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1 Abstract

This dissertation is devoted to the study of certain non-rational conformal field
theories which arise in the context of string theory. In contrast to rational
conformal field theories, which have been extensively studied in the past few
decades, non-rational theories are not yet well-understood. A better under-
standing is crucial in order to get a good grip on string theory in non-compact
curved backgrounds, and eventually to address cosmological issues. Since the
dissertation relies heavily on Lie group theory and conformal field theory, de-
tailed introductions to these fields are provided for the reader who may not
be familiar with them. The dissertation then moves on to a detailed presenta-
tion of the work that was done in the course of the PhD. This work dealt with
pp-waves with Heisenberg symmetry, a Verlinde-like formula in non-rational
conformal field theories (for instance in H+

3 ), and rigid open strings whose end-
points live on co-adjoint orbits of Lie algebras. It led to the publication of two
papers [1, 2].

Résumé de la thèse

Cette thèse est dédiée à l’étude de quelques théories conformes non rationnelles,
qui apparaissent dans le cadre de la théorie des cordes. Contrairement aux
théories conformes rationnelles, qui ont bénéficié de très nombreuses études
dans les toutes dernières décennies, les théories non rationnelles ne sont pas en-
core bien comprises. Une meilleure compréhension est pourtant nécessaire pour
mieux appréhender la théorie des cordes dans des fonds courbés non compacts,
et pour pouvoir à terme s’attaquer à des problèmes cosmologiques. Dans la
mesure où la thèse a fréquemment recours à des notions et à des résultats de
la théorie des groupes de Lie et de la théorie conforme des champs, des intro-
ductions détaillées à ces domaines sont présentées à l’attention des lecteurs qui
ne sont pas familiarisé avec eux. La thèse présente ensuite le travail qui a été
réalisé au cours du doctorat. Ce travail s’est attaqué à des espaces présentant
pour symétrie l’algèbre de Heisenberg, à une extension de la formule de Ver-
linde pour des théories conformes non rationnelles (comme H+

3 ), et aux cordes
ouvertes rigides contraintes sur des orbites co-adjointes d’algèbres de Lie. Deux
articles ont été publiés [1, 2].
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2 Introduction

The beginning of the twentieth century was marked by several major revolutions
in physics. In 1915, Einstein came up with a geometric theory of gravity that
exceeded the scope of Newton’s theory. Some time later, a myriad of physicists,
including Planck, Einstein, Bohr, Dirac, Heisenberg, Pauli, Schrödinger and von
Neumann, contributed to the birth of quantum mechanics, which describes the
world of particles, at small length scales (typically from 10−10 to 10−18 meters).
Thanks to these pioneering works and many others that followed, physicists are
now able to accurately describe the four fundamental forces of nature: electro-
magnetics, the weak and the strong force, and gravity. The first three forces
are described by quantum field theories: electromagnetics by quantum electro-
dynamics (QED), the (electro-)weak force by the Glashow-Salam-Weinberg the-
ory (which contains QED), and the strong force by quantum chromodynamics
(QCD). These theories constitute what is known as the standard model of parti-
cle physics, while the remaining fourth force, gravity, is described by Einstein’s
general relativity.

All these theories have been tested to a rather large extent using numerous
astronomical, cosmological and particle physics observations, and the degree of
agreement between theoretical predictions and experimental measurements is
quite impressive1. It is worth noting that, though they were in their time much
disconnected from every-day life, the theory of general relativity and quantum
mechanics gave rise to unexpected yet wonderful applications, ranging from
the global positionning system (GPS) and satellites to laser technology and
superconductors, which are all part of our lives today.

The story is not finished. The fact that scientists have at hand an accurate
description of the forces of nature does not mean that they properly understand
their fundamental structure. From a theoretic point of view, physicists cannot
be content with the above picture. Indeed, while gravity is usually considered
to act on long distance (astronomical) scales, it is also of course present at
short distance scales – though so weak it is usually negligible compared to other
forces. But short length scales are the realm of quantum mechanics, hence
physicists expect to be able to describe gravity from a quantum point of view.
Moreover some gravitational phenomena in the universe, like black holes, are
highly energetic, therefore are also expected to involve quantum mechanics.
Another example is provided by the cosmological microwave background which
is a signature of quantum fluctuations of gravity after the Big-Bang. Finally,
developing a quantum theory of gravity is part of a long and continuous work
by physicists in order to unify one after the other the many forces of nature.
Electricity and magnetism were unified by Maxwell, while electromagnetism
and the weak force were unified thanks to the work of Salam, Weinberg et
al. This story continues up to this day with grand unification theories that

1The best example may be the anomalous magnetic moment of the electron, which is
related to the fine structure constant α. The QED prediction agrees with the experimentally
measured value to more than ten significant figures, making it the most accurately verified
prediction in the history of physics.
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Figure 1: The fundamental idea of string theory is to replace points by (closed
or open) strings.

try to unify the electroweak force and the strong force. For all these reasons,
theoretical physicists would like to find a unifying theory that would include
a quantum description of gravitation. Designing a theory of quantum gravity
proves however to be very difficult. For instance the most elementary approach
to try, canonical quantization of Einstein’s action, leads to infinities (divergences
that cannot be renormalized). While no final answer has been given to this
problem, a promising theory of quantum gravity has been developed over the
past thirty years, starting with a paper by Scherk and Schwarz in 1974 [3]:
string theory (for introductory books see [4, 5, 6, 7, 8, 9]).

The basic idea of string theory is to replace points that used to be the funda-
mental classical objects in quantum field theories by strings i.e. one-dimensional
objects, as shown in figure 1. Starting from a classical string, it is then possible
to use the whole standard machinery of quantum mechanics. Results are sur-
prising and highly interesting. The quantized theory includes gravity, without
the divergences that plagued the standard quantum field theory approach and
which came from the local nature of the interactions (which are now spread out
over the string worldsheet pictured in figure 2, see also figure 3). This is what
physicists were looking for. The theory also predicts extra dimensions (believed
to be compact and small) and the existence of axions which are potential can-
didates for dark matter2. Moreover, (super)string theory is a supersymmetric
theory3 which includes bosons and fermions i.e. all presently known forms of
matter, and physicists are close to making connection with supersymmetric ex-
tensions of the standard model. Indeed, string theory is a natural extension
of particle theory: one expects to recover all usual properties of quantum field
theories in the low energy (large distance) limit, since a string resembles a point
when seen from far away. In this picture, the usual elementary particles should

2According to cosmologists, dark matter is necessary to explain the mass and the structure
of the universe. The model-independant axion is a Goldstone boson which appears in every
perturbative string theory in four (or less) non-compact dimensions.

3Supersymmetry is a symmetry which relates the masses and couplings of fermions and
bosons. It is expected to be discovered rather soon in the Large Hadron Collider (LHC) at
the CERN in Geneva (constraints on the scale of supersymmetry breaking come from the
expected mass of the Higgs, itself related to the breaking of electroweak symmetry, and imply
that all these energy scales cannot be much different from each other. The LHC has been
designed to reach energies high enough to find the Higgs boson and supersymmetry, provided
they do exist).

7



time

space

Figure 2: The string worldsheet is the two-dimensional surface in space-time
which represents the evolution of the string in the course of time.

correspond to the different vibration modes of the string.
Despite these undeniable successes, several challenges await string theory.

Firstly, a clear non-perturbative description of string theory is still missing,
despite the appearance of non-perturbative objects like D-branes. This means
that at this time the theory must be expanded around a given vacuum (and no
clear theoretical argument is known in order to choose a vacuum, though con-
straints are given by the standard model which string theory must reproduce
at low energy). Also, the relation between the various possible string theories
beyond the supersymmetric regime is not yet well understood, likewise for the
supersymmetry breaking. Finally the quantum theory is not quite well under-
stood in curved space-time, whereas such an understanding is necessary to deal
with cosmological issues. It is this last issue that is adressed in the dissertation,
through the study of non-rational conformal field theories, which are related to
non-trivial (curved, non-compact) backgrounds.

String theory is usually formulated and quantized in textbooks on the (flat)
Minkowski space. Quantizing the theory on curved spaces is much more difficult
and is currently partially understood in only a few highly-symmetric cases like
the anti-de Sitter space AdS3 with NS-NS flux for instance. There are many
ways to gain insight on what string theory is like on (possibly non-compact)
curved spaces. An important idea that is generically valid is that symmetry
helps, since it provides powerful tools to constrain the theory and is an elegant
way to understand it intuitively using algebra and geometry. Group theory and
conformal symmetry prove to be useful in this context and were used extensively
in this study4, which deals with rather mathematical issues. Another idea that
was used is that string theory simplifies in the low energy (or semi-classical)

4It is worth noting that conformal field theory proves to be useful in other areas of physics
as well, like statistical or condensed matter physics. For instance it is related to the Ising
model, the 3-state Potts model or also to the stochastic Schramm-Loewner evolution (SLE,
which is a one-parameter family of conformally invariant measures on curves in the plane,
giving the continuum limit of a number of lattice models on the plane in statistical physics at
criticality – in particular, it is conjectured to be the scaling limit of various critical percolation
models, see e.g. [10, 11, 12, 13]). Conformal field theory has also been used to study quantum
Brownian motion, the Kondo problem (which appears in the study of the electrical resistance
at low temperature), Toda field theory (an integrable model whose solutions describe solitons),
polymers or even the traveling salesman problem (see e.g. [14, 15, 16]).
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Figure 3: Feynman diagrams of particle physics are replaced by smoother equiv-
alents in string theory. An example is pictured above for four closed strings.
The interaction does not happen at any specific point anymore.

limit, and can then be described by an effective field theory.
Finally, a huge challenge that string theory must face is to come up with

predictions which would be experimentally verified. The natural scale of string
theory as a quantum theory of gravitation may a priori be expressed in terms of
the only physically relevant constants, which are Planck’s constant ~, Newton’s
gravitation constant G and the speed of light c. For instance, the typical length
and energy are Planck’s length and Planck’s energy:

LP =

√
~G

c3
≈ 1.6 · 10−35 m , EP =

√
~c5

G
≈ 1.2 · 1019 GeV (1)

These numerical values are several orders of magnitude beyond the reach of
human experimental devices, which make the theory very difficult to test. As a
comparison, protons in the LHC will collide with energies reaching 14 ·103 GeV.
Some possible solutions out of this problem have been suggested, using branes
and large extra dimensions. See e.g. [17, 18].

Overall, string theory is an exciting field of research. Despite the expected
difficulty of a phenomenological test and although some of the most remark-
able applications of the theory up to this day may have been in the field of
mathematics, who knows which surprises await physicists?

The dissertation is organized as follows: sections 3 and 4 provide detailed
introductions to Lie group (representation) theory and conformal field theory.
This background is necessary to understand the work that is presented after-
wards. The goal in these sections is to make the dissertation as self-contained as
possible, and understandable by anyone having a graduate level in physics. After
this pedagogical starter, more technical parts follow and present in chronological
order the work accomplished in the course of the PhD, which led to the publica-
tion of two papers [1, 2]. An analysis of pp-wave backgrounds with Heisenberg
symmetry is given in section 5. Section 6 presents a Verlinde-like formula for
some sectors of non-rational conformal field theories, and section 7 is devoted
to the study of open strings in the semi-classical limit, and their relation to
star products. Finally, some notes are collected in an appendix: section A col-
lects several useful formulas and section B deals with Whipple hypergeometric
functions.
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3 Lie group representation theory and orbits

This first introductory section reviews useful definitions and results concerning
Lie groups, Lie algebras and their representations as well as orbits. The notions
introduced in this section will be used throughout the dissertation. The most
important ones are the notion of representation reviewed in section 3.2 (it will
be used almost everywhere, starting in the other introductory part in section 4)
and the notion of (co-adjoint) orbit introduced in section 3.3 (it will be of use
in section 7). For a more extended presentation of Lie group theory, the reader
is referred to [19] chapters 1 and 2 or to [20], and to [21] chapters 13 and 14
for (affine) Lie algebras. Geometric quantization and the theory of co-adjoint
orbits are thoroughly explained in [22].

3.1 Lie groups and Lie algebras

Before proceeding further, this subsection reviews some basic definitions.
A Lie group G is a differentiable manifold with a consistent group structure

i.e. such that both

G×G→ G and G→ G

(g, h) 7→ gh g 7→ g−1 (2)

are differentiable (analytic) functions. The dissertation will study several Lie
groups, including:

SU(2) = {U ∈M(2,C) | UU † = 1 and det(U) = 1} (3)

SU(1, 1) =

{
U ∈M(2,C) | UgU † = g with g =

(
1 0
0 −1

)
and det(U) = 1

}

SL(2,R) = {M ∈M(2,R) | det(M) = 1}

Note for later use that the groups SL(2,R) and SU(1, 1) are isomorphic since:

g ∈ SL(2,R)↔ h = t−1gt ∈ SU(1, 1) , where t =

(
1 ı
ı 1

)
(4)

The universal covering group of a group H is the group that discretely covers
any group G discretely coveringH , i.e. any group G such that there is a discrete
invariant subgroup N in G verifying H ∼ G/N . A group H and its universal
cover U(H) are locally isomorphic, but their global properties may vary. For
instance, U(H) is simply connected while H may not be so. As an example, the
universal covering group of SU(1, 1) is topologically equivalent to the product
of a disk and a straight line (it cannot be realized in the matrix form)5. Another
example of a Lie group is:

Sp(n,C) = {M ∈M(2n,C) | M †εnM = εn} (5)

5In string theory one must be cautious whether it is the group or the universal cover of the
group that is studied. For instance in the case of SL(2,R) it is actually the universal cover
that is usually considered (in order to have a non-compact time).

10



g

G

e X

Figure 4: Relation between a Lie group G and its Lie algebra g. The point e is a
point on the group (say, the identity) and X is the tangent vector at this point
of the left-invariant vector field pictured here as a curve on the group manifold
G.

where (the matrix s is reproduced n times in the matrix εn):

s =

(
0 1
−1 0

)
, εn =




s (0)
...

(0) s


 (6)

The group Sp(n,C) is the group of symplectic matrices6 and corresponds to
skew-symmetric (i.e. anti-symmetric) bilinear forms in C2n. Related groups
are Sp(n,R) = Sp(n,C) ∩GL(2n,R) and Sp(n) = Sp(n,C) ∩ U(2n).

A Lie algebra g is a vector space with an internal differentiable product
(X,Y ) 7→ [X,Y ] called a Lie bracket, where X , Y , [X,Y ] ∈ g. The Lie bracket
is antisymmetric and satisfies the Jacobi identity:

[[X,Y ], Z] + [[Z,X ], Y ] + [[Y, Z], X ] = 0 (7)

For instance, any matrix algebraMn(K) is a Lie algebra (where K = R or C),
with Lie bracket [X,Y ] = XY − Y X .

An important result is that to every Lie group G one can canonically asso-
ciate a Lie algebra g. The procedure is as follows. Since G is a manifold, it
is possible to define its tangent space g(g) at any point g ∈ G. Then, the left
shift L(g0) : g 7→ g0g is a diffeomorphism of G, which generates the mapping
dL(g0) : g(e)→ g(g0), where e is the unit element of G. A left-invariant vector
field on G is defined by X(g0) = dL(g0)x, for x a fixed element of g(e). This
vector field defines a curve on G whose tangent vectors at any point g0 is X(g0),
see figure 4. This curve is a one-dimensional subgroup of G, and is entirely
specified by x ∈ g(e). There is actually a one-to-one correspondence between
vectors of g = g(e) and one-parameter subgroups of G. The Lie algebra g of
the group G then consists of all left-invariant (or, equivalently, right-invariant)
vector fields on G i.e. it is isomorphic to g(e). The Lie bracket on g is defined

6This group is related to the notion of symplectic form, considered later in section 7. For
instance, the s matrix corresponds to the symplectic form dq ∧ dp in canonical coordinates
(see Hamiltonian mechanics).
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by the formula:

[X,Y ] = lim
t→0

Adh(t) −E
t

Y (8)

where h(t) is the vector field onG such that h(0) = e andX is the tangent vector
at this point. Moreover Adh(t)Y = hY h−1 as specified below in section 3.3, and
E is the identity operator.

Reciprocally, and assuming the Lie group to be simply connected (i.e. such
that any closed curve on the group can be contracted into a point), it can be
canonically reconstructed from the Lie algebra. More precisely, to every Lie
algebra g it is possible to associate a simply connected Lie group G such that
its canonically associated Lie algebra is g. The operation that relates the two
structures is the exponentiation:

exp : g → G

X 7→ g = exp(X) =
∑

n∈N

Xn

n!
(9)

From a geometric point of view, the above results mean that the Lie algebra is
the tangent space of the group G at the identity. It is isomorphic to any tangent
space of the Lie group. A straightforward consequence is that locally (near any
point) a Lie group strongly resembles its Lie algebra, see figure 4.

Some useful isomorphisms of Lie algebras, involving algebras that will be
studied in the dissertation, are:

su(2) ∼ so(3) ∼ sp(1,C)

sl(2,R) ∼ su(1, 1) ∼ so(2, 1) ∼ sp(1,R) (10)

In particular, a basis for su(1, 1) in a matrix representation is:

b1 =
1

2
σ1 , b2 = −1

2
σ2 , b3 =

ı

2
σ3

[b1, b2] = −b3 , [b2, b3] = b1 , [b3, b1] = b2 (11)

while a (real) basis of sl(2,R) is:

c1 =
1

2
σ1 , c2 =

1

2
σ3 , c3 =

ı

2
σ2 (12)

It has the same structure constants (since ci = t−1bit). The matrices σi are the
Pauli matrices, listed in appendix A.

Two extra definitions will be of use. A simple Lie algebra g is a non-abelian
Lie algebra which does not contain any non-trivial ideal (i.e. ideals different
from g and zero), that is to say which has no invariant Lie subalgebra other
than zero and itself. A Lie subalgebra h of a Lie algebra g is invariant if and
only if for any elements a ∈ h and b ∈ g, [a, b] is an element of h. A group
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is simple if and only if it is connected and its Lie algebra is simple. A semi-
simple Lie algebra is a direct sum of simple Lie algebras or, also, an algebra
with no abelian invariant subalgebra. An equivalent definition of semi-simple
Lie algebras is that the Killing form is non-degenerate (this is known as Cartan’s
criterion). The Killing form is a symmetric invariant bilinear form defined by:

K : g × g → R

(X,Y ) 7→ Tr (adXadY ) (13)

where adX is introduced below in subsection 3.3. If K is non-degenerate (i.e.
K(X,Y ) = 0 for all Y ∈ g implies that X = 0), then it defines a Casimir on
g and a metric on the associated Lie group G. This explains the interest of
semi-simple algebras. For instance su(2), sl(2,R) and sp(n,C) are semi-simple
algebras. The dissertation mostly deals with such algebras.

Since a Lie algebra g is a vector space, it is convenient to introduce a basis
of g, that may be denoted by vectors J1, ..., Jn where n is the dimension of
the algebra. These vectors (or generators) satisfy the following commutation
relations:

[Ja, Jb] =
∑

c

ıfabcJ
c (14)

where fabc are called the structure constants of the algebra. They are real if the
generators of the algebra are hermitian. In this basis, the Killing form is the
simplest possible 2-tensor that can be formed from the structure constants:

K(Ja, Jb) = 2Qgab = −
n∑

c=1

n∑

d=1

f bcdf
ad
c (15)

(when the squared length of the longest root is equal to 2), where gab is the
induced metric (it is indeed symmetric) and Q is the dual Coxeter number7.
The coefficient fabc =

∑
d f

ab
d g

dc is totally antisymmetric and
∑

a,b gabJ
aJb

is a (quadratic) Casimir, where gab is the inverse of gab.
Affine Lie algebras, also called affine Kac-Moody algebras, are a general-

ization of Lie algebra and will often be used in the dissertation. They are
constructed in two steps. The first one introduces a new basis of vectors for
the algebra g⊗C[t, t−1], called loop algebra. This loop algebra couples elements
of g to Laurent series of a complex parameter t, hence a basis is spanned by
Jan = Ja ⊗ tn for integer n. The second step extends loop algebras to affine Lie
algebras by adding a central element k (hence the name):

[Jan , J
b
m] =

∑

c

ıfabcJ
c
n+m + kngabδn+m,0 (16)

Affine Lie algebras are usually denoted by ĝ or ĝk and will be presented in more
detail in subsection 4.4.2.

7The dual Coxeter number is determined by the algebra g. It is equal to the value of the
quadratic Casimir in the adjoint representation divided by the length squared of the longest
root. See e.g. [21] for more details.
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3.2 Representations

A fundamental notion in group theory is that of representation. The dissertation
will deal with many examples of representations, e.g. representations of the
Virasoro algebra, of the fusion algebra, of the Heisenberg algebra, of sl(2,R)

and ̂sl(2,R)k etc. The definition of group and algebra representations with
their most important properties are reviewed below.

A representation T of a groupG (not necessarily a Lie group) on a topological
vector space V is a group homomorphism that sends any element of G to an
automorphism of V , i.e. T : G → GL(V ) such that the function G × V → V ,
(g, v) 7→ T (g)v is continuous. The group G therefore acts on the space V . For
instance, the trivial representation is T (g) = E, the identity element of GL(V ).
The dimension of the representation is the dimension of the space V .

When V is a prehilbertian vector space with bilinear hermitian form 〈, 〉, a
representation is unitary if and only if for any element g in the Lie group G,
T (g) is unitary. That is to say, 〈T (g)v, T (g)w〉 = 〈v, w〉 for any v, w ∈ V .

Two representations T1 and T2 of a group G, defined on vector spaces V1

and V2, are equivalent if and only if there exists an isomorphism φ : V1 → V2

such that for any g ∈ G, φ ◦ T1(g) = T2(g) ◦ φ. Schur’s lemma is a useful result
in this context. It states that if T1 and T2 are irreducible representations of G
on V1 and V2 respectively, such that there exists a linear function φ satisfying
φ◦T1(g) = T2(g)◦φ for any g ∈ G (it is then said to intertwine T1 and T2), then
either φ is an isomorphism and T1 and T2 are equivalent, or φ = 0. Moreover,
two unitary representations T1 and T2 defined on vector spaces V1 and V2 are
unitarily equivalent if and only if there exists a unitary isomorphism φ : V1 → V2

such that for any g ∈ G, φ ◦ T1(g) = T2(g) ◦ φ. If two unitary representations
are equivalent, then they are unitarily equivalent.

A representation is reducible if and only if there exists at least one invariant
subspace W of V (such that for any element g in G and w in W , T (g)w ∈ W )
that is neither {0} nor V . In other words, the matrix representation of T in a
certain basis reads:

T =

(
∗ ∗
0 ∗

)
(17)

A representation that is not reducible is irreducible. Irreducible representations
are useful since they are the building blocks of any other finite dimensional
representation of compact groups. Indeed, in the case of compact groups, any
finite dimensional representation is completely reducible i.e. is a direct sum of
irreducible representations. This remains true for non-compact groups if they
are connected and semi-simple. Unitary representations are also completely
reducible.

The rest of the dissertation will mostly deal with unitary irreducible repre-
sentations. Unitarity is usually required for physical reasons (in order to ensure
that the norm of any vector is positive); moreover any (continuous) representa-
tion of a compact Lie group G on a prehilbertian space is equivalent to a unitary
representation. Irreducibility can be assumed in several cases of interest (as
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mentioned above) since other (finite dimensional, or unitary) representations
follow from the irreducible case.

In subsection 3.1 it was stressed that Lie algebras are canonically associated
to Lie groups. The relation extends to representation. A representation of a Lie
algebra g is a homomorphism that sends elements of g to endomorphisms of a
vector space V . If g is the canonical Lie algebra of the Lie group G, and T is
a representation of G on V , then T canonically defines a representation of g on
V thanks to the exponentiation map:

T (X) =
dT (g(t))

dt

∣∣∣∣
t=0

(18)

where X ∈ g is the tangent vector at t = 0 of the one-dimensional subgroup
g(t) of G such that g(0) = e, that is to say g(t) = etX (for infinite dimensional
representations, one needs to be a bit more careful because the domain on which
the representations of g and G act may be different). Properties of represen-
tations (unitarity, irreducibility etc.) are preserved when going from a group
representation to an algebra representation and vice-versa.

Finally, the character 8 of a representation T is defined by:

χ : G → R (19)

g 7→ χT (g) = Tr(T (g))

where the trace is taken over the vector space V , that is supposed here to be
finite dimensional. This is a useful quantity, since characters of two equivalent
representations are the same. Moreover, characters are constant on conjugacy
classes, i.e. χT (hgh−1) = χT (g). The character of the direct sum (respectively
the tensor product) of two representations is equal to the sum (respectively the
product) of their characters.

3.3 Adjoint and co-adjoint representations and orbits

The adjoint and co-adjoint representations are important examples of represen-
tations and will be used in section 7. These concepts are reviewed here.

The conjugate action of a Lie group G on itself is defined by:

G×G → G

(g, h) 7→ ghg−1 (20)

The set of all points ghg−1 where g is any element of the group is called the
conjugacy class (or orbit) of the element h. The set of elements g ∈ G such
that ghg−1 = h is called the stabilizer of h. The notion of orbit is naturally
extended to elements of the Lie algebra. The conjugate action of G on itself

8Characters of group representations appear in the classical limit of conformal field theory,
see section 4.5.
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induces a representation of G on its canonical Lie algebra g, called the adjoint
representation of G:

Ad : G× g → g

(g,X) 7→ AdgX = gXg−1 =

(
d

dt

(
gexp(tX)g−1

))

t=0

(21)

This in turn induces the adjoint representation of g on g:

ad : g × g → g

(X,Y ) 7→ adXY = [X,Y ] = XY − Y X =

(
d

dt

(
Adexp(tX)Y

))

t=0

(22)

Co-adjoint representations can be defined when there exists a bilinear form 〈., .〉
on g. The bilinear form will always be assumed to be G-invariant and non-
degenerate (it may be the Killing form for semi-simple algebras). The dual
space g∗ is then the space of linear forms on g, which can be identified with g
if this algebra is finite dimensional: for g1, g2 ∈ g, 〈g1, .〉 : g2 7→ 〈g1, g2〉 is an
element of g∗. The adjoint orbit of an element X ∈ g is the set of elements
gXg−1 for all g ∈ G. The co-adjoint orbit of an element λ ∈ g∗ is defined in
a similar way. It is the set of elements9 Ad∗gλ = gλg−1 for any g ∈ G. The
co-adjoint representation, which is a representation of the group G on the dual
g∗ of the canonically associated Lie algebra g, is defined as:

Ad∗ : G× g∗ → g

(g, λ) 7→ Ad∗gλ , such that for any Y ∈ g ,
〈Ad∗gλ, Y 〉 = 〈λ,Adg−1Y 〉 (23)

The co-adjoint representation of G induces a representation of the Lie algebra
g on the dual g∗:

ad∗ : g × g∗ → g

(X,λ) 7→ ad∗Xλ , such that for any Y ∈ g ,
〈ad∗Xλ, Y 〉 = −〈λ, adXY 〉 (24)

9This definition is not the most generic one, but it is enough for a wide range of groups in-
cluding SU(2) and SU(1, 1) that will be considered in section 7. For a more general definition,
see [22] which uses a projection on the dual g∗.
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4 Conformal field theory

This section is the second and last introductory section to the dissertation.
It uses some results of the previous section on group theory and provides a
pedagogical introduction to unitary rational conformal field theory (CFT). The
emphasis is put on the general ideas of the theory and on the major results,
which are presented in a hopefully clear and simple way. The following pages
may therefore be of some use to people who are not familiar with the field. For
those who wish to learn more about conformal field theory, there already exist
a number of articles, reviews or books devoted to this subject [7, 21, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. These notes are indebted to all these
works.

Section 4.1 reviews fundamental definitions and motivations to study confor-
mal field theory, while sections 4.2 and 4.3 present the philosophy of conformal
field theory without and with boundary (respectively), along with important
general results. Section 4.4 is an introduction to more advanced issues, like con-
formal field theory on the torus, Wess-Zumino-Witten models and the Verlinde
formula. Section 4.5 reviews classical conformal field theory and its relation to
group theory and connects to section 3. Finally section 4.6 addresses several
issues concerning non-rational conformal field theories, whose study is at the
core of the dissertation. Most results reviewed in this section are useful to un-
derstand the papers [1, 2] which are reviewed later in sections 6 and 7, as well
as section 5.

4.1 Introduction to conformal field theory

4.1.1 Conformal symmetry group and conformal field theory

The conformal symmetry group is defined on the Euclidean10 space Rd as the
group of locally defined transformations that preserve angles (isogonal map-
pings), i.e. the group of transformations xµ → x′µ that leave the metric invari-
ant up to an overall multiplicative factor:

g′µν(x
′) = Λ(x)gµν(x) (25)

Note that the Poincaré group (consisting of translations and rotations) is a
subgroup of the conformal group, as it corresponds to the case Λ(x) = 1.

If d > 2, the conformal group can be shown to be generated by translations,
rotations, dilatations x′µ = λ xµ with λ > 0, and special conformal transforma-
tions:

x′µ =
xµ + x2aµ

1 + 2(x.a) + x2a2
(26)

10Minkowskian space-time implies some difficulties. Most notably, the time direction must
be non-compact in order to avoid closed time-like curves that would break causality. The
whole space-time is therefore non-compact, meaning that the associated conformal field theory
is non-rational (and this is outside the scope of the present introduction). See later for more
details. As a consequence, the whole of section 4 is restricted to Euclidean space i.e. space
with a metric of strictly positive signature.
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where aµ ∈ Rd and x.a = xµaνgµν . Moreover, the conformal group is then
isomorphic to O(1, d+ 1).11

If d = 2 i.e. if one is actually considering conformal transformations on
the complex plane C, the above four kinds of transformations generate what is
called the Möbius group. This group consists of all the transformations of the
form z → z′ = az+b

cz+d where a, b, c, d ∈ C and ad − bc = 1, and is therefore the
group SL(2,C)/Z2.

Yet, if d = 2, the conformal group is infinite dimensional i.e. much larger
than the Möbius group. Indeed, for any locally defined holomorphic function
f , the transformation z′ = f(z) is conformal12. This result is fundamental as
it explains why conformal invariance is so important in two dimensions: the
group being infinite dimensional, it provides very strong constraints on any
two-dimensional theory which has the conformal group as a symmetry group,
meaning that it is a precious tool in order to understand such a theory.

Finally, to make things more precise, a conformal field theory is a Euclidean
quantum field theory which symmetry group contains the local conformal trans-
formations. Like any other quantum field theory, a conformal field theory will be
determined by its space of states (presumably a Hilbert space) and the collection
of its correlation functions (vacuum expectation values). Conformal field theo-
ries are highly constrained, as was already stressed above. For instance, scale
invariance implies that all particle-like excitations must be massless (however,
even if they are massive, conformal invariance is nevertheless a good approxi-
mation in either the low or high energy limit).

4.1.2 Motivations

Among the conformal transformations, the scaling symmetry is of particular
importance. One reason why is that the most important scale invariant two-
dimensional local quantum field theory are actually conformally invariant13.
The scale invariance (the conformal group) appears in various fields of physics.

In statistical physics, critical points of second-order phase transitions (i.e.
such that the second derivative of the free energy has a discontinuity) are scale
invariant, because the correlation length becomes infinite. For instance, the
continuum two-dimensional Ising model at its critical temperature is described
by the conformal field theory of a free massless real (Majorana) fermion, and the
three-state Potts model is described by a conformal field theory at c = 4

5 (see
relation (39) for the definition of the central charge c). Moreover, as mentioned
in the introduction to the dissertation, conformal symmetry has been used to

11Hint: the dimensions of both spaces are equal to 1
2
(d + 1)(d + 2) and therefore match.

The isomorphism is more easily built by considering the algebras. Assuming that the space is
of the more general form Rp,q of signature (p, q), it can be shown that the conformal group is
isomorphic to the group O(p+1, q+1) (recall that the Lorentz or Poincaré group is isomorphic
to O(p, q)).

12The choice z′ = f(z̄) would also conserve angles, but would reverse the orientation. This
possibility will not be considered in these notes.

13For a counter-example, see [36]
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study quantum Brownian motion, the Kondo problem, Toda field theory, poly-
mers or even the traveling salesman problem.

In particle physics, scale invariance appears at short distances in QCD, when
probing protons deeply with inelastically scattered electrons: no characteristic
length scale appears because the quarks are asymptotically free and hence ap-
pear as point-like constituents.

In string theory, the excitations of the string are described, from the point
of view of the worldsheet, by a conformal field theory. This can be seen in
Polyakov’s action for (bosonic) strings moving in flat space-time [37, 38, 39]:

SP = −T
2

∫
d2ξ
√

detg gαβ
∂Xµ

∂ξα
∂Xν

∂ξβ
ηµν (27)

which is conformally invariant14. The metric of the space-time is the Minkowski
metric ηµν , while gαβ is the intrinsic metric on the worldsheet. It is standard
to denote by T = 1

2πα′ = 1
2πl2s

the tension of the string, where α′ is the Regge

slope and ls the string length15. The classical limit of the theory associated
to Polyakov’s action is obtained by taking T → ∞, or alternatively α′ → 0
or ls → 0. This is consistent with the usual classical limit ~ → 0 in quantum
mechanics, where the dimensionless action is proportional to 1/~ (since here, by
analogy, T ∼ 1/~). This limit is also consistent with the idea that the classical
limit amounts to considering the string from far away (ls → 0), when it resembles
a point particle (therefore the limit is rather called point particle limit in string
theory). This limit also means that the string becomes very stiff (T → ∞),
so the oscillation modes of the string become very massive and decouple from
the low-energy theory. Hence the string is described by the movement of its
center of mass only – like a particle. The stress-energy tensor, also called the
energy-momentum tensor, is:

Tαβ = − 2

T

1√
detg

∂LP
∂gαβ

(28)

where LP is the Lagrangian associated to the Polyakov action. The stress-
energy tensor will play a prominent role in conformal field theory. Conformal
invariance is a precious tool in string theory for several reasons. The no-ghost
theorem, which ensures that the theory is free of ghosts (states that lead to
negative probabilities in quantum mechanics), requires the theory to be confor-
mally invariant both at the classical and at the quantum levels. Remark also
that perturbation theory in terms of the string coupling16 is given as a sum over

14Hint: the Weyl transformation gαβ → Ωgαβ is straightforward , since detg = detgαβ and
the metric is two-dimensional.

15A possible order of magnitude for the string length may be given by Plank’s length LP ,
though it may be larger than that.

16This dimensionless parameter is gs = eΦ/2 where Φ is the dilaton. The weight of the
contribution of a Riemann surface of Euler characteristic χ = 2 − 2g is g−χ

s , where g is the
genus of the surface (the number of handles). In string theory, the limit gs → 0 is called the
classical limit.
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the genus of the possible worldsheet surfaces and has this rather simple struc-
ture because conformal symmetry allows one to identify any genus zero surface
to the sphere (tree-amplitude), any genus one surface to the torus (one-loop
amplitude) etc. Moreover, string amplitudes can be expressed in terms of cor-
relation functions of the associated conformal field theory (when passing from
conformal field theory to string theory, one must consider the perturbative ex-
pansion and compute it term by term by integrating over the moduli parameters
of the surface – for instance τ for the torus – and over the position of the vertex
operators of the strings – taking into account the possible gauge freedom, which
for instance fixes the position of three vertices on the sphere). Finally, various
string models basically differ in the specific content of the worldsheet confor-
mal field theory (including boundary conditions when necessary), therefore a
classification of two-dimensional conformal field theories may give a perspective
on the variety of consistent string theories that can be constructed (though the
consistent string theories may actually correspond to different vacuua of a single
theory). The relation of conformal field theory to string theory was the main
motivation to study this field, since properties concerning the former translate
to results for the latter.

Finally, one may say that conformal field theories are easily solvable toy
models of genuinely interacting quantum field theories, and therefore are inter-
esting in their own right as a way to get some insight on the physics of the
quantum world. Conformal field theories are also interesting from the point of
view of mathematics and have given rise to new mathematical fields like vertex
operator algebras.

4.2 Conformal field theory basics

As mentioned in the introduction, a two-dimensional conformal field theory is
naturally defined on a Riemann surface, i.e. a two-(real-)dimensional surface
which possesses complex coordinates17 z and z̄, therefore allowing the local
conformal transformations to be well defined. A basic example is the Riemann
sphere i.e. the sphere identified to the complex plane with the point at infinity
added. It is this sole example that will be studied throughout subsection 4.2,
which explains all the fundamental ideas of conformal field theory.

4.2.1 The Hilbert space and the vertex operators

For rational conformal field theories (i.e. theories with a finite number of pri-
mary fields, which are defined below), the space of states is a vector space, most
of the time a Hilbert space denoted H. It contains a vacuum state (i.e. a stable
Poincaré invariant state) |0〉 from which any other state |Φ〉 can be generated
thanks to a vertex operator Φ(z, z̄):

|Φ〉 = Φ(0, 0)|0〉 (29)

17It is useful to consider z and z̄ as independent variables, although one should remember
that the physics is described by z̄ = z∗ the complex conjugate of z.
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Figure 5: The cylinder is conformally mapped to the complex plane, therefore
leading to radial quantization. A constant time line is pictured in thick blue.

For unitary rational theories, the uniqueness theorem ensures that there is a one-
to-one correspondence between states in the Hilbert space and vertices (which
are also called fields) defined on the sphere (function of z, z̄), therefore both
terms will be used as synonyms.

Before proceeding further, a question motivated by string theory may arise:
why consider a sphere while the worldsheet of a free (closed) string is actually
rather like a cylinder? The reason is that the cylinder can be conformally
mapped to the complex plane (topologically identified to the Riemann sphere),
according to figure 5 (strictly speaking the sphere has two punctures at z = 0 and
z =∞, corresponding to the two ends of the infinite cylinder). The cylinder is
assimilated to the complex plane w = τ + ıσ, with the identification σ ∼ σ+2π.
The conformal transformation z = ew then relates the cylinder to the plane.
Note that equal time lines τ = τ0 along the cylinder are associated to fixed
radius circles |z| = eτ0 on the complex plane. The infinite past τ → −∞
corresponds to |z| → 0 while the infinite future τ →∞ corresponds to |z| → ∞.
In the quantum theory, time-ordering, that is needed in order to construct
correlation functions, is replaced by a radial ordering that ensures that in an
n-point function 〈Φ1(z1, z̄1)...Φn(zn, z̄n)〉 one has |z1| > ... > |zn|. This is called
radial quantization.

A short study of the fields of the theory is presented below. All fields are
assumed to be local:

Φ(z, z̄)Ψ(w, w̄) = (−1)FΨ(w, w̄)Φ(z, z̄) (30)

where F is the fermionic number: it is one if both Φ and Ψ are fermionic and
zero otherwise. The locality condition implies that correlation functions do
not depend on the order in which fields appear (up to a sign when there are
fermions).

A useful and important property of rational conformal field theories is that
one does not need to study the whole Hilbert space H. Instead, one can restrict
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to a finite dimensional subspace, here denoted by V , which has the useful pro-
perty that it generates H, meaning that any correlation function in H can be
reconstructed from correlation functions in V , thanks to a process called factor-
ization or descent (that will be explained later, see subsection 4.2.5). Fields in V
are called primary fields and have the property that they transform covariantly
under conformal transformations (the transformed field is still denoted by Φ for
simplicity):

Φ(f(z), f̄(z̄)) =

(
df(z)

dz

)−h(
df̄(z̄)

dz̄

)−h̄
Φ(z, z̄) (31)

where h = (∆ + s)/2 and h̄ = (∆ − s)/2 are real numbers called the (left and
right) conformal weights 18 of the primary field Φ, where ∆ is the (anomalous)
scaling dimension and determines the behavior of the field under scalings, and
s is the (planar) spin and determines the behavior under rotations.

The formula (31) is to be understood as valid in correlation functions (as-
suming the vacuum to be invariant under the conformal transformation f(z)).
Note that the metric gzz̄ precisely transforms like (31) under conformal trans-
formations, with conformal weights h = h̄ = 1. Throughout the rest of this in-
troduction to conformal field theory, and unless otherwise mentioned, primary
fields are the only fields that will be considered (except for the stress-energy
tensor which, as will be seen later, is only quasi-primary i.e. transforms like
(31) only under conformal transformations which belong to the Möbius group).

A key formula concerning primary fields (or other fields as well) is the oper-
ator product expansion (OPE):

: Φi(z1, z̄1)Φj(z2, z̄2) : ∼
∑

k

Cij
kz
hk−hi−hj
12 z̄

h̄k−h̄i−h̄j
12 Φk(z2, z̄2) + finite (32)

where z12 = z1 − z2, z̄12 = z̄1 − z̄2, and z12, z̄12 → 0. The notation : : indi-
cates normal ordering19 and + finite indicates regular terms in the asymptotic
expansion. The coefficient Cij

k is symmetric in i and j (for bosonic fields –
it is anti-symmetric if both fields are fermionic. This complication will not be
taken into account anymore below). The operator product expansion should be
understood as a formula valid in any correlation function, for which it defines an
exact expansion. In the rest of the dissertation the notations : : and +finite will
be conveniently dropped in any operator product expansion (since finite terms
are sub-leading terms in the limit and are irrelevant in most cases of interest).
Note the remarkable property that the set of primary fields closes under the
operator product expansion, i.e. only primary fields appear in the first term of
the right-hand side of equation (32). Although in general the operator product
expansion only defines an asymptotic expansion, for conformal field theories it
does converge in some domain of z12. The radius of convergence is equal to the

18In statistical physics, for instance for the Ising model, the critical exponents are simple
linear combinations of these weights.

19Normal ordering is a prescription for defining products of free fields by specific subtractions
of divergent terms. In the case of interacting theories, the normal-ordered product of fields is
divergent, and the divergence is given by the operator product expansion.
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Figure 6: Crossing symmetry.

distance to the nearest other operator in the correlation function. The opera-
tor product expansion is highly important because it encodes the dynamics of
the theory. Indeed, any correlation function can be reduced to basic two-point
functions by applying this expansion as many times as necessary. The operator
product expansion defines on the space of fields what is called a vertex opera-
tor algebra (it is not an algebra because of the z dependence of the coefficients
that appear in the product ΦiΦj), a notion that has been much studied in the
mathematical literature.

The conformal bootstrap The conformal bootstrap is a powerful program
which attempts to determine the constants Cij

k (which, as was said, actually
encode all the dynamics of the correlation functions) from two basic symmetry
requirements: correlation functions must be local, and the operator product ex-
pansion must be associative. This last constraint is the main dynamical principle
in this viewpoint and arises from the investigation of the four-point function,
which can be decomposed (factorized) in two possible ways, schematically shown
in figure 6. This is what is called the crossing symmetry condition, which leads
to algebraic equations which must be solved by the structure constants Cij

k.
Unfortunately, the bootstrap program is in principle very hard to carry out be-
cause it involves technical difficulties, and it is mostly tractable for theories with
a finite number of primary fields (meaning a finite number of Cij

k constants),
like the minimal models20. It also works for logarithmic conformal field theories
(the name comes from the fact that some of their correlation functions con-
tain logarithms, see [40]) or, to cite a non-rational theory, the SL(2,C)/SU(2)
Wess-Zumino-Witten model [41, 42].

