E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, p.373, 1951.
DOI : 10.1021/ja01145a126

C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, 1990.

M. Glora, M. Wiener, R. Petricevic, H. Pröbstle, and J. Fricke, Integration of carbon aerogels in PEM fuel cells, Journal of Non-Crystalline Solids, vol.285, issue.1-3, p.283, 2001.
DOI : 10.1016/S0022-3093(01)00468-9

S. J. Gregg and K. S. Sing, Adsorption Surface Area and Porosity, Journal of The Electrochemical Society, vol.114, issue.11, p.29, 1966.
DOI : 10.1149/1.2426447

K. Kinoshita, Carbon : electrochemical and physicochemical properties, 1988.

R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer et al., Carbon aerogels for electrochemical applications, Journal of Non-Crystalline Solids, vol.225, p.74, 1998.
DOI : 10.1016/S0022-3093(98)00011-8

C. Tan, B. M. Fung, J. K. Newman, and C. Vu, Advanced materials 13, Tarasevich, M. R. Elektrokhim, vol.644, issue.9, p.599, 1973.

E. Roland and P. Kleinschmit, Zeolithes, Ullmann's Encyclopedia of Indutrial Chemistry, 1996.

Y. Dauphin, Biomineralization, Encyclopedia of Inorganic Chemistry, 2006.

C. Brinker and G. Scherrer, Sol-gel science: The physics and chemistry of sol-gel processing, 1990.

N. Hüsing, U. Schubert, J. Phalippou, L. Kocon, and L. Kocon, Aerogels, Ullmann's Encyclopedia of Indutrial Chemistry Elaboration des gels et des Aérogels Aérogels: Aspects fondamentaux, J. Phys. Chemistry, vol.68, issue.36, p.52, 1932.

J. Rouquérol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes et al., Recommendation for the characterization of porous solids, Pure Appl. Chem, vol.669, p.1739, 1994.

A. Ayral, J. Phalippou, and T. Woignier, Skeletal density of silica aerogels determined by helium pycnometry, Journal of Materials Science, vol.42, issue.5, p.1166, 1992.
DOI : 10.1007/BF01142014

S. J. Gregg and K. S. Sing, Adsorption Surface Area and Porosity, Journal of The Electrochemical Society, vol.114, issue.11, 1982.
DOI : 10.1149/1.2426447

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, p.373, 1951.
DOI : 10.1021/ja01145a126

M. M. Dubinin, The Potential Theory of Adsorption of Gases and Vapors for adsorbents with Energetically Non-uniform Surfaces, Chem. Rev, vol.6013, p.235, 1960.

G. W. Scherer, D. M. Smith, and D. Stein, Deformation of aerogels during characterization, Journal of Non-Crystalline Solids, vol.186, p.309, 1995.
DOI : 10.1016/0022-3093(95)00058-5

G. Reichenauer and G. W. Scherer, Nitrogen sorption in aerogels, Journal of Non-Crystalline Solids, vol.285, issue.1-3, p.167, 2001.
DOI : 10.1016/S0022-3093(01)00449-5

E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, vol.17, issue.3, p.273, 1921.
DOI : 10.1103/PhysRev.17.273

L. Duffours, T. Woignier, and J. Phalippou, Irreversible volume shrinkage of silica aerogels under isostatic pressure, Journal of Non-Crystalline Solids, vol.194, issue.3, p.283, 1996.
DOI : 10.1016/0022-3093(95)00499-8

R. Pirard, R. Pirard, S. Blacher, F. Brouers, and J. P. Pirard, Etude de la texture des matériaux hyper poreux par porosimétrie au mercure Interpretation of mercury porosimetry applied to aerogels, Thèse de doctorat, p.2114, 1995.

R. Pirard, A. Rigacci, J. C. Maréchal, D. Quenard, B. Chevalier et al., Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Appl, Chem, vol.5421, 1982.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, 1938.
DOI : 10.1021/ja01269a023

A. Ponton, S. Warlus, and P. Griesmar, Rheological Study of the Sol???Gel Transition in Silica Alkoxides, Journal of Colloid and Interface Science, vol.249, issue.1, p.209, 2002.
DOI : 10.1006/jcis.2002.8227

E. Anglaret, A. Hasmy, and R. Jullien, Effect of container size on gelation time: experiments and simulations, Physical review letters 75, p.4059, 1995.

