E. Patoor and M. Berveiller, Technologie des Alliages à Mémoire de Forme, Edition Hermès, 1994.

G. Guénin, Alliages à mémoire de forme », Technique de l'ingénieur, Traité des matériaux métalliques, pp.530-531, 1995.

S. Kajiwara, Theoretical Analysis of the Crystallography of the Martensitic Transformation of <I>BCC</I> to 9<I>R</I> Close-Packed Structure, Transactions of the Japan Institute of Metals, vol.17, issue.7, pp.435-446, 1976.
DOI : 10.2320/matertrans1960.17.435

S. Kajiwara, Experimental aspects of the crystallography of the martensitic transformation of BCC to 9R close-packed structure, Transaction of the Japan Institute of Metals, pp.17-447, 1976.

P. Novak, D. Sittner, N. Vokoun, and . Zarubova, On the anisotropy of martensitic transformations in Cu-based alloys, Materials Science and Engineering: A, vol.273, issue.275, pp.280-285, 1999.
DOI : 10.1016/S0921-5093(99)00355-X

C. Y. Chung and C. W. Lam, Cu-based shape memory alloys with enhanced thermal stability and mechanical properties, Materials Science and Engineering: A, vol.273, issue.275, pp.622-624, 1999.
DOI : 10.1016/S0921-5093(99)00335-4

J. V. Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A, vol.273, issue.275, pp.134-148, 1999.
DOI : 10.1016/S0921-5093(99)00293-2

N. Siredey and A. , Fatigue behavior of Cu-Al-Be shape memory single crystals, Materials Science and Engineering: A, vol.290, issue.1-2, pp.171-179, 2000.
DOI : 10.1016/S0921-5093(00)00893-5

URL : https://hal.archives-ouvertes.fr/hal-00119226

L. Contardo, « Etude des traitements d'éducation, de la stabilité et de l'origine de l'effet mémoire double sens dans un alliage CuZnAl, Thèse INSA de Lyon, 1988.

M. Ninomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods, Science and Technology of Advanced Materials, vol.37, issue.5, 2003.
DOI : 10.1016/S0142-9612(00)00216-7

D. Mantovani, Shape memory alloys: Properties and biomedical applications, JOM, vol.22, issue.2, pp.36-44, 2000.
DOI : 10.1007/s11837-000-0082-4

S. Belkahla, « Elaboration et caractérisation de nouveaux alliage à mémoire de forme basse température type CuAlBe, Thèse INSA de Lyon, 1990.

F. Moreau, « Etude par diffraction des rayons X des effets du cyclage pseudoélastique de l'alliage à mémoire de forme Cu-Al-Be, Thèse université de Metz, 1998.

Z. H. Flores, Stabilité thermique de la phase ? et de l'effet mémoire double sens d'un alliage à mémoire de forme de type Cu-Al-Be, Thèse INSA de Lyon, 1993.

J. W. Christian, Deformation by moving interfaces, Metallurgical Transactions A, vol.14, issue.6, pp.509-538, 1982.
DOI : 10.1007/BF02644415

F. C. Lovey, M. Sade, V. Torra, and A. , Role of dislocations on the properties of shape memory alloys, Proceedings of the Internationl Conference on Martensitic Transformations, pp.365-370, 1992.

T. Saburi, S. Nenno, and M. Inuishi, A thermally produced large single crystal of Cu???Zn???Ga martensite, Scripta Metallurgica, vol.10, issue.10, pp.875-877, 1976.
DOI : 10.1016/0036-9748(76)90204-0

F. C. Lovey, A. Amengual, V. Torra, and M. Ahlers, on the origin of the intrinsic thermoelasticity associated with a single-interface transformation in CuZnAl shape memory alloys, Philosophical magazine A, pp.61-159, 1990.