4.2.2 Chiral theories

For rational conformal field theories, the Hilbert space can be decomposed into
a left part and a right part, also called chiral sector and anti-chiral sector (or
sometimes holomorphic and anti-holomorphic, or also meromorphic and anti-

20Minimal models are pure Virasoro theories of central charge c = 1− 6 (p−q)2

pq
where p and

q are strictly positive integers with q ≥ p. The definition of the central charge is given below
in equation (39). Minimal models are unitary if and only if q = p+1. They are related to the
Landau-Ginzburg model (a scalar field theory), which provides a Lagrangian representation
of minimal models.
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meromorphic or analytic and anti-analytic), for which vertices only depend on z
or z̄ respectively. For instance, a chiral primary field transforms like the vacuum
under right conformal transformations, i.e. has h̄ = 0 (hence h = ∆ = s) and
therefore only depends on z. The fact that the theory splits into a right and a
left part that are independent from each other can be understood from a string
theory point of view since the oscillations of a closed string can be decomposed
into two waves moving in opposite directions and independently of each other.
Finally, the operator product expansion formula (32) proves that the subspace
of (anti-)chiral fields closes under the operator product expansion, therefore
defining a consistent sub-theory by itself, with its own dynamics (the closed
vertex algebra of chiral fields is called the chiral ring). This theory is studied
below.

All the simplifications that were assumed concerning the Hilbert space allows
to write the following decomposition:

H =
∑

i,j̄

nij̄Hi ⊗Hj̄ (33)

where ni,j̄ are positive integers21. The spaces Hi describe the chiral part of
the theory and Hj̄ its anti-chiral part. Moreover in rational conformal field
theories every representation i and every representation i∨ (i∨ is the conjugate
representation of i, see subsection 4.4.3) occur exactly once in the sum, so
actually H =

∑
i ni,σ(i)Hi ⊗ Hσ(i), where σ defines an automorphism of the

fusion rule algebra (see section 4.4.3). The present introduction to conformal
field theory is restricted to the simplest case of diagonal theories, for which
σ(i) = i∨. Otherwise, the theory is called non-diagonal. It is therefore possible
to restrict oneself to the study of the irreducible representations Hi of the chiral
vertex operator algebra (the study of Hj̄ would be exactly identical so will not
be considered for the sake of conciseness). As explained later in subsection
4.2.5, the subspace Hi is actually associated to a single (chiral) primary field
Φi. Decomposition (33) may be valid for some non-rational conformal field
theories, however a counter-example is provided by the logarithmic conformal
field theories.

The cluster property

〈∏

i

Φi(zi)
∏

j

Φj(λwj)

〉
∼
λ→0

〈∏

i

Φi(zi)

〉〈∏

j

Φj(wj)

〉
λ−

P

j hj (34)

is an essential ingredient for the above picture to be correct, and will always
be assumed here. It implies strong and useful constraints on the theory. For
instance, it implies that there is only one state with h = 0, which is the vac-
uum state. Another consequence is that the space of states can be completely
decomposed into irreducible representations of the Möbius group i.e. of the Lie
algebra sl(2,C) (these representations precisely correspond to the spaces Hi).

21Usually ni,j̄ = δi,j̄ . Cases which mix different representations may however be considered.
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The cluster property also implies that the set of conformal weights of the pri-
mary fields (i.e. the spectrum of L0, that plays the role of the Hamiltonian,
as explained below) is bounded by zero. This means that the energies of the
(irreducible) representations are positive, i.e. that they are physically relevant.
Indeed, the unitarity of the theory requires that all conformal weights are pos-
itive22. Finally, the cluster property ensures that the locality, the property of
covariant transformation under Möbius transformations (i.e. the property to be
a quasi-primary state) and the positivity of any conformal weight, for any state
in the whole Hilbert space, follow from these properties for primary states.

The collection of all correlation functions 〈∏i Φi(zi)〉 of primary fields Φi
constitutes a representation of the chiral conformal field theory. The represen-
tation is called untwisted if all these amplitudes (correlators) are single-valued as
zi encircles the origin or the infinity, otherwise it is called twisted. An example of
twisted representations is provided by the Ramond sector of a fermionic algebra
(indeed, fermionic fields pick up a minus sign when z encircles the origin).

Finally, all known conformal field theories have a hermitian inner product,
which is positive definite if and only if the theory is unitary. This is related to
the fact that there exists an antilinear involution Φ → Φ̄ for any field Φ such
that:

(〈∏

i

Φi(zi)

〉)∗

=

〈∏

i

Φ̄i(z̄i)

〉
(36)

The hermitian conjugate of a field Φ of conformal weights h, h̄ is defined by:

(Φ(z, z̄))
†

= Φ

(
1

z̄
,
1

z

)
z̄−2hz−2h̄ (37)

This definition is justified by the fact that time reversal is implemented on the
plane by z → 1/z∗. The adjoint state is:

〈Φ| = lim
z,z̄→0

〈0| (Φ(z, z̄))
†

= (|Φ〉)† (38)

This remark ends the analysis of the structure of the Hilbert space of states.
The next subsection is a study of the stress-energy tensor, which is an essential
element of the theory since it is the field that generates conformal transforma-
tions (in the sense given below in (45)).

4.2.3 The Virasoro algebra and the primary fields

What will be called stress-energy tensor, and denoted T (z), is actually one
of the two non-zero components of the energy-momentum tensor Tαβ. More

22Proof (see below for the definition and properties of the Virasoro algebra):

||L−1|Φh〉||2 = 〈Φh|L1L−1|Φh〉 = 〈Φh|[L1, L−1]|Φh〉
= 2〈Φh|L0|Φh〉 = 2h〈Φh|Φh〉 (35)
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precisely, Tzz = T (z) is the left part of the energy-momentum tensor, which
appears in the study of the chiral conformal field theory, and Tz̄z̄ = T̄ (z̄) is
its right part, which would appear in the anti-chiral theory (which will not
be studied here for the sake of conciseness – results are essentially the same).
The fields T and T̄ are therefore in no way conjugate of each other, but this
notation is standard in conformal field theory. The other components of Tαβ
are Tzz̄ = Tz̄z = 1

2Tr(Tαβ) = 0 if the theory is conformally invariant both at the
classical and at the quantum level. If there exists a conformal anomaly, then the
conformal invariance is broken at the quantum level and the trace of the energy-
momentum tensor is not zero. It is given by Tα

α = c
96π3

√
detg R(2), where c is

the central charge (see below) and R(2) is the two-dimensional Riemann scalar
curvature associated to the metric gαβ.

The operator product expansion of the stress-energy tensor with itself is:

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w (39)

where the central charge c appears in the most divergent term. This generic
result is a natural extrapolation of formulas obtained for simple cases like the
free boson theory. Translated in terms of the modes of the energy-momentum
tensor, one obtains the following commutation relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn+m,0 (40)

which define the Virasoro algebra. The relation between the field T and its
modes Ln is given by a Laurent expansion, which can be inverted:

T (z) =
∑

n∈Z

Lnz
−n−2 , Ln =

1

2ıπ

∮

0

zn+1T (z)dz (41)

where
∮
0 is a notation that will be used elsewhere and will always stand for a

positively oriented integral around any contour that encircles zero. The con-
nection is made clear by the following formula (the second contour integral is
around w):

[A;B] =

∮

0

dw

∮

w

dza(z)b(w) (42)

where A =
∫
0
a(z)dz and B =

∫
0
b(w)dw.

The central charge c is very important since it is the parameter of the the-
ory. For a start, it is an extensive measure of the number of degrees of freedom
of the theory: when two decoupled systems (of free fields) are put together,
the stress-energy tensors simply add up i.e. Ttotal = T1 + T2 and so does the
central charge, ctotal = c1 + c2. For example, one counts 1 for a free boson,
1/2 for a free fermion, −26 for the fermionic reparametrization ghosts and 11
for the bosonic reparametrization ghosts (recall that the ghosts associated to
the reparametrization in the bosonic theory are fermionic, and vice-versa). The
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central charge is a real number and must be positive in a unitary theory23. It
is a rational number in a rational conformal field theory (the name comes from
the rationality of the central charge and of all the conformal weights, though
these quantities may be rational as well in non-rational conformal field theories).
Note the existence of a central charge c̄ for the field T̄ . However, the modular
invariance of the partition function on the torus, that will be discussed in sub-
section 4.4.1, implies c− c̄ = 0 mod 24, and two-dimensional Lorentz invariance
actually implies c = c̄. Finally, as previously mentioned, a non-zero central
charge indicates a conformal anomaly. The central charge therefore describes
how the system reacts to macroscopic length scales (i.e. breaking of conformal
invariance), for instance introduced by boundary conditions (see section 4.3).
In order to ensure that the quantum theory is conformally invariant, and unless
one considers exceptional cases for which R(2) = 0, one must impose that c = 0
(yet one often wishes to consider theories with c 6= 0, for instance the free boson
theory which has c = 1, simply because by coupling this theory to other theories
one may get ctotal = 0).

A short digression in order to improve the intuitive understanding of the
role of the modes Ln may be of some help. Following [43], a classical analysis of
the conformal transformations in two dimensions leads to consider generators
ln = −zn+1∂z of the transformations z → z+ε(z) with ε(z) = −∑n∈Z cnz

n+1 =(∑
n∈Z cnln

)
z. These generators satisfy the Virasoro algebra with c = 0 (which

makes sense because c appears only in the quantum theory, as a consequence of
normal ordering):

[ln, lm] = (n−m)ln+m (44)

This algebra is known as the Witt algebra. These remarks are one way to
understand why L0 is associated with scale transformations, since l0 = −z∂z.
See also (53) below: the conformal weight h, which describes how the field Φ
behaves under conformal (scale) transformations, is the eigenvalue of L0 for the
eigenvector |Φ〉. Another way to say this is that H = L0 is the generator of
time shifts (since radial quantization indeed relates scalings of z and shifts of τ)
i.e. plays the role of the Hamiltonian in chiral conformal field theory24. Note
also that L−1 is associated to translations, since l−1 = −∂z. Finally, it can be
checked that l−1, l0 and l1 generate the Möbius group.

Primary fields of the chiral theory are defined by the property that their
operator product expansion with the stress-energy tensor is:

T (z)Φ(w) ∼ hΦ(w)

(z − w)2
+
∂wΦ(w)

z − w (45)

23Proof (see also (53)): L−n = L†
n from hermiticity of the theory (reality condition on T ),

and:

〈0|LnL−n|0〉 = 〈0|[Ln, L−n]|0〉 = 〈0|2nL0 +
c

12
n(n2 − 1)|0〉 =

c

12
n(n2 − 1)〈0|0〉 ≥ 0 (43)

24The true Hamiltonian for the complete theory constituted by both chiral and anti-chiral
sectors is actually H = L0 + L̄0 − c

12
.
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This definition (which is also a possible definition of the conformal weight h,
which appears in the most divergent term) is equivalent to the one given in
(31). The facts that the eigenvalues of L0 are the conformal weights and that
the generator L−1 is associated to translations can be made more precise using
relation (41). Indeed, together with the above formula, it implies that:

L0Φ(z) = hΦ(z) , L−1Φ(z) = ∂zΦ(z) (46)

Comparing equation (45) to equation (39), one can see that the stress-energy
tensor has weight 2 but is not a primary field, unless c = 0 (yet it is a quasi-
primary field, as was already mentioned). Under a generic conformal transfor-
mation, the stress-energy tensor transforms as:

T (z) =

(
df(z)

dz

)2

T (f(z)) +
c

12

[
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2
]

(47)

The extra contribution is called the Schwarzian derivative and is zero for trans-
formations that belong to the Möbius group.

4.2.4 Correlation functions in a chiral conformal field theory

Conformal symmetry provides strong constraints on conformal field theories.
One of the most surprising results of the symmetry is that the group of conformal
transformations that are globally defined on the sphere (it is the Möbius group,
or also the subgroup of the group of conformal transformations that leave the
vacuum invariant) fixes entirely the functional dependence of the one, two and
three point functions of (quasi-)primary fields. The one-point function is:

〈Φi(z1)〉 = Ciδhi,0 (48)

i.e. is non zero for the vacuum field hi = 0 only. The two-point function is:

〈Φi(z1)Φj(z2)〉 =
Cij

z2h
12

(49)

where h = hi = hj , z12 = z1 − z2 and Cij is a constant that can be set to one
by choosing a proper normalization of the fields25. The requirement hi = hj
makes sense since the long-distance behaviour of both fields must be the same
if they are to have a non-zero correlation function, and since this behaviour
is determined by h, see equation (31). Note the appearance of a branch cut
under the exchange of Φi and Φj i.e. under z12 → eıπz12, unless the conformal
weight h is an integer or a half-integer. The locality property of the fields as
given in equation (30) therefore means that h must be an integer if the fields are

25This is possible because for any primary field Φi in a rational conformal field theory, there
is only one primary field Φi∨ such that 〈Φi(z1)Φi∨ (z2)〉 6= 0. The field Φi∨ is the conjugate
of the field Φi, see subsection 4.4.3.

28



bosonic and a half-integer in the fields are fermionic26. This may be seen as a
spin-statistics theorem. Finally, it is clear from (49) that in a physically suitable
theory h must be positive since otherwise the theory would possess correlation
functions increasing with the distance. The three-point function is:

〈Φi(z1)Φj(z2)Φk(z3)〉 =
Cijk

z
hij
12 z

hik
13 z

hjk
23

(50)

where hij = hi+hj−hk, and same expressions for hik and hjk. The coefficients

Cijk is related to the coefficient Cij
k that appeared in the operator product

expansion (32). More precisely, one may check that plugging the operator prod-
uct expansion in the three-point function and using the result for the two-point

function, assuming the Cij have been normalized to one, yields Cijk = Cij
k∨ .

The coefficients Cijk are symmetric in i, j, k (for bosonic fields) and may actu-
ally be zero. The possible couplings of the theory (i.e. the non-zero Cijk) are
given by the fusion coefficients discussed later in subsection 4.4.3.

The Möbius group also imposes strong contraints on higher n-point func-
tions, but is not enough to fix the functional dependence entirely anymore. For
instance, the four-point function is:

〈Φi(z1)Φj(z2)Φk(z3)Φl(z4)〉 = f(z)
∏

1≤m<n≤4

zh/3−hm−hn
mn (51)

where h = hi + hj + hk + hl (moreover h1 = hi, h2 = hj etc.), zmn = zm − zn,
and the anharmonic ratio z = z12z34

z13z24
is the only conformal invariant on the

plane (other quantities depending on the coordinates zi and invariant under the
Möbius group may be constructed but they can all be expressed in terms of z).
The function f may a priori be any meromorphic function. The Möbius group
allows one to fix any three vertices (fields) to whichever point one wishes, and
it is rather standard to choose z1 = ∞, z2 = 1, z3 = z the anharmonic ratio,
and z4 = 0.

It is possible to use other conformal transformations than the Möbius group
(i.e. generated by Ln with n 6= 0, ±1) to further constrain the n-point functions
with n ≥ 4. These constraints lead to Ward identities that are not so simple
because the vacuum is not invariant under these transformations (typically, one
has to deal with complicated differential equations).

Another example of a constraint that may be used to fix n-point functions
with n ≥ 4 is given by the Knizhnik-Zamolodchikov equation and will be dis-
cussed in subsection 4.4.2.

Finally, physical correlation functions would involve (primary) fields of the
global theory that would not necessarily be chiral or anti-chiral anymore. Ana-
logues of relations (48) to (51) hold in this case as well. A deeper analysis of
the four-point function (or of any higher n-point function) leads to the concept

26This is not exactly correct though. Bosons and fermions are only well-defined for the
whole theory i.e. when considering both chiral and anti-chiral parts of the Hilbert space. The
above analysis is focusing on the chiral part only. For the whole theory, it is the spin s, and
not the conformal weight h, that is found to be either integer or half-integer.
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of conformal blocks, which are the building blocks of such correlation functions.
They can be computed from the definition of primary fields and the expression
of the operator product expansion between the stress-energy tensor and pri-
mary fields. More precisely, physical correlation functions decompose into sums
of analytic times anti-analytic functions, which are the conformal blocks. For
instance, it is possible to write the four-point function in the form:

〈Φi(∞)Φj(1)Φk(z)Φl(0)〉 =
∑

m

Cij
mCklmFm(z)F̄m(z̄) (52)

where Fm are the (left) conformal blocks which show propagation of the field
Φm in the s-channel (see figure 6). This analysis will be used in section 5.

The axiom of duality Physical n-point correlation functions obtained by
combining the left-movers and the right-movers are expected to be independant
of the sewing procedure (the way one contracts fields together thanks to the op-
erator product expansion, in order to be finally left with three-point functions
only). This assumption, that is highly important for consistency of the theory,
is however far from obvious, and is known as the axiom of duality [25]. Apart
from extra conditions arising from considerations on the torus and that will be
mentioned below in subsection 4.4.1, this axiom imposes constraints on matri-
ces called the braiding and the fusion (or fusing) matrices, which must satisfy
two polynomial equations known as the pentagon and the hexagon identities.
Finding solutions to these polynomial equations is one possible path to choose
in order to try to catalogue all possible consistent conformal field theories.

4.2.5 Representations of the Virasoro algebra

This subsection explains how representationsHi (which determine the spectrum
of the theory) are constructed. In this context, states provide a more convenient
framework than fields (keep in mind though that, for unitary rational theories,
states and fields are equivalent descriptions). By definition, a chiral primary
state |Φh〉 of weight h satisfies:

Ln>0|Φh〉 = 0 , L0|Φh〉 = h|Φh〉 (53)

This definition is equivalent to the definition (45) for primary fields. Recall that
the state |Φh〉 = Φh(0)|0〉in is generated from the vacuum |0〉in, which must
satisfy:

Ln≥−1|0〉in = 0 (54)

Similiarly (upon taking the adjoint):

out〈0|Ln≤1 = 0 (55)

These relations are necessary for the stress-energy tensor T to be well-behaved
when z → 0 or z →∞ respectively, and reflects the conformal invariance of the
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vacuum. The only modes that annihilate both |0〉in and out〈0| are L±1,0, which
indicates that the vacuum in invariant under the Möbius group.

Other states in the representation generated by the primary state |Φh〉 are
obtained by applying successively any generator of the kind Ln<0. They are
called secondary states. A basis of the set of secondary states is spanned by
states of the form L−n1L−n2 ...L−nk |h〉 with n1, ..., nk strictly positive integers,
with n1 ≤ n2 ≤ ... ≤ nk. This construction of conformal families shows that
the spectrum of conformal dimensions of a conformal field theory consists of the
infinite integer spaced series hi + n (for all indices i) where n is any positive
integer and hi is the conformal weight of the primary field Φhi . The conformal
behaviour of secondary fields is more complicated than the one of primaries.
The secondary fields, together with the primary field Φh they descend from,
constitute a conformal family [Φh] that is a representation of the Virasoro alge-
bra (denoted previously by Hh or rather Hi). The set of states associated to a
conformal family is called a Verma module and is noted VΦh . The complete set
of fields in the theory consists of the sum of all conformal families.

Some important remarks are in order. First, since the complete set of fields is
constituted of all primary and secondary fields, it is now possible to understand
why any correlation function in the conformal field theory is given in terms of
the correlators of the primary fields (this is what was called the factorization or
descent procedure): one simply has to insert generators L−n in the correlation
functions of the primary fields and use the conformal Ward identities 27 in order
to obtain (descending) correlation functions of secondary fields.

It may happen that a secondary state χ descending from a primary state Φ
satisfies equations (53) and can therefore be considered as a primary state as
well. Such a state is called a null state. It generates its own Verma module.
If the original Verma module VΦ has no null state, then it is an irreducible re-
presentation of the Virasoro algebra. If it has a null state, the Verma module
VΦ is a reducible representation. The irreducible conformal family is obtained
by setting all null states to zero, which can be consistently assumed since null
states are orthogonal to any state in the Verma module VΦ (including itself)28.
A conformal family that contains a null field that needs to be removed is called
degenerate , and the associated primary field is called a degenerate field. De-
generate fields are characterized by their conformal weight, which must be of

27The conformal Ward identities are obtained by relating L−n to T (z) thanks to (41) and
then use the operator product expansion between the stress-energy tensor and primary fields
(45) to obtain:

*
T (z)

nY

i=1

Φi(zi)

+
=

nX

j=1

„
hj

(z − zj)2
+

∂zj

z − zj

« *
nY

i=1

Φi(zi)

+
(56)

28Proof (use the definition of primary fields): 〈χ|
Q

i L−ni |Φh〉 =
`Q

i Lni |χ〉
´† |Φh〉 = 0
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the form [44, 45]:

hn,m =
c− 1

24
+

1

2
(nα+ +mα−)

2

α± =

√
1− c±

√
25− c√

24
(57)

where n, m are positive integers29. The conformal weight of the corresponding
null field is h = hn,m + nm. Finally, since null states are orthogonal to any
other state in the Verma module, null fields decouple in any correlation func-
tion (i.e. any correlation function involving a null field is zero). This property
may be used with any null state in order to constrain n-point functions. This
leads to differential equations, called the BPZ equations [23] (BPZ stands for
Belavin-Polyakov-Zamolodchikov), that must be satisfied by correlation func-
tions and that constrain the possible couplings of the theory (another example of
an equation implied by a null state is provided by the Knizhnik-Zamolodchikov
equation, see subsection 4.4.2). Solutions are then typically found in terms of
special functions, like the hypergeometric functions. Though usually not enough
to determine the entire theory completely, null states are sufficient in the case
of the minimal models for instance (all the fields of these models are maximally
degenerate).

4.3 Boundary conformal field theory basics

Until now this survey was restricted to the case of conformal field theories
defined on spaces without a boundary – and, more precisely, on the Riemann
sphere. This kind of theory describes closed strings. One may wish to study
open strings as well. For that purpose one needs to study conformal field theory
on surfaces with a boundary (the boundary represents the brane on which the
open string endpoints live30), the simplest example of which being the disc (it is
conformally equivalent to the strip i.e. the open string worldsheet). The space
on which boundary conformal field theory will be studied below will be the
upper-half plane C+ = {z ∈ C|=z ≥ 0}, since the unit disc (parametrized by w)
can be conformally mapped to the upper-half plane using the transformation
z = ı 1−w1+w . The strip is mapped to the upper-half plane with two punctures

at z = 0 and z = ∞ thanks to the relation z = eτ+ıσ. The interested reader
who whishes to learn more on boundary conformal field theory is referred to
[32, 46, 47, 48, 49, 50, 51, 52].

29One may check that for Liouville theory (for which c = 1 + 6Q2 where Q = b + 1
b

and
b is a strictly positive real number, usually non-rational), degenerate fields have conformal

weights hn,m = Q2

4
− 1

4

`
mb+ n

b

´2
where m and n are strictly positive integers. This theory

was studied in [1].
30Branes are dynamical objects on which open strings can end. A common example is the

D-brane, a contraction for Dirichlet brane (the name comes from the fact that the coordinates
of the attached string satisfy Dirichlet boundary conditions in the direction normal to the
brane, and hence have a fixed value). In classical string theory (gs → 0), the back-reaction
of the brane on the bulk geometry is suppressed. In general, it should be taken into account,
making things more difficult to understand.
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Note that from a string theory point of view, asking if a conformal field
theory can be extended to a theory that is well-defined on worldsheets with
boundary is actually the question of which open strings can be consistently
added to a given closed string theory. There are deep connections between the
features of conformal field theory in the bulk (parent theory) and in the presence
of a boundary (open descendant theory). Indeed, since the theory is local and
since the parent (bulk) theory on the sphere determines already the operator
product expansion of any two fields, the descendant field theory in the bulk is
locally equivalent to its parent theory. As a consequence, the set of fields in
the boundary theory is the same as in the bulk theory. The remaining degrees
of freedom of the boundary conformal field theory lie in the coherent boundary
conditions that can be imposed (these are the Chan-Paton degrees of freedom).
Since the operator product expansion in the bulk allows any correlation func-
tion to be reduced to one-point functions, all the remaining information of the
boundary theory must be encoded in these one-point functions 〈Φi〉, or in the
related concept of boundary state, reviewed below.

The existence of the boundary implies one constraint that the stress-energy
tensor must satisfy for the boundary theory to be conformal:

T (z) = T̄ (z̄) , for z = z̄ (58)

This is a continuity (boundary) condition, which means that there is no energy-
momentum flow accross the boundary (or, also, that the real boundary is pre-
served by diffeomorphisms). Because of this relation, the chiral and the anti-
chiral parts of the conformal field theory are now entangled and cannot be
separated anymore. A single Virasoro algebra therefore organizes the boundary
theory, while there were two copies (left and right) of the Virasoro algebra in
the absence of a boundary. From a string theory point of view, this is consistent
with the fact that oscillations of an open string cannot be decomposed into two
independant waves moving in opposite directions (contrarily to closed strings).
The boundary condition changes the conformal Ward identities, which become:

T (z)Φ(w, w̄) =

(
h

(z − w)2
+

∂w
z − w +

h̄

(z − w̄)2
+

∂w̄
z − w

)
Φ(w, w̄) (59)

Another notable difference from the case without boundary is that amplitudes
(n-point correlation functions) are now linear in the conformal blocks rather
then bilinear.

Continuity conditions must also be written for all other chiral fields Φ(z):

Φ(z) = ΩΦ̄(z̄) , for z = z̄ (60)

where Ω is called a gluing automorphism and may depend on Φ. It is necessary to
accomodate the standard Dirichlet (Ω = −id) and Neumann (Ω = id) boundary
conditions (id is the identity operator). The above equation is only valid when
one considers the maximal case in which the whole symmetry algebra is left
unbroken.
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Boundary states will encode all the information about the boundary. Given
a boundary condition labeled by α, the associated boundary state ||α〉〉 satisfies
〈∏i Φi〉α = 〈〈α||∏i Φi||α〉〉 for any correlation function on the boundary. The
boundary state has to obey:

(Ln − L̄−n)||α〉〉 = 0 (61)

for any integer n. This is implied by relation (58), and other similar relations
may be deduced from (60). These equations must be solved by the boundary
state, and the solution can be found separately in each part Hi ⊗ Hj̄ of the
Hilbert space. An important result is that, assuming j̄ = i∨ and up to nor-
malisation, there is only one state that satisfies the above conditions. It is a
generalization of coherent states, and is called the Ishibashi state [46] (denoted
by ||i〉〉). The theory is rational when the bulk theory is rational (finite number
of bulk primaries) and when there is a finite number of Ishibashi states. It is
possible to choose the normalization of Ishibashi states such that:

〈〈
j′
∣∣∣
∣∣∣q 1

2 (L0+L̄0− c
12 )
∣∣∣
∣∣∣ j
〉〉

= δj,j′χj(q) (62)

where q = e2ıπτ , τ is a complex number and χj(q) = TrHi

(
qL0−c/24

)
is the

character31 of the representation Hi of the meromorphic vertex operator alge-
bra32.

A remarkable fact that is valid for all rational conformal field theories is
that the characters transform into each other under modular transformations
(i.e. they provide a representation of the modular group SL(2,Z), introduced
in subsection 4.4.1):

χi(τ + 1) =
∑

j

Ti
j χj(τ) , χi(−1/τ) =

∑

j

Si
j χj(τ) (63)

where T and S are constant matrices and the sums are over all representations
Hj . In unitary rational conformal field theories, the modular S matrix is unitary
and symmetric and the matrix T is diagonal and of finite order. These results
will be useful in subsection 4.4.3.

The scalar product for Ishibashi states is:

〈〈j||j′〉〉 = δj,j′S0
j (64)

31The −c/24 term comes from radial quantization. Indeed, it is the zero-mode of the

stress-energy tensor on the cylinder (the string worldsheet) Lcyl.
0 that plays the role of the

Hamiltonian (recall that, classically, it corresponds to the infinitesimal operator −z∂z = −∂w

where z is the coordinate on the plane and w = τ + ıσ the coordinate on the cylinder, τ being
the time). L0 is the zero mode of the stress-energy tensor on the plane. Writing the Fourier
expansion of T cyl.(w) and the Laurent expansion of T (z), and relating the two with the

conformal transformation of the energy-momentum tensor (47), shows that Lcyl.
0 = L0−c/24,

where the extra term −c/24 comes from the Schwarzian derivative.
32In general there may be extra variables in the characters in order to keep track of more

quantum numbers, in the case where the chiral algebra is extended.
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Figure 7: Two ways of calculating the partition function Zαβ: (1) on the cylin-
der, between the boundary states ||α〉〉 and ||β〉〉, (2) as a periodic time evolution
on the strip, with boundary conditions α and β.

where 0 indicates the identity (trivial) representation. Now, any boundary state
is given by a linear combination of Ishibashi states:

||α〉〉 =
∑

i

Aαi ||i〉〉 (65)

Using this result, one may calculate the non-vanishing one-point functions:

〈Φi,ω(i∨)(z, z̄)〉α =
Aαi∨

|z − z̄|2hi (66)

where Φi,ω(i∨) is a primary field in the representation Hi ⊗Hω(i∨), and ω is a
map on the set of sectors induced by Ω – for simplicity, it may be assumed that
it is the identity. Relation (66) shows how, for a diagonal conformal field theory,
the admissible types of boundaries are in one-to-one correspondence with the
bulk fields [47].

The constants Aαi determine the boundary conformal field theory. They are
constrained by sewing conditions (axiom of duality) that will not be reviewed
here and by Cardy’s condition [47]. This condition is derived from considerations
on the partition function33. More precisely, the exchange of time and space
on the worldsheet (i.e. worldsheet duality), which amounts to an S matrix
transformation, relates the one-loop open string diagram to a closed string tree
diagram, see figure 7. Considering two boundary conditions α, β corresponding
to the two endpoints of an open string, and assuming that at least one of the
two branes α, β is compact, one expects to find a discrete open string spectrum.
Therefore, the open string partition function is calculated by summing over all
open string states linking the two branes :

Zαβ(q
′) = TrHαβ

(
e−2πTHo

)
=
∑

i

niαβ χi(q
′) (67)

33The name comes from an analogy with statistical physics, in which the partition function
is a sum over the spectrum of a quantum system, weighted by e−βE where E is the energy of
the state and β the inverse temperature.
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where T is the time, Ho = L0 − c
24 is the open string Hamiltonian and niαβ are

positive integers and counts the multiplicity of the boundary primaries. The
boundary conditions α, β manifest themselves only in the nature of the Hilbert
space Hαβ and in its decomposition Hαβ = ⊕iniαβHi into representations of a
single chiral algebra. The quantity Zαβ may also be written as a closed string
two-point function between the boundary states in the Hilbert space of the bulk
theory34:

Zαβ(q) =
〈〈
α
∣∣∣∣e−2πLHcl

∣∣∣∣β
〉〉

=
∑

j

(
Aαj
)∗
Aβj χj(q) (68)

where L is the length (now playing the role of time) and Hcl = L0 + L̄0− c
12 the

closed string Hamiltonian. Relating both expressions with the help of q = e2ıπτ ,
τ = ıL = ı/T and q′ = e−2ıπ/τ = e−2πT yields:

niαβ =
∑

j

(
Aαj
)∗
Aβj Sj

i (69)

This relation constrains the quantities Aαj , since niαβ are integers (this non-linear
constraint implies that boundary states are not states in the usual meaning of the
word, since they do not belong to a vector space). It is called Cardy’s constraint,
or Cardy’s equation. An important remark is that the numbers niαβ also appear

in the Hilbert space decomposition Hαβ = ⊕iniαβHi, which is very reminiscent
of the fusion rules discussed in subsection 4.4.3. The classification of possible
boundary conditions is therefore connected to the classification of integer-valued
representations of the fusion algebra (see below section 4.4). More precisely, one
set of boundary states (called the Cardy states) can be constructed by choosing

Aαi = Sα
i√

S0
i
. Then (in a unitary rational theory):

niαβ =
∑

j

(S−1)j
α
Sβ

jSi
j

S0
j = Niβ

α (70)

i.e. niαβ is the fusion matrix, thanks to Verlinde’s formula (see relation (92)
below). Since the whole symmetry algebra is supposed unbroken here, the set
of representations α appearing in the possible boundary conditions is the same
as the set of representations that classify the bulk fields Φi. This (Cardy)
construction should be kept in mind when reading section 6.

4.4 Advanced conformal field theory

In the previous sections all the fundamental ideas of conformal field theory were
introduced. More advanced topics are reviewed below. They include conformal
field theory on the torus, Wess-Zumino-Witten models, the fusion rules, the Ver-
linde formula, superconformal field theories and the classical limit of conformal
field theories.

34Two branes i.e. two boundary conditions are considered here. This is a slightly different
setting from the one introduced in the beginning of this section, with only one brane.
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Complex plane

Figure 8: The torus as a Riemann surface. Periodicity conditions on the torus
are imposed by identifying (thick) blue lines and (thin) red lines respectively.

4.4.1 Conformal field theory on the torus and higher genus surface

Until now the study was restricted to conformal field theory on the sphere.
Other Riemann surfaces are of interest too. They are classified by their genus
g which counts the number of handles on the surface. Beside the sphere, the
simplest (and most important) example of a Riemann surface is the torus. It is
reviewed in this subsection.

The torus has genus one and is described by identifying points on the complex
plane as shown in figure 8.

The parameter τ is the modulus of the torus, also known as modular parame-
ter or Teichmuller complex parameter. It encodes the geometry of the torus35.
The moduli τ , −τ , τ +1 and −1/τ all describe the same torus36. It is standard
to restrict to =τ ≥ 0 and moreover identify τ ∼ τ +1 ∼ −1/τ . These two trans-
formations, respectively denoted by T : τ → τ + 1 and S : τ → −1/τ , generate
the modular group SL(2,Z)/Z2 which is the group of modular transformations
τ → τ ′ = aτ+b

cτ+d with ad − bc = 1 and a, b, c, d ∈ Z. This group should not
be confused with the Möbius group SL(2,C)/Z2. Because the geometry of the
torus is unchanged under any modular transformation, one expects any physical
quantity (like correlation functions on the torus) to be modular invariant. This
requirement imposes strong constraints on the theory.

An important quantity on the torus is the partition function, also called
vacuum amplitude or annulus amplitude:

Z(τ) = TrH
(
qL0−c/24q̄L̄0−c̄/24

)
= TrH

(
e−2πτ2He2ıπτ1P

)
(71)

where q = e2ıπτ , q̄ = e−2ıπτ̄ , τ = τ1 + ıτ2, H = L0 + L̄0 − c/12 describes the
propagation along the cylinder and P = L0−L̄0 implements the rotation around
the cylinder (recall that h+ h̄ = ∆ is the scaling dimension and h− h̄ = s is the
spin). The above relation shows that the partition function can be obtained by

35More generally, a genus g surface with g ≥ 2 is characterized by 3(g−1) complex numbers
called the moduli of the surface.

36It can be seen using figure 8. For −1/τ , use a global rescaling by a factor τ .
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propagating a state forward in time by −2πτ2 and spatially by 2ıπτ1, and then
summing over all states in the Hilbert space (hence the trace).

An important statement concerning the axiom of duality discussed in sec-
tion 4.2 is that (considering a conformal field theory that is well-defined on
the sphere) there are three additionnal requirements arising from considera-
tions on the torus for this axiom to be satisfied. The T and S transformations
must verify S2 = C where C is the charge conjugation (see definition below
in subsection 4.4.3) and (ST )3 = S2, together with one extra equation found
by considering the two-point function on the torus. Finally, it is also required
that the partition function Z be modular invariant. Under these conditions, the
conformal field theory is consistent on the torus and moreover on any higher
genus Riemann surface. In particular, any n-point function on any Riemann
surface is independant of the sewing procedure.

To understand this fact better one should remember that, since the confor-
mal field theory is local, the operator product expansion is the same irrespective
of the surrounding surface and, as the theory on the sphere determines the oper-
ator product expansion entirely, it actually determines the theory on a Riemann
surface of arbitrary genus37. This however does not ensure that the theory will
be consistent on any Riemann surface. For this to be true, the only extra
requirements were stated above.

For most conformal field theories38, the partition function can be expressed
in terms of the characters χi:

Z(τ) =
∑

i,j̄

nij̄χi(τ)χj̄(τ̄ ) (72)

The modular invariance of the partition function imposes very strong constraints
on the integers nij̄ which one may try to solve in the conformal bootstrap
approach. Relation (72) is related to the decomposition of the Hilbert space
given in (33).

4.4.2 Wess-Zumino-Witten models and affine Lie algebras

Wess-Zumino-Witten (WZW) models, sometimes called Wess-Zumino-Novikov-
Witten (WZNW) models, are classically defined by the action39:

SWZW =
k

16π

∫

Σ

d2x Tr
(
∂µg−1∂µg

)

− ık

24π

∫

B

d3y εαβγ Tr
(
g̃−1∂αg̃g̃−1∂β g̃g̃−1∂γ g̃

)
(73)

37A similar argument has been used when discussing boundary conformal field theory in
section 4.3.

38A counter-example is provided by logarithmic conformal field theories.
39The first term in the action is referred to as the σ-model. It is said to be non-linear if

the kinetic term has a field-dependent coefficient. The second term, called the Wess-Zumino
term, is necessary for the whole theory to be conformally invariant [53, 54, 55].

38



where Σ is a two-dimensional surface, B is a three-dimensional surface such
that its boundary is equal to Σ (i.e. ∂B = Σ), k is a real number called
the level, εαβγ is the completely anti-symmetric tensor and g(x) is a bosonic
matrix field living on the (semi-)simple compact Lie group G, which will be
associated to the Lie algebra g. The field g̃(y) is an extension of g(x) to the
three-dimensional surface B. It satisfies g̃(y)|y=x∈Σ = g(x). The trace Tr is
taken over a matrix representation ta of the group such that40 Tr(tatb) = 2gab

and [ta, tb] =
∑

c ıf
ab
ct
c, where fabc are the structure constants of the Lie

algebra g. Finally, in order for the action to be real, the matrix field g must be
valued in a unitary representation.

Two important results are that the quantum theory is well defined if and
only if k is an integer41, and it is unitary if and only if k is positive. Therefore
it will always be assumed that k ∈ N. The classical limit is given by k → ∞.
Note the remarkable property that the effective action for the quantum theory
is simply equal to the classical action where the level k has been replaced by
k +Q where Q is the dual Coxeter number of the group.

The classical equation of motion for the field g is:

∂z
(
g−1∂z̄g

)
= 0 (74)

where the new coordinates are z = x0 + ıx1 and z̄ = x0 − ıx1. The equation of
motion is solved by any g(z, z̄) = f(z)f̄(z̄) where f and f̄ are holomorphic and
anti-holomorphic functions respectively. This result implies the conservation of
two currents J and J̄ (i.e. ∂z̄J = 0 and ∂zJ̄ = 0):

J(z) = −k∂zgg−1 , J̄(z̄) = kg−1∂z̄g (75)

The conservation of these currents implies the invariance of the Wess-Zumino-
Witten action under g(z, z̄) → Ω(z)g(z, z̄)Ω̄(z̄)−1 where Ω and Ω̄ are arbitrary
matrices in G. The action therefore has the local G×G symmetry.

Because the left (also called chiral, or holomorphic) part of the symmetry
generated by J is independant of the right part, the latter one will not be
considered here for the sake of simplicity.

It is natural to decompose J(z) =
∑

a J
a(z)ta. At the quantum level, it can

be shown that the currents generate a current algebra, i.e. that their operator
product expansion is of the form:

Ja(z)Jb(w) ∼ kgab

(z − w)2
+
∑

c

ıfabc
Jc(w)

z − w (76)

40Here gab plays the role of a metric with respect to the structure constants fab
c. In

the simplest cases, like for SU(2), gab = δab. When G = SL(2,R), a standard choice is
gab = diag(1, 1,−1). This metric is related to the one induced by the Killing form reviewed
in section 3.1. Things are more complicated when the group is not semi-simple, since for
instance the Killing metric is then degenerate (see later the case of H2n+2).

41This requirement comes from the fact that the path integral in the quantum theory must
be well defined, therefore different ways of calculating the three-dimensionnal term in the
action must yield the same result modulo 2π. This condition does not provide any constraints
for non-compact groups.
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or, equivalently, that their modes satisfy an affine Lie algebra ĝ:

[Jan , J
b
m] =

∑

c

ıfabcJ
c
n+m + kngabδn+m,0 (77)

Remark that the zero modes n = m = 0 generate the algebra g. Modes and
operators are related by a Laurent expansion:

Ja(z) =
∑

n∈Z

Janz
−n−1 , Jan =

1

2ıπ

∮

0

znJa(z)dz (78)

These relations are analogous to relations (41) for the stress-energy tensor T
(note however that T has conformal weight 2 while J has conformal weight 1,
as can be seen from equation (76)).

An important result concerning Wess-Zumino-Witten models is that they
are actually conformally invariant. This is shown by constructing explicitly the
energy-momentum tensor42:

T (z) =
1

2(k +Q)

∑

a,b

gab : JaJb : (z) (79)

where : : denotes normal ordering. In terms of the modes, relation (79) reads:

Ln =
1

2(k +Q)

∑

a,b

∑

m∈Z

gab : JamJ
b
n−m :

=
1

2(k +Q)

∑

a,b

gab

( −1∑

m=−∞
JamJ

b
n−m +

∞∑

m=0

Jan−mJ
b
m

)
(80)

This construction is called the Sugawara construction [56, 57]. The (right)
central charge of the theory is then c = k dimg

k+Q (it is equal to the left central

charge c̄), where dimg is the dimension of the Lie algebra g. Note the inequalities
1 ≤ r ≤ c ≤ dimg where r is the rank of the algebra, i.e. the dimension of the
Cartan subalgebra (the largest subalgebra whose generators all commute with
each other).

Affine Lie algebras are infinite dimensional algebras which constrain strongly
any theory which possesses it as a symmetry, just like the Virasoro algebra
does. What the Sugawara construction shows (independantly of the theory of
Wess-Zumino-Witten models) is that the Virasoro algebra is in the envelopping
algebra of any affine Lie algebra.

In this context, an example of a constraint provided by affine Lie algebras
is given by the Knizhnik-Zamolodchikov equation [55]. It is obtained by first
applying equation (79) into a correlation function 〈∏i Φi(zi)〉, and then by us-
ing the operator product expansions TΦ and JΦ, given below in (83). The

42The overall factor depends on a convention which writes
P

c,d f
acdfbcd = 2Qgab, where

the squared length of the highest root has been normalized to 2, see [21].
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resulting equation yields two independant and non-trivial relations. One of
them is obtained by multiplying the equation by (z − zi) and then by inte-
grating over a closed contour encircling zi. This yields the conformal weight of
the field Φi, hi = 1

2(k+Q)

∑
a,b gabt

a
i t
b
i . The other relation is obtained by sim-

ply integrating over a closed contour encircling zi. The result is precisely the
Knizhnik-Zamolodchikov equation:


∂zi −

1

k +Q

∑

a,b

∑

j 6=i

1

zij
gabt

a
i t
b
j



〈∏

k

Φk(zk)

〉
= 0 (81)

This equation may be used to constrain n-point functions, as will be done in
section 5.

The currents are Virasoro primary fields of conformal weight h = 1. They
satisfy the commutation relations:

[Ln, J
a
m] = −mJan+m (82)

which indicates that the mode Jam lowers the conformal weight by m.
In the purely conformal case, (Virasoro) primary fields are defined as the

fields which behave like the metric under any conformal transformation (i.e.
which transform covariantly with respect to a scale transformation). It is then
natural to define Wess-Zumino-Witten (or affine) primaries as fields which trans-
form like the field g(z, z̄) under a G(z)×G(z̄) transformation. This is equivalent
to requiring the operator product expansion of chiral Wess-Zumino-Witten pri-
mary fields with currents to be:

Ja(z)Φλ(w) ∼ −t
a
λΦλ(w)

z − w (83)

where the affine primary Φλ is associated with the representation λ of the algebra
g and taλ is the matrix ta in the representation λ. This definition is indeed
similar to the definition of Virasoro primaries Φ in terms of the operator product
expansion of TΦ.

