R. D. Heidenreich, W. M. Hess, and L. L. Ban, A test object and criteria for high resolution electron microscopy, Journal of Applied Crystallography, vol.1, issue.1, pp.1-19, 1968.
DOI : 10.1107/S0021889868004930

P. Fauchais and J. ?. Baronnet, State of the art of plasma chemical synthesis of homogenous and heterogenous products, Pure and Applied Chemistry, vol.52, issue.7, pp.1669-1705, 1980.
DOI : 10.1351/pac198052071669

S. Abanades, J. Badie, G. Flamant, L. Fulcheri, J. Gonzalez-aguilar et al., ON-LINE TEMPERATURE MEASUREMENT IN A PLASMA REACTOR FOR FULLERENE SYNTHESIS, Proceedings of the 7th International Thermal Plasma Processes Conference (TPP7), pp.47-53, 2002.
DOI : 10.1615/HighTempMatProc.v7.i1.70

URL : https://hal.archives-ouvertes.fr/hal-00529785

L. Fulcheri, Y. Schwob, F. Fabry, G. Flamant, F. P. Chibante et al., Fullerene production in a 3-phase AC plasma process, Carbon, vol.38, issue.6, pp.797-803, 2000.
DOI : 10.1016/S0008-6223(99)00153-0

URL : https://hal.archives-ouvertes.fr/hal-00538481

A. Huczko, H. Lange, G. Cota-sanchez, and G. Soucy, PLASMA SYNTHESIS OF NANOCARBONS, Proceedings 7 th Thermal Plasma Processes, pp.617-631, 2002.
DOI : 10.1615/HighTempMatProc.v6.i3.100

R. James and R. , Process of and apparatus for producing carbon and gaseous fuel, Brevet N°1, vol.352, p.85, 1920.

J. Jay and J. , Process and apparatus for manufacture of carbon-black unsaturated gases and hydrogen, Brevet N°1, pp.277-301

J. Gonzalez-aguilar, M. Moreno, and L. Fulcheri, Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure, Journal of Physics D: Applied Physics, vol.40, issue.8, 2007.
DOI : 10.1088/0022-3727/40/8/S16

URL : https://hal.archives-ouvertes.fr/hal-00196363

. Kvaerner, A method for decomposition of hydrocarbons, 1992.

. Kvaerner, System for the production of carbon black, pp.57-62

. Kvaerner, Production of carbon black, 1993.

. Kvaerner, Decomposition reactor, 1993.

J. A. Bakken, R. Jensen, B. Monsen, O. Raaness, and N. Waernes, Thermal plasma process development in Norway, Pure and Applied Chemistry, vol.70, issue.6, pp.70-1223, 1998.
DOI : 10.1351/pac199870061223

I. Deme, Contribution à la modélisation de l'écoulement dans un réacteur plasma pour la fabrication de noirs de carbone, 2002.

F. Fabry, Etude d'un procédé plasma pour la synthèse de noir de carbone structurés par pyrolyse d'hydrocarbure à haute température et caractérisation des produits, Thèse en science de l'ingénieur, 1999.

L. Fulcheri, Habilitation à diriger les Recherches, Nanostructures de carbone par plasma, mars, 2003.

C. Bonnet, Contribution à l'étude théorique de l'évaporation d'une particule sphérique d'un matériau réfractaire dans un plasma thermique. Application à l'étude du traitement thermique de réfractaires dans un lit fluidisé par un écoulement de plasma, 1973.

T. Gruenberger, J. Gonzalez-aguilar, H. Okuno, F. Fabry, E. Grivei et al., Tailor-made carbon nanomaterials for bulk applications via highintensity arc plasma, Fullerenes, Nanotubes, and Carbon Nanostructures, vol.13, pp.1-9

L. Fulcheri, T. Gruenberger, J. Gonzalez-aguilar, F. Fabry, E. Grivei et al., PLASMA PROCESSING OF CARBON NANOMATERIALS, High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes), vol.8, issue.1, pp.119-138, 2004.
DOI : 10.1615/HighTempMatProc.v8.i1.70

