M. Abramowitz, I. Stegunall89-]-g, and . Allaire, Hanbook of Mathematical Functions Homogenization of the Stokes flow in connected porous medium, Asymptot . Anal, vol.2, issue.3, pp.203-222, 1972.

]. G. All92 and . Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal, vol.23, issue.6, pp.1482-1518, 1992.

]. G. All97 and . Allaire, Mathematical approaches and methods, Homogenization and porous media, pp.225-250, 1997.

C. [. Allaire and . Conca, Bloch-wave homogenization for a spectral problem in fluid-solid structures, Archive for Rational Mechanics and Analysis, vol.33, issue.3, pp.197-257, 1996.
DOI : 10.1007/BF02198140

C. [. Allaire and . Conca, Boundary Layers in the Homogenization of a Spectral Problem in Fluid--Solid Structures, SIAM Journal on Mathematical Analysis, vol.29, issue.2, pp.343-379, 1998.
DOI : 10.1137/S0036141096304328

A. [. Allaire and . Raphael, Homogénéisation d'un modèle de convection-diffusion avec chimie/adsorption en milieu poreux, 2006.

]. P. Atk94 and . Atkins, Physical Chemistry, 1994.

A. Auriault, Homogenization theory applied to porous media, Poromechanics 3, pp.113-120, 2005.
DOI : 10.1201/NOE0415380416.ch19

[. Auriault and J. Lewandowska, Diffusion/adsorption/advection macrotransport in soils, Eur. J. Mech, vol.15, issue.4, pp.681-704, 1996.

]. J. Aur87 and . Auriault, Comportement des milieux poreux saturés, 1987.

]. J. Aur91 and . Auriault, Heterogeneous medium. Is an equivalent macroscopic description possible ?, Int. J. Eng. Sci, vol.29, issue.7, pp.861-869, 1991.

]. J. Aur02 and . Auriault, Upscaling heterogeneous media by asymptotic expansions, J. Eng. Mech, vol.128, issue.8, pp.817-822, 2002.

B. [. Bastian and . Rivì-ere, Superconvergence and H(div) projection for discontinuous Galerkin methods, International Journal for Numerical Methods in Fluids, vol.30, issue.4, 2003.
DOI : 10.1002/fld.562

. [. Bibliographie, Y. Bear, and . Bachmat, Introduction to Modeling of Transport Phemomena in Porous Media, 1990.

J. [. Bensoussan, G. Lions, and . Papanicolaou, Asymptotic Analysis for Periodic Structures, 1978.

]. M. Bio41 and . Biot, General theory of three-dimensional consolidation, J. Appl. Physics, vol.12, pp.155-164, 1941.

]. M. Bio55 and . Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J

E. [. Bird, E. N. Stewart, and . Lightfoot, Transport Phenomena, 1960.

]. A. Bou84 and . Bourgeat, Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution, Comput. Methods Appl. Mech. Engrg, vol.47, issue.12, pp.205-216, 1984.

O. [. Bourgeat, E. Gipouloux, and . Maru?i´maru?i´c-paloka, Filtration Law for Polymer Flow Through Porous Media, Multiscale Modeling & Simulation, vol.1, issue.3, pp.432-457, 2003.
DOI : 10.1137/S1540345902415321

A. Bourgeat and E. Maru?i´maru?i´c-paloka, NONLINEAR EFFECTS FOR FLOW IN PERIODICALLY CONSTRICTED CHANNEL CAUSED BY HIGH INJECTION RATE, Mathematical Models and Methods in Applied Sciences, vol.08, issue.03, pp.379-405, 1998.
DOI : 10.1142/S0218202598000160

E. [. Bourgeat, A. Maru?i´maru?i´c-paloka, and . Mikeli´cmikeli´c, Effective fluid flow in a porous medium containing a thin fissure, Asymptotic Anal, vol.11, issue.3, pp.241-262, 1995.

A. [. Bourgeat and . Mikeli´cmikeli´c, Homogenization of two-phase immiscible flows in a one-dimensional porous medium, Asymptotic Anal, vol.9, issue.4, pp.359-380, 1994.