Wess-Zumino-Witten primary fields are in one-to-one correspondence with
Wess-Zumino-Witten primary states which satisfy:

Ja0 |Φλ〉 = −taλ|Φλ〉 , Jan>0|Φλ〉 = 0 (84)

Primary states, which yield a representation of the zero-modes algebra (the Lie
algebra g), are the starting point for the construction of representations of the
affine Lie algebra, obtained by constructing secondary states with the repeated
action of the modes Jaini<0. Although the zero-mode representation may be
unitary, the current (affine) algebra representation may not be so, and it is
necessary to add the Virasoro constraints (Ln − δn,0)|Φλ〉 = 0 for any positive
integer n. This is a quantum analogue of the classical constraint imposed by
conformal invariance, and ensures that a unitary spectrum is obtained. This is
very similar to the construction of Verma modules.
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There exist an inner product, and the unitarity (or reality) condition writes

(Jan)
†

= Ja−n.
Important results are that a Wess-Zumino-Witten primary field is necessary

a Virasoro primary field (but the inverse is not true), of conformal weight hλ =
1

2(k+Q)

∑
a,b gabt

a
λt
b
λ. Moreover, the number of affine primary fields is finite. This

means that Wess-Zumino-Witten models are rational conformal field theories
(yet the number of Virasoro primary fields is infinite). One should therefore
always work with the affine Lie algebra representations.

Before concluding this section, remark that the central charge c and all
conformal weights hλ are positive (since

∑
a t
a
λt
a
λ is the quadratic Casimir, hence

is positive), which is consistent with the statement that Wess-Zumino-Witten
models are unitary.

Finally, the compactness of the target space43 in string theory renders the
spectrum of the underlying worldsheet model discrete. Wess-Zumino-Witten
models associated to compact groups G therefore have a discrete spectrum (see
the example of SU(2) given below in subsection 4.4.3).

Wess-Zumino-Witten models, string theory and generalized gravity
Wess-Zumino-Witten models describe strings moving on group manifolds. The
connection is established by relating the Wess-Zumino-Witten action to the
modified Polyakov action for closed bosonic strings with non-trivial fields Gµν ,
Bµν and Φ:

S′
P = −T

2

∫
d2ξ

(√
detgabg

abGµν(X) + εabBµν(X)
) ∂Xµ

∂ξa
∂Xν

∂ξb

+
1

8π

∫
d2ξ
√

detgabR
(2)Φ(X) (85)

where R(2) is the scalar curvature of the intrinsic metric (on the worldsheet)
gab. This action gives back (27) when Gµν = ηµν , Bµν = 0 and Φ = 0.

Considering the modified Polyakov action and requiring that this model is
conformally invariant, i.e. that the trace of the stress-energy tensor be zero at
first order44 in α′ = l2s , one obtains the following conditions:

Rµν −
1

4
HµρσHν

ρσ +∇µ∇νΦ = 0

∇µ
(
e−ΦHµνρ

)
= 0

(∇Φ)
2 − 2 @ Φ−R+

1

12
H2 +

D − 26

3l2s
= 0 (86)

43In general, the target space is the space in which a function takes its values. For Wess-
Zumino-Witten models, the target space is the space-time (it is the space G on which the
function x 7→ g(x) takes its values).

44However, thanks to the remarkable behaviour of Wess-Zumino-Witten models, which only
receive corrections in the level in quantum theory, solutions of equations (86) corresponding
to group manifolds remain exact at all orders in α′, upon the replacement k → k + Q, see
(??).
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where Rµν is the Ricci tensor and ∇µ is the covariant derivative, related to the
metric ds2 = Gµν(x)dx

µdxν , D is the total space-time dimension (the −26 term
comes from the bosonic ghosts), Φ is the dilaton (the massless scalar field found
in all perturbative string theory, whose expectation value determines the string
coupling constant), and Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν . Interestingly, when
the background fields Gµν , Bµν and Φ are such that the first two equations are
satisfied, the model (without the ghosts) describes a conformal field theory with
central charge:

c = D + 3l2s

(
(∇Φ)

2 − 2 @ Φ−R+
1

12
H2

)
(87)

which is indeed a constant. The above relations (86) are called the generalized
gravity equations. They may also be obtained from the effective action45 for the
background fields of bosonic string theory (in dimension D = 26):

S ∼
∫
dDx

√
−detGµνe−Φ

(
R+ (∇Φ)

2 − 1

12
H2

)
(88)

at first order in α′, where R is the Ricci scalar for the metric Gµν .

Cosets and orbifolds What makes Wess-Zumino-Witten models so impor-
tant is that they provide a classification of rational conformal field theories, in
the sense that all known unitary rational conformal field theories have an al-
ternative description obtained from the Wess-Zumino-Witten models by means
of two constructions, namely cosets and orbifolds46. This paragraph briefly
mentions the definitions of cosets and orbifolds.

The coset construction is obtained when considering a simple Lie algebra g
which has a subalgebra h, with Virasoro modes Lgn and Lhn and central charges

cg and ch respectively. Then the modes L
g/h
n = Lgn − Lhn satisfy the Virasoro

algebra with central charge cg/h = cg − ch, i.e. they define a new conformal
field theory, which is the coset theory g/h (recall how a group G with subgroup
H may be factorized as G ≡ G/H ×H). An example of coset will be discussed
in section 6: SL(2,C)/SU(2) ≡ H+

3 .
The orbifold construction is possible whenever the theory carries the action

of a finite group G. Taking the orbifold of such a theory amounts to, first,
projecting the Hilbert space onto the G-invariant subspace (i.e. states of the
orbifold theory are states of the initial theory which are invariant under the
action of G, i.e such that for any element g ∈ G and for any state |φ〉, one
has |gφ〉 = |φ〉), then, if necessary, reinforce (restore) the modular invariance
of the partition function on the torus by adding some twisted sectors to the
space of states. More precisely, the partition function of the orbifold theory

45An effective action for a field theory describes the physical system below a given energy
scale or, equivalently, above a given length scale (which here is ls).

46For instance, the unitary minimal model with central charge c = 1− 6
m(m+1)

is equivalent

to the coset (csu(2)k ⊕ csu(2)1) /csu(2)k+1 with k+2 = m, where csu(2)k is the affine Lie algebra
at level k.
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may be constructed in two steps. First, consider a twisted partition function on
the torus, i.e. impose boundary conditions that are not periodic, but twisted
by some elements a and b of G (for instance, a bosonic field φ would satisfy
φ(z + 1) = aφ(z) and φ(z + τ) = bφ(z)). Denote this partition function by Zab.
Then, sum over all compatible boundary conditions:

Zorbifold =
1

|G|
∑

a,b∈G s.t. ab=ba

Zab (89)

where |G| is the cardinal (the number of elements) of the group G.

4.4.3 The fusion rules and the Verlinde formula

The representationHj of the meromorphic operator vertex algebra will be called
the conjugate representation of an irreducible representation Hi if and only if
there exists at least one non-zero two-point function involving a state from Hi
and a state from Hj . One then denotes j by i∨. When well defined (it is always
assumed that it is the case here) , the conjugation map is uniquely defined. It
is bijective and involutive, i.e. the conjugate is unique and (i∨)∨ = i.

The fusion coefficient Nij
k is defined as the multiplicity with which the re-

presentation Hk appears in the product Hi ⊗ Hj (for some more details on
this, see e.g. [26]). It is therefore non-zero if and only if there exist fields
Φi,j,k∨ in the Hi,j,k∨ representations (respectively) such that the three-point
function 〈ΦiΦjΦk∨〉 is non-zero (or equivalently if Cijk∨ 6= 0), which means
that it encodes the dynamics (the possible couplings) of the theory. This def-
inition assumes that the fusion product of any two irreducible representations
of the meromorphic conformal field theory can be completely decomposed into
irreducible representations. This is true for most rational conformal field the-
ories, but not for logarithmic conformal field theories for instance. The fusion
coefficients satisfy some symmetry properties: Nij

k = Nji
k because the theory

is local, moreover Nijk = Nij
k∨ is totally symmetric.

One may loosely define the fusion algebra by the following product:

ΦiΦj =
∑

k

Nij
kΦk (90)

which is reminiscent of the operator product expansion.
It is convenient to define the fusion matrices47 Ni which have coefficients

(Ni)j
k

= Nij
k. The associativity of the operator product expansion (crossing

symmetry, see figure 6) implies that the fusion matrices are a representation
of the fusion algebra and (equivalently) that the fusion matrices commute with

47These fusion matrices should not be confused with the fusion (or fusing) matrix which
was mentioned in the context of the axiom of duality and which will be considered again in
section 4.5.

44



each other:
∑

l

(Nj)i
l
(Nk)l

m
=

∑

l

Njk
l(Nl)i

m

∑

l

(Ni)j
l
(Nk)l

m
=

∑

l

(Nk)j
l
(Ni)l

m
(91)

Moreover, the fusion matrices commute with their adjoints (Ni)
† = Ni∨ and

hence are normal, therefore diagonalizable and actually codiagonalizable. One
can then show that48:

Nij
k =

∑

l

Si
lSj

l(S−1)l
k

S0
l

(92)

An important result found by Verlinde [58] states that the S matrix that ap-
pears in (92) is actually the modular matrix that appeared in the S modular
transformation of characters defined in (63), i.e. the modular S matrix diago-
nalizes the fusion matrices. Knowledge of the characters and of their modular
properties therefore implies knowledge of the dynamics of the theory. Recipro-
cally, the fact that Nij

k are integers puts strong constraints on the S matrix.

Finally, the Verlinde formula implies that Si
l/S0

l form a representation of the
fusion algebra:

Si
l

S0
l

Sj
l

S0
l

=
∑

k

Nij
k Sk

l

S0
l

(93)

This property is still valid for some non-rational theories, like H+
3 which is

studied in section 6.
Some systematic understanding of the Verlinde formula was acquired on the

basis of the axioms of conformal field theory [25], but a mathematical proof of
the Verlinde formula for a large class of rational conformal field theories based on
a minimal set of assumptions has only recently been provided [59]. The Verlinde
formula is generically valid for Wess-Zumino-Witten models i.e. generic affine
Kac-Moody algebras.

As a basic example, the character and S matrix of the SU(2)k−2 Wess-
Zumino-Witten model are (j, j ′ are the spins and label the representation):

χj(g) =

j∑

k=−j
eıkθ =

sin
(
j + 1

2

)
θ

sin θ
2

Sj
j′ =

√
2

k
sin

(
π(2j + 1)(2j′ + 1)

k

)
(94)

where the eigenvalues of the SU(2) matrix g are e±ıθ/2, and the fusion rules
are:

Dj1 ⊗Dj2 = ⊕min(j1+j2,k−2−j1−j2)
j=|j1−j2| Dj (95)

48Proof: the matrices being co-diagonalizable, Nk
ij =

P
l Sj

kλ
(i)
l (S−1)l

k
. Taking j = 0 and

multiplying on the right by the S matrix, one obtains λ
(i)
l = Si

l/S0
l.

45



where the spins j1, j2 and j belong to {0, 1
2 , ...,

k
2} and label the SU(2) repre-

sentations Dji , that are of dimension 2ji + 1.

4.4.4 Superconformal algebras

A few words should be said on superconformal algebras. Up to now this survey
focused on bosonic theories, but one would like to incorporate fermions even-
tually. There exist several kinds of superconformal algebras, classified by their
number N of supercurrents.

The N = 1 superconformal algebra appears in the theory of a free boson and
a free Majorana fermion. It is also the symmetry algebra that usually appears
in four-dimensional superstring theory (after a proper compactification), since
it must be more easily connected to the standard model where supersymmetry
is broken. The N = 1 superconformal algebra is generated by the modes of the
energy-momentum tensor T together with a supercurrent G of conformal weight
3/2. These modes satisfy the (anti-)commutation relations:

[Lm, Gr] =
(m

2
− r
)
Gm+r

{Gr, Gs} = 2Lr+s +
c

3

(
r2 − 1

4

)
δr+s,0 (96)

The N = 1 superconformal field theory is unitary if and only if the central
charge satisfies c = 3

2 − 12
m(m+2) with m a positive integer larger than 2.

The N = 2 superconformal algebra is also of interest, because it is the
symmetry algebra of the worldsheet conformal field theory of space-time super-
symmetric string theories (which live in ten dimensions). It is generated by the
modes of the energy-momentum tensor T , two supercurrents G± of weight 3/2
and a U(1) current J (of weight 1) which rotates the supercurrents. The modes
of these fields satisfy:

[Lm, G
±
r ] =

(m
2
− r
)
G±
m+r , [Jm, G

±
r ] = ±G±

m+r

[Lm, Jn] = −nJm+n , {G±
r , G

±
s } = 0

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0 (97)

in the so-called NS (Neveu-Schwarz) sector, for which G±(e2ıπz) = G±(z).
There is also an R (Ramond) sector that is continuously connected to the NS
sector by a transformation called spectral flow. Remark that the N = 1 super-
conformal algebra is a subalgebra of the N = 2 superconformal algebra.

There exist conformal field theories with more supersymmetry (N = 4 etc.),
however this brief review will stop here.

4.5 Classical conformal field theory and group theory

SU(2) group coefficients The definition of Clebsch-Gordan and Racah coef-
ficients is reviewed here in the case of the group SU(2). The following definitions
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can however be extended to other groups.
Clebsch-Gordan coefficients Cj1 j2 j

m1m2m relate the two canonical orthonormal
basis in the space Hj1 ⊗Hj2 = ⊕jHj :

|j1,m1〉 ⊗ |j2,m2〉 =
∑

j,m

Cj1 j2 j
m1m2m|j,m〉 (98)

where −j1 ≤ m1 ≤ j1, −j2 ≤ m2 ≤ j2, |j1 − j2| ≤ j ≤ j1 + j2 and −j ≤ m ≤ j.
Racah coefficients R(j1j2j3, j12j23, j) relate two canonical orthonormal basis

in the space (Hj1 ⊗Hj2)⊗Hj3 = Hj1 ⊗ (Hj2 ⊗Hj3):

cj1j2(j12),j3,j
m =

∑

m1,m2,m3

Cj1 j2 j12
m1m2m12

Cj12 j3 j
m12m3m(|j1,m1〉 ⊗ |j2,m2〉)⊗ |j3,m3〉

cj1,j2j3(j23),j
m =

∑

m1,m2,m3

Cj1 j23 j
m1m23mC

j2 j3 j23
m2m3m23

|j1,m1〉 ⊗ (|j2,m2〉 ⊗ |j3,m3〉)

cj1j2(j12),j3,j
m =

∑

j23

R(j1j2j3, j12j23, j)c
j1,j2j3(j23),j
m (99)

where −ji ≤ mi ≤ ji for all indices i. The Racah coefficients do not depend on
m.

The classical limit of conformal field theory The classical limit of a
conformal field theory is defined as the limit in which the conformal weights of
all primary fields vanish, making all correlation functions independant of z. An
example of such a limit is provided by the Wess-Zumino-Witten models in the
limit k →∞, which is indeed the classical limit.

In the classical limit, conformal field theory is nothing but group theory, i.e.
every compact group, either continuous or discrete, leads to a classical conformal
field theory (meaning that it solves the polynomial equations that are needed
for the duality axiom to hold), and reciprocally every conformal field theory
corresponds to a group. The correspondence is explained in this section (see
[25] for more details, and [19] for an introduction to group theory). It was at
the core of the paper [2].

Since hi = 0, the primary fields Φi(z) are actually independant of z, and one
can think of them as forming a basis for the functions on the group G with the
correspondence Φi ↔ fi(g), g ∈ G, where fi is a representation of the symmetry
algebra of the theory (corresponding to Hi). The operator product expansion
is then simply the product of two functions on the group:

fi(g)fj(g) =
∑

k

Cij
kfk(g) (100)

while the correlation functions are given by a sum over the group (or an integral
if the group is continuous):

〈Φi1 ...Φin〉 =
∑

g∈G
fi1(g)...fin(g) (101)
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Other interesting objects in conformal field theories are the intertwiner oper-
ators. An intertwiner V kij is simply the linear function that associates to any
tensor product of states in the representation Hi ⊗ Hj the states that are in

the resulting representation Hk, with the coupling constant Cij
k. Restricting

to the group SU(2) in order to give explicit formulas (the correspondence how-
ever is generic, at least for compact semi-simple groups) and using standard
notations, the intertwiner operators are expressed in the limit in terms of the
Clebsch-Gordan coefficients of the group and of the canonical basis vectors:

V Jj1j2 =
∑

m1,m2,M

|JM〉 Cj1 j2 J
m1m2M

〈j1m1j2m2| (102)

The fusion matrix is defined as:

V j1jj23V
j23
j3j2

=
∑

j12

Fj23j12

[
j j3
j1 j2

]
V j1j12j2V

j12
jj3

(103)

and is given by the Racah coefficients :

Fj23j12

[
j j3
j1 j2

]
= R(j1j2j3, j12j23, j) (104)

The pentagon equation is then known as the Biedenharn-Elliott identity. The
fusion matrix F satisfies several symmetry properties, which can be equivalently
given in terms of the Racah coefficients:

Fpr

[
j k
i l

]
∼ Fp∨r

[
k j
l∨ i∨

]
∼ Fpr∨

[
i∨ l
j∨ k

]
(105)

where ∼ stands for ”equal up to a sign”.
The notion of character also coincides in the classical limit. Although

generic, it is easier to understand the correspondence in an explicit example,
say SU(2). The character of a representation of the group SU(2) was written
in equation (94). The character of a spin j representation of the affine algebra

ŝu(2)k−2 is:

χj(τ, ν) = Tr
(
e2ıπτ(L0− c

24 )e2ıπνj
3
0

)
→
ν→0

(2j + 1)qhj−
c
24 +

∞∑

n=1

cnq
hj− c

24 +n (106)

where the cn are integer coefficients whose exact value is of no interest here. The
classical limit amounts to the decoupling of the secondary fields (with conformal
weight larger than the one of primary fields), which is realized as follows:

lim
τ→ı∞

χj(τ)q
−hj+ c

24 = 2j + 1 = lim
θ→0

χj(θ) (107)

This is consistent since the limit ν → 0 in (106) may be interpreted in terms of
the group as θ → 0: indeed, both ν and θ parametrize the rotation, see also the

48



similar expressions of (94) and (106). Note also that S0
j/S0

0 = 2j + 1 is the
dimension of the representation j.

In summary, the proper correspondence between concepts in each theory is:

Group Chiral algebra
Representations Representations

Clebsch-Gordan coefficients Chiral vertex operators
/ intertwiners / intertwiners

Racah coefficients Fusion matrix
Character Character

Functions on the group Physical fields
Product of functions on the group Operator product expansion

Average over the group Physical correlation function
of a product of functions

(108)

Quantum groups Since classical conformal field theory can be identified to
group representation theory, it is natural to expect that (quantum) conformal
field theory is related to quantum groups. Quantum groups are a generalization
of the notion of group - actually, they are no longer groups. They are obtained
by exponentiation of a quantum analogue of standard (classical) Lie algebras,
which are the convenient object to work with. For instance, the su(2) algebra
is realized in terms of the Pauli matrices. The commutation relations of this
algebra are given by:

[J3, J±] = ±2J± , [J+, J−] = J3 (109)

where J± = σ1±ıσ2

2 and J3 = σ3. The Uq(su(2)) quantum algebra is defined by:

[J3, J±] = ±2J± , [J+, J−] =
qJ

3/2 − q−J3/2

q1/2 − q−1/2
(110)

and is the set of elements which are finite or infinite series of products of J±

and J3. In order to deal with finite series only, an equivalent definition relies
on elements k = qJ

3/2, k−1 = q−J
3/2 and uses the following (commutation)

relations:

kk−1 = k−1k = 1 , kJ±k−1 = q±1

[J+, J−] =
k − k−1

q1/2 − q−1/2
(111)

The quantum algebra Uq(su(2)) is therefore a q-deformation of the universal
enveloping algebra of su(2) (hence the notation), which is the set of all ele-
ments which can be written as a finite sum of products of elements of su(2)
(for instance, the quadratic Casimir 1

2 (J+J− + J−J+) + J3J3 is an element of
U(su(2))). The classical limit q → 1 restores the original su(2) algebra. Finally,
the representations of quantum algebras display different properties depending
on whether the number q is a root of unity or not.
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The correspondence between conformal field theory and quantum groups is
not well understood in general, however it is established for compact groups. For

instance, the quantum group Uq(SU(n)) at q = e
2ıπ
k+n is related49 to the Wess-

Zumino-Witten theory of SU(n)k. The most striking example of this relation
is that the fusion matrix of the conformal field theory is given by the Racah
coefficients of the quantum group, similarly to the classical limit case.

Quantum groups will be used in section 7.

4.6 Beyond rational conformal field theory.

This introduction to conformal field theory was restricted to rational conformal
field theories. Non-rational theories, that is to say conformal field theories
which have an infinite number of primary fields50, are also of interest. They
are essential to understand string theory in curved non-compact backgrounds
(Wess-Zumino-Witten models for non-compact groups are non-rational), which
is a necessary step to take before eventually adressing cosmological issues in
string theory.

Non-rational conformal field theories display new properties that make them
hard to deal with. For instance, the characters of representations of the operator
vertex algebra may not form a representation of the modular group anymore,
the Verlinde formula does not hold anymore a priori, the conjugation map may
need a different definition from the one given in section 4.4 and the conformal
weights and the central charge may not be rational numbers anymore either.
Another striking feature is that some of the representations may depend on
a continuous parameter, while the spectrum of rational theories was always
discrete. Furthermore, the one-to-one correspondence between states and fields
may not hold anymore. Because of all these new features, non-rational conformal
field theories are not well understood yet (see [35] for a review of some examples
of non-rational theories, including Liouville theory).

This dissertation was devoted to the study of non-rational conformal field
theories, and tries to shed new light on their properties. Major examples of
such theories include the pp-waves with Heisenberg symmetry, Liouville theory,
the H+

3 theory and the SL(2,R)/U(1) Wess-Zumino-Witten theory. The next
sections present the work that was done on these theories [1, 2].

49A more general conjecture for semi-simple groups would be that q = e
2ıπ
k+Q .

50The definition of rationality is actually not so clear yet, as several exist in the physics
and mathematics literature. One reason why is that it is not clear which conditions make
the theory easily tractable. Throughout this dissertation, a conformal field theory is called
rational if and only if the corresponding vertex operator algebra only possesses finitely many
irreducible representations, i.e. there is a finite number of primary fields.
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5 Heisenberg algebras and pp-waves

5.1 Introduction

Plane wave (or pp-wave) backgrounds are one of the few maximally supersym-
metric backgrounds of type IIB superstring that are known at this time (the
other ones being ten-dimensional Minkowski space and AdS5×S5). Plane waves
display interesting properties and have been studied for a while in the context of
string theory. For instance, the σ-model can be shown to be conformally invari-
ant to all orders in the α′ expansion [60, 61, 62, 63, 64, 65, 66, 67] – a property
due to the existence of a globally well-defined null Killing vector field. More-
over, the string can be quantized in the light-cone gauge (see e.g. [68]), where
the Lagrangian becomes quadratic, which makes pp-waves a good configuration
to study string theory in a background different from Minkowski space. Plane
wave backgrounds may be described by Wess-Zumino-Witten models, and the
Killing symmetries give rise to current algebra on the two-dimensional world-
sheet [69]. The existence of this current algebra can be used to organize the
operator algebra of the model , compute the exact spectrum, find a quasi-free
field resolution, and compute the vacuum energy [70, 71]. The conformal field
theory is non-rational and yet tractable. Its study may therefore help learn
more about non-rational theories and develop new tools before attacking more
complicated backgrounds. Moreover, the pp-wave geometry arises as a limit of
AdSp × Sq backgrounds, and, in the context of gravity / gauge theory corre-
spondence, pp-waves are dual to large N limits of gauge theory. This property
makes plane waves a good laboratory to study AdS/CFT correspondence and
holography in a context where the dual string theory may be exactly solvable.
In the prototype example of N = 4 super Yang-Mills theory, this corresponds to
taking the limit N → ∞ together with J → ∞ and keeping N

J2 fixed (N is the
number of colors and J is a charge of the SO(6) R-symmetry,). The associated
limit of the dual gravitational background is the Penrose limit of the AdS5×S5

background studied in [72] and exhibits an Heisenberg symmetry (taking a Pen-
rose limit consists in zooming in around a null geodesic). The exact light-cone
spectrum of the associated σ-model was computed [68, 73, 74, 75, 76] and it
was argued that it correctly matches the one obtained from super Yang-Mills
theory [77]. Note also that pp-waves incorporate corrections to flat space re-
sults, hence their study allows further insight into AdS/CFT correspondence.
For all these reasons it may be interesting to learn more about pp-waves and
Heisenberg algebras.

The purpose of the following work is to study plane wave backgrounds ex-
hibiting an H2n+2 Heisenberg current algebra (n is a positive integer). Several
results have already been obtained on this kind of pp-waves. In [78, 79], H4

and H6 have been studied, correlators have been calculated along with string
amplitudes, free field or quasi free field representations have been exhibited, and
holographic perspectives have been investigated. This work is indebted to these
papers, since in particular it gives generalized formulas for correlators, that are
valid for any n ≥ 1.
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Before anything else, it is worth studying how pp-wave backgrounds may
appear in the context of string theory. Such backgrounds are related to config-
urations of intersecting fundamental (or F1) strings51 and NS5 branes52, as was
pointed out in [78, 79]. More precisely, pp-waves can be obtained as the Penrose
limit [72] of intersecting branes. A rather general method to do this has been
presented in [80]. Several brane configurations are of interest: one NS5 only
[81, 82, 83], one NS5 brane intersecting on an F1 [84], or two NS5 intersecting
on an F1 [85]. It is possible to consider the near-horizon geometry [86] of these
configurations, or also to study several charge limits, as was partially done in
[87]. For instance, it is well-known that the near-horizon limit of the intersection
of an NS5 brane with a fundamental string is just AdS3×S3 and that a Penrose
limit of this configuration leads to a pp-wave with H6 symmetry, see e.g. [79].
Similarly, it is explained below how a configuration of 2 NS5 branes along with
an F-string leads to a background with H8 symmetry.

The following work is organized as follows. The first section reviews the
definition and properties of H2n+2 Heisenberg algebras, including their repre-
sentations. The second section explains how pp-wave backgrounds exhibiting
such algebras for symmetry can be obtained as Penrose limits of configurations
of intersecting branes, by studying and commenting several examples. Due to
dimensional constraints (since critical superstring theory is defined in ten di-
mensions), n is restricted to 1 ≤ n ≤ 4 in this section. The two, three and
four-point correlation functions between primary fields of any conformal field
theory exhibiting the H2n+2 symmetry are calculated in a third and last section.

5.2 H2n+2 Heisenberg algebra

This section introduces H2n+2 Heisenberg algebras and reviews important re-
sults, mostly concerning their representations. These well-known results (see
e.g. [78] and references therein) will be useful in the rest of the study, in partic-
ular when computing correlation functions and the operator product expansions
in section 5.4.

51The fundamental string, or F1-string, is the original string. The name is used to dis-
tinguish it from other one-dimensional objects that may appear in the theory, like D-strings
which are D1 branes (in type I and type IIB string theories) or solitonic strings.

52Neveu Schwarz 5-branes in the type I and type II superstring theories are related to the
two-form potential Bµν in the following way. The fundamental string couples to B(2) = Bµν

via a term
R
M2

B(2) where M2 is the worldsheet of the string. The Hodge duality relates

B(2) to a six-form potential B(6) by dB(6) = ∗dB(2) (recall that superstring theories live in
ten dimensions). This six-form couples to the NS5 brane, whose worldvolume is denoted by
M6, via a term

R
M6

B(6). One may say that the NS5 brane is a magnetic dual to the F1
string.
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5.2.1 Definition

The non-zero commutation relations between the generators of H2n+2 are:

[P+
α , P

−
β ] = −2ıµαδα,βK

[J, P±
α ] = ∓ıµαP±

α (112)

where 1 ≤ α, β ≤ n and the µα are real numbers. K is the central element of
the algebra i.e. commutes with all other elements, while J rotates P±

α . The
algebra H2n+2 is not semi-simple.

The algebra generically admits n−1 extra U(1) generators Ia, 1 ≤ a ≤ n−1,
which satisfy:

[Ia, P
±
α ] = ∓ı(σa)ααP±

α (113)

where σa is the diagonal matrix associated to Ia. These matrices are given by
the generators of the n−1 underlying U(1) symmetries of SU(n). Their explicit
values are given below for the simplest cases n = 2, 3 and 4. For n = 2:

σ1 =

(
1 0
0 −1

)
(114)

(this is a Pauli matrix) while for n = 3:

σ1 =




1 0 0
0 −1 0
0 0 0


 , σ2 =

1√
3




1 0 0
0 1 0
0 0 −2


 (115)

(these are the diagonal Gell-Mann matrices). Finally, for n = 4:

σ1 =




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 , σ2 =




1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


 , σ3 =

1√
7




1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 −3




All these matrices satisfy TrIi = 0 and TrI2
i = 2.

When all the µα are equal53, the U(1) symmetries are enhanced to SU(n)
with n2 − 1 generators Ib that are then needed for a proper classification of the
states of the theory. These generators satisfy:

[Ib, P
+
α ] = −ı

n∑

β=1

(σb)α
βP+

β , [Ib, P
−
α ] = ı

n∑

β=1

(tσb)α
βP−

β (116)

where the matrices σb are the generators of a matrix representation of SU(n).

53The more general case of arbitrary commensurable µα, which is expected to display extra
symmetry, is more complicated and will not be considered here.
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The H2n+2 algebra has two Casimir operators (up to quadratic order in the
currents), the central element K and:

C = 2JK +
1

2

n∑

α=1

(
P+
α P

−
α + P−

α P
+
α

)
(117)

Finally, the Sugawara construction can be carried out and holds the following
expression of the stress-energy tensor T in terms of a bilinear combination of
the currents [69, 78]:

T =
1

2

[
1

2

n∑

α=1

(P+
α P

−
α + P−

α P
+
α ) + 2JK +K2

n∑

α=1

µ2
α

]
(118)

This formula differs from the generic formula given in (79) which is valid for
semi-simple algebras only. In general, on must solve the Master equation in
order to find the stress-energy tensor, see e.g. [69, 88, 89].

5.2.2 Representations

There are three types of unitary representations of the H2n+2 Heisenberg group
[70, 90]:

1. Lowest-weight representations V +
p,̂, where54 0 < max(µαp) < 1 and j ∈ R.

These representations are constructed starting from a state |p, ̂〉 which sat-
isfies:

P+
α |p, ̂〉 = 0 , K|p, ̂〉 = ip|p, ̂〉 , J |p, ̂〉 = i̂|p, ̂〉 (119)

and acting repeatedly with P−
α . The value of the Casimir is C = −2p̂ +

p
∑n
α=1 µα and the spectrum of J is given by55 {̂+

∑n
α=1 µαmα|mα ∈ N}.

2. Highest-weight representations V −
p,̂, where 0 < max(µαp) < 1 and j ∈ R.

These representations are constructed starting from a state |p, ̂〉 which sat-
isfies:

P−
α |p, ̂〉 = 0 , K|p, ̂〉 = −ip|p, ̂〉 , J |p, ̂〉 = i̂|p, ̂〉 (120)

and acting repeatedly with P+
α . The value of the Casimir is C = 2p̂+p

∑n
α=1 µα

and the spectrum of J is given by {̂−∑n
α=1 µαmα|mα ∈ N}. The representation

V −
p,−̂ is conjugate56 to V +

p,̂.

3. Continuous representations V 0
sα,̂

where p = 0 and sα ∈ R+.
Here sα is actually a shorthand notation for s1, ..., sn (this shorthand nota-

tion will be used for other quantities later, namely for mα and qα in section 5.4).
These representations are characterized by:

K|sα, ̂〉 = 0 , J |sα, ̂〉 = i̂|sα, ̂〉 , P±
α |sα, ̂〉 6= 0 (121)

54The range of p is restricted by a stringy cut-off, which can be lifted by considering spectral
flowed representations (see [70, 82]). Such representations are not considered here, though.

55Note that due to (112), P+
α decreases the eigenvalue of J while P−

α increases it (by µα).
56Although the Wess-Zumino-Witten model based on the H2n+2 algebra is a non-rational

conformal theory, the conjugate can be defined along the lines of subsection 4.4.3.
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The spectrum of J is then given by {̂ +
∑n

α=1 µαmα|mα ∈ Z} where |̂| ≤ µ
2

and µ = min(µ1, ..., µn) (in the case of commensurable µα, this condition may
be more restrictive). For continuous representations, there are n other Casimir
operators besides K, denoted by Cα = P+

α P
−
α . Their values are Cα = s2α. The

representation V 0
−sα,̂ is isomorphic to V 0

sα,̂
. The conjugate representation of

V 0
sα,̂

is V 0
sα,−̂.

The one-dimensional (trivial, or identity) representation can be considered
as a particular case of continuous representation, where the charges sα and ̂
are zero.

The ground states of all these representations are assumed to be invariant
under the U(1) symmetries (or the SU(n) symmetry if all the µα are equal), but
for simplicity the associated quantum numbers will not be explicitly written.

Since the representations are infinite dimensional, it is very convenient to
introduce charge variables in order to keep track of the various components of a
given representation in a compact form. Following [78], the idea is to introduce
n dimensionless complex charge variables xα, and then to regroup the infinite
number of fields that appear in a given representation of H2n+2 into a single
field. The three different kinds of (primary) fields are:

Φ±
p,̂(z, z̄;xα, x̄α) =

∞∑

mα,m̄α=0

n∏

α=1

(xα
√
µαp)

mα

√
mα!

(x̄α
√
µαp)

m̄α

√
m̄α!

R±
p,̂;mα,m̄α

(z, z̄)

Φ0
sα,̂(z, z̄;xα, x̄α) =

∞∑

mα,m̄α=−∞

n∏

α=1

(xα)mα(x̄α)m̄αR0
p,̂;mα,m̄α(z, z̄) (122)

These fields will be generically denoted by Φaν where a = ±, 0 indicates the kind
of representation and ν = (p, ̂) for V ± representations while ν = (sα, ̂) for V 0

representations. The charge variables xα must satisfy some conditions for the
infinite sums in (122) to be well-defined, namely |xα| < 1 for V ±

p,̂ representations

and |xα| = 1 i.e. xα = eıΦα with Φα a real number for V 0
sα,̂

representations.

The monomials bmα(xα) =
(xα

√
µαp)

mα

√
mα!

form an orthonormal basis of the

space of entire series, with the measure:

∫
dµα(xα) =

µαp

π

∫

C

d2xαe
−µαpxαx∗

α (123)

where ∗ indicates complex conjugation. Indeed:

∫
bmα(xα)bm′

α
(xα)∗dµα(xα) = δmα,m′

α
(124)

The same kind of result holds for the monomials cmα(xα) = (xα)mα with xα =
eıΦα , which form an orthonormal basis when using the measure:

∫
dµα(xα) =

1

2π

∫ 2π

0

dΦα (125)
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The generators of the Heisenberg algebras (along with the ones corresponding to
the U(1)’s or SU(n)) are represented (i.e. act) on the fields (122) as described
below [90]. For the V +

p,̂ representations:

P+
0,α =

√
2∂α , P−

0,α =
√

2µαpxα , K0 = ıp

J0 = ı

(
̂+

n∑

α=1

µαxα∂α

)
, Ib,0 = ı

n∑

α,β=1

xα(σb)α
β∂β (126)

Similarly, for the V −
p,̂ representations:

P+
0,α =

√
2µαpxα , P−

0,α =
√

2∂α , K0 = −ıp

J0 = ı

(
̂−

n∑

α=1

µαxα∂α

)
, Ib,0 = −ı

n∑

α,β=1

xα(σa)α
β∂β (127)

Finally, for the V 0
sα,̂

representations57 (K0 = 0):

P+
0,α =

sα
xα

, P−
0,α = sαxα

J0 = ı

(
̂+

n∑

α=1

µαxα∂α

)
, Ia,0 = ı

n∑

α=1

xα(σa)α
α∂α (128)

As expected, these generators satisfy the commutation relations (112). It is
useful to keep in mind the homogeneity relations µαp ∼ sα ∼ xα ∼ 1 and
̂ ∼ µα deduced from the above expressions.

Using the above representation along with the expression (118) that relates
the stress-energy tensor to the currents, the conformal weight for fields in rep-
resentations V ±

p,̂ is found to be:

h = ∓p̂+
1

2

n∑

α=1

µαp(1− µαp) (129)

while for fields in representations V 0
sα,̂

:

h =
1

2

n∑

α=1

s2α (130)

Finally, an important piece of information is the decomposition of the tensor

57Note that in this case one can not represent Ib by ı
Pn

α,β=1 xα(σa)α
β∂β
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products between unitary representations of the H2n+2 algebra [90]:

V +
p1,̂1

⊗ V +
p2,̂2

=

∞∑

m1,m2,...,mn=0

V +
p1+p2,̂1+̂2+

Pn
α=1 µαmα

V +
p1,̂1

⊗ V −
p2,̂2

=

∞∑

m1,m2,...,mn=0

V +
p1−p2,̂1+̂2−

Pn
α=1 µαmα

, p1 > p2

V +
p1,̂1

⊗ V −
p2,̂2

=

∞∑

m1,m2,...,mn=0

V −
−p1+p2,̂1+̂2+

Pn
α=1 µαmα

, p1 < p2

V +
p ,̂1
⊗ V −

p ,̂2
=

∫ ∞

0

s1ds1...

∫ ∞

0

sndsnV
0
sα,̂1+̂2

V ±
p,̂1
⊗ V 0

sα,̂2 =

∞∑

m1,m2,...,mn=−∞
V ±
p,̂1+̂2+

Pn
α=1 µαmα

(131)

Note that when all µα are equal there are several terms58 with the same ̂ =
̂1 + ̂2 + µm in the sums appearing in (131). The existence of this multiplicity
is precisely what is necessary in order to obtain SU(n) invariant couplings, as
will be explained in section 5.4.

5.2.3 Heisenberg algebras and string theory

Heisenberg algebras arise in string theory as the symmetry algebra of some
backgrounds, as will be explained in section 5.3. These backgrounds, called
pp-waves, are of the form59:

ds2 = 2dudv − 1

4

(
n∑

α=1

µ2
αy

2
α

)
du2 +

n∑

α=1

(
dy2

1α + dy2
2α

)
(132)

where y2
α = y2

1α + y2
2α. They are supported by an NS-NS totally antisymmetric

field strength:

H =
n∑

α=1

µαdu ∧ dy1α ∧ dy2α (133)

and the dilaton is constant. The H field is necessary for the generalized gravity
equations (86) to hold. The only non-trivial component of the Ricci tensor is
Ruu = 1

4

∑n
α=1 µ

2
α. The central charge is determined by equation (87) to be

c = 2n+ 2 i.e. it is precisely the space-time dimension (or the dimension of the
Lie algebra H2n+2 – this is generic, see [91]).

58The number of such terms is Cm
m+n−1 for SU(n) .

59Note that is is always possible to multiply the du2 term of the metric by any positive
constant λ2, by changing coordinates, u = λu′ and v = v′/λ. This manipulation amounts to
an overall rescaling of the µα. The case µα = 0 for all α corresponds to flat space.
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A change of coordinates makes more obvious the fact that pp-waves are
indeed gravitational plane-waves. Starting from (132) and defining:

u = u′ , yiα = y′iα
sinµαu

′

2µα

v = v′ − 1

4

n∑

α=1

sin 2µαu
′

2µα

(
y′21,α + y′22,α

)
(134)

the metric becomes:

ds2 = du′dv′ +

n∑

α=1

(
sinµαu

′

2µα

)2 (
dy′21,α + dy′22,α

)
(135)

As first realized in [69] for the case n = 1 and then in [92] for generic n, the
σ-models corresponding to Hpp-waves, given in (85), are Wess-Zumino-Witten
models based on the H2n+2 Heisenberg group (it can be checked by explicitly
computing the Wess-Zumino-Witten action (73) for a matrix field g valued in a
matrix representation of the group H2n+2 – the metric comes from the σ-model
term, while the field strength H comes from the triple derivative). Because su-
perstrings (in which one is eventually interested in, though only bosonic strings
are considered here) live in ten dimensions, n is restricted to 1 ≤ n ≤ 4 when
studying string theory backgrounds. Otherwise it may be any positive integer.

The current algebra separates in a left (holomorphic) part and a right (anti-
holomorphic) part. Since both parts can be treated in the exact same way,
the focus will be put on the left part only. The right part, when needed, will
be characterized by barred expressions. The (holomorphic) current algebra is
defined by the following operator product expansions:

P+
α (z)P−

β (w) ∼ 2δβα
(z − w)2

− 2iµαδ
β
α

z − w K(w)

J(z)P±
α (w) ∼ ∓ iµα

z − wP
±
α (w)

J(z)K(w) ∼ 1

(z − w)2
(136)

where 1 ≤ α, β ≤ n. These operator product expansions correspond to the
following commutation relations for the left-moving current modes:

[P+
α,n, P

−
β,m] = 2nδβαδn+m,0 − 2iµαδ

β
αKn+m , [Jn,Km] = nδn+m,0

[Jn, P
+
α,m] = −iµαP+

α,n+m , [Jn, P
−
α,m] = iµαP

−
α,n+m (137)

The zero-modes satisfy the commutation relations (112). The spectral flow acts
on the Heisenberg algebra according to:

P̃+
α,n = P+

α,n−w , P̃−
α,n = P−

α,n+w , J̃n = Jn

K̃n = Kn − ıwδn,0 , L̃n = Ln − ıwJn (138)
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where w is an integer. The spectral-flowed modes satisfy the same commutation
relations as the original modes (the two corresponding algebras are isomorphic).

Finally, the operator product expansions between the currents and the pri-
mary vertex operators (122) can be written in a compact form:

J A(z)Φaν(w;x) = −J
A
0,aΦ

a
ν(w;x)

z − w (139)

where A labels the H2n+2 currents and the J A0,a are the differential operators

that realize the action of the zero-modes J A0 on a given representation (a, ν).
These operators were given in relations (126), (127) and (128).

These results will be used to compute two, three and four-point correlation
functions in section 5.4.

5.3 Heisenberg algebras in string theory

Intersecting brane configurations have been widely studied [84, 93, 94, 95].
Penrose limits [96] have equally received a lot of attention in the past years
[72, 80, 97]. This section relies on these results in order to explain how Hpp-
wave backgrounds appear as Penrose limits of brane configurations.

Before moving on to explicit brane intersections, some precisions concerning
conventions, the S-duality as well as the Penrose limit may be useful. Indeed,
several papers in the literature study configurations of D1 and D5 branes in type
IIB superstring theory. These configurations are related to the ones studied here
in type IIB theory60, with F1 strings and NS5 branes, by the S-duality, which
acts on the background fields according to61:

Φ′ = −Φ

G′
E,µν = G′

µνe
−Φ′/4 = e−Φ/4Gµν = GE,µν (140)

where Gµν is the string metric (which is the metric which has been used every-
where in the dissertation, and in particular in (86) or (88)), and GE,µν is the
Einstein metric. The Einstein metric62 is sometimes used because it has the
nice properties that it is invariant under S-duality and that it diagonalizes the
kinetic terms of the metric and of the dilaton in the effective action (88). All
the results that follow are given in the string frame. The S-duality exchanges

60Type IIB theory is favored in the context of the present study since it contains D1, D5
and NS5 branes, which is not the case for type IIA which only contains even dimensional D-
branes. Moreover, type IIB string theory is self-dual under S-duality. Finally, NS5 branes are
preferred to D5 branes since their background have an NS-NS B field which can be included in
a worldsheet description (conformal field theory point of view) according to Polyakov’s action
(85). On the contrary, D5 branes lead to non-zero Ramond-Ramond (RR) fields which are
not well understood from a conformal viewpoint.

