. C. Ph, A. E. Argyres, and . Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU (N ) gauge theory, Phys.Rev.Lett, vol.74, pp.3931-3934, 1995.

I. A. Batalin and G. A. Vylkovisky, Quantization of gauge theories with linearly dependent generators, Phys.Rev, pp.28-2567, 1983.

L. Baulieu and I. M. Singer, Topological Yang-Mills symmetry, Nucl.Phys, Proc.Suppl. 5B, pp.12-19, 1988.

E. Bergshoeff, E. Sezgin, and P. K. Townsend, Properties of the eleven-dimensional supermembrane theory, Annals of Physics, vol.185, issue.2, p.330, 1988.
DOI : 10.1016/0003-4916(88)90050-4

G. Bertoldi, S. Bolognesi, M. Matone, L. Mazzucato, and Y. Nakayama, =2 Instantons and the Moduli of Punctured Spheres, Journal of High Energy Physics, vol.1, issue.05, p.405117, 2004.
DOI : 10.1016/S0550-3213(97)00156-9

R. Boot and L. W. Tu, Differential forms in algebraic topology (graduate texts in mathematics), 1995.

N. Bourbaki, Eléments des mathématiques. Livre IV. Groupes and algèbres de Lie, 1981.

P. Breitenlohner and M. F. Sohnius, Superfields, auxiliary fields, and tensor calculus for N = 2 extended supergravity, Nucl.Phys, pp.165-483, 1980.

R. Brooks, D. Montano, and J. Sonnenschein, Gauge fixing and renormalization in topological quantum field theory, Physics Letters B, vol.214, issue.1, pp.214-91, 1988.
DOI : 10.1016/0370-2693(88)90458-3

N. H. Chris, E. J. Weinberg, and N. K. Stanton, General self-dual Yang-Mills solition, Phys.Rev, issue.6, p.18, 1978.

S. Coleman and J. Mandula, Matrix, Physical Review, vol.159, issue.5, pp.1251-1256, 1967.
DOI : 10.1103/PhysRev.159.1251

URL : https://hal.archives-ouvertes.fr/hal-00314717

S. Cordes, G. W. Moore, and S. Ramgoolam, Lectures on 2D yang-mills theory, equivariant cohomology and topological field theories, Nuclear Physics B - Proceedings Supplements, vol.41, issue.1-3, pp.184-244, 1995.
DOI : 10.1016/0920-5632(95)00434-B

E. Corrigan and P. Goddard, Construction of instantons and monopole solutions and reciprocity , Annals Phys, p.253, 1984.

E. Corrigan, P. Goddard, H. Osborn, and S. Templeton, Zeta-function regularization and multi-instanton determinants, Nuclear Physics B, vol.159, issue.3, pp.159-469, 1979.
DOI : 10.1016/0550-3213(79)90346-8

URL : http://doi.org/10.1016/0550-3213(79)90346-8

H. Ulf, B. Danielsson, and . Sundborg, The moduli space and monodromies of N = 2 supersymmetric SO(2r + 1) Yang-Mills theory, Phys.Lett, vol.arXiv, pp.358-273, 1995.

B. De-wit, M. T. Grisaru, and M. Rocek, Nonholomorphic corrections to the one-loop N = 2 super Yang-Mills action, Physics Letters B, vol.374, issue.4, pp.297-303, 1996.
DOI : 10.1016/0370-2693(96)00173-6

E. D. Hoker, I. M. Krichever, and D. H. Phong, The effective prepotential of N = 2 supersymmetric SU (N c ) gauge theories, p.9609041

E. D. Hoker and D. H. , Phong, Lectures on supersymmetric Yang-Mills theory and integrable systems, pp.hep-th, 9912271.

M. Dine and N. Seiberg, Comments on higher derivative operators in some SUSY field theories, Physics Letters B, vol.409, issue.1-4, pp.239-244, 1997.
DOI : 10.1016/S0370-2693(97)00899-X

M. Dine and Y. Shirman, Some explorations in holomorphy, Physical Review D, vol.50, issue.8, pp.50-5389, 1994.
DOI : 10.1103/PhysRevD.50.5389