A. [. Bourgeat and . Mikeli´cmikeli´c, Homogenization of a polymer flow through a porous medium, Nonlinear Analysis: Theory, Methods & Applications, vol.26, issue.7, pp.1221-1253, 1996.
DOI : 10.1016/0362-546X(94)00285-P

A. [. Bourgeat, A. Mikeli´cmikeli´c, and . Piatnitski, On the double porosity model of a single phase flow in random media, Asymptot. Anal, vol.34, pp.3-4, 2003.

M. [. Bourgeat and . Panfilov, Effective two-phase flow through highly heterogeneous porous media : capillary nonequilibrium effects, Computational Geosciences, vol.2, issue.3, pp.191-215, 1998.
DOI : 10.1023/A:1011502303588

L. [. Bourgeat, M. Pankratov, S. Panfilov, R. Brenner, and . Scott, Study of the double porosity model versus the fissures thickness The Mathematical Theory of Finite Element Methods, Asymptot. Anal, vol.38, issue.15, pp.129-141, 1994.

F. Brezzi, J. Douglas, J. , and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numerische Mathematik, vol.36, issue.2, pp.217-235, 1985.
DOI : 10.1007/BF01389710

M. [. Brezzi and . Fortin, Mixed and Hybrid Finite Element Methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

]. P. Cia91 and . Ciarlet, Basic error estimates for elliptic problems, Handbook of numerical analysis, pp.17-351, 1991.

D. Cioranescu and J. Saint-jean-paulin, Homogenization in open sets with holes, Journal of Mathematical Analysis and Applications, vol.71, issue.2, pp.590-607, 1979.
DOI : 10.1016/0022-247X(79)90211-7

]. O. Cou95 and . Coussy, Mechanics of Porous Continua, 1995.

P. [. Crouzeix and . Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO -Analyse Numérique, pp.33-75, 1973.

]. H. Dar56 and . Darcy, Les Fontaines Publiques de la Ville de Dijon, 1994.

]. L. Dor05 and . Dormieux, Non linear homogenization applied to the determination of transport properties and strength of saturated porous media, CD-ROM Proceedings of the 16th International Conference on Computer Methods in Mechanics (CMM 2005), Cz¸estochowaCz¸estochowa, 2005.

L. Dormieux and E. Bourgeois, IntroductionàIntroduction`Introductionà la Micromécanique des Milieux Poreux, 2002.

L. Dormieux, D. Kondo, F. J. Ulm, . Microporomechanics, and . Wiley, Ene and E. Sanchez-Palencia. Equations et phénomènes de surface pour l'´ ecoulement dans un modèle de milieu poreux, Journal de Mécanique, pp.73-108, 1975.

V. [. Ern and . Giovangigli, Multicomponent Transport Algorithms, of Lecture Notes in Physics. New Series m : Monographs, 1994.

J. [. Ern and . Guermond, Theory and Practice of Finite Elements, of Applied Mathematical Sciences, 2004.
DOI : 10.1007/978-1-4757-4355-5

S. [. Franca and . Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.99, issue.2-3, pp.209-233, 1992.
DOI : 10.1016/0045-7825(92)90041-H

]. G. Gal94 and . Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations Tracts in Natural Philosophy, 1994.

P. [. Girault and . Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, of Springer Series in Computational Mathematics, 1986.

P. [. Groot and . Mazur, Non-Equilibrium Thermodynamics, 1962.

A. [. Hammer and . Stroud, Numerical integration over simplexes, Mathematical Tables and Other Aids to Computation, pp.137-139, 1956.

A. [. Jäger and . Mikeli´cmikeli´c, On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math, vol.60, issue.4, pp.1111-1127, 2000.

S. [. Jikov and O. A. Kozlov, Ole? ?nik. Homogenization of differential operators and integral functionals, 1994.

]. J. Kel77 and . Keller, Effective behaviour of heterogeneous media, Statistical Mechanics and Statistical Methods in Theory and Application, pp.631-644, 1977.

]. E. Krö72 and . Kröner, Statistical Continuum Mechanics, 1972.

]. E. Bibliographie-[-krö86 and . Kröner, Statistical Modeling, 1986.