URL : https://hal.archives-ouvertes.fr/hal-00528697

T. Gruenberger, J. Gonzalez-aguilar, F. Fabry, L. Fulcheri, E. Grivei et al., Production of Carbon Nanotubes and Other Nanostructures Via Continuous 3???Phase AC Plasma Processing, Fullerenes, Nanotubes and Carbon Nanostructures, vol.12, issue.3, pp.571-581, 2004.
DOI : 10.1016/0022-0248(93)90020-W

URL : https://hal.archives-ouvertes.fr/hal-00528743

L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei et al., Plasma processing: a step towards the production of new grades of carbon black, Carbon, vol.40, issue.2, pp.169-176, 2002.
DOI : 10.1016/S0008-6223(01)00169-5

URL : https://hal.archives-ouvertes.fr/hal-00542345

F. Fabry, G. Flamant, and L. Fulcheri, Carbon black processing by thermal plasma. Analysis of the particle formation mechanism, Chemical Engineering Science, vol.56, issue.6, pp.2123-2132, 2001.
DOI : 10.1016/S0009-2509(00)00486-3

URL : https://hal.archives-ouvertes.fr/hal-00536936

L. Fulcheri, Y. Schwob, and G. Flamant, Comparison Between New Carbon Nanostructures Produced by Plasma with Industrial Carbon Black Grades, Journal de Physique III, vol.7, issue.3, pp.491-503, 1997.
DOI : 10.1051/jp3:1997137

URL : https://hal.archives-ouvertes.fr/jpa-00249591

L. Fulcheri and Y. Schwob, From methane to hydrogen, carbon black and water, International Journal of Hydrogen Energy, vol.20, issue.3, pp.197-202, 1995.
DOI : 10.1016/0360-3199(94)E0022-Q

URL : https://hal.archives-ouvertes.fr/hal-01425269

B. Ravary, L. Fulcheri, G. Flamant, and F. Fabry, Analysis of a 3-phase A.C. plasma system, High Temp. Material Processes, pp.245-260, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00545990

J. Gonzalez-aguilar, I. Deme, T. Gruenberger, F. Fabry, G. Flamant et al., 3D MODELLING OF CARBON BLACK FORMATION AND PARTICLE RADIATION DURING METHANE CRACKING BY THERMAL PLASMA, High Temp. Material Processes, pp.51-56, 2003.
DOI : 10.1615/HighTempMatProc.v7.i1.80

URL : https://hal.archives-ouvertes.fr/hal-00529703

B. Ravary, J. A. Bakken, J. Gonzalez-aguilar, and L. Fulcheri, CFD modelling of a plasma reactor for the production of nano-sized carbon materials, High Temperature Material Processes, pp.139-144, 2003.

B. Ravary, L. Fulcheri, J. A. Bakken, G. Flamant, and F. Fabry, Influence of the Electromagnetic forces on momentum and heat transfert in a 3-Phase AC plasma reactor, Plasma Chemistry and Plasma Processing, pp.69-89, 1999.

J. R. Fincke, R. P. Anderson, T. A. Hyde, and B. A. Detering, Plasma Pyrolysis of Methane to Hydrogen and Carbon Black, Industrial & Engineering Chemistry Research, vol.41, issue.6, pp.41-1425, 2002.
DOI : 10.1021/ie010722e

H. G. Chen, X. B. Zhang, F. Li, and K. C. Xie, Formation of carbon black as a by-product of pyrolysis of light hydrocarbons in plasma jet, Proc. Annu. Int. Pittsburgh Coal Conf, pp.14-26, 1997.

W. Cho, S. H. Lee, W. S. Ju, Y. Baek, and J. K. Lee, Conversion of natural gas to hydrogen and carbon black by plasma and application of plasma carbon black, Catalysis Today, vol.98, issue.4, pp.98-633, 2004.
DOI : 10.1016/j.cattod.2004.09.051

K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju, and S. H. Hong, Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas, The 31st IEEE International Conference on Plasma Science, 2004. ICOPS 2004. IEEE Conference Record, Abstracts., pp.33-813, 2005.
DOI : 10.1109/PLASMA.2004.1339821

N. Probst, E. Grivei, F. ;. Fabry, F. Fulcheri, G. Flamant et al., Quality and Performance of Carbon Blacks from Plasma Process, Rubber Chemistry and Technology, vol.75, issue.5, pp.75-891, 2002.
DOI : 10.5254/1.3547690

