Modélisation de séries financières à l'aide de processus invariants d'échelle. Application à la prédiction du risque.

Abstract : This work focuses on the study of financial time series using multifractal processes including processes MRW (Multifractal Random Walk), introduced by Bacry, and Muzy DeLoura. In this context, it addresses the problem of extreme events, the approximate limits of small intermittent and statistical estimation of model parameters log-normal MRW. The results obtained allow the use of the MRW model for risk prediction (prediction of conditional volatility and Value-at-Risk conditional). A final section offers a more exploratory modeling of intraday financial time series modeling, consistent with the multifractal approach and to improve risk prediction. Results The Digital! ues obtained on real data show that the log-normal modμele MRW provides predictions of risk of much better quality than those obtained using more traditional econometric models (GARCH and tGARCH).
Document type :
Theses
Representation Theory. Ecole Polytechnique X, 2006. French


https://pastel.archives-ouvertes.fr/pastel-00002224
Contributor : Ecole Polytechnique <>
Submitted on : Thursday, July 29, 2010 - 2:51:22 PM
Last modification on : Friday, July 30, 2010 - 9:38:42 AM

Identifiers

  • HAL Id : pastel-00002224, version 1

Collections

Citation

Alexey Kozhemyak. Modélisation de séries financières à l'aide de processus invariants d'échelle. Application à la prédiction du risque.. Representation Theory. Ecole Polytechnique X, 2006. French. <pastel-00002224>

Export

Share

Metrics

Consultation de
la notice

374

Téléchargement du document

2513