L. C. Brinson, I. Schmidt, and R. Lammering, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, Journal of the Mechanics and Physics of Solids, vol.52, issue.7, pp.1549-1571, 2004.
DOI : 10.1016/j.jmps.2004.01.001

Y. B. Xu, R. J. Wang, and Z. G. Wang, In-situ investigation of stress-induced martensitic transformation in the Ti-Ni shape memory alloy during deformation, Materials Letters, vol.24, issue.6, pp.355-358, 1995.
DOI : 10.1016/0167-577X(95)00127-1

A. Hautceour, A. Eberhardt, E. Patoor, and M. Berveiller, « Thermomechanical behavior of monocrystalline CuAlBe shape memory alloys and determination of the metastable phase diagram, Journal de Physique IV, vol.5, pp.459-464, 1995.

L. Lu, M. O. Lai, and A. S. Lim, Mechanical fatigue of Cu-based shape memory alloy after different heat treatment, Scripta Materialia, vol.34, issue.1, pp.157-162, 1996.
DOI : 10.1016/1359-6462(95)00488-2

A. Abu-arab, M. Chandrasekaran, and M. Ahlers, Aging behavior in the martensitic and the bcc phases of Cu???Zn???dAl single crystals, Scripta Metallurgica, vol.18, issue.10, pp.1125-1130, 1984.
DOI : 10.1016/0036-9748(84)90191-1

D. O. Roqueta, F. C. Lovely, and M. Sade, Hysteresis evolution in the martensitic transformation cycling in ??-Cu-Zn-Al samples with ??-phase precipitates, Scripta Materialia, vol.36, issue.4, pp.385-391, 1997.
DOI : 10.1016/S1359-6462(96)00398-3

J. Malarria and M. Sade, The effect of temperature on pseudoelastic cycling of Cu???Zn???Al single crystals, Scripta Metallurgica et Materialia, vol.30, issue.2, pp.241-246, 1994.
DOI : 10.1016/0956-716X(94)90047-7

V. Torra, A. Isalgue, and F. C. Lovey, Microstructure and Thermodynamics of the Martensitic Transformation, Microstructure and thermodynamics of the martensitic transformation, pp.207-214, 2000.
DOI : 10.1080/01418618708209908

G. B. Greenough and . Prog, Quantitative X-ray diffraction observations on strained metal aggregates, Progress in Metal Physics, vol.3, p.176, 1952.
DOI : 10.1016/0502-8205(52)90008-7

H. R. Isenburger, Bibliography on X-Ray stress analysis, 1953.

D. M. Vasilev and B. J. Smirnov, Certain X-RAY diffraction methods of investigating cold worked metals, Uspekhi Fizicheskih Nauk, vol.73, issue.3, p.503, 1961.
DOI : 10.3367/UFNr.0073.196103e.0503

T. Umura, S. Weissmann, and J. J. Slade, A study of age-hardening of Al???3.85% Cu by the divergent X-ray beam method, Acta Crystallographica, vol.15, issue.8, pp.786-793, 1962.
DOI : 10.1107/S0365110X62002030

T. Ellis and E. , Strain and Precision Lattice Parameter Measurements by the X???Ray Divergent Beam Method. I, Journal of Applied Physics, vol.35, issue.11, p.3364, 1964.
DOI : 10.1063/1.1713224

J. J. Slade, Stress???Strain Analysis of Single Cubic Crystals and Its Application to the Ordering of CuAu I. Paper II, Journal of Applied Physics, vol.35, issue.11, pp.3373-3385, 1964.
DOI : 10.1063/1.1713225

B. Ortner, « Choice of lattice planes in X-Ray strain measurments of single crystals », Advances in X-Ray Analysis, pp.113-118, 1986.

B. Ortner, « Simultanious determination of the lattice constant and elastic strain in cubic single crystal », Advances in X-Ray Analysis, pp.387-394, 1986.

B. Ortner, Lattice-constant and stress measurement in single crystals: a new method, Journal of Applied Crystallography, vol.38, issue.4, pp.678-684, 2005.
DOI : 10.1107/S0021889805019370

M. Barral, Rapport de recherche interne, 1987.

W. Reimers, « Entweines eikornmess und auswertungsverfahrens unter antw von beugungsmethoden zur analyse von def und eigenspannungen im mikrobereich " Habilitation de recherche de l, 1989.

Z. Zou, « Détermination des déformations et des contraintes dans les matériaux monocristallins par diffraction des rayons X, Thèse ENSAM Paris, 1994.