L. Fulcheri, Y. Schwob, and G. Flamant, Comparison Between New Carbon Nanostructures Produced by Plasma with Industrial Carbon Black Grades, Journal de Physique III, vol.7, issue.3, pp.491-503, 1997.
DOI : 10.1051/jp3:1997137

URL : https://hal.archives-ouvertes.fr/jpa-00249591

K. Schmidt-czalowski, T. Opalinska, J. Sentek, K. Krawczyk, J. Ruszniak et al., Abstract, Journal of Advanced Oxidation Technologies, vol.7, issue.1, pp.39-50, 2004.
DOI : 10.1515/jaots-2004-0105

T. Zielinski and J. Kijenski, Plasma carbon black???the new active additive for plastics, Composites Part A: Applied Science and Manufacturing, vol.36, issue.4, pp.467-471, 2005.
DOI : 10.1016/j.compositesa.2004.10.007

K. S. Bolouri and J. Amouroux, Analyse des processus de formation de noir de carbone : une corrélation entre le mécanisme de formation du noir de carbone et les calculs des équilibres chimiques hydrogène-carbone, pp.5-6, 1983.

C. Journet, La production de nanotubes de carbone, Thèse de doctorat, spécialité : Milieux denses et matériaux, 1998.

V. Jourdain, Croissance catalytique séquentielle de nanotubes de carbone, Thèse de doctorat, 2003.

P. J. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, American Journal of Physics, vol.72, issue.3, 1999.
DOI : 10.1119/1.1645289

M. Su, B. Zheng, and J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chemical Physics Letters, vol.322, issue.5, pp.321-326, 2000.
DOI : 10.1016/S0009-2614(00)00422-X

C. Journet, W. K. Maser, P. Bernier, and A. Loiseau, Large -scale production of SWNT by the electric arc technique, Nature, vol.388, pp.217-223, 1997.

D. Dorval, A. Foutel-richard, M. Cau, A. Loiseau, B. Attal-trétout et al., <I>In-Situ</I> Optical Analysis of the Gas Phase during the Formation of Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.4, issue.4, pp.450-462, 2004.
DOI : 10.1166/jnn.2004.060

D. Laplaze, L. Alvarez, T. Guillard, J. M. Badie, and G. Flamant, Carbon nanotubes: dynamics of synthesis processes, Carbon, vol.40, issue.10, pp.40-1621, 2002.
DOI : 10.1016/S0008-6223(02)00005-2

R. Bacon and . Growth, Growth, Structure, and Properties of Graphite Whiskers, Journal of Applied Physics, vol.31, issue.2, pp.31-283, 1960.
DOI : 10.1063/1.1735559

W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, vol.347, issue.6291, pp.354-358, 1990.
DOI : 10.1038/347354a0

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

D. S. Bethune, C. H. Kiang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature, pp.363-605, 1993.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

B. P. Tarasov, V. E. Muradyan, Y. M. Shul-'ga, and E. P. Krinichnaya, Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co-Ni and YNi 2 catalysts, Carbon, issue.7, pp.41-1357, 2003.

P. Pacheco and M. , Synthèse des nanotubes de carbone par arc électrique, Thèse de doctorat, 2003.

M. Ohkohchi, Synthesis of Single-Walled Carbon Nanotubes by AC Arc Discharge, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 7A, pp.4158-4159, 1998.
DOI : 10.1143/JJAP.38.4158

Y. Ando, X. Zhao, and K. Hirahara, Mass production of single-wall carbon nanotubes by the arc plasma jet method, Chemical Physics Letters, vol.323, issue.5-6, pp.580-585, 2000.
DOI : 10.1016/S0009-2614(00)00556-X

H. Huang, H. Kajiura, S. Tsutsui, Y. Hirano, M. Miyakoshi et al., Large-scale rooted growth of aligned super bundles of single-walled carbon nanotubes using a directed arc plasma method, Chemical Physics Letters, vol.343, issue.1-2, pp.7-14, 2001.
DOI : 10.1016/S0009-2614(01)00631-5

S. J. Lee and H. K. Baik, Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique, Diamond and Related Materials, issue.11, pp.914-917, 2002.