D. J. Stein, A. Maskara, S. Haereid, J. Anderson, and D. M. Smith, Contact angle measurement and its application to sol-gel processing, Better ceramics through chemistry VI, p.643, 1994.

D. R. Lide, D. M. Smith, G. W. Scherer, and J. M. Anderson, Handbook of chemistry physics Shrinkage during drying of silica gel, Journal of Non-Crystalline Solids, vol.2627, issue.188, 0191.

A. Bisson, A. Rigacci, D. Lecomte, E. Rodier, and P. Achard, Drying of silica gels to obtain aerogels: phenomenology and basic techniques, Drying Technology 21, p.593, 2003.

M. Perrut, Extraction par fluide supercritique, J 2270, Techniques de l'ingénieur, 1999.

G. M. Pajonk, DRYING METHODS PRESERVING THE TEXTURAL PROPERTIES OF GELS, Le Journal de Physique Colloques, vol.24, issue.C4, pp.4-13, 1989.
DOI : 10.1051/jphyscol:1989403

URL : https://hal.archives-ouvertes.fr/jpa-00229478

M. J. Bommel and A. B. Haan, Drying of silica gels with supercritical carbon dioxide Ternary systems of liquid carbon dioxide, Journal of Materials Science J. Phys. Chem, vol.2932, issue.58, p.1099, 1954.

G. W. Scherer, Stress in aerogel during depressurization of autoclave: I. theory, Journal of Sol-Gel Science and Technology, vol.130, issue.3, p.127, 1994.
DOI : 10.1007/BF00486719

T. Woignier, G. W. Scherer, and A. Alaoui, Stress in aerogel during depressurization of autoclave: II. Silica gels, Journal of Sol-Gel Science and Technology, vol.145, issue.1?2, p.141, 1994.
DOI : 10.1007/BF00486720

J. Livage, M. Henry, and C. Sanchez, Sol-gel chemistry of transition metal oxides, Progress in solid-state chemistry 18, p.259, 1988.

S. J. Teichner, G. A. Nicolaon, and M. A. Vicarini, Inorganic oxide aerogel Compositions and insulation bodies having low thermal conductivities, Adv. Coll. Interf. Sci, vol.537, issue.245, 1976.

E. J. Pope, J. D. Mackenzie, and R. K. Iler, Sol-gel processing of silica II : the role of the catalyst The chemistry of silica, J. Non-Cryst. Solids, vol.873940, issue.185, p.462, 1979.

G. W. Scherer and R. M. Swiatek, Measurement of permeability II. Silica gel, Journal of Non-Crystalline Solids, vol.113, issue.2-3, pp.119-160, 1989.
DOI : 10.1016/0022-3093(89)90002-1

G. W. Scherer, H. Hdach, and J. Phalippou, Thermal expansion of gels: a novel method for measuring permeability, Journal of Non-Crystalline Solids, vol.130, issue.2, pp.157-200, 1991.
DOI : 10.1016/0022-3093(91)90451-B

J. Phalippou, T. Woignier, M. Prassas, R. W. Pekala, R. W. Pekala et al., Glasses from aerogels. Part I: The synthesis of monolithic aerogels Organic Aerogels from polycondensation of resorcinol with formaldehyde A synthetic route to organic aerogels -Mechanism, structures and properties, Rev, J. Mater. Sci. J. Mater.Sci, vol.254446, issue.24, pp.3111-3144, 1989.
DOI : 10.1007/bf00587659

R. W. Pekala and R. W. Pekala, Low density resorcinol-formaldehyde aerogels, U.S. Patent 4 873 218, U.S. Department of Energy, 1989.

