S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics, vol.135, issue.1-4, p.305, 2000.
DOI : 10.1016/S0167-2738(00)00452-5

A. Weber and E. Ivers-tiffée, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, Journal of Power Sources, vol.127, issue.1-2, p.273, 2004.
DOI : 10.1016/j.jpowsour.2003.09.024

T. Takeguchi, R. Kikuchi, T. Yano, K. Eguchi, and K. Murata, Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode, Catalysis Today, vol.84, issue.3-4, p.217, 2003.
DOI : 10.1016/S0920-5861(03)00278-5

J. W. Fergus, Electrolytes for solid oxide fuel cells, Journal of Power Sources, vol.162, issue.1, p.30, 2006.
DOI : 10.1016/j.jpowsour.2006.06.062

V. V. Kharton, E. N. Naumovich, A. A. Yaremchenko, and F. M. Marques, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union, Journal of Solid State Electrochemistry, vol.5, issue.3, p.160, 2001.
DOI : 10.1007/s100080000141

M. Sammes, G. A. Tompsett, H. Nafe, and F. Aldinger, Bismuth based oxide electrolytes??? structure and ionic conductivity, Journal of the European Ceramic Society, vol.19, issue.10, p.1801, 1999.
DOI : 10.1016/S0955-2219(99)00009-6

E. Ivers-tiffee, A. Weber, and D. Herbsrtritt, Materials and technologies for SOFC-components, Journal of the European Ceramic Society, vol.21, issue.10-11, p.1805, 2001.
DOI : 10.1016/S0955-2219(01)00120-0

S. Nakayama and M. Sakamoto, Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy), Journal of the European Ceramic Society, vol.18, issue.10, p.1413, 1998.
DOI : 10.1016/S0955-2219(98)00032-6

J. E. Sansom and P. R. Slater, Oxide ion conductivity in the mixed Si/Ge apatite-type phases La9.33Si6-xGexO26, Solid State Ionics, vol.167, issue.1-2, p.23, 2004.
DOI : 10.1016/j.ssi.2003.12.015

H. Yahiro, K. Eguchi, and H. Arai, Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell, Solid State Ionics, vol.36, issue.1-2, p.71, 1989.
DOI : 10.1016/0167-2738(89)90061-1

M. Mogensen, N. M. Sammes, and G. A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, vol.129, issue.1-4, p.63, 2000.
DOI : 10.1016/S0167-2738(99)00318-5

B. C. Steele, Appraisal of Ce1???yGdyO2???y/2 electrolytes for IT-SOFC operation at 500??C, Solid State Ionics, vol.129, issue.1-4, p.95, 2000.
DOI : 10.1016/S0167-2738(99)00319-7

S. P. Jiang and W. Wang, Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells, Solid State Ionics, vol.176, issue.15-16, p.1351, 2005.
DOI : 10.1016/j.ssi.2005.03.011

E. P. Murray and S. A. Barnett, (La,Sr)MnO3???(Ce,Gd)O2???x composite cathodes for solid oxide fuel cells, Solid State Ionics, vol.143, issue.3-4, p.265, 2001.
DOI : 10.1016/S0167-2738(01)00871-2

B. C. Steele, Solid State Ionics, pp.86-88, 1996.

H. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics, vol.131, issue.1-2, p.143, 2000.
DOI : 10.1016/S0167-2738(00)00629-9

J. L. Rupp and L. J. Gauckler, Microstructures and electrical conductivity of nanocrystalline ceria-based thin films, Solid State Ionics, vol.177, issue.26-32, p.2513, 2006.
DOI : 10.1016/j.ssi.2006.07.033

F. M. Marques and L. M. Navarro, Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study, Solid State Ionics, vol.100, issue.1-2, p.29, 1997.
DOI : 10.1016/S0167-2738(97)00261-0

A. Tsoga, A. Gupta, A. Naoumidis, and P. Nikopoulos, Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology, Acta Materialia, vol.48, issue.18-19, p.4709, 2000.
DOI : 10.1016/S1359-6454(00)00261-5

