, issue.10, p.1046, 1990.
DOI : 10.1063/1.103561

D. L. Staebler and C. R. Wronski, Reversible conductivity changes in discharge???produced amorphous Si, Applied Physics Letters, vol.31, issue.4, p.292, 1977.
DOI : 10.1063/1.89674

B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou et al., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, vol.298, issue.5599, p.1759, 2002.
DOI : 10.1126/science.1077194

P. R. Cabarrocas, Deposition of intrinsic, phosphorus???doped, and boron???doped hydrogenated amorphous silicon films at 50?????C, Applied Physics Letters, vol.65, issue.13, p.1674, 1994.
DOI : 10.1063/1.112882

P. R. Cabarrocas, P. Gay, and A. Hadjadj, Experimental evidence for nanoparticle deposition in continuous argon???silane plasmas: Effects of silicon nanoparticles on film properties, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.2, p.655, 1996.
DOI : 10.1116/1.580162

J. Perrin, P. M. Mata, and P. Belenguer, Ion drag and plasma-induced thermophoresis on particles in radiofrequency glow discharges, Journal of Physics D: Applied Physics, vol.27, issue.12, p.2499, 1994.
DOI : 10.1088/0022-3727/27/12/009

G. M. Jellum, J. E. Daugherty, and D. B. Graves, Particle thermophoresis in low pressure glow discharges, Journal of Applied Physics, vol.69, issue.10, p.6923, 1991.
DOI : 10.1063/1.347630

N. Chaâbane, Simulation numérique et expérience pour l'´ etude de la dynamique des agrégats d'azote et de silicium : intérêts fondamentaux vers le dépôt de couches de silicium nanocristallin, 2002.

N. Metropolis, A. W. Rosenblath, M. N. Rosenblath, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, p.1087, 1953.
DOI : 10.1063/1.1699114

B. J. Alder and T. E. Wainwright, Phase Transition for a Hard Sphere System, The Journal of Chemical Physics, vol.27, issue.5, p.1208, 1957.
DOI : 10.1063/1.1743957

I. Newton, Philosophiae Naturalis Principia Mathematica, 1687.
DOI : 10.5479/sil.52126.39088015628399

URL : http://www.e-rara.ch/download/pdf/4150990?name=%255BTomus%2520primus%2520et%2520secundus.%255D

C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 1971.

C. W. Gear, Argonne National Lab Report and ANL-7126, Argonne and IL, 1966)

A. Nikiforov and V. Ouvarov, Fonctions spéciales de la physique mathématique (Editions MIR, 1988.

P. Quémerais, Model of growth for long-range chemically ordered compounds : application to quasicrystals, Journal de Physique I, vol.4, issue.11, p.1669, 1994.
DOI : 10.1051/jp1:1994214

P. Quémerais, Quasicrystals Current Topics, World Scientific, pp.187-211, 2000.

A. Gallagher, Model of particle growth in silane discharges, Physical Review E, vol.62, issue.2, p.2690, 2000.
DOI : 10.1103/PhysRevE.62.2690

G. H. Peslherbe and W. L. Hase, Semiempirical MNDO, AM1, and PM3 direct dynamics trajectory studies of formaldehyde unimolecular dissociation, The Journal of Chemical Physics, vol.104, issue.20, p.7882, 1996.
DOI : 10.1063/1.471504

G. Herzberg, Molecular Spectra and Molecular Structure : I. Spectra of Diatomic Molecules (D. van Nostrand Company, Inc, vol.2, issue.41, 1966.

A. A. Howling, J. L. Dorier, and C. Hollenstein, Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments, Applied Physics Letters, vol.62, issue.12, p.1341, 1993.
DOI : 10.1063/1.108724

A. A. Howling, L. Sansonnens, J. L. Dorier, and C. Hollenstein, Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments, Journal of Physics D: Applied Physics, vol.26, issue.6, p.1003, 1993.
DOI : 10.1088/0022-3727/26/6/019

S. Vignoli, P. Mélinon, B. Masenelli, A. M. Roca-i-cabarrocas, and C. Longeaud, Over-coordination and order in hydrogenated nanostructured silicon thin films: their influence on strain and electronic properties, Journal of Physics: Condensed Matter, vol.17, issue.8, p.1279, 2005.
DOI : 10.1088/0953-8984/17/8/006

URL : https://hal.archives-ouvertes.fr/hal-00321238

D. Bisero, F. Corni, S. Frabboni, R. Tonini, G. Ottaviani et al., Growth kinetics of a displacement field in hydrogen implanted single crystalline silicon, Journal of Applied Physics, vol.83, issue.8, p.4106, 1998.
DOI : 10.1063/1.367165

H. Vach, Q. Brulin, and N. Chaabane, Abstracts of papers of the, 2004.

F. Rahman, M. Kuroda, T. Kiyonaga, H. T. Khanom, S. Inanaga et al., Modulated hydrogen beam study of adsorption-induced desorption of deuterium from Si(100)-3??1:D surfaces, The Journal of Chemical Physics, vol.121, issue.7, p.3221, 2004.
DOI : 10.1063/1.1772758

K. W. Kolasinski, S. F. Shane, and R. N. Zare, Probing the dynamics of hydrogen recombination on Si(100), The Journal of Chemical Physics, vol.95, issue.7, p.5482, 1991.
DOI : 10.1063/1.461643

S. F. Shane, K. W. Kolasinski, and R. N. Zare, on Si(100)???(2??1) and Si(111)???(7??7): Comparison of internal state distributions, The Journal of Chemical Physics, vol.97, issue.2, p.1520, 1992.
DOI : 10.1063/1.463228

W. Brenig and M. F. Hilf, on Si(100) and Si(111), Journal of Physics: Condensed Matter, vol.13, issue.9, p.61, 2001.
DOI : 10.1088/0953-8984/13/9/201

L. Mitas, J. C. Grossman, I. Stich, and J. Tobik, Silicon Clusters of Intermediate Size: Energetics, Dynamics, and Thermal Effects, Physical Review Letters, vol.84, issue.7, p.1479, 2000.
DOI : 10.1103/PhysRevLett.84.1479

H. Vach and Q. Brulin, Controlled Growth of Silicon Nanocrystals in a Plasma Reactor, Physical Review Letters, vol.95, issue.16, p.165502, 2005.
DOI : 10.1103/PhysRevLett.95.165502

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, K. E. Faist et al., Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures, Science, vol.290, issue.5500, p.2277, 2000.
DOI : 10.1126/science.290.5500.2277

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.1289, 2001.
DOI : 10.1126/science.1062711

V. Suendo, G. Patriarche, and P. R. Cabarrocas, Luminescence of polymorphous silicon carbon alloys, Optical Materials, vol.27, issue.5, p.953, 2005.
DOI : 10.1016/j.optmat.2004.08.042

K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani, and Y. Watanabe, observation of nucleation and subsequent growth of clusters in silane radio frequency discharges, Applied Physics Letters, vol.77, issue.2, p.196, 2000.
DOI : 10.1063/1.126922

M. Shiratani, T. Fukuzawa, and Y. Watanabe, Particle Growth Kinetics in Silane RF Discharges, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 7B, p.4542, 1999.
DOI : 10.1143/JJAP.38.4542