P. Gergaud, G. Dour, K. Inal, and J. L. Lebrun, « X-ray determination of stresses distribution in a coarse grained silicon billet » Advances in X-ray analysis, pp.225-235, 1996.

J. Turki and D. Löhe, Influence of Crystalline Orientation on the Distribution of the Load Stress in Coarse Grains, Materials Science Forum, vol.404, issue.407, pp.477-482, 2002.
DOI : 10.4028/www.scientific.net/MSF.404-407.477

P. Sittner, P. Lukás, V. Novák, M. R. Daymond, and G. M. Swallowe, In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Materials Science and Engineering: A, vol.378, issue.1-2, pp.97-104, 2004.
DOI : 10.1016/j.msea.2003.09.112

P. Sittner, P. Lukás, D. Neov, M. R. Daymond, V. Novák et al., Stress-induced martensitic transformation in Cu???Al???Zn???Mn polycrystal investigated by two in-situ neutron diffraction techniques, Materials Science and Engineering: A, vol.324, issue.1-2, pp.225-234, 2002.
DOI : 10.1016/S0921-5093(01)01316-8

P. Lukás, P. Sittner, D. Neov, V. Novák, P. Strunz et al., In situ neutron diffraction study of metals under external mechanical loading, Physica B: Condensed Matter, vol.276, pp.278-845, 2000.

E. Oliver, M. Mori, P. Daymond, and . Withers, Neutron diffraction study of stress-induced martensitic transformation and variant change in Fe???Pd shape memory alloy, Materials Science and Engineering: A, vol.378, issue.1-2, pp.328-332, 2004.
DOI : 10.1016/j.msea.2003.09.114

E. C. Oliver, T. Mori, M. R. Daymond, and P. J. Withers, Neutron diffraction study of stress-induced martensitic transformation and variant change in Fe???Pd, Acta Materialia, vol.51, issue.20, pp.6453-6464, 2003.
DOI : 10.1016/j.actamat.2003.08.017

A. Bekker and L. C. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia, vol.46, issue.10, pp.3649-3665, 1998.
DOI : 10.1016/S1359-6454(97)00490-4

S. Leclercq and . Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.953-980, 1996.
DOI : 10.1016/0022-5096(96)00013-0

B. Peultier, T. Benzineb, and E. Patoor, Macroscopic constitutive law of shape memory alloy thermomechanical behaviour. Application to structure computation by FEM, Mechanics of Materials, vol.38, issue.5-6, pp.510-524, 2006.
DOI : 10.1016/j.mechmat.2005.05.026

E. Patoor, A. Eberhardt, and M. Berveiller, Thermomechanical Behavior of Shape Memory Alloys, ESOMAT 1989, Ist European Symposium on Martensitic Transformations in Science and Technology, pp.775-794, 1988.
DOI : 10.1051/esomat/198903002

T. J. Lim and D. L. Mcdowell, Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy, Journal of the Mechanics and Physics of Solids, vol.50, issue.3, pp.651-676, 2002.
DOI : 10.1016/S0022-5096(01)00088-6

P. Thamburaja and L. Anand, Superelastic behavior in tension???torsion of an initially-textured Ti???Ni shape-memory alloy, International Journal of Plasticity, vol.18, issue.11, pp.1607-1617, 2002.
DOI : 10.1016/S0749-6419(02)00031-1

P. Blanc and L. Lexcellent, Micromechanical modelling of a CuAlNi shape memory alloy behaviour, Materials Science and Engineering: A, vol.378, issue.1-2, pp.465-469, 2004.
DOI : 10.1016/j.msea.2003.11.065

URL : https://hal.archives-ouvertes.fr/hal-00014090

E. Patoor, A. Eberhardt, and M. Berveiller, « Micromechanical modeling of superelasticity in shape memory alloy, Journal de Physique IV, vol.1, pp.277-292, 1996.

B. C. Goo and C. , Lexcellent « Micromechanics-based modeling of tow way memory effect of a single crystalline shape memory alloy, Acta Metallurgica, vol.45, pp.727-737, 1997.