E. Gourba, A. Ringuedé, and M. , Cassir, 6 th European Solid Oxide Fuel Cell Forum, p.1020, 2004.

J. H. Joo and G. M. Choi, Electrical conductivity of YSZ film grown by pulsed laser deposition, Solid State Ionics, vol.177, issue.11-12, p.1053, 2006.
DOI : 10.1016/j.ssi.2006.04.008

D. Perednis and L. J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis, Solid State Ionics, vol.166, issue.3-4, p.229, 2004.
DOI : 10.1016/j.ssi.2003.11.011

T. Suntola and J. Antson, Method for producing compound thin films, U.S. Patent No, vol.4058430, 1974.

M. Leskelä and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, Angewandte Chemie International Edition, vol.42, issue.45, p.5548, 2003.
DOI : 10.1002/anie.200301652

R. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol.97, issue.12, p.121301, 2005.
DOI : 10.1063/1.1940727

E. L. Lakomaa, Atomic layer epitaxy (ALE) on porous substrates, Applied Surface Science, vol.75, issue.1-4, p.185, 1994.
DOI : 10.1016/0169-4332(94)90158-9

M. Leskelä and M. Ritala, Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges, Angewandte Chemie International Edition, vol.42, issue.45, p.5548, 2003.
DOI : 10.1002/anie.200301652

T. Suntola and M. Simpson, Atomic Layer Epitaxy, 1990.

T. Suntola, Handbook of crystal growth 3: thin films epitaxy, Part B " . Bristol

M. Leskelä and M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin Solid Films, vol.409, issue.1, p.138, 2002.
DOI : 10.1016/S0040-6090(02)00117-7

H. Seim, H. Mölsä, M. Nieminen, H. Fjellvåg, and L. Niinistö, Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor, Journal of Materials Chemistry, vol.7, issue.3, p.449, 1997.
DOI : 10.1039/a606316k

H. Seim, M. Nieminen, L. Niinistö, H. Fjellvåg, and L. Johansson, Growth of LaCoO3 thin films from ??-diketonate precursors, Applied Surface Science, vol.112, p.243, 1997.
DOI : 10.1016/S0169-4332(96)01001-X

M. Nieminen, S. Lehto, and L. Niinistö, Atomic layer epitaxy growth of LaGaO3 thin films, Journal of Materials Chemistry, vol.11, issue.12, p.3148, 2001.
DOI : 10.1039/b105978p

O. Nilsen, M. Peussa, H. Fjellvåg, L. Niinistö, and A. Kjekshus, Thin film deposition of lanthanum manganite perovskite by the ALE process, Journal of Materials Chemistry, vol.9, issue.8, p.1781, 1999.
DOI : 10.1039/a902957e

O. Nilsen, Growth of Thin Films of Functional Oxides with the ALCVD Method

T. Van and J. P. Chang, Controlled erbium incorporation and photoluminescence of Er-doped Y2O3, Applied Physics Letters, vol.87, issue.1, p.11907, 2005.
DOI : 10.1063/1.1984082

M. Tiitta and L. Niinistö, Volatile Metal ??-Diketonates: ALE and CVD precursors for electroluminescent device thin films, Chemical Vapor Deposition, vol.5, issue.83, p.167, 1997.
DOI : 10.1002/cvde.19970030404

T. Ozawa, Volatility of metal ??-diketonates for chemical vapor deposition of oxide superconductors, Thermochimica Acta, vol.174, p.185, 1991.
DOI : 10.1016/0040-6031(91)80160-K

K. J. Eisentraut and R. E. Sievers, Volatile Rare Earth Chelates, Journal of the American Chemical Society, vol.87, issue.22, p.5254, 1965.
DOI : 10.1021/ja00950a051

M. Putkonen and L. Niinistö, Organometallic Precursors for Atomic Layer Deposition, Top. Organomet. Chem, vol.9, p.125, 2005.
DOI : 10.1007/b136145

J. Niinistö, M. Putkonen, and L. Niinistö, Thin Films by Atomic Layer Deposition from Cyclopentadienyl-Type Compounds and Water as Precursors, Chemistry of Materials, vol.16, issue.15, p.2953, 2004.
DOI : 10.1021/cm040145v

