F. Bayen, M. Flato, C. Fronsdal, and A. Lichnerowicz, Deformation theory and quantization. I. Deformations of symplectic structures, Annals of Physics, vol.111, issue.1, pp.61-110, 1978.
DOI : 10.1016/0003-4916(78)90224-5

P. Bieliavsky, . Tang, . Xiang, and Y. -. Yao, Jun Rankin-Cohen brackets and quantization of foliation, Part I : formal quantization, math.QA/0506506

T. Bröcker and . Dieck, Tammo Representations of compact Lie groups. Translated from the German manuscript. Corrected reprint of the 1985 translation, Graduate Texts in Mathematics, vol.98, pp.0-387, 1995.

H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Mathematische Annalen, vol.97, issue.3, pp.271-285, 1975.
DOI : 10.1007/BF01436180

P. Cohen, Y. ;. Beazley-;-manin, and D. Zagier, Automorphic pseudodifferential operators Algebraic aspects of integrable systems, Progr. Nonlinear Differential Equations Appl, vol.26, pp.17-47, 1997.

. Connes, Alain Noncommutative differential geometry, Inst. Hautes Etudes Sci. Publ. Math. No, vol.62, pp.257-360, 1985.

A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras, pp.52-144, 1986.

A. Connes and H. Moscovici, Hopf Algebras, Cyclic Cohomology and the Transverse Index Theorem, Communications in Mathematical Physics, vol.198, issue.1, pp.199-246, 1998.
DOI : 10.1007/s002200050477

A. Connes and H. Moscovici, Cyclic cohomology and Hopf algebra symmetry, Letters Math, Phys, vol.52, pp.1-28, 2000.

A. ;. Connes and . Moscovici, Henri Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry. Essays on geometry and related topics, Monogr. Enseign. Math, vol.1, issue.38, pp.217-255, 2001.

A. ;. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, Mosc. Math. J, vol.4, issue.1, pp.67-109, 2004.

A. ;. Connes and H. Moscovici, Rankin-Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J, vol.4, issue.1, pp.111-130, 2004.

P. Deligne, Formes Modulaires et Representations De GL(2), Proc. Internat. Summer School Lecture Notes in Math, vol.349, pp.55-105, 1972.
DOI : 10.1007/978-3-540-37855-6_2

. Fedosov, Boris Deformation quantization and index theory Mathematical Topics, 9, 1996.

J. M. Gracia-bondía, J. C. Várilly, and . Figueroa, Héctor Elements of noncommutative geometry Birkhäuser Advanced Texts : Basler Lehrbücher. [Birkhäuser Advanced Texts : Basel Textbooks, pp.0-8176, 2001.

S. Gutt, Déformations formelles de l'algèbre des fonctions différentiables sur une variété sympletique, thesis, 1983.

A. Giaquinto and J. Zhang, Bialgebra actions, twists, and universal deformation formulas, Journal of Pure and Applied Algebra, vol.128, issue.2, pp.133-151, 1998.
DOI : 10.1016/S0022-4049(97)00041-8

URL : http://doi.org/10.1016/s0022-4049(97)00041-8

A. Kirillov, Eléments de la théorie des représentations. (French) Traduit du russe par A, 1974.

A. W. Knapp, Representation theory of semisimple groups. An overview based on examples. Reprint of the 1986 original. Princeton Landmarks in Mathematics, 2001.

. Kravchenko, Olga How to calculate the Fedosov star?product (Exercices de style), math, p.8157

S. A. Merkulov, The Moyal product is the matrix product, math-ph, 1039.

J. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45, pp.99-124, 1949.
DOI : 10.1103/RevModPhys.20.367

R. A. Rankin, The construction of automorphic forms from the derivatives of given forms., The Michigan Mathematical Journal, vol.4, issue.2, pp.103-116, 1956.
DOI : 10.1307/mmj/1028989013

. Repka, Tensor Products of Unitary Representations of SL 2 (R), American Journal of Mathematics, vol.100, issue.4, pp.747-774, 1978.
DOI : 10.2307/2373909

J. Serre, A course in arithmetic. Translated from the French, Graduate Texts in Mathematics, issue.7, 1973.

W. Schmid, Representations of semi-simple Lie groups, dans : Representation theory of Lie groups, Soc. Lect. Notes Ser, vol.34, 1979.

. Sugiura, Mitsuo Unitary representations and harmonic analysis. An introduction, Kodansha Ltd, 1975.

D. A. Vogan and . Jr, Representations of real reductive Lie groups, Progress in Mathematics Birkhäuser, vol.15, pp.3-7643, 1981.

D. Zagier, Modular forms and differential operators, Proceedings Mathematical Sciences, vol.20, issue.1, pp.57-75, 1994.
DOI : 10.1007/BF02830874

D. Zagier, Formes modulaires et Opérateurs différentiels, 2001.

D. Zagier, Some combinatorial identities occuring in the theory of modular forms, en préparation