N. Dorey, T. J. Hollowood, V. V. Khoze, and M. P. Mattis, The calculus of many instatons, pp.hep-th, 206063.

N. Dorey, V. V. Khoze, and M. P. Mattis, Multi-instaton calculus in N = 2 supersymmetric gauge theory II. Coupling to matter, p.9607202

N. Dorey, V. V. Knoze, and M. P. Mattis, Supersymmetry and the multi-instanton measure, Nuclear Physics B, vol.513, issue.3, p.9708036
DOI : 10.1016/S0550-3213(97)00747-5

I. Ennes, C. Lozano, S. Naculich, and H. Schnitzer, Elliptic models and M-theory, Nuclear Physics B, vol.576, issue.1-3, p.9912133
DOI : 10.1016/S0550-3213(00)00131-0

I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, Tests of M-theory from N = 2 Seiberg- Witten theory, p.9911022

. Nucl and . Phys, arXiv:hep-th/9806144 One instanton predictions of a Seiberg-Witten curve from M-theory: the symmetric representation of SU (N ) 301, arXiv:hep-th/9804151. [37] , Two antisymmetric hypermultiplets in N = 2 SU (N ) gauge theory: Seiberg-Witten curve and M-theory interpretation, Int.J.Mod.Phys. Nucl. Phys, vol.245, pp.536-550, 1998.

P. Fayet, F. Bose-hypersymmetry, . Jr, S. Gates, and . James, Superspace formulation of new nonlinear sigma models, Nucl.Phys, vol.135, pp.113-238, 1976.

I. S. Gradstein and I. M. Ryzhik, Table of integrals, series, and products, 1994.

R. Grimm, M. Sohnius, and J. Wess, Extended supersymmetry and gauge theories, Nuclear Physics B, vol.133, issue.2, pp.133-275, 1978.
DOI : 10.1016/0550-3213(78)90303-6

R. Haag, J. Lopuszanski, and M. Sohnius, All possible generators of supersymmetries of the S-matrix, Nucl.Phys, pp.88-257, 1975.

A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(Nc) gauge theories, Nuclear Physics B, vol.452, issue.1-2, pp.452-283, 1995.
DOI : 10.1016/0550-3213(95)00376-4

N. J. Hitchin, A. Karlhede, U. Lindstron, and M. Rocek, Hyperkähler metric and supersymmetry, Comm.Math.Phys, vol.108, 1987.

P. Horava and E. Witten, Heterotic and type I string dynamics from eleven dimensions, Nucl.Phys, vol.arXiv, pp.460-506, 1996.

S. Hyun, J. Park, and J. Park, supersymmetric QCD and four manifolds; (I) the Donaldson and the Seiberg-Witten invariants, arXiv:hep-th/9508162, Topologocal QCD, Nucl.Phys, vol.48, issue.2, pp.453-199, 1995.

K. Ito and N. Sasakura, One-instanton calculations in N = 2 supersymmetric SU(Nc) Yang-Mills theory, Physics Letters B, vol.382, issue.1-2, pp.382-95, 1996.
DOI : 10.1016/0370-2693(96)00647-8

A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Physics Letters B, vol.344, issue.1-4, pp.344-169, 1995.
DOI : 10.1016/0370-2693(94)01516-F

URL : http://doi.org/10.1016/0370-2693(94)01516-f

W. Krauth and M. Staudacher, Yang???Mills integrals for orthogonal, symplectic and exceptional groups, Nuclear Physics B, vol.584, issue.1-2, p.4076
DOI : 10.1016/S0550-3213(00)00382-5

J. M. Labastida and C. Lozano, Lectures on topological quantim field theory, p.9709192

J. M. Labastida and M. Pernici, A gauge invariant action in topological quantum field theory, Physics Letters B, vol.212, issue.1, pp.212-56, 1988.
DOI : 10.1016/0370-2693(88)91235-X

L. D. Landau and E. M. Lifshitz, Theoretical physics, vol II. Field theory, 1965.

K. Landsteiner and E. Lopez, New curves from branes, Nuclear Physics B, vol.516, issue.1-2, pp.516-273, 1998.
DOI : 10.1016/S0550-3213(98)00022-4