K. Anazawa, K. Shimotani, C. Manabe, H. Watanabe, and M. Shimizu, High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field, Applied Physics Letters, vol.81, issue.4, pp.81-739, 2002.
DOI : 10.1063/1.1491302

M. Kanai, A. Koshio, H. Shinohara, T. Mieno, A. Kasuya et al., High-yield synthesis of single-walled carbon nanotubes by gravity-free arc discharge, Applied Physics Letters, vol.79, issue.18, pp.79-2967, 2001.
DOI : 10.1063/1.1413960

T. Zhao and Y. Liu, Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures, Carbon, vol.42, issue.12-13, pp.2765-2768, 2004.
DOI : 10.1016/j.carbon.2004.05.033

H. Lange, M. Sioda, A. Huczko, Y. Q. Zhu, H. W. Kroto et al., Nanocarbon production by arc discharge in water, Carbon, vol.41, issue.8, pp.1617-1623, 2003.
DOI : 10.1016/S0008-6223(03)00111-8

H. Okuno, E. Grivei, F. Fabry, T. M. Gruenberger, J. Gonzalez-aguilar et al., Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon, vol.42, issue.12-13, pp.4212-4225, 2004.
DOI : 10.1016/j.carbon.2004.05.037

URL : https://hal.archives-ouvertes.fr/hal-00528754

J. Hahn, H. J. Han, J. E. Yoo, H. Y. Jung, and J. S. Suh, New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet, Carbon, vol.42, issue.4, pp.877-883, 2004.
DOI : 10.1016/j.carbon.2004.01.073

Y. Tian, Y. Zhang, B. Wang, W. Ji, Y. Zhang et al., Coal-derived carbon nanotubes by thermal plasma jet, Carbon, vol.42, issue.12-13, pp.2597-2601, 2004.
DOI : 10.1016/j.carbon.2004.05.042

S. I. Choi, J. S. Nam, J. I. Kim, T. H. Hwang, J. H. Seo et al., Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma, thin Solid Films, pp.506-507, 2006.

O. Smiljanic, B. L. Stansfield, J. Dodelet, and A. Serventi, Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet, Chemical Physics Letters, vol.356, issue.3-4, pp.189-193, 2002.
DOI : 10.1016/S0009-2614(02)00132-X

C. K. Chen, W. L. Perry, H. Xu, Y. Jiang, and J. Phillips, Plasma torch production of macroscopic carbon nanotube structures, Carbon, vol.41, issue.13, pp.2555-2560, 2003.
DOI : 10.1016/S0008-6223(03)00361-0

R. O. Loutfy, RF plasma method for production of single walled carbon nanotubes

?. Cota and G. Sanchez, Synthèse de nanostructures de carbone en utilisant un réacteur plasma d'induction à haute fréquence, Thèse de doctorat, 2003.

T. Kato, G. H. Jeong, T. Hirata, and R. Hatakeyama, Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition, Thin Solid Films, vol.457, issue.1, pp.2-6, 2004.
DOI : 10.1016/j.tsf.2003.12.002

B. O. Boskovic, V. Stolojan, R. A. Khan, S. Haq, and S. R. Silva, Large-area synthesis of carbon nanofibres at room temperature, Nature Materials, vol.1, issue.3, pp.165-168, 2002.
DOI : 10.1038/nmat755

X. Wang, Z. Hu, Q. Wu, and Y. Chen, Low-temperature catalytic growth of carbon nanotubes under microwave plasma assistance, Catalysis Today, vol.72, issue.3-4, pp.72-205, 2002.
DOI : 10.1016/S0920-5861(01)00494-1

K. B. Teo, D. B. Hash, R. G. Lacerda, N. L. Rupesinghe, M. S. Bell et al., The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth, Nano Letters, vol.4, issue.5, pp.921-926, 2004.
DOI : 10.1021/nl049629g

M. W. Li, Z. Hu, X. Z. Wang, Q. Wu, Y. Chen et al., Low-temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure, Diamond and Related Materials, vol.13, issue.1, pp.111-115, 2004.
DOI : 10.1016/j.diamond.2003.09.008

R. E. Morjan, M. S. Kabir, S. W. Lee, O. A. Nerushev, P. Lundgren et al., Selective growth of individual multiwalled carbon nanotubes, Current Applied Physics, vol.4, issue.6, pp.591-594, 2004.
DOI : 10.1016/j.cap.2004.01.025