H. Mölsä, L. Niinistö, and M. Utriainen, Growth of yttrium oxide thin films from ??-diketonate precursor, Advanced Materials for Optics and Electronics, vol.1270, issue.6, p.389, 1994.
DOI : 10.1002/amo.860040602

K. Kukli, M. Ritala, and M. Leskelä, Properties of (Nb1 ??? xTax)2O5 solid solutions and (Nb1 ??? xTax)2O5-ZrO2 nanolaminates grown by Atomic Layer Epitaxy, Nanostructured Materials, vol.8, issue.7, p.785, 1997.
DOI : 10.1016/S0965-9773(98)00003-8

K. Kukli, M. Ritala, and M. Leskelä, Low-Temperature Deposition of Zirconium Oxide-Based Nanocrystalline Films by Alternate Supply of Zr[OC(CH3)3]4 and H2O, Chemical Vapor Deposition, vol.6, issue.6, p.297, 2000.
DOI : 10.1002/1521-3862(200011)6:6<297::AID-CVDE297>3.0.CO;2-8

M. Ylilammi and T. , Optical determination of the film thicknesses in multilayer thin film structures, Thin Solid Films, vol.232, issue.1, p.56, 1993.
DOI : 10.1016/0040-6090(93)90762-E

T. Tsai and S. A. Barnett, Bias Sputter Deposition of Dense Yttria-Stabilized Zirconia Films on Porous Substrates, Journal of The Electrochemical Society, vol.142, issue.9, p.3084, 1995.
DOI : 10.1149/1.2048692

L. S. Wang and S. A. Barnett, Lowering the Air-Electrode Interfacial Resistance in Medium-Temperature Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.139, issue.10, p.89, 1992.
DOI : 10.1149/1.2069022

R. Radhakrishnan, A. V. Virkar, and S. C. Singhal, Estimation of Charge-Transfer Resistivity of La[sub 0.8]Sr[sub 0.2]MnO[sub 3] Cathode on Y[sub 0.16]Zr[sub 0.84]O[sub 2] Electrolyte Using Patterned Electrodes, Journal of The Electrochemical Society, vol.152, issue.1, p.210, 2005.
DOI : 10.1149/1.1829415

A. Ringuedé and J. Fouletier, Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures, Solid State Ionics, vol.139, issue.3-4, p.167, 2001.
DOI : 10.1016/S0167-2738(01)00692-0

J. Echigoya, T. Ohfuji, and H. Suto, Preparation of La2NiO4 films by d.c. sputtering on cubic ZrO2, Journal of Materials Science Letters, vol.56, issue.15, p.1098, 1994.
DOI : 10.1007/BF00633525

W. Mindt, Electroless Deposition of Certain Metal Oxides, Journal of The Electrochemical Society, vol.117, issue.5, p.615, 1970.
DOI : 10.1149/1.2407588

W. Mindt, Electroless Deposition of Certain Metal Oxides, Journal of The Electrochemical Society, vol.118, issue.1, p.93, 1971.
DOI : 10.1149/1.2407961

M. Izaki and T. Omi, Transparent zinc oxide films prepared by electrochemical reaction, Applied Physics Letters, vol.68, issue.17, p.2439, 1996.
DOI : 10.1063/1.116160

M. Izaki, Preparation of Transparent and Conductive Zinc Oxide Films by Optimization of the Two-Step Electrolysis Technique, Journal of The Electrochemical Society, vol.146, issue.12, p.4517, 1999.
DOI : 10.1149/1.1392667

M. Izaki and J. Katayama, Characterization of Boron-Incorporated Zinc Oxide Film Chemically Prepared from an Aqueous Solution, Journal of The Electrochemical Society, vol.147, issue.1, p.210, 2000.
DOI : 10.1149/1.1393176

M. Izaki, Preparation of Transparent Indium Oxide Film from a Chemically Deposited Precursor, Electrochemical and Solid-State Letters, vol.1, issue.5, p.215, 1998.
DOI : 10.1149/1.1390689

L. C. Nagle and J. F. Rohan, Investigation of DMAB Oxidation at a Gold Microelectrode in Base, Electrochemical and Solid-State Letters, vol.8, issue.5, p.77, 2005.
DOI : 10.1149/1.1883905