61Since the string coupling is gs = eφ/2, this duality relates weakly coupled theories to
strongly coupled ones.

62The above definition (140) is only valid in ten dimensions. More generally, inD dimensions

GE,µν = e
− 2φ
D−2Gµν .
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the D1 brane (D string) and the fundamental (F1) string, and the D5 brane and
the NS5 brane.

Moreover, some authors use a normalization for the dilaton that differs from
the one used here by a factor two. In this dissertation, the normalization is fixed
by the expressions of the low-energy equations of motion for the background
fields (86) or by their effective action (88). It is consistent with the above relation
defining the Einstein metric from the string metric, and with the expression of
the string coupling gs = eφ/2.

The Penrose limit is obtained by zooming in around null geodesics, and
leads to pp-wave space-times. Light-like (null) geodesic trajectories satisfy the
following equations:

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0 , gµν

dxµ

ds

dxν

ds
= 0 (141)

where the Γµνρ are the Christoffel symbols of the metric gµν , which for the three-
sphere and the anti-de Sitter space (relevant in the near-horizon limit presented
below) are given in appendix A.

5.3.1 One NS5 brane and one F1 string

The solution of the low-energy effective action (88) corresponding to an NS5
brane intersecting with a fundamental string is [84]:

ds2 =
1

H1
(−dt2 + dx2) +

4∑

i=1

dx2
i +H5

(
dr2 + r2dΩ3

2
)

eΦ = g2
s

H5

H1

Htxr =
d

dr
H−1

1 =
2α′q1r

(α′q1 + r2)2
, Hφθψ = 2α′q5 sin2 φ sin θ (142)

where Ω3 is a three-sphere:

dΩ3
2 = dφ2 + sin2 φ

(
dθ2 + sin2 θdψ2

)
(143)

and where:

H1(r) = 1 +
α′q1
r2

, H5(r) = 1 +
α′q5
r2

(144)

These functions are harmonic63 on the overall transverse space (the dr2+r2dΩ3
2

part of the metric). Finally, gs is the ten dimensional string coupling constant
(remark that for r → ∞, the dilaton verifies eφ/2 = gs) and q1 and q5 are
respectively the charge of the string and the charge of the NS5 brane. The
component of the H field created by the NS5 brane is related to the volume

63The names H1 and H5 stand for Harmonic functions and should not be mistaken with
the field strength of the antisymmetric tensor Hµνρ.
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form of the three-sphere, ω3 = sin2 φ sin θdφdθdψ where 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π
and 0 ≤ ψ ≤ π, which is normalized so that

∫
S3 ω3 = 2π2. Hence:

∫

S3

H = 4π2α′q5 (145)

with integer charge q5. Finally, the field strength is sometimes written as:

H = dt ∧ dx ∧ d
(
H−1

1

)
+ ∗dH5 (146)

where ∗ is the Hodge dual64 on the four dimensional space r, φ, θ and ψ. An
formula equivalent to (142) for the field strength, using Euclidean coordinates
yi on this space, is Hyiyjyk = εijkl

∂H5

∂yl
.

Penrose limit of the NS5/F1 background It is possible to take the Pen-
rose limit for a generic null geodesics of the above NS5/F1 configuration (142).
The method for doing so is explained in [80]. The result is rather complicated
and does not correspond to H2n+2 symmetric spaces like the ones studied here
(132). It is however presented below in order to motivate the interest in the
near-horizon limit, which gives rise to backgrounds with Heisenberg symmetry,
as will be seen later. The following calculations also explain how to compute
the Penrose limit after having performed the near-horizon limit.

Starting from the NS5/F1 configuration (142), a first step is to change vari-
ables to adapted ones:

u = u(r) , v = t+ lφ+ a(r) , z = φ+ b(r) (147)

where l is an arbitrary length constant parametrizing the null geodesic. It can
be understood as the angular momentum of the massless particle whose motion
is described by the null geodesic [80]. This change of coordinates brings part of
the initial metric (142):

ds2 = −H1(r)
−1dt2 +H5(r)

(
dr2 + r2dφ2

)
(148)

to the form:

ds2 = 2dudv −H−1
1 dv2 + 2lH−1

1 dvdz +
(
r2H5 − l2H−1

1

)
dz2 (149)

The equality between the two metrics gives formulas for the functions u, a and
b:

a′(r) =

√
H5H1 −

l2

r2
, b′(r) = − l/r2√

H5H1 − l2/r2

u′(r) = Q(r) =
rH5√

r2H5H1 − l2
(150)

64The Hodge dual, denoted by a ∗, relates p-forms to (D−p)-forms where D is the spacetime

dimension. Its action on components is ∗Aµ1...µD−p =

√
−detgµν

p!
εµ1...µD−p

ν1...νpAν1...νp

where ε is the D-dimensional totally antisymmetric Levi-Civita symbol and g is the metric
which is used to lower and raise indices.
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The length l cannot take any value. For the change of variables to be consistent,
the argument of the square root appearing in a′, b′ or u′ has to be positive.
Hence:

l ≤
√
α′q1 +

√
α′q5 (151)

The Penrose limit can then be taken, by first rescaling the coordinates:

u = U , v = λ2V , y = λY , (152)

where y stands generically for all coordinates x, xi, z, as well as y1 and y2
defined in terms of coordinates on the three-sphere (143) by:

y1 = θ cosψ , y2 = θ sinψ (153)

The coordinates r, ψ and t are not rescaled. In the Penrose limit λ → 0, the
definition of z yields φ = −b(r). Moreover, the new metric and field strength
are related to the old ones by a rescaling:

ds2[new] = λ−2ds2 , Hµνρ[new] = λ−2Hµνρ (154)

The new metric writes:

ds2 = 2dUdV +
(
r2H5(r) − l2H1(r)

−1
)
dZ2 +H1(r)

−1dX2

+H5(r)r
2 sin b(r)2

(
dY 2

1 + dY 2
2

)
+ dX2

1 + dX2
2 + dX2

3 + dX2
4(155)

and the field strength and dilaton are:

HUXZ =
2lα′q1

r3H1(r)2H5(r)

√
H1(r)H5(r) −

l2

r2

HUY1Y2 =
2lα′q5
r3H5(r)

sin b(r)
2
, eΦ = g2

s

H5(r)

H1(r)
(156)

One last change of coordinates:

U = u , X =
√
H1x (157)

Z =
1√

r2H5 − l2/H1

z , Yi =
1

r sin b
√
H5

yi

V = v +
1

2

∂uH
− 1

2
1

H
− 1

2
1

x2 +
1

2

∂u

(
rH

1
2
5 sin b

)

rH
1
2
5 sin b

(y2
1 + y2

2) +
1

2

∂u

√
r2H5 − l2H−1

1√
r2H5 − l2H−1

1

z2

is necessary in order to obtain the more usual Brinkman (pp-wave) form [72]:

ds2 = 2dudv +Adu2 + dx2 + dz2 + dy2
1 + dy2

2 +

4∑

i=1

dx2
i (158)

62



where A is a complicated expression that depends on u (since r = r(u)):

A = Azz
2 +Axx

2 +Ay(y
2
1 + y2

2) (159)

Az =
1√

r2H5 − l2H−1
1

(
−Q−3∂rQ∂r

√
r2H5 − l2H−1

1

+Q−2∂2
r

√
r2H5 − l2H−1

1

)

Ax =
√
H1

(
−Q−3∂rQ∂rH

− 1
2

1 +Q−2∂2
rH

− 1
2

1

)

Ay = (r
√
H5 sin b)−1(−Q−3∂rQ∂r(r

√
H5 sin b) +Q−2∂2

r (r
√
H5 sin b))

Finally, the associated field strength of the antisymmetric tensor and dilaton
are:

eΦ = g2
s

H5

H1

Huxz =
2lα′q1
r4H1H5

, Huy1y2 =
2lα′q5
r4H2

5

(160)

Penrose limit of the near-horizon geometry Since a general Penrose limit
of the NS5/F1 configuration (142) is rather complicated, it is natural to turn
to simplifying limits. A physically sensible one is the near-horizon limit, which
is achieved by considering r/

√
α′ → 0, with fixed charges q1 and q5. This leads

to the following solution:

ds2 =
r2

α′q1

(
−dt2 + dx2

)
+ α′q5

dr2

r2
+ α′q5dΩ3

2 +

4∑

i=1

dx2
i

Htxr =
2r

α′q1
, Hφθψ = 2α′q5 sin2 φ sin θ , eΦ = g2

s

q5
q1

(161)

The dilaton becomes constant. This is the well-known geometry of AdS3×S3×
R4, in Poincaré coordinates (see (248)). The AdS3 radius is R =

√
α′q5 which

is equal to the radius of the S3 sphere.
The (general) Penrose limit may be taken, and the result is obtained by

using the formulas of the previous paragraph for H1,5 =
α′q1,5
r2 respectively:

ds2 = 2dudv − l2

α′2q25

(
x2 + z2 + y2

1 + y2
2

)
du2 + dx2 + dz2 + dy2

1 + dy2
2 +

4∑

i=1

dx2
i

Huxz =
2l

α′q5
, Huy1y2 =

2l

α′q5
, eΦ = g2

s

q5
q1

(162)

where l is an arbitrary constant. In particular, l = 0 corresponds to a radial
null geodesic and leads to flat space with zero field strength.
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The only non-trivial gravity equation :

Ruu + 2∂2
uΦ =

1

2
H2
uxz +

1

2
H2
uy1y2 (163)

is satisfied, where Ruu = 4 l
2

q25
is just the opposite of the sum of the coefficients

appearing in front of du2 in the metric (162).
This configuration is an Hpp-wave with the Heisenberg current algebra H6.

Note that here µ1 = µ2 = 2l
α′q5

(it is not possible to obtain µ1 6= µ2 in this way),

therefore there is also an enhanced SU(2) symmetry. This will motivate some
computations later, see e.g. (190) and (192). Another useful remark is that µ1,
µ2 have the dimension of an inverse length (see a remark after formula (128)).

Case q1 = 0: one NS5 brane only The simpler case for which there is
actually no fundamental string [81, 82] also deserves some comment. The near-
horizon limit of an NS5 brane is obtained by setting q1 = 0 in (142) and then
by taking the limit r/

√
α′ → 0:

ds2 =
(
−dt2 + dx2

)
+ α′q5

dr2

r2
+ α′q5dΩ3

2 +

4∑

i=1

dx2
i

eΦ = g2
s

α′q5
r2

Hφθψ = 2α′q5 sin2 φ sin θ (164)

This configuration has a linear dilaton. The most general Penrose limit is:

ds2 = 2dudv − l2

α′2q25
(y2

1 + y2
2)du

2 + dx2 + dz2 + dy2
1 + dy2

2 +

4∑

i=1

dx2
i

Φ = Φ0 −
2

α′q5

√
α′q5 − l2 u , Huy1y2 =

2l

α′q5
(165)

where there is still a linear dilaton (Φ0 is a constant depending on the choice of
function u(r)). This background solves the only non-trivial gravity equation:

Ruu + 2∂2
uΦ =

1

2
H2
uy1y2 (166)

The solution would exhibit an H4 symmetry if there was no linear dilaton. A
solution consists in setting l2 = α′q5, which makes the dilaton constant. This
seems to fix µ1 = 2/

√
α′q5, but an appropriate scaling of the coordinates u and

v allows to consider any µ1.

5.3.2 Two NS5 branes and one F1 string

The solution of the equations of generalized gravity corresponding to the con-
figuration of 2 NS5 branes orthogonally intersecting on a fundamental string
[85, 93] is:

ds2 =
1

H+
1 H

−
1

(−dt2 + dz2) +H+
5 d
−→x 2

+ +H−
5 d
−→x 2

− (167)
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where:

H+
1 = 1 +

α′q1
x2

+

, H−
1 = 1 +

α′q1
x2
−

H+
5 = 1 +

α′Q+
5

x2
+

, H−
5 = 1 +

α′Q−
5

x2
−

(168)

with x2
± = −→x 2

± and:

d−→x 2
± = dx2

± + x2
±dΩ

2
3,± , dΩ2

3,± = dφ2
± + sin2 φ±

(
dθ2± + sin2 θ±dψ

2
±
)

(169)

The charges of the NS5 branes are Q+
5 and Q−

5 , and q1 is the density of charge
of the F-string smeared along the −→x and −→y planes. The dilaton and the field
strength of the antisymmetric tensor are:

eΦ = g2
s

H+
5 H

−
5

H+
1 H

−
1

Hφ±θ±ψ± = 2α′Q±
5 sin2 φ± sin θ± , Htzx± =

d

dx±
(H+

1 H
−
1 )−1 (170)

5.3.3 Penrose limit of the near-horizon geometry

As in the case of one NS5 brane only, treating the general case of any Penrose
limit, without taking the near-horizon limit first, is complicated and of not much
interest for the present study.

Moreover, once the near-horizon limit, leading to the geometry of AdS3 ×
S3×S3×R, has been taken, it is possible to restrict to the simplest null geodesic
followed by a particle moving along the axis of AdS3 and spinning around the
equators of the two three-spheres. This strategy in the case of one NS5 brane
leads to the same result as the one found in the previous subsection. The
situation is the same for two NS5 branes.

The near-horizon geometry of (167) and (170), is obtained by taking the
limit x±/

√
α′ → 0 with the charges held fixed. Under the change of coordinates

u =

√
Q+

5 +Q−
5

α′2q21Q
+
5 Q

−
5

xy , θ =
1√

Q+
5 Q

−
5

(
−Q+

5 lnx+Q−
5 ln y

)
(171)

the metric, dilaton and field strength become:

ds2 = α′ Q+
5 Q

−
5

Q+
5 +Q−

5

(
u2(−dt2 + dz2) +

du2

u2

)
+ α′Q+

5 dΩ
2
3,+

+α′Q−
5 dΩ

2
3,− + α′ Q+

5 Q
−
5

Q+
5 +Q−

5

dθ2

eΦ = g2
s

Q+
5 Q

−
5

q21

Hψ±θ±φ± = 2α′Q±
5 sin2 ψ± sin θ± , Htx5u = 2α′ Q+

5 Q
−
5

Q+
5 +Q−

5

u (172)
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It is worth pointing out that this pure Neveu-Schwarz (NS) solution can be
constructed as an exact worldsheet conformal field theory, using the products of

affine algebras ̂sl(2,R)k× ŝu(2)k+× ŝu(2)k−×û(1)k′ where k = k′ =
Q+

5 Q
−
5

Q+
5 +Q−

5

and

k± = Q±
5 satisfy 1

k = 1
k+

+ 1
k−

. This remark justifies the treatment carried out

in the upcoming section 5.4. The Penrose limit can be more easily calculated
by changing the metric slightly to:

ds2 = α′ Q+
5 Q

−
5

Q+
5 +Q−

5

(− cosh2 ρ1dt
2 + dρ2

1 + sinh2 ρ1dφ
2
1) (173)

+α′Q+
5 (cos2 θ2dψ

2
2 + dθ22 + sin2 θ2dφ

2
2)

+α′Q−
5 (cos2 θ3dψ

2
3 + dθ23 + sin2 θ3dφ

2
3) + α′ Q+

5 Q
−
5

Q+
5 +Q−

5

dθ2

Then change variables to:

t =
µ1u

2
− v

µ1l2
+
yβ

l
, ρ1 =

r1
l

ψ2 =
µ2u

2
+

v

2µ2R2
+

+
yβ′

R+
, θ2 =

r2
R+

ψ3 =
µ3u

2
+

v

2µ3R2
−

+
yβ′

R−
, θ3 =

r3
R−

(174)

with λ a real number, l2 = α′ Q+
5 Q

−
5

Q+
5 +Q−

5

, R2
+ = α′Q+

5 and R2
− = α′Q−

5 , and:

2β′2 = 1 + β2, β2(µ2Q
+
5 − µ3Q

−
5 )2 = (µ2Q

+
5 + µ3Q

−
5 )2 (175)

The Penrose limit is λ→∞ with µ2
1
Q+

5 Q
−
5

Q+
5 +Q−

5

= µ2
2Q

+
5 +µ2

3Q
−
5 , and the metric and

the field strength are rescaled in a way analogous to (154) (the same limit may
equivalently be obtained by sending the charges Q±

5 to infinity). The resulting
background exhibits an H8 symmetry65:

ds2 = 2dudv − 1

4

3∑

i=1

µ2
i r

2
i du

2 +
3∑

i=1

(
dr2i + r2i dφ

2
i

)
+ dy2 + dθ2

eΦ = g2
s

Q+
5 Q

−
5

q21
Hur1φ1 = µ1r1 , Hur2φ2 = µ2r2 , Hur3φ3 = µ3r3 (176)

Note, however, that not all possible sets of (µ1, µ2, µ3) can be achieved in this
way. For a given configuration of charges, there is the relation:

µ2
1 = µ2

2(1 + ρ) + µ2
3

(
1 +

1

ρ

)
, ρ =

Q+
5

Q−
5

(177)

65Defining x1i = ri cosφi and x2i = ri sinφi, one gets the correct Hux1ix2i = µi that
appeared in (132).
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where the charge q1 does not appear (this is similar to the case with only one
NS5 brane). Equivalently, solving the above equation for ρ which may take any
positive rational value if all possible charge configurations are considered:

ρ =
1

2µ2
2

(
µ2

1 − µ2
2 − µ2

3 ±
√

(µ2
1 − µ2

2 − µ2
3)

2 − 4µ2
2µ

2
3

)
∈ Q+ (178)

For instance, any H6 algebra with (µ1, µ2, 0) can be achieved (where µ1 and µ2

may or may not be commensurable), but µ1 = µ2 = µ3 = 1 cannot be.

5.4 H2n+2 correlation functions

Two, three and four-point correlation functions of the kind
〈∏imax

i=1 Φaiνi

〉
, also

denoted by 〈a1...aimax〉 where ai = ±, 0 is the type of the representation, are
computed in this section. This work is indebted to [78, 79], since the results
presented here are generalizations (displaying some differences) of the results
obtained in these papers.

Two kinds of tools will be used in order to compute correlation functions
(whose z dependence is standard and has been reviewed in section 4.2). The first
one consists of the Ward identities, which encode the fact that the correlation
functions must be invariant under the Heisenberg group H2n+2. The Ward
identities are sufficient to calculate the entire x dependence of the two and
three-point functions. Overall constants remain, which are not determined by
the worldsheet or target space symmetries. The constants appearing in the two-
point function will be chosen arbitrarily in order to fix the normalization of the
fields, while the coefficients Ca1a2a3 in the three-point function are determined
once the conformal blocks used in the four-point functions have been found.

The second tool is the Knizhnik-Zamolodchikov equation [55] which comes
from the fact that the stress-energy tensor can be quadratically expressed in
terms of the currents, see (118) and also (81). It will be necessary to compute
four-point functions.

5.4.1 Two-point functions

Consider a two-point function of the form 〈Φa1
ν1 Φa2

ν2 〉, which will also be denoted
by 〈a1a2〉. The Ward identity for K directly shows that only two kinds of such
correlation functions are actually non zero: 〈+−〉 and 〈00〉.

The remaining Ward identities lead to the expression of the two-point func-
tions. For 〈+−〉:

〈
Φ+
p1,̂1

(z1, z̄1;x1α, x̄1α)Φ−
p2,̂2

(z2, z̄2;x2α, x̄2α)
〉

=

1

|z12|4h

∣∣∣∣∣
n∏

α=1

e−µαp1x1αx2α

∣∣∣∣∣

2

δ(p1 − p2)δ(̂1 + ̂2) (179)
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where h = h1 = h2 is the conformal weight of both fields Φ+
p1,̂1

and Φ−
p2,j2

, and

the shorthand notation |f(z;x)|2 stands for f(z;x)f(z̄; x̄), for any function f .
For 〈00〉:

〈
Φ0
s1α,̂1(z1, z̄1;x1α, x̄1α)Φ0

s2α,̂2(z2, z̄2;x2α, x̄2α)
〉

=

(2π)2

|z12|4h
n∏

α=1

δ(s1α − s2α)

s1α
|δ(φ1α − φ2α − π)|2δ(̂1 + ̂2) (180)

where xiα = eıφiα , δ(φ1α − φ2α − π) is defined modulo 2π and h = h1 = h2

is the conformal weight of both fields Φ0
s1α,̂1

and Φ0
s2α,̂2

. The extra constant

(2π)2
∏n
α=1

1
sα

will prove to be useful later when considering operator product
expansions.

5.4.2 Three-point functions

The Ward identity for K implies that the non-zero three-point correlation func-
tions are of the kind 〈+ + −〉, 〈+ − 0〉 or 〈000〉, and permutations and con-
jugate of these. Conjugate correlation functions can be obtained by changing
the x charges of V 0 representations to −1/x (under these transformations Ward
identities and Knizhnik-Zamolodchikov equations map into one another). For
instance, schematically (C is the conjugation map):

C
(〈

Φ−
p1,̂1

(x1α)Φ+
p2,̂2

(x2α)Φ0
s3α,̂3(x3α)

〉)

=
〈
Φ+
p1,−̂1(x1α)Φ−

p2,−̂2(x2α)Φ0
s3α,−̂3(−x3α)

〉
=

=

〈
Φ−
p1,̂1

(x1α)Φ+
p2,̂2

(x2α)Φ0
s3α,̂3

(
− 1

x3α

)〉
(181)

as can be verified in (185) and (186) below.
Three-point functions are determined by conformal invariance on the world-

sheet to be of the form:

〈
Φa1
ν1 (z1, z̄1;x1α, x̄1α)Φa2

ν2 (z2, z̄2;x2α, x̄2α)Φa3
ν3 (z3, z̄3;x3α, x̄3α)

〉
=

Ca1a2a3(ν1, ν2, ν3)Ka1a2a3(x1, x̄1, x2, x̄2, x3, x̄3)

|z12|2(h1+h2−h3)|z13|2(h1+h3−h2)|z23|2(h2+h3−h1)
(182)

where Ca1a2a3 are the quantum structure constants of the conformal field theory,
see (50). They are totally symmetric. Formulas for these constants will be given
in this section, although they are computed thanks to constraints provided by
the conformal blocks given below in the study of the four-point function66.
The ‘kinematical’ coefficients Ka1a2a3 , also known as H2n+2 Clebsch-Gordon

66More precisely, different expansions of the four-point function in terms of conformal bloks
can be written, namely in the s-channel for z ∼ 0 or in the t-channel for z ∼ 1. Crossing
symmetry requires that these expansions are equal, hence providing contraints that lead to the
computation of the fusion matrix (mentioned in section 4.2) and eventually of the coefficients
Ca1a2a3 .
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coefficients, contain all the dependence on the HL2n+2 ×HR2n+2 charge variables
x and x̄.

For generic values of µα, i.e. for µα incommensurable, the functions Ka1a2a3

are completely fixed by the global Ward identities. Otherwise, things get more
complicated. The generic case where no µα’s are commensurable is discussed
below. The extremal case where all µα’s are equal is mentioned afterwards.

〈+ + −〉 correlator According to (131) the correlation function 〈+ + −〉 is

non-vanishing only when p1 + p2 = p3 and L = −∑3
i=1 ̂i =

∑n
α=1 µαqα, with

qα positive integers. The global Ward identities can be unambiguously solved
and the result is67:

K++−(qα) =

∣∣∣∣∣
n∏

α=1

e−µαx3α(p1x1α+p2x2α)(x2α − x1α)qα

∣∣∣∣∣

2

(183)

The corresponding three-point coupling was computed in [78]:

C++−(qα; p1, p2) =

n∏

α=1

1

qα!

(
C̃α,++−(p1, p2)

) 1
2+qα

C̃α,++−(p1, p2) =
γ(µα(p1 + p2))

γ(µαp1)γ(µαp2)
(184)

where γ(x) = Γ(x)/Γ(1− x) and Γ is the standard Gamma function.

〈+− 0〉 correlator Similarly the 〈+− 0〉 coupling can be non-zero only when

p1 = p2 = p and L = −∑3
i=1 ̂i =

∑n
α=1 µαqα, with qα positive or negative

integers. The global Ward identities lead to:

K+−0(qα) =

∣∣∣∣∣
n∏

α=1

e
−µαpx1αx2α− sα√

2

“

x1α
x3α

+x2αx3α

”

xqα3α

∣∣∣∣∣

2

(185)

Moreover [78]:

C+−0(p; sα) =

n∏

α=1

e
s2α
2 (ψ(µαp)+ψ(1−µαp)−2ψ(1)) (186)

where ψ(x) = d ln Γ(x)
dx is the digamma function. The normalization of this

coefficient was fixed by the requirement that 〈Φ+
p1,̂1

Φ−
p2,̂2

Φ0
0,0〉 = 〈Φ+

p1,̂1
Φ−
p2,̂2
〉

(recall that the identity operator is in Φ0
0,0).

67The δ-functions for the conservation rules of the quantum numbers p and ̂ are always
implied and will not be written explicitly anymore.
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〈000〉 correlator Finally, the coupling between three Φ0 vertex operators is
non-zero only when:

s3αe
ıηα = −s1α − s2αeıξα (187)

where ξα = φ2α − φ1α, ηα = φ3α − φ1α and xiα = eiΦiα . It can be written as:

K000(φ1α, φ2α, φ3α) =

n∏

α=1

8πδ(ξα − ξ̄α)δ(ηα − η̄α)

2s1αs2α| sin ξα|
e−ıqα(φ1α+φ̄1α)/3 (188)

where L = −∑3
i=1 ̂i =

∑n
α=1 µαqα with qα positive or negative integers. This

expression has the drawback of not being explicitly symmetric in the indices 1, 2
and 3, but it is simple and concise. Remark that:

√
4s21s

2
2 − (s23 − s21 − s22)2 = 2s1s2| sin ξ|

√
4s21s

2
3 − (s22 − s21 − s23)2 = 2s1s3| sin η| (189)

This implies that there is only one degree of freedom in the three sets of variables
Φiα. It was chosen to be Φ1α.

As discussed in subsection 5.2, when all µα’s are equal (to, say, µ) the plane
wave background displays an additional SU(n) symmetry. At the same time
it can be seen from (131) that there are also new possible couplings. They
precisely combine to give an SU(n) invariant result. Considering again the
three-point coupling containing only Φ± vertex operators, the SU(n) invariant
result is obtained after summing over all the couplings C++−K++−(qα) with∑n
α=1 qα = L/µ = Q a positive integer:

C++−K++−(Q) =

Q∑

q1=0

...

Q−q1...−qn−2∑

qn−1=0

C++−K++−(q1, ..., Q− q1 − ...− qn−1)

=
1

Q!

[
γ(µp3)

γ(µp1)γ(µp2)

]n
2 +Q ∣∣∣e−µ

Pn
α=1 x3α(p1x1α+p2x2α)

∣∣∣
2

× ||x2 − x1||2Q (190)

where ||x||2 ≡∑n
α=1 |xα|2 is indeed SU(n) invariant. It can be checked that the

above combination satisfies the Ward identities associated to the currents Ib.
Turning to the 〈+− 0〉 correlator, the sums over qα become independant of

each other since qα can take any positive or negative integer value. Using the
Poisson formula:

∑

q∈Z

e2ıπqx =
∑

k∈Z

δ(k − x) (191)
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one obtains the SU(n) invariant result:

C+−0K+−0(Q) =

n∏

α=1

∣∣∣∣e
−µp1x1αx2α− sα√

2

“

x1α
x3α

+x2αx3α

”

∣∣∣∣
2( ||x3||2

n

)Q

×e 1
2

Pn
α=1 s

2
α(ψ(µp)+ψ(1−µp)−2ψ(1))

×
n∏

α=1

δ

(
Φ3α + Φ̄3α − Φ3n − Φ̄3n

2π

)
(192)

i.e. the SU(n) symmetry imposes the constraint |x3α|2 = |x3n|2 for all α.

Operator product expansion The operator product expansions can be de-
duced from the formulas of the two and three-point correlation functions. The
generic formula reads68:

Φa1
ν1 (z1, z̄1;x1α, x̄1α)Φa2

ν2 (z2, z̄2;x2α, x̄2α)

=
1

|z12|2(h1+h2−h3)

∫
dσa3

n∏

α=1

∫
dµα(xα)

∫
dµα(x̄α) Ca1a2

a3(ν1, ν2, ν3)

Ka1a2

a3(ν1, ν2, ν3;x1α, x2α, x3α, x̄1α, x̄2α, x̄3α)Φa3
ν3 (z2, z̄2;x3α, x̄3α) (194)

where the measures over the quantum numbers are [78]:

∫
dσ± =

∫ 1

0

dp

∫ ∞

−∞
d̂

∫
dσ0 =

∫ ∞

0

sds

∫ µ
2

−µ
2

d̂ (195)

and where:

Ca1a2

a3(ν1, ν2, ν3) = Ca1a2a∨3 (ν1, ν2, ν
∨
3 )

Ka1a2

a3(ν1, ν2, ν3;x1α, x2α, x3α, x̄1α, x̄2α, x̄3α) =

Ka1a2a∨3 (ν1, ν2, ν
∨
3 ;x1α, x2α, x

∨
3α, x̄1α, x̄2α, x̄

∨
3α) (196)

where ∨ indicates the conjugate representation: (sα, ̂)
∨ = (sα,−̂), (p, ̂)∨ =

(p,−̂), x∨3α = −x∗3α for V ± representations (x∗ is the complex conjugate of x)
and x∨3α = −x3α for V 0 representations (same for x̄∨3α).

68A useful result obtained from (124) is:
Z
dµα(xα)e

√
µαpxaAe

√
µαpx∗

aB = eAB (193)

where A and B stand for any functions independant of xα, x∗α.
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5.4.3 Four-point functions

In general, worldsheet conformal invariance and global Ward identities constrain
the four-point function to be of the form (compare with formula (51)):

〈
Φa1
ν1 (z1, z̄1;x1, x̄1)Φ

a2
ν2 (z2, z̄2;x2, x̄2)Φ

a3
ν3 (z3, z̄3;x3, x̄3)Φ

a4
ν4 (z4, z̄4;x4, x̄4)

〉

= G(zi, z̄i;xi, x̄i) =

4∏

i<j

|zij |2(
h
3 −hi−hj)K(xi, x̄i)G(z, z̄;x, x̄) (197)

where hi is the conformal weights of the field Φi, h =
∑4

i=1 hi, and the SL(2,C)
invariant cross-ratios z, z̄ are defined according to

z =
z12z34
z13z24

, z̄ =
z̄12z̄34
z̄13z̄24

(198)

The function K and the expressions of the H2n+2 invariants x and x̄ in terms
of the xi and x̄i are fixed by the global Heisenberg symmetry but are different
for each type of correlators. Their explicit form will be given later.

The Knizhnik-Zamolodchikov equation [55] will be necessary in order to
calculate G. It comes from introducing the following equality:

L−1 =
1

2

n∑

α=1

(P+
−1P

−
0 + P−

−1P
+
0 ) + J−1K0 +K−1J0 +K−1K0

n∑

α=1

µ2
α (199)

coming from the expression of the stress tensor in terms of the currents (118),
inside the four-point function. This leads to the equations, for any i, 1 ≤ i ≤ 4:

∂ziG =

4∑

j=1,j 6=i

1

zij

[
1

2

n∑

α=1

(
P+
α,0,iP

−
α,0,j + P−

α,0,iP
+
α,0,j

)
+ J0,iK0,j +K0,iJ0,j

+K0,iK0,j

n∑

α=1

µ2
α

]
G (200)

where the P±
α,0,i, J0,i and K0,i are the differential operators introduced in re-

lations (126), (127) and (128) (the subscript i indicates the field Φaiνi on which
these operators act).

When all µα are equal, the symmetry is enhanced and an extra SU(n) sym-
metry must be considered. This is the same procedure that was used for the
three-point functions and reflects the existence of new couplings between states
in H2n+2 representations at the enhanced symmetry point.

The formulas of all types of non-zero four-point correlation functions (up to
conjugation and permutation) are given below.

〈+ + +−〉 correlator Consider a correlator of the form:

G+++− =
〈
Φ+
p1,̂1

Φ+
p2,̂2

Φ+
p3,̂3

Φ−
p4,̂4

〉
, p1 + p2 + p3 = p4 (201)
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From the decomposition of the tensor products of H2n+2 representations dis-
played in (131) it follows that the correlator vanishes for L = −∑4

i=1 ̂i < 0,
while for L ≥ 0, L =

∑n
α=1 µαqα with qα positive integers, the correlator de-

composes into the sum of a finite number N =
∏n
α=1(qα+1) of conformal blocks

[23] which correspond to the propagation in the s-channel of the representations
V +
p1+p2,̂1+̂2+

Pn
α=1 µαmα

with mα = 0, ..., qα.

Global H2n+2 symmetry (i.e. Ward identities) yields:

K+++−(qα) =

n∏

α=1

∣∣∣e−µαx4α(p1x1α+p2x2α+p3x3α)(x3α − x1α)qα
∣∣∣
2

(202)

up to any function of the n invariants:

xα =
x2α − x1α

x3α − x1α
(203)

Thanks to the operator product expansion (194), the amplitude can be decom-
posed in a sum over the conformal blocks and writes69:

G+++−(qα; z, z̄;xα, x̄α)

=

q1∑

m1=0

q2∑

m2=0

...

qn∑

mn=0

C++
+

(
p1, p2, p1 + p2; ̂1, ̂2, ̂1 + ̂2 +

n∑

α=1

µαmα

)

× C−+
−
(
p4, p3, p4 − p3; ̂4, ̂3, ̂3 + ̂4 +

n∑

α=1

µαm
′
α

)

×Fmα(z;xα)F̄mα(z̄; x̄α) (204)

where mα +m′
α = qα. Then, it is possible to set Fmα = zκ12(1− z)κ14Fmα (the

way to treat the right conformal block F̄mα is exactly similar and will not be
detailed here), where:

κ12 = h1 + h2 −
h

3
− ̂2p1 − ̂1p2 − p1p2

n∑

α=1

µ2
α , (205)

κ14 = h1 + h4 −
h

3
− ̂4p1 + ̂1p4 + p1p4

n∑

α=1

µ2
α − p1

n∑

α=1

µα + L(p2 + p3)

69This kind of decomposition will be used for all kinds of four-point correlation functions,
but will not be explicitly written anymore.
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and where the Fmα satisfy the following Knizhnik-Zamolodchikov equation70:

∂zFmα(z;xα) = −1

z

n∑

α=1

µα [(p1xα + p2xα(1− xα))∂xα + qαp2xα]Fmα(z, xα)

− 1

1− z

n∑

α=1

µα [(1− xα)(p2xα + p3)∂xα − qαp2(1− xα)]Fmα(z, xα) (206)

The explicit form of the conformal blocks is:

Fmα(z;xα) =

n∏

α=1

fα(z;xα)mαgα(z;xα)qα−mα (207)

where 0 ≤ mα ≤ qα. The solution of the Knizhnik-Zamolodchikov equation
is71:

fα(z;xα) =
µαp3

1− µα(p1 + p2)
z1−µα(p1+p2)ϕ0,α(z)− xαz−µα(p1+p2)ϕ1,α(z) ,

gα(z;xα) = γ0,α(z)− xαp2

p1 + p2
γ1,α(z) (208)

and:

ϕ0,α(z) = 2F1(1− µαp1, 1 + µαp3; 2− µα(p1 + p2); z)

ϕ1,α(z) = 2F1(1− µαp1, µαp3; 1− µα(p1 + p2); z)

γ0,α(z) = 2F1(µαp2, µαp4;µα(p1 + p2); z)

γ1,α(z) = 2F1(1 + µαp2, µαp4; 1 + µα(p1 + p2); z) (209)

where 2F1(a, b; c; z) is the standard 2F1 hypergeometric function.
It is now possible to reconstruct the four-point function as a monodromy

invariant72 combination of the conformal blocks, and the result is:

G+++−(qα; z, z̄;xα, x̄α) = |z|2κ12 |1− z|2κ14

n∏

α=1

√
τα

qα!
(210)

×
(
C̃α,++−(p1, p2)|fα(z, xα)|2 + C̃α,++−(p3, p4 − p3)|gα(z, xα)|2

)qα

where

τα = C̃α,++−(p1, p2)C̃α,++−(p3, p4 − p3) (211)

70This equation is found by explicitly writing equation (200) for, say, i = 1, and then by
choosing z3 = ∞ as it is allowed by conformal invariance on the sphere. The other points
may be chosen to be z1 = z, z2 = 0 and z4 = 1. The same method applies for the other kinds
of four-point functions

71It is most easily checked by considering first mα = 0, and then the generic case.
72For a quantity which is locally single-valued, the monodromy is the multi-valuedness

around non-trivial closed paths. A monodromy invariant quantity is single-valued even after
completion of non-trivial closed paths (z → e2ıπz for instance).
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When all µα are equal to µ, L/µ =
∑n
α=1 qα = Q a positive integer. The SU(n)

invariant combination is:

KG+++−(Q) =

Q∑

q1=0

...

Q−q1−...−qn−2∑

qn−1=0

KG+++−(q1, ..., Q− ...− qn−2)

= |z|2κ12 |1− z|2κ14
τ
n
2

Q!

∣∣∣e−µ
Pn
α=1 x4α(p1x1α+p2x2α+p3x3α)

∣∣∣
2

×
(

n∑

α=1

C̃++−(p1, p2)|x31αf(µ, z, xα)|2

+C̃++−(p3, p4 − p3)|x31αg(µ, z, xα)|2
)Q

(212)

〈+−+−〉 correlator The next class of correlator is of the following form:

G+−+− =
〈
Φ+
p1,̂1

Φ−
p2,̂2

Φ+
p3,̂3

Φ−
p4,̂4

〉
, p1 + p3 = p2 + p4 (213)

The Ward identities give:

K+−+− =

n∏

α=1

∣∣∣e−µαPxα−µαp2x1αx2α−µαp3x3αx4α−µα(p1−p2)x1αx4α(x1α − x3α)qα
∣∣∣
2

(214)

where P = 1
4 (p1 − 2p2 − p3) and L = −∑4

i=1 ̂i =
∑n

α=1 µαqα, with qα positive
integers, and up to any function of the n invariants:

xα = (x1α − x3α)(x2α − x4α) (215)

Note that solving the Ward identities naturally leads to formula (214), however
the factor e−µαPxα may be removed (i.e. set P = 0 everywhere) from the ex-
pression of K+−+−, since this quantity is defined up to any function of xα. This
term will be kept however, in order for the following results to be comparable
with [78, 79]. The final result is of course independant of the choice that is
made. Passing to the conformal blocks and setting Fmα = zκ12(1 − z)κ14Fmα ,
where:

κ12 = h1 + h2 −
h

3
− ̂2p1 + ̂1p2 + p1p2

n∑

α=1

µ2
α − p2

n∑

α=1

µα

κ14 = h1 + h4 −
h

3
− ̂4p1 + ̂1p4 + p1p4

n∑

α=1

µ2
α − p4

n∑

α=1

µα (216)
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it is found that the functions Fmα solve the following Knizhnik-Zamolodchikov
equation:

z(1− z)∂zFmα(z;xα) =
n∑

α=1

[
xα∂

2
xα + (µα(p1 − p2 − 2P )xα + 1 + qα) ∂xα

+
xα
4
µ2
αP (p2 − p1 + P )− µαP (1 + qα)

]
Fmα(z;xα)

− z
n∑

α=1

[
µα(p1 + p3)xα∂xα −

xα
4
µ2
α(p2p3 + P (p1 + p3))

+µαp3(1 + qα)]Fmα(z;xα) (217)

The conformal blocks are of the form73:

Fmα(z;xα) =

n∏

α=1

νmα
eµαxαP+µαxαzp3−xαz(1−z)∂z ln f1,α(z)

(f1,α(z))1+qα

×Lqαmα (xαgα(z))

(
f2,α(z)

f1,α(z)

)mα
(218)

where mα are positive integers and Lqm is the m-th generalized Laguerre poly-
nomial:

Lqm(z) =
m∑

k=0

(−1)k
Γ(m+ q + 1)

(m− k)!Γ(k + q + 1)

zk

k!

=
Γ(m+ q + 1)

m! Γ(q + 1)
1F1(−m; q + 1; z) (219)

where 1F1 is a hypergeometric function. The functions appearing in (218) are:

f1,α(z) = 2F1(µαp3, 1− µαp1; 1− µαp1 + µαp2; z)

f2,α(z) = zµ(p1−p2)
2F1(µαp4, 1− µαp2; 1− µαp2 + µαp1; z)

gα(z) = −z(1− z)∂z ln

(
f2,α(z)

f1,α(z)

)
(220)

and [78]:

νmα =
mα!