S. Hofmann, C. Ducall, J. Robertson, and B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol.83, issue.1, pp.135-137, 2003.
DOI : 10.1063/1.1589187

Y. Chen, S. Patel, Y. Ye, and D. T. Shaw, Field emission from aligned high-density graphitic nanofibers, Applied Physics Letters, vol.73, issue.15, pp.73-2119, 1998.
DOI : 10.1063/1.122397

J. H. Han, W. S. Yang, J. B. Yoo, and C. Y. Park, Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition, Journal of Applied Physics, vol.88, issue.12, pp.88-7363, 2000.
DOI : 10.1063/1.1322378

C. Täschner, F. Pacal, A. Leonhardt, P. Spatenka, K. Bartsch et al., Synthesis of aligned carbon nanotubes by DC plasma-enhanced hot filament CVD, Surface and Coatings Technology, vol.174, issue.175, pp.174-175, 2003.
DOI : 10.1016/S0257-8972(03)00712-6

B. B. Wang, S. Lee, X. Z. Xu, S. Choi, H. Yan et al., Effects of the pressure on growth of carbon nanotubes by plasma-enhanced hot filament CVD at low substrate temperature, Applied Surface Science, vol.236, issue.1-4, pp.6-12, 2004.
DOI : 10.1016/j.apsusc.2004.03.243

L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol.72, issue.26, pp.72-3437, 1998.
DOI : 10.1063/1.121658

Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park et al., Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition, Applied Physics Letters, vol.76, issue.17, pp.76-2367, 2000.
DOI : 10.1063/1.126348

T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji et al., Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition, Chemical Physics Letters, vol.381, issue.3-4, pp.422-426, 2003.
DOI : 10.1016/j.cplett.2003.10.007

M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihaschi et al., Mechanism of the Effect of NiCo, Ni and Co Catalysts on the Yield of Single-Wall Carbon Nanotubes Formed by Pulsed Nd:YAG Laser Ablation, The Journal of Physical Chemistry B, vol.103, issue.30, pp.6224-6229, 1999.
DOI : 10.1021/jp9908451

J. Gavillet, Etude par microscopie électronique en transmission de la nucléation et de la croissance des nanotubes de carbone mono-feuillets, thèse de doctorat, spécialité : science des matériaux, 2001.

Y. Saito, O. Mitsumasa, M. Tomita, and T. Hayashi, Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source, Chemical Physics Letters, vol.236, issue.4-5, pp.419-426, 1995.
DOI : 10.1016/0009-2614(95)00250-8

H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen et al., Diameter control of single-walled carbon nanotubes, Carbon, vol.38, issue.11-12, pp.1691-1697, 2000.
DOI : 10.1016/S0008-6223(00)00090-7

A. Loiseau, J. Gavillet, F. Ducastelle, J. Thibault, O. Stéphan et al., Nucleation and growth of SWNT: TEM studies of the role of the catalyst, Comptes Rendus Physique, vol.4, issue.9, pp.975-991, 2003.
DOI : 10.1016/j.crhy.2003.10.022

A. Gorbunov, O. Jost, W. Pompe, and A. Graff, Solid???liquid???solid growth mechanism of single-wall carbon nanotubes, Carbon, vol.40, issue.1, pp.113-118, 2002.
DOI : 10.1016/S0008-6223(01)00080-X

H. Kanzow, C. Lenski, and A. Ding, Single-wall carbon nanotube diameter distributions calculated from experimental parameters, Physical Review B, vol.63, issue.12, pp.125402-125403, 2001.
DOI : 10.1103/PhysRevB.63.125402

H. Kanzow and A. Ding, Formation mechanism of single-wall carbon nanotubes on liquid-metal particles, Physical Review B, vol.60, issue.15, pp.60-11180, 1999.
DOI : 10.1103/PhysRevB.60.11180

B. Liu, T. Wagberg, E. B. Nyeanchi, T. L. Makarova, X. ?. Zhu et al., Synthesis and characterization of SWNT and nanoparticles produced with Ce or Eu catalysts, Molecular Materials, vol.13, pp.1-4, 2000.

Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, K. Sumiyama et al., Carbon nanocapsules encaging metals and carbides, Journal of Physics and Chemistry of Solids, vol.54, issue.12, pp.54-1849, 1993.
DOI : 10.1016/0022-3697(93)90298-6

M. Pinault, M. Mayne-l-'hermite, C. Reynaud, V. Pichot, P. Launois et al., Growth of multiwalled carbon nanotubes during the initial stages of aerosol-assisted CCVD, Carbon, vol.43, issue.14, pp.2968-2976, 2005.
DOI : 10.1016/j.carbon.2005.06.011

A. G. Nasibulin, A. Moisala, D. P. Brown, H. Jiang, and E. I. Kauppinen, A novel aerosol method for single walled carbon nanotube synthesis, Chemical Physics Letters, vol.402, issue.1-3, pp.227-232, 2005.
DOI : 10.1016/j.cplett.2004.12.040

M. Glerup, H. Kanzow, and R. Almairac, Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors, Chemical Physics Letters, vol.377, issue.3-4, pp.293-298, 2003.
DOI : 10.1016/S0009-2614(03)01134-5

Y. Xiong, Y. Xie, Y. Xiong, Y. Xie, X. Li et al., Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution, Carbon, vol.42, issue.8-9, pp.42-50, 2004.
DOI : 10.1016/j.carbon.2003.12.073

H. Kiang, C. Goddard, A. W. Beyers, R. Bethune, and D. S. , Carbon nanotubes with single-layer walls, Carbon, pp.903-914, 1995.

C. H. Kiang, W. A. Goddard, R. Beyers, J. R. Salem, and D. S. Bethune, Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles, Journal of Physics and Chemistry of Solids, vol.57, issue.1, pp.35-39, 1996.
DOI : 10.1016/0022-3697(95)00087-9

D. S. Bethune, Carbon and metals: a path to single-wall carbon nanotubes, Physica B: Condensed Matter, vol.323, issue.1-4, pp.90-96, 2002.
DOI : 10.1016/S0921-4526(02)00990-0

V. Jourdain, Synthèse de nanotubes de carbone monofeuillets par arc électrique : influence du catalyseur, 2000.

W. K. Maser, P. Bernier, and J. M. Lambert, Elaboration and characterization of various carbon nanostructures, Synthetic Metals, pp.243-250, 1996.

B. T. Tarasov, V. E. Muradyan, Y. M. Shul-'ga, E. P. Krinichnaya, N. S. Kuyunko et al., Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co???Ni and YNi2 catalysts, Carbon, vol.41, issue.7, pp.1357-1364, 2003.
DOI : 10.1016/S0008-6223(03)00060-5

D. Nishide, H. Kataura, and S. Suzuki, High-yield production of single-wall carbon nanotubes in nitrogen gas, Chemical Physics Letters, vol.372, issue.1-2, pp.45-50, 2003.
DOI : 10.1016/S0009-2614(03)00352-X

W. K. Maser, E. Munoz, M. T. Martínez, A. M. Benito, and G. F. De-la-fuente, Study of parameters important for the growth of single wall carbon nanotubes, Optical Materials, vol.17, issue.1-2, pp.331-334, 2001.
DOI : 10.1016/S0925-3467(01)00055-6

H. Zhang, D. Wang, X. Xue, B. Chen, and S. Peng, The effect of helium gas pressure on the formation and yield of nanotubes in arc discharge, Journal of Physics D: Applied Physics, vol.30, issue.3, pp.1-4, 1997.
DOI : 10.1088/0022-3727/30/3/001

A. A. Puretzky, H. Schittenhelm, X. Fan, M. J. Lance, L. F. Allard et al., Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization, Physical Review B, vol.65, issue.24, pp.245425-245426, 2002.
DOI : 10.1103/PhysRevB.65.245425

O. Jost, A. A. Gorbunov, J. Moller, W. Pompe, A. Graff et al., Impact of catalyst coarsening on the formation of single-wall carbon nanotubes, Impact of catalyst coarsening on the formation of SWNTs, pp.297-304, 2001.
DOI : 10.1016/S0009-2614(01)00336-0

P. Byszewski, H. Lange, A. Huczko, and J. F. Behnke, Fullerene and nanotube synthesis. plasma spectroscopy studies, Journal of Physics and Chemistry of Solids, vol.58, issue.11, pp.58-1679, 1997.
DOI : 10.1016/S0022-3697(97)00051-6

S. Cui, P. Scharff, C. Siegmund, D. Schneider, K. Risch et al., Investigation on preparation of multi-walled carbon nanotubes by DC arc discharge under N2 atmosphere, Carbon, pp.42-47, 2004.