Q. P. Sun, K. Hwang, and S. Yu, Micromechanics Constitutive Description of Thermoelastic Martensitic Transformations, Advenced Applied Mechanics, vol.31, pp.249-298, 1994.
DOI : 10.1016/S0065-2156(08)70257-6

T. J. Lim and D. L. , Mechanical Behavior of an Ni-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading, Journal of Engineering Materials and Technology, vol.121, issue.1, pp.9-18, 1999.
DOI : 10.1115/1.2816007

T. B. Zineb, S. Berveiller, F. Meraghni, and E. Patoor, « Identification du comportement local d'un grain dans un multicristal en alliages à mémoire de forme, Congrès Français de Mécanique, 2005.

J. P. Eberhart, Analyse structurale et chimique des matériaux" -Dunod, 1989.

G. B. Rao, J. Q. Wang, E. H. Han, and W. Ke, Study of residual stress accumulation in TiNi shape memory alloy during fatigue using EBSD technique, Materials Letters, vol.60, issue.6, pp.779-782, 2006.
DOI : 10.1016/j.matlet.2005.10.023

A. D. Krawitz, « Introduction to diffraction in materials science and engineering, 2001.

J. M. Sprauel and L. Castex, Analyse des contraintes résiduelles par diffraction des rayons X et des neutrons, DIST CEA/Saclay 96038, pp.7272-01826, 1996.

M. Bellassel, Etude de la distribution des contraintes d'ordre I et II par diffraction des rayons X dans un acier perlitique, Thèse ENSAM Paris, 1994.

M. François, dans « Détermination des contraintes résiduelles par diffraction des rayons X » Chapitre 4, Document de formation générale, 1997.

B. Ortner, « Choice of lattice planes in X-Ray strain measurements of single crystals », Advances in X-Ray Analysis, pp.113-118, 1986.

B. Ortner, « Simultaneous determination of the lattice constant and elastic strain in cubic single crystal », Advances in X-Ray Analysis, pp.387-394, 1986.

B. Ortner, Lattice-constant and stress measurement in single crystals: a new method, Journal of Applied Crystallography, vol.38, issue.4, pp.678-684, 2005.
DOI : 10.1107/S0021889805019370

N. Siredey and A. , Fatigue behavior of Cu-Al-Be shape memory single crystals, Materials Science and Engineering: A, vol.290, issue.1-2, pp.171-179, 2000.
DOI : 10.1016/S0921-5093(00)00893-5

URL : https://hal.archives-ouvertes.fr/hal-00119226

S. Belkahla, Elaboration et caractérisation de nouveaux alliages à mémoire de forme basse température type Cu-Al-Be, Thèse de doctorat, 1990.

P. Parnière, « Utilisation des neutrons en métallurgie. Application à l'étude des textures », Rapport interne IRSID RFP, vol.302, 1980.

L. Lu, M. O. Lai, and A. S. Lim, Mechanical fatigue of Cu-based shape memory alloy after different heat treatment, Scripta Materialia, vol.34, issue.1, pp.157-162, 1996.
DOI : 10.1016/1359-6462(95)00488-2

F. Moreau, « Etude par diffraction des rayons X des effets du cyclage pseudoélastique de l'alliage à mémoire de forme Cu-Al-Be, Thèse université de Metz, 1998.

Y. Gao, Etude de la transformation martensitique d'un AMF Cu-Al-Be à grains fins par rayons X et neutrons, 2005.

H. F. Zuniga, Stabilité thermique de la phase ? et de l'effet mémoire double sens d'un alliage à mémoire de forme du type Cu-Al-Be, Thèse INSA de Lyon, 1993.

D. Entemeyer, Etude micromécanique du comportement thermomécanique des alliages à mémoire de forme, Thèse université de Metz, 1996.

H. Horikawa, S. Ichinose, K. Morii, S. Myasaki, and K. Otsuka, Orientation dependence of ??1 ??? ??1??? stress-induced martensitic transformation in a Cu-AI-Ni alloy, Metallurgical Transactions A, vol.10, issue.4, pp.915-923, 1986.
DOI : 10.1007/BF02628376

M. Tokuda, M. Ye, M. Takakura, and P. Sittner, Thermomechanical behavior of shape memory alloy under complex loading conditions, International Journal of Plasticity, vol.15, issue.2, pp.223-239, 1999.
DOI : 10.1016/S0749-6419(98)00066-7

E. Patoor, M. Amrani, A. Eberhardt, and M. Berveiller, Determination of the origin for the dissymetry observed between tensile and compression tests on shape memory alloys, Journal de physique, vol.5, pp.495-500, 1995.