J. D. Lykken, Introduction to supersymmetry, arXiv:hep-th, 9612144.

M. Mariño and N. Wyllard, =2 gauge theories with classical gauge groups, Journal of High Energy Physics, vol.2002, issue.05, p.404125
DOI : 10.1142/S0217751X99000166

J. A. Minahan and D. Nemeschansky, Hyperelliptic curves for supersymmetric Yang-Mills, Nucl.Phys, B464, vol.arXiv, pp.3-17, 1996.

G. Moore, N. Nekrasov, and S. Shatashvili, D -Particle Bound States and Generalized Instantons, Communications in Mathematical Physics, vol.209, issue.1, p.9803265
DOI : 10.1007/s002200050016

J. D. Moore, Lectures on Seiberg-Witten invariants, 1996.
DOI : 10.1007/BFb0092948

S. Naculich, H. Rhedin, and H. Schnitzer, One-instanton test of a Seiberg-Witten curve from M-theory: the antisymmetric representation of SU(N), Nuclear Physics B, vol.533, issue.1-3, pp.533-275, 1998.
DOI : 10.1016/S0550-3213(98)00493-3

N. Nekrasov and A. Okounkov, Seiberg-Witten Theory and Random Partitions, p.306238
DOI : 10.1007/0-8176-4467-9_15

N. Nekrasov and S. Shadchin, ABCD of Instantons, Communications in Mathematical Physics, vol.117, issue.1-3, pp.359-391, 2004.
DOI : 10.1007/s00220-004-1189-1

H. Osborn, Solutions of the Dirac equation for general instanton solutions, Nuclear Physics B, vol.140, issue.1, pp.140-185, 1978.
DOI : 10.1016/0550-3213(78)90312-7

A. Pickering and P. C. West, The one-loop effective super-potential and non-holomorphicity, Physics Letters B, vol.383, issue.1, pp.54-62, 1996.
DOI : 10.1016/0370-2693(96)00702-2

J. H. Schwarz, The power of M theory, Physics Letters B, vol.367, issue.1-4, pp.97-103, 1996.
DOI : 10.1016/0370-2693(95)01429-2

N. Seiberg, Supersymmetry and non-perturbative beta functions, Physics Letters B, vol.206, issue.1, p.75, 1988.
DOI : 10.1016/0370-2693(88)91265-8

N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nuclear Physics B, vol.426, issue.1, p.9407087, 1994.
DOI : 10.1016/0550-3213(94)90124-4

S. Shadchin, Saddle point equations in Seiberg-Witten theory, Journal of High Energy Physics, vol.2004, issue.10, pp.410-0408066, 2004.
DOI : 10.1016/S0550-3213(00)00131-0

A. Mikhail, A. I. Shifman, and . Vainshtein, Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion, Nucl.Phys, pp.277-456, 1986.

G. Sierra and P. K. Townsend, Introduction to N = 2 rigid supersymmetry, Lectures given at the 19th Karpacz Winter School on Theoretical Physics, 1983.

P. K. Townsend, The eleven-dimensional supermembrane revisited, Physics Letters B, vol.350, issue.2, pp.350-184, 1995.
DOI : 10.1016/0370-2693(95)00397-4

P. Van-nieuwenhuizen and P. West, Principles of supersymmetry and supergravity, 1986.

E. Wigner, On unitary representations of the inhomogenious Lorentz group, Journ.Math, vol.40, pp.149-204, 1939.

E. Witten, Introduction to topological quantum field theories, Lectures at the workshopon Topological Methods in Physics, ICTP, 1990.

E. Witten and R. Donagi, Supersymmetric Yang-Mills systems and integrable systems, Nucl.Phys, vol.460, pp.299-334, 1996.

A. Yung, Instanton-induced effective Lagrangian in the Seiberg-Witten model, Nuclear Physics B, vol.485, issue.1-2, pp.485-523, 1997.
DOI : 10.1016/S0550-3213(96)00635-9