G. Biesmans, D. Randall, E. Francais, and M. Perrut, Polyurethane-based organic aerogels' thermal performance, Journal of Non-Crystalline Solids, vol.225, p.36, 1998.
DOI : 10.1016/S0022-3093(98)00103-3

A. Rigacci, J. C. Marechal, M. Repoux, M. Moreno, P. Achard et al., Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation, The ICI Polyurethanes book's Encyclopedia of Indutrial Chemistry, 1990.
DOI : 10.1016/j.jnoncrysol.2004.06.049

URL : https://hal.archives-ouvertes.fr/hal-00531336

S. G. Luo, H. M. Tan, J. G. Zhang, Y. J. Wu, F. K. Pei et al., Catalytic mechanisms of triphenyl bismuth, dibutyltin dilaurate and their combination in polyurethane-forming reaction Complex formation between catalysts, alcohols, and isocyanates in the preparation of urethanes, Journal of applied polymer science part A: polymer chemistry 5, p.35, 1967.

S. L. Reegen and K. C. Frisch, Isocyanate-catalyst and hydroxyl-catalyst complex formation, Journal of applied polymer science part A: polymer chemistry 8, p.2883, 1970.

F. W. Abbate, H. Ulrich, W. B. Baker, and J. Gaunt, Urethane: organometallic catalysis of the reaction of alcohols with isocyanates The mechanism of the aryl isocyanates with alcohols and amines. Part III. The base-catalysed reaction of phenyl isocyanate with alcohols The mechanism of the aryl isocyanates with alcohols and amines. Part IV. The evidence of infra red absorption spectra regarding alcohol-amine association in the base-catalysed reaction of phenyl isocyanate with alcohols, Journal of applied polymer science Journal of the chemical society Journal of the chemical society, vol.1360, issue.9, p.24, 1929.

K. G. Flynn and D. R. Nenortas, Kinetics and mechanism of the reaction between phenyl isocyanate and alcohols. Strong base catalysis and deuterium effects Mechanism of Amine-Catalyzed Reaction of Isocyanates with Hydroxyl Compounds, Journal of Organic Chemistry Ind. Eng. Chem. Fundam, vol.2862, issue.4, p.32, 1963.

J. M. Borsus, P. Merckaert, R. Jérôme, and T. Ph, Catalysis of the reaction between isocyanates and protonic substrates. II Kinetic study of the polyurea foaming processcatalysed by a series of amino compounds, Journal of applied polymer science, vol.2763, p.4029, 1982.

H. Krassig and J. Schurz, Cellulose, Ullmann's Encyclopedia of Industrial Chemistry, 2002.

A. Payen, Mémoire sur la composition du tissu propre des plantes et du ligneux, Compt. Rend, vol.766, p.1052, 1838.

J. Lesec, Masses molaires moyennes, A3060, Techniques de l'ingénieur, 1996.

J. Lesec, P. Ingénieur, L. Kroon-batenburg, J. Kroon, M. R. Nordholt et al., Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibres Native cellulose: a composite of two distinct crystalline forms, Science, 223, Studies of polymorphy in native cellulose, Papermaking raw materials, p.59, 1984.

G. F. Davidson, 12???THE DISSOLUTION OF CHEMICALLY MODIFIED COTTON CELLULOSE IN ALKALINE SOLUTIONS. PART I???IN SOLUTIONS OF SODIUM HYDROXIDE, PARTICULARLY AT TEMPERATURES BELOW THE NORMAL, Journal of the Textile Institute Transactions, vol.35, issue.5, p.174, 1934.
DOI : 10.1007/BF02555412

G. F. Davidson, 10???THE DISSOLUTION OF CHEMICALLY MODIFIED COTTON CELLULOSE IN ALKALINE SOLUTIONS. PART II.???A COMPARISON OF THE SOLVENT ACTION OF SOLUTIONS OF LITHIUM, SODIUM, POTASSIUM, AND TETRAMETHYLAMMONIUM HYDROXIDES, Journal of the Textile Institute Transactions, vol.87, issue.4, 1936.
DOI : 10.1021/ja01334a005

P. Hinterholzer, Cellulose solution in water and NMMO, US Patent 5 189 152, 1993.

J. A. Cuculo and S. M. Hudson, Preparation of cellulose films or fibers from cellulose solutions, US Patent 4 367 191, Jacobasch B, vol.7778, 1983.

H. P. Fink, B. Phillip, C. Zschunke, and M. Hayn, Structural changes of LODP cellulose in the original and mercerized state during enzymatic hydrolysis, Acta Polym, p.270, 1992.

