G. P. Astrahancev, The method of fictitious domains for a second order elliptic equation with natural boundary conditions, vZ, Vyvcisl. Mat. i Mat. Fiz, vol.18, issue.269, pp.118-125, 1978.

C. Atamian-and-p and . Joly, Une analyse de la m??thode des domaines fictifs pour le probl??me de Helmholtz ext??rieur, ESAIM: Mathematical Modelling and Numerical Analysis, vol.27, issue.3, pp.251-288, 1993.
DOI : 10.1051/m2an/1993270302511

I. Babuvska, The finite element method with Lagrangian multipliers, Numer. Math, vol.2073, pp.179-192, 1972.

A. Bamberger, R. Glowinski, and A. Q. Tran, A Domain Decomposition Method for the Acoustic Wave Equation with Discontinuous Coefficients and Grid Change, SIAM Journal on Numerical Analysis, vol.34, issue.2, pp.603-639, 1997.
DOI : 10.1137/S0036142994261518

E. Bécache, A. Chaigne, G. Derveaux, and A. P. Joly, Time-domain simulation of a guitar i : Model and method, 2003.

E. Bécache, A. Ezziani, and A. P. Joly, A mixed finite element approach for viscoelastic wave propagation, Computational Geosciences

E. Bécache, S. Fauqueux, and A. P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2003.
DOI : 10.1016/S0021-9991(03)00184-0

E. Bécache, P. Joly, and A. J. Rodríguez, Space???time mesh refinement for elastodynamics. Numerical results, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.355-366, 2005.
DOI : 10.1016/j.cma.2004.02.023

E. Bécache, P. Joly, and A. G. Scarella, A fictitious domain method for unilateral contact problems in non-destructive testing, in Computational fluid and solid mechanics, pp.65-67, 2001.

E. Bécache, P. Joly, and A. C. Tsogka, ??l??ments finis mixtes et condensation de masse en ??lastodynamique lin??aire. (I) Construction, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.325, issue.5, pp.545-550, 1997.
DOI : 10.1016/S0764-4442(97)88905-7

E. Bécache, P. Joly, and A. C. Tsogka, Mixed finite elements, strong symmetry and mass lumping for elastic waves, 1999.

F. Ben and . Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math, vol.84, pp.173-197, 1999.

F. Ben, A. Belgacem, A. Y. Buffa, and . Maday, The mortar finite element method for 3D Maxwell equations : first results, SIAM J. Numer. Anal, vol.39, pp.880-901, 2001.

A. Berger, R. Scott, and A. G. Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, pp.295-313, 1972.

M. J. Berger, Stability of interfaces with mesh refinement On conservation at grid interfaces, Math. Comp. SIAM J. Numer. Anal, vol.45, issue.24, pp.301-318, 1985.

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, vol.82, issue.1, pp.64-84, 1989.
DOI : 10.1016/0021-9991(89)90035-1

M. J. Berger and R. J. Leveque, Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2298-2316, 1998.
DOI : 10.1137/S0036142997315974

M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.53, issue.3, pp.484-512, 1984.
DOI : 10.1016/0021-9991(84)90073-1

C. Bernardi, Y. Maday, and A. A. Patera, A new nonconforming approach to domain decomposition : the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar Pitman Res. Notes Math. Ser., Longman Sci. Tech, vol.299, pp.13-51, 1989.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat, Informat. Recherche Opérationnelle Sér. Rouge, vol.8, pp.129-151, 1974.

F. Brezzi-and-m and . Fortin, Mixed and hybrid finite element methods, of Springer Series in Computational Mathematics, 1991.
DOI : 10.1007/978-1-4612-3172-1

A. Buffa-and-p and J. Ciarlet, On traces for functional spaces related to Maxwell's equations Part I: An integration by parts formula in Lipschitz polyhedra, Mathematical Methods in the Applied Sciences, vol.5, issue.1, pp.9-30, 2001.
DOI : 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2

M. W. Chevalier and R. J. Luebbers, FDTD local grid with material traverse, IEEE Transactions on Antennas and Propagation, vol.45, issue.3, pp.411-421, 1997.
DOI : 10.1109/8.558656

P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), vol.40, 2002.