(µα(p1 − p2))mα
(221)

The functions f1,α, f2,α are only defined as solutions of a second-order differ-
ential equation, which is the same in each case (so that f1,α and f2,α form a
basis of solutions). It is therefore not clear which combination of these functions
should eventually appear in the four-point function. This uncertainty is solved

73The only dependence of the conformal blocks in the parameter P is in the term eµαxαP ,
which precisely cancels the dependence of K+−+−, making the four-point function indepen-
dant of P as expected.
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by requiring the correlation function to be crossing-symmetric, which in this
case amounts to the symmetry 2↔ 4 and z → 1− z. The four-point correlator
can be written in a compact form using the combinations:

Sα(z, z̄) = |f1α(z)|2 − ρα|f2α(z)|2

ρα =
C̃α,++−(p2, p1 − p2)C̃α,++−(p3, p4 − p3)

µ2
α(p1 − p2)2

ζα =
2
√
ρα|µα(p1 − p2)xαz

bα(1− z)cα |
Sα(z, z̄)

τα = C̃α,++−(p2, p1 − p2)
1−q
2 C̃α,++−(p3, p4 − p3)

1+q
2 (222)

and using the formula:

∞∑

m=0

Lqm(x)

Γ(m+ q + 1)
ym = ey(xy)−q/2Jq(2

√
xy) (223)

where Jq is the Bessel function of the first kind, which is related to the modified
Bessel function of the first kind by Jq(ıx) = ıqIq(x). The resulting expression
is:

Gqα(z, z̄;xα, x̄α) = |z|2κ12 |1− z|2κ14

n∏

α=1

τα
Sα(z, z̄)

|xαzbα(1− z)cα |−qα

×
∣∣∣eµαp3xαz−xαz(1−z)∂z lnSα(z,z̄)

∣∣∣
2

Iqα(ζα) (224)

When all the µα’s are equal to µ, the SU(n) invariant correlator is given by the

sum over all qα ∈ Z, 1 ≤ α ≤ n− 1 with qn = Q−∑n−1
α=1 qα and Q = L/µ. The

addition formula for Bessel functions:
∞∑

m=−∞
Im(x)In−m(y) = In(x + y) (225)

leads to:

K+−+−G+−+−(Q) =
τ |z|2κ12−bQ|1− z|2κ14−cQ

S(z, z̄)2
||x13||Q
||x24||Q

IQ(ζ) (226)

×
n∏

α=1

∣∣∣e−µαp2x1αx2α−µαp3x3αx4α−µα(p1−p2)x1αx4α

∣∣∣
2

×
∣∣∣exz(µp3−(1−z)∂z lnS(µ,z))

∣∣∣
2 ∣∣∣exz(µp3−(1−z)∂z lnS(µ,z))

∣∣∣
2

where:

ζ =
2
√
ρ|µ(p1 − p2)z

b(1− z)c|
S(z, z̄)

||x13||||x24|| (227)

with the SU(n) invariants x = x13 · x24 =
∑n
α=1(x1α − x3α)(x2α − x4α) as well

as ||xij ||2 =
∑n
α=1 |xiα − xjα|2.
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〈+ +− 0〉 correlator Another kind of non-zero correlator is:

G++−0 =
〈
Φ+
p1,̂1

Φ+
p2,̂2

Φ−
p3,̂3

Φ0
s4α,̂4

〉
, p1 + p2 = p3 (228)

The global symmetry constraints lead to:

K++−0(qα) =

n∏

α=1

∣∣∣e−µαx3α(p1x1α+p2x2α)− s4α√
2
x3αx4α− s4α

2
√

2

x1α+x2α
x4α xqα4α

∣∣∣
2

(229)

where L = −∑4
i=1 ̂i =

∑n
α=1 µαqα, qα positive integers, and up to any function

of the n invariants:

xα =
x1α − x2α

x4α
(230)

The conformal blocks can be rewritten as:

Fmα(z;xα) = zκ12(1− z)κ14Fmα(z;xα) (231)

where mα are positive integers, and:

κ12 = h1 + h2 −
h

3
− p1̂2 − p2̂1 − p1p2

n∑

α=1

µ2
α

κ14 = h1 + h4 −
h

3
− p1̂4 − Lp1 −

1

4

n∑

α=1

s24α (232)

The Knizhnik-Zamolodchikov equation then reads:

z(1− z)∂zFmα(z;xα) = −
n∑

α=1

[
µαp3xα∂xα +

s4α

2
√

2
µα(p1 − p2)xα

]
Fmα(z, xα)

+ z

n∑

α=1

[(
µαp2xα −

s4α√
2

)
∂xα −

s4αµαp2

2
√

2
xα

]
Fmα(z, xα) (233)

and the solutions are:

Fmα(z;xα) =

n∏

α=1

(s4αϕα(z) + xαωα(z))
mα es

2
4αηα(z)+sαxαχα(z) (234)

where the following functions were introduced:

ϕα(z) =
z1−µαp3

√
2(1− µαp3)

2F1(1− µαp1, 1− µαp3; 2− µαp3; z)

ωα(z) = −z−µαp3(1− z)µαp1

χα(z) = − 1

2
√

2
+

p2√
2p3

(1− z)2F1(1 + µαp2, 1; 1 + µαp3; z)

ηα(z) = −zp2

2p3
3F2(1 + µαp2, 1, 1; 1 + µαp3, 2; z)− 1

4
ln (1− z) (235)
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The four-point function is then given by:

G++−0(z, z̄;xα, x̄
α) = |z|2κ12 |1− z|2κ14

n∏

α=1

(
C̃α,++−(p1, p2)

) 1
2

(236)

× C+−0(p3, s4α)eC̃α,++−(p1,p2)|s4αϕα(z)+xαωα(z)|2
∣∣∣es24αηα(z)+s4αxαχα(z)

∣∣∣
2

The SU(n) invariant correlator for all µα equal to µ is obtained by summing
over qα ∈ Z, 1 ≤ α ≤ n with

∑n
α=1 qα = Q = L/µ, in a similar way as in the

case of 〈+− 0〉, since the only dependence in qα is xqα4α = eıΦ4αqα .

〈+− 0 0〉 correlator The last kind of non-trivial correlator is:
〈
Φ+
p1,̂1

Φ−
p2,̂2

Φ0
s3α,̂3Φ

0
s4α,̂4

〉
, p1 = p2 = p (237)

The Ward identities give:

K+−00(qα) =

n∏

α=1

∣∣∣∣e
−µαpx1αx2α− x1α√

2

“

s3α
x3α

+
s4α
x4α

”

− x2α√
2

(s3αx3α+s4αx4α)
xqα3α

∣∣∣∣
2

(238)

up to any function of the n invariants xα = x3α

x4α
.

The conformal blocks are simpler when the correlator is decomposed around
z = 1, since there is no interaction between two V 0 representations in the t-
channel. Setting u = 1− z:

Fmα(u;xα) = (1− u)κ12uκ14Fmα(u;xα) (239)

where mα ∈ Z and:

κ12 = h1 + h2 −
h

3
+ p2 + p(j1 − j2)− p2

n∑

α=1

µα +
1

2

n∑

α=1

(
s23α + s24α

)

=
1

2

n∑

α=1

(
s23α + s24α

)
− h

3

κ14 = h1 + h4 −
h

3
− p̂4 −

1

2

n∑

α=1

s24α (240)

the Knizhnik-Zamolodchikov equation reads:

∂uFmα(u;xα) = − 1

u

n∑

α=1

[
−µαpxα∂xα +

s3αs4α
2xα

]
Fmα(u;xα)

− 1

1− u

n∑

α=1

s3αs4α
2

(
xα +

1

xα

)
Fmα(u;xα) (241)

and has the solutions:

Fmα(u;xα) =
n∏

α=1

(
1

xα
u−µαp

)mα
e

1
xα
ωα(u)+xαχα(u) (242)
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where:

ωα(u) = −s3αs4α
2µαp

2F1(µαp, 1; 1 + µαp;u)

χα(u) = − s3αs4α
2(1− µαp)

u 2F1(1− µαp, 1; 2− µαp;u) (243)

The four-point function is then given by:

G+−00(u, ū;xα, x̄α) = |u|2κ14 |1− u|2κ12

n∏

α=1

Cα,+−0(p, s3)Cα,+−0(p, s4)

×
∣∣∣e 1
xα
ωα(u)+xαχα(u)

∣∣∣
2 ∑

mα∈Z

∣∣∣∣
1

xα
u−µαp

∣∣∣∣
2mα

(244)

so |u| = 1 otherwise the correlation function diverges, and then the phases of u
and xα are related. This implies |xα|2 = |xn|2.

The SU(n) invariant correlator for all µα’s equal to µ is straightforward to
obtain after summing over qα ∈ Z, 1 ≤ α ≤ n with

∑n
α=1 qα = Q = L/µ since

the only qα-dependant term in KG+−00 is xqα3α = eıΦ3αqα , just like the 〈+− 0〉
case.

〈0000〉 correlator This is the last kind of non-zero four-point correlation func-
tions. It is a trivial case (this correlator is the same as in flat space, since
flat space corresponds to µα = 0 which is essentially equivalent, as far as the
Knizhnik-Zamolodchikov equation is concerned, to the condition p = 0 satisfied
by V 0 representations).

5.5 Conclusion

All Heisenberg algebras that may appear in string theory have been studied in
this work, hence generalizing results previously obtained for the special cases
of H4 and H6. This kind of algebra appears in string theory as the underlying
symmetry of Hpp-wave backgrounds that can be seen as the Penrose limit of
the near-horizon of configurations of intersecting NS5 branes and fundamental
strings. It is worth noting that the brane configurations presented here give rise
to non-trivial limits like deformed AdS3 spaces, see e.g. [87]. Representations
of Heisenberg algebras have been studied and two, three and four-point correla-
tion functions between primary states have been calculated for generic n using
conformal field theory techniques.
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6 A Verlinde formula in non-rational conformal

field theories

6.1 Introduction

This section reviews the work done in [1], in which the fusion properties of se-
veral non-rational boundary conformal field theories were studied. The notions
and objects that will be studied here, namely current algebras, fusion rules,
Verlinde formula, boundary states and modular S matrix, were presented in
the introductory sections 4.3 and 4.4 in the context of rational conformal field
theories, which are rather well understood nowadays.

Indeed, the algebraic structure of rational theories is well-known (lowest-
weight representations, characters or currents, for instance), and the modular
S matrix plays a major role there. The Verlinde formula [58], that has been
proved for all rational theories, shows that the fusion is given once the modular
transformation of the characters of the theory is known. Moreover, the Verlinde
formula leads to the construction of a set of boundary states, called the Cardy
states [47], that have a reasonable boundary spectrum. These states have found
many applications in string theory as describing non-perturbative states carry-
ing open string excitations. In non-rational conformal field theories as well, the
analogue of the Verlinde formula that is discussed here allows for an efficient
construction of a subset of boundary states, directly from the modular data
[98, 99]. Thus, a systematic analysis of the Verlinde formula should be useful in
constructing D-branes in (non-trivial, non-compact) string theory backgrounds.

Non-rational theories are far less understood, because they exhibit many
new features that were mentioned in section 4.6. These theories are of much
interest. They appear in cosmological contexts, for instance when studying
two-dimensional black holes. They also arise in the context of the AdS/CFT
correspondence. Some examples of non-rational conformal field theories include
bosonic and supersymmetric Liouville theory and their duals (the bosonic and
supersymmetric cosets SL(2,R)/U(1)) as well as the H+

3 theory, which were
studied in [1].

In order to gain some insight of the structure of non-rational conformal
theories, it may be interesting to see if it is possible to extend some results
valid for rational theories and, if yes, how. Considering the importance of the
Verlinde formula, which codes the dynamics of the theory, it may be worth
investigating whether this particular algebraic structure can be extended to
the non-rational case. Although many results on characters, their modular
transformation properties and the boundary states are known (see e.g. [98, 99,
100, 101, 102, 103, 104]), it may be useful to review and supplement them in
particular in the light of the possibility of extending the Verlinde formula to a
subsector of non-rational conformal field theories.

In [1], a generalized Verlinde formula that is valid in a subset of these theories
was written (this subset relies on the presence of null states i.e. on degenerate
representations – degenerate representations have already proved to be useful in
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rational theories, see subsection 4.2.5). The fusion rules of the theories were also
studied, and Cardy-type brane calculations were reviewed and extended (they
depend on a reflection coefficient which is not present for rational theories, see
[98] which mentions this feature for non-degenerate representations of Liouville
theory).

The following sections present the results of [1] for the H+
3 theory only, but

in some more detail. Results concerning Liouville theory and the SL(2,R)/U(1)
coset can be found in the original paper (Liouville theory is the simplest case
in which every formula could be obtained without complications. In particular,
the characters are well-defined, the one-point function is related to the modular
S matrix and to the reflection amplitude, and the Verlinde-like formula is ex-
pressed in terms of residues). They are very similar to the results found for the
H+

3 theory, in the sense that the generalized Cardy formula and the extended
Verlinde formula have the same structure. The fusion rules have been consid-
ered for two degenerate fields and for one degenerate and one non-degenerate
field.

A conclusion attempts to delineate generic expectations for the domain of
validity of the Verlinde formula in non-rational conformal field theories.

In summary, a generalization of the Verlinde formula was obtained. It is
applicable to the fusion of degenerate representations with generic ones and to
the fusion of two degenerate representations. The formula requires an analytic
continuation in the Fourier transformed free index of the formula that shows
that the modular S matrix gives a representation of the fusion coefficients. The
fusion coefficients then appear as non-trivial residues of poles in the transformed
function on the complex plane. The analysis shows that the relation between
the modular S matrix and the fusion coefficients is in fact more general than the
relations encoded in the standard boundary states (i.e. the reflection amplitude
plays a role here).

6.2 The H+
3 theory

The H+
3 Wess-Zumino-Witten model has been much studied in the literature

[41, 42, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114]. It describes strings
moving on the Euclidean analogue of the AdS3 space (recall that there is no
R-R charges in this background, which makes a conformal approach possible).
Although this model is not a good physical theory, because it is not unitary, it
is interesting in many respects. It is one of the simplest non-compact curved
backgrounds and therefore represents a first step in understanding string the-
ory in non-trivial backgrounds. The model is also exactly solvable [42], making
insights into a quantum regime possible. Moreover, H+

3 is related to several
other theories, like the Euclidean two-dimensional black hole, which is unitary,
or to Liouville theory (obtained from H+

3 after a twist, and then by modding
out a Borel subgroup74, i.e. a maximal connected solvable subgroup). Finally,

74This means that the results obtained in [1] for Liouville theory should descend from the
results for H+

3 . It was nevertheless interesting to check the Verlinde formula explicitly.
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understanding Euclidean AdS3 helps understanding the AdS/CFT correspon-
dence [86], which states that string theory on backgrounds with AdS3 should
be equivalent to a two-dimensional conformal field theory on the boundary of
AdS3.

This section reviews various results on the H+
3 theory. It presents the Wess-

Zumino-Witten model, the ̂sl(2,R)k+2 affine algebra and its representations,
and correlation functions of primary fields. The fusion of representations, when
one of the two representations is degenerate, is derived from the correspond-
ing generic three-point function for representations in the unitary spectrum by
analytic continuation and a careful analysis of the analytic structure of the op-
erator product expansion. This is done in some detail since it is used in the
main section 6.3 to perform checks on the Verlinde formula.

6.2.1 H+
3 Wess-Zumino-Witten model and Euclidean AdS3 space

The set H+
3 is defined as:

H+
3 = {H ∈ M(2,C)|H† = H , det(H) = 1 , tr(H) > 0}

Any element g ∈ H+
3 can be written as:

g = mm† = eγσ+e−Φσ3eγ̄σ−

=
1

l

(
x0 + x3 x1 + ıx2

x1 − ıx2 x0 − x3

)
=

(
eΦγγ̄ + e−Φ eΦγ

eΦγ̄ eΦ

)
(245)

where xi and Φ are real numbers, γ̄ is the complex conjugate of γ75, σ± =
1
2 (σ1 ± ıσ2) (σi are the Pauli matrices ) and:

m =

(
e−Φ/2 eΦ/2γ

0 eΦ/2

)
(246)

Since m ∈ SL(2,C) and g is invariant under m → mU for any element U ∈
SU(2), it can be shown that H+

3 is isomorphic to the coset SL(2,C)/SU(2).
Note also that under x2 → ıx2, g ∈ SL(2,R).

Without Ramond-Ramond charges, bosonic string theory in the Euclidean
AdS3 background is described by the Wess-Zumino-Witten model for H+

3 . Al-
though H+

3 is not a group, the model can be properly defined as a coset
SL(2,C)/SU(2). However, the action may be computed by directly plugging
elements of H+

3 in the definition of Wess-Zumino-Witten.
The Euclidean AdS3 space is a maximally symmetric space76 defined as the

set of points verifying:
x2

1 + x2
2 + x2

3 − x2
0 = −l2 (247)

75That is to say, γ̄ = γ∗. The complex conjugate is denoted by ∗, while a bar like in γ̄
means that the conjugation constraint may be relaxed if needed.

76Maximally symmetric spaces are spaces which preserve the largest possible number of
symmetries (or Killing vectors). Basically, Minkowski, de Sitter and Anti-de Sitter spaces are
maximally symmetric. Since string theory on Minkowski space is rather well understood, a
natural step is to try to understand it on dS or AdS spaces. De Sitter spaces are preferred from
a phenomenological point of view, since they have a correct positive cosmological constant
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where xi/l ∈ R for all indices i, and l/ls > 0 is the constant curvature radius of
AdS3 in string length units (the condition (247) is equivalent to detg = 1). The
above equation actually defines two connected spaces, depending on whether
x0 ≥ l or x0 ≤ −l. Both are equivalent and it is possible to restrict to x0 ≥ l.
This space is precisely the H+

3 manifold (to which the identity belongs).
Euclidean AdS3 has the following metric, given in several useful sets of co-

ordinates:

ds2 = dx2
1 + dx2

2 + dx2
3 − dx2

0

=
1

1 + r2

l2

dr2 + r2dθ2 +

(
1 +

r2

l2

)
dτ2

= l2
(
ch2ρdτ2 + dρ2 + sh2ρdθ2

)

= l2
(
du2

u2
+ u2dγdγ̄

)

= l2
(
dΦ2 + e2Φdγdγ̄

)
(248)

where the last two lines define the Poincaré coordinates u, γ, γ̄ or Φ, γ, γ̄. The
metric reduces to flat space in the limit r/l → 0. This is how free fields ap-
pear when studying the associated Wess-Zumino-Witten model. The different
expressions of the metric are related by the following changes of coordinates:

x0 =
√
l2 + r2chτ , x2 =

√
l2 + r2shτ

x1 = r cos θ , x3 = r sin θ

shρ =
r

l
, u = eΦ

eΦ =
x0 − x3

l
, γ =

x1 + ıx2

x0 − x3
, γ̄ =

x1 − ıx2

x0 − x3
(249)

Lorentzian AdS3 can be obtained from Euclidean AdS3 by setting τ = ıt where
t is the lorentzian time (then x2 picks up an ı factor). Note that all coordinates
are real, except γ and γ̄ wich are complex conjugate in Euclidean AdS3, but are
real (and unrelated) in Lorentzian AdS3.

The H+
3 model is classically defined by the Lagrangian (in the Poincaré

coordinates):

L =
k + 2

π

(
∂Φ∂̄Φ + e2Φ∂γ∂̄γ̄

)
(250)

The Ricci tensor and the Ricci scalar are:

Rµν = − 2

l2
gµν , R = − 6

l2
(251)

(AdS spaces yield a negative cosmological constant). However, they are more difficult to deal
with, because of the existence of a horizon, or also because it is difficult to find solutions of
supergravity with a dS space. These are reasons why AdS spaces are much studied. Another
reason that was already mentioned is that AdS spaces arise in the AdS/CFT correspondence.
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The Laplacian ∆ is given by:

∆ =
e2φ√−g∂µ

(
e−2φ√−ggµν∂ν

)
(252)

=
1

l2

(
1

u
∂u
(
u3∂u

)
+

4

u2
∂γ∂γ̄

)

=
1

l2
(
∂2
Φ + 2∂Φ + 4e−2Φ∂γ∂γ̄

)

=
1

l2

(
1

1 + r2

l2

∂2
τ +

l2

r
∂r

(
r

(
1 +

r2

l2

)
∂r

)
+
l2

r2
∂θ

)

=
1

l2

(
1

cosh2 ρ
∂2
τ̃ +

1

sinh 2ρ
∂ρ (sinh 2ρ∂ρ) +

1

sinh2 ρ
∂φ

)

= ∂2
x1

+ ∂2
x2

+ ∂2
x3
− ∂2

x0

where φ is the dilaton, which is constant here, and g = detgµν = − l24 e2Φ.
Euclidean AdS3 background is a solution of the generalized gravity equations

(86), with no dilaton and (H = dB):

H = l2e2ΦdΦ ∧ dγ ∧ dγ̄ = −ıl2 sinh(2ρ)dθ ∧ dρ ∧ dτ

B =
l2

2
e2Φdγ ∧ dγ̄ = ıl2 sinh2 ρdθ ∧ dτ

Note that the H field is complex77 (it would be real for lorentzian AdS3). In the
last formula the invariance of H under any constant change in B was used to
remove a component Bρθ = −ıl2 that comes from a tensor calculation based on
Bγγ̄ . Moreover, equation (87) relates the level k+2 of the Wess-Zumino-Witten
model78 to the cosmological constant parameter l:

l2 = 2kl2s (253)

77This is what eventually causes the theory to be non-unitary. This also explains why the
Euclidean black hole, which descends from H+

3 , is unitary: there is no more H field because
of dimensional reasons.

78The dual Coxeter number of SL(2,R) is Q = −2. Naming the level k′ = k+ 2 is a choice
that will prove to be convenient later when dealing with factors k′ +Q = k.
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6.2.2 Current algebra and primary fields

The Wess-Zumino-Witten action for H+
3 has the SL(2,C)× SL(2,C)† symme-

try79. The left currents are defined by:

J(z) = −(k + 2)∂zgg
−1 =

1

2

(
J+(z)T− + J−(z)T+

)
− J3(z)T 3

J+(z) = −(k + 2)
(
−4γ∂zΦ− 2∂zγ + 2e2Φγ2∂xγ̄

)

J−(z) = −k + 2

2
e2Φ∂zγ̄

J3(z) = −(k + 2)
(
2e2Φγ∂zγ̄ − 2∂zΦ

)
(254)

where T±,3 form a 2× 2 matrix representation of the sl(2,R) algebra:

T 3 = −1

2
σ3 =

1

2

(
−1 0
0 1

)

T+ =
1

2
(σ1 − ıσ2) =

(
0 0
1 0

)

T− = −1

2
(σ1 + ıσ2) =

(
0 −1
0 0

)
(255)

The currents satisfy the following operator product expansions (the right sector
behaves just like the left sector and is denoted by barred expressions):

J3(z)J3(w) = − k + 2

(z − w)2

J3(z)J±(w) = ±J
±(w)

z − w

J+(z)J−(w) =
2(k + 2)

(z − w)2
− 2J3(w)

z − w (256)

The modes of the currents verify the commutation relations of the ̂sl(2,R)k+2

algebra:

[J3
n, J

3
m] = −(k + 2)nδn+m,0

[J3
n, J

±
m] = ±J±

n+m

[J+
n , J

−
m] = 2(k + 2)nδn+m,0 − 2J3

n+m (257)

Just like the matrices T±,3, the zero modes J±,3
0 belong to the sl(2,R) algebra:

[J3
0 , J

±
0 ] = ±J±

0

[J+
0 , J

−
0 ] = −2J3

0 (258)

79Unlike ordinary Wess-Zumino-Witten models, left and right symmetries are here conjugate
of each other. This originates from the fact that H+

3 is not a group and the model is only
properly defined as a coset SL(2,C)/SU(2). Moreover, SL(2,C) and SL(2,R) are closely
related. The study will refer to SL(2,R) results whenever they are relevant, since this group
is more commonly studied in the literature.
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The metric for this algebra is:

g33 = −1 , g+− = g−+ =
1

2
(259)

The stress-energy tensor is obtained by the Sugawara construction80:

T (z) =
1

k

(
1

2
: J+(z)J−(z) + J−(z)J+(z) : − : J3(z)J3(z) :

)
(260)

where normal ordering is denoted by : :. The central charge of the model is
c = 3 + 6

k , and the Casimir is:

C = J2
0 =

1

2

(
J+

0 J
−
0 + J−

0 J
+
0

)
−
(
J3

0

)2
(261)

Primary fields are of the form (j is called the spin):

Φj(x, x̄; z, z̄|g) =
2j − 1

π

[(
1 − x

)
g(z, z̄)

(
1
−x̄

)]−2j

=
2j − 1

π

(
e−Φ + eΦ|γ − x|2

)−2j
(262)

where x and x̄ = x∗ are auxiliary complex coordinates that keep track of the H+
3

symmetry. The operator Φj has conformal weight hj = − j(j−1)
k . The factor

in front of (262) finds its justification in the fact that the primary fields are
properly normalized in the sense that:

∫

H+
3

dg (Φj(x, x̄|g))† Φj′ (x
′, x̄′|g) = 2πδ(x− x′)δ(x̄− x̄′)ıδ(j − j′) (263)

These fields form a basis of plane waves for integrable functions on H+
3 (see [41]

for more details):

L2(H+
3 ) =

∫

1
2+ıR+

Hj (264)

where Hj is a continuous representation of SL(2,C), which acts on functions of
the complex variable according to81:

[Tj(A)]f(x) = |cx+ d|−4jf (Ax) (265)

where A is any matrix in SL(2,C):

A =

(
a b
c d

)
, Ax =

ax+ b

cx+ d
(266)

80On the contrary to (79), there is no overall factor 1
2

here because of a different choice
of normalization in the length of the root of the algebra, which is rather standard in the
literature.

81Any irreducible representation T of a group G on a Hilbert space is equivalent to a
representation by shift operators in some space of scalar functions on G. Hence the appearance
of the kind of representation Tj considered here.
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Figure 9: A degenerate representation of the affine Lie algebra ̂sl(2,R)k+2, built
from a finite representation of the Lie algebra sl(2,R). Each dot indicates a state
in the representation. Arrows indicate how the currents act on these states.

The representation Tj is implemented on functions over H+
3 via the transform:

Fj(x, x̄) =

∫

H+
3

Φj(x, x̄|g)f(g)dg (267)

where the kernel Φj(x, x̄|g) plays the role of plane waves of the theory and
satisfies:

Φj

(
x; x̄; z, z̄|A−1gA−1†

)
= |cx+ d|−4jΦj(Ax; Āx̄; z, z̄|g) (268)

This is consistent with the SL(2,C)×SL(2,C)† symmetry of the theory, which
transforms a matrix g ∈ H+

3 to AgA†.
The relation (268) shows that there exists some kind of correspondence be-

tween x (and its conjugate x̄) and the coordinates on AdS3. This correspondence
is not well understood yet. An example is:

Ax = ax+ b ←→ eΦ → |a|eΦ
γ → 1

|a| (γ − b)
(269)

Like any plane-wave, the primary fields are eigenfunctions of the Laplacian ∆,
and satisfy:

∆Φj(x; x̄; z, z̄|g) = 4
j(j − 1)

l2
Φj(x; x̄; z, z̄|g) (270)

As suggested by (264), the spectrum (Hilbert space) of the H+
3 theory consists

of (irreducible) continuous representations of the current algebra, for which the
spin is j = 1

2 + ıλ with λ ∈ R∗
+. The spectrum does not include other irreducible

representations of sl(2,R), like discrete representations.
Another class of representations is interesting, though. It is built from finite

representations of sl(2,R), as shown in figure 9. These representations are
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degenerate, and several results valid for continuous representations do not hold
for finite ones82 (like the reflection or the Fourier transform defined below in
(276)). The spin is then j = 1−u

2 , with u ∈ N∗. The degenerate representations
will be used later in order to shed some light on the structure of the theory.

The zero modes of the current algebra are realized as derivatives on the
space of functions of, say, the variables Φ, γ and γ̄: just as the currents express
the invariance of the action under g(z, z̄) → Ω(z)g(z, z̄)Ω†(z̄), the zero modes
express its invariance under g(z, z̄)→ hg(z, z̄)h† with h ∈ SL(2,R). They must
satisfy83 J3,±

0 g = −T 3,±g and are found to be:

J3
0 = γ∂γ −

1

2
∂Φ

J+
0 = γ2∂γ − γ∂Φ − e−2Φ∂γ̄ , J−

0 = ∂γ (271)

or, equivalently (a = ±, 3):

Ja(z)Φj(x; x̄;w, w̄|g) = −D
aΦj(x; x̄;w, w̄|g)

z − w (272)

where:

D3 = x∂x + j , D+ = x2∂x + 2jx , D− = ∂x (273)

as it can be verified using (271) that indeed:

Ja0 Φj(x; x̄; z, z̄|g) = −DaΦj(x; x̄; z, z̄|g) (274)

These relations are consistent with (270) since ∆ = − 4
l2 J

2
0 .

The invariance of the conformal weight hj under j → 1 − j suggests that
representations built from j and 1− j must be equivalent, and indeed the fields
Φj and Φ1−j satisfy a reflection relation:

Φj(x, x̄; z, z̄|g) =
2j − 1

π
R(j)

∫

C

d2y|x− y|−4jΦ1−j(y, ȳ; z, z̄|g) (275)

where the reflection amplitude is R(j) = −1 and gets quantum corrections
when considering the quantum one-point function, see (303). The reflection
amplitude satisfies R(j)R(1 − j) = 1. Note that the reflection relates fields
with spins j = 1

2 + ıλ with λ ∈ R∗
+ to fields with λ ∈ R∗

−. This is why it is
possible to restrict to λ > 0.

Primary fields were previously expressed in what may be called the x basis.
However, another basis is very convenient: the m basis. It is mentioned here

82By an abuse of notation, degenerate representations of ̂sl(2,R)k+2 built from finite rep-
resentations of sl(2,R) will also be called finite representations, even though they have an
infinite number of states.

83The extra sign is necessary in order for both sets of generators to have the same commu-
tation relations. The reason for the extra sign in (272) is the same.
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since it is widely used in the literature. One goes from one basis to the other
by using a generalized Fourier transform [41]:

Φj;m,m̄(z, z̄|g) =

∫

C

d2x eınarg(x)|x|2j−2+ıpΦj(x; x̄; z, z̄|g) (276)

Φj(x; x̄; z, z̄|g) =
1

(2π)2

∑

n∈Z

∫

R

dp e−ınarg(x)|x|−2j−ıpΦj;m,m̄(z, z̄|g)

where m = 1
2 (n + ıp) and m̄ = 1

2 (−n + ıp) , n ∈ Z (this is required for the
integrals to be well defined) and p ∈ R. In the m basis, the operator product
expansions with the currents are:

J3(z, z̄)Φj;m,m̄(w, w̄|g) =
m

z − wΦj;m,m̄(z, z̄|g)

J±(z, z̄)Φj;m,m̄(w, w̄|g) =
±j +m

z − w Φj;m±1,m̄(z, z̄|g) (277)

with similar results for J̄aΦj;m,m̄. This is coherent with J2
0 = −j(j − 1). As

shown by the above relation, fields in the m basis have the advantage that they
are eigenvectors of the current J3. It may nevertheless be considered simpler
to encode an infinity of fields Φj;m,m̄ in one single field Φj(x, x̄). Moreover,
manipulating a function of the complex variable may be of some use. This is
the strategy that was followed in section 5. It will be used again here, although
some properties of the fields Φj;m,m̄ will also be mentioned.

Fourier-transforming the reflection relation (275), one obtains:

Φj;m,m̄(z, z̄|g) = R(j;m, m̄)Φ1−j;m,m̄(z, z̄|g) (278)

where:

R(j;m, m̄) = (2j − 1)R(j)
Γ(j +m)Γ(j − m̄)Γ(1− 2j)

Γ(1− j +m)Γ(1− j − m̄)Γ(2j)
(279)

The reflection coefficient satisfies R(j;m, m̄)R(1 − j;m, m̄) = 1. Finally, the
fields Φj;m,m̄ are normalized according to:

∫

H+
3

dg (Φj,m,m̄(g))
†
Φj,m,m̄(g) = (2π)3δn,n′δ(p− p′)ıδ(j − j′) (280)

6.2.3 Correlation functions and fusion

The two and three-point functions are key elements of a conformal field theory.
For the H+

3 model, the two-point function in the x basis is:

〈Φj1(x1, x̄1; z1, z̄1)Φj2(x2, x̄2; z2, z̄2)〉 (281)

=
A(j1)

|z12|4hj1

(
δ2(x12)δ(1− j1 − j2) +

R(j1)

π
|x12|−4j1δ(j1 − j2)

)
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where:

A(j) = A(1− j) = − π3

(2j − 1)2
(282)

In the m basis, the two-point function is:

〈Φj1;m1,m̄1(z1, z̄1)Φj2;m2,m̄2(z2, z̄2)〉 (283)

=
δ2(m1 +m2)

|z12|4h1
A(j1) (δ(1− j1 − j2) +R(j1;m1, m̄1)δ(j1 − j2))

where:

δ2(m) =

∫

C

d2xm−1x̄m̄−1 = 4π2δ(m+ m̄)δm−m̄,0 (284)

The three-point function in the x basis is:

〈Φj1(x1, x̄1; z1, z̄1)Φj2(x2, x̄2; z2, z̄2)Φj3 (x3, x̄3; z3, z̄3) =
D(j1, j2, j3)∏

k<l |zkl|2hkl |xkl|2jkl
(285)

where k, l ∈ {1, 2, 3} and hkl = hk + hl − hm, with m ∈ {1, 2, 3} and m 6= k, l
(same for jkl), and:

D(j1, j2, j3) =
π

2k

(
k1/k Γ(1 + 1/k)

Γ(1− 1/k)

)1−j1−j2−j3
(286)

× Υ(b)Υ(2bj1)Υ(2bj2)Υ(2bj3)

Υ(b(j1 + j2 + j3 − 1))Υ(bj12)Υ(bj13)Υ(bj23)

where b2 = 1/k and the Υ function is defined in appendix A equation (414).
Some authors [105, 113] use a special function G instead of Υ. These functions
are related via (the overall constant can be set to one because only a ratio of G
or of Υ functions appears in the three point function):

G(x) = b−b
2x(x+1+b−2)Υ−1(−bx) (287)

The coefficient D satisfies the following relation, imposed by the reflection pro-
perty of primary fields:

D(j1, j2, j3)

D(j1, j2, 1− j3)
= R(j3)γ(1− 2j3)γ(j13)γ(j23)

In the m basis, the three-point function is:

〈Φj1;m1,m̄1(z1, z̄1)Φj2;m2,m̄2(z2, z̄2)Φj3;m3,m̄3(z3, z̄3)〉

=
∏

k<l

1

|zkl|2hkl
D(j1, j2, j3)δ

2(m1 +m2 +m3)W (ja;ma, m̄a) (288)
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0 11/2

<j3

=j3

λ2 + λ1

λ2 − λ1

λ1 − λ2

−λ1 − λ2

Figure 10: Integration contour and poles for the operator product expansion of a
degenerate field and a non-degenerate field. The dotted lines indicate the poles,
and the arrows indicate in which direction the poles move when λ1 acquires an
increasing imaginary part.

where:
∫

C

d2x1

∫

C

d2x2

∫

C

d2x3 x
j1+m1−1
1 x̄j1+m̄1−1

1 xj2+m2−1
2 x̄j2+m̄2−1

2 xj3+m3−1
3 x̄j3+m̄3−1

3

|x1 − x3|−2j13 |x2 − x3|−2j23 |x1 − x2|−2j12 = δ2(m1 +m2 +m3)W (ja;ma, m̄a)

The reflection property of the primary fields Φj;m,m̄ imposes a constraint on
W (ja;ma, m̄a), similar to relation (288) for the function D. The function W
has a complicated expression, which has been calculated in [110].

Finally, the operator product expansion between two primary fields is de-
termined by consistency of the operator product expansion with the two and
three-point functions. In the x basis, it is given by:

Φj1(x1, x̄1; z1, z̄1)Φj2(x2, x̄2; z2, z̄2) (289)

∼
z1→z2

∫

1
2+ıR+

dj3
1

|z12|2h12

∫

C

d2x3

∏

k<l

1

|xkl|2jkl
D(j1, j2, j3)

A(j3)
Φ1−j3(x3, x̄3; z2, z̄2)

where j3 = 1
2 + ıλ3. The operator product expansion in the m basis is obtained

in a similar way.
From the above results given for primary fields associated to non-degenerate

continuous representations (for which all factors are well defined), and especially
from the operator product expansion, one can find the fusion rules between de-
generate and non-degenerate fields. Indeed, the three point function is analytic
in its arguments and can be analytically continued to the whole complex plane.
This however requires a little bit of work, as will be seen below. The fusion
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0 11/2

<j3

=j3

u1/21 − u1/2

2ε → 0

−λ2

λ2

Figure 11: Integration contour and poles for the operator product expansion of
a degenerate field and a non-degenerate field.

coefficient Nj1,j2 j3 is defined to be one if Φ1−j3 appears with a non-zero factor
in the operator product expansion of Φj1 and Φj2 , and zero otherwise.

In order to find the fusion for a degenerate and a non-degenerate representa-
tion, one deforms the contour of integration of the operator product expansion
[105, 110], from the initial situation shown in figure 10 for which j1 = 1

2 + ıλ1,
j2 = 1

2 + ıλ2, λ1, λ2 ∈ R+, to the case λ1 = ıu1

2 + ε, with u1 ∈ N∗ and ε a
positive infinitesimal number, shown in figure 11. The figures show the poles
of D(j1, j2, j3) in the j3 complex plane. They lie on the dotted lines (some
of them are pictured as crosses). For instance, poles of Υ(bj13) are located at
j3 = ı(λ2 − λ1) − mk − n or at j3 = ı(λ2 − λ1) + (m + 1)k + (n + 1) where
m, n are positive integers84. One should also take into account zeros in the
numerator of D(j1, j2, j3) that appear in the limit ε → 0. Arrows in figure 10
indicate in which direction poles move when the imaginary part of λ1 increases
from 0 up to u1

2 . For ε→ 0, the contour of integration is pinched between some
poles (note that when two of these poles merge, there is an extra zero factor
coming from Υ(2j1b) which make the total residue non-zero). Then, pulling the
integration contour over the poles, the integral is transformed into a sum over
all non-zero residues (there is no other contribution to the operator product
expansion, because in the limit ε → 0, D(j1, j2, j3) = 0 except at its poles).
The final result is consistent with the expectation for the fusion of degenerate
and non-degenerate representations in H+

3 and it is given in the next section in
equation (323) (where the notation is u = 2J + 1).

For the fusion of two degenerate representations, one starts again from
figure 10, but then deforms the integration contour to λ1 → ıu1

2 + ε
2 and

84The poles located at j3 = ı(λ2 −λ1) + (m+1)k+(n+ 1) will not play any role here since
k is assumed to be non-rational.
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<j3

=j3

(u1 + u2)/21 − (u1 + u2)/2

(u1 − u2)/2 (u2 − u1)/2

2ε → 0

−2ε → 0

Figure 12: Integration contour and poles for the operator product expansion of
two degenerate fields.

λ2 → ıu2

2 + 3ε
2 , as shown in figure 12 in the case u2 ≥ u1. Just as before,

the contour of integration is pinched between some poles, which are going to
contribute to the fusion i.e. to a sum over residues. The result is given later in
equation (309).

6.3 The hyperbolic three-plane H+
3

This section focuses on the properties of characters in the H+
3 theory and on

brane computations for spherical branes and AdS2 branes [107], with finite
representations in the open string channel.

As mentioned in the previous section, two kinds of representations of the
affine Lie algebra of SL(2,R) will be of interest here: continuous non-degenerate
representations, labeled by their spin j = 1

2 + ıλ where λ ∈ R+, and degenerate
representations (generated by the current algebra from a finite representation
of the Lie algebra of dimension u = 2J + 1, see figure 9), of spin j = 1−u

2 =
−J , where u is a strictly positive integer i.e. J is a positive half-integer (such
representations are non-unitary unless J = 0). The degenerate representation
J = 0 will play the role of the identity in the Verlinde formula. The characters
of a non-degenerate and of a degenerate representation are respectively [108]:

χλ(τ) =
qλ

2/k

η(τ)3
, χJ (τ) = (2J + 1)

q−(2J+1)2/(4k)

η(τ)3
(290)

where the level k + 2 is real, non-rational and strictly positive and η is the
Dedekind function, defined in appendix A in relation (411). These formulas
deserve some comments.

Since the above characters are characters of current algebras, a proper defi-
nition would add extra variables in order to keep track of all quantum numbers,
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representation

Finite

representation

Positive discreteNegative discrete

representation

0
J

3

0

Figure 13: A continuous representation of the zero modes (or Lie algebra) of
SL(2,R). Each dot corresponds to a state. The figure shows how a continuous
representation decomposes into the sum of two (conjugate) discrete representa-
tions and of a finite representation, sandwiched by the discrete representations.
These states play the role of primary states of the associated affine Lie algebra
representation.

see footnote 32. As explained in [108], this may be done for degenerate repre-
sentations by defining:

χJ(τ, ν) = Tr
(
qL0− c

24 zJ
3
0

)
=

2 sin(πν(2J + 1))q−(2J+1)2/(4k)

θ1(τ, ν)
(291)

where q = e2ıπτ and z = e2ıπν and θ1 is defined in appendix A, relation (412).
The above formula connects with the definition of the character in (290) in the
limit ν → 0 in which the character simplifies: χJ(τ, ν → 0) = χJ(τ). The ν
dependence is of no use for the upcoming considerations. Things are much more
complicated for the characters of continuous representations, since the result
would be infinite as a consequence of the infinite number of states of the zero
modes (Lie algebra) representation. Several approaches may then be considered.
None of them seems entirely satisfying (a rigorous treatment is probably an open
and interesting problem). One possibility, used in [108], is to realize that the
character of continuous representations appears in the modular transformation
of the degenerate characters, and moreover to identify the continuous characters
as expressions obtained from a generalization of the finite characters:

χλ(τ) = (1− 2j)
qλ

2/k

η(τ)3
= −2ıλ

qλ
2/k

η(τ)3
, χJ(τ) = χλ=ı( 1

2
+J)(τ) (292)

This has the advantage that the S matrix then squares to the identity (see below
for manipulations on this issue). However, it is not consistent with the intuitive
picture (emerging from considerations on the spectrum of J3

0 , see figure 13
or e.g. [115]) that continuous representations are equivalent to the sum of
two discrete representations and a finite representation (since (292) identifies
continuous representations with finite ones only). A more rigorous but also more
complicated treatment, evoked in [19] (see also [116]), may consist in defining
distributions instead of characters. It may also be possible to regularize the
infinite sum in the character. The choice that was made here in equation (290),
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and also in [107], amounts to not summing over the zero modes (i.e. consider
the subset of the continuous representation generated from only one primary
field). This choice has the advantage of yielding a simple result. Moreover, this
choice eventually proves to agree with the normalization of the field Φj (see
e.g. equation (305) below). Finally, it is justified a posteriori considering the
sensible formulas that will be deduced from the continuous character, in the
context of Cardy states and Verlinde formula.

The modular transformations of the characters are (see [108] for the degen-
erate case):

χJ (τ ′) =

∫ ∞

0

SJ
λχλ(τ)dλ , SJ

λ = 4λ

√
2

k
sinh

(
2πλ(2J + 1)

k

)
(293)

χλ (τ ′) =

∫ ∞

0

Sλ
λ′

(τ ′)χλ′(τ)dλ′ , Sλ
λ′

(τ ′) = − 2

ıτ

√
2

k

λ

λ′
cos

(
4πλλ′

k

)

where τ ′ = − 1
τ . The component Sλ

λ′
of the modular matrix depends on τ . This

is quite different from rational theories, but not so surprizing since the non-
degenerate characters of H+

3 have a similar expression to the ones of Liouville
theory (for which the modular matrix does not depend on τ), except for an
extra factor η(τ)−2. This factor accounts for the τ dependence of the modular
transformation, since η

(
− 1
τ

)
=
√−ıτ η(τ).

Just like the characters, the above modular transformation also deserve some
comments. Indeed, since the modular transforms are expressed as integrals, a
density of states may be hidden in the formulas (293), and a proper definition
of the modular matrix would rather be χi(−1/τ) =

∫
Si
λχλ(τ)N(λ)dλ. These

considerations are not of much importance for the present study. Indeed, they
would amount to a renormalization of the modular matrix Sλi → Sλi /N(λ). This
renormalization may be incorporated in a redefinition of the primary fields, see
e.g. (305), and is of no importance in the Verlinde formula, see e.g. (311).

Interesting remarks arise when computing the square of the modular S ma-
trix, which is expected to be the identity. In the non-degenerate sector, the
proof follows from the standard formula for the Dirac distribution:

1

2π

∫ ∞

−∞
eıkxdk = δ(x) (294)

In the degenerate sector, the proof is more subtle. It is explained below in some
detail, since it is a useful foreshadowing of the techniques used later. The first
step consists in unfolding the second integral:

χJ(τ) =

∫ ∞

0

4λ

√
2

k
sinh

(
2πλ(2J + 1)

k

)∫ ∞

−∞
− 1

ıτ

√
2

k
e

4ıπλλ′
k χλ′(τ)dλ′dλ

(295)

The integrals cannot be switched otherwise the λ integral would become diver-
gent. It is however possible to shift the λ′ integral off the real axis and give it a
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positive imaginary part α > J + 1
2 , not encountering any poles, to render the λ

integral finite after exchange of the order of permutations (see [98] for a similar
manipulation):

χJ(τ) =

∫ ∞+ıα

−∞+ıα

− 8λ

ıτk

∫ ∞

0

sinh

(
2πλ(2J + 1)

k

)
e

4ıπλλ′
k dλχλ′ (τ)dλ′ (296)

Integrating over λ yields:

χJ (τ) =

∫ ∞+ıα

−∞+ıα

−4k

ıτ

(
1

(2π(2J + 1) + 4ıπλ′)2
− 1

(−2π(2J + 1) + 4ıπλ′)2

)

×χλ′(τ)dλ′ (297)

Finally, shifting the λ′ integral back to the real axis leads to:

χJ(τ) = (2J + 1)χλ′=ı(J+ 1
2 )(τ) (298)

since the integral over the real axis is zero (the integrand is odd) and a pole is
picked up, thanks to the standard formula for holomorphic functions f :

1

2ıπ

∮

z

f(w)

(w − z)n dw =
1

n!

dnf

dzn
(z) (299)

where the contour encircles z and is oriented in the trigonometric sense (the
opposite sense yields a minus sign).