K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura et al., Water-assisted highly efficient synthesis of impurity-free single-walled carbon carbon nanotubes, science, pp.1362-1364, 2004.

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters, vol.360, issue.3-4, pp.229-234, 2002.
DOI : 10.1016/S0009-2614(02)00838-2

S. Maruyama, E. Einarsson, Y. Murakami, and T. Edamura, Growth process of vertically aligned single-walled carbon nanotubes, Chemical Physcis Letters, pp.320-323, 2005.

V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, and P. Bernier, Sequential catalytic growth of carbon nanotubes, chemical Physics Letters, pp.27-33

L. Alvarez, Mécanismes de croissance et étude vibrationnelle par spectroscopie Raman des nanotubes de carbone produits par la méthode solaire, Thèse de doctorat

R. Sen, Y. Ohtsuka, T. Ishigaki, D. Kasuya, S. Suzuki et al., Time period for the growth of single-wall carbon nanotubes in the laser ablation process: evidence from gas dynamic studies and time resolved imaging, Chemical Physics Letters, vol.332, issue.5-6, pp.467-473, 2000.
DOI : 10.1016/S0009-2614(00)01320-8

A. A. Puretzky, D. B. Geohegan, H. Schittenhelm, X. Fan, and M. A. Guillorn, Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporisation, Applied Surface Science, pp.197-198, 2002.

K. Méténier, S. Bonnamy, F. Béguin, C. Journet, P. Bernier et al., Coalescence of SWNT and formation of MWNT under high-temperature treatments, Carbon, pp.1765-1773, 2002.

.. Influence-du-débit-du-gaz-plasmagène, 173 II.2.2.1. Description des conditions opératoires de l'étude, p.173

.. Réaction-de-craquage-de-l-'acétylène, 176 II.3.1. Description des conditions opératoires de l'étude, p.176

E. De and C. , 179 III.1. Description des conditions opératoires, p.179

Y. Segui, Diélectriques, courants de conduction, Techniques de l'ingénieur, pp.2301-2306

F. Richard, J. M. Cormier, S. Pellerin, and J. Chapelle, Physical study of a gliding arc discharge, Journal of Applied Physics, vol.79, issue.5, pp.79-2245, 1996.
DOI : 10.1063/1.361188

J. P. Salanne, Contrôle du point de fonctionnement des décharges électriques par l'intermédiaire de leur alimentation, thèse de doctorat , spécialité : Génie électrique, 2005.

J. M. Badie, J. Bresson, A. Daïf, and B. Granier, D??termination acoustique de la transition ?? l'??coulement laminaire du gaz plasmag??ne d'une torche ?? plasma, Journal de Physique III, vol.6, issue.10, pp.1423-1433, 1996.
DOI : 10.1051/jp3:1996194

A. A. Fridman, A. Petrousov, J. Chapelle, J. ?. Cormier, A. Czenichowski et al., Mod??le physique de l'arc glissant, Journal de Physique III, vol.4, issue.8, pp.1449-1465, 1994.
DOI : 10.1051/jp3:1994213

I. Textures and .. T. De, 214 III.1. Textures de type « Papiers froissés, p.214

M. Monthioux, Le carbone dans tous ses états, Structure, textures et comportement thermique des solides polyaromatiques, Edit Bernier P. et Lefrant S. , Gordon et Breach, pp.127-182, 1997.

A. Oberlin, J. Goma, and J. N. Rouzaud, Techniques d'étude des structures et textures (microtextures) des matériaux carbonés, Journal de chimie physique, vol.81, pp.701-710, 1984.

S. Handbook, B. Nanotechnology, and . Editor, Introduction to Carbon Nanotubes, p.45, 2004.

X. Bourrat, Contribution à l'étude de la croissance du carbone en phase vapeur (Etude des noirs conducteurs par microscopie électronique, RPE et modélisation fractale, Thèse de doctorat, Spécialité : sciences physiques, 1987.