G. Cohen and S. Fauqueux, MIXED FINITE ELEMENTS WITH MASS-LUMPING FOR THE TRANSIENT WAVE EQUATION, Journal of Computational Acoustics, vol.08, issue.01, pp.171-188, 1999.
DOI : 10.1142/S0218396X0000011X

G. Cohen and S. Fauqueux, Mixed Spectral Finite Elements for the Linear Elasticity System in Unbounded Domains, SIAM Journal on Scientific Computing, vol.26, issue.3
DOI : 10.1137/S1064827502407457

URL : https://hal.archives-ouvertes.fr/hal-00982991

G. Cohen and P. Joly, Construction Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1266-1302, 1996.
DOI : 10.1137/S0036142993246445

G. Cohen, P. Joly, J. E. Roberts, and A. N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

G. Cohen and P. Monk, Gauss point mass lumping schemes for Maxwell's equations, Numerical Methods for Partial Differential Equations, vol.114, issue.1, pp.63-88, 1998.
DOI : 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J

G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation, Applied Mechanics Reviews, vol.55, issue.5, 2002.
DOI : 10.1115/1.1497470

URL : https://hal.archives-ouvertes.fr/hal-01166961

F. Collino, T. Fouquet, and A. P. Joly, Analyse numérique d'une méthode de raffinement de maillage espace-temps pour l'équation des ondes, 1998.

F. Collino, T. Fouquet, and A. P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation. I. Construction, Numer. Math, pp.95-197, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

F. Collino, T. Fouquet, and A. P. Joly, Conservative space-time mesh refinement methods for the FDTD solution of Maxwell???s equations, Journal of Computational Physics, vol.211, issue.1, 2004.
DOI : 10.1016/j.jcp.2005.03.035

F. Collino, P. Joly, and A. F. Millot, Fictitious Domain Method for Unsteady Problems:, Journal of Computational Physics, vol.138, issue.2, pp.907-938, 1997.
DOI : 10.1006/jcph.1997.5849

URL : https://hal.archives-ouvertes.fr/inria-00073735

F. Collino and C. Tsogka, Application of the pml absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, pp.66-294, 2001.

G. Derveaux, Modélisation numérique de la guitare acoustique, 2002.

J. Diaz, Approches analytiques et numériques de problèmes de transmission en propagation d'ondes en régime transitoire Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, 2005.

T. Dupont, $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.10, issue.5, pp.880-889, 1973.
DOI : 10.1137/0710073

S. Fauqueux, Élements finis spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire, 2003.

T. Fouquet, Raffinement de maillage spatio-temporel pour les équations de Maxwell, 2000.

M. J. Gander, L. Halpern, and A. F. Nataf, Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.1643-1681, 2003.
DOI : 10.1137/S003614290139559X

S. Garcés, Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles, 1998.

T. Geveci, On the application of mixed finite element methods to the wave equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.22, issue.2, pp.243-250, 1988.
DOI : 10.1051/m2an/1988220202431

V. Girault-and-r and . Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan Journal of Industrial and Applied Mathematics, vol.33, issue.3, pp.487-514, 1995.
DOI : 10.1007/BF03167240

R. Glowinski, T. Pan, and A. J. Périaux, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, vol.111, issue.3-4, pp.283-303, 1994.
DOI : 10.1016/0045-7825(94)90135-X

B. Gustafsson, H. Kreiss, and A. A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems. II, Mathematics of Computation, vol.26, issue.119, pp.649-686, 1972.
DOI : 10.1090/S0025-5718-1972-0341888-3

P. Joly, Variational Methods for Time-Dependent Wave Propagation Problems, Topics in Computational Wave Propagation. Direct and Inverse Problems, pp.201-264, 2003.
DOI : 10.1007/978-3-642-55483-4_6

P. Joly and L. Rhaouti, Domaines fictifs, ??l??ments finis H(div) et condition de Neumann: le probl??me de la condition inf-sup, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.328, issue.12, pp.1225-1230, 1999.
DOI : 10.1016/S0764-4442(99)80444-3

P. Joly and J. Rodríguez, An error analysis of conservative space-time mesh refinement methods for the 1d wave equation, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00983322

I. S. Kim and W. J. Hoefer, A local mesh refinement algorithm for the time-domain finitedifference method to solve maxwell's equations, IEEE Trans. Microwave Theory Tech, pp.38-812, 1990.

H. Kreiss, Stability theory for difference approximations of mixed initial boundary value problems . I, Math, Comp, vol.22, pp.703-714, 1968.