K. Balser, L. Hope, T. Eeicher, M. Wandel, H. Astheimer et al., Cellulose Esters, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

P. Rustemeyer, Cellulose acetates: properties and applications, Macromolecular symposia 208, Wiley. [82] Groupe français d'étude et d'application des polymères Initiation à la chimie et à la physico-chimie macromoléculaire, Les polymères naturels: structures, modifications, applications, 2000.

S. Gedon and R. Fengi, Cellulose esters (organic esters), Kirk-Othmer Encyclopedia of Chemical Technology, 2000.

A. Norme and . D1343, Test method for viscosity of cellulose derivatives by ball-drop method Determination of percent hydroxyl on cellulose esters by potentiometric titration ? alternative method, 2000.

K. D. Goebel, G. C. Berry, and D. W. Tanner, Properties of cellulose acetate. III. Light scattering from concentrated solutions and films. Tensile creep and desalination studies on films, Journal of Polymer Science: Polymer Physics Edition, vol.17, issue.6, p.917, 1978.
DOI : 10.1002/pol.1979.180170602

L. Schulz, B. Seger, and W. Burchard, Structures of cellulose in solution, Macromolecular chemistry and physics 201, 2008.

P. J. Flory, Gels and gelling processes, Disc, 1974.

P. J. Flory, W. H. Stockmayer, G. M. Kavanagh, and S. B. Ross-murphy, Principles of polymer chemistry Theory of molecular size distribution and gel formation in branched-chain polymers, Progress in Polymer Science 23, p.533, 1943.

D. Gennes and P. G. , Scaling concepts in polymer physics Theory of molecular size distribution and gel formation in branched-chain polymers. II. General cross linking, J. Chem. Phys, vol.1294, p.125, 1944.

J. Verdu, Structures macromoléculaires tridimensionnelles, A3045, Techniques de l'ingénieur, Gels, Sci. Am, vol.244, pp.124-96, 1981.

H. P. Fink, P. Weigel, H. J. Purz, and J. Ganster, Structure formation of regenerated cellulose materials from NMMO-solutions, Progress in Polymer Science, vol.26, issue.9, p.318, 1473.
DOI : 10.1016/S0079-6700(01)00025-9

S. Kuga, The porous structure of cellulose gel regenerated from calcium thiocyanate solution, Journal of Colloid and Interface Science, vol.77, issue.2, p.413, 1980.
DOI : 10.1016/0021-9797(80)90311-2

H. Jin, Y. Nishiyama, M. Wada, and S. Kuga, Nanofibrillar cellulose aerogels, Colloids and surfaces A 240, p.63, 2004.
DOI : 10.1016/j.colsurfa.2004.03.007

M. W. Frey, J. A. Cuculo, and S. A. Khan, Rheology and gelation of cellulose/ammonia/ammonium thiocyanate solutions, Journal of Polymer Science Part B: Polymer Physics, vol.34, issue.14, p.2375, 1996.
DOI : 10.1002/(SICI)1099-0488(199610)34:14<2375::AID-POLB7>3.0.CO;2-V

F. W. Altena, J. S. Shroder, R. Van-de-huls, and C. A. Smolders, Thermoreversible gelation of cellulose acetate solutions studied by differential scanning calorimetry, Journal of Polymer Science Part B: Polymer Physics, vol.24, issue.8, p.1725, 1986.
DOI : 10.1002/polb.1986.090240808

A. J. Reuvers, F. W. Altena, and C. A. Smolders, Demixing and gelation behavior of ternary cellulose acetate solutions, Journal of Polymer Science Part B: Polymer Physics, vol.24, issue.4, p.1725, 1986.
DOI : 10.1002/polb.1986.090240406

V. G. Pimenov, V. S. Drozhzhin, and A. M. Sakharov, Ultra-low density microcellular aerogels based on cellulose acetate, Polymer science, 2003.

M. Takahashi, M. Shimazaki, and J. Yamamoto, Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions, Journal of polymer science part B: Polymer physics, vol.24, p.1725, 2000.