The above results may now be put to good use by writing a generalized
Verlinde formula.

6.3.1 Degenerate representations

For a spherical brane, the one-point function is85:

〈
Φλ(x|z)

〉
J

=
(1 + xx̄)−2ıλ−1

|z − z̄|2hλ Γ

(
1− 2ıλ

k

) sinh
(

2πλ(2J+1)
k

)

sin
(
π(2J+1)

k

) −ıν−ıλ+ 1
2

2πΓ
(
1− 1

k

) (300)

where:

hλ = −j(j − 1)

k
=

1

k

(
λ2 +

1

4

)
, ν =

Γ
(
1− 1

k

)

Γ
(
1 + 1

k

) (301)

This wave-function satisfies the usual reflection property:

〈
Φλ(x|z)

〉
J

=
2ıλ

π
R(λ)

∫

C

d2y|x− y|−4ıλ−2
〈
Φ−λ(y|z)

〉
J

(302)

85Remark that the x-dependence is precisely the one of the classical wave-function Φj(x, x̄|g)
for g equals to the identity i.e. φ = γ = γ̄ = 0). Hence the reflection relation (302).
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where R(λ) is given by:

R(λ) = −Γ
(
1− 2ıλ

k

)

Γ
(
1 + 2ıλ

k

) ν−2ıλ (303)

and satisfies R(λ)R(−λ) = 1. The boundary state related to the one-point
function is86:

B〈J |λ;x〉 = 2 sin

(
π(2J + 1)

k

)
(8π2/k)

1
4√

sin
(
π
k

)B
〈
Φλ
(
x| ı

2

)〉
J

(304)

Note that 〈λ;x|J〉B ≡ (B〈J |λ;x〉)∗ = B〈J | − λ;x〉.
The boundary state is related to the modular transformation in the following

way87:

B〈J |λ;x〉
√
R(−λ) =

SJ
λ

√
S0

λ

(1 + xx̄)−2ıλ−1

√
π

(305)

This should be compared with the construction of boundary states that was
mentioned in the case of rational theories at the end of section 4.3, in relation
with Cardy’s constraint. The 1/

√
π factor is a good normalization of the x, x̄

term in the sense that:

1

π

∫

C

(1 + xx̄)−2d2x = 1 (306)

This integral appears in the calculation of the annulus amplitude for two sphe-
rical branes. Using relation (305), this amplitude reads:

B〈J ′|q′H/2|J〉B =

∫ ∞

0

dλ

∫

C

d2x B〈J ′|λ;x〉〈λ;x|J〉Bχλ(q′)

=

∫ ∞

0

dλ
SJ

λSJ′λ

S0
λ

χλ(q
′) =

J+J′∑

J′′=|J−J′|
χJ′′(q) (307)

where H = L0+L̄0

2 − c
24 is the Hamiltonian on the plane. The following formula

was used:

sinh(nx) sinh(n′x) =

n+n′+1∑

n′′=|n−n′|+1

sinhx sinh(n′′x) (308)

86The normalization of the boundary state is different from [107] in order for the partition
function to be normalized with respect to the fusion of representations, see (307) below. The
same will be true for boundary states associated to non-degenerate representations.

87There is a subtlety because the square root of R(−λ), which is a complex number, is not
well defined. Here ı is identified with

√
−1. This subtlety is of no importance in (307).
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It is possible to rewrite the above partition function of boundary operators in
terms of the fusion coefficients, which for finite degenerate representations were
found in subsection 6.2.3 to be:

NJ;J′J
′′

=





1 if

{
|J − J ′| ≤ J ′′ ≤ J + J ′

J + J ′ + J ′′ ∈ N
0 else

(309)

Hence:

B〈J ′|q′HP /2|J〉B =
∑

J′′∈ 1
2 N

NJ;J′J
′′
χJ′′(q) (310)

Comparing equations (307) and (310):

SJ
λSJ′λ

S0
λ

=
∑

J′′∈ 1
2 N

NJ;J′J
′′
SJ′′λ (311)

This relation shows that the rescaled modular matrix SJ
λ/S0

λ represents the
fusion ring. From the above formula, in unitary rational conformal field theories,
one inverts the S matrix to find the Verlinde formula. There is no such inverse
here. However, a similar issue arised when checking in (295) to (298) that

the S matrix squared to the identity, schematically: χJ(τ) = SJ
λSλ

λ′
χλ′(τ).

Proceeding by analogy with this case, it seems natural to define the Fourier
transform of the above relation (311) with respect to the free momentum index
λ. This transform encodes the fusion coefficients as the residues of its poles.
More precisely, a natural analytic continuation of the usual sum of modular S
matrices appearing in the Verlinde formula is:

f(z) =

∫ ∞

0

SJ
λSJ′λ

S0
λ

e4ıπ
√

2
kλz

dλ

λ
(312)

which is well defined for =z > 2(J+J′)+1√
2k

. The kernel with a 1/λ used above

may seem a bit artificial. This is probably because the correct measure for λ
was neglected here (and it is due to the term λ in SJ

λ, which is related to the
choice of continuous character). The factor 1/λ is added in order for the fusion
coefficients to be expressed as the residues of the function f (otherwise the poles
of the functions would be second-order poles, see (297), and the residues would
be zero). This is natural in analogy with Liouville theory, or with the case of
a degenerate and a non-degenerate representation, where the fusion coefficients
are indeed given as residues.

The function f can be extended by analytic continuation to the whole com-
plex plane, except for some poles whose set is precisely given by88 {±zJ′′ =

± ı
2
√

2k
(2J ′′ + 1)|NJ;J′J

′′ 6= 0}. The fusion coefficients are given by the residues

of the function f :

2ıπ Residuez=zJ′′ (f) = NJ;J′J
′′

(313)

88The ± sign is an artefact arising from reflection. Only one set of poles is relevant for the
fusion.
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6.3.2 Degenerate and non-degenerate representations

This case shares properties with the one involving two degenerate representa-
tions.

The one-point function for a continuous AdS2 brane (related to a non-
degenerate representation j = 1

2 + ıλ′) is [107]89:

〈
Φλ(x|z)

〉
λ′ = −|x+ x̄|−2ıλ−1

|z − z̄|2hλ ν−ıλ
(
k

8

) 1
4

Γ

(
1− 2ıλ

k

)
e−

4ıπλλ′
k sign(x+x̄) (314)

The boundary state is defined as:

B〈λ′|λ;x〉 =
2
√

2

π
B

〈
Φλ
(
x| ı

2

)〉
r

(315)

As was pointed out in [107], it is necessary to define a regularized boundary state
in order to be able to calculate the annulus amplitude B,reg.〈r′|qHp/2|r〉B,reg..
However, this regularization is not needed for the calculation of B〈r|q′Hp/2|s〉B .
It can be checked that the result would be the same using the regularized state
|r〉B,reg. and then taking the well defined limits in all the cut-offs. Indeed, there
is no divergence with the spherical branes since they are compact and associated
to finite representations. This is also the reason why, in the configurations
studied in these notes, the open string spectrum is finite i.e. the amplitude is
expressed as a (finite) sum, and not an integral (a consequence is that there is
no need for the density of states that was computed in [107]).

The following calculations will use the Fourier transform (276) of the bound-
ary states, like in [107], because calculations are simpler in this basis and also
because it is the one that is used for regularizing the |r〉B boundary state. The
Fourier transform of a continuous boundary state is obtained thanks to the
relation:

∫ π
2

−π
2

(2 cos θ)ν−1eıβθdθ =
π

νB
(
ν+β+1

2 , ν−β+1
2

) (316)

where B is the Beta function, defined by B(x, y) = Γ(x)Γ(y)
Γ(x+y) . This relation yields:

B〈λ′|λ;n, p〉 =

∫

C

d2xeınarg(x)|x|2ıλ−ıp−1
B〈r|λ;x〉

= 2πδ(p)A(λ′|λ;n) (317)

where n ∈ Z, p ∈ R and:

A(λ′|λ;n) = 4

(
k

2

) 1
4

ν−ıλΓ

(
1− 2ıλ

k

)
Γ(−2ıλ)

Γ( 1+n
2 − ıλ)Γ( 1−n

2 − ıλ)
(318)

×
(

1 + (−1)n

2
cos

(
4πλλ′

k

)
− 1 + (−1)n+1

2
ı sin

(
4πλλ′

k

))

89The Ab constant used in [107] is here assumed to be real. This is not of much importance
since a phase could be removed in the definition of the boundary state.
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It is worth noticing that no analogue of the formula (305) can be written for
the boundary state of a non-degenerate representation (either in the x basis or
in the n, p basis). For Liouville theory and the SL(2,R)/U(1) coset there is
no such difficulty and analogues of (305) can be written for boundary states
associated to both degenerate and non-degenerate representations.

Thanks to the formula:
∫ ∞

0

rµ−1dr

(1 + r)ν
=

Γ(µ)Γ(ν − µ)

Γ(ν)
(319)

the Fourier transform of a degenerate boundary state reads:

B〈J |λ;n, p〉 = −ı(8k) 1
4 ν−ıλΓ

(
1− 2ıλ

k

)
sinh

(
2πλ(2J + 1)

k

)

×Γ( 1−ıp
2 + ıλ)Γ( 1+ıp

2 + ıλ)

Γ(1 + 2ıλ)
δn,0 (320)

The annulus amplitude for a spherical brane and an AdS2 brane is then:

B〈λ′|q′HP /2|J〉B =

∫ ∞

0

dλ
1

(2π)2

∑

n∈N

∫

R

dp χλ(q
′)B〈λ′|λ;n, p〉〈λ;n, p|J〉B

=
1

ıτ

∫ ∞

0

Sλ′λ(τ)SJ
λ

S0
λ

χλ(q
′)dλ

=
1

ıτ

J∑

J′+ 1
2=−J

χλ′+ı(2J′+1)/2(q) (321)

where q′ = e2ıπτ
′

and χλ′+ı(2J′+1)/2(q) = qb
2(λ′+ı(2J′+1)/2)2

η(τ)3 . The following for-

mulas were used in the last line:

sinhnx

sinhx
=

n−1∑

n′=1−n,2
en

′x

2 cosa cos b = cos(a+ b) + cos(a− b) (322)

where the sum is over n+ n′ − 1 even. Once again, it is possible to rewrite the
annulus amplitude in terms of the fusion coefficients, which for a degenerate
and a non-degenerate representations were in section 6.2.3 found to be:

Nλ;J
λ′,J′

=





1 if

{
−J ≤ J ′ + 1

2 ≤ J , J + J ′ + 1
2 ∈ N

λ = λ′

0 else
(323)

The annulus amplitude is then:

B〈λ′|q′HP /2|J〉B =
1

ıτ

∫ ∞

0

dλ
∑

J′∈ 1
2 N

Nλ′;J
λ′,J′

Sλ′,J′λ(τ)χλ(q) (324)
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which implies that:

Sλ′λ(τ)SJ
λ

S0
λ

=
∑

J′∈ 1
2 N

Nλ′;J
λ′,J′

Sλ′,J′λ(τ) (325)

This relation can be inverted like in (312) in order to write a Verlinde-like
formula:

f(z) =

∫ ∞

0

Sλ′λ(τ)SJ
λ

S0
λ

e2ıπ
√

2
kλzdλ (326)

where =z > 2J√
2k

. The above function can be extended by analytic continuation

to the whole complex plane, except for some poles, whose set is equal to {zJ′ =

− ı√
2k

(2J ′ + 1) ±
√

2
kλ

′|Nλ;J
λ′,J′ 6= 0}. The fusion coefficients are therefore

given by the residues of the function f :

2ıπResiduez=zJ′ (f) = Nλ;J
λ′,J′

(327)

6.3.3 Generalization

Finally, it is possible to formally generalize the above results obtained for a
non-degenerate representation λ′ to any non-degenerate representation labeled
by λ̃′ ∈ C such that λ̃′ 6= ı

(
J + 1

2

)
for any half-integer J . These representa-

tions reduce to the usual non-degenerate unitary representations when λ̃′ has
no imaginary part. The character, modular transformation and wave function
are the same as (290), (293) and (314) respectively, replacing λ′ by λ̃′. The
annulus amplitude for these non-unitary non-degenerate representations is:

B〈λ̃′|q′HP /2|J〉B =
1

ıτ

J∑

J′+ 1
2=−J

χλ̃′+ı(J′+ 1
2 )(q) (328)

This expression, again, agrees with the fusion coefficients:

Nλ̃;J
λ̃′

=





1 if




=(λ̃′ − λ̃) = ı(J ′ + 1

2 ) with 2J ′ ∈ N
−J ≤ J ′ + 1

2 ≤ J , J + J ′ + 1
2 ∈ N

<λ̃′ = <λ̃
0 else

(329)

A formula similar to equation (327) can be obtained. In deriving these relations,
the idea of extending the Verlinde formula into the domain of complexified
momenta was briefly explored. See some comments in the conclusion.

6.4 Conclusion

This dissertation has reviewed the H+
3 theory explicitly, but not other non-

rational conformal field theories like bosonic Liouville theory and the super-
symmetric coset SL(2,R)/U(1)90, which were treated along with H+

3 in [1].

90Recall that the bosonic coset SL(2,R)/U(1) is dual to bosonic Liouville, and the same
kind of relation holds for the supersymmetric theories. See e.g. [117].
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The other theories behave in a similar manner, that is to say: for each theory
there exist degenerate and non-degenerate representations, for which the cha-
racters and their modular transformations are known, and so are the one-point
wave-functions for branes and the reflection parameter (that are related to the
modular S-matrix by a generic formula [98]). In each theory it is possible to
write an analogue of the Verlinde formula, both for two degenerate represen-
tations or for one degenerate and one non-degenerate representations, and to
check the extension of Cardy’s condition for boundary states.

The formulas that were found apply only to a subset of representations,
involving the fusion (or modular transformation matrices) of degenerate repre-
sentations. These representations are characterized by null vectors appearing in
the associated chiral Verma module. It is known that these representations are
crucial when deriving differential equations for the (bulk and boundary) correla-
tion functions of the non-degenerate fields by postulating the decoupling of null
vectors. Thus, degenerate representations have already been put to good use to
determine the structure of non-rational conformal field theories through differ-
ential methods. One can view the results on the generalized Verlinde formula
for degenerate representations as laying bare some of the algebraic structure un-
derlying solutions for the unitary sector of non-rational conformal field theories
(even though degenerate representations may not be contained in the unitary
conformal field theory spectrum).91

Moreover, an ubiquitous phenomenon appeared in these notes. Instead of
concentrating on quantities which depend on a real variable parameterizing the
unitary (continuous, say) spectrum of a non-rational conformal field theory, it
is possible to consider functions of a complexified parameter. This is familiar
from the analysis of discrete contributions to partition functions [111, 119], from
the determination of the moduli space of FZZT branes in minimal string theo-
ries and its properties [120], from the determination of the fusion of degenerate
representations from the fusion of non-degenerate ones, and now from the fact
that the generalized Verlinde formula is based on this same idea (i.e. render-
ing a function regular by complexifying a momentum, and then extending the
domain of definition of the regularized function over the complex plane). Some
new examples of connections of the Verlinde type have been presented here,
between modular transformation properties and fusion of non-unitary represen-
tations, associated to complexified momenta. Although these complexifications

91As is well known, non-unitary sectors of conformal field theories are not only interesting for
two-dimensional physics (e.g. the Yang-Lee edge singularity), but also arise in the covariant
quantization of unitary string theories (for instance, the conformal theory of ghosts in bosonic
theory is non-unitary since the two ghost fields have conformal weights 2 and −1). See e.g.

[118] for some comments on non-unitary conformal field theories. The Yang-Lee singularity
appears in the description of the zeros of the partition function of a lattice theory, like the Ising
model, in the scaling limit in which the number of sites becomes infinite. Near a specific value
of the electromagnetic field, the density of zeros follow a power law as a function of the field.
The critical exponent is described by a minimal model of central charge c = −22/5, which
contains two primary fields of conformal weights 0 and −1/5, and is therefore non-unitary.
One needs to keep the distinction between unitary conformal field theories and unitary string
theories always carefully in mind.
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may seem formal on occasion, they may point towards quite generic structures
underlying non-rational conformal field theories, which may be more naturally
defined in a complexified external parameter space (e.g. bulk coupling con-
stants, external momenta, boundary coupling constants).

In the context of string theoretic applications of the branes of non-rational
conformal field theories, it is clear that a generalized Verlinde formula is ex-
pected to be at work for branes that are localized (or boundary state calcula-
tions involving at least one localized brane). The localization of the associated
open string avoids having to deal with volume divergences (see e.g. [107]), which
is crucial for the calculations presented here92.

Apart from the new calculations performed in [1], one may be able to apply
the techniques developed here to a further variety of non-rational conformal field
theories, including theories with N = 4 superconformal symmetry, with N = 2
extended superconformal symmetry at central charge c = 9, the H2n+2 models
(e.g. the localized S(−1) brane in H4 [121]), and the bosonic SL(2,R)/U(1)
model. Further open problems include an analysis of the mechanics of both
fusion and modular transformations at rational values for the central charge
(some results are already known, see e.g. [122]).

One hope is that an understanding of these sectors that connect analytic to
algebraic properties of non-rational conformal field theories will allow for more
efficient algebraic constructions of boundary conformal field theories. These in
turn would allow for a better understanding of for instance D-branes in non-
compact Calabi-Yau’s and the spectrum of open strings living on them, to name
only one application.

92It would be interesting to find regularizations of brane partition functions that grow like
the volume of a non-compact space, and that are consistent with all the symmetries of the
theory.
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7 Rigid open strings, Lie algebras and star prod-

ucts

This section presents the results of [2]. In order not to paraphrase the whole
paper, a few unnecessary parts of it will be simply mentioned, while other parts
will be treated in more detail. Some elements of group theory, especially adjoint
and co-adjoint representations, have been reviewed in section 3. They will prove
to be useful here.

7.1 Introduction

The work [2] focused on the study of a class of non-commutative theories that
arise as a semi-classical limit of open strings on D-branes in group manifolds,
which was first discussed in [123]. Since then non-commutative theories [124]
have received a lot of attention. It generically arises in string theory in a limit in
which the background anti-symmetric tensor dominates. See [125] for a review.
The present study was motivated by the physics of open strings, but is not re-
stricted to this setting only (non-commutativity is natural in open string theory
since the interaction of open strings involves the joining of the endpoints and is
similar to matrix multiplication). One hope was to learn more about non-local
theories of quantum gravity (string theory, for instance). Another motivation
was to connect physics to the mathematics of star product theory.

The semi-classical limit gives rise to rigid open strings on group manifolds,
whose dynamics can be elegantly coded in group theory coefficients (3j and 6j
symbols). In the case of compact groups, the results of [126] were extended
to the case of multiple branes and the results of [127] were reformulated in a
diagrammatic formalism (all of this is a simplified version of rational boundary
conformal field theories), while for non-compact groups, the construction gives
rise to new associative products. The associative product constructed in this
way is directly related to the boundary vertex operator algebra of open strings
on symmetry preserving branes in Wess-Zumino-Witten models, including the
case of non-compact groups. The groups SU(2) and SL(2,R) (or rather an
isomorphic group, SU(1, 1)) are treated explicitly. The precise relation of the
semi-classical open string dynamics to Berezin quantization and to star product
theory was also discussed in [2] and is mentioned here.

In particular, the study firstly concentrates on a semi-classical limit of open
strings on generic group manifolds. This has the advantage of considerably
simplifying the analysis of the open string dynamics (while sacrifying finite
bulk curvature effects), and provides an elegant semi-classical picture of open
string dynamics on group manifolds. In order to present it, and to show its
generality, the theory of quantization of co-adjoint orbits (which describes the
behavior of one end of an open string), the quantization of pairs of orbits (for
the two endpoints of an open string) and the composition of operators on the
resulting Hilbert spaces (corresponding to the concatenation of open strings)
are discussed.
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Again, for compact Lie groups this part of the analysis is a simpler, limiting
version of the analysis of chiral classical conformal field theory [25], or boundary
vertex operator algebras [48]. Providing an intuitive and precise picture for the
semi-classical limit of rational boundary conformal field theory may however
be interesting in its own right. Furthermore, the picture also applies to non-
rational boundary conformal field theory which is much less understood. Thus,
the construction is put to good use, by being explicitly applied to the example
of non-compact groups.

The possibility to extend the intuitive picture that holds for the quantization
of orbits of Lie groups in the semi-classical limit to quantum Lie groups is
also discussed. In doing so, one should recuperate the full solution to rational
boundary conformal field theories in the case of symmetry preserving D-branes
in Wess-Zumino-Witten models on compact groups. The construction should
generalize to non-compact groups.

Since the dissertation refers to a lot of concepts that have been highly devel-
oped by different communities, it is not possible to review them all fully. The
strategy followed in [2] was to first illustrate the concepts in the simple case
of the group SU(2). It is roughly the same here, although the non-compact
group SU(1, 1) is treated in more detail. The way to obtain more general re-
sults on these structures and to include the case of quantum groups is sketched
by citing the relevant references. The following work is organized as follows:
section 7.2, in relation with section 3, provides a mathematical background for
the following work, section 7.3 reviews the orbit method, section 7.4 generalizes
it to pairs of orbits, introduces and analyzes the action for rigid open strings on
group manifolds, and discusses the interaction of strings, section 7.5 applies the
construction to the SU(2) group and section 7.6 and 7.7 review the structure
constants for the SU(1, 1) ≡ SL(2,R) case and work out how the formalism
applies to this non-compact case. Finally, the case of quantum groups is treated
in section 7.8.

7.2 Mathematical introduction

The method of orbits has been widely studied [22, 128]. This section provides
a mathematical introduction to the basic features of co-adjoint orbits (see sec-
tion 3.3 for a definition), symplectic geometry and geometric quantization. It is
a necessary background to understand the following sections.

7.2.1 Different points of view on orbits

The dual g∗ of the Lie algebra g associated to the Lie group G can be thought of
as a Poisson manifold, i.e. a smooth manifold such that the Poisson brackets:

{f1, f2} = fabcJ
c∂af1∂bf2 (330)

(where Jc are the generators of the algebra and fabc its structure constants)
define a Lie algebra on the space of smooth functions on g∗. Then the linear
functions on g∗ form a Lie algebra isomorphic to g∗, since {Ja, Jb} = fabcJ

c.
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The bivector c = fabcJ
c∂a∂b induces a symplectic form on g∗, i.e. a differential

2-form that is non-degenerate and closed. Now, g∗ as a Poisson manifold can
be uniquely foliated by its symplectic leaves93, and these symplectic leaves are
exactly the co-adjoint orbits. This connects the theory of orbits and the theory
of symplectic structures, and is the starting point for the more specific remarks
of the next paragraph.

The connection between orbits and symplectic geometry is made clearer by
the observation that on each co-adjoint orbit Ω ⊂ g∗ seen as a differential
manifold, there is a canonically defined G-invariant symplectic form ω (which is
the restriction of the symplectic form induced by the bivector c to the symplectic
leaf Ω). This implies that Ω must be of even dimension 2n (n integer), and that
ωn 6= 0. The generic notation for an n-form σ on a manifold M , its exterior
derivative and its integral are:

σ =
1

n!
σµ1...µndx

µ1 ∧ ... ∧ dxµn

dσ =
1

n!

∂σµ1...µn

∂xµλ
dxµλ ∧ dxµ1 ∧ ... ∧ dxµn

∫

M

σ = Vol M =

∫

M

σ1...nd
nx (331)

The value of the canonical symplectic form in λ ∈ Ω is:

ωλ(ad
∗
Xλ, ad

∗
Y λ) = Bλ(X,Y ) = 〈λ, [X,Y ]〉 (332)

where Bλ is a natural skew-symmetric bilinear form on g whose kernel is stab(λ)
and X,Y ∈ g. Although not obvious in the above formulation, ωλ does not
depend on λ. The canonical symplectic form is related to the exterior derivative
of the Liouville one-form94 (see [22, 129]):

θλ(g) =
〈
λ, g−1dg

〉
(333)

where g is a group element of the Lie group G and 〈λ, g−1dg〉 denotes the
evaluation of λ on the element of the Lie algebra g−1dg. The evaluation 〈, 〉 is
assumed to be bilinear and invariant under the action of the group G.

A homogeneous space (with respect to a ”motion” group G) is a set which
coincides with the orbit, under the action of G, of one of its points. An orbit
Ω is therefore, by definition, a homogeneous (symplectic) manifold. There is
a one-to-one correspondence between homogeneous spaces and quotient groups
G/H where H is a subgroup of G that is the stabilizer of one point of the
homogeneous space. This justifies the identification Ωλ ∼ G/Stab(λ) if λ is a
point of the orbit Ω = Ωλ. Moreover, this implies that orbits can be seen as flag

93Each leaf is a submanifold of the Poisson manifold, and each leaf is a symplectic manifold
itself. Two points lie in the same leaf if they are joined by the integral curve of a Hamiltonian
vector field.

94In canonical notations from Hamiltonian mechanics, the Liouville one-form is simply pdq.
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manifolds (and therefore as homogeneous Kähler manifolds95). A flag manifold
is a coset space of the form G/H with H a subgroup of G. In the SU(2) case,
the S2 spheres are full flag manifolds since they are cosets with respect to the
maximal abelian subgroup of SU(2), namely U(1).

Finally, a set X on which a group G acts splits into its orbits under the
action of the group. For instance, R3 splits into two-spheres under the action
of SU(2) and R2,1 splits into hyperbolöıds, the cone (without the origin) and
the origin point under the action of SO(2, 1) ≡ SL(2,R). See e.g. figure 23.
Note that this statement is related to the above remark on the unique foliation
of Poisson manifolds, with their symplectic leaves.

7.2.2 Quantization

Geometric quantization [130, 131] (see also [132]) is a process which constructs
quantum objects starting from the geometry of the classical ones. It has the
advantage of being rather intuitive. The link is established by associating (quan-
tized) co-adjoint orbits to irreducible unitary representations. The one-to-one
correspondence in the case of (compact) Lie groups has been studied in several
papers, see e.g. [22, 133]. More precisely, geometric quantization associates a
separable Hilbert space to a symplectic manifold (Ω, ω), by singling out a class
of smooth real-valued functions on Ω (called the quantizable functions) and
mapping them to operators.

A Kähler manifold (Ω, ω) is quantizable if there exists over Ω a hermitian
holomorphic line bundle with a connexion ∇ of curvature −2ıπω [134, 135].
When Ω is a co-adjoint orbit, with ω the canonical symplectic form, the existence
of a proper connexion is equivalent to the condition that the orbit is integral, i.e.
that for every geometric 2-cycle C in Ω,

∫
C
ω ∈ Z (remark that for SU(2) the

only 2-cycle is the whole two-sphere). Therefore an orbit can only be quantized
if it is integral.

The correspondence between the co-adjoint orbits and irreducible (unitary)
representations is given by the Borel-Weil-Bott theorem (which holds at least
for all compact connected Lie groups). A consequence is the relation:

dim Hκ = θ Vol Ωκ+ρ , Vol Ω =

∫

Ω

ωn

n!
(334)

where ρ is half the sum of the positive roots of the algebra g (it is 1
2 for SU(2) or

SL(2,R)), κ labels the representation (the Hilbert space H) and θ is a function
introduced in [134] (it is related to the concept of coherent state), which is a
constant since orbits are homogeneous spaces (assuming that the quantization
line bundle is also homogeneous). This is consistent with the physical idea
that the dimension of the quantum phase space is equal to the volume of the
classical phase space in Planck units. Focusing on the SU(2) case, note also

95Recall that a complex manifold M is Kähler if in every tangent space to this manifold
there is a hermitian form such that its real part defines a Riemannian metric on M and its
imaginary part defines a symplectic structure. Here, the Riemannian metric is induced by the
group metric.
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that, because of the presence of ρ, the trivial representation j = 0 does not
correspond to the point, but has a non-zero volume phase space (corresponding
to a non-zero energy for the lowest-energy state of a quantum system having
SU(2) symmetry).

Finally, an important consequence of the fact that θ is a constant is that
Berezin’s quantization [136] of a co-adjoint orbit coincides with geometric quan-
tization (see also a nice presentation of Berezin’s quantization in terms of co-
herent states in [137], chapter 2).

7.2.3 Star product and classical limit

The connection to star product theory is established in [135] for compact groups,
where Berezin’s quantization procedure is used to define on an algebra of func-
tions on an orbit a formal differential star product. Indeed, once a quantization
map f → M(f) has been defined, it is possible to define a product in the
following way:

f1 ∗ f2 =M−1 (M(f1)M(f2)) (335)

whereM(f1)M(f2) is the product of operators. The star (*) product on orbits
of a Lie group G is G-invariant. This product is an associative deformation
of the usual product of smooth functions and can be defined as an (a priori
formal) asymptotic expansion according to the definition of star products (the
first term is the usual product, and the second term is related to the Poisson
brackets). Finally, when the orbit is a (compact) hermitian symmetric96 space,
the asymptotic expansion of the star product is convergent. This implies that
in the limit in which the expansion parameter tends to zero, one recuperates
the usual product.

Finally, the connection with the classical limit was made in [134, 135]. It
relies on the fact that the quantization bundles over the orbit (and the orbit as
well) are homogeneous. When the overall multiplicative factor of the symplectic
form is sent to infinity (this corresponds for SU(2) to the size of the sphere, or
the dimension of the SU(2) representation, being send to infinity), then the
algebra of quantizable functions on the orbit (which is equivalent to a set of
symbols, or operators, in the Hilbert space, via the quantization map) grows
and eventually becomes dense in the algebra of smooth functions on the orbit.

7.3 Co-adjoint orbit quantization

This section starts by building an elementary picture of open string interactions,
by concentrating on one of the endpoints of the open string (see figure 14). The
associated degrees of freedom are quantized using the mathematical framework
of the orbit method97.

96This is the case for complete Riemannian spaces if and only if the curvature tensor is
covariantly constant (Cartan-Ambrose-Hicks theorem).

97Open strings provide an intuitive picture for most of the models developed here, since
they can be embedded in open string theory (one thing to check is that the group under study
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Figure 14: The study first concentrates on one endpoint of an open string.

7.3.1 An electric charge in the presence of a magnetic monopole

This subsection shows how the results that are discussed later originate from a
physical context, by analyzing the quantization of a charged particle on a sphere,
with a magnetic monopole sitting at the center of the sphere. The particle will
only interact electromagnetically. The quantization of the particle then boils
down to the quantization of a co-adjoint orbit of SU(2).

The magnetic monopole The setting consists of the three-dimensional flat
space R3, with spherical coordinates:

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ (336)

and of a magnetic monopole of integer charge n placed at the origin of the
coordinate system xi = 0. The magnetic field it generates is described in terms
of the vector potentials:

A± =
n

2
(±1− cos θ)dφ

F = dA± =
n

2
sin θdθ ∧ dφ (337)

where the vector potentials A± are valid near north (θ = 0) and south (θ = π)
poles respectively. They are related by a gauge transformation A+ = A− +
d(nφ), which is well defined provided n is indeed integer.

A charged particle on the sphere The next step is to introduce a charged
particle, and to constrain it on a sphere in the presence of the magnetic monopole
(see figure 15). The action in the large magnetic field limit is the electromagnetic
coupling only [133, 138]:

S = ı

∫
A± = ı

n

2

∫
dτ(±1− cos θ)φ̇ (338)

The equations of motion are then derived. They imply that the velocity of the
particle is zero. The solutions to the equations of motion thus correspond to
the particle sitting at a fixed point of the two-sphere. Thus, the classical phase
space, which is the space of classical solutions, is the two-sphere.

The global symmetries of the problem at hand are the SU(2) rotations which
act transitively on the phase space. The charges associated to the SU(2) global

is such that the total central charge can be set to zero). However, a large part of the analysis
applies in a more general context.
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Figure 15: An electron bound to a sphere, with a magnetic monopole in the
middle of the sphere.

symmetries are the positions xi of the particle, which are indeed conserved (since
the particle does not move). They can be shown to satisfy SU(2) commutation
relations under the Dirac bracket (see e.g. [139]). The Hamiltonian of the purely
topological action (338) is zero.

The quantization of the spherical phase space There are many ways to
understand the quantization of the above system of electric charge and magnetic
monopole, and to see why the number n must be integer.

The phase space can be quantized to find the Hilbert space. The dimension
of the Hilbert space is the number of Planck cells that fit into the two-sphere.
The symplectic form arising from the action is the volume form of the two-sphere
with quantized overall coefficient, and consequently the number of Planck cells in
phase space is computed to be the integer number 1

2π

∫
S2

n
2 sin θdθdφ = n. In the

geometric quantization viewpoint presented in section 7.2, this amounts to the
fact that the orbit must be integral. Since the group SU(2) is represented on the
Hilbert space, the Hilbert space of the particle is a spin j = n−1

2 representation
of SU(2). The group acts transitively on the classical phase space, and is
represented irreducibly on the quantum Hilbert space.

Another reason for the quantization of n was already evoked and is related
to the gauge transformation of the vector potentials. The result is obtained
by requiring that the action S = ı

∫
A± be unambiguously defined (up to a

multiple of 2ıπ) for closed worldline trajectories. This constraint comes from
quantum theory in which exp(S) is the weight of the path integral. Since the
action can be computed by calculating the flux either through the cap or the
bowl (i.e. filling in the Wilson loop (see figure 16) either over the north or the
south pole), the difference (divided by 2ıπ), which is precisely equal to n, must
be an integer.

Thus, the (half-integer) quantization of spin j in this context is re-interpreted
in the electron/magnetic monopole system as being associated to the Dirac
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Figure 16: The (blue) curve traced by the electron associated to a Wilson loop.
The Wilson loop can be computed by calculating the flux through the upper
cap (– the hat –) or the lower cap (– the bowl –), and must be unambiguous.

quantization condition for the product of electric and magnetic charge n.
In the context of Feynman path integral, an interesting work concerning the

quantization of co-adjoint orbits of SU(2) is [140]. It shows that not all states
propagate on the orbit, and that the unitarity of the path integral, obtained by
projecting out the states that do not propagate, leads to a quantization of the
radius of the sphere. The quantization condition is similar to the one used for
the Dirac monopole (mentioned here in terms of the gauge field A±) or for the
Wess-Zumino-Witten models.

The functional integral has also been used in [133] to quantize the orbits
of SU(2), with the same action as (338) (up to boundary terms). Once again,
[133] obtains unitary representations of SU(2) for integer n. Interestingly, the
character was computed as an integral around a closed path, and the result
agrees with the SU(2) characters given in (94) (for integer n). See also [138]. It
is worth noting that different regularizations of the path integral exist (see e.g.
the appendix of [115]). These different regularizations give slight shifts in the
interpretation of the coefficient of the action (as twice the spin or rather 2j+1).
The difference can be understood as different types of geometric quantization
(see section 7.2), one identifying Hκ with Ωκ, the other with Ωκ+ρ. The correct
prescription is the one chosen here and explicitly written in (334). The condition
that the orbit Ωκ+ρ = Ωj be quantizable is equivalent to the quantization of the
spin j.

Moreover, the quantization condition is discussed in [141] in terms of the
phase of the wave-functional related to the boundary state associated to the
D-brane (i.e. the two-sphere), which must not be ambiguous. Once again,
the condition arises from the fact that a closed loop can be contracted in two
different ways (this is similar to the condition on the gauge field A±).

Finally, a clear and pedestrian way to understand the quantization of the
sphere in terms of the SU(2) structure is to start from the algebra of functions
on the sphere and then try to find a quantum analogue i.e. an algebra of

112



(hermitian) operators (matrices) verifying [142]:

[Xa, Xb] = ıεabcXc , C =

3∑

a=1

X2
a = c · 1 (339)

where the Xa are the quantum analogues of the classical coordinates xa (and the
Casimir is the analogue of the radius of the sphere). The operators Xa form a
representation of SU(2), and the Casimir element is required to be proportional
to the identity. This is only true if the representation is irreducible i.e. corres-
ponds to a half-integer spin j. Hence, the irreducible representations provide
quantizations of a discrete set of two-spheres. This discretization condition is
equivalent to the condition that n be integer-valued.

See subsection 7.4.3 for more details on the quantization precedure, in a
more general context.

7.3.2 A classical particle on a co-adjoint orbit

To generalize the well-known facts discussed above, observe that the gauge po-
tential can be viewed as arising from the Liouville one-form defined in equation
(333). Once the one-form is defined, it is possible to pull it back onto the
worldline L of a particle via the map of the particle into the group manifold
g : L 7→ G : τ 7→ g(τ), in order to define the action of the particle as the integral
over the worldline of this one-form. For the case of SU(2), this action precisely
coincides with the action introduced above [133]. More precisely, using Euler

angles g = eı
φ
2 σ3eı

θ
2σ1eı

ψ
2 σ3 , one finds the correct action:

S =

∫ 〈n
2
σ3, g

−1dg
〉

=

∫
Tr
(n

2
σ3, g

−1dg
)

= ı
n

2

∫
dτ(±1− cos θ)φ̇ (340)

up to boundary terms. This action can now be generalized to any group mani-
fold, once an element λ of the dual Lie algebra is given [133]:

S =

∫

L

dτ
〈
λ, g−1∂τg

〉
(341)

Again, the Hamiltonian corresponding to the action is zero. The global symme-
try of the action is G which acts on the particle trajectory g(τ) by multiplication
on the left. The local symmetry (the gauge group) is the stabilizer of λ, and
acts by multiplication on the right98. The local symmetry makes for the fact

98The global symmetry is clear, but the invariance of the action under the local transfor-
mation is not straightforward. Under a local transformation, the Lagrangian becomes:

〈λ, (gh)−1∂τ (gh)〉 = 〈hλh−1, g−1∂τg〉 + 〈λ, h−1∂τh〉 (342)

The first term on the right-hand side of the equation gives back the original Lagrangian when
h ∈ Stab(λ). The second term is actually a total derivative, hence does not matter. This may
be shown by first proving the result when h is infinitesimaly close to any given element in
the group (using that h−1∂τh is an element of the algebra), then by cutting the integral in
the action into infinitesimal steps, and finally by putting everything together. See also [129],
formula (9).
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that the particle is interpreted not as moving on the full group manifold G, but
rather on the manifold G/Stab(λ), which coincides with the phase space and
is the co-adjoint orbit Ωλ. For the case of SU(2), this is a two-sphere since
SU(2)/U(1) = S2.

The conserved Noether charges associated to the global symmetry group
are I = Ad∗gλ = gλg−1 and they satisfy the Dirac brackets with the structure
constants equal to the structure constants of the Lie algebra of the group [139].
The charges I are the generalization of the positions xi. For instance, in the case
G = SU(2), expressing g in Euler coordinates and choosing λ = σ3, one obtains
I = cos θσ3 + sin θ (sinφσ1 + cosφσ2) which indeed yields the coordinates of a
two-sphere in the vector space g∗. The symmetry group G acts transitively on
the phase space. The global charges and functions thereof are gauge invariant
observables of the theory.

7.4 Rigid strings

7.4.1 Generalization

The above results valid for SU(2) can be generalized to (a priori) any Lie
group. Another generalization consists in considering two points instead of one,
in order to describe the two endpoints of a string. These two points will have
opposite charge and are connected by a spring that is represented by a potential
term in the action that is proportional to the distance squared between the two
endpoints of the string99. Assuming that a non-degenerate bilinear invariant
metric on the Lie algebra exists100 (the existence of such a metric implies that
one can identify the Lie algebra with its dual, as will be done below), the action
of the rigid string on the group manifold G is given by:

S =

∫

L

dτ
(〈
λI , g

−1
I ∂τgI

〉
−
〈
λF , g

−1
F ∂τgF

〉)
(343)

+
K

2

∫

L

dτ
〈
gIλIg

−1
I − gFλF g−1

F , gIλIg
−1
I − gFλF g−1

F

〉

where K parametrizes the strength of the interaction, gI,F are the endpoints of
the string which live on the manifolds (co-adjoint orbits) G/Stab(λI,F ) respec-
tively, and λI,F are elements of the dual of the Lie algebra g∗.

The local symmetry group (gauge transformation of gI,F ) is Stab(λI) ×
Stab(λF ), while the global symmetry group is broken, by the interaction term,
to the diagonal left action on both group elements101.

99The fact that strings may behave like dipoles was already explained in [143], in a large
(magnetic) field limit for the case of flat space. The joining and separation of the dipoles
studied in [143] is described by a gauge theory on the non-commutative plane.
100In a matrix representation of a semi-simple algebra, the metric contraction is simply given

by the trace: 〈A,B〉 = Tr(AB). It is indeed bilinear and G-invariant.
101This is to be compared to the symmetry of a usual spring in flat space under overall

translation.
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The classical dynamics of the system is solved for as follows. The equations
of motion are:

∂τ (gIλIg
−1
I ) +K[gIλIg

−1
I , gFλF g

−1
F ] = 0

−∂τ (gFλF g−1
F ) +K[gFλF g

−1
F , gIλIg

−1
I ] = 0 (344)

where [, ] denotes the commutator. It is convenient to introduce the (non-
conserved) charges II = gIλIg

−1
I and IF = −gFλF g−1

F . They generate the
same algebra (because of the opposite sign of the charges and of the symplectic
structures for the final point compared to the initial point). The second charge
IF corresponds to minus the position of the final end-point of the string. More-
over, both II,F lie on a given orbit, and 〈II , II 〉 = 〈λI , λI 〉 (similarly for the
final point). The sum of these charges is conserved:

∂τ (II + IF ) = 0 (345)

It generates the simultaneous translation (global diagonal action of the group)
gI,F 7→ hgI,F where h is any element of G. The equations of motion can be
rewritten in terms of the charges II,F :

∂τII −K[II , IF ] = 0

∂τIF +K[II , IF ] = 0 (346)

The difference II − IF can now be computed to be:

∂τ (II − IF ) = 2K[II , IF ] = K[II − IF , II + IF ]

II − IF = e−τK(II+IF )(II − IF )0e
τK(II+IF ) (347)

This is the solution to the classical dynamics, given an initial condition (II−IF )0
and a constant charge ∆ = II + IF . The motion of the individual endpoints
follows from the above relations:

II =
1

2
e−τK∆(II − IF )0e

τK∆ +
∆

2

IF = −1

2
e−τK∆(II − IF )0e

τK∆ +
∆

2
(348)

The conserved quantity ∆ is interpreted as the length vector of the string.
Indeed, it measures the fixed difference vector (in the Lie algebra) between
the initial and final points of the string. The Hamiltonian is proportional to
the length squared of the string 〈∆,∆〉, which is quite reminiscent of the usual
spring. The motion is then dictated by conjugation of the initial vector (II−IF )0
by the group element which is the exponential of the length vector times the
elapsed time times the parameter K.

It is worth considering the example of the group SU(2) in order to illustrate
the concreteness of the above solution, which is generically valid. Consider two
different orbits λI,F (i.e. spheres of different radii) and a length vector II + IF
proportional to σ3. Conjugation by a vector proportional to σ1, say, will then
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S2

Figure 17: A rigid string stretching between two different su(2) orbits, and
rotating.

lead to a velocity in the σ2 direction. This means that the rigid string rotates
around the central axis parallel to itself, see figure 17. Finally, assuming that
λI,F = 1

2nI,Fσ3, the length squared of the string is computed to be:

〈∆,∆〉 =
1

2

(
n2
I + n2

F + 2nInF cos θ
)

(349)

where g−1
F gI = eı

φ
2 σ3eı

θ
2σ1eı

ψ
2 σ3 in the Euler angles. Using similar assumptions,

the length squared of the string for the group SU(1, 1) becomes:

〈∆,∆〉 = −1

2

(
n2
I + n2

F + 2nInF cosh t
)

(350)

since Euler angles for SU(1, 1) are obtained from the SU(2) case by setting
θ = −ıt. The orbits are labeled by λI,F = 1

2nI,F ıσ3.