K. S. Kunz and L. Simpson, A Technique for Increasing the Resolution of Finite-Difference Solutions of the Maxwell Equation, IEEE Transactions on Electromagnetic Compatibility, vol.23, issue.4, pp.23-419, 1981.
DOI : 10.1109/TEMC.1981.303984

C. G. Makridakis, On mixed finite element methods for linear elastodynamics, Numerische Mathematik, vol.53, issue.1, pp.61-235, 1992.
DOI : 10.1007/BF01385506

R. Manfrin-and-f and . Tonin, On the Gevrey regularity for weakly hyperbolic equations with spacetime degeneration of Oleinik type, Rend. Mat. Appl, issue.7, pp.16-203, 1996.

P. Monk, Analysis of a Finite Element Method for Maxwell???s Equations, SIAM Journal on Numerical Analysis, vol.29, issue.3, pp.714-729, 1992.
DOI : 10.1137/0729045

P. Monk, Sub-gridding FDTD schemes, ACES Journal, vol.11, pp.37-46, 1996.

P. Monk-and-o and . Vacus, Error Estimates for a Numerical Scheme for Ferromagnetic Problems, SIAM Journal on Numerical Analysis, vol.36, issue.3, pp.696-718, 1999.
DOI : 10.1137/S0036142997324228

J. Nédélec, A new family of mixed finite elements in ?3, Numerische Mathematik, vol.39, issue.1, pp.57-81, 1986.
DOI : 10.1007/BF01389668

S. Osher-and-r and . Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Mathematics of Computation, vol.41, issue.164, pp.321-336, 1983.
DOI : 10.1090/S0025-5718-1983-0717689-8

P. G. Petropoulos, Fourth-order accurate staggered finite difference schemes for the timedependent Maxwell equations, in Ordinary and partial differential equations, Pitman Res. Notes Math. Ser, vol.370, pp.85-107, 1996.

S. Piperno, Schémas en éléments finis discontinus localement raffinés en espace et en temps pour les équations de maxwell 1d, 2003.

D. T. Prescott and N. V. Shuley, A method for incorporating different sized cells into the finite-difference time-domain analysis technique, IEEE Microwave and Guided Wave Letters, vol.2, issue.11, pp.434-436, 1992.
DOI : 10.1109/75.165634

P. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), pp.292-315, 1975.
DOI : 10.1007/BF01436186

L. Rhaouti, Domaines fictifs pour la modélisation d'un problème d'interaction fluide-structure : Simulation de la timbale, 1999.

J. E. Roberts and J. Thomas, Mixed and hybrid methods, in Handbook of numerical analysis, Handb. Numer. Anal, vol.II, pp.523-639, 1991.

J. Rodríguez, Une nouvelle m??thode de raffinement de maillage spatio-temporel pour l'??quation des ondes, Comptes Rendus Mathematique, vol.339, issue.6, p.339, 2004.
DOI : 10.1016/j.crma.2004.07.002

G. Scarella, Étude théorique et numérique de la propagation d'ondes en présence de contact unilatéral dans un milieu fissuré, 2004.

A. Taflove, A. House-inc, M. Boston, S. D. Gedney, F. S. Lansing et al., The finitedifference time-domain method, 1995.

N. Tordjman, Eléments finis d'ordre élevé avec condensation de masse pour l'équation des ondes, 1995.

C. Tsogka, Modélisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des millieux fissurés, 2000.

B. I. Wohlmuth, A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier, SIAM Journal on Numerical Analysis, vol.38, issue.3, pp.989-1012, 2000.
DOI : 10.1137/S0036142999350929

Z. Xie, C. Chan, and A. B. Zhang, An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations, Journal of Computational and Applied Mathematics, vol.147, issue.1, pp.75-98, 2002.
DOI : 10.1016/S0377-0427(02)00394-1

K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. on Antennas and propagation, pp.302-307, 1966.

A. Yefet and P. G. Petropoulos, A Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations, Journal of Computational Physics, vol.168, issue.2, pp.286-315, 2001.
DOI : 10.1006/jcph.2001.6691

A. R. Zakharian, M. Brio, and A. J. Moloney, Fdtd based second-order accurate local mesh refinement method for maxwell's equations in two space dimensions, Comm. Math. Sci, vol.2, pp.497-513, 2004.