J. Desbrières, M. Hirrien, and M. Rinaudo, A calorimetric study of methylcellulose gelation, Carbohydrate polymers 37, p.145, 1998.

A. Haque and E. R. Morris, Thermogelation of methylcellulose. Part I: Molecular structures and processes, Carbohydrates Polymers 22, p.161, 1993.

N. Sarkar, Kinetics of thermal gelation of methylcellulose and hydroxypropylmethylcellulose in aqueous solutions, Carbohydrate Polymers 26, 0195.

L. Li, P. M. Thangamathesvaran, C. Y. Yue, K. C. Tam, X. Hu et al., Gel Network Structure of Methylcellulose in Water, Langmuir, vol.17, issue.26, 2001.
DOI : 10.1021/la010917r

P. P. Kundu and M. Kundu, Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose, Polymer, vol.42, issue.5, 2001.
DOI : 10.1016/S0032-3861(00)00506-1

R. S. Werbowyj and G. G. Derek, Ordered Phase Formation in Concentrated Hydroxpropylcellulose Solutions, Macromolecules, vol.13, issue.1, p.69, 1980.
DOI : 10.1021/ma60073a014

J. Gao, G. Haidar, X. Lu, and Z. Hu, Self-Association of Hydroxypropylcellulose in Water, Macromolecules, vol.34, issue.7, p.2242, 2001.
DOI : 10.1021/ma001631g

A. G. Pierce, . ). Jr, and J. G. Frick, Crosslinking cotton with formaldehyde in phosphoric acid, Journal of Applied Polymer Science, vol.11, issue.12, 1967.
DOI : 10.1002/app.1967.070111217

R. S. Post and A. W. , A measure of effective crosslinks in formaldehyde-modified cotton celluloses, Journal of applied polymer science, vol.10, p.1751, 1966.

R. C. Weatherwax and D. F. Caufield, The pore structure of papers wet stiffened by formaldehyde crosslinking, Journal of Colloid and Interface Science, vol.67, issue.3, p.498, 1978.
DOI : 10.1016/0021-9797(78)90240-0

C. Q. Yang and B. A. Andrews, Infrared spectroscopic studies of the nonformaldehyde durable press finishing of cotton fabrics by use of polycarboxylic acids, Journal of Applied Polymer Science, vol.43, issue.9, 1609.
DOI : 10.1002/app.1991.070430904

D. Chen, C. Q. Yang, and X. Qiu, Aqueous Polymerization of Maleic Acid and Cross-Linking of Cotton Cellulose by Poly(maleic acid), Industrial & Engineering Chemistry Research, vol.44, issue.21, p.7921, 2005.
DOI : 10.1021/ie050651+

Y. J. Zhou, P. Luner, and P. Caluwe, Mechanism of crosslinking of papers with polyfunctional carboxylic acids, Journal of Applied Polymer Science, vol.58, issue.9, p.1523, 1995.
DOI : 10.1002/app.1995.070580915

C. Q. Yang, C. Hu, and G. C. Lickfield, Crosslinking cotton with poly(itaconic acid) and in situ polymerisation of itaconic acid: fabric mechanical strength retention, Journal of applied polymer science, vol.87, 2002.

C. Q. Yang, Infrared spectroscopic studies of the effects of the catalyst on the ester Crosslinking of cellulose by polycarboxylic acids, Journal of applied polymer science, vol.50, 1993.

P. Luby, T. Kuniak, and C. Fanter, Crosslinking statistics, 3. Relation between relative reactivity and accessibility of cellulose hydroxyl groups, Die Makromolekulare chemie 180, p.2379, 1979.

Y. X. Bai and Y. Li, Preparation and characterization of crosslinked porous cellulose beads, Carbohydrate polymers 64, p.402, 2006.

C. Chelbli and L. Cartillier, Cross-linked cellulose as tablet excipient : a binding / disintegrating agent, International journal of Pharmaceutics, vol.171, 1001.

J. L. Rivera-armenta, H. Th, and A. M. Mendoza-martinez, New polyurethane foams modified with cellulose derivatives, European polymer journal 41, p.2803, 2004.
DOI : 10.1016/j.eurpolymj.2004.07.015

H. Hatakeyama, S. Hirose, K. Nakamura, and T. Hatakeyama, New types of polyurethanes derived from lignocellulose and saccharides in Cellulosics: Chemical, Biochemical and material aspects, 1993.