7.4.2 A check from Wess-Zumino-Witten models

The statement that the action (343) does describe open strings on Lie groups
deserves some more explanation.

For open strings on group manifolds described by a bulk Wess-Zumino-
Witten model, the solutions to the classical equations of motion factorize into
a left-moving and a right-moving part:

g : strip → G

(σ, τ) 7→ g(σ, τ) = g+(σ + τ)g−(σ − τ) (351)

where the strip is the product of intervals
[
−π2 ; π2

]
× R. The left-moving and

right-moving conserved currents are:

J+ = −∂+g g
−1 , J− = g−1∂−g (352)
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3R

Figure 18: The limit turning a conjugacy class into an orbit for the example of
G = SU(2). The size of the conjugacy class (orbit) is kept fixed, while rescaling
the group metric until it becomes flat.

where x± = σ ± τ . The ansatz:

g+ = ex
+T+g0

+ , g− =
(
g0
−
)−1

ex
−T− (353)

solves the equations of motion. The Dirichlet boundary condition imposes that
−J+ = J− = T+ = T− = T where T belongs to the Lie algebra of G. The
complete solution to the equations of motion with the boundary conditions
(where g0 = g0

+(g0
−)−1) is then:

g(σ, τ) = ex
+T g0ex

−T = eτT
(
eσT g0eσT

)
e−τT (354)

The latter form of the solution shows that every rigid string bit (at fixed value
for σ) moves along its own conjugacy class. In the rigid open string limit of
interest [127], the motion of the string is concentrated near a given point (say,
the identity) of the group manifold. See figure 18 for a geometric picture of this
limit in the case of SU(2) (the metric is rescaled such that the group manifold
becomes flat. This involves sending the level of the associated Wess-Zumino-
Witten model to infinity, however the volume of the conjugacy class under study
is kept fixed. This means that it will be a conjugacy class very close to, say, the
identity of the group manifold. The group manifold is then approximated by its
tangent space, which is the Lie algebra. The conjugacy class of an element near
the identity is therefore equivalently described by the orbit of the associated
element of the Lie algebra. This is how the relevance of orbits in this limit
becomes manifest). The limit can be implemented in the study of the classical

solution by assuming that eσT g0eσT is near the identity. Putting g0 = eX
0

and
g = eX :

X(σ, τ) = eτT (X0 + 2σT )e−τT (355)

It is clear that the two end-points of the open string now behave precisely as in
the system described by the action (343), namely, they move along orbits in the
Lie algebra in agreement with the above description. By comparing equations
(348) and (355), one can identify the parameters ∆ = −2πT , (II − IF )0 = 2X0

and τ = 2πKτ ′, where τ is the time used here, to be distinguished from the

117



time used in the previous subsection. The comparison shows that the charges
II,F are indeed the positions of the endpoints of the string on the Lie algebra.

Finally, the results of [144] support the above picture. This paper carefully
defines and analyzes the rigid open string limit for the SU(2) case, starting
from the Wess-Zumino-Witten action for open strings. This action is the sum
of four terms, the non-linear σ-model term and the Wess-Zumino term for the
worldsheet, and two extra terms for the coupling of the two endpoints of the
string to the gauge fields living on the spherical D2-brane (recall that these
branes are stable [145]). In the scaling limit102 where the volume of the brane
is kept fixed, while the bulk is flattened (semi-classical limit k → ∞, in which
the excitations of the string decouple), [144] shows that the action reduces to an
action for two oppositely charged point particles interacting through a spring.
Once the equations of motion are plugged in the action (turning it into a single
integral since the string is rigid), the resulting action coincides with the one
given in equation (343) when restricted to the case of the group G = SU(2).
The Hamiltonian, which is the last term in (343), is found in [144] to be the
squared length of the string times an elastic constant. The one-form arises from
the electromagnetic field on the D-branes, while the Hamiltonian arises from
the bulk length term, and the kinetic term vanishes (as in flat space [143]) in
the limit.

The above considerations and verifications seems convincing enough. The
limiting procedure on the action must generalize to all groups with a non-
degenerate invariant metric. Therefore, the system (343) describes the classical
open string dynamics in the rigid limit, and it seems reasonnable to think that
the quantization of the system also faithfully represents aspects of quantum
mechanical open string theory.

7.4.3 The rigid open string Hilbert space

In the quantum theory, the Hilbert space is a tensor product of irreducible rep-
resentations λI ⊗ λ̄F (the conjugate representation accounts for the opposite
sign of the charges of the string endpoints). The use of a conjugate represen-
tation may be understood in terms of the interaction of strings, which will be
discussed later. Indeed, two strings may interact when endpoints are on the
same orbit i.e. when they are in product representations λ1 ⊗ λ2′ and λ2 ⊗ λ3′ .
The result must be a string in the representation λ1⊗λ3′ , which is possible only
if the identity representation is in the tensor product λ2′ ⊗ λ2, which is only
the case is λ2′ = λ̄2 by definition of the conjugate representation (at least for
compact groups). Moreover, it may be checked in the product computations of
section 7.5 and 7.7 that the presence of the conjugate representation is necessary
for a coherent conservation of the quantum numbers labeled by m or n.

The interaction term (proportional to the tension of the string) i.e. the open
string Hamiltonian breaks the G×G global symmetry to the diagonal subgroup.
Since one tends to work in a basis where the Hamiltonian is diagonal, it is natural

102This is the decoupling limit which in string theory leads to non-commutative geometry,
see e.g. [123].
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Figure 19: A (blue dashed) string of minimal length and a (red) string of max-
imal length, stretching between two su(2) orbits.

to decompose the tensor product Hilbert space into representations that are
irreducible under the (unbroken diagonal) subgroup: λI ⊗ λ̄F =

∑
L CIF

LλL.
The weight λL is interpreted as being associated to the length of the string (and
therefore also to the position of the center of mass of the string). Indeed, note
that the conserved quantities classifying the representations will include the
quadratic Casimir of the diagonal symmetry group (– which is associated to the
conserved charge 〈II +IF , II +IF 〉 in the classical dynamics –), which is nothing
but the length of the string squared. After quantization this quadratic Casimir
is proportional to the conformal weight associated to the vertex operator of the
open string state.

There is a slight change in perspective in the way in which the open string
Hilbert space arises here. If the open string (σ-model) action was directly quan-
tized, then the different components of the open string Hilbert space would arise
from integrating over all possible lengths T/K of the rigid open string. From
the two-particle perspective that is developed here, the same open string Hilbert
space arises as a tensor product of two single particle Hilbert spaces. After de-
composing the tensor product Hilbert space into irreducible representations, it
can be checked that the resulting Hilbert spaces coincide.

Returning to the simple example of SU(2), and fixing for instance that the
open string begins and ends on one given D-brane labeled by j = jI = jF ,
the Hilbert space is decomposed into representations of spins l = 0, 1, . . . , 2j
which correspond to a string of length zero up to the maximal extension 2j.
The quadratic Casimir will in this case be roughly proportional to the length
squared, as is the dimension of the (primary) open string vertex operator :
hopen = l(l+ 1)/(k+ 2). A minimal and a maximal length string, in the case of
a string ending on two different orbits jI and jF of su(2), with length related to
|jI − jF | and jI + jF respectively, are pictured in figure 19. They correspond to
the minimal and maximal spins occurring in the tensor product decomposition
jI ⊗ jF .
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Figure 20: Concatenating two strings produces a third.

To summarize, there exist general formulas for the semi-classical open string
spectrum between any two (symmetric) branes (that correspond to conjugacy
classes on group manifolds, or rather, orbits in the Lie algebra). The gen-
erality of the formulas follows from the understanding of the quantization of
(co-)adjoint orbits.

7.4.4 Interactions of open strings

The free classical dynamics of open strings have been analyzed above, and the
free string has been quantized. In the case where the Hilbert space is finite-
dimensional, its dimension is the product of the dimensions of the irreducible
representations of which it is the tensor product. Therefore, each string state
for an open string stretching between orbits λI,F is represented by a d(λI ) ×
d(λ̄F ) matrix (where d(λI ), d(λ̄F ) denote the dimensions of the representations
associated to the weights λI , λ̄F respectively).

Since open strings interact by combining and splitting, which happens when
open string endpoints touch, it is natural to assume that open string interactions
are coded by the multiplication of the above matrices (or more generally by the
composition of linear maps i.e. infinite matrices). The final end of a first
(oriented) open string will interact with the initial end of a second (oriented)
open string. This is the well-known picture that underlies the intuition for open
string field theory [146], see figure 20.

The products constructed below, which correspond to the interaction of open
strings, are intimately related to the operator product expansion of boundary
fields. For simplicity, the following comments are restricted to SU(2). The
boundary field φj12m12

(associated to an open string, just like bulk fields correspond
to closed strings) may be assigned [127] to an element Y j12m12

of a vector space
which has dimension (2j1 + 1)(2j2 + 1) and which up to an isomorphism (as
associative algebras) can be assumed to be the space of (2j1 + 1) × (2j2 + 1)
matrices. A convenient basis for this vector space, which will be used later in
sections 7.5 and 7.7, consists of the matrices103 Cj1j2j12. . m12

where the dots indicate
the row and column indices of the matrix i.e. of the Clebsch-Gordan coefficients.

103As a check,

j1+j2X

j12=|j1−j2|
(2j12 + 1) = (2j1 + 1)(2j2 + 1) (356)

which agrees with the SU(2) fusion rules. This relation may also be seen as originating from
(93) and from the remark that in the classical limit S0

j/S0
0 is equal to the dimension of the

representation j.
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Since the open string interactions are communicated by their endpoints,
the interactions are non-local from the point of view of the center of mass of
the open strings. Associativity of the open string interactions will be clear
from the associativity of matrix multiplication, or from the associativity of the
operation of concatenating open strings. However, when translated in the non-
local language adapted to the center of mass of the open string, it is frequently
less transparent. As will be shown later, it is related to non-trivial identities in
group theory and the theory of special functions.

The associative product that is constructed is well-known for the case of
compact groups, from the analysis of boundary rational conformal field theory,
and from the associativity of the boundary vertex operator algebra [25, 50,
52, 147, 148, 149]. For rational conformal field theories, which include Wess-
Zumino-Witten models on compact groups, the formulas developed below in
section 7.5 in the case of SU(2) are but a toy version of the boundary conformal
field theory results.

Although the case of SU(2) is already known, it is instructive in its own
right, and is treated in detail below. The non-rational case of SL(2,R) does
not fall in the framework of boundary (rational) conformal field theory as de-
veloped hitherto. The construction is therefore put to good use by explicitly
treating this case. Note that, while the Clebsch-Gordan and Racah coefficients
(or equivalently in the 3j and 6j (Wigner) symbols, which are respectively pro-
portional to Clebsch-Gordan and Racah coefficients and display more symmetry,
see [150] or also [19], chapter 8) of SU(2) display more symmetry than the ones
of SL(2,R), the latter have a more generic structure104.

7.5 A compact example: SU(2)

In this section, the formalism developed previously in order to treat the inter-
action of strings is applied to the case of the compact Lie group SU(2) in great
detail. A convenient diagrammatical language is presented in order to be able
to show associativity of the resulting product in terms of group theory.

7.5.1 The kinematical 3j symbol

It was explained in subsection 7.4.3 that the tensor product representation (cor-
responding to the two endpoints of the string) must be decomposed into irre-
ducible representations of the symmetry group. This is a purely kinematical
operation from the perspective of open string theory. In order to implement
this decomposition, it is possible to choose a basis in the space of matrices (i.e.
the tensor product representation) that consists of the Clebsch-Gordan coeffi-
cients. Since these are not symmetric under cyclic permutation, the following
section will deal with rescaled matrix elements, namely the 3j Wigner sym-
bol. Due to its symmetry properties, the 3j symbol can be represented by a

104For instance, the invariance of the condition |j1 − j2| ≤ j ≤ j1 + j2 under permutation
of the spins in the SU(2) case is not expected generically. Only a symmetry j1 ↔ j2 coming
from the symmetry of the tensor product is.
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(kinematic) cubic vertex105:

j,−m

j2, m2j1,m1

=

(
j1 j2 j
m1 m2 −m

)
=

(−1)j1−j2+m

√
2j + 1

Cj1 j2 j
m1m2m (357)

The explicit formula for the Clebsch-Gordan coefficients reads:

Cj1 j2 j
m1m2m = (−1)j1+j2−j

√
2j + 1

√
(j1 − j2 + j)!(j2 − j1 + j)!

(j1 + j2 + j + 1)!(j1 + j2 − j)!

×
√

(j1 −m1)!(j2 +m2)!(j −m)!(j +m)!

(j1 +m1)!(j2 −m2)!
(358)

× 1

(j − j1 +m2)!(j − j2 −m1)!

×3F2

(
j − j1 − j2, −j1 −m1, −j2 +m2

j − j1 +m2 + 1, j − j2 −m1 + 1
; 1

)

The conventions are that ji and mi are half-integers, with ji positive and
−ji ≤ mi ≤ ji. Moreover, m1 + m2 −m = 0 and |j1 − j2| ≤ j ≤ j1 + j2.
If these conditions are not satisfied, the Clebsch-Gordan coefficient is zero106.
Conservation of the quantum number m can be read very easily from the dia-
grammatic notation (357). The dimension of the SU(2) representation is 2ji+1
and the Casimir is ji(ji + 1). A useful reference for Clebsch-Gordan and Racah
coefficients (or equivalently 3j and 6j Wigner symbols) of the SU(2) group is
[19].

One remark should be made concerning the arrows that appear in the dia-
grammatic notation, since their direction does matter. More precisely, changing
the direction of an arrow amounts to multiplying the vertex by a propagator
which is the 1j Wigner symbol introduced in [150]:

m

j

m′ =
√

2j + 1

(
j 0 j
m 0 m′

)
= (−1)j+m δm,−m′ (359)

Although simply a sign in the case of SU(2), it may become more complicated

105The diagrams are close cousins of those familiar from boundary conformal field theory.
Closely related diagrams have been developed in [126] (and references therein), in the context
of spin networks. The present coding in diagrams differs slightly from [126], in order for
the correspondence between diagrams and 3j symbols to agree with the symmetries of the
structure constants including the signs. Moreover, the metric on the space of 3j symbols as
defined in [150] is taken into account. The connection of these open string interactions to spin
networks deserves further study.
106This result comes from the expression of the 3j symbol and the appearance of infinities

in the Γ functions (factorials) when the above-stated conditions are not satisfied. The only
exception is the condition that m1 +m2 −m = 0, which should be enforced with a Kronecker
symbol (which will however be dropped for the sake of conciseness).
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for other groups. For instance:

j2,m2j1,m1

j,m

=

(
j1 j2 m
m1 m2 j

)
(360)

=

(
j1 j2 j
m1 m2 −m

)
j

−m m

while for changing the direction of the j1 arrow, one would have to multiply the
3j symbol by (−1)j1+m1 . Another remark is that the overall inward direction
which was chosen for the arrows in (357) was arbitrary:

j,−m

j2,m2j1,m1

=
j1, m1

j,−m

j2,m2

(361)

i.e. one may as well choose to represent the 3j symbol by a vertex with all
arrows pointing outwards.

The diagrammatic notation proves to be convenient since it reflects in a
rather natural way the symmetries of the 3j symbol. Most notably, it immedi-
ately reflects their invariance under circular permutation of its indices. Beside
cyclic permutation, two other useful symmetry properties of the 3j symbols are:

j,−m

j2,m2j1,m1

= (−1)j1+j2+j

j,m

j2,−m2j1,−m1

(362)

= (−1)j1+j2+j

j,−m

j2,m2 j1,m1

(363)

Note that permuting any two branches, whatever the direction of the arrows,
always amounts to a multiplication by (−1)j1+j2+j , while (362) is only true
when all arrows point inwards or outwards. Otherwise, extra signs appear due
to the 1j symbols.

Concatenation of 3j symbols will be used below. It is always possible to
concatenate 3j symbols when arrow directions are aligned and the labels ji,mi

coincide. Concatenation implies that all internal half-integers mi are summed
over. The sums will always be finite since only a finite number of 3j symbols
are non-zero.
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The 3j symbols satisfy orthogonality and completeness relations107:

j1 j2

j′ ,m′

j, m

= j2

j, m

j′, m′

j1 =
(−1)j1+j2+j

2j + 1
δj,j′ δm,m′ (366)

and

∑

j

(2j + 1)

j2, m2

j1, m1 j2, m′
2

j

j1, m′
1

= δm1,m′
1
δm2,m′

2
(367)

7.5.2 The dynamical 6j symbol

This subsection reviews some useful results concerning the 6j Wigner symbol.
This symbol can be expressed in terms of four Clebsch-Gordan coefficients:

{
j1 j2 j12
j3 j j23

}
=

(−1)j1+j2+j3+j

√
(2j12 + 1)(2j23 + 1)(2j + 1)

(368)

×
∑

m1,m2,m3∈ 1
2 N

Cj1 j2 j12
m1m2m12

Cj12 j3 j
m12m3m Cj2 j3 j23

m2m3m23
Cj1 j23 j
m1m23m

In the diagrammatic notation, in terms of 1j and 3j symbols, (368) is simply:

{
j1 j2 j12
j3 j j23

}
=

j1
j2

j12

j3j

j23

(369)

The 6j symbol has a large group of symmetry, consisting of 144 elements and
generated by the transformations:

(1)

{
j1 ↔ j2
j3 ↔ j

, (2)

{
j1 ↔ j12
j3 ↔ j23

(370)

(3)

{
j1 ↔ j3
j2 ↔ j

, (4)

{
j1,2,3 → l − j1,2,3
j → l − j

107For the reader’s convenience, the same relations in a more familiar form, i.e. in terms of
Clebsch-Gordan coefficients, are:

X

j,m∈ 1
2

N

Cj1 j2 j
m1m2mC

j1 j2 j
m′

1m′
2m

= δm1,m′
1
δm2m′

2
(364)

X

m1,m2∈ 1
2

N

Cj1 j2 j
m1m2mC

j1 j2 j′
m1m2m′ = δj,j′δm,m′ (365)
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Figure 21: The 6j symbol as a tetrahedron.

where l = 1
2 (j1 + j2 + j3 + j). The 6j symbol is invariant under any of these

transformations, therefore under any permutation of its columns. An interesting
well-known remark is that this group of symmetries includes the symmetries of a
tetrahedron [150], i.e. one should see the planar representation of the 6j symbol
(369) as a projection of the tetrahedron pictured in figure 21 on the plane BCD
(with properly added arrows108). From this representation, it is clear that the
result should be invariant of which tip of the tetrahedron is used in order to
project and obtain a planar diagram. To be more precise, the symmetries of the
tetrahedron generate transformations (1), (2) and (3) (but not transformation
(4)), with the following correspondence:

• transformation (1) ←→ invert and project from tip A

• transformation (2) ←→ invert and project from tip B

• transformation (3) ←→ project from tip C

• transformation (1), then (2) ←→ project from tip D

where inverting the tetrahedron means that its mirror image is taken with re-
spect to the plane opposite to the tip which is projected.

108It may be worth noting that no arrows are drawn on the tetrahedron. Doing so would
result in a complication since inverting the tetrahedron means exchanging left and right and
therefore changing directions of arrows, i.e. actually multiplying the 6j symbol by an extra
sign:

j1
j2

j12

j3j

j23

= (−1)2j1+2j3

j1
j2

j12

j3j

j23

(371)

The diagram on the right-hand side of (371) has the same symmetry properties of the 6j
Wigner symbol, listed in (370).

125



Two important formulas will be needed later. The first one is the recoupling
identity, which can be seen as an s-channel – t-channel duality:

j,−m

j23

j3,m3

j1,m1

j2,m2

=
∑

j12∈ 1
2 N

(2j12 + 1)(−1)−j1+j2+j3+j

j1
j2

j12

j3j

j23

j1,m1 j,−m

j3,m3

j12

j2,m2

(372)

This identity originates from the definition of the 3j and 6j symbols as trans-
formations of bases. Together with the orthogonality relation for the 3j symbol
(366), it implies equation (368) for the 6j symbol. The second formula is known
as the Biedenharn-Elliott identity (and follows from the associativity of the
tensor product of representations):

∑

j23∈ 1
2 N

(2j23 + 1)(−1)J
j1

j2
j12

j3

j23

j123

j1

j234

j4

j123
j23

j

j34

j4

j3
j23

j2

j234

=

j34

j4

j3
j123

j

j12

j

j234

j34

j12
j2j1

(373)

where J = j1 +j2 +j3 +j4 +j+j12 +j23 +j34 +j123 +j234. One last relation can
be obtained from the recoupling identity (372) and the orthogonality property
(366) and reads:

j2,m2j23

j3j

j12,m12

j1,m1

= (−1)j1−j2+j12+2j

j1
j2

j12

j3j

j23

j2,m2j1,m1

j12,m12 (374)

7.5.3 Interaction and associativity

This subsection explains how to code the interaction of open strings, which is
the matrix product, in terms of the diagrammatic notation. Multiplication of
matrices corresponds to concatenating diagrams, with the convention that in-
ternal lines are summed over. Then, the cubic rigid string interaction vertex109,
which is a dynamical quantity, is computed. The different nature of the cubic
vertex from the kinematical one is indicated by color-coding: bold blue branches

109It codes the operator product expansion of the boundary vertex operator algebra. The op-
erator product expansion of the boundary fields (which is mapped to the product of operators
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j1

j2

j3

l1

l2

Figure 22: Two strings interacting.

indicate centers of mass (spin li), while thin black branches indicate branes (spin
ji).

A string stretching between two SU(2) orbits labeled by their spins j1 and j2
respectively, with its center of mass in the representation l, will be represented
by the following matrix elements:

[
Θl
m

]j1j2
n1n2

=
j1, n1 j2, n2

l,−m

(376)

Two strings may interact if their endpoints move in the same SU(2) orbits,
see figure 22. This interaction is encoded in the multiplication of the associated
matrices, which can be decomposed as a sum:

[
Θl1
m1

]j1j2
n1n2

×
[
Θl2
m2

]j2j3
n2n3

=
∑

l12,m12∈ 1
2 N

cl12,m12

[
Θl12
m12

]j1j3
n1n3

(377)

where l12 is a representation in the tensor product of l1 and l2, and where the
coefficient cl12,m12 can be computed using (366) and (374):

cl12,m12 = (−1)αc (2l12 + 1)
j3

j2

j1

l1 l2

l12

l1,m1 l2,m2

l12,m12

(378)

where αc = j1 + j3 + 2l2 − l12 (see e.g. [127, 151] for earlier occurrences of this
product for the case of a fixed orbit j). Since the (cubic rigid string) interaction
vertex is now known, and therefore the product of open string operators, associa-
tivity for the string interaction can be checked directly in the present non-local

constructed here) is:

ψj12
m12

(x)ψj23
m23

(y) =
X

j,m

(x− y)hj12+hj23−hj cj12 j23 j
m12m23mψ

j
m(y) (375)

The expansion coefficients c are the interaction coefficients given below in (378) and (398)
(not to be confused with the Clebsch-Gordan coefficients).
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formalism (instead of using the map to the multiplication of matrices). The
proof of the associativity of the product reads:

([
Θl1
m1

]j1j2
n1n2

×
[
Θl2
m2

]j2j3
n2n3

)
×
[
Θl3
m3

]j3j4
n3n4

=
∑

l12,m12

cl12,m12

[
Θl12
m12

]j1j3
n1n3

×
[
Θl3
m3

]j3j4
n3n4

=
∑

l12,l

(−1)2j1+j3+j4+2l2+2l3−l12−l(2l12 + 1)(2l+ 1)

j3

j2

j1

l1 l2

l12
j1

j3

j4

l12 l3

l

l1 l2

l12

l l3

(379)

=
∑

l12,l

(−1)2j1+j3+j4−l12−l2−l3+l1−2l(2l12 + 1)(2l23 + 1)(2l + 1)

j3

j2

j1

l1 l2

l12
j1

j3

j4

l12 l3

l

l2l3

l23
l l1

l12

l1

l l3

l2

l23

(380)

=
∑

l23,l

(−1)j1+j2+2j4+2l3−l23−l(2l23 + 1)(2l + 1)

l2 l3

l23
j2

j3

j4 j4j1

j2

l1 l23

l
l1

l l3

l2

l23

(381)

=
∑

l23,m23

cl23,m23

[
Θl1
m1

]j1j2
n1n2

×
[
Θl23
m23

]j2j4
n2n4

=
[
Θl1
m1

]j1j2
n1n2

×
([

Θl2
m2

]j2j3
m2m3

×
[
Θl3
m3

]j3j4
m3m4

)
(382)

The recoupling identity (372) is used to go from (379) to (380) and the Biedenharn-
Elliott identity (373) is used to go from (380) to (381). The proof is very general.
In particular, it generalizes the diagrammatic proof of [126] to the case of dif-
fering initial and final orbits. It only makes use of generic properties of groups
like associativity of the tensor product composition (which appears as a key
ingredient in the associativity of the string interaction). As will be seen later,
it applies to cases not considered before in the literature.

7.5.4 Quantum group Uq(SU(2))

Although this will be stressed again later, it is worth noting at this time that
the above calculations generalize to the case of the quantum group Uq(SU(2))
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(introduced in section 4.5). Indeed, all the results that were needed in the
above computations remain true for quantum groups. Most formulas remain
unchanged except under minor transformations, mostly of the kind n → [n]
where:

[n] = [n]q =
q
n
2 − q−n

2

q
1
2 − q− 1

2

, lim
q→1

[n] = n (383)

(some extra powers of q may also appear). The representation theory of Uq(SU(2))
has been studied in [152]. An important point is that results are quite different
depending on whether q is a root of unity or not110. Indeed, if q is a root of
unity then [n] may be zero for some integers n. For instance, the fusion rules for
generic q are the same as the fusion rules of the classical group SU(2), but for

q = e
2ıπ
k+2 they agree with the fusion rules of the affine ŝu(2)k algebra as given in

(95). The Uq(SU(2)) group coefficients and their symmetries have been studied
in e.g. [153, 154, 155, 156], which were restricted to the case where q is not a
root of unity. While the case of generic q is interesting from a mathematical
point of view, it does not allow to treat the important case from a string theory
viewpoint. The above calculations, generalized to Uq(SU(2)) for q not a root of
unity, may then remain valid in the limit when q becomes a root of unity.

7.5.5 The relation to (rational) boundary conformal field theory

The diagrammar above can be viewed as a special case of the work of [52,
148] (and follow-ups) on the algebra of boundary conformal field theories. The
diagrams and diagrammatic techniques are (for the case of SU(2)) semi-classical
limits of the analysis done in these papers for rational conformal field theories.

The fact that group theory forms a representation of classical chiral confor-
mal field theory data has been known since the seminal work [25] on axioms of
conformal field theory (the 3j symbols correspond to intertwiners and the 6j
symbols to fusion matrices, see section 4.5). However, it has almost exclusively
been applied to finite or compact groups, and to rational conformal field theo-
ries. A notable exception is the treatment of the H4 group in [78, 121]. Also, a
physical situation to which the classical limit applies was left undetermined in
[25] as well as in many other works on realizations of chiral conformal field the-
ory data. In particular, it was already noticed in the work [25] that the classical
limit of chiral conformal field theory would not be applicable to bulk quantities
like the torus partition function. Presently, this is understood from the fact that
the chiral conformal field theory data may be thought off as applying to open
string dynamics, and that the bulk theory flattens to a Lie algebra (of infinite
volume).

The simple model developed here gives an intuitive physical picture of all the
relevant ingredients, even illuminating the (well-known) formulas of the compact

110The number q must be a root of unity of the form q = e
2ıπ
k+2 in order to connect to

conformal field theory via the identification of the fusing matrix and the Racah coefficients –
k is the level of the associated SU(2) Wess-Zumino-Witten model.
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case. That this extra intuition is useful will become clear in the following.
Indeed, the construction works for any group (having a non-degenerate metric),
including non-compact groups. In particular, it applies to the semi-classical
limit of models that fall outside the framework of rational conformal field theory
considered in [52, 148] (see also [25, 50, 147, 149]).

Note that it is traditional to represent the matrices Θl
m as matrix elements

of the corresponding spherical functions. In this way, one obtains an associative
product of (quantized) spherical functions, see equation (378). If concentrating
on a fixed brane and on the open strings living on it, one obtains the fuzzy
sphere function algebra [151, 157], which is also the Berezin quantization of
the sphere. Note that this construction generalizes to a function algebra for
spherical functions associated to different orbits, and to the case of spherical
functions on generic orbits (or flag manifolds). All these function algebras are
associative and non-commutative.

Now that explicit formulas for the compact case of S2 branes associated to
SU(2) have been given, it is time to proceed and to produce new results for the
rigid open string limit of non-compact branes associated to SL(2,R), in order
to illustrate the utility of the approach. A geometric description of the orbits,
of the tensor product and of the interactions is provided before giving explicit
results.

7.6 Remarks on SL(2, R) orbits, representations and fusion

While the algebraic structure of SU(2) is rather simple (for instance, there
is only one class of orbits, namely two-spheres), the structure of SL(2,R) is
more complicated. Before giving explicit results of associative products for
open strings living on the SL(2,R) manifold, this section develops intuition on
the kind of string interactions that will be described later in section 7.7.

7.6.1 Orbits and representations

Unitary irreducible representations of SL(2,R) are as follows. If the universal
covering group is considered (i.e. AdS3 with non-compact time), there are five
types of representations:

• The principal continuous series, for which j = 1
2 + ıλ with λ ∈ R∗

+, and
m = m0 + n with 0 ≤ m0 < 1 and n ∈ Z.

• The supplementary series, for which 1
2 ≤ j < max(m0, 1−m0) and m =

m0 + n, with 0 ≤ m0 < 1 and n ∈ Z.

• The highest-weight (negative) discrete series, for which j ≥ 1
2 and m =

−j−n, with n ∈ N. The highest-weight state is characterized by J+
0 |j,m =

−j〉 = 0.

• The lowest-weight (positive) discrete series, for which j ≥ 1
2 andm = j+n,

with n ∈ N. The lowest-weight state is characterized by J−
0 |j,m = j〉 = 0.
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Figure 23: The sl(2,R) co-adjoint orbits. One-sheeted hyperbolöıds correspond
to continuous representations and two-sheeted hyperbolöıds to discrete repre-
sentations (the upper sheet being associated to positive discrete representations
and the lower sheet to negative ones). The future and past light-cone (with the
point at the origin removed) correspond to the special cases of discrete represen-
tations with j = 1

2 while the point at the origin represents the trivial (identity)
representation.

• The trivial (identity) representation, for which J2
0 = 0 and J3

0 = 0.

where the current notations are the same as in subsection 6.2.2. If one does not
consider the universal covering group (i.e. time is compact, defined on [0; 2π]
only), then there are stronger conditions: for the continuous serie, ε = m0 =
0 or 1

2 , for the supplementary serie, m0 = 0, and for the discrete series, 2j ∈ N.

The continuous and discrete series will then be denoted by Cελ and D±
j . Positive

and negative discrete representations are conjugate of each other.
The co-adjoint orbits of SL(2,R) are given in111 figure 23. Vectors represent-

ing strings can be drawn between these orbits (with their endpoints lying on the
orbits), like in figures 24 and 25 for instance. Formally identifying the x0 coor-
dinate with a time, these vectors define future and past time-like, light-like and
space-like vectors. The time-like vectors correspond to discrete representations
while the continuous representations correspond to space-like vectors (see e.g.
[115] for a detailed discussion of the correspondence). For example, consider a
space-like oriented string which starts and ends on a given positive discrete orbit
(see figure 25). Its first endpoint which is a positively charged particle is then

111The hyperbolöıd shape is obtained from the orbit invariant TrX2 = TrX2
0 ifX = gX0g−1.

Identifying the algebra with its dual and using the basis (12) to express X = x1c1+x2c2+x0c3
leads to x2

1 + x2
2 − x2

0 = 2TrX0. This is actually a consequence of the isomorphism sl(2,R) ∼
so(2, 1). The result would be the same for SU(1, 1). See [22, 115] for more details. Finally, the
j = 1

2
discrete representations are a special case since they do not appear in the decomposition

of representations on quadratically integrable functions on SL(2,R), nor in the spectrum.
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jD

Figure 24: Some past time-like strings starting on a future discrete orbit and
ending on a past discrete orbit.

associated to a lowest weight representation and its negatively charged second
endpoint is associated to a highest weight representation (indeed, recall that the
quantum Hilbert space is a tensor product λI ⊗ λ̄F where λI , λ̄F are the spins
labeling the representations in which the initial and final endpoints of the string
live). There are strings corresponding to any tensor product combination, and
the whole picture is consistent with the fusion, as explained below.

7.6.2 The geometry of tensor product decomposition

The tensor product decompositions of SL(2,R) representations are necessary in
order to understand the irreducible representations in which the center-of-mass
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wave-functions transform. They are [158]:

D±
j1
⊗D±

j2
= ⊕j≥j1+j2D±

j (384)

D+
j1
⊗D−

j2
=

∫ ∞

0

dλ Cελ + Θ(j1 − j2 − 1)⊕j1−j2j=jmin
D+
j

+Θ(j2 − j1 − 1)⊕j2−j1j=jmin
D−
j

where ε = 0, jmin = 1 if j1 + j2 is integer

and ε =
1

2
, jmin =

3

2
otherwise

D±
j1
⊗ Cε2λ2

=

∫ ∞

0

dλ Cελ ⊕j≥jmin D±
j

where ε = 0, jmin = 1 if j1 + ε2 is integer

and ε =
1

2
, jmin =

3

2
otherwise

Cε1λ1
⊗ Cε2λ2

= ⊕j≥jminD+
j ⊕j≥jmin D−

j ⊕ 2

∫ ∞

0

dλ Cελ
where ε = 0, jmin = 1 if ε1 + ε2 is integer

and ε =
1

2
, jmin =

3

2
otherwise

where D±
ji

are discrete representations and Cεiλi are continuous representations,

ji is a half-integer verifying ji ≥ 1
2 , εi = 0 or 1

2 and 0 < λi <∞. The function
Θ(x) is the Heaviside function that gives 1 if x ≥ 0 and 0 otherwise. These
tensor product decompositions are interpretable geometrically. Namely, the
possible difference vectors (within the vector space that is the Lie algebra) of
the positions of the open string stretching between two orbits are associated to
representatives of orbits that give rise to representations appearing in the tensor
product decomposition. This is indeed the case:

• the difference of a past time-like vector and a future time-like vector is a
past time-like vector. Its minimal length depends on the minimal lengths
of these vectors. This explains the first relation in (384). See figure 24.

• The difference of two future time-like vectors can give either a space-like
vector (see figure 25), or depending on their relative length, a future time-
like or a past time-like vector. This geometry corresponds to the second
relation in (384).

• The difference of a future time-like vector and a space-like vector either
gives a space-like vector, or a future time-like vector. See the third relation
in (384).

• The difference of two space-like vectors can take any form, as is shown by
the tensor product in the last line in (384).

This list shows the coherence of one example of a correspondence between the
representation theory and the geometric (quantization) picture.
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+
jD

Figure 25: A few space-like strings starting and ending on a given discrete orbit.

7.6.3 Interactions

Since there are many sorts of (rigid open) strings, it is possible to realize associa-
tive products arising from string concatenation in many different spaces. For the
sake of simplicity, the following section 7.7 concentrate on a very particular case.
The construction however is generic for all discrete and continuous representa-
tions. See [158, 159, 160] for results on group coefficients of SU(1, 1) including
continuous representations. Also, [161] discusses continuous representations of
Uq(SL(2,R)).

The intuitive picture of the sort of concatenation that underlies the associa-
tive products presented in section 7.7, and their generalizations, is as follows.
Consider the case where all the representations involved are discrete represen-
tations. A first open string may stretch from an upward oriented discrete orbit
D+
j1

to another D+
j2

orbit, corresponding to a tensor product representation

D+
j1
⊗ D−

j2
, and a second string may stretch from the D+

j2
orbit to a third D+

j3

orbit, corresponding to a tensor product representation D+
j2
⊗D−

j3
. The result-

ing concatenated string will be in the representation D+
j1
⊗D−

j3
. Assuming that

j1 ≥ j2 ≥ j3, the tensor product decomposition for all three strings will contain
positive discrete representations D+

j . This example is chosen to present the
following explicit calculations because it yields the simplest group coefficients.

7.7 A non-compact example: SL(2, R) ≡ SU(1, 1)

This section explains how one may build an associative product describing the
interaction of open strings in an SL(2,R) Wess-Zumino-Witten model. The
study will actually concentrate on the SU(1, 1) group, which is isomorphic to
SL(2,R), as was observed in section 3.1, relation (4). Indeed, the group coef-
ficients (Clebsch-Gordan and Racah) of SU(1, 1) have been extensively studied
in the literature [160, 162, 163], which makes it more convenient to work with.
Moreover, this section is restricted to discrete representations. Finally, con-
trarily to the SU(2) case the following treatment of SU(1, 1) will not rely on
diagrams. There are several reasons for this. Firstly, the diagrammatical no-
tation may be inconvenient when the 3j symbol is not symmetric under cyclic
permutation of its branches, since (in the notation adopted for SU(2)) some
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all-blue, symmetric vertices may appear in the computations. Secondly, the
6j symbol cannot be represented as in (369) since the coding in (369) implies
a sum which would be infinite in the case of SU(1, 1). Finally, this gives the
opportunity to use a different but more standard (and equivalent) treatment.

7.7.1 The kinematical 3j symbol

By convention for discrete representations j and m are half-integers with m ≥
j ≥ 0. Positive discrete series will be labeled by j and m while negative discrete
series will be labeled by j and −m. The study of discrete representations of
SU(1, 1) is made easier by their connection to SU(2). For instance, 3j symbols
of SU(1, 1) are related to 3j symbols of SU(2) [162]:

(
j1 j2 j
m1 m2 m

)

SU(1,1)

=

(
j′1 j′2 j′

m′
1 m′

2 −m′

)

SU(2)

(385)

The sign difference in front of m in relation (385) between SU(2) and SU(1, 1)
is there to accomodate the notation and to hopefully make positive and negative
discrete representations easier to identify. At this point all representations are
positive discrete representations. Negative discrete representations will appear
when considering permutations of the columns of the 3j symbols. Since this
section is restricted to the group SU(1, 1), there can be no misunderstanding
and the SU(1, 1) subscript will be dropped from 3j and 6j symbols.

The conditions for the 3j symbols to be non-zero transform correctly from
SU(2) to SU(1, 1) through the correspondence, which is:

j′1 =
1

2
(−j1 + j2 +m1 +m2 − 1) j1 =

1

2
(−j′1 + j′2 +m′

1 +m′
2 + 1)

j′2 =
1

2
(j1 − j2 +m1 +m2 − 1) j2 =

1

2
(j′1 − j′2 +m′

1 +m′
2 + 1)

j′ = j − 1 j =j′ + 1

m′
1 =

1

2
(j1 + j2 −m1 +m2 − 1) m1 =

1

2
(j′1 + j′2 −m′

1 +m′
2 + 1)

m′
2 =

1

2
(j1 + j2 +m1 −m2 − 1) m2 =

1

2
(j′1 + j′2 +m′

1 −m′
2 + 1)

m′ = j1 + j2 − 1 m =j′1 + j′2 + 1 (386)

For instance j′ ≥ m′ corresponds to j ≥ j1 + j2. Moreover, m = m1 + m2

otherwise the 3j symbol is zero.
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The explicit formula112 for the 3j symbol is [160, 162]:

(
j1 j2 j
m1 m2 m

)
= (−1)j1−m1

√
(j + j1 + j2 − 2)! (387)

×
√

(j + j1 − j2 − 1)!(j − j1 + j2 − 1)!(j − j1 − j2)!

×
√

(m+ j − 1)!(m− j)!
(m2 + j2 − 1)!(m2 − j2)!(m1 + j1 − 1)!(m1 − j1)!

× (m2 + j2 − 1)!(m2 − j2)!
(m+ j − 1)!(m− j)!

× 1

(j + j1 −m2 − 1)!(j − j1 −m2)!

× 3F2

(
j −m, 1− j1 −m1, j1 −m1

j + j2 −m1, j − j2 −m1 + 1
; 1

)

Because of the close connection between SU(2) and SU(1, 1), all the results that
are needed for the following study follow from the simpler study of SU(2), see
[160, 162]. The symmetries of the 3j symbol given by the above expression are
studied in appendix B.

The 3j symbol satisfies the usual orthogonality relation (it is a direct con-
sequence of their definition as a matrix of change of basis and of the choice to
take them real):

∑

m1,m2

(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
=

1

2j − 1
δj,j′δm,m′ (388)

wherem andm′ are held fixed in the sum. This relation still holds if one changes
any positive discrete representation into a negative one.

7.7.2 The dynamical 6j symbol

Like the 3j symbols, the SU(1, 1) 6j symbol corresponds by definition to a
change of basis – see the beginning of section 4.5, or [19] chapter 8 for more
details. By definition:

(
j1 j2 j12
m1 m2 m12

)(
j12 j3 j
m12 m3 m

)
=
∑

l23

(−1)j1+j2+j3+j(2j23 − 1)

×
(

j2 j3 j23
m2 m3 m23

)(
j1 j23 j
m1 m23 m

){
j1 j2 j12
j3 j j23

}+++

+++

(389)

where the notation + + + that appears in 6j symbol is used to specify that all
the representations are positive discrete representations. Negative discrete rep-
resentations will be signaled by a minus sign. Using the orthogonality relation

112There is a sign difference with the 3j symbol that would be found by using strictly
identification (386). This is convenient and of not much importance.
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(388):

∑

m2,m3 (m23 fixed)

(
j1 j2 j12
m1 m2 m12

)(
j12 j3 j
m12 m3 m

)(
j2 j3 j23
m2 m3 m23

)

= (−1)j1+j2+j3+j

(
j1 j23 j
m1 m23 m

){
j1 j2 j12
j3 j j23

}+++

+++

(390)

Finally, using the orthogonality relation one more time, the 6j symbol may be
expressed in terms of 3j symbols (note that the 6j symbol is real since the 3j
symbols were chosen to be real):

{
j1 j2 j12
j3 j j23

}+++

+++

= (−1)j1+j2+j3+j (2j − 1) (391)

∑

m1,m2,m3 (m fixed)

(
j1 j2 j12
m1 m2 m12

)(
j12 j3 j
m12 m3 m

)

×
(

j2 j3 j23
m2 m3 m23

)(
j1 j23 j
m1 m23 m

)

The 6j symbol seems to depend on m, but it actually does not113. For the group
SU(2) the above equation can be rewritten as a sum of the four 3j symbols
over all possible quantum numbers mi, see equation (368) and the equivalent
diagrammatic expression in (369) (the 6j symbols had three loops i.e. three
sums – over m1, m2 and m3). This however is not possible for SU(1, 1) because
there is an infinite number of states in the representation D±

j (summing over m
would lead to an infinite result).