E. [. Landau and . Lifshitz, Fluid Mechanics, Volume 6 of Course of Theoretical Physics, 1987.

]. E. Lem01 and . Lemarchand, Contribution de la micromécaniquè a l'´ etude des phénomènes de transport et de couplage poromécanique dans les milieux poreux : Application aux phénomènes de gonflement des géomatériaux, 2001.

P. [. Majda and . Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Physics Reports, vol.314, issue.4-5, pp.4-5, 1999.
DOI : 10.1016/S0370-1573(98)00083-0

A. [. Maru?i´maru?i´c-paloka and . Mikeli´cmikeli´c, The derivation of a nonlinear filtration law including the inertia effects via homogenization. Nonlinear Anal, pp.97-137, 2000.

]. R. Mau91 and . Mauri, Dispersion, convection, and reaction in porous media, Phys. Fluids A, vol.3, issue.1, pp.743-756, 1991.

G. [. Mclaughlin, O. R. Papanicolaou, and . Pironneau, Convection of Microstructure and Related Problems, SIAM Journal on Applied Mathematics, vol.45, issue.5, pp.780-797, 1985.
DOI : 10.1137/0145046

]. A. Mik97 and . Mikeli´cmikeli´c, Non-Newtonian flow In Homogenization and porous media, Interdiscip. Appl. Math, vol.6, pp.77-94, 1997.

C. [. Mikeli´cmikeli´c and . Rosier, Modeling solute transport through unsaturated porous media using homogenization, I. Comput. Appl. Math, vol.23, pp.2-3, 2004.

]. R. Nig81 and . Nigmatulin, Three-dimensional averaging in the mechanics of heterogeneous media. Fluid Mechanics, pp.71-107, 1981.

O. [. Perkins and . Johnston, A Review of Diffusion and Dispersion in Porous Media, Society of Petroleum Engineers Journal, vol.3, issue.01, 1963.
DOI : 10.2118/480-PA

S. [. Quintard and . Whitaker, Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment, Chemical Engineering Science, vol.48, issue.14, pp.2537-2564, 1993.
DOI : 10.1016/0009-2509(93)80266-S

]. Y. Saa96 and . Saad, Iterative Methods for Sparse Linear Systems, 1996.

M. [. Saad and . Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

. [. Sanchez-palencia, Comportements local et macroscopique d'un type de milieux physiques heterogenes, International Journal of Engineering Science, vol.12, issue.4, pp.331-351, 1974.
DOI : 10.1016/0020-7225(74)90062-7

]. E. San80 and . Sanchez-palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol.127, 1980.

]. G. Str72 and . Strang, Variational crimes in the finite element method The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Bibliographie, vol.117, 1972.

]. A. Str69 and . Stroud, A fifth degree integration formula for the n-simplex, SIAM J. Num. Anal, vol.6, pp.90-98, 1969.

]. A. Str71 and . Stroud, Approximate Calculation of Multiple Integrals, 1971.

J. [. Strzelecki, J. L. Bauer, and . Auriault, Constitutive equation of a gas-filled twophase medium. Transp. Porous Media, pp.197-202, 1993.

P. Tardif-d-'hamonville, A. Ern, and L. Dormieux, Numerical evaluation of diffusive and dispersive transport in periodic porous media with advection, Comput. Geosci, 2006.

]. K. Ter43 and . Terzaghi, Theoretical Soils Mechanics, 1943.

R. [. Tobiska and . Verfürth, Analysis of a Streamline Diffusion Finite Element Method for the Stokes and Navier???Stokes Equations, SIAM Journal on Numerical Analysis, vol.33, issue.1, pp.107-127, 1996.
DOI : 10.1137/0733007

]. P. Tra00 and . Tran, Corrections non linéaireslinéaires`linéairesà la loi de Darcy et dispersion en milieux poreux périodiques anisotropes, 2000.

. [. Van-damme, L'eau et sa représentation, Mécanique des sols non saturés. Hermès, 2002.

]. A. Viv05 and . Vives, Rapport de stage : Simulations numériques en vue de calculs d'homogénéisation pour lesécoulementslesécoulements en milieu poreux, 2005.