M. Kamath and B. K. Mandal, Crosslinked copolymers of cyanoethylated cellulose, European polymer journal 32, p.285, 1996.

C. Tan, B. M. Fung, J. K. Newman, and C. Vu, Organic aerogels with very high impact strength, Advanced materials 13, 2001.

U. Anbergen and W. Oppermann, Elasticity and swelling behaviour of chemically crosslinked cellulose ethers in aqueous systems, Polymer, vol.31, issue.10, 1854.
DOI : 10.1016/0032-3861(90)90006-K

F. Espositio, M. A. Del-nobile, . Mensitieri, and L. Nicolais, Water sorption in cellulose-based hydrogels, Journal of applied polymer science, vol.60, p.2403, 1996.

B. Durand, Kerogen: Insoluble organic matter from sedimentary rocks, Edition technip, 1980.

T. D. Burshell, Carbon materials for advanced technologies, 1999.

O. Treusch, A. Hofenauer, F. Tröger, J. Fromm, and G. Wegener, Basic properties of specific wood-based materials carbonised in a nitrogen atmosphere, Wood Science and Technology, vol.38, issue.5, p.323, 2004.
DOI : 10.1007/s00226-004-0245-5

F. Shafizadeh, The chemistry of pyrolysis and combustion in the Chemistry of solid wood, 1984.

C. E. Byrne and D. C. Nagle, Carbonization of wood for advanced materials applications, Carbon, vol.35, issue.2, p.259, 1997.
DOI : 10.1016/S0008-6223(96)00136-4

C. E. Byrne and D. C. Nagle, Carbonization wood monoliths -characterization, Carbon 35, 1997.

M. X. Fang, D. K. Shen, Y. X. Li, C. J. Yu, Z. Y. Luo et al., Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis, Journal of Analytical and Applied Pyrolysis, vol.77, issue.1, p.22, 2006.
DOI : 10.1016/j.jaap.2005.12.010

R. W. Pekala, C. T. Alviso, and J. D. Lemay, Organic aerogels: microstructural dependence of mechanical properties in compression, Journal of Non-Crystalline Solids, vol.125, issue.1-2, p.67, 1990.
DOI : 10.1016/0022-3093(90)90324-F

G. Biesmans, A. Mertens, L. Duffours, T. Woignier, and J. Phalippou, Polyurethane based organic aerogels and their transformation into carbon aerogels, Journal of Non-Crystalline Solids, vol.225, issue.64, 1998.
DOI : 10.1016/S0022-3093(98)00010-6

J. Yamashita, T. Ojima, M. Shioya, H. Hatori, and Y. Yamada, Organic and carbon aerogels derived from poly(vinyl chloride), Carbon 41, p.285, 2003.

R. Zhang, Y. Lu, L. Zhan, X. Liang, G. Wu et al., Monolithic carbon aerogels from sol???gel polymerization of phenolic resoles and methylolated melamine, Carbon, vol.41, issue.8, 1660.
DOI : 10.1016/S0008-6223(03)00112-X

R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer et al., Carbon aerogels for electrochemical applications, Carbon aerogels for electrochemical applications, p.74, 1998.
DOI : 10.1016/S0022-3093(98)00011-8

B. Simon, M. Hilaire, C. Jehoulet, and J. Cousseau, Electrochemical cell having a carbon aerogel cathode, US Patent application publication, pp.287421-287422, 2005.

D. Langohr, A study on hydrogen storage through adsorption in nanostructured carbons, 2004.
URL : https://hal.archives-ouvertes.fr/pastel-00001383

E. Fitzer, W. Schafer, and S. Yamada, The formation of glasslike by pyrolyis of nonmelting resins, Carbon 6, p.217, 1968.