F. Moreau, Etude par diffraction des rayons X des effets du cyclage pseudoélastique de l'alliage à mémoire de forme Cu-Al-Be, Thèse université de Metz, 1998.

S. Kajiwara, Theoretical Analysis of the Crystallography of the Martensitic Transformation of <I>BCC</I> to 9<I>R</I> Close-Packed Structure, Transactions of the Japan Institute of Metals, vol.17, issue.7, pp.435-446, 1976.
DOI : 10.2320/matertrans1960.17.435

N. Siredey and A. , Fatigue behavior of Cu-Al-Be shape memory single crystals, Materials Science and Engineering: A, vol.290, issue.1-2, pp.171-179, 2000.
DOI : 10.1016/S0921-5093(00)00893-5

URL : https://hal.archives-ouvertes.fr/hal-00119226

P. Sittner, P. Lukás, D. Neov, M. R. Daymond, V. Novák et al., Stress-induced martensitic transformation in Cu???Al???Zn???Mn polycrystal investigated by two in-situ neutron diffraction techniques, Materials Science and Engineering: A, vol.324, issue.1-2, pp.225-234, 2002.
DOI : 10.1016/S0921-5093(01)01316-8

P. Sittner, K. Hashimoto, M. Kato, and M. Tokuda, Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube, Scripta Materialia, vol.48, issue.8, pp.1153-1159, 2003.
DOI : 10.1016/S1359-6462(02)00583-3

Y. B. Xu, R. J. Wang, and Z. G. Wang, In-situ investigation of stress-induced martensitic transformation in the Ti-Ni shape memory alloy during deformation, Materials Letters, vol.24, issue.6, pp.355-358, 1995.
DOI : 10.1016/0167-577X(95)00127-1

J. R. Patel and M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metallurgica, vol.1, issue.5, pp.531-538, 1953.
DOI : 10.1016/0001-6160(53)90083-2

T. B. Zineb, S. Berveiller, F. Meraghni, and E. Patoor, « Identification du comportement local d'un grain dans un multicristal en alliages à mémoire de forme, 2005.

D. Entemeyer, Etude micromécanique du comportement thermomécanique des alliages à mémoire de forme, Thèse université de Metz, 1996.

H. Horikawa, S. Ichinose, K. Morii, S. Myasaki, and K. Otsuka, Orientation dependence of ??1 ??? ??1??? stress-induced martensitic transformation in a Cu-AI-Ni alloy, Metallurgical Transactions A, vol.10, issue.4, pp.915-923, 1986.
DOI : 10.1007/BF02628376

T. Ungar, H. Mughrabi, and M. Wilkens, Asymmetric X-Ray line broadening due to longrange internal stresses in deformed (001)-oriented copper single crystals, Proceedings of the Riso International Symposium on Metallurgy and Materials Science, pp.539-544, 1984.

M. Wilkens, The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles, Physica Status Solidi (a), vol.12, issue.2, pp.359-370, 1970.
DOI : 10.1002/pssa.19700020224

P. Sittner, K. Hashimoto, M. Kato, and M. Tokuda, Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube, Scripta Materialia, vol.48, issue.8, pp.1153-1159, 2003.
DOI : 10.1016/S1359-6462(02)00583-3

S. Hartmann and H. Ruppersberg, Thermal expansion of cementite and thermoelastic stresses in white cast iron, Materials Science and Engineering: A, vol.190, issue.1-2, pp.231-239, 1995.
DOI : 10.1016/0921-5093(94)09616-5

H. Ruppersberg, Stress fields in the surface region of pearlite, Materials Science and Engineering: A, vol.224, issue.1-2, pp.61-68, 1997.
DOI : 10.1016/S0921-5093(96)10564-5

S. Hartmann and H. , X-ray diffraction investigation of the thermoelastic strains in white cast iron, Materials Science and Engineering: A, vol.208, issue.1, pp.139-142, 1996.
DOI : 10.1016/0921-5093(95)10066-0

M. Bellassel, Etude de la distribution des contraintes d'ordre I et II par diffraction des rayons X dans un acier perlitique, Thèse ENSAM Paris, 1994.