The symmetries of the 6j symbol can be deduced from the symmetries of 3j
symbols and from permutations of spins and identifications in relations (389),
(390) and (391). The inversion (unitarity) property of the 6j symbol:

∑

j12

√
(2j23 − 1)(2j′23 − 1)(2j12 − 1) (392)

{
j1 j2 j12
j3 j j23

}+++

+++

{
j1 j2 j12
j3 j j′23

}+++

+++

= δj23,j′23

allows to write an equivalent definition of the 6j symbol:

(
j2 j3 j23
m2 m3 m23

)(
j1 j23 j
m1 m23 m

)
=
∑

l12

(−1)j1+j2+j3+j(2j12 − 1)

×
(

j1 j2 j12
m1 m2 m12

)(
j12 j3 j
m12 m3 m

){
j1 j2 j12
j3 j j23

}+++

+++

(393)

113In order to be convinced of this result, observe that a dependence in m would not be
consistent with the symmetries of the 6j symbol which are discussed below. This fact already
holds for the group SU(2).
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Relations that may be needed are of the form:

{
j1 j2 j12
j3 j j23

}+++

+++

=

{
j1 j2 j12
j3 j j23

}−−−

−−−
=

{
j3 j2 j23
j1 j j12

}+++

+++{
l1 l2 l12
j3 j1 j2

}+++

+++

= (−1)l1+l2−l12
{

l2 l1 l12
j1 j3 j2

}+++

−−−{
l1 j2 j1
j3 l12 j2

}+++

−++

= (−1)2j2−1

{
l1 l2 l12
j3 j1 j2

}+++

+++

(394)

Finally, the Biedenharn-Elliott identity for SU(1, 1) reads:

∑

l12

(2l12 − 1) (−1)J
[
l2 l1 l12
j1 j3 j2

]+++

−−−

[
l3 l12 l
j1 j4 j3

]+++

−−−
(395)

×
[
l3 l2 l23
l1 l l12

]+++

+++

=

[
l23 l1 l
j1 j4 j2

]+++

−−−

[
l3 l2 l23
j2 j4 j3

]+++

−−−

where J = j1 + j2 + j3 + j4 + l1 + l2 + l3 + l12 + l23 + l. For consistency reasons
one must make sure that each spin is always in either a positive or in a negative
discrete representation. All these relations remain valid (up to a sign, which may
be different) if any representation ji is replaced by its conjugate representation.

7.7.3 Interaction and associativity

The string interactions are studied in this subsection. As mentioned in sub-
section 7.6.3, several distinct interactions may be considered. The geometric
intuition developed in the previous section 7.6 allows to understand the corre-
spondence between open string interactions and products. The key ingredient is
that the interaction must be consistent with the tensor product decomposition
(384). Also, the fact that the first endpoint of the string is chosen to be in the
representation of the brane on which it lives while the second endpoint is in the
conjugate representation is essential for consistent conservation of the quantum
number m. Here, the focus is put on open strings that are past time-like vectors
connecting upward-oriented discrete orbits. They are represented by:

[
Θl
m

]j1j2
n1n2

= (−1)j2−n2+1

(
j1 j2 l
n1 −n2 m

)
=

j1, n1 j2, n2

l,−m

(396)

The thick blue branch corresponding to the representation l and the two other
branches do not have the same status (whereas it would exceptionally be true for
the group SU(2)). Indeed, while symmetry between j1 and j2 follows directly
from the definition of the 3j symbol as a change of basis in the tensor product
space, the third spin j is not necessarily on the same footing. The extra sign in
(396) is the SU(1, 1) 1j symbol.
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The product that codes the interaction of strings is:

[
Θl1
m1

]j1j2
n1n2

×
[
Θl2
m2

]j2j3
n2n3

=
∑

l12∈ 1
2 N

cl12,m12

[
Θl12
m12

]j1j3
n1n3

(397)

where the coefficient cl12,m12 reads (αc = j1 − j2 + l12 + j2 + j3):

cl12,m12 = (−1)αc(2l12 − 1)

(
l1 l2 l12
m1 m2 m12

){
l1 j2 j1
j3 l12 l2

}−++

+++

(398)

The proof of the associativity is much similar to the SU(2) case:

([
Θl1
m1

]j1j2
n1n2

×
[
Θl2
m2

]j2j3
n2n3

)
×
[
Θl3
m3

]j3j4
n3n4

=
∑

l12,l

cl12,m12cl,m
[
Θl
m

]j1j4
n1n4

=
∑

l12,l

(−1)2l1+l12+j3−j1(−1)2l12+l+j4−j1(2l12 − 1)(2l − 1)

(
l1 l2 l12
m1 m2 m12

)

×
(

l12 l3 l
m12 m3 m

){
l1 j2 j1
j3 l12 l2

}+++

−++

{
l12 j3 j1
j4 l l3

}+++

−++

=
∑

l12,l23,l

(−1)2l1+l12+j3−j1(−1)2l12+l+j4−j1(−1)l1+l2+l3+l(2l12 − 1)(2l23 − 1)

× (2l− 1)

(
l2 l3 l23
m2 m3 m23

)(
l1 l23 l
m1 m23 m

)

×
{

l1 j2 j1
j3 l12 l2

}+++

−++

{
l12 j3 j1
j4 l l3

}+++

−++

{
l1 l2 l12
l3 l l23

}+++

+++

=
∑

l23,l

(−1)2l2+l23+j4−j2(−1)2l1+l+j4−j1(2l23 − 1)(2l− 1)

(
l2 l3 l23
m2 m3 m23

)

(
l1 l23 l
m1 m23 m

){
l2 j3 j2
j4 l23 l3

}+++

−++

{
l1 j2 j1
j4 l l23

}+++

−++

=
∑

l23,l

cl23,m23cl,m
[
Θl
m

]j1j4
n1n4

=
[
Θl1
m1

]j1j2
n1n2

×
([

Θl2
m2

]j2j3
n2n3

×
[
Θl3
m3

]j3j4
n3n4

)
(399)

This extends the well-known analysis for the group SU(2) to a non-compact case.
The above relations give formulas for associative products for open string wave-
functions transforming in the discrete representations of SU(1, 1) ≡ SL(2,R).
They provide a construction of fuzzy hyperbolöıds, and an extension of the as-
sociative product to situations in which more than one discrete orbit is involved.

7.7.4 Quantum group Uq(SU(1, 1))

Similarly to the SU(2) case, the above computations can be extended to the
quantum group Uq(SU(1, 1)) (see [162] for a definition and a study of this quan-
tum group). All the necessary formulas remain valid in this case. It is worth
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noting that although SU(1, 1) and SL(2,R) are equivalent, Uq(SU(1, 1)) and
Uq(SL(2,R)) are not. This puts some restrictions to the possible applications
of the study and is an incentive to study more specifically Uq(SL(2,R)) and its
differences from Uq(SU(1, 1)). As an example of the correspondence between
quantum and classical results, the 3j symbol is a direct extension of the classical
case [162]:

[
j1 j2 j
m1 m2 m

]

q

= (−1)j1−m1q
1
4 (j(j−1)+j1(j1−1)−j2(j2−1))−m1(m−1)

2

×
√

[j − j1 − j2]![j − j1 + j2 − 1]![j + j1 − j2 − 1]![j + j1 + j2 − 2]!

×
√

[m− j]![m1 − j1]![m1 + j1 − 1]![m2 − j2]![m2 + j2 − 1]!

[m+ j − 1]!
∑

n≥0

(−1)nq
n
2 (m+j−1) 1

[n]![m− j − n]![m1 − j1 − n]![m1 + j1 − n− 1]!

· 1

[j − j2 −m1 + n]![j + j2 −m1 + n− 1]!
(400)

where the sum is taken over all n such that integers in the sum (say, m− j−n)
are all positive. This formula reduces to (387) in the classical limit q → 1.
In the same way, one can construct the Uq(SU(1, 1)) 6j-symbol [162]. This
defines again via equation (397) an associative product. Finally, note that since
the level of the SL(2,R) Wess-Zumino-Witten model needs not be integer, the

difficulties encountered for the quantum group Uq(SU(2)) for q = e
2ıπ
k+2 a root

of unity may not appear here.

7.8 Associative products based on quantum groups

A possible extension of the construction of associative products presented above
is discussed in this section. It involves the replacement of groups by quantum
groups, and may be related to the dynamics of open strings. Until more work
has been done in this subject, this section remains in some parts speculative.

The construction of the associative product follows by now familiar paths,
and was discussed in the previous sections (along with possible difficulties for
q a root of unity). However, the point-particle action needs to be replaced by
the action for a particle on a co-adjoint orbit. The relevant symplectic form
(which can be integrated to the point-particle one-form Lagrangian) is the one
constructed by [164] in full generality for any Lie bi-algebra (see also earlier
work [165, 166] – another interesting generalization is given [129].). For a very
concrete example, see [140]. Quantizing the Alekseev-Malkin action will provide
for a Hilbert space on which a natural set of observables [140] acts irreducibly
as quantum group generators.

By considering the sum of two such actions, for two independent particles,
one creates a quantum system with a Hilbert space which is the tensor prod-
uct of two irreducible representations of the quantum group. An (open string,
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quadratic Casimir) Hamiltonian will break the symmetry to a diagonal quan-
tum subgroup, and the tensor product can be decomposed accordingly. More
importantly, the tensor product structure of the Hilbert space will naturally al-
low to define an associative product for wave-functions living within the tensor
product Hilbert space. The associative product can be expressed in terms of
3j and 6j symbols for the quantum group, exactly as was done previously for
ordinary Lie groups. That is the construction which applies to at least all cases
in which the symplectic form is known [164].

An appealing picture then arises: in the case where the quantum group cor-
responds to an ordinary Lie group allowing for a Wess-Zumino-Witten model,
the associative product thus constructed may coincide with the associative prod-
uct between primary boundary vertex operators living on symmetry preserving
branes.

There is some evidence for the above picture scattered over the literature.
For instance, the symplectic form of [164] reduces to the Kirillov symplectic
form in the classical limit, thus allowing to recuperate the rigid open string
limit. The symplectic form also has the required quantum group symmetry.
The case of the SU(2) Poisson Lie group has been treated in the literature. It
has been explicitly shown using a canonical analysis [165, 166, 167] that the
symplectic form of [164] after quantization consistent with the symmetries gives
rise to a Hilbert space that represents the Uq(SU(2)) quantum group irreducibly.
Alternatively, a path integral analysis performed in detail in [140] identifies the
observables that act as quantum group generators on the Hilbert space. Now,
quantizing two such particle actions independently will give rise to a tensor
product of irreducible representations of the quantum group. Following the
procedure described above, the operators living in the tensor products should
compose according to the law governed by the 3j and 6j symbols. Modulo
the discussion of the previous sections, the composition is associative since the
proof in sections 7.5 (and 7.7) can be extended to the case of quantum groups.
Finally, the multiplication law is expected to coincide with the multiplication
law for boundary vertex operators114, independently derived through entirely
different methods in e.g. [127], see also [168]. If indeed correct, this should hold
generically, at least for compact groups. Some analysis of orbit quantization for
generic quantum groups is in the mathematical literature (see e.g. [169, 170]).
Finally, it seems clear a posteriori from the solution to the Cardy-Lewellen
constraints for compact Wess-Zumino-Witten models (see e.g. [148], or also
the case of a particular non-compact Wess-Zumino-Witten model [78, 121]) for
symmetry preserving branes that the above products should coincide, since they
should have identical coefficients (given in terms of quantum 3j and 6j symbols).

For a first step in the direction discussed above, see [171, 172] which stud-
ies the quantization of the q-deformed fuzzy sphere (some results include the
case where q is a root of unity). Two approaches are considered, one relying on

114A point that needs better understanding is the statement in [127] that the correct product
for finite level conformal field theory should involve a classical 3j symbol and a quantum 6j
symbol, which is non-associative but only quasi-associative (i.e. obeys an associative relation
modified by Drinfeld’s re-associator).

141



quasi-associative algebras as introduced in [127], the other relying on associative
algebras (similarly to what is here suggested). The two approaches are essen-
tially equivalent, though the associative case is favored from a mathematical
viewpoint when trying to write Lagrangians (for theories having Uq(SU(2)) as
a gauge group).

Eventually, the above picture may allow to code the dynamics of the full
fluctuating open string (in the perturbative regime) in the (local) dynamics of
two endpoints, by firstly quantizing the endpoints in a way consistent with the
quantum group symmetry, and by determining the product of primary boundary
vertex operators, and by secondly using the affine Kac-Moody symmetry to
derive the operator product of descendents.

The above statements lead to new solutions to the Cardy-Lewellen con-
straints (as for instance for symmetry preserving branes in extended Heisenberg
groups H2n+2 [91, 173]), even in cases where one has trouble defining the con-
formal field theory directly from an action principle. A case in point is the
SL(2,R) conformal field theory, which is difficult to define directly due to the
Lorentzian signature of the curved group. Steps towards defining the theory
via analytic continuation from the H+

3 conformal field theory, or via modified
Knizhnik-Zamolodchikov equations, were taken in [112, 174]. It is crucial to
observe that the analysis of sections 7.6 and 7.7 remains valid in the case of the
quantum group Uq(SU(1, 1)) (though, once again, results for Uq(SL(2,R)) may
differ since the two quantum algebras are not equivalent). A future Lorentzian
analytic continuation of an H+

3 ≡ SL(2,C)/SU(2) boundary conformal field
theory will presumably need to match the new solution to the Cardy-Lewellen
constraint given here. This squares well with the fact that the 6j symbols of
the quantum group form a basis of the solution for the boundary three-point
function of Liouville theory [161, 175], when combined with the observation
that in the bulk, Liouville theory and the H+

3 model are closely related (see e.g.
[176]).115

7.9 Conclusions and open problems

The paper [2] has added connections between subjects that have an extended
literature by themselves. In particular, it reviewed the connection of the orbit
method in representation theory to the quantization of a particle on an orbit,
and its relation to geometric quantization. Secondly, it was observed that the
construction can be applied to the two endpoints of an open string, and that this
leads to a tensor product of representations via the orbit method and geomet-
ric quantization. Thirdly, string concatenation leads to an associative product
for operators (or the associated functions) living in the tensor product Hilbert
spaces. The construction has the considerable generality of the orbit method.

The formalism was explicitly applied to the known example of SU(2) and
to the non-compact group SL(2,R), for which a product was constructed for

115Note that bosonic Liouville theory is obtained from SL(2,R) by gauging a light-like di-
rection.
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the case of discrete representations. References to the (mathematics) literature
were used to explain that, in the case of SU(2), the fuzzy sphere is an example
of Berezin quantization, and to connect to the theory of star products.

Moreover, the construction was argued to extend to full solutions of bound-
ary conformal field theory, in particular including the case of non-compact
groups. This is related to the fact that the associative products that were
build can be extended to the case of quantum groups.

Several issues would deserve further exploration. First, the intuitive picture
of a string stretching between two co-adjoint orbits of a Lie group corresponding
to an intertwiner between three representations (after tensor product decompo-
sition) is attractive. In particular, it is natural to ask about an associative string
interaction. For instance, what may be the meaning of the associative product of
Virasoro or affine Kac-Moody intertwiners? Also, one would like to understand
better the link between the associative products on orbits constructed here, and
the associative products on the Poincaré disc constructed in the mathematics
literature [177, 178].

Moreover, it would be important to further explore the geometry of D-branes
as orbits of quantum groups. This can be attacked by more directly linking
chiral conformal field theory to the theory of D-brane boundary states, and
in particular in regard to the quantum group symmetry (see e.g. [152, 165,
166, 179] and references therein). A related issue would consist in extending
the construction discussed here to twisted (co-)adjoint orbits [180]. Even more
importantly, it would be interesting to carry out explicit calculations for the case
of physical (stable) branes in backgrounds presenting an SL(2,R) symmetry (or
even a non semi-simple symmetry algebra, like the Heisenberg algebras H2n+2).
This would be the opportunity to discuss the level-matching condition and the
on-shell (physical) condition for string states, (Ln − δn,0)|physical〉 = 0 for any
positive integer n, which were disregarded here116.

Finally, one may wish to understand explicitly (following [144]) how the
action (343) arises as a limit of open string theory in a generic context, and how
it may be generalized to supersymmetric theories.

In summary, the present discussion of the quantization of pairs of conju-
gacy classes (in particular of non-compact groups) from various perspectives,
including the string theoretic, symplectic geometric and boundary conformal
field theory viewpoint, may lead to further useful cross-fertilization.

116Remark however that the level-matching condition simply relates the left and right part
of the theory and must be easily satisfied. As for the on-shell condition for the case of compact
groups, it can be satisfied by adding an extra non-compact group (in order to account for the
time in the string background) and by appropriatly fixing the energy of the string in terms of
its other parameters.
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8 Conclusion of the dissertation and perspec-

tives

A number of non-rational conformal field theories were studied in the disser-
tation and several new results were found. Correlation functions for theories
having a Heisenberg algebra H2n+2 for symmetry were calculated, and the ori-
gin of this symmetry was explained by using branes in the context of string
theory. A Verlinde-like formula was written for Liouville theory, the H+

3 the-
ory and the supersymmetric coset SL(2,R)/U(1), and it was checked that a
generalized Cardy formula holds. Finally, open strings whose endpoints live on
co-adjoint orbits of Lie algebras (like su(2) or su(1, 1) ≡ sl(2,R)) were studied
in the context of the semi-classical limit of conformal field theory.

Several questions remain open and may motivate future work.
In the context of the Heisenberg algebras, it is not clear yet how backgrounds

with any H8 orH10 symmetry emerge from string theory. Moreover, the Heisen-
berg algebra is invariant under a spectral flow, which gives rise to new repre-
sentations. It would be interesting to generalize the Knizhnik-Zamolodchikov
equation to these spectral-flowed representations (possibly along the lines of
[174]) and to write the corresponding four-point functions.

As for the Verlinde formula, it may be worth checking its validity for other
non-rational theories having degenerate representations. Finding a more rig-
orous approach than the one used in the dissertation may also be illuminating
(understand characters of continuous representations, incorporate a measure for
continuous spin).

Finally, the model built in [2] awaits new developments. It may be interesting
to treat non semi-simple Lie algebras which possess a non-degenerate metric (like
H2n+2), or to write a supersymmetric analogue. The case of twisted co-adjoint
orbits is unclear. It would allow to describe a larger class of branes. Checking
that the open strings are physical also remains to be done in the case of non-
compact groups. Explicit calculations in the context of physical branes for a non-
rational theory are desirable. A rigorous extension of this work to the quantum
group case i.e. a treatment of the full conformal field theory (without using the
semi-classical limit), including a discussion of the (non-)associativity and of the
brane dynamics, would also be interesting. From a more mathematical point
of view, the study of generic star-products as realized in the context of string
theory offers appealing perspectives.
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A Various useful results

This appendix collects well-kown useful formulas, for the commodity of the
reader.

Integrals The gaussian integral reads:

∫ ∞

−∞
e−ax

2/2+bxdx =

√
2π

a
e
b2

2a (401)

The Dotsenko-Fateev integral [181] is given by:

In(α, β, ρ) =

∫ n∏

i=1

d2yi|yi|2α|1− yi|2β
∏

i<j

|yi − yj |4ρ (402)

= πnn!
n−1∏

l=0

γ((l + 1)ρ)

γ(ρ)

γ(1 + α+ lρ)γ(1 + β + lρ)

γ(2 + α+ β + (n− 1 + l)ρ)

Another integral is:
∫

C

d2y|x− y|−4j−4yj−mȳj−m̄ = π
Γ(1 + j −m)Γ(1 + j + m̄)

Γ(−j −m)Γ(−j + m̄)
(403)

×Γ(−2j − 1)

Γ(2j + 2)
x−j−1−mx̄−j−1−m̄

where m− m̄ ∈ Z and <j > −1. Finally, for n,m ∈ Z (see [114]):
∫

C

d2x

π
|x|2axn|1− x|2b(1− x)m =

Γ(a+ n+ 1)Γ(b+m+ 1)Γ(−a− b− 1)

Γ(−a)Γ(−b)Γ(a+ b+ n+m+ 2)
(404)

Special functions The Γ function satisfies the following relations:

Γ(z)Γ(1− z) =
π

sinπz

Γ(−n+ ε) ∼
0

(−1)n

Γ(n+ 1)

1

ε
, n ∈ N

Γ(x) ∼
∞

xx−
1
2 e−x

√
2π

(
1 +

1

12x
+

1

288x2
+O

(
1

x3

))
(405)

were |arg x| < π in the last line. It is rather standard to define the γ function
as:

γ(z) =
Γ(z)

Γ(1− z) (406)

The Dirac distribution may be equivalently defined as several limits:

δ(x) = lim
ε→0

1

πx
sin

x

ε
= lim

ε→0

1

2
√
πε
e−

x2

4ε

= lim
ε→0

1

π

ε

x2 + ε2
= lim

ε→0
ε|x|ε−1 (407)
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and satisfies the convenient equality:

δ(x) =
1

2π

∫ ∞

−∞
eıkxdk (408)

In particular, it may be used with the Poisson formula:

∑

n∈Z

f(n) =
∑

k∈Z

∫ ∞

−∞
f(x)e−2ıπkxdx

∑

q∈Z

e2ıπqx =
∑

k∈Z

δ(k − x) (409)

Some relations involving hypergeometric functions are:

2F1(a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z)

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; 1 + a+ b− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b

×2F1(c− a, c− b; 1 + c− a− b; 1− z)
dn

dzn
2F1(a, b; c; z) =

(a)n(b)n
(c)n

2F1(a+ n, b+ n; c+ n; z) (410)

The Dedekind function verifies:

η(τ) = q
1
24

∞∏

n=1

(1− qn) , η

(
−1

τ

)
=
√
−ıτ η(τ) (411)

while the function θ1 is defined by:

θ1(τ, ν) = 2q1/8 sinπu

∞∏

n=1

(1− zqn)(1− qn)(1− z−1qn)

=
∑

n∈Z

q
1
2 (n− 1

2 )
2

e2ıπ(ν−
1
2 )(n− 1

2 ) (412)

and satisfies the following modular properties:

θ1(τ + 1, ν) = e
ıπ
4 θ1(τ, ν)

θ1

(
−1

τ
,
ν

τ

)
= −ı

√
−ıτeıπν2/τθ1(τ, ν) (413)

where q = e2ıπτ and z = e2ıπν . The special function Υ is defined on the strip
0 < <(x) < Q by the following integral representation:

ln (Υ(x)) =

∫ ∞

0

dt

t



(
Q

2
− x
)2

e−t −
sh2

((
Q
2 − x

)
t
2

)

sh
(
bt
2

)
sh
(
t
2b

)


 (414)
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where Q = b + 1/b and b ∈ R∗. The function Υ can be extended to the whole
complex plane, thanks to the relations:

Υ(x+ b) = γ(bx)b1−2bxΥ(x)

Υ(x+ 1/b) = γ(x/b)b2x/b−1Υ(x) (415)

The function Υ is an entire function of the variable x with zeroes at x = −xm,n
and at x = Q + xm,n, with xm,n = m/b + nb and m,n ∈ N. Other relations
satisfied by the function Υ are:

Υ(Q− x) = Υ(x) , Υ(Q/2) = 1 , Υ′(0) = Υ(b) (416)

Christoffel symbols The metric and the non-zero components of the Christof-
fel symbols for the S3 space are:

ds2 = l2
(
dφ2 + sin2 φ

(
dθ2 + sin2 θdψ2

))

Γφθθ = −1

2
sin 2φ , Γφψψ = −1

2
sin 2φ sin2 θ , Γθφθ = cotφ

Γθψψ = −1

2
sin 2θ , Γψφψ = cotφ , Γψθψ = cot θ (417)

or:

ds2 = l2
(
cos2 θdφ2 + dθ2 + sin2 θdψ2

)

Γφθφ = − tan θ , Γθφφ = −Γθψψ =
1

2
sin 2θ , Γψθψ = cot θ (418)

while for the AdS3 space:

ds2 = l2
(
du2

u2
+ u2(−dt2 + dx2)

)

Γttu =
1

u
, Γxxu =

1

u
, Γutt = −Γuxx = u3 , Γuuu = − 1

u
(419)

or:

ds2 = l2
(
− cosh2 ρdt2 + dρ2 + sinh2 ρdφ2

)

Γttρ = tanh ρ , Γρtt = Γρφφ =
1

2
sinh 2ρ , Γφρφ = coth ρ (420)

SU(2) and Pauli matrices SU(2) is the group of two by two complex unitary
matrices of determinant one. A basis of the Lie algebra su(2) is given by the
Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)

σ3 =

(
1 0
0 −1

)
(421)
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which satisfy:

σiσj = δij + ıεijkσk , T rσi = 0

[σi;σj ] = 2ıεijkσk , σ†
i = σi

{σi;σj} = 2δij . 1 (422)

Any matrix in SU(2) may be written in the form:

U = cos
θ

2
− ı−→σ .−→n sin

θ

2
= e−ıθ

−→σ .−→n /2 (423)

where θ is a real number and ||−→n || = 1. Another standard expression uses Euler
angles:

g = eı
φ
2 σ3eı

θ
2σ1eı

ψ
2 σ3 (424)

where φ, ψ and θ are real numbers.
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B 3F2(1) hypergeometric functions and 3j sym-

bol transformations

This appendix reviews several relations between 3F2(1) hypergeometric func-
tions [182, 183, 184, 185] and use them to show how the symmetry properties
of SU(2) or SU(1, 1) 3j symbols can be determined (see also [19]). These sym-
metries are used in section 7. Although the content of this appendix is mostly
well-known, the integer limit in the hypergeometric function and the full set of
transformations of 3j symbols of SU(2) or SU(1, 1) are usually not explicitly
mentioned in the literature. It is presented here in detail.

B.1 Whipple functions

Whipple’s notation is a very compact way to write down the various transforma-
tions relating different 3F2(1) functions117. This notation relies on six complex
parameters ri, i = 0, 1, ..., 5, which obey the following condition:

r0 + r1 + r2 + r3 + r4 + r5 = 0 (425)

and therefore encode the five degrees of freedom of 3F2(1) functions. Another
set of convenient variables is:

αlmn =
1

2
+ rl + rm + rn

βlm = 1 + rl − rm (426)

Some simple remarks are in order: αlmn is completely symmetric and satisfies
αlmn = 1− αijk due to equation (425) (where the indices i, j, k are all different
from l,m, n), moreover βlm = 2− βml.

Using the above notation, the (Thomae-)Whipple functions are:

Fp(l;m,n) =
1

Γ(αghj , βml, βnl)
3F2

(
αgmn, αhmn, αjmn

βml , βnl
; 1

)

Fn(l;m,n) =
1

Γ(αlmn, βlm, βln)
3F2

(
αlgh, αlgj , αlhj
βlm , βln

; 1

)
(427)

where g, h and j are indices all different from l, m and n. Note that any
Fn(l;m,n) function is obtained from the corresponding Fp(l;m,n) function by
changing the signs of all the parameters ri. The function Fp(l;m,n) is well-
defined if <αghj > 0 and Fn(l;m,n) is well-defined if <αlmn > 0. This is
related to the fact that the defining series for 3F2(a1, a2, a3; b1, b2; 1) is well-
defined if and only if s = b1 + b2 − a1 − a2 − a3 is such that it has a strictly
positive real part, assuming that no argument is a negative integer. Things

117An 3F2(1) function is a hypergeometric function of five complex arguments of the kind

3F2(a1, a2 , a3; b1, b2; 1) =
P∞

n=0
(a1)n(a2)n(a3)n

(b1)n(b2)n
1
n!

where (a)n = Γ(a+n)
Γ(a)

is the Pochammer

symbol.
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are a little different if at least one ai is a negative integer, since in this case

3F2(a1, a2, a3; b1, b2; 1) can be expressed as a finite sum and there is no more
requirement on s. There is however a complication if some ai’s and some bj ’s
are negative integers at the same time, for in this case there is no clear limiting
procedure that would allow a definition of 3F2(1). Assuming that ai0 = −N is
the largest of all negative integers ai and that any bj that is a negative integer
is smaller than 1−N , a reasonable and commonly used definition is:

3F2

(
a1, a2, a3

b1 , b2
; 1

)
=

N∑

n=0

(a1)n(a2)n(a3)n
(b1)n(b2)n

1

n!
(428)

i.e. the infinite sum has been truncated. In the same spirit, a formula that is
necessary to connect finite sum expressions of 3j symbols and Whipple functions
is:

1

Γ(b1)Γ(b2) 3

F2

(
a1, a2, a3

b1 , b2
; 1

)
=

−max ai∑

n=1−min bj

(a1)n(a2)n(a3)n
Γ(b1 + n)Γ(b2 + n)

1

n!
(429)

where some ai’s and some bj ’s are negative integers at the same time, and
under the assumption that 1 + maxai ≤ min bj . The maximum and minimum
are taken over the sets of negative ai, bj .

B.2 Another useful notation

One often wishes to manipulate expressions of the kind 3F2(a, b, c; d, e; 1). This
new notation may be introduced by choosing:

Fp(0; 4, 5) =
1

Γ(s, d, e)
3F2(a, b, c; d, e; 1) (430)

where s = d+ e− a− b− c. This fixes the following correspondence table:

β01 = 2− s− a β02 = 2− s− b β03 = 2− s− c
β10 = s+ a β12 = a− b+ 1 β13 = a− c+ 1
β20 = s+ b β21 = b− a+ 1 β23 = b− c+ 1
β30 = s+ c β31 = c− a+ 1 β32 = c− b+ 1
β40 = d β41 = b+ c− e+ 1 β42 = a+ c− e+ 1
β50 = e β51 = b+ c− d+ 1 β52 = a+ c− d+ 1
β04 = 2− d β05 = 2− e
β14 = e− b− c+ 1 β15 = d− b− c+ 1
β24 = e− a− c+ 1 β25 = d− a− c+ 1
β34 = e− a− b+ 1 β35 = d− a− b+ 1
β43 = a+ b− e+ 1 β45 = d− e+ 1
β53 = a+ b− d+ 1 β54 = e− d+ 1

(431)
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and:

α012 = 1− c α013 = 1− b α014 = a− e+ 1
α023 = 1− a α024 = b− e+ 1 α025 = b− d+ 1
α034 = c− e+ 1 α035 = c− d+ 1 α045 = 1− s
α123 = s α124 = d− c α125 = e− c
α134 = d− b α135 = e− b α145 = a
α234 = d− a α235 = e− a α245 = b
α015 = a− d+ 1 α345 = c

(432)

This implies a correspondence between trivial transformations of 3F2(1) func-
tions:

Whipple’s notation a, b, c, d, e notation
1↔ 2 a↔ b
1↔ 3 a↔ c
4↔ 5 d↔ e

(433)

B.3 Two-term and three-term relations

There exist many relations between 3F2(1) functions. They originate from consi-
derations on equations that these functions satisfy. These relations are standard
and can be elegantly written in Whipple’s notation. They are of two kinds. The
first one consists of two-term relations:

Fp(l;m,n) = Fp(l;m
′, n′)

Fn(l;m,n) = Fn(l;m
′, n′) (434)

which are equivalent to the statement that both Fp(l;m,n) and Fn(l;m,n)
actually do not depend on m and n (and therefore will be denoted by Fp(l) and
Fn(l)). The second kind of relations are three-term relations:

sinπβ23

πΓ(α023)
Fp(0) =

Fn(2)

Γ(α134, α135, α345)
− Fn(3)

Γ(α124, α125, α245)
(435)

sinπβ32

πΓ(α145)
Fn(0) =

Fp(2)

Γ(α012, α024, α025)
− Fp(3)

Γ(α013, α034, α035)

sinπβ45 Fp(0)

Γ(α012, α013, α023)
= − sinπβ50 Fp(4)

Γ(α124, α134, α234)
− sinπβ04 Fp(5)

Γ(α125, α135, α235)

sinπβ54 Fn(0)

Γ(α145, α245, α345)
= − sinπβ05 Fn(4)

Γ(α015, α025, α035)
− sinπβ40 Fn(5)

Γ(α014, α024, α034)

Fp(0)

Γ(α012, α013, α023, α014, α024, α034)
= K0Fp(5)− sinβ05 Fn(0)

Γ(α123, α124, α134, α234)

Fn(0)

Γ(α125, α135, α235, α145, α245, α345)
= K0Fn(5)− sinβ50 Fp(0)

Γ(α015, α025, α035, α045)

where:

K0 =
1

π3
(sinπα145 sinπα245 sinπα345 + sinπα123 sinπβ40 sinπβ50) (436)
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These six identities, up to permutation of indices, give 120 independent relations
between 3F2(1) functions. The three-term relations may reduce to two-term
relations when one or more αlmn is a negative integer, as will be seen below.

B.4 An integer limit of Whipple’s relations

Since Whipple’s three-term relations are valid in the generic case of complex
parameters αlmn, βlm, relations in the case of integer parameters should be
obtained from a limiting procedure. With no loss of generality, it is possible to
choose:

α145 = −n+ ε , α014 = −n2 + ε2

α245 = −n′
1 + ε′1 , α015 = −n′

2 + ε′2
α345 = −n1 + ε1 (437)

where ε, ε1, ε
′
1, ε2, ε

′
2 are infinitesimaly small real parameters. The behavior of

all other parameters αlmn, βlm is then fixed. In order to connect with the
expressions of the 3j symbols later, it is furthermore assumed that the other
negative αlmn parameters are α024, α034, α025, α035 and α045.

Although the infinitesimal parameters may be anything a priori, they must
actually satisfy some consistency conditions which originate from considerations
on the 3j symbols of the groups SU(2) and SU(1, 1) – in which this study
is eventually interested. These constraints imply that only very few limiting
procedures can be considered. To be more precise, the fact that all 3j symbols
are real and that all ratios of 3j symbols of SU(2) (or, equivalently, of SU(1, 1),
see [150, 160]), are of modulus one implies that:

|ε| = |ε1| = |ε′1| = |ε2| = |ε′2| (438)

and that the relative signs between ε’s must be of the following kinds only (up
to a global sign that is used to fix ε > 0):

ε ε1 ε′1 ε2 ε′2
+ + + + −
+ + + − +
+ + − + +
+ − + + +
+ + + − −
+ − − + +

(439)

A consequence is that half of the Whipple functions are finite in the integer limit
(like Fp(0)), while the others tend to zero. Once the possible limiting procedures
are known, it is possible to find the following two-term relations resulting from
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equations (435) in the integer limit ε→ 0:

Fp(0)

Γ(α012, α013, α023)
= (−1)β05−1 Fp(5)

Γ(α125, α135, α235)

Γ(α013, α134, α135)Fn(1) = (−1)β12−1Γ(α023, α234, α235)Fn(2)

Γ(α234, α235)Fp(0) = (−1)α145Γ(α012, α013)Fn(1)

Fp(2)

Γ(α123, α234, α124)
= (−1)β20−1 Fp(0)

Γ(α013, α014, α034)

Γ(α234, α024, α245)Fn(4) = (−1)β41−1Γ(α123, α124, α125)Fn(1) (440)

where, in each relation, it is possible to exchange indices 1, 2 and 3 as well as 0,
4 and 5. These transformations are the only ones that leave the set of negative
αlmn invariant.

B.5 Transformations of SU(2) and SU(1, 1) 3j symbols

The relations (440) are used here in order to write the symmetry relations for
SU(2) and SU(1, 1) 3j symbols. The expressions of these 3j symbols were given
in equations (357) and (387). A useful notation is

(
j1 j2 j
m1 m2 −m

)

SU(2)

=

∣∣∣∣∣∣

−j1 + j2 + j j1 − j2 + j j1 + j2 − j
j1 +m1 j2 +m2 j −m
j1 −m1 j2 −m2 j +m

∣∣∣∣∣∣
(441)

(
j1 j2 j
m1 m2 −m

)

SU(1,1)

=

∣∣∣∣∣∣

j1 − j2 + j − 1 −j1 + j2 + j − 1 m− j
j2 +m2 − 1 j1 +m1 − 1 j − j1 − j2
−j1 +m1 −j2 +m2 j + j1 + j2 − 2

∣∣∣∣∣∣

In this matrix notation, the sum of any row or of any column of the above
matrices is a constant, equal to j1 + j2 + j for SU(2) and to m + j − 2 for
SU(1, 1). Moreover, all the coefficients of the matrices are positive integers.
For both groups, Whipple’s notation is introduced by identifying:

(
j1 j2 j
m1 m2 −m

)
∼
√

Γ

(
α124, α125, α134, α135, α234, α235, α123

α012 , α013 , α023

)

× Fp(0; 4, 5) (442)
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up to a sign that was fixed in (357) and (387). More precisely:

SU(2) SU(1, 1)

r0 = −j +
m1 −m2

3
− 1

2
r0 = −j +

m1 −m2

3
+

1

2

r1 = j +
m1 −m2

3
+

1

2
r1 = j +

m1 −m2

3
− 1

2

r2 = j2 −
2m1 +m2

3
+

1

2
r2 = −j1 +

m1 + 2m2

3
+

1

2

r3 = j1 +
m1 + 2m2

3
+

1

2
r3 = j1 +

m1 + 2m2

3
− 1

2

r4 = −j1 +
m1 + 2m2

3
− 1

2
r4 = j2 −

2m1 +m2

3
− 1

2

r5 = −j2 −
2m1 +m2

3
− 1

2
r5 = −j2 −

2m1 +m2

3
+

1

2
(443)

For both groups SU(2) and SU(1, 1), the set of all possible symmetry transfor-
mations of the 3j symbols is generated by the transformation that sends all ri to
−ri and by all possible permutations of Whipple indices (this is clear from the
two-term relations (440) that relate any Whipple function to any other Whipple
function). In terms of ji and mi, these transformations consist of all possible
permutations of rows or columns in the matrix notation of the 3j symbol intro-
duced in relation (441), plus the transposition of the matrix and the exchanges
of ji with −1− ji for the group SU(2), or 1− ji for the group SU(1, 1). Any 3j
symbol obtained by such transformations is equal to any other 3j symbol up to
a phase, which can be calculated using relations (440).

Some examples of transformations include:

Whipple’s notation a, b, c, d, e notation
3↔ 4 j1 → −1− j1
2↔ 5 j2 → −1− j2
0↔ 1 j → −1− j
0↔ 5 transposition

(444)

for SU(2) while in the case of SU(1, 1), the correspondence is:

Whipple’s notation a, b, c, d, e notation
2↔ 3 j1 → 1− j1
4↔ 5 j2 → 1− j2
0↔ 1 j → 1− j
0↔ 5 transposition

(445)

Other examples of the correspondence between the two notations are more com-
plicated.

One last remark is in order before listing all the symmetries of the SU(1, 1)
3j symbols. From the above relations it is a priori straightforward to find these
symmetry relations. There is however one subtlety that arises in some cases: Γ
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function prefactors may contribute to the overall sign that relate any 3j symbol
to any other 3j symbol. Recall for instance the expression of the SU(1, 1) 3j
symbol that was given in equation (387). It is not clear whether one should put
a given Γ function (say Γ(m1 + j1) for instance) inside or outside the square
root, since this does not matter when only positive discrete representations are
involved. It would however matter if one would try to compute 3j symbols
involving negative discrete representations. This is precisely how this last sub-
tlety is solved, using a result from [160] which says that the 3j symbols for
all-positive or all-negative discrete representations are equal. This requires that
some Γ functions be placed outside of the square root, as was done in (387).
The symmetry relations of the SU(1, 1) 3j symbols then follow directly from
equations (440)118. For instance:

(
j1 j2 j
m1 m2 m

)
=

(
j1 j2 j
−m1 −m2 −m

)
= (−1)j1+j2−j

(
j2 j1 j
m2 m1 m

)

= (−1)j1−j+m2+1

(
j j2 j1
m −m2 m1

)
= (−1)j1−m1+1

(
j j1 j2
m −m1 m2

)

= (−1)j2−j+m1

(
j1 j j2
m1 −m −m2

)
= (−1)j2−m2

(
j2 j j1
m2 −m −m1

)

= (−1)j2+m2

(
j2 j j1
−m2 m1 m1

)
= (−1)j1+m1+1

(
j j1 j2
−m m1 −m2

)

(446)

118One must be cautious when deriving these results because the symmetry j1 ↔ j2 ↔ j
that was valid for SU(2) does not hold anymore for SU(1, 1). This is why the diagrammatic
notation was not used in section 7.7. The reason is that this symmetry left the set of negative
αl,m,n invariant in the case of SU(2), while this is not true for SU(1, 1). However, the
symmetry j1 ↔ j2 is still valid.
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Index

H+
3 , 83

SL(2,R), SU(1, 1), 10, 12, 86, 134
SU(2), 10, 121
Υ function, 91, 147

Adjoint representation, 16
Adjoint/co-adjoint orbit, 16, 114
Associative product, 127, 139
Associativity

of SU(2) product, 128
of SU(1, 1) product, 139

Axiom of duality, 30, 38

Berezin’s quantization, 109
Biedenharn-Elliott identity, 48, 126,

138
Boundary state, 34, 36, 98, 100
Brane, 32, 59
Bulk theory, 33

Cardy’s constraint, 36, 98
Central charge, 26, 40, 43, 57, 87
Character, 34, 94
Chiral (sector), 23
Classical limit (of a CFT), 47
Clebsch-Gordan coefficients (3j sym-

bol), 47, 122, 135, 154
Cluster property, 24
Co-adjoint representation, 16
Conformal

blocks, 30, 73
bootstrap, 23
field theory, 18
symmetry, 17
Ward identities, 31
weight, 22, 41, 56, 87

Conjugacy class, 15
Conjugate action (of a group), 15
Continuity (boundary) condition, 33
Correlation function, 28, 67, 90
Coset, 43, 81, 83
Crossing symmetry, 23, 68

Dedekind function, 94, 147

Degenerate (state, field), 31
Degenerate (state, field), 82, 88
Descendant theory, 33
Dotsenko-Fateev integral, 146

Equivalent representation, 14, 87
Euclidean AdS3, 83

Fusion coefficient, 99
Fusion algebra, 44
Fusion coefficient, 44, 101

Generalized gravity equations, 43
Generalized gravity equations, 64
Geodesic, 60
Geometric quantization, 108
Group character, 15, 48

Heisenberg algebra, 53
Homogeneous (space), 107

Irreducible representation, 14, 31
Ishibashi state, 34

Kähler manifold, 108
Killing form, 13
Knizhnik-Zamolodchikov equation, 40,

67

Level, 39
Lie algebra, 11
Lie group, 10
Liouville theory, 32, 81
Locality (of fields), 21

Möbius group, 18, 28
Modular group, 34, 37
Modulus, 37

Non-rational (CFT), 50
NS5 brane, 60

Operator product expansion, 22, 26,
27, 58, 86

Orbifold, 43
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Partition function, 35, 37, 98, 101
Pauli matrices, 12, 49, 53, 83, 148
Penrose limit, 60
Poincaré coordinates, 63, 84
Point particle limit, 19
Polyakov’s action, 19
Polyakov’s action (modified), 42
Primary fields, 22

Quantum group, 49, 140

Racah coefficients (6j symbol), 47,
48, 124, 136

Rational (CFT), 20
Representation, 14, 30, 41, 45

Secondary (state, field), 31
Simple/semi-simple Lie algebra, 13
Stabilizer, 15, 113
State/field correspondence, 20
Stress-energy tensor, 25, 54, 87
String, 7, 52
String theory, 7
Sugawara construction, 40
Superconformal algebra, 46

Torus, 37
Twisted representation, 25

Unitary representation, 14
Universal covering group, 10, 130
Universal enveloping algebra, 49

Verlinde formula, 45, 99, 102
Verma module, 31
Virasoro algebra, 26

Wave-function (one-point function),
35, 97, 100

Wess-Zumino-Witten model, 38, 51,
82, 116

Whipple functions, 150
Witt algebra, 27
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