H. Tamon, H. Ishizaka, M. Mikami, and M. Okazaki, Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde, Carbon, vol.35, issue.6, p.791, 1997.
DOI : 10.1016/S0008-6223(97)00024-9

V. Bock, A. Emmerling, and J. Fricke, Influence of monomer and catalyst concentration on RF and carbon aerogel structure, Journal of Non-Crystalline Solids, vol.225, p.69, 1998.
DOI : 10.1016/S0022-3093(98)00060-X

G. Reichenauer, A. Emmerling, J. Fricke, and R. W. Pekala, Microporosity in carbon aerogels, Microporosity in carbon aerogels, p.210, 1998.
DOI : 10.1016/S0022-3093(98)00118-5

E. Fitzer, W. Schafer, and S. Yamada, The formation of glasslike by pyrolyis of polyfurfuryl alcohol and phenolic resin, Carbon, vol.7, issue.643, 1969.

Y. Hanzawa, H. Hatori, N. Yoshizawa, and Y. Yamada, Structural changes in carbon aerogels with high temperature treatment, Carbon, vol.40, issue.4, p.575, 2002.
DOI : 10.1016/S0008-6223(01)00150-6

A. W. Fung, G. A. Reynolds, Z. H. Wang, M. S. Dresselhaus, G. Dresselhaus et al., Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions, Journal of Non-Crystalline Solids, vol.186, 0200.
DOI : 10.1016/0022-3093(95)00056-9

B. Gille, Histoire de la métallurgie, Que sais-je, 1966.

T. Hatakeyama and H. Hatakeyama, Thermal properties of green polymers and biocomposites, 2004.

J. V. Duffy, Pyrolysis of treated rayon fiber, Journal of Applied Polymer Science, vol.15, issue.3, p.715, 1970.
DOI : 10.1002/app.1971.070150316

D. Meier and O. Faix, State of the art of applied fast pyrolysis of lignocellulosic materials ??? a review, Bioresource Technology, vol.68, issue.1, p.71, 1999.
DOI : 10.1016/S0960-8524(98)00086-8

A. V. Bridgwater, Principles and practice of biomass fast pyrolysis process for liquids, Journal of analytical and applied pyrolysis, vol.51, issue.3, 1999.

R. G. Graham, L. K. Mok, M. A. Bergougnou, H. I. De-lasa, and B. A. Freel, Fast pyrolysis (ultrapyrolysis) of cellulose, Journal of Analytical and Applied Pyrolysis, vol.6, issue.4, p.363, 1984.
DOI : 10.1016/0165-2370(84)80030-3

M. M. Tang and R. Bacon, Carbonization of cellulose fibers ? I. Low temperature pyrolysis, p.211, 1964.

H. G. Higgins, The degradation of cellulose in air at 250??C. as shown by infrared spectroscopic examination, Journal of Polymer Science, vol.28, issue.118, p.645, 1958.
DOI : 10.1002/pol.1958.1202811823

A. A. Konkin, Production of cellulose based carbon fibrous materials, chap VIII of Handbook of composites volume 1 Strong fiber, 1985.

J. Salvetat-delmotte and A. Rubio, Mechanical properties of carbon nanotubes: a fiber digest for beginners, Carbon, vol.40, issue.10, p.1729, 2002.
DOI : 10.1016/S0008-6223(02)00012-X

H. Plaisantin, Etude de la carbonisation de fibres cellulosiques, 1999.

P. Delhaes and P. Orly, Fibres de carbone et matériaux composites dans Les matériaux carbonés, L'actualité chimique 295, p.42, 2006.

R. C. Bansal, J. Donnet, and F. Stoeckli, Active carbon, 1988.

B. Cagnon, Elaboration de charbons actifs à texture contrôlée, Thèse de doctorat, 2002.

C. J. Pouchert, The aldrich library of FT-IR spectra, 1985.

H. J. Philipp and C. F. Bjork, Viscosity-molecular weight relationship for cellulose acetate in acetone, Journal of Polymer Science, vol.6, issue.5, p.549, 1951.
DOI : 10.1002/pol.1951.120060505

R. B. Wilson, B. Roxy, Y. Chen, I. C. Paul, and D. Y. Curtin, Crystal structure and solid-state reactivity of 4,4'-methylenediphenyl isocyanate (MDI), Journal of the American Chemical Society, vol.105, issue.6, p.1672, 1983.
DOI : 10.1021/ja00344a054

P. E. Goidssedet, Manufacture of new products derived from cellulose, 1920.

M. J. Donnelly, J. L. Stanford, and R. H. Still, The conversion of polysaccharides into polyurethanes: a review, Carbohydrate polymers 14, p.221, 1991.