Y. Higo, F. Lecroisey, and T. Mori, Relation between applied stress and orientation relationship of ????? martensite in stainless steel single crystals, Acta Metallurgica, vol.22, issue.3, pp.313-323, 1974.
DOI : 10.1016/0001-6160(74)90170-9

P. Sittner, V. Novák, and N. Zárubová, Deformation by moving interfaces from single crystal experiments to the modeling of industrial SMA, International Journal of Mechanical Sciences, vol.40, issue.2-3, pp.159-172, 1998.
DOI : 10.1016/S0020-7403(97)00046-5

J. Turki and D. Lohe, Influence of Crystalline Orientation on the Distribution of the Load Stress in Coarse Grains, Materials Science Forum, vol.404, issue.407, pp.477-482, 2002.
DOI : 10.4028/www.scientific.net/MSF.404-407.477

E. Patoor, A. Eberhardt, and M. Berveiller, Micromechanical Modelling of Superelasticity in Shape Memory Alloys, Le Journal de Physique IV, vol.06, issue.C1, pp.277-292, 1996.
DOI : 10.1051/jp4:1996127

URL : https://hal.archives-ouvertes.fr/jpa-00254159

Q. P. Sun, K. Hwang, and S. Yu, Micromechanics Constitutive Description of Thermoelastic Martensitic Transformations, Advanced Applied Mechanics, vol.31, pp.249-298, 1994.
DOI : 10.1016/S0065-2156(08)70257-6

M. Tokuda, M. Ye, M. Takakura, and P. Sittner, Thermomechanical behavior of shape memory alloy under complex loading conditions, International Journal of Plasticity, vol.15, issue.2, pp.223-239, 1999.
DOI : 10.1016/S0749-6419(98)00066-7

T. E. Buchheit, S. L. Kumpf, and J. A. Wert, Modeling the stress-induced transformation behavior of shape memory alloy single crystals, Acta Metallurgica et Materialia, vol.43, issue.11, pp.4189-4199, 1995.
DOI : 10.1016/0956-7151(95)00105-5

Y. B. Xu, R. J. Wang, and Z. G. Wang, In-situ investigation of stress-induced martensitic transformation in the Ti-Ni shape memory alloy during deformation, Materials Letters, vol.24, issue.6, pp.355-358, 1995.
DOI : 10.1016/0167-577X(95)00127-1

P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Sittner et al., Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy, Acta Materialia, vol.53, issue.13, pp.3643-3661, 2005.
DOI : 10.1016/j.actamat.2005.04.013

S. Belkahla, Elaboration et caractérisation de nouveaux alliages à mémoire de forme basse température type Cu-Al-Be, Thèse de doctorat, 1990.

P. L. Rodriguez, F. C. Lovey, G. Guenin, J. L. Pelegrina, M. Sade et al., Elastic constants of the monoclinic 18R martensite of a Cu???Zn???Al alloy, Acta Metallurgica et Materialia, vol.41, issue.11, pp.3307-3310, 1993.
DOI : 10.1016/0956-7151(93)90059-2

L. M. Cirdi, K. Inal, J. L. Lebrun, and G. Barbier, X-Ray intergranular stresses analysis in a cast duplex stainless steel, Materials Science Forum, vol.347, pp.247-252, 2000.

M. R. Berrahmoune, S. Berveiller, K. Inal, and E. Patoor, Residual stress state at different scales in deep drown up of unstable austenitic steel, 2006.