J. Van-der-lee, Jchess 2.0, Ecole des Mines de Paris, Centre d'informatique géologique, 2000.

I. Zhitomirsky and A. Petric, Electrolytic deposition of Gd2O3 and organoceramic composite, Materials Letters, vol.42, issue.5, p.273, 2000.
DOI : 10.1016/S0167-577X(99)00193-7

J. H. Joo and G. M. Choi, Electrical conductivity of YSZ film grown by pulsed laser deposition, Solid State Ionics, vol.177, issue.11-12, p.1053, 2006.
DOI : 10.1016/j.ssi.2006.04.008

L. Dessemond, . Thèse, and G. Inpg, Chapitre IV : Elaboration de couches minces d'oxyde de zirconium dopé à l'oxyde d'indium par ALD Références, 1992.

N. Q. Minh, Solid oxide fuel cell technology?features and applications, Solid State Ionics, vol.174, issue.1-4, p.271, 2004.
DOI : 10.1016/j.ssi.2004.07.042

N. J. Maskalick and C. C. Sun, Sintered Zirconia Electrolyte Films in High-Temperature Fuel Cells, Journal of The Electrochemical Society, vol.118, issue.8, p.1386, 1971.
DOI : 10.1149/1.2408331

K. Sasaki, P. Bohac, and L. J. Gauckler, Phase Equilibria in the System ZrO2InO1.5, Journal of the American Ceramic Society, vol.27, issue.11, p.689, 1993.
DOI : 10.1111/j.1151-2916.1993.tb03661.x

K. Sasaki, H. P. Seifert, and L. J. Gauckler, Electronic Conductivity of In[sub 2]O[sub 3] Solid Solutions with ZrO[sub 2], Journal of The Electrochemical Society, vol.141, issue.10, p.2759, 1994.
DOI : 10.1149/1.2059204

T. Asikainen, M. Ritala, and M. Leskelä, Growth of In[sub 2]O[sub 3] Thin Films by Atomic Layer Epitaxy, Journal of The Electrochemical Society, vol.141, issue.11, p.3210, 1994.
DOI : 10.1149/1.2059303

K. J. Eisentraut and R. E. Sievers, Volatile Rare Earth Chelates, Journal of the American Chemical Society, vol.87, issue.22, p.5254, 1965.
DOI : 10.1021/ja00950a051

C. Brahim, A. Ringuedé, M. Cassir, M. Putkonen, and L. Niinistö, Applied Surface Science, sous presse Conclusion poreuses, peuvent être déposées par pyrosol sur des substrats de grande surface [13] à des températures relativement basses (généralement dans la gamme 100-500 °C [15]), p.60

. Néanmoins, un traitement thermique intervenant après le dépôt est souvent nécessaire pour améliorer la cristallinité

A. Isenberg and . In, Proceedings of the ECS symposium on electrode materials processes for energy conversion and storage, pp.77-572, 1977.

P. Peshev and V. Slavova, Preparation of yttria-stabilized zirconia thin films by a sol-gel procedure using alkoxide precursors, Materials Research Bulletin, vol.27, issue.11, p.1269, 1992.
DOI : 10.1016/0025-5408(92)90091-D

R. Rajan and A. B. Pandit, Correlations to predict droplet size in ultrasonic atomisation, Ultrasonics, vol.39, issue.4, p.235, 2001.
DOI : 10.1016/S0041-624X(01)00054-3

D. Perednis and L. J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis, Solid State Ionics, vol.166, issue.3-4, p.229, 2004.
DOI : 10.1016/j.ssi.2003.11.011

T. Ishihara, K. Sato, and Y. Takita, Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells, Journal of the American Ceramic Society, vol.92, issue.4, p.913, 1996.
DOI : 10.1143/JJAP.32.4182

I. Zhitomirsky and A. Petric, Electrophoretic deposition of ceramic materials for fuel cell applications, Journal of the European Ceramic Society, vol.20, issue.12, p.2055, 2000.
DOI : 10.1016/S0955-2219(00)00098-4