W. Mormann and U. Michel, Improved synthesis of cellulose carbamate without byproducts , Carbohydrate polymers 50, 2002.

G. Anzuino, A. Pirro, O. Rossi, P. Friz, and L. , Reaction of diisocyanates with alcohols I - Uncatalysed reactions, Journal of polymer science, vol.13, p.1657, 1975.

G. Anzuino, A. Pirro, O. Rossi, P. Friz, and L. , Reaction of diisocyanates with alcohols II - Catalysed reactions, Journal of polymer science, vol.13, p.1667, 1975.

R. L. Adkins and W. E. Miller, Allophanates of polymeric MDI, 2003.

C. J. Chang, C. Y. Day, C. M. Ko, and K. L. Chiu, Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures, Fluid Phase Equilibria, vol.131, issue.1-2, p.243, 1997.
DOI : 10.1016/S0378-3812(96)03208-6

A. C. Pierre and G. M. Pajonk, Chemistry of Aerogels and Their Applications, Chemistry of aerogels and their applications, p.4243, 2002.
DOI : 10.1021/cr0101306

URL : https://hal.archives-ouvertes.fr/hal-00007182

V. Bommel, M. J. De-haan, and A. B. , Drying of silica gels with supercritical carbon dioxide, Journal of Materials Science, vol.109, issue.4, p.943, 1994.
DOI : 10.1007/BF00351414

A. F. Barton, Handbook of solubility parameters and other cohesion parameters, p.14, 1991.

E. H. Brandrup, E. A. Immergut, and . Grulke, Polymer handbook 4, 1999.

S. Takahashi, Determination of cohesive energy densities of unsaturated polyester resins from swelling measurements, Journal of Applied Polymer Science, vol.28, issue.9, p.2847, 1983.
DOI : 10.1002/app.1983.070280915

L. A. Errede, Polymer swelling. 5. Correlation of relative swelling of poly(styrene-co-divinylbenzene) with the Hildebrand solubility parameter of the swelling liquid, Macromolecules, vol.19, issue.6, p.1522, 1986.
DOI : 10.1021/ma00160a006

A. Bisson, Synthèse et étude de matériaux nanostructurés à base de silice pour la super isolation thermique, Thèse ENSMP, 2004.

G. W. Scherer, Adsorption in aerogel networks, Journal of Non-Crystalline Solids, vol.225, 0192.
DOI : 10.1016/S0022-3093(98)00117-3

B. Hay, J. R. Filtz, and J. Batsale, Mesure de la diffusion thermique par la méthode flash, 2004.

A. Rigacci, Elaboration d'aérogels de silice monolithiques et étude des relations entre leur structure et leur conductivité thermique équivalente, 1998.

. Isover, Catalogue des produits et solutions d'isolation, p.92, 2004.

A. D. Norme, Standard Test Method for Mechanically Tapped Packing Density of Formed Catalyst and Catalyst Carriers, pp.4164-4167

S. Melka, Etude théorique et expérimentale des transferts thermiques dans les milieux poreux granulaires pour l'isolation thermique, 1996.

J. Fricke, E. Hummer, H. Morper, and P. Scheuerpflug, THERMAL PROPERTIES OF SILICA AEROGELS, Proceedings of the 2nd International symposium on aerogels, 1989.
DOI : 10.1051/jphyscol:1989414

URL : https://hal.archives-ouvertes.fr/jpa-00229489

O. Antoine and R. Durand, RRDE study of oxygen reduction on Pt nanoparticles inside Nafion: H2O2 production in PEMFC cathode conditions, Journal of Applied Electrochemistry, vol.30, issue.839, 2000.

J. Marie, S. Berthon-fabry, P. Achard, M. Chatenet, A. Pradourat et al., Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths, Journal of Non-Crystalline Solids, vol.350, issue.88, 2004.
DOI : 10.1016/j.jnoncrysol.2004.06.038

URL : https://hal.archives-ouvertes.fr/hal-00333057