P. Sittner, P. Lukás, V. Novák, M. R. Daymond, and G. M. Swallowe, In situ neutron diffraction studies of martensitic transformations in NiTi polycrystals under tension and compression stress, Materials Science and Engineering: A, vol.378, issue.1-2, pp.97-104, 2004.
DOI : 10.1016/j.msea.2003.09.112

J. R. Patel and M. Cohen, Criterion for the action of applied stress in the martensitic transformation, Acta Metallurgica, vol.1, issue.5, pp.531-538, 1953.
DOI : 10.1016/0001-6160(53)90083-2

S. Leclercq and C. , A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.953-957, 1996.
DOI : 10.1016/0022-5096(96)00013-0

E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, and X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials, vol.38, issue.5-6, pp.391-429, 2006.
DOI : 10.1016/j.mechmat.2005.05.027

S. Leclercq and C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.953-980, 1996.
DOI : 10.1016/0022-5096(96)00013-0

P. Thamburaja and L. Anand, Superelastic behavior in tension???torsion of an initially-textured Ti???Ni shape-memory alloy, International Journal of Plasticity, vol.18, issue.11, pp.1607-1617, 2002.
DOI : 10.1016/S0749-6419(02)00031-1

M. Huang, X. Gao, L. C. Brinson, and S. For, A multivariant micromechanical model for SMAs Part 2. Polycrystal model, International Journal of Plasticity, vol.16, issue.10-11, pp.1371-1390, 2000.
DOI : 10.1016/S0749-6419(00)00014-0

D. Ríos-jara and G. Guénin, On the characterization and origin of the dislocations associated with the two way memory effect in Cu???Zn???Al thermoelastic alloys-I. Quantitative analysis of the dislocations, Acta Metallurgica, vol.35, issue.1, pp.109-119, 1987.
DOI : 10.1016/0001-6160(87)90218-5

D. Ríos-jara, M. Morin, C. Esnouf, and G. Guénin, Characterization of dislocations formed cyclical ??1?????1??? martensitic transformations in Cu???Zn???Al alloys, Scripta Metallurgica, vol.19, issue.4, pp.441-446, 1985.
DOI : 10.1016/0036-9748(85)90110-3

G. B. Rao, J. Q. Wang, E. H. Han, and W. , Study of residual stress accumulation in TiNi shape memory alloy during fatigue using EBSD technique, Materials Letters, vol.60, issue.6, pp.779-782, 2006.
DOI : 10.1016/j.matlet.2005.10.023

F. Moreau, « Etude par diffraction des rayons X des effets du cyclage pseudoélastique de l'alliage à mémoire de formeCu-Al-Be, Thèse université de Metz, 1998.

G. Rao, J. Wang, E. Han, and W. , Ke, « In situ observation of effects of stress induced martensitic transformation on fatigue behavior in NiTi shape memory alloy

M. Montagnat, P. Duval, P. Bastie, B. Hamelin, O. Brissaud et al., High crystalline quality of large single crystals of subglacial ice above Lake Vostok (Antarctica) revealed by hard X-ray diffraction, Comptes-Rendus de l'Académie des Sciences -Series IIA -Earth and Planetary Science, pp.419-425, 2001.
DOI : 10.1016/S1251-8050(01)01667-6

M. F. Ashby, The deformation of plastically non-homogeneous materials, Philosophical Magazine, vol.245, issue.170, pp.399-424, 1970.
DOI : 10.1016/0001-6160(64)90034-3

H. S. Peiser, H. P. Rooksby, and A. J. Wilson, X-ray diffraction polycristalline materials, éd. Institute of Physics, vol.17, pp.409-480, 1960.

H. P. Klug and L. E. Alexander, X-ray diffraction procedures for polycristalline and amorphous materials, pp.491-538, 1967.

. Un-système-tel-que, est soluble si les équations du système sont indépendantes les unes des autres, donc si son déterminant det(a i a j ) n'est pas nul. Nous avons vérifié qu'en utilisant des plans de la famille {531} il existe toujours au moins six plans (h i k i l i ) qui assurent l

P. Gergaud, G. Dour, K. Inal, and J. L. Lebrun, « X-ray determination of stresses distribution in a coarse grained silicon billet » Advances in X-ray analysis, 1996.

Z. Zou, « Détermination des déformations et des contraintes dans les matériaux monocristallins par diffraction des rayons X, Thèse ENSAM Paris, 1994.

S. Belkahla, Elaboration et caractérisation de nouveaux alliages à mémoire de forme basse température type Cu-Al-Be, Thèse de doctorat, 1990.