A. Oberlin, Chemistry and physics of carbon, High-resolution TEM studies of carbonization and graphitisation, 1989.

M. Monthioux, H. Allouche, and R. L. Jacobsen, Chemical Vapor deposition of pyrolytic carbon on carbon nanotubes. Part 3 : Growth mechanisms, Carbon, pp.3183-3194, 2006.

A. Loiseau, Synthesis ans growth of C-SWNT, Cours d'Aussois, 2003.

A. Oberlin, Carbonization and graphitization, Carbon, pp.521-541, 1984.

D. Fonton, S. Oberlin, A. Inagaki, and M. , Characterization by electron microscopy of carbon phases (intermediate turbostratic phase and graphite) in hard carbons when heat-treated under pressure, Journal of Materials Science, vol.13, issue.4, pp.909-917, 1980.
DOI : 10.1007/BF00552102

Y. Saito, Nanoparticules and filled nanocapsules, Carbon, pp.979-988, 1995.

R. T. Baker and P. S. Harris, Chemistry and physics of carbon, The formation of filamentous carbon, p.14, 1978.

Y. Schwob, Chemistry and physics of carbon, Acetylene black, p.162, 1979.

K. S. Kim, J. H. Seo, J. S. Nam, W. T. Ju, and S. H. Hong, Production of hydrogen and carbon black by methane decomposition using DC-RF Hydrid Thermal Plasmas, IEEE transactions on plasma science, vol.33, issue.2, pp.813-823, 2005.

K. S. Kim, K. S. Lee, W. T. Ju, and H. S. , Synthesis of nanostructured carboneous materials by thermal decomposition of methane using DC thermal plasmas, th International Symposium on Plasma chemistry, 2005.

T. Zielinski and J. Kijenski, Plasma carbon black???the new active additive for plastics, Composites Part A: Applied Science and Manufacturing, vol.36, issue.4, pp.467-471, 2005.
DOI : 10.1016/j.compositesa.2004.10.007

.. Et-de-la-cinétique-chimique, Confrontation des résultats issus de l, p.298

R. J. Kee, F. M. Rupley, and J. A. Miller, CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics, Sandia Report SAND, pp.89-8009, 1989.

M. S. Belinov and G. V. Naidis, Modeling of hydrogen-rich gas production by plasma reforming of hydrocarbon fuels, International Journal of Hydrogen Energy, pp.31-769, 2006.

B. Pateyron, G. Delluc, and N. Calvé, T&Twinner, la chimie et les propriétés de transports en ligne, dans l'intervalle de 300K à, pp.651-654, 2006.
DOI : 10.1051/meca:2006011

F. Richard, J. M. Cormier, S. Peelerin, and J. Chapelle, Physical study of a gliding arc reactors, Journal of Applied Physics, vol.5, pp.79-2245, 1996.

I. Description, . Du, G. En, and .. De-contrôle, 311 II.1. Appareillage et méthode, p.312

M. Cerr, G. Bertolé, J. Dubresson, C. Guillemin, M. Richard et al., Analyse industrielle I, Instrumentation industrielle, 1996.

J. Gonzalez-aguilar, Chromatographie en phase gazeuse, Rapport interne, septembre, 2005.

. Shimadzu, Shimadzu gas chromatograph, analysis of inert Inorganic Gases, CA180-917A-GC-No.1, p.7, Complete Separation of H 2, and C 2 H 4 with Applied Flow System

L. Blanc, Cours de chromatographies, Maîtrise de Chimie, 2000.

D. R. Lide, Handbook of Chemistry and Physics, 2002.

. Puis, le développement et la mise en place du procédé plasma hors-équilibre, basé sur l'établissement de décharges non thermiques à haute tension et faible courant

C. Ensuite, les résultats expérimentaux liés à la caractérisation du procédé sont présentés. Il s'agit essentiellement d'une caractérisation électrique de la torche plasma sans injection de réactif et d'une caractérisation lors d'injection d'hydrocarbure. Cette dernière est basée sur une étude paramétrique et des bilans de matière

. Enfin, la modélisation de cinétique chimique permet d'estimer le volume réactionnel du procédé tandis que la modélisation de l'écoulement dans le réacteur permet d'évaluer les champs de température et de vitesse ainsi que l